WorldWideScience

Sample records for amyloid binding agents

  1. Identification of a Common Binding Mode for Imaging Agents to Amyloid Fibrils from Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Skeby, Katrine Kirkeby; Sørensen, Jesper; Schiøtt, Birgit

    2013-01-01

    Amyloid diseases are characterized by the misfolding and deposition of proteins in the body in the form of insoluble amyloid fibrils. Alzheimer’s disease and type 2 diabetes mellitus are two examples of amyloid diseases which are closely related both with respect to the atomic structures of the a......Amyloid diseases are characterized by the misfolding and deposition of proteins in the body in the form of insoluble amyloid fibrils. Alzheimer’s disease and type 2 diabetes mellitus are two examples of amyloid diseases which are closely related both with respect to the atomic structures...... of the amyloid fibrils and the disease pathology. Alzheimer’s disease is very difficult to diagnose, and much research is being performed to develop noninvasive diagnostic methods, such as imaging with small-molecule agents. The interactions between amyloid fibrils and imaging agents are challenging to examine...

  2. Natural polyphenols binding to amyloid: a broad class of compounds to treat different human amyloid diseases.

    Science.gov (United States)

    Ngoungoure, Viviane L Ndam; Schluesener, Jan; Moundipa, Paul F; Schluesener, Hermann

    2015-01-01

    Polyphenols are a large group of phytonutrients found in herbal beverages and foods. They have manifold biological activities, including antioxidative, antimicrobial, and anti-inflammatory properties. Interestingly, some polyphenols bind to amyloid and substantially ameliorate amyloid diseases. Misfolding, aggregation, and accumulation of amyloid fibrils in tissues or organs leads to a group of disorders, called amyloidoses. Prominent diseases are Alzheimer's, Parkinson's, and Huntington's disease, but there are other, less well-known diseases wherein accumulation of misfolded protein is a prominent feature. Amyloidoses are a major burden to public health. In particular, Alzheimer's disease shows a strong increase in patient numbers. Accelerated development of effective therapies for amyloidoses is a necessity. A viable strategy can be the prevention or reduction of protein misfolding, thus reducing amyloid build-up by restoring the cellular aggretome. Amyloid-binding polyphenols affect amyloid formation on various levels, e.g. by inhibiting fibril formation or steering oligomer formation into unstructured, nontoxic pathways. Consequently, preclinical studies demonstrate reduction of amyloid-formation by polyphenols. Amyloid-binding polyphenols might be suitable lead structures for development of imaging agents for early detection of disease and monitoring amyloid deposition. Intake of dietary polyphenols might be relevant to the prevention of amyloidoses. Nutraceutical strategies might be a way to reduce amyloid diseases.

  3. 99mTc(CO)3-Labeled Benzothiazole Derivatives Preferentially Bind Cerebrovascular Amyloid: Potential Use as Imaging Agents for Cerebral Amyloid Angiopathy.

    Science.gov (United States)

    Jia, Jianhua; Cui, Mengchao; Dai, Jiapei; Liu, Boli

    2015-08-03

    Cerebral amyloid angiopathy (CAA) is a disorder affecting the elderly that is characterized by amyloid-β (Aβ) deposition in blood vessel walls of the brain. A series of 99mTc(CO)3-labeled benzothiazole derivatives as potential SPECT imaging probes for cerebrovascular Aβ deposition is reported. Rhenium surrogate displayed high affinities to Aβ aggregates with Ki values ranging from 106 to 42 nM, and they strongly stained Aβ deposits in transgenic mice (Tg) and Alzheimer's disease (AD) patients. In vitro autoradiography on brain sections of Tg and AD patients confirmed that [99mTc]24 possessed sufficient affinity for Aβ plaques, and [99mTc]24 could only label Aβ deposition in blood vessels but not Aβ plaques in the parenchyma of the brain of AD patients. Moreover, [99mTc]24 possessed favorable initial uptake (1.21% ID/g) and fast blood washout (blood2 min/blood60 min=23) in normal mice. These preliminary results suggest that [99mTc]24 may be used as an Aβ imaging probe for the detection of CAA.

  4. Peptide p5 binds both heparinase-sensitive glycosaminoglycans and fibrils in patient-derived AL amyloid extracts

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Emily B.; Williams, Angela [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Heidel, Eric [Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Macy, Sallie [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Kennel, Stephen J. [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Department of Radiology, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Wall, Jonathan S., E-mail: jwall@utmck.edu [Department of Medicine, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States); Department of Radiology, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37922 (United States)

    2013-06-21

    Highlights: •Polybasic peptide p5 binds human light chain amyloid extracts. •The binding of p5 with amyloid involves both glycosaminoglycans and fibrils. •Heparinase treatment led to a correlation between p5 binding and fibril content. •p5 binding to AL amyloid requires electrostatic interactions. -- Abstract: In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, there are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as

  5. Development of [F-18]-Labeled Amyloid Imaging Agents for PET

    Energy Technology Data Exchange (ETDEWEB)

    Mathis, CA

    2007-05-09

    The applicant proposes to design and synthesize a series of fluorine-18-labeled radiopharmaceuticals to be used as amyloid imaging agents for positron emission tomography (PET). The investigators will conduct comprehensive iterative in vitro and in vivo studies based upon well defined acceptance criteria in order to identify lead agents suitable for human studies. The long term goals are to apply the selected radiotracers as potential diagnostic agents of Alzheimer's disease (AD), as surrogate markers of amyloid in the brain to determine the efficacy of anti-amyloid therapeutic drugs, and as tools to help address basic scientific questions regarding the progression of the neuropathology of AD, such as testing the "amyloid cascade hypothesis" which holds that amyloid accumulation is the primary cause of AD.

  6. Does aluminium bind to histidine? An NMR investigation of amyloid β12 and amyloid β16 fragments.

    Science.gov (United States)

    Narayan, Priya; Krishnarjuna, Bankala; Vishwanathan, Vinaya; Jagadeesh Kumar, Dasappa; Babu, Sudhir; Ramanathan, Krishna Venkatachala; Easwaran, Kalpathy Ramaier Katchap; Nagendra, Holenarasipur Gundurao; Raghothama, Srinivasarao

    2013-07-01

    Aluminium and zinc are known to be the major triggering agents for aggregation of amyloid peptides leading to plaque formation in Alzheimer's disease. While zinc binding to histidine in Aβ (amyloid β) fragments has been implicated as responsible for aggregation, not much information is available on the interaction of aluminium with histidine. In the NMR study of the N-terminal Aβ fragments, DAEFRHDSGYEV (Aβ12) and DAEFRHDSGYEVHHQK (Aβ16) presented here, the interactions of the fragments with aluminium have been investigated. Significant chemical shifts were observed for few residues near the C-terminus when aluminium chloride was titrated with Aβ12 and Aβ16 peptides. Surprisingly, it is nonhistidine residues which seem to be involved in aluminium binding. Based on NMR constrained structure obtained by molecular modelling, aluminium-binding pockets in Aβ12 were around charged residues such as Asp, Glu. The results are discussed in terms of native structure propagation, and the relevance of histidine residues in the sequences for metal-binding interactions. We expect that the study of such short amyloid peptide fragments will not only provide clues for plaque formation in aggregated conditions but also facilitate design of potential drugs for these targets.

  7. Ligand-binding sites in human serum amyloid P component

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Heegaard, Peter M. H.; Roepstorff, P.;

    1996-01-01

    Amyloid P component (AP) is a naturally occurring glycoprotein that is found in serum and basement membranes, AP is also a component of all types of amyloid, including that found in individuals who suffer from Alzheimer's disease and Down's syndrome. Because AP has been found to bind strongly...... of 25 mu M, while the IC50 of AP-(27-38)-peptide and AP-(33-38)-peptide are 10 mu M and 2 mu M, respectively, The understanding of the structure and function of active AP peptides will be useful for development of amyloid-targeted diagnostics and therapeutics....

  8. Curcumin Binding to Beta Amyloid: A Computational Study.

    Science.gov (United States)

    Rao, Praveen P N; Mohamed, Tarek; Teckwani, Karan; Tin, Gary

    2015-10-01

    Curcumin, a chemical constituent present in the spice turmeric, is known to prevent the aggregation of amyloid peptide implicated in the pathophysiology of Alzheimer's disease. While curcumin is known to bind directly to various amyloid aggregates, no systematic investigations have been carried out to understand its ability to bind to the amyloid aggregates including oligomers and fibrils. In this study, we constructed computational models of (i) Aβ hexapeptide (16) KLVFFA(21) octamer steric-zipper β-sheet assembly and (ii) full-length Aβ fibril β-sheet assembly. Curcumin binding in these models was evaluated by molecular docking and molecular dynamics (MD) simulation studies. In both the models, curcumin was oriented in a linear extended conformation parallel to fiber axis and exhibited better stability in the Aβ hexapeptide (16) KLVFFA(21) octamer steric-zipper model (Ebinding  = -10.05 kcal/mol) compared to full-length Aβ fibril model (Ebinding  = -3.47 kcal/mol). Analysis of MD trajectories of curcumin bound to full-length Aβ fibril shows good stability with minimum Cα-atom RMSD shifts. Interestingly, curcumin binding led to marked fluctuations in the (14) HQKLVFFA(21) region that constitute the fibril spine with RMSF values ranging from 1.4 to 3.6 Å. These results show that curcumin binding to Aβ shifts the equilibrium in the aggregation pathway by promoting the formation of non-toxic aggregates.

  9. Goodpasture Antigen-binding Protein/Ceramide Transporter Binds to Human Serum Amyloid P-Component and Is Present in Brain Amyloid Plaques

    NARCIS (Netherlands)

    Mencarelli, Chiara; Bode, Gerard H.; Losen, Mario; Kulharia, Mahesh; Molenaar, Peter C.; Veerhuis, Robert; Steinbusch, Harry W. M.; De Baets, Marc H.; Nicolaes, Gerry A. F.; Martinez-Martinez, Pilar

    2012-01-01

    Serum amyloid P component (SAP) is a non-fibrillar glycoprotein belonging to the pentraxin family of the innate immune system. SAP is present in plasma, basement membranes, and amyloid deposits. This study demonstrates, for the first time, that the Goodpasture antigen-binding protein (GPBP) binds to

  10. Binding of fullerenes to amyloid beta fibrils: size matters.

    Science.gov (United States)

    Huy, Pham Dinh Quoc; Li, Mai Suan

    2014-10-01

    Binding affinity of fullerenes C20, C36, C60, C70 and C84 for amyloid beta fibrils is studied by docking and all-atom molecular dynamics simulations with the Amber force field and water model TIP3P. Using the molecular mechanic-Poisson Boltzmann surface area method one can demonstrate that the binding free energy linearly decreases with the number of carbon atoms of fullerene, i.e. the larger is the fullerene size, the higher is the binding affinity. Overall, fullerenes bind to Aβ9-40 fibrils stronger than to Aβ17-42. The number of water molecules trapped in the interior of 12Aβ9-40 fibrils was found to be lower than inside pentamer 5Aβ17-42. C60 destroys Aβ17-42 fibril structure to a greater extent compared to other fullerenes. Our study revealed that the van der Waals interaction dominates over the electrostatic interaction and non-polar residues of amyloid beta peptides play the significant role in interaction with fullerenes providing novel insight into the development of drug candidates against Alzheimer's disease.

  11. Minimal Zn2+ Binding Site of Amyloid

    Science.gov (United States)

    Tsvetkov, Philipp O.; Kulikova, Alexandra A.; Golovin, Andrey V.; Tkachev, Yaroslav V.; Archakov, Alexander I.; Kozin, Sergey A.; Makarov, Alexander A.

    2010-01-01

    Zinc-induced aggregation of amyloid-β peptide (Aβ) is a hallmark molecular feature of Alzheimer's disease. Here we provide direct thermodynamic evidence that elucidates the role of the Aβ region 6–14 as the minimal Zn2+ binding site wherein the ion is coordinated by His6, Glu11, His13, and His14. With the help of isothermal titration calorimetry and quantum mechanics/molecular mechanics simulations, the region 11–14 was determined as the primary zinc recognition site and considered an important drug-target candidate to prevent Zn2+-induced aggregation of Aβ. PMID:21081056

  12. Minimal Zn(2+) binding site of amyloid-β.

    Science.gov (United States)

    Tsvetkov, Philipp O; Kulikova, Alexandra A; Golovin, Andrey V; Tkachev, Yaroslav V; Archakov, Alexander I; Kozin, Sergey A; Makarov, Alexander A

    2010-11-17

    Zinc-induced aggregation of amyloid-β peptide (Aβ) is a hallmark molecular feature of Alzheimer's disease. Here we provide direct thermodynamic evidence that elucidates the role of the Aβ region 6-14 as the minimal Zn(2+) binding site wherein the ion is coordinated by His(6), Glu(11), His(13), and His(14). With the help of isothermal titration calorimetry and quantum mechanics/molecular mechanics simulations, the region 11-14 was determined as the primary zinc recognition site and considered an important drug-target candidate to prevent Zn(2+)-induced aggregation of Aβ.

  13. Mannose-Binding Lectin Binds to Amyloid Protein and Modulates Inflammation

    Directory of Open Access Journals (Sweden)

    Mykol Larvie

    2012-01-01

    Full Text Available Mannose-binding lectin (MBL, a soluble factor of the innate immune system, is a pattern recognition molecule with a number of known ligands, including viruses, bacteria, and molecules from abnormal self tissues. In addition to its role in immunity, MBL also functions in the maintenance of tissue homeostasis. We present evidence here that MBL binds to amyloid β peptides. MBL binding to other known carbohydrate ligands is calcium-dependent and has been attributed to the carbohydrate-recognition domain, a common feature of other C-type lectins. In contrast, we find that the features of MBL binding to Aβ are more similar to the reported binding characteristics of the cysteine-rich domain of the unrelated mannose receptor and therefore may involve the MBL cysteine-rich domain. Differences in MBL ligand binding may contribute to modulation of inflammatory response and may correlate with the function of MBL in processes such as coagulation and tissue homeostasis.

  14. Copper(II) ions and the Alzheimer's amyloid-β peptide: Affinity and stoichiometry of binding

    Science.gov (United States)

    Tõugu, Vello; Friedemann, Merlin; Tiiman, Ann; Palumaa, Peep

    2014-10-01

    Deposition of amyloid beta (Aβ) peptides into amyloid plaques is the hallmark of Alzheimer's disease. According to the amyloid cascade hypothesis this deposition is an early event and primary cause of the disease, however, the mechanisms that cause this deposition remain elusive. An increasing amount of evidence shows that the interactions of biometals can contribute to the fibrillization and amyloid formation by amyloidogenic peptides. From different anions the copper ions deserve the most attention since it can contribute not only toamyloid formation but also to its toxicity due to the generation of ROS. In this thesis we focus on the affinity and stoichiometry of copper(II) binding to the Aβ molecule.

  15. Unraveling the mystery of protein-amyloid binding mechanisms

    NARCIS (Netherlands)

    Beringer, D.

    2013-01-01

    There are several diseases which are caused by amyloid, a deposit of aggregated protein. Examples of these diseases are Alzheimer’s disease, caused by the aggregation of the peptide Aβ, and Diabetes type 2, caused by hIAPP aggregates. A large number of proteins interact with these amyloid fibrils, s

  16. Specific binding of DNA to aggregated forms of Alzheimer's disease amyloid peptides.

    Science.gov (United States)

    Camero, Sergio; Ayuso, Jose M; Barrantes, Alejandro; Benítez, María J; Jiménez, Juan S

    2013-04-01

    Anomalous protein aggregation is closely associated to age-related mental illness. Extraneuronal plaques, mainly composed of aggregated amyloid peptides, are considered as hallmarks of Alzheimer's disease. According to the amyloid cascade hypothesis, this disease starts as a consequence of an abnormal processing of the amyloid precursor protein resulting in an excess of amyloid peptides. Nuclear localization of amyloid peptide aggregates together with amyloid-DNA interaction, have been repeatedly reported. In this paper we have used surface plasmon resonance and electron microscopy to study the structure and behavior of different peptides and proteins, including β-lactoglobulin, bovine serum albumin, myoglobin, histone, casein and the amyloid-β peptides related to Alzheimer's disease Aβ25-35 and Aβ1-40. The main purpose of this study is to investigate whether proneness to DNA interaction is a general property displayed by aggregated forms of proteins, or it is an interaction specifically related to the aggregated forms of those particular proteins and peptides related to neurodegenerative diseases. Our results reveal that those aggregates formed by amyloid peptides show a particular proneness to interact with DNA. They are the only aggregated structures capable of binding DNA, and show more affinity for DNA than for other polyanions like heparin and polyglutamic acid, therefore strengthening the hypothesis that amyloid peptides may, by means of interaction with nuclear DNA, contribute to the onset of Alzheimer's disease.

  17. AMYLOID-β PEPTIDE BINDS TO MICROTUBULE-ASSOCIATED PROTEIN 1B (MAP1B)

    Science.gov (United States)

    Gevorkian, Goar; Gonzalez-Noriega, Alfonso; Acero, Gonzalo; Ordoñez, Jorge; Michalak, Colette; Munguia, Maria Elena; Govezensky, Tzipe; Cribbs, David H.; Manoutcharian, Karen

    2008-01-01

    Extracellular and intraneuronal formation of amyloid-beta aggregates have been demonstrated to be involved in the pathogenesis of Alzheimer’s disease. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of targets have deleterious effects on cellular functions. In the present study we have shown for the first time that amyloid-beta 1-42 bound to a peptide comprising the microtubule binding domain of the heavy chain of microtubule-associated protein 1B by the screening of a human brain cDNA library expressed on M13 phage. This interaction may explain, in part, the loss of neuronal cytoskeletal integrity, impairment of microtubule-dependent transport and synaptic dysfunction observed previously in Alzheimer’s disease. PMID:18079022

  18. Multi-frequency, multi-technique pulsed EPR investigation of the copper binding site of murine amyloid β peptide.

    Science.gov (United States)

    Kim, Donghun; Bang, Jeong Kyu; Kim, Sun Hee

    2015-01-26

    Copper-amyloid peptides are proposed to be the cause of Alzheimer's disease, presumably by oxidative stress. However, mice do not produce amyloid plaques and thus do not suffer from Alzheimer's disease. Although much effort has been focused on the structural characterization of the copper- human amyloid peptides, little is known regarding the copper-binding mode in murine amyloid peptides. Thus, we investigated the structure of copper-murine amyloid peptides through multi-frequency, multi-technique pulsed EPR spectroscopy in conjunction with specific isotope labeling. Based on our pulsed EPR results, we found that Ala2, Glu3, His6, and His14 are directly coordinated with the copper ion in murine amyloid β peptides at pH 8.5. This is the first detailed structural characterization of the copper-binding mode in murine amyloid β peptides. This work may advance the knowledge required for developing inhibitors of Alzheimer's disease.

  19. In vitro study: binding of 99mTc-DPD to synthetic amyloid fibrils

    Directory of Open Access Journals (Sweden)

    Buroni Federica E

    2015-12-01

    Full Text Available This paper is an report of the investigation of the in vitro binding of 99mTc-DPD for synthetic amyloid fibrils used for the diagnosis of cardiac amyloidosis (CA, as compared with the use of 99mTc-HMDP and 99mTc-PPI. It also includes an inquiry into the role played by Ca2+ ions and serum proteins on binding to amyloid like materials, as well as the saturability and specificity of DPD for fibrils versus amorphous precipitates (AP.

  20. Synthesis of Oxorhenium(V) and Oxotechnetium(V) Complexes That Bind to Amyloid-β Plaques.

    Science.gov (United States)

    Hayne, David J; White, Jonathan M; McLean, Catriona A; Villemagne, Victor L; Barnham, Kevin J; Donnelly, Paul S

    2016-08-15

    Alzheimer's disease is characterized by the presence of amyloid plaques in the brain. The primary constituents of the plaques are aggregated forms of the amyloid-β (Aβ) peptide. With the goal of preparing technetium-99(m) complexes that bind to Aβ plaques with the potential to be diagnostic imaging agents for Alzheimer's disease, new tetradentate ligands capable of forming neutral and lipophilic complexes with oxotechentium(V) and oxorhenium(V) were prepared. Nonradioactive isotopes of technetium are not available so rhenium was used as a surrogate for exploratory chemistry. Two planar tetradentate N3O ligands were prepared that form charge-neutral complexes with oxorhenium(v) as well as a ligand featuring a styrylpyridyl functional group designed to bind to Aβ plaques. All three ligands formed complexes with oxorhenium(V), and each complex was characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography. The oxorhenium(V) complex with a styrylpyridyl functional group binds to Aβ plaques present in post-mortem human brain tissue. The chemistry was extrapolated to technetium-99(m) at the tracer level for two of the ligands. The resulting oxotechnetium(V) complexes were sufficiently lipophilic and charge-neutral to suggest that they have the potential to cross the blood-brain barrier but exhibited modest stability with respect to exchange with histidine. The chemistry presented here identifies a strategy to integrate styrylpyridyl functional groups into tetradentate ligands capable of forming complexes with [M═O](3+) cores (M = Re or Tc).

  1. Copper binding to the Alzheimer’s disease amyloid precursor protein

    OpenAIRE

    Kong, Geoffrey K.-W.; Miles, Luke A.; Crespi, Gabriela A. N.; Morton, Craig J.; Ng, Hooi Ling; Barnham, Kevin J.; McKinstry, William J.; Cappai, Roberto; Michael W. Parker

    2007-01-01

    Alzheimer’s disease is the fourth biggest killer in developed countries. Amyloid precursor protein (APP) plays a central role in the development of the disease, through the generation of a peptide called Aβ by proteolysis of the precursor protein. APP can function as a metalloprotein and modulate copper transport via its extracellular copper binding domain (CuBD). Copper binding to this domain has been shown to reduce Aβ levels and hence a molecular understanding of the interaction between me...

  2. {sup 18}F-labeled styrylpyridines as PET agents for amyloid plaque imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wei [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Kung Meip ing [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Oya, Shunichi [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Hou, Catherine [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Kung, Hank F. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States)]. E-mail: kunghf@sunmac.spect.upenn.edu

    2007-01-15

    Positron emission tomography (PET) imaging of {beta}-amyloid (A{beta}) plaques in the brain is a potentially valuable tool for studying the pathophysiology of Alzheimer's disease (AD). It may also be applicable for measuring the effectiveness of therapeutic drugs aimed at lowering A{beta} plaques in the brain. We have successfully reported a series of {sup 18}F-labeled fluoropegylated stilbenes for PET imaging studies. Encouraging results clearly demonstrated the usefulness of {sup 18}F-labeled stilbenes as potential A{beta} plaque-imaging agents. In the present study, we applied a similar approach to a styrylpyridine backbone structure. Among all derivatives examined (E)-2-(2-(2-(2-fluoroethoxy)ethoxy)ethoxy)-5-(4-dimethylaminostyryl) -pyridine (2) displayed high binding affinity in postmortem AD brain homogenates (K {sub i}=2.5{+-}0.4 nM, with [{sup 125}I]IMPY as radioligand). No-carrier-added [{sup 18}F]2 was successfully prepared by [{sup 18}F]fluoride displacement of the corresponding tosylate precursor with a high labeling yield (30-40%) and a high radiochemical purity (>99%). Specific activity at the end of synthesis was determined to be 1500-2000 Ci/mmol. The tracer [{sup 18}F]2 showed adequate lipophilicity (log P=3.22). In vivo biodistribution of [{sup 18}F]2 in normal mice exhibited excellent initial brain penetration and rapid washout (7.77% and 1.03% dose/g in the brain at 2 and 30 min after intravenous injection, respectively) - properties that are highly desirable for A{beta}-plaque-specific brain imaging agents. Autoradiography of AD brain sections and homogenate binding with postmortem AD brain tissues confirmed the high binding signal of [{sup 18}F]2 due to the presence of A{beta} plaques. These preliminary results suggest that novel PET tracers may be potentially useful for the imaging of A{beta} plaques in the living human brain.

  3. Structure and Synaptic Function of Metal Binding to the Amyloid Precursor Protein and its Proteolytic Fragments

    Science.gov (United States)

    Wild, Klemens; August, Alexander; Pietrzik, Claus U.; Kins, Stefan

    2017-01-01

    Alzheimer’s disease (AD) is ultimately linked to the amyloid precursor protein (APP). However, current research reveals an important synaptic function of APP and APP-like proteins (APLP1 and 2). In this context various neurotrophic and neuroprotective functions have been reported for the APP proteolytic fragments sAPPα, sAPPβ and the monomeric amyloid-beta peptide (Aβ). APP is a metalloprotein and binds copper and zinc ions. Synaptic activity correlates with a release of these ions into the synaptic cleft and dysregulation of their homeostasis is linked to different neurodegenerative diseases. Metal binding to APP or its fragments affects its structure and its proteolytic cleavage and therefore its physiological function at the synapse. Here, we summarize the current data supporting this hypothesis and provide a model of how these different mechanisms might be intertwined with each other. PMID:28197076

  4. Amyloid-β peptide binds to cytochrome C oxidase subunit 1.

    Science.gov (United States)

    Hernandez-Zimbron, Luis Fernando; Luna-Muñoz, Jose; Mena, Raul; Vazquez-Ramirez, Ricardo; Kubli-Garfias, Carlos; Cribbs, David H; Manoutcharian, Karen; Gevorkian, Goar

    2012-01-01

    Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1-42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD.

  5. Amyloid-β peptide binds to cytochrome C oxidase subunit 1.

    Directory of Open Access Journals (Sweden)

    Luis Fernando Hernandez-Zimbron

    Full Text Available Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD. However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1-42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD.

  6. Engineering knottins as novel binding agents.

    Science.gov (United States)

    Moore, Sarah J; Cochran, Jennifer R

    2012-01-01

    Cystine-knot miniproteins, also known as knottins, contain a conserved core of three tightly woven disulfide bonds which impart extraordinary thermal and proteolytic stability. Interspersed between their conserved cysteine residues are constrained loops that possess high levels of sequence diversity among knottin family members. Together these attributes make knottins promising molecular scaffolds for protein engineering and translational applications. While naturally occurring knottins have shown potential as both diagnostic agents and therapeutics, protein engineering is playing an important and increasing role in creating designer molecules that bind to a myriad of biomedical targets. Toward this goal, rational and combinatorial approaches have been used to engineer knottins with novel molecular recognition properties. Here, methods are described for creating and screening knottin libraries using yeast surface display and fluorescence-activated cell sorting. Protocols are also provided for producing knottins by synthetic and recombinant methods, and for measuring the binding affinity of knottins to target proteins expressed on the cell surface.

  7. Intravenous immunglobulin binds beta amyloid and modifies its aggregation, neurotoxicity and microglial phagocytosis in vitro.

    Directory of Open Access Journals (Sweden)

    Susann Cattepoel

    Full Text Available Intravenous Immunoglobulin (IVIG has been proposed as a potential therapeutic for Alzheimer's disease (AD and its efficacy is currently being tested in mild-to-moderate AD. Earlier studies reported the presence of anti-amyloid beta (Aβ antibodies in IVIG. These observations led to clinical studies investigating the potential role of IVIG as a therapeutic agent in AD. Also, IVIG is known to mediate beneficial effects in chronic inflammatory and autoimmune conditions by interfering with various pathological processes. Therefore, we investigated the effects of IVIG and purified polyclonal Aβ-specific antibodies (pAbs-Aβ on aggregation, toxicity and phagocytosis of Aβ in vitro, thus elucidating some of the potential mechanisms of action of IVIG in AD patients. We report that both IVIG and pAbs-Aβ specifically bound to Aβ and inhibited its aggregation in a dose-dependent manner as measured by Thioflavin T assay. Additionally, IVIG and the purified pAbs-Aβ inhibited Aβ-induced neurotoxicity in the SH-SY5Y human neuroblastoma cell line and prevented Aβ binding to rat primary cortical neurons. Interestingly, IVIG and pAbs-Aβ also increased the number of phagocytosing cells as well as the amount of phagocytosed fibrillar Aβ by BV-2 microglia. Phagocytosis of Aβ depended on receptor-mediated endocytosis and was accompanied by upregulation of CD11b expression. Importantly, we could also show that Privigen dose-dependently reversed Aβ-mediated LTP inhibition in mouse hippocampal slices. Therefore, our in vitro results suggest that IVIG may have an impact on different processes involved in AD pathogenesis, thereby promoting further understanding of the effects of IVIG observed in clinical studies.

  8. Zinc-induced interaction of the metal-binding domain of amyloid-β peptide with DNA.

    Science.gov (United States)

    Khmeleva, Svetlana A; Mezentsev, Yuri V; Kozin, Sergey A; Tsvetkov, Philipp O; Ivanov, Alexis S; Bodoev, Nikolay V; Makarov, Alexander A; Radko, Sergey P

    2013-01-01

    The interaction of the 16-mer synthetic peptide (Aβ16), which represents the metal-binding domain of the amyloid-β with DNA, was studied employing the surface plasmon resonance technique. It has been shown that Aβ16 binds to the duplex DNA in the presence of zinc ions and thus the metal-binding domain can serve as a zinc-dependent DNA-binding site of the amyloid-β. The interaction of Aβ16 with DNA most probably depends on oligomerization of the peptide and is dominated by interaction with phosphates of the DNA backbone.

  9. Human Islet Amyloid Polypeptide Fibril Binding to Catalase: A Transmission Electron Microscopy and Microplate Study

    Directory of Open Access Journals (Sweden)

    Nathaniel G. N. Milton

    2010-01-01

    Full Text Available The diabetes-associated human islet amyloid polypeptide (IAPP is a 37-amino-acid peptide that forms fibrils in vitro and in vivo. Human IAPP fibrils are toxic in a similar manner to Alzheimer's amyloid-β (Aβ and prion protein (PrP fibrils. Previous studies have shown that catalase binds to Aβ fibrils and appears to recognize a region containing the Gly-Ala-Ile-Ile sequence that is similar to the Gly-Ala-Ile-Leu sequence found in human IAPP residues 24-27. This study presents a transmission electron microscopy (TEM—based analysis of fibril formation and the binding of human erythrocyte catalase to IAPP fibrils. The results show that human IAPP 1-37, 8-37, and 20-29 peptides form fibrils with diverse and polymorphic structures. All three forms of IAPP bound catalase, and complexes of IAPP 1-37 or 8-37 with catalase were identified by immunoassay. The binding of biotinylated IAPP to catalase was high affinity with a KD of 0.77nM, and could be inhibited by either human or rat IAPP 1-37 and 8-37 forms. Fibrils formed by the PrP 118-135 peptide with a Gly-Ala-Val-Val sequence also bound catalase. These results suggest that catalase recognizes a Gly-Ala-Ile-Leu—like sequence in amyloid fibril-forming peptides. For IAPP 1-37 and 8-37, the catalase binding was primarily directed towards fibrillar rather than ribbon-like structures, suggesting differences in the accessibility of the human IAPP 24-27 Gly-Ala-Ile-Leu region. This suggests that catalase may be able to discriminate between different structural forms of IAPP fibrils. The ability of catalase to bind IAPP, Aβ, and PrP fibrils demonstrates the presence of similar accessible structural motifs that may be targets for antiamyloid therapeutic development.

  10. A binding-site barrier affects imaging efficiency of high affinity amyloid-reactive peptide radiotracers in vivo.

    Directory of Open Access Journals (Sweden)

    Jonathan S Wall

    Full Text Available Amyloid is a complex pathology associated with a growing number of diseases including Alzheimer's disease, type 2 diabetes, rheumatoid arthritis, and myeloma. The distribution and extent of amyloid deposition in body organs establishes the prognosis and can define treatment options; therefore, determining the amyloid load by using non-invasive molecular imaging is clinically important. We have identified a heparin-binding peptide designated p5 that, when radioiodinated, was capable of selectively imaging systemic visceral AA amyloidosis in a murine model of the disease. The p5 peptide was posited to bind effectively to amyloid deposits, relative to similarly charged polybasic heparin-reactive peptides, because it adopted a polar α helix secondary structure. We have now synthesized a variant, p5R, in which the 8 lysine amino acids of p5 have been replaced with arginine residues predisposing the peptide toward the α helical conformation in an effort to enhance the reactivity of the peptide with the amyloid substrate. The p5R peptide had higher affinity for amyloid and visualized AA amyloid in mice by using SPECT/CT imaging; however, the microdistribution, as evidenced in micro-autoradiographs, was dramatically altered relative to the p5 peptide due to its increased affinity and a resultant "binding site barrier" effect. These data suggest that radioiodinated peptide p5R may be optimal for the in vivo detection of discreet, perivascular amyloid, as found in the brain and pancreatic vasculature, by using molecular imaging techniques; however, peptide p5, due to its increased penetration, may yield more quantitative imaging of expansive tissue amyloid deposits.

  11. Local atomic structure and oxidation processes of Cu(I) binding site in amyloid beta peptide: XAS Study

    Science.gov (United States)

    Kremennaya, M. A.; Soldatov, M. A.; Streltsov, V. A.; Soldatov, A. V.

    2016-05-01

    There are two different motifs of X-ray absorption spectra for Cu(I) K-edge in amyloid-β peptide which could be due to two different configurations of local Cu(I) environment. Two or three histidine ligands can coordinate copper ion in varying conformations. On the other hand, oxidation of amyloid-β peptide could play an additional role in local copper environment. In order to explore the peculiarities of local atomic and electronic structure of Cu(I) binding sites in amyloid-β peptide the x-ray absorption spectra were simulated for various Cu(I) environments including oxidized amyloid-β and compared with experimental data.

  12. Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition

    Science.gov (United States)

    Devous Sr, Michael D.; Navitsky, Michael; Lu, Ming; Salloway, Stephen; Schaerf, Frederick W.; Jennings, Danna; Arora, Anupa K.; McGeehan, Anne; Lim, Nathaniel C.; Xiong, Hui; Joshi, Abhinay D.; Siderowf, Andrew; Mintun, Mark A.

    2017-01-01

    of tau reported in post-mortem pathology studies, in that the most commonly affected regions were the inferior and lateral temporal lobes, the same regions where the first signs of increased retention appeared in Aβ+ cognitively normal subjects. However, there was large variability in extent/density of flortaucipir tau binding among Aβ+ subjects. Although high neocortical flortaucipir retention was consistently associated with an Aβ+ florbetapir positron emission tomography scan, not all Aβ+ subjects had elevated flortaucipir standard uptake value ratios. Finally, within the Aβ+ group, increasing levels of flortaucipir tau binding were associated with increased cognitive impairment, as assessed by Mini-Mental State Examination and Alzheimer’s Disease Assessment Scale. These results suggest development of tau beyond the mesial temporal lobe is associated with, and may be dependent on, amyloid accumulation. Further, the results are consistent with the hypothesis that cortical tau is associated with cognitive impairment. PMID:28077397

  13. Binding of ACE-inhibitors to in vitro and patient-derived amyloid-β fibril models

    Science.gov (United States)

    Bhavaraju, Manikanthan; Phillips, Malachi; Bowman, Deborah; Aceves-Hernandez, Juan M.; Hansmann, Ulrich H. E.

    2016-01-01

    Currently, no drugs exist that can prevent or reverse Alzheimer's disease, a neurodegenerative disease associated with the presence, in the brain, of plaques that are composed of β-amyloid (Aβ) peptides. Recent studies suggest that angiotensin-converting enzyme (ACE) inhibitors, a set of drugs used to treat hypertension, may inhibit amyloid formation in vitro. In the present study, we investigate through computer simulations the binding of ACE inhibitors to patient-derived Aβ fibrils and contrast it with that of ACE inhibitors binding to in vitro generated fibrils. The binding affinities of the ACE inhibitors are compared with that of Congo red, a dye that is used to identify amyloid structures and that is known to be a weak inhibitor of Aβ aggregation. We find that ACE inhibitors have a lower binding affinity to the patient-derived fibrils than to in vitro generated ones. For patient-derived fibrils, their binding affinities are even lower than that of Congo red. Our observations raise doubts on the hypothesis that these drugs inhibit fibril formation in Alzheimer patients by interacting directly with the amyloids.

  14. Binding of an oxindole alkaloid from Uncaria tomentosa to amyloid protein (Abeta1-40).

    Science.gov (United States)

    Frackowiak, Teresa; Baczek, Tomasz; Roman, Kaliszana; Zbikowska, Beata; Gleńsk, Michał; Fecka, Izabela; Cisowski, Wojciech

    2006-01-01

    The primary aim of this work was to determine the interactions of an oxindole alkaloid (mitraphylline) isolated from Uncaria tomentosa with beta-amyloid 1-40 (Abeta1-40 protein) applying the capillary electrophoresis (CE) method. Specifically the Hummel-Dreyer method and Scatchard analysis were performed to study the binding of oxindole alkaloids with Abeta1-40 protein. Prior to these studies extraction of the alkaloid of interest was carried out. Identification of the isolated alkaloid was performed by the use of thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) combined with electrospray ionization mass spectrometry (ESI-MS). The proposed approach was proved to be an efficient and accurate method for specific compound isolation and identification purposes. Moreover, analytical information from the CE approach can be considered as the valuable tool for binding constant determination. The binding constant of mitraphylline with Abeta1-40 protein determined by the Hummel-Dreyer method and Scatchard analysis equals K = 9.95 x 10(5) M(-1). The results obtained showed the significant binding of the tested compound with Abeta1-40 protein. These results are discussed and interpreted in the view of developing a strategy for identification of novel compounds of great importance in Alzheimer disease therapy.

  15. A Synthetic Peptide with the Putative Iron Binding Motif of Amyloid Precursor Protein (APP) Does Not Catalytically Oxidize Iron

    NARCIS (Netherlands)

    Honarmand Ebrahimi, K.; Hagedoorn, P.L.; Hagen, W.R.

    2012-01-01

    The β-amyloid precursor protein (APP), which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II) binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the fer

  16. Comparison of the binding characteristics of [{sup 18}F]THK-523 and other amyloid imaging tracers to Alzheimer's disease pathology

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Ryuichi; Okamura, Nobuyuki; Yoshikawa, Takeo; Yanai, Kazuhiko [Tohoku University School of Medicine, Department of Pharmacology, Sendai (Japan); Furumoto, Shozo [Tohoku University School of Medicine, Department of Pharmacology, Sendai (Japan); Tohoku University, Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Sendai (Japan); Tago, Tetsuro; Iwata, Ren [Tohoku University, Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Sendai (Japan); Maruyama, Masahiro; Higuchi, Makoto [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba (Japan); Arai, Hiroyuki [Tohoku University, Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Sendai (Japan); Kudo, Yukitsuka [Tohoku University, Innovation of New Biomedical Engineering Center, Sendai (Japan)

    2013-01-15

    Extensive deposition of senile plaques and neurofibrillary tangles in the brain is a pathological hallmark of Alzheimer's disease (AD). Although several PET imaging agents have been developed for in vivo detection of senile plaques, no PET probe is currently available for selective detection of neurofibrillary tangles in the living human brain. Recently, [{sup 18}F]THK-523 was developed as a potential in vivo imaging probe for tau pathology. The purpose of this study was to compare the binding properties of [{sup 18}F]THK-523 and other amyloid imaging agents, including PiB, BF-227 and FDDNP, to synthetic protein fibrils and human brain tissue. In vitro radioligand binding assays were conducted using synthetic amyloid {beta}{sub 42} and K18{Delta}K280-tau fibrils. Nonspecific binding was determined by the addition of unlabelled compounds at a concentration of 2 {mu}M. To examine radioligand binding to neuropathological lesions, in vitro autoradiography was conducted using sections of AD brain. [{sup 18}F]THK-523 showed higher affinity for tau fibrils than for A{beta} fibrils, whereas the other probes showed a higher affinity for A{beta} fibrils. The autoradiographic analysis indicated that [{sup 18}F]THK-523 accumulated in the regions containing a high density of tau protein deposits. Conversely, PiB and BF-227 accumulated in the regions containing a high density of A{beta} plaques. These findings suggest that the unique binding profile of [{sup 18}F]THK-523 can be used to identify tau deposits in AD brain. (orig.)

  17. Lipopolysaccharide binding protein and serum amyloid A secretion by human intestinal epithelial cells during the acute phase response.

    Science.gov (United States)

    Vreugdenhil, A C; Dentener, M A; Snoek, A M; Greve, J W; Buurman, W A

    1999-09-01

    The acute phase proteins LPS binding protein (LBP) and serum amyloid A (SAA) are produced by the liver and are present in the circulation. Both proteins have been shown to participate in the immune response to endotoxins. The intestinal mucosa forms a large surface that is continuously exposed to these microbial products. By secretion of antimicrobial and immunomodulating agents, the intestinal epithelium contributes to the defense against bacteria and their products. The aim of this study was to explore the influence of the inflammatory mediators TNF-alpha, IL-6, and IL-1beta on the release of LBP and SAA by intestinal epithelial cells (IEC). In addition, the induction of LBP and SAA release by cell lines of intestinal epithelial cells and hepatic cells was compared. The data obtained show that in addition to liver cells, IEC also expressed LBP mRNA and released bioactive LBP and SAA upon stimulation. Regulation of LBP and SAA release by IEC and hepatocytes was typical for class 1 acute phase proteins, although differences in regulation between the cell types were observed. Endotoxin did not induce LBP and SAA release. Glucocorticoids were demonstrated to strongly enhance the cytokine-induced release of LBP and SAA by IEC, corresponding to hepatocytes. The data from this study, which imply that human IEC can produce LBP and SAA, suggest a role for these proteins in the local defense mechanism of the gut to endotoxin. Furthermore, the results demonstrate that tissues other than the liver are involved in the acute phase response.

  18. Evidence that a synthetic amyloid-ß oligomer-binding peptide (ABP) targets amyloid-ß deposits in transgenic mouse brain and human Alzheimer's disease brain.

    Science.gov (United States)

    Chakravarthy, Balu; Ito, Shingo; Atkinson, Trevor; Gaudet, Chantal; Ménard, Michel; Brown, Leslie; Whitfield, James

    2014-03-14

    The synthetic ~5 kDa ABP (amyloidbinding peptide) consists of a region of the 228 kDa human pericentrioloar material-1 (PCM-1) protein that selectively and avidly binds in vitro Aβ1-42 oligomers, believed to be key co-drivers of Alzheimer's disease (AD), but not monomers (Chakravarthy et al., (2013) [3]). ABP also prevents Aß1-42 from triggering the apoptotic death of cultured human SHSY5Y neuroblasts, likely by sequestering Aß oligomers, suggesting that it might be a potential AD therapeutic. Here we support this possibility by showing that ABP also recognizes and binds Aβ1-42 aggregates in sections of cortices and hippocampi from brains of AD transgenic mice and human AD patients. More importantly, ABP targets Aβ1-42 aggregates when microinjected into the hippocampi of the brains of live AD transgenic mice.

  19. Structural Studies of the Alzheimer's Amyloid Precursor Protein Copper-Binding Domain Reveal How It Binds Copper Ions

    Energy Technology Data Exchange (ETDEWEB)

    Kong, G.K.-W.; Adams, J.J.; Harris, H.H.; Boas, J.F.; Curtain, C.C.; Galatis, D.; Master, C.L.; Barnham, K.J.; McKinstry, W.J.; Cappai, R.; Parker, M.W.; /Sydney U.

    2007-07-09

    Alzheimer's disease (AD) is the major cause of dementia. Amyloid {beta} peptide (A {beta}), generated by proteolytic cleavage of the amyloid precursor protein (APP), is central to AD pathogenesis. APP can function as a metalloprotein and modulate copper (Cu) transport, presumably via its extracellular Cu-binding domain (CuBD). Cu binding to the CuBD reduces A{beta} levels, suggesting that a Cu mimetic may have therapeutic potential. We describe here the atomic structures of apo CuBD from three crystal forms and found they have identical Cu-binding sites despite the different crystal lattices. The structure of Cu[2+]-bound CuBD reveals that the metal ligands are His147, His151, Tyrl68 and two water molecules, which are arranged in a square pyramidal geometry. The site resembles a Type 2 non-blue Cu center and is supported by electron paramagnetic resonance and extended X-ray absorption fine structure studies. A previous study suggested that Met170 might be a ligand but we suggest that this residue plays a critical role as an electron donor in CuBDs ability to reduce Cu ions. The structure of Cu[+]-bound CuBD is almost identical to the Cu[2+]-bound structure except for the loss of one of the water ligands. The geometry of the site is unfavorable for Cu[+], thus providing a mechanism by which CuBD could readily transfer Cu ions to other proteins.

  20. Alternate Energy Sources for Thermalplastic Binding Agent Consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Frame, B.J.

    1999-01-01

    A study was conducted to investigate microwave and electron beam technologies as alternate energy sources to consolidate fiber coated with a thermoplastic binding agent into preforms for composite molding applications. Bench experiments showed that both microwave and electron beam energy can produce heat sufficient to melt and consolidate a thermoplastic binding agent applied to fiberglass mat, and several two- and three-dimensional fiberglass preforms were produced with each method. In both cases, it is postulated that the heating was accomplished by the effective interaction of the microwave or electron beam energy with the combination of the mat preform and the tooling used to shape the preform. Both methods contrast with conventional thermal energy applied via infrared heaters or from a heated tool in which the heat to melt the thermoplastic binding agent must diffuse over time from the outer surface of the preform toward its center under a thermal gradient. For these reasons, the microwave and electron beam energy techniques have the potential to rapidly consolidate thick fiber preforms more efficiently than the thermal process. With further development, both technologies have the potential to make preform production more cost effective by decreasing cycle time in the preform tool, reducing energy costs, and by enabling the use of less expensive tooling materials. Descriptions of the microwave and electron beam consolidation experiments and a summary of the results are presented in this report.

  1. 苯并噻唑希夫碱类化合物的合成及其与β-淀粉样蛋白结合性能的研究%Synthesis of benzothiazole derivatives and their binding characteristics with β-amyloid

    Institute of Scientific and Technical Information of China (English)

    周琳; 甘昌胜; 汪昊曙; 赵珍珍; 潘见

    2012-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease endangering human health seriously. Recent reports have revealed that β-amyloid aggregates play a key role in the pathogenesis of AD. Thus, targeting the Aβ plaques benzothiazole derivatives were synthesized with the scaffold of the most promising imaging agent PIB ([11C]-6-OH-BTA-l, ["C]-2-(4-(raethylamino)phenyl)-6-hydroxybenzothiazole) and C=N as linker to study the binding characteristics with the target protein through surface plasmon resonance (SPR) technique. These derivatives were synthesized through simple yet effective method with high yields and characterized by 'H NMR and FUR. The binding properties {KD} were determined with Biacore X-100 instrument according to the fitting-plot curve. Compounds 3a and 3f showed high binding affinity for Aβ1-40. The results suggest that benzothiazole derivatives could be served as a scaffold to develop novel β-amyloid imaging agents for the diagnosis of AD.

  2. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation

    DEFF Research Database (Denmark)

    Brambilla, Davide; Verpillot, Romain; Le Droumaguet, Benjamin;

    2012-01-01

    We have demonstrated that the polyethylene glycol (PEG) corona of long-circulating polymeric nanoparticles (NPs) favors interaction with the amyloid-beta (Aß(1-42)) peptide both in solution and in serum. The influence of PEGylation of poly(alkyl cyanoacrylate) and poly(lactic acid) NPs on the int...

  3. NMR WaterLOGSY Reveals Weak Binding of Bisphenol A with Amyloid Fibers of a Conserved 11 Residue Peptide from Androgen Receptor

    Science.gov (United States)

    Asencio-Hernández, Julia; Kieffer, Bruno

    2016-01-01

    There is growing evidence that bisphenol A (BPA), a molecule largely released in the environment, has detrimental effects on ecosystems and on human health. It acts as an endocrine disruptor targeting steroid hormone receptors, such as the estrogen receptor (ER), estrogen-related receptor (ERR) and androgen receptor (AR). BPA-derived molecules have recently been shown to interact with the AR N-terminal domain (AR-NTD), which is known to be largely intrinsically disordered. This N-terminal domain contains an 11 residue conserved domain that forms amyloid fibers upon oxidative dimerisation through its strictly conserved Cys240 residue. We investigate here the interaction of BPA, and other potential endocrine disruptors, with AR-NTD amyloid fibers using the WaterLOGSY NMR experiment. We observed a selective binding of these compounds to the amyloid fibers formed by the AR-NTD conserved region and glutamine homopolymers. This observation suggests that the high potency of endocrine disruptors may result, in part, from their ability to bind amyloid forms of nuclear receptors in addition to their cognate binding sites. This property may be exploited to design future therapeutic strategies targeting AR related diseases such as the spinal bulbar muscular atrophy or prostate cancer. The ability of NMR WaterLOGSY experiments to detect weak interactions between small ligands and amyloid fibers may prove to be of particular interest for identifying promising hit molecules. PMID:27583469

  4. Apolipoprotein E LDL receptor-binding domain-containing high-density lipoprotein: a nanovehicle to transport curcumin, an antioxidant and anti-amyloid bioflavonoid.

    Science.gov (United States)

    Khumsupan, Panupon; Ramirez, Ricardo; Khumsupan, Darin; Narayanaswami, Vasanthy

    2011-01-01

    Curcumin is an antioxidant and anti-inflammatory bioflavonoid that has been recently identified as an anti-amyloid agent as well. To make it more available in its potent form as a potential amyloid disaggregation agent, we employed high-density lipoproteins (HDL), which are lipid-protein complexes that transport plasma cholesterol, to transport curcumin. The objective of this study was to employ reconstituted HDL containing human apoE3 N-terminal (NT) domain, as a vehicle to transport curcumin. The NT domain serves as a ligand to mediate binding and uptake of lipoprotein complexes via the low-density lipoprotein receptor (LDLr) family of proteins located at the cell surface. Reconstituted HDL was prepared with phospholipids and recombinant apoE3-NT domain in the absence or presence of curcumin. Non-denaturing polyacrylamide gel electrophoresis indicated that the molecular mass and Stokes' diameter of HDL bearing curcumin were ~670kDa and ~17nm, respectively, while electron microscopy revealed the presence of discoidal particles. Fluorescence emission spectra of HDL bearing (the intrinsically fluorescent) curcumin indicated that the wavelength of maximal fluorescence emission (λ(max)) of curcumin was ~495nm, which is highly blue-shifted compared to λ(max) of curcumin in solvents of varying polarity (λ(max) ranging from 515-575nm) or in aqueous buffers. In addition, an enormous enhancement in fluorescence emission intensity was noted in curcumin-containing HDL compared to curcumin in aqueous buffers. Curcumin fluorescence emission was quenched to a significant extent by lipid-based quenchers but not by aqueous quenchers. These observations indicate that curcumin has partitioned efficiently into the hydrophobic milieu of the phospholipid bilayer of HDL. Functional assays indicated that the LDLr-binding ability of curcumin-containing HDL with apoE3-NT is similar to that of HDL without curcumin. Taken together, we report that apoE-containing HDL has a tremendous

  5. Binding of complement proteins C1q and C4bp to serum amyloid P component (SAP) in solid contra liquid phase

    DEFF Research Database (Denmark)

    Sørensen, Inge Juul; Nielsen, EH; Andersen, Ove;

    1996-01-01

    Serum amyloid P component (SAP), a member of the conserved pentraxin family of plasma proteins, binds calcium dependently to its ligands. The authors investigated SAPs interaction with the complement proteins C4b binding protein (C4bp) and C1q by ELISA, immunoelectrophoresis and electron microscopy...... affinity, did not interfere with the subsequent binding of C4bp or C1q to SAP. In contrast, collagen I and IV showed partial competition with the binding of C1q to SAP. Using fresh serum, immobilized native SAP bound C4bp whereas binding of C1q/C1 could not be demonstrated. Altogether the results indicate...

  6. Calcium binding to beta-2-microglobulin at physiological pH drives the occurrence of conformational changes which cause the protein to precipitate into amorphous forms that subsequently transform into amyloid aggregates.

    Directory of Open Access Journals (Sweden)

    Sukhdeep Kumar

    Full Text Available Using spectroscopic, calorimetric and microscopic methods, we demonstrate that calcium binds to beta-2-microglobulin (β2m under physiological conditions of pH and ionic strength, in biological buffers, causing a conformational change associated with the binding of up to four calcium atoms per β2m molecule, with a marked transformation of some random coil structure into beta sheet structure, and culminating in the aggregation of the protein at physiological (serum concentrations of calcium and β2m. We draw attention to the fact that the sequence of β2m contains several potential calcium-binding motifs of the DXD and DXDXD (or DXEXD varieties. We establish (a that the microscopic aggregation seen at physiological concentrations of β2m and calcium turns into actual turbidity and visible precipitation at higher concentrations of protein and β2m, (b that this initial aggregation/precipitation leads to the formation of amorphous aggregates, (c that the formation of the amorphous aggregates can be partially reversed through the addition of the divalent ion chelating agent, EDTA, and (d that upon incubation for a few weeks, the amorphous aggregates appear to support the formation of amyloid aggregates that bind to the dye, thioflavin T (ThT, resulting in increase in the dye's fluorescence. We speculate that β2m exists in the form of microscopic aggregates in vivo and that these don't progress to form larger amyloid aggregates because protein concentrations remain low under normal conditions of kidney function and β2m degradation. However, when kidney function is compromised and especially when dialysis is performed, β2m concentrations probably transiently rise to yield large aggregates that deposit in bone joints and transform into amyloids during dialysis related amyloidosis.

  7. Inhibition of Aβ42 peptide aggregation by a binuclear ruthenium(II)-platinum(II) complex: Potential for multi-metal organometallics as anti-amyloid agents.

    Science.gov (United States)

    Kumar, Amit; Moody, Lamaryet; Olaivar, Jason F; Lewis, Nerissa A; Khade, Rahul L; Holder, Alvin A; Zhang, Yong; Rangachari, Vijayaraghavan

    2010-08-23

    Design of inhibitors for amyloid-β (Aβ) peptide aggregation has been widely investigated over the years towards developing viable therapeutic agents for Alzheimer's disease (AD). The biggest challenge seems to be inhibiting Aβ aggregation at the early stages of aggregation possibly at the monomeric level, as oligomers are known to be neurotoxic. In this regard, exploiting the metal chelating property of Aβ to generate molecules that can overcome this impediment presents some promise. Recently, one such metal complex containing Pt(II) ([Pt(BPS)Cl(2)]) was reported to effectively inhibit Aβ42 aggregation and toxicity (1). This complex was able bind to Aβ42 at the N-terminal part of the peptide and triggered a conformational change resulting in effective inhibition. In the current report, we have generated a mixed-binuclear metal complex containing Pt(II) and Ru(II) that inhibited Aβ42 aggregation at an early stage of aggregation and seemed to have different modes of interaction than the previously reported Pt(II) complex, suggesting an important role of the second metal center. This 'proof-of-concept' compound will help in developing more effective molecules against Aβ aggregation by modifying the two metal centers as well as their ligands, which will open doors to new rationale for Aβ inhibition.

  8. The histidine composition of the amyloid-β domain, but not the E1 copper binding domain, modulates β-secretase processing of amyloid-β protein precursor in Alzheimer's disease.

    Science.gov (United States)

    Gough, Mallory; Blanthorn-Hazell, Sophee; Parkin, Edward T

    2015-01-01

    Amyloid-β protein precursor (AβPP) proteolysis by β- and γ-secretases generates neurotoxic amyloid-β (Aβ)-peptides in Alzheimer's disease (AD). We have investigated the role of histidine residues within the extracellular E1 copper binding and Aβ domains of AβPP in its proteolysis. By stably expressing histidine to alanine AβPP mutant constructs in SH-SY5Y cells, we show that mutations in the E1 copper binding domain had no impact on α- or β-secretase processing. Mutation of histidine 14 within the Aβ-domain specifically down-regulated β-secretase processing without impacting on non-amyloidogenic proteolysis. Understanding how histidine 14 participates in AβPP proteolysis may reveal new intervention points for AD treatments.

  9. MMPBSA decomposition of the binding energy throughout a molecular dynamics simulation of amyloid-beta (Abeta(10-35)) aggregation.

    Science.gov (United States)

    Campanera, Josep M; Pouplana, Ramon

    2010-04-15

    Recent experiments with amyloid-beta (Abeta) peptides indicate that the formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depend on their structure, which is governed by assembly dynamics. However, a detailed knowledge of the structure of at the atomic level has not been achieved yet due to limitations of current experimental techniques. In this study, replica exchange molecular dynamics simulations are used to identify the expected diversity of dimer conformations of Abeta(10-35) monomers. The most representative dimer conformation has been used to track the dimer formation process between both monomers. The process has been characterized by means of the evolution of the decomposition of the binding free energy, which provides an energetic profile of the interaction. Dimers undergo a process of reorganization driven basically by inter-chain hydrophobic and hydrophilic interactions and also solvation/desolvation processes.

  10. MMPBSA Decomposition of the Binding Energy throughout a Molecular Dynamics Simulation of Amyloid-Beta (Aß10−35 Aggregation

    Directory of Open Access Journals (Sweden)

    Josep M. Campanera

    2010-04-01

    Full Text Available Recent experiments with amyloid-beta (Aβ peptides indicate that the formation of toxic oligomers may be an important contribution to the onset of Alzheimer’s disease. The toxicity of Aβ oligomers depend on their structure, which is governed by assembly dynamics. However, a detailed knowledge of the structure of at the atomic level has not been achieved yet due to limitations of current experimental techniques. In this study, replica exchange molecular dynamics simulations are used to identify the expected diversity of dimer conformations of Aβ10−35 monomers. The most representative dimer conformation has been used to track the dimer formation process between both monomers. The process has been characterized by means of the evolution of the decomposition of the binding free energy, which provides an energetic profile of the interaction. Dimers undergo a process of reorganization driven basically by inter-chain hydrophobic and hydrophilic interactions and also solvation/desolvation processes.

  11. Effects of structural modifications on the metal binding, anti-amyloid activity, and cholinesterase inhibitory activity of chalcones.

    Science.gov (United States)

    Fosso, Marina Y; LeVine, Harry; Green, Keith D; Tsodikov, Oleg V; Garneau-Tsodikova, Sylvie

    2015-09-28

    As the number of individuals affected with Alzheimer's disease (AD) increases and the availability of drugs for AD treatment remains limited, the need to develop effective therapeutics for AD becomes more and more pressing. Strategies currently pursued include inhibiting acetylcholinesterase (AChE) and targeting amyloid-β (Aβ) peptides and metal-Aβ complexes. This work presents the design, synthesis, and biochemical evaluation of a series of chalcones, and assesses the relationship between their structures and their ability to bind metal ions and/or Aβ species, and inhibit AChE/BChE activity. Several chalcones were found to exhibit potent disaggregation of pre-formed N-biotinyl Aβ1-42 (bioAβ42) aggregates in vitro in the absence and presence of Cu(2+)/Zn(2+), while others were effective at inhibiting the action of AChE.

  12. Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA

    DEFF Research Database (Denmark)

    Nielsen, Morten S; Gustafsen, Camilla; Madsen, Peder

    2007-01-01

    -formation with the amyloid precursor protein it downregulates generation of Alzheimer's disease-associated Abeta-peptide. The receptor is mainly located in vesicles, suggesting a function in protein sorting and transport. Here we examined SorLA's trafficking using full-length and chimeric receptors and find that its...... established that the AP-1 adaptor complex is essential to SorLA's transport between Golgi membranes and endosomes. Our results further implicate the GGA proteins in SorLA trafficking and provide evidence that SNX1 and Vps35, as parts of the retromer complex or possibly in a separate context, are engaged...

  13. [Effect of mutations and modifications of amino acid residues on zinc-induced interaction of the metal-binding domain of β-amyloid with DNA].

    Science.gov (United States)

    Khmeleva, S A; Mezentsev, Y V; Kozin, S A; Mitkevich, V A; Medvedev, A E; Ivanov, A S; Bodoev, N V; Makarov, A A; Radko, S P

    2015-01-01

    Interaction of intranuclear β-amyloid with DNA is considered to be a plausible mechanism of Alzheimer's disease pathogenesis. The interaction of single- and double-stranded DNA with synthetic peptides was analyzed using surface plasmon resonance. The peptides represent the metal-binding domain of β-amyloid (amino acids 1-16) and its variants with chemical modifications and point substitutions of amino acid residues which are associated with enhanced neurotoxicity of β-amyloid in cell tests. It has been shown that the presence of zinc ions is necessary for the interaction of the peptides with DNA in solution. H6R substitution has remarkably reduced the ability of domain 1-16 to bind DNA. This is in accordance with the supposition that the coordination of a zinc ion by amino acid residues His6, Glu11, His13, and His14 of the β-amyloid metal-binding domain results in the occurrence of an anion-binding site responsible for the interaction of the domain with DNA. Zinc-induced dimerization and oligomerization of domain 1-16 associated with phosphorylation of Ser8 and the presence of unblocked amino- and carboxy-terminal groups have resulted in a decrease of peptide concentrations required for detection of the peptide-DNA interaction. The presence of multiple anion-binding sites on the dimers and oligomers is responsible for the enhancement of the peptide-DNA interaction. A substitution of the negatively charged residue Asp7 for the neutral residue Asn in close proximity to the anion-binding site of the domain 1-16 of Aβ facilitates the electrostatic interaction between this site and phosphates of a polynucleotide chain, which enhances zinc-induced binding to DNA.

  14. Using NMR Spectroscopy to Investigate the Solution Behavior of Nerve Agents and Their Binding to Acetylcholinesterase

    Science.gov (United States)

    2016-01-01

    USING NMR SPECTROSCOPY TO INVESTIGATE THE SOLUTION BEHAVIOR OF NERVE AGENTS AND THEIR BINDING TO...Solution Behavior of Nerve Agents and Their Binding to Acetylcholinesterase 5a. CONTRACT NUMBER CB3889 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...dynamics (MD) Nerve agent Nuclear magnetic relaxation Nuclear Overhauser effect (NOE) Solution behavior 16

  15. Intravenous delivery of targeted liposomes to amyloid-β pathology in APP/PSEN1 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Eric A Tanifum

    Full Text Available Extracellular amyloid-β (Aβ plaques and intracellular neurofibrillary tangles constitute the major neuropathological hallmarks of Alzheimer's disease (AD. It is now apparent that parenchymal Aβ plaque deposition precedes behavioral signs of disease by several years. The development of agents that can target these plaques may be useful as diagnostic or therapeutic tools. In this study, we synthesized an Aβ-targeted lipid conjugate, incorporated it in stealth liposomal nanoparticles and tested their ability to bind amyloid plaque deposits in an AD mouse model. The results show that the particles maintain binding profiles to synthetic Aβ aggregates comparable to the free ligand, and selectively bind Aβ plaque deposits in brain tissue sections of an AD mouse model (APP/PSEN1 transgenic mice with high efficiency. When administered intravenously, these long circulating nanoparticles appear to cross the blood-brain barrier and bind to Aβ plaque deposits, labeling parenchymal amyloid deposits and vascular amyloid characteristic of cerebral amyloid angiopathy.

  16. Phosphorylation of Ser8 promotes zinc-induced dimerization of the amyloid-β metal-binding domain.

    Science.gov (United States)

    Kulikova, Alexandra A; Tsvetkov, Philipp O; Indeykina, Maria I; Popov, Igor A; Zhokhov, Sergey S; Golovin, Andrey V; Polshakov, Vladimir I; Kozin, Sergey A; Nudler, Evgeny; Makarov, Alexander A

    2014-10-01

    Zinc-induced aggregation of the amyloid-β peptide (Aβ) is a hallmark molecular feature of Alzheimer's disease (AD). Recently it was shown that phosphorylation of Aβ at Ser8 promotes the formation of toxic aggregates. In this work, we have studied the impact of Ser8 phosphorylation on the mode of zinc interaction with the Aβ metal-binding domain 1-16 using isothermal titration calorimetry, electrospray ionization mass spectrometry and NMR spectroscopy. We have discovered a novel zinc binding site ((6)HDpS(8)) in the phosphorylated peptide, in which the zinc ion is coordinated by the imidazole ring of His6, the phosphate group attached to Ser8 and a backbone carbonyl group of His6 or Asp7. Interaction of the zinc ion with this site involves His6, thereby withdrawing it from the interaction pattern observed in the non-modified peptide. This event was found to stimulate dimerization of peptide chains through the (11)EVHH(14) site, where the zinc ion is coordinated by the two pairs of Glu11 and His14 in the two peptide subunits. The proposed molecular mechanism of zinc-induced dimerization could contribute to the understanding of initiation of pathological Aβ aggregation, and the (11)EVHH(14) tetrapeptide can be considered as a promising drug target for the prevention of amyloidogenesis.

  17. Divalent cation tolerance protein binds to β-secretase and inhibits the processing of amyloid precursor protein

    Institute of Scientific and Technical Information of China (English)

    Runzhong Liu; Haibo Hou; Xuelian Yi; Shanwen Wu; Huan Zeng

    2013-01-01

    The deposition of amyloid-beta is a pathological hallmark of Alzheimer's disease. Amyloid-beta is derived from amyloid precursor protein through sequential proteolytic cleavages by β-secretase (beta-site amyloid precursor protein-cleaving enzyme 1) and γ-secretase. To further elucidate the roles of beta-site amyloid precursor protein-cleaving enzyme 1 in the development of Alzheimer's disease, a yeast two-hybrid system was used to screen a human embryonic brain cDNA library for proteins directly interacting with the intracellular domain of beta-site amyloid precursor protein-cleaving enzyme 1. A potential beta-site amyloid precursor protein-cleaving enzyme 1- interacting protein identified from the positive clones was divalent cation tolerance protein. Immunoprecipitation studies in the neuroblastoma cell line N2a showed that exogenous divalent cation tolerance protein interacts with endogenous beta-site amyloid precursor protein-cleaving enzyme 1. The overexpression of divalent cation tolerance protein did not affect beta-site amyloid precursor protein-cleaving enzyme 1 protein levels, but led to increased amyloid precursor protein levels in N2a/APP695 cells, with a concomitant reduction in the processing product amyloid precursor protein C-terminal fragment, indicating that divalent cation tolerance protein inhibits the processing of amyloid precursor protein. Our experimental findings suggest that divalent cation tolerance protein negatively regulates the function of beta-site amyloid precursor protein-cleaving enzyme 1. Thus, divalent cation tolerance protein could play a protective role in Alzheimer's disease.

  18. A synthetic peptide with the putative iron binding motif of amyloid precursor protein (APP does not catalytically oxidize iron.

    Directory of Open Access Journals (Sweden)

    Kourosh Honarmand Ebrahimi

    Full Text Available The β-amyloid precursor protein (APP, which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II just as in ferritin. We measured the ferroxidase activity indirectly (i by the incorporation of the Fe(III product of the ferroxidase reaction into transferrin and directly (ii by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II oxidation by molecular oxygen. Zn(II binds to transferrin and diminishes its Fe(III incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and - by implication - of APP should be re-evaluated.

  19. A synthetic peptide with the putative iron binding motif of amyloid precursor protein (APP) does not catalytically oxidize iron.

    Science.gov (United States)

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Hagen, Wilfred R

    2012-01-01

    The β-amyloid precursor protein (APP), which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II) binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III) product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II) just as in ferritin. We measured the ferroxidase activity indirectly (i) by the incorporation of the Fe(III) product of the ferroxidase reaction into transferrin and directly (ii) by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II) oxidation by molecular oxygen. Zn(II) binds to transferrin and diminishes its Fe(III) incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and - by implication - of APP should be re-evaluated.

  20. Hepatitis C Virus Resistance to Carbohydrate-Binding Agents.

    Directory of Open Access Journals (Sweden)

    Laure Izquierdo

    Full Text Available Carbohydrate binding agents (CBAs, including natural lectins, are more and more considered as broad-spectrum antivirals. These molecules are able to directly inhibit many viruses such as Human Immunodeficiency Virus (HIV, Hepatitis C Virus (HCV, Dengue Virus, Ebola Virus or Severe Acute Respiratory Syndrome Coronavirus through binding to envelope protein N-glycans. In the case of HIV, it has been shown that CBAs select for mutant viruses with N-glycosylation site deletions which are more sensitive to neutralizing antibodies. In this study we aimed at evaluating the HCV resistance to CBAs in vitro. HCV was cultivated in the presence of increasing Galanthus nivalis agglutinin (GNA, Cyanovirin-N, Concanavalin-A or Griffithsin concentrations, during more than eight weeks. At the end of lectin exposure, the genome of the isolated strains was sequenced and several potential resistance mutations in the E1E2 envelope glycoproteins were identified. The effect of these mutations on viral fitness as well as on sensitivity to inhibition by lectins, soluble CD81 or the 3/11 neutralizing antibody was assessed. Surprisingly, none of these mutations, alone or in combination, conferred resistance to CBAs. In contrast, we observed that some mutants were more sensitive to 3/11 or CD81-LEL inhibition. Additionally, several mutations were identified in the Core and the non-structural proteins. Thus, our results suggest that in contrast to HIV, HCV resistance to CBAs is not directly conferred by mutations in the envelope protein genes but could occur through an indirect mechanism involving mutations in other viral proteins. Further investigations are needed to completely elucidate the underlying mechanisms.

  1. Hepatitis C Virus Resistance to Carbohydrate-Binding Agents

    Science.gov (United States)

    Izquierdo, Laure; Oliveira, Catarina; Fournier, Carole; Descamps, Véronique; Morel, Virginie; Dubuisson, Jean; Brochot, Etienne; Francois, Catherine; Castelain, Sandrine; Duverlie, Gilles; Helle, Francois

    2016-01-01

    Carbohydrate binding agents (CBAs), including natural lectins, are more and more considered as broad-spectrum antivirals. These molecules are able to directly inhibit many viruses such as Human Immunodeficiency Virus (HIV), Hepatitis C Virus (HCV), Dengue Virus, Ebola Virus or Severe Acute Respiratory Syndrome Coronavirus through binding to envelope protein N-glycans. In the case of HIV, it has been shown that CBAs select for mutant viruses with N-glycosylation site deletions which are more sensitive to neutralizing antibodies. In this study we aimed at evaluating the HCV resistance to CBAs in vitro. HCV was cultivated in the presence of increasing Galanthus nivalis agglutinin (GNA), Cyanovirin-N, Concanavalin-A or Griffithsin concentrations, during more than eight weeks. At the end of lectin exposure, the genome of the isolated strains was sequenced and several potential resistance mutations in the E1E2 envelope glycoproteins were identified. The effect of these mutations on viral fitness as well as on sensitivity to inhibition by lectins, soluble CD81 or the 3/11 neutralizing antibody was assessed. Surprisingly, none of these mutations, alone or in combination, conferred resistance to CBAs. In contrast, we observed that some mutants were more sensitive to 3/11 or CD81-LEL inhibition. Additionally, several mutations were identified in the Core and the non-structural proteins. Thus, our results suggest that in contrast to HIV, HCV resistance to CBAs is not directly conferred by mutations in the envelope protein genes but could occur through an indirect mechanism involving mutations in other viral proteins. Further investigations are needed to completely elucidate the underlying mechanisms. PMID:26871442

  2. β-Amyloid binding in elderly subjects with declining or stable episodic memory function measured with PET and [{sup 11}C]AZD2184

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Patrik [Karolinska Institutet, Centre for Psychiatry Research, Department of Clinical Neuroscience, Stockholm (Sweden); Karolinska University Hospital, Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm (Sweden); Forsberg, Anton; Halldin, Christer [Karolinska Institutet, Centre for Psychiatry Research, Department of Clinical Neuroscience, Stockholm (Sweden); Persson, Jonas; Nilsson, Lars-Goeran [Karolinska Institute and Stockholm University, Aging Research Center (ARC), Stockholm (Sweden); Nyberg, Lars [Umeaa University, Department of Radiation Sciences (Diagnostic Radiology), Umeaa (Sweden); Farde, Lars [Karolinska Institutet, Centre for Psychiatry Research, Department of Clinical Neuroscience, Stockholm (Sweden); AstraZeneca Translational Science Center at Karolinska Institutet, Stockholm (Sweden)

    2015-09-15

    Cognitive decline has been suggested as an early marker for later onset of Alzheimer's disease. We therefore explored the relationship between decline in episodic memory and β-amyloid using positron emission tomography (PET) and [{sup 11}C]AZD2184, a radioligand with potential to detect low levels of amyloid deposits. Healthy elderly subjects with declining (n = 10) or stable (n = 10) episodic memory over 15 years were recruited from the population-based Betula study and examined with PET. Brain radioactivity was measured after intravenous administration of [{sup 11}C]AZD2184. The binding potential BP{sub ND} was calculated using linear graphical analysis with the cerebellum as reference region. The binding of [{sup 11}C]AZD2184 in total grey matter was generally low in the declining group, whereas some binding could be observed in the stable group. Mean BP{sub ND} was significantly higher in the stable group compared to the declining group (p = 0.019). An observation was that the three subjects with the highest BP{sub ND} were ApoE ε4 allele carriers. We conclude that cognitive decline in the general population does not seem to stand by itself as an early predictor for amyloid deposits. (orig.)

  3. Binding and Inhibitory Effect of the Dyes Amaranth and Tartrazine on Amyloid Fibrillation in Lysozyme.

    Science.gov (United States)

    Basu, Anirban; Suresh Kumar, Gopinatha

    2017-02-16

    Interaction of two food colorant dyes, amaranth and tartrazine, with lysozyme was studied employing multiple biophysical techniques. The dyes exhibited hypochromic changes in the presence of lysozyme. The intrinsic fluorescence of lysozyme was quenched by both dyes; amaranth was a more efficient quencher than tartrazine. The equilibrium constant of amaranth was higher than that of tartarzine. From FRET analysis, the binding distances for amaranth and tartrazine were calculated to be 4.51 and 3.93 nm, respectively. The binding was found to be dominated by non-polyelectrolytic forces. Both dyes induced alterations in the microenvironment surrounding the tryptophan and tyrosine residues of the protein, with the alterations being comparatively higher for the tryptophans than the tyrosines. The interaction caused significant loss in the helicity of lysozyme, the change being higher with amaranth. The binding of both dyes was exothermic. The binding of amaranth was enthalpy driven, while that of tartrazine was predominantly entropy driven. Amaranth delayed lysozyme fibrillation at 25 μM, while tartrazine had no effect even at 100 μM. Nevertheless, both dyes had a significant inhibitory effect on fibrillogenesis. The present study explores the potential antiamyloidogenic property of these azo dyes used as food colorants.

  4. Cu(2+ affects amyloid-β (1-42 aggregation by increasing peptide-peptide binding forces.

    Directory of Open Access Journals (Sweden)

    Francis Hane

    Full Text Available The link between metals, Alzheimer's disease (AD and its implicated protein, amyloid-β (Aβ, is complex and highly studied. AD is believed to occur as a result of the misfolding and aggregation of Aβ. The dyshomeostasis of metal ions and their propensity to interact with Aβ has also been implicated in AD. In this work, we use single molecule atomic force spectroscopy to measure the rupture force required to dissociate two Aβ (1-42 peptides in the presence of copper ions, Cu(2+. In addition, we use atomic force microscopy to resolve the aggregation of Aβ formed. Previous research has shown that metal ions decrease the lag time associated with Aβ aggregation. We show that with the addition of copper ions the unbinding force increases notably. This suggests that the reduction of lag time associated with Aβ aggregation occurs on a single molecule level as a result of an increase in binding forces during the very initial interactions between two Aβ peptides. We attribute these results to copper ions acting as a bridge between the two peptide molecules, increasing the stability of the peptide-peptide complex.

  5. Insights on the binding of thioflavin derivative markers to amyloid fibril models and Aβ{sub 1-40} fibrils from computational approaches

    Energy Technology Data Exchange (ETDEWEB)

    Alí-Torres, Jorge; Rimola, Albert; Sodupe, Mariona [Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193 (Spain); Rodriguez-Rodríguez, Cristina [Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada)

    2014-10-06

    The present contribution analyzes the binding of ThT and neutral ThT derivatives to a β-sheet model by means of quantum chemical calculations. In addition, we study the properties of four molecules: (2-(2-hydroxyphenyl)benzoxazole (HBX), 2-(2-hydroxyphenyl)benzothiazole (HBT) and their respective iodinated compounds, HBXI and HBTI, in binding to amyloid fibril models and Aβ{sub 1-40}fibrils by using a combination of docking, molecular dynamics and quantum mechanics calculations.

  6. An Aberrant Phosphorylation of Amyloid Precursor Protein Tyrosine Regulates Its Trafficking and the Binding to the Clathrin Endocytic Complex in Neural Stem Cells of Alzheimer's Disease Patients

    Science.gov (United States)

    Poulsen, Ebbe T.; Iannuzzi, Filomena; Rasmussen, Helle F.; Maier, Thorsten J.; Enghild, Jan J.; Jørgensen, Arne L.; Matrone, Carmela

    2017-01-01

    Alzheimer's disease (AD) is the most common cause of dementia and is likely caused by defective amyloid precursor protein (APP) trafficking and processing in neurons leading to amyloid plaques containing the amyloid-β (Aβ) APP peptide byproducts. Understanding how APP is targeted to selected destinations inside neurons and identifying the mechanisms responsible for the generation of Aβ are thus the keys for the advancement of new therapies. We previously developed a mouse model with a mutation at tyrosine (Tyr) 682 in the C-terminus of APP. This residue is needed for APP to bind to the coating protein Clathrin and to the Clathrin adaptor protein AP2 as well as for the correct APP trafficking and sorting in neurons. By extending these findings to humans, we found that APP binding to Clathrin is decreased in neural stem cells from AD sufferers. Increased APP Tyr phosphorylation alters APP trafficking in AD neurons and it is associated to Fyn Tyr kinase activation. We show that compounds affecting Tyr kinase activity and counteracting defects in AD neurons can control APP location and compartmentalization. APP Tyr phosphorylation is thus a potential therapeutic target for AD.

  7. A β-hairpin-binding protein for three different disease-related amyloidogenic proteins.

    Science.gov (United States)

    Shaykhalishahi, Hamed; Mirecka, Ewa A; Gauhar, Aziz; Grüning, Clara S R; Willbold, Dieter; Härd, Torleif; Stoldt, Matthias; Hoyer, Wolfgang

    2015-02-01

    Amyloidogenic proteins share a propensity to convert to the β-structure-rich amyloid state that is associated with the progression of several protein-misfolding disorders. Here we show that a single engineered β-hairpin-binding protein, the β-wrapin AS10, binds monomers of three different amyloidogenic proteins, that is, amyloid-β peptide, α-synuclein, and islet amyloid polypeptide, with sub-micromolar affinity. AS10 binding inhibits the aggregation and toxicity of all three proteins. The results demonstrate common conformational preferences and related binding sites in a subset of the amyloidogenic proteins. These commonalities enable the generation of multispecific monomer-binding agents.

  8. The role of the E2 copper binding domain in the cell biology of the amyloid precursor protein

    OpenAIRE

    Blanthorn-Hazell, Sophee

    2015-01-01

    Alzheimer’s disease is a neurodegenerative disorder characterised by the accumulation, in the brain, of neurotoxic amyloid beta-(Aβ) peptides. These peptides are generated from the amyloid precursor protein (APP) via the amyloidogenic proteolytic pathway which also leads to the formation of soluble APP beta (sAPPβ). Alternatively, APP can be cleaved by the non-amyloidogenic pathway in which an α-secretase activity cleaves the protein within the Aβ region generating soluble APP alpha (sAPPα). ...

  9. Human Islet Amyloid Polypeptide

    DEFF Research Database (Denmark)

    Kosicka, Iga

    2014-01-01

    Diabetes mellitus type II is a metabolic disease affecting millions of people worldwide. The disease is associated with occurence of insoluble, fibrillar, protein aggregates in islets of Langerhans in the pancreas - islet amyloid. The main constituent of these protein fibers is the human islet...... of diabetes type II, while revealing the structure(s) of islet amyloid fibrils is necessary for potential design of therapeutic agents....

  10. Binding of complement proteins C1q and C4bp to serum amyloid P component (SAP) in solid contra liquid phase

    DEFF Research Database (Denmark)

    Sørensen, Inge Juul; Nielsen, EH; Andersen, Ove;

    1996-01-01

    Serum amyloid P component (SAP), a member of the conserved pentraxin family of plasma proteins, binds calcium dependently to its ligands. The authors investigated SAPs interaction with the complement proteins C4b binding protein (C4bp) and C1q by ELISA, immunoelectrophoresis and electron microscopy....... Binding of these proteins to SAP was demonstrated when SAP was immobilized using F(ab')2 anti-SAP, but not when SAP reacted with these proteins in liquid phase; thus the binding to human SAP was markedly phase state dependent. Presaturation of solid phase SAP with heparin, which binds SAP with high...... affinity, did not interfere with the subsequent binding of C4bp or C1q to SAP. In contrast, collagen I and IV showed partial competition with the binding of C1q to SAP. Using fresh serum, immobilized native SAP bound C4bp whereas binding of C1q/C1 could not be demonstrated. Altogether the results indicate...

  11. {beta} - amyloid imaging probes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Min [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Imaging distribution of {beta} - amyloid plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the {beta} -amyloid plaques includes using radiolabeled peptides which can be only applied for peripheral {beta} - amyloid plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging {beta} - amyloid plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for {beta} - amyloid imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for {beta} - amyloid imaging agent.

  12. pH-dependence of the specific binding of Cu(II) and Zn(II) ions to the amyloid-{beta} peptide

    Energy Technology Data Exchange (ETDEWEB)

    Ghalebani, Leila, E-mail: leila.ghalebani@ki.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden); Wahlstroem, Anna, E-mail: anna.wahlstrom@dbb.su.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden); Danielsson, Jens, E-mail: jensd@dbb.su.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden); Waermlaender, Sebastian K.T.S., E-mail: seb@dbb.su.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden); Graeslund, Astrid, E-mail: astrid@dbb.su.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Cu(II) and Zn(II) display pH-dependent binding to the A{beta}(1-40) peptide. Black-Right-Pointing-Pointer At pH 7.4 both metal ions display residue-specific binding to the A{beta} peptide. Black-Right-Pointing-Pointer At pH 5.5 the binding specificity is lost for Zn(II). Black-Right-Pointing-Pointer Differential Cu(II) and Zn(II) binding may help explain metal-induced AD toxicity. -- Abstract: Metal ions like Cu(II) and Zn(II) are accumulated in Alzheimer's disease amyloid plaques. The amyloid-{beta} (A{beta}) peptide involved in the disease interacts with these metal ions at neutral pH via ligands provided by the N-terminal histidines and the N-terminus. The present study uses high-resolution NMR spectroscopy to monitor the residue-specific interactions of Cu(II) and Zn(II) with {sup 15}N- and {sup 13}C,{sup 15}N-labeled A{beta}(1-40) peptides at varying pH levels. At pH 7.4 both ions bind to the specific ligands, competing with one another. At pH 5.5 Cu(II) retains its specific histidine ligands, while Zn(II) seems to lack residue-specific interactions. The low pH mimics acidosis which is linked to inflammatory processes in vivo. The results suggest that the cell toxic effects of redox active Cu(II) binding to A{beta} may be reversed by the protective activity of non-redox active Zn(II) binding to the same major binding site under non-acidic conditions. Under acidic conditions, the protective effect of Zn(II) may be decreased or changed, since Zn(II) is less able to compete with Cu(II) for the specific binding site on the A{beta} peptide under these conditions.

  13. Quick and Simple Detection Technique to Assess the Binding of Antimicrotubule Agents to the Colchicine-Binding Site

    Directory of Open Access Journals (Sweden)

    Fortin Sébastien

    2010-04-01

    Full Text Available Abstract Development of antimitotic binding to the colchicine-binding site for the treatment of cancer is rapidly expanding. Numerous antimicrotubule agents are prepared every year, and the determination of their binding affinity to tubulin requires the use of purified tubulins and radiolabeled ligands. Such a procedure is costly and time-consuming and therefore is limited to the most promising candidates. Here, we report a quick and inexpensive method that requires only usual laboratory resources to assess the binding of antimicrotubules to colchicine-binding site. The method is based on the ability of N,N'-ethylene-bis(iodoacetamide (EBI to crosslink in living cells the cysteine residues at position 239 and 354 of β-tubulin, residues which are involved in the colchicine-binding site. The β-tubulin adduct formed by EBI is easily detectable by Western blot as a second immunoreacting band of β-tubulin that migrates faster than β-tubulin. The occupancy of colchicine-binding site by pertinent antimitotics inhibits the formation of the EBI: β-tubulin adduct, resulting in an assay that allows the screening of new molecules targeting this binding site.

  14. Quick and Simple Detection Technique to Assess the Binding of Antimicrotubule Agents to the Colchicine-Binding Site

    Directory of Open Access Journals (Sweden)

    Moreau Emmanuel

    2010-01-01

    Full Text Available Abstract Development of antimitotic binding to the colchicine-binding site for the treatment of cancer is rapidly expanding. Numerous antimicrotubule agents are prepared every year, and the determination of their binding affinity to tubulin requires the use of purified tubulins and radiolabeled ligands. Such a procedure is costly and time-consuming and therefore is limited to the most promising candidates. Here, we report a quick and inexpensive method that requires only usual laboratory resources to assess the binding of antimicrotubules to colchicine-binding site. The method is based on the ability of N,N'-ethylene-bis(iodoacetamide (EBI to crosslink in living cells the cysteine residues at position 239 and 354 of β-tubulin, residues which are involved in the colchicine-binding site. The β-tubulin adduct formed by EBI is easily detectable by Western blot as a second immunoreacting band of β-tubulin that migrates faster than β-tubulin. The occupancy of colchicine-binding site by pertinent antimitotics inhibits the formation of the EBI: β-tubulin adduct, resulting in an assay that allows the screening of new molecules targeting this binding site.

  15. Thermal analysis of moulding sands with a polyacrylic binding agent

    Directory of Open Access Journals (Sweden)

    B. Grabowska

    2008-03-01

    Full Text Available Heating of materials causes their physical or chemical changes accompanied by thermal clfccts. Thcrmnl cfrccts of plymcrs an: rclarcd totheir structural changes. such as: melting, crystallization, polymorphous transformations, vitrification. dcgradnlion, dcstmct ion as wcll nsintramolecular or intermolecular reactions. Samples of sodium ptyacrylatc (uscd as a binding agcnr, high-silica sand (grain matrix andsamplcs of moulding sands with a potyacrylic binder aftcr hardening were tcsted derivatographically. Samplcs For thcrmal analysis wcrctaken from sham blocks aRer pcrrorming strcnglh tcsts. Invcstigations wcrc done within the tcmpcmturc rangc: 25-1000°C.Mct hds of thcrmal analysis (DTA,T G} were uscd to dacminc thc thcrmal stability of thc tcstcd snmplcs by cstablisbing rhc tcmpcsaturcand thermal effccts of transformations occurring during hcating. In addition, the invcstigations wcrc to dctcsminc changcs raking placcinside moulding sands whcn in contact with molten mctal. On the basis of differences in Ihermograms of moulding sand samptcs withpolyacrylic binding agcnt. hdcncd cithcr by Ca(Olll and C0: or by microwaves, onc cnn infcr that significant strucrural changesoccurrcd aftcr cross-linking. Thosc changes are rclatcd to intra- and intermolecular rcactions and thc way of hardcning influcnccs thccross-linking reaction - which was also confirmed by mcws of thc spectroscopic investigations (IT-IR. Rarnan, NMR.

  16. Structural Characterization of the E2 Domain of APL-1, a C. Elegans Homolog of Human Amyloid Precursor Protein, and its Heparin Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Hoopes, J.; Liu, X; Xu, X; Demeler, B; Folta-Stogniew, E; Li, C; Ha, Y

    2010-01-01

    The amyloid {beta}-peptide deposit found in the brain tissue of patients with Alzheimer disease is derived from a large heparin-binding protein precursor APP. The biological function of APP and its homologs is not precisely known. Here we report the x-ray structure of the E2 domain of APL-1, an APP homolog in Caenorhabditis elegans, and compare it to the human APP structure. We also describe the structure of APL-1 E2 in complex with sucrose octasulfate, a highly negatively charged disaccharide, which reveals an unexpected binding pocket between the two halves of E2. Based on the crystal structure, we are able to map, using site-directed mutagenesis, a surface groove on E2 to which heparin may bind. Our biochemical data also indicate that the affinity of E2 for heparin is influenced by pH: at pH 5, the binding appears to be much stronger than that at neutral pH. This property is likely caused by histidine residues in the vicinity of the mapped heparin binding site and could be important for the proposed adhesive function of APL-1.

  17. Aβ-binding molecules: Possible application as imaging probes and as anti-aggregation agents

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    As amyloid β (Aβ) is at the centre of pathogenesis of Alzheimer’s disease (AD), Aβ aggregate-specific probes for in vivo studies of Aβ are potentially important for the early diagnosis and the assessment of new treatment strategies in the AD brain by noninvasive imaging. Several series of compounds derived from Congo red (CR) and Thioflavin T (ThT) have been evaluated as potential probes for the Aβ imaging. They include a diversity of core structures contributing to their affinities to Aβ. Small-molecule inhibi- tors were known to inhibit the formation of Aβ oligomers and fibrils. This inhibition has to be performed in such a way that these inhibitors bind to Aβ in the binding channel where Aβ-binding probes should sit. Therefore, several of them were used as novel core structures to develop Aβ probes, with their de- rivatives exhibiting good Aβ affinities. This approach will facilitate the design of a variety of candidates for Aβ probe molecules and anti-aggregation-therapeutic drugs. Moreover, the finding of Aβ probes with diverse core structures recognized by binding sites on Aβs will likely provide a promising per- spective for the design of 99mTc-labeled probe-derived molecules.

  18. Anti-amyloid Aggregation Activity of Natural Compounds: Implications for Alzheimer's Drug Discovery.

    Science.gov (United States)

    Bu, Xian-Le; Rao, Praveen P N; Wang, Yan-Jiang

    2016-08-01

    Several plant-derived natural compounds are known to exhibit anti-amyloid aggregation activity which makes them attractive as potential therapies to treat Alzheimer's disease. The mechanisms of their anti-amyloid activity are not well known. In this regard, many natural compounds are known to exhibit direct binding to various amyloid species including oligomers and fibrils, which in turn can lead to conformational change in the beta-sheet assembly to form nontoxic aggregates. This review discusses the mechanism of anti-amyloid activity of 16 natural compounds and gives structural details on their direct binding interactions with amyloid aggregates. Our computational investigations show that the physicochemical properties of natural products do fit Lipinski's criteria and that catechol and catechol-type moieties present in natural compounds act as lysine site-specific inhibitors of amyloid aggregation. Based on these observations, we propose a structural template to design novel small molecules containing site-specific ring scaffolds, planar aromatic and nonaromatic linkers with suitably substituted hydrogen bond acceptors and donors. These studies will have significant implications in the design and development of novel amyloid aggregation inhibitors with superior metabolic stability and blood-brain barrier penetration as potential agents to treat Alzheimer's disease.

  19. Interaction of the amyloid precursor protein-like protein 1 (APLP1) E2 domain with heparan sulfate involves two distinct binding modes

    Energy Technology Data Exchange (ETDEWEB)

    Dahms, Sven O., E-mail: sdahms@fli-leibniz.de [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany); Mayer, Magnus C. [Freie Universität Berlin, Thielallee 63, 14195 Berlin (Germany); Miltenyi Biotec GmbH, Robert-Koch-Strasse 1, 17166 Teterow (Germany); Roeser, Dirk [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany); Multhaup, Gerd [McGill University Montreal, Montreal, Quebec H3G 1Y6 (Canada); Than, Manuel E., E-mail: sdahms@fli-leibniz.de [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany)

    2015-03-01

    Two X-ray structures of APLP1 E2 with and without a heparin dodecasaccharide are presented, revealing two distinct binding modes of the protein to heparan sulfate. The data provide a mechanistic explanation of how APP-like proteins bind to heparan sulfates and how they specifically recognize nonreducing structures of heparan sulfates. Beyond the pathology of Alzheimer’s disease, the members of the amyloid precursor protein (APP) family are essential for neuronal development and cell homeostasis in mammals. APP and its paralogues APP-like protein 1 (APLP1) and APP-like protein 2 (APLP2) contain the highly conserved heparan sulfate (HS) binding domain E2, which effects various (patho)physiological functions. Here, two crystal structures of the E2 domain of APLP1 are presented in the apo form and in complex with a heparin dodecasaccharide at 2.5 Å resolution. The apo structure of APLP1 E2 revealed an unfolded and hence flexible N-terminal helix αA. The (APLP1 E2){sub 2}–(heparin){sub 2} complex structure revealed two distinct binding modes, with APLP1 E2 explicitly recognizing the heparin terminus but also interacting with a continuous heparin chain. The latter only requires a certain register of the sugar moieties that fits to a positively charged surface patch and contributes to the general heparin-binding capability of APP-family proteins. Terminal binding of APLP1 E2 to heparin specifically involves a structure of the nonreducing end that is very similar to heparanase-processed HS chains. These data reveal a conserved mechanism for the binding of APP-family proteins to HS and imply a specific regulatory role of HS modifications in the biology of APP and APP-like proteins.

  20. On the Involvement of Copper Binding to the N-Terminus of the Amyloid Beta Peptide of Alzheimer's Disease: A Computational Study on Model Systems

    Directory of Open Access Journals (Sweden)

    Samira Azimi

    2011-01-01

    Full Text Available Density functional and second order Moller-Plesset perturbation theoretical methods, coupled with a polarizable continuum model of water, were applied to determine the structures, binding affinities, and reduction potentials of Cu(II and Cu(I bound to models of the Asp1, Ala2, His6, and His13His14 regions of the amyloid beta peptide of Alzheimer's disease. The results indicate that the N-terminal Asp binds to Cu(II together with His6 and either His13 or His14 to form the lower pH Component I of Aβ. Component II of Aβ is the complex between Cu(II and His6, His13, and His14, to which an amide O (of Ala2 is also coordinated. Asp1 does not bind to Cu(II if three His residues are attached nor to any Cu(I species to which one or more His residues are bound. The most stable Cu(I species is one in which Cu(I bridges the Nδ of His13 and His14 in a linear fashion. Cu(I binds more strongly to Aβ than does Cu(II. The computed reduction potential that closely matches the experimental value for Cu(II/Aβ corresponds to reduction of Component II (without Ala2 to the Cu(I complex after endergonic attachment of His6.

  1. Alzheimer's Therapeutics Targeting Amyloid Beta 1–42 Oligomers I: Abeta 42 Oligomer Binding to Specific Neuronal Receptors Is Displaced by Drug Candidates That Improve Cognitive Deficits

    Science.gov (United States)

    Izzo, Nicholas J.; Staniszewski, Agnes; To, Lillian; Fa, Mauro; Teich, Andrew F.; Saeed, Faisal; Wostein, Harrison; Walko, Thomas; Vaswani, Anisha; Wardius, Meghan; Syed, Zanobia; Ravenscroft, Jessica; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Finn, Patricia; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Miller, Miles; Johanson, Conrad; Stopa, Edward; Windisch, Manfred; Hutter-Paier, Birgit; Shamloo, Mehrdad; Arancio, Ottavio; LeVine, Harry; Catalano, Susan M.

    2014-01-01

    Synaptic dysfunction and loss caused by age-dependent accumulation of synaptotoxic beta amyloid (Abeta) 1–42 oligomers is proposed to underlie cognitive decline in Alzheimer's disease (AD). Alterations in membrane trafficking induced by Abeta oligomers mediates reduction in neuronal surface receptor expression that is the basis for inhibition of electrophysiological measures of synaptic plasticity and thus learning and memory. We have utilized phenotypic screens in mature, in vitro cultures of rat brain cells to identify small molecules which block or prevent the binding and effects of Abeta oligomers. Synthetic Abeta oligomers bind saturably to a single site on neuronal synapses and induce deficits in membrane trafficking in neuronal cultures with an EC50 that corresponds to its binding affinity. The therapeutic lead compounds we have found are pharmacological antagonists of Abeta oligomers, reducing the binding of Abeta oligomers to neurons in vitro, preventing spine loss in neurons and preventing and treating oligomer-induced deficits in membrane trafficking. These molecules are highly brain penetrant and prevent and restore cognitive deficits in mouse models of Alzheimer's disease. Counter-screening these compounds against a broad panel of potential CNS targets revealed they are highly potent and specific ligands of the sigma-2/PGRMC1 receptor. Brain concentrations of the compounds corresponding to greater than 80% receptor occupancy at the sigma-2/PGRMC1 receptor restore cognitive function in transgenic hAPP Swe/Ldn mice. These studies demonstrate that synthetic and human-derived Abeta oligomers act as pharmacologically-behaved ligands at neuronal receptors - i.e. they exhibit saturable binding to a target, they exert a functional effect related to their binding and their displacement by small molecule antagonists blocks their functional effect. The first-in-class small molecule receptor antagonists described here restore memory to normal in multiple AD

  2. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers I: Abeta 42 oligomer binding to specific neuronal receptors is displaced by drug candidates that improve cognitive deficits.

    Science.gov (United States)

    Izzo, Nicholas J; Staniszewski, Agnes; To, Lillian; Fa, Mauro; Teich, Andrew F; Saeed, Faisal; Wostein, Harrison; Walko, Thomas; Vaswani, Anisha; Wardius, Meghan; Syed, Zanobia; Ravenscroft, Jessica; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Finn, Patricia; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Miller, Miles; Johanson, Conrad; Stopa, Edward; Windisch, Manfred; Hutter-Paier, Birgit; Shamloo, Mehrdad; Arancio, Ottavio; LeVine, Harry; Catalano, Susan M

    2014-01-01

    Synaptic dysfunction and loss caused by age-dependent accumulation of synaptotoxic beta amyloid (Abeta) 1-42 oligomers is proposed to underlie cognitive decline in Alzheimer's disease (AD). Alterations in membrane trafficking induced by Abeta oligomers mediates reduction in neuronal surface receptor expression that is the basis for inhibition of electrophysiological measures of synaptic plasticity and thus learning and memory. We have utilized phenotypic screens in mature, in vitro cultures of rat brain cells to identify small molecules which block or prevent the binding and effects of Abeta oligomers. Synthetic Abeta oligomers bind saturably to a single site on neuronal synapses and induce deficits in membrane trafficking in neuronal cultures with an EC50 that corresponds to its binding affinity. The therapeutic lead compounds we have found are pharmacological antagonists of Abeta oligomers, reducing the binding of Abeta oligomers to neurons in vitro, preventing spine loss in neurons and preventing and treating oligomer-induced deficits in membrane trafficking. These molecules are highly brain penetrant and prevent and restore cognitive deficits in mouse models of Alzheimer's disease. Counter-screening these compounds against a broad panel of potential CNS targets revealed they are highly potent and specific ligands of the sigma-2/PGRMC1 receptor. Brain concentrations of the compounds corresponding to greater than 80% receptor occupancy at the sigma-2/PGRMC1 receptor restore cognitive function in transgenic hAPP Swe/Ldn mice. These studies demonstrate that synthetic and human-derived Abeta oligomers act as pharmacologically-behaved ligands at neuronal receptors--i.e. they exhibit saturable binding to a target, they exert a functional effect related to their binding and their displacement by small molecule antagonists blocks their functional effect. The first-in-class small molecule receptor antagonists described here restore memory to normal in multiple AD models

  3. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers II: Sigma-2/PGRMC1 receptors mediate Abeta 42 oligomer binding and synaptotoxicity.

    Science.gov (United States)

    Izzo, Nicholas J; Xu, Jinbin; Zeng, Chenbo; Kirk, Molly J; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Cruchaga, Carlos; Goate, Alison; Cahill, Michael A; Arancio, Ottavio; Mach, Robert H; Craven, Rolf; Head, Elizabeth; LeVine, Harry; Spires-Jones, Tara L; Catalano, Susan M

    2014-01-01

    Amyloid beta (Abeta) 1-42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI) and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD). We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1) protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer's disease patients' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological effects of

  4. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers II: Sigma-2/PGRMC1 receptors mediate Abeta 42 oligomer binding and synaptotoxicity.

    Directory of Open Access Journals (Sweden)

    Nicholas J Izzo

    Full Text Available Amyloid beta (Abeta 1-42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD. We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1 protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer's disease patients' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological

  5. Serum amyloid P component binds to influenza A virus haemagglutinin and inhibits the virus infection in vitro

    DEFF Research Database (Denmark)

    Andersen, Ove; Vilsgaard Ravn, K; Juul Sørensen, I;

    1997-01-01

    that SAP can bind to influenza A virus and inhibit agglutination of erythrocytes mediated by the virus subtypes H1N1, H2N2 and H3N2. SAP also inhibits the production of haemagglutinin (HA) an the cytopathogenic effect of influenza A virus in MDCK cells. The binding of SAP to the virus requires...... to the mass of the HA1 peptide. Of several monosaccharides tested only D-mannose interfered with SAP's inhibition of both HA and infectivity. The glycosaminoglycans heparan sulfate and heparin, which bind SAP, reduced SAPs binding to the virus. The results indicate that the inhibition by SAP is due to steric...

  6. Binding, conformational transition and dimerization of amyloid-β peptide on GM1-containing ternary membrane: insights from molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    Moutusi Manna

    Full Text Available Interactions of amyloid-β (Aβ with neuronal membrane are associated with the progression of Alzheimer's disease (AD. Ganglioside GM1 has been shown to promote the structural conversion of Aβ and increase the rate of peptide aggregation; but the exact nature of interaction driving theses processes remains to be explored. In this work, we have carried out atomistic-scale computer simulations (totaling 2.65 µs to investigate the behavior of Aβ monomer and dimers in GM1-containing raft-like membrane. The oligosaccharide head-group of GM1 was observed to act as scaffold for Aβ-binding through sugar-specific interactions. Starting from the initial helical peptide conformation, a β-hairpin motif was formed at the C-terminus of the GM1-bound Aβ-monomer; that didn't appear in absence of GM1 (both in fluid POPC and liquid-ordered cholesterol/POPC bilayers and also in aqueous medium within the simulation time span. For Aβ-dimers, the β-structure was further enhanced by peptide-peptide interactions, which might influence the propensity of Aβ to aggregate into higher-ordered structures. The salt-bridges and inter-peptide hydrogen bonds were found to account for dimer stability. We observed spontaneous formation of intra-peptide D(23-K(28 salt-bridge and a turn at V(24GSN(27 region - long been accepted as characteristic structural-motifs for amyloid self-assembly. Altogether, our results provide atomistic details of Aβ-GM1 and Aβ-Aβ interactions and demonstrate their importance in the early-stages of GM1-mediated Aβ-oligomerisation on membrane surface.

  7. Rescue of amyloid-Beta-induced inhibition of nicotinic acetylcholine receptors by a peptide homologous to the nicotine binding domain of the alpha 7 subtype.

    Directory of Open Access Journals (Sweden)

    Arthur A Nery

    Full Text Available Alzheimer's disease (AD is characterized by brain accumulation of the neurotoxic amyloid-β peptide (Aβ and by loss of cholinergic neurons and nicotinic acetylcholine receptors (nAChRs. Recent evidence indicates that memory loss and cognitive decline in AD correlate better with the amount of soluble Aβ than with the extent of amyloid plaque deposits in affected brains. Inhibition of nAChRs by soluble Aβ40 is suggested to contribute to early cholinergic dysfunction in AD. Using phage display screening, we have previously identified a heptapeptide, termed IQ, homologous to most nAChR subtypes, binding with nanomolar affinity to soluble Aβ40 and blocking Aβ-induced inhibition of carbamylcholine-induced currents in PC12 cells expressing α7 nAChRs. Using alanine scanning mutagenesis and whole-cell current recording, we have now defined the amino acids in IQ essential for reversal of Aβ40 inhibition of carbamylcholine-induced responses in PC12 cells, mediated by α7 subtypes and other endogenously expressed nAChRs. We further investigated the effects of soluble Aβ, IQ and analogues of IQ on α3β4 nAChRs recombinantly expressed in HEK293 cells. Results show that nanomolar concentrations of soluble Aβ40 potently inhibit the function of α3β4 nAChRs, and that subsequent addition of IQ or its analogues does not reverse this effect. However, co-application of IQ makes the inhibition of α3β4 nAChRs by Aβ40 reversible. These findings indicate that Aβ40 inhibits different subtypes of nAChRs by interacting with specific receptor domains homologous to the IQ peptide, suggesting that IQ may be a lead for novel drugs to block the inhibition of cholinergic function in AD.

  8. Serum amyloid P component binds to influenza A virus haemagglutinin and inhibits the virus infection in vitro

    DEFF Research Database (Denmark)

    Andersen, Ove; Vilsgaard Ravn, K; Juul Sørensen, I;

    1997-01-01

    that SAP can bind to influenza A virus and inhibit agglutination of erythrocytes mediated by the virus subtypes H1N1, H2N2 and H3N2. SAP also inhibits the production of haemagglutinin (HA) an the cytopathogenic effect of influenza A virus in MDCK cells. The binding of SAP to the virus requires...

  9. Synthesis and evaluation of 18F-fluoroethylated benzothiazole derivatives for in vivo imaging of amyloid plaques in Alzheimer's disease.

    Science.gov (United States)

    Neumaier, B; Deisenhofer, S; Sommer, C; Solbach, C; Reske, S N; Mottaghy, F

    2010-06-01

    Amyloid aggregates play a major role in the development of Alzheimer's disease. Targeting these aggregates by PET probes enables non-invasively the detection and quantification of amyloid deposit distribution in human brains. Based on benzothiazole core structure a series of amyloid imaging agents were developed. Currently [(11)C]2-(4'-(methylamino)phenyl)-6-hydroxybenzothiazole (Pittsburgh Compound-B (PIB) is the most specific and widely used amyloid imaging ligand. But due to the short half life of (11)C, longer lived (18)F-labeled derivatives offer logistic advantages and higher contrast images. In this work, three different [(18)F]fluoroethoxy-substituted benzothiazole derivatives ([(18)F]2-(4'-(methylamino)phenyl)-6-(2-fluoroethoxy)benzothiazole, [(18)F]2-((2'-(2-fluoroethoxy)-4'-amino)phenyl)benzothiazole and [(18)F]2-(3'-((2-fluoroethoxy)-4'-amino)phenyl)benzothiazole) were synthesized via [(18)F]fluoroethylation. The latter two derivatives with fluoroethoxy-substitution on the aromatic amino group showed very low binding affinity for amyloid aggregates. In contrast [(18)F]2-(4'-(methylamino)phenyl)-6-(2-fluoroethoxy)benzothiazole with [(18)F]fluoroethoxy-substitution in 6-position showed excellent amyloid imaging properties with respect to lipophilicity, brain entry and brain clearance in normal SCID mice, amyloid plaque binding affinity and specificity.

  10. The E1 copper binding domain of full-length amyloid precursor protein mitigates copper-induced growth inhibition in brain metastatic prostate cancer DU145 cells.

    Science.gov (United States)

    Gough, Mallory; Blanthorn-Hazell, Sophee; Delury, Craig; Parkin, Edward

    2014-10-31

    Copper plays an important role in the aetiology and growth of tumours and levels of the metal are increased in the serum and tumour tissue of patients affected by a range of cancers including prostate cancer (PCa). The molecular mechanisms that enable cancer cells to proliferate in the presence of elevated copper levels are, therefore, of key importance in our understanding of tumour growth progression. In the current study, we have examined the role played by the amyloid precursor protein (APP) in mitigating copper-induced growth inhibition of the PCa cell line, DU145. A range of APP molecular constructs were stably over-expressed in DU145 cells and their effects on cell proliferation in the presence of copper were monitored. Our results show that endogenous APP expression was induced by sub-toxic copper concentrations in DU145 cells and over-expression of the wild-type protein was able to mitigate copper-induced growth inhibition via a mechanism involving the cytosolic and E1 copper binding domains of the full-length protein. APP likely represents one of a range of copper binding proteins that PCa cells employ in order to ensure efficient proliferation despite elevated concentrations of the metal within the tumour microenvironment. Targeting the expression of such proteins may contribute to therapeutic strategies for the treatment of cancers.

  11. Towards a Pharmacophore for Amyloid

    Energy Technology Data Exchange (ETDEWEB)

    Landau, Meytal; Sawaya, Michael R.; Faull, Kym F.; Laganowsky, Arthur; Jiang, Lin; Sievers, Stuart A.; Liu, Jie; Barrio, Jorge R.; Eisenberg, David (UCLA)

    2011-09-16

    Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of {beta}-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine side chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases. The devastating and incurable dementia known as Alzheimer's disease affects the thinking, memory, and behavior of dozens of millions of people worldwide. Although amyloid fibers and oligomers of two proteins, tau and amyloid-{beta}, have been identified in association with this disease, the development of diagnostics and therapeutics has proceeded to date in a near vacuum of information about their structures. Here we report the first atomic structures of small molecules bound to amyloid. These are of the dye orange-G, the natural compound curcumin, and the Alzheimer's diagnostic compound DDNP bound to amyloid-like segments of tau and amyloid-{beta}. The structures reveal the molecular framework of small-molecule binding, within cylindrical cavities running along the {beta}-spines of the fibers. Negatively charged orange-G wedges into a specific binding site between two sheets of the fiber, combining apolar binding with electrostatic interactions, whereas uncharged compounds slide along the cavity. We observed that different amyloid polymorphs bind different small molecules, revealing that a

  12. Drug Development in Conformational Diseases: A Novel Family of Chemical Chaperones that Bind and Stabilise Several Polymorphic Amyloid Structures

    Science.gov (United States)

    Bencomo, Alberto; Lara-Martínez, Reyna; Rivera-Marrero, Suchitil; Domínguez, Guadalupe; Pérez-Perera, Rafaela; Jiménez-García, Luis Felipe; Altamirano-Bustamante, Nelly F.; Diaz-Delgado, Massiel; Vedrenne, Fernand; Rivillas-Acevedo, Lina; Pasten-Hidalgo, Karina; Segura-Valdez, María de Lourdes; Islas-Andrade, Sergio; Garrido-Magaña, Eulalia; Perera-Pintado, Alejandro; Prats-Capote, Anaís; Rodríguez-Tanty, Chryslaine; Altamirano-Bustamante, Myriam M.

    2015-01-01

    The increasing prevalence of conformational diseases, including Alzheimer's disease, type 2 Diabetes Mellitus and Cancer, poses a global challenge at many different levels. It has devastating effects on the sufferers as well as a tremendous economic impact on families and the health system. In this work, we apply a cross-functional approach that combines ideas, concepts and technologies from several disciplines in order to study, in silico and in vitro, the role of a novel chemical chaperones family (NCHCHF) in processes of protein aggregation in conformational diseases. Given that Serum Albumin (SA) is the most abundant protein in the blood of mammals, and Bovine Serum Albumin (BSA) is an off-the-shelf protein available in most labs around the world, we compared the ligandability of BSA:NCHCHF with the interaction sites in the Human Islet Amyloid Polypeptide (hIAPP):NCHCHF, and in the amyloid pharmacophore fragments (Aβ17–42 and Aβ16–21):NCHCHF. We posit that the merging of this interaction sites is a meta-structure of pharmacophore which allows the development of chaperones that can prevent protein aggregation at various states from: stabilizing the native state to destabilizing oligomeric state and protofilament. Furthermore to stabilize fibrillar structures, thus decreasing the amount of toxic oligomers in solution, as is the case with the NCHCHF. The paper demonstrates how a set of NCHCHF can be used for studying and potentially treating the various physiopathological stages of a conformational disease. For instance, when dealing with an acute phase of cytotoxicity, what is needed is the recruitment of cytotoxic oligomers, thus chaperone F, which accelerates fiber formation, would be very useful; whereas in a chronic stage it is better to have chaperones A, B, C, and D, which stabilize the native and fibril structures halting self-catalysis and the creation of cytotoxic oligomers as a consequence of fiber formation. Furthermore, all the chaperones are

  13. Drug Development in Conformational Diseases: A Novel Family of Chemical Chaperones that Bind and Stabilise Several Polymorphic Amyloid Structures.

    Directory of Open Access Journals (Sweden)

    Marquiza Sablón-Carrazana

    Full Text Available The increasing prevalence of conformational diseases, including Alzheimer's disease, type 2 Diabetes Mellitus and Cancer, poses a global challenge at many different levels. It has devastating effects on the sufferers as well as a tremendous economic impact on families and the health system. In this work, we apply a cross-functional approach that combines ideas, concepts and technologies from several disciplines in order to study, in silico and in vitro, the role of a novel chemical chaperones family (NCHCHF in processes of protein aggregation in conformational diseases. Given that Serum Albumin (SA is the most abundant protein in the blood of mammals, and Bovine Serum Albumin (BSA is an off-the-shelf protein available in most labs around the world, we compared the ligandability of BSA:NCHCHF with the interaction sites in the Human Islet Amyloid Polypeptide (hIAPP:NCHCHF, and in the amyloid pharmacophore fragments (Aβ17-42 and Aβ16-21:NCHCHF. We posit that the merging of this interaction sites is a meta-structure of pharmacophore which allows the development of chaperones that can prevent protein aggregation at various states from: stabilizing the native state to destabilizing oligomeric state and protofilament. Furthermore to stabilize fibrillar structures, thus decreasing the amount of toxic oligomers in solution, as is the case with the NCHCHF. The paper demonstrates how a set of NCHCHF can be used for studying and potentially treating the various physiopathological stages of a conformational disease. For instance, when dealing with an acute phase of cytotoxicity, what is needed is the recruitment of cytotoxic oligomers, thus chaperone F, which accelerates fiber formation, would be very useful; whereas in a chronic stage it is better to have chaperones A, B, C, and D, which stabilize the native and fibril structures halting self-catalysis and the creation of cytotoxic oligomers as a consequence of fiber formation. Furthermore, all the

  14. Basalt fiber insulating material with a mineral binding agent for industrial use

    Science.gov (United States)

    Drozdyuk, T.; Aizenshtadt, A.; Tutygin, A.; Frolova, M.

    2016-04-01

    The paper considers a possibility of using mining industry waste as a binding agent for heat insulating material on the basis of basalt fiber. The main objective of the research is to produce a heat-insulating material to be applied in machine building in high-temperature environments. After synthetic binder having been replaced by a mineral one, an environmentally sound thermal insulating material having desirable heat-protecting ability and not failing when exposed to high temperatures was obtained.

  15. The E1 copper binding domain of full-length amyloid precursor protein mitigates copper-induced growth inhibition in brain metastatic prostate cancer DU145 cells

    Energy Technology Data Exchange (ETDEWEB)

    Gough, Mallory, E-mail: m.gough1@lancaster.ac.uk; Blanthorn-Hazell, Sophee, E-mail: s.blanthorn-hazell@lancaster.ac.uk; Delury, Craig, E-mail: c.delury@lancaster.ac.uk; Parkin, Edward, E-mail: e.parkin@lancaster.ac.uk

    2014-10-31

    Highlights: • Copper levels are elevated in the tumour microenvironment. • APP mitigates copper-induced growth inhibition of DU145 prostate cancer (PCa) cells. • The APP intracellular domain is a prerequisite; soluble forms have no effect. • The E1 CuBD of APP is also a prerequisite. • APP copper binding potentially mitigates copper-induced PCa cell growth inhibition. - Abstract: Copper plays an important role in the aetiology and growth of tumours and levels of the metal are increased in the serum and tumour tissue of patients affected by a range of cancers including prostate cancer (PCa). The molecular mechanisms that enable cancer cells to proliferate in the presence of elevated copper levels are, therefore, of key importance in our understanding of tumour growth progression. In the current study, we have examined the role played by the amyloid precursor protein (APP) in mitigating copper-induced growth inhibition of the PCa cell line, DU145. A range of APP molecular constructs were stably over-expressed in DU145 cells and their effects on cell proliferation in the presence of copper were monitored. Our results show that endogenous APP expression was induced by sub-toxic copper concentrations in DU145 cells and over-expression of the wild-type protein was able to mitigate copper-induced growth inhibition via a mechanism involving the cytosolic and E1 copper binding domains of the full-length protein. APP likely represents one of a range of copper binding proteins that PCa cells employ in order to ensure efficient proliferation despite elevated concentrations of the metal within the tumour microenvironment. Targeting the expression of such proteins may contribute to therapeutic strategies for the treatment of cancers.

  16. New Insight in Copper-Ion Binding to Human Islet Amyloid: The Contribution of Metal-Complex Speciation To Reveal the Polypeptide Toxicity.

    Science.gov (United States)

    Magrì, Antonio; La Mendola, Diego; Nicoletti, Vincenzo Giuseppe; Pappalardo, Giuseppe; Rizzarelli, Enrico

    2016-09-05

    Type-2 diabetes (T2D) is considered to be a potential threat on a global level. Recently, T2D has been listed as a misfolding disease, such as Alzheimer's and Parkinson's diseases. Human islet amyloid polypeptide (hIAPP) is a molecule cosecreted in pancreatic β cells and represents the main constituent of an aggregated amyloid found in individuals affected by T2D. The trace-element serum level is significantly influenced during the development of diabetes. In particular, the dys-homeostasis of Cu(2+) ions may adversely affect the course of the disease. Conflicting results have been reported on the protective role played by complex species formed by Cu(2+) ions with hIAPP or its peptide fragments in vitro. The histidine (His) residue at position 18 represents the main binding site for the metal ion, but contrasting results have been reported on other residues involved in metal-ion coordination, in particular those toward the N or C terminus. Sequences that encompass regions 17-29 and 14-22 were used to discriminate between the two models of the hIAPP coordination mode. Due to poor solubility in water, poly(ethylene glycol) (PEG) derivatives were synthesized. A peptide fragment that encompasses the 17-29 region of rat amylin (rIAPP) in which the arginine residue at position 18 was substituted by a histidine residue was also obtained to assess that the PEG moiety does not alter the peptide secondary structure. The complex species formed by Cu(2+) ions with Ac-PEG-hIAPP(17-29)-NH2 , Ac-rIAPP(17-29)R18H-NH2 , and Ac-PEG-hIAPP(14-22)-NH2 were studied by using potentiometric titrations coupled with spectroscopic methods (UV/Vis, circular dichroism, and EPR). The combined thermodynamic and spectroscopic approach allowed us to demonstrate that hIAPP is able to bind Cu(2+) ions starting from the His18 imidazole nitrogen atom toward the N-terminus domain. The stability constants of copper(II) complexes with Ac-PEG-hIAPP(14-22)-NH2 were used to simulate the different

  17. The contrasting effect of macromolecular crowding on amyloid fibril formation.

    Directory of Open Access Journals (Sweden)

    Qian Ma

    Full Text Available BACKGROUND: Amyloid fibrils associated with neurodegenerative diseases can be considered biologically relevant failures of cellular quality control mechanisms. It is known that in vivo human Tau protein, human prion protein, and human copper, zinc superoxide dismutase (SOD1 have the tendency to form fibril deposits in a variety of tissues and they are associated with different neurodegenerative diseases, while rabbit prion protein and hen egg white lysozyme do not readily form fibrils and are unlikely to cause neurodegenerative diseases. In this study, we have investigated the contrasting effect of macromolecular crowding on fibril formation of different proteins. METHODOLOGY/PRINCIPAL FINDINGS: As revealed by assays based on thioflavin T binding and turbidity, human Tau fragments, when phosphorylated by glycogen synthase kinase-3β, do not form filaments in the absence of a crowding agent but do form fibrils in the presence of a crowding agent, and the presence of a strong crowding agent dramatically promotes amyloid fibril formation of human prion protein and its two pathogenic mutants E196K and D178N. Such an enhancing effect of macromolecular crowding on fibril formation is also observed for a pathological human SOD1 mutant A4V. On the other hand, rabbit prion protein and hen lysozyme do not form amyloid fibrils when a crowding agent at 300 g/l is used but do form fibrils in the absence of a crowding agent. Furthermore, aggregation of these two proteins is remarkably inhibited by Ficoll 70 and dextran 70 at 200 g/l. CONCLUSIONS/SIGNIFICANCE: We suggest that proteins associated with neurodegenerative diseases are more likely to form amyloid fibrils under crowded conditions than in dilute solutions. By contrast, some of the proteins that are not neurodegenerative disease-associated are unlikely to misfold in crowded physiological environments. A possible explanation for the contrasting effect of macromolecular crowding on these two sets of

  18. Noninvasive measurement of fecal calprotectin and serum amyloid A combined with intestinal fatty acid-binding protein in necrotizing enterocolitis.

    NARCIS (Netherlands)

    Reisinger, K.W.; Zee, D.C. van der; Brouwers, H.A.A.; Kramer, B.W.; Heurn, L.W.E. van; Buurman, W.A.; Derikx, J.P.

    2012-01-01

    BACKGROUND: Diagnosis of necrotizing enterocolitis (NEC), prevalent in premature infants, remains challenging. Enterocyte damage in NEC can be assessed by intestinal fatty acid-binding protein (I-FABP), with a sensitivity of 93% and a specificity of 90%. Numerous markers of inflammation are known, s

  19. Noninvasive measurement of fecal calprotectin and serum amyloid A combined with intestinal fatty acid-binding protein in necrotizing enterocolitis

    NARCIS (Netherlands)

    Reisinger, Kostan W.; Van der Zee, David C.; Brouwers, Hens A. A.; Kramer, Boris W.; van Heurn, L. W. Ernest; Buurman, Wim A.; Derikx, Joep P. M.

    2012-01-01

    Background: Diagnosis of necrotizing enterocolitis (NEC), prevalent in premature infants, remains challenging. Enterocyte damage in NEC can be assessed by intestinal fatty acid-binding protein (I-FABP), with a sensitivity of 93% and a specificity of 90%. Numerous markers of inflammation are known, s

  20. Zinc-induced dimerization of the amyloid-β metal-binding domain 1-16 is mediated by residues 11-14.

    Science.gov (United States)

    Kozin, Sergey A; Mezentsev, Yuri V; Kulikova, Alexandra A; Indeykina, Maria I; Golovin, Andrey V; Ivanov, Alexis S; Tsvetkov, Philipp O; Makarov, Alexander A

    2011-04-01

    Analysis of complex formation between amyloid-β fragments using surface plasmon resonance biosensing and electrospray mass spectrometry reveals that region 11-14 mediates zinc-induced dimerization of amyloid-β and may serve as a potential drug target for preventing development and progression of Alzheimer's disease.

  1. The Peptide Vaccine Combined with Prior Immunization of a Conventional Diphtheria-Tetanus Toxoid Vaccine Induced Amyloid β Binding Antibodies on Cynomolgus Monkeys and Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Akira Yano

    2015-01-01

    Full Text Available The reduction of brain amyloid beta (Aβ peptides by anti-Aβ antibodies is one of the possible therapies for Alzheimer’s disease. We previously reported that the Aβ peptide vaccine including the T-cell epitope of diphtheria-tetanus combined toxoid (DT induced anti-Aβ antibodies, and the prior immunization with conventional DT vaccine enhanced the immunogenicity of the peptide. Cynomolgus monkeys were given the peptide vaccine subcutaneously in combination with the prior DT vaccination. Vaccination with a similar regimen was also performed on guinea pigs. The peptide vaccine induced anti-Aβ antibodies in cynomolgus monkeys and guinea pigs without chemical adjuvants, and excessive immune responses were not observed. Those antibodies could preferentially recognize Aβ40, and Aβ42 compared to Aβ fibrils. The levels of serum anti-Aβ antibodies and plasma Aβ peptides increased in both animals and decreased the brain Aβ40 level of guinea pigs. The peptide vaccine could induce a similar binding profile of anti-Aβ antibodies in cynomolgus monkeys and guinea pigs. The peptide vaccination could be expected to reduce the brain Aβ peptides and their toxic effects via clearance of Aβ peptides by generated antibodies.

  2. Epitope structure and binding affinity of single chain llama anti-β-amyloid antibodies revealed by proteolytic excision affinity-mass spectrometry.

    Science.gov (United States)

    Paraschiv, Gabriela; Vincke, Cécile; Czaplewska, Paulina; Manea, Marilena; Muyldermans, Serge; Przybylski, Michael

    2013-01-01

    ß-Amyloid (Aß) immunotherapy has become a promising strategy for reducing the level of Aß in brain. New immunological approaches have been recently proposed for rapid, early diagnosis, and molecular treatment of neurodegenerative diseases related to Alzheimer's Disease (AD). The combination of proteolytic epitope excision and extraction and mass spectrometry using digestion with various proteases has been shown to be an efficient tool for the identification and molecular characterization of antigenic determinants. Here, we report the identification of the Aβ epitope recognized by the variable domain of single chain llama anti-Aβ-antibodies, termed Aβ-nanobodies, that have been discovered in the blood of camelids and found to be promising candidates for immunotherapy of AD. The epitope recognized by two Aβ-specific nanobodies was identified by proteolytic epitope extraction- and excision-mass spectrometry using a series of proteases (trypsin, chymotrypsin, GluC-protease, and LysC-protease). Matrix-assisted laser desorption ionization--mass spectrometric analysis of the affinity--elution fraction provided the epitope, Aβ(17-28), in the mid- to carboxy-terminal domain of Aβ, which has been shown to exert an Aß-fibril inhibiting effect. Affinity studies of the synthetic epitope confirmed that the Aβ(17-28) peptide is the minimal fragment that binds to the nanobodies. The interactions between the nanobodies and full length Aβ(1-40) or Aβ-peptides containing or lacking the epitope sequence were further characterized by enzyme linked immunosorbent assay and bioaffinity analysis. Determinations of binding affinities between the Aβ-nanobodies and Aβ(1-40) and the Aβ(17-28) epitope provided K(D) values of approximately 150 and 700 nmol, respectively. Thus, the knowledge of the epitope may be highly useful for future studies of Aβ-aggregation (oligomerization and fibril formation) and for designing new aggregation inhibitors.

  3. The CCAAT/enhancer binding protein (C/EBP δ is differently regulated by fibrillar and oligomeric forms of the Alzheimer amyloid-β peptide

    Directory of Open Access Journals (Sweden)

    Nilsson Lars NG

    2011-04-01

    Full Text Available Abstract Background The transcription factors CCAAT/enhancer binding proteins (C/EBP α, β and δ have been shown to be expressed in brain and to be involved in regulation of inflammatory genes in concert with nuclear factor κB (NF-κB. In general, C/EBPα is down-regulated, whereas both C/EBPβ and δ are up-regulated in response to inflammatory stimuli. In Alzheimer's disease (AD one of the hallmarks is chronic neuroinflammation mediated by astrocytes and microglial cells, most likely induced by the formation of amyloid-β (Aβ deposits. The inflammatory response in AD has been ascribed both beneficial and detrimental roles. It is therefore important to delineate the inflammatory mediators and signaling pathways affected by Aβ deposits with the aim of defining new therapeutic targets. Methods Here we have investigated the effects of Aβ on expression of C/EBP family members with a focus on C/EBPδ in rat primary astro-microglial cultures and in a transgenic mouse model with high levels of fibrillar Aβ deposits (tg-ArcSwe by western blot analysis. Effects on DNA binding activity were analyzed by electrophoretic mobility shift assay. Cross-talk between C/EBPδ and NF-κB was investigated by analyzing binding to a κB site using a biotin streptavidin-agarose pull-down assay. Results We show that exposure to fibril-enriched, but not oligomer-enriched, preparations of Aβ inhibit up-regulation of C/EBPδ expression in interleukin-1β-activated glial cultures. Furthermore, we observed that, in aged transgenic mice, C/EBPα was significantly down-regulated and C/EBPβ was significantly up-regulated. C/EBPδ, on the other hand, was selectively down-regulated in the forebrain, a part of the brain showing high levels of fibrillar Aβ deposits. In contrast, no difference in expression levels of C/EBPδ between wild type and transgenic mice was detected in the relatively spared hindbrain. Finally, we show that interleukin-1β-induced C/EBPδ DNA

  4. Whole-body biodistribution and brain PET imaging with [{sup 18}F]AV-45, a novel amyloid imaging agent - a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Lin, K.-J. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taiwan (China); Hsu, W.-C. [Department of Neurology, Chang Gung Memorial Hospital, Taiwan (China); Hsiao, I.-T.; Wey, S.-P. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taiwan (China); Jin, L.-W. [M.I.N.D. Institute and Department of Pathology, University of California, Davis, CA (United States); Skovronsky, Daniel [Avid Radiopharmaceuticals, Inc., Philadelphia, PA (United States); Wai, Y.-Y. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Radiology, Chang Gung Memorial Hospital, Taiwan (China); Chang, H.-P.; Lo, C.-W.; Yao, C.H.; Yen, T.-C. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Kung, M.-P. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Radiology, University of Pennsylvania, Philadelphia, PA (United States)

    2010-05-15

    Purpose: The compound (E)-4-(2-(6-(2-(2-(2-{sup 18}F-fluoroethoxy)ethoxy)ethoxy) pyridin-3-yl)vinyl)-N-methylbenzenamine ([{sup 18}F]AV-45) is a novel radiopharmaceutical capable of selectively binding to {beta}-amyloid (A{beta}) plaques. This pilot study reports the safety, biodistribution, and radiation dosimetry of [{sup 18}F]AV-45 in human subjects. Methods: In vitro autoradiography and fluorescent staining of postmortem brain tissue from patients with Alzheimer's disease (AD) and cognitively healthy subjects were performed to assess the specificity of the tracer. Biodistribution was assessed in three healthy elderly subjects (mean age: 60.0{+-}5.2 years) who underwent 3-h whole-body positron emission tomography (PET)/computed tomographic (CT) scans after a bolus injection of 381.9{+-}13.9 MBq of [{sup 18}F]AV-45. Another six subjects (three AD patients and three healthy controls, mean age: 67.7{+-}13.6 years) underwent brain PET studies. Source organs were delineated on PET/CT. All subjects underwent magnetic resonance imaging (MRI) for obtaining structural information. Results: In vitro autoradiography revealed exquisitely high specific binding of [{sup 18}F]AV-45 to postmortem AD brain sections, but not to the control sections. There were no serious adverse events throughout the study period. The peak uptake of the tracer in the brain was 5.12{+-}0.41% of the injected dose. The highest absorbed organ dose was to the gallbladder wall (184.7{+-}78.6 {mu}Gy/MBq, 4.8 h voiding interval). The effective dose equivalent and effective dose values for [{sup 18}F]AV-45 were 33.8{+-}3.4 {mu}Sv/MBq and 19.3{+-}1.3 {mu}Sv/MBq, respectively. Conclusion: [{sup 18}F]AV-45 binds specifically to A{beta} in vitro, and is a safe PET tracer for studying A{beta} distribution in human brain. The dosimetry is suitable for clinical and research application.

  5. Designed amyloid fibers as materials for selective carbon dioxide capture.

    Science.gov (United States)

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M; Eisenberg, David S

    2014-01-07

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture.

  6. Magnetite nanoparticle interactions with insulin amyloid fibrils

    Science.gov (United States)

    Chen, Yun-Wen; Chang, Chiung-Wen; Hung, Huey-Shan; Kung, Mei-Lang; Yeh, Bi-Wen; Hsieh, Shuchen

    2016-10-01

    Accumulation of amyloid fibrils is one of the likely key factors leading to the development of Alzheimer’s disease and other amyloidosis associated diseases. Magnetic nanoparticles (NPs) have been developed as promising medical materials for many medical applications. In this study, we have explored the effects of Fe3O4 NPs on the fibrillogenesis process of insulin fibrils. When Fe3O4 NPs were co-incubated with insulin, Fe3O4 NPs had no effect on the structural transformation into amyloid-like fibrils but had higher affinity toward insulin fibrils. We demonstrated that the zeta potential of insulin fibrils and Fe3O4 NPs were both positive, suggesting the binding forces between Fe3O4 NPs and insulin fibrils were van der Waals forces but not surface charge. Moreover, a different amount of Fe3O4 NPs added had no effect on secondary structural changes of insulin fibrils. These results propose the potential use of Fe3O4 NPs as therapeutic agents against diseases related to protein aggregation or contrast agents for magnetic resonance imaging.

  7. Synthesis and evaluation of {sup 18}F-fluoroethylated benzothiazole derivatives for in vivo imaging of amyloid plaques in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Neumaier, B. [Department of Nuclear Medicine, University of Ulm, Ulm (Germany); Max Planck Institute for Neurological Research, Klaus-Joachim-Zuelch Laboratories of the Max Planck Society and the Faculty of Medicine of the University of Cologne, Cologne (Germany)], E-mail: bernd.neumaier@nf.mpg.de; Deisenhofer, S. [Department of Nuclear Medicine, University of Ulm, Ulm (Germany); Sommer, C. [Department of Neuropathology, University of Mainz (Germany); Solbach, C.; Reske, S.N. [Department of Nuclear Medicine, University of Ulm, Ulm (Germany); Mottaghy, F. [Department of Nuclear Medicine, University of Ulm, Ulm (Germany); Department of Nuclear Medicine, RWTH Aachen, Aachen (Germany)

    2010-06-15

    Amyloid aggregates play a major role in the development of Alzheimer's disease. Targeting these aggregates by PET probes enables non-invasively the detection and quantification of amyloid deposit distribution in human brains. Based on benzothiazole core structure a series of amyloid imaging agents were developed. Currently [{sup 11}C]2-(4'-(methylamino)phenyl)-6-hydroxybenzothiazole (Pittsburgh Compound-B (PIB) is the most specific and widely used amyloid imaging ligand. But due to the short half life of {sup 11}C, longer lived {sup 18}F-labeled derivatives offer logistic advantages and higher contrast images. In this work, three different [{sup 18}F]fluoroethoxy-substituted benzothiazole derivatives ([{sup 18}F]2-(4'-(methylamino)phenyl)-6-(2-fluoroethoxy)benzothiazole, [{sup 18}F]2-((2'-(2-fluoroethoxy)-4'-amino)phenyl)benzothiazole and [{sup 18}F]2-(3'-((2-fluoroethoxy)-4'-amino)phenyl)benzothiazole) were synthesized via [{sup 18}F]fluoroethylation. The latter two derivatives with fluoroethoxy-substitution on the aromatic amino group showed very low binding affinity for amyloid aggregates. In contrast [{sup 18}F]2-(4'-(methylamino)phenyl)-6-(2-fluoroethoxy)benzothiazole with [{sup 18}F]fluoroethoxy-substitution in 6-position showed excellent amyloid imaging properties with respect to lipophilicity, brain entry and brain clearance in normal SCID mice, amyloid plaque binding affinity and specificity.

  8. Covalent binding of the organophosphorus agent FP-biotin to tyrosine in eight proteins that have no active site serine

    OpenAIRE

    Grigoryan, Hasmik; Li, Bin; Anderson, Erica K.; Xue, Weihua; Nachon, Florian; Lockridge, Oksana; Schopfer, Lawrence M.

    2009-01-01

    Organophosphorus esters (OP) are known to bind covalently to the active site serine of enzymes in the serine hydrolase family. It was a surprise to find that proteins with no active site serine are also covalently modified by OP. The binding site in albumin, transferrin, and tubulin was identified as tyrosine. The goal of the present work was to determine whether binding to tyrosine is a general phenomenon. Fourteen proteins were treated with a biotin-tagged organophosphorus agent called FP-b...

  9. Antiviral activity of carbohydrate-binding agents against Nidovirales in cell culture.

    Science.gov (United States)

    van der Meer, F J U M; de Haan, C A M; Schuurman, N M P; Haijema, B J; Peumans, W J; Van Damme, E J M; Delputte, P L; Balzarini, J; Egberink, H F

    2007-10-01

    Coronaviruses are important human and animal pathogens, the relevance of which increased due to the emergence of new human coronaviruses like SARS-CoV, HKU1 and NL63. Together with toroviruses, arteriviruses, and roniviruses the coronaviruses belong to the order Nidovirales. So far antivirals are hardly available to combat infections with viruses of this order. Therefore, various antiviral strategies to counter nidoviral infections are under evaluation. Lectins, which bind to N-linked oligosaccharide elements of enveloped viruses, can be considered as a conceptionally new class of virus inhibitors. These agents were recently evaluated for their antiviral activity towards a variety of enveloped viruses and were shown in most cases to inhibit virus infection at low concentrations. However, limited knowledge is available for their efficacy towards nidoviruses. In this article the application of the plant lectins Hippeastrum hybrid agglutinin (HHA), Galanthus nivalis agglutinin (GNA), Cymbidium sp. agglutinin (CA) and Urtica dioica agglutinin (UDA) as well as non-plant derived pradimicin-A (PRM-A) and cyanovirin-N (CV-N) as potential antiviral agents was evaluated. Three antiviral tests were compared based on different evaluation principles: cell viability (MTT-based colorimetric assay), number of infected cells (immunoperoxidase assay) and amount of viral protein expression (luciferase-based assay). The presence of carbohydrate-binding agents strongly inhibited coronaviruses (transmissible gastroenteritis virus, infectious bronchitis virus, feline coronaviruses serotypes I and II, mouse hepatitis virus), arteriviruses (equine arteritis virus and porcine respiratory and reproductive syndrome virus) and torovirus (equine Berne virus). Remarkably, serotype II feline coronaviruses and arteriviruses were not inhibited by PRM-A, in contrast to the other viruses tested.

  10. Rational design of biaryl pharmacophore inserted noscapine derivatives as potent tubulin binding anticancer agents

    Science.gov (United States)

    Santoshi, Seneha; Manchukonda, Naresh Kumar; Suri, Charu; Sharma, Manya; Sridhar, Balasubramanian; Joseph, Silja; Lopus, Manu; Kantevari, Srinivas; Baitharu, Iswar; Naik, Pradeep Kumar

    2015-03-01

    We have strategically designed a series of noscapine derivatives by inserting biaryl pharmacophore (a major structural constituent of many of the microtubule-targeting natural anticancer compounds) onto the scaffold structure of noscapine. Molecular interaction of these derivatives with α,β-tubulin heterodimer was investigated by molecular docking, molecular dynamics simulation, and binding free energy calculation. The predictive binding affinity indicates that the newly designed noscapinoids bind to tubulin with a greater affinity. The predictive binding free energy (ΔGbind, pred) of these derivatives (ranging from -5.568 to -5.970 kcal/mol) based on linear interaction energy (LIE) method with a surface generalized Born (SGB) continuum solvation model showed improved binding affinity with tubulin compared to the lead compound, natural α-noscapine (-5.505 kcal/mol). Guided by the computational findings, these new biaryl type α-noscapine congeners were synthesized from 9-bromo-α-noscapine using optimized Suzuki reaction conditions for further experimental evaluation. The derivatives showed improved inhibition of the proliferation of human breast cancer cells (MCF-7), human cervical cancer cells (HeLa) and human lung adenocarcinoma cells (A549), compared to natural noscapine. The cell cycle analysis in MCF-7 further revealed that these compounds alter the cell cycle profile and cause mitotic arrest at G2/M phase more strongly than noscapine. Tubulin binding assay revealed higher binding affinity to tubulin, as suggested by dissociation constant (Kd) of 126 ± 5.0 µM for 5a, 107 ± 5.0 µM for 5c, 70 ± 4.0 µM for 5d, and 68 ± 6.0 µM for 5e compared to noscapine (Kd of 152 ± 1.0 µM). In fact, the experimentally determined value of ΔGbind, expt (calculated from the Kd value) are consistent with the predicted value of ΔGbind, pred calculated based on LIE-SGB. Based on these results, one of the derivative 5e of this series was used for further toxicological

  11. Computational characterization of how the VX nerve agent binds human serum paraoxonase 1.

    Science.gov (United States)

    Fairchild, Steven Z; Peterson, Matthew W; Hamza, Adel; Zhan, Chang-Guo; Cerasoli, Douglas M; Chang, Wenling E

    2011-01-01

    Human serum paraoxonase 1 (HuPON1) is an enzyme that can hydrolyze various chemical warfare nerve agents including VX. A previous study has suggested that increasing HuPON1's VX hydrolysis activity one to two orders of magnitude would make the enzyme an effective countermeasure for in vivo use against VX. This study helps facilitate further engineering of HuPON1 for enhanced VX-hydrolase activity by computationally characterizing HuPON1's tertiary structure and how HuPON1 binds VX. HuPON1's structure is first predicted through two homology modeling procedures. Docking is then performed using four separate methods, and the stability of each bound conformation is analyzed through molecular dynamics and solvated interaction energy calculations. The results show that VX's lone oxygen atom has a strong preference for forming a direct electrostatic interaction with HuPON1's active site calcium ion. Various HuPON1 residues are also detected that are in close proximity to VX and are therefore potential targets for future mutagenesis studies. These include E53, H115, N168, F222, N224, L240, D269, I291, F292, and V346. Additionally, D183 was found to have a predicted pKa near physiological pH. Given D183's location in HuPON1's active site, this residue could potentially act as a proton donor or accepter during hydrolysis. The results from the binding simulations also indicate that steered molecular dynamics can potentially be used to obtain accurate binding predictions even when starting with a closed conformation of a protein's binding or active site.

  12. Janus faces of amyloid proteins in neuroinflammation.

    Science.gov (United States)

    Steinman, Lawrence; Rothbard, Jonathan B; Kurnellas, Michael P

    2014-07-01

    Amyloid forming molecules are generally considered harmful. In Alzheimer's Disease two amyloid molecules Aβ A4 and tau vie for consideration as the main pathogenic culprit. But molecules obey the laws of chemistry and defy the way we categorize them as humans with our well-known proclivities to bias in our reasoning. We have been exploring the brains of multiple sclerosis patients to identify molecules that are associated with protection from inflammation and degeneration. In 2001 we noted that aB crystallin (cryab) was the most abundant transcript found in MS lesions, but not in healthy brains. Cryab can reverse paralysis and attenuate inflammation in several models of inflammation including experimental autoimmune encephalomyelitis (EAE), and various models of ischemia. Cryab is an amyloid forming molecule. We have identified a core structure common to many amyloids including amyloid protein Aβ A4, tau, amylin, prion protein, serum amyloid protein P, and cryab. The core hexapeptide structure is highly immune suppressive and can reverse paralysis in EAE when administered systemically. Administration of this amyloid forming hexapeptide quickly lowers inflammatory cytokines in plasma like IL-6 and IL-2. The hexapeptide bind a set of proinflammatory mediators in plasma, including acute phase reactants and complement components. The beneficial properties of amyloid forming hexapeptides provide a potential new therapeutic direction. These experiments indicate that amyloid forming molecules have Janus faces, providing unexpected benefit for neuroinflammatory conditions.

  13. Activation of the Wnt/β-catenin pathway represses the transcription of the β-amyloid precursor protein cleaving enzyme (BACE1) via binding of T-cell factor-4 to BACE1 promoter.

    Science.gov (United States)

    Parr, Callum; Mirzaei, Nazanin; Christian, Mark; Sastre, Magdalena

    2015-02-01

    Alterations in the Wnt signaling pathway have been implicated in Alzheimer's disease; however, its role in the processing of the amyloid precursor protein remains unknown. In this study, activation of the Wnt pathway by overexpression of the agonist Wnt3a or β-catenin or by inhibition of glycogen kinase synthase-3 in N2a cells resulted in a reduction in Aβ levels and in the activity and expression of BACE1 (β-APP cleaving enzyme). Conversely, inhibition of the pathway by transfection of the antagonists secreted frizzled receptor protein-1 or dickkopf-1 produced the opposite effects. Chromatin immunoprecipitation analysis demonstrated that β-catenin binds specifically to regions within the promoter of BACE1 containing putative T-cell factor/lymphoid enhancer binding factor-1 (TCF/LEF) motifs, consistent with canonical Wnt target regulation. Furthermore, cells transfected with β-catenin mutants incapable of binding to TCF/LEF increased BACE1 gene promoter activity. Interestingly, TCF4 knockdown reversed the effects of Wnt3a activation on BACE1 transcription. We found that TCF4 binds to the same region on BACE1 promoter following Wnt3a stimulation, indicating that TCF4 functions as a transcriptional repressor of BACE1 gene. In conclusion, Wnt/β-catenin stimulation may repress BACE1 transcription via binding of TCF4 to BACE1 gene, and therefore, activation of the Wnt pathway may hold the key to new treatments of Alzheimer disease.-Parr, C., Mirzaei, N., Christian, M., and Sastre, M. Activation of the Wnt/β-catenin pathway represses the transcription of the β-amyloid precursor protein cleaving enzyme (BACE1) via binding of T-cell factor-4 to BACE1 promoter.

  14. Triazolopyridyl ketones as a novel class of antileishmanial agents. DNA binding and BSA interaction.

    Science.gov (United States)

    Adam, Rosa; Bilbao-Ramos, Pablo; López-Molina, Sonia; Abarca, Belén; Ballesteros, Rafael; González-Rosende, M Eugenia; Dea-Ayuela, M Auxiliadora; Alzuet-Piña, Gloria

    2014-08-01

    A new series of triazolopyridyl pyridyl ketones has been synthetized by regioselective lithiation of the corresponding [1,2,3]triazolo[1,5-a]pyridine at 7 position followed by reaction with different electrophiles. The in vitro antileishmanial activity of these compounds was evaluated against Leishmaniainfantum, Leishmaniabraziliensis, Leishmaniaguyanensis and Leishmaniaamazonensis. Compounds 6 and 7 were found to be the most active leishmanicidal agents. Both of them showed activities at micromolar concentration against cultured promastigotes of Leishmania spp. (IC₅₀=99.8-26.8 μM), without cytotoxicity on J774 macrophage cells. These two compounds were also tested in vivo in a murine model of acute infection by L. infantum. The triazolopyridine derivative 6 was effective against both spleen and liver parasites forms, while 7 was inactive against liver parasites. Mechanistic aspects of the antileishmanial activity were investigated by means of DNA binding studies (UV-titration and viscosimetry). Results have revealed that these active ligands are able to interact strongly with DNA [Kb=1.14 × 10(5)M(-1) (6) and 3.26 × 10(5)M(-1) (7)]. Moreover, a DNA groove binding has been proposed for both 6 and 7. To provide more insight on the mode of action of compounds 6 and 7 under biological conditions, their interaction with bovine serum albumin (BSA) was monitored by fluorescence titrations and UV-visible spectroscopy. The quenching constants and binding parameters were determined. Triazolopyridine ketones 6 and 7 have exhibited significant affinity towards BSA [Kb=2.5 × 10(4)M(-1) (6) and 1.9 × 10(4)M(-1) (7)]. Finally, to identify the binding location of compounds 6 and 7 on the BSA, competitive binding experiments were carried out, using warfarin, a characteristic marker for site I, and ibuprofen as one for site II. Results derived from these studies have indicated that both compounds interact at BSA site I and, to a lesser extent, at site II.

  15. Serum amyloid A, protein Z, and C4b-binding protein β chain as new potential biomarkers for pulmonary tuberculosis

    Science.gov (United States)

    Jiang, Ting-Ting; Shi, Li-Ying; Wei, Li-Liang; Li, Xiang; Yang, Su; Wang, Chong; Liu, Chang-Ming; Chen, Zhong-Liang; Tu, Hui-Hui; Li, Zhong-Jie; Li, Ji-Cheng

    2017-01-01

    The aim of this study was to discover novel biomarkers for pulmonary tuberculosis (TB). Differentially expressed proteins in the serum of patients with TB were screened and identified by iTRAQ-two dimensional liquid chromatography tandem mass spectrometry analysis. A total of 79 abnormal proteins were discovered in patients with TB compared with healthy controls. Of these, significant differences were observed in 47 abnormally expressed proteins between patients with TB or pneumonia and chronic obstructive pulmonary disease (COPD). Patients with TB (n = 136) exhibited significantly higher levels of serum amyloid A (SAA), vitamin K-dependent protein Z (PROZ), and C4b-binding protein β chain (C4BPB) than those in healthy controls (n = 66) (P<0.0001 for each) albeit significantly lower levels compared with those in patients with pneumonia (n = 72) (P<0.0001 for each) or COPD (n = 72) (P<0.0001, P<0.0001, P = 0.0016, respectively). After 6 months of treatment, the levels of SAA and PROZ were significantly increased (P = 0.022, P<0.0001, respectively), whereas the level of C4BPB was significantly decreased (P = 0.0038) in treated TB cases (n = 72). Clinical analysis showed that there were significant differences in blood clotting and lipid indices in patients with TB compared with healthy controls, patients with pneumonia or COPD, and treated TB cases (P<0.05). Correlation analysis revealed significant correlations between PROZ and INR (rs = 0.414, P = 0.044), and between C4BPB and FIB (rs = 0.617, P = 0.0002) in patients with TB. Receiver operating characteristic curve analysis revealed that the area under the curve value of the diagnostic model combining SAA, PROZ, and C4BPB to discriminate the TB group from the healthy control, pneumonia, COPD, and cured TB groups was 0.972, 0.928, 0.957, and 0.969, respectively. Together, these results suggested that SAA, PROZ, and C4BPB may serve as new potential biomarkers for TB. Our study may thus provide experimental data for

  16. Amyloid Deposition and Cognition in Older Adults: The Effects of Premorbid Intellect

    Science.gov (United States)

    Duff, Kevin; Foster, Norman L.; Dennett, Kathryn; Hammers, Dustin B.; Zollinger, Lauren V.; Christian, Paul E.; Butterfield, Regan I.; Beardmore, Britney E.; Wang, Angela Y.; Morton, Kathryn A.; Hoffman, John M.

    2013-01-01

    Although amyloid deposition remains a marker of the development of Alzheimer's disease, results linking amyloid and cognition have been equivocal. Twenty-five community-dwelling non-demented older adults were examined with 18F-flutemetamol, an amyloid imaging agent, and a cognitive battery, including an estimate of premorbid intellect and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). In the first model, 18F-flutemetamol uptake significantly correlated with the Delayed Memory Index of the RBANS (r = −.51, p = .02) and premorbid intellect (r = .43, p = .03). In the second model, the relationship between 18F-flutemetamol and cognition was notably stronger when controlling for premorbid intellect (e.g., three of the five RBANS Indexes and its Total score significantly correlated with 18F-flutemetamol, r's = −.41 to −.58). Associations were found between amyloid-binding 18F-flutemetamol and cognitive functioning in non-demented older adults. These associations were greatest with delayed memory and stronger when premorbid intellect was considered, suggesting that cognitive reserve partly compensates for the symptomatic expression of amyloid pathology in community-dwelling elderly. PMID:23817438

  17. Preclinical Validation of the Heparin-Reactive Peptide p5+14 as a Molecular Imaging Agent for Visceral Amyloidosis

    Science.gov (United States)

    Wall, Jonathan S.; Martin, Emily B.; Richey, Tina; Stuckey, Alan C.; Macy, Sallie; Wooliver, Craig; Williams, Angela; Foster, James S.; McWilliams-Koeppen, Penney; Uberbacher, Ed; Cheng, Xiaolin; Kennel, Stephen J.

    2015-01-01

    Amyloid is a complex pathologic matrix comprised principally of paracrystalline protein fibrils and heparan sulfate proteoglycans. Systemic amyloid diseases are rare, thus, routine diagnosis is often challenging. The glycosaminoglycans ubiquitously present in amyloid deposits are biochemically and electrochemically distinct from those found in the healthy tissues due to the high degree of sulfation. We have exploited this unique property and evaluated heparin-reactive peptides, such as p5+14, as novel agents for specifically targeting and imaging amyloid. Herein, we demonstrate that radiolabeled p5+14 effectively bound murine AA amyloid in vivo by using molecular imaging. Biotinylated peptide also reacted with the major forms of human amyloid in tissue sections as evidenced immunohistochemically. Furthermore, we have demonstrated that the peptide also binds synthetic amyloid fibrils that lack glycosaminoglycans implying that the dense anionic motif present on heparin is mimicked by the amyloid protein fibril itself. These biochemical and functional data support the translation of radiolabeled peptide p5+14 for the clinical imaging of amyloid in patients. PMID:25923515

  18. Preclinical Validation of the Heparin-Reactive Peptide p5+14 as a Molecular Imaging Agent for Visceral Amyloidosis

    Directory of Open Access Journals (Sweden)

    Jonathan S. Wall

    2015-04-01

    Full Text Available Amyloid is a complex pathologic matrix comprised principally of paracrystalline protein fibrils and heparan sulfate proteoglycans. Systemic amyloid diseases are rare, thus, routine diagnosis is often challenging. The glycosaminoglycans ubiquitously present in amyloid deposits are biochemically and electrochemically distinct from those found in the healthy tissues due to the high degree of sulfation. We have exploited this unique property and evaluated heparin-reactive peptides, such as p5+14, as novel agents for specifically targeting and imaging amyloid. Herein, we demonstrate that radiolabeled p5+14 effectively bound murine AA amyloid in vivo by using molecular imaging. Biotinylated peptide also reacted with the major forms of human amyloid in tissue sections as evidenced immunohistochemically. Furthermore, we have demonstrated that the peptide also binds synthetic amyloid fibrils that lack glycosaminoglycans implying that the dense anionic motif present on heparin is mimicked by the amyloid protein fibril itself. These biochemical and functional data support the translation of radiolabeled peptide p5+14 for the clinical imaging of amyloid in patients.

  19. Computer simulation study of the binding of an antiviral agent to a sensitive and a resistant human rhinovirus

    Science.gov (United States)

    Lybrand, Terry P.; McCammon, J. Andrew

    1989-01-01

    Molecular dynamics simulations have been used to study the free energy of binding of an antiviral agent to the human rhinovirus HRV-14 and to a mutant in which a valine residue in the antiviral binding pocket is replaced by leucine. The simulations predict that the antiviral should bind to the two viruses with similar affinity, in apparent disagreement with experimental results. Possible origins of this discrepancy are outlined. Of particular importance is the apparent need for methods to systematically sample all significant conformations of the leucine side chain.

  20. AL amyloid imaging and therapy with a monoclonal antibody to a cryptic epitope on amyloid fibrils.

    Directory of Open Access Journals (Sweden)

    Jonathan S Wall

    Full Text Available The monoclonal antibody 2A4 binds an epitope derived from a cleavage site of serum amyloid protein A (sAA containing a -Glu-Asp- amino acid pairing. In addition to its reactivity with sAA amyloid deposits, the antibody was also found to bind amyloid fibrils composed of immunoglobulin light chains. The antibody binds to synthetic fibrils and human light chain (AL amyloid extracts with high affinity even in the presence of soluble light chain proteins. Immunohistochemistry with biotinylated 2A4 demonstrated positive reaction with ALκ and ALλ human amyloid deposits in various organs. Surface plasmon resonance analyses using synthetic AL fibrils as a substrate revealed that 2A4 bound with a K(D of ∼10 nM. Binding was inhibited in the presence of the -Glu-Asp- containing immunogen peptide. Radiolabeled 2A4 specifically localized with human AL amyloid extracts implanted in mice (amyloidomas as evidenced by single photon emission (SPECT imaging. Furthermore, co-localization of the radiolabeled mAb with amyloid was shown in biodistribution and micro-autoradiography studies. Treatment with 2A4 expedited regression of ALκ amyloidomas in mice, likely mediated by the action of macrophages and neutrophils, relative to animals that received a control antibody. These data indicate that the 2A4 mAb might be of interest for potential imaging and immunotherapy in patients with AL amyloidosis.

  1. Quantitative ultrasound molecular imaging by modeling the binding kinetics of targeted contrast agent

    Science.gov (United States)

    Turco, Simona; Tardy, Isabelle; Frinking, Peter; Wijkstra, Hessel; Mischi, Massimo

    2017-03-01

    Ultrasound molecular imaging (USMI) is an emerging technique to monitor diseases at the molecular level by the use of novel targeted ultrasound contrast agents (tUCA). These consist of microbubbles functionalized with targeting ligands with high-affinity for molecular markers of specific disease processes, such as cancer-related angiogenesis. Among the molecular markers of angiogenesis, the vascular endothelial growth factor receptor 2 (VEGFR2) is recognized to play a major role. In response, the clinical-grade tUCA BR55 was recently developed, consisting of VEGFR2-targeting microbubbles which can flow through the entire circulation and accumulate where VEGFR2 is over-expressed, thus causing selective enhancement in areas of active angiogenesis. Discrimination between bound and free microbubbles is crucial to assess cancer angiogenesis. Currently, this is done non-quantitatively by looking at the late enhancement, about 10 min after injection, or by calculation of the differential targeted enhancement, requiring the application of a high-pressure ultrasound (US) burst to destroy all the microbubbles in the acoustic field and isolate the signal coming only from bound microbubbles. In this work, we propose a novel method based on mathematical modeling of the binding kinetics during the tUCA first pass, thus reducing the acquisition time and with no need for a destructive US burst. Fitting time-intensity curves measured with USMI by the proposed model enables the assessment of cancer angiogenesis at both the vascular and molecular levels. This is achieved by estimation of quantitative parameters related to the microvascular architecture and microbubble binding. The proposed method was tested in 11 prostate-tumor bearing rats by performing USMI after injection of BR55, and showed good agreement with current USMI methods. The novel information provided by the proposed method, possibly combined with the current non-quantitative methods, may bring deeper insight into

  2. Amyloid Imaging in Aging and Dementia: Testing the Amyloid Hypothesis In Vivo

    Directory of Open Access Journals (Sweden)

    G. D. Rabinovici

    2009-01-01

    Full Text Available Amyloid imaging represents a major advance in neuroscience, enabling the detection and quantification of pathologic protein aggregations in the brain. In this review we survey current amyloid imaging techniques, focusing on positron emission tomography (PET with ^{11}carbon-labelled Pittsburgh Compound-B (11C-PIB, the most extensively studied and best validated tracer. PIB binds specifically to fibrillar beta-amyloid (Aβ deposits, and is a sensitive marker for Aβ pathology in cognitively normal older individuals and patients with mild cognitive impairment (MCI and Alzheimer’s disease (AD. PIB-PET provides us with a powerful tool to examine in vivo the relationship between amyloid deposition, clinical symptoms, and structural and functional brain changes in the continuum between normal aging and AD. Amyloid imaging studies support a model in which amyloid deposition is an early event on the path to dementia, beginning insidiously in cognitively normal individuals, and accompanied by subtle cognitive decline and functional and structural brain changes suggestive of incipient AD. As patients progress to dementia, clinical decline and neurodegeneration accelerate and proceed independently of amyloid accumulation. In the future, amyloid imaging is likely to supplement clinical evaluation in selecting patients for anti-amyloid therapies, while MRI and FDG-PET may be more appropriate markers of clinical progression.

  3. The new platinum-based anticancer agent LA-12 induces retinol binding protein 4 in vivo

    Directory of Open Access Journals (Sweden)

    Bouchal Pavel

    2011-10-01

    Full Text Available Abstract Background The initial pharmacokinetic study of a new anticancer agent (OC-6-43-bis(acetato(1-adamantylamineamminedichloroplatinum (IV (LA-12 was complemented by proteomic screening of rat plasma. The objective of the study was to identify new LA-12 target proteins that serve as markers of LA-12 treatment, response and therapy monitoring. Methods Proteomic profiles were measured by surface-enhanced laser desorption-ionization time-of-flight mass spectrometry (SELDI-TOF MS in 72 samples of rat plasma randomized according to LA-12 dose and time from administration. Correlation of 92 peak clusters with platinum concentration was evaluated using Spearman correlation analysis. Results We identified Retinol-binding protein 4 (RBP4 whose level correlated with LA-12 level in treated rats. Similar results were observed in randomly selected patients involved in Phase I clinical trials. Conclusions RBP4 induction is in agreement with known RBP4 regulation by amantadine and cisplatin. Since retinol metabolism is disrupted in many cancers and inversely associates with malignancy, these data identify a potential novel mechanism for the action of LA-12 and other similar anti-cancer drugs.

  4. Binding of β-Amyloid (1–42) Peptide to Negatively Charged Phospholipid Membranes in the Liquid-Ordered State: Modeling and Experimental Studies

    OpenAIRE

    Ahyayauch, Hasna; Raab, Michal; Busto, Jon V.; Andraka, Nagore; Arrondo, José-Luis R.; Masserini, Massimo; Tvaroska, Igor; Goñi, Félix M.

    2012-01-01

    To explore the initial stages of amyloid β peptide (Aβ42) deposition on membranes, we have studied the interaction of Aβ42 in the monomeric form with lipid monolayers and with bilayers in either the liquid-disordered or the liquid-ordered (Lo) state, containing negatively charged phospholipids. Molecular dynamics (MD) simulations of the system have been performed, as well as experimental measurements. For bilayers in the Lo state, in the absence of the negatively charged lipids, interaction i...

  5. The novel amyloid-beta peptide aptamer inhibits intracellular amyloid-beta peptide toxicity

    Institute of Scientific and Technical Information of China (English)

    Xu Wang; Yi Yang; Mingyue Jia; Chi Ma; Mingyu Wang; Lihe Che; Yu Yang; Jiang Wu

    2013-01-01

    Amyloid β peptide binding alcohol dehydrogenase (ABAD) decoy peptide (DP) can competitively antagonize binding of amyloid β peptide to ABAD and inhibit the cytotoxic effects of amyloid β peptide. Based on peptide aptamers, the present study inserted ABAD-DP into the disulfide bond of human thioredoxin (TRX) using molecular cloning technique to construct a fusion gene that can express the TRX1-ABAD-DP-TRX2 aptamer. Moreover, adeno-associated virus was used to allow its stable expression. Immunofluorescent staining revealed the co-expression of the transduced fusion gene TRX1-ABAD-DP-TRX2 and amyloid β peptide in NIH-3T3 cells, indicating that the TRX1-ABAD-DP-TRX2 aptamer can bind amyloid β peptide within cells. In addition, cell morphology and MTT results suggested that TRX1-ABAD-DP-TRX2 attenuated amyloid β peptide-induced SH-SY5Y cell injury and improved cell viability. These findings confirmed the possibility of constructing TRX-based peptide aptamer using ABAD-DP. Moreover, TRX1-ABAD-DP-TRX2 inhibited the cytotoxic effect of amyloid β peptide.

  6. Novel glyoxalase-I inhibitors possessing a “zinc-binding feature” as potential anticancer agents

    Directory of Open Access Journals (Sweden)

    Al-Balas QA

    2016-08-01

    Full Text Available Qosay A Al-Balas,1 Mohammad A Hassan,1 Nizar A Al-Shar’i,1 Nizar M Mhaidat,2 Ammar M Almaaytah,3 Fatima M Al-Mahasneh,1 Israa H Isawi1 1Department of Medicinal Chemistry and Pharmacognosy, 2Department of Clinical Pharmacy, 3Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan Background: The glyoxalase system including two thiol-dependent enzymes, glyoxalase I (Glo-I and glyoxalase II, plays an important role in a ubiquitous metabolic pathway involved in cellular detoxification of cytotoxic 2-oxoaldehydes. Tumor cells have high glycolytic activity, leading to increased cellular levels of these toxic metabolites. The increased activity of the detoxification system in cancerous cells makes this pathway a viable target for developing novel anticancer agents. In this study, we examined the potential utility of non-glutathione-based inhibitors of the Glo-I enzyme as novel anticancer drugs.Methods: Computer-aided drug design techniques, such as customized pharmacophoric features, virtual screening, and flexible docking, were used to achieve the project goals. Retrieved hits were extensively filtered and subsequently docked into the active site of the enzyme. The biological activities of retrieved hits were assessed using an in vitro assay against Glo-I.Results: Since Glo-I is a zinc metalloenzyme, a customized Zn-binding pharmacophoric feature was used to search for selective inhibitors via virtual screening of a small-molecule database. Seven hits were selected, purchased, and biologically evaluated. Three of the seven hits inhibited Glo-I activity, the most effective of which exerted 76.4% inhibition at a concentration of 25 µM.Conclusion: We successfully identified a potential Glo-I inhibitor that can serve as a lead compound for further optimization. Moreover, our in silico and experimental results were highly correlated. Hence, the docking protocol adopted in this study may

  7. The Golgi-Localized γ-Ear-Containing ARF-Binding (GGA Proteins Alter Amyloid-β Precursor Protein (APP Processing through Interaction of Their GAE Domain with the Beta-Site APP Cleaving Enzyme 1 (BACE1.

    Directory of Open Access Journals (Sweden)

    Bjoern von Einem

    Full Text Available Proteolytic processing of amyloid-β precursor protein (APP by beta-site APP cleaving enzyme 1 (BACE1 is the initial step in the production of amyloid beta (Aβ, which accumulates in senile plaques in Alzheimer's disease (AD. Essential for this cleavage is the transport and sorting of both proteins through endosomal/Golgi compartments. Golgi-localized γ-ear-containing ARF-binding (GGA proteins have striking cargo-sorting functions in these pathways. Recently, GGA1 and GGA3 were shown to interact with BACE1, to be expressed in neurons, and to be decreased in AD brain, whereas little is known about GGA2. Since GGA1 impacts Aβ generation by confining APP to the Golgi and perinuclear compartments, we tested whether all GGAs modulate BACE1 and APP transport and processing. We observed decreased levels of secreted APP alpha (sAPPα, sAPPβ, and Aβ upon GGA overexpression, which could be reverted by knockdown. GGA-BACE1 co-immunoprecipitation was impaired upon GGA-GAE but not VHS domain deletion. Autoinhibition of the GGA1-VHS domain was irrelevant for BACE1 interaction. Our data suggest that all three GGAs affect APP processing via the GGA-GAE domain.

  8. Novel glyoxalase-I inhibitors possessing a “zinc-binding feature” as potential anticancer agents

    Science.gov (United States)

    Al-Balas, Qosay A; Hassan, Mohammad A; Al-Shar’i, Nizar A; Mhaidat, Nizar M; Almaaytah, Ammar M; Al-Mahasneh, Fatima M; Isawi, Israa H

    2016-01-01

    Background The glyoxalase system including two thiol-dependent enzymes, glyoxalase I (Glo-I) and glyoxalase II, plays an important role in a ubiquitous metabolic pathway involved in cellular detoxification of cytotoxic 2-oxoaldehydes. Tumor cells have high glycolytic activity, leading to increased cellular levels of these toxic metabolites. The increased activity of the detoxification system in cancerous cells makes this pathway a viable target for developing novel anticancer agents. In this study, we examined the potential utility of non-glutathione-based inhibitors of the Glo-I enzyme as novel anticancer drugs. Methods Computer-aided drug design techniques, such as customized pharmacophoric features, virtual screening, and flexible docking, were used to achieve the project goals. Retrieved hits were extensively filtered and subsequently docked into the active site of the enzyme. The biological activities of retrieved hits were assessed using an in vitro assay against Glo-I. Results Since Glo-I is a zinc metalloenzyme, a customized Zn-binding pharmacophoric feature was used to search for selective inhibitors via virtual screening of a small-molecule database. Seven hits were selected, purchased, and biologically evaluated. Three of the seven hits inhibited Glo-I activity, the most effective of which exerted 76.4% inhibition at a concentration of 25 µM. Conclusion We successfully identified a potential Glo-I inhibitor that can serve as a lead compound for further optimization. Moreover, our in silico and experimental results were highly correlated. Hence, the docking protocol adopted in this study may be efficiently employed in future optimization steps. PMID:27574401

  9. Assessment of ferula Gummosa gum as a binding agent in tablet formulations.

    Science.gov (United States)

    Enauyatifard, Reza; Azadbakht, Mohammad; Fadakar, Yousef

    2012-01-01

    Ferula gummosa Boiss. (Apiaceae) is one of the natural plants of Iran. The whole plant, but especially the root, contains the gum resin "galbanum". A study of the comparative effects of galbanum gum and two standard binding agents--polyvinylpyrolidone and acacia--on characteristics of acetaminophen and calcium carbonate compacts was made. The Ferula gummosa gum was extracted and its swelling index was determined. Acetaminophen and calcium carbonate granules were prepared using the wet granulation method and were evaluated for their micromeritics and flow properties, while the compacts were evaluated for mechanical properties using the hardness, tensile strength and friability. The drug release from acetaminophen compacts were assessed using dissolution studies. The dry powder of Ferula gummosa gum resin (galbanum) yielded 14% w/w of gum using distilled water as extraction solvent. The swelling index indicates that galbanum gum swelled to about 190% of initial volume in distilled water. Thus galbanum gum has the ability to hydrate and swells in cold water. The bulk and tapped densities and the interspace porosity (void porosity) percent of the granules prepared with different binders showed significant difference. The hardness and tensile strength of acetaminophen and calcium carbonate compacts containing various binders was of the rank order PVP > acacia > galbanum gum (p tablets containing the different binders was PVP> galbanum gum > acacia. The results of mechanical properties of acetaminophen and calcium carbonate compacts indicate that galbanum gum could be useful to produce tablets with desired mechanical characteristics for specific purposes, and could be used as an alternative substitute binder in pharmaceutical industries.

  10. Anionic Oligothiophenes Compete for Binding of X‐34 but not PIB to Recombinant Aβ Amyloid Fibrils and Alzheimer's Disease Brain‐Derived Aβ

    Science.gov (United States)

    Bäck, Marcus; Appelqvist, Hanna; LeVine, Harry

    2016-01-01

    Abstract Deposits comprised of amyloid‐β (Aβ) are one of the pathological hallmarks of Alzheimer's disease (AD) and small hydrophobic ligands targeting these aggregated species are used clinically for the diagnosis of AD. Herein, we observed that anionic oligothiophenes efficiently displaced X‐34, a Congo Red analogue, but not Pittsburgh compound B (PIB) from recombinant Aβ amyloid fibrils and Alzheimer's disease brain‐derived Aβ. Overall, we foresee that the oligothiophene scaffold offers the possibility to develop novel high‐affinity ligands for Aβ pathology only found in human AD brain, targeting a different site than PIB. PMID:27767229

  11. How Native and Alien Metal Cations Bind ATP: Implications for Lithium as a Therapeutic Agent

    Science.gov (United States)

    Dudev, Todor; Grauffel, Cédric; Lim, Carmay

    2017-01-01

    Adenosine triphosphate (ATP), the major energy currency of the cell, exists in solution mostly as ATP-Mg. Recent experiments suggest that Mg2+ interacts with the highly charged ATP triphosphate group and Li+ can co-bind with the native Mg2+ to form ATP-Mg-Li and modulate the neuronal purine receptor response. However, it is unclear how the negatively charged ATP triphosphate group binds Mg2+ and Li+ (i.e. which phosphate group(s) bind Mg2+/Li+) and how the ATP solution conformation depends on the type of metal cation and the metal-binding mode. Here, we reveal the preferred ATP-binding mode of Mg2+/Li+ alone and combined: Mg2+ prefers to bind ATP tridentately to each of the three phosphate groups, but Li+ prefers to bind bidentately to the terminal two phosphates. We show that the solution ATP conformation depends on the cation and its binding site/mode, but it does not change significantly when Li+ binds to Mg2+-loaded ATP. Hence, ATP-Mg-Li, like Mg2+-ATP, can fit in the ATP-binding site of the host enzyme/receptor, activating specific signaling pathways. PMID:28195155

  12. How Native and Alien Metal Cations Bind ATP: Implications for Lithium as a Therapeutic Agent

    Science.gov (United States)

    Dudev, Todor; Grauffel, Cédric; Lim, Carmay

    2017-02-01

    Adenosine triphosphate (ATP), the major energy currency of the cell, exists in solution mostly as ATP-Mg. Recent experiments suggest that Mg2+ interacts with the highly charged ATP triphosphate group and Li+ can co-bind with the native Mg2+ to form ATP-Mg-Li and modulate the neuronal purine receptor response. However, it is unclear how the negatively charged ATP triphosphate group binds Mg2+ and Li+ (i.e. which phosphate group(s) bind Mg2+/Li+) and how the ATP solution conformation depends on the type of metal cation and the metal-binding mode. Here, we reveal the preferred ATP-binding mode of Mg2+/Li+ alone and combined: Mg2+ prefers to bind ATP tridentately to each of the three phosphate groups, but Li+ prefers to bind bidentately to the terminal two phosphates. We show that the solution ATP conformation depends on the cation and its binding site/mode, but it does not change significantly when Li+ binds to Mg2+-loaded ATP. Hence, ATP-Mg-Li, like Mg2+-ATP, can fit in the ATP-binding site of the host enzyme/receptor, activating specific signaling pathways.

  13. A Food and Drug Administration-approved asthma therapeutic agent impacts amyloid β in the brain in a transgenic model of Alzheimer disease.

    Science.gov (United States)

    Hori, Yukiko; Takeda, Shuko; Cho, Hansang; Wegmann, Susanne; Shoup, Timothy M; Takahashi, Kazue; Irimia, Daniel; Elmaleh, David R; Hyman, Bradley T; Hudry, Eloise

    2015-01-23

    Interfering with the assembly of Amyloid β (Aβ) peptides from monomer to oligomeric species and fibrils or promoting their clearance from the brain are targets of anti-Aβ-directed therapies in Alzheimer disease. Here we demonstrate that cromolyn sodium (disodium cromoglycate), a Food and Drug Administration-approved drug already in use for the treatment of asthma, efficiently inhibits the aggregation of Aβ monomers into higher-order oligomers and fibrils in vitro without affecting Aβ production. In vivo, the levels of soluble Aβ are decreased by over 50% after only 1 week of daily intraperitoneally administered cromolyn sodium. Additional in vivo microdialysis studies also show that this compound decreases the half-life of soluble Aβ in the brain. These data suggest a clear effect of a peripherally administered, Food and Drug Administration-approved medication on Aβ economy, supporting further investigation of the potential long-term efficacy of cromolyn sodium in Alzheimer disease.

  14. A role for amyloid in cell aggregation and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Melissa C Garcia

    Full Text Available Cell adhesion molecules in Saccharomyces cerevisiae and Candida albicans contain amyloid-forming sequences that are highly conserved. We have now used site-specific mutagenesis and specific peptide perturbants to explore amyloid-dependent activity in the Candida albicans adhesin Als5p. A V326N substitution in the amyloid-forming region conserved secondary structure and ligand binding, but abrogated formation of amyloid fibrils in soluble Als5p and reduced cell surface thioflavin T fluorescence. When displayed on the cell surface, Als5p with this substitution prevented formation of adhesion nanodomains and formation of large cellular aggregates and model biofilms. In addition, amyloid nanodomains were regulated by exogenous peptides. An amyloid-forming homologous peptide rescued aggregation and biofilm activity of Als5p(V326N cells, and V326N substitution peptide inhibited aggregation and biofilm activity in Als5p(WT cells. Therefore, specific site mutation, inhibition by anti-amyloid peturbants, and sequence-specificity of pro-amyloid and anti-amyloid peptides showed that amyloid formation is essential for nanodomain formation and activation.

  15. Toxicokinetics and binding of nerve agents in the presence of scavengers

    NARCIS (Netherlands)

    Schans, M.J. van der; Langenberg, J.P.; Benschop, H.P.

    2004-01-01

    Traditional multidrug therapy of organophosphorus nerve agent poisoning has several drawbacks such as postexposure incapacitation while optimal timing of administration of the drugs is also crucial. A priori, sequestration of the agent before it can reach its physiological targets would provide opti

  16. Atomic View of a Toxic Amyloid Small Oligomer

    Energy Technology Data Exchange (ETDEWEB)

    Laganowsky, Arthur; Liu, Cong; Sawaya, Michael R.; Whitelegge, Julian P.; Park, Jiyong; Zhao, Minglei; Pensalfini, Anna; Soriaga, Angela B.; Landau, Meytal; Teng, Poh K.; Cascio, Duilio; Glabe, Charles; Eisenberg, David (UCI); (UCLA)

    2012-04-30

    Amyloid diseases, including Alzheimer's, Parkinson's, and the prion conditions, are each associated with a particular protein in fibrillar form. These amyloid fibrils were long suspected to be the disease agents, but evidence suggests that smaller, often transient and polymorphic oligomers are the toxic entities. Here, we identify a segment of the amyloid-forming protein {alpha}{beta} crystallin, which forms an oligomeric complex exhibiting properties of other amyloid oligomers: {beta}-sheet-rich structure, cytotoxicity, and recognition by an oligomer-specific antibody. The x-ray-derived atomic structure of the oligomer reveals a cylindrical barrel, formed from six antiparallel protein strands, that we term a cylindrin. The cylindrin structure is compatible with a sequence segment from the {beta}-amyloid protein of Alzheimer's disease. Cylindrins offer models for the hitherto elusive structures of amyloid oligomers.

  17. Timing and modality of the sclerosing agents binding to the human proteins: laboratory analysis and clinical evidences

    Directory of Open Access Journals (Sweden)

    Lorenzo Tessari

    2014-07-01

    Full Text Available Sclerosing agents (SA are blood inactivated. Nevertheless, investigations concerning the interaction among SA and blood components have never been deeply investigated. Aim of the study is to precisely identify SA blood ligands, to determine their binding time and to highlight the clinical consequences. Thirty-one blood samples were collected from chronic venous disease patients and tested by capillary and agarose gel (AGE electrophoresis before and after adding polidocanol (POL and sodiumtetradecylsulphate (STS. The two different types of electrophoresis allowed an evaluation of the blood proteins binding with the sclerosing agents, with a reaction time lower than 8 seconds for the AGE. Subsequently six patients underwent foam sclerotherapy and then were subdivided in group A (4 patients and B (2 patients. In group A blood sample was obtained from the ipsilateral brachial vein immediately before (T0 and repeated 1, 3, 5, and 10 minutes after injection of STS 3% injection into the GSV. In group B, the same procedure was performed with the same timing from the ipsilateral femoral vein. Free STS (fSTS and total proteinbound STS (bSTS were measured. POL mainly binds to β-globulins (11%, while STS to albumin and α-globulins (62.6% and 30.7% on the protidogram, respectively. Both in the brachial and in the femoral vein, the average fSTS was always 0. STS binds to albumin (62.6% and α-globulins (30.7%, while POL is bound mainly by the b-globulins (11%. The present paper demonstrates how the vast majority of the sclerosing agent is bound to the blood proteins, suggesting the need to look for possible sclerotherapy complications factors also in the used gas and/or in the subsequent cathabolites release.

  18. Direct binding of ledipasvir to HCV NS5A: mechanism of resistance to an HCV antiviral agent.

    Directory of Open Access Journals (Sweden)

    Hyock Joo Kwon

    Full Text Available Ledipasvir, a direct acting antiviral agent (DAA targeting the Hepatitis C Virus NS5A protein, exhibits picomolar activity in replicon cells. While its mechanism of action is unclear, mutations that confer resistance to ledipasvir in HCV replicon cells are located in NS5A, suggesting that NS5A is the direct target of ledipasvir. To date co-precipitation and cross-linking experiments in replicon or NS5A transfected cells have not conclusively shown a direct, specific interaction between NS5A and ledipasvir. Using recombinant, full length NS5A, we show that ledipasvir binds directly, with high affinity and specificity, to NS5A. Ledipasvir binding to recombinant NS5A is saturable with a dissociation constant in the low nanomolar range. A mutant form of NS5A (Y93H that confers resistance to ledipasvir shows diminished binding to ledipasvir. The current study shows that ledipasvir inhibits NS5A through direct binding and that resistance to ledipasvir is the result of a reduction in binding affinity to NS5A mutants.

  19. Modeling copper binding to the amyloid-β peptide at different pH: toward a molecular mechanism for Cu reduction.

    Science.gov (United States)

    Furlan, Sara; Hureau, Christelle; Faller, Peter; La Penna, Giovanni

    2012-10-04

    Oxidative stress, including the production of reactive oxygen species (ROS), has been reported to be a key event in the etiology of Alzheimer's disease (AD). Cu has been found in high concentrations in amyloid plaques, a hallmark of AD, where it is bound to the main constituent amyloid-β (Aβ) peptide. Whereas it has been proposed that Cu-Aβ complexes catalyze the production of ROS via redox-cycling between the Cu(I) and Cu(II) state, the redox chemistry of Cu-Aβ and the precise mechanism of redox reactions are still unclear. Because experiments indicate different coordination environments for Cu(II) and Cu(I), it is expected that the electron is not transferred between Cu-Aβ and reactants in a straightforward manner but involves structural rearrangement. In this work the structures indicated by experimental data are modeled at the level of modern density-functional theory approximations. Possible pathways for Cu(II) reduction in different coordination sites are investigated by means of first-principles molecular dynamics simulations in the water solvent and at room temperature. The models of the ligand reorganization around Cu allow the proposal of a preferential mechanism for Cu-Aβ complex reduction at physiological pH. Models reveal that for efficient reduction the deprotonated amide N in the Ala 2-Glu 3 peptide bond has to be protonated and that interactions in the second coordination sphere make important contributions to the reductive pathway, in particular the interaction between COO(-) and NH(2) groups of Asp 1. The proposed mechanism is an important step forward to a clear understanding of the redox chemistry of Cu-Aβ, a difficult task for spectroscopic approaches as the Cu-peptide interactions are weak and dynamical in nature.

  20. Human serum amyloid A3 (SAA3 protein, expressed as a fusion protein with SAA2, binds the oxidized low density lipoprotein receptor.

    Directory of Open Access Journals (Sweden)

    Takeshi Tomita

    Full Text Available Serum amyloid A3 (SAA3 possesses characteristics distinct from the other serum amyloid A isoforms, SAA1, SAA2, and SAA4. High density lipoprotein contains the latter three isoforms, but not SAA3. The expression of mouse SAA3 (mSAA3 is known to be up-regulated extrahepatically in inflammatory responses, and acts as an endogenous ligand for the toll-like receptor 4/MD-2 complex. We previously reported that mSAA3 plays an important role in facilitating tumor metastasis by attracting circulating tumor cells and enhancing hyperpermeability in the lungs. On the other hand, human SAA3 (hSAA3 has long been regarded as a pseudogene, which is in contrast to the abundant expression levels of the other isoforms. Although the nucleotide sequence of hSAA3 is very similar to that of the other SAAs, a single oligonucleotide insertion in exon 2 causes a frame-shift to generate a unique amino acid sequence. In the present study, we identified that hSAA3 was transcribed in the hSAA2-SAA3 fusion transcripts of several human cell lines. In the fusion transcript, hSAA2 exon 3 was connected to hSAA3 exon 1 or hSAA3 exon 2, located approximately 130kb downstream from hSAA2 exon 3 in the genome, which suggested that it is produced by alternative splicing. Furthermore, we succeeded in detecting and isolating hSAA3 protein for the first time by an immunoprecipitation-enzyme linked immune assay system using monoclonal and polyclonal antibodies that recognize the hSAA3 unique amino acid sequence. We also demonstrated that hSAA3 bound oxidized low density lipoprotein receptor (oxLDL receptor, LOX-1 and elevated the phosphorylation of ERK, the intracellular MAP-kinase signaling protein.

  1. Effect of Tiantai No.1(天泰1号) on β-Amyloid-induced Neurotoxicity and NF- к B and cAMP Responsive Element-binding Protein

    Institute of Scientific and Technical Information of China (English)

    WU Zheng-zhi; Andrew C. J. Huang; Jean de Vellis; LI Ying-hong

    2008-01-01

    To investigate the effect and molecular mechanism of Tiantai No.1 (天泰1号), a compound Chinese herbal preparation, for the prevention and reduction of neurotoxicity induced by beta-element-binding protein (CREB) pathways using the gene transfection technique. Methods: B104 neuronal cells were used to examine the effects of Tiantai No.1 on lowering the neurotoxicity induced by Abeta. The cells were pre-treated with Tiantai No.1 at doses of 50, 100, 150, or 200 μg/mL respectively for 3 days and co-treated with Tiantai No.1 and beta-amyloid peptidel-40 (Aβ 1-40, 10 μmol/L) for 48 h or post-treated with Tiantai No.1 for 48 h after the cells were exposed to beta-amyloid peptides25-35 (A β 25-35) for 8 h. In gene transfection assays, cells were treated with Tiantai No.1 at 50 μg/m/and 150 μg/mL for 5 days or co-treated with Tiantai No.1 and A β 1-40 (5 μ mo/L) for 3 days after electroporation for the with Tiantai No.1 lowered the neurotoxicity induced by Abeta, and post-treating with Tiantai No.1 reduced or blocked B104 neuronal apoptotic death induced by Abeta (P

  2. Human RNASET2 derivatives as potential anti-angiogenic agents: actin binding sequence identification and characterization

    Science.gov (United States)

    Nesiel-Nuttman, Liron; Doron, Shani; Schwartz, Betty; Shoseyov, Oded

    2015-01-01

    Human RNASET2 (hRNASET2) has been demonstrated to exert antiangiogenic and antitumorigenic effects independent of its ribonuclease capacity. We suggested that RNASET2 exerts its antiangiogenic and antitumorigenic activities via binding to actin and consequently inhibits cell motility. We focused herein on the identification of the actin binding site of hRNASET2 using defined sequences encountered within the whole hRNASET2 protein. For that purpose we designed 29 different hRNASET2-derived peptides. The 29 peptides were examined for their ability to bind immobilized actin. Two selected peptides-A103-Q159 consisting of 57 amino acids and peptide K108-K133 consisting of 26 amino acids were demonstrated to have the highest actin binding ability and concomitantly the most potent anti-angiogenic activity. Further analyses on the putative mechanisms associated with angiogenesis inhibition exerted by peptide K108-K133 involved its location during treatment within the HUVE cells. Peptide K108-K133 readily penetrates the cell membrane within 10 min of incubation. In addition, supplementation with angiogenin delays the entrance of peptide K108-K133 to the cell suggesting competition on the same cell internalization route. The peptide was demonstrated to co-localize with angiogenin, suggesting that both molecules bind analogous cellular epitopes, similar to our previously reported data for ACTIBIND and trT2-50. PMID:25815360

  3. DNA binding properties and biological evaluation of dihydropyrimidinones derivatives as potential antitumor agents

    Science.gov (United States)

    Wang, Gongke; Li, Xiangrong; Gou, Yaping; Chen, Yuhan; Yan, Changling; Lu, Yan

    2013-10-01

    The binding properties of two medicinally important dihydropyrimidinones derivatives 5-(Ethoxycarbonyl)-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (EMPD) and 5-(Ethoxycarbonyl)-6-methyl-4-(4-chlorophenyl)-3,4-dihydropyrimidin-2(1H)-one (EMCD) with calf-thymus DNA (ctDNA) were investigated by spectroscopy, viscosity, isothermal titration calorimetry (ITC) and molecular modeling techniques. Simultaneously, their biological activities were evaluated with MTT assay method. The binding constants determined with spectroscopic titration and ITC were found to be in the same order of 104 M-1. According to the results of viscosity studies, fluorescence competitive binding experiment and ITC investigations, intercalative binding was evaluated as the dominant binding modes between the two compounds and ctDNA. Furthermore, the results of molecular modeling corroborated those obtained from spectroscopic, viscosimetric and ITC investigations. Evaluation of the antitumor activities of the two derivatives against different tumor cell lines proved that they exhibited significant tumor cell inhibition rate, accordingly blocking DNA transcription and replication. The present results favor the development of potential drugs related with dihydropyrimidinones derivatives in the treatment of some diseases.

  4. Insights into the Interaction Mechanism of Ligands with Aβ42 Based on Molecular Dynamics Simulations and Mechanics: Implications of Role of Common Binding Site in Drug Design for Alzheimer's Disease.

    Science.gov (United States)

    Kundaikar, Harish S; Degani, Mariam S

    2015-10-01

    Aggregation of β-amyloid (Aβ) into oligomers and further into fibrils is hypothesized to be a key factor in pathology of Alzheimer's disease (AD). In this study, mapping and docking were used to study the binding of ligands to protofibrils. It was followed by molecular simulations to understand the differences in interactions of known therapeutic agents such as curcumin, fluorescence-based amyloid staining agents such as thioflavin T, and diagnostic agents such as florbetapir (AV45), with Aβ protofibrils. We show that therapeutic agents bind to and distort the protofibrils, thus causing destabilization or prevention of oligomerization, in contrast to diagnostic agents which bind to but do not distort such structures. This has implications in the rational design of ligands, both for diagnostics and therapeutics of AD.

  5. Anti-tumor agent calixarene 0118 targets human galectin-1 as an allosteric inhibitor of carbohydrate binding

    Science.gov (United States)

    Dings, Ruud P.M.; Miller, Michelle C.; Nesmelova, Irina; Astorgues-Xerri, Lucile; Kumar, Nigam; Serova, Maria; Chen, Xuimei; Raymond, Eric; Hoye, Thomas R.; Mayo, Kevin H.

    2012-01-01

    Calix[4]arene compound 0118 is an angiostatic agent that inhibits tumor growth in mice. Although 0118 is a topomimetic of galectin-1-targeting angiostatic amphipathic peptide anginex, we had yet to prove that 0118 targets galectin-1. Galectin-1 is involved in pathological disorders like tumor endothelial cell adhesion and migration and therefore presents a relevant target for therapeutic intervention against cancer. Here, 15N-1H HSQC NMR spectroscopy demonstrates that 0118 indeed targets galectin-1 at a site away from the lectin’s carbohydrate binding site, and thereby attenuates lactose binding to the lectin. Flow cytometry and agglutination assays show that 0118 attenuates binding of galectin-1 to cell surface glycans, and the inhibition of cell proliferation by 0118 is found to be correlated with the cellular expression of the lectin. In general, our data indicate that 0118 targets galectin-1 as an allosteric inhibitor of glycan/carbohydrate binding. This work contributes to the clinical development of anti-tumor calixarene compound 0118. PMID:22575017

  6. Natural flavonoids as antidiabetic agents. The binding of gallic and ellagic acids to glycogen phosphorylase b.

    Science.gov (United States)

    Kyriakis, Efthimios; Stravodimos, George A; Kantsadi, Anastassia L; Chatzileontiadou, Demetra S M; Skamnaki, Vassiliki T; Leonidas, Demetres D

    2015-07-08

    We present a study on the binding of gallic acid and its dimer ellagic acid to glycogen phosphorylase (GP). Ellagic acid is a potent inhibitor with Kis of 13.4 and 7.5 μM, in contrast to gallic acid which displays Kis of 1.7 and 3.9 mM for GPb and GPa, respectively. Both compounds are competitive inhibitors with respect to the substrate, glucose-1-phoshate, and non-competitive to the allosteric activator, AMP. However, only ellagic acid functions with glucose in a strongly synergistic mode. The crystal structures of the GPb-gallic acid and GPb-ellagic acid complexes were determined at high resolution, revealing that both ligands bind to the inhibitor binding site of the enzyme and highlight the structural basis for the significant difference in their inhibitory potency.

  7. Icariside II, a Broad-Spectrum Anti-cancer Agent, Reverses Beta-Amyloid-Induced Cognitive Impairment through Reducing Inflammation and Apoptosis in Rats

    Science.gov (United States)

    Deng, Yuanyuan; Long, Long; Wang, Keke; Zhou, Jiayin; Zeng, Lingrong; He, Lianzi; Gong, Qihai

    2017-01-01

    Beta-amyloid (Aβ) deposition, associated neuronal apoptosis and neuroinflammation are considered as the important factors which lead to cognitive deficits in Alzheimer’s disease (AD). Icariside II (ICS II), an active flavonoid compound derived from Epimedium brevicornum Maxim, has been extensively used to treat erectile dysfunction, osteoporosis and dementia in traditional Chinese medicine. Recently, ICS II attracts great interest due to its broad-spectrum anti-cancer property. ICS II shows an anti-inflammatory potential both in cancer treatment and cerebral ischemia-reperfusion. It is not yet clear whether the anti-inflammatory effect of ICS II could delay progression of AD. Therefore, the current study aimed to investigate the effects of ICS II on the behavioral deficits, Aβ levels, neuroinflammatory responses and apoptosis in Aβ25-35-treated rats. We found that bilateral hippocampal injection of Aβ25-35 induced cognitive impairment, neuronal damage, along with increase of Aβ, inflammation and apoptosis in hippocampus of rats. However, treatment with ICS II 20 mg/kg could improve the cognitive deficits, ameliorate neuronal death, and reduce the levels of Aβ in the hippocampus. Furthermore, ICS II could suppress microglial and astrocytic activation, inhibit expression of IL-1β, TNF-α, COX-2, and iNOS mRNA and protein, and attenuate the Aβ induced Bax/Bcl-2 ratio elevation and caspase-3 activation. In conclusion, these results showed that ICS II could reverse Aβ-induced cognitive deficits, possibly via the inhibition of neuroinflammation and apoptosis, which suggested a potential protective effect of ICS II on AD. PMID:28210222

  8. Computational Modelling of the Human Islet Amyloid Polypeptide

    DEFF Research Database (Denmark)

    Skeby, Katrine Kirkeby

    2014-01-01

    . Using MD simulations we have investigated the binding of 13 different imaging agents to a fibril segment. Using clustering analysis and binding energy calculations we have identified a common binding mode for the 13 agents in the surface grooves of the fibril, which are present on all amyloid fibrils...... between the N-terminal part of hIAPP and the lipid head-groups. This is due to positive charges present in the N-terminal part of hIAPP interacting with the anionic lipids. The C-terminal part of hIAPP is unfolded in the solution phase, making this part of hIAPP ready for interaction with other peptides...... in flat ribbons which are due to the compatible peptide terminals. Capping only the N-terminal abolishes the fibrillation, which is caused by incompatibility of the hydrophobic N-terminal with the anionic C terminal as well as a lower number of interpeptide hydrogen bonds to overcome the repulsion...

  9. Differential Effects of Structural Modifications on the Competition of Chalcones for the PIB Amyloid Imaging Ligand-Binding Site in Alzheimer's Disease Brain and Synthetic Aβ Fibrils.

    Science.gov (United States)

    Fosso, Marina Y; McCarty, Katie; Head, Elizabeth; Garneau-Tsodikova, Sylvie; LeVine, Harry

    2016-02-17

    Alzheimer's disease (AD) is a complex brain disorder that still remains ill defined. In order to understand the significance of binding of different clinical in vivo imaging ligands to the polymorphic pathological features of AD brain, the molecular characteristics of the ligand interacting with its specific binding site need to be defined. Herein, we observed that tritiated Pittsburgh Compound B ((3)H-PIB) can be displaced from synthetic Aβ(1-40) and Aβ(1-42) fibrils and from the PIB binding complex purified from human AD brain (ADPBC) by molecules containing a chalcone structural scaffold. We evaluated how substitution on the chalcone scaffold alters its ability to displace (3)H-PIB from the synthetic fibrils and ADPBC. By comparing unsubstituted core chalcone scaffolds along with the effects of bromine and methyl substitution at various positions, we found that attaching a hydroxyl group on the ring adjacent to the carbonyl group (ring I) of the parent member of the chalcone family generally improved the binding affinity of chalcones toward ADPBC and synthetic fibrils F40 and F42. Furthermore, any substitution on ring I at the ortho-position of the carbonyl group greatly decreases the binding affinity of the chalcones, potentially as a result of steric hindrance. Together with the finding that neither our chalcones nor PIB interact with the Congo Red/X-34 binding site, these molecules provide new tools to selectively probe the PIB binding site that is found in human AD brain, but not in brains of AD pathology animal models. Our chalcone derivatives also provide important information on the effects of fibril polymorphism on ligand binding.

  10. The Effect of Glycosaminoglycans (GAGs on Amyloid Aggregation and Toxicity

    Directory of Open Access Journals (Sweden)

    Clara Iannuzzi

    2015-02-01

    Full Text Available Amyloidosis is a protein folding disorder in which normally soluble proteins are deposited extracellularly as insoluble fibrils, impairing tissue structure and function. Charged polyelectrolytes such as glycosaminoglycans (GAGs are frequently found associated with the proteinaceous deposits in tissues of patients affected by amyloid diseases. Experimental evidence indicate that they can play an active role in favoring amyloid fibril formation and stabilization. Binding of GAGs to amyloid fibrils occurs mainly through electrostatic interactions involving the negative polyelectrolyte charges and positively charged side chains residues of aggregating protein. Similarly to catalyst for reactions, GAGs favor aggregation, nucleation and amyloid fibril formation functioning as a structural templates for the self-assembly of highly cytotoxic oligomeric precursors, rich in β-sheets, into harmless amyloid fibrils. Moreover, the GAGs amyloid promoting activity can be facilitated through specific interactions via consensus binding sites between amyloid polypeptide and GAGs molecules. We review the effect of GAGs on amyloid deposition as well as proteins not strictly related to diseases. In addition, we consider the potential of the GAGs therapy in amyloidosis.

  11. Silver nanoparticles-loaded activated carbon fibers using chitosan as binding agent: Preparation, mechanism, and their antibacterial activity

    Science.gov (United States)

    Tang, Chengli; Hu, Dongmei; Cao, Qianqian; Yan, Wei; Xing, Bo

    2017-02-01

    The effective and strong adherence of silver nanoparticles (AgNPs) to the substrate surface is pivotal to the practical application of those AgNPs-modified materials. In this work, AgNPs were synthesized through a green and facile hydrothermal method. Chitosan was introduced as the binding agent for the effective loading of AgNPs on activated carbon fibers (ACF) surface to fabricate the antibacterial material. Apart from conventional instrumental characterizations, i. e., scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), zeta potential and Brunauer-Emmett-Teller (BET) surface area measurement, molecular dynamics simulation method was also applied to explore the loading mechanism of AgNPs on the ACF surface. The AgNPs-loaded ACF material showed outstanding antibacterial activity for S. aureus and E. coli. The combination of experimental and theoretical calculation results proved chitosan to be a promising binding agent for the fabrication of AgNPs-loaded ACF material with excellent antibacterial activity.

  12. The butter flavorant, diacetyl, exacerbates β-amyloid cytotoxicity.

    Science.gov (United States)

    More, Swati S; Vartak, Ashish P; Vince, Robert

    2012-10-15

    Diacetyl (DA), an ubiquitous butter-flavoring agent, was found to influence several aspects of amyloid-β (Aβ) aggregation--one of the two primary pathologies associated with Alzheimer's disease. Thioflavin T fluorescence and circular dichroism spectroscopic measurements revealed that DA accelerates Aβ¹⁻⁴² aggregation into soluble and ultimately insoluble β-pleated sheet structures. DA was found to covalently bind to Arg⁵ of Aβ¹⁻⁴² through proteolytic digestion-mass spectrometric experiments. These biophysical and chemical effects translated into the potentiation of Aβ¹⁻⁴² cytotoxicity by DA toward SH-SY5Y cells in culture. DA easily traversed through a MDR1-MDCK cell monolayer, an in vitro model of the blood-brain barrier. Additionally, DA was found not only to be resistant to but also inhibitory toward glyoxalase I, the primary initiator of detoxification of amyloid-promoting reactive dicarbonyl species that are generated naturally in large amounts by neuronal tissue. In light of the chronic exposure of industry workers to DA, this study raises the troubling possibility of long-term neurological toxicity mediated by DA.

  13. Diagnostic performance and prognostic value of extravascular retention of I-123-labeled serum amyloid P component in systemic amyloidosis

    NARCIS (Netherlands)

    Hazenberg, Bouke P. C.; van Rijswijk, Martin H.; Lub-de Hooge, Marjolijn N.; Vellenga, Edo; Haagsma, Elizabeth B.; Posthumus, Marcel D.; Jager, Pieter L.

    2007-01-01

    Serum amyloid P component (SAP) binds to amyloid.I-123-SAP scintigraphy is used to evaluate the extent and distribution of amyloid in systemic amyloidosis and has great clinical value in the detection of systemic amyloidosis. The aim of the study was to assess during scintigraphy the diagnostic perf

  14. Laser-induced propagation and destruction of amyloid beta fibrils.

    Science.gov (United States)

    Yagi, Hisashi; Ozawa, Daisaku; Sakurai, Kazumasa; Kawakami, Toru; Kuyama, Hiroki; Nishimura, Osamu; Shimanouchi, Toshinori; Kuboi, Ryoichi; Naiki, Hironobu; Goto, Yuji

    2010-06-18

    The amyloid deposition of amyloid beta (Abeta) peptides is a critical pathological event in Alzheimer disease (AD). Preventing the formation of amyloid deposits and removing preformed fibrils in tissues are important therapeutic strategies against AD. Previously, we reported the destruction of amyloid fibrils of beta(2)-microglobulin K3 fragments by laser irradiation coupled with the binding of amyloid-specific thioflavin T. Here, we studied the effects of a laser beam on Abeta fibrils. As was the case for K3 fibrils, extensive irradiation destroyed the preformed Abeta fibrils. However, irradiation during spontaneous fibril formation resulted in only the partial destruction of growing fibrils and a subsequent explosive propagation of fibrils. The explosive propagation was caused by an increase in the number of active ends due to breakage. The results not only reveal a case of fragmentation-induced propagation of fibrils but also provide insights into therapeutic strategies for AD.

  15. Porcine prion protein amyloid.

    Science.gov (United States)

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions.

  16. Tubulin assembly, taxoid site binding, and cellular effects of the microtubule-stabilizing agent dictyostatin.

    Science.gov (United States)

    Madiraju, Charitha; Edler, Michael C; Hamel, Ernest; Raccor, Brianne S; Balachandran, Raghavan; Zhu, Guangyu; Giuliano, Kenneth A; Vogt, Andreas; Shin, Youseung; Fournier, Jean-Hugues; Fukui, Yoshikazu; Brückner, Arndt M; Curran, Dennis P; Day, Billy W

    2005-11-15

    (-)-Dictyostatin is a sponge-derived, 22-member macrolactone natural product shown to cause cells to accumulate in the G2/M phase of the cell cycle, with changes in intracellular microtubules analogous to those observed with paclitaxel treatment. Dictyostatin also induces assembly of purified tubulin more rapidly than does paclitaxel, and nearly as vigorously as does dictyostatin's close structural congener, (+)-discodermolide (Isbrucker et al. (2003), Biochem. Pharmacol. 65, 75-82). We used synthetic (-)-dictyostatin to study its biochemical and cytological activities in greater detail. The antiproliferative activity of dictyostatin did not differ greatly from that of paclitaxel or discodermolide. Like discodermolide, dictyostatin retained antiproliferative activity against human ovarian carcinoma cells resistant to paclitaxel due to beta-tubulin mutations and caused conversion of cellular soluble tubulin pools to microtubules. Detailed comparison of the abilities of dictyostatin and discodermolide to induce tubulin assembly demonstrated that the compounds had similar potencies. Dictyostatin inhibited the binding of radiolabeled discodermolide to microtubules more potently than any other compound examined, and dictyostatin and discodermolide had equivalent activity as inhibitors of the binding of both radiolabeled epothilone B and paclitaxel to microtubules. These results are consistent with the idea that the macrocyclic structure of dictyostatin represents the template for the bioactive conformation of discodermolide.

  17. Nanoparticle-chelator conjugates as inhibitors of amyloid-beta aggregation and neurotoxicity: a novel therapeutic approach for Alzheimer disease.

    Science.gov (United States)

    Liu, Gang; Men, Ping; Kudo, Wataru; Perry, George; Smith, Mark A

    2009-05-22

    Oxidative stress and amyloid-beta are considered major etiological and pathological factors in the initiation and promotion of neurodegeneration in Alzheimer disease (AD). Insomuch as causes of such oxidative stress, transition metals, such as iron and copper, which are found in high concentrations in the brains of AD patients and accumulate specifically in the pathological lesions, are viewed as key contributors to the altered redox state. Likewise, the aggregation and toxicity of amyloid-beta is dependent upon transition metals. As such, chelating agents that selectively bind to and remove and/or "redox silence" transition metals have long been considered as attractive therapies for AD. However, the blood-brain barrier and neurotoxicity of many traditional metal chelators has limited their utility in AD or other neurodegenerative disorders. To circumvent this, we previously suggested that nanoparticles conjugated to iron chelators may have the potential to deliver chelators into the brain and overcome such issues as chelator bioavailability and toxic side-effects. In this study, we synthesized a prototype nanoparticle-chelator conjugate (Nano-N2PY) and demonstrated its ability to protect human cortical neurons from amyloid-beta-associated oxidative toxicity. Furthermore, Nano-N2PY nanoparticle-chelator conjugates effectively inhibited amyloid-beta aggregate formation. Overall, this study indicates that Nano-N2PY, or other nanoparticles conjugated to metal chelators, may provide a novel therapeutic strategy for AD and other neurodegenerative diseases associated with excess transition metals.

  18. Pharmacokinetics of [{sup 18}F]flutemetamol in wild-type rodents and its binding to beta amyloid deposits in a mouse model of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Snellman, Anniina; Lopez-Picon, Francisco R.; Haaparanta-Solin, Merja [University of Turku, MediCity/PET Preclinical Laboratory, Turku PET Centre, Turku (Finland); Rokka, Johanna; Eskola, Olli [University of Turku, Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, Turku (Finland); Wilson, Ian; Farrar, Gill [GE Healthcare Medical Diagnostics, Little Chalfont, Buckinghamshire (United Kingdom); Scheinin, Mika [University of Turku, Department of Pharmacology, Drug Development and Therapeutics, Turku (Finland); Turku University Hospital, Unit of Clinical Pharmacology, Turku (Finland); Solin, Olof [University of Turku, Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, Turku (Finland); Aabo Akademi University, Accelerator Laboratory, Turku PET Centre, Turku (Finland); Rinne, Juha O. [University of Turku and Turku University Hospital, Turku PET Centre, Turku (Finland)

    2012-11-15

    The aim of this study was to investigate the potential of [{sup 18}F]flutemetamol as a preclinical PET tracer for imaging {beta}-amyloid (A{beta}) deposition by comparing its pharmacokinetics to those of [{sup 11}C]Pittsburgh compound B ([{sup 11}C]PIB) in wild-type Sprague Dawley rats and C57Bl/6N mice. In addition, binding of [{sup 18}F]flutemetamol to A{beta} deposits was studied in the Tg2576 transgenic mouse model of Alzheimer's disease. [{sup 18}F]Flutemetamol biodistribution was evaluated using ex vivo PET methods and in vivo PET imaging in wild-type rats and mice. Metabolism and binding of [{sup 11}C]PIB and [{sup 18}F]flutemetamol to plasma proteins were analysed using thin-layer chromatography and ultrafiltration methods, respectively. Radiation dose estimates were calculated from rat ex vivo biodistribution data. The binding of [{sup 18}F]flutemetamol to A{beta} deposits was also studied using ex vivo and in vitro autoradiography. The location of A{beta} deposits in the brain was determined with thioflavine S staining and immunohistochemistry. The pharmacokinetics of [{sup 18}F]flutemetamol resembled that of [{sup 11}C]PIB in rats and mice. In vivo studies showed that both tracers readily entered the brain, and were excreted via the hepatobiliary pathway in both rats and mice. The metabolism of [{sup 18}F]flutemetamol into radioactive metabolites was faster than that of [{sup 11}C]PIB. [{sup 18}F]Flutemetamol cleared more slowly from the brain than [{sup 11}C]PIB, particularly from white matter, in line with its higher lipophilicity. Effective dose estimates for [{sup 11}C]PIB and [{sup 18}F]flutemetamol were 2.28 and 6.65 {mu}Sv/MBq, respectively. Autoradiographs showed [{sup 18}F]flutemetamol binding to fibrillar A{beta} deposits in the brain of Tg2576 mice. Based on its pharmacokinetic profile, [{sup 18}F]flutemetamol showed potential as a PET tracer for preclinical imaging. It showed good brain uptake and was bound to A{beta} deposits in the

  19. Synthesis, Cytotoxicity, DNA Binding and Apoptosis of Rhein-Phosphonate Derivatives as Antitumor Agents

    Directory of Open Access Journals (Sweden)

    Man-Yi Ye

    2013-04-01

    Full Text Available Several rhein-phosphonate derivatives (5a–c were synthesized and evaluated for in vitro cytotoxicity against HepG-2, CNE, Spca-2, Hela and Hct-116 cell lines. Some compounds showed relatively high cytotoxicity. Especially compounds 5b exhibited the strongest cytotoxicity against HepG-2 and Spca-2 cells (IC50 was 8.82 and 9.01 µM, respectively. All the synthesized compounds exhibited low cytotoxicity against HUVEC cells. Further experiments proved that 5b could disturb the cell cycle in HepG-2 cells and induce apoptosis. In addition, the binding properties of a model conjugate 5b to DNA were investigated by methods (UV-Vis, fluorescence, CD spectroscopy. Results indicated that 5b showed moderate ability to interact ct-DNA.

  20. Self-assembled cardanol azo derivatives as antifungal agent with chitin-binding ability.

    Science.gov (United States)

    Mahata, Denial; Mandal, Santi M; Bharti, Rashmi; Gupta, Vinay Krishna; Mandal, Mahitosh; Nag, Ahindra; Nando, Golok B

    2014-08-01

    Cardanol is a non-isoprenoic phenolic lipid-mixture of distilled cashew nut shell liquid obtained from Anacardium occidentale. Herein, cardanol is purified from cashew nut shell liquid (CNSL) and synthesized to new compounds with different azo amphiphiles. These synthesized compounds are allowed to self-assembled in hydrophobic environment and checked antifungal activity against Candida albicans. Self-assembled structure of CABA showed higher antifungal activity (16μg/mL) and chitin-binding ability in comparison to CAP and CANB. Furthermore, the self-assembled azo amphiphiles are immobilized with silver ions to prepare hydrogel which showed eight folds enhanced antifungal activity. Toxicity is reduced by several folds of self-assembled or hydrogel structure in comparison to pure compounds. Thus, the self-assembled structure of amphiphiles and their hydrogels have been found to be new macromolecules of interest with potential use as antifungal drugs.

  1. Discovery of membrane active benzimidazole quinolones-based topoisomerase inhibitors as potential DNA-binding antimicrobial agents.

    Science.gov (United States)

    Zhang, Ling; Addla, Dinesh; Ponmani, Jeyakkumar; Wang, Ao; Xie, Dan; Wang, Ya-Nan; Zhang, Shao-Lin; Geng, Rong-Xia; Cai, Gui-Xin; Li, Shuo; Zhou, Cheng-He

    2016-03-23

    A series of novel benzimidazole quinolones as potential antimicrobial agents were designed and synthesized. Most of the prepared compounds exhibited good or even stronger antimicrobial activities in comparison with reference drugs. The most potent compound 15m was membrane active and did not trigger the development of resistance in bacteria. It not only inhibited the formation of biofilms but also disrupted the established Staphylococcus aureus and Escherichia coli biofilms. It was able to inhibit the relaxation activity of E. coli topoisomerase IV at 10 μM concentration. Moreover, this compound also showed low toxicity against mammalian cells. Molecular modeling and experimental investigation of compound 15m with DNA suggested that this compound could effectively bind with DNA to form a steady 15m-DNA complex which might further block DNA replication to exert the powerful bioactivities.

  2. Alzheimer's disease amyloid peptides interact with DNA, as proved by surface plasmon resonance.

    Science.gov (United States)

    Barrantes, Alejandro; Camero, Sergio; Garcia-Lucas, Angel; Navarro, Pedro J; Benitez, María J; Jiménez, Juan S

    2012-10-01

    According to the amyloid hypothesis, abnormal processing of the β-amyloid precursor protein in Alzheimer's disease patients increases the production of β-amyloid toxic peptides, which, after forming highly aggregated fibrillar structures, lead to extracellular plaques formation, neuronal loss and dementia. However, a great deal of evidence has point to intracellular small oligomers of amyloid peptides, probably transient intermediates in the process of fibrillar structures formation, as the most toxic species. In order to study the amyloid-DNA interaction, we have selected here three different forms of the amyloid peptide: Aβ1-40, Aβ25-35 and a scrambled form of Aβ25-35. Surface Plasmon Resonance was used together with UV-visible spectroscopy, Electrophoresis and Electronic Microscopy to carry out this study. Our results prove that, similarly to the full length Aβ1-42, all conformations of toxic amyloid peptides, Aβ1-40 and Aβ25-35, may bind DNA. In contrast, the scrambled form of Aβ25-35, a non-aggregating and nontoxic form of this peptide, could not bind DNA. We conclude that although the amyloid-DNA interaction is closely related to the amyloid aggregation proneness, this cannot be the only factor which determines the interaction, since small oligomers of amyloid peptides may also bind DNA if their predominant negatively charged amino acid residues are previously neutralized.

  3. Quantification of the binding properties of Cu2+ to the amyloid beta peptide: coordination spheres for human and rat peptides and implication on Cu2+-induced aggregation.

    Science.gov (United States)

    Hong, Lian; Carducci, Tessa M; Bush, William D; Dudzik, Christopher G; Millhauser, Glenn L; Simon, John D

    2010-09-02

    There is no consensus on the coordinating ligands for Cu(2+) by Abeta. However, the differences in peptide sequence between human and rat have been hypothesized to alter metal ion binding in a manner that alters Cu(2+)-induced aggregation of Abeta. Herein, we employ isothermal titration calorimetry (ITC), circular dichroism (CD), and electron paramagnetic resonance (EPR) spectroscopy to examine the Cu(2+) coordination spheres to human and rat Abeta and an extensive set of Abeta(16) mutants. EPR of the mutant peptides is consistent with a 3N1O binding geometry, like the native human peptide at pH 7.4. The thermodynamic data reveal an equilibrium between three coordination spheres, {NH(2), O, N(Im)(His6), N(-)}, {NH(2), O, N(Im)(His6), N(Im)(His13)}, and {NH(2), O, N(Im)(His6), N(Im)(His14)}, for human Abeta(16) but one dominant coordination for rat Abeta(16), {NH(2), O, N(Im)(His6), N(-)}, at pH 7.4-6.5. ITC and CD data establish that the mutation R5G is sufficient for reproducing this difference in Cu(2+) binding properties at pH 7.4. The substitution of bulky and positively charged Arg by Gly is proposed to stabilize the coordination {NH(2), O-, N(Im)(His6), N(-)} that then results in one dominating coordination sphere for the case of the rat peptide. The differences in the coordination geometries for Cu(2+) by the human and rat Abeta are proposed to contribute to the variation in the ability of Cu(2+) to induce aggregation of Abeta peptides.

  4. Potential of carbohydrate-binding agents as therapeutics against enveloped viruses.

    Science.gov (United States)

    François, K O; Balzarini, J

    2012-03-01

    Twenty-seven years after the discovery of HIV as the cause of AIDS more than 25 drugs directed against four different viral targets (i.e. reverse transcriptase, protease, integrase, envelope gp41) and one cellular target (i.e. CCR5 co-receptor) are available for treatment. However, the search for an efficient vaccine is still ongoing. One of the main problems is the presence of a continuously evolving dense carbohydrate shield, consisting of N-linked glycans that surrounds the virion and protects it against efficient recognition and persistent neutralization by the immune system. However, several lectins from the innate immune system specifically bind to these glycans in an attempt to process the virus antigens to provoke an immune response. Across a wide variety of different species in nature lectins can be found that can interact with the glycosylated envelope of HIV-1 and can block the infection of susceptible cells by the virus. In this review, we will give an overview of the lectins from non-mammalian origin that are endowed with antiviral properties and discuss the complex interactions between lectins of the innate immune system and HIV-1. Also, attention will be given to different carbohydrate-related modalities that can be exploited for antiviral chemotherapy.

  5. Modeling amyloids in bacteria

    Directory of Open Access Journals (Sweden)

    Villar-Piqué Anna

    2012-12-01

    Full Text Available Abstract An increasing number of proteins are being shown to assemble into amyloid structures, self-seeding fibrillar aggregates that may lead to pathological states or play essential biological functions in organisms. Bacterial cell factories have raised as privileged model systems to understand the mechanisms behind amyloid assembly and the cellular fitness cost associated to the formation of these aggregates. In the near future, these bacterial systems will allow implementing high-throughput screening approaches to identify effective modulators of amyloid aggregation.

  6. Binding of the radioprotective agent cysteamine with the phospholipidic membrane headgroup-interface region

    Energy Technology Data Exchange (ETDEWEB)

    Berleur, F.; Roman, V.; Jaskierowicz, D.; Fatome, M.; Leterrier, F.; Ter-Minassian-Saraga, L.; Madelmont, G.

    1985-09-01

    The interaction of the aminothiol radioprotector cysteamine (..beta..-mercaptoethylamine)(CYST) with dipalmitoylphosphatidylcholine (DPPC) artificial membranes has been studied by differential scanning calorimetry (DSC), turbidimetry and spin labeling. This hydrophilic molecule displays a biphasic, concentration-dependent binding to the phospholipidic head groups at neutral pH. In the CYST/DPPC molar ratio 1:160-1:2 (mole/mole) an increasing ordering effect is observed. At high concentrations (over 3:1 ratio), this ordering effect decreases. With the symmetric disulfide dimer cystamine, the biphasic effect is not shown and the membrane rigidity decrease is obtained only at concentration ratio higher than 1:1. The charge repartition of the cysteamine molecule has been shown to be disymmetric, +0.52 e on the NH/sub 3/ group and +0.19 e on the SH extremity, whereas the cystamine molecule is electrostatically symmetrical. These properties could be related to their membrane effects. With cysteamine, at a low concentration, an electrostatic bridging between the negatively charged phosphate groups of the polar heads induces the increase in membrane stability: the molecules behave like a divalent cation. At high concentration a displacement of the slightly charged SH extremity by the amine disrupts the bridges and induces the decrease in rigidity: the drug behaves like a monovalent cation. Due to its symmetric charge and its double length, such an effect is not observed with cystamine. This study could bring further information about the interactions between cysteamine and polyelectrolytic structures (ADN for example) and about the radioprotective properties of this drug.

  7. Sulfonated dyes attenuate the toxic effects of beta-amyloid in a structure-specific fashion.

    Science.gov (United States)

    Pollack, S J; Sadler, I I; Hawtin, S R; Tailor, V J; Shearman, M S

    1995-09-15

    We recently reported that several sulfate-containing glycosaminoglycans, a class of compounds associated with the beta-amyloid plaques of Alzheimer's disease, attenuate the toxic effects of beta-amyloid fragments beta 25-35 and beta 1-40. The amyloid-binding sulfonated dye Congo Red was shown to have a similar effect. Using two clonal cell lines, we now demonstrate that several sulfonated dyes attenuate beta-amyloid toxicity and that the protective effect appears specific for compounds whose sulfonate groups can interact with the beta-pleated structure of aggregated amyloid. These results suggest that by binding beta-amyloid these compounds may prevent toxic interactions of the peptide with cells.

  8. Cerebral amyloid angiopathy

    Science.gov (United States)

    ... needed for weakness or clumsiness. This can include physical, occupational, or speech therapy. Sometimes, medicines that help improve memory, such as those for Alzheimer disease, are used. Seizures, also called amyloid spells, may ...

  9. Immunohistochemical identification and crossreactions of amyloid-A fibril protein in man and eleven other species

    OpenAIRE

    Gruys, E.; Linke, R.P.; Hol, P.R.; Geisel, O.; Nathrath, W.B.J.; Trautwein, G

    1984-01-01

    Antisera were prepared in rabbits, sheep or chicken against purified amyloid fibril protein AA from man, mouse, stone marten, dog, cow and hamster. These antisera were tested by immunodiffusion against all purified antigens and applied to tissue sections containing amyloid from man, mouse, hamster, guinea pig, rabbit, cat, dog, mink, stone marten, pine marten, cow and horse. The binding of the antibodies to amyloid in tissue sections was assessed by the indirect immunoperoxidase method. The s...

  10. An update on the amyloid hypothesis.

    Science.gov (United States)

    Eckman, Christopher B; Eckman, Elizabeth A

    2007-08-01

    Alzheimer's disease (AD) is a devastating neurodegenerative disease. To rationally develop novel therapeutic and/or preventative agents for AD, an understanding of the etiology and pathogenesis of this complex disease is necessary. This article examines the evidence for the amyloid hypothesis of AD pathogenesis and discusses how it relates to the neurological and neuropathological features of AD, the known genetic risk factors and causative mutations, and the heightened risk associated with advanced age.

  11. Functionalized Magnetic Resonance Contrast Agent Selectively Binds to Glycoprotein IIb/IIIa on Activated Human Platelets under Flow Conditions and Is Detectable at Clinically Relevant Field Strengths

    Directory of Open Access Journals (Sweden)

    Constantin von zur Mühlen

    2008-03-01

    Full Text Available Recent progress in molecular magnetic resonance imaging (MRI provides the opportunity to image cells and cellular receptors using microparticles of iron oxide (MPIOs. However, imaging targets on vessel walls remains challenging owing to the quantity of contrast agents delivered to areas of interest under shear stress conditions. We evaluated ex vivo binding characteristics of a functional MRI contrast agent to ligand-induced binding sites (LIBSs on activated glycoprotein IIb/IIIa receptors of human platelets, which were lining rupture-prone atherosclerotic plaques and could therefore facilitate detection of platelet-mediated pathology in atherothrombotic disease. MPIOs were conjugated to anti-LIBS single-chain antibodies (LIBS-MPIO or control antibodies (control MPIO. Ex vivo binding to human platelet-rich clots in a dose-dependent manner was confirmed on a 3 T clinical MRI scanner and by histology (p < .05 for LIBS-MPIO vs control MPIO. By using a flow chamber setup, significant binding of LIBS-MPIO to a platelet matrix was observed under venous and arterial flow conditions, but not for control MPIO (p < .001. A newly generated MRI contrast agent detects activated human platelets at clinically relevant magnetic field strengths and binds to platelets under venous and arterial flow conditions, conveying high payloads of contrast to specific molecular targets. This may provide the opportunity to identify vulnerable, rupture-prone atherosclerotic plaques via noninvasive MRI.

  12. Implications of nanoscale based drug delivery systems in delivery and targeting tubulin binding agent, noscapine in cancer cells.

    Science.gov (United States)

    Chandra, Ramesh; Madan, Jitender; Singh, Prashant; Chandra, Ankush; Kumar, Pradeep; Tomar, Vartika; Dass, Sujata K

    2012-12-01

    Noscapine, a tubulin binding anticancer agent undergoing Phase I/II clinical trials, inhibits tumor growth in nude mice bearing human xenografts of breast, lung, ovarian, brain, and prostrate origin. The analogues of noscapine like 9-bromonoscapine (EM011) are 5 to 10-fold more active than parent compound, noscapine. Noscapinoids inhibit the proliferation of cancer cells that are resistant to paclitaxel and epothilone. Noscapine also potentiated the anticancer activity of doxorubicin in a synergistic manner against triple negative breast cancer (TNBC). However, physicochemical and pharmacokinetic (ED50˜300-600 mg/kg bodyweight) limitations of noscapine present hurdle in development of commercial anticancer formulations. Therefore, objectives of the present review are to summarize the chemotherapeutic potential of noscapine and implications of nanoscale based drug delivery systems in enhancing the therapeutic efficacy of noscapine in cancer cells. We have constructed noscapine-enveloped gelatin nanoparticles, NPs and poly (ethylene glycol) grafted gelatin NPs as well as inclusion complex of noscapine in β-cyclodextrin (β-CD) and evaluated their physicochemical characteristics. The Fe3O4 NPs were also used to incorporate noscapine in its polymeric nanomatrix system where molecular weight of the polymer governed the encapsulation efficiency of drug. The enhanced noscapine delivery using μPAR-targeted optical-MR imaging trackable NPs offer a great potential for image directed targeted delivery of noscapine. Human Serum Albumin NPs (150-300 nm) as efficient noscapine drug delivery systems have also been developed for potential use in breast cancer.

  13. Binuclear ruthenium(II) complexes for amyloid fibrils recognition

    Energy Technology Data Exchange (ETDEWEB)

    Hanczyc, Piotr, E-mail: piotr.hanczyc@chalmers.se

    2014-12-05

    Highlights: • Interactions of binuclear ruthenium(II) complexes with amyloid fibrils. • Dimer ruthenium(II) compounds are sensitive amyloid fibrils biomarkers. • Recognition of amyloid-chromophore adducts by two-photon excited emission. - Abstract: Metal–organic compounds represent a unique class of biomarkers with promising photophysical properties useful for imaging. Here interactions of insulin fibrils with two binuclear complexes [μ-(11,11′-bidppz)(phen){sub 4}Ru{sub 2}]{sup 4+} (1) and [μ-C4(cpdppz)(phen){sub 4}Ru{sub 2}]{sup 4+} (2) are studied by linear dichroism (LD) and fluorescence. These ruthenium(II) compounds could provide a new generation of amyloid binding chromophores with long lived lifetimes, good luminescence quantum yields for the bound molecules and photo-stability useful in multiphoton luminescence imaging.

  14. Characterization of amyloid in equine recurrent uveitis as AA amyloid.

    Science.gov (United States)

    Ostevik, L; de Souza, G A; Wien, T N; Gunnes, G; Sørby, R

    2014-01-01

    Two horses with chronic uveitis and histological lesions consistent with equine recurrent uveitis (ERU) were examined. Microscopical findings in the ciliary body included deposits of amyloid lining the non-pigmented epithelium, intracytoplasmic, rod-shaped, eosinophilic inclusions and intraepithelial infiltration of T lymphocytes. Ultrastructural examination of the ciliary body of one horse confirmed the presence of abundant extracellular deposits of non-branching fibrils (9-11 nm in diameter) consistent with amyloid. Immunohistochemistry revealed strong positive labelling for AA amyloid and mass spectrometry showed the amyloid to consist primarily of serum amyloid A1 in both cases. The findings suggest that localized, intraocular AA amyloidosis may occur in horses with ERU.

  15. Semi-automated high-throughput fluorescent intercalator displacement-based discovery of cytotoxic DNA binding agents from a large compound library.

    Science.gov (United States)

    Glass, Lateca S; Bapat, Aditi; Kelley, Mark R; Georgiadis, Millie M; Long, Eric C

    2010-03-01

    High-throughput fluorescent intercalator displacement (HT-FID) was adapted to the semi-automated screening of a commercial compound library containing 60,000 molecules resulting in the discovery of cytotoxic DNA-targeted agents. Although commercial libraries are routinely screened in drug discovery efforts, the DNA binding potential of the compounds they contain has largely been overlooked. HT-FID led to the rapid identification of a number of compounds for which DNA binding properties were validated through demonstration of concentration-dependent DNA binding and increased thermal melting of A/T- or G/C-rich DNA sequences. Selected compounds were assayed further for cell proliferation inhibition in glioblastoma cells. Seven distinct compounds emerged from this screening procedure that represent structures unknown previously to be capable of targeting DNA leading to cell death. These agents may represent structures worthy of further modification to optimally explore their potential as cytotoxic anti-cancer agents. In addition, the general screening strategy described may find broader impact toward the rapid discovery of DNA targeted agents with biological activity.

  16. Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Payel Das

    Full Text Available Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ peptide aggregation is crucial for designing treatment for Alzheimer's disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have been performed to characterize the Aβ17-42 assembly in presence of the αB-crystallin core domain and of lysozyme. Simulations reveal that both inhibitor proteins compete with inter-peptide interaction by binding to the peptides during the early stage of aggregation, which is consistent with their inhibitory action reported in experiments. However, the Aβ binding dynamics appear different for each inhibitor. The binding between crystallin and the peptide monomer, dominated by electrostatics, is relatively weak and transient due to the heterogeneous amino acid distribution of the inhibitor surface. The crystallin-bound Aβ oligomers are relatively long-lived, as they form more extensive contact surface with the inhibitor protein. In contrast, a high local density of arginines from lysozyme allows strong binding with Aβ peptide monomers, resulting in stable complexes. Our findings not only illustrate, in atomic detail, how the amyloid inhibitory mechanism of human αB-crystallin, a natural chaperone, is different from that of human lysozyme, but also may aid de novo design of amyloid inhibitors.

  17. Amyloid β levels in human red blood cells.

    Directory of Open Access Journals (Sweden)

    Takehiro Kiko

    Full Text Available UNLABELLED: Amyloid β-peptide (Aβ is hypothesized to play a key role by oxidatively impairing the capacity of red blood cells (RBCs to deliver oxygen to the brain. These processes are implicated in the pathogenesis of Alzheimer's disease (AD. Although plasma Aβ has been investigated thoroughly, the presence and distribution of Aβ in human RBCs are still unclear. In this study, we quantitated Aβ40 and Aβ42 in human RBCs with ELISA assays, and provided evidence that significant amounts of Aβ could be detected in RBCs and that the RBC Aβ levels increased with aging. The RBC Aβ levels increased with aging. On the other hand, providing an antioxidant supplement (astaxanthin, a polar carotenoid to humans was found to decrease RBC Aβ as well as oxidative stress marker levels. These results suggest that plasma Aβ40 and Aβ42 bind to RBCs (possibly with aging, implying a pathogenic role of RBC Aβ. Moreover, the data indicate that RBC Aβ40 and Aβ42 may constitute biomarkers of AD. As a preventive strategy, therapeutic application of astaxanthin as an Aβ-lowering agent in RBCs could be considered as a possible anti-dementia agent. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN42483402.

  18. Nanomaterials for reducing amyloid cytotoxicity.

    Science.gov (United States)

    Zhang, Min; Mao, Xiaobo; Yu, Yue; Wang, Chen-Xuan; Yang, Yan-Lian; Wang, Chen

    2013-07-26

    This review is intended to reflect the recent progress on therapeutic applications of nanomaterials in amyloid diseases. The progress on anti-amyloid functions of various nanomaterials including inorganic nanoparticles, polymeric nanoparticles, carbon nanomaterials and biomolecular aggregates, is reviewed and discussed. The main functionalization strategies for general nanoparticle modifications are reviewed for potential applications of targeted therapeutics. The interaction mechanisms between amyloid peptides and nanomaterials are discussed from the perspectives of dominant interactions and kinetics. The encapsulation of anti-amyloid drugs, targeted drug delivery, controlled drug release and drug delivery crossing blood brain barrier by application of nanomaterials would also improve the therapeutics of amyloid diseases.

  19. Insights into the interaction of discodermolide and docetaxel with tubulin. Mapping the binding sites of microtubule-stabilizing agents by using an integrated NMR and computational approach.

    Science.gov (United States)

    Canales, Angeles; Rodríguez-Salarichs, Javier; Trigili, Chiara; Nieto, Lidia; Coderch, Claire; Andreu, José Manuel; Paterson, Ian; Jiménez-Barbero, Jesús; Díaz, J Fernando

    2011-08-19

    The binding interactions of two antitumor agents that target the paclitaxel site, docetaxel and discodermolide, to unassembled α/β-tubulin heterodimers and microtubules have been studied using biochemical and NMR techniques. The use of discodermolide as a water-soluble paclitaxel biomimetic and extensive NMR experiments allowed the detection of binding of microtubule-stabilizing agents to unassembled tubulin α/β-heterodimers. The bioactive 3D structures of docetaxel and discodermolide bound to α/β-heterodimers were elucidated and compared to those bound to microtubules, where subtle changes in the conformations of docetaxel in its different bound states were evident. Moreover, the combination of experimental TR-NOE and STD NMR data with CORCEMA-ST calculations indicate that docetaxel and discodermolide target an additional binding site at the pore of the microtubules, which is different from the internal binding site at the lumen previously determined by electron crystallography. Binding to this pore site can then be considered as the first ligand-protein recognition event that takes place in advance of the drug internalization process and interaction with the lumen of the microtubules.

  20. Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis.

    Science.gov (United States)

    Pepys, M B; Herbert, J; Hutchinson, W L; Tennent, G A; Lachmann, H J; Gallimore, J R; Lovat, L B; Bartfai, T; Alanine, A; Hertel, C; Hoffmann, T; Jakob-Roetne, R; Norcross, R D; Kemp, J A; Yamamura, K; Suzuki, M; Taylor, G W; Murray, S; Thompson, D; Purvis, A; Kolstoe, S; Wood, S P; Hawkins, P N

    2002-05-16

    The normal plasma protein serum amyloid P component (SAP) binds to fibrils in all types of amyloid deposits, and contributes to the pathogenesis of amyloidosis. In order to intervene in this process we have developed a drug, R-1-[6-[R-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid, that is a competitive inhibitor of SAP binding to amyloid fibrils. This palindromic compound also crosslinks and dimerizes SAP molecules, leading to their very rapid clearance by the liver, and thus produces a marked depletion of circulating human SAP. This mechanism of drug action potently removes SAP from human amyloid deposits in the tissues and may provide a new therapeutic approach to both systemic amyloidosis and diseases associated with local amyloid, including Alzheimer's disease and type 2 diabetes.

  1. Switchable photooxygenation catalysts that sense higher-order amyloid structures

    Science.gov (United States)

    Taniguchi, Atsuhiko; Shimizu, Yusuke; Oisaki, Kounosuke; Sohma, Youhei; Kanai, Motomu

    2016-10-01

    Proteins can misfold into amyloid structures that are associated with diseases; however, the same proteins often have important biological roles. To degrade selectively the amyloid form without affecting the fraction of functional protein is, therefore, an attractive goal. Here we report target-state-dependent photooxygenation catalysts that are active only when bound to the cross-β-sheet structure that is characteristic of pathogenic aggregated amyloid proteins. We show these catalysts can selectively oxygenate the amyloid form of amyloid β-protein (Aβ) 1-42 in the presence of non-amyloid off-target substrates. Furthermore, photooxygenation with a catalyst that bears an Aβ-binding peptide attenuated the Aβ pathogenicity in the presence of cells. We also show that selective photooxygenation is generally applicable to other amyloidogenic proteins (amylin, insulin, β2-microglobulin, transthyretin and α-synuclein) and does not affect the physiologically functional non-aggregate states of these proteins. This is the first report of an artificial catalyst that can be selectively and reversibly turned on and off depending on the structure and aggregation state of the substrate protein.

  2. Therapeutic treatment of Alzheimer's disease using metal complexing agents.

    Science.gov (United States)

    Price, Katherine A; Crouch, Peter J; White, Anthony R

    2007-11-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by deposition of extracellular amyloid plaques, formation of intracellular neurofibrillary tangles and neuronal dysfunction in the brain. A growing body of evidence indicates a central role for biometals such as copper in many critical aspects of AD. The amyloid beta (Abeta) peptide and its parental molecule, the amyloid precursor protein (APP) both modulate Cu and Zn metabolism in the brain. Therefore, aberrant changes to APP or Abeta metabolism could potentially alter biometal homoestasis in AD, leading to increased free radical production and neuronal oxidative stress. Modulation of metal bioavailability in the brain has been proposed as a potential therapeutic strategy for treatment of AD patients. The lipid permeable metal complexing agent, clioquinol (CQ), has shown promising results in animal models of AD and in small clinical trials involving AD patients. Moreover, a new generation of metal-ligand based therapeutics is currently under development. Patents now cover the generation of novel metal ligand structures designed to modulate metal binding to Abeta and quench metal-mediated free radical generation. However, the mechanism by which CQ and other metal complexing agents slows cognitive decline in AD animal models and patients is unknown. Increasing evidence suggests that ligand-mediated redistribution of metals at a cellular level in the brain may be important. Further research will be necessary to fully understand the complex pathways associated with efficacious metal-based pharmaceuticals for treatment of AD.

  3. Amyloid fibrils composed of hexameric peptides attenuate neuroinflammation.

    Science.gov (United States)

    Kurnellas, Michael P; Adams, Chris M; Sobel, Raymond A; Steinman, Lawrence; Rothbard, Jonathan B

    2013-04-03

    The amyloid-forming proteins tau, αB crystallin, and amyloid P protein are all found in lesions of multiple sclerosis (MS). Our previous work established that amyloidogenic peptides from the small heat shock protein αB crystallin (HspB5) and from amyloid β fibrils, characteristic of Alzheimer's disease, were therapeutic in experimental autoimmune encephalomyelitis (EAE), reflecting aspects of the pathology of MS. To understand the molecular basis for the therapeutic effect, we showed a set of amyloidogenic peptides composed of six amino acids, including those from tau, amyloid β A4, major prion protein (PrP), HspB5, amylin, serum amyloid P, and insulin B chain, to be anti-inflammatory and capable of reducing serological levels of interleukin-6 and attenuating paralysis in EAE. The chaperone function of the fibrils correlates with the therapeutic outcome. Fibrils composed of tau 623-628 precipitated 49 plasma proteins, including apolipoprotein B-100, clusterin, transthyretin, and complement C3, supporting the hypothesis that the fibrils are active biological agents. Amyloid fibrils thus may provide benefit in MS and other neuroinflammatory disorders.

  4. Complexation of amyloid fibrils with charged conjugated polymers.

    Science.gov (United States)

    Ghosh, Dhiman; Dutta, Paulami; Chakraborty, Chanchal; Singh, Pradeep K; Anoop, A; Jha, Narendra Nath; Jacob, Reeba S; Mondal, Mrityunjoy; Mankar, Shruti; Das, Subhadeep; Malik, Sudip; Maji, Samir K

    2014-04-01

    It has been suggested that conjugated charged polymers are amyloid imaging agents and promising therapeutic candidates for neurological disorders. However, very less is known about their efficacy in modulating the amyloid aggregation pathway. Here, we studied the modulation of Parkinson's disease associated α-synuclein (AS) amyloid assembly kinetics using conjugated polyfluorene polymers (PF, cationic; PFS, anionic). We also explored the complexation of these charged polymers with the various AS aggregated species including amyloid fibrils and oligomers using multidisciplinary biophysical techniques. Our data suggests that both polymers irrespective of their different charges in the side chains increase the fibrilization kinetics of AS and also remarkably change the morphology of the resultant amyloid fibrils. Both polymers were incorporated/aligned onto the AS amyloid fibrils as evident from electron microscopy (EM) and atomic force microscopy (AFM), and the resultant complexes were structurally distinct from their pristine form of both polymers and AS supported by FTIR study. Additionally, we observed that the mechanism of interactions between the polymers with different species of AS aggregates were markedly different.

  5. Amyloid diseases of yeast: prions are proteins acting as genes.

    Science.gov (United States)

    Wickner, Reed B; Edskes, Herman K; Bateman, David A; Kelly, Amy C; Gorkovskiy, Anton; Dayani, Yaron; Zhou, Albert

    2014-01-01

    The unusual genetic properties of the non-chromosomal genetic elements [URE3] and [PSI+] led to them being identified as prions (infectious proteins) of Ure2p and Sup35p respectively. Ure2p and Sup35p, and now several other proteins, can form amyloid, a linear ordered polymer of protein monomers, with a part of each molecule, the prion domain, forming the core of this β-sheet structure. Amyloid filaments passed to a new cell seed the conversion of the normal form of the protein into the same amyloid form. The cell's phenotype is affected, usually from the deficiency of the normal form of the protein. Solid-state NMR studies indicate that the yeast prion amyloids are in-register parallel β-sheet structures, in which each residue (e.g. Asn35) forms a row along the filament long axis. The favourable interactions possible for aligned identical hydrophilic and hydrophobic residues are believed to be the mechanism for propagation of amyloid conformation. Thus, just as DNA mediates inheritance by templating its own sequence, these proteins act as genes by templating their conformation. Distinct isolates of a given prion have different biological properties, presumably determined by differences between the amyloid structures. Many lines of evidence indicate that the Saccharomyces cerevisiae prions are pathological disease agents, although the example of the [Het-s] prion of Podospora anserina shows that a prion can have beneficial aspects.

  6. 一种基于绑定邮箱的可靠移动Agent通信算法%Reliable Mobile Agent Communication Algorithm Based on Binding Mailbox

    Institute of Scientific and Technical Information of China (English)

    闫七斐; 惠晓威; 卢永

    2011-01-01

    In recent years, mobile Agent communications algorithm has been the focus of the study.This paper analyzes several mobile Agent communication algorithms and puts forward a reliable, secure, flexible and optimal utilization of message binding mailbox Agent communication algorithms based on previous studies.%移动Agent通信算法一直是近些年研究的重点.通过分析几种移动Agent通信机制,并且在总结前人研究的基础上,提出了一种可靠、安全、灵活和消息利用率最优的邮箱绑定Agent通信算法.

  7. Effect of pretreatment with human butyrylcholinesterase scavengers on the toxicokinetics and binding of nerve agents in guinea pigs

    NARCIS (Netherlands)

    Schans, M.J. van der; Pleijsier, K.; Wiel, H.J. van der; Boone, C.M.; Langenberg, J.P.

    2004-01-01

    Human butyrylcholinesterase (HuBuChE) is the most promising scavenger for use as a pretreatment drug against nerve agents. Although in animal studies pretreatment with HuBuChE appeared to improve the survival rate following nerve agent challenges and to alleviate post-exposure incapacitation, the in

  8. Mechanically functional amyloid fibrils in the adhesive of a marine invertebrate as revealed by Raman spectroscopy and atomic force microscopy.

    Science.gov (United States)

    S Mostaert, Anika; Crockett, Rowena; Kearn, Graham; Cherny, Izhack; Gazit, Ehud; C Serpell, Louise; P Jarvis, Suzanne

    2009-01-01

    Amyloid fibrils are primarily known in a pathogenic context for their association with a wide range of debilitating human diseases. Here we show a marine invertebrate (Entobdella soleae) utilizes functional amyloid fibrils comparable to those of a unicellular prokaryote (Escherichia coli). Thioflavin-T binding and Raman spectroscopy provided evidence for the presence of amyloid in the adhesive of Entobdella soleae. We elucidated that for these two very different organisms, amyloid fibrils provide adhesive and cohesive strength to their natural adhesives. Comparing the nanoscale mechanical responses of these fibrils with those of pathogenic amyloid by atomic force microscopy revealed that the molecular level origin of the cohesive strength was associated with the generic intermolecular β-sheet structure of amyloid fibrils. Functional adhesive residues were found only in the case of the functional amyloid. Atomic force microscopy provided a useful means to characterize the internal structural forces within individual amyloid fibrils and how these relate to the mechanical performance of both functional and pathogenic amyloid. The mechanistic link of amyloid-based cohesive and adhesive strength could be widespread amongst natural adhesives, irrespective of environment, providing a new strategy for biomimicry and a new source of materials for understanding the formation and stability of amyloid fibrils more generally.

  9. CYB5D2 requires heme-binding to regulate HeLa cell growth and confer survival from chemotherapeutic agents.

    Directory of Open Access Journals (Sweden)

    Anthony Bruce

    Full Text Available The cytochrome b5 domain containing 2 (CYB5D2; Neuferricin protein has been reported to bind heme, however, the critical residues responsible for heme-binding are undefined. Furthermore, the relationship between heme-binding and CYB5D2-mediated intracellular functions remains unknown. Previous studies examining heme-binding in two cytochrome b5 heme-binding domain-containing proteins, damage-associated protein 1 (Dap1; Saccharomyces cerevisiae and human progesterone receptor membrane component 1 (PGRMC1, have revealed that conserved tyrosine (Y 73, Y79, aspartic acid (D 86, and Y127 residues present in human CYB5D2 may be involved in heme-binding. CYB5D2 binds to type b heme, however, only the substitution of glycine (G at D86 (D86G within its cytochrome b5 heme-binding (cyt-b5 domain abolished its heme-binding ability. Both CYB5D2 and CYB5D2(D86G localize to the endoplasmic reticulum. Ectopic CYB5D2 expression inhibited cell proliferation and anchorage-independent colony growth of HeLa cells. Conversely, CYB5D2 knockdown and ectopic CYB5D2(D86G expression increased cell proliferation and colony growth. As PGRMC1 has been reported to regulate the expression and activities of cytochrome P450 proteins (CYPs, we examined the role of CYB5D2 in regulating the activities of CYPs involved in sterol synthesis (CYP51A1 and drug metabolism (CYP3A4. CYB5D2 co-localizes with cytochrome P450 reductase (CYPOR, while CYB5D2 knockdown reduced lanosterol demethylase (CYP51A1 levels and rendered HeLa cells sensitive to mevalonate. Additionally, knockdown of CYB5D2 reduced CYP3A4 activity. Lastly, CYB5D2 expression conferred HeLa cell survival from chemotherapeutic agents (paclitaxel, cisplatin and doxorubicin, with its ability to promote survival being dependent on its heme-binding ability. Taken together, this study provides evidence that heme-binding is critical for CYB5D2 in regulating HeLa cell growth and survival, with endogenous CYB5D2 being required to

  10. Effect of Fe{sub 3}O{sub 4} magnetic nanoparticles on lysozyme amyloid aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Bellova, Andrea; Koneracka, Martina; Kopcansky, Peter; Tomasovicova, Natalia; Timko, Milan; Bagelova, Jaroslava; Gazova, Zuzana [Department of Biophysics, Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Science, Watsonova 47, 04001 Kosice (Slovakia); Bystrenova, Eva; Valle, Francesco; Biscarini, Fabio, E-mail: gazova@saske.sk [CNR-Instituto per lo Studio dei Materiali Nanostrutturati, via Gobetti 101, I-40129 Bologna (Italy)

    2010-02-10

    Peptide amyloid aggregation is a hallmark of several human pathologies termed amyloid diseases. We have investigated the effect of electrostatically stabilized magnetic nanoparticles of Fe{sub 3}O{sub 4} on the amyloid aggregation of lysozyme, as a prototypical amyloidogenic protein. Thioflavin T fluorescence assay and atomic force microscopy were used for monitoring the inhibiting and disassembly activity of magnetic nanoparticles of Fe{sub 3}O{sub 4}. We have found that magnetic Fe{sub 3}O{sub 4} nanoparticles are able to interact with lysozyme amyloids in vitro leading to a reduction of the amyloid aggregates, thus promoting depolymerization; the studied nanoparticles also inhibit lysozyme amyloid aggregation. The ability to inhibit lysozyme amyloid formation and promote lysozyme amyloid disassembly exhibit concentration-dependent characteristics with IC50 = 0.65 mg ml{sup -1} and DC50 = 0.16 mg ml{sup -1} indicating that nanoparticles interfere with lysozyme aggregation already at stoichiometric concentrations. These features make Fe{sub 3}O{sub 4} nanoparticles of potential interest as therapeutic agents against amyloid diseases and their non-risk exploitation in nanomedicine and nanodiagnostics.

  11. Pretreatment of plasma samples by a novel hollow fiber centrifugal ultrafiltration technique for the determination of plasma protein binding of three coumarins using acetone as protein binding releasing agent.

    Science.gov (United States)

    Li, Junmei; Shi, Qingwen; Jiang, Ye; Liu, Yan

    2015-09-15

    A novel and practical sample pretreatment method based on hollow fiber centrifugal ultrafiltration (HFCF-UF) was developed to determine plasma protein binding by using HPLC. The samples for analyzing unbound and total concentrations could be prepared in parallel simultaneously by the same device. It only required centrifugation for a short time and the filtrate could be injected directly for HPLC analysis without further treatment. Coumarins were selected as the model drugs. Acetone was chosen as the releasing agent to free the binding drug from the drug-protein complex for the total drug concentration determination. Non-specific bindings (NSBs) between the analytes and hollow fiber membrane materials were investigated. The type and volume of protein binding releaser were optimized. Additionally, centrifugal speed and centrifugal time were considered. Under the optimized conditions, the absolute recovery rates of the unbound and total concentrations were in the range of 97.5-100.9% for the three analytes. The limits of detection were in the range of 0.0135-0.0667μgmL(-1). In vitro plasma protein binding of the three coumarins was determined at three concentrations using the validated method and the relative standard deviations (RSDs) were less than 3.4%. Compared with traditional method, the HFCF-UF method is simple to run, no specialized equipment requirement and is a more accurate plasma pretreatment procedure with almost excellent drug-protein binding equilibrium. Therefore, this method can be applied to determine the plasma protein binding in clinical practice. It also provides a reliable alternative for accurate monitoring of unbound or total drug concentration in therapeutic drug monitoring (TDM).

  12. PRM-151 (recombinant human serum amyloid P/pentraxin 2) for the treatment of fibrosis.

    Science.gov (United States)

    Duffield, Jeremy S; Lupher, Mark L

    2010-06-01

    Serum amyloid P or pentraxin 2 (PTX2) is a highly phylogenetically conserved, naturally circulating plasma protein and a soluble pattern recognition receptor of the innate immune system. The unique binding activities of PTX2 suggest that it may localize specifically to sites of injury and function to aid in the removal of damaged tissue. The recent discovery of its ability to regulate certain monocyte differentiation states has identified PTX2 as a novel and potentially powerful antifibrotic agent. A fully recombinant form of the human PTX2 protein, designated PRM-151, has recently initiated human clinical trials. Here we review the molecular, cellular and structural biology of PRM-151/PTX2 in vitro and in several in vivo preclinical models of fibrotic disease that demonstrate its potential as a first-in-class natural modulator of fibrotic pathology with significant potential to treat a wide variety of human diseases.

  13. Rational design, synthesis, and biological evaluation of third generation α-noscapine analogues as potent tubulin binding anti-cancer agents.

    Science.gov (United States)

    Manchukonda, Naresh Kumar; Naik, Pradeep Kumar; Santoshi, Seneha; Lopus, Manu; Joseph, Silja; Sridhar, Balasubramanian; Kantevari, Srinivas

    2013-01-01

    Systematic screening based on structural similarity of drugs such as colchicine and podophyllotoxin led to identification of noscapine, a microtubule-targeted agent that attenuates the dynamic instability of microtubules without affecting the total polymer mass of microtubules. We report a new generation of noscapine derivatives as potential tubulin binding anti-cancer agents. Molecular modeling experiments of these derivatives 5a, 6a-j yielded better docking score (-7.252 to -5.402 kCal/mol) than the parent compound, noscapine (-5.505 kCal/mol) and its existing derivatives (-5.563 to -6.412 kCal/mol). Free energy (ΔG bind ) calculations based on the linear interaction energy (LIE) empirical equation utilizing Surface Generalized Born (SGB) continuum solvent model predicted the tubulin-binding affinities for the derivatives 5a, 6a-j (ranging from -4.923 to -6.189 kCal/mol). Compound 6f showed highest binding affinity to tubulin (-6.189 kCal/mol). The experimental evaluation of these compounds corroborated with theoretical studies. N-(3-brormobenzyl) noscapine (6f) binds tubulin with highest binding affinity (KD, 38 ± 4.0 µM), which is ~ 4.0 times higher than that of the parent compound, noscapine (KD, 144 ± 1.0 µM) and is also more potent than that of the first generation clinical candidate EM011, 9-bromonoscapine (KD, 54 ± 9.1 µM). All these compounds exhibited substantial cytotoxicity toward cancer cells, with IC50 values ranging from 6.7 µM to 72.9 µM; compound 6f showed prominent anti-cancer efficacy with IC50 values ranging from 6.7 µM to 26.9 µM in cancer cells of different tissues of origin. These compounds perturbed DNA synthesis, delayed the cell cycle progression at G2/M phase, and induced apoptotic cell death in cancer cells. Collectively, the study reported here identified potent, third generation noscapinoids as new anti-cancer agents.

  14. Rational design, synthesis, and biological evaluation of third generation α-noscapine analogues as potent tubulin binding anti-cancer agents.

    Directory of Open Access Journals (Sweden)

    Naresh Kumar Manchukonda

    Full Text Available Systematic screening based on structural similarity of drugs such as colchicine and podophyllotoxin led to identification of noscapine, a microtubule-targeted agent that attenuates the dynamic instability of microtubules without affecting the total polymer mass of microtubules. We report a new generation of noscapine derivatives as potential tubulin binding anti-cancer agents. Molecular modeling experiments of these derivatives 5a, 6a-j yielded better docking score (-7.252 to -5.402 kCal/mol than the parent compound, noscapine (-5.505 kCal/mol and its existing derivatives (-5.563 to -6.412 kCal/mol. Free energy (ΔG bind calculations based on the linear interaction energy (LIE empirical equation utilizing Surface Generalized Born (SGB continuum solvent model predicted the tubulin-binding affinities for the derivatives 5a, 6a-j (ranging from -4.923 to -6.189 kCal/mol. Compound 6f showed highest binding affinity to tubulin (-6.189 kCal/mol. The experimental evaluation of these compounds corroborated with theoretical studies. N-(3-brormobenzyl noscapine (6f binds tubulin with highest binding affinity (KD, 38 ± 4.0 µM, which is ~ 4.0 times higher than that of the parent compound, noscapine (KD, 144 ± 1.0 µM and is also more potent than that of the first generation clinical candidate EM011, 9-bromonoscapine (KD, 54 ± 9.1 µM. All these compounds exhibited substantial cytotoxicity toward cancer cells, with IC50 values ranging from 6.7 µM to 72.9 µM; compound 6f showed prominent anti-cancer efficacy with IC50 values ranging from 6.7 µM to 26.9 µM in cancer cells of different tissues of origin. These compounds perturbed DNA synthesis, delayed the cell cycle progression at G2/M phase, and induced apoptotic cell death in cancer cells. Collectively, the study reported here identified potent, third generation noscapinoids as new anti-cancer agents.

  15. Effects of Divalent Cations and Disulfide Bond Reducing Agents on Specific Binding of Growth Hormone to Liver Membrane Receptors from Snakehead Fish (Ophiocephalus argus, Cantor).

    Science.gov (United States)

    Sun, Xun; Zhang, Xin-Na; Zhu, Shang-Quan; Zheng, Han-Qi

    2000-01-01

    Divalent cations, Ca(2 ), Mg(2 ) and Mn(2 ) enhance the binding of bream growth hormone (brGH) to snakehead fish liver membrane, and their optimum concentration was found to be 8 12 mmol/L, at which Ca(2 ), Mg(2 ) and Mn(2 ) could increase, respectively, the specific binding to 230%, 180%, and 200%, compared with the binding in the absence of ions. The Eadie-Scatchard plot was used for the dynamic analysis of the Ca(2 ) binding site. A low affinity Ca(2 ) binding site was found in the GH-receptor complex with K(m)=0.384 mmol/L, and the affinity constant (K(a)) was increased from 1.045x10(9) L.mol(-1) to 1.295x10(9) L.mol(-1) by the addition of 10 mmol/L CaCl(2). The effects of disulfide bond reducing agents, DTT and ME, on (125)I-brGH binding to growth hormone receptor (GHR) on snakehead fish liver memebrane were also analyzed. The addition of 0.1 20 mmol/L DTT or 0.01% 1% ME to the radioreceptor assay system caused a significant dose dependent increase in the specific binding for (125)I-brGH. In the presence of 0.8 mmol/L DTT or 0.08% ME, the specific binding of (125)I-brGH was increased from 10.2% to 15.5% and 13.2% respectively, and the affinity constant was also increased from 1.265x10(9) L.mol(-1) to 2.185x10(9) L.mol(-1) and 1.625x10(9) L.mol(-1), respectively but no changes in the binding capacity were observed. Further studies showed that the effects of reductants on the specific binding of brGH were due in part to the ligand itself and in part to GHR. In addition, it was observed that one of the three disulfide bonds of brGH could be reduced by 0.8 mmol/L DTT.

  16. In vitro DNA binding studies of the sweetening agent saccharin and its copper(II) and zinc(II) complexes.

    Science.gov (United States)

    Icsel, Ceyda; Yilmaz, Veysel T

    2014-01-05

    The interactions of fish sperm DNA (FS-DNA) with the sodium salt of sweetener saccharin (sacH) and its copper and zinc complexes, namely [M(sac)2(H2O)4]·2H2O (M=Cu(II) or Zn(II)) were studied by using UV-Vis titration, fluorometric competition, thermal denaturation, viscosity and gel electrophoresis measurements. The intrinsic binding constants (Kb) obtained from absorption titrations were estimated to be 2.86 (±0.06)×10(4)M(-1) for Na(sac), 6.67 (±0.12)×10(4)M(-1) for Cu-sac and 4.01 (±0.08)×10(4)M(-1) for Zn-sac. The Cu-sac complex binds to FS-DNA via intercalation with a KA value of 50.12 (±0.22)×10(4)M(-1) as evidenced by competitive binding studies with ethidium bromide. Moreover, competition experiments with Hoechst 33258 are indicative of a groove binding mode of Na(sac) and Zn-sac with binding constants of 3.13 (±0.16)×10(4)M(-1) and 5.25 (±0.22)×10(4)M(-1), respectively. The spectroscopic measurements indicate a moderate DNA binding affinity of Na(sac) and its metal complexes. The suggested binding modes are further confirmed by the thermal denaturation and viscosity measurements. In addition, Cu-sac and Zn-sac show weak ability to damage to pBR322 supercoiled plasmid DNA.

  17. Eugenol prevents amyloid formation of proteins and inhibits amyloid-induced hemolysis

    Science.gov (United States)

    Dubey, Kriti; Anand, Bibin G.; Shekhawat, Dolat Singh; Kar, Karunakar

    2017-02-01

    Eugenol has attracted considerable attention because of its potential for many pharmaceutical applications including anti-inflammatory, anti-tumorigenic and anti-oxidant properties. Here, we have investigated the effect of eugenol on amyloid formation of selected globular proteins. We find that both spontaneous and seed-induced aggregation processes of insulin and serum albumin (BSA) are significantly suppressed in the presence of eugenol. Isothermal titration calorimetric data predict a single binding site for eugenol-insulin complex confirming the affinity of eugenol for native soluble insulin species. We also find that eugenol suppresses amyloid-induced hemolysis. Our findings reveal the inherent ability of eugenol to stabilize native proteins and to delay the conversion of protein species of native conformation into β-sheet assembled mature fibrils, which seems to be crucial for its inhibitory effect.

  18. Pathogenesis of cerebral amyloid angiopathy.

    NARCIS (Netherlands)

    Rensink, A.A.M.; Waal, R.M.W. de; Kremer, H.P.H.; Verbeek, M.M.

    2003-01-01

    Cerebral amyloid angiopathy (CAA) is the result of the deposition of an amyloidogenic protein in cortical and leptomeningeal vessels. The most common type of CAA is caused by amyloid beta-protein (Abeta), which is particularly associated with Alzheimer's disease (AD). Excessive Abeta-CAA formation c

  19. Binding of transition metal ions [cobalt, copper, nickel and zinc] with furanyl-, thiophenyl-, pyrrolyl-, salicylyl- and pyridyl-derived cephalexins as potent antibacterial agents.

    Science.gov (United States)

    Chohan, Zahid H; Pervez, Humayun; Khan, Khalid Mohammed; Rauf, A; Supuran, Claudiu T

    2004-02-01

    A method is described for the preparation of novel cephalexin-derived furanyl-, thiophenyl-, pyrrolyl-, salicylyl- and pyridyl-containing compounds showing potent antibacterial activity. The binding of these newly synthesized antibacterial agents with metal ions such as cobalt(II), copper(II), nickel(II) and zinc(II) has been studied and their inhibitory properties against various bacterial species such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae are also reported. These results suggest that metal ions to possess an important role in the designing of metal-based antibacterials and that such complexes are more effective against infectious diseases compared to the uncomplexed drugs.

  20. Extraskeletal problems and amyloid.

    Science.gov (United States)

    Drüeke, T B

    1999-12-01

    The major clinical manifestations of dialysis-associated A beta 2M amyloidosis are chronic arthralgias, destructive arthropathy and the carpal tunnel syndrome. For dialysis patients who have been maintained on renal replacement therapy for more than 10-15 years, this complication may become a major physical handicap. It may even be life-threatening in some instances due to cervical cord compression. Amyloid deposits in joint areas precede clinical symptoms and signs by several years. Systemic deposits may also occur but their clinical manifestations are infrequent. The diagnosis of dialysis arthropathy associated with beta 2-microglobulin-associated (A beta 2M) amyloidosis mostly relies on indirect clinical and radiological evidence. Histologic proof is rarely obtained in vivo. The pathogenesis of the disease is complex. It includes reduced elimination of beta 2M and potentially also as impaired degradation of A beta 2M as well as enhanced production of A beta 2M amyloid fibrils. Non enzymatic modifications of beta 2M probably play a role, including beta 2M protein modification with advanced glycation end-products (AGE) and advanced oxidation protein products. Modified beta 2M, collagen and proteoglycans appear actively involved in the induction of a local inflammatory response and beta 2M amyloid formation. There is also evidence in favor of treatment-related factors such as the type of hemodialysis membrane and the purity of dialysis water. Hopefully, the translation of our improving knowledge of all the factors involved will lead to a better treatment and eventually to the prevention of this dramatic complication of dialysis.

  1. Quantitative amyloid imaging using image-derived arterial input function.

    Directory of Open Access Journals (Sweden)

    Yi Su

    Full Text Available Amyloid PET imaging is an indispensable tool widely used in the investigation, diagnosis and monitoring of Alzheimer's disease (AD. Currently, a reference region based approach is used as the mainstream quantification technique for amyloid imaging. This approach assumes the reference region is amyloid free and has the same tracer influx and washout kinetics as the regions of interest. However, this assumption may not always be valid. The goal of this work is to evaluate an amyloid imaging quantification technique that uses arterial region of interest as the reference to avoid potential bias caused by specific binding in the reference region. 21 participants, age 58 and up, underwent Pittsburgh compound B (PiB PET imaging and MR imaging including a time-of-flight (TOF MR angiography (MRA scan and a structural scan. FreeSurfer based regional analysis was performed to quantify PiB PET data. Arterial input function was estimated based on coregistered TOF MRA using a modeling based technique. Regional distribution volume (VT was calculated using Logan graphical analysis with estimated arterial input function. Kinetic modeling was also performed using the estimated arterial input function as a way to evaluate PiB binding (DVRkinetic without a reference region. As a comparison, Logan graphical analysis was also performed with cerebellar cortex as reference to obtain DVRREF. Excellent agreement was observed between the two distribution volume ratio measurements (r>0.89, ICC>0.80. The estimated cerebellum VT was in line with literature reported values and the variability of cerebellum VT in the control group was comparable to reported variability using arterial sampling data. This study suggests that image-based arterial input function is a viable approach to quantify amyloid imaging data, without the need of arterial sampling or a reference region. This technique can be a valuable tool for amyloid imaging, particularly in population where reference

  2. Quantitative amyloid imaging using image-derived arterial input function.

    Science.gov (United States)

    Su, Yi; Blazey, Tyler M; Snyder, Abraham Z; Raichle, Marcus E; Hornbeck, Russ C; Aldea, Patricia; Morris, John C; Benzinger, Tammie L S

    2015-01-01

    Amyloid PET imaging is an indispensable tool widely used in the investigation, diagnosis and monitoring of Alzheimer's disease (AD). Currently, a reference region based approach is used as the mainstream quantification technique for amyloid imaging. This approach assumes the reference region is amyloid free and has the same tracer influx and washout kinetics as the regions of interest. However, this assumption may not always be valid. The goal of this work is to evaluate an amyloid imaging quantification technique that uses arterial region of interest as the reference to avoid potential bias caused by specific binding in the reference region. 21 participants, age 58 and up, underwent Pittsburgh compound B (PiB) PET imaging and MR imaging including a time-of-flight (TOF) MR angiography (MRA) scan and a structural scan. FreeSurfer based regional analysis was performed to quantify PiB PET data. Arterial input function was estimated based on coregistered TOF MRA using a modeling based technique. Regional distribution volume (VT) was calculated using Logan graphical analysis with estimated arterial input function. Kinetic modeling was also performed using the estimated arterial input function as a way to evaluate PiB binding (DVRkinetic) without a reference region. As a comparison, Logan graphical analysis was also performed with cerebellar cortex as reference to obtain DVRREF. Excellent agreement was observed between the two distribution volume ratio measurements (r>0.89, ICC>0.80). The estimated cerebellum VT was in line with literature reported values and the variability of cerebellum VT in the control group was comparable to reported variability using arterial sampling data. This study suggests that image-based arterial input function is a viable approach to quantify amyloid imaging data, without the need of arterial sampling or a reference region. This technique can be a valuable tool for amyloid imaging, particularly in population where reference normalization may

  3. Amyloid PET in European and North American cohorts; and exploring age as a limit to clinical use of amyloid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chiotis, Konstantinos [Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); Carter, Stephen F. [Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); University of Manchester, Wolfson Molecular Imaging Centre, Institute of Brain, Behaviour and Mental Health, Manchester (United Kingdom); Farid, Karim [Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); APHP, Hotel-Dieu Hospital, Department of Nuclear Medicine, Paris (France); Savitcheva, Irina [Karolinska University Hospital Huddinge, Department of Radiology, Stockholm (Sweden); Nordberg, Agneta [Karolinska Institutet, Department of NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); Karolinska University Hospital Huddinge, Department of Geriatric Medicine, Stockholm (Sweden); Collaboration: for the Diagnostic Molecular Imaging (DiMI) network and the Alzheimer' s Disease Neuroimaging Initiative

    2015-09-15

    Several radiotracers that bind to fibrillar amyloid-beta in the brain have been developed and used in various patient cohorts. This study aimed to investigate the comparability of two amyloid positron emission tomography (PET) tracers as well as examine how age affects the discriminative properties of amyloid PET imaging. Fifty-one healthy controls (HCs), 72 patients with mild cognitive impairment (MCI) and 90 patients with Alzheimer's disease (AD) from a European cohort were scanned with [11C]Pittsburgh compound-B (PIB) and compared with an age-, sex- and disease severity-matched population of 51 HC, 72 MCI and 84 AD patients from a North American cohort who were scanned with [18F]Florbetapir. An additional North American population of 246 HC, 342 MCI and 138 AD patients with a Florbetapir scan was split by age (55-75 vs 76-93 y) into groups matched for gender and disease severity. PET template-based analyses were used to quantify regional tracer uptake. The mean regional uptake patterns were similar and strong correlations were found between the two tracers across the regions of interest in HC (ρ = 0.671, p = 0.02), amyloid-positive MCI (ρ = 0.902, p < 0.001) and AD patients (ρ = 0.853, p < 0.001). The application of the Florbetapir cut-off point resulted in a higher proportion of amyloid-positive HC and a lower proportion of amyloid-positive AD patients in the older group (28 and 30 %, respectively) than in the younger group (19 and 20 %, respectively). These results illustrate the comparability of Florbetapir and PIB in unrelated but matched patient populations. The role of amyloid PET imaging becomes increasingly important with increasing age in the diagnostic assessment of clinically impaired patients. (orig.)

  4. Hacking the code of amyloid formation: the amyloid stretch hypothesis.

    Science.gov (United States)

    Pastor, M Teresa; Esteras-Chopo, Alexandra; Serrano, Luis

    2007-01-01

    Many research efforts in the last years have been directed towards understanding the factors determining protein misfolding and amyloid formation. Protein stability and amino acid composition have been identified as the two major factors in vitro. The research of our group has been focused on understanding the relationship between amino acid sequence and amyloid formation. Our approach has been the design of simple model systems that reproduce the biophysical properties of natural amyloids. An amyloid sequence pattern was extracted that can be used to detect amyloidogenic hexapeptide stretches in proteins. We have added evidence supporting that these amyloidogenic stretches can trigger amyloid formation by nonamyloidogenic proteins. Some experimental results in other amyloid proteins will be analyzed under the conclusions obtained in these studies. Our conclusions together with evidences from other groups suggest that amyloid formation is the result of the interplay between a decrease of protein stability, and the presence of highly amyloidogenic regions in proteins. As many of these results have been obtained in vitro, the challenge for the next years will be to demonstrate their validity in in vivo systems.

  5. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme.

    Science.gov (United States)

    Inestrosa, N C; Alvarez, A; Pérez, C A; Moreno, R D; Vicente, M; Linker, C; Casanueva, O I; Soto, C; Garrido, J

    1996-04-01

    Acetylcholinesterase (AChE), an important component of cholinergic synapses, colocalizes with amyloid-beta peptide (A beta) deposits of Alzheimer's brain. We report here that bovine brain AChE, as well as the human and mouse recombinant enzyme, accelerates amyloid formation from wild-type A beta and a mutant A beta peptide, which alone produces few amyloid-like fibrils. The action of AChE was independent of the subunit array of the enzyme, was not affected by edrophonium, an active site inhibitor, but it was affected by propidium, a peripheral anionic binding site ligand. Butyrylcholinesterase, an enzyme that lacks the peripheral site, did not affect amyloid formation. Furthermore, AChE is a potent amyloid-promoting factor when compared with other A beta-associated proteins. Thus, in addition to its role in cholinergic synapses, AChE may function by accelerating A beta formation and could play a role during amyloid deposition in Alzheimer's brain.

  6. Amyloid-β inhibits No-cGMP signaling in a CD36- and CD47-dependent manner.

    Directory of Open Access Journals (Sweden)

    Thomas W Miller

    Full Text Available Amyloid-β interacts with two cell surface receptors, CD36 and CD47, through which the matricellular protein thrombospondin-1 inhibits soluble guanylate cyclase activation. Here we examine whether amyloid-β shares this inhibitory activity. Amyloid-β inhibited both drug and nitric oxide-mediated activation of soluble guanylate cyclase in several cell types. Known cGMP-dependent functional responses to nitric oxide in platelets and vascular smooth muscle cells were correspondingly inhibited by amyloid-β. Functional interaction of amyloid-β with the scavenger receptor CD36 was indicated by inhibition of free fatty acid uptake via this receptor. Both soluble oligomer and fibrillar forms of amyloid-β were active. In contrast, amyloid-β did not compete with the known ligand SIRPα for binding to CD47. However, both receptors were necessary for amyloid-β to inhibit cGMP accumulation. These data suggest that amyloid-β interaction with CD36 induces a CD47-dependent signal that inhibits soluble guanylate cyclase activation. Combined with the pleiotropic effects of inhibiting free fatty acid transport via CD36, these data provides a molecular mechanism through which amyloid-β can contribute to the nitric oxide signaling deficiencies associated with Alzheimer's disease.

  7. Between Amyloids and Aggregation Lies a Connection with Strength and Adhesion

    Directory of Open Access Journals (Sweden)

    Peter N. Lipke

    2014-01-01

    Full Text Available We tell of a journey that led to discovery of amyloids formed by yeast cell adhesins and their importance in biofilms and host immunity. We begin with the identification of the adhesin functional amyloid-forming sequences that mediate fiber formation in vitro. Atomic force microscopy and confocal microscopy show 2-dimensional amyloid “nanodomains” on the surface of cells that are activated for adhesion. These nanodomains are arrays of adhesin molecules that bind multivalent ligands with high avidity. Nanodomains form when adhesin molecules are stretched in the AFM or under laminar flow. Treatment with anti-amyloid perturbants or mutation of the amyloid sequence prevents adhesion nanodomain formation and activation. We are now discovering biological consequences. Adhesin nanodomains promote formation and maintenance of biofilms, which are microbial communities. Also, in abscesses within candidiasis patients, we find adhesin amyloids on the surface of the fungi. In both human infection and a Caenorhabditis elegans infection model, the presence of fungal surface amyloids elicits anti-inflammatory responses. Thus, this is a story of how fungal adhesins respond to extension forces through formation of cell surface amyloid nanodomains, with key consequences for biofilm formation and host responses.

  8. Congo Red Interactions with Curli-Producing E. coli and Native Curli Amyloid Fibers.

    Directory of Open Access Journals (Sweden)

    Courtney Reichhardt

    Full Text Available Microorganisms produce functional amyloids that can be examined and manipulated in vivo and in vitro. Escherichia coli assemble extracellular adhesive amyloid fibers termed curli that mediate adhesion and promote biofilm formation. We have characterized the dye binding properties of the hallmark amyloid dye, Congo red, with curliated E. coli and with isolated curli fibers. Congo red binds to curliated whole cells, does not inhibit growth, and can be used to comparatively quantify whole-cell curliation. Using Surface Plasmon Resonance, we measured the binding and dissociation kinetics of Congo red to curli. Furthermore, we determined that the binding of Congo red to curli is pH-dependent and that histidine residues in the CsgA protein do not influence Congo red binding. Our results on E. coli strain MC4100, the most commonly employed strain for studies of E. coli amyloid biogenesis, provide a starting point from which to compare the influence of Congo red binding in other E. coli strains and amyloid-producing organisms.

  9. Familial amyloid polyneuropathy.

    Science.gov (United States)

    Planté-Bordeneuve, Violaine; Said, Gerard

    2011-12-01

    Familial amyloid polyneuropathies (FAPs) are a group of life-threatening multisystem disorders transmitted as an autosomal dominant trait. Nerve lesions are induced by deposits of amyloid fibrils, most commonly due to mutated transthyretin (TTR). Less often the precursor of amyloidosis is mutant apolipoprotein A-1 or gelsolin. The first identified cause of FAP-the TTR Val30Met mutation-is still the most common of more than 100 amyloidogenic point mutations identified worldwide. The penetrance and age at onset of FAP among people carrying the same mutation vary between countries. The symptomatology and clinical course of FAP can be highly variable. TTR FAP typically causes a nerve length-dependent polyneuropathy that starts in the feet with loss of temperature and pain sensations, along with life-threatening autonomic dysfunction leading to cachexia and death within 10 years on average. TTR is synthesised mainly in the liver, and liver transplantation seems to have a favourable effect on the course of neuropathy, but not on cardiac or eye lesions. Oral administration of tafamidis meglumine, which prevents misfolding and deposition of mutated TTR, is under evaluation in patients with TTR FAP. In future, patients with FAP might benefit from gene therapy; however, genetic counselling is recommended for the prevention of all types of FAP.

  10. Serum amyloid P component scintigraphy in familial amyloid polyneuropathy: regression of visceral amyloid following liver transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Rydh, A.; Hietala, S.O.; Aahlstroem, K.R. [Department of Diagnostic Radiology, University Hospital of Northern Sweden, Umeaa (Sweden); Suhr, O. [Department of Internal Medicine, University Hospital of Northern Sweden, Umeaa (Sweden); Pepys, M.B.; Hawkins, P.N. [Immunological Medicine Unit, Department of Medicine, Imperial College School of Medicine, London (United Kingdom)

    1998-07-01

    Familial amyloid polyneuropathy (FAP) associated with transthyretin (TTR) mutations is the commonest type of hereditary amyloidosis. Plasma TTR is produced almost exclusively in the liver and orthotopic liver transplantation is the only available treatment, although the clinical outcome varies. Serum amyloid P component (SAP) scintigraphy is a method for identifying and quantitatively monitoring amyloid deposits in vivo, but it has not previously been used to study the outcome of visceral amyloid deposits in FAP following liver transplantation. Whole body scintigraphy following injection of iodine-123 labelled SAP was performed in 17 patients with FAP associated with TTR Met30 and in five asymptomatic gene carriers. Follow-up studies were performed in ten patients, eight of whom had undergone orthotopic liver transplantation 1-5 years beforehand. There was abnormal uptake of {sup 123}I-SAP in all FAP patients, including the kidneys in each case, the spleen in five cases and the adrenal glands in three cases. Renal amyloid deposits were also present in three of the asymptomatic carriers. Follow-up studies 1-5 years after liver transplantation showed that there had been substantial regression of the visceral amyloid deposits in two patients and modest improvement in three cases. The amyloid deposits were unchanged in two patients. In conclusion, {sup 123}I-SAP scintigraphy identified unsuspected visceral amyloid in each patient with FAP due to TTR Met30. The universal presence of renal amyloid probably underlies the high frequency of renal failure that occurs in FAP following liver transplantation. The variable capacity of patients to mobilise amyloid deposits following liver transplantation may contribute to their long-term clinical outcome. (orig.) With 2 figs., 2 tabs., 22 refs.

  11. Diversity, biogenesis and function of microbial amyloids

    OpenAIRE

    2011-01-01

    Amyloid is a distinct β-sheet-rich fold that many proteins can acquire. Frequently associated with neurodegenerative diseases in humans, including Alzheimer’s, Parkinson’s and Huntington’s, amyloids are traditionally considered the product of protein misfolding. However, the amyloid fold is now recognized as a ubiquitous part of normal cellular biology. ‘Functional’ amyloids have been identified in nearly all facets of cellular life, with microbial functional amyloids leading the way. Unlike ...

  12. Probing the GnRH receptor agonist binding site identifies methylated triptorelin as a new anti-proliferative agent

    Directory of Open Access Journals (Sweden)

    Robert P Millar

    2012-06-01

    Full Text Available D-amino acid substitutions at Glycine postion-6 in GnRH-I decapeptide can possess super-agonist activity and enhanced in vivo pharmacokinetics. Agonists elicit growth-inhibition in tumorigenic cells expressing the GnRH receptor above threshold levels. However, new agonists with modified properties are required to improve the anti-proliferative range. Effects of residue substitutions and methylations on tumourigenic HEK293[SCL60] and WPE-1-NB26-3 prostate cells expressing the rat GnRH receptor were compared. Peptides were ranked according to receptor binding affinity, induction of inositol phosphate production and cell growth-inhibition. Analogues possessing D-Trp6 (including Triptorelin, D-Leu6 (including Leuprolide, D-Ala6, D-Lys6, or D-Arg6 exhibited agonist and anti-proliferative activity. Residues His5 or His5,Trp7,Tyr8, corresponding to residues found in GnRH-II , were tolerated, with retention of sub-nanomolar/low nanomolar binding affinities and EC50s for receptor activation and IC50s for cell growth-inhibition. His5D-Arg6-GnRH-I exhibited reduced binding affinity and potency, effective in the mid-nanomolar range. However, all GnRH-II-like analogues were less potent than Triptorelin. By comparison, three methylated-Trp6 Triptorelin variants showed differential binding, receptor activation and anti-proliferation potency. Significantly, 5-Methyl-DL-Trp6-Triptorelin was equipotent to triptorelin. Subsequent studies should determine whether pharmacologically enhanced derivatives of Triptorelin can be developed by further alkylations, without substitutions or cleavable cytotoxic adducts, to improve the extent of growth-inhibition of tumour cells expressing the GnRH receptor.

  13. Selective sampling and measurement of Cr (VI) in water with polyquaternary ammonium salt as a binding agent in diffusive gradients in thin-films technique

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong, E-mail: redastar@163.com [College of Chemistry, Chemical Engineering and Food Safety, Bohai University (China); Research Institute of Food Science, Bohai University (China); Food Safety Key Lab of Liaoning Province, Jinzhou 121013 (China); Zhang, Yang-Yang; Zhong, Ke-Li; Guo, Lian-Wen [College of Chemistry, Chemical Engineering and Food Safety, Bohai University (China); Research Institute of Food Science, Bohai University (China); Food Safety Key Lab of Liaoning Province, Jinzhou 121013 (China); Gu, Jia-Li [College of Chemistry, Chemical Engineering and Food Safety, Bohai University (China); Bo, Le; Zhang, Meng-Han [College of Chemistry, Chemical Engineering and Food Safety, Bohai University (China); Research Institute of Food Science, Bohai University (China); Food Safety Key Lab of Liaoning Province, Jinzhou 121013 (China); Li, Jian-Rong, E-mail: lijianrong@zjgsu.edu.cn [College of Chemistry, Chemical Engineering and Food Safety, Bohai University (China); Research Institute of Food Science, Bohai University (China); Food Safety Key Lab of Liaoning Province, Jinzhou 121013 (China)

    2014-04-01

    Graphical abstract: - Highlights: • We develop a new DGT device for in situ sampling Cr (VI) in water. • Polyquaternary ammonium salt (PQAS) was used as binding agent of DGT device. • Cr (VI) can be accumulated in the PQAS binding phase whereas Cr (III) cannot. • The DGT performance was independent of pH 3–12 and ionic strength 1 × 10{sup −3}–1 mol L{sup −1}. - Abstract: A diffusive gradients in thin films (DGT) device with polyquaternary ammonium salt (PQAS) as a novel binding agent (PQAS DGT) combined with graphite furnace atomic absorption spectrometry (GFAAS) was developed for the selective sampling and measurement of Cr (VI) in water. The performance of PQAS DGT was independent of pH 3–12 and ionic strength from 1 × 10{sup −3} to 1 mol L{sup −1}. DGT validation experiments showed that Cr (VI) was measured accurately as well as selectively by PQAS DGT, whereas Cr (III) was not determined quantitatively. Compared with diphenylcarbazide spectrophotometric method (DPC), the measurement of Cr (VI) with PQAS DGT was agreement with that of DPC method in the industrial wastewater. PQAS-DGT device had been successfully deployed in local freshwater. The concentrations of Cr (VI) determined by PQAS DGT coupled with GFAAS in Nuer River, Ling River and North Lake were 0.73 ± 0.09 μg L{sup −1}, 0.50 ± 0.07 μg L{sup −1} and 0.61 ± 0.07 μg L{sup −1}, respectively. The results indicate that PQAS DGT device can be used for the selective sampling and measurement Cr (VI) in water and its detection limit is lower than that of DPC method.

  14. D-polyglutamine amyloid recruits L-polyglutamine monomers and kills cells

    OpenAIRE

    Kar, Karunakar; Arduini, Irene; Drombosky, Kenneth W.; van der Wel, Patrick C.A.; Wetzel, Ronald

    2013-01-01

    Polyglutamine (polyQ) amyloid fibrils are observed in disease tissue and have been implicated as toxic agents responsible for neurodegeneration in expanded CAG repeat diseases like Huntington’s disease (HD). Despite intensive efforts, the mechanism of amyloid toxicity remains unknown. As a novel approach to probing polyQ toxicity, we investigate here how some cellular and physical properties of polyQ amyloid vary with the chirality of the glutamine residues in the polyQ. We challenged PC12 ce...

  15. Small organic probes as amyloid specific ligands--past and recent molecular scaffolds.

    Science.gov (United States)

    Nilsson, K Peter R

    2009-08-20

    Molecular probes for selective staining and imaging of protein aggregates, such as amyloid, are important to advance our understanding of the molecular mechanisms underlying protein misfolding diseases and also for obtaining an early and accurate clinical diagnosis of these disorders. Since normal immunohistochemical reagents, such as antibodies have shown limitation for identifying protein aggregates both in vitro and in vivo, small organic probes have been utilized as amyloid specific markers. In this review, past and recent molecular scaffolds that have been utilized for the development of small organic amyloid imaging agents are discussed.

  16. Interaction of calreticulin with amyloid beta peptide 1-42.

    Science.gov (United States)

    Duus, K; Hansen, P R; Houen, G

    2008-01-01

    The interaction of calreticulin with amyloid beta (Abeta) was investigated using solid phase and solution binding assays. Calreticulin bound Abeta 1-42 in a time and concentration dependent fashion. The binding was optimal at pH 5 and was stimulated by Ca2+ and inhibited by Zn2+ at pH 7. Interaction took place through the hydrophobic C-terminus of Abeta 1-42 and the polypeptide binding site of calreticulin. The results are discussed in the light of a reported role of calreticulin as a cell surface scavenger receptor.

  17. Interactions between amyloid-β and hemoglobin: implications for amyloid plaque formation in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jia-Ying Chuang

    Full Text Available Accumulation of amyloid-β (Aβ peptides in the brain is one of the central pathogenic events in Alzheimer's disease (AD. However, why and how Aβ aggregates within the brain of AD patients remains elusive. Previously, we demonstrated hemoglobin (Hb binds to Aβ and co-localizes with the plaque and vascular amyloid deposits in post-mortem AD brains. In this study, we further characterize the interactions between Hb and Aβ in vitro and in vivo and report the following observations: 1 the binding of Hb to Aβ required iron-containing heme; 2 other heme-containing proteins, such as myoglobin and cytochrome C, also bound to Aβ; 3 hemin-induced cytotoxicity was reduced in neuroblastoma cells by low levels of Aβ; 4 Hb was detected in neurons and glial cells of post-mortem AD brains and was up-regulated in aging and APP/PS1 transgenic mice; 5 microinjection of human Hb into the dorsal hippocampi of the APP/PS1 transgenic mice induced the formation of an envelope-like structure composed of Aβ surrounding the Hb droplets. Our results reveal an enhanced endogenous expression of Hb in aging brain cells, probably serving as a compensatory mechanism against hypoxia. In addition, Aβ binds to Hb and other hemoproteins via the iron-containing heme moiety, thereby reducing Hb/heme/iron-induced cytotoxicity. As some of the brain Hb could be derived from the peripheral circulation due to a compromised blood-brain barrier frequently observed in aged and AD brains, our work also suggests the genesis of some plaques may be a consequence of sustained amyloid accretion at sites of vascular injury.

  18. Novel exenatide analogs with peptidic albumin binding domains: potent anti-diabetic agents with extended duration of action.

    Directory of Open Access Journals (Sweden)

    Odile E Levy

    Full Text Available The design, synthesis and pharmacology of novel long-acting exenatide analogs for the treatment of metabolic diseases are described. These molecules display enhanced pharmacokinetic profile and potent glucoregulatory and weight lowering actions compared to native exenatide. [Leu(14]exenatide-ABD is an 88 residue peptide amide incorporating an Albumin Binding Domain (ABD scaffold. [Leu(14]exenatide-ABP is a 53 residue peptide incorporating a short Albumin Binding Peptide (ABP. [Leu(14]exenatide-ABD and [Leu(14]exenatide-ABP exhibited nanomolar functional GLP-1 receptor potency and were metabolically stable in vitro in human plasma and in a pancreatic digestive enzyme mixture. Both molecules displayed picomolar and nanomolar binding association with albumin across multiple species and circulating half lives of 16 and 11 hours, respectively, post a single IV dose in rats. Unlike exenatide, both molecules elicited robust glucose lowering when injected 1 day prior to an oral glucose tolerance test, indicative of their extended duration of action. [Leu(14]exenatide-ABD was compared to exenatide in a Lep (ob/ob mouse model of diabetes. Twice-weekly subcutaneously dosed [Leu(14]exenatide-ABD displayed superior glucose lowering and weight loss in diabetic mice when compared to continuously infused exenatide at the same total weekly dose. A single oral administration of each molecule via an enteric coated capsule to cynomolgus monkeys showed superior pharmacokinetics for [Leu(14]exenatide-ABD as compared to [Leu(14]exenatide-ABP with detectable exposure longer than 14 days. These studies support the potential use of these novel long acting exenatide analogs with different routes of administration for the treatment of type 2 diabetes.

  19. A novel bioactive tyramine derived Schiff base and its transition metal complexes as selective DNA binding agents

    Science.gov (United States)

    Raman, N.; Sobha, S.; Thamaraichelvan, A.

    2011-02-01

    A novel tyramine derived Schiff base, 3-4-dimethoxybenzylidene-4-aminoantipyrinyl-4-aminoethylphenol(L) and a series of its transition metal complexes of the type, ML 2Cl 2 where, M = Cu(II), Ni(II), Co(II) and Zn(II) have been designed and synthesized. Their structural features and other properties were deduced from the elemental analysis, magnetic susceptibility and molar conductivity as well as from mass, IR, UV-vis, 1H NMR and EPR spectral studies. The binding properties of these complexes with calf thymus DNA (CT-DNA) were investigated using electronic absorption spectroscopy, viscosity measurement, cyclic voltammetry and molecular docking analysis. The results reveal that the metal(II) complexes interact with DNA through minor groove binding. The interaction has also been investigated by gel electrophoresis. Interestingly, it was found that all the complexes could cleave the circular plasmid pUC19 super coiled (SC) DNA efficiently in the presence of AH 2 (ascorbic acid). The complexes showed enhanced antifungal and antibacterial activities compared to the free ligand.

  20. Speciation of lead in seawater and river water by using Saccharomyces cerevisiae immobilized in agarose gel as a binding agent in the diffusive gradients in thin films technique

    Energy Technology Data Exchange (ETDEWEB)

    Pescim, Guilherme Favoreto; Marrach, Gabriela; Vannuci-Silva, Monizze; Souza, Lais Alves; Menegario, Amauri Antonio [Universidade Estadual Paulista, Centro de Estudos Ambientais, Rio Claro, SP (Brazil)

    2012-09-15

    Saccharomyces cerevisiae immobilized in agarose gel is proposed as a binding agent for the diffusive gradients in thin films (DGT) technique for determination of Pb in river water and seawater. DGT samplers were assembled with the proposed binding agent (25-mm disk containing 20 %, m/v, S. cerevisiae and 3.0 %, m/v, agarose) and a diffusive layer of cellulose (3MM Chr chromatography paper of 25-mm diameter). The effects of some DGT parameters (e.g., immersion time, ionic strength, and pH) were evaluated. Elution of Pb from the binding agent was effectively done with 1.75 mol L{sup -1} HNO{sub 3}. The deployment curve (between 2 and 24 h) was characterized by a significant uptake of Pb (346 ng Pb h{sup -1}) and good linear regression (R {sup 2} = 0.9757). The experimental results are in excellent agreement with the predicted theoretical curve for mass uptake. Consistent results were found for solutions with ionic strengths of 0.005 mol L{sup -1} or greater and within a pH range of 4.5-8.5. Interferences from Cu (20:1), Mn (20:1), Fe (20:1), Zn (20:1), Ca (250:1), and Mg (250:1) in Pb retention were negligible. Determination of Pb in spiked river water samples (from the Corumbatai and Piracicaba rivers) performed using the proposed device was in agreement with total dissolved Pb, whereas measurements in seawater suggest that of the various species of Pb present in the samples, only cationic Pb species are adsorbed by the agarose-yeast gel disks. The in situ concentration of Pb obtained at two different sites of the Rio Claro stream (Corumbatai basin) were 1.13 {+-} 0.01 and 1.34 {+-} 0.04 {mu}g L{sup -1}. For 72-h deployments, a detection limit of 0.75 {mu}g L{sup -1} was calculated. The combination of inductively coupled plasma optical emission spectroscopy and in situ deployments of DGT samplers during the 72-h period makes possible the determination of labile Pb in river water. (orig.)

  1. Amyloid β oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis.

    Science.gov (United States)

    Viola, Kirsten L; Klein, William L

    2015-02-01

    Protein aggregation is common to dozens of diseases including prionoses, diabetes, Parkinson's and Alzheimer's. Over the past 15 years, there has been a paradigm shift in understanding the structural basis for these proteinopathies. Precedent for this shift has come from investigation of soluble Aβ oligomers (AβOs), toxins now widely regarded as instigating neuron damage leading to Alzheimer's dementia. Toxic AβOs accumulate in AD brain and constitute long-lived alternatives to the disease-defining Aβ fibrils deposited in amyloid plaques. Key experiments using fibril-free AβO solutions demonstrated that while Aβ is essential for memory loss, the fibrillar Aβ in amyloid deposits is not the agent. The AD-like cellular pathologies induced by AβOs suggest their impact provides a unifying mechanism for AD pathogenesis, explaining why early stage disease is specific for memory and accounting for major facets of AD neuropathology. Alternative ideas for triggering mechanisms are being actively investigated. Some research favors insertion of AβOs into membrane, while other evidence supports ligand-like accumulation at particular synapses. Over a dozen candidate toxin receptors have been proposed. AβO binding triggers a redistribution of critical synaptic proteins and induces hyperactivity in metabotropic and ionotropic glutamate receptors. This leads to Ca(2+) overload and instigates major facets of AD neuropathology, including tau hyperphosphorylation, insulin resistance, oxidative stress, and synapse loss. Because different species of AβOs have been identified, a remaining question is which oligomer is the major pathogenic culprit. The possibility has been raised that more than one species plays a role. Despite some key unknowns, the clinical relevance of AβOs has been established, and new studies are beginning to point to co-morbidities such as diabetes and hypercholesterolemia as etiological factors. Because pathogenic AβOs appear early in the disease, they

  2. Atomic Resolution Structure of Monomorphic Aβ42 Amyloid Fibrils.

    Science.gov (United States)

    Colvin, Michael T; Silvers, Robert; Ni, Qing Zhe; Can, Thach V; Sergeyev, Ivan; Rosay, Melanie; Donovan, Kevin J; Michael, Brian; Wall, Joseph; Linse, Sara; Griffin, Robert G

    2016-08-03

    Amyloid-β (Aβ) is a 39-42 residue protein produced by the cleavage of the amyloid precursor protein (APP), which subsequently aggregates to form cross-β amyloid fibrils that are a hallmark of Alzheimer's disease (AD). The most prominent forms of Aβ are Aβ1-40 and Aβ1-42, which differ by two amino acids (I and A) at the C-terminus. However, Aβ42 is more neurotoxic and essential to the etiology of AD. Here, we present an atomic resolution structure of a monomorphic form of AβM01-42 amyloid fibrils derived from over 500 (13)C-(13)C, (13)C-(15)N distance and backbone angle structural constraints obtained from high field magic angle spinning NMR spectra. The structure (PDB ID: 5KK3 ) shows that the fibril core consists of a dimer of Aβ42 molecules, each containing four β-strands in a S-shaped amyloid fold, and arranged in a manner that generates two hydrophobic cores that are capped at the end of the chain by a salt bridge. The outer surface of the monomers presents hydrophilic side chains to the solvent. The interface between the monomers of the dimer shows clear contacts between M35 of one molecule and L17 and Q15 of the second. Intermolecular (13)C-(15)N constraints demonstrate that the amyloid fibrils are parallel in register. The RMSD of the backbone structure (Q15-A42) is 0.71 ± 0.12 Å and of all heavy atoms is 1.07 ± 0.08 Å. The structure provides a point of departure for the design of drugs that bind to the fibril surface and therefore interfere with secondary nucleation and for other therapeutic approaches to mitigate Aβ42 aggregation.

  3. Synthesis, photochemical properties and DNA binding studies of dna cleaving agents based on chiral dipyridine dihydrodioxins salts

    Science.gov (United States)

    Shamaev, Alexei

    Control of chemical reactions becomes especially challenging when chemical processes have to work within the complexity of biological environments. This is one of the reasons why the ability to design "caged" molecules with structure, reactivity, and biological activity that can be activated externally by light continues to draw significant attention, from both the practical and fundamental points of view. Possible applications of such molecules include design of molecular machines and switches, logic gate mimics, optical sensors, drug delivery systems, etc. Since "caged" molecules are of particular use for processes that occur in biochemical systems and in the environment, interesting light-sensitive systems, anti-cancer drugs, have been developed recently to control DNA cleavage. Caged molecules may interact with or bind with DNA and can be classified by their mechanism of action. Each of these classes of molecules has a different structure and interacts with DNA in a different way, but some molecules can combine several functionalities. The preponderance of caged molecules, anti-cancer drugs, capable of DNA cleavage or their metabolites incorporate Electron Transfer (ET) functionalities, which play important roles in physiological responses. These main groups include quinones (or phenolic precursors), metal complexes, aromatic nitro compounds (or reduced derivatives), and conjugated imines (or iminium species). Redox cycling with oxygen can occur giving rise to Oxidation Stress (OS) through generation of Reactive Oxygen Species (ROS) which can contribute to drug efficacy or can lead to undesirable toxicity. In some cases, ET results in interference with normal electron transport chains. In this work a series of caged molecules-chiral Pyrene Dihydridioxins (PDHD)-DNA chiral DNA intecalators and PDHD-metal complexes bearing masked o-quinone functionality activated through intramolecular ET were synthesized. The o-quinone release and intramolecular ET can be easily

  4. Key points concerning amyloid infectivity and prion-like neuronal invasion

    Directory of Open Access Journals (Sweden)

    Alba eEspargaró

    2016-04-01

    Full Text Available Amyloid aggregation has been related to an increasing number of human illnesses, from Alzheimer and Parkinson’s diseases to Creutzfeldt-Jakob disease. Traditionally only prions have been considered as infectious agents with a high capacity of propagation. Although recent publications have showed that many amyloid proteins, including amyloid β-peptide, α-synuclein and tau protein, also propagate in a prion-like manner, the link between propagation of pathological proteins and neurotoxicity has not been evidenced. The extremely low infectivity in natural conditions of the most of non-prion amyloids is far from the spreading capacity displayed by the prions. However, it is important to elucidate the key factors that cause non-prion amyloids become infectious agents. In recent years, important advances in the understanding of the amyloid processes of amyloid-like proteins and unrelated prions (i.e., yeast and fungal prions have yielded essential information that can be applied to shed light on the prion phenomenon in mammals and humans. As shown in this review, recent evidences suggest that there are key factors that could dramatically modulate the prion capacity of proteins in the amyloid conformation. The concentration of nuclei, the presence of oligomers, and the toxicity, resistance and localization of these aggregates could be key factors affecting their spreading. In short, those factors that favor the high concentration of extracellular nuclei or oligomers, characterized by a small size, with a low toxicity could dramatically increase prion propensity; whereas low concentrations of highly toxic intracellular amyloids, with a large size, would prevent infectivity.

  5. DNA-binding antitumor agents: from pyrimido[5,6,1-de]acridines to other intriguing classes of acridine derivatives.

    Science.gov (United States)

    Antonini, Ippolito

    2002-09-01

    In the field of antitumor DNA-binding agents, the class of acridine derivatives play an important role either as number of compounds or as importance of their anticancer properties. We have synthesized a number of acridine derivatives as potential antitumor drugs, in which the chromophore is fully or partially constituted by acridine or by 9-acridone ring systems: from the pyrimido[5,6,1-de]acridines, to the pyrimido[4,5,6-kl]acridines, the bis(amine-functionalized) 9-acridone-4-carboxamides, the bis(amine-functionalized) acridine-4-carboxamides, and the pyrazolo[3,4,5-kl]acridine-5-carboxamides. In the present revue we will describe the rational design, the synthesis, and the salient biological characteristics of these classes of acridine derivatives.

  6. Serum amyloid P component bound to gram-negative bacteria prevents lipopolysaccharide-mediated classical pathway complement activation

    NARCIS (Netherlands)

    de Haas, CJC; van Leeuwen, EMM; van Bommel, T; Verhoef, J; van Kessel, KPM; van Strijp, JAG

    2000-01-01

    Although serum amyloid P component (SAP) is known to bind many ligands, its biological function is not yet clear. Recently, it was demonstrated that SAP binds to lipopolysaccharide (LPS), In the present study, SAP was shown to bind to gram-negative bacteria expressing short types of LPS or lipo-olig

  7. Immune functions of serum amyloid A.

    Science.gov (United States)

    Eklund, Kari K; Niemi, K; Kovanen, P T

    2012-01-01

    Serum amyloid A (SAA) is a highly conserved, acute-phase protein synthesized predominantly by the liver. After secretion into the circulation, it associates with high-density lipoprotein (HDL) particles. During acute inflammation, serum SAA levels may rise up to 1000-fold, and under these conditions, SAA displaces apolipoprotein A-I from HDL, thus becoming the major apolipoprotein of circulating HDL3. SAA exhibits significant immunological activity by, for example, inducing the synthesis of several cytokines and by being chemotactic for neutrophils and mast cells. It exerts many of its immunological activities by binding and activating cell-surface receptors, including Toll-like receptor (TLR) 2 and TLR4, formyl peptide receptor-like 1 (FPRL1), class B scavenger receptor CD36, and the ATP receptor P2X7. SAA also recently has been shown to activate the inflammasome cascade, which has a key role in immune activation, thus further stressing the unique role of SAA in immunomodulation. Traditionally, SAA has been considered to have a key role in the pathogenesis of amyloid A-type amyloidosis, but we now understand that it may also participate in the pathogenesis of chronic inflammatory diseases, such as rheumatoid arthritis and atherosclerosis. Thus, SAA is one potential target in the treatment of diseases associated with chronic inflammation. The purpose of this review is to shed light on SAA as an immunologically active protein. We also focus on the recent findings implicating SAA in the regulation of the inflammasome cascade.

  8. The Application of DNA-Biosensors and Differential Scanning Calorimetry to the Study of the DNA-Binding Agent Berenil

    Directory of Open Access Journals (Sweden)

    Marília O. F. Goulart

    2008-03-01

    Full Text Available The in situ DNA-damaging capacity of berenil (1 has been investigated usingan electrochemical approach employing double stranded (ds DNA-modified glassy carbonelectrode biosensors. Electrochemical voltammetric sensing of damage caused by 1 todsDNA was monitored by the appearance of peaks diagnostic of the oxidation of guanineand adenine. When 1 was incorporated directly onto the biosensor surface, DNA damagecould be observed at concentrations of additive as low as 10 μM. In contrast, when thedsDNA-modified biosensor was exposed to 1, in acetate buffer solution, the method wasmuch less sensitive and DNA damage could be detected only in the presence of 100 μMberenil. When mixed solutions of 1 and single stranded (ss DNA, polyguanylic acid orpolyadenylic acid were submitted to voltammetric study, the oxidation signals of therespective bases decreased in a concentration-dependent manner and the major variation ofthe adenine current peak indicated preferential binding of 1 to adenine. The electrochemical results were in close agreement with those deriving from a differentialscanning calorimetric study of the DNA-berenil complex.

  9. The Application of DNA-Biosensors and Differential Scanning Calorimetry to the Study of the DNA-Binding Agent Berenil.

    Science.gov (United States)

    De Abreu, Fabiane C; De Paula, Francine S; Ferreira, Danielle C M; Nascimento, Valberes B; Lopes, Julio C D; Santos, Alexandre M C; Santoro, Marcelo M; Salas, Carlos E; Goulart, Marília O F

    2008-03-03

    The in situ DNA-damaging capacity of berenil (1) has been investigated usingan electrochemical approach employing double stranded (ds) DNA-modified glassy carbonelectrode biosensors. Electrochemical voltammetric sensing of damage caused by 1 todsDNA was monitored by the appearance of peaks diagnostic of the oxidation of guanineand adenine. When 1 was incorporated directly onto the biosensor surface, DNA damagecould be observed at concentrations of additive as low as 10 μM. In contrast, when thedsDNA-modified biosensor was exposed to 1, in acetate buffer solution, the method wasmuch less sensitive and DNA damage could be detected only in the presence of 100 μMberenil. When mixed solutions of 1 and single stranded (ss) DNA, polyguanylic acid orpolyadenylic acid were submitted to voltammetric study, the oxidation signals of therespective bases decreased in a concentration-dependent manner and the major variation ofthe adenine current peak indicated preferential binding of 1 to adenine. The electrochemical results were in close agreement with those deriving from a differentialscanning calorimetric study of the DNA-berenil complex.

  10. Effects of beta-amyloid protein on M1 and M2 subtypes of muscarinic acetylcholine receptors in the medial septum-diagonal band complex of the rat: relationship with cholinergic, GABAergic, and calcium-binding protein perikarya.

    Science.gov (United States)

    González, Iván; Arévalo-Serrano, Juan; Sanz-Anquela, José Miguel; Gonzalo-Ruiz, Alicia

    2007-06-01

    Cortical cholinergic dysfunction has been correlated with the expression and processing of beta-amyloid precursor protein. However, it remains unclear as to how cholinergic dysfunction and beta-amyloid (Abeta) formation and deposition might be related to one another. Since the M1- and M2 subtypes of muscarinic acetylcholine receptors (mAChRs) are considered key molecules that transduce the cholinergic message, the purpose of the present study was to assess the effects of the injected Abeta peptide on the number of M1mAchR- and M2mAChR-immunoreactive cells in the medial septum-diagonal band (MS-nDBB) complex of the rat. Injections of Abeta protein into the retrosplenial cortex resulted in a decrease in M1mAChR and M2mAChR immunoreactivity in the MS-nDBB complex. Quantitative analysis revealed a significant reduction in the number of M1mAChR- and M2mAChR-immunoreactive cells in the medial septum nucleus (MS) and in the horizontal nucleus of the diagonal band of Broca (HDB) as compared to the corresponding hemisphere in control animals and with that seen in the contralateral hemisphere, which corresponds to the PBS-injected side. Co-localization studies showed that the M1mAChR protein is localized in GABA-immunoreactive cells of the MS-nDBB complex, in particular those of the MS nucleus, while M2mAChR protein is localized in both the cholinergic and GABAergic cells. Moreover, GABAergic cells containing M2mAChR are mainly localized in the MS nucleus, while cholinergic cells containing M2mAChR are localized in the MS and the HDB nuclei. Our findings suggest that Abeta induces a reduction in M1mAChR- and M2mAChR-containing cells, which may contribute to impairments of cholinergic and GABAergic transmission in the MS-nDBB complex.

  11. Functional amyloids as inhibitors of plasmid DNA replication

    Science.gov (United States)

    Molina-García, Laura; Gasset-Rosa, Fátima; Moreno-del Álamo, María; Fernández-Tresguerres, M. Elena; Moreno-Díaz de la Espina, Susana; Lurz, Rudi; Giraldo, Rafael

    2016-01-01

    DNA replication is tightly regulated to constrain the genetic material within strict spatiotemporal boundaries and copy numbers. Bacterial plasmids are autonomously replicating DNA molecules of much clinical, environmental and biotechnological interest. A mechanism used by plasmids to prevent over-replication is ‘handcuffing’, i.e. inactivating the replication origins in two DNA molecules by holding them together through a bridge built by a plasmid-encoded initiator protein (Rep). Besides being involved in handcuffing, the WH1 domain in the RepA protein assembles as amyloid fibres upon binding to DNA in vitro. The amyloid state in proteins is linked to specific human diseases, but determines selectable and epigenetically transmissible phenotypes in microorganisms. Here we have explored the connection between handcuffing and amyloidogenesis of full-length RepA. Using a monoclonal antibody specific for an amyloidogenic conformation of RepA-WH1, we have found that the handcuffed RepA assemblies, either reconstructed in vitro or in plasmids clustering at the bacterial nucleoid, are amyloidogenic. The replication-inhibitory RepA handcuff assembly is, to our knowledge, the first protein amyloid directly dealing with DNA. Built on an amyloid scaffold, bacterial plasmid handcuffs can bring a novel molecular solution to the universal problem of keeping control on DNA replication initiation. PMID:27147472

  12. DNA Binding Polyamides and the Importance of DNA Recognition in their use as Gene-Specific and Antiviral Agents.

    Science.gov (United States)

    Koeller, Kevin J; Harris, G Davis; Aston, Karl; He, Gaofei; Castaneda, Carlos H; Thornton, Melissa A; Edwards, Terri G; Wang, Shuo; Nanjunda, Rupesh; Wilson, W David; Fisher, Chris; Bashkin, James K

    2014-02-20

    There is a long history for the bioorganic and biomedical use of N-methyl-pyrrole-derived polyamides (PAs) that are higher homologs of natural products such as distamycin A and netropsin. This work has been pursued by many groups, with the Dervan and Sugiyama groups responsible for many breakthroughs. We have studied PAs since about 1999, partly in industry and partly in academia. Early in this program, we reported methods to control cellular uptake of polyamides in cancer cell lines and other cells likely to have multidrug resistance efflux pumps induced. We went on to discover antiviral polyamides active against HPV31, where SAR showed that a minimum binding size of about 10 bp of DNA was necessary for activity. Subsequently we discovered polyamides active against two additional high-risk HPVs, HPV16 and 18, a subset of which showed broad spectrum activity against HPV16, 18 and 31. Aspects of our results presented here are incompatible with reported DNA recognition rules. For example, molecules with the same cognate DNA recognition properties varied from active to inactive against HPVs. We have since pursued the mechanism of action of antiviral polyamides, and polyamides in general, with collaborators at NanoVir, the University of Missouri-St. Louis, and Georgia State University. We describe dramatic consequences of β-alanine positioning even in relatively small, 8-ring polyamides; these results contrast sharply with prior reports. This paper was originally presented by JKB as a Keynote Lecture in the 2(nd) International Conference on Medicinal Chemistry and Computer Aided Drug Design Conference in Las Vegas, NV, October 2013.

  13. IMPY, a potential {beta}-amyloid imaging probe for detection of prion deposits in scrapie-infected mice

    Energy Technology Data Exchange (ETDEWEB)

    Song, P.-J. [INSERM, U619, F-37000 Tours (France); Universite Francois-Rabelais, F-37000 Tours (France); IFR135, F-37000 Tours (France); Bernard, Serge [IFR135, F-37000 Tours (France); INRA, UR1282, IASP, 37380 Nouzilly (France)], E-mail: bernard@tours.inra.fr; Sarradin, Pierre [INRA, UR1282, IASP, 37380 Nouzilly (France); Vergote, Jackie [INSERM, U619, F-37000 Tours (France); Universite Francois-Rabelais, F-37000 Tours (France); IFR135, F-37000 Tours (France); Barc, Celine [INRA, UR1282, IASP, 37380 Nouzilly (France); Chalon, Sylvie [INSERM, U619, F-37000 Tours (France); Universite Francois-Rabelais, F-37000 Tours (France); IFR135, F-37000 Tours (France); Kung, M.-P.; Kung, Hank F. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Guilloteau, Denis [INSERM, U619, F-37000 Tours (France); Universite Francois-Rabelais, F-37000 Tours (France); IFR135, F-37000 Tours (France)

    2008-02-15

    Introduction: A potential single-photon emission computed tomography imaging agent for labeling of A{beta} plaques of Alzheimer's disease, IMPY (2-(4'-dimethylaminophenyl)-6-iodo-imidazo[1,2-a]pyridine), would be effective in detection of prion amyloid deposits in transmissible spongiform encephalopathies (TSEs). Methods: In vitro autoradiographic studies were carried out with [{sup 125}I]IMPY on brain sections from scrapie-infected mice and age-matched controls. Competition study was performed to evaluate the prion deposit binding specificity with nonradioactive IMPY. Results: Binding of [{sup 125}I]IMPY was observed in infected brain sections, while on age-matched control brain sections, there was no or very low labeling. Prion deposit binding was confirmed by histoblots with prion protein-specific monoclonal antibody 2D6. In the presence of nonradioactive IMPY, the binding of [{sup 125}I]IMPY was significantly inhibited in all regions studied. Conclusions: These findings indicate that IMPY can detect the prion deposits in vitro in scrapie-infected mice. Labeled with {sup 123}I, this ligand may be useful to quantitate prion deposit burdens in TSEs by in vivo imaging.

  14. HIV Tat protein and amyloid-β peptide form multifibrillar structures that cause neurotoxicity.

    Science.gov (United States)

    Hategan, Alina; Bianchet, Mario A; Steiner, Joseph; Karnaukhova, Elena; Masliah, Eliezer; Fields, Adam; Lee, Myoung-Hwa; Dickens, Alex M; Haughey, Norman; Dimitriadis, Emilios K; Nath, Avindra

    2017-02-20

    Deposition of amyloid-β plaques is increased in the brains of HIV-infected individuals, and the HIV transactivator of transcription (Tat) protein affects amyloidogenesis through several indirect mechanisms. Here, we investigated direct interactions between Tat and amyloid-β peptide. Our in vitro studies showed that in the presence of Tat, uniform amyloid fibrils become double twisted fibrils and further form populations of thick unstructured filaments and aggregates. Specifically, Tat binding to the exterior surfaces of the Aβ fibrils increases β-sheet formation and lateral aggregation into thick multifibrillar structures, thus producing fibers with increased rigidity and mechanical resistance. Furthermore, Tat and Aβ aggregates in complex synergistically induced neurotoxicity both in vitro and in animal models. Increased rigidity and mechanical resistance of the amyloid-β-Tat complexes coupled with stronger adhesion due to the presence of Tat in the fibrils may account for increased damage, potentially through pore formation in membranes.

  15. Benzofuranone derivatives as effective small molecules related to insulin amyloid fibrillation: a structure-function study

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Ebrahim-Habibi, Azadeh; Navidpour, Latifeh;

    2011-01-01

    . In this study, the effects of five new synthetic benzofuranone derivatives were investigated on the insulin amyloid formation process. Protein fibrillation was analyzed by thioflavin-T fluorescence, Congo red binding, circular dichroism, and electron microscopy. Despite high structural similarity, one......Amyloids are protein fibrils of nanometer size resulting from protein self-assembly. They have been shown to be associated with a wide variety of diseases such as Alzheimer's and Parkinson's and may contribute to various other pathological conditions, known as amyloidoses. Insulin is prone to form...... amyloid fibrils under slightly destabilizing conditions in vitro and may form amyloid structures when subcutaneously injected into patients with diabetes. There is a great deal of interest in developing novel small molecule inhibitors of amyloidogenic processes, as potential therapeutic compounds...

  16. Targeting vascular amyloid in arterioles of Alzheimer disease transgenic mice with amyloid β protein antibody-coated nanoparticles.

    Science.gov (United States)

    Poduslo, Joseph F; Hultman, Kristi L; Curran, Geoffry L; Preboske, Gregory M; Chamberlain, Ryan; Marjańska, Małgorzata; Garwood, Michael; Jack, Clifford R; Wengenack, Thomas M

    2011-08-01

    The relevance of cerebral amyloid angiopathy (CAA) to the pathogenesis of Alzheimer disease (AD) and dementia in general emphasizes the importance of developing novel targeting approaches for detecting and treating cerebrovascular amyloid (CVA) deposits. We developed a nanoparticle-based technology that uses a monoclonal antibody against fibrillar human amyloid-β42 that is surface coated onto a functionalized phospholipid monolayer. We demonstrate that this conjugated nanoparticle binds to CVA deposits in arterioles of AD transgenic mice (Tg2576) after infusion into the external carotid artery using 3 different approaches. The first 2 approaches use a blood vessel enrichment of homogenized brain and a leptomeningeal vessel preparation from thin tangential brain slices from the surface of the cerebral cortex. Targeting of CVA by the antibody-coated nanoparticle was visualized using fluorescent lissamine rhodamine-labeled phospholipids in the nanoparticles, which were compared with fluorescent staining of the endothelial cells and amyloid deposits using confocal laser scanning microscopy. The third approach used high-field strength magnetic resonance imaging of antibody-coated iron oxide nanoparticles after infusion into the external carotid artery. Dark foci of contrast enhancement in cortical arterioles were observed in T2*-weighted images of ex vivo AD mouse brains that correlated histologically with CVA deposits. The targeting ability of these nanoparticles to CVA provides opportunities for the prevention and treatment of CAA.

  17. Benzothiazole Amphiphiles Ameliorate Amyloid β-Related Cell Toxicity and Oxidative Stress.

    Science.gov (United States)

    Cifelli, Jessica L; Chung, Tim S; Liu, Haiyan; Prangkio, Panchika; Mayer, Michael; Yang, Jerry

    2016-06-15

    Oxidative stress from the increase of reactive oxygen species in cells is a common part of the normal aging process and is accelerated in patients with Alzheimer's disease (AD). Herein, we report the evaluation of three benzothiazole amphiphiles (BAMs) that exhibit improved biocompatibility without loss of biological activity against amyloid-β induced cell damage compared to a previously reported hexa(ethylene glycol) derivative of benzothiazole aniline (BTA-EG6). The reduced toxicity of these BAM agents compared to BTA-EG6 corresponded with their reduced propensity to induce membrane lysis. In addition, all of the new BAMs were capable of protecting differentiated SH-SY5Y neuroblastoma cells from toxicity and concomitant oxidative stress induced by AD-related aggregated Aβ (1-42) peptides. Binding and microscopy studies support that these BAM agents target Aβ and inhibit the interactions of catalase with Aβ in cells, which, in turn, can account for an observed inhibition of Aβ-induced increases in hydrogen peroxide in cells treated with these compounds. These results support that this family of benzothiazole amphiphiles may have therapeutic potential for treating cellular damage associated with AD and other Aβ-related neurologic diseases.

  18. Broad antiviral activity of carbohydrate-binding agents against the four serotypes of dengue virus in monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Marijke M F Alen

    Full Text Available BACKGROUND: Dendritic cells (DC, present in the skin, are the first target cells of dengue virus (DENV. Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN is present on DC and recognizes N-glycosylation sites on the E-glycoprotein of DENV. Thus, the DC-SIGN/E-glycoprotein interaction can be considered as an important target for inhibitors of viral replication. We evaluated various carbohydrate-binding agents (CBAs against all four described serotypes of DENV replication in Raji/DC-SIGN(+ cells and in monocyte-derived DC (MDDC. METHODOLOGY/PRINCIPAL FINDINGS: A dose-dependent anti-DENV activity of the CBAs Hippeastrum hybrid (HHA, Galanthus nivalis (GNA and Urtica dioica (UDA, but not actinohivin (AH was observed against all four DENV serotypes as analyzed by flow cytometry making use of anti-DENV antibodies. Remarkably, the potency of the CBAs against DENV in MDDC cultures was significantly higher (up to 100-fold than in Raji/DC-SIGN(+ cells. Pradimicin-S (PRM-S, a small-size non-peptidic CBA, exerted antiviral activity in MDDC but not in Raji/DC-SIGN(+ cells. The CBAs act at an early step of DENV infection as they bind to the viral envelope of DENV and subsequently prevent virus attachment. Only weak antiviral activity of the CBAs was detected when administered after the virus attachment step. The CBAs were also able to completely prevent the cellular activation and differentiation process of MDDC induced upon DENV infection. CONCLUSIONS/SIGNIFICANCE: The CBAs exerted broad spectrum antiviral activity against the four DENV serotypes, laboratory-adapted viruses and low passage clinical isolates, evaluated in Raji/DC-SIGN(+ cells and in primary MDDC.

  19. Functional Amyloid Formation within Mammalian Tissue.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available Amyloid is a generally insoluble, fibrous cross-beta sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin-a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology.

  20. Functional amyloid formation within mammalian tissue.

    Directory of Open Access Journals (Sweden)

    Douglas M Fowler

    2006-01-01

    Full Text Available Amyloid is a generally insoluble, fibrous cross-beta sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin-a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology.

  1. Preliminary assay of β-amyloid binding elements in heart-beneficial recipe%调心方中β淀粉样蛋白结合成分的初步探讨

    Institute of Scientific and Technical Information of China (English)

    程敏; 冯琼; 钱淑文; 高慧; 朱粹青

    2008-01-01

    目的:探讨调心方中是否具有通过结合β淀粉样蛋白(β-amyloid protein,Aβ)而减少其神经元毒性的成分.方法:调心方提取物与Aβ共同沉淀并对沉淀物中的Aβ进行免疫印迹检测,制备小量Affi-gel-Aβ,用高效液相色谱(high-performance liquid chromatography,HPLC)检测调心方中Affi-gel-Aβ结合组分;大鼠原代皮层神经元培养,以乳酸脱氢酶(lactic dehydrogenase,LDH)测定法反映细胞损害程度.结果:免疫印迹检测显示Aβ能与调心方中的成分一起沉淀,且沉淀中的Aβ会随调心方的稀释而减少;调心方与Affi-gel-Aβ反应后,用甘氨酸液(pH 2.5)洗脱的组分中有可被HPLC荧光检测器所检测的物质.LDH漏出检测结果显示,在无血清和含血清的培养体系中5 μmol/L Aβ处理48 h均可导致原代培养神经元损害,LDH漏出率显著增加(P<0.01),而大鼠调心方药物血清可抑制Aβ诱导的LDH漏出(P<0.05);经Affi-gel-Aβ吸附的调心方药物血清对Aβ毒性仍有抑制作用(P<0.05),但较经Affi-gel吸附的药物血清有减弱的趋势.结论:调心方中有Aβ结合成分,这类成分不促进Aβ的毒性,而可能具有抑制Aβ毒性的作用.提示在对老年性痴呆有效的中药方剂中探寻Aβ结合成分可能是探寻治疗AD药物的一个手段.

  2. Molecular Characterization and Sequencing of a Gene Encoding Mannose Binding Protein in an Iranian Isolate of Acanthamoeba castellanii as a Major Agent of Acanthamoeba Keratitis

    Directory of Open Access Journals (Sweden)

    SH Farnia

    2008-07-01

    Full Text Available Background: Acanthamoeba castellanii is the important cause of amoebic keratitis in Iran. The key molecule in pathogenesis of Acanthamoeba keratitis is Mannose Binding Protein (MBP led to adhesion of amoeba to corneal epithelium. Subsequent to adhesion other cytopathic effects occur. The goal of this study was to identify the molecular characterization of a gene encoding MBP in an Iranian isolate of A.castellanii in order to pave the way for further investigations such as new therapeutic advances or immunization. Methods: A.castellanii was cultured on non nutrient agar. Extraction of DNA was performed by phenol-chloroform method. After designing a pair of primer for the gene encoding MBP, PCR analysis was performed. Finally, the PCR product has been sequenced and the result submitted to the gene data banks. Results: An MBP gene of 1081 nucleotides was sequenced. This fragment contained three introns and encodes a protein with 194 amino acids. Homology search by Blast program showed a significant homology with the MBP gene in gene data banks (96%. Besides, the identity of amino acids with the other MBPs in gene data banks was about 86%. Conclusion: We isolated and sequenced a gene fragment encoding MBP in an Iranian isolate of A.castellanii. Molecular characterization of this important gene is the first step in pursuing researches such as developing better therapeutic agents, immunization of population at risk or even developing a diagnostic tool by PCR techniques.

  3. Sensitivity of transmitted and founder human immunodeficiency virus type 1 envelopes to carbohydrate-binding agents griffithsin, cyanovirin-N and Galanthus nivalis agglutinin.

    Science.gov (United States)

    Hu, Bodan; Du, Tao; Li, Chang; Luo, Sukun; Liu, Yalan; Huang, Xin; Hu, Qinxue

    2015-12-01

    Human immunodeficiency virus type 1 (HIV-1) transmission often results from infection by a single transmitted/founder (T/F) virus. Here, we investigated the sensitivity of T/F HIV-1 envelope glycoproteins (Envs) to microbicide candidate carbohydrate-binding agents (CBAs) griffithsin (GRFT), cyanovirin-N (CV-N) and Galanthus nivalis agglutinin (GNA), showing that T/F Envs demonstrated different sensitivity to CBAs, with IC50 values ranging from 0.006 ± 0.0003 to >10 nM for GRFT, from 0.6 ± 0.2 to 28.9 ± 2.9 nM for CV-N and from 1.3 ± 0.2 to >500 nM for GNA. We further revealed that deglycosylation at position 295 or 448 decreased the sensitivity of T/F Env to GRFT, and at 339 to both CV-N and GNA. Mutation of all the three glcyans rendered a CBA-sensitive T/F Env largely resistant to GRFT, indicating that the sensitivity of T/F Env to GRFT is mainly determined by glycans at 295, 339 and 448. Our study identified specific T/F Env residues associated with CBA sensitivity.

  4. Amyloid Precursor Protein Processing in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Adwait BHADBHADE

    2012-03-01

    s disease. Trends in Cell Biology 1998;8(11:447-453. Thinakaran G, Koo EH. Amyloid precursor protein trafficking, processing, and function. Journal of Biological Chemistry 2008;283(44:29615. Zhang YW, Thompson R, Zhang H, Xu H. APP processing in Alzheimer’s disease. Mol Brain 2011;4:3. doi: 1756- 6606-4-3 [pii] 10.1186/1756-6606-4-3. Nunan J, Small DH. Regulation of APP cleavage by α-,β- and γ-secretases. J Biolog Chem 2000:483(1:6-10. Pearson HA, Peers C. Physiological roles for amyloid peptides. J Physiology 2006;575(1:5-10. Wang Y, Ha Y. The X-ray structure of an antiparallel dimer of the human amyloid precursor protein E2 domain. Molecular Cell 2004;15(3:343-353. Quitschke WW, Goldgaber D. The amyloid b-protein precursor promoter. Journal Biolog Chem 1992;267(24:17362-17368. Vostrov AA, Taheny MJ, Izkhakov N, Quitschke WW. A nuclear factor-binding domain in the 5’-untranslated region of the amyloid precursor protein promoter: implications for the regulation of gene expression. BMC Research Notes 2010;3:4. Ghosala K,Vogta D, Lianga M, Shenb Y, Lamba BT, Sanjay W, Pimplikara SW. Alzheimer’s disease-like pathological features in transgenic mice expressing the APP intracellular domain. Proceedings of National Academy of Sciences 2009;106(43:18367-77.  

  5. Common benzothiazole and benzoxazole fluorescent DNA intercalators for studying Alzheimer Aβ1-42 and prion amyloid peptides.

    Science.gov (United States)

    Stefansson, Steingrimur; Adams, Daniel L; Tang, Cha-Mei

    2012-05-01

    Amyloids are fibrillar protein aggregates associated with a number of neurodegenerative pathologies including Alzheimer and Creutzfeldt-Jakob disease. The study of amyloids is usually based on fluorescence with the dye thioflavin-T. Although a number of amyloid binding compounds have been synthesized, many are nonfluorescent or not readily available for research use. Here we report on a class of commercial benzothiazole/benzoxazole containing fluorescent DNA intercalators from Invitrogen that possess the ability to bind amyloid Aβ1-42 peptide and hamster prion. These dyes fluoresce from 500-750 nm and are available as dimers or monomers. We demonstrate that these dyes can be used as acceptors for thioflavin-T fluorescence resonance energy transfer as well as reporter groups for binding studies with Congo red and chrysamine G. As more potential therapeutic compounds for these diseases are generated, there is a need for simple and inexpensive methods to monitor their interactions with amyloids. The fluorescent dyes reported here are readily available and can be used as tools for biochemical studies of amyloid structures and in vitro screening of potential therapeutics.

  6. D-polyglutamine amyloid recruits L-polyglutamine monomers and kills cells

    Science.gov (United States)

    Kar, Karunakar; Arduini, Irene; Drombosky, Kenneth W.; van der Wel, Patrick C. A.; Wetzel, Ronald

    2014-01-01

    Polyglutamine (polyQ) amyloid fibrils are observed in disease tissue and have been implicated as toxic agents responsible for neurodegeneration in expanded CAG repeat diseases like Huntington’s disease (HD). Despite intensive efforts, the mechanism of amyloid toxicity remains unknown. As a novel approach to probing polyQ toxicity, we investigate here how some cellular and physical properties of polyQ amyloid vary with the chirality of the glutamine residues in the polyQ. We challenged PC12 cells with small amyloid fibrils composed of either L- or D-polyQ peptides and found that D-fibrils are as cytotoxic as L-fibrils. We also found using fluorescence microscopy that both aggregates effectively seed the aggregation of cell-produced L-polyQ proteins, suggesting a surprising lack of stereochemical restriction in seeded elongation of polyQ amyloid. To investigate this effect further, we studied chemically synthesized D- and L-polyQ in vitro. We found that, as expected, D-polyQ monomers are not recognized by proteins that recognize L-polyQ monomers. However, amyloid fibrils prepared from D-polyQ peptides can efficiently seed the aggregation of L-polyQ monomers in vitro, and vice versa. This result is consistent with our cell results on polyQ recruitment, but is inconsistent with previous literature reports on the chiral specificity of amyloid seeding. This chiral cross-seeding can be rationalized by a model for seeded elongation featuring a “rippled β-sheet” interface between seed fibril and docked monomers of opposite chirality. The lack of chiral discrimination in polyQ amyloid cytotoxicity is consistent with several toxicity mechanisms, including recruitment of cellular polyQ proteins. PMID:24291210

  7. Amyloid-β peptide active site: theoretical Cu K-edge XANES study

    Science.gov (United States)

    Chaynikov, A. P.; Soldatov, M. A.; Streltsov, V.; Soldatov, A. V.

    2013-04-01

    This article is dedicated to the local atomic structure analysis of the copper binding site in amyloid-β peptide. Here we considered two possible structural models that were previously obtained by means of EXAFS analysis and density functional theory simulations. We present the calculations of Cu K-edge XANES spectra for both models and make comparison of these spectra with experiment.

  8. Amyloid Fibril-Induced Structural and Spectral Modifications in the Thioflavin-T Optical Probe

    DEFF Research Database (Denmark)

    Murugan, N. Arul; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob;

    2013-01-01

    Motivated by future possibilities to design target molecules for fibrils with diagnostic or therapeutic capability related to amyloidosis diseases, we investigate in this work the dielectric nature of amyloid fibril microenvironments in different binding sites using an optical probe, thioflavin-T...

  9. Small heat shock proteins potentiate amyloid dissolution by protein disaggregases from yeast and humans.

    Directory of Open Access Journals (Sweden)

    Martin L Duennwald

    Full Text Available How small heat shock proteins (sHsps might empower proteostasis networks to control beneficial prions or disassemble pathological amyloid is unknown. Here, we establish that yeast sHsps, Hsp26 and Hsp42, inhibit prionogenesis by the [PSI+] prion protein, Sup35, via distinct and synergistic mechanisms. Hsp42 prevents conformational rearrangements within molten oligomers that enable de novo prionogenesis and collaborates with Hsp70 to attenuate self-templating. By contrast, Hsp26 inhibits self-templating upon binding assembled prions. sHsp binding destabilizes Sup35 prions and promotes their disaggregation by Hsp104, Hsp70, and Hsp40. In yeast, Hsp26 or Hsp42 overexpression prevents [PSI+] induction, cures [PSI+], and potentiates [PSI+]-curing by Hsp104 overexpression. In vitro, sHsps enhance Hsp104-catalyzed disaggregation of pathological amyloid forms of α-synuclein and polyglutamine. Unexpectedly, in the absence of Hsp104, sHsps promote an unprecedented, gradual depolymerization of Sup35 prions by Hsp110, Hsp70, and Hsp40. This unanticipated amyloid-depolymerase activity is conserved from yeast to humans, which lack Hsp104 orthologues. A human sHsp, HspB5, stimulates depolymerization of α-synuclein amyloid by human Hsp110, Hsp70, and Hsp40. Thus, we elucidate a heretofore-unrecognized human amyloid-depolymerase system that could have applications in various neurodegenerative disorders.

  10. Sampling 4-chlorophenol in water by DGT technique with molecularly imprinted polymer as binding agent and nylon membrane as diffusive layer.

    Science.gov (United States)

    Dong, Jia; Fan, Hongtao; Sui, Dianpeng; Li, Liangchen; Sun, Ting

    2014-04-25

    For the first time, a diffusive gradients in thin films (DGT) device using molecularly imprinted polymer (MIP) as the binding agent and nylon membrane (NM) as the diffusive layer (NM-MIP-DGT) has been developed for sampling 4-chlorophenol (4-CP) in water. The MIP was prepared by precipitation polymerization with methacrylic acid as monomer and ethyleneglycoldimethacrylate as cross-linker. The diffusion coefficient of 4-CP through NM was obtained to be 0.788±0.040 μ cm(2) s(-1) by diffusion cell method. The ratio was 1.01±0.05 (mean±standard deviation) for the concentration of 4-CP sampled by NM-MIP-DGT and analyzed by HPLC method to the total concentration of 4-CP in the synthetic solution where free 4-CP species dominated. The results showed that NM-MIP-DGT could sample 4-CP in synthetic solution accurately. The performance of NM-MIP-DGT for sampling 4-CP was independent of pH in the range of 3-7 and ionic strength in the range of 0.0001-0.1 mol L(-1) NaCl solution. The concentration of free form of 4-CP sampled by NM-MIP-DGT decreased with the increasing concentration of dissolved organic carbon in different water samples due to the electrostatic interaction of natural organic compounds with 4-CP. 1.8 mg L(-1) of the free form of 4-CP was determined by HPLC which was sampled by NM-MIP-DGT in an intermediate untreated industrial effluent. The NM-MIP-DGT can be a potential passive tool for sampling the free form of 4-CP in water.

  11. /sup 32/P-Postlabeling test for covalent DNA binding of chemicals in vivo: Application to a variety of aromatic carcinogens and methylating agents

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M.V.; Gupta, R.C.; Randerath, E.; Randerath, K.

    1984-02-01

    Carcinogen--DNA adducts were detected and determined by /sup 32/P-postlabeling assay after exposure of mouse or rat tissues in vivo to a total of 28 compounds comprising 7 arylamines and derivatives, 3 azo compounds, 2 nitroaromatics, 12 polycyclic aromatic hydrocarbons, and 4 methylating agents. DNA was isolated from mouse skin, mouse liver, and rat liver after treatment with the individual carcinogens, then digested enzymatically to deoxyribonucleoside 3'-monophosphates, which were converted to 5'-/sup 32/P-labeled deoxyribonucleoside 3',5'-bisphosphates by T4 polynucleotide kinase-catalyzed (/sup 32/P)phosphate transfer from (gamma-/sup 32/P)ATP. The nucleotides were resolved by anion-exchange t.l.c. on polyethyleneimine-cellulose and detected by autoradiography. The determination of low levels of DNA binding of the aromatic carcinogens entailed the removal of normal nucleotides prior to the resolution of adduct nucleotides. For this purpose, an alternative procedure employing reversed-phase t.l.c. was devised which offered advantages for the detection of quantitatively minor adducts. The procedures described enabled the detection of 1 aromatic DNA adduct in approximately 10(/sup 8/) normal nucleotides, while the limit of detection of methylated adducts was 1 adduct in approximately 6 X 10(/sup 5/) nucleotides. The results show that a great number of carcinogen-DNA adducts of diverse structure are substrates for /sup 32/P-labeling by polynucleotide kinase-catalyzed phosphorylation. Because covalent DNA adduct formation in vivo appears to be an essential property of the majority of chemical carcinogens, /sup 32/P-postlabeling analysis of carcinogen--DNA adducts in mammalian tissues may serve as a test for the screening of chemicals for potential carcinogenicity.

  12. Amyloid deposition in 2 feline thymomas.

    Science.gov (United States)

    Burrough, E R; Myers, R K; Hostetter, S J; Fox, L E; Bayer, B J; Felz, C L; Waller, K R; Whitley, E M

    2012-07-01

    Two cases of feline thymoma with amyloid deposition were encountered between 1982 and 2010. Neoplastic cells were separated by abundant, pale eosinophilic, homogeneous material that was congophilic and birefringent. Ultrastructurally, the neoplastic cells were connected by desmosomes, and the extracellular deposits were composed of nonbranching, hollow-cored fibrils, 8-10 nm in diameter. In the case with sufficient archived tissue for additional sections, the amyloid remained congophilic following potassium permanganate incubation, and the neoplastic cells were immunoreactive for pancytokeratin. The histologic, histochemical, ultrastructural, and immunohistochemical features of both neoplasms are consistent with epithelial-predominant thymoma with the unusual feature of intratumoral amyloid deposition. The affinity of the amyloid for Congo red following potassium permanganate incubation is consistent with non-AA amyloid. The ultrastructural findings were consistent with amyloid production by the neoplastic epithelial cells.

  13. Amyloid Goiter Secondary to Ulcerative Colitis

    Directory of Open Access Journals (Sweden)

    Bunyamin Aydin

    2016-01-01

    Full Text Available Diffuse amyloid goiter (AG is an entity characterized by the deposition of amyloid in the thyroid gland. AG may be associated with either primary or secondary amyloidosis. Secondary amyloidosis is rarely caused by inflammatory bowel diseases. Secondary amyloidosis is relatively more common in the patients with Crohn’s disease, whereas it is highly rare in patients with ulcerative colitis. Diffuse amyloid goiter caused by ulcerative colitis is also a rare condition. In the presence of amyloid in the thyroid gland, medullary thyroid cancer should be kept in mind in the differential diagnosis. Imaging techniques and biochemical tests are not very helpful in the diagnosis of secondary amyloid goiter and the definitive diagnosis is established based on the histopathologic analysis and histochemical staining techniques. In this report, we present a 35-year-old male patient with diffuse amyloid goiter caused by secondary amyloidosis associated with ulcerative colitis.

  14. Amyloid myopathy: a diagnostic challenge

    Directory of Open Access Journals (Sweden)

    Heli Tuomaala

    2009-08-01

    Full Text Available Amyloid myopathy (AM is a rare manifestation of primary systemic amyloidosis (AL. Like inflammatory myopathies, it presents with proximal muscle weakness and an increased creatine kinase level. We describe a case of AL with severe, rapidly progressive myopathy as the initial symptom. The clinical manifestation and muscle biopsy were suggestive of inclusion body myositis. AM was not suspected until amyloidosis was seen in the gastric mucosal biopsy. The muscle biopsy was then re-examined more specifically, and Congo red staining eventually showed vascular and interstitial amyloid accumulation, which led to a diagnosis of AM. The present case illustrates the fact that the clinical picture of AM can mimic that of inclusion body myositis.

  15. Surgical considerations about amyloid goiter.

    Science.gov (United States)

    García Villanueva, Augusto; García Villanueva, María Jesús; García Villanueva, Mercedes; Rojo Blanco, Roberto; Collado Guirao, María Vicenta; Cabañas Montero, Jacobo; Beni Pérez, Rafael; Moreno Montes, Irene

    2013-05-01

    Amyloidosis is an uncommon syndrome consisting of a number of disorders having in common an extracellular deposit of fibrillary proteins. This results in functional and structural changes in the affected organs, depending on deposit location and severity. Amyloid infiltration of the thyroid gland may occur in 50% and up to 80% of patients with primary and secondary amyloidosis respectively. Amyloid goiter (AG) is a true rarity, usually found associated to secondary amyloidosis. AG may require surgical excision, usually because of compressive symptoms. We report the case of a patient with a big AG occurring in the course of a secondary amyloidosis associated to polyarticular onset juvenile idiopathic arthritis who underwent total thyroidectomy. Current literature is reviewed, an attempt is made to provide action guidelines, and some surgical considerations on this rare condition are given.

  16. Apolipoprotein E: Essential Catalyst of the Alzheimer Amyloid Cascade

    Directory of Open Access Journals (Sweden)

    Huntington Potter

    2012-01-01

    Full Text Available The amyloid cascade hypothesis remains a robust model of AD neurodegeneration. However, amyloid deposits contain proteins besides Aβ, such as apolipoprotein E (apoE. Inheritance of the apoE4 allele is the strongest genetic risk factor for late-onset AD. However, there is no consensus on how different apoE isotypes contribute to AD pathogenesis. It has been hypothesized that apoE and apoE4 in particular is an amyloid catalyst or “pathological chaperone”. Alternatively it has been posited that apoE regulates Aβ clearance, with apoE4 been worse at this function compared to apoE3. These views seem fundamentally opposed. The former would indicate that removing apoE will reduce AD pathology, while the latter suggests increasing brain ApoE levels may be beneficial. Here we consider the scientific basis of these different models of apoE function and suggest that these seemingly opposing views can be reconciled. The optimal therapeutic target may be to inhibit the interaction of apoE with Aβ rather than altering apoE levels. Such an approach will not have detrimental effects on the many beneficial roles apoE plays in neurobiology. Furthermore, other Aβ binding proteins, including ACT and apo J can inhibit or promote Aβ oligomerization/polymerization depending on conditions and might be manipulated to effect AD treatment.

  17. Atypical presentation of atypical amyloid.

    Science.gov (United States)

    Holanda, Danniele G; Acharya, Veena K; Dogan, Ahmet; Racusen, Lorraine C; Atta, Mohamed G

    2011-01-01

    Amyloidosis is a group of diseases categorized by precipitation of a group of protein aggregates (amyloid) in tissues, including the kidney, and proteinuria is usually the commonest, though not exclusive, hallmark of clinical presentation. AL and AA are the most commonly recognized forms of amyloidosis involving the kidney, but other forms have been described. We present a case of renal amyloidosis due to a novel amyloidogenic protein, leucocyte cell-derived chemotaxin 2, without proteinuria at presentation or on subsequent follow-up.

  18. Size-dependent neurotoxicity of β-amyloid oligomers

    OpenAIRE

    Cizas, Paulius; Budvytyte, Rima; Morkuniene, Ramune; Moldovan, Radu; Broccio, Matteo; Lösche, Mathias; Niaura, Gediminas; Valincius, Gintaras; Borutaite, Vilmante

    2010-01-01

    The link between the size of soluble amyloid β (Aβ) oligomers and their toxicity to rat cerebellar granule cells (CGC) was investigated. Variation in conditions during in vitro oligomerization of Aβ1-42 resulted in peptide assemblies with different particle size as measured by atomic force microscopy and confirmed by the dynamic light scattering and fluorescence correlation spectroscopy. Small oligomers of Aβ1-42 with a mean particle z-height of 1-2 nm exhibited propensity to bind to the phos...

  19. Novel targeted nuclear imaging agent for gastric cancer diagnosis: glucose-regulated protein 78 binding peptide-guided 111In-labeled polymeric micelles

    Directory of Open Access Journals (Sweden)

    Cheng CC

    2013-04-01

    Full Text Available Chun-Chia Cheng,1,2,* Chiung-Fang Huang,3,4,* Ai-Sheng Ho,5 Cheng-Liang Peng,6 Chun-Chao Chang,7,8 Fu-Der Mai,1,9 Ling-Yun Chen,10 Tsai-Yueh Luo,2 Jungshan Chang1,11,121Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, 2Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, 3School of Dental Technology, Taipei Medical University, Taipei, 4Division of Family and Operative Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei, 5Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, 6Institute of Biomedical Engineering, National Taiwan University, Taipei, 7Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, 8Department of Internal Medicine, Taipei Medical University, Taipei, 9Department of Biochemistry, Taipei Medical University, Taipei, 10Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, 11Neuroscience Research Center, Taipei Medical University Hospital, Taipei, 12Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, Taiwan*These authors contributed equally to this workAbstract: Increased expression of cellular membrane bound glucose-regulated protein 78 (GRP78 is considered to be one of the biomarkers for gastric cancers. Therefore, peptides or molecules with specific recognition to GRP78 can act as a guiding probe to direct conjugated imaging agents to localized cancers. Based on this rationale, GRP78-guided polymeric micelles were designed and manufactured for nuclear imaging detection of tumors. Thiolated GRP78 binding peptide (GRP78BP was first labeled with maleimide-terminated poly(ethylene glycol–poly(ε-caprolactone and then mixed with diethylenetriaminepentaacetic acid (DTPA-linked poly(ethylene glycol–poly(ε-caprolactone to form DTPA/GRP78BP-conjugated micelles. The coupling efficiency of micelles with

  20. β淀粉样蛋白PET显像剂11C-DPOD的制备及其在动物体内的分布%Synthesis and Biological Evaluation of 11C-DPOD for PET Imaging Agent of Amyloid-β in Mouse Brain

    Institute of Scientific and Technical Information of China (English)

    王新艳; 张政伟; 蒋雨平; 孔艳艳; 桂媛; 胡名扬; 华逢春; 管一晖

    2013-01-01

    Aim To study the synthesis of 11C-labeled PET amyloid-P (Ap) imaging agent titled DPOD, a new series of 11C-6-OH-BTA-1 derivatives, and biological evaluation of 11C-DPOD for detecting amyloid-P plaques in mouse brain. Methods 11C-triflate-CH3 was bubbled into 2 mg precursor DPOD, which was dissolved in 0.1 mg methyl ethyl ketone, to generate 11C-DPOD in a V-tube at high temperature (about 80℃). The radiolabelled products were purified by HPLC. Then the image of radioactive concentration of transgenic, senile mice and rhesus monkey was made by using PET/CT. All data were analyzed by Stata 10.0 software (P<0.05). Results 11C-DPOD was a kind of colorless transparent liquid with ethyl alcohol about 10%, pH7.0. The radiochemical purity was over 95% and the average radiolabeling yield was from 10% to 15%. 11C-DPOD had the same effect as 11C-PIB in pharmacokinetics of transgenic and senile mice. Conclusion 11C-DPOD radioactivity of brain was synthesized by ourselves and washed out quickly thereafter in both transgenic mice and monkey.%目的 研究脑内β淀粉样蛋白(Aβ)的PET显像剂11C-DPOD即[N-甲基-11C]-3,5-二苯基-1,2,4-苯并噻唑的制备路线和在动物体内的分布情况.方法 使用11C-三氟甲基磺酰甲烷(11C-triflate-CH3)和2 mg自制DPOD前体(溶于0.1 mL丁酮中,摇匀后装于3mL的特制密闭反应瓶中,置-20℃)反应,在80℃水浴中对前体进行甲基化反应并完成11C标记.反应后的液体加入5mL注射用水稀释,过活化的固相C18柱除去杂质,再用乙醇0.5 mL洗脱保留在柱上的产品.经无菌注射水稀释和0.22 μm的微孔无菌滤膜过滤,得到澄清11C-DPOD乙醇水溶液.经尾静脉注射于转基因型阿尔茨海默病(AD)小鼠(AD小鼠)、正常C57老龄小鼠(正常老龄小鼠,作为对照);经肘静脉注射猕猴,进行动态显像.结果 11C-DPOD注射液为无色澄清透明液体(pH 7.0),含10%的乙醇,放射性化学纯度>98%,产率为10%~15%.在AD小鼠和正常

  1. Reduced aggregation and cytotoxicity of amyloid peptides by graphene oxide/gold nanocomposites prepared by pulsed laser ablation in water.

    Science.gov (United States)

    Li, Jingying; Han, Qiusen; Wang, Xinhuan; Yu, Ning; Yang, Lin; Yang, Rong; Wang, Chen

    2014-11-12

    A novel and convenient method to synthesize the nanocomposites combining graphene oxides (GO) with gold nanoparticles (AuNPs) is reported and their applications to modulate amyloid peptide aggregation are demonstrated. The nanocomposites produced by pulsed laser ablation (PLA) in water show good biocompatibility and solubility. The reduced aggregation of amyloid peptides by the nanocomposites is confirmed by Thioflavin T fluorescence and atomic force microscopy. The cell viability experiments reveals that the presence of the nanocomposites can significantly reduce the cytotoxicity of the amyloid peptides. Furthermore, the depolymerization of peptide fibrils and inhibition of their cellular cytotoxicity by GO/AuNPs is also observed. These observations suggest that the nanocomposites combining GO and AuNPs have a great potential for designing new therapeutic agents and are promising for future treatment of amyloid-related diseases.

  2. Characterization of Amyloid Cores in Prion Domains

    Science.gov (United States)

    Sant’Anna, Ricardo; Fernández, Maria Rosario; Batlle, Cristina; Navarro, Susanna; de Groot, Natalia S.; Serpell, Louise; Ventura, Salvador

    2016-01-01

    Amyloids consist of repetitions of a specific polypeptide chain in a regular cross-β-sheet conformation. Amyloid propensity is largely determined by the protein sequence, the aggregation process being nucleated by specific and short segments. Prions are special amyloids that become self-perpetuating after aggregation. Prions are responsible for neuropathology in mammals, but they can also be functional, as in yeast prions. The conversion of these last proteins to the prion state is driven by prion forming domains (PFDs), which are generally large, intrinsically disordered, enriched in glutamines/asparagines and depleted in hydrophobic residues. The self-assembly of PFDs has been thought to rely mostly on their particular amino acid composition, rather than on their sequence. Instead, we have recently proposed that specific amyloid-prone sequences within PFDs might be key to their prion behaviour. Here, we demonstrate experimentally the existence of these amyloid stretches inside the PFDs of the canonical Sup35, Swi1, Mot3 and Ure2 prions. These sequences self-assemble efficiently into highly ordered amyloid fibrils, that are functionally competent, being able to promote the PFD amyloid conversion in vitro and in vivo. Computational analyses indicate that these kind of amyloid stretches may act as typical nucleating signals in a number of different prion domains. PMID:27686217

  3. Acetylcholinesterase, a senile plaque component, affects the fibrillogenesis of amyloid-beta-peptides.

    Science.gov (United States)

    Alvarez, A; Bronfman, F; Pérez, C A; Vicente, M; Garrido, J; Inestrosa, N C

    1995-12-01

    Acetylcholinesterase (AChE) colocalizes with amyloid-beta peptide (A beta) deposits present in the brain of Alzheimer's patients. Recent studies showed that A beta 1-40 can adopt two different conformational states in solution (an amyloidogenic conformer, A beta ac, and a non-amyloidogenic conformer, A beta nac) which have distinct abilities to form amyloid fibrils. We report here that AChE binds A beta nac and accelerates amyloid formation by the same peptide. No such effect was observed with A beta ac, the amyloidogenic conformer, suggesting that AChE acts as a 'pathological chaperone' inducing a conformational transition from A beta nac into A beta ac in vitro.

  4. Combined thioflavin T-Congo red fluorescence assay for amyloid fibril detection

    Science.gov (United States)

    Girych, Mykhailo; Gorbenko, Galyna; Maliyov, Ivan; Trusova, Valeriya; Mizuguchi, Chiharu; Saito, Hiroyuki; Kinnunen, Paavo

    2016-09-01

    Fluorescence represents one of the most powerful tools for the detection and structural characterization of the pathogenic protein aggregates, amyloid fibrils. The traditional approaches to the identification and quantification of amyloid fibrils are based on monitoring the fluorescence changes of the benzothiazole dye thioflavin T (ThT) and absorbance changes of the azo dye Congo red (CR). In routine screening it is usually sufficient to perform only the ThT and CR assays, but both of them, when used separately, could give false results. Moreover, fibrillization kinetics can be measured only by ThT fluorescence, while the characteristic absorption spectra and birefringence of CR represent more rigid criteria for the presence of amyloid fibrils. Therefore, it seemed reasonable to use both these dyes simultaneously, combining the advantages of each technique. To this end, we undertook a detailed analysis of the fluorescence spectral behavior of these unique amyloid tracers upon their binding to amyloid fibrils from lysozyme, insulin and an N-terminal fragment of apolipoprotein A-I with Iowa mutation. The fluorescence measurements revealed several criteria for distinguishing between fibrillar and monomeric protein states: (i) a common drastic increase in ThT fluorescence intensity; (ii) a sharp decrease in ThT fluorescence upon addition of CR; (iii) an appearance of the maximum at 535-540 nm in the CR excitation spectra; (iv) increase in CR fluorescence intensity at 610 nm. Based on these findings we designed a novel combined ThT-CR fluorescence assay for amyloid identification. Such an approach not only strengthens the reliability of the ThT assay, but also provides new opportunities for structural characterization of amyloid fibrils.

  5. Saturable binding of /sup 35/S-t-butylbicyclophosphorothionate to the sites linked to the GABA receptor and the interaction with gabaergic agents

    Energy Technology Data Exchange (ETDEWEB)

    Wong, D.T.; Threlkeld, P.G.; Bymaster, F.P.; Squires, R.F.

    1984-02-27

    /sup 35/-S-t-Butylbicyclophosphorothionate (/sup 35/S-TBPS) binds in a concentration-saturable manner to specific sites on membranes from rat cerebral cortex. Using a filtration assay at 25/sup 0/C, in 250 mM NaCl, specific binding of /sup 35/S-TBPS constitutes about 84 to 94 percent of total binding, depending on radioligand concentrations. /sup 35/S-TBPS binding is optimal in the presence of NaCl or NaBr and substantially less in the presence of NaI or NaF. It is sensitive to the treatment with 0.05 percent Triton X-100 but not to repeated freezing and thawing, procedures which increase /sup 3/H-GABA binding. Pharmacological studies show that /sup 35/S-TBPS binding is strongly inhibited by GABA-A receptor agonists (e.g., GABA and muscimol) and by the noncompetitive antagonist, picrotoxin, but not the competitive antagonist, bicuculline. Compounds which enhance binding of radioactive GABA and benzodiazepines, such as the pyrazolopyridines, cartazolate and trazolate, and a diaryl-triazine, LY81067, are also potent inhibitors of /sup 35/S-TBPS binding, with LY81067 being the most effective. The effects of GABA, picrotoxin

  6. Gallic acid is the major component of grape seed extract that inhibits amyloid fibril formation.

    Science.gov (United States)

    Liu, Yanqin; Pukala, Tara L; Musgrave, Ian F; Williams, Danielle M; Dehle, Francis C; Carver, John A

    2013-12-01

    Many protein misfolding diseases, for example, Alzheimer's, Parkinson's and Huntington's, are characterised by the accumulation of protein aggregates in an amyloid fibrillar form. Natural products which inhibit fibril formation are a promising avenue to explore as therapeutics for the treatment of these diseases. In this study we have shown, using in vitro thioflavin T assays and transmission electron microscopy, that grape seed extract inhibits fibril formation of kappa-casein (κ-CN), a milk protein which forms amyloid fibrils spontaneously under physiological conditions. Among the components of grape seed extract, gallic acid was the most active component at inhibiting κ-CN fibril formation, by stabilizing κ-CN to prevent its aggregation. Concomitantly, gallic acid significantly reduced the toxicity of κ-CN to pheochromocytoma12 cells. Furthermore, gallic acid effectively inhibited fibril formation by the amyloid-beta peptide, the putative causative agent in Alzheimer's disease. It is concluded that the gallate moiety has the fibril-inhibitory activity.

  7. Beta-Amyloid Deposition and Alzheimer's Type Changes Induced by Borrelia Spirochetes

    Energy Technology Data Exchange (ETDEWEB)

    Miklossy,J.; Kis, A.; Radenovic, A.; Miller, L.; Forro, L.; Martins, R.; Reiss, K.; Darbinian, N.; Darekar, P.; et al.

    2006-01-01

    The pathological hallmarks of Alzheimer's disease (AD) consist of {beta}-amyloid plaques and neurofibrillary tangles in affected brain areas. The processes, which drive this host reaction are unknown. To determine whether an analogous host reaction to that occurring in AD could be induced by infectious agents, we exposed mammalian glial and neuronal cells in vitro to Borrelia burgdorferi spirochetes and to the inflammatory bacterial lipopolysaccharide (LPS). Morphological changes analogous to the amyloid deposits of AD brain were observed following 2-8 weeks of exposure to the spirochetes. Increased levels of {beta}-amyloid presursor protein (A{beta}PP) and hyperphosphorylated tau were also detected by Western blots of extracts of cultured cells that had been treated with spirochetes or LPS. These observations indicate that, by exposure to bacteria or to their toxic products, host responses similar in nature to those observed in AD may be induced.

  8. Epigallocatechin-3-gallate rapidly remodels PAP85-120, SEM1(45-107, and SEM2(49-107 seminal amyloid fibrils

    Directory of Open Access Journals (Sweden)

    Laura M. Castellano

    2015-09-01

    Full Text Available Semen harbors amyloid fibrils formed by proteolytic fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120 and semenogelins (SEM1 and SEM2 that potently enhance HIV infectivity. Amyloid but not soluble forms of these peptides enhance HIV infection. Thus, agents that remodel these amyloid fibrils could prevent HIV transmission. Here, we confirm that the green tea polyphenol, epigallocatechin-3-gallate (EGCG, slowly remodels fibrils formed by PAP248-286 termed SEVI (semen derived enhancer of viral infection and also exerts a direct anti-viral effect. We elucidate for the first time that EGCG remodels PAP85-120, SEM1(45-107, and SEM2(49-107 fibrils more rapidly than SEVI fibrils. We establish EGCG as the first small molecule that can remodel all four classes of seminal amyloid. The combined anti-amyloid and anti-viral properties of EGCG could have utility in preventing HIV transmission.

  9. Amyloid fibrils compared to peptide nanotubes.

    Science.gov (United States)

    Zganec, Matjaž; Zerovnik, Eva

    2014-09-01

    Prefibrillar oligomeric states and amyloid fibrils of amyloid-forming proteins qualify as nanoparticles. We aim to predict what biophysical and biochemical properties they could share in common with better researched peptide nanotubes. We first describe what is known of amyloid fibrils and prefibrillar aggregates (oligomers and protofibrils): their structure, mechanisms of formation and putative mechanism of cytotoxicity. In distinction from other neuronal fibrillar constituents, amyloid fibrils are believed to cause pathology, however, some can also be functional. Second, we give a review of known biophysical properties of peptide nanotubes. Finally, we compare properties of these two macromolecular states side by side and discuss which measurements that have already been done with peptide nanotubes could be done with amyloid fibrils as well.

  10. Saturable binding of /sup 35/S-t-butylbicyclophosphorothionate to the sites linked to the GABA receptor and the interaction with gabaergic agents

    Energy Technology Data Exchange (ETDEWEB)

    Wong, D.T.; Threlkeld, P.G.; Bymaster, F.P.; Squires, R.F.

    1984-02-27

    /sup 35/S-t-Butylbicyclophosphorothionate (/sup 35/S-TBPS) binds in a concentration-saturable manner to specific sites on membranes from rat cerebral cortex. Using a filtration assay at 25/sup 0/C, in 250 mM NaCl, specific binding of /sup 35/S-TBPS constitutes about 84 to 94 percent of total binding, depending on radioligand concentrations. /sup 35/S-TBPS binding is optimal in the presence of NaCl or NaBr and substantially less in the presence of NaI or NaF. It is sensitive to the treatment with 0.05 percent Triton X-100 but not to repeated freezing and thawing, procedures which increase /sup 3/H-GABA binding. Pharmacological studies show that /sup 35/S-TBPS binding is strongly inhibited by GABA-A receptor agonists (e.g., GABA and muscimol) and by the noncompetitive antagonist, picrotoxin, but not the competitive antagonist, bicuculline. Compounds which enhance binding of radioactive GABA and benzodiazepines, such as the pyrazolopyridines, cartazolate and tracazolate, and a diaryltriazine, LY81067, are also potent inhibitors of /sup 35/S-TBPS binding, with LY81067 being the most effective. The effects of GABA, picrotoxin and LY81067 on the saturable binding of /sup 35/S-TBPS in cortical membranes are compared. The present findings are consistent with the interpretation that /sup 35/S-TBPS bind at or near the picrotoxin-sensitive anion recognition sites of the GABA/benzodiazepine/picrotoxin receptor complex.

  11. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade.

    Science.gov (United States)

    Bulawa, Christine E; Connelly, Stephen; Devit, Michael; Wang, Lan; Weigel, Charlotte; Fleming, James A; Packman, Jeff; Powers, Evan T; Wiseman, R Luke; Foss, Theodore R; Wilson, Ian A; Kelly, Jeffery W; Labaudinière, Richard

    2012-06-12

    The transthyretin amyloidoses (ATTR) are invariably fatal diseases characterized by progressive neuropathy and/or cardiomyopathy. ATTR are caused by aggregation of transthyretin (TTR), a natively tetrameric protein involved in the transport of thyroxine and the vitamin A-retinol-binding protein complex. Mutations within TTR that cause autosomal dominant forms of disease facilitate tetramer dissociation, monomer misfolding, and aggregation, although wild-type TTR can also form amyloid fibrils in elderly patients. Because tetramer dissociation is the rate-limiting step in TTR amyloidogenesis, targeted therapies have focused on small molecules that kinetically stabilize the tetramer, inhibiting TTR amyloid fibril formation. One such compound, tafamidis meglumine (Fx-1006A), has recently completed Phase II/III trials for the treatment of Transthyretin Type Familial Amyloid Polyneuropathy (TTR-FAP) and demonstrated a slowing of disease progression in patients heterozygous for the V30M TTR mutation. Herein we describe the molecular and structural basis of TTR tetramer stabilization by tafamidis. Tafamidis binds selectively and with negative cooperativity (K(d)s ~2 nM and ~200 nM) to the two normally unoccupied thyroxine-binding sites of the tetramer, and kinetically stabilizes TTR. Patient-derived amyloidogenic variants of TTR, including kinetically and thermodynamically less stable mutants, are also stabilized by tafamidis binding. The crystal structure of tafamidis-bound TTR suggests that binding stabilizes the weaker dimer-dimer interface against dissociation, the rate-limiting step of amyloidogenesis.

  12. alpha7 Nicotinic acetylcholine receptor knockout selectively enhances ethanol-, but not beta-amyloid-induced neurotoxicity.

    Science.gov (United States)

    de Fiebre, Nancyellen C; de Fiebre, Christopher M

    2005-01-03

    The alpha7 subtype of nicotinic acetylcholine receptor (nAChR) has been implicated as a potential site of action for two neurotoxins, ethanol and the Alzheimer's disease related peptide, beta-amyloid. Here, we utilized primary neuronal cultures of cerebral cortex from alpha7 nAChR null mutant mice to examine the role of this receptor in modulating the neurotoxic properties of subchronic, "binge" ethanol and beta-amyloid. Knockout of the alpha7 nAChR gene selectively enhanced ethanol-induced neurotoxicity in a gene dosage-related fashion. Susceptibility of cultures to beta-amyloid induced toxicity, however, was unaffected by alpha7 nAChR gene null mutation. Further, beta-amyloid did not inhibit the binding of the highly alpha7-selective radioligand, [(125)I]alpha-bungarotoxin. On the other hand, in studies in Xenopus oocytes ethanol efficaciously inhibited alpha7 nAChR function. These data suggest that alpha7 nAChRs modulate the neurotoxic effects of binge ethanol, but not the neurotoxicity produced by beta-amyloid. It is hypothesized that inhibition of alpha7 nAChRs by ethanol provides partial protection against the neurotoxic properties of subchronic ethanol.

  13. Carnosine's effect on amyloid fibril formation and induced cytotoxicity of lysozyme.

    Directory of Open Access Journals (Sweden)

    Josephine W Wu

    Full Text Available Carnosine, a common dipeptide in mammals, has previously been shown to dissemble alpha-crystallin amyloid fibrils. To date, the dipeptide's anti-fibrillogensis effect has not been thoroughly characterized in other proteins. For a more complete understanding of carnosine's mechanism of action in amyloid fibril inhibition, we have investigated the effect of the dipeptide on lysozyme fibril formation and induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Our study demonstrates a positive correlation between the concentration and inhibitory effect of carnosine against lysozyme fibril formation. Molecular docking results show carnosine's mechanism of fibrillogenesis inhibition may be initiated by binding with the aggregation-prone region of the protein. The dipeptide attenuates the amyloid fibril-induced cytotoxicity of human neuronal cells by reducing both apoptotic and necrotic cell deaths. Our study provides solid support for carnosine's amyloid fibril inhibitory property and its effect against fibril-induced cytotoxicity in SH-SY5Y cells. The additional insights gained herein may pave way to the discovery of other small molecules that may exert similar effects against amyloid fibril formation and its associated neurodegenerative diseases.

  14. Loss of metal ions, disulfide reduction and mutations related to familial ALS promote formation of amyloid-like aggregates from superoxide dismutase.

    Directory of Open Access Journals (Sweden)

    Zeynep A Oztug Durer

    Full Text Available Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1 are one of the causes of familial amyotrophic lateral sclerosis (FALS. Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When agitated at acidic pH in the presence of low concentrations of guanidine or acetonitrile, metalated SOD1 formed fibrillar material which bound both thioflavin T and Congo red and had circular dichroism and infrared spectra characteristic of amyloid. While metalated SOD1 did not form amyloid-like aggregates at neutral pH, either removing metals from SOD1 with its intramolecular disulfide bond intact or reducing the intramolecular disulfide bond of metalated SOD1 was sufficient to promote formation of these aggregates. SOD1 formed amyloid-like aggregates both with and without intermolecular disulfide bonds, depending on the incubation conditions, and a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1 formed amyloid-like aggregates at neutral pH under reducing conditions. ALS mutations enhanced the ability of disulfide-reduced SOD1 to form amyloid-like aggregates, and apo-AS-SOD1 formed amyloid-like aggregates at pH 7 only when an ALS mutation was also present. These results indicate that some mutations related to ALS promote formation of amyloid-like aggregates by facilitating the loss of metals and/or by making the intramolecular disulfide bond more susceptible to reduction, thus allowing the conversion of SOD1 to a form that aggregates to form resembling amyloid. Furthermore, the occurrence of amyloid-like aggregates per se does not depend on forming intermolecular disulfide bonds, and multiple forms of such aggregates can be produced from SOD1.

  15. General amyloid inhibitors? A critical examination of the inhibition of IAPP amyloid formation by inositol stereoisomers.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available Islet amyloid polypeptide (IAPP or amylin forms amyloid deposits in the islets of Langerhans; a process that is believed to contribute to the progression of type 2 diabetes and to the failure of islet transplants. An emerging theme in amyloid research is the hypothesis that the toxic species produced during amyloid formation by different polypeptides share common features and exert their effects by common mechanisms. If correct, this suggests that inhibitors of amyloid formation by one polypeptide might be effective against other amyloidogenic sequences. IAPP and Aβ, the peptide responsible for amyloid formation in Alzheimer's disease, are particularly interesting in this regard as they are both natively unfolded in their monomeric states and share some common characteristics. Comparatively little effort has been expended on the design of IAPP amyloid inhibitors, thus it is natural to inquire if Aβ inhibitors are effective against IAPP, especially since no IAPP inhibitors have been clinically approved. A range of compounds inhibit Aβ amyloid formation, including various stereoisomers of inositol. Myo-, scyllo-, and epi-inositol have been shown to induce conformational changes in Aβ and prevent Aβ amyloid fibril formation by stabilizing non-fibrillar β-sheet structures. We investigate the ability of inositol stereoisomers to inhibit amyloid formation by IAPP. The compounds do not induce a conformational change in IAPP and are ineffective inhibitors of IAPP amyloid formation, although some do lead to modest apparent changes in IAPP amyloid fibril morphology. Thus not all classes of Aβ inhibitors are effective against IAPP. This work provides a basis of comparison to work on polyphenol based inhibitors of IAPP amyloid formation and helps provide clues as to the features which render them effective. The study also helps provide information for further efforts in rational inhibitor design.

  16. Natural Phenolic Compounds as Therapeutic and Preventive Agents for Cerebral Amyloidosis.

    Science.gov (United States)

    Yamada, Masahito; Ono, Kenjiro; Hamaguchi, Tsuyoshi; Noguchi-Shinohara, Moeko

    2015-01-01

    Epidemiological studies have suggested that diets rich in phenolic compounds may have preventive effects on the development of dementia or Alzheimer's disease (AD). We investigated the effects of natural phenolic compounds, such as myricetin (Myr), rosmarinic acid (RA), ferulic acid (FA), curcumin (Cur) and nordihydroguaiaretic acid (NDGA) on the aggregation of amyloid β-protein (Aβ), using in vitro and in vivo models of cerebral Aβ amyloidosis. The in vitro studies revealed that these phenolic compounds efficiently inhibit oligomerization as well as fibril formation of Aβ through differential binding, whilst reducing Aβ oligomer-induced synaptic and neuronal toxicity. Furthermore, a transgenic mouse model fed orally with such phenolic compounds showed significant reduction of soluble Aβ oligomers as well as of insoluble Aβ deposition in the brain. These data, together with an updated review of the literature, indicate that natural phenolic compounds have anti-amyloidogenic effects on Aβ in addition to well-known anti-oxidative and anti-inflammatory effects, hence suggesting their potential as therapeutic and/or preventive agents for cerebral Aβ amyloidosis, including AD and cerebral amyloid angiopathy (CAA). Well-designed clinical trials or preventive interventions with natural phenolic compounds are necessary to establish their efficacy as disease-modifying agents.

  17. Reversal of rocuronium-induced neuromuscular block by the selective relaxant binding agent sugammadex: a dose-finding and safety study

    DEFF Research Database (Denmark)

    Sorgenfrei, Iben F; Norrild, Kathrine; Larsen, Per Bo;

    2006-01-01

    Sugammadex (Org 25969) forms a complex with steroidal neuromuscular blocking agents, thereby reversing neuromuscular block. This study investigated the dose-response relation, safety, and pharmacokinetics of sugammadex to reverse rocuronium-induced block....

  18. Amyloid Beta as a Modulator of Synaptic Plasticity

    OpenAIRE

    Parihar, Mordhwaj S.; Gregory J. Brewer

    2010-01-01

    Alzheimer’s disease is associated with synapse loss, memory dysfunction and pathological accumulation of amyloid beta in plaques. However, an exclusively pathological role for amyloid beta is being challenged by new evidence for an essential function of amyloid beta at the synapse. Amyloid beta protein exists in different assembly states in the central nervous system and plays distinct roles ranging from synapse and memory formation to memory loss and neuronal cell death. Amyloid beta is pres...

  19. Hacking the Code of Amyloid Formation

    Science.gov (United States)

    Pastor, M Teresa; Esteras-Chopo, Alexandra

    2007-01-01

    Many research efforts in the last years have been directed towards understanding the factors determining protein misfolding and amyloid formation. Protein stability and amino acid composition have been identified as the two major factors in vitro. The research of our group has been focused on understanding the relationship between amino acid sequence and amyloid formation. Our approach has been the design of simple model systems that reproduce the biophysical properties of natural amyloids. An amyloid sequence pattern was extracted that can be used to detect amyloidogenic hexapeptide stretches in proteins. We have added evidence supporting that these amyloidogenic stretches can trigger amyloid formation by nonamyloidogenic proteins. Some experimental results in other amyloid proteins will be analyzed under the conclusions obtained in these studies. Our conclusions together with evidences from other groups suggest that amyloid formation is the result of the interplay between a decrease of protein stability, and the presence of highly amyloidogenic regions in proteins. As many of these results have been obtained in vitro, the challenge for the next years will be to demonstrate their validity in in vivo systems. PMID:19164912

  20. Neuroinflammation in Lyme neuroborreliosis affects amyloid metabolism

    Directory of Open Access Journals (Sweden)

    Anckarsäter Henrik

    2010-06-01

    Full Text Available Abstract Background The metabolism of amyloid precursor protein (APP and β-amyloid (Aβ is widely studied in Alzheimer's disease, where Aβ deposition and plaque development are essential components of the pathogenesis. However, the physiological role of amyloid in the adult nervous system remains largely unknown. We have previously found altered cerebral amyloid metabolism in other neuroinflammatory conditions. To further elucidate this, we investigated amyloid metabolism in patients with Lyme neuroborreliosis (LNB. Methods The first part of the study was a cross-sectional cohort study in 61 patients with acute facial palsy (19 with LNB and 42 with idiopathic facial paresis, Bell's palsy and 22 healthy controls. CSF was analysed for the β-amyloid peptides Aβ38, Aβ40 and Aβ42, and the amyloid precursor protein (APP isoforms α-sAPP and β-sAPP. CSF total-tau (T-tau, phosphorylated tau (P-tau and neurofilament protein (NFL were measured to monitor neural cell damage. The second part of the study was a prospective cohort-study in 26 LNB patients undergoing consecutive lumbar punctures before and after antibiotic treatment to study time-dependent dynamics of the biomarkers. Results In the cross-sectional study, LNB patients had lower levels of CSF α-sAPP, β-sAPP and P-tau, and higher levels of CSF NFL than healthy controls and patients with Bell's palsy. In the prospective study, LNB patients had low levels of CSF α-sAPP, β-sAPP and P-tau at baseline, which all increased towards normal at follow-up. Conclusions Amyloid metabolism is altered in LNB. CSF levels of α-sAPP, β-sAPP and P-tau are decreased in acute infection and increase after treatment. In combination with earlier findings in multiple sclerosis, cerebral SLE and HIV with cerebral engagement, this points to an influence of neuroinflammation on amyloid metabolism.

  1. TANGO-Inspired Design of Anti-Amyloid Cyclic Peptides.

    Science.gov (United States)

    Lu, Xiaomeng; Brickson, Claire R; Murphy, Regina M

    2016-09-21

    β-Amyloid peptide (Aβ) self-associates into oligomers and fibrils, in a process that is believed to directly lead to neuronal death in Alzheimer's disease. Compounds that bind to Aβ, and inhibit fibrillogenesis and neurotoxicity, are of interest as an anti-Alzheimer therapeutic strategy. Peptides are particularly attractive for this purpose, because they have advantages over small molecules in their ability to disrupt protein-protein interactions, yet they are amenable to tuning of their properties through chemical means, unlike antibodies. Self-complementation and peptide library screening are two strategies that have been employed in the search for peptides that bind to Aβ. We have taken a different approach, by designing Aβ-binding peptides using transthyretin (TTR) as a template. Previously, we demonstrated that a cyclic peptide, with sequence derived from the known Aβ-binding site on TTR, suppressed Aβ aggregation into fibrils and protected neurons against Aβ toxicity. Here, we searched for cyclic peptides with improved efficacy, by employing the algorithm TANGO, designed originally to identify amyloidogenic sequences in proteins. By using TANGO as a guide to predict the effect of sequence modifications on conformation and aggregation, we synthesized a significantly improved cyclic peptide. We demonstrate that the peptide, in binding to Aβ, redirects Aβ toward protease-sensitive, nonfibrillar aggregates. Cyclic peptides designed using this strategy have attractive solubility, specificity, and stability characteristics.

  2. Bovine Insulin Filaments Induced by Reducing Disulfide Bonds Show a Different Morphology, Secondary Structure, and Cell Toxicity from Intact Insulin Amyloid Fibrils

    OpenAIRE

    Zako, Tamotsu; Sakono, Masafumi; Hashimoto, Naomi; Ihara, Masaki; Maeda, Mizuo

    2009-01-01

    Amyloid fibrils are associated with more than 20 diseases, including Alzheimer's disease and type II diabetes. Insulin is a 51-residue polypeptide hormone, with its two polypeptide chains linked by one intrachain and two interchain disulfide bonds, and has long been known to self-assemble in vitro into amyloid fibrils. We demonstrate here that bovine insulin forms flexible filaments in the presence of a reducing agent, Tris (2-carboxyethyl) phosphine. The insulin filaments, possibly formed du...

  3. Reduced binding of Pittsburgh Compound-B in areas of white matter hyperintensities

    Directory of Open Access Journals (Sweden)

    A.E. Goodheart

    2015-01-01

    Full Text Available The amyloid imaging agent, Pittsburgh Compound-B, binds with high affinity to β-amyloid (Aβ in the brain, and it is well established that PiB also shows non-specific retention in white matter (WM. However, little is known about retention of PiB in areas of white matter hyperintensities (WMH, abnormalities commonly seen in older adults. Further, it is hypothesized that WMH are related to both cognitive dysfunction and Aβ deposition. The goal of the present study was to explore PiB retention in both normal-appearing WM (NAWM and WMH in a group of elderly, cognitively normal individuals. In a group of cognitively normal elderly (n = 64; 86.5 ± 2.6 years two analyses were applied: (1 ROIs were placed over periventricular areas in which WMH caps are commonly seen on all subjects, regardless of WMH burden or size. (2 Subject-specific maps of NAWM and WMH were co-registered with the PiB-PET images and mean SUVR values were calculated in these NAWM and WMH maps. PiB retention was significantly reduced in the ROIs of subjects with high WMH compared to subjects with low WMH. Additionally, in subjects with high WMH, there was significantly lower PiB retention in subject-specific maps of WMH compared to NAWM, which was not observed in subjects with low WMH, likely because of the small size of WMH maps in this group. These data suggest that WM in areas of WMH binds PiB less effectively than does normal WM. Further exploration of this phenomenon may lead to insights about the molecular basis of the non-specific retention of amyloid tracers in white matter.

  4. Mapping local structural perturbations in the native state of stefin B (cystatin B under amyloid forming conditions

    Directory of Open Access Journals (Sweden)

    Robert eParamore

    2012-10-01

    Full Text Available Unlike a number of amyloid-forming proteins, stefins, in particular stefin B (cystatin B form amyloids under conditions where the native state predominates. In order to trigger oligomerization processes, the stability of the protein needs to be compromised, favoring structural re-arrangement however, accelerating fibril formation is not a simple function of protein stability. We report here on how optimal conditions for amyloid formation lead to the destabilization of dimeric and tetrameric states of the protein in favor of the monomer. Small, highly localized structural changes can be mapped out that allow us to visualize directly areas of the protein which eventually become responsible for triggering amyloid formation. These regions of the protein overlap with the Cu (II-binding sites which we identify here for the first time. We hypothesize that in vivo modulators of amyloid formation may act similarly to painstakingly optimized solvent conditions developed in vitro. We discuss these data in the light of current structural models of stefin B amyloid fibrils based on H-exchange data, where the detachment of the helical part and the extension of loops were observed.

  5. Tripchlorolide Attenuates β-amyloid Generation via Suppressing PPARγ-Regulated BACE1 Activity in N2a/APP695 Cells.

    Science.gov (United States)

    Lin, Nan; Chen, Li-Min; Pan, Xiao-Dong; Zhu, Yuan-Gui; Zhang, Jing; Shi, Yan-Qing; Chen, Xiao-Chun

    2016-11-01

    Due to its apparent rate-limiting function, BACE1 (β-secretase) appears to be a prime target for prevention of amyloid-β (Aβ) generation in brains with Alzheimer's disease (AD). The activity of BACE1 is regulated by peroxisome proliferator-activated receptor-γ (PPARγ), a transcription factor binding site of the BACE1 promoter, indicating that PPARγ may be a potential target for AD treatment. Several studies have demonstrated that PPARγ activation is involved in the immunostimulation of amyloid-β precursor protein processing by nonsteroidal anti-inflammatory drugs (NSAIDs). The present study found that tripchlorolide (T4), with a similar chemical structure to that of NSAIDs, decreased the levels of Aβ secreted in N2a-APP695 cells. T4 treatment reduced the mRNA and protein levels of BACE1 and the protein level of sAPPβ, a cleaved N-terminal fragment of APP by BACE1. The treatment also translocated PPARγ from cytoplasm to nuclear. Intriguingly, T4, like pioglitazone (a PPARγ agonist), suppressed the BACE1 activity in N2a-APP695 cells, which was attenuated by GW9662 (a PPARγ antagonist). These results indicate that T4 may be a PPARγ agonist to enhance the binding of nuclear PPARγ to the BACE1 promoter, which may in turn inhibit the transcription and translation of BACE1, suppress the activity of BACE1, and ultimately attenuate the generation of Aβ. Due to its capability to alter Aβ generation and to protect central neural system against the neurotoxicity of Aβ, T4 may serve as a promising agent in modulating Aβ-related pathology in Alzheimer's disease.

  6. In vivo amyloid imaging with PET in frontotemporal dementia

    Energy Technology Data Exchange (ETDEWEB)

    Engler, Henry [Uruguay University Hospital of Clinics and Faculty of Science, Department of Nuclear Medicine, Montevideo (Uruguay); Uppsala University Hospital, Department of Nuclear Medicine, Uppsala (Sweden); Uppsala University, Department of Medical Sciences, Uppsala (Sweden); GE Healthcare, Uppsala Imanet, Uppsala (Sweden); Santillo, Alexander F.; Lindau, Maria; Lannfelt, Lars; Kilander, Lena [Uppsala University, Department of Public Health and Caring Sciences/Geriatrics, Uppsala (Sweden); Wang, Shu Xia [Guangdong Provincial People' s Hospital, Weilun PET Centre, Guangzhou (China); Savitcheva, Irina [Uppsala University Hospital, Department of Nuclear Medicine, Uppsala (Sweden); Nordberg, Agneta [Karolinska Institute, Division of Molecular Neuropharmacology, Stockholm (Sweden); Karolinska University Hospital Huddinge, Department of Geriatric Medicine, Stockholm (Sweden); Laangstroem, Bengt [GE Healthcare, Uppsala Imanet, Uppsala (Sweden); Uppsala University, Departments of Biochemistry and Organic Chemistry, Uppsala (Sweden)

    2008-01-15

    N-methyl[11C]2-(4'methylaminophenyl)-6-hydroxy-benzothiazole (PIB) is a positron emission tomography (PET) tracer with amyloid binding properties which allows in vivo measurement of cerebral amyloid load in Alzheimer's disease (AD). Frontotemporal dementia (FTD) is a syndrome that can be clinically difficult to distinguish from AD, but in FTD amyloid deposition is not a characteristic pathological finding. The aim of this study is to investigate PIB retention in FTD. Ten patients with the diagnosis of FTD participated. The diagnosis was based on clinical and neuropsychological examination, computed tomography or magnetic resonance imaging scan, and PET with 18Fluoro-2-deoxy-d-glucose (FDG). The PIB retention, measured in regions of interest, was normalised to a reference region (cerebellum). The results were compared with PIB retention data previously obtained from 17 AD patients with positive PIB retention and eight healthy controls (HC) with negative PIB retention. Statistical analysis was performed with a students t-test with significance level set to 0.00625 after Bonferroni correction. Eight FTD patients showed significantly lower PIB retention compared to AD in frontal (p < 0.0001), parietal (p < 0.0001), temporal (p = 0.0001), and occipital (p = 0.0003) cortices as well as in putamina (p < 0.0001). The PIB uptake in these FTD patients did not differ significantly from the HC in any region. However, two of the 10 FTD patients showed PIB retention similar to AD patients. The majority of FTD patients displayed no PIB retention. Thus, PIB could potentially aid in differentiating between FTD and AD. (orig.)

  7. Butyrylcholinesterase in the life cycle of amyloid plaques.

    Science.gov (United States)

    Guillozet, A L; Smiley, J F; Mash, D C; Mesulam, M M

    1997-12-01

    Deposits of diffuse beta-amyloid (Abeta) may exist in the brain for many years before leading to neuritic degeneration and dementia. The factors that contribute to the putative transformation of the Abeta amyloid from a relatively inert to a pathogenic state remain unknown and may involve interactions with additional plaque constituents. Matching brain sections from 2 demented and 4 nondemented subjects were processed for the demonstration of Abeta immunoreactivity, butyrylcholinesterase (BChE) enzyme activity, and thioflavine S binding. Additional sections were processed for the concurrent demonstration of two or three of these markers. A comparative analysis of multiple cytoarchitectonic areas processed with each of these markers indicated that Abeta plaque deposits are likely to undergo three stages of maturation, ie, a "diffuse" thioflavine S-negative stage, a thioflavine S-positive (ie, compact) but nonneuritic stage, and a compact neuritic stage. A multiregional analysis showed that BChE-positive plaques were not found in cytoarchitectonic areas or cortical layers that contained only the thioflavine S-negative, diffuse type of Abeta plaques. The BChE-positive plaques were found only in areas containing thioflavine S-positive compact plaques, both neuritic and nonneuritic. Within such areas, almost all (>98%) BChE-containing plaques bound thioflavine S, and almost all (93%) thioflavine S plaques contained BChE. These results suggest that BChE becomes associated with amyloid plaques at approximately the same time that the Abeta deposit assumes a compact beta-pleated conformation. BChE may therefore participate in the transformation of Abeta from an initially benign form to an eventually malignant form associated with neuritic tissue degeneration and clinical dementia.

  8. Solution NMR structure and inhibitory effect against amyloid-β fibrillation of Humanin containing a d-isomerized serine residue.

    Science.gov (United States)

    Alsanousi, Nesreen; Sugiki, Toshihiko; Furuita, Kyoko; So, Masatomo; Lee, Young-Ho; Fujiwara, Toshimichi; Kojima, Chojiro

    2016-09-02

    Humanin comprising 24 amino acid residues is a bioactive peptide that has been isolated from the brain tissue of patients with Alzheimer's disease. Humanin reportedly suppressed aging-related death of various cells due to amyloid fibrils and oxidative stress. There are reports that the cytoprotective activity of Humanin was remarkably enhanced by optical isomerization of the Ser14 residue from l to d form, but details of the molecular mechanism remained unclear. Here we demonstrated that Humanin d-Ser14 exhibited potent inhibitory activity against fibrillation of amyloid-β and remarkably higher binding affinity for amyloid-β than that of the Humanin wild-type and S14G mutant. In addition, we determined the solution structure of Humanin d-Ser14 by nuclear magnetic resonance (NMR) and showed that d-isomerization of the Ser14 residue enables drastic conformational rearrangement of Humanin. Furthermore, we identified an amyloid-β-binding site on Humanin d-Ser14 at atomic resolution by NMR. These biophysical and high-resolution structural analyses clearly revealed structure-function relationships of Humanin and explained the driving force of the drastic conformational change and molecular basis of the potent anti-amyloid-β fibrillation activity of Humanin caused by d-isomerization of the Ser14 residue. This is the first study to show correlations between the functional activity, tertiary structure, and partner recognition mode of Humanin and may lead to elucidation of the molecular mechanisms of the cytoprotective activity of Humanin.

  9. Serum Amyloid P Component (SAP) Interactome in Human Plasma Containing Physiological Calcium Levels.

    Science.gov (United States)

    Poulsen, Ebbe Toftgaard; Pedersen, Kata Wolff; Marzeda, Anna Maria; Enghild, Jan J

    2017-02-14

    The pentraxin serum amyloid P component (SAP) is secreted by the liver and found in plasma at a concentration of approximately 30 mg/L. SAP is a 25 kDa homopentamer known to bind both protein and nonprotein ligands, all in a calcium-dependent manner. The function of SAP is unclear but likely involves the humoral innate immune system spanning the complement system, inflammation, and coagulation. Also, SAP is known to bind to the generic structure of amyloid deposits and possibly to protect them against proteolysis. In this study, we have characterized the SAP interactome in human plasma containing the physiological Ca(2+) concentration using SAP affinity pull-down and co-immunoprecipitation experiments followed by mass spectrometry analyses. The analyses resulted in the identification of 33 proteins, of which 24 were direct or indirect interaction partners not previously reported. The SAP interactome can be divided into categories that include apolipoproteins, the complement system, coagulation, and proteolytic regulation.

  10. In vitro DNA binding profile of enantiomeric dinuclear Cu(II)/Ni(II) complexes derived from l-/d-histidine-terepthaldehyde reduced Schiff base as potential chemotherapeutic agents.

    Science.gov (United States)

    Yousuf, Imtiyaz; Arjmand, Farukh

    2016-11-01

    New chiral reduced Schiff base ligands, L1 and L2 derived from l-/d-histidine and terepthaldehyde, and their Cu(II) and Ni(II) dinuclear complexes 1 &2 (a and b) were synthesized and thoroughly characterized by various spectroscopic techniques. Comparative binding profile of both l-/d-enantiomeric Cu(II) and Ni(II) complexes with ct-DNA was studied by employing optical and spectroscopic techniques to evaluate their enantiopreferential selectivity towards molecular target DNA and thereby explore their relative chemotherapeutic potential. Quantitative assessment of DNA binding propensity was ascertained by calculating Kb, K and Ksv values of 1 &2 (a and b) which demonstrated higher binding affinity of l-enantiomeric Cu(II) complex, 1a and followed the order as 1a>1b>2a>2b. Scanning electron microscopy (SEM) was used to analyze the morphological changes of the DNA condensate in presence of complexes 1 (a and b). The SEM micrographs condensates revealed morphological transitions and formation of different structural features implicating the condensation process between the complexes and biomolecule occurred to form compact massive structures. The gel electrophoretic assay of complex 1a was carried out with pBR322 plasmid DNA which revealed an efficient cleaving ability of the complex via oxidative pathway with the involvement of singlet oxygen ((1)O2) and the superoxide anion (O2(•-)) radicals as the ROS responsible the cleavage reactions. Molecular docking studies of 1 (a and b) with DNA revealed selective recognition of G-C residues of the narrow minor groove of the DNA duplex and complex 1a demonstrated binding affinity towards DNA ascertained from its higher binding energy values. Furthermore, the cytotoxic assessment of 1a was examined on a panel of cancer cell lines of different histological origin employing SRB assay which revealed remarkably good cytotoxic activity towards HL60, HeLa and MCF7 cancer cell lines.

  11. Hybrid Amyloid Membranes for Continuous Flow Catalysis.

    Science.gov (United States)

    Bolisetty, Sreenath; Arcari, Mario; Adamcik, Jozef; Mezzenga, Raffaele

    2015-12-29

    Amyloid fibrils are promising nanomaterials for technological applications such as biosensors, tissue engineering, drug delivery, and optoelectronics. Here we show that amyloid-metal nanoparticle hybrids can be used both as efficient active materials for wet catalysis and as membranes for continuous flow catalysis applications. Initially, amyloid fibrils generated in vitro from the nontoxic β-lactoglobulin protein act as templates for the synthesis of gold and palladium metal nanoparticles from salt precursors. The resulting hybrids possess catalytic features as demonstrated by evaluating their activity in a model catalytic reaction in water, e.g., the reduction of 4-nitrophenol into 4-aminophenol, with the rate constant of the reduction increasing with the concentration of amyloid-nanoparticle hybrids. Importantly, the same nanoparticles adsorbed onto fibrils surface show improved catalytic efficiency compared to the same unattached particles, pointing at the important role played by the amyloid fibril templates. Then, filter membranes are prepared from the metal nanoparticle-decorated amyloid fibrils by vacuum filtration. The resulting membranes serve as efficient flow catalysis active materials, with a complete catalytic conversion achieved within a single flow passage of a feeding solution through the membrane.

  12. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Rehana Akter

    2016-01-01

    Full Text Available The hormone islet amyloid polypeptide (IAPP, or amylin plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy.

  13. {sup 11}C-labeled stilbene derivatives as A{beta}-aggregate-specific PET imaging agents for Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masahiro; Wilson, Alan; Nobrega, Jose; Westaway, David; Verhoeff, Paul; Zhuang Zhiping; Kung Meiping; Kung, Hank F. E-mail: kunghf@sunmac.spect.upenn.edu

    2003-08-01

    A series of stilbene derivatives as potential diagnostic imaging agents targeting amyloid plaques in Alzheimer's disease (AD) were synthesized and evaluated. The syntheses of the stilbenes were successfully achieved by a simple Wadsworth-Emmons reaction between diethyl (4-nitrobenzyl)phosphonate and 4-methoxybenzaldehyde. 4-N,N-dimethylamino-4'-methyoxy and the corresponding 4-N-monomethylamino-, 4'-hydroxy stilbenes showed good binding affinities towards A{beta} aggregates in vitro (K{sub i} < 10 nM). The {sup 11}C labeled 4-N-methylamino-4'-hydroxystilbene, [{sup 11}C]4, was prepared by {sup 11}C methylation of 4-amino-4'-hydroxystilbene. The [{sup 11}C]4 displayed a moderate lipophilicity (log P = 2.36), and showed a very good brain penetration and washout from normal rat brain after an iv injection. In vitro autoradiography of transgenic AD mouse brain sections showed a high specific labeling of {beta}-amyloid plaques, whereas the control sections showed no binding. Taken together the data suggest that a relatively simple stilbene derivative, [{sup 11}C]4, N-[{sup 11}C]methylamino-4'-hydroxystilbene, may be useful as a positron emission tomography (PET) imaging agent for mapping A{beta} plaques in the brain of patients with Alzheimer's disease.

  14. Amyloid precursor-like protein 1 (APLP1) exhibits stronger zinc-dependent neuronal adhesion than amyloid precursor protein and APLP2.

    Science.gov (United States)

    Mayer, Magnus C; Schauenburg, Linda; Thompson-Steckel, Greta; Dunsing, Valentin; Kaden, Daniela; Voigt, Philipp; Schaefer, Michael; Chiantia, Salvatore; Kennedy, Timothy E; Multhaup, Gerhard

    2016-04-01

    The amyloid precursor protein (APP) and its paralogs, amyloid precursor-like protein 1 (APLP1) and APLP2, are metalloproteins with a putative role both in synaptogenesis and in maintaining synapse structure. Here, we studied the effect of zinc on membrane localization, adhesion, and secretase cleavage of APP, APLP1, and APLP2 in cell culture and rat neurons. For this, we employed live-cell microscopy techniques, a microcontact printing adhesion assay and ELISA for protein detection in cell culture supernatants. We report that zinc induces the multimerization of proteins of the amyloid precursor protein family and enriches them at cellular adhesion sites. Thus, zinc facilitates the formation of de novo APP and APLP1 containing adhesion complexes, whereas it does not have such influence on APLP2. Furthermore, zinc-binding prevented cleavage of APP and APLPs by extracellular secretases. In conclusion, the complexation of zinc modulates neuronal functions of APP and APLPs by (i) regulating formation of adhesion complexes, most prominently for APLP1, and (ii) by reducing the concentrations of neurotrophic soluble APP/APLP ectodomains. Earlier studies suggest a function of the amyloid precursor protein (APP) family proteins in neuronal adhesion. We report here that adhesive function of these proteins is tightly regulated by zinc, most prominently for amyloid precursor-like protein 1 (APLP1). Zinc-mediated APLP1 multimerization, which induced formation of new neuronal contacts and decreased APLP1 shedding. This suggests that APLP1 could function as a zinc receptor processing zinc signals to stabilized or new neuronal contacts.

  15. Amyloid β induces adhesion of erythrocytes to endothelial cells and affects endothelial viability and functionality.

    Science.gov (United States)

    Nakagawa, Kiyotaka; Kiko, Takehiro; Kuriwada, Satoko; Miyazawa, Taiki; Kimura, Fumiko; Miyazawa, Teruo

    2011-01-01

    It has been suggested that amyloid β-peptide (Aβ) might mediate the adhesion of erythrocytes to the endothelium which could disrupt the properties of endothelial cells. We provide evidence here that Aβ actually induced the binding of erythrocytes to endothelial cells and decreased endothelial viability, perhaps by the generation of oxidative and inflammatory stress. These changes are likely to contribute to the pathogenesis of Alzheimer's disease.

  16. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade

    OpenAIRE

    Bulawa, Christine E.; Connelly, Stephen; DeVit, Michael; Wang, Lan; Weigel, Charlotte; Fleming, James A.; Packman, Jeff; Powers, Evan T.; Wiseman, R Luke; Foss, Theodore R.; Wilson, Ian A.; Kelly, Jeffery W.; Labaudinière, Richard

    2012-01-01

    The transthyretin amyloidoses (ATTR) are invariably fatal diseases characterized by progressive neuropathy and/or cardiomyopathy. ATTR are caused by aggregation of transthyretin (TTR), a natively tetrameric protein involved in the transport of thyroxine and the vitamin A–retinol-binding protein complex. Mutations within TTR that cause autosomal dominant forms of disease facilitate tetramer dissociation, monomer misfolding, and aggregation, although wild-type TTR can also form amyloid fibrils ...

  17. Cholesterol modulates the interaction of the islet amyloid polypeptide with membranes.

    Science.gov (United States)

    Caillon, Lucie; Duma, Luminita; Lequin, Olivier; Khemtemourian, Lucie

    2014-01-01

    The deposition of insoluble amyloid fibrils resulting from the aggregation of the human islet amyloid polypeptide (hIAPP) within the islet of Langerhans is a pathological feature of type 2 diabetes mellitus (T2DM). Increasing evidence indicates that biological membranes play a key role in amyloid aggregation, modulating among others the kinetics of amyloid formation, and being the target of toxic species generated during amyloid formation. In T2DM patients, elevated levels of cholesterol, an important determinant of the physical state of biological membranes, are observed in β-cells and are thought to directly impair β-cell function and insulin secretion. However, it is not known whether cholesterol enhances membrane-interaction or membrane-insertion of hIAPP. In this study, we investigated the effect of cholesterol incorporated in zwitterionic and anionic membranes. Our circular dichroism and liquid state NMR data reveal that 10-30% of cholesterol slightly affects the aggregational and conformational behaviour of hIAPP. Additional fluorescence results indicate that 10 and 20% of cholesterol slightly slow down the kinetics of oligomer and fibril formation while anionic lipids accelerate this kinetics. This behavior might be caused by differences in membrane insertion and therefore in membrane binding of hIAPP. The membrane binding affinity was evaluated using (1)H NMR experiments and our results show that the affinity of hIAPP for membranes containing cholesterol is significantly smaller than that for membranes containing anionic lipids. Furthermore, we found that hIAPP-induced membrane damage is synchronized to fibril formation in the absence and in the presence of cholesterol.

  18. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity

    Science.gov (United States)

    Cheng, Pin-Nan; Liu, Cong; Zhao, Minglei; Eisenberg, David; Nowick, James S.

    2012-11-01

    The amyloid protein aggregation associated with diseases such as Alzheimer's, Parkinson's and type II diabetes (among many others) features a bewildering variety of β-sheet-rich structures in transition from native proteins to ordered oligomers and fibres. The variation in the amino-acid sequences of the β-structures presents a challenge to developing a model system of β-sheets for the study of various amyloid aggregates. Here, we introduce a family of robust β-sheet macrocycles that can serve as a platform to display a variety of heptapeptide sequences from different amyloid proteins. We have tailored these amyloid β-sheet mimics (ABSMs) to antagonize the aggregation of various amyloid proteins, thereby reducing the toxicity of amyloid aggregates. We describe the structures and inhibitory properties of ABSMs containing amyloidogenic peptides from the amyloid-β peptide associated with Alzheimer's disease, β2-microglobulin associated with dialysis-related amyloidosis, α-synuclein associated with Parkinson's disease, islet amyloid polypeptide associated with type II diabetes, human and yeast prion proteins, and Tau, which forms neurofibrillary tangles.

  19. The Role of the 14–20 Domain of the Islet Amyloid Polypeptide in Amyloid Formation

    Directory of Open Access Journals (Sweden)

    Sharon Gilead

    2008-01-01

    Full Text Available The molecular mechanism of amyloid formation by the islet amyloid polypeptide (IAPP has been intensively studied since its identification in the late 1980s. The IAPP(20–29 region is considered to be the central amyloidogenic module of the polypeptide. This assumption is mainly based on the amyloidogenic properties of the region and on the large sequence diversity within this region between the human and mouse IAPP, as the mouse IAPP does not form amyloids. A few years ago, another region within IAPP was identified that seems to be at least as important as IAPP(20–29 in facilitation of molecular recognition that leads to amyloid formation. Here, we reinforce our and others' previous findings by analyzing supporting evidence from the recent literature. Moreover, we provide new proofs to our hypothesis by comparing between the amyloidogenic properties of the two regions derived from the IAPP of cats, which is also known to form amyloid fibrils.

  20. Preclinical investigation of the pharmacokinetics, metabolism, and protein and red blood cell binding of DRDE-07: a prophylactic agent against sulphur mustard

    Directory of Open Access Journals (Sweden)

    Pankaj Verma

    2014-10-01

    Full Text Available DRDE-07, a newly synthesized amifostine analog currently under clinical investigation in a phase I trial, is a potent antidote against sulfur mustard toxicity. The purpose of this research was to evaluate the pharmacokinetic profile of DRDE-07 in female Swiss Albino mice after a single oral dose of 400 or 600 mg/kg. The physicochemical properties of DRDE-07, including solubility, pKa, Log P, plasma protein binding and plasma/blood partitioning, were determined to support the pharmacokinetic characterization. DRDE-07 concentration was determined by an HPLC-UV method. The profile of plasma concentration versus time was analyzed using a non-compartmental model. Plasma protein binding was assessed using ultrafiltration. DRDE-07 appeared rapidly in plasma after oral administration with peak plasma levels (Cmax observed in less than 15 min. There was a rapid decline in the plasma levels followed by a smaller second peak about 90 min after dosing. The plasma protein binding of DRDE-07 was found to be less than 25% at all concentrations studied. Plasma clearance of DRDE-07 is expected to be ~1.5 fold higher than the blood clearance of DRDE-07. The probable metabolite of DRDE-07 was identified as phenyl-S-ethyl amine.

  1. 流感病毒 HA 受体结合位点抑制剂研究进展%Progress on Inhibitor Agents of Influenza Virus HA Receptor Binding Site

    Institute of Scientific and Technical Information of China (English)

    王文超; 王心竹; 尹荣焕; 赵玉军; 刘娇; 王欣; 李化生; 田菁菁

    2014-01-01

    The anti-flu drugs and flu vaccines were restricted at some time in clinic.So the influenza virus entry inhibitor agents has become the focus of current research.Sialic acid is the receptor of HA,but using sialic acid as viral entry blockers has not been successful,it indicates that sialic acid may not be an ideal scaffold for influenza virus entry inhibitor agents.The receptor binding site of HA must be exposed for binding to host sialic acid receptors,so that the receptor binding site can be monitored by the host immune system,as the potential target binding sites for antibodies.Some antibodies can bind the highly conserved amino acids on the receptor binding site of HA,that inhibits virus infection to hosts.So the antibodies tar-geting binding receptor site of HA may be the new idea for human combat influenza virus.This paper re-viewed the molecular structure and function of the influenza virus HA,mechanism of HA binding the re-ceptors,described the inhibition effect of the antibody to influenza virus entry.in order to supply help for preparation of antibodies inhibiting HA receptor binding site and research influenza virus entry inhibitor.%目前临床所用控制流感病毒的药物和疫苗受到病毒耐药性、疫苗滞后性等诸多因素的限制,使能阻止病毒侵入宿主细胞的抑制剂成为当前研究的热点。唾液酸是流感病毒囊膜表面血凝素(HA)的受体,但研究表明唾液酸并不适合作为研制流感病毒侵入宿主细胞抑制剂的结构模型。研究发现流感病毒的HA 受体结合位点必须外露才能与宿主细胞受体结合,因此 HA 受体结合位点可以被宿主免疫系统监视,成为抗体潜在的靶向契合位点。随后发现的 HA 受体结合位点抗体能与 HA 受体结合位点的保守氨基酸残基结合,能有效阻止流感病毒感染宿主。因此,可用 HA 受体结合位点抗体作为流感病毒感染抑制剂的模型,研制流感病毒抑

  2. Interaction of serum amyloid P component with hexanoyl bis(d-proline) (CPHPC)

    Energy Technology Data Exchange (ETDEWEB)

    Kolstoe, Simon E. [University College London, Rowland Hill Street, London NW3 2PF (United Kingdom); Jenvey, Michelle C. [University of Southampton, Southampton SO17 1BJ (United Kingdom); Purvis, Alan [Imperial College London, London SW7 2AZ (United Kingdom); Light, Mark E. [University of Southampton, Southampton SO17 1BJ (United Kingdom); Thompson, Darren [University of Sussex, Falmer, Brighton BN1 9RQ (United Kingdom); Hughes, Peter; Pepys, Mark B.; Wood, Stephen P., E-mail: s.wood@ucl.ac.uk [University College London, Rowland Hill Street, London NW3 2PF (United Kingdom)

    2014-08-01

    Serum amyloid P component is a pentameric plasma glycoprotein that recognizes and binds to amyloid fibres in a calcium-dependent fashion and is likely to contribute to their deposition and persistence in vivo. Five molecules of the drug CPHPC avidly cross-link pairs of protein pentamers and the decameric complex is rapidly cleared in vivo. Crystal structures of the protein in complex with a bivalent drug and cadmium ions, which improve crystal quality, allow the definition of the preferred bound drug isomers. Under physiological conditions, the pentameric human plasma protein serum amyloid P component (SAP) binds hexanoyl bis(d-proline) (R-1-(6-[R-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl) pyrrolidine-2-carboxylic acid; CPHPC) through its d-proline head groups in a calcium-dependent interaction. Cooperative effects in binding lead to a substantial enhancement of affinity. Five molecules of the bivalent ligand cross-link and stabilize pairs of SAP molecules, forming a decameric complex that is rapidly cleared from the circulation by the liver. Here, it is reported that X-ray analysis of the SAP complex with CPHPC and cadmium ions provides higher resolution detail of the interaction than is observed with calcium ions. Conformational isomers of CPHPC observed in solution by HPLC and by X-ray analysis are compared with the protein-bound form. These are discussed in relation to the development of CPHPC to provide SAP depletion for the treatment of amyloidosis and other indications.

  3. Tabersonine inhibits amyloid fibril formation and cytotoxicity of Aβ(1-42).

    Science.gov (United States)

    Kai, Tianhan; Zhang, Lin; Wang, Xiaoying; Jing, Aihua; Zhao, Bingqing; Yu, Xiang; Zheng, Jie; Zhou, Feimeng

    2015-06-17

    The misfolding and aggregation of amyloid beta (Aβ) peptides into amyloid fibrils are key events in the amyloid cascade hypothesis for the etiology of Alzheimer's disease (AD). Using thioflavin-T (ThT) fluorescence assay, atomic force microscopy, circular dichroism, size exclusion chromatography, surface plasmon resonance (SPR), and cytotoxicity tests, we demonstrate that tabersonine, an ingredient extracted from the bean of Voacanga africana, disrupts Aβ(1-42) aggregation and ameliorates Aβ aggregate-induced cytotoxicity. A small amount of tabersonine (e.g., 10 μM) can effectively inhibit the formation of Aβ(1-42) (e.g., 80 μM) fibrils or convert mature fibrils into largely innocuous amorphous aggregates. SPR results indicate that tabersonine binds to Aβ(1-42) oligomers in a dose-dependent way. Molecular dynamics (MD) simulations further confirm that tabersonine can bind to oligomers such as the pentamer of Aβ(1-42). Tabersonine preferentially interact with the β-sheet grooves of Aβ(1-42) containing aromatic and hydrophobic residues. The various binding sites and modes explain the diverse inhibitory effects of tabersonine on Aβ aggregation. Given that tabersonine is a natural product and a precursor for vincristine used in cancer chemotherapy, the biocompatibility and small size essential for permeating the blood-brain barrier make it a potential therapeutic drug candidate for treating AD.

  4. Amyloid-β-Anti-Amyloid-β Complex Structure Reveals an Extended Conformation in the Immunodominant B-Cell Epitope

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Luke A; Wun, Kwok S; Crespi, Gabriela A.N.; Fodero-Tavoletti, Michelle T; Galatis, Denise; Bagley, Christopher J; Beyreuther, Konrad; Masters, Colin L; Cappai, Roberto; McKinstry, William J; Barnham, Kevin J; Parker, Michael W [SVIMR-A; (Hanson); (Heidelberg); (Melbourne)

    2012-04-17

    Alzheimer's disease (AD) is the most common form of dementia. Amyloid-β (Aβ) peptide, generated by proteolytic cleavage of the amyloid precursor protein, is central to AD pathogenesis. Most pharmaceutical activity in AD research has focused on Aβ, its generation and clearance from the brain. In particular, there is much interest in immunotherapy approaches with a number of anti-Aβ antibodies in clinical trials. We have developed a monoclonal antibody, called WO2, which recognises the Aβ peptide. To this end, we have determined the three-dimensional structure, to near atomic resolution, of both the antibody and the complex with its antigen, the Aβ peptide. The structures reveal the molecular basis for WO2 recognition and binding of Aβ. The Aβ peptide adopts an extended, coil-like conformation across its major immunodominant B-cell epitope between residues 2 and 8. We have also studied the antibody-bound Aβ peptide in the presence of metals known to affect its aggregation state and show that WO2 inhibits these interactions. Thus, antibodies that target the N-terminal region of Aβ, such as WO2, hold promise for therapeutic development.

  5. Staphylococcal Bap Proteins Build Amyloid Scaffold Biofilm Matrices in Response to Environmental Signals.

    Science.gov (United States)

    Taglialegna, Agustina; Navarro, Susanna; Ventura, Salvador; Garnett, James A; Matthews, Steve; Penades, José R; Lasa, Iñigo; Valle, Jaione

    2016-06-01

    Biofilms are communities of bacteria that grow encased in an extracellular matrix that often contains proteins. The spatial organization and the molecular interactions between matrix scaffold proteins remain in most cases largely unknown. Here, we report that Bap protein of Staphylococcus aureus self-assembles into functional amyloid aggregates to build the biofilm matrix in response to environmental conditions. Specifically, Bap is processed and fragments containing at least the N-terminus of the protein become aggregation-prone and self-assemble into amyloid-like structures under acidic pHs and low concentrations of calcium. The molten globule-like state of Bap fragments is stabilized upon binding of the cation, hindering its self-assembly into amyloid fibers. These findings define a dual function for Bap, first as a sensor and then as a scaffold protein to promote biofilm development under specific environmental conditions. Since the pH-driven multicellular behavior mediated by Bap occurs in coagulase-negative staphylococci and many other bacteria exploit Bap-like proteins to build a biofilm matrix, the mechanism of amyloid-like aggregation described here may be widespread among pathogenic bacteria.

  6. Tackling amyloidogenesis in Alzheimer’s disease with A2V variants of Amyloid

    Science.gov (United States)

    Di Fede, Giuseppe; Catania, Marcella; Maderna, Emanuela; Morbin, Michela; Moda, Fabio; Colombo, Laura; Rossi, Alessandro; Cagnotto, Alfredo; Virgilio, Tommaso; Palamara, Luisa; Ruggerone, Margherita; Giaccone, Giorgio; Campagnani, Ilaria; Costanza, Massimo; Pedotti, Rosetta; Salvalaglio, Matteo; Salmona, Mario; Tagliavini, Fabrizio

    2016-01-01

    We developed a novel therapeutic strategy for Alzheimer’s disease (AD) exploiting the properties of a natural variant of Amyloid-β (Aβ) carrying the A2V substitution, which protects heterozygous carriers from AD by its ability to interact with wild-type Aβ, hindering conformational changes and assembly thereof. As prototypic compound we designed a six-mer mutated peptide (Aβ1-6A2V), linked to the HIV-related TAT protein, which is widely used for brain delivery and cell membrane penetration of drugs. The resulting molecule [Aβ1-6A2VTAT(D)] revealed strong anti-amyloidogenic effects in vitro and protected human neuroblastoma cells from Aβ toxicity. Preclinical studies in AD mouse models showed that short-term treatment with Aβ1-6A2VTAT(D) inhibits Aβ aggregation and cerebral amyloid deposition, but a long treatment schedule unexpectedly increases amyloid burden, although preventing cognitive deterioration. Our data support the view that the AβA2V-based strategy can be successfully used for the development of treatments for AD, as suggested by the natural protection against the disease in human A2V heterozygous carriers. The undesirable outcome of the prolonged treatment with Aβ1-6A2VTAT(D) was likely due to the TAT intrinsic attitude to increase Aβ production, avidly bind amyloid and boost its seeding activity, warning against the use of the TAT carrier in the design of AD therapeutics. PMID:26864599

  7. Tackling amyloidogenesis in Alzheimer's disease with A2V variants of Amyloid-β.

    Science.gov (United States)

    Di Fede, Giuseppe; Catania, Marcella; Maderna, Emanuela; Morbin, Michela; Moda, Fabio; Colombo, Laura; Rossi, Alessandro; Cagnotto, Alfredo; Virgilio, Tommaso; Palamara, Luisa; Ruggerone, Margherita; Giaccone, Giorgio; Campagnani, Ilaria; Costanza, Massimo; Pedotti, Rosetta; Salvalaglio, Matteo; Salmona, Mario; Tagliavini, Fabrizio

    2016-02-11

    We developed a novel therapeutic strategy for Alzheimer's disease (AD) exploiting the properties of a natural variant of Amyloid-β (Aβ) carrying the A2V substitution, which protects heterozygous carriers from AD by its ability to interact with wild-type Aβ, hindering conformational changes and assembly thereof. As prototypic compound we designed a six-mer mutated peptide (Aβ1-6A2V), linked to the HIV-related TAT protein, which is widely used for brain delivery and cell membrane penetration of drugs. The resulting molecule [Aβ1-6A2VTAT(D)] revealed strong anti-amyloidogenic effects in vitro and protected human neuroblastoma cells from Aβ toxicity. Preclinical studies in AD mouse models showed that short-term treatment with Aβ1-6A2VTAT(D) inhibits Aβ aggregation and cerebral amyloid deposition, but a long treatment schedule unexpectedly increases amyloid burden, although preventing cognitive deterioration. Our data support the view that the AβA2V-based strategy can be successfully used for the development of treatments for AD, as suggested by the natural protection against the disease in human A2V heterozygous carriers. The undesirable outcome of the prolonged treatment with Aβ1-6A2VTAT(D) was likely due to the TAT intrinsic attitude to increase Aβ production, avidly bind amyloid and boost its seeding activity, warning against the use of the TAT carrier in the design of AD therapeutics.

  8. Amyloid Aβ 42, a promoter of magnetite nanoparticle formation in Alzheimer’s disease

    Science.gov (United States)

    Bogachan Tahirbegi, Islam; Pardo, Wilmer Alfonso; Alvira, Margarita; Mir, Mònica; Samitier, Josep

    2016-11-01

    The accumulation of iron oxides—mainly magnetite—with amyloid peptide is a key process in the development of Alzheimer’s disease (AD). However, the mechanism for biogeneration of magnetite inside the brain of someone with AD is still unclear. The iron-storing protein ferritin has been identified as the main magnetite-storing molecule. However, accumulations of magnetite in AD are not correlated with an increase in ferritin, leaving this question unresolved. Here we demonstrate the key role of amyloid peptide Aβ 42, one of the main hallmarks of AD, in the generation of magnetite nanoparticles in the absence of ferritin. The capacity of amyloid peptide to bind and concentrate iron hydroxides, the basis for the formation of magnetite, benefits the spontaneous synthesis of these nanoparticles, even under unfavorable conditions for their formation. Using scanning and transmission electron microscopy, electron energy loss spectroscopy and magnetic force microscopy we characterized the capacity of amyloid peptide Aβ 42 to promote magnetite formation.

  9. Toward the discovery of functional transthyretin amyloid inhibitors: application of virtual screening methods.

    Science.gov (United States)

    Simões, Carlos J V; Mukherjee, Trishna; Brito, Rui M M; Jackson, Richard M

    2010-10-25

    Inhibition of amyloid fibril formation by stabilization of the native form of the protein transthyretin (TTR) is a viable approach for the treatment of familial amyloid polyneuropathy that has been gaining momentum in the field of amyloid research. The TTR stabilizer molecules discovered to date have shown efficacy at inhibiting fibrilization in vitro but display impairing issues of solubility, affinity for TTR in the blood plasma and/or adverse effects. In this study we present a benchmark of four protein- and ligand-based virtual screening (VS) methods for identifying novel TTR stabilizers: (i) two-dimensional (2D) similarity searches with chemical hashed, pharmacophore, and UNITY fingerprints, (ii) 3D searches based on shape, chemical, and electrostatic similarity, (iii) LigMatch, a new ligand-based method which uses multiple templates and combines 3D geometric hashing with a 2D preselection process, and (iv) molecular docking to consensus X-ray crystal structures of TTR. We illustrate the potential of the best-performing VS protocols to retrieve promising new leads by ranking a tailored library of 2.3 million commercially available compounds. Our predictions show that the top-scoring molecules possess distinctive features from the known TTR binders, holding better solubility, fraction of halogen atoms, and binding affinity profiles. To the best of our knowledge, this is the first attempt to rationalize the utilization of a large battery of in silico screening techniques toward the identification of a new generation of TTR amyloid inhibitors.

  10. Membrane Incorporation, Channel Formation, and Disruption of Calcium Homeostasis by Alzheimer's β-Amyloid Protein

    Directory of Open Access Journals (Sweden)

    Masahiro Kawahara

    2011-01-01

    Full Text Available Oligomerization, conformational changes, and the consequent neurodegeneration of Alzheimer's β-amyloid protein (AβP play crucial roles in the pathogenesis of Alzheimer's disease (AD. Mounting evidence suggests that oligomeric AβPs cause the disruption of calcium homeostasis, eventually leading to neuronal death. We have demonstrated that oligomeric AβPs directly incorporate into neuronal membranes, form cation-sensitive ion channels (“amyloid channels”, and cause the disruption of calcium homeostasis via the amyloid channels. Other disease-related amyloidogenic proteins, such as prion protein in prion diseases or α-synuclein in dementia with Lewy bodies, exhibit similarities in the incorporation into membranes and the formation of calcium-permeable channels. Here, based on our experimental results and those of numerous other studies, we review the current understanding of the direct binding of AβP into membrane surfaces and the formation of calcium-permeable channels. The implication of composition of membrane lipids and the possible development of new drugs by influencing membrane properties and attenuating amyloid channels for the treatment and prevention of AD is also discussed.

  11. Staphylococcal Bap Proteins Build Amyloid Scaffold Biofilm Matrices in Response to Environmental Signals

    Science.gov (United States)

    Taglialegna, Agustina; Navarro, Susanna; Ventura, Salvador; Garnett, James A.; Matthews, Steve; Penades, José R.; Lasa, Iñigo; Valle, Jaione

    2016-01-01

    Biofilms are communities of bacteria that grow encased in an extracellular matrix that often contains proteins. The spatial organization and the molecular interactions between matrix scaffold proteins remain in most cases largely unknown. Here, we report that Bap protein of Staphylococcus aureus self-assembles into functional amyloid aggregates to build the biofilm matrix in response to environmental conditions. Specifically, Bap is processed and fragments containing at least the N-terminus of the protein become aggregation-prone and self-assemble into amyloid-like structures under acidic pHs and low concentrations of calcium. The molten globule-like state of Bap fragments is stabilized upon binding of the cation, hindering its self-assembly into amyloid fibers. These findings define a dual function for Bap, first as a sensor and then as a scaffold protein to promote biofilm development under specific environmental conditions. Since the pH-driven multicellular behavior mediated by Bap occurs in coagulase-negative staphylococci and many other bacteria exploit Bap-like proteins to build a biofilm matrix, the mechanism of amyloid-like aggregation described here may be widespread among pathogenic bacteria. PMID:27327765

  12. Neuroprotective and nootropic drug noopept rescues α-synuclein amyloid cytotoxicity.

    Science.gov (United States)

    Jia, Xueen; Gharibyan, Anna L; Öhman, Anders; Liu, Yonggang; Olofsson, Anders; Morozova-Roche, Ludmilla A

    2011-12-16

    Parkinson's disease is a common neurodegenerative disorder characterized by α-synuclein (α-Syn)-containing Lewy body formation and selective loss of dopaminergic neurons in the substantia nigra. We have demonstrated the modulating effect of noopept, a novel proline-containing dipeptide drug with nootropic and neuroprotective properties, on α-Syn oligomerization and fibrillation by using thioflavin T fluorescence, far-UV CD, and atomic force microscopy techniques. Noopept does not bind to a sterically specific site in the α-Syn molecule as revealed by heteronuclear two-dimensional NMR analysis, but due to hydrophobic interactions with toxic amyloid oligomers, it prompts their rapid sequestration into larger fibrillar amyloid aggregates. Consequently, this process rescues the cytotoxic effect of amyloid oligomers on neuroblastoma SH-SY5Y cells as demonstrated by using cell viability assays and fluorescent staining of apoptotic and necrotic cells and by assessing the level of intracellular oxidative stress. The mitigating effect of noopept against amyloid oligomeric cytotoxicity may offer additional benefits to the already well-established therapeutic functions of this new pharmaceutical.

  13. Influence of Aluminium and EGCG on Fibrillation and Aggregation of Human Islet Amyloid Polypeptide

    Science.gov (United States)

    Xu, Zhi-Xue; Zhang, Qiang; Ma, Gong-Li; Chen, Cong-Heng; He, Yan-Ming; Xu, Li-Hui; Zhang, Yuan; Zhou, Guang-Rong; Li, Zhen-Hua

    2016-01-01

    The abnormal fibrillation of human islet amyloid polypeptide (hIAPP) has been implicated in the development of type II diabetes. Aluminum is known to trigger the structural transformation of many amyloid proteins and induce the formation of toxic aggregate species. The (−)-epigallocatechin gallate (EGCG) is considered capable of binding both metal ions and amyloid proteins with inhibitory effect on the fibrillation of amyloid proteins. However, the effect of Al(III)/EGCG complex on hIAPP fibrillation is unclear. In the present work, we sought to view insight into the structures and properties of Al(III) and EGCG complex by using spectroscopic experiments and quantum chemical calculations and also investigated the influence of Al(III) and EGCG on hIAPP fibrillation and aggregation as well as their combined interference on this process. Our studies demonstrated that Al(III) could promote fibrillation and aggregation of hIAPP, while EGCG could inhibit the fibrillation of hIAPP and lead to the formation of hIAPP amorphous aggregates instead of the ordered fibrils. Furthermore, we proved that the Al(III)/EGCG complex in molar ratio of 1 : 1 as Al(EGCG)(H2O)2 could inhibit the hIAPP fibrillation more effectively than EGCG alone. The results provide the invaluable reference for the new drug development to treat type II diabetes. PMID:28074190

  14. Influence of Aluminium and EGCG on Fibrillation and Aggregation of Human Islet Amyloid Polypeptide

    Directory of Open Access Journals (Sweden)

    Zhi-Xue Xu

    2016-01-01

    Full Text Available The abnormal fibrillation of human islet amyloid polypeptide (hIAPP has been implicated in the development of type II diabetes. Aluminum is known to trigger the structural transformation of many amyloid proteins and induce the formation of toxic aggregate species. The (−-epigallocatechin gallate (EGCG is considered capable of binding both metal ions and amyloid proteins with inhibitory effect on the fibrillation of amyloid proteins. However, the effect of Al(III/EGCG complex on hIAPP fibrillation is unclear. In the present work, we sought to view insight into the structures and properties of Al(III and EGCG complex by using spectroscopic experiments and quantum chemical calculations and also investigated the influence of Al(III and EGCG on hIAPP fibrillation and aggregation as well as their combined interference on this process. Our studies demonstrated that Al(III could promote fibrillation and aggregation of hIAPP, while EGCG could inhibit the fibrillation of hIAPP and lead to the formation of hIAPP amorphous aggregates instead of the ordered fibrils. Furthermore, we proved that the Al(III/EGCG complex in molar ratio of 1 : 1 as Al(EGCG(H2O2 could inhibit the hIAPP fibrillation more effectively than EGCG alone. The results provide the invaluable reference for the new drug development to treat type II diabetes.

  15. Ethyl ether fraction of Gastrodia elata Blume protects amyloid beta peptide-induced cell death.

    Science.gov (United States)

    Kim, Hyeon-Ju; Moon, Kwang-Deog; Lee, Dong-Seok; Lee, Sang-Han

    2003-01-01

    Alzheimer's disease is the most common cause of dementia in the elderly. Recently, it has been reported that Alzheimer's disease is associated with cell death in neuronal cells including the hippocampus. Amyloid beta-peptide stimulates neuronal cell death, but the underlying signaling pathways are poorly understood. In order to develop anti-dementia agents with potential therapeutic value, we examined the effect of the herbal compound Gastrodia elata Blume (GEB) on neuronal cell death induced by amyloid beta-peptide in IMR-32 neuroblastoma cells. The fractionation of GEB was carried out in various solvents. The hydroxyl radical scavenging effect of the ethyl ether fraction was more potent than any other fractions. In cells treated with amyloid beta-peptide, the neuroprotective effect of the ethyl ether, chloroform, and butanol fractions was 92, 44, and 39%, respectively, compared with control. Taken together, these results suggest that the ethyl ether fraction of GEB contains one or more compounds that dramatically reduce amyloid beta-peptide induced neuronal cell death in vitro.

  16. Molecular recognition of CYP26A1 binding pockets and structure-activity relationship studies for design of potent and selective retinoic acid metabolism blocking agents.

    Science.gov (United States)

    Sun, Bin; Song, Shuai; Hao, Chen-Zhou; Huang, Wan-Xu; Liu, Chun-Chi; Xie, Hong-Lei; Lin, Bin; Cheng, Mao-Sheng; Zhao, Dong-Mei

    2015-03-01

    All-trans-retinoic acid (ATRA), the biologically most active metabolite of vitamin A, plays a major role in the regulation of cellular differentiation and proliferation, and it is also an important pharmacological agent particularly used in the treatment of cancer, skin, neurodegenerative and autoimmune diseases. However, ATRA is very easy to be metabolized into 4-hydroxyl-RA in vivo by CYP26A1, an inducible cytochrome P450 enzyme, eventually into more polar metabolites. Therefore, it is vital to develop specific retinoic acid metabolism blocking agents (RAMBAs) to inhibit the metabolic enzyme CYP26A1 in the treatment of relevant diseases aforementioned. In this study, CYP26A1 and its interactions with retinoic acid-competitive metabolism blocking agents were investigated by a combined ligand- and structure-based approach. First, since the crystal structure of CYP26A1 protein has not been determined, we constructed the 3D structure of CYP26A1 using homology modeling. In order to achieve a deeper insight into the mode of action of RAMBAs in the active site, the molecular superimposition model and the common feature pharmacophore model were constructed, and molecular docking was performed. The molecular superimposition model is composed of three features: the main chain groups, side chain groups, and azole groups. The common feature pharmacophore model consists of five chemical features: four hydrophobic groups and one hydrogen acceptor (HHHHA). The results of molecular docking show that the characteristic groups of RAMBAs were mapped into three different active pockets, respectively. A structure-activity relationship (SAR) was obtained by a combination of the molecular superimposition and docking results with the pharmacophore model. This study gives more insight into the interaction model inside the CYP26A1 active site and provides guidance for the design of more potent and possibly more selective RAMBAs.

  17. Chirality and chiroptical properties of amyloid fibrils.

    Science.gov (United States)

    Dzwolak, Wojciech

    2014-09-01

    Chirality of amyloid fibrils-linear beta-sheet-rich aggregates of misfolded protein chains-often manifests in morphological traits such as helical twist visible in atomic force microscopy and in chiroptical properties accessible to vibrational circular dichroism (VCD). According to recent studies the relationship between molecular chirality of polypeptide building blocks and superstructural chirality of amyloid fibrils may be more intricate and less deterministic than previously assumed. Several puzzling experimental findings have put into question earlier intuitive ideas on: 1) the bottom-up chirality transfer upon amyloidogenic self-assembly, and 2) the structural origins of chiroptical properties of protein aggregates. For example, removal of a single amino acid residue from an amyloidogenic all-L peptide was shown to reverse handedness of fibrils. On the other hand, certain types of amyloid aggregates revealed surprisingly strong VCD spectra with the sign and shape dependent on the conditions of fibrillation. Hence, microscopic and chiroptical studies have highlighted chirality as one more aspect of polymorphism of amyloid fibrils. This brief review is intended to outline the current state of research on amyloid-like fibrils from the perspective of their structural and superstructural chirality and chiroptical properties.

  18. Appropriate Use Criteria for Amyloid PET

    Science.gov (United States)

    Johnson, Keith A.; Minoshima, Satoshi; Bohnen, Nicolaas I.; Donohoe, Kevin J.; Foster, Norman L.; Herscovitch, Peter; Karlawish, Jason H.; Rowe, Christopher C.; Carrillo, Maria C.; Hartley, Dean M.; Hedrick, Saima; Mitchell, Kristi; Pappas, Virginia; Thies, William H.

    2013-01-01

    Positron Emission Tomography (PET) of brain amyloid-beta is a technology that is becoming more available, but its clinical utility in medical practice requires careful definition. In order to provide guidance to dementia care practitioners, patients and caregivers, the Alzheimer Association and the Society of Nuclear Medicine and Molecular Imaging convened the Amyloid Imaging Taskforce (AIT). The AIT considered a broad range of specific clinical scenarios in which amyloid PET could potentially be appropriately used. Peer-reviewed, published literature was searched to ascertain available evidence relevant to these scenarios, and the AIT developed a consensus of expert opinion. While empirical evidence of impact on clinical outcomes is not yet available, a set of specific Appropriate Use Criteria (AUC) were agreed upon that define the types of patients and clinical circumstances in which amyloid PET could be used. Both appropriate and inappropriate uses were considered and formulated, and are reported and discussed here. Because both dementia care and amyloid PET technology are in active development, these AUC will require periodic reassessment. Future research directions are also outlined, including diagnostic utility and patient-centered outcomes. PMID:23360977

  19. Fluorinated analogues of marsanidine, a highly α2-AR/imidazoline I1 binding site-selective hypotensive agent. Synthesis and biological activities.

    Science.gov (United States)

    Wasilewska, Aleksandra; Sączewski, Franciszek; Hudson, Alan L; Ferdousi, Mehnaz; Scheinin, Mika; Laurila, Jonne M; Rybczyńska, Apolonia; Boblewski, Konrad; Lehmann, Artur

    2014-11-24

    The aim of these studies was to establish the influence of fluorination of the indazole ring on the pharmacological properties of two selective α2-adrenoceptor (α2-AR) agonists: 1-[(imidazolidin-2-yl)imino]-1H-indazole (marsanidine, A) and its methylene analogue 1-[(4,5-dihydro-1H-imidazol-2-yl)methyl]-1H-indazole (B). Introduction of fluorine into the indazole ring of A and B reduced both binding affinity and α2-AR/I1 imidazoline binding site selectivity. The most α2-AR-selective ligands were 6-fluoro-1-[(imidazolidin-2-yl)imino]-1H-indazole (6c) and 7-fluoro-1-[(imidazolidin-2-yl)imino]-1H-indazole (6d). The in vivo cardiovascular properties of fluorinated derivatives of A and B revealed that in both cases the C-7 fluorination leads to compounds with the highest hypotensive and bradycardic activities. The α2-AR partial agonist 6c was prepared as a potential lead compound for development of a radiotracer for PET imaging of brain α2-ARs.

  20. Exploring the reactivity of flavonoid compounds with metal-associated amyloid-β species.

    Science.gov (United States)

    He, Xiaoming; Park, Hyun Min; Hyung, Suk-Joon; DeToma, Alaina S; Kim, Cheal; Ruotolo, Brandon T; Lim, Mi Hee

    2012-06-01

    Metal ions associated with amyloid-β (Aβ) peptides have been suggested to be involved in the development of Alzheimer's disease (AD), but this remains unclear and controversial. Some attempts to rationally design or select small molecules with structural moieties for metal chelation and Aβ interaction (i.e., bifunctionality) have been made to gain a better understanding of the hypothesis. In order to contribute to these efforts, four synthetic flavonoid derivatives FL1-FL4 were rationally selected according to the principles of bifunctionality and their abilities to chelate metal ions, interact with Aβ, inhibit metal-induced Aβ aggregation, scavenge radicals, and regulate the formation of reactive oxygen species (ROS) were studied using physical methods and biological assays. The compounds FL1-FL3 were able to chelate metal ions, but showed limited solubility in aqueous buffered solutions. In the case of FL4, which was most compatible with aqueous conditions, its binding affinities for Cu(2+) and Zn(2+) (nM and μM, respectively) were obtained through solution speciation studies. The direct interaction between FL4 and Aβ monomer was weak, which was monitored by NMR spectroscopy and mass spectrometry. Employing FL1-FL4, no noticeable inhibitory effect on metal-mediated Aβ aggregation was observed. Among FL1-FL4, FL3, having 3-OH, 4-oxo, and 4'-N(CH(3))(2) groups, exhibited similar antioxidant activity to the vitamin E analogue, Trolox, and ca. 60% reduction in the amount of hydrogen peroxide (H(2)O(2)) generated by Cu(2+)-Aβ in the presence of dioxygen (O(2)) and a reducing agent. Overall, the studies here suggest that although four flavonoid molecules were selected based on expected bifunctionality, their properties and metal-Aβ reactivity were varied depending on the structure differences, demonstrating that bifunctionality must be well tuned to afford desirable reactivity.

  1. Inhibition of the mitochondrial enzyme ABAD restores the amyloid-β-mediated deregulation of estradiol.

    Directory of Open Access Journals (Sweden)

    Yun-An Lim

    Full Text Available Alzheimer's disease (AD is a conformational disease that is characterized by amyloid-β (Aβ deposition in the brain. Aβ exerts its toxicity in part by receptor-mediated interactions that cause down-stream protein misfolding and aggregation, as well as mitochondrial dysfunction. Recent reports indicate that Aβ may also interact directly with intracellular proteins such as the mitochondrial enzyme ABAD (Aβ binding alcohol dehydrogenase in executing its toxic effects. Mitochondrial dysfunction occurs early in AD, and Aβ's toxicity is in part mediated by inhibition of ABAD as shown previously with an ABAD decoy peptide. Here, we employed AG18051, a novel small ABAD-specific compound inhibitor, to investigate the role of ABAD in Aβ toxicity. Using SH-SY5Y neuroblastoma cells, we found that AG18051 partially blocked the Aβ-ABAD interaction in a pull-down assay while it also prevented the Aβ42-induced down-regulation of ABAD activity, as measured by levels of estradiol, a known hormone and product of ABAD activity. Furthermore, AG18051 is protective against Aβ42 toxicity, as measured by LDH release and MTT absorbance. Specifically, AG18051 reduced Aβ42-induced impairment of mitochondrial respiration and oxidative stress as shown by reduced ROS (reactive oxygen species levels. Guided by our previous finding of shared aspects of the toxicity of Aβ and human amylin (HA, with the latter forming aggregates in Type 2 diabetes mellitus (T2DM pancreas, we determined whether AG18051 would also confer protection from HA toxicity. We found that the inhibitor conferred only partial protection from HA toxicity indicating distinct pathomechanisms of the two amyloidogenic agents. Taken together, our results present the inhibition of ABAD by compounds such as AG18051 as a promising therapeutic strategy for the prevention and treatment of AD, and suggest levels of estradiol as a suitable read-out.

  2. AChE and the amyloid precursor protein (APP) - Cross-talk in Alzheimer's disease.

    Science.gov (United States)

    Nalivaeva, Natalia N; Turner, Anthony J

    2016-11-25

    The amyloid precursor protein (APP) and acetylcholinesterase (AChE) are multi-faceted proteins with a wide range of vital functions, both crucially linked with the pathogenesis of Alzheimer's disease (AD). APP is the precursor of the Aβ peptide, the pathological agent in AD, while AChE is linked to its pathogenesis either by increasing cholinergic deficit or exacerbating Aβ fibril formation and toxicity. As such, both proteins are the main targets in AD therapeutics with AChE inhibitors being currently the only clinically available AD drugs. In our studies we have demonstrated an important inter-relation in functioning of these proteins. Both can be released from the cell membrane and we have shown that AChE shedding involves a metalloproteinase-mediated mechanism which, like the α-secretase dependent cleavage of APP, is stimulated by cholinergic agonists. Overexpression of the neuronal specific isoform APP695 in neuronal cells substantially decreased levels of the AChE mRNA, protein and catalytic activity accompanied by a similar decrease in mRNA levels of the AChE membrane anchor, PRiMA (proline rich membrane anchor). We further established that this regulation does not involve APP processing and its intracellular domain (AICD) but requires the E1 region of APP, specifically its copper-binding domain. On the contrary, siRNA knock-down of APP in cholinergic SN56 cells resulted in a significant upregulation of AChE mRNA levels. Hence APP may influence AChE physiology while released AChE may regulate amyloidogenesis through multiple mechanisms suggesting novel therapeutic targets.

  3. Cerebral serotonin 4 receptors and amyloid-β in early Alzheimer's disease

    DEFF Research Database (Denmark)

    Madsen, Karine; Neumann, Wolf-Julian; Holst, Klaus Kähler

    2011-01-01

    patients and eight healthy controls additionally underwent a [11C]PIB PET scan to measure the cortical Aß burden. When AD patients were defined on clinical criteria, no difference in cerebral 5-HT4 receptor binding between AD patients and healthy controls was found (p = 0.54). However, when individuals...... were reassigned to groups according to their amyloid status, the PIB-positive individuals had 13% higher 5-HT4 receptor levels than PIB-negative individuals (p = 0.02) and the importance of classification of groups is emphasized. The 5-HT4 receptor binding was a positively correlated to Aß burden (p...

  4. Amyloid-β positron emission tomography imaging probes

    DEFF Research Database (Denmark)

    Kepe, Vladimir; Moghbel, Mateen C; Långström, Bengt;

    2013-01-01

    The rapidly rising prevalence and cost of Alzheimer's disease in recent decades has made the imaging of amyloid-β deposits the focus of intense research. Several amyloid imaging probes with purported specificity for amyloid-β plaques are currently at various stages of FDA approval. However...

  5. Detection of amyloid plaques targeted by bifunctional USPIO in Alzheimer's disease transgenic mice using magnetic resonance microimaging.

    Directory of Open Access Journals (Sweden)

    Youssef Zaim Wadghiri

    Full Text Available Amyloid plaques are a key pathological hallmark of Alzheimer's disease (AD. The detection of amyloid plaques in the brain is important for the diagnosis of AD, as well as for following potential amyloid targeting therapeutic interventions. Our group has developed several contrast agents to detect amyloid plaques in vivo using magnetic resonance microimaging (µMRI in AD transgenic mice, where we used mannitol to enhance blood brain barrier (BBB permeability. In the present study, we used bifunctional ultrasmall superparamagnetic iron oxide (USPIO nanoparticles, chemically coupled with Aβ1-42 peptide to image amyloid plaque deposition in the mouse brain. We coupled the nanoparticles to polyethylene glycol (PEG in order to improve BBB permeability. These USPIO-PEG-Aβ1-42 nanoparticles were injected intravenously in AD model transgenic mice followed by initial in vivo and subsequent ex vivo μMRI. A 3D gradient multi-echo sequence was used for imaging with a 100 µm isotropic resolution. The amyloid plaques detected by T2*-weighted μMRI were confirmed with matched histological sections. The region of interest-based quantitative measurement of T2* values obtained from the in vivo μMRI showed contrast injected AD Tg mice had significantly reduced T2* values compared to wild-type mice. In addition, the ex vivo scans were examined with voxel-based analysis (VBA using statistical parametric mapping (SPM for comparison of USPIO-PEG-Aβ1-42 injected AD transgenic and USPIO alone injected AD transgenic mice. The regional differences seen by VBA in the USPIO-PEG-Aβ1-42 injected AD transgenic correlated with the amyloid plaque distribution histologically. Our results indicate that USPIO-PEG-Aβ1-42 can be used for amyloid plaque detection in vivo by intravenous injection without the need to co-inject an agent which increases permeability of the BBB. This technique could aid the development of novel amyloid targeting drugs by allowing therapeutic effects

  6. Preclinical pharmacokinetics, tissue distribution and plasma protein binding of sodium (±-5-bromo-2-(α-hydroxypentyl benzoate (BZP, an innovative potent anti-ischemic stroke agent

    Directory of Open Access Journals (Sweden)

    Xin Tian

    2016-08-01

    Full Text Available Sodium (±-5-bromo-2-(α-hydroxypentyl benzoate (BZP is a potential cardiovascular drug and exerts potent neuroprotective effect against transient and long-term ischemic stroke in rats. BZP could convert into 3-butyl-6-bromo-1(3H-isobenzofuranone (Br-NBP in vitro and in vivo. However, the pharmacokinetic profiles of BZP and Br-NBP still have not been evaluated. For the purpose of investigating the pharmacokinetic profiles, tissue distribution and plasma protein binding of BZP and Br-NBP, a rapid, sensitive and specific method based on liquid chromatography coupled to mass spectrometry (LC-MS/MS has been developed for determination of BZP and Br-NBP in biological samples. The results indicated that BZP and Br-NBP showed a short elimination half-life, and pharmacokinetic profile in rats (3, 6 and 12 mg/kg; i.v. and beagle dogs (1, 2 and 4 mg/kg; i.v.gtt were obtained after single dosing of BZP. After multiple dosing of BZP, there was no significant accumulation of BZP and Br-NBP in the plasma of rats and beagle dogs. Following i.v. single dose (6 mg/kg to rats, BZP and Br-NBP were distributed rapidly into all tissues examined, with the highest concentrations of BZP and Br-NBP in lung and kidney, respectively. The brain distribution of Br-NBP in middle cerebral artery occlusion (MCAO rats was more than in normal rats (P<0.05. The plasma protein binding degree of BZP at three concentrations (8000, 20000 and 80000 ng/mL from rat, beagle dog and human plasma were 98.1~98.7%, 88.9~92.7% and 74.8%~83.7% respectively. In conclusion, both BZP and Br-NBP showed short half-life, good dose-linear pharmacokinetic profile, wide tissue distribution and different degree protein binding to various species plasma. This was the first preclinical pharmacokinetic investigation of BZP and Br-NBP in both rats and beagle dogs, which provided vital guidance for further preclinical research and the subsequent clinical trials.

  7. Fibrillar dimer formation of islet amyloid polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chi-cheng [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); de Pablo, Juan J. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  8. Engineering tumor cell targeting in nanoscale amyloidal materials

    Science.gov (United States)

    Unzueta, Ugutz; Seras-Franzoso, Joaquin; Virtudes Céspedes, María; Saccardo, Paolo; Cortés, Francisco; Rueda, Fabián; Garcia-Fruitós, Elena; Ferrer-Miralles, Neus; Mangues, Ramon; Vázquez, Esther; Villaverde, Antonio

    2017-01-01

    Bacterial inclusion bodies are non-toxic, mechanically stable and functional protein amyloids within the nanoscale size range that are able to naturally penetrate into mammalian cells, where they deliver the embedded protein in a functional form. The potential use of inclusion bodies in protein delivery or protein replacement therapies is strongly impaired by the absence of specificity in cell binding and penetration, thus preventing targeting. To address this issue, we have here explored whether the genetic fusion of two tumor-homing peptides, the CXCR4 ligands R9 and T22, to an inclusion body-forming green fluorescent protein (GFP), would keep the interaction potential and the functionality of the fused peptides and then confer CXCR4 specificity in cell binding and further uptake of the materials. The fusion proteins have been well produced in Escherichia coli in their full-length form, keeping the potential for fluorescence emission of the partner GFP. By using specific inhibitors of CXCR4 binding, we have demonstrated that the engineered protein particles are able to penetrate CXCR4+ cells, in a receptor-mediated way, without toxicity or visible cytopathic effects, proving the availability of the peptide ligands on the surface of inclusion bodies. Since no further modification is required upon their purification, the biological production of genetically targeted inclusion bodies opens a plethora of cost-effective possibilities in the tissue-specific intracellular transfer of functional proteins through the use of structurally and functionally tailored soft materials.

  9. Compressive deformation of ultralong amyloid fibrils

    Science.gov (United States)

    Paparcone, Raffaella; Cranford, Steven; Buehler, Markus J.

    2010-12-01

    Involved in various neurodegenerative diseases, amyloid fibrils and plaques feature a hierarchical structure, ranging from the atomistic to the micrometer scale. At the atomistic level, a dense and organized hydrogen bond network is resembled in a beta-sheet rich secondary structure, which drives a remarkable stiffness in the range of 10-20GPa, larger than many other biological nanofibrils, a result confirmed by both experiment and theory. However, the understanding of how these exceptional mechanical properties transfer from the atomistic to the nanoscale remains unknown. Here we report a multiscale analysis that, from the atomistic-level structure of a single fibril, extends to the mesoscale level, reaching size scales of hundreds of nanometers. We use parameters directly derived from full atomistic simulations of A β (1-40) amyloid fibrils to parameterize a mesoscopic coarse-grained model, which is used to reproduce the elastic properties of amyloid fibrils. We then apply our mesoscopic model in an analysis of the buckling behavior of amyloid fibrils with different lengths and report a comparison with predictions from continuum beam theory. An important implication of our results is a severe reduction of the effective modulus due to buckling, an effect that could be important to interpret experimental results of ultra-long amyloid fibrils. Our model represents a powerful tool to mechanically characterize molecular structures on the order of hundreds of nanometers to micrometers on the basis of the underlying atomistic behavior. The work provides insight into structural and mechanical properties of amyloid fibrils and may enable further analysis of larger-scale assemblies such as amyloidogenic bundles or plaques as found in disease states.

  10. Pre-amyloid oligomers of the proteotoxic RepA-WH1 prionoid assemble at the bacterial nucleoid

    Science.gov (United States)

    Moreno-del Álamo, María; de la Espina, Susana Moreno-Díaz; Fernández-Tresguerres, M. Elena; Giraldo, Rafael

    2015-01-01

    Upon binding to short specific dsDNA sequences in vitro, the N-terminal WH1 domain of the plasmid DNA replication initiator RepA assembles as amyloid fibres. These are bundles of single or double twisted tubular filaments in which distorted RepA-WH1 monomers are the building blocks. When expressed in Escherichia coli, RepA-WH1 triggers the first synthetic amyloid proteinopathy in bacteria, recapitulating some of the features of mammalian prion diseases: it is vertically transmissible, albeit non-infectious, showing up in at least two phenotypically distinct and interconvertible strains. Here we report B3h7, a monoclonal antibody specific for oligomers of RepA-WH1, but which does not recognize the mature amyloid fibres. Unlike a control polyclonal antibody generated against the soluble protein, B3h7 interferes in vitro with DNA-promoted or amyloid-seeded assembly of RepA-WH1 fibres, thus the targeted oligomers are on-pathway amyloidogenic intermediates. Immuno-electron microscopy with B3h7 on thin sections of E. coli cells expressing RepA-WH1 consistently labels the bacterial nucleoid, but not the large cytoplasmic aggregates of the protein. This observation points to the nucleoid as the place where oligomeric amyloid precursors of RepA-WH1 are generated, and suggests that, once nucleated by DNA, further growth must continue in the cytoplasm due to entropic exclusion. PMID:26423724

  11. Amyloids or prions? That is the question.

    Science.gov (United States)

    Sabate, Raimon; Rousseau, Frederic; Schymkowitz, Joost; Batlle, Cristina; Ventura, Salvador

    2015-01-01

    Despite major efforts devoted to understanding the phenomenon of prion transmissibility, it is still poorly understood how this property is encoded in the amino acid sequence. In recent years, experimental data on yeast prion domains allow to start at least partially decrypting the sequence requirements of prion formation. These experiments illustrate the need for intrinsically disordered sequence regions enriched with a particularly high proportion of glutamine and asparagine. Bioinformatic analysis suggests that these regions strike a balance between sufficient amyloid nucleation propensity on the one hand and disorder on the other, which ensures availability of the amyloid prone regions but entropically prevents unwanted nucleation and facilitates brittleness required for propagation.

  12. Quenched Hydrogen Exchange NMR of Amyloid Fibrils.

    Science.gov (United States)

    Alexandrescu, Andrei T

    2016-01-01

    Amyloid fibrils are associated with a number of human diseases. These aggregatively misfolded intermolecular β-sheet assemblies constitute some of the most challenging targets in structural biology because to their complexity, size, and insolubility. Here, protocols and controls are described for experiments designed to study hydrogen-bonding in amyloid fibrils indirectly, by transferring information about amide proton occupancy in the fibrils to the dimethyl sulfoxide-denatured state. Since the denatured state is amenable to solution NMR spectroscopy, the method can provide residue-level-resolution data on hydrogen exchange for the monomers that make up the fibrils.

  13. Study of specially labeling amyloid plaques in vivo in Alzheimer transgenic mice with targeted magnetic nano-iron contrast agent%靶向纳米铁磁共振造影剂特异性标记阿尔茨海默病鼠脑内老年斑

    Institute of Scientific and Technical Information of China (English)

    湛彦强; 张苏明; 吴军; 许杰; 尹波; 马铭; 杜桂焕; 刘祖黎; 徐威; 雷浩

    2011-01-01

    目的 开发具有高度特异性的靶向磁共振对比剂,验证其特异性显示阿尔茨海默病(AD)脑内老年斑的可能性及有效性.方法 利用热分解法获得水相的磁性纳米四氧化三铁颗粒(MNPs),经过表面官能化学修饰,完成MNPs与β淀粉样蛋白肽段1-40(Aβ40)及蛋白质转导结合域(protein transduction domain,Tat-PTD)的连接后,制备出特异性与老年斑相结合的靶向纳米铁造影剂Aβ40-MNPs-Tat PTD,通过尾静脉注射人20只AD鼠和20只阴性对照C57小鼠(4、6、9、12月龄各5只)体内,不同的时间点采用7.0 T动物磁共振检测获得磁共振图像,观察靶向纳米造影剂对脑实质内老年斑信号的强化效果,继之处死小鼠后灌流取脑做连续冰冻切片,进行铁染色和Thioflavine S染色组织学验证.结果 所获得的靶向纳米颗粒Aβ40-MNPs-Tat PTD能够在体外进入细胞内进而改变细胞磁共振T2信号强度.尾静脉注射入AD鼠体内后能特异性负性强化AD鼠脑内老年斑病变,经组织学验证,能够与老年斑染色及铁染色相对应.结论 特异靶向性的磁性纳米铁造影剂Aβ40-MNPs-Tat PTD能特异性地针对小鼠脑内的老年斑病变进行负性强化和标记.%Objective To develop specific targeted magnetic biomarkers which can selectively mark the senile plaques in Alzheimer' s disease (AD) and verify its feasibility and validity.Methods Aβ1-40 peptide and Tat-PTD ( Tat-protein transduction domain) was binded with dextran-coated ultrasmall superparamagnetic iron oxide ( USPIO) particles.Visualization of plaques in vivo in Alzheimer transgenic mice was investigated at 7.0 Tesla using T2 sequences after intravenous administration of the targeted nanoiron contrast agent and verified by histological staining.Results The targeted nano-iron contrast agent could enter the cultured neural stem cells,and was able to accelerate T2 relaxation rates of water protons in the cells and negatively reinforce the T2

  14. Michler’s Hydrol Blue: A Sensitive Probe for Amyloid Fibril Detection

    KAUST Repository

    Kitts, Catherine C.

    2011-05-03

    Michler\\'s hydrol blue (MHB) is investigated with respect to photophysical properties in varied solvent environment and when bound to insulin and lysozyme fibrils. The MHB chromophore is shown to act like a molecular rotor and bind well to amyloid fibrils, where it exhibits a characteristic red-shift in its excitation spectrum and an increase in the emission quantum yield upon binding. MHB is more sensitive to environmental changes than Thioflavin T (ThT) and furthermore, in contrast to the latter amyloid probe, can differentiate between insulin and lysozyme fibrils by a more red-shifted excitation spectrum for insulin fibrils. To support the experimental observations, time-dependent density functional theory (TDDFT) calculations were performed on MHB at several levels of theory. The predicted changes of spectral properties as a function of the environment are in good agreement with the experimental results. Linear dichroism (LD) is used to determine the orientation of the MHB within the fibrils. It was shown through LD and molecular modeling that MHB aligns itself preferentially parallel with the amyloid fiber at an angle of 14°-22° to the fibril axis and along the grooves of the β-sheet. © 2011 American Chemical Society.

  15. Functional and Structural Effects of Amyloid-β Aggregate on Xenopus laevis Oocytes

    Science.gov (United States)

    Parodi, Jorge; la Paz, Lenin Ochoa-de; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2012-01-01

    Xenopus laevis oocytes exposed to amyloid-β aggregate generated oscillatory electric activity (blips) that was recorded by two-microelectrode voltage-clamp. The cells exhibited a series of “spontaneous” blips ranging in amplitude from 3.8 ± 0.9 nA at the beginning of the recordings to 6.8 ± 1.7 nA after 15 min of exposure to 1 μM aggregate. These blips were similar in amplitude to those induced by the channel-forming antimicrobial agents amphotericin B (7.8 ± 1.2 nA) and gramicidin (6.3 ± 1.1 nA). The amyloid aggregate-induced currents were abolished when extracellular Ca2+ was removed from the bathing solution, suggesting a central role for this cation in generating the spontaneous electric activity. The amyloid aggregate also affected the Ca2+-dependent Cl− currents of oocytes, as shown by increased amplitude of the transient-outward chloride current (Tout) and the serum-activated, oscillatory Cl− currents. Electron microcopy revealed that amyloid aggregate induced the dissociation of the follicular cells that surround the oocyte, thus leading to a failure in the electro-chemical communication between these cells. This was also evidenced by the suppression of the oscillatory Ca2+-dependent ATP-currents, which require proper coupling between oocytes and the follicular cell layer. These observations, made using the X. laevis oocytes as a versatile experimental model, may help to understand the effects of amyloid aggregate on cellular communication. PMID:23104436

  16. Metal based pharmacologically active agents: Synthesis, structural characterization, molecular modeling, CT-DNA binding studies and in vitro antimicrobial screening of iron(II) bromosalicylidene amino acid chelates

    Science.gov (United States)

    Abdel-Rahman, Laila H.; El-Khatib, Rafat M.; Nassr, Lobna A. E.; Abu-Dief, Ahmed M.; Ismael, Mohamed; Seleem, Amin Abdou

    2014-01-01

    In recent years, great interest has been focused on Fe(II) Schiff base amino acid complexes as cytotoxic and antitumor drugs. Thus a series of new iron(II) complexes based on Schiff bases amino acids ligands have been designed and synthesized from condensation of 5-bromosalicylaldehyde (bs) and α-amino acids (L-alanine (ala), L-phenylalanine (phala), L-aspartic acid (aspa), L-histidine (his) and L-arginine (arg)). The structure of the investigated iron(II) complexes was elucidated using elemental analyses, infrared, ultraviolet-visible, thermogravimetric analysis, as well as conductivity and magnetic susceptibility measurements. Moreover, the stoichiometry and the stability constants of the prepared complexes have been determined spectrophotometrically. The results suggest that 5-bromosalicylaldehyde amino acid Schiff bases (bs:aa) behave as dibasic tridentate ONO ligands and coordinate to Fe(II) in octahedral geometry according to the general formula [Fe(bs:aa)2]ṡnH2O. The conductivity values between 37 and 64 ohm-1 mol-1 cm2 in ethanol imply the presence of nonelectrolyte species. The structure of the complexes was validated using quantum mechanics calculations based on accurate DFT methods. Geometry optimization of the Fe-Schiff base amino acid complexes showed that all complexes had octahedral coordination. In addition, the interaction of these complexes with (CT-DNA) was investigated at pH = 7.2, by using UV-vis absorption, viscosity and agarose gel electrophoresis measurements. Results indicated that the investigated complexes strongly bind to calf thymus DNA via intercalative mode and showed a different DNA binding according to the sequence: bsari > bshi > bsali > bsasi > bsphali. Moreover, the prepared compounds are screened for their in vitro antibacterial and antifungal activity against three types of bacteria, Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus and three types of anti fungal cultures, Penicillium purpurogenium, Aspergillus

  17. The Pattern of Brain Amyloid Load in Posterior Cortical Atrophy Using 18F-AV45: Is Amyloid the Principal Actor in the Disease

    Directory of Open Access Journals (Sweden)

    Emilie Beaufils

    2014-11-01

    Full Text Available Background: Posterior cortical atrophy (PCA is characterized by progressive higher-order visuoperceptual dysfunction and praxis declines. This syndrome is related to a number of underlying diseases, including, in most cases, Alzheimer's disease (AD. The aim of this study was to compare the amyloid load with 18F-AV45 positron emission tomography (PET between PCA and AD subjects. Methods: We performed 18F-AV45 PET, cerebrospinal fluid (CSF biomarker analysis and a neuropsychological assessment in 11 PCA patients and 12 AD patients. Results: The global and regional 18F-AV45 uptake was similar in the PCA and AD groups. No significant correlation was observed between global 18F-AV45 uptake and CSF biomarkers or between regional 18F-AV45 uptake and cognitive and affective symptoms. Conclusion: This 18F-AV45 PET amyloid imaging study showed no specific regional pattern of cortical 18F-AV45 binding in PCA patients. These results confirm that a distinct clinical phenotype in amnestic AD and PCA is not related to amyloid distribution.

  18. Toxic β-Amyloid (Aβ) Alzheimer's Ion Channels: From Structure to Function and Design

    Science.gov (United States)

    Nussinov, Ruth

    2012-02-01

    Full-length amyloid beta peptides (Aβ1-40/42) form neuritic amyloid plaques in Alzheimer's disease (AD) patients and are implicated in AD pathology. Recent biophysical and cell biological studies suggest a direct mechanism of amyloid beta toxicity -- ion channel mediated loss of calcium homeostasis. Truncated amyloid beta fragments (Aβ11-42 and Aβ17-42), commonly termed as non-amyloidogenic are also found in amyloid plaques of Alzheimer's disease (AD) and in the preamyloid lesions of Down's syndrome (DS), a model system for early onset AD study. Very little is known about the structure and activity of these smaller peptides although they could be key AD and DS pathological agents. Using complementary techniques of explicit solvent molecular dynamics (MD) simulations, atomic force microscopy (AFM), channel conductance measurements, cell calcium uptake assays, neurite degeneration and cell death assays, we have shown that non-amyloidogenic Aβ9-42 and Aβ17-42 peptides form ion channels with loosely attached subunits and elicit single channel conductances. The subunits appear mobile suggesting insertion of small oligomers, followed by dynamic channel assembly and dissociation. These channels allow calcium uptake in APP-deficient cells and cause neurite degeneration in human cortical neurons. Channel conductance, calcium uptake and neurite degeneration are selectively inhibited by zinc, a blocker of amyloid ion channel activity. Thus truncated Aβ fragments could account for undefined roles played by full length Aβs and provide a novel mechanism of AD and DS pathology. The emerging picture from our large-scale simulations is that toxic ion channels formed by β-sheets are highly polymorphic, and spontaneously break into loosely interacting dynamic units (though still maintaining ion channel structures as imaged with AFM), that associate and dissociate leading to toxic ion flux. This sharply contrasts intact conventional gated ion channels that consist of tightly

  19. Early-onset and robust amyloid pathology in a new homozygous mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Antje Willuweit

    the use in target validation and for evaluating potential diagnostic or therapeutic agents targeting the amyloid pathology of AD.

  20. The intact Kunitz domain protects the amyloid precursor protein from being processed by matriptase-2.

    Science.gov (United States)

    Beckmann, Anna-Madeleine; Glebov, Konstantin; Walter, Jochen; Merkel, Olaf; Mangold, Martin; Schmidt, Frederike; Becker-Pauly, Christoph; Gütschow, Michael; Stirnberg, Marit

    2016-08-01

    Proteolytic processing of the amyloid precursor protein (APP) leads to amyloid-β (Aβ) peptides. So far, the mechanism of APP processing is insufficiently characterized at the molecular level. Whereas the knowledge of Aβ generation by several proteases has been expanded, the contribution of the Kunitz-type protease inhibitor domain (KPI) present in two major APP isoforms to the complex proteolytic processing of APP is poorly understood. In this study, we have identified KPI-containing APP as a very potent, slow-binding inhibitor for the membrane-bound proteolytic regulator of iron homeostasis matriptase-2 by forming stable complexes with its target protease in HEK cells. Inhibition and complex formation depend on the intact KPI domain. By inhibiting matriptase-2, KPI-containing APP is protected from matriptase-2-mediated proteolysis within the Aβ region, thus preventing the generation of N-terminally truncated Aβ.

  1. Islet amyloid polypeptide forms rigid lipid-protein amyloid fibrils on supported phospholipid bilayers.

    Science.gov (United States)

    Domanov, Yegor A; Kinnunen, Paavo K J

    2008-02-08

    Islet amyloid polypeptide (IAPP) forms fibrillar amyloid deposits in the pancreatic islets of Langerhans of patients with type 2 diabetes mellitus, and its misfolding and aggregation are thought to contribute to beta-cell death. Increasing evidence suggests that IAPP fibrillization is strongly influenced by lipid membranes and, vice versa, that the membrane architecture and integrity are severely affected by amyloid growth. Here, we report direct fluorescence microscopic observations of the morphological transformations accompanying IAPP fibrillization on the surface of supported lipid membranes. Within minutes of application in submicromolar concentrations, IAPP caused extensive remodeling of the membrane including formation of defects, vesiculation, and tubulation. The effects of IAPP concentration, ionic strength, and the presence of amyloid seeds on the bilayer perturbation and peptide aggregation were examined. Growth of amyloid fibrils was visualized using fluorescently labeled IAPP or thioflavin T staining. Two-color imaging of the peptide and membranes revealed that the fibrils were initially composed of the peptide only, and vesiculation occurred in the points where growing fibers touched the lipid membrane. Interestingly, after 2-5 h of incubation, IAPP fibers became "wrapped" by lipid membranes derived from the supported membrane. Progressive increase in molecular-level association between amyloid and membranes in the maturing fibers was confirmed by Förster resonance energy transfer spectroscopy.

  2. Amyloid-β deposition and regional grey matter atrophy rates in dementia with Lewy bodies.

    Science.gov (United States)

    Sarro, Lidia; Senjem, Matthew L; Lundt, Emily S; Przybelski, Scott A; Lesnick, Timothy G; Graff-Radford, Jonathan; Boeve, Bradley F; Lowe, Val J; Ferman, Tanis J; Knopman, David S; Comi, Giancarlo; Filippi, Massimo; Petersen, Ronald C; Jack, Clifford R; Kantarci, Kejal

    2016-10-01

    Alzheimer's disease pathology frequently coexists with Lewy body disease at autopsy in patients with probable dementia with Lewy bodies. More than half of patients with probable dementia with Lewy bodies have high amyloid-β deposition as measured with (11)C-Pittsburgh compound B binding on positron emission tomography. Biomarkers of amyloid-β deposition precede neurodegeneration on magnetic resonance imaging during the progression of Alzheimer's disease, but little is known about how amyloid-β deposition relates to longitudinal progression of atrophy in patients with probable dementia with Lewy bodies. We investigated the associations between baseline (11)C-Pittsburgh compound B binding on positron emission tomography and the longitudinal rates of grey matter atrophy in a cohort of clinically diagnosed patients with dementia with Lewy bodies (n = 20), who were consecutively recruited to the Mayo Clinic Alzheimer's Disease Research Centre. All patients underwent (11)C-Pittsburgh compound B positron emission tomography and magnetic resonance imaging examinations at baseline. Follow-up magnetic resonance imaging was performed after a mean (standard deviation) interval of 2.5 (1.1) years. Regional grey matter loss was determined on three-dimensional T1-weighted magnetic resonance imaging with the tensor-based morphometry-symmetric normalization technique. Linear regression was performed between baseline (11)C-Pittsburgh compound B standard unit value ratio and longitudinal change in regional grey matter volumes from an in-house modified atlas. We identified significant associations between greater baseline (11)C-Pittsburgh compound B standard unit value ratio and greater grey matter loss over time in the posterior cingulate gyrus, lateral and medial temporal lobe, and occipital lobe as well as caudate and putamen nuclei, after adjusting for age (P < 0.05). Greater baseline (11)C-Pittsburgh compound B standard unit value ratio was also associated with greater

  3. Synthesis, {sup 68}Ga labeling and preliminary evaluation of DOTA peptide binding vascular adhesion protein-1: a potential PET imaging agent for diagnosing osteomyelitis

    Energy Technology Data Exchange (ETDEWEB)

    Ujula, Tiina [Turku PET Center, Turku University Hospital, Turku (Finland); Salomaeki, Satu [Turku PET Center, Turku University Hospital, Turku (Finland); Department of Chemistry, University of Turku, Turku (Finland); Virsu, Pauliina [Turku PET Center, Turku University Hospital, Turku (Finland); Lankinen, Petteri; Maekinen, Tatu J. [Orthopedic Research Unit, University of Turku, Turku (Finland); Autio, Anu [Turku PET Center, Turku University Hospital, Turku (Finland); Yegutkin, Gennady G. [MediCity Research Laboratory, University of Turku, Turku (Finland); Knuuti, Juhani [Turku PET Center, Turku University Hospital, Turku (Finland); Jalkanen, Sirpa [MediCity Research Laboratory, University of Turku, Turku (Finland); National Public Health Institute, Turku (Finland); Roivainen, Anne [Turku PET Center, Turku University Hospital, Turku (Finland); Turku Center for Disease Modeling, University of Turku, Turku (Finland)], E-mail: anne.roivainen@utu.fi

    2009-08-15

    Introduction: Vascular adhesion protein-1 (VAP-1) is an infection/inflammation-inducible endothelial glycoprotein. Based on our previous studies, the most VAP-1-selective peptide (VAP-P1) was 1,4,7,10-tetraazacyclododecane-N',N'',N''',N,,,,-tetraacetic acid (DOTA)-conjugated, {sup 68}gallium ({sup 68}Ga)-labeled (named [{sup 68}Ga]DOTAVAP-P1) and evaluated preliminarily. Methods: Targeting was evaluated by using VAP-1-transfected cells. Biodistribution of [{sup 68}Ga]DOTAVAP-P1 was studied by positron emission tomography imaging of healthy rats and rats with bone inflammation caused by Staphylococcus aureus infection. Uptake of [{sup 68}Ga]DOTAVAP-P1 in osteomyelitis was compared with negative control peptide and competition with an excess of unlabeled DOTAVAP-P1. Results: [{sup 68}Ga]DOTAVAP-P1 bound more efficiently to VAP-1-transfected cells than to controls. In rats, [{sup 68}Ga]DOTAVAP-P1 cleared rapidly from blood circulation, excreted quickly in urine and showed an in vivo half-life of 26{+-}2.3 min. Imaging of osteomyelitis demonstrated modest target-to-background ratio. Studies with the negative control peptide and competitors revealed a significantly lower uptake at the infection site compared to [{sup 68}Ga]DOTAVAP-P1. Conclusions: The results represent a proof-of-concept that infection-induced VAP-1 can be targeted by [{sup 68}Ga]DOTA peptide. [{sup 68}Ga]DOTAVAP-P1 is just the first candidate peptide and an essential opening for developing VAP-1-specific imaging agents.

  4. Bap: A New Type of Functional Amyloid.

    Science.gov (United States)

    Di Martino, Patrick

    2016-09-01

    Bacteria can build a biofilm matrix scaffold from exopolysaccharides or proteins, and DNA. In a recent report, Taglialegna and colleagues show that pathogenic Staphylococcus aureus produces a protein scaffold based on amyloid assembly of fragments from the biofilm-associated protein. Amyloidogenesis occurs in response to environmental signals.

  5. Serum amyloid P inhibits dermal wound healing

    Science.gov (United States)

    The repair of open wounds depends on granulation tissue formation and contraction, which is primarily mediated by myofibroblasts. A subset of myofibroblasts originates from bone-marrow-derived monocytes which differentiate into fibroblast-like cells called fibrocytes. Serum amyloid P (SAP) inhibits ...

  6. Calumenin interacts with serum amyloid P component

    DEFF Research Database (Denmark)

    Vorum, H; Jacobsen, Christian; Honoré, Bent

    2000-01-01

    with calumenin in the presence of Ca(2+). Amino acid sequencing identified this protein as serum amyloid P component (SAP). Furthermore, we verified and characterized the calumenin-SAP interaction by the surface plasmon resonance technique. The findings indicate that calumenin may participate...

  7. Fibrillar amyloid plaque formation precedes microglial activation.

    Directory of Open Access Journals (Sweden)

    Christian K E Jung

    Full Text Available In Alzheimer's disease (AD, hallmark β-amyloid deposits are characterized by the presence of activated microglia around them. Despite an extensive characterization of the relation of amyloid plaques with microglia, little is known about the initiation of this interaction. In this study, the detailed investigation of very small plaques in brain slices in AD transgenic mice of the line APP-PS1(dE9 revealed different levels of microglia recruitment. Analysing plaques with a diameter of up to 10 μm we find that only the half are associated with clear morphologically activated microglia. Utilizing in vivo imaging of new appearing amyloid plaques in double-transgenic APP-PS1(dE9xCX3CR1+/- mice further characterized the dynamic of morphological microglia activation. We observed no correlation of morphological microglia activation and plaque volume or plaque lifetime. Taken together, our results demonstrate a very prominent variation in size as well as in lifetime of new plaques relative to the state of microglia reaction. These observations might question the existing view that amyloid deposits by themselves are sufficient to attract and activate microglia in vivo.

  8. Graphene oxide strongly inhibits amyloid beta fibrillation

    NARCIS (Netherlands)

    Mahmoudi, Morteza; Akhavan, Omid; Ghavami, Mahdi; Rezaee, Farhad; Ghiasi, Seyyed Mohammad Amin

    2012-01-01

    Since amyloid beta fibrillation (AbF) plays an important role in the development of neurodegenerative diseases, we investigated the effect of graphene oxide (GO) and their protein-coated surfaces on the kinetics of Ab fibrillation in the aqueous solution. We showed that GO and their protein-covered

  9. Development of (99m)Tc-Labeled Pyridyl Benzofuran Derivatives To Detect Pancreatic Amylin in Islet Amyloid Model Mice.

    Science.gov (United States)

    Yoshimura, Masashi; Ono, Masahiro; Watanabe, Hiroyuki; Kimura, Hiroyuki; Saji, Hideo

    2016-06-15

    While islet amyloid deposition comprising amylin is one of pathological hallmarks of type 2 diabetes mellitus (T2DM), no useful amylin-imaging probe has been reported. In this study, we evaluated two (99m)Tc-labeled pyridyl benzofuran derivatives as novel amylin-imaging probes using the newly established islet amyloid model mouse. Binding experiments in vitro demonstrated that [(99m)Tc]1 displayed a higher affinity for amylin aggregates than [(99m)Tc]2. Autoradiographic studies using human pancreas sections with T2DM revealed that [(99m)Tc]1 clearly labeled islet amyloid in T2DM pancreatic sections, while [(99m)Tc]2 did not. Although the initial uptake of [(99m)Tc]1 by the normal mouse pancreas was low (0.74%ID/g at 2 min post-injection), [(99m)Tc]1 showed higher retention in the model mouse pancreas than that of the normal mouse, and exhibited strong binding to amylin aggregates in the living pancreas of the model mice. These results suggest that [(99m)Tc]1 is a potential imaging probe targeting islet amyloids in the T2DM pancreas.

  10. In vivo detection of prion amyloid plaques using [{sup 11}C]BF-227 PET

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, Nobuyuki; Yanai, Kazuhiko [Tohoku University School of Medicine, Department of Pharmacology, Sendai (Japan); Shiga, Yusei; Itoyama, Yasuhito [Tohoku University School of Medicine, Department of Neurology, Sendai (Japan); Furumoto, Shozo [Tohoku University School of Medicine, Department of Pharmacology, Sendai (Japan); Tohoku University, Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Sendai (Japan); Tashiro, Manabu [Tohoku University, Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai (Japan); Tsuboi, Yoshio [Fukuoka University School of Medicine, Department of Neurology, Fukuoka (Japan); Furukawa, Katsutoshi; Arai, Hiroyuki [Institute of Development, Aging, and Cancer, Tohoku University, Department of Geriatrics and Gerontology, Division of Brain Sciences, Sendai (Japan); Iwata, Ren [Tohoku University, Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Sendai (Japan); Kudo, Yukitsuka [Tohoku University, Innovation of New Biomedical Engineering Center, Sendai (Japan); Doh-ura, Katsumi [Tohoku University School of Medicine, Department of Prion Research, 2-1 Seiryo-machi, Aoba-ku, Sendai (Japan)

    2010-05-15

    In vivo detection of pathological prion protein (PrP) in the brain is potentially useful for the diagnosis of transmissible spongiform encephalopathies (TSEs). However, there are no non-invasive ante-mortem means for detection of pathological PrP deposition in the brain. The purpose of this study is to evaluate the amyloid imaging tracer BF-227 with positron emission tomography (PET) for the non-invasive detection of PrP amyloid in the brain. The binding ability of BF-227 to PrP amyloid was investigated using autoradiography and fluorescence microscopy. Five patients with TSEs, including three patients with Gerstmann-Straeussler-Scheinker disease (GSS) and two patients with sporadic Creutzfeldt-Jakob disease (CJD), underwent [{sup 11}C]BF-227 PET scans. Results were compared with data from 10 normal controls and 17 patients with Alzheimer's disease (AD). The regional to pons standardized uptake value ratio was calculated as an index of BF-227 retention. Binding of BF-227 to PrP plaques was confirmed using brain samples from autopsy-confirmed GSS cases. In clinical PET study, significantly higher retention of BF-227 was detected in the cerebellum, thalamus and lateral temporal cortex of GSS patients compared to that in the corresponding tissues of normal controls. GSS patients also showed higher retention of BF-227 in the cerebellum, thalamus and medial temporal cortex compared to AD patients. In contrast, the two CJD patients showed no obvious retention of BF-227 in the brain. Although [{sup 11}C]BF-227 is a non-specific imaging marker of cerebral amyloidosis, it is useful for in vivo detection of PrP plaques in the human brain in GSS, based on the regional distribution of the tracer. PET amyloid imaging might provide a means for both early diagnosis and non-invasive disease monitoring of certain forms of TSEs. (orig.)

  11. Low background and high contrast PET imaging of amyloid-{beta} with [{sup 11}C]AZD2995 and [{sup 11}C]AZD2184 in Alzheimer's disease patients

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Anton; Andersson, Jan; Varnaes, Katarina; Halldin, Christer [Karolinska Institutet, Centre for Psychiatry Research, Department of Clinical Neuroscience, Stockholm (Sweden); Jureus, Anders; Swahn, Britt-Marie; Sandell, Johan; Julin, Per; Svensson, Samuel [AstraZeneca Research and Development, Neuroscience Research and Therapy Area, Soedertaelje (Sweden); Cselenyi, Zsolt; Schou, Magnus; Johnstroem, Peter; Farde, Lars [Karolinska Institutet, Centre for Psychiatry Research, Department of Clinical Neuroscience, Stockholm (Sweden); Karolinska Hospital, AstraZeneca Translational Sciences Centre, PET CoE, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm (Sweden); Eriksdotter, Maria; Freund-Levi, Yvonne [Karolinska Institutet, Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Stockholm (Sweden); Karolinska University Hospital, Department of Geriatric Medicine, Stockholm (Sweden); Jeppsson, Fredrik [AstraZeneca Research and Development, Neuroscience Research and Therapy Area, Soedertaelje (Sweden); Karolinska Institutet, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Stockholm (Sweden)

    2013-04-15

    The aim of this study was to evaluate AZD2995 side by side with AZD2184 as novel PET radioligands for imaging of amyloid-{beta} in Alzheimer's disease (AD). In vitro binding of tritium-labelled AZD2995 and AZD2184 was studied and compared with that of the established amyloid-{beta} PET radioligand PIB. Subsequently, a first-in-human in vivo PET study was performed using [{sup 11}C]AZD2995 and [{sup 11}C]AZD2184 in three healthy control subjects and seven AD patients. AZD2995, AZD2184 and PIB were found to share the same binding site to amyloid-{beta}. [{sup 3}H]AZD2995 had the highest signal-to-background ratio in brain tissue from patients with AD as well as in transgenic mice. However, [{sup 11}C]AZD2184 had superior imaging properties in PET, as shown by larger effect sizes comparing binding potential values in cortical regions of AD patients and healthy controls. Nevertheless, probably due to a lower amount of nonspecific binding, the group separation of the distribution volume ratio values of [{sup 11}C]AZD2995 was greater in areas with lower amyloid-{beta} load, e.g. the hippocampus. Both AZD2995 and AZD2184 detect amyloid-{beta} with high affinity and specificity and also display a lower degree of nonspecific binding than that reported for PIB. Overall [{sup 11}C]AZD2184 seems to be an amyloid-{beta} radioligand with higher uptake and better group separation when compared to [{sup 11}C]AZD2995. However, the very low nonspecific binding of [{sup 11}C]AZD2995 makes this radioligand potentially interesting as a tool to study minute levels of amyloid-{beta}. This sensitivity may be important in investigating, for example, early prodromal stages of AD or in the longitudinal study of a disease modifying therapy. (orig.)

  12. Serum amyloid A: an acute phase apolipoprotein and precursor of AA amyloid.

    Science.gov (United States)

    Marhaug, G; Dowton, S B

    1994-08-01

    Serum amyloid A is an acute phase protein complexed to HDL as an apoprotein. The molecular weight is 11.4-12.5 kDa in different species and the protein has from 104 to 112 amino acids, without or with an insertion of eight amino acids at position 72. The protein is very well conserved throughout evolution, indicating an important biological function. The N-terminal part of the molecule is hydrophobic and probably responsible for the lipid binding properties. The most conserved part is from position 38 to 52 and this part is therefore believed to be responsible for the until now unknown biological function. The protein is coded on chromosome 11p in man, and chromosome 7 in mice, and found in all mammals until now investigated, and also in the Peking duck. In the rat a truncated SAA mRNA has been demonstrated, but no equivalent serum protein has been reported. Acute phase SAA is first of all produced in hepatocytes after induction by cytokines, but extrahepatic expression of both acute phase and constitutive SAA proteins have been demonstrated. Several cytokines, first of all IL-1, IL-6 and TNF are involved in the induction of SAA synthesis, but the mutual importance of these cytokines seems to be cell-type specific and to vary in various experimental settings. The role of corticosteroids in SAA induction is somewhat confusing. In most in vitro studies corticosteroids show an enhancing or synergistic effect with cytokines on SAA production in cultured cell. However, in clinical studies and in vivo studies in animals an inhibitory effect of corticosteroids is evident, probably due to the all over anti-inflammatory effect of the drug. Until now no drug has been found that selectively inhibits SAA production by hepatocytes. Effective anti-inflammatory or antibacterial treatment is the only tool for reducing SAA concentration in serum and reducing the risk of developing secondary amyloidosis. The function of SAA is still unclear. Interesting theories, based on current

  13. Membrane Pore Formation by Amyloid beta (25-35) Peptide

    Science.gov (United States)

    Kandel, Nabin; Tatulian, Suren

    Amyloid (A β) peptide contributes to Alzheimer's disease by a yet unidentified mechanism. One of the possible mechanisms of A β toxicity is formation of pores in cellular membranes. We have characterized the formation of pores in phospholipid membranes by the Aβ25 - 35 peptide (GSNKGAIIGLM) using fluorescence, Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) techniques. CD and FTIR identified formation of β-sheet structure upon incubation of the peptide in aqueous buffer for 2 hours. Unilamellar vesicles composed of a zwitterionic lipid, 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and 70 % POPC plus 30 % of an acidic lipid, 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG), are made in 30 mM CaCl2. Quin-2, a fluorophore that displays increased fluorescence upon Ca2+ binding, is added to the vesicles externally. Peptide addition results in increased Quin-2 fluorescence, which is interpreted by binding of the peptide to the vesicles, pore formation, and Ca2+ leakage. The positive and negative control measurements involve addition of a detergent, Triton X-100, which causes vesicle rupture and release of total calcium, and blank buffer, respectively.

  14. Microtubule modification influences cellular response to amyloid-β exposure

    Directory of Open Access Journals (Sweden)

    Nicole Shamitko-Klingensmith

    2016-05-01

    Full Text Available During the normal aging process, cytoskeletal changes such as a reduction in density or disruption of cytoskeletal components occur that can affect neuronal function. As aging is the biggest risk factor for Alzheimer's disease (AD, this study sought to determine how microtubule (MT modification influences cellular response upon exposure to β-amyloid1-42 (Aβ1-42, which is implicated in AD. The MT networks of hypothalamic GT1-7 neurons were modified by common disrupting or stabilizing drugs, and then the physical and mechanical properties of the modified neurons were determined. The MT modified neurons were then exposed to Aβ1-42 and the ability of the neurons to cope with this exposure was determined by a variety of biochemical assays. Flow cytometry studies indicated that MT disruption reduced the binding of Aβ1-42 to the plasma membrane by 45% per cell compared to neurons with stabilized or unaltered MTs. Although the cells with disrupted MTs experienced less peptide-membrane binding, they experienced similar or increased levels of cytotoxicity caused by the Aβ1-42 exposure. In contrast, MT stabilization delayed toxicity caused by Aβ1-42. These results demonstrate that MT modification significantly influences the ability of neurons to cope with toxicity induced by Aβ1-42.

  15. Size-dependent neurotoxicity of β-amyloid oligomers

    Science.gov (United States)

    Cizas, Paulius; Budvytyte, Rima; Morkuniene, Ramune; Moldovan, Radu; Broccio, Matteo; Lösche, Mathias; Niaura, Gediminas; Valincius, Gintaras; Borutaite, Vilmante

    2010-01-01

    The link between the size of soluble amyloid β (Aβ) oligomers and their toxicity to rat cerebellar granule cells (CGC) was investigated. Variation in conditions during in vitro oligomerization of Aβ1-42 resulted in peptide assemblies with different particle size as measured by atomic force microscopy and confirmed by the dynamic light scattering and fluorescence correlation spectroscopy. Small oligomers of Aβ1-42 with a mean particle z-height of 1-2 nm exhibited propensity to bind to the phospholipid vesicles and they were the most toxic species that induced rapid neuronal necrosis at submicromolar concentrations whereas the bigger aggregates (z-height above 4-5 nm) did not bind vesicles and did not cause detectable neuronal death. Similar neurotoxic pattern was also observed in primary cultures of cortex neurons whereas Aβ1–42 oligomers, monomers and fibrils were non-toxic to glial cells in CGC cultures or macrophage J774 cells. However, both oligomeric forms of Aβ1-42 induced reduction of neuronal cell densities in the CGC cultures. PMID:20153288

  16. Size-dependent neurotoxicity of beta-amyloid oligomers.

    Science.gov (United States)

    Cizas, Paulius; Budvytyte, Rima; Morkuniene, Ramune; Moldovan, Radu; Broccio, Matteo; Lösche, Mathias; Niaura, Gediminas; Valincius, Gintaras; Borutaite, Vilmante

    2010-04-15

    The link between the size of soluble amyloid beta (Abeta) oligomers and their toxicity to rat cerebellar granule cells (CGC) was investigated. Variation in conditions during in vitro oligomerization of Abeta(1-42) resulted in peptide assemblies with different particle size as measured by atomic force microscopy and confirmed by dynamic light scattering and fluorescence correlation spectroscopy. Small oligomers of Abeta(1-42) with a mean particle z-height of 1-2 nm exhibited propensity to bind to phospholipid vesicles and they were the most toxic species that induced rapid neuronal necrosis at submicromolar concentrations whereas the bigger aggregates (z-height above 4-5 nm) did not bind vesicles and did not cause detectable neuronal death. A similar neurotoxic pattern was also observed in primary cultures of cortex neurons whereas Abeta(1-42) oligomers, monomers and fibrils were non-toxic to glial cells in CGC cultures or macrophage J774 cells. However, both oligomeric forms of Abeta(1-42) induced reduction of neuronal cell densities in the CGC cultures.

  17. IgG Conformer's Binding to Amyloidogenic Aggregates.

    Directory of Open Access Journals (Sweden)

    Monichan Phay

    Full Text Available Amyloid-reactive IgGs isolated from pooled blood of normal individuals (pAbs have demonstrated clinical utility for amyloid diseases by in vivo targeting and clearing amyloidogenic proteins and peptides. We now report the following three novel findings on pAb conformer's binding to amyloidogenic aggregates: 1 pAb aggregates have greater activity than monomers (HMW species > dimers > monomers, 2 pAbs interactions with amyloidogenic aggregates at least partially involves unconventional (non-CDR interactions of F(ab regions, and 3 pAb's activity can be easily modulated by trace aggregates generated during sample processing. Specifically, we show that HMW aggregates and dimeric pAbs present in commercial preparations of pAbs, intravenous immunoglobulin (IVIg, had up to ~200- and ~7-fold stronger binding to aggregates of Aβ and transthyretin (TTR than the monomeric antibody. Notably, HMW aggregates were primarily responsible for the enhanced anti-amyloid activities of Aβ- and Cibacron blue-isolated IVIg IgGs. Human pAb conformer's binding to amyloidogenic aggregates was retained in normal human sera, and mimicked by murine pAbs isolated from normal pooled plasmas. An unconventional (non-CDR component to pAb's activity was indicated from control human mAbs, generated against non-amyloid targets, binding to aggregated Aβ and TTR. Similar to pAbs, HMW and dimeric mAb conformers bound stronger than their monomeric forms to amyloidogenic aggregates. However, mAbs had lower maximum binding signals, indicating that pAbs were required to saturate a diverse collection of binding sites. Taken together, our findings strongly support further investigations on the physiological function and clinical utility of the inherent anti-amyloid activities of monomeric but not aggregated IgGs.

  18. IgG Conformer's Binding to Amyloidogenic Aggregates

    Science.gov (United States)

    Phay, Monichan; Welzel, Alfred T.; Williams, Angela D.; McWilliams-Koeppen, Helen P.; Blinder, Veronika; O'Malley, Tiernan T.; Solomon, Alan; Walsh, Dominic M.; O'Nuallain, Brian

    2015-01-01

    Amyloid-reactive IgGs isolated from pooled blood of normal individuals (pAbs) have demonstrated clinical utility for amyloid diseases by in vivo targeting and clearing amyloidogenic proteins and peptides. We now report the following three novel findings on pAb conformer's binding to amyloidogenic aggregates: 1) pAb aggregates have greater activity than monomers (HMW species > dimers > monomers), 2) pAbs interactions with amyloidogenic aggregates at least partially involves unconventional (non-CDR) interactions of F(ab) regions, and 3) pAb's activity can be easily modulated by trace aggregates generated during sample processing. Specifically, we show that HMW aggregates and dimeric pAbs present in commercial preparations of pAbs, intravenous immunoglobulin (IVIg), had up to ~200- and ~7-fold stronger binding to aggregates of Aβ and transthyretin (TTR) than the monomeric antibody. Notably, HMW aggregates were primarily responsible for the enhanced anti-amyloid activities of Aβ- and Cibacron blue-isolated IVIg IgGs. Human pAb conformer's binding to amyloidogenic aggregates was retained in normal human sera, and mimicked by murine pAbs isolated from normal pooled plasmas. An unconventional (non-CDR) component to pAb's activity was indicated from control human mAbs, generated against non-amyloid targets, binding to aggregated Aβ and TTR. Similar to pAbs, HMW and dimeric mAb conformers bound stronger than their monomeric forms to amyloidogenic aggregates. However, mAbs had lower maximum binding signals, indicating that pAbs were required to saturate a diverse collection of binding sites. Taken together, our findings strongly support further investigations on the physiological function and clinical utility of the inherent anti-amyloid activities of monomeric but not aggregated IgGs. PMID:26367058

  19. Amyloid-β peptides act as allosteric modulators of cholinergic signalling through formation of soluble BAβACs.

    Science.gov (United States)

    Kumar, Rajnish; Nordberg, Agneta; Darreh-Shori, Taher

    2016-01-01

    Amyloid-β peptides, through highly sophisticated enzymatic machinery, are universally produced and released in an action potential synchronized manner into the interstitial fluids in the brain. Yet no native functions are attributed to amyloid-β. The amyloid-β hypothesis ascribes just neurotoxicity properties through build-up of soluble homomeric amyloid-β oligomers or fibrillar deposits. Apolipoprotein-ε4 (APOE4) allele is the only confirmed genetic risk factor of sporadic Alzheimer's disease; once more it is unclear how it increases the risk of Alzheimer's disease. Similarly, central cholinergic signalling is affected selectively and early in the Alzheimer's disease brain, again why cholinergic neurons show this sensitivity is still unclear. However, the three main known Alzheimer's disease risk factors, advancing age, female gender and APOE4, have been linked to a high apolipoprotein-E and accumulation of the acetylcholine degrading enzyme, butyrylcholinesterase in cerebrospinal fluids of patients. Furthermore, numerous reports indicate that amyloid-β interacts with butyrylcholinesterase and apolipoprotein-E. We have proposed that this interaction leads to formation of soluble ultrareactive acetylcholine-hydrolyzing complexes termed BAβACs, to adjust at demand both synaptic and extracellular acetylcholine signalling. This hypothesis predicted presence of acetylcholine-synthesizing enzyme, choline acetyltransferase in extracellular fluids to allow maintenance of equilibrium between breakdown and synthesis of acetylcholine through continuous in situ syntheses. A recent proof-of-concept study led to the discovery of this enzyme in the human extracellular fluids. We report here that apolipoprotein-E, in particular ε4 isoprotein acts as one of the strongest endogenous anti-amyloid-β fibrillization agents reported in the literature. At biological concentrations, apolipoprotein-E prevented amyloid-β fibrillization for at least 65 h. We show that amyloid

  20. The effect of amyloid pathology and glucose metabolism on cortical volume loss over time in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Adriaanse, Sofie M. [VU University Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); VU University Medical Center, Department of Radiology and Nuclear Medicine, Alzheimer Center, Neuroscience Campus Amsterdam, P.O. Box 7057, Amsterdam (Netherlands); Van Dijk, Koene R.A. [Harvard University, Department of Psychology, Center for Brain Science, Cambridge, MA (United States); Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA (United States); Ossenkoppele, Rik; Tolboom, Nelleke; Zwan, Marissa D.; Barkhof, Frederik; Berckel, Bart N.M. van [VU University Medical Center, Department of Radiology and Nuclear Medicine, Alzheimer Center, Neuroscience Campus Amsterdam, Amsterdam (Netherlands); Reuter, Martin [Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA (United States); Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, Division of Health Sciences and Technology, Cambridge, MA (United States); Yaqub, Maqsood; Boellaard, Ronald; Windhorst, Albert D.; Lammertsma, Adriaan A. [VU University Medical Center, Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, Amsterdam (Netherlands); Flier, Wiesje M. van der; Scheltens, Philip [VU University Medical Center, Department of Neurology, Alzheimer Center, Neuroscience Campus Amsterdam, Amsterdam (Netherlands)

    2014-06-15

    The present multimodal neuroimaging study examined whether amyloid pathology and glucose metabolism are related to cortical volume loss over time in Alzheimer's disease (AD) patients and healthy elderly controls. Structural MRI scans of eleven AD patients and ten controls were available at baseline and follow-up (mean interval 2.5 years). Change in brain structure over time was defined as percent change of cortical volume within seven a-priori defined regions that typically show the strongest structural loss in AD. In addition, two PET scans were performed at baseline: [{sup 11}C]PIB to assess amyloid-β plaque load and [{sup 18}F]FDG to assess glucose metabolism. [{sup 11}C]PIB binding and [{sup 18}F]FDG uptake were measured in the precuneus, a region in which both amyloid deposition and glucose hypometabolism occur early in the course of AD. While amyloid-β plaque load at baseline was not related to cortical volume loss over time in either group, glucose metabolism within the group of AD patients was significantly related to volume loss over time (rho = 0.56, p < 0.05). The present study shows that in a group of AD patients amyloid-β plaque load as measured by [{sup 11}C]PIB behaves as a trait marker (i.e., all AD patients showed elevated levels of amyloid, not related to subsequent disease course), whilst hypometabolism as measured by [{sup 18}F]FDG changed over time indicating that it could serve as a state marker that is predictive of neurodegeneration. (orig.)

  1. In vivo evaluation of amyloid deposition and brain glucose metabolism of 5XFAD mice using positron emission tomography.

    Science.gov (United States)

    Rojas, Santiago; Herance, José Raúl; Gispert, Juan Domingo; Abad, Sergio; Torrent, Elia; Jiménez, Xavier; Pareto, Deborah; Perpiña, Unai; Sarroca, Sara; Rodríguez, Elisenda; Ortega-Aznar, Arantxa; Sanfeliu, Coral

    2013-07-01

    Positron emission tomography (PET) has been used extensively to evaluate the neuropathology of Alzheimer's disease (AD) in vivo. Radiotracers directed toward the amyloid deposition such as [(18)F]-FDDNP (2-(1-{6-[(2-[F]Fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile) and [(11)C]-PIB (Pittsburg compound B) have shown exceptional value in animal models and AD patients. Previously, the glucose analogue [(18)F]-FDG (2-[(18)F]fluorodeoxyglucose) allowed researchers and clinicians to evaluate the brain glucose consumption and proved its utility for the early diagnosis and the monitoring of the progression of AD. Animal models of AD are based on the transgenic expression of different human mutant genes linked to familial AD. The novel transgenic 5XFAD mouse containing 5 mutated genes in its genome has been proposed as an AD model with rapid and massive cerebral amyloid deposition. PET studies performed with animal-dedicated scanners indicate that PET with amyloid-targeted radiotracers can detect the pathological amyloid deposition in transgenic mice and rats. However, in other studies no differences were found between transgenic mice and their wild type littermates. We sought to investigate in 5XFAD mice if the radiotracers [(11)C]-PIB, and [(18)F]-Florbetapir could quantify the amyloid deposition in vivo and if [(18)F]-FDG could do so with regard to glucose consumption. We found that 5XFAD animals presented higher cerebral binding of [(18)F]-Florbetapir, [(11)C]-PIB, and [(18)F]-FDG. These results support the use of amyloid PET radiotracers for the evaluation of AD animal models. Probably, the increased uptake observed with [(18)F]-FDG is a consequence of glial activation that occurs in 5XFAD mice.

  2. Amyloid-clearing proteins and their epigenetic regulation as a therapeutic target in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Natalia N Nalivaeva

    2014-09-01

    Full Text Available Abnormal elevation of amyloid β-peptide (Aβ levels in the brain is the primary trigger for neuronal cell death specific to Alzheimer’s disease (AD. It is now evident that Aβ levels in the brain are manipulable due to a dynamic equilibrium between its production from the amyloid precursor protein (APP and removal by amyloid clearance proteins. Clearance can be either enzymic or non-enzymic (binding/transport proteins. Intriguingly several of the main amyloid-degrading enzymes (ADEs are members of the M13 peptidase family (neprilysin (NEP, NEP2 and the endothelin converting enzymes (ECE-1 and -2. A distinct metallopeptidase, insulin-degrading enzyme (IDE, also contributes to Aβ degradation in the brain. The ADE family currently embraces more than 20 members, both membrane-bound and soluble, and of differing cellular locations. NEP plays an important role in brain function terminating neuropeptide signals. Its decrease in specific brain areas with age or after hypoxia, ischaemia or stroke contribute significantly to the development of AD pathology. The recently discovered mechanism of epigenetic regulation of NEP (and other genes by the APP intracellular domain (AICD and its dependence on the cell type and APP isoform expression suggest possibilities for selective manipulation of NEP gene expression in neuronal cells. We have also observed that another amyloid-clearing protein, namely transthyretin (TTR, is also regulated in the neuronal cell by a mechanism similar to NEP. Dependence of amyloid clearance proteins on histone deacetylases and the ability of HDAC inhibitors to up-regulate their expression in the brain opens new avenues for developing preventive strategies in AD.

  3. Research progress on target therapeutic agents of HER-2 extracellular ligand-binding domain in breast cancer%乳腺癌HER-2胞外配体结合区靶点治疗的研究进展*

    Institute of Scientific and Technical Information of China (English)

    钟锦绣; 李亚梅(综述); 关晏星(审校)

    2013-01-01

    The target therapeutic agents of HER-2 extracellular ligand-binding domain have become the core of breast cancer research. A small peptide molecule and an anti-HER2 extracellular domain monoclonal antibody conjugated with protein toxins, radioisotopes, and chemotherapeutic drugs (immunoconjugate) can improve efficacy and reduce systemic toxicity. Vaccines based on HER-2 extracellular region should protect patients from HER-2-overexpressing breast cancer growth. In this review, studies on targeted-block therapies of the HER-2 extracellular ligand-binding domain in breast cancer were discussed to provide references for clinical applications.%针对乳腺癌HER-2受体胞外结合区的靶点治疗成为当今研究的热点。小分子多肽、HER-2胞外结合区的单抗药物及其与蛋白毒素、放射性核素,化疗药物的偶联物即免疫偶联物既能增强药物的有效性,又可减少对正常组织的毒害。HER-2胞外区肽疫苗可有效预防HER-2高表达乳腺癌的生长。本文将对乳腺癌HER-2胞外区靶向阻断治疗的研究进行综述,为相应的临床应用提供参考。

  4. ENMD-1198, a novel tubulin-binding agent reduces HIF-1alpha and STAT3 activity in human hepatocellular carcinoma(HCC cells, and inhibits growth and vascularization in vivo

    Directory of Open Access Journals (Sweden)

    Schlitt Hans J

    2008-07-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC represents a highly vascularized tumor entity and the process of angiogenesis is essential for the growth of HCC. Importantly, the pro-angiogenic transcription factors HIF-1α and STAT3 have been implicated in HCC progression, thus representing interesting targets for molecular targeted therapy. We hypothesized that therapeutic inhibition of HIF-1α could be achieved by using a novel tubulin-binding agent (ENMD-1198. ENMD-1198 is an analog of 2-methoxyestradiol (2ME2 with antiproliferative and antiangiogenic activity. Methods The human HCC cell lines HUH-7 and HepG2 were used for experiments. Effects of ENMD-1198 on constitutive and inducible (hypoxia, growth factors activation of signaling cascades, including HIF-1α and STAT3, were investigated by Western blotting. Changes in VEGF expression were determined by real-time PCR. Effects of ENMD-1198 on cancer cell migration and invasion were evaluated in in vitro-assays. The growth-inhibitory effects of ENMD-1198 (200 mg/kg/day were determined in a subcutaneous tumor model (HUH-7. Results ENMD-1198 inhibited the phosphorylation of MAPK/Erk, PI-3K/Akt and FAK. Moreover, activation of HIF-1α and STAT3 was dramatically reduced by ENMD-1198, which resulted in lower VEGF mRNA expression (P In vivo, treatment with ENMD-1198 led to a significant reduction in tumor growth, tumor vascularization, and numbers of proliferating tumor cells (P Conclusion The novel microtubule destabilizing agent ENMD-1198 is suitable for inhibiting HIF-1α and STAT3 in human HCC cells and leads to reduced tumor growth and vascularization in vivo. Hence, inhibition of HIF-1α and STAT3 could prove valuable for therapy of hepatocellular carcinoma.

  5. Inhibition of insulin amyloid fibril formation by cyclodextrins.

    Science.gov (United States)

    Kitagawa, Keisuke; Misumi, Yohei; Ueda, Mitsuharu; Hayashi, Yuya; Tasaki, Masayoshi; Obayashi, Konen; Yamashita, Taro; Jono, Hirofumi; Arima, Hidetoshi; Ando, Yukio

    2015-01-01

    Localized insulin-derived amyloid masses occasionally form at the site of repeated insulin injections in patients with insulin-dependent diabetes and cause subcutaneous insulin resistance. Various kinds of insulin including porcine insulin, human insulin, and insulin analogues reportedly formed amyloid fibrils in vitro and in vivo, but the impact of the amino acid replacement in insulin molecules on amyloidogenicity is largely unknown. In the present study, we demonstrated the difference in amyloid fibril formation kinetics of human insulin and insulin analogues, which suggests an important role of the C-terminal domain of the insulin B chain in nuclear formation of amyloid fibrils. Furthermore, we determined that cyclodextrins, which are widely used as drug carriers in the pharmaceutical field, had an inhibitory effect on the nuclear formation of insulin amyloid fibrils. These findings have significant implications for the mechanism underlying insulin amyloid fibril formation and for developing optimal additives to prevent this subcutaneous adverse effect.

  6. Fold modulating function: Bacterial toxins to functional amyloids

    Directory of Open Access Journals (Sweden)

    Adnan Khawaja Syed

    2014-08-01

    Full Text Available Many bacteria produce cytolytic toxins that target host cells or other competing microbes. It is well known that environmental factors control toxin expression, however recent work suggests that some bacteria manipulate the fold of these protein toxins to control their function. The β-sheet rich amyloid fold is a highly stable ordered aggregate that many toxins form in response to specific environmental conditions. When in the amyloid state, toxins become inert, losing the cytolytic activity they display in the soluble form. Emerging evidence suggest that some amyloids function as toxin storage systems until they are again needed, while other bacteria utilize amyloids as a structural matrix component of biofilms. This amyloid matrix component facilitates resistance to biofilm disruptive challenges. The bacterial amyloids discussed in this review reveal an elegant system where changes in protein fold and solubility dictate the function of proteins in response to the environment.

  7. Copper Promotes the Trafficking of the Amyloid Precursor Protein*

    OpenAIRE

    Acevedo, Karla M.; Hung, Ya Hui; Dalziel, Andrew H.; Li, Qiao-Xin; Laughton, Katrina; Wikhe, Krutika; Rembach, Alan; Roberts, Blaine; Masters, Colin L.; Ashley I. Bush; Camakaris, James

    2010-01-01

    Accumulation of the amyloid β peptide in the cortical and hippocampal regions of the brain is a major pathological feature of Alzheimer disease. Amyloid β peptide is generated from the sequential protease cleavage of the amyloid precursor protein (APP). We reported previously that copper increases the level of APP at the cell surface. Here we report that copper, but not iron or zinc, promotes APP trafficking in cultured polarized epithelial cells and neuronal cells. In SH-SY5Y neuronal cells ...

  8. Oligomeric α-synuclein and β-amyloid variants as potential biomarkers for Parkinson's and Alzheimer's diseases.

    Science.gov (United States)

    Williams, Stephanie M; Schulz, Philip; Sierks, Michael R

    2016-01-01

    Oligomeric forms of α-synuclein and β-amyloid are toxic protein variants that are thought to contribute to the onset and progression of Parkinson's disease (PD) and Alzheimer's disease (AD), respectively. The detection of toxic variants in human cerebrospinal fluid (CSF) and blood has great promise for facilitating early and accurate diagnoses of these devastating diseases. Two hurdles that have impeded the use of these protein variants as biomarkers are the availability of reagents that can bind the different variants and a sensitive assay to detect their very low concentrations. We previously isolated antibody-based reagents that selectively bind two different oligomeric variants of α-synuclein and two of β-amyloid, and developed a phage-based capture enzyme-linked immunosorbent assay (ELISA) with subfemtomolar sensitivity to quantify their presence. Here, we used these reagents to show that these oligomeric α-synuclein variants are preferentially present in PD brain tissue, CSF and serum, and that the oligomeric β-amyloid variants are preferentially present in AD brain tissue, CSF, and serum. Some AD samples also had α-synuclein pathology and some PD samples also had β-amyloid pathology, and, very intriguingly, these PD cases also had a history of dementia. Detection of different oligomeric α-synuclein and β-amyloid species is an effective method for identifying tissue, CSF and sera from PD and AD samples, respectively, and samples that also contained early stages of other protein pathologies, indicating their potential value as blood-based biomarkers for neurodegenerative diseases.

  9. Rubber elongation factor (REF), a major allergen component in Hevea brasiliensis latex has amyloid properties.

    Science.gov (United States)

    Berthelot, Karine; Lecomte, Sophie; Estevez, Yannick; Coulary-Salin, Bénédicte; Bentaleb, Ahmed; Cullin, Christophe; Deffieux, Alain; Peruch, Frédéric

    2012-01-01

    REF (Hevb1) and SRPP (Hevb3) are two major components of Hevea brasiliensis latex, well known for their allergenic properties. They are obviously taking part in the biosynthesis of natural rubber, but their exact function is still unclear. They could be involved in defense/stress mechanisms after tapping or directly acting on the isoprenoid biosynthetic pathway. The structure of these two proteins is still not described. In this work, it was discovered that REF has amyloid properties, contrary to SRPP. We investigated their structure by CD, TEM, ATR-FTIR and WAXS and neatly showed the presence of β-sheet organized aggregates for REF, whereas SRPP mainly fold as a helical protein. Both proteins are highly hydrophobic but differ in their interaction with lipid monolayers used to mimic the monomembrane surrounding the rubber particles. Ellipsometry experiments showed that REF seems to penetrate deeply into the monolayer and SRPP only binds to the lipid surface. These results could therefore clarify the role of these two paralogous proteins in latex production, either in the coagulation of natural rubber or in stress-related responses. To our knowledge, this is the first report of an amyloid formed from a plant protein. This suggests also the presence of functional amyloid in the plant kingdom.

  10. Rubber elongation factor (REF, a major allergen component in Hevea brasiliensis latex has amyloid properties.

    Directory of Open Access Journals (Sweden)

    Karine Berthelot

    Full Text Available REF (Hevb1 and SRPP (Hevb3 are two major components of Hevea brasiliensis latex, well known for their allergenic properties. They are obviously taking part in the biosynthesis of natural rubber, but their exact function is still unclear. They could be involved in defense/stress mechanisms after tapping or directly acting on the isoprenoid biosynthetic pathway. The structure of these two proteins is still not described. In this work, it was discovered that REF has amyloid properties, contrary to SRPP. We investigated their structure by CD, TEM, ATR-FTIR and WAXS and neatly showed the presence of β-sheet organized aggregates for REF, whereas SRPP mainly fold as a helical protein. Both proteins are highly hydrophobic but differ in their interaction with lipid monolayers used to mimic the monomembrane surrounding the rubber particles. Ellipsometry experiments showed that REF seems to penetrate deeply into the monolayer and SRPP only binds to the lipid surface. These results could therefore clarify the role of these two paralogous proteins in latex production, either in the coagulation of natural rubber or in stress-related responses. To our knowledge, this is the first report of an amyloid formed from a plant protein. This suggests also the presence of functional amyloid in the plant kingdom.

  11. Traumatic Brain Injury, Microglia, and Beta Amyloid

    OpenAIRE

    Mannix, Rebekah C.; Whalen, Michael J

    2012-01-01

    Recently, there has been growing interest in the association between traumatic brain injury (TBI) and Alzheimer's Disease (AD). TBI and AD share many pathologic features including chronic inflammation and the accumulation of beta amyloid (A\\(\\beta\\)). Data from both AD and TBI studies suggest that microglia play a central role in A\\(\\beta\\) accumulation after TBI. This paper focuses on the current research on the role of microglia response to A\\(\\beta\\) after TBI.

  12. Nanoparticulate Radiolabelled Quinolines Detect Amyloid Plaques in Mouse Models of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Celeste A. Roney

    2009-01-01

    Full Text Available Detecting aggregated amyloid peptides (Aβ plaques presents targets for developing biomarkers of Alzheimer's disease (AD. Polymeric n-butyl-2-cyanoacrylate (PBCA nanoparticles (NPs were encapsulated with radiolabelled amyloid affinity I125-clioquinol (CQ, 5-chloro-7-iodo-8-hydroxyquinoline as in vivo probes. I125-CQ-PBCA NPs crossed the BBB (2.3±0.9 ID/g (P<.05 in the WT mouse (N = 210, compared to I125-CQ (1.0±0.4 ID/g. I125-CQ-PBCA NP brain uptake increased in AD transgenic mice (APP/PS1 versus WT (N = 38; 2.54×105±5.31×104 DLU/mm2; versus 1.98×105±2.22×104 DLU/mm2 and in APP/PS1/Tau. Brain increases were in mice intracranially injected with aggregated Aβ42 peptide (N = 17; 7.19×105±1.25×105 DLU/mm2, versus WT (6.07×105±7.47×104 DLU/mm2. Storage phosphor imaging and histopathological staining of the plaques, Fe2+ and Cu2+, validated results. I125-CQ-PBCA NPs have specificity for Aβ in vitro and in vivo and are promising as in vivo SPECT (I123, or PET (I124 amyloid imaging agents.

  13. Contrasting effects of nanoparticle-protein attraction on amyloid aggregation.

    Science.gov (United States)

    Radic, Slaven; Davis, Thomas P; Ke, Pu Chun; Ding, Feng

    2015-01-01

    Nanoparticles (NPs) have been experimentally found to either promote or inhibit amyloid aggregation of proteins, but the molecular mechanisms for such complex behaviors remain unknown. Using coarse-grained molecular dynamics simulations, we investigated the effects of varying the strength of nonspecific NP-protein attraction on amyloid aggregation of a model protein, the amyloid-beta peptide implicated in Alzheimer's disease. Specifically, with increasing NP-peptide attraction, amyloid aggregation on the NP surface was initially promoted due to increased local protein concentration on the surface and destabilization of the folded state. However, further increase of NP-peptide attraction decreased the stability of amyloid fibrils and reduced their lateral diffusion on the NP surface necessary for peptide conformational changes and self-association, thus prohibiting amyloid aggregation. Moreover, we found that the relative concentration between protein and NPs also played an important role in amyloid aggregation. With a high NP/protein ratio, NPs that intrinsically promote protein aggregation may display an inhibitive effect by depleting the proteins in solution while having a low concentration of the proteins on each NP's surface. Our coarse-grained molecular dynamics simulation study offers a molecular mechanism for delineating the contrasting and seemingly conflicting effects of NP-protein attraction on amyloid aggregation and highlights the potential of tailoring anti-aggregation nanomedicine against amyloid diseases.

  14. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Vad, Brian Stougaard; Dueholm, Morten Simonsen

    2015-01-01

    The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered...... that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm...

  15. Amyloid positron emission tomography and cognitive reserve

    Institute of Scientific and Technical Information of China (English)

    Matteo Bauckneht; Agnese Picco; Flavio Nobili; Silvia Morbelli

    2015-01-01

    Alzheimer’s disease(AD) is characterized by a nonlinear progressive course and several aspects influence the relationship between cerebral amount of AD pathology and the clinical expression of the disease. Brain cognitive reserve(CR) refers to the hypothesized capacity of an adult brain to cope with brain damage in order to minimize symptomatology. CR phenomenon contributed to explain the disjunction between the degree of neurodegeneration and the clinical phenotype of AD. The possibility to track brain amyloidosis(Aβ) in vivo has huge relevance for AD diagnosis and new therapeutic approaches. The clinical repercussions of positron emission tomography(PET)-assessed Aβ load are certainly mediated by CR thus potentially hampering the prognostic meaning of amyloid PET in selected groups of patients. Similarly, amyloid PET and cerebrospinal fluid amyloidosis biomarkers have recently provided new evidence for CR. The present review discusses the concept of CR in the framework of available neuroimaging studies and specifically deals with the reciprocal influences between amyloid PET and CR in AD patients and with the potential consequent interventional strategies for AD.

  16. Design and Construction of Large Amyloid Fibers

    Directory of Open Access Journals (Sweden)

    Devin M. Ridgley

    2015-04-01

    Full Text Available Mixtures of “template” and “adder” proteins self-assemble into large amyloid fibers of varying morphology and modulus. Fibers range from low modulus, rectangular cross-sectioned tapes to high modulus, circular cross-sectioned cylinders. Varying the proteins in the mixture can elicit “in-between” morphologies, such as elliptical cross-sectioned fibers and twisted tapes, both of which have moduli in-between rectangular tapes and cylindrical fibers. Experiments on mixtures of proteins of known amino acid sequence show that control of the large amyloid fiber morphology is dependent on the amount of glutamine repeats or “Q-blocks” relative to hydrophobic side chained amino acids such as alanine, isoleucine, leucine, and valine in the adder protein. Adder proteins with only hydrophobic groups form low modulus rectangular cross-sections and increasing the Q-block content allows excess hydrogen bonding on amide groups that results in twist and higher modulus. The experimental results show that large amyloid fibers of specific shape and modulus can be designed and controlled at the molecular level.

  17. Partial Volume Correction in Quantitative Amyloid Imaging

    Science.gov (United States)

    Su, Yi; Blazey, Tyler M.; Snyder, Abraham Z.; Raichle, Marcus E.; Marcus, Daniel S.; Ances, Beau M.; Bateman, Randall J.; Cairns, Nigel J.; Aldea, Patricia; Cash, Lisa; Christensen, Jon J.; Friedrichsen, Karl; Hornbeck, Russ C.; Farrar, Angela M.; Owen, Christopher J.; Mayeux, Richard; Brickman, Adam M.; Klunk, William; Price, Julie C.; Thompson, Paul M.; Ghetti, Bernardino; Saykin, Andrew J.; Sperling, Reisa A.; Johnson, Keith A.; Schofield, Peter R.; Buckles, Virginia; Morris, John C.; Benzinger, Tammie. LS.

    2014-01-01

    Amyloid imaging is a valuable tool for research and diagnosis in dementing disorders. As positron emission tomography (PET) scanners have limited spatial resolution, measured signals are distorted by partial volume effects. Various techniques have been proposed for correcting partial volume effects, but there is no consensus as to whether these techniques are necessary in amyloid imaging, and, if so, how they should be implemented. We evaluated a two-component partial volume correction technique and a regional spread function technique using both simulated and human Pittsburgh compound B (PiB) PET imaging data. Both correction techniques compensated for partial volume effects and yielded improved detection of subtle changes in PiB retention. However, the regional spread function technique was more accurate in application to simulated data. Because PiB retention estimates depend on the correction technique, standardization is necessary to compare results across groups. Partial volume correction has sometimes been avoided because it increases the sensitivity to inaccuracy in image registration and segmentation. However, our results indicate that appropriate PVC may enhance our ability to detect changes in amyloid deposition. PMID:25485714

  18. Catalytic antibodies to amyloid β peptide in defense against Alzheimer disease

    Science.gov (United States)

    Taguchi, Hiroaki; Planque, Stephanie; Nishiyama, Yasuhiro; Szabo, Paul; Weksler, Marc E.; Friedland, Robert P.; Paul, Sudhir

    2008-01-01

    Immunoglobulins (Igs) that bind amyloid β peptide (Aβ) are under clinical trials for immunotherapy of Alzheimer disease (AD). We have identified IgMs and recombinant Ig fragments that hydrolyze Aβ. Hydrolysis of peripheral Aβ by the IgMs may induce increased Aβ release from the brain. The catalytic IgMs are increased in AD patients, presumably reflecting a protective autoimmune response. Reduced Aβ aggregation and neurotoxicity attributable to the catalytic function were evident. These findings provide a foundation for development of catalytic Igs for AD immunotherapy. PMID:18486927

  19. Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides

    Science.gov (United States)

    Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki

    2012-09-01

    Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.

  20. The Serum Amyloid p Component (SAP) Interactome in Human Plasma Containing Physiological Calcium Levels

    DEFF Research Database (Denmark)

    Poulsen, Ebbe Toftgaard; Pedersen, Kata Wolff; Marzeda, Anna Maria

    2017-01-01

    containing the physiological Ca2+ concentration using SAP affinity pull-down and co-immunoprecipitation experiments followed by mass spectrometry analyses. The analyses resulted in the identification of 33 proteins of which 24 were direct or indirect integration partners not previously reported. The SAP...... involves the humoral innate immune system spanning the complement system, inflammation, and coagulation. Also, SAP is known to binding to the generic structure of amyloid deposits and possibly to protect these against proteolysis. In this study, we have characterized the SAP interactome in human plasma...

  1. The role of mutated amyloid beta 1-42 stimulating dendritic cells in a PDAPP transgenic mouse

    Directory of Open Access Journals (Sweden)

    LI Jia-lin

    2012-06-01

    Full Text Available Background Amyloid plaque is one of the pathological hallmarks of Alzheimer's disease (AD. Anti-beta-amyloid (Aβ immunotherapy is effective in removing brain Aβ, but has shown to be associated with detrimental effects. To avoid severe adverse effects such as meningoencephalitis induced by amyloid beta vaccine with adjuvant, and take advantage of amyloid beta antibody's therapeutic effect on Alzheimer's disease sufficiently, our group has developed a new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating dendritic cells (DC. Our previous work has confirmed that DC vaccine can induce adequate anti-amyloid beta antibody in PDAPP Tg mice safely and efficiently. The DC vaccine can improve impaired learning and memory in the Alzheimer's animal model, and did not cause microvasculitis, microhemorrhage or meningoencephalitis in the animal model. However, the exact mechanism of immunotherapy which reduces Aβ deposition remains unknown. In this report, we studied the mechanism of the vaccine, thinking that this may have implications for better understanding of the pathogenesis of Alzheimer's disease. Methods A new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating DC which were obtained from C57/B6 mouse bone marrow was developed. Amyloid beta with Freund's adjuvant was inoculated at the same time to act as positive control. After the treatment was done, the samples of brains were collected, fixed, cut. Immunohistochemical staining was performed to observe the expression of the nuclear hormone liver X receptor (LXR, membrane-bound protein tyrosine phosphatase (CD45, the ATP-binding cassette family of active transporters (ABCA1, receptor for advanced glycation end products (RAGE, β-site APP-cleaving enzyme (BACE and Aβ in mouse brain tissue. Semi-quantitative analysis was used to defect CA1, CA2, CA3, DG, Rad in hippocampus region and positive neuron in cortex region. Results Aβ was significantly reduced in the

  2. Regional brain hypometabolism is unrelated to regional amyloid plaque burden

    Science.gov (United States)

    Altmann, Andre; Ng, Bernard; Landau, Susan M.; Jagust, William J.

    2015-01-01

    See Sorg and Grothe (doi:10.1093/brain/awv302) for a scientific commentary on this article. In its original form, the amyloid cascade hypothesis of Alzheimer’s disease holds that fibrillar deposits of amyloid are an early, driving force in pathological events leading ultimately to neuronal death. Early clinicopathological investigations highlighted a number of inconsistencies leading to an updated hypothesis in which amyloid plaques give way to amyloid oligomers as the driving force in pathogenesis. Rather than focusing on the inconsistencies, amyloid imaging studies have tended to highlight the overlap between regions that show early amyloid plaque signal on positron emission tomography and that also happen to be affected early in Alzheimer’s disease. Recent imaging studies investigating the regional dependency between metabolism and amyloid plaque deposition have arrived at conflicting results, with some showing regional associations and other not. We extracted multimodal neuroimaging data from the Alzheimer’s disease neuroimaging database for 227 healthy controls and 434 subjects with mild cognitive impairment. We analysed regional patterns of amyloid deposition, regional glucose metabolism and regional atrophy using florbetapir (18F) positron emission tomography, 18F-fluordeoxyglucose positron emission tomography and T1-weighted magnetic resonance imaging, respectively. Specifically, we derived grey matter density and standardized uptake value ratios for both positron emission tomography tracers in 404 functionally defined regions of interest. We examined the relation between regional glucose metabolism and amyloid plaques using linear models. For each region of interest, correcting for regional grey matter density, age, education and disease status, we tested the association of regional glucose metabolism with (i) cortex-wide florbetapir uptake; (ii) regional (i.e. in the same region of interest) florbetapir uptake; and (iii) regional florbetapir uptake

  3. 2-Phenylbenzothiazole conjugated with cyclopentadienyl tricarbonyl [CpM(CO)3] (M = Re, (99m)Tc) complexes as potential imaging probes for β-amyloid plaques.

    Science.gov (United States)

    Jia, Jianhua; Cui, Mengchao; Dai, Jiapei; Liu, Boli

    2015-04-14

    Technetium-99m-labeled cyclopentadienyl tricarbonyl complexes conjugated with the 2-phenylbenzothiazole binding motif were synthesized. The rhenium surrogates , , and were demonstrated to have moderate to high affinities for Aβ1-42 aggregates with Ki values of 142, 76, 64 and 24 nM, respectively. During the fluorescence staining of brain sections of transgenic mice and patients with Alzheimer's disease, these rhenium complexes demonstrated perfect and intense labeling of Aβ plaques. Moreover, in in vitro autoradiography, (99m)Tc-labeled complexes clearly detected β-amyloid plaques on sections of brain tissue from transgenic mice, which confirmed the sufficient affinity of these tracers for Aβ plaques. However, these compounds did not show desirable properties in vivo, especially showing poor brain uptake (below 0.5% ID g(-1)), which will hinder the further development of these tracers as brain imaging agents. Nonetheless, it is encouraging that these (99m)Tc-labeled complexes designed by a conjugate approach displayed sufficient affinities for Aβ plaques.

  4. Novel ¹⁸F-labeled benzoxazole derivatives as potential positron emission tomography probes for imaging of cerebral β-amyloid plaques in Alzheimer's disease.

    Science.gov (United States)

    Cui, Mengchao; Ono, Masahiro; Kimura, Hiroyuki; Ueda, Masashi; Nakamoto, Yuji; Togashi, Kaori; Okamoto, Yoko; Ihara, Masafumi; Takahashi, Ryosuke; Liu, Boli; Saji, Hideo

    2012-11-01

    Two radiofluoro-pegylated phenylbenzoxazole derivatives, 4-(5-(2-(2-(2-[(18)F]fluoroethoxy)ethoxy)ethoxy)benzo[d]oxazol-2-yl)-N-methylaniline ([(18)F]24) and 4-(5-(2-(2-(2-[(18)F]fluoroethoxy)ethoxy)ethoxy)benzo[d]oxazol-2-yl)-N,N-dimethylaniline ([(18)F]32), were synthesized and evaluated as probes for imaging cerebral β-amyloid (Aβ) plaques in living brain tissue by PET. [(18)F]24 and [(18)F]32 displayed high affinity for Aβ(1-42) aggregates (K(i) = 9.3 and 3.9 nM, respectively). In vitro autoradiography with sections of post-mortem AD brain and transgenic mouse brain confirmed the affinity of these tracers. Initial high uptake into and rapid washout from the brain in normal mice were observed. [(18)F]24 also displayed excellent binding to Aβ plaques in ex vivo autoradiographic experiments with Tg2576 mice. Furthermore, small-animal PET studies demonstrated significant differences in the clearance profile after the administration of [(18)F]24 between Tg2576 and wild-type mice. The results suggest [(18)F]24 to be a useful PET agent for detecting Aβ plaques in the living human brain.

  5. Novel 5' untranslated region directed blockers of iron-regulatory protein-1 dependent amyloid precursor protein translation: implications for down syndrome and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Sanghamitra Bandyopadhyay

    Full Text Available We reported that iron influx drives the translational expression of the neuronal amyloid precursor protein (APP, which has a role in iron efflux. This is via a classic release of repressor interaction of APP mRNA with iron-regulatory protein-1 (IRP1 whereas IRP2 controls the mRNAs encoding the L- and H-subunits of the iron storage protein, ferritin. Here, we identified thirteen potent APP translation blockers that acted selectively towards the uniquely configured iron-responsive element (IRE RNA stem loop in the 5' untranslated region (UTR of APP mRNA. These agents were 10-fold less inhibitory of 5'UTR sequences of the related prion protein (PrP mRNA. Western blotting confirmed that the 'ninth' small molecule in the series selectively reduced neural APP production in SH-SY5Y cells at picomolar concentrations without affecting viability or the expression of α-synuclein and ferritin. APP blocker-9 (JTR-009, a benzimidazole, reduced the production of toxic Aβ in SH-SY5Y neuronal cells to a greater extent than other well tolerated APP 5'UTR-directed translation blockers, including posiphen, that were shown to limit amyloid burden in mouse models of Alzheimer's disease (AD. RNA binding assays demonstrated that JTR-009 operated by preventing IRP1 from binding to the IRE in APP mRNA, while maintaining IRP1 interaction with the H-ferritin IRE RNA stem loop. Thus, JTR-009 constitutively repressed translation driven by APP 5'UTR sequences. Calcein staining showed that JTR-009 did not indirectly change iron uptake in neuronal cells suggesting a direct interaction with the APP 5'UTR. These studies provide key data to develop small molecules that selectively reduce neural APP and Aβ production at 10-fold lower concentrations than related previously characterized translation blockers. Our data evidenced a novel therapeutic strategy of potential impact for people with trisomy of the APP gene on chromosome 21, which is a phenotype long associated with Down

  6. Novel 5' untranslated region directed blockers of iron-regulatory protein-1 dependent amyloid precursor protein translation: implications for down syndrome and Alzheimer's disease.

    Science.gov (United States)

    Bandyopadhyay, Sanghamitra; Cahill, Catherine; Balleidier, Amelie; Huang, Conan; Lahiri, Debomoy K; Huang, Xudong; Rogers, Jack T

    2013-01-01

    We reported that iron influx drives the translational expression of the neuronal amyloid precursor protein (APP), which has a role in iron efflux. This is via a classic release of repressor interaction of APP mRNA with iron-regulatory protein-1 (IRP1) whereas IRP2 controls the mRNAs encoding the L- and H-subunits of the iron storage protein, ferritin. Here, we identified thirteen potent APP translation blockers that acted selectively towards the uniquely configured iron-responsive element (IRE) RNA stem loop in the 5' untranslated region (UTR) of APP mRNA. These agents were 10-fold less inhibitory of 5'UTR sequences of the related prion protein (PrP) mRNA. Western blotting confirmed that the 'ninth' small molecule in the series selectively reduced neural APP production in SH-SY5Y cells at picomolar concentrations without affecting viability or the expression of α-synuclein and ferritin. APP blocker-9 (JTR-009), a benzimidazole, reduced the production of toxic Aβ in SH-SY5Y neuronal cells to a greater extent than other well tolerated APP 5'UTR-directed translation blockers, including posiphen, that were shown to limit amyloid burden in mouse models of Alzheimer's disease (AD). RNA binding assays demonstrated that JTR-009 operated by preventing IRP1 from binding to the IRE in APP mRNA, while maintaining IRP1 interaction with the H-ferritin IRE RNA stem loop. Thus, JTR-009 constitutively repressed translation driven by APP 5'UTR sequences. Calcein staining showed that JTR-009 did not indirectly change iron uptake in neuronal cells suggesting a direct interaction with the APP 5'UTR. These studies provide key data to develop small molecules that selectively reduce neural APP and Aβ production at 10-fold lower concentrations than related previously characterized translation blockers. Our data evidenced a novel therapeutic strategy of potential impact for people with trisomy of the APP gene on chromosome 21, which is a phenotype long associated with Down syndrome (DS

  7. Molecular dynamics studies of the inhibitory mechanism of copper(Ⅱ) on aggregation of amyloid β-peptide

    Institute of Scientific and Technical Information of China (English)

    Yong Jiao; Pin Yang

    2007-01-01

    The inhibitory mechanism of copper(Ⅱ) on the aggregation of amyloid β-peptide (Aβ) was investigated by molecular dynamics simulations. The binding mode of copper(Ⅱ) with Aβ is characterized by the imidazole nitrogen atom, Nπ, of the histidine residue H13,acting as the anchoring site, and the backbone's deprotoned amide nitrogen atoms as the main binding sites. Drove by the coordination bonds and their induced hydrogen bond net, the conformations of Aβ converted from β-sheet non-β-sheet conformations, which destabilized the aggregation of Aβ into fibrils.

  8. Cardiac resynchronization therapy in a patient with amyloid cardiomyopathy.

    Science.gov (United States)

    Zizek, David; Cvijić, Marta; Zupan, Igor

    2013-06-01

    Cardiac involvement in systemic light chain amyloidosis carries poor prognosis. Amyloid deposition in the myocardium can alter regional left ventricular contraction and cause dyssynchrony. Cardiac resynchronization therapy (CRT) is an effective treatment strategy for patients with advanced heart failure and echocardiographic dyssynchrony. We report a clinical and echocardiographic response of a patient with amyloid cardiomyopathy, treated with a combination of chemotherapy and CRT.

  9. Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy

    NARCIS (Netherlands)

    Reijmer, Yael D.; Fotiadis, Panagiotis; Martinez-Ramirez, Sergi; Salat, David H.; Schultz, Aaron; Shoamanesh, Ashkan; Ayres, Alison M.; Vashkevich, Anastasia; Rosas, Diana; Schwab, Kristin; Leemans, Alexander; Biessels, Geert Jan; Rosand, Jonathan; Johnson, Keith A.; Viswanathan, Anand; Gurol, M. Edip; Greenberg, Steven M.

    2015-01-01

    Cerebral amyloid angiopathy is a common form of small-vessel disease and an important risk factor for cognitive impairment. The mechanisms linking small-vessel disease to cognitive impairment are not well understood. We hypothesized that in patients with cerebral amyloid angiopathy, multiple small s

  10. Native human serum amyloid P component is a single pentamer

    DEFF Research Database (Denmark)

    Sørensen, Inge Juul; Andersen, Ove; Nielsen, EH;

    1995-01-01

    Serum amyloid P component (SAP) and C-reactive protein (CRP) are members of the pentraxin protein family. SAP is the precursor protein to amyloid P component present in all forms of amyloidosis. The prevailing notion is that SAP in circulation has the form of a double pentameric molecule (decamer...

  11. Specific Triazine Herbicides Induce Amyloid-beta(42) Production

    NARCIS (Netherlands)

    Portelius, Erik; Durieu, Emilie; Bodin, Marion; Cam, Morgane; Pannee, Josef; Leuxe, Charlotte; Mabondzo, Aloise; Oumata, Nassima; Galons, Herve; Lee, Jung Yeol; Chang, Young-Tae; Stuber, Kathrin; Koch, Philipp; Fontaine, Gaelle; Potier, Marie-Claude; Manousopoulou, Antigoni; Garbis, Spiros D.; Covaci, Adrian; Van Dam, Debby; De Deyn, Peter; Karg, Frank; Flajolet, Marc; Omori, Chiori; Hata, Saori; Suzuki, Toshiharu; Blennow, Kaj; Zetterberg, Henrik; Meijer, Laurent

    2016-01-01

    Proteolytic cleavage of the amyloid-beta protein precursor (A beta PP) ecretases leads to extracellular release of amyloid-beta (A beta) peptides. Increased production of A beta(42) over A beta(40) and aggregation into oligomers and plaques constitute an Alzheimer's disease (AD) hallmark. Identifyin

  12. Lipids in Amyloid-β Processing, Aggregation, and Toxicity.

    Science.gov (United States)

    Morgado, Isabel; Garvey, Megan

    2015-01-01

    Aggregation of amyloid-beta (Aβ) peptide is the major event underlying neuronal damage in Alzheimer's disease (AD). Specific lipids and their homeostasis play important roles in this and other neurodegenerative disorders. The complex interplay between the lipids and the generation, clearance or deposition of Aβ has been intensively investigated and is reviewed in this chapter. Membrane lipids can have an important influence on the biogenesis of Aβ from its precursor protein. In particular, increased cholesterol in the plasma membrane augments Aβ generation and shows a strong positive correlation with AD progression. Furthermore, apolipoprotein E, which transports cholesterol in the cerebrospinal fluid and is known to interact with Aβ or compete with it for the lipoprotein receptor binding, significantly influences Aβ clearance in an isoform-specific manner and is the major genetic risk factor for AD. Aβ is an amphiphilic peptide that interacts with various lipids, proteins and their assemblies, which can lead to variation in Aβ aggregation in vitro and in vivo. Upon interaction with the lipid raft components, such as cholesterol, gangliosides and phospholipids, Aβ can aggregate on the cell membrane and thereby disrupt it, perhaps by forming channel-like pores. This leads to perturbed cellular calcium homeostasis, suggesting that Aβ-lipid interactions at the cell membrane probably trigger the neurotoxic cascade in AD. Here, we overview the roles of specific lipids, lipid assemblies and apolipoprotein E in Aβ processing, clearance and aggregation, and discuss the contribution of these factors to the neurotoxicity in AD.

  13. Potential Properties of Plant Sprout Extracts on Amyloid β

    Science.gov (United States)

    Okada, Mizue; Okada, Yoshinori

    2016-01-01

    The aim of this study is to examine the amyloid β (Aβ) inhibition mechanism of plant sprouts' aqueous extracts (PSAE). In this study, we screened the effects of five plant sprouts' extracts on Aβ (1–42) structure modification using gel electrophoresis. In PSAE, no band of Aβ monomer was recognized in Japanese butterbur. Similarly, the Aβ monomer band became light in buckwheat, red cabbage, broccoli, and brussels. The neuroprotective effects of PSAE were evaluated by measuring levels of Aβ in mixtures (Aβ  and PSAE) with Aβ ELISA assay. The treatment with PSAE decreased Aβ levels. The results indicated that the levels of red cabbage, Japanese butterbur, and broccoli were 9.6, 28.0, and 44.0%, respectively. The lowest value was observed with buckwheat. Furthermore, we carried out a Congo Red (CR) and Aβ binding experiment of PSAE to confirm the modification mechanism of PSAE. The correlation coefficient for the absorption spectrum peak of CR was found to be bigger than 0.8 (r = 0.882) which proved that the Aβ levels could be attributed to the peak of CR. In conclusion, we demonstrated that treatment with PSAE effectively decreases Aβ concentration. Thus, the mechanism that decreased the Aβ levels may be modification by PSAE. PMID:27429807

  14. Potential Properties of Plant Sprout Extracts on Amyloid β

    Directory of Open Access Journals (Sweden)

    Mizue Okada

    2016-01-01

    Full Text Available The aim of this study is to examine the amyloid β (Aβ inhibition mechanism of plant sprouts’ aqueous extracts (PSAE. In this study, we screened the effects of five plant sprouts’ extracts on Aβ (1–42 structure modification using gel electrophoresis. In PSAE, no band of Aβ monomer was recognized in Japanese butterbur. Similarly, the Aβ monomer band became light in buckwheat, red cabbage, broccoli, and brussels. The neuroprotective effects of PSAE were evaluated by measuring levels of Aβ in mixtures (Aβ  and PSAE with Aβ ELISA assay. The treatment with PSAE decreased Aβ levels. The results indicated that the levels of red cabbage, Japanese butterbur, and broccoli were 9.6, 28.0, and 44.0%, respectively. The lowest value was observed with buckwheat. Furthermore, we carried out a Congo Red (CR and Aβ binding experiment of PSAE to confirm the modification mechanism of PSAE. The correlation coefficient for the absorption spectrum peak of CR was found to be bigger than 0.8 (r=0.882 which proved that the Aβ levels could be attributed to the peak of CR. In conclusion, we demonstrated that treatment with PSAE effectively decreases Aβ concentration. Thus, the mechanism that decreased the Aβ levels may be modification by PSAE.

  15. Traditional Chinese Nootropic Medicine Radix Polygalae and Its Active Constituent Onjisaponin B Reduce β-Amyloid Production and Improve Cognitive Impairments.

    Science.gov (United States)

    Li, Xiaohang; Cui, Jin; Yu, Yang; Li, Wei; Hou, Yujun; Wang, Xin; Qin, Dapeng; Zhao, Cun; Yao, Xinsheng; Zhao, Jian; Pei, Gang

    2016-01-01

    Decline of cognitive function is the hallmark of Alzheimer's disease (AD), regardless of the pathological mechanism. Traditional Chinese medicine has been used to combat cognitive impairments and has been shown to improve learning and memory. Radix Polygalae (RAPO) is a typical and widely used herbal medicine. In this study, we aimed to follow the β-amyloid (Aβ) reduction activity to identify active constituent(s) of RAPO. We found that Onjisaponin B of RAPO functioned as RAPO to suppress Aβ production without direct inhibition of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and γ-secretase activities. Our mechanistic study showed that Onjisaponin B promoted the degradation of amyloid precursor protein (APP). Further, oral administration of Onjisaponin B ameliorated Aβ pathology and behavioral defects in APP/PS1 mice. Taken together, our results indicate that Onjisaponin B is effective against AD, providing a new therapeutic agent for further drug discovery.

  16. Traditional Chinese Nootropic Medicine Radix Polygalae and Its Active Constituent Onjisaponin B Reduce β-Amyloid Production and Improve Cognitive Impairments.

    Directory of Open Access Journals (Sweden)

    Xiaohang Li

    Full Text Available Decline of cognitive function is the hallmark of Alzheimer's disease (AD, regardless of the pathological mechanism. Traditional Chinese medicine has been used to combat cognitive impairments and has been shown to improve learning and memory. Radix Polygalae (RAPO is a typical and widely used herbal medicine. In this study, we aimed to follow the β-amyloid (Aβ reduction activity to identify active constituent(s of RAPO. We found that Onjisaponin B of RAPO functioned as RAPO to suppress Aβ production without direct inhibition of β-site amyloid precursor protein cleaving enzyme 1 (BACE1 and γ-secretase activities. Our mechanistic study showed that Onjisaponin B promoted the degradation of amyloid precursor protein (APP. Further, oral administration of Onjisaponin B ameliorated Aβ pathology and behavioral defects in APP/PS1 mice. Taken together, our results indicate that Onjisaponin B is effective against AD, providing a new therapeutic agent for further drug discovery.

  17. Interleukin-3 prevents neuronal death induced by amyloid peptide

    Directory of Open Access Journals (Sweden)

    Otth Carola

    2007-10-01

    Full Text Available Abstract Background Interleukin-3 (IL-3 is an important glycoprotein involved in regulating biological responses such as cell proliferation, survival and differentiation. Its effects are mediated via interaction with cell surface receptors. Several studies have demonstrated the expression of IL-3 in neurons and astrocytes of the hippocampus and cortices in normal mouse brain, suggesting a physiological role of IL-3 in the central nervous system. Although there is evidence indicating that IL-3 is expressed in some neuronal populations, its physiological role in these cells is poorly known. Results In this study, we demonstrated the expression of IL-3 receptor in cortical neurons, and analyzed its influence on amyloid β (Aβ-treated cells. In these cells, IL-3 can activate at least three classical signalling pathways, Jak/STAT, Ras/MAP kinase and the PI 3-kinase. Viability assays indicated that IL-3 might play a neuroprotective role in cells treated with Aβ fibrils. It is of interest to note that our results suggest that cell survival induced by IL-3 required PI 3-kinase and Jak/STAT pathway activation, but not MAP kinase. In addition, IL-3 induced an increase of the anti-apoptotic protein Bcl-2. Conclusion Altogether these data strongly suggest that IL-3 neuroprotects neuronal cells against neurodegenerative agents like Aβ.

  18. Prevalence of cerebral amyloid pathology in persons without dementia

    DEFF Research Database (Denmark)

    Jansen, Willemijn J; Ossenkoppele, Rik; Knol, Dirk L;

    2015-01-01

    IMPORTANCE: Cerebral amyloid-β aggregation is an early pathological event in Alzheimer disease (AD), starting decades before dementia onset. Estimates of the prevalence of amyloid pathology in persons without dementia are needed to understand the development of AD and to design prevention studies....... OBJECTIVE: To use individual participant data meta-analysis to estimate the prevalence of amyloid pathology as measured with biomarkers in participants with normal cognition, subjective cognitive impairment (SCI), or mild cognitive impairment (MCI). DATA SOURCES: Relevant biomarker studies identified...... for amyloid positivity. DATA EXTRACTION AND SYNTHESIS: Individual records were provided for 2914 participants with normal cognition, 697 with SCI, and 3972 with MCI aged 18 to 100 years from 55 studies. MAIN OUTCOMES AND MEASURES: Prevalence of amyloid pathology on positron emission tomography...

  19. Amyloid-like protein inclusions in tobacco transgenic plants.

    Directory of Open Access Journals (Sweden)

    Anna Villar-Piqué

    Full Text Available The formation of insoluble protein deposits in human tissues is linked to the onset of more than 40 different disorders, ranging from dementia to diabetes. In these diseases, the proteins usually self-assemble into ordered β-sheet enriched aggregates known as amyloid fibrils. Here we study the structure of the inclusions formed by maize transglutaminase (TGZ in the chloroplasts of tobacco transplastomic plants and demonstrate that they have an amyloid-like nature. Together with the evidence of amyloid structures in bacteria and fungi our data argue that amyloid formation is likely a ubiquitous process occurring across the different kingdoms of life. The discovery of amyloid conformations inside inclusions of genetically modified plants might have implications regarding their use for human applications.

  20. Preparation of Amyloid Fibrils Seeded from Brain and Meninges.

    Science.gov (United States)

    Scherpelz, Kathryn P; Lu, Jun-Xia; Tycko, Robert; Meredith, Stephen C

    2016-01-01

    Seeding of amyloid fibrils into fresh solutions of the same peptide or protein in disaggregated form leads to the formation of replicate fibrils, with close structural similarity or identity to the original fibrillar seeds. Here we describe procedures for isolating fibrils composed mainly of β-amyloid (Aβ) from human brain and from leptomeninges, a source of cerebral blood vessels, for investigating Alzheimer's disease and cerebral amyloid angiopathy. We also describe methods for seeding isotopically labeled, disaggregated Aβ peptide solutions for study using solid-state NMR and other techniques. These methods should be applicable to other types of amyloid fibrils, to Aβ fibrils from mice or other species, tissues other than brain, and to some non-fibrillar aggregates. These procedures allow for the examination of authentic amyloid fibrils and other protein aggregates from biological tissues without the need for labeling the tissue.

  1. P-glycoprotein efflux and other factors limit brain amyloid beta reduction by beta-site amyloid precursor protein-cleaving enzyme 1 inhibitors in mice.

    Science.gov (United States)

    Meredith, Jere E; Thompson, Lorin A; Toyn, Jeremy H; Marcin, Lawrence; Barten, Donna M; Marcinkeviciene, Jovita; Kopcho, Lisa; Kim, Young; Lin, Alan; Guss, Valerie; Burton, Catherine; Iben, Lawrence; Polson, Craig; Cantone, Joe; Ford, Michael; Drexler, Dieter; Fiedler, Tracey; Lentz, Kimberley A; Grace, James E; Kolb, Janet; Corsa, Jason; Pierdomenico, Maria; Jones, Kelli; Olson, Richard E; Macor, John E; Albright, Charles F

    2008-08-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease. Amyloid beta (Abeta) peptides are hypothesized to cause the initiation and progression of AD based on pathologic data from AD patients, genetic analysis of mutations that cause early onset forms of AD, and preclinical studies. Based on this hypothesis, beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) inhibitors are an attractive therapeutic approach for AD because cleavage of the APP by BACE1 is required to form Abeta. In this study, three potent BACE1 inhibitors are characterized. All three inhibitors decrease Abeta formation in cultured cells with IC(50) values less than 10 nM. Analysis of APP C-terminal fragments by immunoblotting and Abeta peptides by mass spectrometry showed that these inhibitors decreased Abeta by inhibiting BACE1. An assay for Abeta1-40 in mice was developed and used to show that these BACE1 inhibitors decreased plasma Abeta1-40, but not brain Abeta1-40, in wild-type mice. Because these BACE1 inhibitors were substrates for P-glycoprotein (P-gp), a member of the ATP-binding cassette superfamily of efflux transporters, these inhibitors were administered to P-gp knockout (KO) mice. These studies showed that all three BACE1 inhibitors decreased brain Abeta1-40 in P-gp KO mice, demonstrating that P-gp is a major limitation for development of BACE1 inhibitors to test the amyloid hypothesis. A comparison of plasma Abeta1-40 and brain Abeta1-40 dose responses for these three compounds revealed differences in relative ED(50) values, indicating that factors other than P-gp can also contribute to poor brain activity by BACE1 inhibitors.

  2. Predicting sites of new hemorrhage with amyloid imaging in cerebral amyloid angiopathy

    Science.gov (United States)

    Dierksen, Gregory; Betensky, Rebecca; Gidicsin, Christopher; Halpin, Amy; Becker, Alex; Carmasin, Jeremy; Ayres, Alison; Schwab, Kristin; Viswanathan, Anand; Salat, David; Rosand, Jonathan; Johnson, Keith A.; Greenberg, Steven M.

    2012-01-01

    Objective: We aimed to determine whether amyloid imaging can help predict the location and number of future hemorrhages in cerebral amyloid angiopathy (CAA). Methods: We performed a longitudinal cohort study of 11 patients with CAA without dementia who underwent serial brain MRIs after baseline amyloid imaging with Pittsburgh compound B (PiB). Mean distribution volume ratio (DVR) of PiB was determined at the sites of new micro/macrobleeds identified on follow-up MRI and compared with PiB retention at “simulated” hemorrhages, randomly placed in the same subjects using a probability distribution map of CAA-hemorrhage location. Mean PiB retention at the sites of observed new bleeds was also compared to that in shells concentrically surrounding the bleeds. Finally the association between number of incident bleeds and 3 regional amyloid measures were obtained. Results: Nine of 11 subjects had at least one new microbleed on follow-up MRI (median 4, interquartile range [IQR] 1–9) and 2 had 5 new intracerebral hemorrhages. Mean DVR was greater at the sites of incident bleeds (1.34, 95% confidence interval [CI] 1.23–1.46) than simulated lesions (1.14, 95% CI 1.07–1.22, p < 0.0001) in multivariable models. PiB retention decreased with increasing distance from sites of observed bleeds (p < 0.0001). Mean DVR in a superior frontal/parasagittal region of interest correlated independently with number of future hemorrhages after adjustment for relevant covariates (p = 0.003). Conclusions: Our results provide direct evidence that new CAA-related hemorrhages occur preferentially at sites of increased amyloid deposition and suggest that PiB-PET imaging may be a useful tool in prediction of incident hemorrhages in patients with CAA. PMID:22786597

  3. F-18 Polyethyleneglycol stilbenes as PET imaging agents targeting A{beta} aggregates in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wei [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Oya, Shunichi [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Kung Meiping [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Hou, Catherine [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Maier, Donna L. [Department of Neuroscience, AstraZeneca, Wilmington, DE 19850 (United States); Kung, Hank F. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States) and Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States)]. E-mail: kunghf@sunmac.spect.upenn.edu

    2005-11-01

    This paper describes a novel series of {sup 18}F-labeled polyethyleneglycol (PEG)-stilbene derivatives as potential {beta}-amyloid (A{beta}) plaque-specific imaging agents for positron emission tomography (PET). In these series of compounds, {sup 18}F is linked to the stilbene through a PEG chain, of which the number of ethoxy groups ranges from 2 to 5. The purpose of adding PEG groups is to lower the lipophilicity and improve bioavailability. The syntheses of the 'cold' compounds and the {sup 18}F-labeled PEG stilbene derivatives are successfully achieved. All of the fluorinated stilbenes displayed high binding affinities in an assay using postmortem AD brain homogenates (K {sub i}=2.9-6.7 nM). Labeling was successfully performed by a substitution of the mesylate group of 10a-d by [{sup 18}F]fluoride giving the target compounds [{sup 18}F]12a-d (EOS, specific activity, 900-1500 Ci/mmol; radiochemical purity >99%). In vivo biodistribution of these novel {sup 18}F ligands in normal mice exhibited excellent brain penetrations and rapid washouts after an intravenous injection (6.6-8.1 and 1.2-2.6% dose/g at 2 and 60 min, respectively). Autoradiography of postmortem AD brain sections of [{sup 18}F]12a-d confirmed the specific binding related to the presence of A{beta} plaques. In addition, in vivo plaque labeling can be clearly demonstrated with these {sup 18}F-labeled agents in transgenic mice (Tg2576), a useful animal model for Alzheimer's disease. In conclusion, the preliminary results strongly suggest these fluorinated PEG stilbene derivatives are suitable candidates as A{beta} plaque imaging agents for studying patients with Alzheimer's disease.

  4. Stability and cytotoxicity of crystallin amyloid nanofibrils

    Science.gov (United States)

    Kaur, Manmeet; Healy, Jackie; Vasudevamurthy, Madhusudan; Lassé, Moritz; Puskar, Ljiljana; Tobin, Mark J.; Valery, Celine; Gerrard, Juliet A.; Sasso, Luigi

    2014-10-01

    Previous work has identified crystallin proteins extracted from fish eye lenses as a cheap and readily available source for the self-assembly of amyloid nanofibrils. However, before exploring potential applications, the biophysical aspects and safety of this bionanomaterial need to be assessed so as to ensure that it can be effectively and safely used. In this study, crude crystallin amyloid fibrils are shown to be stable across a wide pH range, in a number of industrially relevant solvents, at both low and high temperatures, and in the presence of proteases. Crystallin nanofibrils were compared to well characterised insulin and whey protein fibrils using Thioflavin T assays and TEM imaging. Cell cytotoxicity assays suggest no adverse impact of both mature and fragmented crystallin fibrils on cell viability of Hec-1a endometrial cells. An IR microspectroscopy study supports long-term structural integrity of crystallin nanofibrils.Previous work has identified crystallin proteins extracted from fish eye lenses as a cheap and readily available source for the self-assembly of amyloid nanofibrils. However, before exploring potential applications, the biophysical aspects and safety of this bionanomaterial need to be assessed so as to ensure that it can be effectively and safely used. In this study, crude crystallin amyloid fibrils are shown to be stable across a wide pH range, in a number of industrially relevant solvents, at both low and high temperatures, and in the presence of proteases. Crystallin nanofibrils were compared to well characterised insulin and whey protein fibrils using Thioflavin T assays and TEM imaging. Cell cytotoxicity assays suggest no adverse impact of both mature and fragmented crystallin fibrils on cell viability of Hec-1a endometrial cells. An IR microspectroscopy study supports long-term structural integrity of crystallin nanofibrils. Electronic supplementary information (ESI) available: ThT fluorescence graphs of buffers and solvents used for

  5. The Components of Flemingia macrophylla Attenuate Amyloid β-Protein Accumulation by Regulating Amyloid β-Protein Metabolic Pathway

    Directory of Open Access Journals (Sweden)

    Yun-Lian Lin

    2012-01-01

    Full Text Available Flemingia macrophylla (Leguminosae is a popular traditional remedy used in Taiwan as anti-inflammatory, promoting blood circulation and antidiabetes agent. Recent study also suggested its neuroprotective activity against Alzheimer's disease. Therefore, the effects of F. macrophylla on Aβ production and degradation were studied. The effect of F. macrophylla on Aβ metabolism was detected using the cultured mouse neuroblastoma cells N2a transfected with human Swedish mutant APP (swAPP-N2a cells. The effects on Aβ degradation were evaluated on a cell-free system. An ELISA assay was applied to detect the level of Aβ1-40 and Aβ1-42. Western blots assay was employed to measure the levels of soluble amyloid precursor protein and insulin degrading enzyme (IDE. Three fractions of F. macrophylla modified Aβ accumulation by both inhibiting β-secretase and activating IDE. Three flavonoids modified Aβ accumulation by activating IDE. The activated IDE pool by the flavonoids was distinctly regulated by bacitracin (an IDE inhibitor. Furthermore, flavonoid 94-18-13 also modulates Aβ accumulation by enhancing IDE expression. In conclusion, the components of F. macrophylla possess the potential for developing new therapeutic drugs for Alzheimer's disease.

  6. TDP-43 inclusion bodies formed in bacteria are structurally amorphous, non-amyloid and inherently toxic to neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Claudia Capitini

    Full Text Available Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Such inclusions have variably been described as amorphous aggregates or more structured deposits having an amyloid structure. Following the observations that bacterial inclusion bodies generally consist of amyloid aggregates, we have overexpressed full-length TDP-43 and C-terminal TDP-43 in E. coli, purified the resulting full-length and C-terminal TDP-43 containing inclusion bodies (FL and Ct TDP-43 IBs and subjected them to biophysical analyses to assess their structure/morphology. We show that both FL and Ct TDP-43 aggregates contained in the bacterial IBs do not bind amyloid dyes such as thioflavin T and Congo red, possess a disordered secondary structure, as inferred using circular dichroism and infrared spectroscopies, and are susceptible to proteinase K digestion, thus possessing none of the hallmarks for amyloid. Moreover, atomic force microscopy revealed an irregular structure for both types of TDP-43 IBs and confirmed the absence of amyloid-like species after proteinase K treatment. Cell biology experiments showed that FL TDP-43 IBs were able to impair the viability of cultured neuroblastoma cells when added to their extracellular medium and, more markedly, when transfected into their cytosol, where they are at least in part ubiquitinated and phosphorylated. These data reveal an inherently high propensity of TDP-43 to form amorphous aggregates, which possess, however, an inherently high ability to cause cell dysfunction. This indicates that a gain of toxic function caused by TDP-43 deposits is effective in TDP-43 pathologies, in addition to possible loss of function mechanisms originating from the cellular mistrafficking of the protein.

  7. TDP-43 inclusion bodies formed in bacteria are structurally amorphous, non-amyloid and inherently toxic to neuroblastoma cells.

    Science.gov (United States)

    Capitini, Claudia; Conti, Simona; Perni, Michele; Guidi, Francesca; Cascella, Roberta; De Poli, Angela; Penco, Amanda; Relini, Annalisa; Cecchi, Cristina; Chiti, Fabrizio

    2014-01-01

    Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Such inclusions have variably been described as amorphous aggregates or more structured deposits having an amyloid structure. Following the observations that bacterial inclusion bodies generally consist of amyloid aggregates, we have overexpressed full-length TDP-43 and C-terminal TDP-43 in E. coli, purified the resulting full-length and C-terminal TDP-43 containing inclusion bodies (FL and Ct TDP-43 IBs) and subjected them to biophysical analyses to assess their structure/morphology. We show that both FL and Ct TDP-43 aggregates contained in the bacterial IBs do not bind amyloid dyes such as thioflavin T and Congo red, possess a disordered secondary structure, as inferred using circular dichroism and infrared spectroscopies, and are susceptible to proteinase K digestion, thus possessing none of the hallmarks for amyloid. Moreover, atomic force microscopy revealed an irregular structure for both types of TDP-43 IBs and confirmed the absence of amyloid-like species after proteinase K treatment. Cell biology experiments showed that FL TDP-43 IBs were able to impair the viability of cultured neuroblastoma cells when added to their extracellular medium and, more markedly, when transfected into their cytosol, where they are at least in part ubiquitinated and phosphorylated. These data reveal an inherently high propensity of TDP-43 to form amorphous aggregates, which possess, however, an inherently high ability to cause cell dysfunction. This indicates that a gain of toxic function caused by TDP-43 deposits is effective in TDP-43 pathologies, in addition to possible loss of function mechanisms originating from the cellular mistrafficking of the protein.

  8. Effect of Copper and Zinc on the Single Molecule Self-Affinity of Alzheimer's Amyloid-β Peptides.

    Directory of Open Access Journals (Sweden)

    Francis T Hane

    Full Text Available The presence of trace concentrations of metallic ions, such as copper and zinc, has previously been shown to drastically increase the aggregation rate and neurotoxicity of amyloid-β (Aβ, the peptide implicated in Alzheimer's disease (AD. The mechanism of why copper and zinc accelerate Aβ aggregation is poorly understood. In this work, we use single molecule force spectroscopy (SMFS to probe the kinetic and thermodynamic parameters (dissociation constant, Kd, kinetic dissociation rate, koff, and free energy, ΔG of the dissociation of an Aβ dimer, the amyloid species which initiates the amyloid cascade. Our results show that nanomolar concentrations of copper do not change the single molecule affinity of Aβ to another Aβ peptide in a statistically significant way, while nanomolar concentrations of zinc decrease the affinity of Aβ-Aβ by an order of magnitude. This suggests that the binding of zinc ion to Aβ may interfere with the binding of Aβ-Aβ, leading to a lower self-affinity.

  9. Effect of Copper and Zinc on the Single Molecule Self-Affinity of Alzheimer's Amyloid-β Peptides.

    Science.gov (United States)

    Hane, Francis T; Hayes, Reid; Lee, Brenda Y; Leonenko, Zoya

    2016-01-01

    The presence of trace concentrations of metallic ions, such as copper and zinc, has previously been shown to drastically increase the aggregation rate and neurotoxicity of amyloid-β (Aβ), the peptide implicated in Alzheimer's disease (AD). The mechanism of why copper and zinc accelerate Aβ aggregation is poorly understood. In this work, we use single molecule force spectroscopy (SMFS) to probe the kinetic and thermodynamic parameters (dissociation constant, Kd, kinetic dissociation rate, koff, and free energy, ΔG) of the dissociation of an Aβ dimer, the amyloid species which initiates the amyloid cascade. Our results show that nanomolar concentrations of copper do not change the single molecule affinity of Aβ to another Aβ peptide in a statistically significant way, while nanomolar concentrations of zinc decrease the affinity of Aβ-Aβ by an order of magnitude. This suggests that the binding of zinc ion to Aβ may interfere with the binding of Aβ-Aβ, leading to a lower self-affinity.

  10. Causative factors for formation of toxic islet amyloid polypeptide oligomer in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Jeong HR

    2015-11-01

    Full Text Available Hye Rin Jeong, Seong Soo A AnDepartment of Bionano Technology, Gachon Medical Research Institute, Gachon University, Gyeonggi-do, Republic of KoreaAbstract: Human islet amyloid polypeptide (h-IAPP is a peptide hormone that is synthesized and cosecreted with insulin from insulin-secreting pancreatic β-cells. Recently, h-IAPP was proposed to be the main component responsible for the cytotoxic pancreatic amyloid deposits in patients with type 2 diabetes mellitus (T2DM. Since the causative factors of IAPP (or amylin oligomer aggregation are not fully understood, this review will discuss the various forms of h-IAPP aggregation. Not all forms of IAPP aggregates trigger the destruction of β-cell function and loss of β-cell mass; however, toxic oligomers do trigger these events. Once these toxic oligomers form under abnormal metabolic conditions in T2DM, they can lead to cell disruption by inducing cell membrane destabilization. In this review, the various factors that have been shown to induce toxic IAPP oligomer formation will be presented, as well as the potential mechanism of oligomer and fibril formation from pro-IAPPs. Initially, pro-IAPPs undergo enzymatic reactions to produce the IAPP monomers, which can then develop into oligomers and fibrils. By this mechanism, toxic oligomers could be generated by diverse pathway components. Thus, the interconnections between factors that influence amyloid aggregation (eg, absence of PC2 enzyme, deamidation, reduction of disulfide bonds, environmental factors in the cell, genetic mutations, copper metal ions, and heparin will be presented. Hence, this review will aid in understanding the fundamental causative factors contributing to IAPP oligomer formation and support studies for investigating novel T2DM therapeutic approaches, such as the development of inhibitory agents for preventing oligomerization at the early stages of diabetic pathology.Keywords: amyloid aggregation, causative factor, IAPP, islet

  11. Reversal effects of crocin on amyloid β-induced memory deficit: Modification of autophagy or apoptosis markers.

    Science.gov (United States)

    Asadi, Farideh; Jamshidi, Amir Hossein; Khodagholi, Fariba; Yans, Asal; Azimi, Leila; Faizi, Mehrdad; Vali, Leila; Abdollahi, Mohammad; Ghahremani, Mohammad Hossein; Sharifzadeh, Mohammad

    2015-12-01

    Crocin, as a carotenoid, is one of the main and active constituents of saffron stigmas (Crocus sativus L.) that is widely used in folk medicine. Several studies have pointed out the potent antioxidant and neuroprotective properties of crocin which may have therapeutic values for management of neurodegenerative disorders such as Alzheimer's disease. Alzheimer's disease is the most common form of dementia among the elderly and is characterized by massive neuronal loss and progressive cognitive impairment. Beta amyloid hypothesis is the main theoretical research framework for Alzheimer's disease which states that extracellular aggregation of beta amyloid results in synaptic loss and eventually cell apoptosis. Recent findings suggest that autophagy and apoptosis are extensively involved in Alzheimer's disease. In order to investigate therapeutic values of crocin, we examined the effect of crocin on memory, cell apoptosis, and autophagy using in vivo models of Alzheimer's disease. We also compared the effect of crocin administration on spatial memory with nicotine as positive control. Morris water maze results show that intra-peritoneal and intra-hippocampal administration of crocin significantly improve spatial memory indicators such as escape latency, traveled distance and time spent in target quadrant when compared to beta amyloid injection. Furthermore, we measured certain biomarkers of cell autophagy and apoptosis using Western blot analysis. Our results reveal that crocin administration does not cause any significant alteration in Beclin-1 and ratio of LC3-II/LC3-I compared to the group received beta amyloid by hippocampal injection. However, in contrast to autophagy, crocin administration significantly decreases Bax/Bcl-2 ratio and cleaved Caspase-3 level. This demonstrates that crocin inhibits beta amyloid induced apoptosis, which is possibly associated with its antioxidant properties. Our results further confirm the neuroprotective properties of crocin as a

  12. Enhanced Detection Specificity and Sensitivity of Alzheimer's Disease Using Amyloid-β-Targeted Quantum Dots.

    Science.gov (United States)

    Quan, Li; Wu, Jiangxiao; Lane, Lucas A; Wang, Jianquan; Lu, Qian; Gu, Zheng; Wang, Yiqing

    2016-03-16

    Diagnostics of Alzheimer's disease (AD) commonly employ the use of fluorescent thioflavin derivatives having affinity for the amyloid-β (Aβ) proteins associated with AD progression. However, thioflavin probes have limitations in their diagnostic capabilities arising from a number of undesireable qualities, including poor photostability, weak emission intensity, and high emission overlap with the backgound tissue autofluorescence. To overcome such limitations, we have developed nanoformulated probes consisting of a red-emitting fluorescent quantum dot (QD) core encapsulated in a PEGylated shell with benzotriazole (BTA) targeting molecules on the surface (QD-PEG-BTA). The combination of strong red fluorescence, multivalent binding, and decreased backgound signal and nonspecific binding provided the ability of the QD-PEG-BTA probes to achieve detection sensitivites 4 orders of magnitude greater than those of conventional thioflavin derivatives. This study opens the door for the use of QDs in AD detection applications.

  13. Subjective cognitive complaints and amyloid burden in cognitively normal older individuals

    Science.gov (United States)

    Amariglio, Rebecca E.; Becker, J. Alex; Carmasin, Jeremy; Wadsworth, Lauren P.; Lorius, Natacha; Sullivan, Caroline; Maye, Jacqueline E.; Gidicsin, Christopher; Pepin, Lesley C.; Sperling, Reisa A.; Johnson, Keith A.; Rentz, Dorene M.

    2012-01-01

    Accumulating evidence suggests that subjective cognitive complaints (SCC) may indicate subtle cognitive decline characteristic of individuals with preclinical Alzheimer’s disease (AD). In this study, we sought to build upon previous studies by associating SCC and amyloid-β deposition using Positron Emission Tomography with Pittsburg Compound B (PiB-PET) in cognitively normal older individuals. One-hundred thirty one subjects (mean age 73.5 ± 6) were administered three subjective cognitive questionnaires and a brief neuropsychological battery. A relationship between a subjective memory complaints composite score and cortical PiB binding was found to be significant, even after controlling for depressive symptoms. By contrast, there were no significant relationships between objective cognitive measures of memory and executive functions and cortical PiB binding. Our study suggests that SCC may be an early indicator of AD pathology detectable prior to significant objective impairment. PMID:22940426

  14. Cutaneous Manifestations of Familial Transthyretin Amyloid Polyneuropathy.

    Science.gov (United States)

    Lanoue, Julien; Wei, Nancy; Gorevic, Peter; Phelps, Robert G

    2016-10-01

    Familial amyloid polyneuropathy (FAP) is a rare inherited autosomal dominant form of systemic amyloidosis, which classically presents with severe motor, sensory, and autonomic dysfunction. Cutaneous involvement does not become clinically apparent until late stage symptomatic disease and is rarely reported in modern literature. Here, the authors review the clinical and histologic cutaneous findings of FAP previously described in the literature and report on 3 patients with unique genetic mutations (Thr60Ala and Gly6Ser; Trp41Leu; Glu89Gln) for which cutaneous involvement has not previously been described. Histologically, our patients showed variable amyloid deposition in the subcutaneous adipose tissue, papillary dermis, and dermal blood vessel walls. A review of the literature suggests cutaneous transthyretin deposition is an underrecognized feature of FAP that occurs early on in disease, even before neural involvement and related symptoms as seen in one of our patients. As such, a cutaneous punch biopsy can serve as quick, easy, and relatively noninvasive diagnostic tool in suspected cases.

  15. Copernicus revisited: amyloid beta in Alzheimer's disease.

    Science.gov (United States)

    Joseph, J; Shukitt-Hale, B; Denisova, N A; Martin, A; Perry, G; Smith, M A

    2001-01-01

    The beta-amyloid hypothesis of Alzheimer's Disease (AD) has dominated the thinking and research in this area for over a decade and a half. While there has been a great deal of effort in attempting to prove its centrality in this devastating disease, and while an enormous amount has been learned about its properties (e.g., putative toxicity, processing and signaling), Abeta has not proven to be both necessary and sufficient for the development, neurotoxicity, and cognitive deficits associated with this disease. Instead, the few treatments that are available have emerged from aging research and are primarily directed toward modification of acetylcholine levels. Clearly, it is time to rethink this position and to propose instead that future approaches should focus upon altering the age-related sensitivity of the neuronal environment to insults involving such factors as inflammation and oxidative stress. In other words "solve the problems of aging and by extension those of AD will also be reduced." This review is being submitted as a rather Lutherian attempt to "nail an alternative thesis" to the gate of the Church of the Holy Amyloid to open its doors to the idea that aging is the most pervasive element in this disease and Abeta is merely one of the planets.

  16. Baicalein reduces β-amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an Alzheimer’s disease transgenic mouse model

    Science.gov (United States)

    Zhang, She-Qing; Obregon, Demian; Ehrhart, Jared; Deng, Juan; Tian, Jun; Hou, Huayan; Giunta, Brian; Sawmiller, Darrell; Tan, Jun

    2013-01-01

    Baicalein, a flavonoid isolated from the roots of Scutellaria baicalensis, is known to modulate γ-aminobutyric acid (GABA) type A receptors. Given prior reports demonstrating benefits of GABAA modulation for Alzheimer’s disease (AD) treatment, we wished to determine whether this agent might be beneficial for AD. CHO cells engineered to overexpress wild-type amyloid precursor protein (APP), primary culture neuronal cells from AD mice (Tg2576) and AD mice were treated with baicalein. In the cell cultures, baicalein significantly reduced the production of β-amyloid (Aβ) by increasing APP α-processing. These effects were blocked by the GABAA antagonist bicuculline. Likewise, AD mice treated daily with i.p. baicalein for 8 weeks showed enhanced APP α-secretase processing, reduced Aβ production, and reduced AD-like pathology together with improved cognitive performance. Our findings suggest that baicalein promotes nonamyloidogenic processing of APP, thereby reducing Aβ production and improving cognitive performance, by activating GABAA receptors. © 2013 Wiley Periodicals, Inc. PMID:23686791

  17. Yeast Two-Hybrid Screening for Proteins that Interact with the Extracellular Domain of Amyloid Precursor Protein.

    Science.gov (United States)

    Yu, You; Li, Yinan; Zhang, Yan

    2016-04-01

    Alzheimer's disease (AD) is a neurodegenerative disorder in which amyloid β plaques are a pathological characteristic. Little is known about the physiological functions of amyloid β precursor protein (APP). Based on its structure as a type I transmembrane protein, it has been proposed that APP might be a receptor, but so far, no ligand has been reported. In the present study, 9 proteins binding to the extracellular domain of APP were identified using a yeast two-hybrid system. After confirming the interactions in the mammalian system, mutated PLP1, members of the FLRT protein family, and KCTD16 were shown to interact with APP. These proteins have been reported to be involved in Pelizaeus-Merzbacher disease (PMD) and axon guidance. Therefore, our results shed light on the mechanisms of physiological function of APP in AD, PMD, and axon guidance.

  18. SERF Protein Is a Direct Modifier of Amyloid Fiber Assembly

    Directory of Open Access Journals (Sweden)

    S. Fabio Falsone

    2012-08-01

    Full Text Available The inherent cytotoxicity of aberrantly folded protein aggregates contributes substantially to the pathogenesis of amyloid diseases. It was recently shown that a class of evolutionary conserved proteins, called MOAG-4/SERF, profoundly alter amyloid toxicity via an autonomous but yet unexplained mode. We show that the biological function of human SERF1a originates from its atypical ability to specifically distinguish between amyloid and nonamyloid aggregation. This inherently unstructured protein directly affected the aggregation kinetics of a broad range of amyloidogenic proteins in vitro, while being inactive against nonamyloid aggregation. A representative biophysical analysis of the SERF1a:α-synuclein (aSyn complex revealed that the amyloid-promoting activity resulted from an early and transient interaction, which was sufficient to provoke a massive increase of soluble aSyn amyloid nucleation templates. Therefore, the autonomous amyloid-modifying activity of SERF1a observed in living organisms relies on a direct and dedicated manipulation of the early stages in the amyloid aggregation pathway.

  19. Amyloid plaque imaging in vivo: current achievement and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Agneta [Karolinska University Hospital Huddinge, Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Division of Alzheimer Neurobiology, Stockholm (Sweden); Karolinska University Hospital Huddinge, Department of Geriatric Medicine, Stockholm (Sweden)

    2008-03-15

    Alzheimer's disease (AD) is a very complex neurodegenerative disorder, the exact cause of which is still not known. The major histopathological features, amyloid plaques and neurofibrillary tangles, already described by Alois Alzheimer, have been the focus in research for decades. Despite a probable whole cascade of events in the brain leading to impairment of cognition, amyloid is still the target for diagnosis and treatment. The rapid development of molecular imaging techniques now allows imaging of amyloid plaques in vivo in Alzheimer patients by PET amyloid ligands such as Pittsburgh compound B (PIB). Studies so far have revealed high {sup 11}C-PIB retention in brain at prodromal stages of AD and a possibility to discriminate AD from other dementia disorders by {sup 11}C-PIB. Ongoing studies are focussing to understand the relationship between brain and CSF amyloid processes and cognitive processes. In vivo imaging of amyloid will be important for early diagnosis and evaluation of new anti-amyloid therapies in AD. (orig.)

  20. Using bacterial inclusion bodies to screen for amyloid aggregation inhibitors

    Directory of Open Access Journals (Sweden)

    Villar-Piqué Anna

    2012-05-01

    Full Text Available Abstract Background The amyloid-β peptide (Aβ42 is the main component of the inter-neuronal amyloid plaques characteristic of Alzheimer's disease (AD. The mechanism by which Aβ42 and other amyloid peptides assemble into insoluble neurotoxic deposits is still not completely understood and multiple factors have been reported to trigger their formation. In particular, the presence of endogenous metal ions has been linked to the pathogenesis of AD and other neurodegenerative disorders. Results Here we describe a rapid and high-throughput screening method to identify molecules able to modulate amyloid aggregation. The approach exploits the inclusion bodies (IBs formed by Aβ42 when expressed in bacteria. We have shown previously that these aggregates retain amyloid structural and functional properties. In the present work, we demonstrate that their in vitro refolding is selectively sensitive to the presence of aggregation-promoting metal ions, allowing the detection of inhibitors of metal-promoted amyloid aggregation with potential therapeutic interest. Conclusions Because IBs can be produced at high levels and easily purified, the method overcomes one of the main limitations in screens to detect amyloid modulators: the use of expensive and usually highly insoluble synthetic peptides.

  1. The amyloid stretch hypothesis: Recruiting proteins toward the dark side

    Science.gov (United States)

    Esteras-Chopo, Alexandra; Serrano, Luis; de la Paz, Manuela López

    2005-01-01

    A detailed understanding of the molecular events underlying the conversion and self-association of normally soluble proteins into amyloid fibrils is fundamental to the identification of therapeutic strategies to prevent or cure amyloid-related disorders. Recent investigations indicate that amyloid fibril formation is not just a general property of the polypeptide backbone depending on external factors, but that it is strongly modulated by amino acid side chains. Here, we propose and address the validation of the premise that the amyloidogenicity of a protein is indeed localized in short protein stretches (amyloid stretch hypothesis). We demonstrate that the conversion of a soluble nonamyloidogenic protein into an amyloidogenic prone molecule can be triggered by a nondestabilizing six-residue amyloidogenic insertion in a particular structural environment. Interestingly enough, although the inserted amyloid sequences clearly cause the process, the protease-resistant core of the fiber also includes short adjacent sequences from the otherwise soluble globular domain. Thus, short amyloid stretches accessible for intermolecular interactions trigger the self-assembly reaction and pull the rest of the protein into the fibrillar aggregate. The reliable identification of such amyloidogenic stretches in proteins opens the possibility of using them as targets for the inhibition of the amyloid fibril formation process. PMID:16263932

  2. Aloe arborescens Extract Protects IMR-32 Cells against Alzheimer Amyloid Beta Peptide via Inhibition of Radical Peroxide Production.

    Science.gov (United States)

    Clementi, Maria Elisabetta; Tringali, Giuseppe; Triggiani, Doriana; Giardina, Bruno

    2015-11-01

    Aloe arborescens is commonly used as a pharmaceutical ingredient for its effect in burn treatment and ability to increase skin wound healing properties. Besides, it is well known to have beneficial phytotherapeutic, anticancer, and radio-protective properties. In this study, we first provided evidence that A. arborescens extract protects IMR32, a neuroblastoma human cellular line, from toxicity induced by beta amyloid, the peptide responsible for Alzheimer's disease. In particular, pretreatment with A. arborescens maintains an elevated cell viability and exerts a protective effect on mitochondrial functionality, as evidenced by oxygen consumption experiments. The protective mechanism exerted by A. arborescens seems be related to lowering of oxidative potential of the cells, as demonstrated by the ROS measurement compared with the results obtained in the presence of amyloid beta (1-42) peptide alone. Based on these preliminary observations we suggest that use ofA. arborescens extract could be developed as agents for the management of AD.

  3. Crude caffeine reduces memory impairment and amyloid β(1-42) levels in an Alzheimer's mouse model.

    Science.gov (United States)

    Chu, Yi-Fang; Chang, Wen-Han; Black, Richard M; Liu, Jia-Ren; Sompol, Pradoldej; Chen, Yumin; Wei, Huilin; Zhao, Qiuyan; Cheng, Irene H

    2012-12-01

    Alzheimer's disease (AD), a chronic neurodegenerative disorder associated with the abnormal accumulations of amyloid β (Aβ) peptide and oxidative stress in the brain, is the most common form of dementia among the elderly. Crude caffeine (CC), a major by-product of the decaffeination of coffee, has potent hydrophilic antioxidant activity and may reduce inflammatory processes. Here, we showed that CC and pure caffeine intake had beneficial effects in a mouse model of AD. Administration of CC or pure caffeine for 2months partially prevented memory impairment in AD mice, with CC having greater effects than pure caffeine. Furthermore, consumption of CC, but not pure caffeine, reduced the Aβ(1-42) levels and the number of amyloid plaques in the hippocampus. Moreover, CC and caffeine protected primary neurons from Aβ-induced cell death and suppressed Aβ-induced caspase-3 activity. Our data indicate that CC may contain prophylactic agents against the cell death and the memory impairment in AD.

  4. N-Acetyl-L-Cystein downregulates beta-amyloid precursor protein gene transcription in human neuroblastoma cells.

    Science.gov (United States)

    Studer, R; Baysang, G; Brack, C

    2001-01-01

    The causes for the sporadic form of Alzheimer's disease (AD) are still poorly understood, except from the fact that age is an important risk factor. The main component of the characteristic amyloid plaques in brains of AD patients are Abeta peptides, derivatives of the amyloid precursor protein APP. Oxidative stress may contribute to the aetiology of AD by dysregulation of APP metabolism. Overexpression of the APP gene could result in an increased secretion of neurotoxic Abeta peptides, while preventing the overexpression might be protective. We here report that the antioxidant N-Acetyl-L-Cystein (NAC) downregulates APP gene transcription in human neuroblastoma cells. The effect is reversible when cells are returned to NAC free medium. These results open up new possibilities for the development of therapeutic agents that intervene at the transcriptional level.

  5. Mechanical deformation mechanisms and properties of amyloid fibrils.

    Science.gov (United States)

    Choi, Bumjoon; Yoon, Gwonchan; Lee, Sang Woo; Eom, Kilho

    2015-01-14

    Amyloid fibrils have recently received attention due to their remarkable mechanical properties, which are highly correlated with their biological functions. We have studied the mechanical deformation mechanisms and properties of amyloid fibrils as a function of their length scales by using atomistic simulations. It is shown that the length of amyloid fibrils plays a role in their deformation and fracture mechanisms in such a way that the competition between shear and bending deformations is highly dependent on the fibril length, and that as the fibril length increases, so does the bending strength of the fibril while its shear strength decreases. The dependence of rupture force for amyloid fibrils on their length is elucidated using the Bell model, which suggests that the rupture force of the fibril is determined from the hydrogen bond rupture mechanism that critically depends on the fibril length. We have measured the toughness of amyloid fibrils, which is shown to depend on the fibril length. In particular, the toughness of the fibril with its length of ∼3 nm is estimated to be ∼30 kcal mol(-1) nm(-3), comparable to that of a spider silk crystal with its length of ∼2 nm. Moreover, we have shown the important effect of the pulling rate on the mechanical deformation mechanisms and properties of amyloid fibril. It is found that as the pulling rate increases, so does the contribution of the shear effect to the elastic deformation of the amyloid fibril with its length of deformation mechanism of the amyloid fibril with its length of >15 nm is almost independent of the pulling rate. Our study sheds light on the role of the length scale of amyloid fibrils and the pulling rate in their mechanical behaviors and properties, which may provide insights into how the excellent mechanical properties of protein fibrils can be determined.

  6. Aluminium, beta-amyloid and non-enzymatic glycosylation.

    Science.gov (United States)

    Exley, C; Schley, L; Murray, S; Hackney, C M; Birchall, J D

    1995-05-08

    The non-enzymatic glycosylation of beta-amyloid is implicated in the aetiology of Alzheimer's disease. However, controversy surrounds the nature of any involvement and a potential mechanism has not been fully elucidated. We present evidence of an aluminium-induced aggregation of the A beta P(25-35) peptide and speculate that the mechanism of formation of our ordered beta-amyloid aggregates might involve non-enzymatic glycosylation and/or site-specific crosslinking of beta-amyloid fibrils by atomic aluminium.

  7. Amyloid-β and Astrocytes Interplay in Amyloid-β Related Disorders

    Directory of Open Access Journals (Sweden)

    Yazan S. Batarseh

    2016-03-01

    Full Text Available Amyloid-β (Aβ pathology is known to promote chronic inflammatory responses in the brain. It was thought previously that Aβ is only associated with Alzheimer’s disease and Down syndrome. However, studies have shown its involvement in many other neurological disorders. The role of astrocytes in handling the excess levels of Aβ has been highlighted in the literature. Astrocytes have a distinctive function in both neuronal support and protection, thus its involvement in Aβ pathological process may tip the balance toward chronic inflammation and neuronal death. In this review we describe the involvement of astrocytes in Aβ related disorders including Alzheimer’s disease, Down syndrome, cerebral amyloid angiopathy, and frontotemporal dementia.

  8. Computational Studies of Beta Amyloid (Aβ42 with p75NTR Receptor: A Novel Therapeutic Target in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Shine Devarajan

    2014-01-01

    Full Text Available Alzheimer’s disease is a neurodegenerative disorder characterized by the accumulation of beta amyloid plaques (Aβ which can induce neurite degeneration and progressive dementia. It has been identified that neuronal apoptosis is induced by binding of Aβ42 to pan neurotrophin receptor (p75NTR and gave the possibility that beta amyloid oligomer is a ligand for p75NTR. However, the atomic contact point responsible for molecular interactions and conformational changes of the protein upon binding was not studied in detail. In view of this, we conducted a molecular docking and simulation study to investigate the binding behaviour of Aβ42 monomer with p75NTR ectodomain. Furthermore, we proposed a p75NTR-ectodomain-Aβ42 complex model. Our data revealed that, Aβ42 specifically recognizes CRD1 and CRD2 domains of the receptor and formed a “cap” like structure at the N-terminal of receptor which is stabilized by a network of hydrogen bonds. These findings are supported by molecular dynamics simulation that Aβ42 showed distinct structural alterations at N- and C-terminal regions due to the influence of the receptor binding site. Overall, the present study gives more structural insight on the molecular interactions of beta amyloid protein involved in the activation of p75NTR receptor.

  9. Detection of amyloid in Alzheimer's disease with positron emission tomography using [{sup 11}C]AZD2184

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, Svante; Cselenyi, Zsolt; Julin, Per; Olsson, Hans; Svensson, Samuel [AstraZeneca R and D, Neuroscience Therapy Area, Soedertaelje (Sweden); Eriksdotter Joenhagen, Maria; Freund-Levi, Yvonne [Karolinska University Hospital Huddinge, NVS Department, Karolinska Institute, Huddinge (Sweden); Halldin, Christer; Andersson, Jan; Varnaes, Katarina [Karolinska Institutet, Karolinska University Hospital, PET Centre, Department of Clinical Neuroscience, Stockholm (Sweden); Farde, Lars [AstraZeneca R and D, Neuroscience Therapy Area, Soedertaelje (Sweden); Karolinska Institutet, Karolinska University Hospital, PET Centre, Department of Clinical Neuroscience, Stockholm (Sweden)

    2009-11-15

    Current positron emission tomography (PET) radioligands for detection of A{beta} amyloid in Alzheimer's disease (AD) are not ideal for quantification. To improve the signal to noise ratio we have developed the radioligand [{sup 11}C]AZD2184 and report here the first clinical evaluation. Eight AD patients and four younger control subjects underwent 93-min PET measurements with [{sup 11}C]AZD2184. A ratio approach using the cerebellum as reference region was applied to determine binding parameters. Brain uptake of [{sup 11}C]AZD2184 peaked within 1 min at 3-4% of injected radioactivity. AD patients had high radioactivity in cortical regions while controls had uniformly low radioactivity uptake. Specific binding peaked within 30 min at which time standardized uptake value ratios (SUVR) ranged between 1.19 and 2.57. [{sup 11}C]AZD2184 is a promising radioligand for detailed mapping of A{beta} amyloid depositions in Alzheimer's disease, due to low non-specific binding, high signal to background ratio and reversible binding as evident from early peak equilibrium. (orig.)

  10. Yeast and Fungal Prions: Amyloid-Handling Systems, Amyloid Structure, and Prion Biology.

    Science.gov (United States)

    Wickner, R B; Edskes, H K; Gorkovskiy, A; Bezsonov, E E; Stroobant, E E

    2016-01-01

    Yeast prions (infectious proteins) were discovered by their outré genetic properties and have become important models for an array of human prion and amyloid diseases. A single prion protein can become any of many distinct amyloid forms (called prion variants or strains), each of which is self-propagating, but with different biological properties (eg, lethal vs mild). The folded in-register parallel β sheet architecture of the yeast prion amyloids naturally suggests a mechanism by which prion variant information can be faithfully transmitted for many generations. The yeast prions rely on cellular chaperones for their propagation, but can be cured by various chaperone imbalances. The Btn2/Cur1 system normally cures most variants of the [URE3] prion that arise. Although most variants of the [PSI+] and [URE3] prions are toxic or lethal, some are mild in their effects. Even the most mild forms of these prions are rare in the wild, indicating that they too are detrimental to yeast. The beneficial [Het-s] prion of Podospora anserina poses an important contrast in its structure, biology, and evolution to the yeast prions characterized thus far.

  11. Interaction between amyloid beta peptide and an aggregation blocker peptide mimicking islet amyloid polypeptide.

    Directory of Open Access Journals (Sweden)

    Nasrollah Rezaei-Ghaleh

    Full Text Available Assembly of amyloid-beta peptide (Aβ into cytotoxic oligomeric and fibrillar aggregates is believed to be a major pathologic event in Alzheimer's disease (AD and interfering with Aβ aggregation is an important strategy in the development of novel therapeutic approaches. Prior studies have shown that the double N-methylated analogue of islet amyloid polypeptide (IAPP IAPP-GI, which is a conformationally constrained IAPP analogue mimicking a non-amyloidogenic IAPP conformation, is capable of blocking cytotoxic self-assembly of Aβ. Here we investigate the interaction of IAPP-GI with Aβ40 and Aβ42 using NMR spectroscopy. The most pronounced NMR chemical shift changes were observed for residues 13-20, while residues 7-9, 15-16 as well as the C-terminal half of Aβ--that is both regions of the Aβ sequence that are converted into β-strands in amyloid fibrils--were less accessible to solvent in the presence of IAPP-GI. At the same time, interaction of IAPP-GI with Aβ resulted in a concentration-dependent co-aggregation of Aβ and IAPP-GI that was enhanced for the more aggregation prone Aβ42 peptide. On the basis of the reduced toxicity of the Aβ peptide in the presence of IAPP-GI, our data are consistent with the suggestion that IAPP-GI redirects Aβ into nontoxic "off-pathway" aggregates.

  12. Tensile deformation and failure of amyloid and amyloid-like protein fibrils

    Science.gov (United States)

    Solar, Max; Buehler, Markus J.

    2014-03-01

    Here we report a series of full atomistic molecular dynamics simulations of six amyloid or amyloid-like protein fibrils in order to systematically understand the effect of different secondary structure motifs on the mechanical tensile and failure response of cross-\\beta protein fibrils. We find a similar failure behavior across the six structures; an initial failure event occurs at small strains involving cooperative rupture of a group of hydrogen bonds, followed by a slow one-by-one hydrogen bond rupture process as the remaining \\beta -sheets peel off with very low applied stress. We also find that the ultimate tensile strength of the protein fibrils investigated scales directly with the number of hydrogen bonds per unit area which break in the initial rupture event. Our results provide insights into structure-property relationships in protein fibrils important for disease and engineering applications and lay the groundwork for the development of materials selection criteria for the design of de novo amyloid-based functional biomaterials.

  13. Bapineuzumab alters aβ composition: implications for the amyloid cascade hypothesis and anti-amyloid immunotherapy.

    Directory of Open Access Journals (Sweden)

    Alex E Roher

    Full Text Available The characteristic neuropathological changes associated with Alzheimer's disease (AD and other lines of evidence support the amyloid cascade hypothesis. Viewing amyloid deposits as the prime instigator of dementia has now led to clinical trials of multiple strategies to remove or prevent their formation. We performed neuropathological and biochemical assessments of 3 subjects treated with bapineuzumab infusions. Histological analyses were conducted to quantify amyloid plaque densities, Braak stages and the extent of cerebral amyloid angiopathy (CAA. Amyloid-β (Aβ species in frontal and temporal lobe samples were quantified by ELISA. Western blots of amyloid-β precursor protein (AβPP and its C-terminal (CT fragments as well as tau species were performed. Bapineuzumab-treated (Bapi-AD subjects were compared to non-immunized age-matched subjects with AD (NI-AD and non-demented control (NDC cases. Our study revealed that Bapi-AD subjects exhibited overall amyloid plaque densities similar to those of NI-AD cases. In addition, CAA was moderate to severe in NI-AD and Bapi-AD patients. Although histologically-demonstrable leptomeningeal, cerebrovascular and neuroparenchymal-amyloid densities all appeared unaffected by treatment, Aβ peptide profiles were significantly altered in Bapi-AD subjects. There was a trend for reduction in total Aβ42 levels as well as an increase in Aβ40 which led to a corresponding significant decrease in Aβ42:Aβ40 ratio in comparison to NI-AD subjects. There were no differences in the levels of AβPP, CT99 and CT83 or tau species between Bapi-AD and NI-AD subjects. The remarkable alteration in Aβ profiles reveals a dynamic amyloid production in which removal and depositional processes were apparently perturbed by bapineuzumab therapy. Despite the alteration in biochemical composition, all 3 immunized subjects exhibited continued cognitive decline.

  14. [Uricosuric agent].

    Science.gov (United States)

    Ohno, Iwao

    2008-04-01

    Urate lowering treatment is indicated in patients with recurrent acute attacks, tophi, gouty arthropathy, radiographic changes of gout, multiple joint involvement, or associated uric acid nephrolithiasis. Uricosuric agents like benzbromarone and probenecid are very useful to treat hyperuricemia as well as allopurinol (xanthine oxidase inhibitor). Uricosuric agents act the urate lowering effect through blocking the URAT1, an urate transporter, in brush border of renal proximal tubular cells. In order to avoid the nephrotoxicity and urolithiasis due to increasing of urinary urate excretion by using uricosuric agents, the proper urinary tract management (enough urine volume and correction of aciduria) should be performed.

  15. Usefulness of competitive inhibitors of protein binding for improving the pharmacokinetics of {sup 186}Re-MAG3-conjugated bisphosphonate ({sup 186}Re-MAG3-HBP), an agent for treatment of painful bone metastases

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Kazuma [Kyoto University, Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto (Japan)]|[Kanazawa University, Advanced Science Research Center, Kanazawa (Japan); Mukai, Takahiro [Kyoto University, Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto (Japan)]|[Kyushu University, Graduate School of Pharmaceutical Sciences, Fukuoka (Japan); Kawai, Keiichi [Kanazawa University, Graduate School of Medical Sciences, Kanazawa (Japan)]|[University of Fukui, Biomedical Imaging Research Center, Yoshida, Fukui (Japan); Takamura, Norito [Kyushu University of Health and Welfare, School of Pharmaceutical Sciences, Nobeoka (Japan); Hanaoka, Hirofumi; Saji, Hideo [Kyoto University, Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Hashimoto, Kazuyuki [Japan Atomic Energy Agency, Tokai-mura, Ibaraki (Japan); Shiba, Kazuhiro; Mori, Hirofumi [Kanazawa University, Advanced Science Research Center, Kanazawa (Japan)

    2009-01-15

    We have developed a {sup 186}Re-mercaptoacetylglycylglycylglycine complex-conjugated bisphosphonate ({sup 186}Re-MAG3-HBP) for the treatment of painful bone metastases. We assumed competitive inhibitors of protein binding to be useful for procuring a favorable biodistribution of {sup 186}Re-MAG3-HBP for the palliation of bone pain because it has been reported that the concurrent administration of {sup 99m}Tc-MAG3 and drugs with high affinity for serum protein produced competitive displacement at specific binding sites and enhanced total clearance and tissue distribution. The displacement effects of several protein-binding inhibitors on the protein binding of {sup 186}Re-MAG3-HBP were investigated. Biodistribution experiments were performed by intravenously administering {sup 186}Re-MAG3-HBP into rats with ceftriaxone as a competitive protein-binding inhibitor or saline. The protein binding of {sup 186}Re-MAG3-HBP in rat serum, human serum, and a human serum albumin solution was significantly decreased by the addition of ceftriaxone, which has high affinity for binding site I on serum albumin. In the biodistribution experiments, pretreatment with ceftriaxone enhanced the clearance of the radioactivity of {sup 186}Re-MAG3-HBP in blood and nontarget tissues but had no effect on accumulation in bone. The findings suggested that the use of protein-binding competitive inhibitors would be effective in improving the pharmacokinetics of radiopharmaceuticals with high affinity for serum protein. (orig.)

  16. Immunotherapy against amyloid pathology in Alzheimer's disease.

    Science.gov (United States)

    Galimberti, Daniela; Ghezzi, Laura; Scarpini, Elio

    2013-10-15

    The first drugs developed for Alzheimer's disease (AD), anticholinesterase inhibitors (AchEI), increase acetylcholine levels, previously demonstrated to be reduced in AD. To date, four AchEI are approved for the treatment of mild to moderate AD. A further therapeutic option available for moderate to severe AD is memantine. These treatments are symptomatic, whereas drugs under development are supposed to modify pathological steps leading to AD, thus acting on the evolution of the disease. For this reason they are currently termed "disease modifying" drugs. To block the progression of the disease, they have to interfere with pathogenic steps at the basis of clinical symptoms, including the deposition of extracellular amyloid beta (Aβ) plaques and of intracellular neurofibrillary tangles. The most innovative approach is represented by the vaccination and passive immunization against Aβ peptide. In this article, current knowledge about concluded and ongoing clinical trials with both vaccination with different antigens and passive immunization will be reviewed and discussed.

  17. Cerebral microvascular amyloid beta protein deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant amyloid beta precursor protein.

    NARCIS (Netherlands)

    Miao, J.; Xu, F.; Davis, J.; Otte-Holler, I.; Verbeek, M.M.; Nostrand, W.E. van

    2005-01-01

    Cerebral vascular amyloid beta-protein (Abeta) deposition, also known as cerebral amyloid angiopathy, is a common pathological feature of Alzheimer's disease. Additionally, several familial forms of cerebral amyloid angiopathy exist including the Dutch (E22Q) and Iowa (D23N) mutations of Abeta. Incr

  18. Antibiotic Agents

    Science.gov (United States)

    ... Superbugs and Drugs" Home | Contact Us General Background: Antibiotic Agents What is an antibacterial and how are ... with the growth and reproduction of bacteria. While antibiotics and antibacterials both attack bacteria, these terms have ...

  19. Amyloid A amyloidosis secondary to rheumatoid arthritis: pathophysiology and treatments.

    Science.gov (United States)

    Nakamura, Tadashi

    2011-01-01

    The introduction of biological therapies targeting specific inflammatory mediators revolutionised the treatment of rheumatoid arthritis (RA). Targeting key components of the immune system allows efficient suppression of the pathological inflammatory cascade that leads to RA symptoms and subsequent joint destruction. Reactive amyloid A (AA) amyloidosis, one of the most severe complications of RA, is a serious, potentially life-threatening disorder caused by deposition of AA amyloid fibrils in multiple organs. These AA amyloid fibrils derive from the circulatory acute-phase reactant serum amyloid A protein (SAA), and may be controlled by treatment. New biologics may permit AA amyloidosis secondary to RA to become a treatable, manageable disease. Rheumatologists, when diagnosing and treating patients with AA amyloidosis secondary to RA, must understand the pathophysiology and clinical factors related to development and progression of the disease, including genetic predisposition and biological versatility of SAA.

  20. Amyloid detection using a Peltier-based device.

    Science.gov (United States)

    Cabrera, Miguel A; Ferreyra, Martin G; Cortez, Leonardo; Grupalli, Silvina A; Alvarez, L Leguina; Chehin, Rosana

    2012-01-01

    Amyloid aggregation of polypeptides is related to a growing number of pathologic states known as amyloid disorders. At present, it is clear that any proteins submitted to appropriate physicochemical environment can acquire fibrilar conformation. Fourier transform infrared spectroscopy (FTIR) has been a widely used technique to study temperature- induced amyloid-fibrils formation in vitro. In this way, strict changes and temperature controls are required to characterize the physicochemical basis of the amyloid-fibrils formation. In this article, the development of a highly efficient and accurate Peltier-based system to improve FTIR measurements is presented (see An Old Physics Phenomenon Applied to a Serious Biomedical Pathology. The accuracy of the thermostatic control was tested with biophysical parameters on biological samples probing its reproducibility. The design of the present device contributes to maintain the FTIR environment stable, which represents a real contribution to improve the spectral quality and thus, the reliability of the results.

  1. Tau/Amyloid Beta 42 Peptide Test (Alzheimer Biomarkers)

    Science.gov (United States)

    ... Was this page helpful? Also known as: Alzheimer Biomarkers Formal name: Tau Protein and Amyloid Beta 42 ... being researched for their potential use as AD biomarkers. If someone has symptoms of dementia , a health ...

  2. Phosphorylation modifies the molecular stability of β-amyloid deposits

    Science.gov (United States)

    Rezaei-Ghaleh, Nasrollah; Amininasab, Mehriar; Kumar, Sathish; Walter, Jochen; Zweckstetter, Markus

    2016-04-01

    Protein aggregation plays a crucial role in neurodegenerative diseases. A key feature of protein aggregates is their ubiquitous modification by phosphorylation. Little is known, however, about the molecular consequences of phosphorylation of protein aggregates. Here we show that phosphorylation of β-amyloid at serine 8 increases the stability of its pathogenic aggregates against high-pressure and SDS-induced dissociation. We further demonstrate that phosphorylation results in an elevated number of hydrogen bonds at the N terminus of β-amyloid, the region that is critically regulated by a variety of post-translational modifications. Because of the increased lifetime of phosphorylated β-amyloid aggregates, phosphorylation can promote the spreading of β-amyloid in Alzheimer pathogenesis. Our study suggests that regulation of the molecular stability of protein aggregates by post-translational modifications is a crucial factor for disease progression in the brain.

  3. Vasoactive Agents

    OpenAIRE

    Husedzinovic, Ino; Bradic, Nikola; Goranovic, Tanja

    2006-01-01

    This article is a short review of vasoactive drugs which are in use in todays clinical practice. In the past century, development of vasoactive drugs went through several phases. All of these drugs are today divided into several groups, depending on their place of action, pharmacological pathways and/or effects on target organ or organ system. Hence, many different agents are today in clinical practice, we have shown comparison between them. These agents provide new directions in the treatmen...

  4. Gallic Acid Is an Antagonist of Semen Amyloid Fibrils That Enhance HIV-1 Infection.

    Science.gov (United States)

    LoRicco, Josephine G; Xu, Changmingzi Sherry; Neidleman, Jason; Bergkvist, Magnus; Greene, Warner C; Roan, Nadia R; Makhatadze, George I

    2016-07-01

    Recent in vitro studies have demonstrated that amyloid fibrils found in semen from healthy and HIV-infected men, as well as semen itself, can markedly enhance HIV infection rates. Semen fibrils are made up of multiple naturally occurring peptide fragments derived from semen. The best characterized of these fibrils are SEVI (semen-derived enhancer of viral infection), made up of residues 248-286 of prostatic acidic phosphatase, and the SEM1 fibrils, made up of residues 86-107 of semenogelin 1. A small molecule screen for antagonists of semen fibrils identified four compounds that lowered semen-mediated enhancement of HIV-1 infectivity. One of the four, gallic acid, was previously reported to antagonize other amyloids and to exert anti-inflammatory effects. To better understand the mechanism by which gallic acid modifies the properties of semen amyloids, we performed biophysical measurements (atomic force microscopy, electron microscopy, confocal microscopy, thioflavin T and Congo Red fluorescence assays, zeta potential measurements) and quantitative assays on the effects of gallic acid on semen-mediated enhancement of HIV infection and inflammation. Our results demonstrate that gallic acid binds to both SEVI and SEM1 fibrils and modifies their surface electrostatics to render them less cationic. In addition, gallic acid decreased semen-mediated enhancement of HIV infection but did not decrease the inflammatory response induced by semen. Together, these observations identify gallic acid as a non-polyanionic compound that inhibits semen-mediated enhancement of HIV infection and suggest the potential utility of incorporating gallic acid into a multicomponent microbicide targeting both the HIV virus and host components that promote viral infection.

  5. Cellular prion protein expression is not regulated by the Alzheimer's amyloid precursor protein intracellular domain.

    Directory of Open Access Journals (Sweden)

    Victoria Lewis

    Full Text Available There is increasing evidence of molecular and cellular links between Alzheimer's disease (AD and prion diseases. The cellular prion protein, PrP(C, modulates the post-translational processing of the AD amyloid precursor protein (APP, through its inhibition of the β-secretase BACE1, and oligomers of amyloidbind to PrP(C which may mediate amyloid-β neurotoxicity. In addition, the APP intracellular domain (AICD, which acts as a transcriptional regulator, has been reported to control the expression of PrP(C. Through the use of transgenic mice, cell culture models and manipulation of APP expression and processing, this study aimed to clarify the role of AICD in regulating PrP(C. Over-expression of the three major isoforms of human APP (APP(695, APP(751 and APP(770 in cultured neuronal and non-neuronal cells had no effect on the level of endogenous PrP(C. Furthermore, analysis of brain tissue from transgenic mice over-expressing either wild type or familial AD associated mutant human APP revealed unaltered PrP(C levels. Knockdown of endogenous APP expression in cells by siRNA or inhibition of γ-secretase activity also had no effect on PrP(C levels. Overall, we did not detect any significant difference in the expression of PrP(C in any of the cell or animal-based paradigms considered, indicating that the control of cellular PrP(C levels by AICD is not as straightforward as previously suggested.

  6. NOVEL ATYPICAL ANTIPSYCHOTIC AGENTS

    Directory of Open Access Journals (Sweden)

    Vijay Vinay

    2011-05-01

    Full Text Available Antipsychotics are a group of drugs commonly but not exclusively used to treat psychosis. Antipsychotic agents are grouped in two categories: Typical and Atypical antipsychotics. The first antipsychotic was chlorpromazine, which was developed as a surgical anesthetic. The first atypical anti-psychotic medication, clozapine, was discovered in the 1950s, and introduced in clinical practice in the 1970s. Both typical and atypical antipsychotics are effective in reducing positive and negative symptoms of schizophrenia. Blockade of D2 receptor in mesolimbic pathway is responsible for antipsychotic action. Typical antipsychotics are not particularly selective and also block Dopamine receptors in the mesocortical pathway, tuberoinfundibular pathway, and the nigrostriatal pathway. Blocking D2 receptors in these other pathways is thought to produce some of the unwanted side effects. Atypical antipsychotics differ from typical psychotics in their "limbic-specific" dopamine type 2 (D2-receptor binding and high ratio of serotonin type 2 (5-HT2-receptor binding to D2. Atypical antipsychotics are associated with a decreased capacity to cause EPSs, TD, narcoleptic malignant syndrome, and hyperprolactinemia. Atypical antipsychotic agents were developed in response to problems with typical agents, including lack of efficacy in some patients, lack of improvement in negative symptoms, and troublesome adverse effects, especially extrapyramidal symptoms (EPSs and tardive dyskinesia (TD.

  7. Prion Diseases of Yeast: Amyloid Structure and Biology

    OpenAIRE

    Reed B Wickner; Edskes, Herman K.; Kryndushkin, Dmitry; McGlinchey, Ryan; Bateman, David; Kelly, Amy

    2011-01-01

    Prion “variants” or “strains” are prions with the identical protein sequence, but different characteristics of the prion infection: e.g. different incubation period for scrapie strains or different phenotype intensity for yeast prion variants. We have shown that infectious amyloids of the yeast prions [PSI+], [URE3] and [PIN+] each have an in-register parallel β-sheet architecture. Moreover, we have pointed out that this amyloid architecture can explain how one protein can faithfully transmit...

  8. Enhancement of Herpes Simplex Virus (HSV) Infection by Seminal Plasma and Semen Amyloids Implicates a New Target for the Prevention of HSV Infection

    Science.gov (United States)

    Torres, Lilith; Ortiz, Tatiana; Tang, Qiyi

    2015-01-01

    Human herpesviruses cause different infectious diseases, resulting in world-wide health problems. Sexual transmission is a major route for the spread of both herpes simplex virus-1 (HSV-1) and -2. Semen plays an important role in carrying the viral particle that invades the vaginal or rectal mucosa and, thereby, initiates viral replication. Previously, we demonstrated that the amyloid fibrils semenogelin (SEM) and semen-derived enhancer of viral infection (SEVI), and seminal plasma (SP) augment cytomegalovirus infection (Tang et al., J. Virol 2013). Whether SEM or SEVI amyloids or SP could also enhance other herpesvirus infections has not been examined. In this study, we found that the two amyloids as well as SP strongly enhance both HSV-1 and -2 infections in cell culture. Along with SP, SEM and SEVI amyloids enhanced viral entry and increased infection rates by more than 10-fold, as assessed by flow cytometry assay and fluorescence microscopy. Viral replication was increased by about 50- to 100-fold. Moreover, viral growth curve assays showed that SEM and SEVI amyloids, as well as SP, sped up the kinetics of HSV replication such that the virus reached its replicative peak more quickly. The interactions of SEM, SEVI, and SP with HSVs are direct. Furthermore, we discovered that the enhancing effects of SP, SEM, and SEVI can be significantly reduced by heparin, a sulfated polysaccharide with an anionic charge. It is probable that heparin abrogates said enhancing effects by interfering with the interaction of the viral particle and the amyloids, which interaction results in the binding of the viral particles and both SEM and SEVI. PMID:25903833

  9. Enhancement of Herpes Simplex Virus (HSV Infection by Seminal Plasma and Semen Amyloids Implicates a New Target for the Prevention of HSV Infection

    Directory of Open Access Journals (Sweden)

    Lilith Torres

    2015-04-01

    Full Text Available Human herpesviruses cause different infectious diseases, resulting in world-wide health problems. Sexual transmission is a major route for the spread of both herpes simplex virus-1 (HSV-1 and -2. Semen plays an important role in carrying the viral particle that invades the vaginal or rectal mucosa and, thereby, initiates viral replication. Previously, we demonstrated that the amyloid fibrils semenogelin (SEM and semen-derived enhancer of viral infection (SEVI, and seminal plasma (SP augment cytomegalovirus infection (Tang et al., J. Virol 2013. Whether SEM or SEVI amyloids or SP could also enhance other herpesvirus infections has not been examined. In this study, we found that the two amyloids as well as SP strongly enhance both HSV-1 and -2 infections in cell culture. Along with SP, SEM and SEVI amyloids enhanced viral entry and increased infection rates by more than 10-fold, as assessed by flow cytometry assay and fluorescence microscopy. Viral replication was increased by about 50- to 100-fold. Moreover, viral growth curve assays showed that SEM and SEVI amyloids, as well as SP, sped up the kinetics of HSV replication such that the virus reached its replicative peak more quickly. The interactions of SEM, SEVI, and SP with HSVs are direct. Furthermore, we discovered that the enhancing effects of SP, SEM, and SEVI can be significantly reduced by heparin, a sulfated polysaccharide with an anionic charge. It is probable that heparin abrogates said enhancing effects by interfering with the interaction of the viral particle and the amyloids, which interaction results in the binding of the viral particles and both SEM and SEVI.

  10. Medicinal Chemistry Focusing on Aggregation of Amyloid-β.

    Science.gov (United States)

    Sohma, Youhei

    2016-01-01

    The aggregation of peptides/proteins is intimately related to a number of human diseases. More than 20 have been identified which aggregate into fibrils containing extensive β-sheet structures, and species generated in the aggregation processes (i.e., oligomers and fibrils) contribute to disease development. Amyloid-β peptide (designated Aβ), related to Alzheimer's disease (AD), is the representative example. The intensive aggregation property of Aβ also leads to difficulty in its synthesis. To improve the synthetic problem, we developed an O-acyl isopeptide of Aβ1-42, in which the N-acyl linkage (amide bond) of Ser(26) was replaced with an O-acyl linkage (ester bond) at the side chain. The O-acyl isopeptide demonstrated markedly higher water-solubility than that of Aβ1-42, while it quickly converted to intact monomer Aβ1-42 via an O-to-N acyl rearrangement under physiological conditions. Inhibition of the pathogenic aggregation of Aβ1-42 might be a therapeutic strategy for curing AD. We succeeded in the rational design and identification of a small molecule aggregation inhibitor based on a pharmacophore motif obtained from cyclo[-Lys-Leu-Val-Phe-Phe-]. Moreover, the inhibition of Aβ aggregation was achieved via oxygenation (i.e., incorporation of oxygen atoms to Aβ) using an artificial catalyst. We identified a selective, cell-compatible photo-oxygenation catalyst of Aβ, a flavin catalyst attached to an Aβ-binding peptide, which markedly decreased the aggregation potency and neurotoxicity of Aβ.

  11. Amyloid-β as a modulator of synaptic plasticity.

    Science.gov (United States)

    Parihar, Mordhwaj S; Brewer, Gregory J

    2010-01-01

    Alzheimer's disease is associated with synapse loss, memory dysfunction, and pathological accumulation of amyloid-β (Aβ) in plaques. However, an exclusively pathological role for Aβ is being challenged by new evidence for an essential function of Aβ at the synapse. Aβ protein exists in different assembly states in the central nervous system and plays distinct roles ranging from synapse and memory formation to memory loss and neuronal cell death. Aβ is present in the brain of symptom-free people where it likely performs important physiological roles. New evidence indicates that synaptic activity directly evokes the release of Aβ at the synapse. At physiological levels, Aβ is a normal, soluble product of neuronal metabolism that regulates synaptic function beginning early in life. Monomeric Aβ40 and Aβ42 are the predominant forms required for synaptic plasticity and neuronal survival. With age, some assemblies of Aβ are associated with synaptic failure and Alzheimer's disease pathology, possibly targeting the N-methyl-D-aspartic acid receptor through the nicotinic acetylcholine receptor, mitochondrial Aβ alcohol dehydrogenase, and cyclophilin D. But emerging data suggests a distinction between age effects on the target response in contrast to the assembly state or the accumulation of the peptide. Both aging and Aβ independently decrease neuronal plasticity. Our laboratory has reported that Aβ, glutamate, and lactic acid are each increasingly toxic with neuron age. The basis of the age-related toxicity partly resides in age-related mitochondrial dysfunction and an oxidative shift in mitochondrial and cytoplasmic redox potential. In turn, signaling through phosphorylated extracellular signal-regulated protein kinases is affected along with an age-independent increase in phosphorylated cAMP response element-binding protein. This review examines the long-awaited functional impact of Aβ on synaptic plasticity.

  12. Cardiorespiratory Fitness Attenuates the Influence of Amyloid on Cognition.

    Science.gov (United States)

    Schultz, Stephanie A; Boots, Elizabeth A; Almeida, Rodrigo P; Oh, Jennifer M; Einerson, Jean; Korcarz, Claudia E; Edwards, Dorothy F; Koscik, Rebecca L; Dowling, Maritza N; Gallagher, Catherine L; Bendlin, Barbara B; Christian, Bradley T; Zetterberg, Henrik; Blennow, Kaj; Carlsson, Cynthia M; Asthana, Sanjay; Hermann, Bruce P; Sager, Mark A; Johnson, Sterling C; Stein, James H; Okonkwo, Ozioma C

    2015-11-01

    The aim of this study was to examine cross-sectionally whether higher cardiorespiratory fitness (CRF) might favorably modify amyloid-β (Aβ)-related decrements in cognition in a cohort of late-middle-aged adults at risk for Alzheimer's disease (AD). Sixty-nine enrollees in the Wisconsin Registry for Alzheimer's Prevention participated in this study. They completed a comprehensive neuropsychological exam, underwent 11C Pittsburgh Compound B (PiB)-PET imaging, and performed a graded treadmill exercise test to volitional exhaustion. Peak oxygen consumption (VO2peak) during the exercise test was used as the index of CRF. Forty-five participants also underwent lumbar puncture for collection of cerebrospinal fluid (CSF) samples, from which Aβ42 was immunoassayed. Covariate-adjusted regression analyses were used to test whether the association between Aβ and cognition was modified by CRF. There were significant VO2peak*PiB-PET interactions for Immediate Memory (p=.041) and Verbal Learning & Memory (p=.025). There were also significant VO2peak*CSF Aβ42 interactions for Immediate Memory (p<.001) and Verbal Learning & Memory (p<.001). Specifically, in the context of high Aβ burden, that is, increased PiB-PET binding or reduced CSF Aβ42, individuals with higher CRF exhibited significantly better cognition compared with individuals with lower CRF. In a late-middle-aged, at-risk cohort, higher CRF is associated with a diminution of Aβ-related effects on cognition. These findings suggest that exercise might play an important role in the prevention of AD.

  13. Structural properties of Gerstmann-Straussler-Scheinker disease amyloid protein.

    Science.gov (United States)

    Salmona, Mario; Morbin, Michela; Massignan, Tania; Colombo, Laura; Mazzoleni, Giulia; Capobianco, Raffaella; Diomede, Luisa; Thaler, Florian; Mollica, Luca; Musco, Giovanna; Kourie, Joseph J; Bugiani, Orso; Sharma, Deepak; Inouye, Hideyo; Kirschner, Daniel A; Forloni, Gianluigi; Tagliavini, Fabrizio

    2003-11-28

    Prion protein (PrP) amyloid formation is a central feature of genetic and acquired forms of prion disease such as Gerstmann-Sträussler-Scheinker disease (GSS) and variant Creutzfeldt-Jakob disease. The major component of GSS amyloid is a PrP fragment spanning residues approximately 82-146. To investigate the determinants of the physicochemical properties of this fragment, we synthesized PrP-(82-146) and variants thereof, including entirely and partially scrambled peptides. PrP-(82-146) readily formed aggregates that were partially resistant to protease digestion. Peptide assemblies consisted of 9.8-nm-diameter fibrils having a parallel cross-beta-structure. Second derivative of infrared spectra indicated that PrP-(82-146) aggregates are primarily composed of beta-sheet (54%) and turn (24%) which is consistent with their amyloid-like properties. The peptide induced a remarkable increase in plasma membrane microviscosity of primary neurons. Modification of the amino acid sequence 106-126 caused a striking increase in aggregation rate, with formation of large amount of protease-resistant amorphous material and relatively few amyloid fibrils. Alteration of the 127-146 region had even more profound effects, with the inability to generate amyloid fibrils. These data indicate that the intrinsic properties of PrP-(82-146) are dependent upon the integrity of the C-terminal region and account for the massive deposition of PrP amyloid in GSS.

  14. Force generation by the growth of amyloid aggregates.

    Science.gov (United States)

    Herling, Therese W; Garcia, Gonzalo A; Michaels, Thomas C T; Grentz, Wolfgang; Dean, James; Shimanovich, Ulyana; Gang, Hongze; Müller, Thomas; Kav, Batuhan; Terentjev, Eugene M; Dobson, Christopher M; Knowles, Tuomas P J

    2015-08-01

    The generation of mechanical forces are central to a wide range of vital biological processes, including the function of the cytoskeleton. Although the forces emerging from the polymerization of native proteins have been studied in detail, the potential for force generation by aberrant protein polymerization has not yet been explored. Here, we show that the growth of amyloid fibrils, archetypical aberrant protein polymers, is capable of unleashing mechanical forces on the piconewton scale for individual filaments. We apply microfluidic techniques to measure the forces released by amyloid growth for two systems: insulin and lysozyme. The level of force measured for amyloid growth in both systems is comparable to that observed for actin and tubulin, systems that have evolved to generate force during their native functions and, unlike amyloid growth, rely on the input of external energy in the form of nucleotide hydrolysis for maximum force generation. Furthermore, we find that the power density released from growing amyloid fibrils is comparable to that of high-performance synthetic polymer actuators. These findings highlight the potential of amyloid structures as active materials and shed light on the criteria for regulation and reversibility that guide molecular evolution of functional polymers.

  15. Toxic species in amyloid disorders: Oligomers or mature fibrils

    Directory of Open Access Journals (Sweden)

    Meenakshi Verma

    2015-01-01

    Full Text Available Protein aggregation is the hallmark of several neurodegenerative disorders. These protein aggregation (fibrillization disorders are also known as amyloid disorders. The mechanism of protein aggregation involves conformation switch of the native protein, oligomer formation leading to protofibrils and finally mature fibrils. Mature fibrils have long been considered as the cause of disease pathogenesis; however, recent evidences suggest oligomeric intermediates formed during fibrillization to be toxic. In this review, we have tried to address the ongoing debate for these toxic amyloid species. We did an extensive literature search and collated information from Pubmed (http://www.ncbi.nlm.nih.gov and Google search using various permutations and combinations of the following keywords: Neurodegeneration, amyloid disorders, protein aggregation, fibrils, oligomers, toxicity, Alzheimer′s Disease, Parkinson′s Disease. We describe different instances showing the toxicity of mature fibrils as well as oligomers in Alzheimer′s Disease and Parkinson′s Disease. Distinct structural framework and morphology of amyloid oligomers suggests difference in toxic effect between oligomers and fibrils. We highlight the difference in structure and proposed toxicity pathways for fibrils and oligomers. We also highlight the evidences indicating that intermediary oligomeric species can act as potential diagnostic biomarker. Since the formation of these toxic species follow a common structural switch among various amyloid disorders, the protein aggregation events can be targeted for developing broad-range therapeutics. The therapeutic trials based on the understanding of different protein conformers (monomers, oligomers, protofibrils and fibrils in amyloid cascade are also described.

  16. Insulin amyloid at injection sites of patients with diabetes.

    Science.gov (United States)

    Nilsson, Melanie R

    2016-09-01

    The formation of insulin amyloid can dramatically impact glycemic control in patients with diabetes, making it an important therapeutic consideration. In addition, the cost associated with the excess insulin required by patients with amyloid is estimated to be $3K per patient per year, which adds to the growing financial burden of this disease. Insulin amyloid has been observed with every mode of therapeutic insulin administration (infusion, injection and inhalation), and the number of reported cases has increased significantly since 2002. The new cases represent a much broader demographic, and include many patients who have used exclusively human insulin and human insulin analogs. The reason for the increase in case reports is unknown, but this review explores the possibility that changes in patient care, improved differential diagnosis and/or changes in insulin type and insulin delivery systems may be important factors. The goal of this review is to raise key questions that will inspire proactive measures to prevent, identify and treat insulin amyloid. Furthermore, this comprehensive examination of insulin amyloid can provide insight into important considerations for other injectable drugs that are prone to form amyloid deposits.

  17. [Inotropic agents].

    Science.gov (United States)

    Sasayama, Shigetake

    2003-05-01

    Depression of myocardial contractility plays an important role in the development of heart failure and many inotropic agents were developed to improve the contractile function of the failing heart. Agents that increase cyclic AMP, either by increasing its synthesis or reducing its degradation, exerted dramatic short-term hemodynamic benefits, but these acute effects were not extrapolated into long-term improvement of the clinical outcome of heart failure patients. Administration of these agents to an energy starved failing heart would be expected to increase myocardial energy use and could accelerate disease progression. The role of digitalis in the management of heart failure has been controversial, however, the recent large scale clinical trial has ironically proved that digoxin reduced the rate of hospitalization both overall and for worsening heart failure. More recently, attention was paid to other inotropic agents that have a complex and diversified mechanism. These agents have some phosphodiesterase-inhibitory action but also possess additional effects, including cytokine inhibitors, immunomodulators, or calcium sensitizers. In the Western Societies these agents were again shown to increase mortality of patients with severe heart failure in a dose dependent manner with the long-term administration. However, it may not be the case in the Japanese population in whom mortality is relatively low. Chronic treatment with inotropic agent may be justified in Japanese, as it allows optimal care in the context of relief of symptoms and an improved quality of life. Therefore, each racial group should obtain specific evidence aimed at developing its own guidelines for therapy rather than translating major guidelines developed for other populations.

  18. Binding Procurement

    Science.gov (United States)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    2007-01-01

    This viewgraph presentation reviews the use of the binding procurement process in purchasing Aerospace Flight Battery Systems. NASA Engineering and Safety Center (NESC) requested NASA Aerospace Flight Battery Systems Working Group to develop a set of guideline requirements document for Binding Procurement Contracts.

  19. Sunscreening Agents

    Science.gov (United States)

    Martis, Jacintha; Shobha, V; Sham Shinde, Rutuja; Bangera, Sudhakar; Krishnankutty, Binny; Bellary, Shantala; Varughese, Sunoj; Rao, Prabhakar; Naveen Kumar, B.R.

    2013-01-01

    The increasing incidence of skin cancers and photodamaging effects caused by ultraviolet radiation has increased the use of sunscreening agents, which have shown beneficial effects in reducing the symptoms and reoccurrence of these problems. Many sunscreen compounds are in use, but their safety and efficacy are still in question. Efficacy is measured through indices, such as sun protection factor, persistent pigment darkening protection factor, and COLIPA guidelines. The United States Food and Drug Administration and European Union have incorporated changes in their guidelines to help consumers select products based on their sun protection factor and protection against ultraviolet radiation, whereas the Indian regulatory agency has not yet issued any special guidance on sunscreening agents, as they are classified under cosmetics. In this article, the authors discuss the pharmacological actions of sunscreening agents as well as the available formulations, their benefits, possible health hazards, safety, challenges, and proper application technique. New technologies and scope for the development of sunscreening agents are also discussed as well as the role of the physician in patient education about the use of these agents. PMID:23320122

  20. Steamed and Fermented Ethanolic Extract from Codonopsis lanceolata Attenuates Amyloid-β-Induced Memory Impairment in Mice

    Directory of Open Access Journals (Sweden)

    Jin Bae Weon

    2016-01-01

    Full Text Available Codonopsis lanceolata (C. lanceolata is a traditional medicinal plant used for the treatment of certain inflammatory diseases such as asthma, tonsillitis, and pharyngitis. We evaluated whether steamed and fermented C. lanceolata (SFC extract improves amyloid-β- (Aβ- induced learning and memory impairment in mice. The Morris water maze and passive avoidance tests were used to evaluate the effect of SFC extract. Moreover, we investigated acetylcholinesterase (AChE activity and brain-derived neurotrophic factor (BDNF, cyclic AMP response element-binding protein (CREB, and extracellular signal-regulated kinase (ERK signaling in the hippocampus of mice to determine a possible mechanism for the cognitive-enhancing effect. Saponin compounds in SFC were identified by Ultra Performance Liquid Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry (UPLC-Q-TOF-MS. SFC extract ameliorated amyloid-β-induced memory impairment in the Morris water maze and passive avoidance tests. SFC extract inhibited AChE activity and also significantly increased the level of CREB phosphorylation, BDNF expression, and ERK activation in hippocampal tissue of amyloid-β-treated mice. Lancemasides A, B, C, D, E, and G and foetidissimoside A compounds present in SFC were determined by UPLC-Q-TOF-MS. These results indicate that SFC extract improves Aβ-induced memory deficits and that AChE inhibition and CREB/BDNF/ERK expression is important for the effect of the SFC extract. In addition, lancemaside A specifically may be responsible for efficacious effect of SFC.

  1. Estrogen stimulates release of secreted amyloid precursor protein from primary rat cortical neurons via protein kinase C pathway

    Institute of Scientific and Technical Information of China (English)

    Sun ZHANG; Ying HUANG; Yi-chun ZHU; Tai YAO

    2005-01-01

    Aim: To investigate the mechanism of the action of estrogen, which stimulates the release of secreted amyloid precursor protein α (sAPPα) and decreases the gen eration of amyloid-β protein (Aβ), a dominant component in senile plaques in the brains of Alzheimer's disease patients. Methods: Experiments were carried out inprimary rat cortical neurons, and Western blot was used to detect sAPPα in aculture medium and the total amount of cellular amyloid precursor protein (APP) in neurons. Results: 17β-Estradiol (but not 17α-estradiol) and β-estradiol 6-(Ocarboxymethyl) oxime: BSA increased the secretion of sAPPα and this effect was blocked by protein kinase C (PKC) inhibitor calphostin C, but not by the classical estrogen receptor antagonist ICI 182,780. Meanwhile, 17β-estradiol did not alter the synthesis of cellular APP. Conclusion: The effect of 17β-estradiol on sAPPα secretion is likely mediated through the membrane binding sites, and needs molecular configuration specificity of the ligand. Furthermore, the action of the PKC dependent pathway might be involved in estrogen-induced sAPPα secretion.

  2. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer's disease mice using magnetic resonance imaging (MRI).

    Science.gov (United States)

    Cheng, Kwok Kin; Chan, Pui Shan; Fan, Shujuan; Kwan, Siu Ming; Yeung, King Lun; Wáng, Yì-Xiáng J; Chow, Albert Hee Lum; Wu, Ed X; Baum, Larry

    2015-03-01

    Diagnosis of Alzheimer's disease (AD) can be performed with the assistance of amyloid imaging. The current method relies on positron emission tomography (PET), which is expensive and exposes people to radiation, undesirable features for a population screening method. Magnetic resonance imaging (MRI) is cheaper and is not radioactive. Our approach uses magnetic nanoparticles (MNPs) made of superparamagnetic iron oxide (SPIO) conjugated with curcumin, a natural compound that specifically binds to amyloid plaques. Coating of curcumin-conjugated MNPs with polyethylene glycol-polylactic acid block copolymer and polyvinylpyrrolidone by antisolvent precipitation in a multi-inlet vortex mixer produces stable and biocompatible curcumin magnetic nanoparticles (Cur-MNPs) with mean diameter MRI) of Tg2576 mouse brains after injection of Cur-MNPs, and no plaques could be found in non-transgenic mice. Immunohistochemical examination of the mouse brains revealed that Cur-MNPs were co-localized with amyloid plaques. Thus, Cur-MNPs have the potential for non-invasive diagnosis of AD using MRI.

  3. LINGO-1 promotes lysosomal degradation of amyloid-β protein precursor.

    Science.gov (United States)

    de Laat, Rian; Meabon, James S; Wiley, Jesse C; Hudson, Mark P; Montine, Thomas J; Bothwell, Mark

    2015-01-01

    Sequential proteolytic cleavages of amyloid-β protein precursor (AβPP) by β-secretase and γ-secretase generate amyloid β (Aβ) peptides, which are thought to contribute to Alzheimer's disease (AD). Much of this processing occurs in endosomes following endocytosis of AβPP from the plasma membrane. However, this pathogenic mode of processing AβPP may occur in competition with lysosomal degradation of AβPP, a common fate of membrane proteins trafficking through the endosomal system. Following up on published reports that LINGO-1 binds and promotes the amyloidogenic processing of AβPP we have examined the consequences of LINGO-1/AβPP interactions. We report that LINGO-1 and its paralogs, LINGO-2 and LINGO-3, decrease processing of AβPP in the amyloidogenic pathway by promoting lysosomal degradation of AβPP. We also report that LINGO-1 levels are reduced in AD brain, representing a possible pathogenic mechanism stimulating the generation of Aβ peptides in AD.

  4. LINGO-1 promotes lysosomal degradation of amyloid-β protein precursor

    Directory of Open Access Journals (Sweden)

    Rian de Laat

    2015-03-01

    Full Text Available Sequential proteolytic cleavages of amyloid-β protein precursor (AβPP by β-secretase and γ-secretase generate amyloid β (Aβ peptides, which are thought to contribute to Alzheimer's disease (AD. Much of this processing occurs in endosomes following endocytosis of AβPP from the plasma membrane. However, this pathogenic mode of processing AβPP may occur in competition with lysosomal degradation of AβPP, a common fate of membrane proteins trafficking through the endosomal system. Following up on published reports that LINGO-1 binds and promotes the amyloidogenic processing of AβPP we have examined the consequences of LINGO-1/AβPP interactions. We report that LINGO-1 and its paralogs, LINGO-2 and LINGO-3, decrease processing of AβPP in the amyloidogenic pathway by promoting lysosomal degradation of AβPP. We also report that LINGO-1 levels are reduced in AD brain, representing a possible pathogenic mechanism stimulating the generation of Aβ peptides in AD.

  5. An extract of the marine alga Alaria esculenta modulates α-synuclein folding and amyloid formation.

    Science.gov (United States)

    Giffin, James C; Richards, Robert C; Craft, Cheryl; Jahan, Nusrat; Leggiadro, Cindy; Chopin, Thierry; Szemerda, Michael; MacKinnon, Shawna L; Ewart, K Vanya

    2017-02-23

    The conversion of α-synuclein from its natively unfolded and α-helical tetrameric forms to an amyloid conformation is central to the emergence of Parkinson's disease. Therefore, prevention of this conversion may offer an effective way of avoiding the onset of this disease or delaying its progress. At different concentrations, an aqueous extract from the edible winged kelp (Alaria esculenta), was shown to lower and to raise the melting point of α-synuclein. Size fractionation of the extract resulted in the separation of these distinct activities. The fraction below 5kDa decreased the melting point of α-synuclein, whereas the fraction above 10kDa raised the melting point. Both of these fractions were found to inhibit the formation of amyloid aggregates by α-synuclein, measured by thioflavin T dye-binding assays; this effect was further confirmed by transmission electron microscopy showing the inhibition of fibril formation. Circular dichroism analysis suggested that the incubation of α-synuclein under fibrillation conditions resulted in the loss of substantial native helical structure in the presence and absence of the fractions. It is therefore likely that the fractions inhibit fibrillation by interacting with the unfolded form of α-synuclein.

  6. APP Homodimers Transduce an Amyloid-β-Mediated Increase in Release Probability at Excitatory Synapses

    Directory of Open Access Journals (Sweden)

    Hilla Fogel

    2014-06-01

    Full Text Available Accumulation of amyloid-β peptides (Aβ, the proteolytic products of the amyloid precursor protein (APP, induces a variety of synaptic dysfunctions ranging from hyperactivity to depression that are thought to cause cognitive decline in Alzheimer’s disease. While depression of synaptic transmission has been extensively studied, the mechanisms underlying synaptic hyperactivity remain unknown. Here, we show that Aβ40 monomers and dimers augment release probability through local fine-tuning of APP-APP interactions at excitatory hippocampal boutons. Aβ40 binds to the APP, increases the APP homodimer fraction at the plasma membrane, and promotes APP-APP interactions. The APP activation induces structural rearrangements in the APP/Gi/o-protein complex, boosting presynaptic calcium flux and vesicle release. The APP growth-factor-like domain (GFLD mediates APP-APP conformational changes and presynaptic enhancement. Thus, the APP homodimer constitutes a presynaptic receptor that transduces signal from Aβ40 to glutamate release. Excessive APP activation may initiate a positive feedback loop, contributing to hippocampal hyperactivity in Alzheimer’s disease.

  7. Engineering Metal Ion Coordination to Regulate Amyloid Fibril Assembly And Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Dong, J.; Canfield, J.M.; Mehta, A.K.; Shokes, J.E.; Tian, B.; Childers, W.S.; Simmons, J.A.; Mao, Z.; Scott, R.A.; Warncke, K.; Lynn, D.G.

    2009-06-02

    Protein and peptide assembly into amyloid has been implicated in functions that range from beneficial epigenetic controls to pathological etiologies. However, the exact structures of the assemblies that regulate biological activity remain poorly defined. We have previously used Zn{sup 2+} to modulate the assembly kinetics and morphology of congeners of the amyloid {beta} peptide (A{beta}) associated with Alzheimer's disease. We now reveal a correlation among A{beta}-Cu{sup 2+} coordination, peptide self-assembly, and neuronal viability. By using the central segment of A{beta}, HHQKLVFFA or A{beta}(13-21), which contains residues H13 and H14 implicated in A{beta}-metal ion binding, we show that Cu{sup 2+} forms complexes with A{beta}(13-21) and its K16A mutant and that the complexes, which do not self-assemble into fibrils, have structures similar to those found for the human prion protein, PrP. N-terminal acetylation and H14A substitution, Ac-A{beta}(13-21)H14A, alters metal coordination, allowing Cu{sup 2+} to accelerate assembly into neurotoxic fibrils. These results establish that the N-terminal region of A{beta} can access different metal-ion-coordination environments and that different complexes can lead to profound changes in A{beta} self-assembly kinetics, morphology, and toxicity. Related metal-ion coordination may be critical to the etiology of other neurodegenerative diseases.

  8. Iron promotes the toxicity of amyloid beta peptide by impeding its ordered aggregation.

    Science.gov (United States)

    Liu, Beinan; Moloney, Aileen; Meehan, Sarah; Morris, Kyle; Thomas, Sally E; Serpell, Louise C; Hider, Robert; Marciniak, Stefan J; Lomas, David A; Crowther, Damian C

    2011-02-11

    We have previously shown that overexpressing subunits of the iron-binding protein ferritin can rescue the toxicity of the amyloid β (Aβ) peptide in our Drosophila model system. These data point to an important pathogenic role for iron in Alzheimer disease. In this study, we have used an iron-selective chelating compound and RNAi-mediated knockdown of endogenous ferritin to further manipulate iron in the brain. We confirm that chelation of iron protects the fly from the harmful effects of Aβ. To understand the pathogenic mechanisms, we have used biophysical techniques to see how iron affects Aβ aggregation. We find that iron slows the progression of the Aβ peptide from an unstructured conformation to the ordered cross-β fibrils that are characteristic of amyloid. Finally, using mammalian cell culture systems, we have shown that iron specifically enhances Aβ toxicity but only if the metal is present throughout the aggregation process. These data support the hypothesis that iron delays the formation of well ordered aggregates of Aβ and so promotes its toxicity in Alzheimer disease.