WorldWideScience

Sample records for amyloid beta toxicity

  1. Sulfonated dyes attenuate the toxic effects of beta-amyloid in a structure-specific fashion.

    Science.gov (United States)

    Pollack, S J; Sadler, I I; Hawtin, S R; Tailor, V J; Shearman, M S

    1995-09-15

    We recently reported that several sulfate-containing glycosaminoglycans, a class of compounds associated with the beta-amyloid plaques of Alzheimer's disease, attenuate the toxic effects of beta-amyloid fragments beta 25-35 and beta 1-40. The amyloid-binding sulfonated dye Congo Red was shown to have a similar effect. Using two clonal cell lines, we now demonstrate that several sulfonated dyes attenuate beta-amyloid toxicity and that the protective effect appears specific for compounds whose sulfonate groups can interact with the beta-pleated structure of aggregated amyloid. These results suggest that by binding beta-amyloid these compounds may prevent toxic interactions of the peptide with cells.

  2. The Protective Role of Carnosic Acid against Beta-Amyloid Toxicity in Rats

    Directory of Open Access Journals (Sweden)

    H. Rasoolijazi

    2013-01-01

    Full Text Available Oxidative stress is one of the pathological mechanisms responsible for the beta- amyloid cascade associated with Alzheimer’s disease (AD. Previous studies have demonstrated the role of carnosic acid (CA, an effective antioxidant, in combating oxidative stress. A progressive cognitive decline is one of the hallmarks of AD. Thus, we attempted to determine whether the administration of CA protects against memory deficit caused by beta-amyloid toxicity in rats. Beta-amyloid (1–40 was injected by stereotaxic surgery into the Ca1 region of the hippocampus of rats in the Amyloid beta (Aβ groups. CA was delivered intraperitoneally, before and after surgery in animals in the CA groups. Passive avoidance learning and spontaneous alternation behavior were evaluated using the shuttle box and the Y-maze, respectively. The degenerating hippocampal neurons were detected by fluoro-jade b staining. We observed that beta-amyloid (1–40 can induce neurodegeneration in the Ca1 region of the hippocampus by using fluoro-jade b staining. Also, the behavioral tests revealed that CA may recover the passive avoidance learning and spontaneous alternation behavior scores in the Aβ + CA group, in comparison with the Aβ group. We found that CA may ameliorate the spatial and learning memory deficits induced by the toxicity of beta-amyloid in the rat hippocampus.

  3. The novel amyloid-beta peptide aptamer inhibits intracellular amyloid-beta peptide toxicity

    Institute of Scientific and Technical Information of China (English)

    Xu Wang; Yi Yang; Mingyue Jia; Chi Ma; Mingyu Wang; Lihe Che; Yu Yang; Jiang Wu

    2013-01-01

    Amyloid β peptide binding alcohol dehydrogenase (ABAD) decoy peptide (DP) can competitively antagonize binding of amyloid β peptide to ABAD and inhibit the cytotoxic effects of amyloid β peptide. Based on peptide aptamers, the present study inserted ABAD-DP into the disulfide bond of human thioredoxin (TRX) using molecular cloning technique to construct a fusion gene that can express the TRX1-ABAD-DP-TRX2 aptamer. Moreover, adeno-associated virus was used to allow its stable expression. Immunofluorescent staining revealed the co-expression of the transduced fusion gene TRX1-ABAD-DP-TRX2 and amyloid β peptide in NIH-3T3 cells, indicating that the TRX1-ABAD-DP-TRX2 aptamer can bind amyloid β peptide within cells. In addition, cell morphology and MTT results suggested that TRX1-ABAD-DP-TRX2 attenuated amyloid β peptide-induced SH-SY5Y cell injury and improved cell viability. These findings confirmed the possibility of constructing TRX-based peptide aptamer using ABAD-DP. Moreover, TRX1-ABAD-DP-TRX2 inhibited the cytotoxic effect of amyloid β peptide.

  4. Amyloid Beta: Multiple Mechanisms of Toxicity and Only Some Protective Effects?

    Directory of Open Access Journals (Sweden)

    Paul Carrillo-Mora

    2014-01-01

    Full Text Available Amyloid beta (Aβ is a peptide of 39–43 amino acids found in large amounts and forming deposits in the brain tissue of patients with Alzheimer’s disease (AD. For this reason, it has been implicated in the pathophysiology of damage observed in this type of dementia. However, the role of Aβ in the pathophysiology of AD is not yet precisely understood. Aβ has been experimentally shown to have a wide range of toxic mechanisms in vivo and in vitro, such as excitotoxicity, mitochondrial alterations, synaptic dysfunction, altered calcium homeostasis, oxidative stress, and so forth. In contrast, Aβ has also shown some interesting neuroprotective and physiological properties under certain experimental conditions, suggesting that both physiological and pathological roles of Aβ may depend on several factors. In this paper, we reviewed both toxic and protective mechanisms of Aβ to further explore what their potential roles could be in the pathophysiology of AD. The complete understanding of such apparently opposed effects will also be an important guide for the therapeutic efforts coming in the future.

  5. {beta} - amyloid imaging probes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Min [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Imaging distribution of {beta} - amyloid plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the {beta} -amyloid plaques includes using radiolabeled peptides which can be only applied for peripheral {beta} - amyloid plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging {beta} - amyloid plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for {beta} - amyloid imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for {beta} - amyloid imaging agent.

  6. Protective effects of berberine against amyloid beta-induced toxicity in cultured rat cortical neurons

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Yanjun Zhang; Shuai Du; Mixia Zhang

    2011-01-01

    Berberine, a major constituent of Coptidis rhizoma, exhibits neural protective effects. The present study analyzed the potential protective effect of berberine against amyloid G-induced cytotoxicity in rat cerebral cortical neurons. Alzheimer's disease cell models were treated with 0.5 and 2 μmol/Lberberine for 36 hours to inhibit amyloid G-induced toxicity. Methyl thiazolyl tetrazolium assay and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining results showed that berberine significantly increased cell viability and reduced cell apoptosis in primary cultured rat cortical neurons. In addition, western blot analysis revealed a protective effect of berberine against amyloid β-induced toxicity in cultured cortical neurons, which coincided with significantly decreased abnormal up-regulation of activated caspase-3. These results showed that berberine exhibited a protective effect against amyloid 13-induced cytotoxicity in cultured rat cortical neurons.

  7. Overexpression of estrogen receptor beta alleviates the toxic effects of beta-amyloid protein on PC12 cells via non-hormonal ligands

    Institute of Scientific and Technical Information of China (English)

    Hui Wang; Lihui Si; Xiaoxi Li; Weiguo Deng; Haimiao Yang; Yuyan Yang; Yan Fu

    2012-01-01

    After binding to the estrogen receptor, estrogen can alleviate the toxic effects of beta-amyloid protein, and thereby exert a therapeutic effect on Alzheimer's disease patients. Estrogen can increase the incidence of breast carcinoma and endometrial cancer in post-menopausal women, so it is not suitable for clinical treatment of Alzheimer's disease. There is recent evidence that the estrogen receptor can exert its neuroprotective effects without estrogen dependence. Real-time quantitative PCR and flow cytometry results showed that, compared with non-transfected PC12 cells, adenovirus-mediated estrogen receptor β gene-transfected PC12 cells exhibited lower expression of tumor necrosis factor α and interleukin 1β under stimulation with beta-amyloid protein and stronger protection from apoptosis. The Akt-specific inhibitor Abi-2 decreased the anti-inflammatory and anti-apoptotic effects of estrogen receptor β gene-transfection. These findings suggest that overexpression of estrogen receptor β can alleviate the toxic effect of beta-amyloid protein on PC12 cells, without estrogen dependence. The Akt pathway is one of the potential means for the anti-inflammatory and anti-apoptotic effects of the estrogen receptor.

  8. Iron promotes the toxicity of amyloid beta peptide by impeding its ordered aggregation.

    Science.gov (United States)

    Liu, Beinan; Moloney, Aileen; Meehan, Sarah; Morris, Kyle; Thomas, Sally E; Serpell, Louise C; Hider, Robert; Marciniak, Stefan J; Lomas, David A; Crowther, Damian C

    2011-02-11

    We have previously shown that overexpressing subunits of the iron-binding protein ferritin can rescue the toxicity of the amyloid β (Aβ) peptide in our Drosophila model system. These data point to an important pathogenic role for iron in Alzheimer disease. In this study, we have used an iron-selective chelating compound and RNAi-mediated knockdown of endogenous ferritin to further manipulate iron in the brain. We confirm that chelation of iron protects the fly from the harmful effects of Aβ. To understand the pathogenic mechanisms, we have used biophysical techniques to see how iron affects Aβ aggregation. We find that iron slows the progression of the Aβ peptide from an unstructured conformation to the ordered cross-β fibrils that are characteristic of amyloid. Finally, using mammalian cell culture systems, we have shown that iron specifically enhances Aβ toxicity but only if the metal is present throughout the aggregation process. These data support the hypothesis that iron delays the formation of well ordered aggregates of Aβ and so promotes its toxicity in Alzheimer disease.

  9. Expression of the alternative oxidase mitigates beta-amyloid production and toxicity in model systems.

    Science.gov (United States)

    El-Khoury, Riyad; Kaulio, Eveliina; Lassila, Katariina A; Crowther, Damian C; Jacobs, Howard T; Rustin, Pierre

    2016-07-01

    Mitochondrial dysfunction has been widely associated with the pathology of Alzheimer's disease, but there is no consensus on whether it is a cause or consequence of disease, nor on the precise mechanism(s). We addressed these issues by testing the effects of expressing the alternative oxidase AOX from Ciona intestinalis, in different models of AD pathology. AOX can restore respiratory electron flow when the cytochrome segment of the mitochondrial respiratory chain is inhibited, supporting ATP synthesis, maintaining cellular redox homeostasis and mitigating excess superoxide production at respiratory complexes I and III. In human HEK293-derived cells, AOX expression decreased the production of beta-amyloid peptide resulting from antimycin inhibition of respiratory complex III. Because hydrogen peroxide was neither a direct product nor substrate of AOX, the ability of AOX to mimic antioxidants in this assay must be indirect. In addition, AOX expression was able to partially alleviate the short lifespan of Drosophila models neuronally expressing human beta-amyloid peptides, whilst abrogating the induction of markers of oxidative stress. Our findings support the idea of respiratory chain dysfunction and excess ROS production as both an early step and as a pathologically meaningful target in Alzheimer's disease pathogenesis, supporting the concept of a mitochondrial vicious cycle underlying the disease.

  10. Protective Effects of Some Medicinal Plants from Lamiaceae Family Against Beta-Amyloid Induced Toxicity in PC12 Cell

    Directory of Open Access Journals (Sweden)

    S Saeidnia

    2012-10-01

    Full Text Available Background: Excessive accumulation of beta-amyliod peptide (Aβ, the major component of senile plaques in Alzheimer's disease (AD, causes neuronal cell death through induction of oxidative stress. Therefore, antioxidants may be of use in the treatment of AD. The medicinal plants from the Lamiaceae family have been widely used in Iranian traditional medicine. These plants contain compounds with antioxidant activity and some species in this family have been reported to have neuroprotective properties. In the present study, methanolic extract of seven plants from salvia and satureja species were evaluated for their protective effects against beta-amyloid induced neurotoxicity.Methods: Aerial parts of the plants were extracted with ethyl acetate and methanol, respectively, by percolation at room temperature and subsequently, methanolic extracts of the plants were prepared. PC12 cells were incubated with different concentrations of the extracts in culture medium 1h prior to incubation with Aβ. Cell toxicity was assessed 24h after addition of Aβ by MTT assay.Results: Satureja bachtiarica, Salvia officinalis and Salvia macrosiphon methanolic extracts exhibited high protective effects against Aβ induced toxicity (P<0.001. Protective effects of Satureja bachtiarica and Salvia officinalis were dose-dependent.Conclusion: The main constituents of these extracts are polyphenolic and flavonoid compounds such as rosmarinic acid, naringenin, apigenin and luteolin which have antioxidant properties and may have a role in neuroprotection. Based on neuroprotective effect of these plants against Aβ induced toxicity, we recommend greater attention to their use in the treatment of Alzheimer disease.

  11. alpha-Synuclein enhances secretion and toxicity of amyloid beta peptides in PC12 cells

    NARCIS (Netherlands)

    Kazmierczak, Anna; Strosznajder, Joanna B.; Adamczyk, Agata

    2008-01-01

    alpha-Synuclein is the fundamental component of Lewy bodies which occur in the brain of 60% of sporadic and familial Alzheimer's disease patients. Moreover, a proteolytic fragment of alpha-synuclein, the so-called non-amyloid component of Alzheimer's disease amyloid, was found to be an integral part

  12. Cholesterol does not affect the toxicity of amyloid beta fragment but mimics its effect on MTT formazan exocytosis in cultured rat hippocampal neurons.

    Science.gov (United States)

    Abe, K; Saito, H

    1999-12-01

    It has recently been reported that methyl-beta-cyclodextrin-solubilized cholesterol protects PC12 cells from amyloid beta protein (Abeta) toxicity. To ask if this is the case in brain neurons, we investigated its effect in primary cultured rat hippocampal neurons. In basal culture conditions with no addition of Abeta, methyl-beta-cyclodextrin-solubilized cholesterol at concentrations of 30-100 microM was toxic to neurons, but at concentrations of 1-10 microM promoted neuronal survival. Methyl-beta-cyclodextrin-solubilized cholesterol at 1-10 microM was also effective in protecting neurons from toxicity of 20 microM Abeta. However, these effects were all mimicked by methyl-beta-cyclodextrin alone, but not by cholesterol solubilized by dimethylsulfoxide or ethanol. The effects of methyl-beta-cyclodextrin-solubilized cholesterol on neuronal survival and Abeta toxicity are probably attributed to the action of methyl-beta-cyclodextrin, but not cholesterol. Alternatively, we found that methyl-beta-cyclodextrin-solubilized cholesterol at lower concentrations ( > 10 nM) inhibited cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) by promoting the exocytosis of MTT formazan. This effect was shared by dimethylsulfoxide- or ethanol-solubilized cholesterol, but not by methyl-beta-cyclodextrin, supporting that it is attributed to the action of cholesterol. These results suggest that cholesterol does not protect neurons from Abeta toxicity, or rather inhibits cellular MTT reduction in a similar manner to Abeta.

  13. Coconut oil protects cortical neurons from amyloid beta toxicity by enhancing signaling of cell survival pathways.

    Science.gov (United States)

    Nafar, F; Clarke, J P; Mearow, K M

    2017-01-23

    Alzheimer's disease is a progressive neurodegenerative disease that has links with other conditions that can often be modified by dietary and life-style interventions. In particular, coconut oil has received attention as having potentially having benefits in lessening the cognitive deficits associated with Alzheimer's disease. In a recent report, we showed that neuron survival in cultures co-treated with coconut oil and Aβ was rescued compared to cultures exposed only to Aβ. Here we investigated treatment with Aβ for 1, 6 or 24 h followed by addition of coconut oil for a further 24 h, or treatment with coconut oil for 24 h followed by Aβ exposure for various periods. Neuronal survival and several cellular parameters (cleaved caspase 3, synaptophysin labeling and ROS) were assessed. In addition, the influence of these treatments on relevant signaling pathways was investigated with Western blotting. In terms of the treatment timing, our data indicated that coconut oil rescues cells pre-exposed to Aβ for 1 or 6 h, but is less effective when the pre-exposure has been 24 h. However, pretreatment with coconut oil prior to Aβ exposure showed the best outcomes. Treatment with octanoic or lauric acid also provided protection against Aβ, but was not as effective as the complete oil. The coconut oil treatment reduced the number of cells with cleaved caspase and ROS labeling, as well as rescuing the loss of synaptophysin labeling observed with Aβ treatment. Treatment with coconut oil, as well as octanoic, decanoic and lauric acids, resulted in a modest increase in ketone bodies compared to controls. The biochemical data suggest that Akt and ERK activation may contribute to the survival promoting influence of coconut oil. This was supported by observations that a PI3-Kinase inhibitor blocked the rescue effect of CoOil on Aβ amyloid toxicity. Further studies into the mechanisms of action of coconut oil and its constituent medium chain fatty acids are warranted.

  14. Metabolic changes may precede proteostatic dysfunction in a Drosophila model of amyloid beta peptide toxicity

    DEFF Research Database (Denmark)

    Ott, Stanislav; Vishnivetskaya, Anastasia; Malmendal, Anders;

    2016-01-01

    Amyloid beta (Aβ) peptide aggregation is linked to the initiation of Alzheimer's disease; accordingly, aggregation-prone isoforms of Aβ, expressed in the brain, shorten the lifespan of Drosophila melanogaster. However, the lethal effects of Aβ are not apparent until after day 15. We used shibire(...

  15. Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons.

    Science.gov (United States)

    Hu, Hongtao; Li, Mo

    2016-09-01

    Mitochondrial defects including excess reactive oxygen species (ROS) production and compromised ATP generation are featured pathology in Alzheimer's disease (AD). Amyloid beta (Aβ)-mediated mitochondrial ROS overproduction disrupts intra-neuronal Redox balance, in turn exacerbating mitochondrial dysfunction leading to neuronal injury. Previous studies have found the beneficial effects of mitochondria-targeted antioxidants in preventing mitochondrial dysfunction and neuronal injury in AD animal and cell models, suggesting that mitochondrial ROS scavengers hold promise for the treatment of this neurological disorder. In this study, we have determined that mitotempo, a novel mitochondria-targeted antioxidant protects mitochondrial function from the toxicity of Aβ in primary cultured neurons. Our results showed that Aβ-promoted mitochondrial superoxide production and neuronal lipid oxidation were significantly suppressed by the application of mitotempo. Moreover, mitotempo also demonstrated protective effects on mitochondrial bioenergetics evidenced by preserved mitochondrial membrane potential, cytochrome c oxidase activity as well as ATP production. In addition, the Aβ-induced mitochondrial DNA (mtDNA) depletion and decreased expression levels of mtDNA replication-related DNA polymerase gamma (DNA pol γ) and Twinkle were substantially mitigated by mitotempo. Therefore, our study suggests that elimination of excess mitochondrial ROS rescues mitochondrial function in Aβ-insulted neruons; and mitotempo has the potential to be a promising therapeutic agent to protect mitochondrial and neuronal function in AD.

  16. Alzheimer’s Toxic Amyloid Beta Oligomers: Unwelcome Visitors to the Na/K ATPase alpha3 Docking Station

    Science.gov (United States)

    DiChiara, Thomas; DiNunno, Nadia; Clark, Jeffrey; Bu, Riana Lo; Cline, Erika N.; Rollins, Madeline G.; Gong, Yuesong; Brody, David L.; Sligar, Stephen G.; Velasco, Pauline T.; Viola, Kirsten L.; Klein, William L.

    2017-01-01

    Toxic amyloid beta oligomers (AβOs) are known to accumulate in Alzheimer’s disease (AD) and in animal models of AD. Their structure is heterogeneous, and they are found in both intracellular and extracellular milieu. When given to CNS cultures or injected ICV into non-human primates and other non-transgenic animals, AβOs have been found to cause impaired synaptic plasticity, loss of memory function, tau hyperphosphorylation and tangle formation, synapse elimination, oxidative and ER stress, inflammatory microglial activation, and selective nerve cell death. Memory loss and pathology in transgenic models are prevented by AβO antibodies, while Aducanumab, an antibody that targets AβOs as well as fibrillar Aβ, has provided cognitive benefit to humans in early clinical trials. AβOs have now been investigated in more than 3000 studies and are widely thought to be the major toxic form of Aβ. Although much has been learned about the downstream mechanisms of AβO action, a major gap concerns the earliest steps: How do AβOs initially interact with surface membranes to generate neuron-damaging transmembrane events? Findings from Ohnishi et al (PNAS 2005) combined with new results presented here are consistent with the hypothesis that AβOs act as neurotoxins because they attach to particular membrane protein docks containing Na/K ATPase-α3, where they inhibit ATPase activity and pathologically restructure dock composition and topology in a manner leading to excessive Ca++ build-up. Better understanding of the mechanism that makes attachment of AβOs to vulnerable neurons a neurotoxic phenomenon should open the door to therapeutics and diagnostics targeting the first step of a complex pathway that leads to neural damage and dementia. PMID:28356893

  17. Atomic View of a Toxic Amyloid Small Oligomer

    Energy Technology Data Exchange (ETDEWEB)

    Laganowsky, Arthur; Liu, Cong; Sawaya, Michael R.; Whitelegge, Julian P.; Park, Jiyong; Zhao, Minglei; Pensalfini, Anna; Soriaga, Angela B.; Landau, Meytal; Teng, Poh K.; Cascio, Duilio; Glabe, Charles; Eisenberg, David (UCI); (UCLA)

    2012-04-30

    Amyloid diseases, including Alzheimer's, Parkinson's, and the prion conditions, are each associated with a particular protein in fibrillar form. These amyloid fibrils were long suspected to be the disease agents, but evidence suggests that smaller, often transient and polymorphic oligomers are the toxic entities. Here, we identify a segment of the amyloid-forming protein {alpha}{beta} crystallin, which forms an oligomeric complex exhibiting properties of other amyloid oligomers: {beta}-sheet-rich structure, cytotoxicity, and recognition by an oligomer-specific antibody. The x-ray-derived atomic structure of the oligomer reveals a cylindrical barrel, formed from six antiparallel protein strands, that we term a cylindrin. The cylindrin structure is compatible with a sequence segment from the {beta}-amyloid protein of Alzheimer's disease. Cylindrins offer models for the hitherto elusive structures of amyloid oligomers.

  18. Amyloidosis in Alzheimer’s Disease: The Toxicity of Amyloid Beta (Aβ, Mechanisms of Its Accumulation and Implications of Medicinal Plants for Therapy

    Directory of Open Access Journals (Sweden)

    Anchalee Prasansuklab

    2013-01-01

    Full Text Available Alzheimer’s disease (AD is a progressive neurodegenerative disorder that leads to memory deficits and death. While the number of individuals with AD is rising each year due to the longer life expectancy worldwide, current therapy can only somewhat relieve the symptoms of AD. There is no proven medication to cure or prevent the disease, possibly due to a lack of knowledge regarding the molecular mechanisms underlying disease pathogenesis. Most previous studies have accepted the “amyloid hypothesis,” in which the neuropathogenesis of AD is believed to be triggered by the accumulation of the toxic amyloid beta (Aβ protein in the central nervous system (CNS. Lately, knowledge that may be critical to unraveling the hidden pathogenic pathway of AD has been revealed. This review concentrates on the toxicity of Aβ and the mechanism of accumulation of this toxic protein in the brain of individuals with AD and also summarizes recent advances in the study of these accumulation mechanisms together with the role of herbal medicines that could facilitate the development of more effective therapeutic and preventive strategies.

  19. Matrix metalloproteinase 2 (MMP-2) degrades soluble vasculotropic amyloid-beta E22Q and L34V mutants, delaying their toxicity for human brain microvascular endothelial cells.

    Science.gov (United States)

    Hernandez-Guillamon, Mar; Mawhirt, Stephanie; Fossati, Silvia; Blais, Steven; Pares, Mireia; Penalba, Anna; Boada, Merce; Couraud, Pierre-Olivier; Neubert, Thomas A; Montaner, Joan; Ghiso, Jorge; Rostagno, Agueda

    2010-08-27

    Patients carrying mutations within the amyloid-beta (Abeta) sequence develop severe early-onset cerebral amyloid angiopathy with some of the related variants manifesting primarily with hemorrhagic phenotypes. Matrix metalloproteases (MMPs) are typically associated with blood brain barrier disruption and hemorrhagic transformations after ischemic stroke. However, their contribution to cerebral amyloid angiopathy-related hemorrhage remains unclear. Human brain endothelial cells challenged with Abeta synthetic homologues containing mutations known to be associated in vivo with hemorrhagic manifestations (AbetaE22Q and AbetaL34V) showed enhanced production and activation of MMP-2, evaluated via Multiplex MMP antibody arrays, gel zymography, and Western blot, which in turn proteolytically cleaved in situ the Abeta peptides. Immunoprecipitation followed by mass spectrometry analysis highlighted the generation of specific C-terminal proteolytic fragments, in particular the accumulation of Abeta-(1-16), a result validated in vitro with recombinant MMP-2 and quantitatively evaluated using deuterium-labeled internal standards. Silencing MMP-2 gene expression resulted in reduced Abeta degradation and enhanced apoptosis. Secretion and activation of MMP-2 as well as susceptibility of the Abeta peptides to MMP-2 degradation were dependent on the peptide conformation, with fibrillar elements of AbetaE22Q exhibiting negligible effects. Our results indicate that MMP-2 release and activation differentially degrades Abeta species, delaying their toxicity for endothelial cells. However, taking into consideration MMP ability to degrade basement membrane components, these protective effects might also undesirably compromise blood brain barrier integrity and precipitate a hemorrhagic phenotype.

  20. 1,8-cineole (eucalyptol) mitigates inflammation in amyloid Beta toxicated PC12 cells: relevance to Alzheimer's disease.

    Science.gov (United States)

    Khan, Andleeb; Vaibhav, Kumar; Javed, Hayate; Tabassum, Rizwana; Ahmed, Md Ejaz; Khan, Mohd Moshahid; Khan, M Badruzzaman; Shrivastava, Pallavi; Islam, Farah; Siddiqui, M Saeed; Safhi, M M; Islam, Fakhrul

    2014-02-01

    Inflammatory process has a fundamental role in the pathogenesis of Alzheimer's disease and insoluble amyloid beta deposits and neurofibrillary tangles provide the obvious stimuli for inflammation. The present study demonstrate the effect of pretreatment of 1,8-cineole (Cin) on inflammation induced by Aβ(25-35) in differentiated PC12 cells. The cells were treated with Cin at different doses for 24 h and then replaced by media containing Aβ(25-35) for another 24 h. The cell viability was decreased in Aβ(25-35) treated cells which was significantly restored by Cin pretreatment. Cin successfully reduced the mitochondrial membrane potential, ROS and NO levels in Aβ(25-35) treated cells. Cin also lowered the levels of proinflammatory cytokines TNF-α, IL-1β and IL-6 in Aβ(25-35) treated cells. Moreover, Cin also succeeded in lowering the expression of NOS-2, COX-2 and NF-κB. This study suggests the protective effects of Cin on inflammation and provides additional evidence for its potential beneficial use in therapy as an anti-inflammatory agent in neurodegenerative disease.

  1. Amyloid Beta as a Modulator of Synaptic Plasticity

    OpenAIRE

    Parihar, Mordhwaj S.; Gregory J. Brewer

    2010-01-01

    Alzheimer’s disease is associated with synapse loss, memory dysfunction and pathological accumulation of amyloid beta in plaques. However, an exclusively pathological role for amyloid beta is being challenged by new evidence for an essential function of amyloid beta at the synapse. Amyloid beta protein exists in different assembly states in the central nervous system and plays distinct roles ranging from synapse and memory formation to memory loss and neuronal cell death. Amyloid beta is pres...

  2. Stabilization of the cyclin-dependent kinase 5 activator, p35, by paclitaxel decreases beta-amyloid toxicity in cortical neurons.

    Science.gov (United States)

    Li, Guibin; Faibushevich, Alexander; Turunen, Brandon J; Yoon, Sung Ok; Georg, Gunda; Michaelis, Mary L; Dobrowsky, Rick T

    2003-01-01

    One hallmark of Alzheimer's disease (AD) is the formation of neurofibrillary tangles, aggregated paired helical filaments composed of hyperphosphorylated tau. Amyloid-beta (Abeta) induces tau hyperphosphorylation, decreases microtubule (MT) stability and induces neuronal death. MT stabilizing agents have been proposed as potential therapeutics that may minimize Abeta toxicity and here we report that paclitaxel (taxol) prevents cell death induced by Abeta peptides, inhibits Abeta-induced activation of cyclin-dependent kinase 5 (cdk5) and decreases tau hyperphosphorylation. Taxol did not inhibit cdk5 directly but significantly blocked Abeta-induced calpain activation and decreased formation of the cdk5 activator, p25, from p35. Taxol specifically inhibited the Abeta-induced activation of the cytosolic cdk5-p25 complex, but not the membrane-associated cdk5-p35 complex. MT-stabilization was necessary for neuroprotection and inhibition of cdk5 but was not sufficient to prevent cell death induced by overexpression of p25. As taxol is not permeable to the blood-brain barrier, we assessed the potential of taxanes to attenuate Abeta toxicity in adult animals using a succinylated taxol analog (TX67) permeable to the blood-brain barrier. TX67, but not taxol, attenuated the magnitude of both basal and Abeta-induced cdk5 activation in acutely dissociated cortical cultures prepared from drug treated adult mice. These results suggest that MT-stabilizing agents may provide a therapeutic approach to decrease Abeta toxicity and neurofibrillary pathology in AD and other tauopathies.

  3. New Insights in the Amyloid-Beta Interaction with Mitochondria

    Directory of Open Access Journals (Sweden)

    Carlos Spuch

    2012-01-01

    Full Text Available Biochemical and morphological alterations of mitochondria may play an important role in the pathogenesis of Alzheimer’s disease (AD. Particularly, mitochondrial dysfunction is a hallmark of amyloid-beta-induced neuronal toxicity in Alzheimer’s disease. The recent emphasis on the intracellular biology of amyloid-beta and its precursor protein (APP has led researchers to consider the possibility that mitochondria-associated and mitochondrial amyloid-beta may directly cause neurotoxicity. Both proteins are known to localize to mitochondrial membranes, block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins, disrupt the electron transport chain, increase reactive oxygen species production, cause mitochondrial damage, and prevent neurons from functioning normally. In this paper, we will outline current knowledge of the intracellular localization of amyloid-beta. Moreover, we summarize evidence from AD postmortem brain as well as animal AD models showing that amyloid-beta triggers mitochondrial dysfunction through a number of pathways such as impairment of oxidative phosphorylation, elevation of reactive oxygen species production, alteration of mitochondrial dynamics, and interaction with mitochondrial proteins. Thus, this paper supports the Alzheimer cascade mitochondrial hypothesis such as the most important early events in this disease, and probably one of the future strategies on the therapy of this neurodegenerative disease.

  4. Traumatic Brain Injury, Microglia, and Beta Amyloid

    OpenAIRE

    Mannix, Rebekah C.; Whalen, Michael J

    2012-01-01

    Recently, there has been growing interest in the association between traumatic brain injury (TBI) and Alzheimer's Disease (AD). TBI and AD share many pathologic features including chronic inflammation and the accumulation of beta amyloid (A\\(\\beta\\)). Data from both AD and TBI studies suggest that microglia play a central role in A\\(\\beta\\) accumulation after TBI. This paper focuses on the current research on the role of microglia response to A\\(\\beta\\) after TBI.

  5. Regulation of adenosine triphosphate-sensitive potassium channels suppresses the toxic effects of amyloid-beta peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Min Kong; Maowen Ba; Hui Liang; Peng Shao; Tianxia Yu; Ying Wang

    2013-01-01

    In this study, we treated PC12 cells with 0-20 μM amyloid-β peptide (25-35) for 24 hours to induce cytotoxicity, and found that 5-20 μM amyloid-β peptide (25-35) decreased PC12 cell viability, but adenosine triphosphate-sensitive potassium channel activator diazoxide suppressed the decrease reactive oxygen species levels. These protective effects were reversed by the selective mitochondrial adenosine triphosphate-sensitive potassium channel blocker 5-hydroxydecanoate. An inducible nitric oxide synthase inhibitor, Nω-nitro-L-arginine, also protected PC12 cells from intracellular reactive oxygen species levels. However, the H2O2-degrading enzyme catalase could that the increases in both mitochondrial membrane potential and reactive oxygen species levels adenosine triphosphate-sensitive potassium channels and nitric oxide. Regulation of adenosine triphosphate-sensitive potassium channels suppresses PC12 cell cytotoxicity induced by amyloid

  6. Copernicus revisited: amyloid beta in Alzheimer's disease.

    Science.gov (United States)

    Joseph, J; Shukitt-Hale, B; Denisova, N A; Martin, A; Perry, G; Smith, M A

    2001-01-01

    The beta-amyloid hypothesis of Alzheimer's Disease (AD) has dominated the thinking and research in this area for over a decade and a half. While there has been a great deal of effort in attempting to prove its centrality in this devastating disease, and while an enormous amount has been learned about its properties (e.g., putative toxicity, processing and signaling), Abeta has not proven to be both necessary and sufficient for the development, neurotoxicity, and cognitive deficits associated with this disease. Instead, the few treatments that are available have emerged from aging research and are primarily directed toward modification of acetylcholine levels. Clearly, it is time to rethink this position and to propose instead that future approaches should focus upon altering the age-related sensitivity of the neuronal environment to insults involving such factors as inflammation and oxidative stress. In other words "solve the problems of aging and by extension those of AD will also be reduced." This review is being submitted as a rather Lutherian attempt to "nail an alternative thesis" to the gate of the Church of the Holy Amyloid to open its doors to the idea that aging is the most pervasive element in this disease and Abeta is merely one of the planets.

  7. Keampferol-3-O-rhamnoside abrogates amyloid beta toxicity by modulating monomers and remodeling oligomers and fibrils to non-toxic aggregates

    Directory of Open Access Journals (Sweden)

    Sharoar Md

    2012-12-01

    Full Text Available Abstract Background Aggregation of soluble, monomeric β- amyloid (Aβ to oligomeric and then insoluble fibrillar Aβ is a key pathogenic feature in development of Alzheimer’s disease (AD. Increasing evidence suggests that toxicity is linked to diffusible Aβ oligomers, rather than to insoluble fibrils. The use of naturally occurring small molecules for inhibition of Aβ aggregation has recently attracted significant interest for development of effective therapeutic strategies against the disease. A natural polyphenolic flavone, Kaempferol-3-O-rhamnoside (K-3-rh, was utilized to investigate its effects on aggregation and cytotoxic effects of Aβ42 peptide. Several biochemical techniques were used to determine the conformational changes and cytotoxic effect of the peptide in the presence and absence of K-3-rh. Results K-3-rh showed a dose-dependent effect against Aβ42 mediated cytotoxicity. Anti-amyloidogenic properties of K-3-rh were found to be efficient in inhibiting fibrilogenesis and secondary structural transformation of the peptide. The consequence of these inhibitions was the accumulation of oligomeric structural species. The accumulated aggregates were smaller, soluble, non-β-sheet and non-toxic aggregates, compared to preformed toxic Aβ oligomers. K-3-rh was also found to have the remodeling properties of preformed soluble oligomers and fibrils. Both of these conformers were found to remodel into non-toxic aggregates. The results showed that K-3-rh interacts with different Aβ conformers, which affects fibril formation, oligomeric maturation and fibrillar stabilization. Conclusion K-3-rh is an efficient molecule to hinder the self assembly and to abrogate the cytotoxic effects of Aβ42 peptide. Hence, K-3-rh and small molecules with similar structure might be considered for therapeutic development against AD.

  8. Specific Triazine Herbicides Induce Amyloid-beta(42) Production

    NARCIS (Netherlands)

    Portelius, Erik; Durieu, Emilie; Bodin, Marion; Cam, Morgane; Pannee, Josef; Leuxe, Charlotte; Mabondzo, Aloise; Oumata, Nassima; Galons, Herve; Lee, Jung Yeol; Chang, Young-Tae; Stuber, Kathrin; Koch, Philipp; Fontaine, Gaelle; Potier, Marie-Claude; Manousopoulou, Antigoni; Garbis, Spiros D.; Covaci, Adrian; Van Dam, Debby; De Deyn, Peter; Karg, Frank; Flajolet, Marc; Omori, Chiori; Hata, Saori; Suzuki, Toshiharu; Blennow, Kaj; Zetterberg, Henrik; Meijer, Laurent

    2016-01-01

    Proteolytic cleavage of the amyloid-beta protein precursor (A beta PP) ecretases leads to extracellular release of amyloid-beta (A beta) peptides. Increased production of A beta(42) over A beta(40) and aggregation into oligomers and plaques constitute an Alzheimer's disease (AD) hallmark. Identifyin

  9. The alpha7 nicotinic acetylcholine receptor-selective antagonist, methyllycaconitine, partially protects against beta-amyloid1-42 toxicity in primary neuron-enriched cultures.

    Science.gov (United States)

    Martin, Shelley E; de Fiebre, Nancy Ellen C; de Fiebre, Christopher M

    2004-10-01

    Studies have suggested that the neuroprotective actions of alpha7 nicotinic agonists arise from activation of receptors and not from the extensive desensitization which rapidly follows activation. Here, we report that the alpha7-selective nicotinic antagonist, methyllycaconitine (MLA), protects against beta-amyloid-induced neurotoxicity; whereas the alpha4beta2-selective antagonist, dihydro-beta-erythroidine, does not. These findings suggest that neuroprotective actions of alpha7-acting agents arise from receptor inhibition/desensitization and that alpha7 antagonists may be useful neuroprotective agents.

  10. Graphene oxide strongly inhibits amyloid beta fibrillation

    NARCIS (Netherlands)

    Mahmoudi, Morteza; Akhavan, Omid; Ghavami, Mahdi; Rezaee, Farhad; Ghiasi, Seyyed Mohammad Amin

    2012-01-01

    Since amyloid beta fibrillation (AbF) plays an important role in the development of neurodegenerative diseases, we investigated the effect of graphene oxide (GO) and their protein-coated surfaces on the kinetics of Ab fibrillation in the aqueous solution. We showed that GO and their protein-covered

  11. Intravenous immunoglobulin protects neurons against amyloid beta-peptide toxicity and ischemic stroke by attenuating multiple cell death pathways.

    Science.gov (United States)

    Widiapradja, Alexander; Vegh, Viktor; Lok, Ker Zhing; Manzanero, Silvia; Thundyil, John; Gelderblom, Mathias; Cheng, Yi-Lin; Pavlovski, Dale; Tang, Sung-Chun; Jo, Dong-Gyu; Magnus, Tim; Chan, Sic L; Sobey, Christopher G; Reutens, David; Basta, Milan; Mattson, Mark P; Arumugam, Thiruma V

    2012-07-01

    Intravenous immunoglobulin (IVIg) preparations obtained by fractionating blood plasma, are increasingly being used increasingly as an effective therapeutic agent in treatment of several inflammatory diseases. Its use as a potential therapeutic agent for treatment of stroke and Alzheimer's disease has been proposed, but little is known about the neuroprotective mechanisms of IVIg. In this study, we investigated the effect of IVIg on downstream signaling pathways that are involved in neuronal cell death in experimental models of stroke and Alzheimer's disease. Treatment of cultured neurons with IVIg reduced simulated ischemia- and amyloid βpeptide (Aβ)-induced caspase 3 cleavage, and phosphorylation of the cell death-associated kinases p38MAPK, c-Jun NH2 -terminal kinase and p65, in vitro. Additionally, Aβ-induced accumulation of the lipid peroxidation product 4-hydroxynonenal was attenuated in neurons treated with IVIg. IVIg treatment also up-regulated the anti-apoptotic protein, Bcl2 in cortical neurons under ischemia-like conditions and exposure to Aβ. Treatment of mice with IVIg reduced neuronal cell loss, apoptosis and infarct size, and improved functional outcome in a model of focal ischemic stroke. Together, these results indicate that IVIg acts directly on neurons to protect them against ischemic stroke and Aβ-induced neuronal apoptosis by inhibiting cell death pathways and by elevating levels of the anti-apoptotic protein Bcl2.

  12. Calpain inhibition prevents amyloid-beta-induced neurodegeneration and associated behavioral dysfunction in rats

    NARCIS (Netherlands)

    Granic, Ivica; Nyakas, Csaba; Luiten, Paul G. M.; Eisel, Ulrich L. M.; Halmy, Laszlo G.; Gross, Gerhard; Schoemaker, Hans; Moeller, Achim; Nimmrich, Volker

    2010-01-01

    Amyloid-beta (A beta) is toxic to neurons and such toxicity is - at least in part - mediated via the NMDA receptor. Calpain, a calcium dependent cystein protease, is part of the NMDA receptor-induced neurodegeneration pathway, and we previously reported that inhibition of calpain prevents excitotoxi

  13. Lipid raft disruption protects mature neurons against amyloid oligomer toxicity.

    Science.gov (United States)

    Malchiodi-Albedi, Fiorella; Contrusciere, Valentina; Raggi, Carla; Fecchi, Katia; Rainaldi, Gabriella; Paradisi, Silvia; Matteucci, Andrea; Santini, Maria Teresa; Sargiacomo, Massimo; Frank, Claudio; Gaudiano, Maria Cristina; Diociaiuti, Marco

    2010-04-01

    A specific neuronal vulnerability to amyloid protein toxicity may account for brain susceptibility to protein misfolding diseases. To investigate this issue, we compared the effects induced by oligomers from salmon calcitonin (sCTOs), a neurotoxic amyloid protein, on cells of different histogenesis: mature and immature primary hippocampal neurons, primary astrocytes, MG63 osteoblasts and NIH-3T3 fibroblasts. In mature neurons, sCTOs increased apoptosis and induced neuritic and synaptic damages similar to those caused by amyloid beta oligomers. Immature neurons and the other cell types showed no cytotoxicity. sCTOs caused cytosolic Ca(2+) rise in mature, but not in immature neurons and the other cell types. Comparison of plasma membrane lipid composition showed that mature neurons had the highest content in lipid rafts, suggesting a key role for them in neuronal vulnerability to sCTOs. Consistently, depletion in gangliosides protected against sCTO toxicity. We hypothesize that the high content in lipid rafts makes mature neurons especially vulnerable to amyloid proteins, as compared to other cell types; this may help explain why the brain is a target organ for amyloid-related diseases.

  14. Molecular Dynamics Simulation of Amyloid Beta Dimer Formation

    CERN Document Server

    Urbanc, B; Ding, F; Sammond, D; Khare, S; Buldyrev, S V; Stanley, H E; Dokholyan, N V

    2004-01-01

    Recent experiments with amyloid-beta (Abeta) peptide suggest that formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depends on their structure, which is governed by assembly dynamics. Due to limitations of current experimental techniques, a detailed knowledge of oligomer structure at the atomic level is missing. We introduce a molecular dynamics approach to study Abeta dimer formation: (1) we use discrete molecular dynamics simulations of a coarse-grained model to identify a variety of dimer conformations, and (2) we employ all-atom molecular mechanics simulations to estimate the thermodynamic stability of all dimer conformations. Our simulations of a coarse-grained Abeta peptide model predicts ten different planar beta-strand dimer conformations. We then estimate the free energies of all dimer conformations in all-atom molecular mechanics simulations with explicit water. We compare the free energies of Abeta(1-42) and Abeta(1-40...

  15. Aluminium, beta-amyloid and non-enzymatic glycosylation.

    Science.gov (United States)

    Exley, C; Schley, L; Murray, S; Hackney, C M; Birchall, J D

    1995-05-08

    The non-enzymatic glycosylation of beta-amyloid is implicated in the aetiology of Alzheimer's disease. However, controversy surrounds the nature of any involvement and a potential mechanism has not been fully elucidated. We present evidence of an aluminium-induced aggregation of the A beta P(25-35) peptide and speculate that the mechanism of formation of our ordered beta-amyloid aggregates might involve non-enzymatic glycosylation and/or site-specific crosslinking of beta-amyloid fibrils by atomic aluminium.

  16. Modeling Amyloid Beta Peptide Insertion into Lipid Bilayers

    CERN Document Server

    Mobley, D L; Singh, R R P; Maddox, M W; Longo, M J; Mobley, David L.; Cox, Daniel L.; Singh, Rajiv R. P.; Maddox, Michael W.; Longo, Marjorie L.

    2003-01-01

    Inspired by recent suggestions that the Alzheimer's amyloid beta peptide (A-beta), can insert into cell membranes and form harmful ion channels, we model insertion of the peptide into cell membranes using a Monte Carlo code which is specific at the amino acid level. We examine insertion of the regular A-beta peptide as well as mutants causing familial Alzheimer's disease. We present our results and develop the hypothesis that partial insertion into the membrane, leaving the peptide in one leaflet, increases the probability of harmful channel formation. This hypothesis can partly explain why these mutations are neurotoxic simply due to peptide insertion behavior, and also explains why, normally, A-beta 42 is more toxic to some cultured cells than A-beta 40, but the E22Q mutation reverses this effect. We further apply this model to various artificial A-beta mutants which have been examined experimentally, and offer testable experimental predictions contrasting the roles of aggregation and insertion with regard ...

  17. BETASCAN: probable beta-amyloids identified by pairwise probabilistic analysis.

    Directory of Open Access Journals (Sweden)

    Allen W Bryan

    2009-03-01

    Full Text Available Amyloids and prion proteins are clinically and biologically important beta-structures, whose supersecondary structures are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Recent work has indicated the utility of pairwise probabilistic statistics in beta-structure prediction. We develop here a new strategy for beta-structure prediction, emphasizing the determination of beta-strands and pairs of beta-strands as fundamental units of beta-structure. Our program, BETASCAN, calculates likelihood scores for potential beta-strands and strand-pairs based on correlations observed in parallel beta-sheets. The program then determines the strands and pairs with the greatest local likelihood for all of the sequence's potential beta-structures. BETASCAN suggests multiple alternate folding patterns and assigns relative a priori probabilities based solely on amino acid sequence, probability tables, and pre-chosen parameters. The algorithm compares favorably with the results of previous algorithms (BETAPRO, PASTA, SALSA, TANGO, and Zyggregator in beta-structure prediction and amyloid propensity prediction. Accurate prediction is demonstrated for experimentally determined amyloid beta-structures, for a set of known beta-aggregates, and for the parallel beta-strands of beta-helices, amyloid-like globular proteins. BETASCAN is able both to detect beta-strands with higher sensitivity and to detect the edges of beta-strands in a richly beta-like sequence. For two proteins (Abeta and Het-s, there exist multiple sets of experimental data implying contradictory structures; BETASCAN is able to detect each competing structure as a potential structure variant. The ability to correlate multiple alternate beta-structures to experiment opens the possibility of computational investigation of prion strains and structural heterogeneity of amyloid

  18. Always around, never the same: Pathways of amyloid beta induced neurodegeneration throughout the pathogenic cascade of Alzheimer's disease

    NARCIS (Netherlands)

    J.J.M. Hoozemans; S.M. Chafekar; F. Baas; P. Eikelenboom; W. Scheper

    2006-01-01

    There is an increasing amount of evidence showing the importance of intermediate aggregation species of amyloid beta (A beta) in the pathogenic cascade of Alzheimer's disease (AD). Different A beta assembly forms may mediate diverse toxic effects at different stages of the disease. Mouse models for

  19. Interaction between amyloid beta peptide and an aggregation blocker peptide mimicking islet amyloid polypeptide.

    Directory of Open Access Journals (Sweden)

    Nasrollah Rezaei-Ghaleh

    Full Text Available Assembly of amyloid-beta peptide (Aβ into cytotoxic oligomeric and fibrillar aggregates is believed to be a major pathologic event in Alzheimer's disease (AD and interfering with Aβ aggregation is an important strategy in the development of novel therapeutic approaches. Prior studies have shown that the double N-methylated analogue of islet amyloid polypeptide (IAPP IAPP-GI, which is a conformationally constrained IAPP analogue mimicking a non-amyloidogenic IAPP conformation, is capable of blocking cytotoxic self-assembly of Aβ. Here we investigate the interaction of IAPP-GI with Aβ40 and Aβ42 using NMR spectroscopy. The most pronounced NMR chemical shift changes were observed for residues 13-20, while residues 7-9, 15-16 as well as the C-terminal half of Aβ--that is both regions of the Aβ sequence that are converted into β-strands in amyloid fibrils--were less accessible to solvent in the presence of IAPP-GI. At the same time, interaction of IAPP-GI with Aβ resulted in a concentration-dependent co-aggregation of Aβ and IAPP-GI that was enhanced for the more aggregation prone Aβ42 peptide. On the basis of the reduced toxicity of the Aβ peptide in the presence of IAPP-GI, our data are consistent with the suggestion that IAPP-GI redirects Aβ into nontoxic "off-pathway" aggregates.

  20. Mechanisms of beta-amyloid neurotoxicity : Perspectives of pharmacotherapy

    NARCIS (Netherlands)

    Harkany, T; Abraham, [No Value; Konya, C; Nyakas, C; Zarandi, M; Penke, B; Luiten, PGM

    2000-01-01

    One of the characteristic neuropathological hallmarks of Alzheimer's disease (AD) is the extracellular accumulation of beta -amyloid peptides (A beta) in neuritic plaques, Experimental data indicate that different molecular forms of A beta affect a wide array of neuronal and glial functions and ther

  1. Tau/Amyloid Beta 42 Peptide Test (Alzheimer Biomarkers)

    Science.gov (United States)

    ... Was this page helpful? Also known as: Alzheimer Biomarkers Formal name: Tau Protein and Amyloid Beta 42 ... being researched for their potential use as AD biomarkers. If someone has symptoms of dementia , a health ...

  2. The anti-tumor histone deacetylase inhibitor SAHA and the natural flavonoid curcumin exhibit synergistic neuroprotection against amyloid-beta toxicity.

    Directory of Open Access Journals (Sweden)

    Jia Meng

    Full Text Available With the trend of an increasing aged population worldwide, Alzheimer's disease (AD, an age-related neurodegenerative disorder, as one of the major causes of dementia in elderly people is of growing concern. Despite the many hard efforts attempted during the past several decades in trying to elucidate the pathological mechanisms underlying AD and putting forward potential therapeutic strategies, there is still a lack of effective treatments for AD. The efficacy of many potential therapeutic drugs for AD is of main concern in clinical practice. For example, large bodies of evidence show that the anti-tumor histone deacetylase (HDAC inhibitor, suberoylanilidehydroxamic acid (SAHA, may be of benefit for the treatment of AD; however, its extensive inhibition of HDACs makes it a poor therapeutic. Moreover, the natural flavonoid, curcumin, may also have a potential therapeutic benefit against AD; however, it is plagued by low bioavailability. Therefore, the integrative effects of SAHA and curcumin were investigated as a protection against amyloid-beta neurotoxicity in vitro. We hypothesized that at low doses their synergistic effect would improve therapeutic selectivity, based on experiments that showed that at low concentrations SAHA and curcumin could provide comprehensive protection against Aβ25-35-induced neuronal damage in PC12 cells, strongly implying potent synergism. Furthermore, network analysis suggested that the possible mechanism underlying their synergistic action might be derived from restoration of the damaged functional link between Akt and the CBP/p300 pathway, which plays a crucial role in the pathological development of AD. Thus, our findings provided a feasible avenue for the application of a synergistic drug combination, SAHA and curcumin, in the treatment of AD.

  3. Beta-Amyloid Deposition and Alzheimer's Type Changes Induced by Borrelia Spirochetes

    Energy Technology Data Exchange (ETDEWEB)

    Miklossy,J.; Kis, A.; Radenovic, A.; Miller, L.; Forro, L.; Martins, R.; Reiss, K.; Darbinian, N.; Darekar, P.; et al.

    2006-01-01

    The pathological hallmarks of Alzheimer's disease (AD) consist of {beta}-amyloid plaques and neurofibrillary tangles in affected brain areas. The processes, which drive this host reaction are unknown. To determine whether an analogous host reaction to that occurring in AD could be induced by infectious agents, we exposed mammalian glial and neuronal cells in vitro to Borrelia burgdorferi spirochetes and to the inflammatory bacterial lipopolysaccharide (LPS). Morphological changes analogous to the amyloid deposits of AD brain were observed following 2-8 weeks of exposure to the spirochetes. Increased levels of {beta}-amyloid presursor protein (A{beta}PP) and hyperphosphorylated tau were also detected by Western blots of extracts of cultured cells that had been treated with spirochetes or LPS. These observations indicate that, by exposure to bacteria or to their toxic products, host responses similar in nature to those observed in AD may be induced.

  4. alpha7 Nicotinic acetylcholine receptor knockout selectively enhances ethanol-, but not beta-amyloid-induced neurotoxicity.

    Science.gov (United States)

    de Fiebre, Nancyellen C; de Fiebre, Christopher M

    2005-01-03

    The alpha7 subtype of nicotinic acetylcholine receptor (nAChR) has been implicated as a potential site of action for two neurotoxins, ethanol and the Alzheimer's disease related peptide, beta-amyloid. Here, we utilized primary neuronal cultures of cerebral cortex from alpha7 nAChR null mutant mice to examine the role of this receptor in modulating the neurotoxic properties of subchronic, "binge" ethanol and beta-amyloid. Knockout of the alpha7 nAChR gene selectively enhanced ethanol-induced neurotoxicity in a gene dosage-related fashion. Susceptibility of cultures to beta-amyloid induced toxicity, however, was unaffected by alpha7 nAChR gene null mutation. Further, beta-amyloid did not inhibit the binding of the highly alpha7-selective radioligand, [(125)I]alpha-bungarotoxin. On the other hand, in studies in Xenopus oocytes ethanol efficaciously inhibited alpha7 nAChR function. These data suggest that alpha7 nAChRs modulate the neurotoxic effects of binge ethanol, but not the neurotoxicity produced by beta-amyloid. It is hypothesized that inhibition of alpha7 nAChRs by ethanol provides partial protection against the neurotoxic properties of subchronic ethanol.

  5. Laser-induced propagation and destruction of amyloid beta fibrils.

    Science.gov (United States)

    Yagi, Hisashi; Ozawa, Daisaku; Sakurai, Kazumasa; Kawakami, Toru; Kuyama, Hiroki; Nishimura, Osamu; Shimanouchi, Toshinori; Kuboi, Ryoichi; Naiki, Hironobu; Goto, Yuji

    2010-06-18

    The amyloid deposition of amyloid beta (Abeta) peptides is a critical pathological event in Alzheimer disease (AD). Preventing the formation of amyloid deposits and removing preformed fibrils in tissues are important therapeutic strategies against AD. Previously, we reported the destruction of amyloid fibrils of beta(2)-microglobulin K3 fragments by laser irradiation coupled with the binding of amyloid-specific thioflavin T. Here, we studied the effects of a laser beam on Abeta fibrils. As was the case for K3 fibrils, extensive irradiation destroyed the preformed Abeta fibrils. However, irradiation during spontaneous fibril formation resulted in only the partial destruction of growing fibrils and a subsequent explosive propagation of fibrils. The explosive propagation was caused by an increase in the number of active ends due to breakage. The results not only reveal a case of fragmentation-induced propagation of fibrils but also provide insights into therapeutic strategies for AD.

  6. Calcium signaling and amyloid toxicity in Alzheimer disease.

    Science.gov (United States)

    Demuro, Angelo; Parker, Ian; Stutzmann, Grace E

    2010-04-23

    Intracellular Ca(2+) signaling is fundamental to neuronal physiology and viability. Because of its ubiquitous roles, disruptions in Ca(2+) homeostasis are implicated in diverse disease processes and have become a major focus of study in multifactorial neurodegenerative diseases such as Alzheimer disease (AD). A hallmark of AD is the excessive production of beta-amyloid (Abeta) and its massive accumulation in amyloid plaques. In this minireview, we highlight the pathogenic interactions between altered cellular Ca(2+) signaling and Abeta in its different aggregation states and how these elements coalesce to alter the course of the neurodegenerative disease. Ca(2+) and Abeta intersect at several functional levels and temporal stages of AD, thereby altering neurotransmitter receptor properties, disrupting membrane integrity, and initiating apoptotic signaling cascades. Notably, there are reciprocal interactions between Ca(2+) pathways and amyloid pathology; altered Ca(2+) signaling accelerates Abeta formation, whereas Abeta peptides, particularly in soluble oligomeric forms, induce Ca(2+) disruptions. A degenerative feed-forward cycle of toxic Abeta generation and Ca(2+) perturbations results, which in turn can spin off to accelerate more global neuropathological cascades, ultimately leading to synaptic breakdown, cell death, and devastating memory loss. Although no cause or cure is currently known, targeting Ca(2+) dyshomeostasis as an underlying and integral component of AD pathology may result in novel and effective treatments for AD.

  7. Size-dependent neurotoxicity of beta-amyloid oligomers.

    Science.gov (United States)

    Cizas, Paulius; Budvytyte, Rima; Morkuniene, Ramune; Moldovan, Radu; Broccio, Matteo; Lösche, Mathias; Niaura, Gediminas; Valincius, Gintaras; Borutaite, Vilmante

    2010-04-15

    The link between the size of soluble amyloid beta (Abeta) oligomers and their toxicity to rat cerebellar granule cells (CGC) was investigated. Variation in conditions during in vitro oligomerization of Abeta(1-42) resulted in peptide assemblies with different particle size as measured by atomic force microscopy and confirmed by dynamic light scattering and fluorescence correlation spectroscopy. Small oligomers of Abeta(1-42) with a mean particle z-height of 1-2 nm exhibited propensity to bind to phospholipid vesicles and they were the most toxic species that induced rapid neuronal necrosis at submicromolar concentrations whereas the bigger aggregates (z-height above 4-5 nm) did not bind vesicles and did not cause detectable neuronal death. A similar neurotoxic pattern was also observed in primary cultures of cortex neurons whereas Abeta(1-42) oligomers, monomers and fibrils were non-toxic to glial cells in CGC cultures or macrophage J774 cells. However, both oligomeric forms of Abeta(1-42) induced reduction of neuronal cell densities in the CGC cultures.

  8. Toxic species in amyloid disorders: Oligomers or mature fibrils

    Directory of Open Access Journals (Sweden)

    Meenakshi Verma

    2015-01-01

    Full Text Available Protein aggregation is the hallmark of several neurodegenerative disorders. These protein aggregation (fibrillization disorders are also known as amyloid disorders. The mechanism of protein aggregation involves conformation switch of the native protein, oligomer formation leading to protofibrils and finally mature fibrils. Mature fibrils have long been considered as the cause of disease pathogenesis; however, recent evidences suggest oligomeric intermediates formed during fibrillization to be toxic. In this review, we have tried to address the ongoing debate for these toxic amyloid species. We did an extensive literature search and collated information from Pubmed (http://www.ncbi.nlm.nih.gov and Google search using various permutations and combinations of the following keywords: Neurodegeneration, amyloid disorders, protein aggregation, fibrils, oligomers, toxicity, Alzheimer′s Disease, Parkinson′s Disease. We describe different instances showing the toxicity of mature fibrils as well as oligomers in Alzheimer′s Disease and Parkinson′s Disease. Distinct structural framework and morphology of amyloid oligomers suggests difference in toxic effect between oligomers and fibrils. We highlight the difference in structure and proposed toxicity pathways for fibrils and oligomers. We also highlight the evidences indicating that intermediary oligomeric species can act as potential diagnostic biomarker. Since the formation of these toxic species follow a common structural switch among various amyloid disorders, the protein aggregation events can be targeted for developing broad-range therapeutics. The therapeutic trials based on the understanding of different protein conformers (monomers, oligomers, protofibrils and fibrils in amyloid cascade are also described.

  9. NMDA receptor subunit composition determines beta-amyloid-induced neurodegeneration and synaptic loss

    OpenAIRE

    Tackenberg, C; Grinschgl, S; Trutzel, A; Santuccione, A C; Frey, M C; Konietzko, U; Grimm, J.; Brandt, R.; Nitsch, R M

    2013-01-01

    Aggregates of amyloid-beta (Aβ) and tau are hallmarks of Alzheimer's disease (AD) leading to neurodegeneration and synaptic loss. While increasing evidence suggests that inhibition of N-methyl--aspartate receptors (NMDARs) may mitigate certain aspects of AD neuropathology, the precise role of different NMDAR subtypes for Aβ- and tau-mediated toxicity remains to be elucidated. Using mouse organotypic hippocampal slice cultures from arcAβ transgenic mice combined with Sindbis virus-mediated ex...

  10. An interaction of beta-amyloid with aluminium in vitro.

    Science.gov (United States)

    Exley, C; Price, N C; Kelly, S M; Birchall, J D

    1993-06-21

    We have used circular dichroism spectroscopy to confirm that, in a membrane-mimicking solvent, A beta P(1-40) adopts a partially helical conformation and we have demonstrated the loss of this structure in the presence of physiologically relevant concentrations of aluminium. This is the first evidence of a direct biochemical interaction between aluminium and beta-amyloid and may have important implications for the pathogenesis of Alzheimer's disease.

  11. Engineering Metal Ion Coordination to Regulate Amyloid Fibril Assembly And Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Dong, J.; Canfield, J.M.; Mehta, A.K.; Shokes, J.E.; Tian, B.; Childers, W.S.; Simmons, J.A.; Mao, Z.; Scott, R.A.; Warncke, K.; Lynn, D.G.

    2009-06-02

    Protein and peptide assembly into amyloid has been implicated in functions that range from beneficial epigenetic controls to pathological etiologies. However, the exact structures of the assemblies that regulate biological activity remain poorly defined. We have previously used Zn{sup 2+} to modulate the assembly kinetics and morphology of congeners of the amyloid {beta} peptide (A{beta}) associated with Alzheimer's disease. We now reveal a correlation among A{beta}-Cu{sup 2+} coordination, peptide self-assembly, and neuronal viability. By using the central segment of A{beta}, HHQKLVFFA or A{beta}(13-21), which contains residues H13 and H14 implicated in A{beta}-metal ion binding, we show that Cu{sup 2+} forms complexes with A{beta}(13-21) and its K16A mutant and that the complexes, which do not self-assemble into fibrils, have structures similar to those found for the human prion protein, PrP. N-terminal acetylation and H14A substitution, Ac-A{beta}(13-21)H14A, alters metal coordination, allowing Cu{sup 2+} to accelerate assembly into neurotoxic fibrils. These results establish that the N-terminal region of A{beta} can access different metal-ion-coordination environments and that different complexes can lead to profound changes in A{beta} self-assembly kinetics, morphology, and toxicity. Related metal-ion coordination may be critical to the etiology of other neurodegenerative diseases.

  12. Cerebral microvascular amyloid beta protein deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant amyloid beta precursor protein.

    NARCIS (Netherlands)

    Miao, J.; Xu, F.; Davis, J.; Otte-Holler, I.; Verbeek, M.M.; Nostrand, W.E. van

    2005-01-01

    Cerebral vascular amyloid beta-protein (Abeta) deposition, also known as cerebral amyloid angiopathy, is a common pathological feature of Alzheimer's disease. Additionally, several familial forms of cerebral amyloid angiopathy exist including the Dutch (E22Q) and Iowa (D23N) mutations of Abeta. Incr

  13. Amyloid-beta Positron Emission Tomography Imaging Probes : A Critical Review

    NARCIS (Netherlands)

    Kepe, Vladimir; Moghbel, Mateen C.; Langstrom, Bengt; Zaidi, Habib; Vinters, Harry V.; Huang, Sung-Cheng; Satyamurthy, Nagichettiar; Doudet, Doris; Mishani, Eyal; Cohen, Robert M.; Hoilund-Carlsen, Poul F.; Alavi, Abass; Barrio, Jorge R.

    2013-01-01

    The rapidly rising prevalence and cost of Alzheimer's disease in recent decades has made the imaging of amyloid-beta deposits the focus of intense research. Several amyloid imaging probes with purported specificity for amyloid-beta plaques are currently at various stages of FDA approval. However, a

  14. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity

    Science.gov (United States)

    Cheng, Pin-Nan; Liu, Cong; Zhao, Minglei; Eisenberg, David; Nowick, James S.

    2012-11-01

    The amyloid protein aggregation associated with diseases such as Alzheimer's, Parkinson's and type II diabetes (among many others) features a bewildering variety of β-sheet-rich structures in transition from native proteins to ordered oligomers and fibres. The variation in the amino-acid sequences of the β-structures presents a challenge to developing a model system of β-sheets for the study of various amyloid aggregates. Here, we introduce a family of robust β-sheet macrocycles that can serve as a platform to display a variety of heptapeptide sequences from different amyloid proteins. We have tailored these amyloid β-sheet mimics (ABSMs) to antagonize the aggregation of various amyloid proteins, thereby reducing the toxicity of amyloid aggregates. We describe the structures and inhibitory properties of ABSMs containing amyloidogenic peptides from the amyloid-β peptide associated with Alzheimer's disease, β2-microglobulin associated with dialysis-related amyloidosis, α-synuclein associated with Parkinson's disease, islet amyloid polypeptide associated with type II diabetes, human and yeast prion proteins, and Tau, which forms neurofibrillary tangles.

  15. Nanoparticle-chelator conjugates as inhibitors of amyloid-beta aggregation and neurotoxicity: a novel therapeutic approach for Alzheimer disease.

    Science.gov (United States)

    Liu, Gang; Men, Ping; Kudo, Wataru; Perry, George; Smith, Mark A

    2009-05-22

    Oxidative stress and amyloid-beta are considered major etiological and pathological factors in the initiation and promotion of neurodegeneration in Alzheimer disease (AD). Insomuch as causes of such oxidative stress, transition metals, such as iron and copper, which are found in high concentrations in the brains of AD patients and accumulate specifically in the pathological lesions, are viewed as key contributors to the altered redox state. Likewise, the aggregation and toxicity of amyloid-beta is dependent upon transition metals. As such, chelating agents that selectively bind to and remove and/or "redox silence" transition metals have long been considered as attractive therapies for AD. However, the blood-brain barrier and neurotoxicity of many traditional metal chelators has limited their utility in AD or other neurodegenerative disorders. To circumvent this, we previously suggested that nanoparticles conjugated to iron chelators may have the potential to deliver chelators into the brain and overcome such issues as chelator bioavailability and toxic side-effects. In this study, we synthesized a prototype nanoparticle-chelator conjugate (Nano-N2PY) and demonstrated its ability to protect human cortical neurons from amyloid-beta-associated oxidative toxicity. Furthermore, Nano-N2PY nanoparticle-chelator conjugates effectively inhibited amyloid-beta aggregate formation. Overall, this study indicates that Nano-N2PY, or other nanoparticles conjugated to metal chelators, may provide a novel therapeutic strategy for AD and other neurodegenerative diseases associated with excess transition metals.

  16. Neuroprotective approaches in experimental models of beta-amyloid neurotoxicity : Relevance to Alzheimer's disease

    NARCIS (Netherlands)

    Harkany, T.; Hortobágyi, Tibor; Sasvari, M.; Konya, C.; Penke, B; Luiten, P.G.M.; Nyakas, C.

    1999-01-01

    1. beta-Amyloid peptides (A beta s) accumulate abundantly in the Alzheimer's disease (AD) brain in areas subserving information acquisition arid processing, and memory formation. A beta fragments are producedin a process of abnormal proteolytic cleavage of their precursor, the amyloid precursor prot

  17. Time Until Neuron Death After Initial Puncture From an Amyloid-Beta Oligomer

    CERN Document Server

    Horton, Tanner

    2015-01-01

    Hardy and Higgins first proposed the amyloid cascade hypothesis in 1992, stating that the decrease in neuronal function observed in Alzheimer's Disease (AD) is due to a process initiated by the oligomerization of amyloid-beta peptides. One hypothesis states that toxicity arises from the aggregation of amyloid-beta into a pore structure, which can then puncture the brain cell membrane; this allow toxic calcium ions to flood through the opening, causing eventual cell death. In 2007, neurobiologist Ruth Nussinov calculated the three pore sizes most likely to occur within the brain. Based on her findings, we constructed a method to determine the time it takes for a cell to die after the cell is punctured by the pore. Our findings have shown that cell death occurs within one second after the oligomer makes contact with the cell. We believe this is important because instant cell death has been one criticism of Nussinov's model, and we have calculated a concrete time value for that criticism. We identify two potenti...

  18. Evidence for Novel [beta]-Sheet Structures in Iowa Mutant [beta]-Amyloid Fibrils

    Energy Technology Data Exchange (ETDEWEB)

    Tycko, Robert; Sciarretta, Kimberly L.; Orgel, Joseph P.R.O.; Meredith, Stephen C.; (IIT); (NIH); (UC)

    2009-07-24

    Asp23-to-Asn mutation within the coding sequence of {beta}-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer's disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-A{beta}40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-A{beta}40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 x 10{sup -3} min{sup -1} and 1.07 x 10{sup -4} min{sup -1} for D23N-A{beta}40 and the wild-type peptide WT-A{beta}40, respectively) and without a lag phase. Electron microscopy shows that D23N-A{beta}40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-{beta} pattern, with a sharp reflection at 4.7 {angstrom} and a broad reflection at 9.4 {angstrom}, which is notably smaller than the value for WT-A{beta}40 fibrils (10.4 {angstrom}). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-A{beta}40 fibrils containing the in-register, parallel {beta}-sheet structure commonly found in WT-A{beta}40 fibrils and most other amyloid fibrils. Antiparallel {beta}-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through 13C-13C and 15N-13C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-A{beta}40 fibrils and the unusual vasculotropic clinical picture in these patients.

  19. Toxic β-Amyloid (Aβ) Alzheimer's Ion Channels: From Structure to Function and Design

    Science.gov (United States)

    Nussinov, Ruth

    2012-02-01

    Full-length amyloid beta peptides (Aβ1-40/42) form neuritic amyloid plaques in Alzheimer's disease (AD) patients and are implicated in AD pathology. Recent biophysical and cell biological studies suggest a direct mechanism of amyloid beta toxicity -- ion channel mediated loss of calcium homeostasis. Truncated amyloid beta fragments (Aβ11-42 and Aβ17-42), commonly termed as non-amyloidogenic are also found in amyloid plaques of Alzheimer's disease (AD) and in the preamyloid lesions of Down's syndrome (DS), a model system for early onset AD study. Very little is known about the structure and activity of these smaller peptides although they could be key AD and DS pathological agents. Using complementary techniques of explicit solvent molecular dynamics (MD) simulations, atomic force microscopy (AFM), channel conductance measurements, cell calcium uptake assays, neurite degeneration and cell death assays, we have shown that non-amyloidogenic Aβ9-42 and Aβ17-42 peptides form ion channels with loosely attached subunits and elicit single channel conductances. The subunits appear mobile suggesting insertion of small oligomers, followed by dynamic channel assembly and dissociation. These channels allow calcium uptake in APP-deficient cells and cause neurite degeneration in human cortical neurons. Channel conductance, calcium uptake and neurite degeneration are selectively inhibited by zinc, a blocker of amyloid ion channel activity. Thus truncated Aβ fragments could account for undefined roles played by full length Aβs and provide a novel mechanism of AD and DS pathology. The emerging picture from our large-scale simulations is that toxic ion channels formed by β-sheets are highly polymorphic, and spontaneously break into loosely interacting dynamic units (though still maintaining ion channel structures as imaged with AFM), that associate and dissociate leading to toxic ion flux. This sharply contrasts intact conventional gated ion channels that consist of tightly

  20. Complement activation by the amyloid proteins A beta peptide and beta 2-microglobulin

    DEFF Research Database (Denmark)

    Nybo, Mads; Nielsen, E H; Svehag, S E

    1999-01-01

    Complement activation (CA) has been reported to play a role in the pathogenesis of Alzheimer's disease (AD). To investigate whether CA may contribute to amyloidogenesis in general, the CA potential of different amyloid fibril proteins was tested. CA induced by A beta preparations containing soluble...... protein, protofilaments and some fibrils or only fibrils in a solid phase system (ELISA) was modest with a slow kinetics compared to the positive delta IgG control. Soluble A beta induced no detectable CA in a liquid phase system (complement consumption assay) while fibrillar A beta caused CA at 200 mg....../ml and higher concentrations. Soluble beta 2-microglobulin (beta 2M) purified from peritoneal dialysates was found to be as potent a complement activator as A beta in both solid and liquid phase systems while beta 2M purified from urine exhibited lower activity, a difference which may be explained...

  1. Oxidative stress induces macroautophagy of amyloid beta-protein and ensuing apoptosis

    DEFF Research Database (Denmark)

    Zheng, Lin; Kågedal, Katarina; Dehvari, Nodi;

    2009-01-01

    There is increasing evidence for the toxicity of intracellular amyloid beta-protein (Abeta) to neurons and the involvement of lysosomes in this process in Alzheimer disease (AD). We have recently shown that oxidative stress, a recognized determinant of AD, enhances macroautophagy and leads...... to intralysosomal accumulation of Abeta in cultured neuroblastoma cells. We hypothesized that oxidative stress promotes AD by stimulating macroautophagy of Abeta that further may induce cell death by destabilizing lysosomal membranes. To investigate such possibility, we compared the effects of hyperoxia (40...

  2. Interaction of calreticulin with amyloid beta peptide 1-42.

    Science.gov (United States)

    Duus, K; Hansen, P R; Houen, G

    2008-01-01

    The interaction of calreticulin with amyloid beta (Abeta) was investigated using solid phase and solution binding assays. Calreticulin bound Abeta 1-42 in a time and concentration dependent fashion. The binding was optimal at pH 5 and was stimulated by Ca2+ and inhibited by Zn2+ at pH 7. Interaction took place through the hydrophobic C-terminus of Abeta 1-42 and the polypeptide binding site of calreticulin. The results are discussed in the light of a reported role of calreticulin as a cell surface scavenger receptor.

  3. Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Payel Das

    Full Text Available Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ peptide aggregation is crucial for designing treatment for Alzheimer's disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have been performed to characterize the Aβ17-42 assembly in presence of the αB-crystallin core domain and of lysozyme. Simulations reveal that both inhibitor proteins compete with inter-peptide interaction by binding to the peptides during the early stage of aggregation, which is consistent with their inhibitory action reported in experiments. However, the Aβ binding dynamics appear different for each inhibitor. The binding between crystallin and the peptide monomer, dominated by electrostatics, is relatively weak and transient due to the heterogeneous amino acid distribution of the inhibitor surface. The crystallin-bound Aβ oligomers are relatively long-lived, as they form more extensive contact surface with the inhibitor protein. In contrast, a high local density of arginines from lysozyme allows strong binding with Aβ peptide monomers, resulting in stable complexes. Our findings not only illustrate, in atomic detail, how the amyloid inhibitory mechanism of human αB-crystallin, a natural chaperone, is different from that of human lysozyme, but also may aid de novo design of amyloid inhibitors.

  4. Brain beta-amyloid accumulation in transgenic mice expressing mutant superoxide dismutase 1.

    Science.gov (United States)

    Turner, Bradley J; Li, Qiao-Xin; Laughton, Katrina M; Masters, Colin L; Lopes, Elizabeth C; Atkin, Julie D; Cheema, Surindar S

    2004-12-01

    Oxidative stress is implicated in both the deposition and pathogenesis of beta-amyloid (Abeta) protein in Alzheimer's disease (AD). Accordingly, overexpression of the antioxidant enzyme superoxide dismutase 1 (SOD1) in neuronal cells and transgenic AD mice reduces Abeta toxicity and accumulation. In contrast, mutations in SOD1 associated with amyotrophic lateral sclerosis (ALS) confer enhanced pro-oxidative enzyme activities. We therefore examined whether ALS-linked mutant SOD1 overexpression in motor neuronal cells or transgenic ALS mice modulates Abeta toxicity or its accumulation in the brain. Aggregated, but not freshly solubilised, substrate-bound Abeta peptides induced degenerative morphology and cytotoxicity in motor neuron-like NSC-34 cells. Transfection of NSC-34 cells with human wild-type SOD1 attenuated Abeta-induced toxicity, however this neuroprotective effect was also observed for ALS-linked mutant SOD1. Analysis of the cerebral cortex, brainstem, cerebellum and olfactory bulb from transgenic SOD1G93A mice using enzyme-linked immunosorbent assay of acid-guanidine extracts revealed age-dependent elevations in Abeta levels, although not significantly different from wild-type mouse brain. In addition, brain amyloid protein precursor (APP) levels remained unaltered as a consequence of mutant SOD1 expression. We therefore conclude that mutant SOD1 overexpression promotes neither Abeta toxicity nor brain accumulation in these ALS models.

  5. Binding of fullerenes to amyloid beta fibrils: size matters.

    Science.gov (United States)

    Huy, Pham Dinh Quoc; Li, Mai Suan

    2014-10-01

    Binding affinity of fullerenes C20, C36, C60, C70 and C84 for amyloid beta fibrils is studied by docking and all-atom molecular dynamics simulations with the Amber force field and water model TIP3P. Using the molecular mechanic-Poisson Boltzmann surface area method one can demonstrate that the binding free energy linearly decreases with the number of carbon atoms of fullerene, i.e. the larger is the fullerene size, the higher is the binding affinity. Overall, fullerenes bind to Aβ9-40 fibrils stronger than to Aβ17-42. The number of water molecules trapped in the interior of 12Aβ9-40 fibrils was found to be lower than inside pentamer 5Aβ17-42. C60 destroys Aβ17-42 fibril structure to a greater extent compared to other fullerenes. Our study revealed that the van der Waals interaction dominates over the electrostatic interaction and non-polar residues of amyloid beta peptides play the significant role in interaction with fullerenes providing novel insight into the development of drug candidates against Alzheimer's disease.

  6. Curcumin Binding to Beta Amyloid: A Computational Study.

    Science.gov (United States)

    Rao, Praveen P N; Mohamed, Tarek; Teckwani, Karan; Tin, Gary

    2015-10-01

    Curcumin, a chemical constituent present in the spice turmeric, is known to prevent the aggregation of amyloid peptide implicated in the pathophysiology of Alzheimer's disease. While curcumin is known to bind directly to various amyloid aggregates, no systematic investigations have been carried out to understand its ability to bind to the amyloid aggregates including oligomers and fibrils. In this study, we constructed computational models of (i) Aβ hexapeptide (16) KLVFFA(21) octamer steric-zipper β-sheet assembly and (ii) full-length Aβ fibril β-sheet assembly. Curcumin binding in these models was evaluated by molecular docking and molecular dynamics (MD) simulation studies. In both the models, curcumin was oriented in a linear extended conformation parallel to fiber axis and exhibited better stability in the Aβ hexapeptide (16) KLVFFA(21) octamer steric-zipper model (Ebinding  = -10.05 kcal/mol) compared to full-length Aβ fibril model (Ebinding  = -3.47 kcal/mol). Analysis of MD trajectories of curcumin bound to full-length Aβ fibril shows good stability with minimum Cα-atom RMSD shifts. Interestingly, curcumin binding led to marked fluctuations in the (14) HQKLVFFA(21) region that constitute the fibril spine with RMSF values ranging from 1.4 to 3.6 Å. These results show that curcumin binding to Aβ shifts the equilibrium in the aggregation pathway by promoting the formation of non-toxic aggregates.

  7. Acetylcholinesterase, a senile plaque component, affects the fibrillogenesis of amyloid-beta-peptides.

    Science.gov (United States)

    Alvarez, A; Bronfman, F; Pérez, C A; Vicente, M; Garrido, J; Inestrosa, N C

    1995-12-01

    Acetylcholinesterase (AChE) colocalizes with amyloid-beta peptide (A beta) deposits present in the brain of Alzheimer's patients. Recent studies showed that A beta 1-40 can adopt two different conformational states in solution (an amyloidogenic conformer, A beta ac, and a non-amyloidogenic conformer, A beta nac) which have distinct abilities to form amyloid fibrils. We report here that AChE binds A beta nac and accelerates amyloid formation by the same peptide. No such effect was observed with A beta ac, the amyloidogenic conformer, suggesting that AChE acts as a 'pathological chaperone' inducing a conformational transition from A beta nac into A beta ac in vitro.

  8. Inhibition of amyloid-beta-induced cell death in human brain pericytes in vitro.

    NARCIS (Netherlands)

    Rensink, A.A.M.; Verbeek, M.M.; Otte-Holler, I.; Donkelaar, H.J. ten; Waal, R.M.W. de; Kremer, H.P.H.

    2002-01-01

    Amyloid-beta protein (A beta) deposition in the cerebral vascular walls is one of the key features of Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). A beta(1-40) carrying the 'Dutch' mutation (HCHWA-D A beta(1-40)) induces pronounced degeneration of cul

  9. Beta-secretase-cleaved amyloid precursor protein in Alzheimer brain: a morphologic study

    DEFF Research Database (Denmark)

    Sennvik, Kristina; Bogdanovic, N; Volkmann, Inga

    2004-01-01

    beta-amyloid (Abeta) is the main constituent of senile plaques seen in Alzheimer's disease. Abeta is derived from the amyloid precursor protein (APP) via proteolytic cleavage by proteases beta- and gamma-secretase. In this study, we examined content and localization of beta-secretase-cleaved APP...... the beta-sAPP immunostaining to be stronger and more extensive in gray matter in Alzheimer disease (AD) cases than controls. The axonal beta-sAPP staining was patchy and unevenly distributed for the AD cases, indicating impaired axonal transport. beta-sAPP was also found surrounding senile plaques...

  10. The Toxicity of Amyloid ß Oligomers

    Directory of Open Access Journals (Sweden)

    Lock Yue Chew

    2012-06-01

    Full Text Available Abstract: In this review, we elucidate the mechanisms of Aβ oligomer toxicity which may contribute to Alzheimer’s disease (AD. In particular, we discuss on the interaction of Aβ oligomers with the membrane through the process of adsorption and insertion. Such interaction gives rises to phase transitions  in the sub-structures of the Aβ peptide from α-helical to β-sheet  structure. By means of a coarse-grained model, we exhibit the tendency of β-sheet structures to aggregate, thus providing further insights to the process of membrane induced aggregation. We show that the aggregated oligomer causes membrane invagination, which is a precursor to the formation of pore structures and ion channels. Other pathological progressions to AD due to Aβ oligomers  are also covered,  such as their interaction with the membrane receptors, and their direct versus indirect effects on oxidative  stress and intraneuronal accumulation.  We further illustrate that the molecule curcumin is a potential Aβ toxicity inhibitor as a β-sheet breaker by having  a high propensity to interact with certain Aβ residues without  binding to them. The comprehensive understanding gained from these current  researches on the various toxicity mechanisms show promises in the provision of better therapeutics and treatment strategies in the near future.

  11. Amyloid-beta(29-42) dimer formations studied by a multicanonical-multioverlap molecular dynamics simulation.

    Science.gov (United States)

    Itoh, Satoru G; Okamoto, Yuko

    2008-03-13

    Amyloid-beta peptides are known to form amyloid fibrils and are considered to play an important role in Alzheimer's disease. Amyloid-beta(29-42) is a fragment of the amyloid-beta peptide and also has a tendency to form amyloid fibrils. In order to study the mechanism of amyloidogenesis of this fragment, we applied one of the generalized-ensemble algorithms, the multicanonical-multioverlap algorithm, to amyloid-beta(29-42) dimer in aqueous solution. We obtained a detailed free-energy landscape of the dimer system. From the detailed free-energy landscape, we examined monomer and dimer formations of amyloid-beta(29-42) and deduced dimerization processes, which correspond to seeding processes in the amyloidogenesis of amyloid-beta(29-42).

  12. NOVEL AMYLOID-BETA SPECIFIC scFv and VH ANTIBODY FRAGMENTS FROM HUMAN AND MOUSE PHAGE DISPLAY ANTIBODY LIBRARIES

    Science.gov (United States)

    Medecigo, M.; Manoutcharian, K.; Vasilevko, V.; Govezensky, T.; Munguia, M. E.; Becerril, B.; Luz-Madrigal, A.; Vaca, L.; Cribbs, D. H.; Gevorkian, G.

    2010-01-01

    Anti-amyloid immunotherapy has been proposed as an appropriate therapeutic approach for Alzheimer’s disease (AD). Significant efforts have been made towards the generation and assessment of antibody-based reagents capable of preventing and clearing amyloid aggregates as well as preventing their synaptotoxic effects. In this study, we selected a novel set of human anti-amyloid-beta peptide 1-42 (Aβ1-42) recombinant monoclonal antibodies in a single chain fragment variable (scFv) and a single domain (VH) formats. We demonstrated that these antibody fragments recognize in a specific manner amyloid beta deposits in APP/Tg mouse brains, inhibit toxicity of oligomeric Aβ1-42 in neuroblastoma cell cultures in a concentration-dependently manner and reduced amyloid deposits in APP/Tg2576 mice after intracranial administration. These antibody fragments recognize epitopes in the middle/C-terminus region of Aβ, which makes them strong therapeutic candidates due to the fact that most of the Aβ species found in the brains of AD patients display extensive N-terminus truncations/modifications. PMID:20451261

  13. Non-conjugated small molecule FRET for differentiating monomers from higher molecular weight amyloid beta species.

    Directory of Open Access Journals (Sweden)

    Chongzhao Ran

    Full Text Available BACKGROUND: Systematic differentiation of amyloid (Aβ species could be important for diagnosis of Alzheimer's disease (AD. In spite of significant progress, controversies remain regarding which species are the primary contributors to the AD pathology, and which species could be used as the best biomarkers for its diagnosis. These controversies are partially caused by the lack of reliable methods to differentiate the complicated subtypes of Aβ species. Particularly, differentiation of Aβ monomers from toxic higher molecular weight species (HrMW would be beneficial for drug screening, diagnosis, and molecular mechanism studies. However, fast and cheap methods for these specific aims are still lacking. PRINCIPAL FINDINGS: We demonstrated the feasibility of a non-conjugated FRET (Förster resonance energy transfer technique that utilized amyloid beta (Aβ species as intrinsic platforms for the FRET pair assembly. Mixing two structurally similar curcumin derivatives that served as the small molecule FRET pair with Aβ40 aggregates resulted in a FRET signal, while no signal was detected when using Aβ40 monomer solution. Lastly, this FRET technique enabled us to quantify the concentrations of Aβ monomers and high molecular weight species in solution. SIGNIFICANCE: We believe that this FRET technique could potentially be used as a tool for screening for inhibitors of Aβ aggregation. We also suggest that this concept could be generalized to other misfolded proteins/peptides implicated in various pathologies including amyloid in diabetes, prion in bovine spongiform encephalopathy, tau protein in AD, and α-synuclein in Parkinson disease.

  14. PARP-1 modulates amyloid beta peptide-induced neuronal damage.

    Directory of Open Access Journals (Sweden)

    Sara Martire

    Full Text Available Amyloid beta peptide (Aβ causes neurodegeneration by several mechanisms including oxidative stress, which is known to induce DNA damage with the consequent activation of poly (ADP-ribose polymerase (PARP-1. To elucidate the role of PARP-1 in the neurodegenerative process, SH-SY5Y neuroblastoma cells were treated with Aβ25-35 fragment in the presence or absence of MC2050, a new PARP-1 inhibitor. Aβ25-35 induces an enhancement of PARP activity which is prevented by cell pre-treatment with MC2050. These data were confirmed by measuring PARP-1 activity in CHO cells transfected with amylod precursor protein and in vivo in brains specimens of TgCRND8 transgenic mice overproducing the amyloid peptide. Following Aβ25-35 exposure a significant increase in intracellular ROS was observed. These data were supported by the finding that Aβ25-35 induces DNA damage which in turn activates PARP-1. Challenge with Aβ25-35 is also able to activate NF-kB via PARP-1, as demonstrated by NF-kB impairment upon MC2050 treatment. Moreover, Aβ25-35 via PARP-1 induces a significant increase in the p53 protein level and a parallel decrease in the anti-apoptotic Bcl-2 protein. These overall data support the hypothesis of PARP-1 involvment in cellular responses induced by Aβ and hence a possible rationale for the implication of PARP-1 in neurodegeneration is discussed.

  15. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease.

    Science.gov (United States)

    Cai, Zhiyou; Hussain, M Delwar; Yan, Liang-Jun

    2014-05-01

    Compelling evidence from basic molecular biology has demonstrated the dual roles of microglia in the pathogenesis of Alzheimer's disease (AD). On one hand, microglia are involved in AD pathogenesis by releasing inflammatory mediators such as inflammatory cytokines, complement components, chemokines, and free radicals that are all known to contribute to beta-amyloid (Aβ) production and accumulation. On the other hand, microglia are also known to play a beneficial role in generating anti-Aβ antibodies and stimulating clearance of amyloid plaques. Aβ itself, an inducer of microglia activation and neuroinflammation, has been considered as an underlying and unifying factor in the development of AD. A vicious cycle of inflammation has been formed between Aβ accumulation, activated microglia, and microglial inflammatory mediators, which enhance Aβ deposition and neuroinflammation. Thus, inhibiting the vicious cycle seems to be a promising treatment to restrain further development of AD. With increasing research efforts on microglia in AD, intervention of microglia activation and neuroinflammation in AD may provide a potential target for AD therapy in spite of the provisional failure of nonsteroidal antiinflammatory drugs in clinical trials.

  16. Amyloid Beta Peptides Differentially Affect Hippocampal Theta Rhythms In Vitro

    Directory of Open Access Journals (Sweden)

    Armando I. Gutiérrez-Lerma

    2013-01-01

    Full Text Available Soluble amyloid beta peptide (Aβ is responsible for the early cognitive dysfunction observed in Alzheimer's disease. Both cholinergically and glutamatergically induced hippocampal theta rhythms are related to learning and memory, spatial navigation, and spatial memory. However, these two types of theta rhythms are not identical; they are associated with different behaviors and can be differentially modulated by diverse experimental conditions. Therefore, in this study, we aimed to investigate whether or not application of soluble Aβ alters the two types of theta frequency oscillatory network activity generated in rat hippocampal slices by application of the cholinergic and glutamatergic agonists carbachol or DHPG, respectively. Due to previous evidence that oscillatory activity can be differentially affected by different Aβ peptides, we also compared Aβ25−35 and Aβ1−42 for their effects on theta rhythms in vitro at similar concentrations (0.5 to 1.0 μM. We found that Aβ25−35 reduces, with less potency than Aβ1−42, carbachol-induced population theta oscillatory activity. In contrast, DHPG-induced oscillatory activity was not affected by a high concentration of Aβ25−35 but was reduced by Aβ1−42. Our results support the idea that different amyloid peptides might alter specific cellular mechanisms related to the generation of specific neuronal network activities, instead of exerting a generalized inhibitory effect on neuronal network function.

  17. Deposition of mouse amyloid beta in human APP/PS1 double and single AD model transgenic mice.

    NARCIS (Netherlands)

    Groen, T. van; Kiliaan, A.J.; Kadish, I.

    2006-01-01

    The deposition of amyloid beta (Abeta) peptides and neurofibrillary tangles are the two characteristic pathological features of Alzheimer's disease (AD). To investigate the relation between amyloid precursor protein (APP) production, amyloid beta deposition and the type of Abeta in deposits, i.e., h

  18. Evidence for novel beta-sheet structures in Iowa mutant beta-amyloid fibrils.

    Science.gov (United States)

    Tycko, Robert; Sciarretta, Kimberly L; Orgel, Joseph P R O; Meredith, Stephen C

    2009-07-01

    Asp23-to-Asn mutation within the coding sequence of beta-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer's disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-Abeta40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-Abeta40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 x 10(-3) min(-1) and 1.07 x 10(-4) min(-1) for D23N-Abeta40 and the wild-type peptide WT-Abeta40, respectively) and without a lag phase. Electron microscopy shows that D23N-Abeta40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-beta pattern, with a sharp reflection at 4.7 A and a broad reflection at 9.4 A, which is notably smaller than the value for WT-Abeta40 fibrils (10.4 A). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-Abeta40 fibrils containing the in-register, parallel beta-sheet structure commonly found in WT-Abeta40 fibrils and most other amyloid fibrils. Antiparallel beta-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through (13)C-(13)C and (15)N-(13)C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-Abeta40 fibrils and the unusual vasculotropic clinical picture in these patients.

  19. Plasma beta amyloid and the risk of Alzheimer's disease in Down syndrome.

    NARCIS (Netherlands)

    Coppus, A.M.W.; Schuur, M.; Vergeer, J.; Janssens, A.C.; Oostra, B.A.; Verbeek, M.M.; Duijn, C.M. van

    2012-01-01

    Extracellular deposition of amyloid beta peptide (Abeta) has been implicated as a critical step in the pathogenesis of Alzheimer's disease (AD). In Down syndrome (DS), Alzheimer's disease is assumed to be caused by the triplication and overexpression of the gene for amyloid precursor protein (APP),

  20. Influence of hydrophobic Teflon particles on the structure of amyloid beta-peptide

    NARCIS (Netherlands)

    Giacomelli, C.E.; Norde, W.

    2003-01-01

    The amyloid beta-protein (Abeta) constitutes the major peptide component of the amyloid plaque deposits of Alzheimer's disease in humans. The Abeta changes from a nonpathogenic to a pathogenic conformation resulting in self-aggregation and deposition of the peptide. It has been established that dena

  1. Differential gene expression in human brain pericytes induced by amyloid-beta protein.

    NARCIS (Netherlands)

    Rensink, A.A.M.; Otte-Holler, I.; Donkelaar, H.J. ten; Waal, R.M.W. de; Kremer, H.P.H.; Verbeek, M.M.

    2004-01-01

    Cerebral amyloid angiopathy is one of the characteristics of Alzheimer's disease (AD) and this accumulation of fibrillar amyloid-beta (Alphabeta) in the vascular wall is accompanied by marked vascular damage. In vitro, Abeta1-40 carrying the 'Dutch' mutation (DAbeta1-40) induces degeneration of cult

  2. Aloe arborescens Extract Protects IMR-32 Cells against Alzheimer Amyloid Beta Peptide via Inhibition of Radical Peroxide Production.

    Science.gov (United States)

    Clementi, Maria Elisabetta; Tringali, Giuseppe; Triggiani, Doriana; Giardina, Bruno

    2015-11-01

    Aloe arborescens is commonly used as a pharmaceutical ingredient for its effect in burn treatment and ability to increase skin wound healing properties. Besides, it is well known to have beneficial phytotherapeutic, anticancer, and radio-protective properties. In this study, we first provided evidence that A. arborescens extract protects IMR32, a neuroblastoma human cellular line, from toxicity induced by beta amyloid, the peptide responsible for Alzheimer's disease. In particular, pretreatment with A. arborescens maintains an elevated cell viability and exerts a protective effect on mitochondrial functionality, as evidenced by oxygen consumption experiments. The protective mechanism exerted by A. arborescens seems be related to lowering of oxidative potential of the cells, as demonstrated by the ROS measurement compared with the results obtained in the presence of amyloid beta (1-42) peptide alone. Based on these preliminary observations we suggest that use ofA. arborescens extract could be developed as agents for the management of AD.

  3. Identification of a Novel Parallel beta-Strand Conformation within Molecular Monolayer of Amyloid Peptide

    DEFF Research Database (Denmark)

    Liu, Lei; Li, Qiang; Zhang, Shuai;

    2016-01-01

    technique with force controlled in pico-Newton range, combining with molecular dynamic simulation. The identified parallel beta-strand-like structure of molecular monolayer is distinct from the antiparallel beta-strand structure of A beta(33-42) amyloid fibril. This finding enriches the molecular structures....... In this work, the early A beta(33-42) aggregates forming the molecular monolayer at hydrophobic interface are investigated. The molecular monolayer of amyloid peptide A beta(33-42) consisting of novel parallel beta-strand-like structure is further revealed by means of a quantitative nanomechanical spectroscopy......The differentiation of protein properties and biological functions arises from the variation in the primary and secondary structure. Specifically, in abnormal assemblies of protein, such as amyloid peptide, the secondary structure is closely correlated with the stable ensemble and the cytotoxicity...

  4. Identification of distinct physiochemical properties of toxic prefibrillar species formed by A{beta} peptide variants

    Energy Technology Data Exchange (ETDEWEB)

    Goeransson, Anna-Lena, E-mail: anngo@ifm.liu.se [Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linkoeping University (Sweden); Nilsson, K. Peter R., E-mail: petni@ifm.liu.se [Division of Organic Chemistry, Department of Physics, Chemistry and Biology, Linkoeping University (Sweden); Kagedal, Katarina, E-mail: katarina.kagedal@liu.se [Department of Clinical and Experimental Medicine, Linkoeping University (Sweden); Brorsson, Ann-Christin, E-mail: anki@ifm.liu.se [Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linkoeping University (Sweden)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer Identification of toxic prefibrillar A{beta} species. Black-Right-Pointing-Pointer Fluorescence measurements using a combined set of fluorophores. Black-Right-Pointing-Pointer Morphology studies using transmission electron microscopy. -- Abstract: The formation of amyloid-{beta} peptide (A{beta}) aggregates at an early stage during the self-assembly process is an important factor in the development of Alzheimer's disease. The toxic effect is believed to be exerted by prefibrillar species of A{beta}. It is therefore important to identify which prefibrillar species are toxic and characterize their distinct properties. In the present study, we investigated the in vitro aggregation behavior of A{beta}-derived peptides possessing different levels of neurotoxic activity, using fluorescence spectroscopy in combination with transmission electron microscopy. The toxicity of various A{beta} aggregates was assessed by using cultures of human neuroblastoma cells. Through combined use of the fluorescence probe 8-anilino-1-napthalenesulfonate (ANS) and the novel luminescent probe pentamer formyl thiophene acetic acid (p-FTAA), we were able to identify those A{beta} peptide-derived prefibrillar species which exhibited cellular toxicity. In particular, species, which formed early during the aggregation process and showed strong p-FTAA and ANS fluorescence, were the species that possessed toxic activities. Moreover, by manipulating the aggregation conditions, it was possible to change the capacity of the A{beta} peptide to form nontoxic versus toxic species.

  5. Information-Selectivity of Beta-Amyloid Pathology in an Associative Memory Model

    Directory of Open Access Journals (Sweden)

    Mark eRowan

    2012-01-01

    Full Text Available This work updates Ruppin and Reggia's associative neural network model of Alzheimer's disease by simulating beta-amyloid pathology and modelling the progression of beta-amyloid throughout the network according to Small's synaptic scaling theory, leading to a self-reinforcing cascade of damage. Using an information theoretic approach, it is shown that the simulated beta-amyloid pathology initially selectively targets neurons with low contribution to the overall performance of the network, but that it targets neurons with increasingly higher significance to the network as the disease progresses. The results provide a possible explanation for the apparent low correlation between amyloid plaque density and cognitive decline in the early stages of Alzheimer's disease.

  6. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme.

    Science.gov (United States)

    Inestrosa, N C; Alvarez, A; Pérez, C A; Moreno, R D; Vicente, M; Linker, C; Casanueva, O I; Soto, C; Garrido, J

    1996-04-01

    Acetylcholinesterase (AChE), an important component of cholinergic synapses, colocalizes with amyloid-beta peptide (A beta) deposits of Alzheimer's brain. We report here that bovine brain AChE, as well as the human and mouse recombinant enzyme, accelerates amyloid formation from wild-type A beta and a mutant A beta peptide, which alone produces few amyloid-like fibrils. The action of AChE was independent of the subunit array of the enzyme, was not affected by edrophonium, an active site inhibitor, but it was affected by propidium, a peripheral anionic binding site ligand. Butyrylcholinesterase, an enzyme that lacks the peripheral site, did not affect amyloid formation. Furthermore, AChE is a potent amyloid-promoting factor when compared with other A beta-associated proteins. Thus, in addition to its role in cholinergic synapses, AChE may function by accelerating A beta formation and could play a role during amyloid deposition in Alzheimer's brain.

  7. Amyloid Beta Peptide Slows Down Sensory-Induced Hippocampal Oscillations

    Directory of Open Access Journals (Sweden)

    Fernando Peña-Ortega

    2012-01-01

    Full Text Available Alzheimer’s disease (AD progresses with a deterioration of hippocampal function that is likely induced by amyloid beta (Aβ oligomers. Hippocampal function is strongly dependent on theta rhythm, and disruptions in this rhythm have been related to the reduction of cognitive performance in AD. Accordingly, both AD patients and AD-transgenic mice show an increase in theta rhythm at rest but a reduction in cognitive-induced theta rhythm. We have previously found that monomers of the short sequence of Aβ (peptide 25–35 reduce sensory-induced theta oscillations. However, considering on the one hand that different Aβ sequences differentially affect hippocampal oscillations and on the other hand that Aβ oligomers seem to be responsible for the cognitive decline observed in AD, here we aimed to explore the effect of Aβ oligomers on sensory-induced theta rhythm. Our results show that intracisternal injection of Aβ1–42 oligomers, which has no significant effect on spontaneous hippocampal activity, disrupts the induction of theta rhythm upon sensory stimulation. Instead of increasing the power in the theta band, the hippocampus of Aβ-treated animals responds to sensory stimulation (tail pinch with an increase in lower frequencies. These findings demonstrate that Aβ alters induced theta rhythm, providing an in vivo model to test for therapeutic approaches to overcome Aβ-induced hippocampal and cognitive dysfunctions.

  8. Amyloid Beta-Protein and Neural Network Dysfunction

    Directory of Open Access Journals (Sweden)

    Fernando Peña-Ortega

    2013-01-01

    Full Text Available Understanding the neural mechanisms underlying brain dysfunction induced by amyloid beta-protein (Aβ represents one of the major challenges for Alzheimer’s disease (AD research. The most evident symptom of AD is a severe decline in cognition. Cognitive processes, as any other brain function, arise from the activity of specific cell assemblies of interconnected neurons that generate neural network dynamics based on their intrinsic and synaptic properties. Thus, the origin of Aβ-induced cognitive dysfunction, and possibly AD-related cognitive decline, must be found in specific alterations in properties of these cells and their consequences in neural network dynamics. The well-known relationship between AD and alterations in the activity of several neural networks is reflected in the slowing of the electroencephalographic (EEG activity. Some features of the EEG slowing observed in AD, such as the diminished generation of different network oscillations, can be induced in vivo and in vitro upon Aβ application or by Aβ overproduction in transgenic models. This experimental approach offers the possibility to study the mechanisms involved in cognitive dysfunction produced by Aβ. This type of research may yield not only basic knowledge of neural network dysfunction associated with AD, but also novel options to treat this modern epidemic.

  9. Cerebrolysin decreases amyloid-beta production by regulating amyloid protein precursor maturation in a transgenic model of Alzheimer's disease.

    Science.gov (United States)

    Rockenstein, Edward; Torrance, Magdalena; Mante, Michael; Adame, Anthony; Paulino, Amy; Rose, John B; Crews, Leslie; Moessler, Herbert; Masliah, Eliezer

    2006-05-15

    Cerebrolysin is a peptide mixture with neurotrophic effects that might reduce the neurodegenerative pathology in Alzheimer's disease (AD). We have previously shown in an amyloid protein precursor (APP) transgenic (tg) mouse model of AD-like neuropathology that Cerebrolysin ameliorates behavioral deficits, is neuroprotective, and decreases amyloid burden; however, the mechanisms involved are not completely clear. Cerebrolysin might reduce amyloid deposition by regulating amyloid-beta (Abeta) degradation or by modulating APP expression, maturation, or processing. To investigate these possibilities, APP tg mice were treated for 6 months with Cerebrolysin and analyzed in the water maze, followed by RNA, immunoblot, and confocal microscopy analysis of full-length (FL) APP and its fragments, beta-secretase (BACE1), and Abeta-degrading enzymes [neprilysin (Nep) and insulin-degrading enzyme (IDE)]. Consistent with previous studies, Cerebrolysin ameliorated the performance deficits in the spatial learning portion of the water maze and reduced the synaptic pathology and amyloid burden in the brains of APP tg mice. These effects were associated with reduced levels of FL APP and APP C-terminal fragments, but levels of BACE1, Notch1, Nep, and IDE were unchanged. In contrast, levels of active cyclin-dependent kinase-5 (CDK5) and glycogen synthase kinase-3beta [GSK-3beta; but not stress-activated protein kinase-1 (SAPK1)], kinases that phosphorylate APP, were reduced. Furthermore, Cerebrolysin reduced the levels of phosphorylated APP and the accumulation of APP in the neuritic processes. Taken together, these results suggest that Cerebrolysin might reduce AD-like pathology in the APP tg mice by regulating APP maturation and transport to sites where Abeta protein is generated. This study clarifies the mechanisms through which Cerebrolysin might reduce Abeta production and deposition in AD and further supports the importance of this compound in the potential treatment of early AD.

  10. Copper enhances amyloid-beta peptide neurotoxicity and non beta-aggregation: a series of experiments conducted upon copper-bound and copper-free amyloid-beta peptide.

    Science.gov (United States)

    Dai, Xueling; Sun, Yaxuan; Gao, Zhaolan; Jiang, Zhaofeng

    2010-05-01

    Alzheimer's disease is characterized by the abnormal aggregation of amyloid-beta peptide (Abeta) in extracellular deposits known as senile plaques. However, the nature of the toxic Abeta species and its precise mechanism of action remain unclear. Previous reports suggest that the histidine residues are involved in copper-Abeta interaction, by which resulting in the neurotoxicity of Abeta and free radical damage. Here, we employed a mutant Abeta (Abeta H13R) in which a histidine residue was replaced by arginine. Copper facilitated the precipitation of both wild-type and mutant Abeta in the spectrophotometric absorbance assay but suppressed beta-structure aggregates according to Thioflavine-T assay. Wild-type Abeta alone is more cytotoxic but produced less amount of H(2)O(2) than AbetaH13R-copper complexes, suggesting that Abeta-membrane interaction may also implicated in the pathologic progress. Abeta toxicity is in positive correlation to its competence to aggregate despite the aggregation is mainly composed of non-beta fibril substances. In short, these findings may provide further evidence on the role of copper in the pathogenesis of Alzheimer's disease.

  11. Neurotrophic and Neurotoxic Effects of Amyloid |beta Protein: Reversal by Tachykinin Neuropeptides

    Science.gov (United States)

    Yankner, Bruce A.; Duffy, Lawrence K.; Kirschner, Daniel A.

    1990-10-01

    The amyloid β protein is deposited in the brains of patients with Alzheimer's disease but its pathogenic role is unknown. In culture, the amyloid β protein was neurotrophic to undifferentiated hippocampal neurons at low concentrations and neurotoxic to mature neurons at higher concentrations. In differentiated neurons, amyloid β protein caused dendritic and axonal retraction followed by neuronal death. A portion of the amyloid β protein (amino acids 25 to 35) mediated both the trophic and toxic effects and was homologous to the tachykinin neuropeptide family. The effects of the amyloid β protein were mimicked by tachykinin antagonists and completely reversed by specific tachykinin agonists. Thus, the amyloid β protein could function as a neurotrophic factor for differentiating neurons, but at high concentrations in mature neurons, as in Alzheimer's disease, could cause neuronal degeneration.

  12. The Mitochondrial Peptidase Pitrilysin Degrades Islet Amyloid Polypeptide in Beta-Cells.

    Directory of Open Access Journals (Sweden)

    Hanjun Guan

    Full Text Available Amyloid formation and mitochondrial dysfunction are characteristics of type 2 diabetes. The major peptide constituent of the amyloid deposits in type 2 diabetes is islet amyloid polypeptide (IAPP. In this study, we found that pitrilysin, a zinc metallopeptidase of the inverzincin family, degrades monomeric, but not oligomeric, islet amyloid polypeptide in vitro. In insulinoma cells when pitrilysin expression was decreased to 5% of normal levels, there was a 60% increase in islet amyloid polypeptide-induced apoptosis. In contrast, overexpression of pitrilysin protects insulinoma cells from human islet amyloid polypeptide-induced apoptosis. Since pitrilysin is a mitochondrial protein, we used immunofluorescence staining of pancreases from human IAPP transgenic mice and Western blot analysis of IAPP in isolated mitochondria from insulinoma cells to provide evidence for a putative intramitochondrial pool of IAPP. These results suggest that pitrilysin regulates islet amyloid polypeptide in beta cells and suggest the presence of an intramitochondrial pool of islet amyloid polypeptide involved in beta-cell apoptosis.

  13. Membrane Pore Formation by Amyloid beta (25-35) Peptide

    Science.gov (United States)

    Kandel, Nabin; Tatulian, Suren

    Amyloid (A β) peptide contributes to Alzheimer's disease by a yet unidentified mechanism. One of the possible mechanisms of A β toxicity is formation of pores in cellular membranes. We have characterized the formation of pores in phospholipid membranes by the Aβ25 - 35 peptide (GSNKGAIIGLM) using fluorescence, Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) techniques. CD and FTIR identified formation of β-sheet structure upon incubation of the peptide in aqueous buffer for 2 hours. Unilamellar vesicles composed of a zwitterionic lipid, 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and 70 % POPC plus 30 % of an acidic lipid, 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG), are made in 30 mM CaCl2. Quin-2, a fluorophore that displays increased fluorescence upon Ca2+ binding, is added to the vesicles externally. Peptide addition results in increased Quin-2 fluorescence, which is interpreted by binding of the peptide to the vesicles, pore formation, and Ca2+ leakage. The positive and negative control measurements involve addition of a detergent, Triton X-100, which causes vesicle rupture and release of total calcium, and blank buffer, respectively.

  14. Amyloid beta and Alzheimer’s Disease: The role of neprilysin-2 in amyloid-beta clearance

    Directory of Open Access Journals (Sweden)

    Robert eMarr

    2014-08-01

    Full Text Available Accumulation of the amyloid-beta (Ab peptide is a central factor in Alzheimer’s disease (AD pathogenesis as supported by continuing evidence. This review concisely summarizes this evidence supporting a critical role for Ab in AD before discussing the clearance of this peptide. Mechanisms of clearance of Ab are critical for preventing pathological elevations in Ab concentration. Direct degradation of Ab by endopeptidases has emerged as one important pathway for clearance. Of particular interest are endopeptidases that are sensitive to the neprilysin (NEP inhibitors thiorphan and phosphoramidon (i.e. are NEP-like as these inhibitors induce a dramatic increase in Ab levels in rodents. This review will focus on Neprilysin-2 (NEP2, a NEP-like endopeptidase which cooperates with NEP to control Ab levels in the brain. The evidence for the involvement of NEP2 in AD is discussed as well as the therapeutic relevance with regards to gene therapy and the development of molecular markers for the disease.

  15. Diagnostic Accuracy of Cerebrospinal Fluid Amyloid-beta Isoforms for Early and Differential Dementia Diagnosis

    NARCIS (Netherlands)

    Struyfs, Hanne; Van Broeck, Bianca; Timmers, Maarten; Fransen, Erik; Sleegers, Kristel; Van Broeckhoven, Christine; De Deyn, Peter P.; Streffer, Johannes R.; Mercken, Marc; Engelborghs, Sebastiaan

    2015-01-01

    Background: Overlapping cerebrospinal fluid biomarkers (CSF) levels between Alzheimer's disease (AD) and non-AD patients decrease differential diagnostic accuracy of the AD core CSF biomarkers. Amyloid-beta (A beta) isoforms might improve the AD versus non-AD differential diagnosis. Objective: To de

  16. Absence of beta-amyloid in cortical cataracts of donors with and without Alzheimer's disease.

    Science.gov (United States)

    Michael, Ralph; Rosandić, Jurja; Montenegro, Gustavo A; Lobato, Elvira; Tresserra, Francisco; Barraquer, Rafael I; Vrensen, Gijs F J M

    2013-01-01

    Eye lenses from human donors with and without Alzheimer's disease (AD) were studied to evaluate the presence of amyloid in cortical cataract. We obtained 39 lenses from 21 postmortem donors with AD and 15 lenses from age-matched controls provided by the Banco de Ojos para Tratamientos de la Ceguera (Barcelona, Spain). For 17 donors, AD was clinically diagnosed by general physicians and for 4 donors the AD diagnosis was neuropathologically confirmed. Of the 21 donors with AD, 6 had pronounced bilateral cortical lens opacities and 15 only minor or no cortical opacities. As controls, 7 donors with pronounced cortical opacities and 8 donors with almost transparent lenses were selected. All lenses were photographed in a dark field stereomicroscope. Histological sections were analyzed using a standard and a more sensitive Congo red protocol, thioflavin staining and beta-amyloid immunohistochemistry. Brain tissue from two donors, one with cerebral amyloid angiopathy and another with advanced AD-related changes and one cornea with lattice dystrophy were used as positive controls for the staining techniques. Thioflavin, standard and modified Congo red staining were positive in the control brain tissues and in the dystrophic cornea. Beta-amyloid immunohistochemistry was positive in the brain tissues but not in the cornea sample. Lenses from control and AD donors were, without exception, negative after Congo red, thioflavin, and beta-amyloid immunohistochemical staining. The results of the positive control tissues correspond well with known observations in AD, amyloid angiopathy and corneas with lattice dystrophy. The absence of staining in AD and control lenses with the techniques employed lead us to conclude that there is no beta-amyloid in lenses from donors with AD or in control cortical cataracts. The inconsistency with previous studies of Goldstein et al. (2003) and Moncaster et al. (2010), both of which demonstrated positive Congo red, thioflavin, and beta-amyloid

  17. Structural Transformation and Aggregation of cc-beta Peptides Into Amyloid Proto-fibrils

    Science.gov (United States)

    Bhandari, Yuba; Steckmann, Timothy; Chapagain, Prem; Gerstman, Bernard

    2013-03-01

    The study of amyloid fibrils has important implications in understanding and treatment of various neurodegenerative diseases such as Alzheimer's and Parkinson's. During the formation of amyloid fibrils, peptide polymers manifest fascinating physical behavior by undergoing complicated structural transformations. We examine the behavior of a small engineered peptide called cc-beta, that was designed to mimic the structural changes of the much larger, naturally occurring amyloid beta proteins. Molecular dynamics (MD) simulations are performed to uncover the underlying physics that is responsible for the large scale structural transformations. By using implicit solvent replica exchange MD simulations, we examined the behavior of 12 peptides, initially arranged in four different cc-beta alpha helix trimers. We observed various intermediate stages of aggregation, as well as an organized proto-fibril beta aggregate. We discuss the time evolution and the various interactions involved in the structural transformation.

  18. Lipid rafts participate in aberrant degradative autophagic-lysosomal pathway of amyloid-beta peptide in Alzheimer’s disease

    Institute of Scientific and Technical Information of China (English)

    Xin Zhou; Chun Yang; Yufeng Liu; Peng Li; Huiying Yang; Jingxing Dai; Rongmei Qu; Lin Yuan

    2014-01-01

    Amyloid-beta peptide is the main component of amyloid plaques, which are found in Alzhei-mer’s disease. The generation and deposition of amyloid-beta is one of the crucial factors for the onset and progression of Alzheimer’s disease. Lipid rafts are glycolipid-rich liquid domains of the plasma membrane, where certain types of protein tend to aggregate and intercalate. Lipid rafts are involved in the generation of amyloid-beta oligomers and the formation of amyloid-beta peptides. In this paper, we review the mechanism by which lipid rafts disturb the aberrant deg-radative autophagic-lysosomal pathway of amyloid-beta, which plays an important role in the pathological process of Alzheimer’s disease. Moreover, we describe this mechanism from the view of the Two-system Theory of fasciology and thus, suggest that lipid rafts may be a new target of Alzheimer’s disease treatment.

  19. Nanoscale-alumina induces oxidative stress and accelerates amyloid beta (Aβ) production in ICR female mice.

    Science.gov (United States)

    Shah, Shahid Ali; Yoon, Gwang Ho; Ahmad, Ashfaq; Ullah, Faheem; Ul Amin, Faiz; Kim, Myeong Ok

    2015-10-01

    The adverse effects of nanoscale-alumina (Al2O3-NPs) have been previously demonstrated in both in vitro and in vivo studies, whereas little is known about their mechanism of neurotoxicity. It is the goal of this research to determine the toxic effects of nano-alumina on human neuroblastoma SH-SY5Y and mouse hippocampal HT22 cells in vitro and on ICR female mice in vivo. Nano-alumina displayed toxic effects on SH-SY5Y cell lines in three different concentrations also increased aluminium abundance and induced oxidative stress in HT22 cells. Nano-alumina peripherally administered to ICR female mice for three weeks increased brain aluminium and ROS production, disturbing brain energy homeostasis, and led to the impairment of hippocampus-dependent memory. Most importantly, these nano-particles induced Alzheimer disease (AD) neuropathology by enhancing the amyloidogenic pathway of Amyloid Beta (Aβ) production, aggregation and implied the progression of neurodegeneration in the cortex and hippocampus of these mice. In conclusion, these data demonstrate that nano-alumina is toxic to both cells and female mice and that prolonged exposure may heighten the chances of developing a neurodegenerative disease, such as AD.

  20. Early Treatment Critical: Bexarotene Reduces Amyloid-Beta Burden In Silico.

    Science.gov (United States)

    Rosenthal, Joseph; Belfort, Georges; Isaacson, David

    2016-01-01

    Amyloid-beta peptides have long been implicated in the pathology of Alzheimer's disease. Bexarotene, a drug approved by the U.S. Food and Drug Administration for treating a class of non-Hodgkin's lymphoma, has been reported to facilitate the removal of amyloid-beta. We have developed a mathematical model to explore the efficacy of bexarotene treatment in reducing amyloid-beta load, and simulate amyloid-beta production throughout the lifespan of diseased mice. Both aspects of the model are based on and consistent with previous experimental results. Beyond what is known empirically, our model shows that low dosages of bexarotene are unable to reverse symptoms in diseased mice, but dosages at and above an age-dependent critical concentration can recover healthy brain cells. Further, early treatment was shown to have significantly improved efficacy versus treatment in older mice. Relevance with respect to bexarotene-based amyloid-beta-clearance mechanism and direct treatment for Alzheimer's disease is emphasized.

  1. Amyloid-Beta Related Angiitis of the Central Nervous System: Case Report and Topic Review

    Directory of Open Access Journals (Sweden)

    Amre eNouh

    2014-02-01

    Full Text Available Amyloid-beta related angiitis (ABRA of the central nervous system (CNS is a rare disorder with overlapping features of primary angiits of the CNS (PACNS and cerebral amyloid angiopathy (CAA. We evaluated a 74-year-old man with intermittent left sided weakness and MRI findings of leptomeningeal enhancement, vasogenic edema and subcortical white matter disease proven to have ABRA. We discuss clinicopathological features and review the topic of ABRA.

  2. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease

    DEFF Research Database (Denmark)

    Weiner, H L; Lemere, C A; Maron, R;

    2000-01-01

    Progressive cerebral deposition of amyloid-beta (Abeta) peptide, an early and essential feature of Alzheimer's disease (AD), is accompanied by an inflammatory reaction marked by microgliosis, astrocytosis, and the release of proinflammatory cytokines. Mucosal administration of disease......-Abeta antibodies of the IgG1 and IgG2b classes, and mononuclear cells in the brain expressing the anti-inflammatory cytokines interleukin-4, interleukin-10, and tumor growth factor-beta. Our results demonstrate that chronic nasal administration of Abeta peptide can induce an immune response to Abeta that decreases...

  3. Metabolic Characterization of Intact Cells Reveals Intracellular Amyloid Beta but Not Its Precursor Protein to Reduce Mitochondrial Respiration

    Science.gov (United States)

    Schaefer, Patrick M.; von Einem, Bjoern; Walther, Paul; Calzia, Enrico; von Arnim, Christine A. F.

    2016-01-01

    One hallmark of Alzheimer´s disease are senile plaques consisting of amyloid beta (Aβ), which derives from the processing of the amyloid precursor protein (APP). Mitochondrial dysfunction has been linked to the pathogenesis of Alzheimer´s disease and both Aβ and APP have been reported to affect mitochondrial function in isolated systems. However, in intact cells, considering a physiological localization of APP and Aβ, it is pending what triggers the mitochondrial defect. Thus, the aim of this study was to dissect the impact of APP versus Aβ in inducing mitochondrial alterations with respect to their subcellular localization. We performed an overexpression of APP or beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), increasing APP and Aβ levels or Aβ alone, respectively. Conducting a comprehensive metabolic characterization we demonstrate that only APP overexpression reduced mitochondrial respiration, despite lower extracellular Aβ levels compared to BACE overexpression. Surprisingly, this could be rescued by a gamma secretase inhibitor, oppositionally indicating an Aβ-mediated mitochondrial toxicity. Analyzing Aβ localization revealed that intracellular levels of Aβ and an increased spatial association of APP/Aβ with mitochondria are associated with reduced mitochondrial respiration. Thus, our data provide marked evidence for a prominent role of intracellular Aβ accumulation in Alzheimer´s disease associated mitochondrial dysfunction. Thereby it highlights the importance of the localization of APP processing and intracellular transport as a decisive factor for mitochondrial function, linking two prominent hallmarks of neurodegenerative diseases. PMID:28005987

  4. Solution structures of {beta}-amyloid{sub 10-35} and {beta}-amyloid{sub 10-35} PEG3000 aggregates.

    Energy Technology Data Exchange (ETDEWEB)

    Benzinger, T. L. S.; Burkoth, T. S.; Gordon, D.; Lynn, D. G.; Meredith, S. C.; Morgan, D. M.; Seifert, S.; Thiyagarajan, P.; Urban, V.

    1999-07-02

    Small angle neutron and x-ray scattering (SANS/SAXS) studies were conducted on the structure of the aggregates formed from both the truncated model peptide {beta}-Amyloid(10-35) (A{beta}{sub 10-35}) and a block copolymer {beta}-Amyloid (10-35)-PEG3000 (A{beta}{sub 10-35}-PEG) in D{sub 2}O at pHs from 3.0 to 7.0. These studies indicate that A{beta}{sub 10-35} aggregates into rod-like particles (fibril) and their radii are strongly dependent on the Pm of the solution. The fibril-fibril association in A{beta}{sub 10-35} solutions is less of pH < 5.6, but becomes larger at higher pH. A{beta}{sub 10-35}-PEG also assembles into rod-like particles whose radius is larger by about 30 {angstrom} than that for A{beta}{sub 10-35} fibril at pH 4.2, while it is about 23 {angstrom} larger at higher pH. Contrast matching SAXS/SANS experiments that eliminate the coherent scattering from PEG reveal that PEG moiety is located at the periphery of the fibril. Also, the mass per unit length of the peptide portion is similar for both A{beta}{sub 10-35} and A{beta}{sub 10-35}-PEG fibrils at pH 5.6. The mass per unit length of the rods from SANS provides key information on the packing of A{beta}{sub 10-35} peptides in the fibril.

  5. Sugar microarray via click chemistry: molecular recognition with lectins and amyloid {beta} (1-42)

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Erino; Fukuda, Tomohiro; Miura, Yoshiko [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Yamauchi, Takahiro, E-mail: miuray@jaist.ac.j [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2009-06-15

    Sugar microarrays were fabricated on various substrates via click chemistry. Acetylene-terminated substrates were prepared by forming self-assembled monolayers (SAMs) on a gold substrate with alkyl-disulfide and on silicon, quartz and glass substrates with a silane-coupling reagent. The gold substrates were subjected to surface plasmon resonance measurements, and the quartz and glass substrates were subjected to spectroscopy measurements and optical microscopy observation. The saccharide-immobilized substrate on the gold substrate showed specific interaction with the corresponding lectin, and the saccharides showed inert surface properties to other proteins with a high signal-to-noise ratio. We also focused on the saccharide-protein interaction on protein amyloidosis of Alzheimer amyloid {beta}. Amyloid {beta} peptide showed conformation transition on the saccharide-immobilization substrate into a {beta}-sheet, and fibril formation and amyloid aggregates were found on the specific saccharides.

  6. CSF beta-amyloid levels are altered in narcolepsy: a link with the inflammatory hypothesis?

    Science.gov (United States)

    Liguori, Claudio; Placidi, Fabio; Albanese, Maria; Nuccetelli, Marzia; Izzi, Francesca; Marciani, Maria Grazia; Mercuri, Nicola Biagio; Bernardini, Sergio; Romigi, Andrea

    2014-08-01

    Narcolepsy is characterized by hypocretin deficiency due to the loss of hypothalamic orexinergic neurons, and is associated with both the human leucocyte antigen DQB1*06:02 and the T cell receptor polymorphism. The above relationship suggests autoimmune/inflammatory processes underlying the loss of orexinergic neurons in narcolepsy. To test the autoimmune/inflammatory hypothesis by means of cerebrospinal fluid (CSF) levels of beta-amyloid1-42 and/or total tau proteins in a sample of narcoleptic patients, we analysed 16 narcoleptic patients and 16 healthy controls. Beta-amyloid1-42 CSF levels were significantly lower in narcoleptic patients compared with healthy controls. We also documented pathologically low levels of CSF beta-amyloid1-42 (narcolepsy and the prevalence of an 'amyloidogenic' pathway caused by the deficiency of the alpha-secretases enzymes.

  7. Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function

    Directory of Open Access Journals (Sweden)

    Iwamoto Sean

    2006-11-01

    Full Text Available Abstract Background Neurodegeneration in Alzheimer's disease is associated with increased apoptosis and parallels increased levels of amyloid beta, which can induce neuronal apoptosis. Estrogen exposure prior to neurotoxic insult of hippocampal neurons promotes neuronal defence and survival against neurodegenerative insults including amyloid beta. Although all underlying molecular mechanisms of amyloid beta neurotoxicity remain undetermined, mitochondrial dysfunction, including altered calcium homeostasis and Bcl-2 expression, are involved in neurodegenerative vulnerability. Results In this study, we investigated the mechanism of 17β-estradiol-induced prevention of amyloid beta-induced apoptosis of rat hippocampal neuronal cultures. Estradiol treatment prior to amyloid beta exposure significantly reduced the number of apoptotic neurons and the associated rise in resting intracellular calcium levels. Amyloid beta exposure provoked down regulation of a key antiapoptotic protein, Bcl-2, and resulted in mitochondrial translocation of Bax, a protein known to promote cell death, and subsequent release of cytochrome c. E2 pretreatment inhibited the amyloid beta-induced decrease in Bcl-2 expression, translocation of Bax to the mitochondria and subsequent release of cytochrome c. Further implicating the mitochondria as a target of estradiol action, in vivo estradiol treatment enhanced the respiratory function of whole brain mitochondria. In addition, estradiol pretreatment protected isolated mitochondria against calcium-induced loss of respiratory function. Conclusion Therefore, we propose that estradiol pretreatment protects against amyloid beta neurotoxicity by limiting mitochondrial dysfunction via activation of antiapoptotic mechanisms.

  8. Dementia of the eye: the role of amyloid beta in retinal degeneration.

    Science.gov (United States)

    Ratnayaka, J A; Serpell, L C; Lotery, A J

    2015-08-01

    Age-related macular degeneration (AMD) is one of the most common causes of irreversible blindness affecting nearly 50 million individuals globally. The disease is characterised by progressive loss of central vision, which has significant implications for quality of life concerns in an increasingly ageing population. AMD pathology manifests in the macula, a specialised region of the retina, which is responsible for central vision and perception of fine details. The underlying pathology of this complex degenerative disease is incompletely understood but includes both genetic as well as epigenetic risk factors. The recent discovery that amyloid beta (Aβ), a highly toxic and aggregate-prone family of peptides, is elevated in the ageing retina and is associated with AMD has opened up new perspectives on the aetiology of this debilitating blinding disease. Multiple studies now link Aβ with key stages of AMD progression, which is both exciting and potentially insightful, as this identifies a well-established toxic agent that aggressively targets cells in degenerative brains. Here, we review the most recent findings supporting the hypothesis that Aβ may be a key factor in AMD pathology. We describe how multiple Aβ reservoirs, now reported in the ageing eye, may target the cellular physiology of the retina as well as associated layers, and propose a mechanistic pathway of Aβ-mediated degenerative change leading to AMD.

  9. Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Miklossy, J.; Miller, L.; Qing, H.; Radenovic, A.; Kis, A.; Vileno, B.; Laszlo, F.; Martins, R.N.; Waeber, G.; Mooser, V.; Bosman, F.; Khalili, K.; Darbinian, N.; McGeer, P.L.

    2008-08-25

    Strong epidemiologic evidence suggests an association between Alzheimer disease (AD) and type 2 diabetes. To determine if amyloid beta (A{beta}) and hyperphosphorylated tau occurs in type 2 diabetes, pancreas tissues from 21 autopsy cases (10 type 2 diabetes and 11 controls) were analyzed. APP and tau mRNAs were identified in human pancreas and in cultured insulinoma beta cells (INS-1) by RT-PCR. Prominent APP and tau bands were detected by Western blotting in pancreatic extracts. Aggregated A{beta}, hyperphosphorylated tau, ubiquitin, apolipoprotein E, apolipoprotein(a), IB1/JIP-1 and JNK1 were detected in Langerhans islets in type 2 diabetic patients. A{beta} was co-localized with amylin in islet amyloid deposits. In situ beta sheet formation of islet amyloid deposits was shown by infrared microspectroscopy (SIRMS). LPS increased APP in non-neuronal cells as well. We conclude that A{beta} deposits and hyperphosphorylated tau are also associated with type 2 diabetes, highlighting common pathogenetic features in neurodegenerative disorders, including AD and type 2 diabetes and suggesting that A{beta} deposits and hyperphosphorylated tau may also occur in other organs than the brain.

  10. Lipids in Amyloid-β Processing, Aggregation, and Toxicity.

    Science.gov (United States)

    Morgado, Isabel; Garvey, Megan

    2015-01-01

    Aggregation of amyloid-beta (Aβ) peptide is the major event underlying neuronal damage in Alzheimer's disease (AD). Specific lipids and their homeostasis play important roles in this and other neurodegenerative disorders. The complex interplay between the lipids and the generation, clearance or deposition of Aβ has been intensively investigated and is reviewed in this chapter. Membrane lipids can have an important influence on the biogenesis of Aβ from its precursor protein. In particular, increased cholesterol in the plasma membrane augments Aβ generation and shows a strong positive correlation with AD progression. Furthermore, apolipoprotein E, which transports cholesterol in the cerebrospinal fluid and is known to interact with Aβ or compete with it for the lipoprotein receptor binding, significantly influences Aβ clearance in an isoform-specific manner and is the major genetic risk factor for AD. Aβ is an amphiphilic peptide that interacts with various lipids, proteins and their assemblies, which can lead to variation in Aβ aggregation in vitro and in vivo. Upon interaction with the lipid raft components, such as cholesterol, gangliosides and phospholipids, Aβ can aggregate on the cell membrane and thereby disrupt it, perhaps by forming channel-like pores. This leads to perturbed cellular calcium homeostasis, suggesting that Aβ-lipid interactions at the cell membrane probably trigger the neurotoxic cascade in AD. Here, we overview the roles of specific lipids, lipid assemblies and apolipoprotein E in Aβ processing, clearance and aggregation, and discuss the contribution of these factors to the neurotoxicity in AD.

  11. Microscopic factors that control beta-sheet registry in amyloid fibrils formed by fragment 11-25 of amyloid beta peptide: insights from computer simulations.

    Science.gov (United States)

    Negureanu, Lacramioara; Baumketner, Andrij

    2009-06-26

    Short fragments of amyloidogenic proteins are widely used as model systems in studies of amyloid formation. Fragment 11-25 of the amyloid beta protein involved in Alzheimer's disease (Abeta11-25) was recently shown to form amyloid fibrils composed of anti-parallel beta-sheets. Interestingly, fibrils grown under neutral and acidic conditions were seen to possess different registries of their inter-beta-strand hydrogen bonds. In an effort to explain the microscopic origin of this pH dependence, we studied Abeta11-25 fibrils using methods of theoretical modeling. Several structural models were built for fibrils at low and neutral pH levels and these were examined in short molecular dynamics simulations in explicit water. The models that displayed the lowest free energy, as estimated using an implicit solvent model, were selected as representative of the true fibrillar structure. It was shown that the registry of these models agrees well with the experimental results. At neutral pH, the main contribution to the free energy difference between the two registries comes from the electrostatic interactions. The charge group of the carboxy terminus makes a large contribution to these interactions and thus appears to have a critical role in determining the registry.

  12. DNA polymerase-beta is expressed early in neurons of Alzheimer's disease brain and is loaded into DNA replication forks in neurons challenged with beta-amyloid

    NARCIS (Netherlands)

    A. Copani; J.J.M. Hoozemans; F. Caraci; M. Calafiore; E.S. van Haastert; R. Veerhuis; A.J.M. Rozemuller; E. Aronica; M.A. Sortino; F. Nicoletti

    2006-01-01

    Cultured neurons exposed to synthetic beta-amyloid (A beta) fragments reenter the cell cycle and initiate a pathway of DNA replication that involves the repair enzyme DNA polymerase-beta (DNA pol-beta) before undergoing apoptotic death. In this study, by performing coimmunoprecipitation experiments

  13. The Effect of Glycosaminoglycans (GAGs on Amyloid Aggregation and Toxicity

    Directory of Open Access Journals (Sweden)

    Clara Iannuzzi

    2015-02-01

    Full Text Available Amyloidosis is a protein folding disorder in which normally soluble proteins are deposited extracellularly as insoluble fibrils, impairing tissue structure and function. Charged polyelectrolytes such as glycosaminoglycans (GAGs are frequently found associated with the proteinaceous deposits in tissues of patients affected by amyloid diseases. Experimental evidence indicate that they can play an active role in favoring amyloid fibril formation and stabilization. Binding of GAGs to amyloid fibrils occurs mainly through electrostatic interactions involving the negative polyelectrolyte charges and positively charged side chains residues of aggregating protein. Similarly to catalyst for reactions, GAGs favor aggregation, nucleation and amyloid fibril formation functioning as a structural templates for the self-assembly of highly cytotoxic oligomeric precursors, rich in β-sheets, into harmless amyloid fibrils. Moreover, the GAGs amyloid promoting activity can be facilitated through specific interactions via consensus binding sites between amyloid polypeptide and GAGs molecules. We review the effect of GAGs on amyloid deposition as well as proteins not strictly related to diseases. In addition, we consider the potential of the GAGs therapy in amyloidosis.

  14. Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation

    NARCIS (Netherlands)

    Leuner, K.; Schutt, T.; Kurz, C.; Eckert, S.H.; Schiller, C.; Occhipinti, A.; Mai, S.; Jendrach, M.; Eckert, G.P.; Kruse, S.E.; Palmiter, R.D.; Brandt, U.; Drose, S.; Wittig, I.; Willem, M.; Haass, C.; Reichert, A.S.; Muller, W.E.

    2012-01-01

    AIMS: Intracellular amyloid beta (Abeta) oligomers and extracellular Abeta plaques are key players in the progression of sporadic Alzheimer's disease (AD). Still, the molecular signals triggering Abeta production are largely unclear. We asked whether mitochondrion-derived reactive oxygen species (RO

  15. TLR2 is a primary receptor for Alzheimer's amyloid beta peptide to trigger neuroinflammatory activation.

    NARCIS (Netherlands)

    Liu, S.; Liu, Y.; Hao, W.; Wolf, L.; Kiliaan, A.J.; Penke, B.; Rube, C.E.; Walter, J.; Heneka, M.T.; Hartmann, T.; Menger, M.D.; Fassbender, K.

    2012-01-01

    Microglia activated by extracellularly deposited amyloid beta peptide (Abeta) act as a two-edged sword in Alzheimer's disease pathogenesis: on the one hand, they damage neurons by releasing neurotoxic proinflammatory mediators (M1 activation); on the other hand, they protect neurons by triggering an

  16. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation

    DEFF Research Database (Denmark)

    Brambilla, Davide; Verpillot, Romain; Le Droumaguet, Benjamin;

    2012-01-01

    We have demonstrated that the polyethylene glycol (PEG) corona of long-circulating polymeric nanoparticles (NPs) favors interaction with the amyloid-beta (Aß(1-42)) peptide both in solution and in serum. The influence of PEGylation of poly(alkyl cyanoacrylate) and poly(lactic acid) NPs on the int...

  17. Amyloid-beta Oligomers Relate to Cognitive Decline in Alzheimer's Disease

    NARCIS (Netherlands)

    Jongbloed, W.; Bruggink, K.A.; Kester, M.I.; Visser, P.J.; Scheltens, P.; Blankenstein, M.A.; Verbeek, M.M.; Teunissen, C.E.; Veerhuis, R.

    2015-01-01

    BACKGROUND: Amyloid-beta (Abeta)-oligomers are neurotoxic isoforms of Abeta and are a potential diagnostic biomarker for Alzheimer's disease (AD). OBJECTIVES: 1) Analyze the potential of Abeta-oligomer concentrations in cerebrospinal fluid (CSF) to diagnose and predict progression to AD in a large c

  18. Insulin inhibits amyloid beta-induced cell death in cultured human brain pericytes.

    NARCIS (Netherlands)

    Rensink, A.A.M.; Otte-Holler, I.; Boer, R.; Bosch, R.R.; Donkelaar, H.J. ten; Waal, R.M.W. de; Verbeek, M.M.; Kremer, H.P.H.

    2004-01-01

    Amyloid-beta (Abeta) deposition in the cerebral arterial and capillary walls is one of the characteristics of Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type. In vitro, Abeta1-40, carrying the "Dutch" mutation (DAbeta1-40), induced reproducible degeneration of cult

  19. Ethyl ether fraction of Gastrodia elata Blume protects amyloid beta peptide-induced cell death.

    Science.gov (United States)

    Kim, Hyeon-Ju; Moon, Kwang-Deog; Lee, Dong-Seok; Lee, Sang-Han

    2003-01-01

    Alzheimer's disease is the most common cause of dementia in the elderly. Recently, it has been reported that Alzheimer's disease is associated with cell death in neuronal cells including the hippocampus. Amyloid beta-peptide stimulates neuronal cell death, but the underlying signaling pathways are poorly understood. In order to develop anti-dementia agents with potential therapeutic value, we examined the effect of the herbal compound Gastrodia elata Blume (GEB) on neuronal cell death induced by amyloid beta-peptide in IMR-32 neuroblastoma cells. The fractionation of GEB was carried out in various solvents. The hydroxyl radical scavenging effect of the ethyl ether fraction was more potent than any other fractions. In cells treated with amyloid beta-peptide, the neuroprotective effect of the ethyl ether, chloroform, and butanol fractions was 92, 44, and 39%, respectively, compared with control. Taken together, these results suggest that the ethyl ether fraction of GEB contains one or more compounds that dramatically reduce amyloid beta-peptide induced neuronal cell death in vitro.

  20. Increased plasma amyloid beta protein 1-42 levels in Down syndrome.

    Science.gov (United States)

    Mehta, P D; Dalton, A J; Mehta, S P; Kim, K S; Sersen, E A; Wisniewski, H M

    1998-01-23

    Amyloid beta protein 1-40 (A beta40) and A beta42 levels were quantitated in plasma from 43 persons with Down syndrome (DS; 26-68 years of age), 43 age-matched normal controls, and 19 non-DS mentally retarded (MR) persons (26-91 years of age) by using a sandwich enzyme linked immunosorbent assay. A beta40 levels were higher in DS and MR than controls, but were similar between DS and MR groups. A beta42 levels were higher in DS than controls or MR persons. The ratios of A beta42/A beta40 were higher in DS than controls or MR persons. The findings are consistent with those seen in DS brains.

  1. Protection of the blood-brain barrier by pentosan against amyloid-β-induced toxicity.

    Science.gov (United States)

    Deli, Mária A; Veszelka, Szilvia; Csiszár, Boglárka; Tóth, Andrea; Kittel, Agnes; Csete, Mária; Sipos, Aron; Szalai, Anikó; Fülöp, Lívia; Penke, Botond; Abrahám, Csongor S; Niwa, Masami

    2010-01-01

    Endothelial cells of brain capillaries forming the blood-brain barrier play an important role in the pathogenesis and therapy of Alzheimer's disease. Amyloid-β (Aβ) peptides are key pathological elements in the development of the disease. A blood-brain barrier model, based on primary rat brain endothelial cells was used in which the barrier properties were induced by glial cells. The effects of amyloid peptides have been tested on cell viability and barrier functions. Aβ showed toxic effects on primary rat brain endothelial cells measured by MTT dye conversion and the lactate dehydrogenase release. Morphologically cytoplasmic vacuolization, disruption of the structure of cytoplasmic organelles and tight junctions could be observed in brain endothelial cells. Treatment with Aβ1-42 decreased the electrical resistance, and increased the permeability of brain endothelial cell monolayers for both fluorescein and albumin. Serum amyloid P component which stabilizes Aβ fibrils in cortical amyloid plaques and cerebrovascular amyloid deposits significantly potentiated the barrier-weakening effect of Aβ1-42. Sulfated polysaccharide pentosan could decrease the toxic effects of Aβ peptides in brain endothelial cells. It could also significantly protect the barrier integrity of monolayers from damaging actions of peptides. Pentosan modified the size, and significantly decreased the number of amyloid aggregates demonstrated by atomic force microscopy. The present data further support the toxic effects of amyloid peptides on brain endothelial cells, and can contribute to the development of molecules protecting the blood-brain barrier in Alzheimer's disease.

  2. Preventive immunization of aged and juvenile non-human primates to beta-amyloid

    Directory of Open Access Journals (Sweden)

    Kofler Julia

    2012-05-01

    Full Text Available Abstract Background Immunization against beta-amyloid (Aβ is a promising approach for the treatment of Alzheimer’s disease, but the optimal timing for the vaccination remains to be determined. Preventive immunization approaches may be more efficacious and associated with fewer side-effects; however, there is only limited information available from primate models about the effects of preclinical vaccination on brain amyloid composition and the neuroinflammatory milieu. Methods Ten non-human primates (NHP of advanced age (18–26 years and eight 2-year-old juvenile NHPs were immunized at 0, 2, 6, 10 and 14 weeks with aggregated Aβ42 admixed with monophosphoryl lipid A as adjuvant, and monitored for up to 6 months. Anti-Aβ antibody levels and immune activation markers were assessed in plasma and cerebrospinal fluid samples before and at several time-points after immunization. Microglial activity was determined by [11C]PK11195 PET scans acquired before and after immunization, and by post-mortem immunohistochemical and real-time PCR evaluation. Aβ oligomer composition was assessed by immunoblot analysis in the frontal cortex of aged immunized and non-immunized control animals. Results All juvenile animals developed a strong and sustained serum anti-Aβ IgG antibody response, whereas only 80 % of aged animals developed detectable antibodies. The immune response in aged monkeys was more delayed and significantly weaker, and was also more variable between animals. Pre- and post-immunization [11C]PK11195 PET scans showed no evidence of vaccine-related microglial activation. Post-mortem brain tissue analysis indicated a low overall amyloid burden, but revealed a significant shift in oligomer size with an increase in the dimer:pentamer ratio in aged immunized animals compared with non-immunized controls (P  Conclusions Our results indicate that preventive Aβ immunization is a safe therapeutic approach lacking adverse CNS immune system

  3. MMPBSA decomposition of the binding energy throughout a molecular dynamics simulation of amyloid-beta (Abeta(10-35)) aggregation.

    Science.gov (United States)

    Campanera, Josep M; Pouplana, Ramon

    2010-04-15

    Recent experiments with amyloid-beta (Abeta) peptides indicate that the formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depend on their structure, which is governed by assembly dynamics. However, a detailed knowledge of the structure of at the atomic level has not been achieved yet due to limitations of current experimental techniques. In this study, replica exchange molecular dynamics simulations are used to identify the expected diversity of dimer conformations of Abeta(10-35) monomers. The most representative dimer conformation has been used to track the dimer formation process between both monomers. The process has been characterized by means of the evolution of the decomposition of the binding free energy, which provides an energetic profile of the interaction. Dimers undergo a process of reorganization driven basically by inter-chain hydrophobic and hydrophilic interactions and also solvation/desolvation processes.

  4. MMPBSA Decomposition of the Binding Energy throughout a Molecular Dynamics Simulation of Amyloid-Beta (Aß10−35 Aggregation

    Directory of Open Access Journals (Sweden)

    Josep M. Campanera

    2010-04-01

    Full Text Available Recent experiments with amyloid-beta (Aβ peptides indicate that the formation of toxic oligomers may be an important contribution to the onset of Alzheimer’s disease. The toxicity of Aβ oligomers depend on their structure, which is governed by assembly dynamics. However, a detailed knowledge of the structure of at the atomic level has not been achieved yet due to limitations of current experimental techniques. In this study, replica exchange molecular dynamics simulations are used to identify the expected diversity of dimer conformations of Aβ10−35 monomers. The most representative dimer conformation has been used to track the dimer formation process between both monomers. The process has been characterized by means of the evolution of the decomposition of the binding free energy, which provides an energetic profile of the interaction. Dimers undergo a process of reorganization driven basically by inter-chain hydrophobic and hydrophilic interactions and also solvation/desolvation processes.

  5. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    Directory of Open Access Journals (Sweden)

    Bastus Neus

    2008-01-01

    Full Text Available Abstract Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  6. Protective spin-labeled fluorenes maintain amyloid beta peptide in small oligomers and limit transitions in secondary structure

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Robin [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine; Ly, Sonny [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Physical and Life Science Directorate; Hilt, Silvia [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine; Petrlova, Jitka [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine; Maezawa, Izumi [Univ. of California Davis, Sacramento, CA (United States). MIND Inst. and Dept. of Pathology and Laboratory Medicine; Kálai, Tamás [Univ. of Pecs (Hungary). Inst. of Organic and Medicinal Chemistry; Hideg, Kálmán [Univ. of Pecs (Hungary). Inst. of Organic and Medicinal Chemistry; Jin, Lee-Way [Univ. of California Davis, Sacramento, CA (United States). MIND Inst. and Dept. of Pathology and Laboratory Medicine; Laurence, Ted A. [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine; Voss, John C. [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine

    2015-12-01

    Alzheimer’s disease is characterized by the presence of extracellular plaques comprised of amyloid beta (Aβ) peptides. Soluble oligomers of the Aβ peptide underlie a cascade of neuronal loss and dysfunction associated with Alzheimer's disease. Single particle analyses of Aβ oligomers in solution by fluorescence correlation spectroscopy (FCS) were used to provide real-time descriptions of how spin-labeled fluorenes (SLFs; bi-functional small molecules that block the toxicity of Aβ) prevent and disrupt oligomeric assemblies of Aβ in solution. The FCS results, combined with electron paramagnetic resonance spectroscopy and circular dichroism spectroscopy, demonstrate SLFs can inhibit the growth of Aβ oligomers and disrupt existing oligomers while retaining Aβ in a largely disordered state. Furthermore, while the ability of SLF to block Aβ toxicity correlates with a reduction in oligomer size, our results suggest the conformation of Aβ within the oligomer determines the toxicity of the species. Attenuation of Aβ toxicity, which has been associated primarily with the soluble oligomeric form, can be achieved through redistribution of the peptides into smaller oligomers and arrest of the fractional increase in beta secondary structure.

  7. Inhibition of Alzheimer's amyloid toxicity with a tricyclic pyrone molecule in vitro and in vivo.

    Science.gov (United States)

    Hong, Hyun-Seok; Rana, Sandeep; Barrigan, Lydia; Shi, Aibin; Zhang, Yi; Zhou, Feimeng; Jin, Lee-Way; Hua, Duy H

    2009-02-01

    Small beta-amyloid (Abeta) 1-42 aggregates are toxic to neurons and may be the primary toxic species in Alzheimer's disease (AD). Methods to reduce the level of Abeta, prevent Abeta aggregation, and eliminate existing Abeta aggregates have been proposed for treatment of AD. A tricyclic pyrone named CP2 is found to prevent cell death associated with Abeta oligomers. We studied the possible mechanisms of neuroprotection by CP2. Surface plasmon resonance spectroscopy shows a direct binding of CP2 with Abeta42 oligomer. Circular dichroism spectroscopy reveals monomeric Abeta42 peptide remains as a random coil/alpha-helix structure in the presence of CP2 over 48 h. Atomic force microscopy studies show CP2 exhibits similar ability to inhibit Abeta42 aggregation as that of Congo red and curcumin. Atomic force microscopy closed-fluid cell study demonstrates that CP2 disaggregates Abeta42 oligomers and protofibrils. CP2 also blocks Abeta fibrillations using a protein quantification method. Treatment of 5x familial Alzheimer's disease mice, a robust Abeta42-producing animal model of AD, with a 2-week course of CP2 resulted in 40% and 50% decreases in non-fibrillar and fibrillar Abeta species, respectively. Our results suggest that CP2 might be beneficial to AD patients by preventing Abeta aggregation and disaggregating existing Abeta oligomers and protofibrils.

  8. Molecular simulations of beta-amyloid protein near hydrated lipids (PECASE).

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aidan Patrick; Han, Kunwoo (Texas A& M University, College Station, TX); Ford, David M. (Texas A& M University, College Station, TX)

    2005-12-01

    We performed molecular dynamics simulations of beta-amyloid (A{beta}) protein and A{beta} fragment(31-42) in bulk water and near hydrated lipids to study the mechanism of neurotoxicity associated with the aggregation of the protein. We constructed full atomistic models using Cerius2 and ran simulations using LAMMPS. MD simulations with different conformations and positions of the protein fragment were performed. Thermodynamic properties were compared with previous literature and the results were analyzed. Longer simulations and data analyses based on the free energy profiles along the distance between the protein and the interface are ongoing.

  9. Cu K-edge X-ray Absorption Spectroscopy Reveals Differential Copper Coordimation Within Amyloid-beta Oligomers Compared to Amyloid-beta Monomers

    Energy Technology Data Exchange (ETDEWEB)

    J Shearer; P Callan; T Tran; V Szalai

    2011-12-31

    The fatal neurodegenerative disorder Alzheimer's disease (AD) has been linked to the formation of soluble neurotoxic oligomers of amyloid-{beta} (A{beta}) peptides. These peptides have high affinities for copper cations. Despite their potential importance in AD neurodegeneration few studies have focused on probing the Cu{sup 2+/1+} coordination environment within A{beta} oligomers. Herein we present a Cu K-edge X-ray absorption spectroscopic study probing the copper-coordination environment within oligomers of A{beta}(42) (sequence: DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA). We find that the Cu{sup 2+} cation is contained within a square planar mixed N/O ligand environment within A{beta}(42) oligomers, which is similar to the copper coordination environment of the monomeric forms of {l_brace}Cu{sup II}A{beta}(40){r_brace} and {l_brace}Cu{sup II}A{beta}(16){r_brace}. Reduction of the Cu{sup 2+} cation within the A{beta}(42) oligomers to Cu{sup 1+} yields a highly dioxygen sensitive copper-species that contains Cu{sup 1+} in a tetrahedral coordination geometry. This can be contrasted with monomers of {l_brace}Cu{sup I}A{beta}(40){r_brace} and {l_brace}Cu{sup I}A{beta}(16){r_brace}, which contain copper in a dioxygen inert linear bis-histidine ligand environment [Shearer and Szalai, J. Am. Chem. Soc., 2008, 130, 17826]. The biological implications of these findings are discussed.

  10. Calcium ionophore A23187 specifically decreases the secretion of beta-secretase cleaved amyloid precursor protein during apoptosis in primary rat cortical cultures

    DEFF Research Database (Denmark)

    Sennvik, K; Benedikz, Eirikur; Fastbom, J;

    2001-01-01

    Alzheimer's disease (AD) is characterized by the degeneration and loss of neurons, intracellular neurofibrillary tangles and the accumulation of extracellular senile plaques consisting mainly of beta-amyloid (A beta). A beta is generated from the amyloid precursor protein (APP) by sequential beta...

  11. All-atom molecular dynamics studies of the full-length {beta}-amyloid peptides

    Energy Technology Data Exchange (ETDEWEB)

    Luttmann, Edgar [Department of Chemistry, Faculty of Science, University of Paderborn, Warburgerstr. 100, 33098 Paderborn (Germany); Fels, Gregor [Department of Chemistry, Faculty of Science, University of Paderborn, Warburgerstr. 100, 33098 Paderborn (Germany)], E-mail: fels@uni-paderborn.de

    2006-03-31

    {beta}-Amyloid peptides are believed to play an essential role in Alzheimer's disease (AD), due to their sedimentation in the form of {beta}-amyloid aggregates in the brain of AD-patients, and the in vitro neurotoxicity of oligomeric aggregates. The monomeric peptides come in different lengths of 39-43 residues, of which the 42 alloform seems to be most strongly associated with AD-symptoms. Structural information on these peptides to date comes from NMR studies in acidic solutions, organic solvents, or on shorter fragments of the peptide. In addition X-ray and solid-state NMR investigations of amyloid fibrils yield insight into the structure of the final aggregate and therefore define the endpoint of any conformational change of an A{beta}-monomer along the aggregation process. The conformational changes necessary to connect the experimentally known conformations are not yet understood and this process is an active field of research. In this paper, we report results from all-atom molecular dynamics simulations based on experimental data from four different peptides of 40 amino acids and two peptides consisting of 42 amino acids. The simulations allow for the analysis of intramolecular interactions and the role of structural features. In particular, they show the appearance of {beta}-turn in the region between amino acid 21 and 33, forming a hook-like shape as it is known to exist in the fibrillar A{beta}-structures. This folding does not depend on the formation of a salt bridge between Asp-23 and Lys-28 but requires the A{beta}(1-42) as such structure was not observed in the shorter system A{beta}(1-40)

  12. A Simulation Model of Periarterial Clearance of Amyloid-beta from the Brain

    Directory of Open Access Journals (Sweden)

    Alexandra Katharina Diem

    2016-02-01

    Full Text Available The accumulation of soluble and insoluble amyloid-beta (A-beta in the brain indicates failure of elimination of A-beta from the brain with age and Alzheimer's disease. There is a variety of mechanisms for elimination of A-beta from the brain. They include the action of microglia and enzymes together with receptor-mediated absorption of A-beta into the blood and periarterial lymphatic drainage of A-beta. Although the brain possesses no conventional lymphatics, experimental studies have shown that fluid and solutes, such as A-beta, are eliminated from the brain along 100 nm wide basement membranes in the walls of cerebral capillaries and arteries. This lymphatic drainage pathway is reflected in the deposition of A-beta in the walls of human arteries with age and Alzheimer's disease as cerebral amyloid angiopathy (CAA. Initially, A-beta diffuses through the extracellular spaces of grey matter in the brain and then enters basement membranes in capillaries and arteries to flow out of the brain. Although diffusion through the extracellular spaces of the brain has been well characterised, the exact mechanism whereby perivascular elimination of A-beta occurs has not been resolved. Here we use a computational model to describe the process of periarterial drainage in the context of diffusion in the brain, demonstrating that periarterial drainage along basement membranes is very rapid compared with diffusion. Our results are a validation of experimental data and are significant in the context of failure of periarterial drainage as a mechanism underlying the pathogenesis of AD as well as complications associated with its immunotherapy.

  13. [beta subsccript 2]-microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong; Sawaya, Michael R.; Eisenberg, David (UCLA)

    2011-08-09

    {beta}{sub 2}-microglobulin ({beta}{sub 2}-m) is the light chain of the type I major histocompatibility complex. It deposits as amyloid fibrils within joints during long-term hemodialysis treatment. Despite the devastating effects of dialysis-related amyloidosis, full understanding of how fibrils form from soluble {beta}{sub 2}-m remains elusive. Here we show that {beta}{sub 2}-m can oligomerize and fibrillize via three-dimensional domain swapping. Isolating a covalently bound, domain-swapped dimer from {beta}{sub 2}-m oligomers on the pathway to fibrils, we were able to determine its crystal structure. The hinge loop that connects the swapped domain to the core domain includes the fibrillizing segment LSFSKD, whose atomic structure we also determined. The LSFSKD structure reveals a class 5 steric zipper, akin to other amyloid spines. The structures of the dimer and the zipper spine fit well into an atomic model for this fibrillar form of {beta}{sub 2}-m, which assembles slowly under physiological conditions.

  14. A novel presenilin-1 mutation: increased beta-amyloid and neurofibrillary changes.

    Science.gov (United States)

    Gómez-Isla, T; Wasco, W; Pettingell, W P; Gurubhagavatula, S; Schmidt, S D; Jondro, P D; McNamara, M; Rodes, L A; DiBlasi, T; Growdon, W B; Seubert, P; Schenk, D; Growdon, J H; Hyman, B T; Tanzi, R E

    1997-06-01

    The prevalence of known mutations in presenilin genes (PS1 and PS2) causing early-onset familial Alzheimer's disease (FAD) was assessed in a population of 98 singleton early-onset AD cases, 29 early-onset FAD cases, and 15 late-onset FAD cases. None of the cases tested positive for the eight mutations initially reported, and none of these mutations were observed in 60 age-matched controls. A novel mutation (R269H) in PS1 was found in a single case of early-onset AD but not in any other AD or control case. Thus, the PS mutations tested are quite rare in early-onset AD. Amyloid beta protein (A beta) deposition was investigated in the temporal cortex of the R269H mutation case using end-specific monoclonal antibodies to detect the presence of A beta x-40 and A beta x-42 subspecies. Stereologically unbiased tangle and neuropil thread counts were obtained from the same region. R269H PS1 mutation was associated with early age of dementia onset, higher amounts of total A beta and A beta x-42, and increased neuronal cytoskeletal changes. Thus, if the changes observed on this case prove to be typical of PS1 mutations, PS1 mutations may impact both amyloid deposition and neurofibrillary pathology.

  15. ATP-promoted amyloidosis of an amyloid beta peptide.

    Science.gov (United States)

    Exley, C

    1997-10-20

    Amyloidosis is implicated in the aetiology of a number of disorders of human health. The factors that influence its instigation and subsequent rate of progress are the subject of a considerable research effort. The peptide fragment A beta(25-35) is amyloidogenic and has proven to be a useful model of the processes involved in amyloidosis. It is demonstrated herein that the assembly of A beta(25-35) into thioflavin T-reactive fibrils and their subsequent rearrangement into advanced glycation endproducts is accelerated by ATP. Aluminium potentiated these effects of ATP, suggesting a possible link with the aetiology of amyloidoses in vivo.

  16. Cannabidiol promotes amyloid precursor protein ubiquitination and reduction of beta amyloid expression in SHSY5YAPP+ cells through PPARγ involvement.

    Science.gov (United States)

    Scuderi, Caterina; Steardo, Luca; Esposito, Giuseppe

    2014-07-01

    The amyloidogenic cascade is regarded as a key factor at the basis of Alzheimer's disease (AD) pathogenesis. The aberrant cleavage of amyloid precursor protein (APP) induces an increased production and a subsequent aggregation of beta amyloid (Aβ) peptide in limbic and association cortices. As a result, altered neuronal homeostasis and oxidative injury provoke tangle formation with consequent neuronal loss. Cannabidiol (CBD), a Cannabis derivative devoid of psychotropic effects, has attracted much attention because it may beneficially interfere with several Aβ-triggered neurodegenerative pathways, even though the mechanism responsible for such actions remains unknown. In the present research, the role of CBD was investigated as a possible modulating compound of APP processing in SHSY5Y(APP+) neurons. In addition, the putative involvement of peroxisome proliferator-activated receptor-γ (PPARγ) was explored as a candidate molecular site responsible for CBD actions. Results indicated the CBD capability to induce the ubiquitination of APP protein which led to a substantial decrease in APP full length protein levels in SHSY5Y(APP+) with the consequent decrease in Aβ production. Moreover, CBD promoted an increased survival of SHSY5Y(APP+) neurons, by reducing their long-term apoptotic rate. Obtained results also showed that all, here observed, CBD effects were dependent on the selective activation of PPARγ.

  17. P-glycoprotein efflux and other factors limit brain amyloid beta reduction by beta-site amyloid precursor protein-cleaving enzyme 1 inhibitors in mice.

    Science.gov (United States)

    Meredith, Jere E; Thompson, Lorin A; Toyn, Jeremy H; Marcin, Lawrence; Barten, Donna M; Marcinkeviciene, Jovita; Kopcho, Lisa; Kim, Young; Lin, Alan; Guss, Valerie; Burton, Catherine; Iben, Lawrence; Polson, Craig; Cantone, Joe; Ford, Michael; Drexler, Dieter; Fiedler, Tracey; Lentz, Kimberley A; Grace, James E; Kolb, Janet; Corsa, Jason; Pierdomenico, Maria; Jones, Kelli; Olson, Richard E; Macor, John E; Albright, Charles F

    2008-08-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease. Amyloid beta (Abeta) peptides are hypothesized to cause the initiation and progression of AD based on pathologic data from AD patients, genetic analysis of mutations that cause early onset forms of AD, and preclinical studies. Based on this hypothesis, beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) inhibitors are an attractive therapeutic approach for AD because cleavage of the APP by BACE1 is required to form Abeta. In this study, three potent BACE1 inhibitors are characterized. All three inhibitors decrease Abeta formation in cultured cells with IC(50) values less than 10 nM. Analysis of APP C-terminal fragments by immunoblotting and Abeta peptides by mass spectrometry showed that these inhibitors decreased Abeta by inhibiting BACE1. An assay for Abeta1-40 in mice was developed and used to show that these BACE1 inhibitors decreased plasma Abeta1-40, but not brain Abeta1-40, in wild-type mice. Because these BACE1 inhibitors were substrates for P-glycoprotein (P-gp), a member of the ATP-binding cassette superfamily of efflux transporters, these inhibitors were administered to P-gp knockout (KO) mice. These studies showed that all three BACE1 inhibitors decreased brain Abeta1-40 in P-gp KO mice, demonstrating that P-gp is a major limitation for development of BACE1 inhibitors to test the amyloid hypothesis. A comparison of plasma Abeta1-40 and brain Abeta1-40 dose responses for these three compounds revealed differences in relative ED(50) values, indicating that factors other than P-gp can also contribute to poor brain activity by BACE1 inhibitors.

  18. Amyloid beta1–42 and the phoshorylated tau threonine 231 in brains of aged cynomolgus monkeys (Macaca fascicularis)

    DEFF Research Database (Denmark)

    Darusman, Huda Shalahudin; Gjedde, Albert; Sajuthi, Dondin

    2014-01-01

    Pathological hallmarks indicative of Alzheimer's disease (AD), which are the plaques of amyloid beta1-42 and neurofibrillary tangles, were found in brain of aged cynomolgus monkey. The aim of this study was to investigate if aged monkeys exhibiting spatial memory impairment and levels of biomarkers...... angiopathy, and the tauopathy, to possible neurofibrillary tangles. Six aged monkeys were selected based on their spatial memory performance and profile of biomarkers of AD, divided equally to affected aged subject - with Memory-affected and low amyloid level, and aged with higher performance in memory...... and amyloid, as the age-matched subjects. Using immunohistochemistry, plaques of amyloid beta1-42 were observed in two out of three brains of aged subjects with memory impairment and biomarkers indicative of AD. The cerebral amyloid angiopathy was observed in both aged monkey groups, and unlike in the human...

  19. Effect of pathogenic mutations on the structure and dynamics of Alzheimer's A beta 42-amyloid oligomers.

    Science.gov (United States)

    Kassler, Kristin; Horn, Anselm H C; Sticht, Heinrich

    2010-05-01

    Converging lines of evidence suggest that soluble A beta-amyloid oligomers play a pivotal role in the pathogenesis of Alzheimer's disease, and present direct effectors of synaptic and cognitive dysfunction. Three pathological E22-A beta-amyloid point mutants (E22G, E22K, E22Q) and the deletion mutant E22 Delta exhibit an enhanced tendency to form prefibrillar aggregates. The present study assessed the effect of these four mutations using molecular dynamics simulations and subsequent structural and energetic analyses. Our data shows that E22 plays a unique role in wild type A beta, since it has a destabilising effect on the oligomer structure due to electrostatic repulsion between adjacent E22 side chains. Mutations in which E22 is replaced by an uncharged residue result in higher oligomer stability. This effect is also observed to a lesser extent for the E22K mutation and is consistent with its lower pathogenicity compared to other mutants. Interestingly, deletion of E22 does not destroy the amyloid fold but is compensated by local changes in the backbone geometry that allow the preservation of a structurally important salt bridge. The finding that all mutant oligomers investigated exhibit higher internal stability than the wild type offers an explanation for the experimentally observed enhanced oligomer formation and stability.

  20. Genes and mechanisms involved in beta-amyloid generation and Alzheimer's disease.

    Science.gov (United States)

    Steiner, H; Capell, A; Leimer, U; Haass, C

    1999-01-01

    Alzheimer's disease is characterized by the invariable accumulation of senile plaques that are predominantly composed of amyloid beta-peptide (Abeta). Abeta is generated by proteolytic processing of the beta-amyloid precursor protein (betaAPP) involving the combined action of beta- and gamma-secretase. Cleavage within the Abeta domain by alpha-secretase prevents Abeta generation. In some very rare cases of familial AD (FAD), mutations have been identified within the betaAPP gene. These mutations are located close to or at the cleavage sites of the secretases and pathologically effect betaAPP processing by increasing Abeta production, specifically its highly amyloidogenic 42 amino acid variant (Abeta42). Most of the mutations associated with FAD have been identified in the two presenilin (PS) genes, particularly the PS1 gene. Like the mutations identified within the betaAPP gene, mutations in PS1 and PS2 cause the increased generation of Abeta42. PS1 has been shown to be functionally involved in Notch signaling, a key process in cellular differentation, and in betaAPP processing. A gene knock out of PS1 in mice leads to an embryonic lethal phenotype similar to that of mice lacking Notch. In addition, absence of PS1 results in reduced gamma-secretase cleavage and leads to an accumulation of betaAPP C-terminal fragments and decreased amounts of Abeta. Recent work may suggest that PS1 could be the gamma-secretase itself, exhibiting the properties of a novel aspartyl protease. Mutagenesis of either of two highly conserved intramembraneous aspartate residues of PS1 leads to reduced Abeta production as observed in the PS1 knockout. A corresponding mutation in PS2 interfered with betaAPP processing and Notch signaling suggesting a functional redundancy of both presenilins. In this issue, some of the recent work on the molecular mechanisms involved in Alzheimer's disease (AD) as well as novel diagnostic approaches and risk factors for AD will be discussed. In the first

  1. Interrelation of inflammation and APP in sIBM: IL-1 beta induces accumulation of beta-amyloid in skeletal muscle.

    Science.gov (United States)

    Schmidt, Jens; Barthel, Konstanze; Wrede, Arne; Salajegheh, Mohammad; Bähr, Mathias; Dalakas, Marinos C

    2008-05-01

    Distinct interrelationships between inflammation and beta-amyloid-associated degeneration, the two major hallmarks of the skeletal muscle pathology in sporadic inclusion body myositis (sIBM), have remained elusive. Expression of markers relevant for these pathomechanisms were analysed in biopsies of sIBM, polymyositis (PM), dermatomyositis (DM), dystrophic and non-myopathic muscle as controls, and cultured human myotubes. By quantitative PCR, a higher upregulation was noted for the mRNA-expression of CXCL-9, CCL-3, CCL-4, IFN-gamma, TNF-alpha and IL-1 beta in sIBM muscle compared to PM, DM and controls. All inflammatory myopathies displayed overexpression of degeneration-associated markers, yet only in sIBM, expression of the mRNA of amyloid precursor protein (APP) significantly and consistently correlated with inflammation in the muscle and mRNA-levels of chemokines and IFN-gamma. Only in sIBM, immunohistochemical analysis revealed that inflammatory mediators including IL-1 beta co-localized to beta-amyloid depositions within myofibres. In human myotubes, exposure to IL-1 beta caused upregulation of APP with subsequent intracellular aggregation of beta-amyloid. Our data suggest that, in sIBM muscle, production of high amounts of pro-inflammatory mediators specifically induces beta-amyloid-associated degeneration. The observations may help to design targeted treatment strategies for chronic inflammatory disorders of the skeletal muscle.

  2. Mechanism of neuronal versus endothelial cell uptake of Alzheimer's disease amyloid beta protein.

    Directory of Open Access Journals (Sweden)

    Karunya K Kandimalla

    Full Text Available Alzheimer's disease (AD is characterized by significant neurodegeneration in the cortex and hippocampus; intraneuronal tangles of hyperphosphorylated tau protein; and accumulation of beta-amyloid (Abeta proteins 40 and 42 in the brain parenchyma as well as in the cerebral vasculature. The current understanding that AD is initiated by the neuronal accumulation of Abeta proteins due to their inefficient clearance at the blood-brain-barrier (BBB, places the neurovascular unit at the epicenter of AD pathophysiology. The objective of this study is to investigate cellular mechanisms mediating the internalization of Abeta proteins in the principle constituents of the neurovascular unit, neurons and BBB endothelial cells. Laser confocal micrographs of wild type (WT mouse brain slices treated with fluorescein labeled Abeta40 (F-Abeta40 demonstrated selective accumulation of the protein in a subpopulation of cortical and hippocampal neurons via nonsaturable, energy independent, and nonendocytotic pathways. This groundbreaking finding, which challenges the conventional belief that Abeta proteins are internalized by neurons via receptor mediated endocytosis, was verified in differentiated PC12 cells and rat primary hippocampal (RPH neurons through laser confocal microscopy and flow cytometry studies. Microscopy studies have demonstrated that a significant proportion of F-Abeta40 or F-Abeta42 internalized by differentiated PC12 cells or RPH neurons is located outside of the endosomal or lysosomal compartments, which may accumulate without degradation. In contrast, BBME cells exhibit energy dependent uptake of F-Abeta40, and accumulate the protein in acidic cell organelle, indicative of endocytotic uptake. Such a phenomenal difference in the internalization of Abeta40 between neurons and BBB endothelial cells may provide essential clues to understanding how various cells can differentially regulate Abeta proteins and help explain the vulnerability of cortical

  3. Amyloid beta resistance in nerve cell lines is mediated by the Warburg effect.

    Directory of Open Access Journals (Sweden)

    Jordan T Newington

    Full Text Available Amyloid beta (Aβ peptide accumulation in the brains of patients with Alzheimer's disease (AD is closely associated with increased nerve cell death. However, many cells survive and it is important to understand the mechanisms involved in this survival response. Recent studies have shown that an anti-apoptotic mechanism in cancer cells is mediated by aerobic glycolysis, also known as the Warburg effect. One of the major regulators of aerobic glycolysis is pyruvate dehydrogenase kinase (PDK, an enzyme which represses mitochondrial respiration and forces the cell to rely heavily on glycolysis, even in the presence of oxygen. Recent neuroimaging studies have shown that the spatial distribution of aerobic glycolysis in the brains of AD patients strongly correlates with Aβ deposition. Interestingly, clonal nerve cell lines selected for resistance to Aβ exhibit increased glycolysis as a result of activation of the transcription factor hypoxia inducible factor 1. Here we show that Aβ resistant nerve cell lines upregulate Warburg effect enzymes in a manner reminiscent of cancer cells. In particular, Aβ resistant nerve cell lines showed elevated PDK1 expression in addition to an increase in lactate dehydrogenase A (LDHA activity and lactate production when compared to control cells. In addition, mitochondrial derived reactive oxygen species (ROS were markedly diminished in resistant but not sensitive cells. Chemically or genetically inhibiting LDHA or PDK1 re-sensitized resistant cells to Aβ toxicity. These findings suggest that the Warburg effect may contribute to apoptotic-resistance mechanisms in the surviving neurons of the AD brain. Loss of the adaptive advantage afforded by aerobic glycolysis may exacerbate the pathophysiological processes associated with AD.

  4. Intravenous immunglobulin binds beta amyloid and modifies its aggregation, neurotoxicity and microglial phagocytosis in vitro.

    Directory of Open Access Journals (Sweden)

    Susann Cattepoel

    Full Text Available Intravenous Immunoglobulin (IVIG has been proposed as a potential therapeutic for Alzheimer's disease (AD and its efficacy is currently being tested in mild-to-moderate AD. Earlier studies reported the presence of anti-amyloid beta (Aβ antibodies in IVIG. These observations led to clinical studies investigating the potential role of IVIG as a therapeutic agent in AD. Also, IVIG is known to mediate beneficial effects in chronic inflammatory and autoimmune conditions by interfering with various pathological processes. Therefore, we investigated the effects of IVIG and purified polyclonal Aβ-specific antibodies (pAbs-Aβ on aggregation, toxicity and phagocytosis of Aβ in vitro, thus elucidating some of the potential mechanisms of action of IVIG in AD patients. We report that both IVIG and pAbs-Aβ specifically bound to Aβ and inhibited its aggregation in a dose-dependent manner as measured by Thioflavin T assay. Additionally, IVIG and the purified pAbs-Aβ inhibited Aβ-induced neurotoxicity in the SH-SY5Y human neuroblastoma cell line and prevented Aβ binding to rat primary cortical neurons. Interestingly, IVIG and pAbs-Aβ also increased the number of phagocytosing cells as well as the amount of phagocytosed fibrillar Aβ by BV-2 microglia. Phagocytosis of Aβ depended on receptor-mediated endocytosis and was accompanied by upregulation of CD11b expression. Importantly, we could also show that Privigen dose-dependently reversed Aβ-mediated LTP inhibition in mouse hippocampal slices. Therefore, our in vitro results suggest that IVIG may have an impact on different processes involved in AD pathogenesis, thereby promoting further understanding of the effects of IVIG observed in clinical studies.

  5. Purified and synthetic Alzheimer's amyloid beta (Aβ) prions.

    Science.gov (United States)

    Stöhr, Jan; Watts, Joel C; Mensinger, Zachary L; Oehler, Abby; Grillo, Sunny K; DeArmond, Stephen J; Prusiner, Stanley B; Giles, Kurt

    2012-07-03

    The aggregation and deposition of amyloid-β (Aβ) peptides are believed to be central events in the pathogenesis of Alzheimer's disease (AD). Inoculation of brain homogenates containing Aβ aggregates into susceptible transgenic mice accelerated Aβ deposition, suggesting that Aβ aggregates are capable of self-propagation and hence might be prions. Recently, we demonstrated that Aβ deposition can be monitored in live mice using bioluminescence imaging (BLI). Here, we use BLI to probe the ability of Aβ aggregates to self-propagate following inoculation into bigenic mice. We report compelling evidence that Aβ aggregates are prions by demonstrating widespread cerebral β-amyloidosis induced by inoculation of either purified Aβ aggregates derived from brain or aggregates composed of synthetic Aβ. Although synthetic Aβ aggregates were sufficient to induce Aβ deposition in vivo, they exhibited lower specific biological activity compared with brain-derived Aβ aggregates. Our results create an experimental paradigm that should lead to identification of self-propagating Aβ conformations, which could represent novel targets for interrupting the spread of Aβ deposition in AD patients.

  6. Misfolded amyloid ion channels present mobile beta-sheet subunits in contrast to conventional ion channels.

    Science.gov (United States)

    Jang, Hyunbum; Arce, Fernando Teran; Capone, Ricardo; Ramachandran, Srinivasan; Lal, Ratnesh; Nussinov, Ruth

    2009-12-02

    In Alzheimer's disease, calcium permeability through cellular membranes appears to underlie neuronal cell death. It is increasingly accepted that calcium permeability involves toxic ion channels. We modeled Alzheimer's disease ion channels of different sizes (12-mer to 36-mer) in the lipid bilayer using molecular dynamics simulations. Our Abeta channels consist of the solid-state NMR-based U-shaped beta-strand-turn-beta-strand motif. In the simulations we obtain ion-permeable channels whose subunit morphologies and shapes are consistent with electron microscopy/atomic force microscopy. In agreement with imaged channels, the simulations indicate that beta-sheet channels break into loosely associated mobile beta-sheet subunits. The preferred channel sizes (16- to 24-mer) are compatible with electron microscopy/atomic force microscopy-derived dimensions. Mobile subunits were also observed for beta-sheet channels formed by cytolytic PG-1 beta-hairpins. The emerging picture from our large-scale simulations is that toxic ion channels formed by beta-sheets spontaneously break into loosely interacting dynamic units that associate and dissociate leading to toxic ionic flux. This sharply contrasts intact conventional gated ion channels that consist of tightly interacting alpha-helices that robustly prevent ion leakage, rather than hydrogen-bonded beta-strands. The simulations suggest why conventional gated channels evolved to consist of interacting alpha-helices rather than hydrogen-bonded beta-strands that tend to break in fluidic bilayers. Nature designs folded channels but not misfolded toxic channels.

  7. Longitudinal assessment of tau and amyloid beta in cerebrospinal fluid of Parkinson disease.

    Science.gov (United States)

    Zhang, Jing; Mattison, Hayley A; Liu, Changqin; Ginghina, Carmen; Auinger, Peggy; McDermott, Michael P; Stewart, Tessandra; Kang, Un Jung; Cain, Kevin C; Shi, Min

    2013-11-01

    Tau gene has been consistently associated with the risk of Parkinson disease in recent genome wide association studies. In addition, alterations of the levels of total tau, phosphorylated tau [181P], and amyloid beta 1-42 in cerebrospinal fluid have been reported in patients with sporadic Parkinson disease and asymptomatic carriers of leucine-rich repeat kinase 2 mutations, in patterns that clearly differ from those typically described for patients with Alzheimer disease. To further determine the potential roles of these molecules in Parkinson disease pathogenesis and/or in tracking the disease progression, especially at early stages, the current study assessed all three proteins in 403 Parkinson disease patients enrolled in the DATATOP (Deprenyl and tocopherol antioxidative therapy of parkinsonism) placebo-controlled clinical trial, the largest cohort to date with cerebrospinal fluid samples collected longitudinally. These initially drug-naive patients at early disease stages were clinically evaluated, and cerebrospinal fluid was collected at baseline and then at endpoint, defined as the time at which symptomatic anti-Parkinson disease medications were determined to be required. General linear models were used to test for associations between baseline cerebrospinal fluid biomarker levels or their rates of change and changes in the Unified Parkinson Disease Rating Scale (total or part III motor score) over time. Robust associations among candidate markers are readily noted. Baseline levels of amyloid beta were weakly but negatively correlated with baseline Unified Parkinson Disease Rating Scale total scores. Baseline phosphorylated tau/total tau and phosphorylated tau/amyloid beta were significantly and negatively correlated with the rates of the Unified Parkinson Disease Rating Scale change. While medications (deprenyl and/or tocopherol) did not appear to alter biomarkers appreciably, a weak but significant positive correlation between the rate of change in total

  8. MALDI, AP/MALDI and ESI techniques for the MS detection of amyloid [beta]-peptides

    Science.gov (United States)

    Grasso, Giuseppe; Mineo, Placido; Rizzarelli, Enrico; Spoto, Giuseppe

    2009-04-01

    Amyloid [beta]-peptides (A[beta]s) are involved in several neuropathological conditions such as Alzheimer's disease and considerable experimental evidences have emerged indicating that different proteases play a major role in regulating the accumulation of A[beta]s in the brain. Particularly, insulin-degrading enzyme (IDE) has been shown to degrade A[beta]s at different cleavage sites, but the experimental results reported in the literature and obtained by mass spectrometry methods are somehow fragmentary. The detection of A[beta]s is often complicated by solubility issues, oxidation artifacts and spontaneous aggregation/cleavage and, in order to rationalize the different reported results, we analyzed A[beta]s solutions by three different MS approaches: matrix assisted laser desorption ionization-time of flight (MALDI-TOF), atmospheric pressure (AP) MALDI ion trap and electrospray ionization (ESI) ion trap. Differences in the obtained results are discussed and ESI is chosen as the most suitable MS method for A[beta]s detection. Finally, cleavage sites produced by interaction of A[beta]s with IDE are identified, two of which had never been reported in the literature.

  9. p35/Cyclin-dependent kinase 5 is required for protection against beta-amyloid-induced cell death but not tau phosphorylation by ceramide.

    Science.gov (United States)

    Seyb, Kathleen I; Ansar, Sabah; Li, Guibin; Bean, Jennifer; Michaelis, Mary L; Dobrowsky, Rick T

    2007-01-01

    Ceramide is a bioactive sphingolipid that can prevent calpain activation and beta-amyloid (A beta) neurotoxicity in cortical neurons. Recent evidence supports A beta induction of a calpain-dependent cleavage of the cyclin-dependent kinase 5 (cdk5) regulatory protein p35 that contributes to tau hyperphosphorylation and neuronal death. Using cortical neurons isolated from wild-type and p35 knockout mice, we investigated whether ceramide required p35/cdk5 to protect against A beta-induced cell death and tau phosphorylation. Ceramide inhibited A beta-induced calpain activation and cdk5 activity in wild-type neurons and protected against neuronal death and tau hyperphosphorylation. Interestingly, A beta also increased cdk5 activity in p35-/- neurons, suggesting that the alternate cdk5 regulatory protein, p39, might mediate this effect. In p35 null neurons, ceramide blocked A beta-induced calpain activation but did not inhibit cdk5 activity or cell death. However, ceramide blocked tau hyperphosphorylation potentially via inhibition of glycogen synthase kinase-3beta. These data suggest that ceramide can regulate A beta cell toxicity in a p35/cdk5-dependent manner.

  10. Computational Design of New Peptide Inhibitors for Amyloid Beta (Aβ) Aggregation in Alzheimer's Disease: Application of a Novel Methodology

    OpenAIRE

    Gözde Eskici; Mert Gur

    2013-01-01

    Computational Design of New Peptide Inhibitors for Amyloid Beta (Ab) Aggregation in Alzheimer’s Disease: Application of a Novel Methodology Go¨ zde Eskici¤a , Mert Gur¤b* Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey Abstract Alzheimer’s disease is the most common form of dementia. It is a neurodegenerative and incurable disease that is associated with the tight packing of amyloid fibrils. This packing is facilitated by the compatib...

  11. Alzheimer's disease and amyloid beta-peptide deposition in the brain: a matter of 'aging'?

    DEFF Research Database (Denmark)

    Moro, Maria Luisa; Collins, Matthew J; Cappellini, Enrico

    2010-01-01

    Biomolecules can experience aging processes that limit their long-term functionality in organisms. Typical markers of protein aging are spontaneous chemical modifications, such as AAR (amino acid racemization) and AAI (amino acid isomerization), mainly involving aspartate and asparagine residues....... Since these modifications may affect folding and turnover, they reduce protein functionality over time and may be linked to pathological conditions. The present mini-review describes evidence of AAR and AAI involvement in the misfolding and brain accumulation of Abeta (amyloid beta-peptide), a central...

  12. IFN-gamma promotes complement expression and attenuates amyloid plaque deposition in amyloid beta precursor protein transgenic mice.

    Science.gov (United States)

    Chakrabarty, Paramita; Ceballos-Diaz, Carolina; Beccard, Amanda; Janus, Christopher; Dickson, Dennis; Golde, Todd E; Das, Pritam

    2010-05-01

    Reactive gliosis surrounding amyloid beta (Abeta) plaques is an early feature of Alzheimer's disease pathogenesis and has been postulated to represent activation of the innate immune system in an apparently ineffective attempt to clear or neutralize Abeta aggregates. To evaluate the role of IFN-gamma-mediated neuroinflammation on the evolution of Abeta pathology in transgenic (Tg) mice, we have expressed murine IFN-gamma (mIFN-gamma) in the brains of Abeta precursor protein (APP) Tg mice using recombinant adeno-associated virus serotype 1. Expression of mIFN-gamma in brains of APP TgCRND8 mice results in robust noncell autonomous activation of microglia and astrocytes, and a concomitant significant suppression of Abeta deposition. In these mice, mIFN-gamma expression upregulated multiple glial activation markers, early components of the complement cascade as well as led to infiltration of Ly-6c positive peripheral monocytes but no significant effects on APP levels, APP processing or steady-state Abeta levels were noticed in vivo. Taken together, these results suggest that mIFN-gamma expression in the brain suppresses Abeta accumulation through synergistic effects of activated glia and components of the innate immune system that enhance Abeta aggregate phagocytosis.

  13. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid1–40-induced toxicity

    Directory of Open Access Journals (Sweden)

    Yongjie Li

    2015-01-01

    Full Text Available Amyloid beta-peptides (Aβ are known to undergo active transport across the blood-brain barrier, and cerebral amyloid angiopathy has been shown to be a prominent feature in the majority of Alzheimer׳s disease. Quercetin is a natural flavonoid molecule and has been demonstrated to have potent neuroprotective effects, but its protective effect on endothelial cells under Aβ-damaged condition is unclear. In the present study, the protective effects of quercetin on brain microvascular endothelial cells injured by fibrillar Aβ1–40 (fAβ1–40 were observed. The results show that fAβ1–40-induced cytotoxicity in human brain microvascular endothelial cells (hBMECs can be relieved by quercetin treatment. Quercetin increases cell viability, reduces the release of lactate dehydrogenase, and relieves nuclear condensation. Quercetin also alleviates intracellular reactive oxygen species generation and increases superoxide dismutase activity. Moreover, it strengthens the barrier integrity through the preservation of the transendothelial electrical resistance value, the relief of aggravated permeability, and the increase of characteristic enzyme levels after being exposed to fAβ1–40. In conclusion, quercetin protects hBMECs from fAβ1–40-induced toxicity.

  14. Hormetic effect of amyloid-beta peptide in hippocampal synaptic plasticity and memory

    Directory of Open Access Journals (Sweden)

    Daniela Puzzo

    2012-09-01

    Full Text Available Background: The term hormesis refers to a biphasic dose-response phenomenon characterized by low-dose stimulation and high-dose inhibition represented by a J-shaped or U-shaped curve, depending on the parameter measured (Calabrese and Baldwin, Hum Exp Toxicol, 2002. Indeed, several, if not all, physiological molecules (i.e. glutamate, glucocorticoids, nitric oxide are likely to present a hormetic effect, exhibiting opposite effects at high or low concentrations. In the last few years, we have focused on amyloid-beta (A, a peptide widely known because it is produced in high amounts during Alzheimer’s disease (AD. A is considered a toxic fragment causing synaptic dysfunction and memory impairment (Selkoe, Science, 2002. However, the peptide is normally produced in the healthy brain and growing evidences indicate that it might have a physiologic function. Aim: Based on previous results showing that picomolar concentrations of A42 enhance synaptic plasticity and memory (Puzzo et al, J Neurosci, 2008 and that endogenous A is necessary for synaptic plasticity and memory (Puzzo et al, Ann Neurol, 2011, the aim of our study was to demonstrate the hormetic role of A in synaptic plasticity and memory. Methods: We used 3-month old wild type mice to analyze how synaptic plasticity, measured on hippocampal slices in vitro, and spatial reference memory were modified by treatment with different doses of A (from 2 pM to 20 μM. Results: We demonstrated that A has a hormetic effect (Puzzo et al, Neurobiol Aging, 2012 with low-doses (200 pM stimulating synaptic plasticity and memory and high-doses (≥ 200 nM inhibiting these processes. Conclusions: Our results suggest that, paradoxically, very low doses of A might serve to enhance memory at appropriate concentrations and conditions. These findings raise several issues when designing

  15. Functional Amyloid Formation within Mammalian Tissue.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available Amyloid is a generally insoluble, fibrous cross-beta sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin-a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology.

  16. Functional amyloid formation within mammalian tissue.

    Directory of Open Access Journals (Sweden)

    Douglas M Fowler

    2006-01-01

    Full Text Available Amyloid is a generally insoluble, fibrous cross-beta sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin-a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology.

  17. Decrease in the production of beta-amyloid by berberine inhibition of the expression of beta-secretase in HEK293 cells

    Directory of Open Access Journals (Sweden)

    Zhu Feiqi

    2011-12-01

    Full Text Available Abstract Background Berberine (BER, the major alkaloidal component of Rhizoma coptidis, has multiple pharmacological effects including inhibition of acetylcholinesterase, reduction of cholesterol and glucose levels, anti-inflammatory, neuroprotective and neurotrophic effects. It has also been demonstrated that BER can reduce the production of beta-amyloid40/42, which plays a critical and primary role in the pathogenesis of Alzheimer's disease. However, the mechanism by which it accomplishes this remains unclear. Results Here, we report that BER could not only significantly decrease the production of beta-amyloid40/42 and the expression of beta-secretase (BACE, but was also able to activate the extracellular signal-regulated kinase1/2 (ERK1/2 pathway in a dose- and time-dependent manner in HEK293 cells stably transfected with APP695 containing the Swedish mutation. We also find that U0126, an antagonist of the ERK1/2 pathway, could abolish (1 the activation activity of BER on the ERK1/2 pathway and (2 the inhibition activity of BER on the production of beta-amyloid40/42 and the expression of BACE. Conclusion Our data indicate that BER decreases the production of beta-amyloid40/42 by inhibiting the expression of BACE via activation of the ERK1/2 pathway.

  18. Novel strategies for Alzheimer's disease treatment: An overview of anti-amyloid beta monoclonal antibodies

    Directory of Open Access Journals (Sweden)

    Katarzyna Rygiel

    2016-01-01

    Full Text Available Alzheimer's disease (AD is a multifactorial, progressive neurodegenerative disorder with a poor prognosis, and thus, novel therapies for AD are certainly needed in a growing population of elderly patients or asymptomatic individuals, who are at risk for AD, worldwide. It has been established that some AD biomarkers such as amyloid-beta load in the brain, precede the onset of the disease, by approximately 20 years. Therefore, the therapy to prevent or effectively treat AD has to be initiated before the emergence of symptoms. A goal of this review is to present the results of recent clinical trials on monoclonal antibodies against amyloid beta, used for the treatment of AD and also to address some of the current challenges and emerging strategies to prevent AD. In recent trials, a monoclonal antibody, i.e. solanezumab has shown some beneficial cognitive effects among mild AD patients. Ongoing studies with gantenerumab and crenezumab will examine when exactly the AD treatment, aimed at modifying the disease course has to be started. This review was based on Medline database search for trials on passive anti-AD immunotherapy, for which the main timeframe was set from 2012 to 2015.

  19. Multiscale Molecular Dynamics Simulations of Beta-Amyloid Interactions with Neurons

    Science.gov (United States)

    Qiu, Liming; Vaughn, Mark; Cheng, Kelvin

    2012-10-01

    Early events of human beta-amyloid protein interactions with cholesterol-containing membranes are critical to understanding the pathogenesis of Alzheimer's disease (AD) and to exploring new therapeutic interventions of AD. Atomistic molecular dynamics (AMD) simulations have been extensively used to study the protein-lipid interaction at high atomic resolutions. However, traditional MD simulations are not efficient in sampling the phase space of complex lipid/protein systems with rugged free energy landscapes. Meanwhile, coarse-grained MD (CGD) simulations are efficient in the phase space sampling but suffered from low spatial resolutions and from the fact that the energy landscapes are not identical to those of the AMD. Here, a multiscale approach was employed to simulate the protein-lipid interactions of beta-amyloid upon its release from proteolysis residing in the neuronal membranes. We utilized a forward (AMD to CGD) and reverse (CGD-AMD) strategy to explore new transmembrane and surface protein configuration and evaluate the stabilization mechanisms by measuring the residue-specific protein-lipid or protein conformations. The detailed molecular interactions revealed in this multiscale MD approach will provide new insights into understanding the early molecular events leading to the pathogenesis of AD.

  20. PPARgamma agonist curcumin reduces the amyloid-beta-stimulated inflammatory responses in primary astrocytes.

    Science.gov (United States)

    Wang, Hong-Mei; Zhao, Yan-Xin; Zhang, Shi; Liu, Gui-Dong; Kang, Wen-Yan; Tang, Hui-Dong; Ding, Jian-Qing; Chen, Sheng-Di

    2010-01-01

    Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Accumulating data indicate that astrocytes play an important role in the neuroinflammation related to the pathogenesis of AD. It has been shown that microglia and astrocytes are activated in AD brain and amyloid-beta (Abeta) can increase the expression of cyclooxygenase 2 (COX-2), interleukin-1, and interleukin-6. Suppressing the inflammatory response caused by activated astrocytes may help to inhibit the development of AD. Curcumin is a major constituent of the yellow curry spice turmeric and proved to be a potential anti-inflammatory drug in arthritis and colitis. There is a low age-adjusted prevalence of AD in India, a country where turmeric powder is commonly used as a culinary compound. Curcumin has been shown to suppress activated astroglia in amyloid-beta protein precursor transgenic mice. The real mechanism by which curcumin inhibits activated astroglia is poorly understood. Here we report that the expression of COX-2 and glial fibrillary acidic protein were enhanced and that of peroxisome proliferator-activated receptor gamma (PPARgamma) was decreased in Abeta(25-35)-treated astrocytes. In line with these results, nuclear factor-kappaB translocation was increased in the presence of Abeta. All these can be reversed by the pretreatment of curcumin. Furthermore, GW9662, a PPARgamma antagonist, can abolish the anti-inflammatory effect of curcumin. These results show that curcumin might act as a PPARgamma agonist to inhibit the inflammation in Abeta-treated astrocytes.

  1. The role of mutated amyloid beta 1-42 stimulating dendritic cells in a PDAPP transgenic mouse

    Directory of Open Access Journals (Sweden)

    LI Jia-lin

    2012-06-01

    Full Text Available Background Amyloid plaque is one of the pathological hallmarks of Alzheimer's disease (AD. Anti-beta-amyloid (Aβ immunotherapy is effective in removing brain Aβ, but has shown to be associated with detrimental effects. To avoid severe adverse effects such as meningoencephalitis induced by amyloid beta vaccine with adjuvant, and take advantage of amyloid beta antibody's therapeutic effect on Alzheimer's disease sufficiently, our group has developed a new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating dendritic cells (DC. Our previous work has confirmed that DC vaccine can induce adequate anti-amyloid beta antibody in PDAPP Tg mice safely and efficiently. The DC vaccine can improve impaired learning and memory in the Alzheimer's animal model, and did not cause microvasculitis, microhemorrhage or meningoencephalitis in the animal model. However, the exact mechanism of immunotherapy which reduces Aβ deposition remains unknown. In this report, we studied the mechanism of the vaccine, thinking that this may have implications for better understanding of the pathogenesis of Alzheimer's disease. Methods A new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating DC which were obtained from C57/B6 mouse bone marrow was developed. Amyloid beta with Freund's adjuvant was inoculated at the same time to act as positive control. After the treatment was done, the samples of brains were collected, fixed, cut. Immunohistochemical staining was performed to observe the expression of the nuclear hormone liver X receptor (LXR, membrane-bound protein tyrosine phosphatase (CD45, the ATP-binding cassette family of active transporters (ABCA1, receptor for advanced glycation end products (RAGE, β-site APP-cleaving enzyme (BACE and Aβ in mouse brain tissue. Semi-quantitative analysis was used to defect CA1, CA2, CA3, DG, Rad in hippocampus region and positive neuron in cortex region. Results Aβ was significantly reduced in the

  2. Choroid plexus dysfunction impairs beta-amyloid clearance in a triple transgenic mouse model of Alzheimer’s disease

    Science.gov (United States)

    González-Marrero, Ibrahim; Giménez-Llort, Lydia; Johanson, Conrad E.; Carmona-Calero, Emilia María; Castañeyra-Ruiz, Leandro; Brito-Armas, José Miguel; Castañeyra-Perdomo, Agustín; Castro-Fuentes, Rafael

    2015-01-01

    Compromised secretory function of choroid plexus (CP) and defective cerebrospinal fluid (CSF) production, along with accumulation of beta-amyloid (Aβ) peptides at the blood-CSF barrier (BCSFB), contribute to complications of Alzheimer’s disease (AD). The AD triple transgenic mouse model (3xTg-AD) at 16 month-old mimics critical hallmarks of the human disease: β-amyloid (Aβ) plaques and neurofibrillary tangles (NFT) with a temporal- and regional- specific profile. Currently, little is known about transport and metabolic responses by CP to the disrupted homeostasis of CNS Aβ in AD. This study analyzed the effects of highly-expressed AD-linked human transgenes (APP, PS1 and tau) on lateral ventricle CP function. Confocal imaging and immunohistochemistry revealed an increase only of Aβ42 isoform in epithelial cytosol and in stroma surrounding choroidal capillaries; this buildup may reflect insufficient clearance transport from CSF to blood. Still, there was increased expression, presumably compensatory, of the choroidal Aβ transporters: the low density lipoprotein receptor-related protein 1 (LRP1) and the receptor for advanced glycation end product (RAGE). A thickening of the epithelial basal membrane and greater collagen-IV deposition occurred around capillaries in CP, probably curtailing solute exchanges. Moreover, there was attenuated expression of epithelial aquaporin-1 and transthyretin (TTR) protein compared to Non-Tg mice. Collectively these findings indicate CP dysfunction hypothetically linked to increasing Aβ burden resulting in less efficient ion transport, concurrently with reduced production of CSF (less sink action on brain Aβ) and diminished secretion of TTR (less neuroprotection against cortical Aβ toxicity). The putative effects of a disabled CP-CSF system on CNS functions are discussed in the context of AD. PMID:25705176

  3. Choroid plexus dysfunction impairs beta-amyloid clearance in a triple transgenic mouse model of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Ibrahim eGonzález Marrero

    2015-02-01

    Full Text Available Compromised secretory function of choroid plexus (CP and defective cerebrospinal fluid (CSF production, along with accumulation of beta-amyloid (Aβ peptides at the blood-CSF barrier (BCSFB, likely contribute to complications of Alzheimer’s disease (AD. The AD triple transgenic mouse model (3xTg-AD at 16 month-old mimics several critical hallmarks of the human disease. In brain, the 3xTg-AD progressively develops β-amyloid (Aβ plaques and neurofibrillary tangles with a temporal- and regional- specific profile resembling their development in human AD. Currently, little is known about transport and metabolic responses by CP to the disrupted homeostasis of CNS Aβ in AD. This study analyzed the effects of highly-expressed AD-linked human transgenes (APP, PS1 and tau on lateral ventricle CP function. Confocal imaging and immunohistochemistry revealed an increase in Aβ42 (but not Aβ40 in epithelial cytosol and in stroma surrounding choroidal capillaries; the buildup in insoluble Aβ42 may reflect insufficient clearance transport from CSF to blood. Still, there was increased expression, presumably compensatory, of the choroidal Aβ transporters: the low density lipoprotein receptor-related protein 1 (LRP1 and the receptor for advanced glycation end product (RAGE. A thickening of the epithelial basal membrane and greater collagen IV deposition occurred around capillaries in CP of 3xTg-AD mice, probably curtailing solute exchanges. Moreover, there was attenuated expression of epithelial aquaporin-1 and transthyretin protein compared to non-Tg controls. Collectively these findings indicate CP dysfunction (hypothetically linked to increasing Aβ burden resulting in less efficient ion transport, concurrently with reduced production of cerebrospinal fluid (less sink action on brain Aβ and diminished secretion of transthyretin (less neuroprotection against cortical Aβ toxicity. The putative effects of a disabled CP-CSF system on CNS f

  4. Substitution of isoleucine-31 by helical-breaking proline abolishes oxidative stress and neurotoxic properties of Alzheimer's amyloid beta-peptide.

    Science.gov (United States)

    Kanski, Jaroslaw; Aksenova, Marina; Schöneich, Christian; Butterfield, D Allan

    2002-06-01

    Alzheimer's disease (AD) brain is characterized by excess deposition of the 42-amino acid amyloid beta-peptide [A(beta)(1-42)]. AD brain is under intense oxidative stress, and we have previously suggested that A(beta)(1-42) was associated with this increased oxidative stress. In addition, we previously demonstrated that the single methionine residue of A(beta)(1-42), residue 35, was critical for the oxidative stress and neurotoxic properties of this peptide. Others have shown that the C-terminal region of A(beta)(1-42) is helical in aqueous micellar solutions, including that part of the protein containing Met35. Importantly, Cu(II)-binding induces alpha-helicity in A(beta) in aqueous solution. Invoking the i + 4 rule of helices, we hypothesized that the carbonyl oxygen of Ile31 would interact with the S atom of Met35 to change the electronic environment of the sulfur such that molecular oxygen could lead to the production of a sulfuramyl free radical on Met35. If this hypothesis is correct, a prediction would be that breaking the helical interaction of Ile31 and Met35 would abrogate the oxidative stress and neurotoxic properties of A(beta)(1-42). Accordingly, we investigated A(beta)(1-42) in which the Ile31 residue was replaced with the helix-breaking amino acid, proline. The alpha-helical environment around Met35 was completely abolished as indicated by circular dichroism (CD)-spectroscopy. As a consequence, the aggregation, oxidative stress, Cu(II) reduction, and neurotoxic properties of A(beta)(1-42)I31P were completely altered compared to native A(beta)(1-42). The results presented here are consistent with the notion that interaction of Ile31 with Met35 may play an important role in the oxidative processes of Met35 contributing to the toxicity of the peptide.

  5. Recent progress in the study of intracellular toxicity of amyloid β peptide in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; YU Longchuan

    2007-01-01

    Amyloid β (Aβ) deposition is one of the major pathological markers of Alzheimer's disease (AD). Extracellular Aβ toxicity has been studied for a long time in AD research field. However, controversial data show that extracellular Aβ load does not correlate with the dementia levels of AD patients and extracellular Aβ only induces significant cell death at non-physiological high concentrations.With the evolvement of Aβ hypothesis, considerable attention has been devoted to the study of intracellular Aβ toxicity recently. Intracellular Aβ induces dramatic cell loss in AD transgenic models and in human primary neurons (at pM concentrations) through p53, Bax and caspase-6 pathways. Here, we review the generation, toxicity and possible pathways of intracellular Aβ toxicity, and discuss the implication and current knowledge of intracellular Aβ in neuronal cell loss in neurodegenerative diseases.

  6. Protective Effect of Eecdysterone on the PC12 Cell CytotoxicityInduced by beta-amyloid 25-35

    Institute of Scientific and Technical Information of China (English)

    YANGSu-Fen; WUZhong-Jun; YANGZheng-Qin; LIYu; WuQin; ZHOUQi-Xin; SHIJing-Shan

    2004-01-01

    Objective. To study the effect of ecdysterone (ECR) on beta - amyloid peptide fragment 25-35 ( Aβ25-35 )-induced PC12 cell cytotoxicity, and further to expore its mechanism. Methods: PC12 survial was monitored by LDH release and 3-(4, 5-dimethylthiazol-yl-2, 5-diphenyhetrazolium bromide (MTT) assays. The content of malondi-

  7. Effects of Capsule Yi -Zhi on learning and memory disorder and beta-amyloid peptide induced neurotoxicity in rats

    Institute of Scientific and Technical Information of China (English)

    XUJiang-Ping; WUHang-Yu; LILin

    2004-01-01

    AIM To investigate the effects of Capsule Yi-Zhi (CYZ) on learning and memory disorder and beta-amyloid protein induced neurotoxieity in rats. Methods Various doses of CYZ were administered to Sprague-Dawley (SD) rats for 8 days, twice a day. Then scopolamine hydrobromide (Sco) intraperitoneal injection was performed on each rat and the

  8. The coding sequence of amyloid-beta precursor protein APP contains a neural-specific promoter element.

    NARCIS (Netherlands)

    Collin, R.W.J.; Martens, G.J.M.

    2006-01-01

    The amyloid-beta precursor protein APP is generally accepted to be involved in the pathology of Alzheimer's disease. Since its physiological role is still unclear, we decided to study the function of APP via stable transgenesis in the amphibian Xenopus laevis. However, the application of constructs

  9. The cerebrospinal fluid amyloid beta42/40 ratio in the differentiation of Alzheimer's disease from non-Alzheimer's dementia

    NARCIS (Netherlands)

    Spies, P E; Slats, D; Sjögren, J M C; Kremer, B P H; Verhey, F R J; Rikkert, M G M Olde; Verbeek, M M

    2010-01-01

    BACKGROUND: Amyloid beta(40) (Abeta(40)) is the most abundant Abeta peptide in the brain. The cerebrospinal fluid (CSF) level of Abeta(40) might therefore be considered to most closely reflect the total Abeta load in the brain. Both in Alzheimer's disease (AD) and in normal aging the Abeta load in t

  10. Soluble amyloid beta levels are elevated in the white matter of Alzheimer's patients, independent of cortical plaque severity.

    Science.gov (United States)

    Collins-Praino, Lyndsey E; Francis, Yitshak I; Griffith, Erica Y; Wiegman, Anne F; Urbach, Jonathan; Lawton, Arlene; Honig, Lawrence S; Cortes, Etty; Vonsattel, Jean Paul G; Canoll, Peter D; Goldman, James E; Brickman, Adam M

    2014-08-17

    Alzheimer's disease (AD) is the most common neurodegenerative disease and the leading cause of dementia. In addition to grey matter pathology, white matter changes are now recognized as an important pathological feature in the emergence of the disease. Despite growing recognition of the importance of white matter abnormalities in the pathogenesis of AD, the causes of white matter degeneration are still unknown. While multiple studies propose Wallerian-like degeneration as the source of white matter change, others suggest that primary white matter pathology may be due, at least in part, to other mechanisms, including local effects of toxic Aβ peptides. In the current study, we investigated levels of soluble amyloid-beta (Aβ) in white matter of AD patients (n=12) compared with controls (n=10). Fresh frozen white matter samples were obtained from anterior (Brodmann area 9) and posterior (Brodmann area 1, 2 and 3) areas of post-mortem AD and control brains. ELISA was used to examine levels of soluble Aβ -42 and Aβ -40. Total cortical neuritic plaque severity rating was derived from individual ratings in the following areas of cortex: mid-frontal, superior temporal, pre-central, inferior parietal, hippocampus (CA1), subiculum, entorhinal cortex, transentorhinal cortex, inferior temporal, amygdala and basal forebrain. Compared with controls, AD samples had higher white matter levels of both soluble Aβ -42 and Aβ -40. While no regional white matter differences were found in Aβ -40, Aβ -42 levels were higher in anterior regions than in posterior regions across both groups. After statistically controlling for total cortical neuritic plaque severity, differences in both soluble Aβ -42 and Aβ -40 between the groups remained, suggesting that white matter Aβ peptides accumulate independent of overall grey matter fibrillar amyloid pathology and are not simply a reflection of overall amyloid burden. These results shed light on one potential mechanism through which

  11. Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process

    Science.gov (United States)

    Mirsadeghi, Somayeh; Dinarvand, Rassoul; Ghahremani, Mohammad Hossein; Hormozi-Nezhad, Mohammad Reza; Mahmoudi, Zohreh; Hajipour, Mohammad Javad; Atyabi, Fatemeh; Ghavami, Mahdi; Mahmoudi, Morteza

    2015-03-01

    Protein fibrillation process (e.g., from amyloid beta (Aβ) and α-synuclein) is the main cause of several catastrophic neurodegenerative diseases such as Alzheimer's and Parkinson diseases. During the past few decades, nanoparticles (NPs) were recognized as one of the most promising tools for inhibiting the progress of the disease by controlling the fibrillation kinetic process; for instance, gold NPs have a strong capability to inhibit Aβ fibrillations. It is now well understood that a layer of biomolecules would cover the surface of NPs (so called ``protein corona'') upon the interaction of NPs with protein sources. Due to the fact that the biological species (e.g., cells and amyloidal proteins) ``see'' the protein corona coated NPs rather than the pristine coated particles, one should monitor the fibrillation process of amyloidal proteins in the presence of corona coated NPs (and not pristine coated ones). Therefore, the previously obtained data on NPs effects on the fibrillation process should be modified to achieve a more reliable and predictable in vivo results. Herein, we probed the effects of various gold NPs (with different sizes and shapes) on the fibrillation process of Aβ in the presence and absence of protein sources (i.e., serum and plasma). We found that the protein corona formed a shell at the surface of gold NPs, regardless of their size and shape, reducing the access of Aβ to the gold inhibitory surface and, therefore, affecting the rate of Aβ fibril formation. More specifically, the anti-fibrillation potencies of various corona coated gold NPs were strongly dependent on the protein source and their concentrations (10% serum/plasma (simulation of an in vitro milieu) and 100% serum/plasma (simulation of an in vivo milieu)).Protein fibrillation process (e.g., from amyloid beta (Aβ) and α-synuclein) is the main cause of several catastrophic neurodegenerative diseases such as Alzheimer's and Parkinson diseases. During the past few decades

  12. Scutellaria baicalensis stem-leaf total flavonoid reduces neuronal apoptosis induced by amyloid beta-peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Ruiting Wang; Xingbin Shen; Enhong Xing; Lihua Guan; Lisheng Xin

    2013-01-01

    Scutellaria baicalensis stem-leaf total flavonoid might attenuate learning/memory impairment and neuronal loss in rats induced by amyloid beta-peptide. This study aimed to explore the effects of Scutellaria baicalensis stem-leaf total flavonoid on amyloid beta-peptide-induced neuronal apoptosis and the expression of apoptosis-related proteins in the rat hippocampus. Male Wistar rats were given intragastric administration of Scutellaria baicalensis stem-leaf total flavonoid, 50 or 100 mg/kg, once per day. On day 8 after administration, 10 μg amyloid beta-peptide (25–35) was injected into the bilateral hippocampus of rats to induce neuronal apoptosis. On day 20, hippocampal tissue was harvested and probed with the terminal deoxyribonucleotidyl transferase-mediated biotin-16-dUTP nick-end labeling assay. Scutellaria baicalensis stem-leaf total flavonoid at 50 and 100 mg/kg reduced neuronal apoptosis induced by amyloid beta-peptide (25–35) in the rat hippocampus. Immunohistochemistry and western blot assay revealed that expression of the pro-apoptotic protein Bax, cytochrome c and caspase-3 was significantly diminished by 50 and 100 mg/kg Scutellaria baicalensis stem-leaf total flavonoid, while expression of the anti-apoptotic protein Bcl-2 was increased. Moreover, 100 mg/kg Scutellaria baicalensis stem-leaf total flavonoid had a more dramatic effect than the lower dosage. These experimental findings indicate that Scutellaria baicalensis stem-leaf total flavonoid dose-dependently attenuates neuronal apoptosis induced by amyloid beta-peptide in the hippocampus, and it might mediate this by regulating the expression of Bax, cytochrome c, caspase-3 and Bcl-2.

  13. Low-power laser irradiation inhibits amyloid beta-induced cell apoptosis

    Science.gov (United States)

    Zhang, Heng; Wu, Shengnan

    2011-03-01

    The deposition and accumulation of amyloid-β-peptide (Aβ) in the brain are considered a pathological hallmark of Alzheimer's disease(AD). Apoptosis is a contributing pathophysiological mechanism of AD. Low-power laser irradiation (LPLI), a non-damage physical therapy, which has been used clinically for decades of years, is shown to promote cell proliferation and prevent apoptosis. Recently, low-power laser irradiation (LPLI) has been applied to moderate AD. In this study, Rat pheochromocytoma (PC12) cells were treated with amyloid beta 25-35 (Aβ25-35) for induction of apoptosis before LPLI treatment. We measured cell viability with CCK-8 according to the manufacture's protocol, the cell viability assays show that low fluence of LPLI (2 J/cm2 ) could inhibit the cells apoptosis. Then using statistical analysis of proportion of apoptotic cells by flow cytometry based on Annexin V-FITC/PI, the assays also reveal that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis. Taken together, we demonstrated that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis, these results directly point to a therapeutic strategy for the treatment of AD through LPLI.

  14. Polarization properties of amyloid-beta plaques in Alzheimer's disease (Conference Presentation)

    Science.gov (United States)

    Baumann, Bernhard; Wöhrer, Adelheid; Ricken, Gerda; Pircher, Michael; Kovacs, Gabor G.; Hitzenberger, Christoph K.

    2016-03-01

    In histopathological practice, birefringence is used for the identification of amyloidosis in numerous tissues. Amyloid birefringence is caused by the parallel arrangement of fibrous protein aggregates. Since neurodegenerative processes in Alzheimer's disease (AD) are also linked to the formation of amyloid-beta (Aβ) plaques, optical methods sensitive to birefringence may act as non-invasive tools for Aβ identification. At last year's Photonics West, we demonstrated polarization-sensitive optical coherence tomography (PS-OCT) imaging of ex vivo cerebral tissue of advanced stage AD patients. PS-OCT provides volumetric, structural imaging based on both backscatter contrast and tissue polarization properties. In this presentation, we report on polarization-sensitive neuroimaging along with numerical simulations of three-dimensional Aβ plaques. High speed PS-OCT imaging was performed using a spectral domain approach based on polarization maintaining fiber optics. The sample beam was interfaced to a confocal scanning microscope arrangement. Formalin-fixed tissue samples as well as thin histological sections were imaged. For comparison to the PS-OCT results, ray propagation through plaques was modeled using Jones analysis and various illumination geometries and plaque sizes. Characteristic polarization patterns were found. The results of this study may not only help to understand PS-OCT imaging of neuritic Aβ plaques but may also have implications for polarization-sensitive imaging of other fibrillary structures.

  15. Elevation in sphingomyelin synthase activity is associated with increases in amyloid-beta peptide generation.

    Directory of Open Access Journals (Sweden)

    Jen-Hsiang T Hsiao

    Full Text Available A pathological hallmark of Alzheimer's disease (AD is the presence of amyloid-beta peptide (Aβ plaques in the brain. Aβ is derived from a sequential proteolysis of the transmenbrane amyloid precursor protein (APP, a process which is dependent on the distribution of lipids present in the plasma membrane. Sphingomyelin is a major membrane lipid, however its role in APP processing is unclear. Here, we assessed the expression of sphingomyelin synthase (SGMS1; the gene responsible for sphingomyelin synthesis in human brain and found that it was significantly elevated in the hippocampus of AD brains, but not in the cerebellum. Secondly, we assessed the impact of altering SGMS activity on Aβ generation. Inhibition of SGMS activity significantly reduced the level of Aβ in a dose- and time dependent manner. The decrease in Aβ level occurred without changes in APP expression or cell viability. These results when put together indicate that SGMS activity impacts on APP processing to produce Aβ and it could be a contributing factor in Aβ pathology associated with AD.

  16. Aminoguanidine treatment ameliorates inflammatory responses and memory impairment induced by amyloid-beta 25-35 injection in rats.

    Science.gov (United States)

    Díaz, Alfonso; Rojas, Karla; Espinosa, Blanca; Chávez, Raúl; Zenteno, Edgar; Limón, Daniel; Guevara, Jorge

    2014-06-01

    Alzheimer disease (AD) is a neurodegenerative disorder caused by accumulation of the amyloid-beta peptide (Aβ) in neuritic plaques. Its neurotoxic mechanisms are associated with inflammatory responses and nitrosative stress generation that promote expression of inducible nitric oxide synthase (iNOS) and increased nitric oxide causing neuronal death and memory impairment. Studies suggest that treatment with anti-inflammatory and anti-oxidant agents decreases the risk of developing AD. Aminoguanidine (AG) is an iNOS inhibitor with anti-inflammatory and anti-oxidant effects. In this study, we evaluated the effects of systemic administration of AG (100 mg/kg/day for 4 days) on spatial memory and inflammatory responses induced by an injection of Aβ(25-35) [100 μM] into the temporal cortex (TCx) of rats. A significant improvement of spatial memory was evident in the Aβ(25-35)-treated group at day 30 post-injection subjected to AG treatment; this effect was correlated with decreases in reactive gliosis, IL-1β, TNF-α, and nitrite levels, as well as a reduction in neurodegeneration in the TCx and hippocampus (Hp). These results suggest that AG treatment inhibited glia activation and cytokine release, which may help to counteract neurodegenerative events induced by the toxicity of Aβ.

  17. Indirubin-3′-monoxime suppresses amyloid-beta-induced apoptosis by inhibiting tau hyperphosphorylation

    Institute of Scientific and Technical Information of China (English)

    Shu-gang Zhang; Xiao-shan Wang; Ying-dong Zhang; Qing Di; Jing-ping Shi; Min Qian; Li-gang Xu; Xing-jian Lin; Jie Lu

    2016-01-01

    Indirubin-3′-monoxime is an effective inhibitor of cyclin-dependent protein kinases, and may play an obligate role in neuronal apopto-sis in Alzheimer’s disease. Here, we found that indirubin-3′-monoxime improved the morphology and increased the survival rate of SH-SY5Y cells exposed to amyloid-beta 25–35 (Aβ25–35), and also suppressed apoptosis by reducing tau phosphorylation at Ser199 and Thr205. Furthermore, indirubin-3′-monoxime inhibited phosphorylation of glycogen synthase kinase-3β (GSK-3β). Our results suggest that in-dirubin-3′-monoxime reduced Aβ25–35-induced apoptosis by suppressing tau hyperphosphorylationvia a GSK-3β-mediated mechanism. Indirubin-3′-monoxime is a promising drug candidate for Alzheimer’s disease.

  18. Isolating toxic insulin amyloid reactive species that lack β-sheets and have wide pH stability.

    Science.gov (United States)

    Heldt, Caryn L; Kurouski, Dmitry; Sorci, Mirco; Grafeld, Elizabeth; Lednev, Igor K; Belfort, Georges

    2011-06-08

    Amyloid diseases, including Alzheimer's disease, are characterized by aggregation of normally functioning proteins or peptides into ordered, β-sheet rich fibrils. Most of the theories on amyloid toxicity focus on the nuclei or oligomers in the fibril formation process. The nuclei and oligomers are transient species, making their full characterization difficult. We have isolated toxic protein species that act like an oligomer and may provide the first evidence of a stable reactive species created by disaggregation of amyloid fibrils. This reactive species was isolated by dissolving amyloid fibrils at high pH and it has a mass >100 kDa and a diameter of 48 ± 15 nm. It seeds the formation of fibrils in a dose dependent manner, but using circular dichroism and deep ultraviolet resonance Raman spectroscopy, the reactive species was found to not have a β-sheet rich structure. We hypothesize that the reactive species does not decompose at high pH and maintains its structure in solution. The remaining disaggregated insulin, excluding the toxic reactive species that elongated the fibrils, returned to native structured insulin. This is the first time, to our knowledge, that a stable reactive species of an amyloid reaction has been separated and characterized by disaggregation of amyloid fibrils.

  19. pH-dependence of the specific binding of Cu(II) and Zn(II) ions to the amyloid-{beta} peptide

    Energy Technology Data Exchange (ETDEWEB)

    Ghalebani, Leila, E-mail: leila.ghalebani@ki.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden); Wahlstroem, Anna, E-mail: anna.wahlstrom@dbb.su.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden); Danielsson, Jens, E-mail: jensd@dbb.su.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden); Waermlaender, Sebastian K.T.S., E-mail: seb@dbb.su.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden); Graeslund, Astrid, E-mail: astrid@dbb.su.se [Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm (Sweden)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Cu(II) and Zn(II) display pH-dependent binding to the A{beta}(1-40) peptide. Black-Right-Pointing-Pointer At pH 7.4 both metal ions display residue-specific binding to the A{beta} peptide. Black-Right-Pointing-Pointer At pH 5.5 the binding specificity is lost for Zn(II). Black-Right-Pointing-Pointer Differential Cu(II) and Zn(II) binding may help explain metal-induced AD toxicity. -- Abstract: Metal ions like Cu(II) and Zn(II) are accumulated in Alzheimer's disease amyloid plaques. The amyloid-{beta} (A{beta}) peptide involved in the disease interacts with these metal ions at neutral pH via ligands provided by the N-terminal histidines and the N-terminus. The present study uses high-resolution NMR spectroscopy to monitor the residue-specific interactions of Cu(II) and Zn(II) with {sup 15}N- and {sup 13}C,{sup 15}N-labeled A{beta}(1-40) peptides at varying pH levels. At pH 7.4 both ions bind to the specific ligands, competing with one another. At pH 5.5 Cu(II) retains its specific histidine ligands, while Zn(II) seems to lack residue-specific interactions. The low pH mimics acidosis which is linked to inflammatory processes in vivo. The results suggest that the cell toxic effects of redox active Cu(II) binding to A{beta} may be reversed by the protective activity of non-redox active Zn(II) binding to the same major binding site under non-acidic conditions. Under acidic conditions, the protective effect of Zn(II) may be decreased or changed, since Zn(II) is less able to compete with Cu(II) for the specific binding site on the A{beta} peptide under these conditions.

  20. Compatibility of hydroxypropyl-{beta}-cyclodextrin with algal toxicity bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Fai, Patricia Bi; Grant, Alastair [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Reid, Brian J. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom)], E-mail: b.reid@uea.ac.uk

    2009-01-15

    Numerous reports have indicated that hydrophobic organic compound bioaccessibility in sediment and soil can be determined by extraction using aqueous hydroxypropyl-{beta}-cyclodextrin (HPCD) solutions. This study establishes the compatibility of HPCD with Selenastrum capricornutum and assesses whether its presence influences the toxicity of reference toxicants. Algal growth inhibition (72 h) showed no significant (P > 0.05) difference at HPCD concentrations up to and including 20 mM. HPCD presence did not influence the toxicity of the inorganic reference toxicant (ZnSO{sub 4}), with IC50 values of 0.82 {mu}M and 0.85 {mu}M, in the presence and absence of HPCD (20 mM), respectively. However, HPCD presence (20 mM) reduced the toxicity of 2,4-dichlorophenol and the herbicides diuron and isoproturon. These reductions were attributed to inclusion complex formation between the toxicants and the HPCD cavity. Liberation of complexed toxicants, by sample manipulation prior to toxicity assessment, is proposed to provide a sensitive, high throughput, bioassay that reflects compound bioaccessibility. - Compatibility of the biomimetic HPCD extraction method with algal cell growth inhibition bioassays to assess toxicity of reference toxicants and environmental relevant herbicides.

  1. Forebrain microglia from wild-type but not adult 5xFAD mice prevent amyloid-beta plaque formation in organotypic hippocampal slice cultures

    NARCIS (Netherlands)

    Hellwig, Sabine; Masuch, Annette; Nestel, Sigrun; Katzmarski, Natalie; Meyer-Luehmann, Melanie; Biber, Knut

    2015-01-01

    The role of microglia in amyloid-beta (A beta) deposition is controversial. In the present study, an organotypic hippocampal slice culture (OHSC) system with an in vivo-like microglial-neuronal environment was used to investigate the potential contribution of microglia to A beta plaque formation. We

  2. Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.

    LENUS (Irish Health Repository)

    Hampel, Harald

    2010-06-01

    Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer\\'s disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40\\/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.

  3. Biological markers of amyloid beta-related mechanisms in Alzheimer's disease.

    LENUS (Irish Health Repository)

    Hampel, Harald

    2012-02-01

    Recent research progress has given detailed knowledge on the molecular pathogenesis of Alzheimer\\'s disease (AD), which has been translated into an intense, ongoing development of disease-modifying treatments. Most new drug candidates are targeted on inhibiting amyloid beta (Abeta) production and aggregation. In drug development, it is important to co-develop biomarkers for Abeta-related mechanisms to enable early diagnosis and patient stratification in clinical trials, and to serve as tools to identify and monitor the biochemical effect of the drug directly in patients. Biomarkers are also requested by regulatory authorities to serve as safety measurements. Molecular aberrations in the AD brain are reflected in the cerebrospinal fluid (CSF). Core CSF biomarkers include Abeta isoforms (Abeta40\\/Abeta42), soluble APP isoforms, Abeta oligomers and beta-site APP-cleaving enzyme 1 (BACE1). This article reviews recent research advances on core candidate CSF and plasma Abeta-related biomarkers, and gives a conceptual review on how to implement biomarkers in clinical trials in AD.

  4. Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer's disease mice.

    Science.gov (United States)

    Arendash, Gary W; Mori, Takashi; Cao, Chuanhai; Mamcarz, Malgorzata; Runfeldt, Melissa; Dickson, Alexander; Rezai-Zadeh, Kavon; Tane, Jun; Citron, Bruce A; Lin, Xiaoyang; Echeverria, Valentina; Potter, Huntington

    2009-01-01

    We have recently shown that Alzheimer's disease (AD) transgenic mice given a moderate level of caffeine intake (the human equivalent of 5 cups of coffee per day) are protected from development of otherwise certain cognitive impairment and have decreased hippocampal amyloid-beta (Abeta) levels due to suppression of both beta-secretase (BACE1) and presenilin 1 (PS1)/gamma-secretase expression. To determine if caffeine intake can have beneficial effects in "aged" APPsw mice already demonstrating cognitive impairment, we administered caffeine in the drinking water of 18-19 month old APPsw mice that were impaired in working memory. At 4-5 weeks into caffeine treatment, those impaired transgenic mice given caffeine (Tg/Caff) exhibited vastly superior working memory compared to the continuing impairment of control transgenic mice. In addition, Tg/Caff mice had substantially reduced Abeta deposition in hippocampus (decrease 40%) and entorhinal cortex (decrease 46%), as well as correlated decreases in brain soluble Abeta levels. Mechanistically, evidence is provided that caffeine suppression of BACE1 involves the cRaf-1/NFkappaB pathway. We also determined that caffeine concentrations within human physiological range effectively reduce active and total glycogen synthase kinase 3 levels in SweAPP N2a cells. Even with pre-existing and substantial Abeta burden, aged APPsw mice exhibited memory restoration and reversal of AD pathology, suggesting a treatment potential of caffeine in cases of established AD.

  5. Effect of graphene oxide on the conformational transitions of amyloid beta peptide: A molecular dynamics simulation study.

    Science.gov (United States)

    Baweja, Lokesh; Balamurugan, Kanagasabai; Subramanian, Venkatesan; Dhawan, Alok

    2015-09-01

    The interactions between nanomaterials (NMs) and amyloid proteins are central to the nanotechnology-based diagnostics and therapy in neurodegenerative disorders such as Alzheimer's and Parkinson's. Graphene oxide (GO) and its derivatives have shown to modulate the aggregation pattern of disease causing amyloid beta (Aβ) peptide. However, the mechanism is still not well understood. Using molecular dynamics simulations, the effect of graphene oxide (GO) and reduced graphene oxide (rGO) having carbon:oxygen ratio of 4:1 and 10:1, respectively, on the conformational transitions (alpha-helix to beta-sheet) and the dynamics of the peptide was investigated. GO and rGO decreased the beta-strand propensity of amino acid residues in Aβ. The peptide displayed different modes of adsorption on GO and rGO. The adsorption on GO was dominated by electrostatic interactions, whereas on rGO, both van der Waals and electrostatic interactions contributed in the adsorption of the peptide. Our study revealed that the slight increase in the hydrophobic patches on rGO made it more effective inhibitor of conformational transitions in the peptide. Alpha helix-beta sheet transition in Aβ peptide could be one of the plausible mechanism by which graphene oxide may inhibit amyloid fibrillation.

  6. How ionic strength affects the conformational behavior of human and rat beta amyloids--a computational study.

    Directory of Open Access Journals (Sweden)

    Zdeněk Kříž

    Full Text Available Progressive cerebral deposition of amyloid beta occurs in Alzheimers disease and during the aging of certain mammals (human, monkey, dog, bear, cow, cat but not others (rat, mouse. It is possibly due to different amino acid sequences at positions 5, 10 and 13. To address this issue, we performed series of 100 ns long trajectories (each trajectory was run twice with different initial velocity distribution on amyloid beta (1-42 with the human and rat amino acid sequence in three different environments: water with only counter ions, water with NaCl at a concentration of 0.15 M as a model of intracellular Na(+ concentration at steady state, and water with NaCl at a concentration of 0.30 M as a model of intracellular Na(+ concentration under stimulated conditions. We analyzed secondary structure stability, internal hydrogen bonds, and residual fluctuation. It was observed that the change in ionic strength affects the stability of internal hydrogen bonds. Increasing the ionic strength increases atomic fluctuation in the hydrophobic core of the human amyloid, and decreases the atomic fluctuation in the case of rat amyloid. The secondary structure analyses show a stable α-helix part between residues 10 and 20. However, C-terminus of investigated amyloids is much more flexible showing no stable secondary structure elements. Increasing ionic strength of the solvent leads to decreasing stability of the secondary structural elements. The difference in conformational behavior of the three amino acids at position 5, 10 and 13 for human and rat amyloids significantly changes the conformational behavior of the whole peptide.

  7. Lipid Rafts: Linking Alzheimer's Amyloid-β Production, Aggregation, and Toxicity at Neuronal Membranes

    Directory of Open Access Journals (Sweden)

    Jo V. Rushworth

    2011-01-01

    Full Text Available Lipid rafts are membrane microdomains, enriched in cholesterol and sphingolipids, into which specific subsets of proteins and lipids partition, creating cell-signalling platforms that are vital for neuronal functions. Lipid rafts play at least three crucial roles in Alzheimer's Disease (AD, namely, in promoting the generation of the amyloid-β (Aβ peptide, facilitating its aggregation upon neuronal membranes to form toxic oligomers and hosting specific neuronal receptors through which the AD-related neurotoxicity and memory impairments of the Aβ oligomers are transduced. Recent evidence suggests that Aβ oligomers may exert their deleterious effects through binding to, and causing the aberrant clustering of, lipid raft proteins including the cellular prion protein and glutamate receptors. The formation of these pathogenic lipid raft-based platforms may be critical for the toxic signalling mechanisms that underlie synaptic dysfunction and neuropathology in AD.

  8. Progranulin protects against amyloid β deposition and toxicity in Alzheimer's disease mouse models.

    Science.gov (United States)

    Minami, S Sakura; Min, Sang-Won; Krabbe, Grietje; Wang, Chao; Zhou, Yungui; Asgarov, Rustam; Li, Yaqiao; Martens, Lauren H; Elia, Lisa P; Ward, Michael E; Mucke, Lennart; Farese, Robert V; Gan, Li

    2014-10-01

    Haploinsufficiency of the progranulin (PGRN) gene (GRN) causes familial frontotemporal lobar degeneration (FTLD) and modulates an innate immune response in humans and in mouse models. GRN polymorphism may be linked to late-onset Alzheimer's disease (AD). However, the role of PGRN in AD pathogenesis is unknown. Here we show that PGRN inhibits amyloid β (Aβ) deposition. Selectively reducing microglial expression of PGRN in AD mouse models impaired phagocytosis, increased plaque load threefold and exacerbated cognitive deficits. Lentivirus-mediated PGRN overexpression lowered plaque load in AD mice with aggressive amyloid plaque pathology. Aβ plaque load correlated negatively with levels of hippocampal PGRN, showing the dose-dependent inhibitory effects of PGRN on plaque deposition. PGRN also protected against Aβ toxicity. Lentivirus-mediated PGRN overexpression prevented spatial memory deficits and hippocampal neuronal loss in AD mice. The protective effects of PGRN against Aβ deposition and toxicity have important therapeutic implications. We propose enhancing PGRN as a potential treatment for PGRN-deficient FTLD and AD.

  9. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation

    Directory of Open Access Journals (Sweden)

    Oh Ki

    2008-08-01

    Full Text Available Abstract Background Alzheimer's disease (AD is characterized by extensive loss of neurons in the brain of AD patients. Intracellular accumulation of beta-amyloid peptide (Aβ has also shown to occur in AD. Neuro-inflammation has been known to play a role in the pathogenesis of AD. Methods In this study, we investigated neuro-inflammation and amyloidogenesis and memory impairment following the systemic inflammation generated by lipopolysaccharide (LPS using immunohistochemistry, ELISA, behavioral tests and Western blotting. Results Intraperitoneal injection of LPS, (250 μg/kg induced memory impairment determined by passive avoidance and water maze tests in mice. Repeated injection of LPS (250 μg/kg, 3 or 7 times resulted in an accumulation of Aβ1–42 in the hippocampus and cerebralcortex of mice brains through increased β- and γ-secretase activities accompanied with the increased expression of amyloid precursor protein (APP, 99-residue carboxy-terminal fragment of APP (C99 and generation of Aβ1–42 as well as activation of astrocytes in vivo. 3 weeks of pretreatment of sulindac sulfide (3.75 and 7.5 mg/kg, orally, an anti-inflammatory agent, suppressed the LPS-induced amyloidogenesis, memory dysfunction as well as neuronal cell death in vivo. Sulindac sulfide (12.5–50 μM also suppressed LPS (1 μg/ml-induced amyloidogenesis in cultured neurons and astrocytes in vitro. Conclusion This study suggests that neuro-inflammatory reaction could contribute to AD pathology, and anti-inflammatory agent could be useful for the prevention of AD.

  10. Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects.

    Science.gov (United States)

    Mormino, E C; Kluth, J T; Madison, C M; Rabinovici, G D; Baker, S L; Miller, B L; Koeppe, R A; Mathis, C A; Weiner, M W; Jagust, W J

    2009-05-01

    Although beta-amyloid (Abeta) plaques are a primary diagnostic criterion for Alzheimer's disease, this pathology is commonly observed in the brains of non-demented older individuals. To explore the importance of this pathology in the absence of dementia, we compared levels of amyloid deposition (via 'Pittsburgh Compound-B' (PIB) positron emission tomography (PET) imaging) to hippocampus volume (HV) and episodic memory (EM) in three groups: (i) normal controls (NC) from the Berkeley Aging Cohort (BAC NC, n = 20); (ii) normal controls (NC) from the Alzheimer's disease neuroimaging initiative (ADNI NC, n = 17); and (iii) PIB+ mild cognitive impairment subjects from the ADNI (ADNI PIB+ MCI, n = 39). Age, gender and education were controlled for in each statistical model, and HV was adjusted for intracranial volume (aHV). In BAC NC, elevated PIB uptake was significantly associated with smaller aHV (P = 0.0016) and worse EM (P = 0.0086). Within ADNI NC, elevated PIB uptake was significantly associated with smaller aHV (P = 0.047) but not EM (P = 0.60); within ADNI PIB+ MCI, elevated PIB uptake was significantly associated with both smaller aHV (P = 0.00070) and worse EM (P = 0.046). To further understand these relationships, a recursive regression procedure was conducted within all ADNI NC and PIB+ MCI subjects (n = 56) to test the hypothesis that HV mediates the relationship between Abeta and EM. Significant correlations were found between PIB index and EM (P = 0.0044), PIB index and aHV (P index was no longer significantly associated with EM (P = 0.50). These results are consistent with a model in which Abeta deposition, hippocampal atrophy, and EM occur sequentially in elderly subjects, with Abeta deposition as the primary event in this cascade. This pattern suggests that declining EM in older individuals may be caused by Abeta-induced hippocampus atrophy.

  11. Adiponectin is protective against oxidative stress induced cytotoxicity in amyloid-beta neurotoxicity.

    Directory of Open Access Journals (Sweden)

    Koon-Ho Chan

    Full Text Available Beta-amyloid (Aβ neurotoxicity is important in Alzheimer's disease (AD pathogenesis. Aβ neurotoxicity causes oxidative stress, inflammation and mitochondrial damage resulting in neuronal degeneration and death. Oxidative stress, inflammation and mitochondrial failure are also pathophysiological mechanisms of type 2 diabetes (T(2DM which is characterized by insulin resistance. Interestingly, T(2DM increases risk to develop AD which is associated with reduced neuronal insulin sensitivity (central insulin resistance. We studied the potential protective effect of adiponectin (an adipokine with insulin-sensitizing, anti-inflammatory and anti-oxidant properties against Aβ neurotoxicity in human neuroblastoma cells (SH-SY5Y transfected with the Swedish amyloid precursor protein (Sw-APP mutant, which overproduced Aβ with abnormal intracellular Aβ accumulation. Cytotoxicity was measured by assay for lactate dehydrogenase (LDH released upon cell death and lysis. Our results revealed that Sw-APP transfected SH-SY5Y cells expressed both adiponectin receptor 1 and 2, and had increased AMP-activated protein kinase (AMPK activation and enhanced nuclear factor-kappa B (NF-κB activation compared to control empty-vector transfected SH-SY5Y cells. Importantly, adiponectin at physiological concentration of 10 µg/ml protected Sw-APP transfected SH-SY5Y cells against cytotoxicity under oxidative stress induced by hydrogen peroxide. This neuroprotective action of adiponectin against Aβ neurotoxicity-induced cytotoxicity under oxidative stress involved 1 AMPK activation mediated via the endosomal adaptor protein APPL1 (adaptor protein with phosphotyrosine binding, pleckstrin homology domains and leucine zipper motif and possibly 2 suppression of NF-κB activation. This raises the possibility of novel therapies for AD such as adiponectin receptor agonists.

  12. A humanin derivative reduces amyloid beta accumulation and ameliorates memory deficit in triple transgenic mice.

    Directory of Open Access Journals (Sweden)

    Takako Niikura

    Full Text Available Humanin (HN, a 24-residue peptide, was identified as a novel neuroprotective factor and shows anti-cell death activity against a wide spectrum of Alzheimer's disease (AD-related cytotoxicities, including exposure to amyloid beta (Abeta, in vitro. We previously demonstrated that the injection of S14G-HN, a highly potent HN derivative, into brain ameliorated memory loss in an Abeta-injection mouse model. To fully understand HN's functions under AD-associated pathological conditions, we examined the effect of S14G-HN on triple transgenic mice harboring APP(swe, tau(P310L, and PS-1(M146V that show the age-dependent development of multiple pathologies relating to AD. After 3 months of intranasal treatment, behavioral analyses showed that S14G-HN ameliorated cognitive impairment in male mice. Moreover, ELISA and immunohistochemical analyses showed that Abeta levels in brains were markedly lower in S14G-HN-treated male and female mice than in vehicle control mice. We also found the expression level of neprilysin, an Abeta degrading enzyme, in the outer molecular layer of hippocampal formation was increased in S14G-HN-treated mouse brains. NEP activity was also elevated by S14G-HN treatment in vitro. These findings suggest that decreased Abeta level in these mice is at least partly attributed to S14G-HN-induced increase of neprilysin level. Although HN was identified as an anti-neuronal death factor, these results indicate that HN may also have a therapeutic effect on amyloid accumulation in AD.

  13. HIV-1 stimulates nuclear entry of amyloid beta via dynamin dependent EEA1 and TGF-β/Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    András, Ibolya E., E-mail: iandras@med.miami; Toborek, Michal, E-mail: mtoborek@med.miami.edu

    2014-04-15

    Clinical evidence indicates increased amyloid deposition in HIV-1-infected brains, which contributes to neurocognitive dysfunction in infected patients. Here we show that HIV-1 exposure stimulates amyloid beta (Aβ) nuclear entry in human brain endothelial cells (HBMEC), the main component of the blood–brain barrier (BBB). Treatment with HIV-1 and/or Aβ resulted in concurrent increase in early endosomal antigen-1 (EEA1), Smad, and phosphorylated Smad (pSmad) in nuclear fraction of HBMEC. A series of inhibition and silencing studies indicated that Smad and EEA1 closely interact by influencing their own nuclear entry; the effect that was attenuated by dynasore, a blocker of GTP-ase activity of dynamin. Importantly, inhibition of dynamin, EEA1, or TGF-β/Smad effectively attenuated HIV-1-induced Aβ accumulation in the nuclei of HBMEC. The present study indicates that nuclear uptake of Aβ involves the dynamin-dependent EEA1 and TGF-β/Smad signaling pathways. These results identify potential novel targets to protect against HIV-1-associated dysregulation of amyloid processes at the BBB level. - Highlights: • HIV-1 induces nuclear accumulation of amyloid beta (Aβ) in brain endothelial cells. • EEA-1 and TGF-Β/Smad act in concert to regulate nuclear entry of Aβ. • Dynamin appropriates the EEA-1 and TGF-Β/Smad signaling. • Dynamin serves as a master regulator of HIV-1-induced nuclear accumulation of Aβ.

  14. Blood Beta-Amyloid and Tau in Down Syndrome: A Comparison with Alzheimer’s Disease

    Science.gov (United States)

    Lee, Ni-Chung; Yang, Shieh-Yueh; Chieh, Jen-Jie; Huang, Po-Tsang; Chang, Lih-Maan; Chiu, Yen-Nan; Huang, Ai-Chiu; Chien, Yin-Hsiu; Hwu, Wuh-Liang; Chiu, Ming-Jang

    2017-01-01

    Background: Changes in β-amyloids (Aβ) and tau proteins have been noted in patients with Alzheimer’s disease (AD) and patients with both Down syndrome (DS) and AD. However, reports of changes in the early stage of regression, such as behavioral and psychological symptoms of dementia (BPSD), in DS are sparse. Methods: Seventy-eight controls, 62 patients with AD, 35 with DS and 16 with DS with degeneration (DS_D), including 9 with BPSD and 7 with dementia, were enrolled. The levels of β-amyloids 40 and 42 (Aβ-40, Aβ-42) and tau protein in the blood were analyzed using immunomagnetic reduction (IMR). The Adaptive Behavior Dementia Questionnaire (ABDQ) was used to evaluate the clinical status of the degeneration. Results: The Aβ-40 and tau levels were higher and the Aβ-42 level and Aβ-42/Aβ-40 ratio were lower in DS than in the controls (all p < 0.001). Decreased Aβ-40 and increased Aβ-42 levels and Aβ-42/40 ratios were observed in DS_D compared with DS without degeneration (all p < 0.001). The ABDQ score was negatively correlated with the Aβ-40 level (ρ = −0.556) and the tau protein level (ρ = −0.410) and positively associated with the Aβ-42 level (ρ = 0.621) and the Aβ-42/40 ratio (ρ = 0.544; all p < 0.05). Conclusions: The Aβ-40 and Aβ-42 levels and the Aβ-42/Aβ-40 ratio are considered possible biomarkers for the early detection of degeneration in DS. The elevated Aβ-40 and tau levels in DS may indicate early neurodegeneration. The increased Aβ-42 in DS_D may reflect the neurotoxicity of Aβ-42. The paradox of the tau decreases in DS_D could be explained by a burnout phenomenon during long-term neurodegeneration. The different patterns of the plasma beta amyloids and tau protein may imply a different pathogenesis between DS with degeneration and AD in the general population, in spite of their common key pathological features. PMID:28144219

  15. Tau and Beta-Amyloid Deposition, Microhemorrhage and Brain Function after Traumatic Brain Injury in War Veterans

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0418 TITLE: Tau and Beta-Amyloid Deposition, Microhemorrhage and Brain Function after Traumatic Brain Injury in War...REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour...completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information

  16. The Effect of Iron in MR Imaging and Transverse Relaxation of Amyloid-Beta Plaques in Alzheimer’s Disease

    OpenAIRE

    Meadowcroft, Mark D.; Peters, Douglas G.; Dewal, Rahul; Connor, James R.; Yang, Qing X.

    2014-01-01

    Dysregulation of neural iron is known to occur during the progression of Alzheimer’s disease. Visualization of amyloid-beta (Aβ) plaques with magnetic resonance imaging (MRI) has largely been credited to rapid proton relaxation in the vicinity of plaques due to focal iron deposition. The goal of this work was to determine the relationship between local relaxation and related focal iron content associated with Aβ plaques. Alzheimer’s disease (N=5) and control tissue (N=3) sample slices from th...

  17. Modeling clustered activity increase in amyloid-beta positron emission tomographic images with statistical descriptors

    Directory of Open Access Journals (Sweden)

    Shokouhi S

    2015-04-01

    Full Text Available Sepideh Shokouhi,1 Baxter P Rogers,1 Hakmook Kang,2 Zhaohua Ding,1 Daniel O Claassen,3 John W Mckay,1 William R Riddle1On behalf of the Alzheimer’s Disease Neuroimaging Initiative1Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, 2Department of Biostatistics, 3Department of Neurology, Vanderbilt University, Nashville, TN, USABackground: Amyloid-beta (Aβ imaging with positron emission tomography (PET holds promise for detecting the presence of Aβ plaques in the cortical gray matter. Many image analyses focus on regional average measurements of tracer activity distribution; however, considerable additional information is available in the images. Metrics that describe the statistical properties of images, such as the two-point correlation function (S2, have found wide applications in astronomy and materials science. S2 provides a detailed characterization of spatial patterns in images typically referred to as clustering or flocculence. The objective of this study was to translate the two-point correlation method into Aβ-PET of the human brain using 11C-Pittsburgh compound B (11C-PiB to characterize longitudinal changes in the tracer distribution that may reflect changes in Aβ plaque accumulation.Methods: We modified the conventional S2 metric, which is primarily used for binary images and formulated a weighted two-point correlation function (wS2 to describe nonbinary, real-valued PET images with a single statistical function. Using serial 11C-PiB scans, we calculated wS2 functions from two-dimensional PET images of different cortical regions as well as three-dimensional data from the whole brain. The area under the wS2 functions was calculated and compared with the mean/median of the standardized uptake value ratio (SUVR. For three-dimensional data, we compared the area under the wS2 curves with the subjects’ cerebrospinal fluid measures.Results: Overall, the longitudinal changes in wS2

  18. Enoxaparin treatment administered at both early and late stages of amyloid beta deposition improves cognition of APPswe/PS1dE9 mice with differential effects on brain A beta levels.

    NARCIS (Netherlands)

    Timmer, N.M.; Dijk, L. van; Zee, C.E.E.M. van der; Kiliaan, A.J.; Waal, R.M.W. de; Verbeek, M.M.

    2010-01-01

    Enoxaparin (Enox), a low molecular weight heparin, has been shown to lower brain amyloid beta (A beta) load in a mouse model for Alzheimer's disease. However, the effect of Enox on cognition was not studied. Therefore, we examined the effect of peripheral Enox treatment on cognition and brain A beta

  19. Determining the Effect of Aluminum Oxide Nanoparticles on the Aggregation of Amyloid-Beta in Transgenic Caenorhabditis elegans

    Science.gov (United States)

    Patel, Suhag; Matticks, John; Howell, Carina

    2014-03-01

    The cause of Alzheimer's disease has been linked partially to genetic factors but the predicted environmental components have yet to be determined. In Alzheimer's, accumulation of amyloid-beta protein in the brain forms plaques resulting in neurodegeneration and loss of mental functions. It has been postulated that aluminum influences the aggregation of amyloid-beta. To test this hypothesis, transgenic Caenorhabditis elegans, CL2120, was used as a model organism to observe neurodegeneration in nematodes exposed to aluminum oxide nanoparticles. Behavioral testing, fluorescent staining, and fluorescence microscopy were used to test the effects of aggregation of amyloid-beta in the nervous systems of effected nematodes exposed to aluminum oxide nanoparticles. Energy-dispersive x-ray spectroscopy was used to quantify the total concentration of aluminum oxide that the worms were exposed to during the experiment. Exposure of transgenic and wild type worms to a concentration of 4 mg mL-1 aluminum oxide showed a decrease in the sinusoidal motion, as well as an infirmity of transgenic worms when compared to control worms. These results support the hypothesis that aluminum may play a role in neurodegeneration in C. elegans, and may influence and increase the progression of Alzheimer's disease. This work was supported by National Science Foundation grants DUE-1058829, DMR-0923047 DUE-0806660 and Lock Haven FPDC grants.

  20. Multiscale MD Simulations of Folding Dynamics and Mobility of Beta-Amyloid Peptide on Lipid Bilayer Surfaces

    Science.gov (United States)

    van Tilburg, Scott; Cheng, Kelvin

    2013-03-01

    Early interaction events of beta-amyloid peptides with the neuronal membranes play a key role in the pathogenesis of Alzheimer's disease. We have used multiscale Molecular Dynamics (MD) simulations to study the protein folding dynamics and lateral mobility of beta-amyloid protein on the cholesterol-enriched and -depleted lipid nano-domains. Several independent simulation replicates of all-atom and coarse-grained MD simulations of beta-amyloid on different lipid bilayer nano-domains have been generated. Using Define Secondary Structure of Proteins (DSSP) algorithm and mean-square-distance (MSD) analysis, the protein conformation and the lateral diffusion coefficients of protein, as well as the lipid and water, were calculated as a function of simulation time up to 200 nanoseconds for atomistic and 2 microseconds for coarse-grained simulations per replicate in different bilayer systems. Subtle differences in the conformation and mobility of the protein were observed in lipid bilayers with and without cholesterol. The structural dynamics information obtained from this work will provide useful insights into understanding the role of protein/lipid interactions in the membrane-associated aggregation of protein on neuronal membranes. HHMI-Trinity University and NIH RC1-GM090897-02

  1. Association of cardiovascular factors and Alzheimer's disease plasma amyloid-beta protein in subjective memory complainers.

    Science.gov (United States)

    Bates, Kristyn A; Sohrabi, Hamid R; Rodrigues, Mark; Beilby, John; Dhaliwal, Satvinder S; Taddei, Kevin; Criddle, Arthur; Wraith, Megan; Howard, Matthew; Martins, Georgia; Paton, Athena; Mehta, Pankaj; Foster, Jonathan K; Martins, Ian J; Lautenschlager, Nicola T; Mastaglia, Frank L; Laws, Simon M; Gandy, Samuel E; Martins, Ralph N

    2009-01-01

    A strong link is indicated between cardiovascular disease (CVD) and risk for developing Alzheimer's disease (AD), which may be exacerbated by the major AD genetic risk factor apolipoprotein Eepsilon4 (APOEepsilon4). Since subjective memory complaint (SMC) may potentially be an early indicator for cognitive decline, we examined CVD risk factors in a cohort of SMC. As amyloid-beta (Abeta) is considered to play a central role in AD, we hypothesized that the CVD risk profile (increased LDL, reduced HDL, and increased body fat) would be associated with plasma Abeta levels. We explored this in 198 individuals with and without SMC (average age = 63 years). Correlations between Abeta40 and HDL were observed, which were stronger in non-APOEepsilon4 carriers (rho = -0.315, p association between HDL and Abeta, which if demonstrated to be causal has implications for the development of lifestyle interventions and/or novel therapeutics. The relationship between HDL and Abeta and the potential significance of such an association needs to be validated in a larger longitudinal study.

  2. Gene expression profile of amyloid beta protein-injected mouse model for Alzheimer disease

    Institute of Scientific and Technical Information of China (English)

    Ling-na KONG; Ping-ping ZUO; Liang MU; Yan-yong LIU; Nan YANG

    2005-01-01

    Aim: To investigate the gene expression profile changes in the cerebral cortex of mice injected icv with amyloid beta-protein (Aβ) fragment 25-35 using cDNA microarray. Methods: Balb/c mice were randomly divided into a control group and Aβ-treated group. The Morris water maze test was performed to detect the effect of Aβ-injection on the learning and memory of mice. Atlas Mouse 1.2 Expression Arrays containing 1176 genes were used to investigate the gene expression pattern of each group. Results: The gene expression profiles showed that 19 genes including TBX1, NF-κB, AP-1/c-Jun, cadherin, integrin, erb-B2, and FGFR1 were up-regulated after 2 weeks oficv administration of Aβ; while 12 genes were downregulated, including NGF, glucose phosphate isomerase 1, AT motif binding factor 1, Na+/K+-ATPase, and Akt. Conclusions: The results provide important leads for pursuing a more complete understanding of the molecular events of Aβ-injection into mice with Alzheimer disease.

  3. Computational modeling of the effects of amyloid-beta on release probability at hippocampal synapses

    Directory of Open Access Journals (Sweden)

    Armando eRomani

    2013-01-01

    Full Text Available The role of amyloid-beta (Aβ in brain function and in the pathogenesis of Alzheimer’s disease remains elusive. Recent publications reported that an increase in Aβ concentration perturbs pre-synaptic release in hippocampal neurons. In particular, it was shown in vitro that Aβ is an endogenous regulator of synaptic transmission at the CA3-CA1 synapse, enhancing its release probability. How this synaptic modulator influences neuronal output during physiological stimulation patterns, such as those elicited in vivo, is still unknown. Using a realistic model of hippocampal CA1 pyramidal neurons, we first implemented this Aβ-induced enhancement of release probability and validated the model by reproducing the experimental findings. We then demonstrated that this synaptic modification can significantly alter synaptic integration properties in a wide range of physiologically relevant input frequencies (from 5 to 200 Hz. Finally, we used natural input patterns, obtained from CA3 pyramidal neurons in vivo during free exploration of rats in an open field, to investigate the effects of enhanced Aβ on synaptic release under physiological conditions. The model shows that the CA1 neuronal response to these natural patterns is altered in the increased-Aβ condition, especially for frequencies in the theta and gamma ranges. These results suggest that the perturbation of release probability induced by increased Aβ can significantly alter the spike probability of CA1 pyramidal neurons and thus contribute to abnormal hippocampal function during Alzheimer’s disease.

  4. The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide.

    Directory of Open Access Journals (Sweden)

    Stephanie J Soscia

    Full Text Available BACKGROUND: The amyloid beta-protein (Abeta is believed to be the key mediator of Alzheimer's disease (AD pathology. Abeta is most often characterized as an incidental catabolic byproduct that lacks a normal physiological role. However, Abeta has been shown to be a specific ligand for a number of different receptors and other molecules, transported by complex trafficking pathways, modulated in response to a variety of environmental stressors, and able to induce pro-inflammatory activities. METHODOLOGY/PRINCIPAL FINDINGS: Here, we provide data supporting an in vivo function for Abeta as an antimicrobial peptide (AMP. Experiments used established in vitro assays to compare antimicrobial activities of Abeta and LL-37, an archetypical human AMP. Findings reveal that Abeta exerts antimicrobial activity against eight common and clinically relevant microorganisms with a potency equivalent to, and in some cases greater than, LL-37. Furthermore, we show that AD whole brain homogenates have significantly higher antimicrobial activity than aged matched non-AD samples and that AMP action correlates with tissue Abeta levels. Consistent with Abeta-mediated activity, the increased antimicrobial action was ablated by immunodepletion of AD brain homogenates with anti-Abeta antibodies. CONCLUSIONS/SIGNIFICANCE: Our findings suggest Abeta is a hitherto unrecognized AMP that may normally function in the innate immune system. This finding stands in stark contrast to current models of Abeta-mediated pathology and has important implications for ongoing and future AD treatment strategies.

  5. Nano-biosensors to detect beta-amyloid for Alzheimer's disease management.

    Science.gov (United States)

    Kaushik, Ajeet; Jayant, Rahul Dev; Tiwari, Sneham; Vashist, Arti; Nair, Madhavan

    2016-06-15

    Beta-amyloid (β-A) peptides are potential biomarkers to monitor Alzheimer's diseases (AD) for diagnostic purposes. Increased β-A level is neurotoxic and induces oxidative stress in brain resulting in neurodegeneration and causes dementia. As of now, no sensitive and inexpensive method is available for β-A detection under physiological and pathological conditions. Although, available methods such as neuroimaging, enzyme-linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR) detect β-A, but they are not yet extended at point-of-care (POC) due to sophisticated equipments, need of high expertize, complicated operations, and challenge of low detection limit. Recently, β-A antibody based electrochemical immuno-sensing approach has been explored to detect β-A at pM levels within 30-40 min compared to 6-8h of ELISA test. The introduction of nano-enabling electrochemical sensing technology could enable rapid detection of β-A at POC and may facilitate fast personalized health care delivery. This review explores recent advancements in nano-enabling electrochemical β-A sensing technologies towards POC application to AD management. These analytical tools can serve as an analytical tool for AD management program to obtain bio-informatics needed to optimize therapeutics for neurodegenerative diseases diagnosis management.

  6. MD-simulations of Beta-Amyloid Protein Insertion Efficiency and Kinetics into Neuronal Membrane Mimics

    Science.gov (United States)

    Qiu, Liming; Buie, Creighton; Vaughn, Mark; Cheng, Kwan

    2011-03-01

    Early interaction events of beta-amyloid (A β) peptides with the neuronal membranes play a key role in the pathogenesis of Alzheimer's disease. We have used all-atom MD simulations to study the protein insertion efficiency and kinetics of monomeric A β40 and A β42 into phosphatidylcholine lipid bilayers (PC) with and without 40 mole% cholesterol (CHOL) that mimic the cholesterol-enriched and depleted lipid nanodomains of the neuronal plasma membranes. Independent replicates of 200-ns simulations of each protein pre-inserted in the upper lipid layer were generated. In PC bilayers, only 25% of A β40 and 50% of A β42 in the replicates showed complete insertion into the lower lipid layer, whereas the percentages increased to 50% and 100%, respectively, in PC/CHOL bilayers, providing evidence that cholesterol improves the protein insertion efficiency into the bilayers. The rate of protein insertion was proportional to the hydrophobic, transmembrane helix length of the inserted peptide and depended on the cholesterol content. We propose that the lysine snorkeling and C-terminus anchoring of A β to the PC headgroups at the upper and lower lipid/water interfaces represent the dual-transmembrane stabilization mechanisms of A β in the neuronal membrane domains.

  7. Analyzing and Modeling the Kinetics of Amyloid Beta Pores Associated with Alzheimer's Disease Pathology.

    Science.gov (United States)

    Ullah, Ghanim; Demuro, Angelo; Parker, Ian; Pearson, John E

    2015-01-01

    Amyloid beta (Aβ) oligomers associated with Alzheimer's disease (AD) form Ca2+-permeable plasma membrane pores, leading to a disruption of the otherwise well-controlled intracellular calcium (Ca2+) homeostasis. The resultant up-regulation of intracellular Ca2+ concentration has detrimental implications for memory formation and cell survival. The gating kinetics and Ca2+ permeability of Aβ pores are not well understood. We have used computational modeling in conjunction with the ability of optical patch-clamping for massively parallel imaging of Ca2+ flux through thousands of pores in the cell membrane of Xenopus oocytes to elucidate the kinetic properties of Aβ pores. The fluorescence time-series data from individual pores were idealized and used to develop data-driven Markov chain models for the kinetics of the Aβ pore at different stages of its evolution. Our study provides the first demonstration of developing Markov chain models for ion channel gating that are driven by optical-patch clamp data with the advantage of experiments being performed under close to physiological conditions. Towards the end, we demonstrate the up-regulation of gating of various Ca2+ release channels due to Aβ pores and show that the extent and spatial range of such up-regulation increases as Aβ pores with low open probability and Ca2+ permeability transition into those with high open probability and Ca2+ permeability.

  8. Amyloid-Beta Induced Changes in Vesicular Transport of BDNF in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Bianca Seifert

    2016-01-01

    Full Text Available The neurotrophin brain derived neurotrophic factor (BDNF is an important growth factor in the CNS. Deficits in transport of this secretory protein could underlie neurodegenerative diseases. Investigation of disease-related changes in BDNF transport might provide insights into the cellular mechanism underlying, for example, Alzheimer’s disease (AD. To analyze the role of BDNF transport in AD, live cell imaging of fluorescently labeled BDNF was performed in hippocampal neurons of different AD model systems. BDNF and APP colocalized with low incidence in vesicular structures. Anterograde as well as retrograde transport of BDNF vesicles was reduced and these effects were mediated by factors released from hippocampal neurons into the extracellular medium. Transport of BDNF was altered at a very early time point after onset of human APP expression or after acute amyloid-beta(1-42 treatment, while the activity-dependent release of BDNF remained unaffected. Taken together, extracellular cleavage products of APP induced rapid changes in anterograde and retrograde transport of BDNF-containing vesicles while release of BDNF was unaffected by transgenic expression of mutated APP. These early transport deficits might lead to permanently impaired brain functions in the adult brain.

  9. Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Cao, Chuanhai; Cirrito, John R; Lin, Xiaoyang; Wang, Li; Wang, Lilly; Verges, Deborah K; Dickson, Alexander; Mamcarz, Malgorzata; Zhang, Chi; Mori, Takashi; Arendash, Gary W; Holtzman, David M; Potter, Huntington

    2009-01-01

    Recent epidemiologic studies suggest that caffeine may be protective against Alzheimer's disease (AD). Supportive of this premise, our previous studies have shown that moderate caffeine administration protects/restores cognitive function and suppresses brain amyloid-beta (Abeta) production in AD transgenic mice. In the present study, we report that acute caffeine administration to both young adult and aged AD transgenic mice rapidly reduces Abeta levels in both brain interstitial fluid and plasma without affecting Abeta elimination. Long-term oral caffeine treatment to aged AD mice provided not only sustained reductions in plasma Abeta, but also decreases in both soluble and deposited Abeta in hippocampus and cortex. Irrespective of caffeine treatment, plasma Abeta levels did not correlate with brain Abeta levels or with cognitive performance in individual aged AD mice. Although higher plasma caffeine levels were strongly associated with lower plasma Abeta1-40 levels in aged AD mice, plasma caffeine levels were also not linked to cognitive performance. Plasma caffeine and theophylline levels were tightly correlated, both being associated with reduced inflammatory cytokine levels in hippocampus. Our conclusion is two-fold: first, that both plasma and brain Abeta levels are reduced by acute or chronic caffeine administration in several AD transgenic lines and ages, indicating a therapeutic value of caffeine against AD; and second, that plasma Abeta levels are not an accurate index of brain Abeta levels/deposition or cognitive performance in aged AD mice.

  10. Replica exchange molecular dynamics study of the truncated amyloid beta (11-40) trimer in solution.

    Science.gov (United States)

    Ngo, Son Tung; Hung, Huynh Minh; Truong, Duc Toan; Nguyen, Minh Tho

    2017-01-18

    Amyloid beta (Aβ) oligomers are neurotoxic compounds that destroy the brain of Alzheimer's disease patients. Recent studies indicated that the trimer is one of the most cytotoxic forms of low molecular weight Aβ oligomers. As there was limited information about the structure of the Aβ trimer, either by experiment or by computation, we determined in this work the structure of the 3Aβ11-40 oligomer for the first time using the temperature replica exchange molecular dynamics simulations in the presence of an explicit solvent. More than 20.0 μs of MD simulations were performed. The probability of the β-content and random coil structure of the solvated trimer amounts to 42 ± 6 and 49 ± 7% which is in good agreement with experiments. Intermolecular interactions in central hydrophobic cores play a key role in stabilizing the oligomer. Intermolecular polar contacts between D23 and residues 24-29 replace the salt bridge D23-K28 to secure the loop region. The hydrophilic region of the N-terminus is maintained by the intermolecular polar crossing contacts H13A-Q15B and H13B-Q15C. The difference in the free energy of binding between the constituting monomers and the others amounts to -36 ± 8 kcal mol(-1). The collision cross section of the representative structures of the trimer was computed to be 1330 ± 47 Å(2), which is in good agreement with previous experiments.

  11. Analyzing and Modeling the Kinetics of Amyloid Beta Pores Associated with Alzheimer's Disease Pathology.

    Directory of Open Access Journals (Sweden)

    Ghanim Ullah

    Full Text Available Amyloid beta (Aβ oligomers associated with Alzheimer's disease (AD form Ca2+-permeable plasma membrane pores, leading to a disruption of the otherwise well-controlled intracellular calcium (Ca2+ homeostasis. The resultant up-regulation of intracellular Ca2+ concentration has detrimental implications for memory formation and cell survival. The gating kinetics and Ca2+ permeability of Aβ pores are not well understood. We have used computational modeling in conjunction with the ability of optical patch-clamping for massively parallel imaging of Ca2+ flux through thousands of pores in the cell membrane of Xenopus oocytes to elucidate the kinetic properties of Aβ pores. The fluorescence time-series data from individual pores were idealized and used to develop data-driven Markov chain models for the kinetics of the Aβ pore at different stages of its evolution. Our study provides the first demonstration of developing Markov chain models for ion channel gating that are driven by optical-patch clamp data with the advantage of experiments being performed under close to physiological conditions. Towards the end, we demonstrate the up-regulation of gating of various Ca2+ release channels due to Aβ pores and show that the extent and spatial range of such up-regulation increases as Aβ pores with low open probability and Ca2+ permeability transition into those with high open probability and Ca2+ permeability.

  12. Insights into the molecular interactions between aminopeptidase and amyloid beta peptide using molecular modeling techniques.

    Science.gov (United States)

    Dhanavade, Maruti J; Sonawane, Kailas D

    2014-08-01

    Amyloid beta (Aβ) peptides play a central role in the pathogenesis of Alzheimer's disease. The accumulation of Aβ peptides in AD brain was caused due to overproduction or insufficient clearance and defects in the proteolytic degradation of Aβ peptides. Hence, Aβ peptide degradation could be a promising therapeutic approach in AD treatment. Recent experimental report suggests that aminopeptidase from Streptomyces griseus KK565 (SGAK) can degrade Aβ peptides but the interactive residues are yet to be known in detail at the atomic level. Hence, we developed the three-dimensional model of aminopeptidase (SGAK) using SWISS-MODEL, Geno3D and MODELLER. Model built by MODELLER was used for further studies. Molecular docking was performed between aminopeptidase (SGAK) with wild-type and mutated Aβ peptides. The docked complex of aminopeptidase (SGAK) and wild-type Aβ peptide (1IYT.pdb) shows more stability than the other complexes. Molecular docking and MD simulation results revealed that the residues His93, Asp105, Glu139, Glu140, Asp168 and His255 are involved in the hydrogen bonding with Aβ peptide and zinc ions. The interactions between carboxyl oxygen atoms of Glu139 of aminopeptidase (SGAK) with water molecule suggest that the Glu139 may be involved in the nucleophilic attack on Ala2-Glu3 peptide bond of Aβ peptide. Hence, amino acid Glu139 of aminopeptidase (SGAK) might play an important role to degrade Aβ peptides, a causative agent of Alzheimer's disease.

  13. Dynamics in Alzheimer's disease: the role of peptide flexibility on amyloid beta aggregation

    Science.gov (United States)

    Antonieta Sanchez Farran, Maria; Maranas, Janna

    2010-03-01

    Aggregates of the amyloid beta peptide (Aβ) are thought to trigger brain cell death in Alzheimer's patients. Two different types of Aβ aggregates have been identified: soluble, and insoluble. Soluble aggregates are formed in early stages of peptide association, whereas insoluble aggregates are the final state of aggregation. Interestingly, it is the soluble aggregates, not the insoluble ones, which correlate with disease progression. Despite the relevance of soluble aggregates as a target for Alzheimer's disease, their mechanism of formation is unknown. The role of local flexibility in protein function has recently received attention: in this study we ask if local flexibility plays a similar role in how soluble aggregates form. To answer this question, we perform all-atom molecular dynamics simulations of the wild-type Aβ monomer, and two mutated forms that vary in their ability to form soluble aggregates. We find that enhanced flexibility facilitates the formation and availability of nucleation sites by allowing the peptide to more easily access the conformations most favorable to association. Peptides with high flexibility show larger conformational changes than less flexible peptides, the extent of these changes could determine the ability of Aβ to self associate.

  14. Monomeric Amyloid Beta Peptide in Hexafluoroisopropanol Detected by Small Angle Neutron Scattering.

    Directory of Open Access Journals (Sweden)

    Bo Zhang-Haagen

    Full Text Available Small proteins like amyloid beta (Aβ monomers are related to neurodegenerative disorders by aggregation to insoluble fibrils. Small angle neutron scattering (SANS is a nondestructive method to observe the aggregation process in solution. We show that SANS is able to resolve monomers of small molecular weight like Aβ for aggregation studies. We examine Aβ monomers after prolonged storing in d-hexafluoroisopropanol (dHFIP by using SANS and dynamic light scattering (DLS. We determined the radius of gyration from SANS as 1.0±0.1 nm for Aβ1-40 and 1.6±0.1 nm for Aβ1-42 in agreement with 3D NMR structures in similar solvents suggesting a solvent surface layer with 5% increased density. After initial dissolution in dHFIP Aβ aggregates sediment with a major component of pure monomers showing a hydrodynamic radius of 1.8±0.3 nm for Aβ1-40 and 3.2±0.4 nm for Aβ1-42 including a surface layer of dHFIP solvent molecules.

  15. Distinguishing the cross-beta spine arrangements in amyloid fibrils using FRET analysis.

    Science.gov (United States)

    Deng, Wei; Cao, Aoneng; Lai, Luhua

    2008-06-01

    The recently published microcrystal structures of amyloid fibrils from small peptides greatly enhanced our understanding of the atomic-level structure of the amyloid fibril. However, only a few amyloid fibrils can form microcrystals. The dansyl-tryptophan fluorescence resonance energy transfer (FRET) pair was shown to be able to detect the inter-peptide arrangement of the Transthyretin (105-115) amyloid fibril. In this study, we combined the known microcrystal structures with the corresponding FRET efficiencies to build a model for amyloid fibril structure classification. We found that fibrils with an antiparallel structural arrangement gave the largest FRET signal, those with a parallel arrangement gave the lowest FRET signal, and those with a mixed arrangement gave a moderate FRET signal. This confirms that the amyloid fibril structure patterns can be classified based on the FRET efficiency.

  16. Causative factors for formation of toxic islet amyloid polypeptide oligomer in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Jeong HR

    2015-11-01

    Full Text Available Hye Rin Jeong, Seong Soo A AnDepartment of Bionano Technology, Gachon Medical Research Institute, Gachon University, Gyeonggi-do, Republic of KoreaAbstract: Human islet amyloid polypeptide (h-IAPP is a peptide hormone that is synthesized and cosecreted with insulin from insulin-secreting pancreatic β-cells. Recently, h-IAPP was proposed to be the main component responsible for the cytotoxic pancreatic amyloid deposits in patients with type 2 diabetes mellitus (T2DM. Since the causative factors of IAPP (or amylin oligomer aggregation are not fully understood, this review will discuss the various forms of h-IAPP aggregation. Not all forms of IAPP aggregates trigger the destruction of β-cell function and loss of β-cell mass; however, toxic oligomers do trigger these events. Once these toxic oligomers form under abnormal metabolic conditions in T2DM, they can lead to cell disruption by inducing cell membrane destabilization. In this review, the various factors that have been shown to induce toxic IAPP oligomer formation will be presented, as well as the potential mechanism of oligomer and fibril formation from pro-IAPPs. Initially, pro-IAPPs undergo enzymatic reactions to produce the IAPP monomers, which can then develop into oligomers and fibrils. By this mechanism, toxic oligomers could be generated by diverse pathway components. Thus, the interconnections between factors that influence amyloid aggregation (eg, absence of PC2 enzyme, deamidation, reduction of disulfide bonds, environmental factors in the cell, genetic mutations, copper metal ions, and heparin will be presented. Hence, this review will aid in understanding the fundamental causative factors contributing to IAPP oligomer formation and support studies for investigating novel T2DM therapeutic approaches, such as the development of inhibitory agents for preventing oligomerization at the early stages of diabetic pathology.Keywords: amyloid aggregation, causative factor, IAPP, islet

  17. Systemic Administration of Substance P Recovers Beta Amyloid-Induced Cognitive Deficits in Rat: Involvement of Kv Potassium Channels

    OpenAIRE

    Patrizia Campolongo; Patrizia Ratano; Maria Teresa Ciotti; Fulvio Florenzano; Stefania Lucia Nori; Roberta Marolda; Maura Palmery; Anna Maria Rinaldi; Cristina Zona; Roberta Possenti; Pietro Calissano; Cinzia Severini

    2013-01-01

    Reduced levels of Substance P (SP), an endogenous neuropeptide endowed with neuroprotective and anti-apoptotic properties, have been found in brain and spinal fluid of Alzheimer's disease (AD) patients. Potassium (K(+)) channel dysfunction is implicated in AD development and the amyloid-β (Aβ)-induced up-regulation of voltage-gated potassium channel subunits could be considered a significant step in Aβ brain toxicity. The aim of this study was to evaluate whether SP could reduce, in vivo, Aβ-...

  18. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Drochioiu, Gabi; Ion, Laura [Alexandru Ioan Cuza University of Iasi, 11 Carol I, Iasi 700506 (Romania); Murariu, Manuela; Habasescu, Laura [Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi 700487 (Romania)

    2014-10-06

    An elevation in the concentration of heavy metal ions in Alzheimer’s disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1–3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloid-β peptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals.

  19. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer's disease

    Science.gov (United States)

    Drochioiu, Gabi; Murariu, Manuela; Ion, Laura; Habasescu, Laura

    2014-10-01

    An elevation in the concentration of heavy metal ions in Alzheimer's disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1-3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloid-β peptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals.

  20. N-methyl-D-aspartate receptor antagonist MK-801 and radical scavengers protect cholinergic nucleus basalis neurons against beta-amyloid neurotoxicity

    NARCIS (Netherlands)

    Harkany, T; Mulder, J; Sasvari, M; Abraham, [No Value; Konya, C; Zarandi, M; Penke, B; Luiten, PGM; Nyakas, C

    1999-01-01

    Previous experimental data indicate the involvement of Ca2+-related excitotoxic processes, possibly mediated by N-Methyl-D-Aspartate (NMDA) receptors, in beta-amyloid (beta A) neurotoxicity. On the other hand, other lines of evidence support the view that free radical generation is a critical step i

  1. BETA-AMYLOID((1-42)) AFFECTS CHOLINERGIC BUT NOT PARVALBUMIN-CONTAINING NEURONS IN THE SEPTAL COMPLEX OF THE RAT

    NARCIS (Netherlands)

    HARKANY, T; DEJONG, GI; SOOS, K; PENKE, B; LUITEN, PGM; GULYA, K

    1995-01-01

    beta-Amyloid((1-42)) peptide (beta AP((1-42))) was injected into the medial septum of rats. After a 14-day survival time, neuronal alterations in the septal cholinergic and GABAergic systems were visualized by means of histo- and immunocytochemical methods. Neurons insulted by the peptide were prima

  2. Complement C3 deficiency leads to accelerated amyloid beta plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice.

    Science.gov (United States)

    Maier, Marcel; Peng, Ying; Jiang, Liying; Seabrook, Timothy J; Carroll, Michael C; Lemere, Cynthia A

    2008-06-18

    Complement factor C3 is the central component of the complement system and a key inflammatory protein activated in Alzheimer's disease (AD). Previous studies demonstrated that inhibition of C3 by overexpression of soluble complement receptor-related protein y in an AD mouse model led to reduced microgliosis, increased amyloid beta (Abeta) plaque burden, and neurodegeneration. To further address the role of C3 in AD pathology, we generated a complement C3-deficient amyloid precursor protein (APP) transgenic AD mouse model (APP;C3(-/-)). Brains were analyzed at 8, 12, and 17 months of age by immunohistochemical and biochemical methods and compared with age-matched APP transgenic mice. At younger ages (8-12 months), no significant neuropathological differences were observed between the two transgenic lines. In contrast, at 17 months of age, APP;C3(-/-) mice showed significant changes of up to twofold increased total Abeta and fibrillar amyloid plaque burden in midfrontal cortex and hippocampus, which correlated with (1) significantly increased Tris-buffered saline (TBS)-insoluble Abeta(42) levels and reduced TBS-soluble Abeta(42) and Abeta(40) levels in brain homogenates, (2) a trend for increased Abeta levels in the plasma, (3) a significant loss of neuronal-specific nuclear protein-positive neurons in the hippocampus, and (4) differential activation of microglia toward a more alternative phenotype (e.g., significantly increased CD45-positive microglia, increased brain levels of interleukins 4 and 10, and reduced levels of CD68, F4/80, inducible nitric oxide synthase, and tumor necrosis factor). Our results suggest a beneficial role for complement C3 in plaque clearance and neuronal health as well as in modulation of the microglia phenotype.

  3. Chronic cladribine administration increases amyloid beta peptide generation and plaque burden in mice.

    Directory of Open Access Journals (Sweden)

    Crystal D Hayes

    Full Text Available BACKGROUND: The clinical uses of 2-chloro-2'-deoxyadenosine (2-CDA or cladribine which was initially prescribed to patients with hematological and lymphoid cancers is now extended to treat patients with multiple sclerosis (MS. Previous data has shown that 2-CDA has high affinity to the brain and readily passes through the blood brain barrier reaching CSF concentrations 25% of that found in plasma. However, whether long-term administration of 2-CDA can lead to any adverse effects in patients or animal models is not yet clearly known. METHODOLOGY: Here we show that exposure of 2-CDA to CHO cells stably expressing wild-type APP751 increased generation and secretion of amyloid β peptide (Aβ in to the conditioned medium. Interestingly, increased Aβ levels were noticed even at non-toxic concentrations of 2-CDA. Remarkably, chronic treatment of APdE9 mice, a model of Alzheimer's disease with 2-CDA for 60 days increased amyloid plaque burden by more than 1-fold. Increased Aβ generation appears to result from increased turnover of APP as revealed by cycloheximide-chase experiments. Additionally, surface labeling of APP with biotin and immunoprecipitation of surface labeled proteins with anti-biotin antibody also indicated increased APP at the cell surface in 2-CDA treated cells compared to controls. Increased turnover of APP by 2-CDA in turn might be a consequence of decreased protein levels of PIN 1, which is known to regulate cis-trans isomerization and phosphorylation of APP. Most importantly, like many other oncology drugs, 2-CDA administration led to significant delay in acquiring a reward-based learning task in a T maze paradigm. CONCLUSIONS: Taken together, these data provide compelling evidence for the first time that chronic 2-CDA administration can increase amyloidogenic processing of APP leading to robustly increased plaque burden which may be responsible for the observed deficits in learning skills. Thus chronic treatment of mice with 2

  4. Modeling the Aggregation Propensity and Toxicity of Amyloid-β Variants

    DEFF Research Database (Denmark)

    Tiwari, Manish Kumar; Kepp, Kasper Planeta

    2015-01-01

    Protein aggregation is a hallmark of many neurodegenerative disorders. Alzheimer’s disease (AD) is directly linked to deposits of amyloid-β (Aβ) derived from the amyloid-β protein precursor (AβPP), and multiple experimental studies have investigated the aggregation behavior of these amyloids...

  5. Amyloid beta inhibits olfactory bulb activity and the ability to smell.

    Directory of Open Access Journals (Sweden)

    Reynaldo Alvarado-Martínez

    Full Text Available Early olfactory dysfunction has been consistently reported in both Alzheimer's disease (AD and in transgenic mice that reproduce some features of this disease. In AD transgenic mice, alteration in olfaction has been associated with increased levels of soluble amyloid beta protein (Aβ as well as with alterations in the oscillatory network activity recorded in the olfactory bulb (OB and in the piriform cortex. However, since AD is a multifactorial disease and transgenic mice suffer a variety of adaptive changes, it is still unknown if soluble Aβ, by itself, is responsible for OB dysfunction both at electrophysiological and behavioral levels. Thus, here we tested whether or not Aβ directly affects OB network activity in vitro in slices obtained from mice and rats and if it affects olfactory ability in these rodents. Our results show that Aβ decreases, in a concentration- and time-dependent manner, the network activity of OB slices at clinically relevant concentrations (low nM and in a reversible manner. Moreover, we found that intrabulbar injection of Aβ decreases the olfactory ability of rodents two weeks after application, an effect that is not related to alterations in motor performance or motivation to seek food and that correlates with the presence of Aβ deposits. Our results indicate that Aβ disrupts, at clinically relevant concentrations, the network activity of the OB in vitro and can trigger a disruption in olfaction. These findings open the possibility of exploring the cellular mechanisms involved in early pathological AD as an approach to reduce or halt its progress.

  6. Glial expression of the {beta}-Amyloid Precursor Protein (APP) in global ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Banati, R.B.; Gehrmann, J.; Kreutzberg, G.W. [Max Planck Institute of Psychiarty, Martinsried (Germany)]|[Max Planck Institute for Neurological Research, Koeln (Germany)]|[Univ. Hospital, Zurich (Switzerland)

    1995-07-01

    The {beta}-amyloid precursor protein (APP) bears characteristics of an acute-phase protein and therefore is likely to be involved in the glial response to brain injury. In the brain, APP is rapidly synthesized by activated glial cells in response to comparatively mild neuronal lesions, e.g., a remote peripheral nerve injury. Perfusion deficits in the brain result largely in neuronal necrosis and are a common condition in elderly patients. This neuronal necrosis is accompanied by a pronounced reaction of astrocytes and microglia, which can also be observed in animal models. We have therefore studied in the rat, immunocytochemically, the induction of APP after 30 min of global ischemia caused by four-vessel occlusion. The postischemic brain injuries were examined at survival times from 12 h to 7 days. From day 3 onward, APP immunoreactivity was strongly induced in the CA{sub 1} and CA{sub 4} regions of the rat dorsal hippocampus as well as in the dorsolateral striatum. In these areas, the majority of APP-immunoreactive cells were reactive glial fibrillary acidic protein (GFAP)-positive astrocytes, as shown by double-immunofluorescence labeling for GFAP and APP. Additionally, small ramified cells, most likely activated microglia, expressed APP immunoreactivity. In contrast, in the parietal cortex, APP immunoreactivity occurred focally in clusters of activated microglia rather than in astrocytes, as demonstrated by double-immunofluorescence labeling for APP and the microglia-binding lectin Griffonia simplicifolia isolectin B{sub 4}. In conclusion, following global ischemia, APP is induced in reactive glial cells with spatial differences in the distribution pattern of APP induction in actrocytes and microglia. 51 refs., 4 figs.

  7. CCR5 deficiency accelerates lipopolysaccharide-induced astrogliosis, amyloid-beta deposit and impaired memory function.

    Science.gov (United States)

    Hwang, Chul Ju; Park, Mi Hee; Hwang, Jae Yeon; Kim, Ju Hwan; Yun, Na Young; Oh, Sang Yeon; Song, Ju Kyung; Seo, Hyun Ok; Kim, Yun-Bae; Hwang, Dae Yeon; Oh, Ki-Wan; Han, Sang-Bae; Hong, Jin Tae

    2016-03-15

    Chemokine receptors are implicated in inflammation and immune responses. Neuro-inflammation is associated with activation of astrocyte and amyloid-beta (Aβ) generations that lead to pathogenesis of Alzheimer disease (AD). Previous our study showed that deficiency of CC chemokine receptor 5 (CCR5) results in activation of astrocytes and Aβ deposit, and thus memory dysfunction through increase of CC chemokine receptor 2 (CCR2) expression. CCR5 knockout mice were used as an animal model with memory dysfunction. For the purpose LPS was injected i.p. daily (0.25 mg/kg/day). The memory dysfunctions were much higher in LPS-injected CCR5 knockout mice compared to CCR5 wild type mice as well as non-injected CCR5 knockout mice. Associated with severe memory dysfuction in LPS injected CCR5 knockout mice, LPS injection significant increase expression of inflammatory proteins, astrocyte activation, expressions of β-secretase as well as Aβ deposition in the brain of CCR5 knockout mice as compared with that of CCR5 wild type mice. In CCR5 knockout mice, CCR2 expressions were high and co-localized with GFAP which was significantly elevated by LPS. Expression of monocyte chemoattractant protein-1 (MCP-1) which ligands of CCR2 also increased by LPS injection, and increment of MCP-1 expression is much higher in CCR5 knockout mice. BV-2 cells treated with CCR5 antagonist, D-ala-peptide T-amide (DAPTA) and cultured astrocytes isolated from CCR5 knockout mice treated with LPS (1 μg/ml) and CCR2 antagonist, decreased the NF-ĸB activation and Aβ level. These findings suggest that the deficiency of CCR5 enhances response of LPS, which accelerates to neuro-inflammation and memory impairment.

  8. Soluble beta-amyloid precursor protein is related to disease progression in amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Petra Steinacker

    Full Text Available BACKGROUND: Biomarkers of disease progression in amyotrophic lateral sclerosis (ALS could support the identification of beneficial drugs in clinical trials. We aimed to test whether soluble fragments of beta-amyloid precursor protein (sAPPα and sAPPß correlated with clinical subtypes of ALS and were of prognostic value. METHODOLOGY/PRINCIPAL FINDINGS: In a cross-sectional study including patients with ALS (N = 68 with clinical follow-up data over 6 months, Parkinson's disease (PD, N = 20, and age-matched controls (N = 40, cerebrospinal fluid (CSF levels of sAPPα a, sAPPß and neurofilaments (NfH(SMI35 were measured by multiplex assay, Progranulin by ELISA. CSF sAPPα and sAPPß levels were lower in ALS with a rapidly-progressive disease course (p = 0.03, and p = 0.02 and with longer disease duration (p = 0.01 and p = 0.01, respectively. CSF NfH(SMI35 was elevated in ALS compared to PD and controls, with highest concentrations found in patients with rapid disease progression (p<0.01. High CSF NfH(SMI3 was linked to low CSF sAPPα and sAPPß (p = 0.001, and p = 0.007, respectively. The ratios CSF NfH(SMI35/CSF sAPPα,-ß were elevated in patients with fast progression of disease (p = 0.002 each. CSF Progranulin decreased with ongoing disease (p = 0.04. CONCLUSIONS: This study provides new CSF candidate markers associated with progression of disease in ALS. The data suggest that a deficiency of cellular neuroprotective mechanisms (decrease of sAPP is linked to progressive neuro-axonal damage (increase of NfH(SMI35 and to progression of disease.

  9. Amyloid Beta Peptides Affect Pregnenolone and Pregnenolone Sulfate Levels in PC-12 and SH-SY5Y Cells Depending on Cholesterol.

    Science.gov (United States)

    Calan, Ozlem Gursoy; Akan, Pinar; Cataler, Aysenur; Dogan, Cumhur; Kocturk, Semra

    2016-07-01

    Increased amyloid beta (AB) peptide concentration is one of the initiating factors in the neurodegeneration process. It has been suggested that cholesterol induces the synthesis of AB peptide from amyloid precursor protein or facilitates the formation of amyloid plaque by lowering the aggregation threshold of the peptide. It is also shown that AB peptides may affect cholesterol metabolism and the synthesis of steroid hormones such as progesterone and estradiol. Pregnenolone (P) and pregnenolone sulfate (PS) are the major steroids produced from cholesterol in neural tissue. In toxicity conditions, the effect of AB peptides on P and PS levels has not yet been determined. Furthermore, it has not been clearly defined how changes in cellular P and PS levels affect neuronal cell survival. The aim of this study was to determine the effects of AB peptides on cellular changes in P and PS levels depending on the level of their main precursor, cholesterol. Cholesterol and toxic concentrations of AB fragments (AB 25-35, AB 1-40 and AB 1-42) were applied to PC-12 and SH-SY5Y cells. Changes in cellular cholesterol, P and PS levels were determined simultaneously in a dose-and time-dependent manner. The cell viability and cell death types were also evaluated. AB peptides affected both cell viability and P/PS levels. Steroid levels were altered depending on AB fragment type and the cholesterol content of the cells. Treatment with each of the AB fragments alone increased P levels by twofold. However, combined treatment with AB peptides and cholesterol increased P levels by approximately sixfold, while PS levels were increased only about 2.5 fold in both cell lines. P levels in the groups treated with AB 25-35 were higher than those in AB 1-40 and AB 1-42 groups. The cell viabilities were significantly low in the group treated by AB and cholesterol (9 mM). The effect of AB peptides on P levels might be a result of cellular self-defense. On the other hand, the rate of P increase

  10. Benzothiazole Amphiphiles Ameliorate Amyloid β-Related Cell Toxicity and Oxidative Stress.

    Science.gov (United States)

    Cifelli, Jessica L; Chung, Tim S; Liu, Haiyan; Prangkio, Panchika; Mayer, Michael; Yang, Jerry

    2016-06-15

    Oxidative stress from the increase of reactive oxygen species in cells is a common part of the normal aging process and is accelerated in patients with Alzheimer's disease (AD). Herein, we report the evaluation of three benzothiazole amphiphiles (BAMs) that exhibit improved biocompatibility without loss of biological activity against amyloid-β induced cell damage compared to a previously reported hexa(ethylene glycol) derivative of benzothiazole aniline (BTA-EG6). The reduced toxicity of these BAM agents compared to BTA-EG6 corresponded with their reduced propensity to induce membrane lysis. In addition, all of the new BAMs were capable of protecting differentiated SH-SY5Y neuroblastoma cells from toxicity and concomitant oxidative stress induced by AD-related aggregated Aβ (1-42) peptides. Binding and microscopy studies support that these BAM agents target Aβ and inhibit the interactions of catalase with Aβ in cells, which, in turn, can account for an observed inhibition of Aβ-induced increases in hydrogen peroxide in cells treated with these compounds. These results support that this family of benzothiazole amphiphiles may have therapeutic potential for treating cellular damage associated with AD and other Aβ-related neurologic diseases.

  11. Amyloid beta-peptide worsens cognitive impairment following cerebral ischemia-reperfusion injury*****

    Institute of Scientific and Technical Information of China (English)

    Bo Song; Qiang Ao; Ying Niu; Qin Shen; Huancong Zuo; Xiufang Zhang; Yandao Gong

    2013-01-01

    Amyloid β-peptide, a major component of senile plaques in Alzheimer’s disease, has been impli-cated in neuronal cel death and cognitive impairment. Recently, studies have shown that the pathogenesis of cerebral ischemia is closely linked with Alzheimer’s disease. In this study, a rat model of global cerebral ischemia-reperfusion injury was established via occlusion of four arteries;meanwhile, fibril ar amyloid β-peptide was injected into the rat lateral ventricle. The Morris water maze test and histological staining revealed that administration of amyloid β-peptide could further aggravate impairments to learning and memory and neuronal cel death in the hippocampus of rats subjected to cerebral ischemia-reperfusion injury. Western blot showed that phosphorylation of tau protein and the activity of glycogen synthase kinase 3β were significantly stronger in cerebral is-chemia-reperfusion injury rats subjected to amyloidβ-peptide administration than those undergoing cerebral ischemia-reperfusion or amyloidβ-peptide administration alone. Conversely, the activity of protein phosphatase 2A was remarkably reduced in rats with cerebral ischemia-reperfusion injury fol owing amyloidβ-peptide administration. These findings suggest that amyloidβ-peptide can po-tentiate tau phosphorylation induced by cerebral ischemia-reperfusion and thereby aggravate cog-nitive impairment.

  12. The Effect of Beta-Amyloid on Neurons and the Influence of Glucocorticoid and Age on Such Effect

    Institute of Scientific and Technical Information of China (English)

    陈红辉; 孙圣刚; 梅元武; 刘昌勤; 刘安求; 童萼塘

    2002-01-01

    Summary: To explore the relationship between β-amyloid (Aβ) and the pathogenesis of Alzheimer disease (AD), after injection of β-amyloid into the rat brain, the apoptosis of nerve cells and acetylcholine (Ach) content in rat hippocampus were examined by employing TUNEL technique and base hydroxylamine colorimetry respectively. The influence of age and glucocorticoid on the neurotoxic effect of Aβ was also analyzed. Aβ peptide could strongly induce the apoptosis of neurons in hippocampus, cortex and striate body (P<0. 05 or P<0. 01). In addition, the senility and glucocorticoid pre-treatment could enhance the toxic effect of Aβ(P<0. 05 or P<0. 01). It is concluded that Aβ may play an important role in the pathogenesis of Alzheimer disease via its induction of apoptosis of neurons and by decreasing the content of the Ach.

  13. Mercury induced the Accumulation of Amyloid Beta (Aβ) in PC12 Cells: The Role of Production and Degradation of Aβ

    OpenAIRE

    Song, Ji-Won; Choi, Byung-Sun

    2013-01-01

    Extracellular accumulation of amyloid beta protein (Aβ) plays a central role in Alzheimer’s disease (AD). Some metals, such as copper, lead, and aluminum can affect the Aβ accumulation in the brain. However, the effect of mercury on Aβ accumulation in the brain is not clear. Thus, this study was proposed to estimate whether mercury concentration affects Aβ accumulation in PC12 cells. We treated 10, 100, and 1000 nM HgCl2 (Hg) or CH3HgCl2 (MeHg) for 48 hr in PC12 cells. After treatment, Aβ40 i...

  14. Spatial patterns of brain amyloid-beta burden and atrophy rate associations in mild cognitive impairment.

    Science.gov (United States)

    Tosun, Duygu; Schuff, Norbert; Mathis, Chester A; Jagust, William; Weiner, Michael W

    2011-04-01

    Amyloid-β accumulation in the brain is thought to be one of the earliest events in Alzheimer's disease, possibly leading to synaptic dysfunction, neurodegeneration and cognitive/functional decline. The earliest detectable changes seen with neuroimaging appear to be amyloid-β accumulation detected by (11)C-labelled Pittsburgh compound B positron emission tomography imaging. However, some individuals tolerate high brain amyloid-β loads without developing symptoms, while others progressively decline, suggesting that events in the brain downstream from amyloid-β deposition, such as regional brain atrophy rates, play an important role. The main purpose of this study was to understand the relationship between the regional distributions of increased amyloid-β and the regional distribution of increased brain atrophy rates in patients with mild cognitive impairment. To simultaneously capture the spatial distributions of amyloid-β and brain atrophy rates, we employed the statistical concept of parallel independent component analysis, an effective method for joint analysis of multimodal imaging data. Parallel independent component analysis identified significant relationships between two patterns of amyloid-β deposition and atrophy rates: (i) increased amyloid-β burden in the left precuneus/cuneus and medial-temporal regions was associated with increased brain atrophy rates in the left medial-temporal and parietal regions; and (ii) in contrast, increased amyloid-β burden in bilateral precuneus/cuneus and parietal regions was associated with increased brain atrophy rates in the right medial temporal regions. The spatial distribution of increased amyloid-β and the associated spatial distribution of increased brain atrophy rates embrace a characteristic pattern of brain structures known for a high vulnerability to Alzheimer's disease pathology, encouraging for the use of (11)C-labelled Pittsburgh compound B positron emission tomography measures as early indicators of

  15. P206-M Understanding the Metabolism of Amyloid-Beta in Humans

    OpenAIRE

    2007-01-01

    The most common form of dementia is Alzheimer’s disease. According to the amyloid hypothesis, the disease is preceded by an accumulation of the amyloid-β (Aβ) protein, which leads to downstream events including activation of microglia, inflammation, synaptic dysfunction, and neuronal loss. The objective of this research is to address the physiology of Aβ in humans by measuring its in vivo metabolic rates.

  16. Association between IgM anti-herpes simplex virus and plasma amyloid-beta levels.

    Directory of Open Access Journals (Sweden)

    Catherine Féart

    Full Text Available OBJECTIVE: Herpes simplex virus (HSV reactivation has been identified as a possible risk factor for Alzheimer's disease (AD and plasma amyloid-beta (Aβ levels might be considered as possible biomarkers of the risk of AD. The aim of our study was to investigate the association between anti-HSV antibodies and plasma Aβ levels. METHODS: The study sample consisted of 1222 subjects (73.9 y in mean from the Three-City cohort. IgM and IgG anti-HSV antibodies were quantified using an ELISA kit, and plasma levels of Aβ(1-40 and Aβ(1-42 were measured using an xMAP-based assay technology. Cross-sectional analyses of the associations between anti-HSV antibodies and plasma Aβ levels were performed by multi-linear regression. RESULTS: After adjustment for study center, age, sex, education, and apolipoprotein E-e4 polymorphism, plasma Aβ(1-42 and Aβ(1-40 levels were specifically inversely associated with anti-HSV IgM levels (β = -20.7, P=0.001 and β = -92.4, P=0.007, respectively. In a sub-sample with information on CLU- and CR1-linked SNPs genotyping (n=754, additional adjustment for CR1 or CLU markers did not modify these associations (adjustment for CR1 rs6656401, β = -25.6, P=0.002 for Aβ(1-42 and β = -132.7, P=0.002 for Aβ(1-40; adjustment for CLU rs2279590, β = -25.6, P=0.002 for Aβ(1-42 and β = -134.8, P=0.002 for Aβ(1-40. No association between the plasma Aβ(1-42-to-Aβ(1-40 ratio and anti-HSV IgM or IgG were evidenced. CONCLUSION: High anti-HSV IgM levels, markers of HSV reactivation, are associated with lower plasma Aβ(1-40 and Aβ(1-42 levels, which suggest a possible involvement of the virus in the alterations of the APP processing and potentially in the pathogenesis of AD in human.

  17. Investigation on apoptosis of neuronal cells induced by Amyloid beta-Protein

    Institute of Scientific and Technical Information of China (English)

    罗本燕; 徐增斌; 陈智; 陈峰; 唐敏

    2004-01-01

    Objective: To construct a PC12 cell strain with neuronal differentiation, and observe the apoptosis and pro-liferation activity effects induced these cells by Amyloid beta-Protein (Aβ3-43). Methods: 1) PC12 cells in logarithmic growth phase were subcultured for 24 h. After the culture fluid was changed, the cells were treated with Rat-β-NGF and cultured for 9 days. 2) Neuronal differentiation of PC 12 cells in logarithmic growth phase were divided into four groups:control group (0), experimental group (1), experimental group (2) and experimental group (3). The concentrations of Aβ in the four groups were 0 μmol/L, 1.25 μmol/L, 2.5 μmol/L and 5 μmol/L, respectively. The cells were harvested at 24, 48 and 72 h later and stained with AnnexinV-FITC/PI after centrifugation and washing. Then flow cytometry was conducted to examine the apoptosis percentage. 3) NGF-induced PC12 cells were selected and Aβ with different concentrations was added. The final concentrations of Aβ were 0 μmol/L, 1.25 μmol/L, 2.5 μmol/L and 5 μmol/L, respectively. After the cells were incubated in an atmosphere of 5% CO2 at 37 ℃ in an incubator for 72 h, the OD values were examined. Results: 1)Neuronal differentiated PC12 cell lines were successfully established. 2) Flow cytometric examination indicated that Aβ(1.25, 2.5, and 5.0 μmol/L) could effectively induce apoptosis of neuronal-differented cells at the 24 h, 48 h and 72 h time points. 3) Aβ (0-5.00 μmol/L) had no obvious effect on proliferation or restraining of the neuronal differentiation of the PC 12 cells after a 72 h interacting process. Conclusion: This investigation revealed successful neuronal differentiation of the PC12 cell strain. The induction of apoptosis of the neurocytes by various concentrations of Aβ was observed and the in-fluence of Aβ on induced proliferation of PC 12 cells by Rat-β-NGF was revealed. This study may provide basis for future research on the molecular cure of AD and interdiction of AD

  18. Low levels of amyloid-beta and its transporters in neonatal rats with and without hydrocephalus

    Directory of Open Access Journals (Sweden)

    Silverberg Gerald D

    2009-05-01

    Full Text Available Abstract Background Previous studies in aging animals have shown that amyloid-beta protein (Aβ accumulates and its transporters, low-density lipoprotein receptor-related protein-1 (LRP-1 and the receptor for advanced glycation end products (RAGE are impaired during hydrocephalus. Furthermore, correlations between astrocytes and Aβ have been found in human cases of normal pressure hydrocephalus (NPH and Alzheimer's disease (AD. Because hydrocephalus occurs frequently in children, we evaluated the expression of Aβ and its transporters and reactive astrocytosis in animals with neonatal hydrocephalus. Methods Hydrocephalus was induced in neonatal rats by intracisternal kaolin injections on post-natal day one, and severe ventriculomegaly developed over a three week period. MRI was performed on post-kaolin days 10 and 21 to document ventriculomegaly. Animals were sacrificed on post-kaolin day 21. For an age-related comparison, tissue was used from previous studies when hydrocephalus was induced in a group of adult animals at either 6 months or 12 months of age. Tissue was processed for immunohistochemistry to visualize LRP-1, RAGE, Aβ, and glial fibrillary acidic protein (GFAP and with quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR to quantify expression of LRP-1, RAGE, and GFAP. Results When 21-day post-kaolin neonatal hydrocephalic animals were compared to adult (6–12 month old hydrocephalic animals, immunohistochemistry demonstrated levels of Aβ, RAGE, and LRP-1 that were substantially lower in the younger animals; in contrast, GFAP levels were elevated in both young and old hydrocephalic animals. When the neonatal hydrocephalic animals were compared to age-matched controls, qRT-PCR demonstrated no significant changes in Aβ, LRP-1 and RAGE. However, immunohistochemistry showed very small increases or decreases in individual proteins. Furthermore, qRT-PCR indicated statistically significant increases in GFAP

  19. Correlations between serum levels of beta amyloid, cerebrospinal levels of tau and phospho tau, and delayed response tasks in young and aged cynomolgus monkeys (Macaca fascicularis)

    DEFF Research Database (Denmark)

    Darusman, Huda Shalahudin; Sajuthi, D; Kalliokoski, O

    2013-01-01

    In an attempt to explore cynomolgus monkeys as an animal model for Alzheimer's disease, the present study focused on the Alzheimer's biomarkers beta amyloid 1-42 (Aβ42 ) in serum, and total tau (t-tau) and phosphorylated tau (p-tau) levels in cerebrospinal fluid.......In an attempt to explore cynomolgus monkeys as an animal model for Alzheimer's disease, the present study focused on the Alzheimer's biomarkers beta amyloid 1-42 (Aβ42 ) in serum, and total tau (t-tau) and phosphorylated tau (p-tau) levels in cerebrospinal fluid....

  20. α-Iso-cubebene exerts neuroprotective effects in amyloid beta stimulated microglia activation.

    Science.gov (United States)

    Park, Sun Young; Park, Se Jin; Park, Nan Jeong; Joo, Woo Hong; Lee, Sang-Joon; Choi, Young-Whan

    2013-10-25

    Schisandra chinensis is commonly used for food and as a traditional remedy for the treatment of neuronal disorders. However, it is unclear which component of S. chinensis is responsible for its neuropharmacological effects. To answer this question, we isolated α-iso-cubebene, a dibenzocyclooctadiene lignin, from S. chinensis and determined if it has any anti-neuroinflammatory and neuroprotective properties against amyloid β-induced neuroinflammation in microglia. Microglia that are stimulated by amyloid β increased their production of pro-inflammatory cytokines and chemokines, prostaglandin E2 (PGE2), nitric oxide (NO) and reactive oxygen species (ROS) and the enzymatic activity of matrix metalloproteinase 9 (MMP-9). We found this was all inhibited by α-iso-cubebene. Consistent with these results, α-iso-cubebene inhibited the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2) and MMP-9 in amyloid β-stimulated microglia. Subsequent mechanistic studies revealed that α-iso-cubebene inhibited the phosphorylation and degradation of IκB-α, the phosphorylation and transactivity of NF-κB, and the phosphorylation of MAPK in amyloid β-stimulated microglia. These results suggest that α-iso-cubebene impairs the amyloid β-induced neuroinflammatory response of microglia by inhibiting the NF-κB and MAPK signaling pathways. Importantly, α-iso-cubebene can provide critical neuroprotection for primary cortical neurons against amyloid β-stimulated microglia-mediated neurotoxicity. To the best of our knowledge, this is the first report showing that α-iso-cubebene can provide neuroprotection against, and influence neuroinflammation triggered by, amyloid β activation of microglia.

  1. The conformations of the amyloid-beta (21-30) fragment can be described by three families in solution.

    Science.gov (United States)

    Chen, Wei; Mousseau, Normand; Derreumaux, Philippe

    2006-08-28

    Alzheimer's disease has been linked to the self-assembly of the amyloid-beta protein of 40 and 42 residues. Although monomers are in equilibrium with higher-order species ranging from dimers to heptamers, structural knowledge of the monomeric amyloid-beta (Abeta) peptides is an important issue. Recent experimental data have shown that the fragment (21-30) is protease-resistant within full-length Abeta peptides and displays two structural families in solution. Because the details of the Abeta(21-30) structures found using distinct force fields and protocols differ at various degrees from those of the NMR structures, we revisit the conformational space of this peptide using the activation-relaxation technique (ART nouveau) coupled with a coarse-grained force field (OPEP v.3.0). We find that although Abeta(21-30) does not have a secondary structure, it dominantly populates three structural families, with a loop spanning residues Val24-Lys28. The first two families, which differ in the nature of the electrostatic interactions, satisfy the five interproton rotating frame nuclear Overhauser effect spectroscopy (ROESY) distances and superpose well onto the NMR structures. The third family, which cannot be seen by ROESY NMR experiments, displays a more open structure. This numeric study complements the experimental results by providing a much more detailed description of the dominant structures. Moreover, it provides further evidence of the capability of ART OPEP in providing a reliable conformational picture of peptides in solution.

  2. DCP-LA neutralizes mutant amyloid beta peptide-induced impairment of long-term potentiation and spatial learning.

    Science.gov (United States)

    Nagata, Tetsu; Tomiyama, Takami; Tominaga, Takemi; Mori, Hiroshi; Yaguchi, Takahiro; Nishizaki, Tomoyuki

    2010-01-01

    Long-term potentiation (LTP) was monitored from the CA1 region of the intact rat hippocampus by delivering high frequency stimulation (HFS) to the Schaffer collateral commissural pathway. Intraventricular injection with mutant amyloid beta(1-42) peptide lacking glutamate-22 (Abeta(1-42)E22Delta), favoring oligomerization, 10 min prior to HFS, inhibited expression of LTP, with the potency more than wild-type amyloid beta(1-42) peptide. Intraperitoneal injection with the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) 70 min prior to HFS neutralized mutant Abeta(1-42)E22Delta peptide-induced LTP inhibition. In the water maze test, continuous intraventricular injection with mutant Abeta(1-42)E22Delta peptide for 14 days prolonged the acquisition latency as compared with that for control, with the potency similar to wild-type Abeta(1-42) peptide, and intraperitoneal injection with DCP-LA shortened the prolonged latency to control levels. The results of the present study indicate that DCP-LA neutralizes mutant Abeta(1-42)E22Delta peptide-induced impairment of LTP and spatial learning.

  3. Atomistic MD simulations reveal the protective role of cholesterol in dimeric beta-amyloid induced disruptions in neuronal membrane mimics

    Science.gov (United States)

    Qiu, Liming; Buie, Creighton; Cheng, Sara; Chou, George; Vaughn, Mark; Cheng, K.

    2011-10-01

    Interactions of oligomeric beta-amyloid peptides with neuronal membranes have been linked to the pathogenesis of Alzheimer's disease (AD). The molecular details of the interactions of different lipid components, particularly cholesterol (CHOL), of the membranes with the peptides are not clear. Using an atomistic MD simulations approach, the water permeability barrier, structural geometry and order parameters of binary phosphatidylcholine (PC) and PC/CHOL lipid bilayers were examined from various 200 ns-simulation replicates. Our results suggest that the longer length dimer (2 x 42 residues) perturbs the membrane more than the shorter one (2 x 40 residues). In addition, we discovered a significant protective role of cholesterol in protein-induced disruptions of the membranes. The use of a new Monte-Carlo method in characterizing the structures of the conformal annular lipids in close proximity with the proteins will be introduced. We propose that the neurotoxicity of beta-amyloid peptide may be associated with the nanodomain or raft-like structures of the neuronal membranes in-vivo in the development of AD.

  4. Carqueja (Baccharis trimera Protects against Oxidative Stress and β-Amyloid-Induced Toxicity in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Franciny Aparecida Paiva

    2015-01-01

    Full Text Available Carqueja (Baccharis trimera is a native plant found throughout South America. Several studies have shown that Carqueja has antioxidant activity in vitro, as well as anti-inflammatory, antidiabetic, analgesic, antihepatotoxic, and antimutagenic properties. However, studies regarding its antioxidant potential in vivo are limited. In this study, we used Caenorhabditis elegans as a model to examine the antioxidant effects of a Carqueja hydroalcoholic extract (CHE on stress resistance and lifespan and to investigate whether CHE has a protective effect in a C. elegans model for Alzheimer's disease. Here, we show for the first time, using in vivo assays, that CHE treatment improved oxidative stress resistance by increasing survival rate and by reducing ROS levels under oxidative stress conditions independently of the stress-related signaling pathways (p38, JNK, and ERK and transcription factors (SKN-1/Nrf and DAF-16/Foxo tested here. CHE treatment also increased the defenses against β-amyloid toxicity in C. elegans, in part by increasing proteasome activity and the expression of two heat shock protein genes. Our findings suggest a potential neuroprotective use for Carqueja, supporting the idea that dietary antioxidants are a promising approach to boost the defensive systems against stress and neurodegeneration.

  5. Synthesis and evaluation of benzothiophene derivatives as ligands for imaging {beta}-amyloid plaques in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Young Soo [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)]|[Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul 110-744 (Korea, Republic of); Jeong, Jae Min [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)]|[Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of) and Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul 110-744 (Korea, Republic of)]. E-mail: jmjng@snu.ac.kr; Lee, Yun-Sang [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)]|[Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul 110-744 (Korea, Republic of); Kim, Hyung Woo [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)]|[Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul 110-744 (Korea, Republic of); Ganesha, Rai B.; Kim, Young Ju; Lee, Dong Soo [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Chung, June-Key [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)]|[Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Lee, Myung Chul [Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)

    2006-08-15

    The imaging of the distribution of {beta}-amyloid (A{beta}) plaques in the brain is becoming an important diagnostic modality in Alzheimer's disease (AD). Here, we synthesized novel benzothiophene derivatives and labeled them with {sup 18}F for the potential diagnostic imaging of AD patients using positron emission tomography. The K {sub i} values of benzothiophene derivatives were evaluated by competitive binding assay using 2-(3'-[{sup 125}I]iodo-4'-N-methylaminophenyl)benzothiazole as a radioligand and A{beta}(1-40) or A{beta}(1-42) aggregates as receptors. All synthesized benzothiophene derivatives showed high binding affinities (K {sub i}=0.28-6.50 nM) to both A{beta}(1-40) and A{beta}(1-42) aggregates. Binding affinities were increased by O-alkylation or N-alkylation of 2-(4'-hydroxyphenyl)benzothiophene or 2-(4'-aminophenyl)benzothiophene. Biodistribution studies of 2-(4'-O-(2''-[{sup 18}F]fluoroethyl)hydroxyphenyl)benzothiophene ([{sup 18}F]) and 2-(4'-O-(3''-[{sup 18}F]fluoropropyl)hydroxyphenyl)benzothiophene ([{sup 18}F]) in normal mice were performed after intravenous injection through the tail vein. In biodistribution data, [{sup 18}F] and [{sup 18}F] showed high initial brain uptakes at 2 min (5.2{+-}0.4% and 3.3{+-}0.2% ID/g, respectively), and brain activities washed out to 2.0{+-}0.2% and 0.5{+-}0.1% ID/g at 4 h, respectively. In conclusion, benzothiophene derivatives showed excellent binding affinities for A{beta} aggregates and high initial brain uptakes in normal mice.

  6. Buyuan Congnao decoction decreases hippocampal beta-amyloid expression in a rat model of Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Min Chen; Jing Wang; Cairong Ming

    2012-01-01

    A mixture of ibotenic acid and β-amyloid 1-42 was injected into the hippocampus of a rat model of Alzheimer's disease, followed by intragastric administration of a traditional Chinese medicine Buyuan Congnao decoction (main components included radix astragali, radix polygoni multiflori preparata, rhizoma acori talarinowii, radix polygalae, fructus alpiniae oxyphyllae, and radix glycyrrhizae preparata) and a piracetam suspension.Following treatment with traditional Chinese medicine or western medicine, β-amyloid expression decreased and neuronal morphology was normal in the rat hippocampal CA1 region, in addition to significantly shortened average latency in the Morris water navigation task.These findings suggested that compound prescription of Buyuan Congnao decoction, similar to the curative effects of piracetam, decreased hippocampal β-amyloid expression in a rat model of Alzheimer's disease, as well as improved learning and memory.

  7. Inhibition of beta-site amyloid precursor protein-cleaving enzyme and beta-amyloid precursor protein genes in SK-N-SH cells

    Institute of Scientific and Technical Information of China (English)

    Suqin Gao; Lin Sun; Enji Han; Hongshun Qi; Jinbo Feng; Shunliang Xu; Wen Xia

    2009-01-01

    BACKGROUND:Previous studies have demonstrated that Piper futokadsura stem selectively inhibits expression of amyloid precursor protein (APP) at the mRNA level.In addition,the piperlonguminine (A) and dihydropiperlonguminine (B) components (1:0.8),which can be separated from Futokadsura stem,selectively inhibit expression of the APP at mRNA and protein levels.OBJECTIVE:Based on previous findings,the present study investigated the effects of β-site amyloid precursor protein cleaving enzyme (BACE1) and APP genes on the production of β-amyloid peptide 42 (Aβ42) in human neuroblastoma cells (SK-N-SH cells) using small interfering RNAs (siRNAs) and A/B components separated from Futokadsura stem,respectively.DESIGN,TIME AND SETTING:A gene interference-based randomized,controlled,in vitro experiment was performed at the Key Laboratory of Cardiovascular Remodeling and Function Research,Ministries of Education and Public Health,and Institute of Pharmacologic Research,School of Pharmaceutical Science & Department of Biochemistry,School of Medicine,Shandong University between July 2006 and December 2007.MATERIALS:SK-N-SH cells were provided by Shanghai Institutes of Biological Sciences,Chinese Academy of Sciences,Shanghai,China;mouse anti-human BACE1 monoclonal antibody was purchased from R&D Systems,USA;mouse anti-human APP monoclonal antibody was purchased from Cell Signaling Technology,USA;and horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG was provided by Sigma,USA.METHODS:The human BACE1 cDNA sequence was obtained from NCBI website (www.ncbi.nlm.nih.gov/sites/entrez).Three pairs of siRNAs,specific to human BACE1 gene,were synthesized through the use of Silencer? pre-designed siRNA specification,and were transfected into SK-N-SH cells with siPORT NeoFX transfection agent to compare the effects of different concentrations of siRNAs (10-50 nmol/L) on SK-N-SH cells.Futokadsura stem was separated and purified with chemical methods,and the crystal was composed of

  8. Amyloid-beta transporter expression at the choroid plexus in normal aging: the possibility of reduced resistance to oxidative stress insults.

    Science.gov (United States)

    Liu, Chong-Bin; Wang, Rui; Dong, Miao-Wu; Gao, Xi-Ren; Yu, Feng

    2014-04-25

    Accumulation of amyloid-beta peptides (Aβ) results in amyloid burden in normal aging brain. Clearance of this peptide from the brain occurs via active transport at the interfaces separating the central nervous system (CNS) from the peripheral circulation. The present study was to investigate the change of Aβ transporters expression at the choroid plexus (CP) in normal aging. Morphological modifications of CP were observed by transmission electron microscope. Real-time RT-PCR was used to measure mRNA expressions of Aβ(42) and its transporters, which include low density lipoprotein receptor-related protein-1 and 2 (LRP-1 and -2), P-glycoprotein (P-gp) and the receptor for advanced glycation end-products (RAGE), at the CP epithelium in rats at ages of 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33 and 36 months. At the same time, the mRNA expressions of oxidative stress-related proteins were also measured. The results showed that a striking deterioration of the CP epithelial cells and increased Aβ(42) mRNA expression were observed in aged rats, and there was a decrease in the transcription of the Aβ efflux transporters, LRP-1 and P-gp, no change in RAGE mRNA expression and an increase in LRP-2, the CP epithelium Aβ influx transporter. Heme oxygenase-1 (HO-1) and caspase-3 expressions at the CP epithelium increased with age at the mRNA level. These results suggest the efficacy of the CP in clearing of Aβ deceases in normal aging, which results in the increase of brain Aβ accumulation. And excess Aβ interferes with oxidative phosphorylation, leads to oxidative stress and morphological structural changes. This in turn induces further pathological cascades of toxicity, inflammation and neurodegeneration process.

  9. Insulin Promotes Survival of Amyloid-Beta Oligomers Neuroblastoma Damaged Cells via Caspase 9 Inhibition and Hsp70 Upregulation

    Directory of Open Access Journals (Sweden)

    M. Di Carlo

    2010-01-01

    Full Text Available Alzheimer's disease (AD and type 2 diabetes are connected in a way that is still not completely understood, but insulin resistance has been implicated as a risk factor for developing AD. Here we show an evidence that insulin is capable of reducing cytotoxicity induced by Amyloid-beta peptides (A-beta in its oligomeric form in a dose-dependent manner. By TUNEL and biochemical assays we demonstrate that the recovery of the cell viability is obtained by inhibition of intrinsic apoptotic program, triggered by A-beta and involving caspase 9 and 3 activation. A protective role of insulin on mitochondrial damage is also shown by using Mito-red vital dye. Furthermore, A-beta activates the stress inducible Hsp70 protein in LAN5 cells and an overexpression is detectable after the addition of insulin, suggesting that this major induction is the necessary condition to activate a cell survival program. Together, these results may provide opportunities for the design of preventive and therapeutic strategies against AD.

  10. Minocycline alleviates beta-amyloid protein and tau pathology via restraining neuroinflammation induced by diabetic metabolic disorder

    Directory of Open Access Journals (Sweden)

    Cai Z

    2013-08-01

    Full Text Available Zhiyou Cai,1 Yong Yan,2 Yonglong Wang2 1Department of Neurology, the Lu’an Affiliated Hospital of Anhui Medical University, Lu’an People’s Hospital, Lu’an, Anhui Province, People’s Republic of China; 2Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, People’s Republic of China Background: Compelling evidence has shown that diabetic metabolic disorder plays a critical role in the pathogenesis of Alzheimer’s disease, including increased expression of β-amyloid protein (Aβ and tau protein. Evidence has supported that minocycline, a tetracycline derivative, protects against neuroinflammation induced by neurodegenerative disorders or cerebral ischemia. This study has evaluated minocycline influence on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α in the brain of diabetic rats to clarify neuroprotection by minocycline under diabetic metabolic disorder. Method: An animal model of diabetes was established by high fat diet and intraperitoneal injection of streptozocin. In this study, we investigated the effect of minocycline on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α in the hippocampus of diabetic rats via immunohistochemistry, western blotting, and enzyme-linked immunosorbent assay. Results: These results showed that minocycline decreased expression of Aβ protein and lowered the phosphorylation of tau protein, and retarded the proinflammatory cytokines, but not amyloid precursor protein. Conclusion: On the basis of the finding that minocycline had no influence on amyloid precursor protein and beta-site amyloid precursor protein cleaving enzyme 1 which determines the speed of Aβ generation, the decreases in Aβ production and tau hyperphosphorylation by minocycline are through inhibiting

  11. Unfolding, aggregation, and seeded amyloid formation of lysine-58-cleaved beta(2)-microglobulin

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Jørgensen, T.J.D.; Rozlosnik, N.;

    2005-01-01

    beta(2)-Microglobulin (beta(2)m) is the amyloidogenic protein in dialysis-related amyloidosis, but the mechanisms underlying beta(2)m fibrillogenesis in vivo are largely unknown. We study a structural variant of beta(2)M that has been linked to cancer and inflammation and may be present in the ci......beta(2)-Microglobulin (beta(2)m) is the amyloidogenic protein in dialysis-related amyloidosis, but the mechanisms underlying beta(2)m fibrillogenesis in vivo are largely unknown. We study a structural variant of beta(2)M that has been linked to cancer and inflammation and may be present...... in the circulation of dialysis patients. This beta(2)M variant, Delta K58-beta(2)m, is a disulfide-linked two-chain molecule consisting of amino acid residues 1-57 and 59-99 of intact beta(2)m, and we here demonstrate and characterize its decreased conformational stability as compared to wild-type (wt) beta(2)M......, and at 37 degrees C the half-time for unfolding is more than 170-fold faster than at 15 degrees C. Conformational changes are also reflected by a very prominent Congo red binding of Delta K58-beta(2)m at 37 degrees C, by the evolution of thioflavin T fluorescence, and by changes in intrinsic fluorescence...

  12. Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer's disease: implications for early intervention and therapeutics.

    Science.gov (United States)

    Mao, Peizhong; Reddy, P Hemachandra

    2011-11-01

    Alzheimer's disease (AD) is an age-related progressive neurodegenerative disease affecting thousands of people in the world and effective treatment is still not available. Over two decades of intense research using AD postmortem brains, transgenic mouse and cell models of amyloid precursor protein and tau revealed that amyloid beta (Aβ) and hyperphosphorylated tau are synergistically involved in triggering disease progression. Accumulating evidence also revealed that aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction initiate and contributes to the development and progression of the disease. The purpose of this article is to summarize the latest progress in aging and AD, with a special emphasis on the mitochondria, oxidative DNA damage including methods of its measurement. It also discusses the therapeutic approaches against oxidative DNA damage and treatment strategies in AD.

  13. TDP-43 inclusion bodies formed in bacteria are structurally amorphous, non-amyloid and inherently toxic to neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Claudia Capitini

    Full Text Available Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Such inclusions have variably been described as amorphous aggregates or more structured deposits having an amyloid structure. Following the observations that bacterial inclusion bodies generally consist of amyloid aggregates, we have overexpressed full-length TDP-43 and C-terminal TDP-43 in E. coli, purified the resulting full-length and C-terminal TDP-43 containing inclusion bodies (FL and Ct TDP-43 IBs and subjected them to biophysical analyses to assess their structure/morphology. We show that both FL and Ct TDP-43 aggregates contained in the bacterial IBs do not bind amyloid dyes such as thioflavin T and Congo red, possess a disordered secondary structure, as inferred using circular dichroism and infrared spectroscopies, and are susceptible to proteinase K digestion, thus possessing none of the hallmarks for amyloid. Moreover, atomic force microscopy revealed an irregular structure for both types of TDP-43 IBs and confirmed the absence of amyloid-like species after proteinase K treatment. Cell biology experiments showed that FL TDP-43 IBs were able to impair the viability of cultured neuroblastoma cells when added to their extracellular medium and, more markedly, when transfected into their cytosol, where they are at least in part ubiquitinated and phosphorylated. These data reveal an inherently high propensity of TDP-43 to form amorphous aggregates, which possess, however, an inherently high ability to cause cell dysfunction. This indicates that a gain of toxic function caused by TDP-43 deposits is effective in TDP-43 pathologies, in addition to possible loss of function mechanisms originating from the cellular mistrafficking of the protein.

  14. TDP-43 inclusion bodies formed in bacteria are structurally amorphous, non-amyloid and inherently toxic to neuroblastoma cells.

    Science.gov (United States)

    Capitini, Claudia; Conti, Simona; Perni, Michele; Guidi, Francesca; Cascella, Roberta; De Poli, Angela; Penco, Amanda; Relini, Annalisa; Cecchi, Cristina; Chiti, Fabrizio

    2014-01-01

    Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Such inclusions have variably been described as amorphous aggregates or more structured deposits having an amyloid structure. Following the observations that bacterial inclusion bodies generally consist of amyloid aggregates, we have overexpressed full-length TDP-43 and C-terminal TDP-43 in E. coli, purified the resulting full-length and C-terminal TDP-43 containing inclusion bodies (FL and Ct TDP-43 IBs) and subjected them to biophysical analyses to assess their structure/morphology. We show that both FL and Ct TDP-43 aggregates contained in the bacterial IBs do not bind amyloid dyes such as thioflavin T and Congo red, possess a disordered secondary structure, as inferred using circular dichroism and infrared spectroscopies, and are susceptible to proteinase K digestion, thus possessing none of the hallmarks for amyloid. Moreover, atomic force microscopy revealed an irregular structure for both types of TDP-43 IBs and confirmed the absence of amyloid-like species after proteinase K treatment. Cell biology experiments showed that FL TDP-43 IBs were able to impair the viability of cultured neuroblastoma cells when added to their extracellular medium and, more markedly, when transfected into their cytosol, where they are at least in part ubiquitinated and phosphorylated. These data reveal an inherently high propensity of TDP-43 to form amorphous aggregates, which possess, however, an inherently high ability to cause cell dysfunction. This indicates that a gain of toxic function caused by TDP-43 deposits is effective in TDP-43 pathologies, in addition to possible loss of function mechanisms originating from the cellular mistrafficking of the protein.

  15. St. John's Wort reduces beta-amyloid accumulation in a double transgenic Alzheimer's disease mouse model-role of P-glycoprotein.

    Science.gov (United States)

    Brenn, Anja; Grube, Markus; Jedlitschky, Gabriele; Fischer, Andrea; Strohmeier, Barbara; Eiden, Martin; Keller, Markus; Groschup, Martin H; Vogelgesang, Silke

    2014-01-01

    The adenosine triphosphate-binding cassette transport protein P-glycoprotein (ABCB1) is involved in the export of beta-amyloid from the brain into the blood, and there is evidence that age-associated deficits in cerebral P-glycoprotein content may be involved in Alzheimer's disease pathogenesis. P-glycoprotein function and expression can be pharmacologically induced by a variety of compounds including extracts of Hypericum perforatum (St. John's Wort). To clarify the effect of St. John's Wort on the accumulation of beta-amyloid and P-glycoprotein expression in the brain, St. John's Wort extract (final hyperforin concentration 5%) was fed to 30-day-old male C57BL/6J-APP/PS1(+/-) mice over a period of 60 or 120 days, respectively. Age-matched male C57BL/6J-APP/PS1(+/-) mice receiving a St. John's Wort-free diet served as controls. Mice receiving St. John's Wort extract showed (i) significant reductions of parenchymal beta-amyloid 1-40 and 1-42 accumulation; and (ii) moderate, but statistically significant increases in cerebrovascular P-glycoprotein expression. Thus, the induction of cerebrovascular P-glycoprotein may be a novel therapeutic strategy to protect the brain from beta-amyloid accumulation, and thereby impede the progression of Alzheimer's disease.

  16. Effect of 1 night of total sleep deprivation on cerebrospinal fluid beta-amyloid 42 in healthy middle-aged men: a randomized clinical trial

    NARCIS (Netherlands)

    Ooms, S.; Overeem, S.; Besse, K.; Olde Rikkert, M.G.M.; Verbeek, M.M.; Claassen, J.A.

    2014-01-01

    IMPORTANCE: Increasing evidence suggests a relationship between poor sleep and the risk of developing Alzheimer disease. A previous study found an effect of sleep on beta-amyloid (Abeta), which is a key protein in Alzheimer disease pathology. OBJECTIVE: To determine the effect of 1 night of total sl

  17. Screening for a human single chain Fv antibody against epitope on amyloid-beta 1-40 from a human phage display library

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhen-fu; GAO Guo-quan; LIU Shu; ZOU Jun-tao; XIE Yao; YUAN Qun-fang; WANG Hua-qiao; YAO Zhi-bin

    2007-01-01

    @@ Amyloid-beta peptides (Aβ) are believed to be responsible for the mental decline in patients with Alzheimer's disease (AD). In 1999, Schenk et al1 reported that immunization with Aβ attenuated AD-like pathology in the PDAPP mouse, and developed a new vaccination approach to AD.

  18. Amyloid Beta Aggregation in the Presence of Temperature-Sensitive Polymers

    Directory of Open Access Journals (Sweden)

    Sebastian Funtan

    2016-05-01

    Full Text Available The formation of amyloid fibrils is considered to be one of the main causes for many neurodegenerative diseases, such as Alzheimer’s, Parkinson’s or Huntington’s disease. Current knowledge suggests that amyloid-aggregation represents a nucleation-dependent aggregation process in vitro, where a sigmoidal growth phase follows an induction period. Here, we studied the fibrillation of amyloid β 1-40 (Aβ40 in the presence of thermoresponsive polymers, expected to alter the Aβ40 fibrillation kinetics due to their lower critical solution behavior. To probe the influence of molecular weight and the end groups of the polymer on its lower critical solution temperature (LCST, also considering its concentration dependence in the presence of buffer-salts needed for the aggregation studies of the amyloids, poly(oxazolines (POx with LCSTs ranging from 14.2–49.8 °C and poly(methoxy di(ethylene glycolacrylates with LCSTs ranging from 34.4–52.7 °C were synthesized. The two different polymers allowed the comparison of the influence of different molecular structures onto the fibrillation process. Mixtures of Aβ40 with these polymers in varying concentrations were studied via time-dependent measurements of the thioflavin T (ThT fluorescence. The studies revealed that amyloid fibrillation was accelerated in, accompanied by an extension of the lag phase of Aβ40 fibrillation from 18.3 h in the absence to 19.3 h in the presence of the poly(methoxy di(ethylene glycolacrylate (3600 g/mol.

  19. Arginine metabolising enzymes as therapeutic tools for Alzheimer's disease: peptidyl arginine deiminase catalyses fibrillogenesis of beta-amyloid peptides.

    Science.gov (United States)

    Mohlake, Peter; Whiteley, Chris G

    2010-06-01

    The accumulation of arginine in the cerebrospinal fluid and brains of patients suffering from acute neurodegenerative diseases like Alzheimer's disease, point to defects in the metabolic pathways involving this amino acids. The deposits of neurofibrillary tangles and senile plaques perhaps as a consequence of fibrillogenesis of beta-amyloid peptides has also been shown to be a hallmark in the aetiology of certain neurodegenerative diseases. Peptidylarginine deiminase (PAD II) is an enzyme that uses arginine as a substrate and we now show that PAD II not only binds with the peptides Abeta(1-40), Abeta(22-35), Abeta(17-28), Abeta(25-35) and Abeta(32-35) but assists in the proteolytic degradation of these peptides with the concomitant formation of insoluble fibrils. PAD was purified in 12.5% yield and 137 fold with a specific activity of 59 micromol min(-1) mg(-1) from bovine brain by chromatography on diethylaminoethyl (DEAE)-Sephacel. Characterisation of the enzyme gave a pH and temperature optima of 7.5 degrees C and 68 degrees C, respectively, and the enzyme lost 50% activity within 38 min at this temperature. Michaelis-Menten kinetics established a V(max) and K(m) of 1.57 micromol min(-1) ml(-1) and 1.35 mM, respectively, with N-benzoyl arginine ethyl ester as substrate. Kinetic analysis was used to measure the affinity (K(i)) of the amyloid peptides to PAD with values between 1.4 and 4.6 microM. The formation of Abeta fibrils was rate limiting involving an initial lag time of about 24 h that was dependent on the concentration of the amyloid peptides. Turbidity measurements at 400 nm, Congo Red assay and Thioflavin-T staining fluorescence were used to establish the aggregation kinetics of PAD-induced fibril formation.

  20. The effect of iron in MRI and transverse relaxation of amyloid-beta plaques in Alzheimer's disease.

    Science.gov (United States)

    Meadowcroft, Mark D; Peters, Douglas G; Dewal, Rahul P; Connor, James R; Yang, Qing X

    2015-03-01

    Dysregulation of neural iron is known to occur during the progression of Alzheimer's disease. The visualization of amyloid-beta (Aβ) plaques with MRI has largely been credited to rapid proton relaxation in the vicinity of plaques as a result of focal iron deposition. The goal of this work was to determine the relationship between local relaxation and related focal iron content associated with Aβ plaques. Alzheimer's disease (n=5) and control tissue (n=3) sample slices from the entorhinal cortex were treated overnight with the iron chelator deferoxamine or saline, and microscopic gradient-echo MRI datasets were taken. Subsequent to imaging, the same slices were stained for Aβ and iron, and then compared with regard to parametric R2 * relaxation maps and gradient-echo-weighted MR images. Aβ plaques in both chelated and unchelated tissue generated MR hypo-intensities and showed relaxation rates significantly greater than the surrounding tissue. The transverse relaxation rate associated with amyloid plaques was determined not to be solely a result of iron load, as much of the relaxation associated with Aβ plaques remained following iron chelation. The data indicate a dual relaxation mechanism associated with Aβ plaques, such that iron and plaque composition synergistically produce transverse relaxation.

  1. Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jessica F Jordão

    Full Text Available Immunotherapy for Alzheimer's disease (AD relies on antibodies directed against toxic amyloid-beta peptide (Abeta, which circulate in the bloodstream and remove Abeta from the brain. In mouse models of AD, the administration of anti-Abeta antibodies directly into the brain, in comparison to the bloodstream, was shown to be more efficient at reducing Abeta plaque pathology. Therefore, delivering anti-Abeta antibodies to the brain of AD patients may also improve treatment efficiency. Transcranial focused ultrasound (FUS is known to transiently-enhance the permeability of the blood-brain barrier (BBB, allowing intravenously administered therapeutics to enter the brain. Our goal was to establish that anti-Abeta antibodies delivered to the brain using magnetic resonance imaging-guided FUS (MRIgFUS can reduce plaque pathology. To test this, TgCRND8 mice received intravenous injections of MRI and FUS contrast agents, as well as anti-Abeta antibody, BAM-10. MRIgFUS was then applied transcranially. Within minutes, the MRI contrast agent entered the brain, and BAM-10 was later found bound to Abeta plaques in targeted cortical areas. Four days post-treatment, Abeta pathology was significantly reduced in TgCRND8 mice. In conclusion, this is the first report to demonstrate that MRIgFUS delivery of anti-Abeta antibodies provides the combined advantages of using a low dose of antibody and rapidly reducing plaque pathology.

  2. Treatment of beta amyloid 1–42 (Aβ1–42)-induced basal forebrain cholinergic damage by a non-classical estrogen signaling activator in vivo

    Science.gov (United States)

    Kwakowsky, Andrea; Potapov, Kyoko; Kim, SooHyun; Peppercorn, Katie; Tate, Warren P.; Ábrahám, István M.

    2016-01-01

    In Alzheimer’s disease (AD), there is a loss in cholinergic innervation targets of basal forebrain which has been implicated in substantial cognitive decline. Amyloid beta peptide (Aβ1–42) accumulates in AD that is highly toxic for basal forebrain cholinergic (BFC) neurons. Although the gonadal steroid estradiol is neuroprotective, the administration is associated with risk of off-target effects. Previous findings suggested that non-classical estradiol action on intracellular signaling pathways has ameliorative potential without estrogenic side effects. After Aβ1–42 injection into mouse basal forebrain, a single dose of 4-estren-3α, 17β-diol (estren), the non-classical estradiol pathway activator, restored loss of cholinergic cortical projections and also attenuated the Aβ1–42-induced learning deficits. Estren rapidly and directly phosphorylates c-AMP-response–element-binding-protein and extracellular-signal-regulated-kinase-1/2 in BFC neurons and restores the cholinergic fibers via estrogen receptor-α. These findings indicated that selective activation of non-classical intracellular estrogen signaling has a potential to treat the damage of cholinergic neurons in AD. PMID:26879842

  3. Rimmed vacuoles with beta-amyloid and ubiquitinated filamentous deposits in the muscles of patients with long-standing denervation (postpoliomyelitis muscular atrophy): similarities with inclusion body myositis.

    Science.gov (United States)

    Semino-Mora, C; Dalakas, M C

    1998-10-01

    In the chronically denervated muscles of patients with prior paralytic poliomyelitis, there are secondary myopathic features, including endomysial inflammation and rare vacuolated fibers. To assess the frequency and characteristics of the vacuoles and their similarities with those seen in inclusion body myositis (IBM), we examined 58 muscle biopsy specimens from patients with prior paralytic poliomyelitis for (1) the presence of rimmed vacuoles; (2) acid-phosphatase reactivity; (3) Congo-red-positive amyloid deposits; (4) electron microscopy, searching for tubulofilaments; and (5) immunoelectron microscopy, using antibodies against beta-amyloid and ubiquitin. We found vacuolated muscle fibers in 18 of 58 (31%) biopsies, with a mean frequency of 2.06 +/- 0.42 fibers per specimen. The vacuoles contained acid phosphatase-positive material in 6 of the 18 (33.30%) specimens and stained positive for Congo red in five (27.80%). By immunoelectron microscopy, the vacuoles contained 5.17 +/- 0.13 nm fibrils and 14.9 +/- 0.31 nm filaments that immunoreacted with antibodies to beta-amyloid and ubiquitin in a pattern identical to the one seen in IBM. We conclude that vacuolated muscle fibers containing filamentous inclusions positive for amyloid and ubiquitin are not unique to IBM and the other vacuolar myopathies but can also occur in a chronic neurogenic condition, such as postpoliomyelitis. The chronicity of the underlying disease, rather than the cause, may lead to vacuolar formation, amyloid deposition, and accumulation of ubiquitinated filaments.

  4. Amyloid beta-protein and lipid rafts: focused on biogenesis and catabolism.

    Science.gov (United States)

    Araki, Wataru; Tamaoka, Akira

    2015-01-01

    Cerebral accumulation of amyloid β-protein (Aβ) is thought to play a key role in the molecular pathology of Alzheimer's disease (AD). Three secretases (β-, γ-, and α-secretase) are proteases that control the production of Aβ from amyloid precursor protein. Increasing evidence suggests that cholesterol-rich membrane microdomains termed 'lipid rafts' are involved in the biogenesis and accumulation of Aβ as well as Aβ-mediated neurotoxicity. γ-Secretase is enriched in lipid rafts, which are considered an important site for Aβ generation. Additionally, Aβ-degrading peptidases located in lipid rafts, such as neprilysin, appear to play a role in Aβ catabolism. This mini-review focuses on the roles of lipid rafts in the biogenesis and catabolism of Aβ, covering recent research on the relationship between lipid rafts and the three secretases or Aβ-degrading peptidases. Furthermore, the significance of lipid rafts in Aβ aggregation and neurotoxicity is briefly summarized.

  5. Intracellular accumulation of amyloid-beta - a predictor for synaptic dysfunction and neuron loss in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Thomas A Bayer

    2010-03-01

    Full Text Available Despite of long-standing evidence that beta-amyloid (Aβ peptides have detrimental effects on synaptic function, the relationship between Aβ, synaptic and neuron loss is largely unclear. During the last years there is growing evidence that early intraneuronal accumulation of Aβ peptides is one of the key events leading to synaptic and neuronal dysfunction. Many studies have been carried out using transgenic mouse models of Alzheimer’s disease (AD which have been proven to be valuable model system in modern AD research. The present review discusses the impact of intraneuronal Aβ accumulation on synaptic impairment and neuron loss and provides an overview of currently available AD mouse models showing these pathological alterations.

  6. Amyloid Beta and Tau Proteins as Therapeutic Targets for Alzheimer’s Disease Treatment: Rethinking the Current Strategy

    Directory of Open Access Journals (Sweden)

    Siddhartha Mondragón-Rodríguez

    2012-01-01

    Full Text Available Alzheimer’s disease (AD is defined by the concurrence of accumulation of abnormal aggregates composed of two proteins: Amyloid beta (Aβ and tau, and of cellular changes including neurite degeneration and loss of neurons and cognitive functions. Based on their strong association with disease, genetically and pathologically, it is not surprising that there has been a focus towards developing therapies against the aggregated structures. Unfortunately, current therapies have but mild benefit. With this in mind we will focus on the relationship of synaptic plasticity with Aβ and tau protein and their role as potential targets for the development of therapeutic drugs. Finally, we will provide perspectives in developing a multifactorial strategy for AD treatment.

  7. Using optical profilometry to characterize cell membrane roughness influenced by amyloid-beta 42 aggregates and electric fields

    Science.gov (United States)

    Pan, Huei-Jyuan; Wang, Ruei-Lin; Xiao, Jian-Long; Chang, Yu-Jen; Cheng, Ji-Yen; Chen, Yun-Ru; Lee, Chau-Hwang

    2014-01-01

    The membrane roughness of Neuro-2a neroblastoma cells is measured by using noninterferometric wide-field optical profilometry. The cells are treated with the fibril and oligomer conformers of amyloid-beta (Aβ) 42, which is a peptide of 42 amino acids related to the development of Alzheimer's disease. We find that both the Aβ42 fibrils and Aβ42 oligomers reduced the cell membrane roughness, but the effect of Aβ42 oligomers was faster and stronger than that of the fibrils. We also apply direct-current electric field (dcEF) stimulations on the cells. A dcEF of 300 mV/mm can increase the membrane roughness under the treatment of Aβ42. These results suggest that Aβ42 can decrease the membrane compliance of live neuroblastoma cells, and dcEFs may counteract this effect.

  8. Cytokine-producing microglia have an altered beta-amyloid load in aged APP/PS1 Tg mice

    DEFF Research Database (Denmark)

    Babcock, Alicia A; Ilkjær, Laura; Clausen, Bettina H

    2015-01-01

    of CD11b, TNF, and IL-1Ra. Cytokine production and Aβ load were assessed in neocortical CD11b(+)(CD45(+)) microglia by flow cytometry. Whereas most microglia in aged mice produced IL-1Ra, relatively low proportions of microglia produced TNF, IL-1α, and IL-1β. However, microglial production......Beta-amyloid (Aβ) plaques and chronic neuroinflammation are significant neuropathological features of Alzheimer's disease. Microglial cells in aged brains have potential to produce cytokines such as TNF and IL-1 family members (IL-1α, IL-1β, and IL-1Ra) and to phagocytose Aβ in Alzheimer's disease...... were higher in IL-1α(+) and IL-1Ra(+) microglia, than microglia that did not produce these cytokines. In contrast, total Aβ load was lower in IL-1β(+) and TNF(+) microglia, compared to IL-1β(-) and TNF(-) microglia, and TNF(+) microglia also had a lower phagocytic index. Using GFP bone marrow chimeric...

  9. ETAS, an enzyme-treated asparagus extract, attenuates amyloid beta-induced cellular disorder in PC12 cells.

    Science.gov (United States)

    Ogasawara, Junetsu; Ito, Tomohiro; Wakame, Koji; Kitadate, Kentaro; Sakurai, Takuya; Sato, Shogo; Ishibashi, Yoshinaga; Izawa, Tetsuya; Takahashi, Kazuto; Ishida, Hitoshi; Takabatake, Ichiro; Kizaki, Takako; Ohno, Hideki

    2014-04-01

    One of the pathological characterizations of Alzheimer's disease (AD) is the deposition of amyloid beta peptide (Abeta) in cerebral cortical cells. The deposition of Abeta in neuronal cells leads to an increase in the production of free radicals that are typified by reactive oxygen species (ROS), thereby inducing cell death. A growing body of evidence now suggests that several plant-derived food ingredients are capable of scavenging ROS in mammalian cells. The purpose of the present study was to investigate whether enzyme-treated asparagus extract (ETAS), which is rich in antioxidants, is one of these ingredients. The pre-incubation of differentiated PC 12 cells with ETAS significantly recovered Abeta-induced reduction of cell viability, which was accompanied by reduced levels of ROS. These results suggest that ETAS may be one of the functional food ingredients with anti-oxidative capacity to help prevent AD.

  10. The tissue plasminogen activator-plasminogen proteolytic cascade accelerates amyloid-beta (Abeta) degradation and inhibits Abeta-induced neurodegeneration.

    Science.gov (United States)

    Melchor, Jerry P; Pawlak, Robert; Strickland, Sidney

    2003-10-01

    Accumulation of the amyloid-beta (Abeta) peptide depends on both its generation and clearance. To better define clearance pathways, we have evaluated the role of the tissue plasminogen activator (tPA)-plasmin system in Abeta degradation in vivo. In two different mouse models of Alzheimer's disease, chronically elevated Abeta peptide in the brain correlates with the upregulation of plasminogen activator inhibitor-1 (PAI-1) and inhibition of the tPA-plasmin system. In addition, Abeta injected into the hippocampus of mice lacking either tPA or plasminogen persists, inducing PAI-1 expression and causing activation of microglial cells and neuronal damage. Conversely, Abeta injected into wild-type mice is rapidly cleared and does not cause neuronal degeneration. Thus, the tPA-plasmin proteolytic cascade aids in the clearance of Abeta, and reduced activity of this system may contribute to the progression of Alzheimer's disease.

  11. Amyloid-beta Isoform Metabolism Quantitation by Stable Isotope Labeled Kinetics

    OpenAIRE

    Mawuenyega, Kwasi G.; Kasten, Tom; Sigurdson, Wendy; Bateman, Randall J.

    2013-01-01

    Abundant evidence suggests a central role for the amyloid-β (Aβ) peptide in Alzheimer’s disease (AD) pathogenesis. Production and clearance of different Aβ isoforms have been established as targets of proposed disease-modifying therapeutic treatments of AD. However, previous studies used multiple sequential purification steps to isolate the isoforms individually and quantitate them based on a common mid-domain peptide. We created a method to simultaneously purify Aβ isoforms and quantitate th...

  12. Insight into the stability of cross-beta amyloid fibril from molecular dynamics simulation.

    Science.gov (United States)

    Chen, Yue; He, Yong-Jie; Wu, Maoying; Yan, Guanwen; Li, Yixue; Zhang, Jian; Chen, Hai-Feng

    2010-06-01

    Amyloid fibrils are considered to play causal roles in the pathogenesis of amyloid-related degenerative diseases such as Alzheimer's disease, type II diabetes mellitus, the transmissible spongiform encephalopathies, and prion disease. The mechanism of fibril formation is still hotly debated and remains an important open question. In this study, we utilized molecular dynamics (MD) simulation to analyze the stability of hexamer for eight class peptides. The MD results suggest that VEALYL and MVGGVV-1 are the most stable ones, then SNQNNY, followed by LYQLEN, MVGGVV-2, VQIVYK, SSTSAA, and GGVVIA. The statistics result indicates that hydrophobic residues play a key role in stabilizing the zipper interface. Single point and two linkage mutants of MVGGVV-1 confirmed that both Met1 and Val2 are key hydrophobic residues. This is consistent with the statistics analysis. The stability results of oligomer for MVGGVV-1 suggest that the intermediate state should be trimer (3-0) and tetramer (2-2). These methods can be used in stabilization study of other amyloid fibril.

  13. Effects of grape seed-derived polyphenols on amyloid beta-protein self-assembly and cytotoxicity.

    Science.gov (United States)

    Ono, Kenjiro; Condron, Margaret M; Ho, Lap; Wang, Jun; Zhao, Wei; Pasinetti, Giulio M; Teplow, David B

    2008-11-21

    Epidemiological evidence suggests that moderate consumption of red wine reduces the incidence of Alzheimer disease (AD). To study the protective effects of red wine, experiments recently were executed in the Tg2576 mouse model of AD. These studies showed that a commercially available grape seed polyphenolic extract, MegaNatural-AZ (MN), significantly attenuated AD-type cognitive deterioration and reduced cerebral amyloid deposition (Wang, J., Ho, L., Zhao, W., Ono, K., Rosensweig, C., Chen, L., Humala, N., Teplow, D. B., and Pasinetti, G. M. (2008) J. Neurosci. 28, 6388-6392). To elucidate the mechanistic bases for these observations, here we used CD spectroscopy, photo-induced cross-linking of unmodified proteins, thioflavin T fluorescence, size exclusion chromatography, and electron microscopy to examine the effects of MN on the assembly of the two predominant disease-related amyloid beta-protein alloforms, Abeta40 and Abeta42. We also examined the effects of MN on Abeta-induced cytotoxicity by assaying 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide metabolism and lactate dehydrogenase activity in Abeta-treated, differentiated pheochromocytoma (PC12) cells. Initial studies revealed that MN blocked Abeta fibril formation. Subsequent evaluation of the assembly stage specificity of the effect showed that MN was able to inhibit protofibril formation, pre-protofibrillar oligomerization, and initial coil --> alpha-helix/beta-sheet secondary structure transitions. Importantly, MN had protective effects in assays of cytotoxicity in which MN was mixed with Abeta prior to peptide assembly or following assembly and just prior to peptide addition to cells. These data suggest that MN is worthy of consideration as a therapeutic agent for AD.

  14. Bisphenol A accelerates toxic amyloid formation of human islet amyloid polypeptide: a possible link between bisphenol A exposure and type 2 diabetes.

    Science.gov (United States)

    Gong, Hao; Zhang, Xin; Cheng, Biao; Sun, Yue; Li, Chuanzhou; Li, Ting; Zheng, Ling; Huang, Kun

    2013-01-01

    Bisphenol A (BPA) is a chemical compound widely used in manufacturing plastic products. Recent epidemiological studies suggest BPA exposure is positively associated with the incidence of type 2 diabetes mellitus (T2DM), however the mechanisms underlying this link remain unclear. Human islet amyloid polypeptide (hIAPP) is a hormone synthesized and secreted by the pancreatic β-cells. Misfolding of hIAPP into toxic oligomers and mature fibrils can disrupt cell membrane and lead to β-cell death, which is regarded as one of the causative factors of T2DM. To test whether there are any connections between BPA exposure and hIAPP misfolding, we investigated the effects of BPA on hIAPP aggregation using thioflavin-T based fluorescence, transmission electronic microscopy, circular dichroism, dynamic light scattering, size-exclusion chromatography, fluorescence-dye leakage assay in an artificial micelle system and the generation of reactive oxygen species in INS-1 cells. We demonstrated that BPA not only dose-dependently promotes the aggregation of hIAPP and enhances the membrane disruption effects of hIAPP, but also promotes the extent of hIAPP aggregation related oxidative stress. Taken together, our results suggest that BPA exposure increased T2DM risk may involve the exacerbated toxic aggregation of hIAPP.

  15. Inhibition of β-amyloid Aggregation By Albiflorin, Aloeemodin And Neohesperidin And Their Neuroprotective Effect On Primary Hippocampal Cells Against β-amyloid Induced Toxicity.

    Science.gov (United States)

    Ho, See-Lok; Poon, Chung-Yan; Lin, Chengyuan; Yan, Ting; Kwong, Daniel Wai-Jing; Yung, Ken Kin-Lam; Wong, Man S; Bian, Zhaoxiang; Li, Hung-Wing

    2015-01-01

    Being one of the hallmarks of Alzheimer's disease, β-amyloid (Aβ) aggregates induce complicated neurotoxicity. Evidences show that the underlying mechanism of neurotoxicity involves a glutamate receptor subtype, N-methyl-D-aspartate (NMDA) receptor, an increase in intracellular calcium(II) ion loading as well as an elevation in oxidation stress. In this work, among the 35 chemical components of Chinese herbal medicines (CHMs) being screened for inhibitors of Aβ aggregation, four of them, namely albiflorin, aloeemodin, neohesperidin and physcion, were found for the first time to exhibit a potent inhibitory effect on Aβ(1-40) and Aβ(1-42) aggregation. Their neuroprotective capability on primary hippocampal neuronal cells was also investigated by MTT assay, ROS assay and intracellular calcium(II) ion concentration measurement. It was interesting to find that physcion was rather toxic to neuronal cells while albiflorin, aloeemodin and neohesperidin reduced the toxicity and ROS induced by both monomeric and oligomeric Aβ species. In addition, albiflorin was particularly powerful in maintaining the intracellular Ca(2+) concentration.

  16. Cerebrospinal Fluid Amyloid Beta and Tau Concentrations Are Not Modulated by 16 Weeks of Moderate- to High-Intensity Physical Exercise in Patients with Alzheimer Disease

    DEFF Research Database (Denmark)

    Jensen, Camilla Steen; Portelius, Erik; Siersma, Volkert

    2016-01-01

    Background: Physical exercise may have some effect on cognition in patients with Alzheimer disease (AD). However, the underlying biochemical effects are unclear. Animal studies have shown that amyloid beta (Aβ), one of the pathological hallmarks of AD, can be altered with high levels of physical...... of Life, Physical Health and Functional Ability in Alzheimer's Disease: The Effect of Physical Exercise (ADEX) study we analyzed cerebrospinal fluid samples for Aβ species, total tau (t-tau), phosphorylated tau (p-tau) and soluble amyloid precursor protein (sAPP) species. We also assessed the patients...

  17. Lipoprotein receptor-related protein-1 mediates amyloid-beta-mediated cell death of cerebrovascular cells.

    NARCIS (Netherlands)

    Wilhelmus, M.M.; Otte-Holler, I.; Triel, J.J. van; Veerhuis, R.; Maat-Schieman, M.L.; Bu, G.; Waal, R.M.W. de; Verbeek, M.M.

    2007-01-01

    Inefficient clearance of A beta, caused by impaired blood-brain barrier crossing into the circulation, seems to be a major cause of A beta accumulation in the brain of late-onset Alzheimer's disease patients and hereditary cerebral hemorrhage with amyloidosis Dutch type. We observed association of r

  18. Alterations in amyloid beta-protein and apolipoprotein E in cerebrospinal fluid after subarachnoid hemorrhage

    Institute of Scientific and Technical Information of China (English)

    Xinzhong Wen; Yonghong Zhang; Leiming Huo

    2007-01-01

    BACKGROUND: The findings about the alterations in cerebrospinal fluid beta-amyloid protein (Aβ) and apolipoprotein E (ApoE) after subarachnoid hemorrhage indicate that they have significant correlation with prognosis of patients.OBJECTIVE: To observe the alterations in cerebrospinal fluid Aβ and ApoE after subarachnoid hemorrhage (SAH).DESIGN: Contrast observation.SETTING: Department of Neurosurgery, the First Hospital of Lanzhou University.PARTICIPANTS: A total of 25 SAH patients including 16 males and 9 females aged from 13 to 72 years were selected form Department of Neurosurgery, the First Affiliated Hospital of Lanzhou University from October 2003 to February 2004. The Hunt-Hess grade ranged from Ⅰ to Ⅳ, and patients admitted hospital in 24 hours after invasion, affirmed by the brain CT scan and lumbar vertebra puncture, no other severe complications and important organs' functional defect and severe infection, no hematological system disease.METHODS: All admitted patients were collected CSF by lumbar vertebra puncture in 24 hours. The cerebrospinal fluid (CSF) of control group came from the admitted 15 patients of our hospital that have no nervous system disease. Aβ content was detected by enzyme linked immunosorbent assay (ELISA), the kit was provided by the Central Laboratory of the First Hospital of Lanzhou University; ApoE concentration was detected by monoclone enzyme linked immunosorbent assay (ELISA), the kit was provided by the Immunotechnique Research Institute of the Fourth Military Medical University. S100B concentration was detected by enzyme linked immunosorbent assay double antibody sandwich method, the kit was provided by the Physiological Research Room of the Fourth Military Medical University. The data were indicated on Mean±SD and were analyzed by SPSS 10.0 statistical package. All data were handled through test of significance variance analysis, and groups were compared through independent sampler t test. The concentration was

  19. Effect of creatine supplementation on cognitive performance and apoptosis in a rat model of amyloid-beta-induced Alzheimer’s disease

    Science.gov (United States)

    Alimohammadi-Kamalabadi, Malek; Eshraghian, Mohammadreza; Zarindast, Mohammad-Reza; Aliaghaei, Abbas; Pishva, Hamideh

    2016-01-01

    Objective(s): Neuroprotective effect of creatine (Cr) against β-amyloid (Aβ) is reported in an in vitro study. This study investigated the effect of Cr supplementation on β-amyloid toxicity in vivo. Materials and Methods: Thirty two, male Wistar rats were divided into 4 groups. During ten weeks of study, control group went through no surgical or dietary intervention. At the 4th week of study Sham group had a hippocampal normal saline injection, while Aβ and AβCr groups had an β-amyloid injection in the hippocampus. AβCr group were fed by Cr diet during the study. After 10 weeks, Morris water maze (MWM) test was administered to measure learning ability and memory retrieval. Animals were sacrificed for TUNEL anti apoptotic assay and staining of amyloid plaques by Thioflavin-T. Results: There was a significant retention deficit among AβCr and Aβ group while the escape latency and the distance traveled to the platform were significantly higher in AβCr group compared to Aβ group. AβCr group had same percent of TUNEL positive neurons compared to Aβ group. Conclusion: Cr supplementation before and after β-amyloid injection into the CA1 area of hippocampus deteriorates the learning and memory impairment of rats and it does not protect neuronal apoptosis caused by β-amyloid. PMID:27917270

  20. Copper(II) ions and the Alzheimer's amyloid-β peptide: Affinity and stoichiometry of binding

    Science.gov (United States)

    Tõugu, Vello; Friedemann, Merlin; Tiiman, Ann; Palumaa, Peep

    2014-10-01

    Deposition of amyloid beta (Aβ) peptides into amyloid plaques is the hallmark of Alzheimer's disease. According to the amyloid cascade hypothesis this deposition is an early event and primary cause of the disease, however, the mechanisms that cause this deposition remain elusive. An increasing amount of evidence shows that the interactions of biometals can contribute to the fibrillization and amyloid formation by amyloidogenic peptides. From different anions the copper ions deserve the most attention since it can contribute not only toamyloid formation but also to its toxicity due to the generation of ROS. In this thesis we focus on the affinity and stoichiometry of copper(II) binding to the Aβ molecule.

  1. Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides

    Science.gov (United States)

    Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki

    2012-09-01

    Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.

  2. Garlic extract exhibits antiamyloidogenic activity on amyloid-beta fibrillogenesis: relevance to Alzheimer's disease.

    Science.gov (United States)

    Gupta, Veer Bala; Indi, S S; Rao, K S J

    2009-01-01

    Alzheimer's disease is characterized pathologically by the deposition of amyloid plaques. Fibrillar Abeta is the principal component of amyloid plaques in the brain of AD patients. The prevention of Abeta aggregation or dissolution of fibrillar Abeta has clinical significance. The present communication examined in vitro the antiamyloidogenic properties of garlic extract. The effects of aqueous garlic extract (both fresh and boiled) on Abeta aggregation and defibrillation were studied by thioflavin-T based fluorescence assay, transmission electron microscopy and SDS-polyacrylamide gel electrophoresis. The aqueous fresh garlic extract not only inhibited Abeta fibril formation in a concentration and time dependent manner but was also able to defibrillate Abeta preformed fibrils. The maximum defibrillization was observed after 2-3 days of incubation. The boiled aqueous garlic extract also retained its antiamyloidogenic activity. This indicated that antiamyloidogenic activity of garlic extract is non-enzymatic, i.e. proteases present in garlic did not degrade Abeta in solution. However, the fibril degrading ability of boiled garlic extract was significantly lost. The findings suggest that consumption of garlic may lead to inhibition of Abeta aggregation in human brain.

  3. Effect of creatine supplementation on cognitive performance and apoptosis in a rat model of amyloid-beta-induced Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Malek Alimohammadi-Kamalabadi

    2016-11-01

    Conclusion: Cr supplementation before and after β-amyloid injection into the CA1 area of hippocampus deteriorates the learning and memory impairment of rats and it does not protect neuronal apoptosis caused by β-amyloid.

  4. Familial Danish dementia: a novel form of cerebral amyloidosis associated with deposition of both amyloid-Dan and amyloid-beta

    DEFF Research Database (Denmark)

    Holton, J.L; Lashley, T.; Ghiso, J.;

    2002-01-01

    response using conventional techniques, immunohistochemistry, confocal microscopy, and immunoelectron microscopy. We showed that ADan is widely distributed in the central nervous system (CNS) in the leptomeninges, blood vessels, and parenchyma. A predominance of parenchymal pre-amyloid (non...

  5. Initial stages of beta-amyloid Aβ1-40 and Aβ1-42 oligomerization observed using fluorescence decay and molecular dynamics analyses of tyrosine

    Science.gov (United States)

    Amaro, Mariana; Kubiak-Ossowska, Karina; Birch, David J. S.; Rolinski, Olaf J.

    2013-03-01

    The development of Alzheimer’s disease is associated with the aggregation of the beta-amyloid peptides Aβ1-40 and Aβ1-42. It is believed that the small oligomers formed during the early stages of the aggregation are neurotoxic and involved in the process of neurodegeneration. In this paper we use fluorescence decay measurements of beta-amyloid intrinsic fluorophore tyrosine (Tyr) and molecular dynamics (MD) simulations to study the early stages of oligomer formation for the Aβ1-40 and Aβ1-42 peptides in vitro. We demonstrate that the lifetime distributions of the amyloid fluorescence decay efficiently describe changes in the complex Tyr photophysics during the peptide aggregation and highlight the differences in aggregation performance of the two amyloids. Tyr fluorescence decay is found to be a more sensitive sensor of Aβ1-40 aggregation than Aβ1-42 aggregation. The MD simulation of the peptide aggregation is compared with the experimental data and supports a four-rotamer model of Tyr.

  6. Protective effect of Wnt-5a against amyloid beta-induced memory impairment in rats

    Institute of Scientific and Technical Information of China (English)

    Guili Zhang; Lu Lu; Yaping Ge; Fang Deng; Ying Zhang; Jiachun Feng

    2011-01-01

    Recent studies suggest that the activation of the Wnt signaling pathway improves memory function in rats. This study investigated the effects of Wnt-5a on amyloid β (Aβ)-induced cognitive impairment. Aβ25-35 was injected into the rat right lateral ventricle to induce Alzheimer's disease-associated pathology, and Wnt-5a was injected as a potential therapeutic treatment. Immunofluorescence staining showed that compared with normal rats, Aβ25-35 significantly decreased postsynaptic density-95 protein expression in the rat hippocampal CA1 region, but Wnt-5a pretreatment blocked this decrease. This study shows that Wnt-5a can reduce Aβ-induced cognitive impairment, and that it has the potential to be a new therapeutic strategy for the treatment of Alzheimer's disease.

  7. Somatostatin, tau, and beta-amyloid within the anterior olfactory nucleus in Alzheimer disease.

    Science.gov (United States)

    Saiz-Sanchez, D; Ubeda-Bañon, I; de la Rosa-Prieto, C; Argandoña-Palacios, L; Garcia-Muñozguren, S; Insausti, R; Martinez-Marcos, A

    2010-06-01

    Impaired olfaction is an early symptom of Alzheimer disease (AD). This likely to reflect neurodegenerative processes taking place in basal telencephalic structures that mediate olfactory processing, including the anterior olfactory nucleus. Betaeta-amyloid (Abeta) accumulation in AD brain may relate to decline in somatostatin levels: somatostatin induces the expression of the Abeta-degrading enzyme neprilysin and somatostatin deficiency in AD may therefore reduce Abeta clearance. We have investigated the expression of somatostatin in the anterior olfactory nucleus of AD and control brain. We report that somatostatin levels were reduced by approximately 50% in AD brain. Furthermore, triple-immunofluorescence revealed co-localization of somatostatin expression with Abeta (65.43%) with Abeta and tau (19.75%) and with tau (2.47%). These data indicate that somatostatin decreases in AD and its expression may be linked with Abeta deposition.

  8. Cholinergic Neurons - Keeping Check on Amyloid beta in the Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Saak V. Ovsepian

    2013-12-01

    Full Text Available The physiological relevance of the uptake of ligands with no apparent trophic functions via the p75 neurotrophin receptor (p75NTR remains unclear. Herein, we propose a homeostatic role for this in clearance of amyloid β (Aβ in the brain. We hypothesize that uptake of Aβ in conjunction with p75NTR followed by its degradation in lysosomes endows cholinergic basalo-cortical projections enriched in this receptor a facility for maintaining physiological levels of Aβ in target areas. Thus, in addition to the diffuse modulator influence and channeling of extra-thalamic signals, cholinergic innervations could supply the cerebral cortex with an elaborate system for Aβ drainage. Interpreting the emerging relationship of new molecular data with established role of cholinergic modulator system in regulating cortical network dynamics should provide new insights into the brain physiology and mechanisms of neuro-degenerative diseases.

  9. Sphingolipid metabolism correlates with cerebrospinal fluid Beta amyloid levels in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Alfred N Fonteh

    Full Text Available Sphingolipids are important in many brain functions but their role in Alzheimer's disease (AD is not completely defined. A major limit is availability of fresh brain tissue with defined AD pathology. The discovery that cerebrospinal fluid (CSF contains abundant nanoparticles that include synaptic vesicles and large dense core vesicles offer an accessible sample to study these organelles, while the supernatant fluid allows study of brain interstitial metabolism. Our objective was to characterize sphingolipids in nanoparticles representative of membrane vesicle metabolism, and in supernatant fluid representative of interstitial metabolism from study participants with varying levels of cognitive dysfunction. We recently described the recruitment, diagnosis, and CSF collection from cognitively normal or impaired study participants. Using liquid chromatography tandem mass spectrometry, we report that cognitively normal participants had measureable levels of sphingomyelin, ceramide, and dihydroceramide species, but that their distribution differed between nanoparticles and supernatant fluid, and further differed in those with cognitive impairment. In CSF from AD compared with cognitively normal participants: a total sphingomyelin levels were lower in nanoparticles and supernatant fluid; b levels of ceramide species were lower in nanoparticles and higher in supernatant fluid; c three sphingomyelin species were reduced in the nanoparticle fraction. Moreover, three sphingomyelin species in the nanoparticle fraction were lower in mild cognitive impairment compared with cognitively normal participants. The activity of acid, but not neutral sphingomyelinase was significantly reduced in the CSF from AD participants. The reduction in acid sphingomylinase in CSF from AD participants was independent of depression and psychotropic medications. Acid sphingomyelinase activity positively correlated with amyloid β42 concentration in CSF from cognitively normal but

  10. Inhibition of tau hyperphosphorylation and beta amyloid production in rat brain by oral administration of atorvastatin

    Institute of Scientific and Technical Information of China (English)

    LU Fen; LI Xu; SUO Ai-qin; ZHANG Jie-wen

    2010-01-01

    Background Alzheimer's disease (AD) is a neurodegenerative disorder and the leading cause of dementia in the elderly. The two hallmark lesions in AD brain are deposition of amyloid plaques and neurofibrillary tangles (NFTs).Hypercholesteremia is one of the risk factors of AD. But its role in the pathogenesis of AD is largely unknown. The aim of this study was to investigate the relationship between hypercholesteremia and tau phosphorylation or β-amyloid (Aβ),and evaluate the effect of atorvastatin on the level of tau phosphorylation and Aβ in the brains of rats fed with high cholesterol diet.Methods Sprague-Dawley (SD) rats were randomly divided into normal diet control group, high cholesterol diet group,and high cholesterol diet plus atorvastatin (Lipitor, 15 mg·kg-1·d-1) treated group. Blood from caudal vein was collected to measure total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL) and high-density lipoprotein (HDL) at the end of the 3th and the 6th months by an enzymatic method. The animals were sacrificed 6 months later and brains were removed. All left brain hemispheres were fixed for immunohistochemistry. Hippocampus and cerebral cortex were separated from right hemispheres and homogenized separately. Tau phosphorylation and Aβ in the brain tissue were determined by Western blotting (using antibodies PHF-1 and Tau-1) and anti-Aβ40/anti-Aβ42, respectively.Results We found that high cholesterol diet led to hypercholesteremia of rats as well as hyperphosphorylation of tau and increased Aβ level in the brains. Treatment of the high cholesterol diet fed rats with atorvastatin prevented the changes of both tau phosphorylation and Aβ level induced by high cholesterol diet.Conclusions Hypercholesteremia could induce tau hyperphosphorylation and Aβ production in rat brain. Atorvastatin could inhibit tau hyperphosphorylation and decrease Aβ generation. It may play a protective role in the patho-process of hypercholesteremia

  11. Synergistic effects of high fat feeding and apolipoprotein E deletion on enterocytic amyloid-beta abundance

    Directory of Open Access Journals (Sweden)

    Dhaliwal Satvinder S

    2008-04-01

    Full Text Available Abstract Background Amyloid-β (Aβ, a key protein found in amyloid plaques of subjects with Alzheimer's disease is expressed in the absorptive epithelial cells of the small intestine. Ingestion of saturated fat significantly enhances enterocytic Aβ abundance whereas fasting abolishes expression. Apolipoprotein (apo E has been shown to directly modulate Aβ biogenesis in liver and neuronal cells but it's effect in enterocytes is not known. In addition, apo E modulates villi length, which may indirectly modulate Aβ as a consequence of differences in lipid absorption. This study compared Aβ abundance and villi length in wild-type (WT and apo E knockout (KO mice maintained on either a low-fat or high-fat diet. Wild-type C57BL/6J and apo E KO mice were randomised for six-months to a diet containing either 4% (w/w unsaturated fats, or chow comprising 16% saturated fats and 1% cholesterol. Quantitative immunohistochemistry was used to assess Aβ abundance in small intestinal enterocytes. Apo E KO mice given the low-fat diet had similar enterocytic Aβ abundance compared to WT controls. Results The saturated fat diet substantially increased enterocytic Aβ in WT and in apo E KO mice, however the effect was greater in the latter. Villi height was significantly greater in apo E KO mice than for WT controls when given the low-fat diet. However, WT mice had comparable villi length to apo E KO when fed the saturated fat and cholesterol enriched diet. There was no effect of the high-fat diet on villi length in apo E KO mice. Conclusion The findings of this study are consistent with the notion that lipid substrate availability modulates enterocytic Aβ. Apo E may influence enterocytic lipid availability by modulating absorptive capacity.

  12. Synaptotrophic effects of human amyloid beta protein precursors in the cortex of transgenic mice.

    Science.gov (United States)

    Mucke, L; Masliah, E; Johnson, W B; Ruppe, M D; Alford, M; Rockenstein, E M; Forss-Petter, S; Pietropaolo, M; Mallory, M; Abraham, C R

    1994-12-15

    The amyloid precursor protein (APP) is involved in Alzheimer's disease (AD) because its degradation products accumulate abnormally in AD brains and APP mutations are associated with early onset AD. However, its role in health and disease appears to be complex, with different APP derivatives showing either neurotoxic or neurotrophic effects in vitro. To elucidate the effects APP has on the brain in vivo, cDNAs encoding different forms of human APP (hAPP) were placed downstream of the neuron-specific enolase (NSE) promoter. In multiple lines of NSE-hAPP transgenic mice neuronal overexpression of hAPP was accompanied by an increase in the number of synaptophysin immunoreactive (SYN-IR) presynaptic terminals and in the expression of the growth-associated marker GAP-43. In lines expressing moderate levels of hAPP751 or hAPP695, this effect was more prominent in homozygous than in heterozygous transgenic mice. In contrast, a line with several-fold higher levels of hAPP695 expression showed less increase in SYN-IR presynaptic terminals per amount of hAPP expressed than the lower expressor lines and a decrease in synaptotrophic effects in homozygous compared with heterozygous offspring. Transgenic mice (2-24 months of age) showed no evidence for amyloid deposits or neurodegeneration. These findings suggest that APP may be important for the formation/maintenance of synapses in vivo and that its synaptotrophic effects may be critically dependent on the expression levels of different APP isoforms. Alterations in APP expression, processing or function could contribute to the synaptic pathology seen in AD.

  13. CD147 is a regulatory subunit of the gamma-secretase complex inAlzheimer's disease amyloid beta-peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shuxia; Zhou, Hua; Walian, Peter J.; Jap, Bing K.

    2005-04-06

    {gamma}-secretase is a membrane protein complex that cleaves the {beta}-amyloid precursor protein (APP) within the transmembrane region, following prior processing by {beta}-secretase, producing amyloid {beta}-peptides (A{beta}{sub 40} and A{beta}{sub 42}). Errant production of A{beta}-peptides that substantially increases A{beta}{sub 42} production has been associated with the formation of amyloid plaques in Alzheimer's disease patients. Biophysical and genetic studies indicate that presenilin-1 (Psn-1), which contains the proteolytic active site, and three other membrane proteins, nicastrin (Nct), APH-1, and PEN-2 are required to form the core of the active {gamma}-secretase complex. Here, we report the purification of the native {gamma}-secretase complexes from HeLa cell membranes and the identification of an additional {gamma}-secretase complex subunit, CD147, a transmembrane glycoprotein with two immunoglobulin-like domains. The presence of this subunit as an integral part of the complex itself was confirmed through co-immunoprecipitation studies of the purified protein from HeLa cells and solubilized complexes from other cell lines such as neural cell HCN-1A and HEK293. Depletion of CD147 by RNA interference was found to increase the production of A{beta} peptides without changing the expression level of the other {gamma}-secretase components or APP substrates while CD147 overexpression had no statistically significant effect on amyloid {beta}-peptide production, other {gamma}-secretase components or APP substrates, indicating that the presence of the CD147 subunit within the {gamma}-secretase complex directly down-modulates the production of A{beta}-peptides. {gamma}-secretase was first recognized through its role in the production of the A{beta} peptides that are pathogenic in Alzheimer's disease (AD) (1). {gamma}-secretase is a membrane protein complex with unusual aspartyl protease activity that cleaves a variety of type I membrane proteins

  14. Heme oxygenase-1 protects against Alzheimer's amyloid-β(1-42)-induced toxicity via carbon monoxide production.

    Science.gov (United States)

    Hettiarachchi, N; Dallas, M; Al-Owais, M; Griffiths, H; Hooper, N; Scragg, J; Boyle, J; Peers, C

    2014-12-11

    Heme oxygenase-1 (HO-1), an inducible enzyme up-regulated in Alzheimer's disease, catabolises heme to biliverdin, Fe2+ and carbon monoxide (CO). CO can protect neurones from oxidative stress-induced apoptosis by inhibiting Kv2.1 channels, which mediates cellular K+ efflux as an early step in the apoptotic cascade. Since apoptosis contributes to the neuronal loss associated with amyloid β peptide (Aβ) toxicity in AD, we investigated the protective effects of HO-1 and CO against Aβ(1-42) toxicity in SH-SY5Y cells, employing cells stably transfected with empty vector or expressing the cellular prion protein, PrP(c), and rat primary hippocampal neurons. Aβ(1-42) (containing protofibrils) caused a concentration-dependent decrease in cell viability, attributable at least in part to induction of apoptosis, with the PrP(c)-expressing cells showing greater susceptibility to Aβ(1-42) toxicity. Pharmacological induction or genetic over-expression of HO-1 significantly ameliorated the effects of Aβ(1-42). The CO-donor CORM-2 protected cells against Aβ(1-42) toxicity in a concentration-dependent manner. Electrophysiological studies revealed no differences in the outward current pre- and post-Aβ(1-42) treatment suggesting that K+ channel activity is unaffected in these cells. Instead, Aβ toxicity was reduced by the L-type Ca2+ channel blocker nifedipine, and by the CaMKKII inhibitor, STO-609. Aβ also activated the downstream kinase, AMP-dependent protein kinase (AMPK). CO prevented this activation of AMPK. Our findings indicate that HO-1 protects against Aβ toxicity via production of CO. Protection does not arise from inhibition of apoptosis-associated K+ efflux, but rather by inhibition of AMPK activation, which has been recently implicated in the toxic effects of Aβ. These data provide a novel, beneficial effect of CO which adds to its growing potential as a therapeutic agent.

  15. In silico analysis of the apolipoprotein E and the amyloid beta peptide interaction: misfolding induced by frustration of the salt bridge network.

    Directory of Open Access Journals (Sweden)

    Jinghui Luo

    2010-02-01

    Full Text Available The relationship between Apolipoprotein E (ApoE and the aggregation processes of the amyloid beta (A beta peptide has been shown to be crucial for Alzheimer's disease (AD. The presence of the ApoE4 isoform is considered to be a contributing risk factor for AD. However, the detailed molecular properties of ApoE4 interacting with the A beta peptide are unknown, although various mechanisms have been proposed to explain the physiological and pathological role of this relationship. Here, computer simulations have been used to investigate the process of A beta interaction with the N-terminal domain of the human ApoE isoforms (ApoE2, ApoE3 and ApoE4. Molecular docking combined with molecular dynamics simulations have been undertaken to determine the A beta peptide binding sites and the relative stability of binding to each of the ApoE isoforms. Our results show that from the several ApoE isoforms investigated, only ApoE4 presents a misfolded intermediate when bound to A beta. Moreover, the initial alpha-helix used as the A beta peptide model structure also becomes unstructured due to the interaction with ApoE4. These structural changes appear to be related to a rearrangement of the salt bridge network in ApoE4, for which we propose a model. It seems plausible that ApoE4 in its partially unfolded state is incapable of performing the clearance of A beta, thereby promoting amyloid forming processes. Hence, the proposed model can be used to identify potential drug binding sites in the ApoE4-A beta complex, where the interaction between the two molecules can be inhibited.

  16. Methanolic extract of Piper nigrum fruits improves memory impairment by decreasing brain oxidative stress in amyloid beta(1-42) rat model of Alzheimer's disease.

    Science.gov (United States)

    Hritcu, Lucian; Noumedem, Jaurès A; Cioanca, Oana; Hancianu, Monica; Kuete, Victor; Mihasan, Marius

    2014-04-01

    The present study analyzed the possible memory-enhancing and antioxidant proprieties of the methanolic extract of Piper nigrum L. fruits (50 and 100 mg/kg, orally, for 21 days) in amyloid beta(1-42) rat model of Alzheimer's disease. The memory-enhancing effects of the plant extract were studied by means of in vivo (Y-maze and radial arm-maze tasks) approaches. Also, the antioxidant activity in the hippocampus was assessed using superoxide dismutase-, catalase-, glutathione peroxidase-specific activities and the total content of reduced glutathione, malondialdehyde, and protein carbonyl levels. The amyloid beta(1-42)-treated rats exhibited the following: decrease of spontaneous alternations percentage within Y-maze task and increase of working memory and reference memory errors within radial arm-maze task. Administration of the plant extract significantly improved memory performance and exhibited antioxidant potential. Our results suggest that the plant extract ameliorates amyloid beta(1-42)-induced spatial memory impairment by attenuation of the oxidative stress in the rat hippocampus.

  17. Transgenic expression of the amyloid-beta precursor protein-intracellular domain does not induce Alzheimer's Disease-like traits in vivo.

    Directory of Open Access Journals (Sweden)

    Luca Giliberto

    Full Text Available BACKGROUND: Regulated intramembranous proteolysis of the amyloid-beta precursor protein by the gamma-secretase yields amyloid-beta, which is the major component of the amyloid plaques found in Alzheimer's disease (AD, and the APP intracellular domain (AID. In vitro studies have involved AID in apoptosis and gene transcription. In vivo studies, which utilize transgenic mice expressing AID in the forebrain, only support a role for AID in apoptosis but not gene transcription. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have further characterized several lines of AID transgenic mice by crossing them with human Tau-bearing mice, to determine whether over-expression of AID in the forebrain provokes AD-like pathologic features in this background. We have found no evidence that AID overexpression induces AD-like characteristics, such as activation of GSK-3beta, hyperphosphorylation of Tau and formation of neurofibrillary pathology. CONCLUSIONS/SIGNIFICANCE: Overall, these data suggest that AID transgenic mice do not represent a model that reproduces the overt biochemical and anatomo-pathologic lesions observed in AD patients. They can still be a valuable tool to understand the role of AID in enhancing the cell sensitivity to apoptotic stimuli, whose pathways still need to be characterized.

  18. Computational Studies of Beta Amyloid (Aβ42 with p75NTR Receptor: A Novel Therapeutic Target in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Shine Devarajan

    2014-01-01

    Full Text Available Alzheimer’s disease is a neurodegenerative disorder characterized by the accumulation of beta amyloid plaques (Aβ which can induce neurite degeneration and progressive dementia. It has been identified that neuronal apoptosis is induced by binding of Aβ42 to pan neurotrophin receptor (p75NTR and gave the possibility that beta amyloid oligomer is a ligand for p75NTR. However, the atomic contact point responsible for molecular interactions and conformational changes of the protein upon binding was not studied in detail. In view of this, we conducted a molecular docking and simulation study to investigate the binding behaviour of Aβ42 monomer with p75NTR ectodomain. Furthermore, we proposed a p75NTR-ectodomain-Aβ42 complex model. Our data revealed that, Aβ42 specifically recognizes CRD1 and CRD2 domains of the receptor and formed a “cap” like structure at the N-terminal of receptor which is stabilized by a network of hydrogen bonds. These findings are supported by molecular dynamics simulation that Aβ42 showed distinct structural alterations at N- and C-terminal regions due to the influence of the receptor binding site. Overall, the present study gives more structural insight on the molecular interactions of beta amyloid protein involved in the activation of p75NTR receptor.

  19. Role of human GABA(A) receptor beta3 subunit in insecticide toxicity.

    Science.gov (United States)

    Ratra, G S; Kamita, S G; Casida, J E

    2001-05-01

    The gamma-aminobutyric acid type A (GABA(A)) receptor is the target for the major insecticides alpha-endosulfan, lindane, and fipronil and for many analogs. Their action as chloride channel blockers is directly measured by binding studies with [(3)H]ethynylbicycloorthobenzoate ([(3)H]EBOB). This study tests the hypothesis that GABA(A) receptor subunit composition determines the sensitivity and selectivity of insecticide toxicity. Human receptor subtypes were expressed individually (alpha1, alpha6, beta1, beta3, and gamma2) and in combination in insect Sf9 cells. Binding parameters were similar for [(3)H]EBOB in the beta3 homooligomer, alpha1beta3gamma2 heterooligomer, and native brain membranes, but toxicological profiles were very different. Surprisingly, alpha-endosulfan, lindane, and fipronil were all remarkably potent on the recombinant beta3 homooligomeric receptor (IC50 values of 0.5-2.4 nM), whereas they were similar in potency on the alpha1beta3gamma2 subtype (IC50 values of 16-33 nM) and highly selective on the native receptor (IC50 values of 7.3, 306, and 2470 nM, respectively). The selectivity order for 29 insecticides and convulsants as IC50 ratios for native/beta3 or alpha1beta3gamma2/beta3 was as follows: fipronil > lindane > 19 other insecticides including alpha-endosulfan and picrotoxinin > 4 trioxabicyclooctanes and dithianes (almost nonselective) > tetramethylenedisulfotetramine, 4-chlorophenylsilatrane, or alpha-thujone. Specificity between mammals and insects at the target site (fipronil > lindane > alpha-endosulfan) paralleled that for toxicity. Potency at the native receptor is more predictive for inhibition of GABA-stimulated chloride uptake than that at the beta3 or alpha1beta3gamma2 receptors. Therefore, the beta3 subunit contains the insecticide target and other subunits differentially modulate the binding to confer compound-dependent specificity and selective toxicity.

  20. Kinetics of the neuroinflammation-oxidative stress correlation in rat brain following the injection of fibrillar amyloid-beta onto the hippocampus in vivo.

    Science.gov (United States)

    Rosales-Corral, Sergio; Tan, Dun-Xian; Reiter, Russel J; Valdivia-Velázquez, Miguel; Acosta-Martínez, J Pablo; Ortiz, Genaro G

    2004-05-01

    The purpose of this study was to describe-following the injection of a single intracerebral dose of fibrillar amyloid-beta(1-40) in vivo-some correlations between proinflammatory cytokines and oxidative stress indicators in function of time, as well as how these variables fit in a regression model. We found a positive, significant correlation between interleukin (IL)-1beta or IL-6 and the activity of the glutathione peroxidase enzyme (GSH-Px), but IL-1beta or IL-6 maintained a strong, negative correlation with the lipid peroxidation (LPO). The first 12 h marked a positive correlation between IL-6 and tumor necrosis factor-alpha (TNF-alpha), but starting from the 36 h, this relationship became negative. We found also particular patterns of behavior through the time for IL-1beta, nitrites and IL-6, with parallel or sequential interrelationships. Results shows clearly that, in vivo, the fibrillar amyloid-beta (Abeta) disrupts the oxidative balance and initiate a proinflammatory response, which in turn feeds the oxidative imbalance in a coordinated, sequential way. This work contributes to our understanding of the positive feedbacks, focusing the "cytokine cycle" along with the oxidative stress mediators in a complex, multicellular, and interactive environment.

  1. Reduction of beta-amyloid-induced neurotoxicity on hippocampal cell cultures by moderate acidosis is mediated by transforming growth factor beta.

    Science.gov (United States)

    Uribe-San Martín, R; Herrera-Molina, R; Olavarría, L; Ramírez, G; von Bernhardi, R

    2009-02-18

    Progression of Alzheimer's disease (AD) is associated with chronic inflammation and microvascular alterations, which can induce impairment of brain perfusion because of vascular pathology and local acidosis. Acidosis can promote amyloidogenesis, which could further contribute to neurodegenerative changes. Nevertheless, there is also evidence that acidosis has neuroprotective effects in hypoxia models. Here we studied the effect of moderate acidosis on beta-amyloid (Abeta)-mediated neurotoxicity. We evaluated morphological changes, cell death, nitrite production and reductive metabolism of hippocampal cultures from Sprague-Dawley rats exposed to Abeta under physiological (pH 7.4) or moderate acidosis (pH 7.15-7.05). In addition, because transforming growth factor beta (TGFbeta) 1 is neuroprotective and is induced by several pathophysiological conditions, we assessed its presence at the different pHs. The exposure of hippocampal cells to Abeta induced a conspicuous reduction of neurites' arborization, as well as increased neuronal death and nitric oxide production. However, Abeta neurotoxicity was significantly attenuated when hippocampal cultures were kept at pH 7.15-7.05, showing a 68% reduction on lactate dehydrogenase release compared with cultures exposed to Abeta at pH 7.4 (Pacidosis compared with basal pH media (Pacidosis decreased intracellular TGFbeta1 precursor (latency associated protein-TGFbeta1) and increased up to fourfold TGFbeta1 bioactivity, detecting a 43% increase in the active TGFbeta levels in cultures exposed to Abeta and moderate acidosis. Inhibition of TGFbeta signaling abolished the neuroprotective effect of moderate acidosis. Our results show that moderate acidosis protected hippocampal cells from Abeta-mediated neurotoxicity through the increased activation and signaling potentiation of TGFbeta.

  2. Neurotoxicity induced by amyloid beta-peptide and ibotenic acid in organotypic hippocampal cultures: protection by S-allyl-L-cysteine, a garlic compound.

    Science.gov (United States)

    Ito, Yoshihisa; Ito, Moriyuki; Takagi, Noritaka; Saito, Hiroshi; Ishige, Kumiko

    2003-09-19

    We have assessed amyloid-beta (Abeta)-induced neurotoxicity, with and without added ibotenic acid (IBO), a potent N-methyl-D-aspartate (NMDA) agonist, in an organotypic hippocampal slice culture (OHC). In the OHC, there was little neurotoxicity after treatment with Abeta(25-35) (25 or 50 microM) alone for 48 h. However, with IBO alone neuronal death was observed in the pyramidal cell layer at low concentrations, and there was dramatic neuronal death at concentrations of 65 microM or more. When Abeta was combined with IBO (Abeta+IBO) there was more intense cell death than with IBO alone. S-Allyl-L-cysteine (SAC), one of the organosulfur compounds having a thioallyl group in aged garlic extract, was shown to protect the hippocampal neurons in the CA3 area and the dentate gyrus (DG) from the cell death induced by Abeta+IBO with no change in the CA1 area. Although L-glutamate (500 microM) potentiated the degree of IBO-induced neuronal death, it attenuated the Abeta+IBO-induced neuronal death in both the CA3 area and the DG with no obvious effect on the CA1 area. These results suggest that Abeta+IBO induces extensive neuronal death, and that SAC and L-glutamate protect cells from death in specific areas of the hippocampus. In addition, inhibition using a pan-caspase inhibitor, z-VAD-fmk, only provided partial protection from Abeta+IBO-induced toxicity for the neurons in the CA3 area. These results suggest that multiple mechanisms may be involved in Abeta+IBO-induced neuronal death in the OHC.

  3. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers II: Sigma-2/PGRMC1 receptors mediate Abeta 42 oligomer binding and synaptotoxicity.

    Science.gov (United States)

    Izzo, Nicholas J; Xu, Jinbin; Zeng, Chenbo; Kirk, Molly J; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Cruchaga, Carlos; Goate, Alison; Cahill, Michael A; Arancio, Ottavio; Mach, Robert H; Craven, Rolf; Head, Elizabeth; LeVine, Harry; Spires-Jones, Tara L; Catalano, Susan M

    2014-01-01

    Amyloid beta (Abeta) 1-42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI) and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD). We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1) protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer's disease patients' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological effects of

  4. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers II: Sigma-2/PGRMC1 receptors mediate Abeta 42 oligomer binding and synaptotoxicity.

    Directory of Open Access Journals (Sweden)

    Nicholas J Izzo

    Full Text Available Amyloid beta (Abeta 1-42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD. We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1 protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer's disease patients' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological

  5. Macrophage colony-stimulating factor augments beta-amyloid-induced interleukin-1, interleukin-6, and nitric oxide production by microglial cells.

    Science.gov (United States)

    Murphy, G M; Yang, L; Cordell, B

    1998-08-14

    In Alzheimer's disease (AD), a chronic cerebral inflammatory state is thought to lead to neuronal injury. Microglia, intrinsic cerebral immune effector cells, are likely to be key in the pathophysiology of this inflammatory state. We showed that macrophage colony-stimulating factor, a microglial activator found at increased levels in the central nervous system in AD, dramatically augments beta-amyloid peptide (betaAP)-induced microglial production of interleukin-1, interleukin-6, and nitric oxide. In contrast, granulocyte macrophage colony-stimulating factor, another hematopoietic cytokine found in the AD brain, did not augment betaAP-induced microglial secretory activity. These results indicate that increased macrophage colony-stimulating factor levels in AD could magnify betaAP-induced microglial inflammatory cytokine and nitric oxide production, which in turn could intensify the cerebral inflammatory state by activating astrocytes and additional microglia, as well as directly injuring neurons.

  6. Origin of life. Primordial genetics: Information transfer in a pre-RNA world based on self-replicating beta-sheet amyloid conformers.

    Science.gov (United States)

    Maury, Carl Peter J

    2015-10-01

    The question of the origin of life on Earth can largely be reduced to the question of what was the first molecular replicator system that was able to replicate and evolve under the presumably very harsh conditions on the early Earth. It is unlikely that a functional RNA could have existed under such conditions and it is generally assumed that some other kind of information system preceded the RNA world. Here, I present an informational molecular system that is stable, self-replicative, environmentally responsive, and evolvable under conditions characterized by high temperatures, ultraviolet and cosmic radiation. This postulated pregenetic system is based on the amyloid fold, a functionally unique polypeptide fold characterized by a cross beta-sheet structure in which the beta strands are arranged perpendicular to the fiber axis. Beside an extraordinary structural robustness, the amyloid fold possesses a unique ability to transmit information by a three-dimensional templating mechanism. In amyloidogenesis short peptide monomers are added one by one to the growing end of the fiber. From the same monomeric subunits several structural variants of amyloid may be formed. Then, in a self-replicative mode, a specific amyloid conformer can act as a template and confer its spatially encoded information to daughter molecular entities in a repetitive way. In this process, the specific conformational information, the spatially changed organization, is transmitted; the coding element is the steric zipper structure, and recognition occurs by amino acid side chain complementarity. The amyloid information system fulfills several basic requirements of a primordial evolvable replicator system: (i) it is stable under the presumed primitive Earth conditions, (ii) the monomeric building blocks of the informational polymer can be formed from available prebiotic compounds, (iii) the system is self-assembling and self-replicative and (iv) it is adaptive to changes in the environment and

  7. Minocycline recovers MTT-formazan exocytosis impaired by amyloid beta peptide.

    Science.gov (United States)

    Kreutzmann, Peter; Wolf, Gerald; Kupsch, Kathleen

    2010-10-01

    Minocycline, a tetracycline antibiotic, has been reported to exert beneficial effects in models of Alzheimer's disease (AD). To characterize the mechanisms underlying the putative minocycline-related neuroprotection, we studied its effect in an in vitro model of AD. Primary hippocampal cultures were treated with β-amyloid peptide (Aβ) and cell viability was assessed by standard MTT-assay. Incubation with 10 μM Aβ for 24 h significantly inhibits cellular MTT-reduction without inducing morphological signs of enhanced cell death or increase in release of lactate dehydrogenase. This indicates that cell viability was not affected. The inhibition of MTT-reduction by Aβ was due to an acceleration of MTT-formazan exocytosis. Intriguingly, the Aβ-triggered increase in MTT-formazan exocytosis was abolished by co-treatment with minocycline. In vehicle-treated cells minocycline had no effect on formazan exocytosis. This hitherto unrecognized property of minocycline has to be noticed in the elucidation of the underlying mechanism of this promising neuroprotectant.

  8. Morphology and structural dynamics of amyloid beta 42 assembly in vitro

    Institute of Scientific and Technical Information of China (English)

    Ying Zhang; Jinsheng He; Shuhan Guo; Jingdong Song; Jianguo Gu; Tao Hong

    2011-01-01

    Amyloid β42 (Aβ42) aggregation plays a key role in the pathogenesis of Alzheimer's disease.However, the morphology and structural dynamics in different stages of Aβ42 assembly are not well known.To investigate the dynamic properties of morphological and structural changes in the aggregation process of A(3 in vitro, transmission electron microscopy, western blot analysis and circular dichroism were used to observe the changes in morphology, immunoreactivity and secondary structure during Ap aggregation, respectively.Results demonstrated that at 24 hours following Ap42 aggregation in vitro, the structures of spherical granules from 5 to 10 nm and coils from 20 to 30 nm were visualized by transmission electron microscopy.Different immunoreactivities of the oligomers and fibers were detected by western blot analysis.The dynamic changes of the a-helix to β-sheet were confirmed by circular dichroism spectra.The dynamic properties of the morphological and structural changes in the aggregation process of Aβ42 in vitro were analyzed,which contributed to the identification of stable conditions of Aβ42 oligomer formation.

  9. Lycopene Prevents Amyloid [Beta]-Induced Mitochondrial Oxidative Stress and Dysfunctions in Cultured Rat Cortical Neurons.

    Science.gov (United States)

    Qu, Mingyue; Jiang, Zheng; Liao, Yuanxiang; Song, Zhenyao; Nan, Xinzhong

    2016-06-01

    Brains affected by Alzheimer's disease (AD) show a large spectrum of mitochondrial alterations at both morphological and genetic level. The causal link between β-amyloid (Aβ) and mitochondrial dysfunction has been established in cellular models of AD. We observed previously that lycopene, a member of the carotenoid family of phytochemicals, could counteract neuronal apoptosis and cell damage induced by Aβ and other neurotoxic substances, and that this neuroprotective action somehow involved the mitochondria. The present study aims to investigate the effects of lycopene on mitochondria in cultured rat cortical neurons exposed to Aβ. It was found that lycopene attenuated Aβ-induced oxidative stress, as evidenced by the decreased intracellular reactive oxygen species generation and mitochondria-derived superoxide production. Additionally, lycopene ameliorated Aβ-induced mitochondrial morphological alteration, opening of the mitochondrial permeability transition pores and the consequent cytochrome c release. Lycopene also improved mitochondrial complex activities and restored ATP levels in Aβ-treated neuron. Furthermore, lycopene prevented mitochondrial DNA damages and improved the protein level of mitochondrial transcription factor A in mitochondria. Those results indicate that lycopene protects mitochondria against Aβ-induced damages, at least in part by inhibiting mitochondrial oxidative stress and improving mitochondrial function. These beneficial effects of lycopene may account for its protection against Aβ-induced neurotoxicity.

  10. [Compensatory mechanisms to heal neuroplasticity impairment under Alzheiemer's disease neurodegeneration. I: The role of amyloid beta and its' precursor protein].

    Science.gov (United States)

    Kudinov, A R; Kudinova, N V; Kezlia, E V; Kozyrev, K M; Medvedev, A E; Berezov, T T

    2012-01-01

    In-depth scholar literature analysis of Alzheimer's disease neurodegenerative features of amyloid beta protein neurochemistry modification and excessive phosphorylation of tau protein (and associated neuronal cytoskeleton rearrangements) are secondary phenomena. At early disease stage these neurobiochemical mechanisms are reversible and serve to heal an impairment of biophysical properties of neuronal membranes, neurotransmission, basic neuronal function and neuroplasticity, while preserving anatomical and functional brain fields. Abeta and tau could well serve to biochemically restore physico-chemical properties of neual membranes due to a role these proteins play in lipid metabolism. Under such scenario therapeutic block of aggregation and plaque formation of Abeta and inhibition of tau phosphorylation, as well as pharmaceutical modification of other secondary neurodegenerative features (such as a cascade of oxidative stress reactions) are unable to provide an effective cure of Alzheimer's disease and related pathologies of the Central and peripheral nervous systems, because they are not arraying primary pathagenetic cause. We review the role of Abeta in compensatory mechanisms of neuroplasticity restoration under normal physiological condition and Alzheimer's disease.

  11. Icariin Prevents Amyloid Beta-Induced Apoptosis via the PI3K/Akt Pathway in PC-12 Cells

    Directory of Open Access Journals (Sweden)

    Dongdong Zhang

    2015-01-01

    Full Text Available Icariin is a prenylated flavonol glycoside derived from the Chinese herb Epimedium sagittatum that exerts a variety of pharmacological activities and shows promise in the treatment and prevention of Alzheimer’s disease. In this study, we investigated the neuroprotective effects of icariin against amyloid beta protein fragment 25–35 (Aβ25–35 induced neurotoxicity in cultured rat pheochromocytoma PC12 cells and explored potential underlying mechanisms. Our results showed that icariin dose-dependently increased cell viability and decreased Aβ25–35-induced apoptosis, as assessed by MTT assay and Annexin V/propidium iodide staining, respectively. Results of western blot analysis revealed that the selective phosphatidylinositol 3-kinase (PI3K inhibitor LY294002 suppressed icariin-induced Akt phosphorylation, suggesting that the protective effects of icariin are associated with activation of the PI3K/Akt signaling pathway. LY294002 also blocked the icariin-induced downregulation of proapoptotic factors Bax and caspase-3 and upregulation of antiapoptotic factor Bcl-2 in Aβ25–35-treated PC12 cells. These findings provide further evidence for the clinical efficacy of icariin in the treatment of Alzheimer’s disease.

  12. Two different immunostaining patterns of beta-amyloid precursor protein (APP) may distinguish traumatic from nontraumatic axonal injury.

    Science.gov (United States)

    Hayashi, Takahito; Ago, Kazutoshi; Nakamae, Takuma; Higo, Eri; Ogata, Mamoru

    2015-09-01

    Immunostaining for beta-amyloid precursor protein (APP) is recognized as an effective tool for detecting traumatic axonal injury, but it also detects axonal injury due to ischemic or other metabolic causes. Previously, we reported two different patterns of APP staining: labeled axons oriented along with white matter bundles (pattern 1) and labeled axons scattered irregularly (pattern 2) (Hayashi et al. (Leg Med (Tokyo) 11:S171-173, 2009). In this study, we investigated whether these two patterns are consistent with patterns of trauma and hypoxic brain damage, respectively. Sections of the corpus callosum from 44 cases of blunt head injury and equivalent control tissue were immunostained for APP. APP was detected in injured axons such as axonal bulbs and varicose axons in 24 of the 44 cases of head injuries that also survived for three or more hours after injury. In 21 of the 24 APP-positive cases, pattern 1 alone was observed in 14 cases, pattern 2 alone was not observed in any cases, and both patterns 1 and 2 were detected in 7 cases. APP-labeled injured axons were detected in 3 of the 44 control cases, all of which were pattern 2. These results suggest that pattern 1 indicates traumatic axonal injury, while pattern 2 results from hypoxic insult. These patterns may be useful to differentiate between traumatic and nontraumatic axonal injuries.

  13. Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Huimin Liang; Yaozhou Zhang; Xiaoyan Shi; Tianxiang Wei; Jiyu Lou

    2014-01-01

    Recent studies have demonstrated that Notch-1 expression is increased in the hippocampus of Alzheimer’s disease patients. We speculate that Notch-1 signaling may be involved in PC12 cell apoptosis induced by amyloid beta-peptide (25-35) (Aβ25-35). In the present study, PC12 cells were cultured with different doses (0, 0.1, 1.0, 10 and 100 nmol/L) of N-[N-(3,5-Dilfuorophen-acetyl)-L-alanyl]-S-phenylglycine t-butyl ester, a Notch-1 signaling pathway inhibitor, for 30 minutes. Then cultured cells were induced with Aβ25-35 for 48 hours. Pretreatment of PC12 cells with high doses of N-[N-(3,5-Dilfuorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (> 10 nmol/L) prolonged the survival of PC12 cells after Aβ25-35 induction, decreased the expression of apoptosis-related proteins caspase-3, -8, -9, increased the activity of oxidative stress-related su-peroxide dismutase and catalase, inhibited the production of active oxygen, and reduced nuclear factor kappa B expression. This study indicates that the Notch-1 signaling pathway plays a pivotal role in Aβ25-35-induced PC12 apoptosis.

  14. Molecular dynamics simulation and molecular docking studies of Angiotensin converting enzyme with inhibitor lisinopril and amyloid Beta Peptide.

    Science.gov (United States)

    Jalkute, Chidambar Balbhim; Barage, Sagar Hindurao; Dhanavade, Maruti Jayram; Sonawane, Kailas Dasharath

    2013-06-01

    Angiotensin converting enzyme (ACE) cleaves amyloid beta peptide. So far this cleavage mechanism has not been studied in detail at atomic level. Keeping this view in mind, we performed molecular dynamics simulation of crystal structure complex of testis truncated version of ACE (tACE) and its inhibitor lisinopril along with Zn(2+) to understand the dynamic behavior of active site residues of tACE. Root mean square deviation results revealed the stability of tACE throughout simulation. The residues Ala 354, Glu 376, Asp 377, Glu 384, His 513, Tyr 520 and Tyr 523 of tACE stabilized lisinopril by hydrogen bonding interactions. Using this information in subsequent part of study, molecular docking of tACE crystal structure with Aβ-peptide has been made to investigate the interactions of Aβ-peptide with enzyme tACE. The residues Asp 7 and Ser 8 of Aβ-peptide were found in close contact with Glu 384 of tACE along with Zn(2+). This study has demonstrated that the residue Glu 384 of tACE might play key role in the degradation of Aβ-peptide by cleaving peptide bond between Asp 7 and Ser 8 residues. Molecular basis generated by this attempt could provide valuable information towards designing of new therapies to control Aβ concentration in Alzheimer's patient.

  15. Accumulation of Exogenous Amyloid-Beta Peptide in Hippocampal Mitochondria Causes Their Dysfunction: A Protective Role for Melatonin

    Directory of Open Access Journals (Sweden)

    Sergio Rosales-Corral

    2012-01-01

    Full Text Available Amyloid-beta (Aβ pathology is related to mitochondrial dysfunction accompanied by energy reduction and an elevated production of reactive oxygen species (ROS. Monomers and oligomers of Aβ have been found inside mitochondria where they accumulate in a time-dependent manner as demonstrated in transgenic mice and in Alzheimer’s disease (AD brain. We hypothesize that the internalization of extracellular Aβ aggregates is the major cause of mitochondrial damage and here we report that following the injection of fibrillar Aβ into the hippocampus, there is severe axonal damage which is accompanied by the entrance of Aβ into the cell. Thereafter, Aβ appears in mitochondria where it is linked to alterations in the ionic gradient across the inner mitochondrial membrane. This effect is accompanied by disruption of subcellular structure, oxidative stress, and a significant reduction in both the respiratory control ratio and in the hydrolytic activity of ATPase. Orally administrated melatonin reduced oxidative stress, improved the mitochondrial respiratory control ratio, and ameliorated the energy imbalance.

  16. Accumulation of Exogenous Amyloid-Beta Peptide in Hippocampal Mitochondria Causes Their Dysfunction: A Protective Role for Melatonin

    Science.gov (United States)

    Rosales-Corral, Sergio; Acuna-Castroviejo, Dario; Tan, Dun Xian; López-Armas, Gabriela; Cruz-Ramos, José; Munoz, Rubén; Melnikov, Valery G.; Manchester, Lucien C.; Reiter, Russel J.

    2012-01-01

    Amyloid-beta (Aβ) pathology is related to mitochondrial dysfunction accompanied by energy reduction and an elevated production of reactive oxygen species (ROS). Monomers and oligomers of Aβ have been found inside mitochondria where they accumulate in a time-dependent manner as demonstrated in transgenic mice and in Alzheimer's disease (AD) brain. We hypothesize that the internalization of extracellular Aβ aggregates is the major cause of mitochondrial damage and here we report that following the injection of fibrillar Aβ into the hippocampus, there is severe axonal damage which is accompanied by the entrance of Aβ into the cell. Thereafter, Aβ appears in mitochondria where it is linked to alterations in the ionic gradient across the inner mitochondrial membrane. This effect is accompanied by disruption of subcellular structure, oxidative stress, and a significant reduction in both the respiratory control ratio and in the hydrolytic activity of ATPase. Orally administrated melatonin reduced oxidative stress, improved the mitochondrial respiratory control ratio, and ameliorated the energy imbalance. PMID:22666521

  17. IMPY, a potential {beta}-amyloid imaging probe for detection of prion deposits in scrapie-infected mice

    Energy Technology Data Exchange (ETDEWEB)

    Song, P.-J. [INSERM, U619, F-37000 Tours (France); Universite Francois-Rabelais, F-37000 Tours (France); IFR135, F-37000 Tours (France); Bernard, Serge [IFR135, F-37000 Tours (France); INRA, UR1282, IASP, 37380 Nouzilly (France)], E-mail: bernard@tours.inra.fr; Sarradin, Pierre [INRA, UR1282, IASP, 37380 Nouzilly (France); Vergote, Jackie [INSERM, U619, F-37000 Tours (France); Universite Francois-Rabelais, F-37000 Tours (France); IFR135, F-37000 Tours (France); Barc, Celine [INRA, UR1282, IASP, 37380 Nouzilly (France); Chalon, Sylvie [INSERM, U619, F-37000 Tours (France); Universite Francois-Rabelais, F-37000 Tours (France); IFR135, F-37000 Tours (France); Kung, M.-P.; Kung, Hank F. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Guilloteau, Denis [INSERM, U619, F-37000 Tours (France); Universite Francois-Rabelais, F-37000 Tours (France); IFR135, F-37000 Tours (France)

    2008-02-15

    Introduction: A potential single-photon emission computed tomography imaging agent for labeling of A{beta} plaques of Alzheimer's disease, IMPY (2-(4'-dimethylaminophenyl)-6-iodo-imidazo[1,2-a]pyridine), would be effective in detection of prion amyloid deposits in transmissible spongiform encephalopathies (TSEs). Methods: In vitro autoradiographic studies were carried out with [{sup 125}I]IMPY on brain sections from scrapie-infected mice and age-matched controls. Competition study was performed to evaluate the prion deposit binding specificity with nonradioactive IMPY. Results: Binding of [{sup 125}I]IMPY was observed in infected brain sections, while on age-matched control brain sections, there was no or very low labeling. Prion deposit binding was confirmed by histoblots with prion protein-specific monoclonal antibody 2D6. In the presence of nonradioactive IMPY, the binding of [{sup 125}I]IMPY was significantly inhibited in all regions studied. Conclusions: These findings indicate that IMPY can detect the prion deposits in vitro in scrapie-infected mice. Labeled with {sup 123}I, this ligand may be useful to quantitate prion deposit burdens in TSEs by in vivo imaging.

  18. Cytotoxic amyloid peptides inhibit cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction by enhancing MTT formazan exocytosis.

    Science.gov (United States)

    Liu, Y; Schubert, D

    1997-12-01

    Amyloid beta peptide (A beta) neurotoxicity is believed to play a central role in the pathogenesis of Alzheimer's disease. An early indicator of A beta toxicity is the inhibition of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction to MTT formazan, a widely used assay for measuring cell viability. In this report we show that A beta and other cytotoxic amyloid peptides such as human amylin dramatically enhance MTT formazan exocytosis, resulting in the inhibition of cellular MTT reduction. Only the amyloid peptides that are known to be cytotoxic enhanced MTT formazan exocytosis. Basal MTT formazan exocytosis and amyloid peptide-enhanced MTT formazan exocytosis are blocked by several drugs with diverse known effects. These and other data suggest that MTT formazan exocytosis is a multistep process and that cytotoxic amyloid peptides enhance MTT formazan exocytosis through an intracellular signal transduction pathway.

  19. Pore formation by human stefin B in its native and oligomeric states and the consequent amyloid induced toxicity.

    Directory of Open Access Journals (Sweden)

    Gregor eAnderluh

    2012-08-01

    Full Text Available It is well documented that amyloid forming peptides and proteins interact with membranes and that this correlates with cytotoxicity. To introduce the theme we give a brief description of some amyloidogenic proteins and note their similarities with pore forming toxins and cell penetrating peptides. Human stefin B, a member of the family of cystatins, is an amyloidogenic protein in vitro. This review describes our studies of the interaction of stefin B oligomers and prefibrillar aggregates with model membranes leading to pore formation. We have studied the interaction between human stefin B and artificial membranes of various compositions. We also have prepared distinct sizes and morphologies of stefin B prefibrillar states and assessed their toxicity. Furthermore, we have measured electrical currents through pores formed by stefin B prefibrillar oligomers in a planar lipid bilayer setup. We finally discuss the possible functional and pathological significance of such pores formed by human stefin B.

  20. PB1-F2 influenza A virus protein adopts a beta-sheet conformation and forms amyloid fibers in membrane environments.

    Science.gov (United States)

    Chevalier, Christophe; Al Bazzal, Ali; Vidic, Jasmina; Février, Vincent; Bourdieu, Christiane; Bouguyon, Edwige; Le Goffic, Ronan; Vautherot, Jean-François; Bernard, Julie; Moudjou, Mohammed; Noinville, Sylvie; Chich, Jean-François; Da Costa, Bruno; Rezaei, Human; Delmas, Bernard

    2010-04-23

    The influenza A virus PB1-F2 protein, encoded by an alternative reading frame in the PB1 polymerase gene, displays a high sequence polymorphism and is reported to contribute to viral pathogenesis in a sequence-specific manner. To gain insights into the functions of PB1-F2, the molecular structure of several PB1-F2 variants produced in Escherichia coli was investigated in different environments. Circular dichroism spectroscopy shows that all variants have a random coil secondary structure in aqueous solution. When incubated in trifluoroethanol polar solvent, all PB1-F2 variants adopt an alpha-helix-rich structure, whereas incubated in acetonitrile, a solvent of medium polarity mimicking the membrane environment, they display beta-sheet secondary structures. Incubated with asolectin liposomes and SDS micelles, PB1-F2 variants also acquire a beta-sheet structure. Dynamic light scattering revealed that the presence of beta-sheets is correlated with an oligomerization/aggregation of PB1-F2. Electron microscopy showed that PB1-F2 forms amorphous aggregates in acetonitrile. In contrast, at low concentrations of SDS, PB1-F2 variants exhibited various abilities to form fibers that were evidenced as amyloid fibers in a thioflavin T assay. Using a recombinant virus and its PB1-F2 knock-out mutant, we show that PB1-F2 also forms amyloid structures in infected cells. Functional membrane permeabilization assays revealed that the PB1-F2 variants can perforate membranes at nanomolar concentrations but with activities found to be sequence-dependent and not obviously correlated with their differential ability to form amyloid fibers. All of these observations suggest that PB1-F2 could be involved in physiological processes through different pathways, permeabilization of cellular membranes, and amyloid fiber formation.

  1. Conformational stability of fibrillar amyloid-beta oligomers via protofilament pair formation - a systematic computational study.

    Directory of Open Access Journals (Sweden)

    Anna Kahler

    Full Text Available Amyloid-[Formula: see text] (A[Formula: see text] oligomers play a crucial role in Alzheimer's disease due to their neurotoxic aggregation properties. Fibrillar A[Formula: see text] oligomerization can lead to protofilaments and protofilament pairs via oligomer elongation and oligomer association, respectively. Small fibrillar oligomers adopt the protofilament topology, whereas fibrils contain at least protofilament pairs. To date, the underlying growth mechanism from oligomers to the mature fibril still remains to be elucidated. Here, we performed all-atom molecular dynamics simulations in explicit solvent on single layer-like protofilaments and fibril-like protofilament pairs of different size ranging from the tetramer to the 48-mer. We found that the initial U-shaped topology per monomer is maintained over time in all oligomers. The observed deviations of protofilaments from the starting structure increase significantly with size due to the twisting of the in-register parallel [Formula: see text]-sheets. This twist causes long protofilaments to be unstable and leads to a breakage. Protofilament pairs, which are stabilized by a hydrophobic interface, exhibit more fibril-like properties such as the overall structure and the twist angle. Thus, they can act as stable conformational templates for further fibril growth. Key properties like the twist angle, shape complementarity, and energetics show a size-dependent behavior so that small oligomers favor the protofilament topology, whereas large oligomers favor the protofilament pair topology. The region for this conformational transition is at the size of approximately twelve A[Formula: see text] monomers. From that, we propose the following growth mechanism from A[Formula: see text] oligomers to fibrils: (1 elongation of short protofilaments; (2 breakage of large protofilaments; (3 formation of short protofilament pairs; and (4 elongation of protofilament pairs.

  2. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Van Leuven Fred

    2005-10-01

    Full Text Available Abstract Background Alzheimer's disease (AD is a progressive neurodegenerative disorder that primarily strikes the elderly. Studies in both humans and animal models have linked the consumption of cholesterol and saturated fats with amyloid-β (Aβ deposition and development of AD. Yet, these studies did not examine high fat diets in combination with reduced carbohydrate intake. Here we tested the effect of a high saturated fat/low carbohydrate diet on a transgenic mouse model of AD. Results Starting at three months of age, two groups of female transgenic mice carrying the "London" APP mutation (APP/V717I were fed either, a standard diet (SD composed of high carbohydrate/low fat chow, or a ketogenic diet (KD composed of very low carbohydrate/high saturated fat chow for 43 days. Animals fed the KD exhibited greatly elevated serum ketone body levels, as measured by β-hydroxybutyrate (3.85 ± 2.6 mM, compared to SD fed animals (0.29 ± 0.06 mM. In addition, animals fed the KD lost body weight (SD 22.2 ± 0.6 g vs. KD 17.5 ± 1.4 g, p = 0.0067. In contrast to earlier studies, the brief KD feeding regime significantly reduced total brain Aβ levels by approximately 25%. Despite changes in ketone levels, body weight, and Aβ levels, the KD diet did not alter behavioral measures. Conclusion Previous studies have suggested that diets rich in cholesterol and saturated fats increased the deposition of Aβ and the risk of developing AD. Here we demonstrate that a diet rich in saturated fats and low in carbohydrates can actually reduce levels of Aβ. Therefore, dietary strategies aimed at reducing Aβ levels should take into account interactions of dietary components and the metabolic outcomes, in particular, levels of carbohydrates, total calories, and presence of ketone bodies should be considered.

  3. Conformational stability of fibrillar amyloid-beta oligomers via protofilament pair formation - a systematic computational study.

    Science.gov (United States)

    Kahler, Anna; Sticht, Heinrich; Horn, Anselm H C

    2013-01-01

    Amyloid-[Formula: see text] (A[Formula: see text]) oligomers play a crucial role in Alzheimer's disease due to their neurotoxic aggregation properties. Fibrillar A[Formula: see text] oligomerization can lead to protofilaments and protofilament pairs via oligomer elongation and oligomer association, respectively. Small fibrillar oligomers adopt the protofilament topology, whereas fibrils contain at least protofilament pairs. To date, the underlying growth mechanism from oligomers to the mature fibril still remains to be elucidated. Here, we performed all-atom molecular dynamics simulations in explicit solvent on single layer-like protofilaments and fibril-like protofilament pairs of different size ranging from the tetramer to the 48-mer. We found that the initial U-shaped topology per monomer is maintained over time in all oligomers. The observed deviations of protofilaments from the starting structure increase significantly with size due to the twisting of the in-register parallel [Formula: see text]-sheets. This twist causes long protofilaments to be unstable and leads to a breakage. Protofilament pairs, which are stabilized by a hydrophobic interface, exhibit more fibril-like properties such as the overall structure and the twist angle. Thus, they can act as stable conformational templates for further fibril growth. Key properties like the twist angle, shape complementarity, and energetics show a size-dependent behavior so that small oligomers favor the protofilament topology, whereas large oligomers favor the protofilament pair topology. The region for this conformational transition is at the size of approximately twelve A[Formula: see text] monomers. From that, we propose the following growth mechanism from A[Formula: see text] oligomers to fibrils: (1) elongation of short protofilaments; (2) breakage of large protofilaments; (3) formation of short protofilament pairs; and (4) elongation of protofilament pairs.

  4. Chronic apocynin treatment attenuates beta amyloid plaque size and microglial number in hAPP(751(SL mice.

    Directory of Open Access Journals (Sweden)

    Melinda E Lull

    Full Text Available BACKGROUND: NADPH oxidase is implicated in neurotoxic microglial activation and the progressive nature of Alzheimer's Disease (AD. Here, we test the ability of two NADPH oxidase inhibitors, apocynin and dextromethorphan (DM, to reduce learning deficits and neuropathology in transgenic mice overexpressing human amyloid precursor protein with the Swedish and London mutations (hAPP(751(SL. METHODS: Four month old hAPP(751(SL mice were treated daily with saline, 15 mg/kg DM, 7.5 mg/kg DM, or 10 mg/kg apocynin by gavage for four months. RESULTS: Only hAPP(751(SL mice treated with apocynin showed reduced plaque size and a reduction in the number of cortical microglia, when compared to the saline treated group. Analysis of whole brain homogenates from all treatments tested (saline, DM, and apocynin demonstrated low levels of TNFα, protein nitration, lipid peroxidation, and NADPH oxidase activation, indicating a low level of neuroinflammation and oxidative stress in hAPP(751(SL mice at 8 months of age that was not significantly affected by any drug treatment. Despite in vitro analyses demonstrating that apocynin and DM ameliorate Aβ-induced extracellular superoxide production and neurotoxicity, both DM and apocynin failed to significantly affect learning and memory tasks or synaptic density in hAPP(751(SL mice. To discern how apocynin was affecting plaque levels (plaque load and microglial number in vivo, in vitro analysis of microglia was performed, revealing no apocynin effects on beta-amyloid (Aβ phagocytosis, microglial proliferation, or microglial survival. CONCLUSIONS: Together, this study suggests that while hAPP(751(SL mice show increases in microglial number and plaque load, they fail to exhibit elevated markers of neuroinflammation consistent with AD at 8 months of age, which may be a limitation of this animal model. Despite absence of clear neuroinflammation, apocynin was still able to reduce both plaque size and microglial number

  5. Low background and high contrast PET imaging of amyloid-{beta} with [{sup 11}C]AZD2995 and [{sup 11}C]AZD2184 in Alzheimer's disease patients

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Anton; Andersson, Jan; Varnaes, Katarina; Halldin, Christer [Karolinska Institutet, Centre for Psychiatry Research, Department of Clinical Neuroscience, Stockholm (Sweden); Jureus, Anders; Swahn, Britt-Marie; Sandell, Johan; Julin, Per; Svensson, Samuel [AstraZeneca Research and Development, Neuroscience Research and Therapy Area, Soedertaelje (Sweden); Cselenyi, Zsolt; Schou, Magnus; Johnstroem, Peter; Farde, Lars [Karolinska Institutet, Centre for Psychiatry Research, Department of Clinical Neuroscience, Stockholm (Sweden); Karolinska Hospital, AstraZeneca Translational Sciences Centre, PET CoE, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm (Sweden); Eriksdotter, Maria; Freund-Levi, Yvonne [Karolinska Institutet, Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Stockholm (Sweden); Karolinska University Hospital, Department of Geriatric Medicine, Stockholm (Sweden); Jeppsson, Fredrik [AstraZeneca Research and Development, Neuroscience Research and Therapy Area, Soedertaelje (Sweden); Karolinska Institutet, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Stockholm (Sweden)

    2013-04-15

    The aim of this study was to evaluate AZD2995 side by side with AZD2184 as novel PET radioligands for imaging of amyloid-{beta} in Alzheimer's disease (AD). In vitro binding of tritium-labelled AZD2995 and AZD2184 was studied and compared with that of the established amyloid-{beta} PET radioligand PIB. Subsequently, a first-in-human in vivo PET study was performed using [{sup 11}C]AZD2995 and [{sup 11}C]AZD2184 in three healthy control subjects and seven AD patients. AZD2995, AZD2184 and PIB were found to share the same binding site to amyloid-{beta}. [{sup 3}H]AZD2995 had the highest signal-to-background ratio in brain tissue from patients with AD as well as in transgenic mice. However, [{sup 11}C]AZD2184 had superior imaging properties in PET, as shown by larger effect sizes comparing binding potential values in cortical regions of AD patients and healthy controls. Nevertheless, probably due to a lower amount of nonspecific binding, the group separation of the distribution volume ratio values of [{sup 11}C]AZD2995 was greater in areas with lower amyloid-{beta} load, e.g. the hippocampus. Both AZD2995 and AZD2184 detect amyloid-{beta} with high affinity and specificity and also display a lower degree of nonspecific binding than that reported for PIB. Overall [{sup 11}C]AZD2184 seems to be an amyloid-{beta} radioligand with higher uptake and better group separation when compared to [{sup 11}C]AZD2995. However, the very low nonspecific binding of [{sup 11}C]AZD2995 makes this radioligand potentially interesting as a tool to study minute levels of amyloid-{beta}. This sensitivity may be important in investigating, for example, early prodromal stages of AD or in the longitudinal study of a disease modifying therapy. (orig.)

  6. Beta-amyloid overload does not directly correlate with SAPK/JNK activation and tau protein phosphorylation in the cerebellar cortex of Ts65Dn mice.

    Science.gov (United States)

    Lomoio, Selene; Scherini, Elda; Necchi, Daniela

    2009-11-10

    It is known that in the nervous tissue beta-amyloid overproduction and its extracellular or intracellular deposition can activate mitogen-activated protein kinases involved in tau protein phosphorylation. Hyperphosphorylated tau is not more able to bind neuron microtubules, leading to their disassembly and axon degeneration. We have previously described that at 10 months of age in the cerebellum of Ts65Dn mice, which are partially trisomic for the chromosome 16 and are considered a valuable model for Down syndrome, Purkinje cells undergo axon degeneration. Taking into consideration that Ts65Dn mice carry three copies of the gene encoding for the amyloid precursor protein, to characterize potential signaling events triggering the degenerative phenomenon, specific antibodies were used to examine the role of beta-amyloid overload in the activation of the stress activated kinase/c-jun N-terminal kinase (SAPK/JNK) and tau protein phosphorylation in the cerebellar cortex of 12-month-old Ts65Dn mice. We found small extracellular deposits of beta-amyloid at the borderline between the granule cell layer and the white matter, i.e., in the vicinity of the area where calbindin immunostaining of Purkinje cell axons revealed clusters of newly formed terminals of injured axons. Moreover, intracellular deposits were present in the somata of Purkinje cells. The level of activation of SAPK/JNK was greatly increased. The activation occurred in the "pinceaux" made by basket interneuron axons at the axon hillock of Purkinje cells. Antibody directed against tau protein phosphorylated at Ser-396/Ser-404 revealed positive NG2 cells and Bergman fibers in the molecular layer and oligodendrocytes in the white matter. Data indicate that beta-amyloid extracellular deposits could have exerted a local cytotoxic effect, leading to Purkinje cell axon degeneration. The activation of SAPK/JNK in basket cell "pinceaux" may be a consequence of altered functionality of Purkinje cells and may represent

  7. Role of glycine-33 and methionine-35 in Alzheimer's amyloid beta-peptide 1-42-associated oxidative stress and neurotoxicity.

    Science.gov (United States)

    Kanski, Jaroslaw; Varadarajan, Sridhar; Aksenova, Marina; Butterfield, D Allan

    2002-03-16

    Recent theoretical calculations predicted that Gly33 of one molecule of amyloid beta-peptide (1-42) (Abeta(1-42)) is attacked by a putative sulfur-based free radical of methionine residue 35 of an adjacent peptide. This would lead to a carbon-centered free radical on Gly33 that would immediately bind oxygen to form a peroxyl free radical. Such peroxyl free radicals could contribute to the reported Abeta(1-42)-induced lipid peroxidation, protein oxidation, and neurotoxicity, all of which are prevented by the chain-breaking antioxidant vitamin E. In the theoretical calculations, it was shown that no other amino acid, only Gly, could undergo such a reaction. To test this prediction we studied the effects of substitution of Gly33 of Abeta(1-42) on protein oxidation and neurotoxicity of hippocampal neurons and free radical formation in synaptosomes and in solution. Gly33 of Abeta(1-42) was substituted by Val (Abeta(1-42G33V)). The substituted peptide showed almost no neuronal toxicity compared to the native Abeta(1-42) as well as significantly lowered levels of oxidized proteins. In addition, synaptosomes subjected to Abeta(1-42G33V) showed considerably lower dichlorofluorescein-dependent fluorescence - a measure of reactive oxygen species (ROS) - in comparison to native Abeta(1-42) treatment. The ability of the peptides to generate ROS was also evaluated by electron paramagnetic resonance (EPR) spin trapping methods using the ultrapure spin trap N-tert-butyl-alpha-phenylnitrone (PBN). While Abeta(1-42) gave a strong mixture of four- and six-line PBN-derived spectra, the intensity of the EPR signal generated by Abeta(1-42G33V) was far less. Finally, the ability of the peptides to form fibrils was evaluated by electron microscopy. Abeta(1-42G33V) does not form fibrils nearly as well as Abeta(1-42) after 48 h of incubation. The results suggest that Gly33 may be a possible site of free radical propagation processes that are initiated on Met35 of Abeta(1-42) and that

  8. Ashwagandha (Withania somnifera reverses β-amyloid1-42 induced toxicity in human neuronal cells: implications in HIV-associated neurocognitive disorders (HAND.

    Directory of Open Access Journals (Sweden)

    Kesava Rao Venkata Kurapati

    Full Text Available Alzheimer's disease (AD is characterized by progressive dysfunction of memory and higher cognitive functions with abnormal accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles throughout cortical and limbic brain regions. At present no curative treatment is available, and research focuses on drugs for slowing disease progression or providing prophylaxis. Withania somnifera (WS also known as 'ashwagandha' is used widely in Ayurvedic medicine as a nerve tonic and memory enhancer. However, there is a paucity of data on the potential neuroprotective effects of W.somnifera against β-Amyloid (1-42-induced neuropathogenesis. In the present study, we have tested the neuroprotective effects of methanol:Chloroform (3:1 extract of ashwagandha against β-amyloid induced toxicity and HIV-1Ba-L (clade B infection using a human neuronal SK-N-MC cell line. Our results showed that β-amyloid induced cytotoxic effects in SK-N-MC cells as shown by decreased cell growth when tested individually. Also, confocal microscopic analysis showed decreased spine density, loss of spines and decreased dendrite diameter, total dendrite and spine area in clade B infected SK-N-MC cells compared to uninfected cells. However, when ashwagandha was added to β-amyloid treated and HIV-1 infected samples, the toxic effects were neutralized. Further, the MTT cell viability assays and the peroxisome proliferator-activated receptor-γ (PPARγ levels supported these observations indicating the neuroprotective effect of WS root extract against β-amyloid and HIV-1Ba-L (clade B induced neuro-pathogenesis.

  9. Association thermodynamics and conformational stability of beta-sheet amyloid beta(17-42) oligomers: effects of E22Q (Dutch) mutation and charge neutralization.

    Science.gov (United States)

    Blinov, Nikolay; Dorosh, Lyudmyla; Wishart, David; Kovalenko, Andriy

    2010-01-20

    Amyloid fibrils are associated with many neurodegenerative diseases. It was found that amyloidogenic oligomers, not mature fibrils, are neurotoxic agents related to these diseases. Molecular mechanisms of infectivity, pathways of aggregation, and molecular structure of these oligomers remain elusive. Here, we use all-atom molecular dynamics, molecular mechanics combined with solvation analysis by statistical-mechanical, three-dimensional molecular theory of solvation (also known as 3D-RISM-KH) in a new MM-3D-RISM-KH method to study conformational stability, and association thermodynamics of small wild-type Abeta(17-42) oligomers with different protonation states of Glu(22), as well the E22Q (Dutch) mutants. The association free energy of small beta-sheet oligomers shows near-linear trend with the dimers being thermodynamically more stable relative to the larger constructs. The linear (within statistical uncertainty) dependence of the association free energy on complex size is a consequence of the unilateral stacking of monomers in the beta-sheet oligomers. The charge reduction of the wild-type Abeta(17-42) oligomers upon protonation of the solvent-exposed Glu(22) at acidic conditions results in lowering the association free energy compared to the wild-type oligomers at neutral pH and the E22Q mutants. The neutralization of the peptides because of the E22Q mutation only marginally affects the association free energy, with the reduction of the direct electrostatic interactions mostly compensated by the unfavorable electrostatic solvation effects. For the wild-type oligomers at acidic conditions such compensation is not complete, and the electrostatic interactions, along with the gas-phase nonpolar energetic and the overall entropic effects, contribute to the lowering of the association free energy. The differences in the association thermodynamics between the wild-type Abeta(17-42) oligomers at neutral pH and the Dutch mutants, on the one hand, and the Abeta(17

  10. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    Science.gov (United States)

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla

    2016-04-01

    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD.

  11. Altered emotionality leads to increased pain tolerance in amyloid beta (Abeta1-40) peptide-treated mice.

    Science.gov (United States)

    Pamplona, Fabrício A; Pandolfo, Pablo; Duarte, Filipe S; Takahashi, Reinaldo N; Prediger, Rui D S

    2010-09-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the decline in cognitive functions, but it is also related to emotional disturbances. Since pain experience results from a complex integration of sensory, cognitive and affective processes, it is not surprising that AD patients display a distinct pattern of pain responsivity. We evaluated whether mice treated with amyloid beta (Abeta) peptide-thought to be critical in the pathogenesis of AD-exhibit altered pain responses and its relation to altered emotionality. Mice received a single i.c.v. injection of vehicle (PBS) or Abeta fragment (1-40) (400pmol/mice) and after 30 days, they were evaluated in tests of pain (hotplate, footshock-sensitivity), learning/memory (water-maze), emotionality (elevated plus-maze, forced swim) and locomotion (open-field). Abeta(1-40)-treated mice presented similar latencies to the control group in the hotplate test and similar nociceptive flinch threshold in the footshock-sensitivity test. However, they presented an increased jump threshold in footshock-sensitivity, suggesting increased pain tolerance. Altered emotionality was observed in the elevated plus-maze (EPM) and forced-swim tests (FST), suggesting anxiogenic-like and depressive-like states, respectively. A multifactorial principal component analysis (PCA) revealed that jump threshold of the footshock-sensitivity test falls within 'Emotionality' and 'Pain', showing moderate correlation with each one of the components of behavior. Acute treatment with the antidepressant desipramine (10mg/kg, i.p.) reduced the jump threshold (i.e. pain tolerance) and time of immobility in FST (i.e. depressive-like state). Flinch threshold (i.e. pain sensitivity), locomotion and anxiety were not altered with desipramine treatment. These results suggest that Abeta(1-40) peptide increases pain tolerance, but not pain sensitivity in mice, which seems to be linked to alterations in cognitive/emotional components of pain

  12. Inhibitory effects of Eleutherococcus senticosus extracts on amyloid beta(25-35)-induced neuritic atrophy and synaptic loss.

    Science.gov (United States)

    Tohda, Chihiro; Ichimura, Mahoko; Bai, Yanjing; Tanaka, Ken; Zhu, Shu; Komatsu, Katsuko

    2008-07-01

    Neurons with atrophic neurites may remain alive and therefore may have the potential to regenerate even when neuronal death has occurred in some parts of the brain. This study aimed to explore effects of drugs that can facilitate the regeneration of neurites and the reconstruction of synapses even in severely damaged neurons. We investigated the effects of Eleutherococcus senticosus extracts on the regeneration of neurites and the reconstruction of synapses in rat cultured cortical neurons damaged by amyloid beta (Abeta)(25-35). Treatment with Abeta(25-35) (10 microM) induced axonal and dendritic atrophies and synaptic loss in cortical neurons. Subsequent treatment with the methanol extract and the water extract of E. senticosus (10 - 1000 ng/ml) resulted in significant axonal and dendritic regenerations and reconstruction of neuronal synapses. Co-application of the extract and Abeta(25-35) attenuated Abeta(25-35)-induced neuronal death. We investigated neurite outgrowth activities of eleutherosides B and E and isoflaxidin, which are known as major compounds in E. senticosus. Although eleutheroside B protected against Abeta(25-35)-induced dendritic and axonal atrophies, the activities of eleutheroside E and isofraxidin were less than that of eleutheroside B. Although the contents of these three compounds in the water extract were less than in the methanol extract, restoring activities against neuronal damages were not different between the two extracts. In conclusion, extracts of E. senticosus protect against neuritic atrophy and cell death under Abeta treatment, and one of active constituents may be eleutheroside B.

  13. Neuroprotective Effect of Fisetin Against Amyloid-Beta-Induced Cognitive/Synaptic Dysfunction, Neuroinflammation, and Neurodegeneration in Adult Mice.

    Science.gov (United States)

    Ahmad, Ashfaq; Ali, Tahir; Park, Hyun Young; Badshah, Haroon; Rehman, Shafiq Ur; Kim, Myeong Ok

    2017-04-01

    Alzheimer's disease (AD) is a devastating and progressive neurodegenerative disease and is characterized pathologically by the accumulation of amyloid beta (Aβ) and the hyperphosphorylation of tau proteins in the brain. The deposition of Aβ aggregates triggers synaptic dysfunction, hyperphosphorylation of tau, and neurodegeneration, which lead to cognitive disorders. Here, we investigated the neuroprotective effect of fisetin in the Aβ1-42 mouse model of AD. Single intracerebroventricular injections of Aβ1-42 (3 μl/5 min/mouse) markedly induced memory/synaptic deficits, neuroinflammation, and neurodegeneration. Intraperitoneal injections of fisetin at a dose of 20 mg/kg/day for 2 weeks starting 24 h after Aβ1-42 injection significantly decreased the Aβ1-42-induced accumulation of Aβ, BACE-1 expression, and hyperphosphorylation of tau protein at serine 413. Fisetin treatment also markedly reversed Aβ1-42-induced synaptic dysfunction by increasing the levels of both presynaptic (SYN and SNAP-25) and postsynaptic proteins (PSD-95, SNAP-23, p-GluR1 (Ser 845), p-CREB (Ser 133) and p-CAMKII (Thr 286) and ultimately improved mouse memory, as observed in the Morris water maze test. Fisetin significantly activated p-PI3K, p-Akt (Ser 473), and p-GSK3β (Ser 9) expression in Aβ1-42-treated mice. Moreover, fisetin prevented neuroinflammation by suppressing various activated neuroinflammatory mediators and gliosis; it also suppressed the apoptotic neurodegeneration triggered by Aβ1-42 injections in the mouse hippocampus. Fluorojade-B and immunohistochemical staining for caspase-3 revealed that fisetin prevented neurodegeneration in Aβ1-42-treated mice. Our results suggest that fisetin has a potent neuroprotective effect against Aβ1-42-induced neurotoxicity. These results demonstrate that polyphenolic flavonoids such as fisetin could be a beneficial, effective and safe neuroprotective agent for preventing neurological disorders such as AD.

  14. Alzheimer's beta-amyloid peptides can activate the early components of complement classical pathway in a C1q-independent manner.

    Science.gov (United States)

    Bergamaschini, L; Canziani, S; Bottasso, B; Cugno, M; Braidotti, P; Agostoni, A

    1999-03-01

    beta-Amyloid (beta-A) accumulates in the brain of patients with Alzheimer's disease (AD) and is presumably involved in the pathogenesis of this disease, on account of its neurotoxicity and complement-activating ability. Although assembly of beta-A in particular aggregates seems to be crucial, soluble non-fibrillar beta-A may also be involved. Non-fibrillar beta-A does not bind C1q, so we investigated alternative mechanisms of beta-A-dependent complement activation in vitro. On incubation with normal human plasma, non-fibrillar beta-A 1-42, and truncated peptide 1-28, induced dose-dependent activation of C1s and C4, sparing C3, as assessed by densitometric analysis of immunostained membrane after SDS-PAGE and Western blotting. The mechanism of C4 activation was not dependent on C1q, because non-fibrillar beta-A can still activate C1s and C4 in plasma genetically deficient in C1q (C1qd). In Factor XII-deficient plasma (F.XIId) the amount of cleaved C4 was about 5-10% less that in C1qd and in normal EDTA plasma; the reconstitution of F.XIId plasma with physiologic concentrations of F.XII resulted in an increased (8-15%) beta-A-dependent cleavage of C4. Thus our results indicate that the C1q-independent activation of C1 and C4 can be partially mediated by the activation products of contact system. Since the activation of contact system and of C4 leads to generation of several humoral inflammatory peptides, non-fibrillar beta-A might play a role in initiating the early inflammatory reactions leading to a multistep cascade contributing to neuronal and clinical dysfunction of AD brain.

  15. Aluminum, copper, iron and zinc differentially alter amyloid-Aβ(1-42) aggregation and toxicity.

    Science.gov (United States)

    Bolognin, Silvia; Messori, Luigi; Drago, Denise; Gabbiani, Chiara; Cendron, Laura; Zatta, Paolo

    2011-06-01

    Amyloid-β(1-42) (Aβ) is believed to play a crucial role in the ethiopathogenesis of Alzheimer's Disease (AD). In particular, its interactions with biologically relevant metal ions may lead to the formation of highly neurotoxic complexes. Here we describe the species that are formed upon reacting Aβ with several biometals, namely copper, zinc, iron, and with non-physiological aluminum to assess whether different metal ions are able to differently drive Aβ aggregation. The nature of the resulting Aβ-metal complexes and of the respective aggregates was ascertained through a number of biophysical techniques, including electrospray ionization mass spectrometry, dynamic light scattering, fluorescence, transmission electron microscopy and by the use of conformation-sensitive antibodies (OC, αAPF). Metal binding to Aβ is shown to confer highly different chemical properties to the resulting complexes; accordingly, their overall aggregation behaviour was deeply modified. Both aluminum(III) and iron(III) ions were found to induce peculiar aggregation properties, ultimately leading to the formation of annular protofibrils and of fibrillar oligomers. Notably, only Aβ-aluminum was characterized by the presence of a relevant percentage of aggregates with a mean radius slightly smaller than 30 nm. In contrast, both zinc(II) and copper(II) ions completely prevented the formation of soluble fibrillary aggregates. The biological effects of the various Aβ-metal complexes were studied in neuroblastoma cell cultures: Aβ-aluminum turned out to be the only species capable of triggering amyloid precursor and tau181 protein overproduction. Our results point out that Al can effectively interact with Aβ, forming "structured" aggregates with peculiar biophysical properties which are associated with a high neurotoxicity.

  16. Dissecting the structural determinants for the difference in mechanical stability of silk and amyloid beta-sheet stacks.

    Science.gov (United States)

    Xiao, Senbo; Xiao, Shijun; Gräter, Frauke

    2013-06-14

    Stacking of β-sheets results in a protein super secondary structure with remarkable mechanical properties. β-Stacks are the determinants of a silk fiber's resilience and are also the building blocks of amyloid fibrils. While both silk and amyloid-type crystals are known to feature a high resistance against rupture, their structural and mechanical similarities and particularities are yet to be fully understood. Here, we systematically compare the rupture force and stiffness of amyloid and spider silk poly-alanine β-stacks of comparable sizes using Molecular Dynamics simulations. We identify the direction of force application as the primary determinant of the rupture strength; β-sheets in silk are orientated along the fiber axis, i.e. the pulling direction, and consequently require high forces in the several nanoNewton range for shearing β-strands apart, while β-sheets in amyloid are oriented vertically to the fiber, allowing a zipper-like rupture at sub-nanoNewton forces. A secondary factor rendering amyloid β-stacks softer and weaker than their spider silk counterparts is the sub-optimal side-chain packing between β-sheets due to the sequence variations of amyloid-forming proteins as opposed to the perfectly packed poly-alanine β-sheets of silk. Taken together, amyloid fibers can reach the stiffness of silk fibers in spite of their softer and weaker β-sheet arrangement as they are missing a softening amorphous matrix.

  17. Gengnianchun recipe inhibits apoptosis of pheochromocytoma cells from beta-amyloid 25-35 insult, better than monotherapies and their compounds

    Institute of Scientific and Technical Information of China (English)

    Jun Li; Wenjun Wang; Dajin Li; Wenjiang Zhou

    2011-01-01

    This study aims to determine and compare the protective effects of Gengnianchun recipe drug serum and compounds of its representative drug monotherapies against sympathetic nerve pheochromocytoma cell line PC12 cells damaged by beta-amyloid 25-35 at the cellular apoptosis and related signal pathway levels. PC12 cells cultured with medicated rat serum showed enhanced cell viability and reduced cellular apoptosis rates compared with those of monotherapies and their compounds. Furthermore, Gengnianchun recipe up-regulated expressions of anti-apoptotic protein Bcl-2, estrogen receptor-beta and phosphorylated extracellular-signal-regulated kinase 1/2; and down-regulated expressions of pro-apoptotic proteins Bax and caspase-3. Gengnianchun recipe was superior to representative drug monotherapies, such as paeoniflorin, berberine, timosaponin A-III, icariine and their compounds in protecting PC12 cells. Mitogen-activated protein kinase blocker and estrogen receptor antagonist were found to reverse the above effects of Gengnianchun recipe. The experimental findings indicate that, Gengnianchun recipe protects PC12 cells from beta-amyloid 25-35 insult; its inhibitory effect on apoptosis may be achieved through the mitogen-activated protein kinase and estrogen receptor pathways.

  18. Amyloid-beta induced CA1 pyramidal cell loss in young adult rats is alleviated by systemic treatment with FGL, a neural cell adhesion molecule-derived mimetic peptide.

    Directory of Open Access Journals (Sweden)

    Nicola J Corbett

    Full Text Available Increased levels of neurotoxic amyloid-beta in the brain are a prominent feature of Alzheimer's disease. FG-Loop (FGL, a neural cell adhesion molecule-derived peptide that corresponds to its second fibronectin type III module, has been shown to provide neuroprotection against a range of cellular insults. In the present study impairments in social recognition memory were seen 24 days after a 5 mg/15 µl amyloid-beta(25-35 injection into the right lateral ventricle of the young adult rat brain. This impairment was prevented if the animal was given a systemic treatment of FGL. Unbiased stereology was used to investigate the ability of FGL to alleviate the deleterious effects on CA1 pyramidal cells of the amyloid-beta(25-35 injection. NeuN, a neuronal marker (for nuclear staining was used to identify pyramidal cells, and immunocytochemistry was also used to identify inactive glycogen synthase kinase 3beta (GSK3β and to determine the effects of amyloid-beta(25-35 and FGL on the activation state of GSK3β, since active GSK3β has been shown to cause a range of AD pathologies. The cognitive deficits were not due to hippocampal atrophy as volume estimations of the entire hippocampus and its regions showed no significant loss, but amyloid-beta caused a 40% loss of pyramidal cells in the dorsal CA1 which was alleviated partially by FGL. However, FGL treatment without amyloid-beta was also found to cause a 40% decrease in CA1 pyramidal cells. The action of FGL may be due to inactivation of GSK3β, as an increased proportion of CA1 pyramidal neurons contained inactive GSK3β after FGL treatment. These data suggest that FGL, although potentially disruptive in non-pathological conditions, can be neuroprotective in disease-like conditions.

  19. Toxicity of 17 {beta}-estradiol and dibutyl-n-phthalate to Japanese medaka (Oryzias latipes)

    Energy Technology Data Exchange (ETDEWEB)

    Patvna, P.J.; Cooper, K.R. [Rutgers-The State Univ., Piscataway, NJ (United States)]|[Univ. of Medicine and Dentistry of New Jersey, Piscataway, NJ (United States)

    1995-12-31

    Phthalate esters are ubiquitous environmental contaminants that are hypothesized to cause developmental toxicity in aquatic organisms via an estrogenic mechanism. Japanese medaka embryos and larvae provide an excellent model for the study of toxicant effects on embryonic development. The following groups were examined (N = 10--20): a non-treatment control, a vehicle control, 17 {beta}-estradiol and Dibutyl-n-phthalate, in individual glass vials. The medaka embryos were treated beginning at the blastula stage, for ten days. At day 10, embryos were changed into fresh rearing solution. The embryos were observed daily, until three days post-hatching, for toxic developmental effects. Exposure to 17 {beta}-estradiol caused urinary bladder lesions at the lowest doses tested. At concentrations {le} 3 {micro}M/0.82 ppm, 17 {beta}-estradiol caused inhibition of swim bladder inflation, pericardial edema, and marked cachexia. Dibutyl-n-phthalate caused pronounced enlargement of the urinary bladder. No other gross lesions were observed. Both 17 {beta}-estradiol and Dibutyl-n-phthalate caused effects on the urinary tract which will be characterized at the light microscopic level. The lesions observed in the embryo medaka following Dibutyl-n-phthalate exposure were at or below water solubility and are in agreement with previously reported toxic levels.

  20. Data supporting beta-amyloid dimer structural transitions and protein–lipid interactions on asymmetric lipid bilayer surfaces using MD simulations on experimentally derived NMR protein structures

    Directory of Open Access Journals (Sweden)

    Sara Y. Cheng

    2016-06-01

    Full Text Available This data article supports the research article entitled “Maximally Asymmetric Transbilayer Distribution of Anionic Lipids Alters the Structure and interaction with Lipids of an Amyloidogenic Protein Dimer Bound to the Membrane Surface” [1]. We describe supporting data on the binding kinetics, time evolution of secondary structure, and residue-contact maps of a surface-absorbed beta-amyloid dimer protein on different membrane surfaces. We further demonstrate the sorting of annular and non-annular regions of the protein/lipid bilayer simulation systems, and the correlation of lipid-number mismatch and surface area per lipid mismatch of asymmetric lipid membranes.

  1. A Novel Genetic Screen Identifies Modifiers of Age-Dependent Amyloid β Toxicity in the Drosophila Brain

    Science.gov (United States)

    Belfiori-Carrasco, Lautaro F.; Marcora, María S.; Bocai, Nadia I.; Ceriani, M. Fernanda; Morelli, Laura; Castaño, Eduardo M.

    2017-01-01

    The accumulation of amyloid β peptide (Aβ) in the brain of Alzheimer’s disease (AD) patients begins many years before clinical onset. Such process has been proposed to be pathogenic through the toxicity of Aβ soluble oligomers leading to synaptic dysfunction, phospho-tau aggregation and neuronal loss. Yet, a massive accumulation of Aβ can be found in approximately 30% of aged individuals with preserved cognitive function. Therefore, within the frame of the “amyloid hypothesis”, compensatory mechanisms and/or additional neurotoxic or protective factors need to be considered and investigated. Here we describe a modifier genetic screen in Drosophila designed to identify genes that modulate toxicity of Aβ42 in the CNS. The expression of Aβ42 led to its accumulation in the brain and a moderate impairment of negative geotaxis at 18 days post-eclosion (d.p.e) as compared with genetic or parental controls. These flies were mated with a collection of lines carrying chromosomal deletions and negative geotaxis was assessed at 5 and 18 d.p.e. Our screen is the first to take into account all of the following features, relevant to sporadic AD: (1) pan-neuronal expression of wild-type Aβ42; (2) a quantifiable complex behavior; (3) Aβ neurotoxicity associated with progressive accumulation of the peptide; and (4) improvement or worsening of climbing ability only evident in aged animals. One hundred and ninety-nine deficiency (Df) lines accounting for ~6300 genes were analyzed. Six lines, including the deletion of 52 Drosophila genes with human orthologs, significantly modified Aβ42 neurotoxicity in 18-day-old flies. So far, we have validated CG11796 and identified CG17249 as a strong candidate (whose human orthologs are HPD and PRCC, respectively) by using RNAi or mutant hemizygous lines. PRCC encodes proline-rich protein PRCC (ppPRCC) of unknown function associated with papillary renal cell carcinoma. HPD encodes 4-hydroxyphenylpyruvate dioxygenase (HPPD), a key

  2. Effects of long-term estrogen replacement therapy on beta-amyloid precursor protein and mRNA expression in ovariectomized rat hippocampus

    Institute of Scientific and Technical Information of China (English)

    Bo Jiang; Eryuan Liao; Liming Tan; Ruchun Dai; Zhijie Xiao

    2009-01-01

    BACKGROUND: In vitro cultures of neural stem cells have shown that estrogen can regulate beta-amyloid precursor protein (β-APP) metabolism and reduce amyloid-beta production.OBJECTIVE: To investigate the effects of long-term oral administration of compound nylestriol or low-dose 17beta-estradiol on β-APP and mRNA expression in the hippocampus of ovariectomized (OVX) rats. DESIGN, TIME AND SETTING: This randomized and controlled experiment was performed at the Animal Laboratory and Laboratory of Endocrine and Metabolic Disease, Xiangya Second Hospital of Central South University between April 2003 and May 2004.MATERIALS: According to body mass, 50 six-month-old female Sprague-Dawley rats were randomly divided into five groups (n = 10 per group): normal control, sham operation, OVX model, 17beta-estradiol (Sigma, USA), and compound nylestriol tablet (Laboratory of Endocrine and Metabolic Disease, Xiangya Second Hospital of Central South University) groups.METHODS: Rats in OVX plus 17beta-estradiol and OVX plus compound nylestriol tablet groups underwent ovariectomy. On the second day after surgery, rats were intragastrically given 17beta-estradiol (100 μg/kg), once per day or compound nylestriol tablet (0.5 mg/kg) and levonorgestrel (0.15 mg/kg) every 2 days.MAIN OUTCOME MEASURES: β-APP expression in the hippocampus of OVX rats was determined using immunohistochemistry (SABC method) and β-APP mRNA expression was analyzed by in situ hybridization. The results were quantitatively analyzed using cell counting and average optical density. RESULTS: The number and optical density of β-APP-positive neurons in every subregion of the hippocampus of OVX rats was dramatically increased compared with normal and sham operation groups following 35 weeks of administration (P < 0.05). Levels of β-APP were decreased following oral administration of compound nylestriol or 17beta-estradiol. In situ hybridization showed that long-term estrogen deficiency and oral administration

  3. Local atomic structure and oxidation processes of Cu(I) binding site in amyloid beta peptide: XAS Study

    Science.gov (United States)

    Kremennaya, M. A.; Soldatov, M. A.; Streltsov, V. A.; Soldatov, A. V.

    2016-05-01

    There are two different motifs of X-ray absorption spectra for Cu(I) K-edge in amyloid-β peptide which could be due to two different configurations of local Cu(I) environment. Two or three histidine ligands can coordinate copper ion in varying conformations. On the other hand, oxidation of amyloid-β peptide could play an additional role in local copper environment. In order to explore the peculiarities of local atomic and electronic structure of Cu(I) binding sites in amyloid-β peptide the x-ray absorption spectra were simulated for various Cu(I) environments including oxidized amyloid-β and compared with experimental data.

  4. Independent contribution of temporal beta-amyloid deposition to memory decline in the pre-dementia phase of Alzheimer's disease.

    Science.gov (United States)

    Chételat, Gaël; Villemagne, Victor L; Pike, Kerryn E; Ellis, Kathryn A; Bourgeat, Pierrick; Jones, Gareth; O'Keefe, Graeme J; Salvado, Olivier; Szoeke, Cassandra; Martins, Ralph N; Ames, David; Masters, Colin L; Rowe, Christopher C

    2011-03-01

    The relationship between β-amyloid deposition and memory deficits in early Alzheimer's disease is unresolved, as past studies show conflicting findings. The present study aims to determine the relative contribution of regional β-amyloid deposition, hippocampal atrophy and white matter integrity to episodic memory deficits in non-demented older individuals harbouring one of the characteristic hallmarks of Alzheimer's disease, i.e. with β-amyloid pathology. Understanding these relationships is critical for effective therapeutic development. Brain magnetic resonance imaging and [(11)C]Pittsburgh Compound B-positron emission tomography scans were obtained in 136 non-demented individuals aged over 60 years, including 93 healthy elderly and 43 patients with mild cognitive impairment. Voxel-based correlations were computed between a memory composite score and grey matter volume, white matter volume and β-amyloid deposition imaging datasets. Hierarchical linear regression analyses were then performed using values extracted in regions of most significant correlations to determine the relative contribution of each modality to memory deficits. All analyses were conducted pooling all groups together as well as within separate subgroups of cognitively normal elderly, patients with mild cognitive impairment and individuals with high versus low neocortical β-amyloid. Brain areas of highest correlation with episodic memory deficits were the hippocampi for grey matter volume, the perforant path for white matter volume and the temporal neocortex for β-amyloid deposition. When considering these three variables together, only hippocampal volume and temporal β-amyloid deposition provided independent contributions to memory deficits. In contrast to global β-amyloid deposition, temporal β-amyloid deposition was still related to memory independently from hippocampal atrophy within subgroups of cognitively normal elderly, patients with mild cognitive impairment or cases with high

  5. Scorpion Venom Heat-Resistant Peptide Protects Transgenic Caenorhabditis elegans from β- Amyloid Toxicity

    Directory of Open Access Journals (Sweden)

    Xiao-Gang Zhang

    2016-07-01

    Full Text Available Scorpion venom heat-resistant peptide (SVHRP is a component purified from Buthus martensii Karsch scorpion venom. Our previous studies found SVHRP could enhance neurogenesis and inhibit microglia-mediated neuroinflammation in vivo. Here, we use the transgenic CL4176, CL2006 and CL2355 strains of Caenorhabditis elegans which express the human Aβ1–42 to investigate the effects and the possible mechanisms of SVHRP mediated protection against Aβ toxicity in vivo. The results showed that SVHRP-fed worms displayed remarkably decreased paralysis, less abundant toxic Aβ oligomers, reduced Aβ plaque deposition with respect to untreated animals. SVHRP also suppressed neuronal Aβ expression-induced defects in chemotaxis behavior and attenuated levels of ROS in the transgenic C. elegans. Taken together, these results suggest SVHRP could protect against Aβ-induced toxicity in C. elegans. Further studies need to be conducted in murine models and humans to analyze the effectiveness of the peptide.

  6. Scorpion Venom Heat-Resistant Peptide Protects Transgenic Caenorhabditis elegans from β-Amyloid Toxicity

    Science.gov (United States)

    Zhang, Xiao-Gang; Wang, Xi; Zhou, Ting-Ting; Wu, Xue-Fei; Peng, Yan; Zhang, Wan-Qin; Li, Shao; Zhao, Jie

    2016-01-01

    Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Our previous studies found SVHRP could enhance neurogenesis and inhibit microglia-mediated neuroinflammation in vivo. Here, we use the transgenic CL4176, CL2006, and CL2355 strains of Caenorhabditis elegans which express the human Aβ1-42 to investigate the effects and the possible mechanisms of SVHRP mediated protection against Aβ toxicity in vivo. The results showed that SVHRP-fed worms displayed remarkably decreased paralysis, less abundant toxic Aβ oligomers, reduced Aβ plaque deposition with respect to untreated animals. SVHRP also suppressed neuronal Aβ expression-induced defects in chemotaxis behavior and attenuated levels of ROS in the transgenic C. elegans. Taken together, these results suggest SVHRP could protect against Aβ-induced toxicity in C. elegans. Further studies need to be conducted in murine models and humans to analyze the effectiveness of the peptide. PMID:27507947

  7. The effect of zinc on amyloid β-protein assembly and toxicity: A mechanistic investigation

    Science.gov (United States)

    Solomonov, Inna; Sagi, Irit

    2014-10-01

    Neurotoxic assemblies of amyloid β-protein (Aβ) are widely believed to be the cause for Alzheimer's disease (AD). Therefore, understanding the factors and mechanisms that control, modulate, and inhibit formation of these assemblies is crucial for the development of therapeutic intervention of AD. This information also can contribute significantly to our understanding of the mechanisms of other amyloidosis diseases, such as Parkinson's disease, Huntington's disease, type 2 diabetes, amyotrophic lateral sclerosis (Lou Gehrig's disease) and prion diseases (e.g. Mad Cow disease). We have developed a multidisciplinary experimental strategy to study structural and dynamic mechanistic aspects that underlie the Aβ assembly process. Utilizing this strategy, we explored the molecular basis leading to the perturbation of the Aβ assembly process by divalent metal ions, mainly Zn2+ ions. Using Zn2+ as reaction physiological relevant probes, it was demonstrated that Zn2+ rapidly (milliseconds) induce self-assembly of Aβ aggregates and stabilize them in a manner that prevents formation of Aβ fibrils. Importantly, the early-formed intermediates are substantially more neurotoxic than fibrils. Our results suggest that relevant Aβ modulators should be targeted against the rapidly evolved intermediate states of Aβ assembly. The design of such modulators is challenging, as they have to compete with different natural mediators (such as Zn2+) of Aβ aggregation, which diverse Aβ assemblies in both specific and nonspecific manners.

  8. Aluminum modulates effects of beta amyloid(1-42) on neuronal calcium homeostasis and mitochondria functioning and is altered in a triple transgenic mouse model of Alzheimer's disease.

    Science.gov (United States)

    Drago, Denise; Cavaliere, Alessandra; Mascetra, Nicola; Ciavardelli, Domenico; di Ilio, Carmine; Zatta, Paolo; Sensi, Stefano L

    2008-10-01

    Recent findings suggest that beta-amyloid (A beta) is more neurotoxic when present in its oligomeric configuration rather than as monomers or fibrils. Previous work from our laboratories has shown that A beta aggregation is strongly influenced by the conjugation of the peptide with metal ions (aluminum A, copper [Cu], zinc [Zn], and iron [Fe]) that are found in high concentrations in the core of senile plaques. Disruption of Ca++ signaling and mitochondrial dysfunction are potent triggers of neuronal death and have been implicated in the neuronal loss that is associated with Alzheimer's disease (AD). In this study, we explored whether A beta-metal complexes can have detrimental effects on intraneuronal Ca++ ([Ca++]i) homeostasis and mitochondrial function in vitro. Results from our experiments indicate that, when conjugated with Al, A beta perturbs neuronal [Ca++]i homeostasis and inhibits mitochondrial respiration. Finally, we analyzed the content of the four metals in the brain of a triple transgenic animal model of AD and found that Al is the only one to be increased in the cortex of these mice.

  9. Intracellular domains of amyloid precursor-like protein 2 interact with CP2 transcription factor in the nucleus and induce glycogen synthase kinase-3beta expression.

    Science.gov (United States)

    Xu, Y; Kim, H-S; Joo, Y; Choi, Y; Chang, K-A; Park, C H; Shin, K-Y; Kim, S; Cheon, Y-H; Baik, T-K; Kim, J-H; Suh, Y-H

    2007-01-01

    Amyloid precursor protein (APP) is a member of a gene family that includes two APP-like proteins, APLP1 and 2. Recently, it has been reported that APLP1 and 2 undergo presenilin-dependent gamma-secretase cleavage, as does APP, resulting in the release of an approximately 6 kDa intracellular C-terminal domain (ICD), which can translocate into the nucleus. In this study, we demonstrate that the APLP2-ICDs interact with CP2/LSF/LBP1 (CP2) transcription factor in the nucleus and induce the expression of glycogen synthase kinase 3beta (GSK-3beta), which has broad-ranged substrates such as tau- and beta-catenin. The significance of this finding is substantiated by the in vivo evidence of the increase in the immunoreactivities for the nuclear C-terminal fragments of APLP2, and for GSK-3beta in the AD patients' brain. Taken together, these results suggest that APLP2-ICDs contribute to the AD pathogenesis, by inducing GSK-3beta expression through the interaction with CP2 transcription factor in the nucleus.

  10. GMP-compliant automated synthesis of [{sup 18}F]AV-45 (Florbetapir F 18) for imaging {beta}-amyloid plaques in human brain

    Energy Technology Data Exchange (ETDEWEB)

    Yao, C.-H. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Lin, K.-J. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hua 1st Road, Kweishan, Taoyuan 333, Taiwan (China); Weng, C.-C. [Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hua 1st Road, Kweishan, Taoyuan 333, Taiwan (China); Hsiao, I.-T. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hua 1st Road, Kweishan, Taoyuan 333, Taiwan (China); Ting, Y.-S. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Yen, T.-C. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hua 1st Road, Kweishan, Taoyuan 333, Taiwan (China); Jan, T.-R. [Department and Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei, Taiwan (China); Skovronsky, Daniel [Avid Radiopharmaceuticals, Inc., Philadelphia, PA 19104 (United States); Kung, M.-P. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Wey, S.-P., E-mail: spwey@mail.cgu.edu.t [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hua 1st Road, Kweishan, Taoyuan 333, Taiwan (China)

    2010-12-15

    We report herein the Good Manufacturing Practice (GMP)-compliant automated synthesis of {sup 18}F-labeled styrylpyridine, AV-45 (Florbetapir), a novel tracer for positron emission tomography (PET) imaging of {beta}-amyloid (A{beta}) plaques in the brain of Alzheimer's disease patients. [{sup 18}F]AV-45 was prepared in 105 min using a tosylate precursor with Sumitomo modules for radiosynthesis under GMP-compliant conditions. The overall yield was 25.4{+-}7.7% with a final radiochemical purity of 95.3{+-}2.2% (n=19). The specific activity of [{sup 18}F]AV-45 reached as high as 470{+-}135 TBq/mmol (n=19). The present studies show that [{sup 18}F]AV-45 can be manufactured under GMP-compliant conditions and could be widely available for routine clinical use.

  11. Phosphorylated tau/amyloid beta 1-42 ratio in ventricular cerebrospinal fluid reflects outcome in idiopathic normal pressure hydrocephalus

    Directory of Open Access Journals (Sweden)

    Patel Sunil

    2012-03-01

    Full Text Available Abstract Background Idiopathic normal pressure hydrocephalus (iNPH is a potentially reversible cause of dementia and gait disturbance that is typically treated by operative placement of a ventriculoperitoneal shunt. The outcome from shunting is variable, and some evidence suggests that the presence of comorbid Alzheimer's disease (AD may impact shunt outcome. Evidence also suggests that AD biomarkers in cerebrospinal fluid (CSF may predict the presence of AD. The aim of this study was to investigate the relationship between the phosphorylated tau/amyloid beta 1-42 (ptau/Aβ1-42 ratio in ventricular CSF and shunt outcome in patients with iNPH. Methods We conducted a prospective trial with a cohort of 39 patients with suspected iNPH. Patients were clinically and psychometrically assessed prior to and approximately 4 months after ventriculoperitoneal shunting. Lumbar and ventricular CSF obtained intraoperatively, and tissue from intraoperative cortical biopsies were analyzed for AD biomarkers. Outcome measures included performance on clinical symptom scales, supplementary gait measures, and standard psychometric tests. We investigated relationships between the ptau/Aβ1-42 ratio in ventricular CSF and cortical AD pathology, initial clinical features, shunt outcome, and lumbar CSF ptau/Aβ1-42 ratios in the patients in our cohort. Results We found that high ptau/Aβ1-42 ratios in ventricular CSF correlated with the presence of cortical AD pathology. At baseline, iNPH patients with ratio values most suggestive of AD presented with better gait performance but poorer cognitive performance. Patients with high ptau/Aβ1-42 ratios also showed a less robust response to shunting on both gait and cognitive measures. Finally, in a subset of 18 patients who also underwent lumbar puncture, ventricular CSF ratios were significantly correlated with lumbar CSF ratios. Conclusions Levels of AD biomarkers in CSF correlate with the presence of cortical AD pathology

  12. Protective Effect of Ecdysterone on PC12 Cells Cytotoxicity Induced by Beta-amyloid25-35

    Institute of Scientific and Technical Information of China (English)

    YANG Su-fen; WU Zhong-jun; YANG Zheng-qin; WU Qin; GONG Qi-hai; ZHOU Qi-xin; SHI Jing-shan

    2005-01-01

    Objective: To examine the protective effect of ecdysterone (ECR) against beta-amyloid peptide fragment25-35 (Aβ25-35)-induced PC12 cells cytotoxicity, and to further explore its mechanism. Methods:Experimental PC12 cells were divided into the Aβ group (treated by Aβ25-35 100 μmol/L), the blank group (untreated), the positive control group (treated by Vit E 100 μmol/L after induction) and the ECR treated groups (treated by ECR with different concentrations of 1, 50 and 100 μmol/L). The damaged and survival condition of PC12 cells in various groups was monitored by lactate dehydrogenase (LDH) release and MTT assay. The content of malondialdehyde (MDA) was measured by fluorometric assay to indicate the lipid peroxidation. And the antioxidant enzymes activities in PC12 cells, including superoxide dismutases(SOD), catalase (CAT) and glutathione peroxidase(GSH-Px), were detected respectively. Results: After PC12 cells were treated with Aβ25-35 ( 100 μmol/L) for 24 hrs, they revealed a great decrease in MTT absorbance and activity of antioxidant enzymes, including SOD, CAT and GSH-Px as well as a significant increase of LDH activity and MDA content in PC12 cells (P<0.01). When the cells was pretreated with 1-100 μmol/L ECR for 24 hrs before Aβ25-35 treatment, the above-mentioned cytotoxic effect of Aβ25-35 could be significantly attenuated dose-dependently, for ECR 50 μmol/L, P<0.05 and for ECR 100 μmol/L, P<0.01. Moreover, ECR also showed significant inhibition on the Aβ25-35 induced decrease of SOD and GSH-Px activity, but not on that of CAT. Conclusion: ECR could protect PC12 cells from cytotoxicity of Aβ25-35, and the protective mechanism might be related to the increase of SOD and GSH-Px activities and the decrease of MDA resulting from the ECR-pretreatment.

  13. Amyloid beta dimers/trimers potently induce cofilin-actin rods that are inhibited by maintaining cofilin-phosphorylation

    Directory of Open Access Journals (Sweden)

    Podlisny Marcia

    2011-01-01

    Full Text Available Abstract Background Previously we reported 1 μM synthetic human amyloid beta1-42 oligomers induced cofilin dephosphorylation (activation and formation of cofilin-actin rods within rat hippocampal neurons primarily localized to the dentate gyrus. Results Here we demonstrate that a gel filtration fraction of 7PA2 cell-secreted SDS-stable human Aβ dimers and trimers (Aβd/t induces maximal neuronal rod response at ~250 pM. This is 4,000-fold more active than traditionally prepared human Aβ oligomers, which contain SDS-stable trimers and tetramers, but are devoid of dimers. When incubated under tyrosine oxidizing conditions, synthetic human but not rodent Aβ1-42, the latter lacking tyrosine, acquires a marked increase (620 fold for EC50 in rod-inducing activity. Gel filtration of this preparation yielded two fractions containing SDS-stable dimers, trimers and tetramers. One, eluting at a similar volume to 7PA2 Aβd/t, had maximum activity at ~5 nM, whereas the other, eluting at the void volume (high-n state, lacked rod inducing activity at the same concentration. Fractions from 7PA2 medium containing Aβ monomers are not active, suggesting oxidized SDS-stable Aβ1-42 dimers in a low-n state are the most active rod-inducing species. Aβd/t-induced rods are predominantly localized to the dentate gyrus and mossy fiber tract, reach significance over controls within 2 h of treatment, and are reversible, disappearing by 24 h after Aβd/t washout. Overexpression of cofilin phosphatases increase rod formation when expressed alone and exacerbate rod formation when coupled with Aβd/t, whereas overexpression of a cofilin kinase inhibits Aβd/t-induced rod formation. Conclusions Together these data support a mechanism by which Aβd/t alters the actin cytoskeleton via effects on cofilin in neurons critical to learning and memory.

  14. Cytokine-producing microglia have an altered beta-amyloid load in aged APP/PS1 Tg mice.

    Science.gov (United States)

    Babcock, Alicia A; Ilkjær, Laura; Clausen, Bettina H; Villadsen, Birgitte; Dissing-Olesen, Lasse; Bendixen, Anita T M; Lyck, Lise; Lambertsen, Kate L; Finsen, Bente

    2015-08-01

    Beta-amyloid (Aβ) plaques and chronic neuroinflammation are significant neuropathological features of Alzheimer's disease. Microglial cells in aged brains have potential to produce cytokines such as TNF and IL-1 family members (IL-1α, IL-1β, and IL-1Ra) and to phagocytose Aβ in Alzheimer's disease, however the inter-relationship between these processes is poorly understood. Here we show that % Aβ plaque load followed a sigmoidal trajectory with age in the neocortex of APPswe/PS1ΔE9 Tg mice, and correlated positively with soluble Aβ40 and Aβ42. Aβ measures were moderately correlated with mRNA levels of CD11b, TNF, and IL-1Ra. Cytokine production and Aβ load were assessed in neocortical CD11b(+)(CD45(+)) microglia by flow cytometry. Whereas most microglia in aged mice produced IL-1Ra, relatively low proportions of microglia produced TNF, IL-1α, and IL-1β. However, microglial production of these latter cytokines was generally increased in APP/PS1 Tg mice. Microglia that phagocytosed endogenously-produced Aβ were only observed in APP/PS1 Tg mice. Differences in phagocytic index and total Aβ load were observed in microglia with specific cytokine profiles. Both phagocytic index and total Aβ load were higher in IL-1α(+) and IL-1Ra(+) microglia, than microglia that did not produce these cytokines. In contrast, total Aβ load was lower in IL-1β(+) and TNF(+) microglia, compared to IL-1β(-) and TNF(-) microglia, and TNF(+) microglia also had a lower phagocytic index. Using GFP bone marrow chimeric mice, we confirmed that the majority of neocortical CD11b(+)(CD45(+)) microglia were resident cells (GFP(-)) in APP/PS1 Tg mice, even after selectively analysing CD11b(+)CD45(high) cells, which are typically considered to be infiltrating cells. Together, our data demonstrate that cytokine expression is selectively correlated with age and Aβ pathology, and is associated with an altered Aβ load in phagocytic microglia from APP/PS1 Tg mice. These findings have

  15. Aggregation, impaired degradation and immunization targeting of amyloid-beta dimers in Alzheimer’s disease: a stochastic modelling approach

    Directory of Open Access Journals (Sweden)

    Proctor Carole J

    2012-07-01

    Full Text Available Abstract Background Alzheimer’s disease (AD is the most frequently diagnosed neurodegenerative disorder affecting humans, with advanced age being the most prominent risk factor for developing AD. Despite intense research efforts aimed at elucidating the precise molecular underpinnings of AD, a definitive answer is still lacking. In recent years, consensus has grown that dimerisation of the polypeptide amyloid-beta (Aß, particularly Aß42, plays a crucial role in the neuropathology that characterise AD-affected post-mortem brains, including the large-scale accumulation of fibrils, also referred to as senile plaques. This has led to the realistic hope that targeting Aß42 immunotherapeutically could drastically reduce plaque burden in the ageing brain, thus delaying AD onset or symptom progression. Stochastic modelling is a useful tool for increasing understanding of the processes underlying complex systems-affecting disorders such as AD, providing a rapid and inexpensive strategy for testing putative new therapies. In light of the tool’s utility, we developed computer simulation models to examine Aß42 turnover and its aggregation in detail and to test the effect of immunization against Aß dimers. Results Our model demonstrates for the first time that even a slight decrease in the clearance rate of Aß42 monomers is sufficient to increase the chance of dimers forming, which could act as instigators of protofibril and fibril formation, resulting in increased plaque levels. As the process is slow and levels of Aβ are normally low, stochastic effects are important. Our model predicts that reducing the rate of dimerisation leads to a significant reduction in plaque levels and delays onset of plaque formation. The model was used to test the effect of an antibody mediated immunological response. Our results showed that plaque levels were reduced compared to conditions where antibodies are not present. Conclusion Our model supports the current

  16. The Voltage-dependent Anion Channel 1 Mediates Amyloid β Toxicity and Represents a Potential Target for Alzheimer Disease Therapy.

    Science.gov (United States)

    Smilansky, Angela; Dangoor, Liron; Nakdimon, Itay; Ben-Hail, Danya; Mizrachi, Dario; Shoshan-Barmatz, Varda

    2015-12-25

    The voltage-dependent anion channel 1 (VDAC1), found in the mitochondrial outer membrane, forms the main interface between mitochondrial and cellular metabolisms, mediates the passage of a variety of molecules across the mitochondrial outer membrane, and is central to mitochondria-mediated apoptosis. VDAC1 is overexpressed in post-mortem brains of Alzheimer disease (AD) patients. The development and progress of AD are associated with mitochondrial dysfunction resulting from the cytotoxic effects of accumulated amyloid β (Aβ). In this study we demonstrate the involvement of VDAC1 and a VDAC1 N-terminal peptide (VDAC1-N-Ter) in Aβ cell penetration and cell death induction. Aβ directly interacted with VDAC1 and VDAC1-N-Ter, as monitored by VDAC1 channel conductance, surface plasmon resonance, and microscale thermophoresis. Preincubated Aβ interacted with bilayer-reconstituted VDAC1 and increased its conductance ∼ 2-fold. Incubation of cells with Aβ resulted in mitochondria-mediated apoptotic cell death. However, the presence of non-cell-penetrating VDAC1-N-Ter peptide prevented Aβ cellular entry and Aβ-induced mitochondria-mediated apoptosis. Likewise, silencing VDAC1 expression by specific siRNA prevented Aβ entry into the cytosol as well as Aβ-induced toxicity. Finally, the mode of Aβ-mediated action involves detachment of mitochondria-bound hexokinase, induction of VDAC1 oligomerization, and cytochrome c release, a sequence of events leading to apoptosis. As such, we suggest that Aβ-mediated toxicity involves mitochondrial and plasma membrane VDAC1, leading to mitochondrial dysfunction and apoptosis induction. The VDAC1-N-Ter peptide targeting Aβ cytotoxicity is thus a potential new therapeutic strategy for AD treatment.

  17. Inhalation of coriander volatile oil increased anxiolytic-antidepressant-like behaviors and decreased oxidative status in beta-amyloid (1-42) rat model of Alzheimer's disease.

    Science.gov (United States)

    Cioanca, Oana; Hritcu, Lucian; Mihasan, Marius; Trifan, Adriana; Hancianu, Monica

    2014-05-28

    The present study analyzed the possible anxiolytic, antidepressant and antioxidant proprieties of inhaled coriander volatile oil extracted from Coriandrum sativum var. microcarpum in beta-amyloid (1-42) rat model of Alzheimer's disease. The anxiolytic- and antidepressant-like effects of inhaled coriander volatile oil were studied by means of in vivo (elevated plus-maze and forced swimming tests) approaches. Also, the antioxidant activity in the hippocampus was assessed using catalase specific activity and the total content of the reduced glutathione. The beta-amyloid (1-42)-treated rats exhibited the following: decrease of the locomotor activity, the percentage of the time spent and the number of entries in the open arm within elevated plus-maze test and decrease of swimming and immobility times within forced swimming test. Exposure to coriander volatile oil significantly improved these parameters, suggesting anxiolytic- and antidepressant-like effects. Moreover, coriander volatile oil decreased catalase activity and increased glutathione level in the hippocampus. Our results suggest that multiple exposures to coriander volatile oil can be useful as a mean to counteract anxiety, depression and oxidative stress in Alzheimer's disease conditions.

  18. Protective effects of Lingguizhugan decoction on amyloid-beta peptide (25-35)-induced cell injury Anti-inflammatory effects

    Institute of Scientific and Technical Information of China (English)

    Feifei Xi; Feng Sang; Chunxiang Zhou; Yun Ling

    2012-01-01

    In the present study, a human neuroblastoma cell line (SH-SY5Y) and BV-2 microglia were treated with amyloid-β peptide (25-35), as a model of Alzheimer's disease, to evaluate the protective effects of 10-3-10-8 g/mL Lingguizhugan decoction and to examine the underlying anti-inflammatory mechanism. Lingguizhugan decoction significantly enhanced the viability of SH-SY5Y cells with amyloid-β peptide-induced injury, and lowered levels of interleukin-1β, interleukin-6, tumor necrosis factor-α and nitric oxide in the culture supernatant of activated BV-2 microglia. The effects of 10-3 g/mL Lingguizhugan decoction were more significant. These results suggest that Lingguizhugan decoction can protect SH-SY5Y cells against amyloid-β peptide (25-35)-induced injury in a dose-dependent manner by inhibiting overexpression of inflammatory factors by activated microglia.

  19. The HMG-CoA reductase inhibitor, atorvastatin, attenuates the effects of acute administration of amyloid-beta1-42 in the rat hippocampus in vivo.

    Science.gov (United States)

    Clarke, Rachael M; O'Connell, Florence; Lyons, Anthony; Lynch, Marina A

    2007-01-01

    One response of the brain to stressors is to increase microglial activation with the consequent production of proinflammatory cytokines like interleukin-1beta (IL-1beta), which has been shown to exert an inhibitory effect on long-term potentiation (LTP) in the hippocampus. It has been consistently shown, particularly in vitro, that amyloid-beta (Abeta) peptides increase activation of microglia, while its inhibitory effect on LTP is well documented, and associated with the Abeta-induced increase in IL-1beta. Here we set out to establish whether the Abeta-induced inhibition of LTP in perforant path-granule cell synapses, was coupled with evidence of microglial activation and to assess whether atorvastatin, which is used primarily in the treatment of hyperlipidaemia but which possesses anti-inflammatory properties, might modulate the effect of Abeta on LTP. We report that intracerebroventricular injection of Abeta increased expression of several markers of microglial activation, and in parallel, inhibited LTP in dentate gyrus. The data show that atorvastatin abrogated the Abeta-induced microglial activation and the associated deficit in LTP. On the basis of the evidence presented, we propose that the action of atorvastatin is mediated by its ability to increase production of the anti-inflammatory cytokine, interleukin-4, which we report mimics several of the actions of atorvastatin in the rat hippocampus.

  20. Expression of secreted human single-chain fragment variable antibody against human amyloid beta peptide in Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    Jiong Cai; Fang Li; Shizhen Wang

    2008-01-01

    BACKGROUND: Studies have shown that monoclonal or polyclonal antibody injections ofamyloid β peptide arc effective in removing amyloid β peptide overload in the brain.OBJECTIVE: Based on successful screening of a human single-chain fragment variable antibody specific to amyloid β peptide, this paper aimed to express recombinant human single-chain variable antibody against amyloid β peptide.DESIGN, TIME AND SETTING: A single sample experiment was performed at the Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Hospital (Beijing, China) from January to July 2006.MATERIALS: Human single-chain fragment variable antibody gene against amyloid β peptide was screened from a human phage-display antibody library.METHODS: Human single-chain fragment variable antibody gene was mutated to eliminate a BamHI restriction site and cloned into a Teasy plasmid for pT-seFvAβ construction, which was identified by PCR amplification and endonuclease digestion. Plasmid pT-scFvA β was cut by EcoRl and Notl endonucleases, and the antibody gene was cloned into pPIC9K plasmid to construct pPIC9K-scFvA β expression vector, which was confirmed by gene sequencing. Linearized pPICgK-scFvA β was used to transform a Pichia pastoris GS115 cell line, and the recombinant was induced by 0.5 % methanol to express human single-chain fragment variable antibody specific to amyloid β peptide.MAIN OUTCOME MEASURES: Protein electrophoresis was used to identify PCR products, gene sequencing was uscd to verify the pPIC9K-scFvA sequence, and SDS-PAGE was used to detect recombinant expression of human single-chain fragment variable antibody specific to amyloid β peptide in Pichia pastoris.RESULTS: Gene sequencing confirmed pPICgK-scFvA β orientation. Rccomhinants were obtained by lineadzed pPIC9K-scFvA β transformation. After induction with 0.5% methanol, the recombinant yeast cells secreted proteins of 33-ku size

  1. Neuroprotective effects of human telomerase reverse transcriptase on beta-amyloid fragment 25-35-treated human embryonic cortical neurons

    Institute of Scientific and Technical Information of China (English)

    Lingping Kong; Lingzhi Wu; Jie Zhang; Yaping Liao; Huaqiao Wang

    2009-01-01

    BACKGROUND:Numerous current studies have suggested that human telomerase reverse transcriptase (hTERT) gene has neuroprotective effects and can inhibit apoptosis induced by various cytotoxic stresses;however,the mechanism of action remains unknown.OBJECTIVE:To evaluate the neuroprotective effects and possible mechanism of action of hTERT gene transfection in human embryonic cortical neurons treated with beta-amyloid fragment 25-35 (Aβ25-35).DESIGN,TIME AND SETTING:The randomized,controlled and molecular biological studies were performed at the Department of Anatomy and Brain Research,Zhongshan School of Medicine,Sun Yat-sen University,China,from September 2005 to June 2008.MATERIALS:AdEasy-1 Expression System was gifted by Professor Guoquan Gao from Sun Yat-Sen University,China.Human cortical neurons were derived from 12-20 week old aborted fetuses,obtained from the Guangzhou Maternal and Child Health Hospital,China.Mouse anti-Cdk5 and mouse anti-p16 monoclonal antibodies (Lab Vision,USA),and mouse anti-hTERT monoclonal antibody (Epitomics,USA),were used in this study.METHODS:(1) Recombinant adenovirus vectors,encoding hTERT (Ad-hTERT) and green fluorescent protein (Ad-GFP),were constructed using the AdEasy-1 Expression System.Human embryonic cortical neurons in the Ad-hTERT group were transfected with Ad-hTERT for 1-21 days.Likewise,human embryonic cortical neurons in the Ad-GFP group were transfected with Ad-GFP for 1-21 days.Human embryonic cortical neurons in the control group were cultured as normal.(2) Human embryonic cortical neurons in the Ad-hTERT group were treated with 10 μmol/L Aβ25-35 for 24 hours.Normal human embryonic cortical neurons treated with 10 μmol/L Aβ25-35 for 24 hours served as a model group.Human embryonic cortical neurons in the Ad-GFP and control groups were not treated with Aβ25-35.MAIN OUTCOME MEASURES:Expression of hTERT in human embryonic cortical neurons was evaluated by immunocytochemical staining and Western blot assay

  2. Influence of scan duration on the accuracy of {beta}-amyloid PET with florbetaben in patients with Alzheimer's disease and healthy volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Tiepolt, Solveig; Barthel, Henryk; Butzke, Daniel; Hesse, Swen; Patt, Marianne; Sabri, Osama [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Gertz, Hermann-Josef [University of Leipzig, Department of Psychiatry, Leipzig (Germany); Reininger, Cornelia [Bayer Pharma AG, Global Clinical Development, Berlin (Germany)

    2013-02-15

    Florbetaben is a {beta}-amyloid-targeted PET tracer with significant potential for augmenting the toolbox in the clinical diagnosis of Alzheimer's disease (AD). In dementia imaging, shortening of scan duration may simplify future clinical use. The aim of this retrospective study was to investigate the effect of scan duration on diagnostic accuracy. PET scans obtained from 25 AD patients and 25 healthy volunteers (HVs) were analysed. In each subject, scans of three different durations (5, 10 and 20 min; all starting 90 min after injection) were obtained, randomized, and visually assessed by three experts blinded to the subject's identity and group affiliation. Presence/absence of {beta}-amyloid and diagnostic confidence (0-100 %) were scored, and 10 % of the scans were re-read. Further, randomly selected datasets of ten AD patients and ten HVs were quantified using an established VOI-based approach and using a voxel-based approach. The sensitivity and specificity of the blinded read were 80 % and 96 %, respectively, for all scan durations. Diagnostic confidence was high (97 {+-} 6 %, 97 {+-} 6 % and 95 {+-} 8 % for the 20-min, 10-min and 5-min scans, respectively; n.s.), as was interreader agreement (kappa{sub 20} {sub min} = 0.94, kappa{sub 10} {sub min} = 0.94, kappa{sub 5} {sub min} = 0.89; n.s.). Intrareader agreement was highest for the 20-min scan (kappa = 1.00) and lower for the 10-min scan (kappa = 0.71) and 5-min scan (kappa = 0.80; p = 0.002 and 0.003 vs. the 20-min scan). For all scan durations, composite SUVRs (Cohen's d effect size 4.5, 3.9 and 4.8 for the 5-min, 10-min and 20-min scans; p < 0.0001 each) and individual brain volumes affected by {beta}-amyloid (Cohen's d effect size 1.6, 1.8 and 2.0 for the 5-min, 10-min and 20-min scans; p < 0.005 each) were significantly higher in AD patients than in HVs. Reduction in scan duration did not relevantly affect the accuracy of florbetaben PET scans in discriminating between AD patients

  3. Individualized quantification of brain {beta}-amyloid burden: results of a proof of mechanism phase 0 florbetaben PET trial in patients with Alzheimer's disease and healthy controls

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, Henryk; Luthardt, Julia; Becker, Georg; Patt, Marianne; Sattler, Bernhard; Schildan, Andreas; Hesse, Swen; Meyer, Philipp M.; Sabri, Osama [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Hammerstein, Eva; Hartwig, Kristin; Gertz, Hermann-Josef [University of Leipzig, Department of Psychiatry, Leipzig (Germany); Eggers, Birk [Arzneimittelforschung Leipzig GmbH, Leipzig (Germany); Wolf, Henrike [University of Leipzig, Department of Psychiatry, Leipzig (Germany); University of Zurich, Department of Psychiatry, Zurich (Switzerland); Zimmermann, Torsten; Reischl, Joachim; Rohde, Beate; Reininger, Cornelia [Bayer Healthcare, Berlin (Germany)

    2011-09-15

    Complementing clinical findings with those generated by biomarkers - such as {beta}-amyloid-targeted positron emission tomography (PET) imaging - has been proposed as a means of increasing overall accuracy in the diagnosis of Alzheimer's disease (AD). Florbetaben ([{sup 18}F]BAY 94-9172) is a novel {beta}-amyloid PET tracer currently in global clinical development. We present the results of a proof of mechanism study in which the diagnostic efficacy, pharmacokinetics, safety and tolerability of florbetaben were assessed. The value of various quantitative parameters derived from the PET scans as potential surrogate markers of cognitive decline was also investigated. Ten patients with mild-moderate probable AD (DSM-IV and NINCDS-ADRDA criteria) and ten age-matched ({>=} 55 years) healthy controls (HCs) were administered a single dose of 300 MBq florbetaben, which contained a tracer mass dose of < 5 {mu}g. The 70-90 min post-injection brain PET data were visually analysed by three blinded experts. Quantitative assessment was also performed via MRI-based, anatomical sampling of predefined volumes of interest (VOI) and subsequent calculation of standardized uptake value (SUV) ratios (SUVRs, cerebellar cortex as reference region). Furthermore, single-case, voxelwise analysis was used to calculate individual ''whole brain {beta}-amyloid load''. Visual analysis of the PET data revealed nine of the ten AD, but only one of the ten HC brains to be {beta}-amyloid positive (p = 0.001), with high inter-reader agreement (weighted kappa {>=} 0.88). When compared to HCs, the neocortical SUVRs were significantly higher in the ADs (with descending order of effect size) in frontal cortex, lateral temporal cortex, occipital cortex, anterior and posterior cingulate cortices, and parietal cortex (p = 0.003-0.010). Voxel-based group comparison confirmed these differences. Amongst the PET-derived parameters, the Statistical Parametric Mapping-based whole brain

  4. Formulated Beta-Cyfluthrin Shows Wide Divergence in Toxicity among Bird Species

    Directory of Open Access Journals (Sweden)

    Laura M. Addy-Orduna

    2011-01-01

    Full Text Available It is generally assumed that the toxicity of pyrethroid insecticides to birds is negligible, though few species have been tested. The oral acute toxicity of formulated beta-cyfluthrin was determined for canaries (Serinus sp., shiny cowbirds (Molothrus bonariensis, and eared doves (Zenaida auriculata. Single doses were administered to adults by gavage. Approximate lethal doses 50 (LD50 and their confidence intervals were determined by approximate D-optimal design. Canaries were found to be substantially more sensitive to formulated beta-cyfluthrin (LD50=(170±41 mg/kg than the other two species tested (LD50=(2234±544 mg/kg and LD50=(2271±433 mg/kg, resp.. The LD50 obtained for canaries was also considerably lower than typical toxicity values available in the literature for pyrethroids. This study emphasizes the need for testing a broader range of species with potentially toxic insecticides, using modern up and down test designs with minimal numbers of birds.

  5. Characterization of the beta amyloid precursor protein-like gene in the central nervous system of the crab Chasmagnathus. Expression during memory consolidation

    Directory of Open Access Journals (Sweden)

    Fustiñana Maria

    2010-09-01

    Full Text Available Abstract Background Human β-amyloid, the main component in the neuritic plaques found in patients with Alzheimer's disease, is generated by cleavage of the β-amyloid precursor protein. Beyond the role in pathology, members of this protein family are synaptic proteins and have been associated with synaptogenesis, neuronal plasticity and memory, both in vertebrates and in invertebrates. Consolidation is necessary to convert a short-term labile memory to a long-term and stable form. During consolidation, gene expression and de novo protein synthesis are regulated in order to produce key proteins for the maintenance of plastic changes produced during the acquisition of new information. Results Here we partially cloned and sequenced the beta-amyloid precursor protein like gene homologue in the crab Chasmagnathus (cappl, showing a 37% of identity with the fruit fly Drosophila melanogaster homologue and 23% with Homo sapiens but with much higher degree of sequence similarity in certain regions. We observed a wide distribution of cappl mRNA in the nervous system as well as in muscle and gills. The protein localized in all tissues analyzed with the exception of muscle. Immunofluorescence revealed localization of cAPPL in associative and sensory brain areas. We studied gene and protein expression during long-term memory consolidation using a well characterized memory model: the context-signal associative memory in this crab species. mRNA levels varied at different time points during long-term memory consolidation and correlated with cAPPL protein levels Conclusions cAPPL mRNA and protein is widely distributed in the central nervous system of the crab and the time course of expression suggests a role of cAPPL during long-term memory formation.

  6. Icariside II Effectively Reduces Spatial Learning and Memory Impairments in Alzheimer’s Disease Model Mice Targeting Beta-Amyloid Production

    Science.gov (United States)

    Yan, Lingli; Deng, Yuanyuan; Gao, Jianmei; Liu, Yuangui; Li, Fei; Shi, Jingshan; Gong, Qihai

    2017-01-01

    Icariside II (ICS II) is a broad-spectrum anti-cancer natural compound extracted from Herba Epimedii Maxim. Recently, the role of ICS II has been investigated in central nervous system, especially have a neuroprotective effect in Alzheimer’s disease (AD). In this study, we attempted to investigate the effects of ICS II, on cognitive deficits and beta-amyloid (Aβ) production in APPswe/PS1dE9 (APP/PS1) double transgenic mice. It was found that chronic ICS II administrated not only effectively ameliorated cognitive function deficits, but also inhibited neuronal degeneration and reduced the formation of plaque burden. ICS II significantly suppressed Aβ production via promoting non-amyloidogenic APP cleavage process by up-regulating a disintegrin and metalloproteinase domain 10 (ADAM10) expression, inhibited amyloidogenic APP processing pathway by down-regulating amyloid precursor protein (APP) and β-site amyloid precursor protein cleavage enzyme 1 (BACE1) expression in APP/PS1 transgenic mice. Meanwhile, ICS II attenuated peroxisome proliferator-activated receptor-γ (PPARγ) degradation as well as inhibition of eukaryotic initiation factor α phosphorylation (p-eIF2α) and PKR endoplasmic reticulum regulating kinase phosphorylation (p-PERK). Moreover, phosphodiesterase type 5 inhibitors (PDE5-Is) have recently emerged as a possible therapeutic target for cognitive enhancement via inhibiting Aβ levels, and we also found that ICS II markedly decreased phosphodiesterase-5A (PDE5A) expression. In conclusion, the present study demonstrates that ICS II could attenuate spatial learning and memory impairments in APP/PS1 transgenic mice. This protection appears to be due to the increased ADAM10 expression and decreased expression of both APP and BACE1, resulting in inhibition of Aβ production in the hippocampus and cortex. Inhibition of PPARγ degradation and PERK/eIF2α phosphorylation are involved in the course, therefore suggesting that ICS II might be a promising

  7. Biflavonoids are superior to monoflavonoids in inhibiting amyloidtoxicity and fibrillogenesis via accumulation of nontoxic oligomer-like structures.

    Science.gov (United States)

    Thapa, Arjun; Woo, Eun-Rhan; Chi, Eva Y; Sharoar, Md Golam; Jin, Hong-Guang; Shin, Song Yub; Park, Il-Seon

    2011-04-05

    Polymerization of monomeric amyloid-β peptides (Aβ) into soluble oligomers and insoluble fibrils is one of the major pathways triggering the pathogenesis of Alzheimer's disease (AD). Using small molecules to prevent the polymerization of Aβ peptides can, therefore, be an effective therapeutic strategy for AD. In this study, we investigate the effects of mono- and biflavonoids in Aβ42-induced toxicity and fibrillogenesis and find that the biflavonoid taiwaniaflavone (TF) effectively and specifically inhibits Aβ toxicity and fibrillogenesis. Compared to TF, the monoflavonoid apigenin (AP) is less effective and less specific. Our data show that differential effects of the mono- and biflavonoids in Aβ fibrillogenesis correlate with their varying cytoprotective efficacies. We also find that other biflavonoids, namely, 2',8''-biapigenin, amentoflavone, and sumaflavone, can also effectively inhibit Aβ toxicity and fibrillogenesis, implying that the participation of two monoflavonoids in a single biflavonoid molecule enhances their activity. Biflavonoids, while strongly inhibiting Aβ fibrillogenesis, accumulate nontoxic Aβ oligomeric structures, suggesting that these are off-pathway oligomers. Moreover, TF abrogates the toxicity of preformed Aβ oligomers and fibrils, indicating that TF and other biflavonoids may also reduce the toxicity of toxic Aβ species. Altogether, our data clearly show that biflavonoids, possibly because of the possession of two Aβ binders separated by an appropriate size linker, are likely to be promising therapeutics for suppressing Aβ toxicity.

  8. N-Acetyl-L-Cystein downregulates beta-amyloid precursor protein gene transcription in human neuroblastoma cells.

    Science.gov (United States)

    Studer, R; Baysang, G; Brack, C

    2001-01-01

    The causes for the sporadic form of Alzheimer's disease (AD) are still poorly understood, except from the fact that age is an important risk factor. The main component of the characteristic amyloid plaques in brains of AD patients are Abeta peptides, derivatives of the amyloid precursor protein APP. Oxidative stress may contribute to the aetiology of AD by dysregulation of APP metabolism. Overexpression of the APP gene could result in an increased secretion of neurotoxic Abeta peptides, while preventing the overexpression might be protective. We here report that the antioxidant N-Acetyl-L-Cystein (NAC) downregulates APP gene transcription in human neuroblastoma cells. The effect is reversible when cells are returned to NAC free medium. These results open up new possibilities for the development of therapeutic agents that intervene at the transcriptional level.

  9. The nicotinic alpha7 acetylcholine receptor agonist ssr180711 is unable to activate limbic neurons in mice overexpressing human amyloid-beta1-42

    DEFF Research Database (Denmark)

    Søderman, Andreas; Thomsen, Morten Skøtt; Hansen, Henrik H;

    2008-01-01

    Recent studies have demonstrated that amyloid-beta1-42 (Abeta1-42) binds to the nicotinergic alpha7 acetylcholine receptor (alpha7 nAChR) and that the application of Abeta1-42 to cells inhibits the function of the alpha7 nAChR. The in vivo consequences of the pharmacological activation of the alpha...... through the use of co-immunoprecipitation that human Abeta-immunoreactive peptides bind to mice alpha7 nAChR in vivo. Agonists of the alpha7 nAChR improve memory and attentional properties and increase immediate early gene expression in the prefrontal cortex and the nucleus accumbens. We show that acute...

  10. Green tea aroma fraction reduces β-amyloid peptide-induced toxicity in Caenorhabditis elegans transfected with human β-amyloid minigene.

    Science.gov (United States)

    Takahashi, Atsushi; Watanabe, Tatsuro; Fujita, Takashi; Hasegawa, Toshio; Saito, Michio; Suganuma, Masami

    2014-01-01

    Green tea is a popular world-wide beverage with health benefits that include preventive effects on cancer as well as cardiovascular, liver and Alzheimer's diseases (AD). This study will examine the preventive effects on AD of a unique aroma of Japanese green tea. First, a transgenic Caenorhabditis elegans (C. elegans) CL4176 expressing human β-amyloid peptide (Aβ) was used as a model of AD. A hexane extract of processed green tea was further fractionated into volatile and non-volatile fractions, named roasty aroma and green tea aroma fractions depending on their aroma, by microscale distillation. Both hexane extract and green tea aroma fraction were found to inhibit Aβ-induced paralysis, while only green tea aroma fraction extended lifespan in CL4176. We also found that green tea aroma fraction has antioxidant activity. This paper indicates that the green tea aroma fraction is an additional component for prevention of AD.

  11. Pathogenesis of cerebral amyloid angiopathy.

    NARCIS (Netherlands)

    Rensink, A.A.M.; Waal, R.M.W. de; Kremer, H.P.H.; Verbeek, M.M.

    2003-01-01

    Cerebral amyloid angiopathy (CAA) is the result of the deposition of an amyloidogenic protein in cortical and leptomeningeal vessels. The most common type of CAA is caused by amyloid beta-protein (Abeta), which is particularly associated with Alzheimer's disease (AD). Excessive Abeta-CAA formation c

  12. Chronic pre-treatment with memantine prevents amyloid-beta protein-mediated long-term potentiation disruption

    Institute of Scientific and Technical Information of China (English)

    Fushun Li; Xiaowei Chen; Feiming Wang; Shujun Xu; Lan Chang; Roger Anwyl; Qinwen Wang

    2013-01-01

    Previous studies indicate that memantine, a low-affinity N-methyl-D-aspartate receptor antagonist, exerted acute protective effects against amyloid-β protein-induced neurotoxicity. In the present study, the chronic effects and mechanisms of memantine were investigated further using electrophysiological methods. The results showed that 7-day intraperitoneal application of memantine, at doses of 5 mg/kg or 20 mg/kg, did not alter hippocampal long-term potentiation induction in rats, while 40 mg/kg memantine presented potent long-term potentiation inhibition. Then further in vitro studys were carried out in 5 mg/kg and 20 mg/kg memantine treated rats. We found that 20 mg/kg memantine attenuated the potent long-term potentiation inhibition caused by exposure to amyloid-β protein in the dentate gyrus in vitro. These findings are the first to demonstrate the antagonizing effect of long-term systematic treatment of memantine against amyloid-β protein triggered long-term potentiation inhibition to improve synaptic plasticity.

  13. The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between beta-amyloid production and tau phosphorylation in Alzheimer disease.

    Science.gov (United States)

    Kimura, Ryo; Kamino, Kouzin; Yamamoto, Mitsuko; Nuripa, Aidaralieva; Kida, Tomoyuki; Kazui, Hiroaki; Hashimoto, Ryota; Tanaka, Toshihisa; Kudo, Takashi; Yamagata, Hidehisa; Tabara, Yasuharu; Miki, Tetsuro; Akatsu, Hiroyasu; Kosaka, Kenji; Funakoshi, Eishi; Nishitomi, Kouhei; Sakaguchi, Gaku; Kato, Akira; Hattori, Hideyuki; Uema, Takeshi; Takeda, Masatoshi

    2007-01-01

    We scanned throughout chromosome 21 to assess genetic associations with late-onset Alzheimer disease (AD) using 374 Japanese patients and 375 population-based controls, because trisomy 21 is known to be associated with early deposition of beta-amyloid (Abeta) in the brain. Among 417 markers spanning 33 Mb, 22 markers showed associations with either the allele or the genotype frequency (P KCNJ6 genes. In logistic regression, the DYRK1A (dual-specificity tyrosine-regulated kinase 1A) gene, located in the Down syndrome critical region, showed the highest significance [OR = 2.99 (95% CI: 1.72-5.19), P = 0.001], whereas the RUNX1 gene showed a high odds ratio [OR = 23.3 (95% CI: 2.76-196.5), P = 0.038]. DYRK1A mRNA level in the hippocampus was significantly elevated in patients with AD when compared with pathological controls (P < 0.01). DYRK1A mRNA level was upregulated along with an increase in the Abeta-level in the brain of transgenic mice, overproducing Abeta at 9 months of age. In neuroblastoma cells, Abeta induced an increase in the DYRK1A transcript, which also led to tau phosphorylation at Thr212 under the overexpression of tau. Therefore, the upregulation of DYRK1A transcription results from Abeta loading, further leading to tau phosphorylation. Our result indicates that DYRK1A could be a key molecule bridging between beta-amyloid production and tau phosphorylation in AD.

  14. Cerebrospinal Fluid Levels of Amyloid Beta 1-43 Mirror 1-42 in Relation to Imaging Biomarkers of Alzheimer’s Disease

    Science.gov (United States)

    Almdahl, Ina S.; Lauridsen, Camilla; Selnes, Per; Kalheim, Lisa F.; Coello, Christopher; Gajdzik, Beata; Møller, Ina; Wettergreen, Marianne; Grambaite, Ramune; Bjørnerud, Atle; Bråthen, Geir; Sando, Sigrid B.; White, Linda R.; Fladby, Tormod

    2017-01-01

    Introduction: Amyloid beta 1-43 (Aβ43), with its additional C-terminal threonine residue, is hypothesized to play a role in early Alzheimer’s disease pathology possibly different from that of amyloid beta 1-42 (Aβ42). Cerebrospinal fluid (CSF) Aβ43 has been suggested as a potential novel biomarker for predicting conversion from mild cognitive impairment (MCI) to dementia in Alzheimer’s disease. However, the relationship between CSF Aβ43 and established imaging biomarkers of Alzheimer’s disease has never been assessed. Materials and Methods: In this observational study, CSF Aβ43 was measured with ELISA in 89 subjects; 34 with subjective cognitive decline (SCD), 51 with MCI, and four with resolution of previous cognitive complaints. All subjects underwent structural MRI; 40 subjects on a 3T and 50 on a 1.5T scanner. Forty subjects, including 24 with SCD and 12 with MCI, underwent 18F-Flutemetamol PET. Seventy-eight subjects were assessed with 18F-fluorodeoxyglucose PET (21 SCD/7 MCI and 11 SCD/39 MCI on two different scanners). Ten subjects with SCD and 39 with MCI also underwent diffusion tensor imaging. Results: Cerebrospinal fluid Aβ43 was both alone and together with p-tau a significant predictor of the distinction between SCD and MCI. There was a marked difference in CSF Aβ43 between subjects with 18F-Flutemetamol PET scans visually interpreted as negative (37 pg/ml, n = 27) and positive (15 pg/ml, n = 9), p < 0.001. Both CSF Aβ43 and Aβ42 were negatively correlated with standardized uptake value ratios for all analyzed regions; CSF Aβ43 average rho -0.73, Aβ42 -0.74. Both CSF Aβ peptides correlated significantly with hippocampal volume, inferior parietal and frontal cortical thickness and axial diffusivity in the corticospinal tract. There was a trend toward CSF Aβ42 being better correlated with cortical glucose metabolism. None of the studied correlations between CSF Aβ43/42 and imaging biomarkers were significantly different for the two A

  15. The Molecular Mechanism of Amyloid β42 Peptide Toxicity: The Role of Sphingosine Kinase-1 and Mitochondrial Sirtuins.

    Directory of Open Access Journals (Sweden)

    Magdalena Cieślik

    Full Text Available Our study focused on the relationship between amyloid β 1-42 (Aβ, sphingosine kinases (SphKs and mitochondrial sirtuins in regulating cell fate. SphK1 is a key enzyme involved in maintaining sphingolipid rheostat in the brain. Deregulation of the sphingolipid metabolism may play a crucial role in the pathogenesis of Alzheimer's disease (AD. Mitochondrial function and mitochondrial deacetylases, i.e. sirtuins (Sirt3,-4,-5, are also important for cell viability. In this study, we evaluated the interaction between Aβ1-42, SphKs and Sirts in cell survival/death, and we examined several compounds to indicate possible target(s for a strategy protecting against cytotoxicity of Aβ1-42. PC12 cells were subjected to Aβ1-42 oligomers and SphK inhibitor SKI II for 24-96 h. Our data indicated that Aβ1-42 enhanced SphK1 expression and activity after 24 h, but down-regulated them after 96 h and had no effect on Sphk2. Aβ1-42 and SKI II induced free radical formation, disturbed the balance between pro- and anti-apoptotic proteins and evoked cell death. Simultaneously, up-regulation of anti-oxidative enzymes catalase and superoxide dismutase 2 was observed. Moreover, the total protein level of glycogen synthase kinase-3β was decreased. Aβ1-42 significantly increased the level of mitochondrial proteins: apoptosis-inducing factor AIF and Sirt3, -4, -5. By using several pharmacologically active compounds we showed that p53 protein plays a significant role at very early stages of Aβ1-42 toxicity. However, during prolonged exposure to Aβ1-42, the activation of caspases, MEK/ERK, and alterations in mitochondrial permeability transition pores were additional factors leading to cell death. Moreover, SphK product, sphingosine-1-phosphate (S1P, and Sirt activators and antioxidants, resveratrol and quercetin, significantly enhanced viability of cells subjected to Aβ1-42. Our data indicated that p53 protein and inhibition of SphKs may be early key events

  16. Improving cognitive impairment by Tongxinluo via inhibiting expression of beta-secretase 1/beta-amyloid peptide in experimental vascular dementia

    Institute of Scientific and Technical Information of China (English)

    Jia Jia; Wenbin Zhu; Lihui Wang; Yun Xu

    2008-01-01

    BACKGROUND: Tongxinluo has been clinically proven to be effective in improving memory and cognitive function in patients with post-stroke vascular dementia. Is the mechanism related to the deposition of beta-amyloid peptide (Aβ) in hippocampus? OBJECTIVE: To observe the effect of Tongxinluo on cognitive impairment in a mouse model with vascular dementia and the changes of Aβ deposition andβ-secretase 1 (BACE1) expression.DESIGN: Randomized controlled study.SETTING: State Key Laboratory of Pharmaceutical Biotechnology of Nanjing University and Affiliated Drum Tower Hospital of Nanjing University Medical School.MATERIALS: The experiment was carried out in the State Key Laboratory of Pharmaceutical Biotechnology of Nanjing University and Affiliated Drum Tower Hospital of Nanjing University Medical School from March 2006 to January 2007. A total of 36 healthy Kunming mice, 18 of each gender, were chosen. The study was conducted in accordance with the National Regulations of Experimental Animal Administration, and all animal experiments were approved by the Committee of Experimental Animal Administration of Nanjing University. Tongxinluo was provided by Shijiazhuang Yiling Pharmaceutical Co., Ltd.METHODS: All mice were randomly divided into 6 groups, including naive control (n=6), sham-operated control (n=6) and experimental groups treated with different doses of Tongxinluo (0.2, 0.4, and 0.6 g/kg/d; n=6 for each group) or vehicle (n=6). Five groups were subjected to bilateral common carotid arteries (2-VO) occlusion to produce a vascular dementia model(noocclusion was performed in sham-operated group). The mice in the Tongxinluo treatment groups were intragastricly administered daily with a Tongxinluo suspension (40 g/L in distilled water) at doses of 0.2, 0.4 or 0.6 g/kg/d from day 1 to day 30 post-surgery. The animals in vehicle, sham-operated and naive groups were administered an equal volume of distilled water. MAIN OUTCOME MEASURES: ①Escape latency time

  17. Generation of prion transmission barriers by mutational control of amyloid conformations.

    Science.gov (United States)

    Chien, Peter; DePace, Angela H; Collins, Sean R; Weissman, Jonathan S

    2003-08-21

    Self-propagating beta-sheet-rich protein aggregates are implicated in a wide range of protein-misfolding phenomena, including amyloid diseases and prion-based inheritance. Two properties have emerged as common features of amyloids. Amyloid formation is ubiquitous: many unrelated proteins form such aggregates and even a single polypeptide can misfold into multiple forms--a process that is thought to underlie prion strain variation. Despite this promiscuity, amyloid propagation can be highly sequence specific: amyloid fibres often fail to catalyse the aggregation of other amyloidogenic proteins. In prions, this specificity leads to barriers that limit transmission between species. Using the yeast prion [PSI+], we show in vitro that point mutations in Sup35p, the protein determinant of [PSI+], alter the range of 'infectious' conformations, which in turn changes amyloid seeding specificity. We generate a new transmission barrier in vivo by using these mutations to specifically disfavour subsets of prion strains. The ability of mutations to alter the conformations of amyloid states without preventing amyloid formation altogether provides a general mechanism for the generation of prion transmission barriers and may help to explain how mutations alter toxicity in conformational diseases.

  18. Inhibition of tumor necrosis factor-alpha by sodium ferulate in protecting neurons from beta-amyloid induced damage

    Institute of Scientific and Technical Information of China (English)

    Suyan Yao; Deyu Zheng; Zhuo Liu; Ying Jin

    2006-01-01

    BACKGROUND: Sodium ferulate (SF) has an effect of anti-inflammation; however, whether it can inhibit beta-amyloid (Aβ) induced damage or not should be further studied.OBJECTIVE: To investigate the effects of SF on neurotoxicity mediated by Aβ-induced macrophage activation via inhibiting tumor necrosis factor-α (TNF-α) in vitro.DESTGN: A contrast experiment based on cells.SETTrNG: Departments of Pathophysiology, Pharmacology and Anatomy, Liaoning Medical College.MATERTALS: A total of 36 Kunming mice aged 8-10 weeks and some SD rats aged 2-3 days of both genders were selected in this study. Main reagents were detailed as follows: Aβ peptide (Sigma Company); SF (purity >99%, Suzhou Changtong Chemical Co., Ltd.); lactate dehydrogenase (LDH) assay kit (Bangding Biological Engineering Co., Beijing, China); microtubule-associated protein 2 (MAP-2) monoclonal antibodies and TNF-αmonoclonal antibodies (Boster Biological Engineering Co., Wuhan, China).METHODS: The experiment was carried out in Laboratories of Pharmacology and Anatomy, Liaoning Medical College from May to December 2004. Cerebellum was obtained from rats under sterile condition to culture neurons and macrophages taken from mice abdominal cavity. Later, two parallel experiments were performed as follows: ① Macrophages culture groups: In normal control group, macrophages were cultured in DMEM after being seeded. In Aβ group, neurotoxic form of Aβ was added into DMEM media with final concentration of 10 μmol/L after macrophages were seeded for 24 hours. In Aβ+SF group, ten minutes after Aβ treatment, for 10, 100, 500 μmol/L and 1 mmol/L of SF were added to the media of the macrophages culture. ②Macrophages-neurons co-cultured groups: Control macrophages-neurons were co-cultured. Aβ group:Neurotoxic form of Aβ was added into the media with concentration of 10 iμmol/L after macrophages were seeded in the neurons cultured wells for 24 hours. Aβ±SF group: Ten minutes after Aβ treatment, 10

  19. Effects of L-3-n-butylphthalide on caspase-3 and nuclear factor kappa-B expression in primary basal forebrain and hippocampal cultures after beta-amyloid peptide 1-42 treatment

    Institute of Scientific and Technical Information of China (English)

    Ruixia Wang; Yong Zhang; Liangliang Jiang; Guozhao Ma; Qingxi Fu; Jialong Li; Peng Yan; Lunqian Shen; Yabo Feng; Chunxia Li; Zaiying Pang; Yuanxiao Cui; Chunfu Chen; Yifeng Du; Zhaokong Liu

    2009-01-01

    BACKGROUND: L-3-n-butylphthalide (L-NBP) can inhibit phosphorylation of tau protein and reduce the neurotoxicity of beta-amyloid peptide 1-42 (Aβ1-42).OBJECTIVE: To observe the neuroprotective effects of L-NBP on caspase-3 and nuclear factor kappa-B (NF-кB) expression in a rat model of Alzheimer's disease.DESIGN, TIME AND SETTING: A cell experiment was performed at the Central Laboratory of Provincial Hospital affiliated to Shandong University between January 2008 and August 2008.MATERIALS: L-NBP (purity>98%) was provided by Shijiazhuang Pharma Group NBP Pharmaceutical Company Limited. Aβ1-42, 3-[4,5-dimethylthiazolo-2]-2,5 iphenyltetrazolium bromide (MTT), and rabbit anti-Caspase-3 polyclonal antibody were provided by Cell Signaling, METHODS: Primary cultures were generated from rat basal forebrain and hippocampal neurons at 17 or 19 days of gestation. The cells were assigned into five groups: the control group, the Aβ1-42 group (2μmol/L), the Aβ1-42+0.1μmol/L L-NBP group, the Aβ1-42+1 μmol/L L-NBP group, and the Aβ1-42 + 10μmol/L L-NBP group. The neurons were treated with Aβ1-42 (2 μmol/L) alone or in combination with L-NBP (0.1, 1, 10μmol/L) for 48 hours. Cells in the control group were incubated in PBS.MAIN OUTCOME MEASURES: Morphologic changes were evaluated using inverted microscopy, Western blot.RESULTS: Induction with Aβ1-42 for 48 hours caused cell death and soma atrophy, and increased the high dose (P<0.05).CONCLUSION: Aβ1-42 is toxic to basal forebrain and hippocampal primary neurons; L-NBP protects against this toxicity and inhibits the induction of caspase-3 and NF-κB expression.

  20. Steroid hormones block amyloid fibril-induced 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) formazan exocytosis: relationship to neurotoxicity.

    Science.gov (United States)

    Liu, Y; Schubert, D

    1998-12-01

    Perhaps the most reproducible early event induced by the interaction of amyloid beta peptide (A beta) with the cell is the inhibition of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. We recently demonstrated that cytotoxic amyloid peptides such as A beta and human amylin inhibit cellular MTT reduction by dramatically enhancing MTT formazan exocytosis. We now show the following: (a) Insulin and glucagon, when converted to fibrils with beta-pleated sheet structure, induce MTT formazan exocytosis that is indistinguishable from that induced by A beta. NAC35, an amyloidogenic fragment of alpha-synuclein (or NACP), also induces MTT formazan exocytosis. (b) All protein fibrils with the beta-pleated sheet structure examined are toxic to rat hippocampal neurons. (c) Many sterol sex hormones (e.g., estradiol and progesterone) block amyloid fibril-enhanced MTT formazan exocytosis as well as MTT formazan exocytosis in control cells by acting at a common late step in the exocytic pathway. Steroids fail, however, to protect hippocampal neurons from acute amyloid fibril toxicity. These findings suggest that the ability to enhance MTT formazan exocytosis and to induce neurotoxicity are common biological activities of protein fibrils with beta-pleated sheet structure but that enhanced MTT formazan exocytosis is not sufficient for acute A beta neurotoxicity.

  1. Apigenin Isolated from the Medicinal Plant Elsholtzia rugulosa Prevents β-Amyloid 25–35-Induces Toxicity in Rat Cerebral Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Qingshan Liu

    2011-05-01

    Full Text Available Endothelial cells of cerebral capillaries forming the blood-brain barrier play an important role in the pathogenesis and therapy of Alzheimer’s disease. Amyloid-β peptides are key pathological elements in the development of this disease. Apigenin (4’,5,7-tetrahydroxyflavone is a plant flavonoid and pharmacologically active agent that can be isolated from several plant species. In the present study, effects of apigenin obtained from the medicinal plant Elsholtzia rugulosa (Labiatae on primary cultured rat cerebral microvascular endothelial cells (CMECs mediated by amyloid-β peptide 25–35 (Aβ25–35 were examined. Aβ25–35 showed toxic effects on CMECs, involving reduction of cell viability, release of lactate dehydrogenase (LDH, increase of nuclear condensation, over-production of intracellular reactive oxygen species (ROS, decrease of superoxide dismutase (SOD activity, and breakage of the barrier integrity and function. Based on this model, we demonstrated that apigenin from the medicinal plant Elsholtzia rugulosa protected cultured rat CMECs by increasing cell viability, reducing LDH release, relieving nuclear condensation, alleviating intracellular ROS generation, increasing SOD activity, and strengthening the barrier integrity through the preservation of transendothelial electrical resistance, permeability property and characteristic enzymatic activity after being exposed to Aβ25–35. In conclusion, apigenin isolated from Elsholtzia rugulosa has the ability to protect rat CMECs against Aβ25–35-induced toxicity.

  2. Erythropoietin improves memory function with reducing endothelial dysfunction and amyloid-beta burden in Alzheimer's disease models.

    Science.gov (United States)

    Lee, Soon-Tae; Chu, Kon; Park, Jung-Eun; Jung, Keun-Hwa; Jeon, Daejong; Lim, Ji-Youn; Lee, Sang Kun; Kim, Manho; Roh, Jae-Kyu

    2012-01-01

    Neurovascular degeneration contributes to the pathogenesis of Alzheimer's disease (AD). Because erythropoietin (EPO) promotes endothelial regeneration, we investigated the therapeutic effects of EPO in animal models of AD. In aged Tg2576 mice, EPO receptors (EPORs) were expressed in the cortex and hippocampus. Tg2576 mice were treated with daily injection of EPO (5000 IU/kg/day) for 5 days. At 14 days, EPO improved contextual memory as measured by fear-conditioning test. EPO enhanced endothelial proliferation and the level of synaptophysin expression in the brain. EPO also increased capillary density, and decreased the level of the receptor for advanced glycation endproducts (RAGE) in the brain, while decreasing in the amount of amyloid plaque and amyloid-β (Aβ). In cultured human endothelial cells, EPO enhanced angiogenesis and suppressed the expression of the RAGE. These results show that EPO improves memory and ameliorates endothelial degeneration induced by Aβ in AD models. This pre-clinical evidence suggests that EPO may be useful for the treatment of AD.

  3. Beta-Amyloid Downregulates MDR1-P-Glycoprotein (Abcb1 Expression at the Blood-Brain Barrier in Mice

    Directory of Open Access Journals (Sweden)

    Anja Brenn

    2011-01-01

    Full Text Available Neurovascular dysfunction is an important component of Alzheimer's disease, leading to reduced clearance across the blood-brain barrier and accumulation of neurotoxic β-amyloid (Aβ peptides in the brain. It has been shown that the ABC transport protein P-glycoprotein (P-gp, ABCB1 is involved in the export of Aβ from the brain into the blood. To determine whether Aβ influences the expression of key Aβ transporters, we studied the effects of 1-day subcutaneous Aβ1-40 and Aβ1-42 administration via Alzet mini-osmotic pumps on P-gp, BCRP, LRP1, and RAGE expression in the brain of 90-day-old male FVB mice. Our results demonstrate significantly reduced P-gp, LRP1, and RAGE mRNA expression in mice treated with Aβ1-42 compared to controls, while BCRP expression was not affected. The expression of the four proteins was unchanged in mice treated with Aβ1-40 or reverse-sequence peptides. These findings indicate that, in addition to the age-related decrease of P-gp expression, Aβ1-42 itself downregulates the expression of P-gp and other Aβ-transporters, which could exacerbate the intracerebral accumulation of Aβ and thereby accelerate neurodegeneration in Alzheimer's disease and cerebral β-amyloid angiopathy.

  4. Protective effect of Morinda citrifolia fruits on beta-amyloid (25-35) induced cognitive dysfunction in mice: an experimental and biochemical study.

    Science.gov (United States)

    Muralidharan, P; Kumar, V Ravi; Balamurugan, G

    2010-02-01

    The neuroprotective effect of an ethyl acetate extract of Morinda citrifolia (Rubiaceae) Linn. fruits (EMC, ethyl acetate extract of Morinda citrifolia) at doses of 200 and 400 mg/kg, p.o. was studied on beta-amyloid (25-35) peptide induced cognitive dysfunction in mice. In the step-down inhibitory avoidance, EMC exhibited a significant increase in short-term memory and long-term memory (p < 0.05). A significant decrease (p < 0.01) in escape latency was noticed in the animals in the water maze. A significant increase (p < 0.01) in alteration of behavior was exhibited upon administration of EMC 200 and 400 mg/kg on the Y maze. Exploratory parameters such as line crossings, head dipping and rearing were increased significantly in EMC treated groups in a dose-dependent manner (p < 0.05 and p < 0.01). A significant reduction (p < 0.05) in acetyl cholinesterase activity was noticed in the EMC 200 and 400 mg/kg treated groups. The level of monoamine oxidase-A was decreased by the administration of EMC 200 and 400 mg/kg (p < 0.05 and p < 0.01, respectively). EMC at a dose of 400 mg/kg exhibited a significant increase (p < 0.01) in the levels of serotonin and dopamine. Antioxidant enzymes such as superoxide dismutase, glutathione reductase, glutathione peroxidase and ascorbic acid were decreased significantly in the b-amyloid peptide injected group, whose levels were restored significantly (p < 0.01) by the administration of EMC (400 mg/kg).

  5. Influence of the solvent on the self-assembly of a modified amyloid beta peptide fragment. II. NMR and computer simulation investigation.

    Science.gov (United States)

    Hamley, I W; Nutt, D R; Brown, G D; Miravet, J F; Escuder, B; Rodríguez-Llansola, F

    2010-01-21

    The conformation of a model peptide AAKLVFF based on a fragment of the amyloid beta peptide Abeta16-20, KLVFF, is investigated in methanol and water via solution NMR experiments and molecular dynamics computer simulations. In previous work, we have shown that AAKLVFF forms peptide nanotubes in methanol and twisted fibrils in water. Chemical shift measurements were used to investigate the solubility of the peptide as a function of concentration in methanol and water. This enabled the determination of critical aggregation concentrations. The solubility was lower in water. In dilute solution, diffusion coefficients revealed the presence of intermediate aggregates in concentrated solution, coexisting with NMR-silent larger aggregates, presumed to be beta-sheets. In water, diffusion coefficients did not change appreciably with concentration, indicating the presence mainly of monomers, coexisting with larger aggregates in more concentrated solution. Concentration-dependent chemical shift measurements indicated a folded conformation for the monomers/intermediate aggregates in dilute methanol, with unfolding at higher concentration. In water, an antiparallel arrangement of strands was indicated by certain ROESY peak correlations. The temperature-dependent solubility of AAKLVFF in methanol was well described by a van't Hoff analysis, providing a solubilization enthalpy and entropy. This pointed to the importance of solvophobic interactions in the self-assembly process. Molecular dynamics simulations constrained by NOE values from NMR suggested disordered reverse turn structures for the monomer, with an antiparallel twisted conformation for dimers. To model the beta-sheet structures formed at higher concentration, possible model arrangements of strands into beta-sheets with parallel and antiparallel configurations and different stacking sequences were used as the basis for MD simulations; two particular arrangements of antiparallel beta-sheets were found to be stable, one

  6. A is for Amylin and Amyloid in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Hayden MR

    2001-07-01

    Full Text Available Amyloid deposits within the islet of the pancreas have been known for a century. In 1987, the islet amyloid precursor polypeptide (IAPP amylin (a 37 amino acid was discovered. Recently there has been an explosion of amylin's importance in the development of type 2 diabetes mellitus (T2DM. This review is intended to share what is understood about amylin derived amyloid and the role it plays in T2DM. Whether islet amyloid is an epiphenomenona, a tombstone, or a trigger it leaves an indelible footprint in greater that 70% of the patients with T2DM. There is current data supporting the damaging role of intermediate sized toxic amyloid particles to the beta cell resulting in a beta cell defect which contributes to a relative deficiency or loss of insulin secretion. Within the islet there is an intense redox stress which may be associated with the unfolding of amylin's native secondary structure compounding its amyloidogenic properties. In addition to the beta cell defect there may be an absorptive defect as a result of amyloid deposition in the basement membranes which form an envelope around the inta-islet capillary endothelium. We have an opportunity to change our current treatment modalities with newer medications and we should attempt to diagnose T2DM earlier and use these newer treatment strategies in combination to decrease glucotoxicity without elevating endogenous insulin and amylin. In the 21st century our goal should be to prevent remodeling, save the pancreatic islet, conquer islet amyloid, and amyloid diabetes.

  7. Extraskeletal problems and amyloid.

    Science.gov (United States)

    Drüeke, T B

    1999-12-01

    The major clinical manifestations of dialysis-associated A beta 2M amyloidosis are chronic arthralgias, destructive arthropathy and the carpal tunnel syndrome. For dialysis patients who have been maintained on renal replacement therapy for more than 10-15 years, this complication may become a major physical handicap. It may even be life-threatening in some instances due to cervical cord compression. Amyloid deposits in joint areas precede clinical symptoms and signs by several years. Systemic deposits may also occur but their clinical manifestations are infrequent. The diagnosis of dialysis arthropathy associated with beta 2-microglobulin-associated (A beta 2M) amyloidosis mostly relies on indirect clinical and radiological evidence. Histologic proof is rarely obtained in vivo. The pathogenesis of the disease is complex. It includes reduced elimination of beta 2M and potentially also as impaired degradation of A beta 2M as well as enhanced production of A beta 2M amyloid fibrils. Non enzymatic modifications of beta 2M probably play a role, including beta 2M protein modification with advanced glycation end-products (AGE) and advanced oxidation protein products. Modified beta 2M, collagen and proteoglycans appear actively involved in the induction of a local inflammatory response and beta 2M amyloid formation. There is also evidence in favor of treatment-related factors such as the type of hemodialysis membrane and the purity of dialysis water. Hopefully, the translation of our improving knowledge of all the factors involved will lead to a better treatment and eventually to the prevention of this dramatic complication of dialysis.

  8. Exploring the contribution of estrogen to amyloid-beta regulation:a novel multifactorial computational modeling approach

    Directory of Open Access Journals (Sweden)

    Thomas J. Anastasio

    2013-03-01

    Full Text Available According to the amyloid hypothesis, Alzheimer Disease results from the accumulation beyond normative levels of the peptide amyloid-β (Aβ. Perhaps because of its pathological potential, Aβ and the enzymes that produce it are heavily regulated by the molecular interactions occurring within cells, including neurons. This regulation involves a highly complex system of intertwined normative and pathological processes, and the sex hormone estrogen contributes to it by influencing the Aβ-regulation system at many different points. Owing to its high complexity, Aβ regulation and the contribution of estrogen are very difficult to reason about. This report describes a computational model of the contribution of estrogen to Aβ regulation that provides new insights and generates experimentally testable and therapeutically relevant predictions. The computational model is written in the declarative programming language known as Maude, which allows not only simulation but also analysis of the system using temporal logic. The model illustrates how the various effects of estrogen could work together to reduce Aβ levels, or prevent them from rising, in the presence of pathological triggers. The model predicts that estrogen itself should be more effective in reducing Aβ than agonists of estrogen receptor α (ERα, and that agonists of ERβ should be ineffective. The model shows how estrogen itself could dramatically reduce Aβ, and predicts that NSAIDs should provide a small additional benefit. It also predicts that certain compounds, but not others, could augment the reduction in Aβ due to estrogen. The model is intended as a starting point for a computational/experimental interaction in which model predictions are tested experimentally, the results are used to confirm, correct, and expand the model, new predictions are generated, and the process continues, producing a model of ever increasing explanatory power and predictive value.

  9. Carboxymethyl-beta-cyclodextrin mitigates toxicity of cadmium, cobalt, and copper during naphthalene biodegradation.

    Science.gov (United States)

    Hoffman, Douglas R; Anderson, Phillip P; Schubert, Carissa M; Gault, Melissa B; Blanford, William J; Sandrin, Todd R

    2010-04-01

    Hazardous waste sites are commonly contaminated with both organic and metal pollutants. Many metal pollutants have been shown to inhibit organic pollutant biodegradation. We investigated the ability of a modified, polydentate cyclodextrin (carboxymethyl-beta-cyclodextrin, CMCD) to reduce the toxicity of 33.4 microM cadmium, cobalt or copper during naphthalene degradation by a Burkholderia sp. in 120 h aerobic, batch studies. The highest investigated concentration of CMCD, 3340 microM, reduced cadmium, cobalt, and copper toxicity. With each metal, the length of the lag phase was reduced (by as much as 108 h with cobalt or copper), the cell yield was increased (by as much as a factor of 16 with cobalt), and the growth rate was increased (by as much as a factor of 31 with cobalt). The degrader was unable to use CMCD as the sole source of carbon and energy. Our data suggest that the ability of CMCD to complex metals plays an important role in its ability to mitigate metal toxicity and that CMCD has the potential to enhance biodegradation in organic and metal co-contaminated environments.

  10. Imaging characteristic of dual-phase {sup 18}F-florbetapir (AV-45/Amyvid) PET for the concomitant detection of perfusion deficits and beta-amyloid deposition in Alzheimer's disease and mild cognitive impairment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Kun-Ju; Hsiao, Ing-Tsung; Hsieh, Chia-Ju; Wey, Shiaw-Pyng; Yen, Tzu-Chen [Linkou Chang Gung Memorial Hospital and University, Department of Nuclear Medicine and Molecular Imaging Center, Taoyuan (China); Chang Gung University, Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Taoyuan (China); Hsu, Jung-Lung [Linkou Chang Gung Memorial Hospital, Section of Dementia and Cognitive Impairment, Department of Neurology, Taoyuan (China); Taipei Medical University, Graduate Institute of Humanities in Medicine, Taipei (China); Huang, Chin-Chang; Huang, Kuo-Lun [Linkou Chang Gung Memorial Hospital and University, Department of Neurology, Taoyuan (China)

    2016-07-15

    We investigated dual-phase {sup 18}F-florbetapir (AV-45/Amyvid) PET imaging for the concomitant detection of brain perfusion deficits and beta-amyloid deposition in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (MCI), and in cognitively healthy controls (HCs). A total of 82 subjects (24 AD patients, 44 MCI patients and 14 HCs) underwent both dual-phase {sup 18}F-AV-45 PET and MRI imaging. Dual-phase dynamic PET imaging consisted of (1) five 1-min scans obtained 1 - 6 min after tracer injection (perfusion {sup 18}F-AV-45 imaging, pAV-45), and (2) ten 1-min scans obtained 50 - 60 min after tracer injection (amyloid {sup 18}F-AV-45 imaging). Amyloid-negative MCI/AD patients were excluded. Volume of interest analysis and statistical parametric mapping of pAV-45 and {sup 18}F-AV-45 images were performed to investigate the perfusion deficits and the beta-amyloid burden in the three study groups. The associations between Mini-Mental State Examination (MMSE) scores and global perfusion deficits and amyloid deposition were investigated with linear and segmental linear correlation analyses. HCs generally had normal pAV-45 findings, whereas perfusion deficits were evident in the hippocampus, and temporal, parietal and middle frontal cortices in both MCI and AD patients. The motor-sensory cortex was relatively preserved. MMSE scores in the entire study cohort were significantly associated with the degree of perfusion impairment as assessed by pAV-45 imaging (r = 0.5156, P < 0.0001). {sup 18}F-AV-45 uptake was significantly higher in AD patients than in the two other study groups. However, the correlation between MMSE scores and {sup 18}F-AV-45 uptake in MCI patients was more of a binary phenomenon and began in MCI patients with MMSE score 23.14 when {sup 18}F-AV-45 uptake was higher and MMSE score lower than in patients with early MCI. Amyloid deposition started in the precuneus and the frontal and temporal regions in early MCI, ultimately

  11. Telencephalin protects PAJU cells from amyloid beta protein-induced apoptosis by activating the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway

    Institute of Scientific and Technical Information of China (English)

    Heping Yang; Dapeng Wu; Xiaojie Zhang; Xiang Wang; Yi Peng; Zhiping Hu

    2012-01-01

    Telencephalin is a neural glycoprotein that reduces apoptosis induced by amyloid beta protein in the human neural tumor cell line PAJU.In this study,we examined the role of the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway in this process.Western blot analysis demonstrated that telencephalin,phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B were not expressed in PAJU cells transfected with empty plasmid,while they were expressed in PAJU cells transfected with a telencephalin expression plasmid.After treatment with 1.0 nM amyloid beta protein 42,expression of telencephalin and phosphorylated phosphatidylinositol-3-kinase/protein kinase B in the transfected cells gradually diminished,while levels of phosphorylated ezrin/radixin/moesin increased.In addition,the high levels of telencephalin,phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B expression in PAJU cells transfected with a telencephalin expression plasmid could be suppressed by the phosphatidylinositol-3-kinase inhibitor LY294002.These findings indicate that telencephalin activates the ezrin/radixin/moesin family/phosphatidylinositol-3-kinase/protein kinase B pathway and protects PAJU cells from amyloid beta protein-induced apoptosis.

  12. High plasma levels of islet amyloid polypeptide in young with new-onset of type 1 diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Johan F Paulsson

    Full Text Available AIMS/HYPOTHESIS: Islet amyloid polypeptide (IAPP is a beta cell hormone secreted together with insulin upon glucose stimulation. IAPP participates in normal glucose regulation, but IAPP is also known for its ability to misfold and form islet amyloid. Amyloid fibrils form through smaller cell toxic intermediates and deposited amyloid disrupts normal islet architecture. Even though IAPP and amyloid formation are much discussed in type 2 diabetes, our aim was to study the significance of IAPP in type 1 diabetes. RESULTS: Plasma IAPP levels in children and adolescents with newly diagnosed type 1 diabetes (n = 224 were analysed and concentrations exceeding 100 pmol/L (127.2-888.7 pmol/L were found in 11% (25/224. The IAPP increase did not correlate with C-peptide levels. CONCLUSIONS/INTERPRETATION: Plasma levels of IAPP and insulin deviate in a subpopulation of young with newly-diagnosed type 1 diabetes. The determined elevated levels of IAPP might increase the risk for IAPP misfolding and formation of cell toxic amyloid in beta cells. This finding add IAPP-aggregation to the list over putative pathological factors causing type 1 diabetes.

  13. Visual and fluorescent assays for selective detection of beta-amyloid oligomers based on the inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots.

    Science.gov (United States)

    Xia, Ning; Zhou, Binbin; Huang, Nanbing; Jiang, Mengsha; Zhang, Jiebing; Liu, Lin

    2016-11-15

    Beta-amyloid (Aβ) peptides are the major constituents of senile plaques in the brains of Alzheimer's disease (AD) patients. Aβ monomers (AβMs) can coalesce to form small, soluble oligomers (AβOs), followed by reorganization and assembly into long, thread-like fibrils (AβFs). Recently, soluble AβOs have been regarded as reliable molecular biomarkers for the diagnosis of AD because of their high toxicity for neuronal synapse and high concentration levels in the brains of AD patients. In this work, we reported a label-free, sensitive and selective method for visual and fluorescent detection of AβOs based on the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (QDs). Specifically, the fluorescence of CdTe QDs was quenched significantly by AuNPs through the IFE. PrP(95-110), an AβOs-specific binding peptide from cellular prion protein, triggered the aggregation and color change of AuNPs suspension; thus, the IFE of AuNPs on the fluorescence of CdTe QDs was weakened and the fluorescence intensity was recovered. However, in the presence of AβOs, the specific interaction of AβOs and PrP(95-110) prevented the absorption of PrP(95-110) onto the surface of AuNPs. As a result, the aggregation of AuNPs was inhibited and the fluorescence intensity of CdTe QDs was quenched again. This label-free method is specific for detection of AβOs but not for AβMs and AβFs. The detection limits were found to be 0.5nM for the visual assay and 0.2nM for the fluorescent detection. We believe that this work would be valuable for many investigations related to AD diagnosis and drug discovery.

  14. In vivo labelling of hippocampal beta-amyloid in triple-transgenic mice with a fluorescent acetylcholinesterase inhibitor released from nanoparticles.

    Science.gov (United States)

    Härtig, Wolfgang; Kacza, Johannes; Paulke, Bernd-Reiner; Grosche, Jens; Bauer, Ute; Hoffmann, Anke; Elsinghorst, Paul W; Gütschow, Michael

    2010-01-01

    The drastic loss of cholinergic projection neurons in the basal forebrain is a hallmark of Alzheimer's disease (AD), and drugs most frequently applied for the treatment of dementia include inhibitors of the acetylcholine-degrading enzyme acetylcholinesterase (AChE). This protein is known to act as a ligand of beta-amyloid (Abeta) in senile plaques, a further neuropathological sign of AD. Recently, we have shown that the fluorescent, heterodimeric AChE inhibitor PE154 allows for the histochemical staining of cortical Abeta plaques in triple-transgenic (TTG) mice with age-dependent beta-amyloidosis and tau hyperphosphorylation, an established animal model for aspects of AD. In the present study, we have primarily demonstrated the targeting of Abeta-immunopositive plaques with PE154 in vivo for 4 h up to 1 week after injection into the hippocampi of 13-20-month-old TTG mice. Numerous plaques, double-stained for PE154 and Abeta-immunoreactivity, were revealed by confocal laser-scanning microscopy. Additionally, PE154 targeted hippocampal Abeta deposits in aged TTG mice after injection of carboxylated polyglycidylmethacrylate nanoparticles delivering the fluorescent marker in vivo. Furthermore, biodegradable core-shell polystyrene/polybutylcyanoacrylate nanoparticles were found to be suitable, alternative vehicles for PE154 as a useful in vivo label of Abeta. Moreover, we were able to demonstrate that PE154 targeted Abeta, but neither phospho-tau nor reactive astrocytes surrounding the plaques. In conclusion, nanoparticles appear as versatile carriers of AChE inhibitors and other promising drugs for the treatment of AD.

  15. Sequential NMR resonance assignment and structure determination of the Kunitz-type inhibitor domain of the Alzheimer's beta-amyloid precursor protein.

    Science.gov (United States)

    Heald, S L; Tilton, R F; Hammond, L J; Lee, A; Bayney, R M; Kamarck, M E; Ramabhadran, T V; Dreyer, R N; Davis, G; Unterbeck, A

    1991-10-29

    Certain precursor proteins (APP751 and APP770) of the amyloid beta-protein (AP) present in Alzheimer's disease contain a Kunitz-type serine protease inhibitor domain (APPI). In this study, the domain is obtained as a functional inhibitor through both recombinant (APPIr) and synthetic (APPIs) methodologies, and the solution structure of APPI is determined by 1H 2D NMR techniques. Complete sequence-specific resonance assignments (except for P13 and G37 NH) for both APPIr and APPIs are achieved using standard procedures. Ambiguities arising from degeneracies in the NMR resonances are resolved by varying sample conditions. Qualitative interpretation of short- and long-range NOEs reveals secondary structural features similar to those extensively documented by NMR for bovine pancreatic trypsin inhibitor (BPTI). A more rigorous interpretation of the NOESY spectra yields NOE-derived interresidue distance restraints which are used in conjunction with dynamic simulated annealing to generate a family of APPI structures. Within this family, the beta-sheet and helical regions are in good agreement with the crystal structure of BPTI, whereas portions of the protease-binding loops deviate from those in BPTI. These deviations are consistent with those recently described in the crystal structure of APPI (Hynes et al., 1990). Also supported in the NMR study is the hydrophobic patch in the protease-binding domain created by side chain-side chain NOE contacts between M17 and F34. In addition, the NMR spectra indicate that the rotation of the W21 ring in APPI is hindered, unlike Y21 in BPTI, showing a greater than 90% preference for one orientation in the hydrophobic groove.

  16. Effects of synaptic modulation on beta-amyloid, synaptophysin, and memory performance in Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Tampellini, Davide; Capetillo-Zarate, Estibaliz; Dumont, Magali; Huang, Zhenyong; Yu, Fangmin; Lin, Michael T; Gouras, Gunnar K

    2010-10-27

    Accumulation of β-amyloid (Aβ) and loss of synapses are hallmarks of Alzheimer's disease (AD). How synaptic activity relates to Aβ accumulation and loss of synapses is a current topic of major interest. Synaptic activation promotes Aβ secretion, and chronic reduction of synaptic activity reduced Aβ plaques in an AD transgenic mouse model. This suggested beneficial effects of reducing synaptic activity in AD. We now show that reduced synaptic activity causes detrimental effects on synapses and memory despite reducing plaques using two different models of chronic synaptic inhibition: deafferentation of the barrel cortex and administration of benzodiazepine. An interval of prolonged synaptic inhibition exacerbated loss of synaptophysin compared with synaptically more active brain in AD transgenic but not wild-type mice. Furthermore, an interval of benzodiazepine treatment, followed by a washout period, exacerbated memory impairment in AD transgenic mice. Exacerbation of synaptic and behavioral abnormalities occurred in the setting of reduced Aβ plaques but elevated intraneuronal Aβ immunoreactivity. These data support beneficial effects of synaptic activation on Aβ-related synaptic and behavioral impairment in AD.

  17. Glutamine acts as a neuroprotectant against DNA damage, beta-amyloid and H2O2-induced stress.

    Directory of Open Access Journals (Sweden)

    Jianmin Chen

    Full Text Available Glutamine is the most abundant free amino acid in the human blood stream and is 'conditionally essential' to cells. Its intracellular levels are regulated both by the uptake of extracellular glutamine via specific transport systems and by its intracellular synthesis by glutamine synthetase (GS. Adding to the regulatory complexity, when extracellular glutamine is reduced GS protein levels rise. Unfortunately, this excess GS can be maladaptive. GS overexpression is neurotoxic especially if the cells are in a low-glutamine medium. Similarly, in low glutamine, the levels of multiple stress response proteins are reduced rendering cells hypersensitive to H(2O(2, zinc salts and DNA damage. These altered responses may have particular relevance to neurodegenerative diseases of aging. GS activity and glutamine levels are lower in the Alzheimer's disease (AD brain, and a fraction of AD hippocampal neurons have dramatically increased GS levels compared with control subjects. We validated the importance of these observations by showing that raising glutamine levels in the medium protects cultured neuronal cells against the amyloid peptide, Aβ. Further, a 10-day course of dietary glutamine supplementation reduced inflammation-induced neuronal cell cycle activation, tau phosphorylation and ATM-activation in two different mouse models of familial AD while raising the levels of two synaptic proteins, VAMP2 and synaptophysin. Together, our observations suggest that healthy neuronal cells require both intracellular and extracellular glutamine, and that the neuroprotective effects of glutamine supplementation may prove beneficial in the treatment of AD.

  18. The clinical significance of plasmatic amyloid A{beta}-40 peptide levels in Alzheimer's disease patients treated with galantamine.

    Science.gov (United States)

    Modrego, Pedro J; Monleon, Inmaculada; Sarasa, Manuel

    2008-01-01

    To date there are no conclusive reports on the usefulness of determining amyloid peptides in the serum of patients with Alzheimer's disease (AD). Only anecdotal works deal with the changes in the peptides produced by cholinesterase inhibitors. In this study, the authors investigated and studied the clinical significance of plasmatic Abeta-40 and Abeta-42 peptide levels in a series of 34 consecutive patients with AD. The baseline levels of the Abeta-40 peptide correlated negatively with the Mini Examen Cognoscitivo (Spanish version of the Mini-Mental test) score. Complete follow-up was possible in 22 patients. After 6 months of treatment with galantamine, the mean Abeta-40 peptide levels decreased from 31.86 to 24.22 pg/mL. The baseline levels of Abeta-40 were predictive of response to treatment in the Alzheimer's Disease Assessment Scale-Cognitive Subscale. The authors conclude that determining plasmatic Abeta-40 peptide levels could be useful in predicting and monitoring response to treatment in AD.

  19. 7.0T nuclear magnetic resonance evaluation of the amyloid beta (1-40) animal model of Alzheimer’s disease:comparison of cytology veriifcation

    Institute of Scientific and Technical Information of China (English)

    Lei Zhang; Shuai Dong; Guixiang Zhao; Yu Ma

    2014-01-01

    3.0T magnetic resonance spectroscopic imaging is a commonly used method in the research of brain function in Alzheimer’s disease. However, the role of 7.0T high-ifeld magnetic resonance spectroscopic imaging in brain function of Alzheimer’s disease remains unclear. In this study, 7.0T magnetic resonance spectroscopy showed that in the hippocampus of Alzheimer’s disease rats, the N-acetylaspartate wave crest was reduced, and the creatine and choline wave crest was elevated. This ifnding was further supported by hematoxylin-eosin staining, which showed a loss of hippocampal neurons and more glial cells. Moreover, electron microscopy showed neuronal shrinkage and mitochondrial rupture, and scanning electron microscopy revealed small size hippocampal synaptic vesicles, incomplete synaptic structure, and reduced number. Overall, the results revealed that 7.0T high-ifeld nuclear magnetic resonance spectroscopy detected the lesions and functional changes in hippocampal neurons of Alzheimer’s disease rats in vivo, allowing the possibility for assessing the success rate and grading of the amyloid beta (1-40) animal model of Alzheimer’s disease.

  20. Pelargonidin Improves Passive Avoidance Task Performance in a Rat Amyloid Beta25-35 Model of Alzheimer’s Disease Via Estrogen Receptor Independent Pathways

    Directory of Open Access Journals (Sweden)

    Hamid Sohanaki

    2016-05-01

    Full Text Available Alzheimer’s disease (AD is a disorder with multiple pathophysiological causes, destructive outcomes, and no available definitive cure. Pelargonidin (Pel, an anthocyanin derivative, is an estrogen receptor agonist with little estrogen side effects. This study was designed to assess Pel memory enhancing effects on the a rat Amyloid Beta25-35 (Aβ intrahippocampal microinjections model of AD in the passive avoidance task performance paradigm and further evaluate the potential estrogen receptor role on the memory-evoking compound. Equally divided rats were assigned to 5 groups of sham, Aβ intrahippocampal microinjected, Pel pretreated (10 mg/kg; P.O, α estrogen antagonist intra-cerebrovascular (i.c.v. microinjected, and β estrogen antagonist (i.c.v microinjected animals. Intrahippocampal microinjections of Aβ were adopted to provoke AD model. Passive avoidance task test was also used to assess memory performance. Pel pretreatment prior to Aβ microinjections significantly improved step-through latency (P<0.001 in passive avoidance test. In α and β estrogen, antagonists received animals, passive avoidance task performance was not statistically changed (P=0.11 & P=0.41 respectively compared to Pel pretreated and sham animals. Our results depicted that Pel improves Aβ induced memory dysfunction in passive avoidance test performance through estrogen receptor independently related pathways.

  1. Discovery of DNA dyes Hoechst 34580 and 33342 as good candidates for inhibiting amyloid beta formation: in silico and in vitro study

    Science.gov (United States)

    Thai, Nguyen Quoc; Tseng, Ning-Hsuan; Vu, Mui Thi; Nguyen, Tin Trung; Linh, Huynh Quang; Hu, Chin-Kun; Chen, Yun-Ru; Li, Mai Suan

    2016-08-01

    Combining Lipinski's rule with the docking and steered molecular dynamics simulations and using the PubChem data base of about 1.4 million compounds, we have obtained DNA dyes Hoechst 34580 and Hoechst 33342 as top-leads for the Alzheimer's disease. The binding properties of these ligands to amyloid beta (Aβ) fibril were thoroughly studied by in silico and in vitro experiments. Hoechst 34580 and Hoechst 33342 prefer to locate near hydrophobic regions with binding affinity mainly governed by the van der Waals interaction. By the Thioflavin T assay, it was found that the inhibition constant IC50 ≈ 0.86 and 0.68 μM for Hoechst 34580 and Hoechst 33342, respectively. This result qualitatively agrees with the binding free energy estimated using the molecular mechanic-Poisson Boltzmann surface area method and all-atom simulations with the AMBER-f99SB-ILDN force field and water model TIP3P. In addition, DNA dyes have the high capability to cross the blood brain barrier. Thus, both in silico and in vitro experiments have shown that Hoechst 34580 and 33342 are good candidates for treating the Alzheimer's disease by inhibiting Aβ formation.

  2. On the Involvement of Copper Binding to the N-Terminus of the Amyloid Beta Peptide of Alzheimer's Disease: A Computational Study on Model Systems

    Directory of Open Access Journals (Sweden)

    Samira Azimi

    2011-01-01

    Full Text Available Density functional and second order Moller-Plesset perturbation theoretical methods, coupled with a polarizable continuum model of water, were applied to determine the structures, binding affinities, and reduction potentials of Cu(II and Cu(I bound to models of the Asp1, Ala2, His6, and His13His14 regions of the amyloid beta peptide of Alzheimer's disease. The results indicate that the N-terminal Asp binds to Cu(II together with His6 and either His13 or His14 to form the lower pH Component I of Aβ. Component II of Aβ is the complex between Cu(II and His6, His13, and His14, to which an amide O (of Ala2 is also coordinated. Asp1 does not bind to Cu(II if three His residues are attached nor to any Cu(I species to which one or more His residues are bound. The most stable Cu(I species is one in which Cu(I bridges the Nδ of His13 and His14 in a linear fashion. Cu(I binds more strongly to Aβ than does Cu(II. The computed reduction potential that closely matches the experimental value for Cu(II/Aβ corresponds to reduction of Component II (without Ala2 to the Cu(I complex after endergonic attachment of His6.

  3. Exploring Beta-Amyloid Protein Transmembrane Insertion Behavior and Residue-Specific Lipid Interactions in Lipid Bilayers Using Multiscale MD Simulations

    Science.gov (United States)

    Qiu, Liming; Vaughn, Mark; Cheng, Kelvin

    2013-03-01

    Beta-amyloid (Abeta) interactions with neurons are linked to Alzheimer's. Using a multiscale MD simulation strategy that combines the high efficiency of phase space sampling of coarse-grained MD (CGD) and the high spatial resolution of Atomistic MD (AMD) simulations, we studied the Abeta insertion dynamics in cholesterol-enriched and -depleted lipid bilayers that mimic the neuronal membranes domains. Forward (AMD-CGD) and reverse (CGD-AMD) mappings were used. At the atomistic level, cholesterol promoted insertion of Abeta with high (folded) or low (unfolded) helical contents of the lipid insertion domain (Lys28-Ala42), and the insertions were stabilized by the Lys28 snorkeling and Ala42-anchoring to the polar lipid groups of the bilayer up to 200ns. After the forward mapping, the folded inserted state switched to a new extended inserted state with the Lys28 descended to the middle of the bilayer while the unfolded inserted state migrated to the membrane surface up to 4000ns. The two new states remained stable for 200ns at the atomistic scale after the reverse mapping. Our results suggested that different Abeta membrane-orientation states separated by free energy barriers can be explored by the multiscale MD more effectively than by Atomistic MD simulations alone. NIH RC1-GM090897-02

  4. Amyloid beta 25-35 impairs reconsolidation of object recognition memory in rats and this effect is prevented by lithium carbonate.

    Science.gov (United States)

    Álvarez-Ruíz, Yarummy; Carrillo-Mora, Paul

    2013-08-26

    Previous studies in transgenic mice models of Alzheimer's disease (AD) have demonstrated an age dependent memory reconsolidation failure, suggesting that this may be an additional mechanism that contributes to the memory impairment observed in AD. However, so far it is unknown whether this effect can be caused by exogenous administration of amyloid beta (Aβ). The purpose was to determine the effects of soluble Aβ 25-35 on reconsolidation of object recognition memory (ORM) in rats, and assess whether these effects can be prevented by lithium carbonate (LiCa). In this study, male Wistar rats were used and the following groups were formed (N=6-13): (a) control, given saline solution; (b) [NMDA antagonist] MK-801 (0.1 mg/kg); (c) LiCa (350 mg/kg); (d) Aβ 25-35 (100 μM) injected into both hippocampi; and (e) Aβ 25-35+LiCa. In all cases, treatments were administered with or without reactivation of memory. The results showed that soluble Aβ 25-35 produces ORM impairment similar to MK-801 when given shortly after memory reactivation, and this effect is prevented by prior administration of LiCa.

  5. Curcumin Attenuates Beta-Amyloid-Induced Neuroinflammation via Activation of Peroxisome Proliferator-Activated Receptor-Gamma Function in a Rat Model of Alzheimer's Disease

    Science.gov (United States)

    Liu, Zun-Jing; Li, Zhong-Hao; Liu, Lei; Tang, Wen-Xiong; Wang, Yu; Dong, Ming-Rui; Xiao, Cheng

    2016-01-01

    Neuroinflammation is known to have a pivotal role in the pathogenesis of Alzheimer's disease (AD), and curcumin has been reported to have therapeutical effects on AD because of its anti-inflammatory effects. Curcumin is not only a potent PPARγ agonist, but also has neuroprotective effects on cerebral ischemic injury. However, whether PPARγ activated by curcumin is responsible for the anti-neuroinflammation and neuroprotection on AD remains unclear, and needs to be further investigated. Here, using both APP/PS1 transgenic mice and beta-amyloid-induced neuroinflammation in mixed neuronal/glial cultures, we showed that curcumin significantly alleviated spatial memory deficits in APP/PS1 mice and promoted cholinergic neuronal function in vivo and in vitro. Curcumin also reduced the activation of microglia and astrocytes, as well as cytokine production and inhibited nuclear factor kappa B (NF-κB) signaling pathway, suggesting the beneficial effects of curcumin on AD are attributable to the suppression of neuroinflammation. Attenuation of these beneficial effects occurred when co-administrated with PPARγ antagonist GW9662 or silence of PPARγ gene expression, indicating that PPARγ might be involved in anti-inflammatory effects. Circular dichroism and co-immunoprecipitation analysis showed that curcumin directly bound to PPARγ and increased the transcriptional activity and protein levels of PPARγ. Taking together, these data suggested that PPARγ might be a potential target of curcumin, acting to alleviate neuroinflammation and improve neuronal function in AD. PMID:27594837

  6. Antiamnesic Effect of Broccoli (Brassica oleracea var. italica) Leaves on Amyloid Beta (Aβ)1-42-Induced Learning and Memory Impairment.

    Science.gov (United States)

    Park, Seon Kyeong; Ha, Jeong Su; Kim, Jong Min; Kang, Jin Yong; Lee, Du Sang; Guo, Tian Jiao; Lee, Uk; Kim, Dae-Ok; Heo, Ho Jin

    2016-05-04

    To examine the antiamnesic effects of broccoli (Brassica oleracea var. italica) leaves, we performed in vitro and in vivo tests on amyloid beta (Aβ)-induced neurotoxicity. The chloroform fraction from broccoli leaves (CBL) showed a remarkable neuronal cell-protective effect and an inhibition against acetylcholinesterase (AChE). The ameliorating effect of CBL on Aβ1-42-induced learning and memory impairment was evaluated by Y-maze, passive avoidance, and Morris water maze tests. The results indicated improving cognitive function in the CBL group. After the behavioral tests, antioxidant effects were detected by superoxide dismutase (SOD), oxidized glutathione (GSH)/total GSH, and malondialdehyde (MDA) assays, and inhibition against AChE was also presented in the brain. Finally, oxo-dihydroxy-octadecenoic acid (oxo-DHODE) and trihydroxy-octadecenoic acid (THODE) as main compounds were identified by quadrupole time-of-flight ultraperformance liquid chromatography (Q-TOF UPLC-MS) analysis. Therefore, our studies suggest that CBL could be used as a natural resource for ameliorating Aβ1-42-induced learning and memory impairment.

  7. Methionine residue 35 is critical for the oxidative stress and neurotoxic properties of Alzheimer's amyloid beta-peptide 1-42.

    Science.gov (United States)

    Butterfield, D Allan; Kanski, Jaroslaw

    2002-07-01

    Amyloid beta-peptide 1-42 [Abeta(1-42)] is central to the pathogenesis of Alzheimer's disease (AD), and the AD brain is under intense oxidative stress. Our laboratory combined these two aspects of AD into the Abeta-associated free radical oxidative stress model for neurodegeneration in AD brain. Abeta(1-42) caused protein oxidation, lipid peroxidation, reactive oxygen species formation, and cell death in neuronal and synaptosomal systems, all of which could be inhibited by free radical antioxidants. Recent studies have been directed at discerning molecular mechanisms by which Abeta(1-42)-associated free radical oxidative stress and neurotoxicity arise. The single methionine located in residue 35 of Abeta(1-42) is critical for these properties. This review presents the evidence supporting the role of methionine in Abeta(1-42)-associated free radical oxidative stress and neurotoxicity. This work is of obvious relevance to AD and provides a coupling between the centrality of Abeta(1-42) in the pathogenesis of AD and the oxidative stress under which the AD brain exists.

  8. Protective effects of components of the Chinese herb grassleaf sweetflag rhizome on PC12 cells incubated with amyloid-beta42

    Directory of Open Access Journals (Sweden)

    Zi-hao Liang

    2015-01-01

    Full Text Available The major ingredients of grassleaf sweetflag rhizome are β-asarone and eugenol, which can cross the blood-brain barrier and protect neurons. This study aimed to observe the neuroprotective effects and mechanisms of β-asarone and eugenol, components of the Chinese herb grassleaf sweetflag rhizome, on PC12 cells. First, PC12 cells were cultured with different concentrations (between 1 × 10 -10 M and 1 × 10 -5 M of β-asarone and eugenol. Survival rates of PC12 cells were not significantly affected. Second, PC12 cells incubated with amyloid-beta42, which reduced cell survival, were cultured under the same conditions (1 × 10 -6 M β-asarone and eugenol. The survival rates of PC12 cells significantly increased, while expression levels of the mRNAs for the pro-apoptotic protein Bax decreased, and those for the anti-apoptotic protein Bcl mRNA increased. In addition, the combination of β-asarone with eugenol achieved better results than either component alone. Our experimental findings indicate that both β-asarone and eugenol protect PC12 cells through inhibiting apoptosis, and that the combination of the two is better than either alone.

  9. Cyanidin suppresses amyloid beta-induced neurotoxicity by inhibiting reactive oxygen species-mediated DNA damage and apoptosis in PC12 cells

    Institute of Scientific and Technical Information of China (English)

    Yi Wang; Nam Chun Cho; Xiao-ting Fu; Da-wei Li; Kun Wang; Xin-zhi Wang; Yuan Li; Bao-liang Sun; Xiao-yi Yang; Zun-cheng Zheng

    2016-01-01

    Amyloid beta (Aβ)-induced oxidative stress is a major pathologic hallmark of Alzheimer’s disease. Cyan-idin, a natural lfavonoid compound, is neuroprotective against oxidative damage-mediated degeneration. However, its molecular mechanism remains unclear. Here, we investigated the effects of cyanidin pretreat-ment against Aβ-induced neurotoxicity in PC12 cells, and explored the underlying mechanisms. Cyanidin pretreatment signiifcantly attenuated Aβ-induced cell mortality and morphological changes in PC12 cells. Mechanistically, cyanidin effectively blocked apoptosis induced by Aβ, by restoring the mitochondrial mem-brane potentialvia upregulation of Bcl-2 protein expression. Moreover, cyanidin markedly protected PC12 cells from Aβ-induced DNA damage by blocking reactive oxide species and superoxide accumulation. These results provide evidence that cyanidin suppresses Aβ-induced cytotoxicity, by preventing oxidative damage mediated by reactive oxide species, which in turn inhibits mitochondrial apoptosis. Our study demonstrates the therapeutic potential of cyanidin in the prevention of oxidative stress-mediated Aβ neurotoxicity.

  10. Sodium Hydrosulfide Attenuates Beta-Amyloid-Induced Cognitive Deficits and Neuroinflammation via Modulation of MAPK/NF-κB Pathway in Rats.

    Science.gov (United States)

    Liu, Huiyu; Deng, Yuanyuan; Gao, Jianmei; Liu, Yuangui; Li, Wenxian; Shi, Jingshan; Gong, Qihai

    2015-01-01

    Beta-amyloid (Aβ), a neurotoxic peptide, accumulates in the brain of Alzheimer's disease (AD) subjects to initiate neuroinflammation eventually leading to memory impairment. Here, we demonstrated that Aβ-injected rats exhibited cognitive impairment and neuroinflammation with a remarkable reduction of hydrogen sulfide (H2S) levels in the hippocampus compared with that in shamoperated rats. Interestingly, the expression of cystathionine-β-synthase (CBS) and 3- mercaptopyruvate-sulfurtransferase (3MST), the major enzymes responsible for endogenous H2S generation, were also significantly decreased. However, intraperitoneal (i.p.) injection of sodium hydrosulfide (NaHS, a H2S donor) dramatically attenuated cognitive impairment and neuroinflammation induced by hippocampal injection of 10 μg of Aβ1-42 in rats. Subsequently, NaHS significantly suppressed the expression of tumor necrosis factor (TNF)-α, interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2) in rat hippocampus following Aβ administration. Furthermore, NaHS exerted a beneficial effect on inhibition of IκB-α degradation and subsequent activation of transcription factor nuclear factor κB (NF-κB), as well as inhibition of extracellular signal-regulated kinase (ERK1/2) activity and p38 MAPK activity but not c-Jun N-terminal kinase (JNK) activity induced by Aβ. These results demonstrate that NaHS might be a potential agent for treatment of neuroinflammation-related AD.

  11. S-adenosylmethionine Administration Attenuates Low Brain-Derived Neurotrophic Factor Expression Induced by Chronic Cerebrovascular Hypoperfusion or Beta Amyloid Treatment.

    Science.gov (United States)

    Li, Qian; Cui, Jing; Fang, Chen; Zhang, Xiaowen; Li, Liang

    2016-04-01

    Chronic cerebrovascular hypoperfusion is a high-risk factor for Alzheimer's disease (AD) as it is conducive to beta amyloid (Aβ) over-production. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family widely expressed in the central nervous system. The structure of the rat BDNF gene is complex, consisting of eight non-coding exons (I-VIII) and one coding exon (IX). The BDNF gene is transcribed from multiple promoters located upstream of different 5' non-coding exons to produce a heterogeneous population of BDNF mRNAs. S-adenosylmethionine (SAM) produced in the methionine cycle is the primary methyl donor and the precursor of glutathione. In this study, a cerebrovascular hypoperfusion rat model and an Aβ intrahippocampal injection rat model were used to explore the expression profiles of all BDNF transcripts in the hippocampus with chronic cerebrovascular hypoperfusion or Aβ injection as well as with SAM treatment. We found that the BDNF mRNAs and protein were down-regulated in the hippocampus undergoing chronic cerebrovascular hypoperfusion as well as Aβ treatment, and BDNF exons IV and VI played key roles. SAM improved the low BDNF expression following these insults mainly through exons IV and VI. These results suggest that SAM plays a neuroprotective role by increasing the expression of endogenous BDNF and could be a potential target for AD therapy.

  12. A semi-automated motion-tracking analysis of locomotion speed in the C. elegans transgenics overexpressing beta-amyloid in neurons

    Directory of Open Access Journals (Sweden)

    Kevin eMachino

    2014-07-01

    Full Text Available Multi-Worm Tracker (MWT is a real-time computer vision system that can simultaneously quantify motional patterns of multiple worms. MWT provides several behavioral parameters, including analysis of accurate real-time locomotion speed in the nematode, Caenorhabditis elegans. Here, we determined locomotion speed of the Alzheimer’s disease (AD transgenic strain that over-expresses human beta-amyloid1-42 (Aβ in the neurons. The MWT analysis showed that the AD strain logged a slower average speed than the wild type worms. The results may be consistent with the observation that the AD patients with dementia tend to show deficits in physical activities, including frequent falls. The AD strain showed reduced ability of the eggs to hatch and slowed hatching of the eggs. Thus, over-expression of Aβ in neurons causes negative effects on locomotion and hatchability. This study sheds light on new examples of detrimental effects that Aβ deposits can exhibit using C. elegans as a model system. The information gathered from this study indicates that the motion tracking analysis is a cost-effective, efficient way to assess the deficits of Aβ over-expression in the C. elegans system.

  13. Protective effects of components of the Chinese herb grassleaf sweetlfag rhizome on PC12 cells incubated with amyloid-beta42

    Institute of Scientific and Technical Information of China (English)

    Zi-hao Liang; Xiao-hui Cheng; Zhi-gang Ruan; Han Wang; Shan-shan Li; Jing Liu; Guo-ying Li; Su-min Tian

    2015-01-01

    The major ingredients of grassleaf sweetlfag rhizome areβ-asarone and eugenol, which can cross the blood-brain barrier and protect neurons. This study aimed to observe the neuroprotective effects and mechanisms ofβ-asarone and eugenol, components of the Chinese herb grassleaf sweetlfag rhizome, on PC12 cells. First, PC12 cells were cultured with different concentrations (between 1 × 10–10 M and 1 × 10–5 M) ofβ-asarone and eugenol. Survival rates of PC12 cells were not significantly affected. Second, PC12 cells incubated with amyloid-beta42, which reduced cell survival, were cultured under the same conditions (1 × 10–6 Mβ-asarone and eugenol). The survival rates of PC12 cells significantly increased, while expression levels of the mRNAs for the pro-apoptotic protein Bax decreased, and those for the anti-apoptotic protein Bcl mRNA increased. In addition, the combination ofβ-asarone with eugenol achieved better results than either component alone. Our experimental ifndings indicate that bothβ-asarone and eugenol protect PC12 cells through inhibiting apoptosis, and that the combination of the two is better than either alone.

  14. Curcumin inhibits beta-amyloid protein 40/42 expression in the brain in a concentration-and time-dependent manner

    Institute of Scientific and Technical Information of China (English)

    Xiong Zhang; Lu Si; Xiaodong Shi; Wenke Yin; Yu Li

    2010-01-01

    Several studies have demonstrated that the amount of beta-amyloid(Aβ)protein in the brain can be lowered by down-regulating Aβ production,promoting Aβ degradation,reducing Aβ oligomerization or deposition,thereby alleviating symptoms of Alzheimer's disease.Curcumin has been known to be a peroxisome proliferator activated receptor gamma(PPARy)agonist and can obviously inhibit Aβ production and oligomerization.This study investigated the effects of curcumin on the β-site APP cleaving enzyme 1(BACE1)activity and PPARy expression in human neuroblastoma SH-SY5Y cells,and validated the inhibitory effects of curcumin on Aβ40/42 expression in the brain.Results revealed that PPARy mRNA and protein expression in the human neuroblastoma SH-SY5Y cells significantly increased with increasing curcumin concentration and time course(P < 0.05);BACE1 mRNA and protein expression and Aβ40/42 production significantly decreased with increasing curcumin concentration and time course(P < 0.05).The changes in PPARY and BACE1expression during Aβ production could be reversed by the PPARy antagonist GW9662.These findings indicate that curcumin reduced Aβ production by activating PPARy expression and inhibiting BACE1 expression in a concentration-and time-dependent manner.

  15. Radiation dosimetry and biodistribution of the beta-amyloid plaque imaging tracer {sup 11}C-BTA-1 in humans

    Energy Technology Data Exchange (ETDEWEB)

    Thees, S. [Ulm Univ. (Germany). Klinik fuer Nuklearmedizin; Leipzig Univ. (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie; Neumaier, B.; Glatting, G.; Deisenhofer, S.; Reske, S.N.; Mottaghy, F.M. [Ulm Univ. (Germany). Klinik fuer Nuklearmedizin; Arnim, C.A.F. von [Ulm Univ. (Germany). Abt. fuer Neurologie

    2007-07-01

    Aim: [N-methyl-{sup 11}C]2-(4'-(methylaminophenyl)-benzothiazole({sup 11}C-BTA-1)) is a thioflavin-T derivative that has been one of the promising PET tracers for imaging of amyloid plaque distribution in the Alzheimer patients brain in vivo. The biodistribution and dosimetry of this tracer in humans is presented and compared to the results of a previous dosimetry and biodistribution study of another thioflavin-T derivative [N-methyl-{sup 11}C]2-hydroxy-(4'-(methylaminophenyl)-benzothiazole ({sup 11}C-OH-BTA-1)) in baboons. Methods: Five subjects underwent 2D dynamic PET imaging. Source organs were segmented using a semiautomatic algorithm based on clustering. Residence times for each source organ were determined by analytical integration of an exponential fit of the time activity curves. Finally organ doses were estimated using the software OLINDA/EXM. Results: The administration of 286 {+-} 93 MBq {sup 11}C-BTA-1 was well tolerated by all subjects. Effective radiation dose was 4.3 {mu}Sv/MBq, range 3.6-5.0 {mu}Sv/MBq. In four ofthe five subjects the liver, in one of the subjects the gallbladder was the critical organ. Conclusion: The radiation burden of a single dose of 300 MBq {sup 11}C-BTA-1 is within the accepted limits for research purpose. In contrast to the previous non-human primate study revealing the gallbladder as the critical organ for {sup 11}C-6-OH-BTA-1, we found the liver as the critical organ in humans using {sup 11}C-BTA-1. Possible explanations may be (1) a reduced bile concentration of {sup 11}C-BTA-1 due to the absent OH-group or (2) a different hepatic metabolism of thioflavin derivatives in human and baboon. (orig.)

  16. Progressive effect of beta amyloid peptides accumulation on CA1 pyramidal neurons: a model study suggesting possible treatments

    Directory of Open Access Journals (Sweden)

    Viviana eCulmone

    2012-07-01

    Full Text Available Several independent studies show that accumulation of β-amyloid (Aβ peptides , one of the characteristic hallmark of Alzheimer’s Disease (AD, can affect normal neuronal activity in different ways. However, in spite of intense experimental work to explain the possible underlying mechanisms of action, a comprehensive and congruent understanding is still lacking. Part of the problem might be the opposite ways in which Aβ have been experimentally found to affect the normal activity of a neuron; for example, making a neuron more excitable (by reducing the A- or DR-type K+ currents or less excitable (by reducing synaptic transmission and Na+ current. The overall picture is therefore confusing, since the interplay of many mechanisms makes it difficult to link individual experimental findings with the more general problem of understanding the progression of the disease. This is an important issue, especially for the development of new drugs trying to ameliorate the effects of the disease. We addressed these paradoxes through computational models. We first modeled the different stages of AD by progressively modifying the intrinsic membrane and synaptic properties of a realistic model neuron, while accounting for multiple and different experimental findings and by evaluating the contribution of each mechanism to the overall modulation of the cell’s excitability. We then tested a number of manipulations of channel and synaptic activation properties that could compensate for the effects of Aβ. The model predicts possible therapeutic treatments in terms of pharmacological manipulations of channels’ kinetic and activation properties. The results also suggest how and which mechanisms can be targeted by a drug to restore the original firing conditions.

  17. Differential mode of interaction of ThioflavinT with native β structural motif in human α 1-acid glycoprotein and cross beta sheet of its amyloid: Biophysical and molecular docking approach

    Science.gov (United States)

    Ajmal, Mohammad Rehan; Nusrat, Saima; Alam, Parvez; Zaidi, Nida; Badr, Gamal; Mahmoud, Mohamed H.; Rajpoot, Ravi Kant; Khan, Rizwan Hasan

    2016-08-01

    The present study details the interaction mechanism of Thioflavin T (ThT) to Human α1-acid glycoprotein (AAG) applying various spectroscopic and molecular docking methods. Fluorescence quenching data revealed the binding constant in the order of 104 M-1 and the standard Gibbs free energy change value, ΔG = -6.78 kcal mol-1 for the interaction between ThT and AAG indicating process is spontaneous. There is increase in absorbance of AAG upon the interaction of ThT that may be due to ground state complex formation between ThT and AAG. ThT impelled rise in β-sheet structure in AAG as observed from far-UV CD spectra while there are minimal changes in tertiary structure of the protein. DLS results suggested the reduction in AAG molecular size, ligand entry into the central binding pocket of AAG may have persuaded the molecular compaction in AAG. Isothermal titration calorimetric (ITC) results showed the interaction process to be endothermic with the values of standard enthalpy change ΔH0 = 4.11 kcal mol-1 and entropy change TΔS0 = 10.82 kcal.mol- 1. Moreover, docking results suggested hydrophobic interactions and hydrogen bonding played the important role in the binding process of ThT with F1S and A forms of AAG. ThT fluorescence emission at 485 nm was measured for properly folded native form and for thermally induced amyloid state of AAG. ThT fluorescence with native AAG was very low, while on the other hand with amyloid induced state of the protein AAG showed a positive emission peak at 485 nm upon the excitation at 440 nm, although it binds to native state as well. These results confirmed that ThT binding alone is not responsible for enhancement of ThT fluorescence but it also required beta stacked sheet structure found in protein amyloid to give proper signature signal for amyloid. This study gives the mechanistic insight into the differential interaction of ThT with beta structures found in native state of the proteins and amyloid forms, this study reinforce

  18. Hydrogen sulfide attenuates spatial memory impairment and hippocampal neuroinflammation in beta-amyloid rat model of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Xuan Aiguo

    2012-08-01

    Full Text Available Abstract Background Endogenously produced hydrogen sulfide (H2S may have multiple functions in brain. An increasing number of studies have demonstrated its anti-inflammatory effects. In the present study, we investigated the effect of sodium hydrosulfide (NaHS, a H2S donor on cognitive impairment and neuroinflammatory changes induced by injections of Amyloid-β1-40 (Aβ1-40, and explored possible mechanisms of action. Methods We injected Aβ1-40 into the hippocampus of rats to mimic rat model of Alzheimer’s disease (AD. Morris water maze was used to detect the cognitive function. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL assay was performed to detect neuronal apoptosis. Immunohistochemistry analyzed the response of glia. The expression of interleukin (IL-1β and tumor necrosis factor (TNF-α was measured by enzyme-linked immunosorbent assay (ELISA and quantitative real-time polymerase chain reaction (qRT-PCR. The expression of Aβ1-40, phospho-p38 mitogen-activated protein kinase (MAPK, phospho-p65 Nuclear factor (NF-κB, and phospho-c-Jun N-terminal Kinase (JNK was analyzed by western blot. Results We demonstrated that pretreatment with NaHS ameliorated learning and memory deficits in an Aβ1-40 rat model of AD. NaHS treatment suppressed Aβ1-40-induced apoptosis in the CA1 subfield of the hippocampus. Moreover, the over-expression in IL-1β and TNF-α as well as the extensive astrogliosis and microgliosis in the hippocampus induced by Aβ1-40 were significantly reduced following administration of NaHS. Concomitantly, treatment with NaHS alleviated the levels of p38 MAPK and p65 NF-κB phosphorylation but not JNK phosphorylation that occurred in the Aβ1-40-injected hippocampus. Conclusions These results indicate that NaHS could significantly ameliorate Aβ1-40-induced spatial learning and memory impairment, apoptosis, and neuroinflammation at least in part via the inhibition of p38 MAPK and p65 NF

  19. Monascin from Monascus-Fermented Products Reduces Oxidative Stress and AmyloidToxicity via DAF-16/FOXO in Caenorhabditis elegans.

    Science.gov (United States)

    Shi, Yeu-Ching; Pan, Tzu-Ming; Liao, Vivian Hsiu-Chuan

    2016-09-28

    Amyloid-β (Aβ)-induced oxidative stress and toxicity are leading risk factors for Alzheimer's disease (AD). Monascin (MS) is a novel compound proposed for antioxidative stress applications and is derived from an edible fungus secondary metabolite. This study assessed the effects of MS on oxidative stress, paralysis, Aβ accumulation, and lifespan in the nematode Caenorhabditis elegans and investigated its underlying mechanisms of action. The results showed that MS increased the survival of C. elegans under juglone-induced oxidative stress and attenuated endogenous levels of reactive oxygen species. Furthermore, MS induced a decline in Aβ-induced paralysis phenotype and Aβ deposits in the transgenic strains CL4176 and CL2006 of C. elegans, which expresses human muscle-specific Aβ1-42 in the cytoplasm of body wall muscle cells. In addition, mRNA levels of strain CL4176 of several antioxidant genes (sod-1, sod-2, sod-3, hsp16.2) and daf-16 were up-regulated by MS treatment when compared to the nontreated controls. Further evidence showed that MS treatment in C. elegans strains lacking DAF-16/FOXO did not affect paralysis or lifespan phenotypes. The findings indicate that MS reduces oxidative stress and Aβ toxicity via DAF-16 in C. elegans, suggesting that MS can be used for the prevention of AD-associated oxidative stress complications.

  20. Effects of ketone bodies in Alzheimer's disease in relation to neural hypometabolism, β-amyloid toxicity, and astrocyte function

    DEFF Research Database (Denmark)

    Hertz, Leif; Chen, Ye; Waagepetersen, Helle S

    2015-01-01

    for the impaired glucose metabolism may be early destruction of the noradrenergic brain stem nucleus, locus coeruleus, which stimulates glucose metabolism, at least in astrocytes. These glial cells are essential in Alzheimer pathogenesis. The β-amyloid peptide Aβ interferes with their cholinergic innervation......Diet supplementation with ketone bodies (acetoacetate and β-hydroxybuturate) or medium-length fatty acids generating ketone bodies has consistently been found to cause modest improvement of mental function in Alzheimer's patients. It was suggested that the therapeutic effect might be more...... pronounced if treatment was begun at a pre-clinical stage of the disease instead of well after its manifestation. The pre-clinical stage is characterized by decade-long glucose hypometabolism in brain, but ketone body metabolism is intact even initially after disease manifestation. One reason...

  1. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Solt, Anna C; Henríquez-Roldán, Carlos; Torres-Jardón, Ricardo; Nuse, Bryan; Herritt, Lou; Villarreal-Calderón, Rafael; Osnaya, Norma; Stone, Ida; García, Raquel; Brooks, Diane M; González-Maciel, Angelica; Reynoso-Robles, Rafael; Delgado-Chávez, Ricardo; Reed, William

    2008-02-01

    Air pollution is a serious environmental problem. We investigated whether residency in cities with high air pollution is associated with neuroinflammation/neurodegeneration in healthy children and young adults who died suddenly. We measured mRNA cyclooxygenase-2, interleukin-1beta, and CD14 in target brain regions from low (n = 12) or highly exposed residents (n = 35) aged 25.1 +/- 1.5 years. Upregulation of cyclooxygenase-2, interleukin-1beta, and CD14 in olfactory bulb, frontal cortex, substantia nigrae and vagus nerves; disruption of the blood-brain barrier; endothelial activation, oxidative stress, and inflammatory cell trafficking were seen in highly exposed subjects. Amyloid beta42 (Abeta42) immunoreactivity was observed in 58.8% of apolipoprotein E (APOE) 3/3 Parkinson's diseases, and carriers of the APOE 4 allele could have a higher risk of developing Alzheimer's disease if they reside in a polluted environment.

  2. An Alzheimer's Disease-Relevant Presenilin-1 Mutation Augments Amyloid-Beta-Induced Oligodendrocyte Dysfunction%An Alzheimer's Disease-Relevant Presenilin-1Mutation Augments Amyloid-Beta-Induced Oligodendrocyte Dysfunction

    Institute of Scientific and Technical Information of China (English)

    MAYA K. DESAI; BRENDAN J. GUERCIO; WADE C. NARROW; AND WILLIAM J. BOWERS

    2011-01-01

    研究表明,家族性阿尔茨海默病(FAD)患者处于无症状或临床前阶段时,脑白质即出现病理改变.此种改变在髓鞘破坏及阿尔茨海默病(AD)病理生理中的作用有待进一步研究阐明.笔者前期研究证实,三重转基因AD小鼠(人淀粉前体蛋白基因的Swedish突变,早老素-1 M146V (PS1M146V)敲入突变及tauP301L突变)表现出类似FAD患者的髓鞘破坏,Aβ1-42促进了白质病变.本研究离体实验证实,PS1M146V变异导致小鼠少突胶质前体细胞在分化过程中易出现类似Aβ1-42诱导的变化.PS1M146V的表达损伤少突胶质前体细胞的功能并影响髓鞘碱性蛋白的分布,暴露于Aβ1-42加重此影响.由PS1M146V及 Aβ1-42导致的髓鞘破坏及髓鞘碱性蛋白在亚细胞结构中的误定位可被TWS119(糖原合成激酶(GSK)-3β抑制剂)抑制,提示GSK-3β激酶活动在此病理过程中有重要作用.综上所述,本研究有助于增加对AD早期无症状阶段,由PS1M146V及 Aβ1-42导致少突胶质细胞功能异常及髓鞘损伤的机制的理解,并提供了针对少突胶质细胞预防AD相关白质病变的新的治疗靶点.%White matter pathology has been documented in the brains of familial Alzheimer's disease (FAD)-afflicted individuals during presymptomatic and preclinical stages of AD. How these defects in myelination integrity arise and what roles they may play in AD pathophysiology have yet to be fully elucidated. We previously demonstrated that triple-transgenic AD (3xTg-AD) mice, which harbor the human amyloid precursor Swedish mutation, presenilin-1 M146V (PS1M146V) knock-in mutation, and tauP301L mutation, exhibit myelin abnormalities analogous to FAD patients and that Aβ1-42 contributes to these white matter deficits. Herein, we demonstrate that the PS1M146V mutation predisposes mouse oligodendrocyte precursor (mOP) cells to Aβ1 42-induced alterations in cell differentiation in vitro. Furthermore, PS1M146V expression compromised m

  3. Hydrogen sulfide inhibits beta-amyloid peptide-induced apoptosis in PC12 cells and the underlying mechanisms

    Institute of Scientific and Technical Information of China (English)

    Xiuqin Chen; Jingtian Li; Jinhui Zou; Bailing Li; Meng Wang

    2008-01-01

    BACKGROUND: Studies have demonstrated that hydrogen sulfide (H2S) levels are 55% lower in brains of Alzheimer's disease (AD) patients than in age-matched normal individuals, which suggests that H2S might be involved in some aspects of AD pathogenesis.OBJECTIVE: To observe the protective mechanisms of varied concentrations of H2S against β -amyloid-peptide (A β) induced apoptosis in pheochromoytoma (PC12) cells, and to analyze the pathway of action.DESIGN, TIME AND SETTING: A controlled, observational, in vitro experiment was performed at Nenrophysiology Laboratory in Zhougshan Medical School, Sun Yat-sen University between July 2006 and May 2007.MATERIALS: PC12 cells were provided by the Animal Experimental Center of Medical School of Sun Yat-sen University. Glybenclamide, rhodamine123, and dihydrorhodamine123 were purchased from Sigma (USA).METHODS: PCI2 cells were incubated at 37℃ in a 5% CO2-enriched incubator with RPMI-1640 medium, supplemented with 5% horse-serum and 10% fetal bovine serum. Cells in logarithmic growth curves received different treatment: The PC12 cells were maintains at 37℃ with the original medium, then incubated in A β 25-35, sodium hydrosulfide (NariS), glybenclamide, NailS+ A β 25-35, or pretreated with glybenelamide 30 minutes prior to administration of and A β 25-35, respectively. MAIN OUTCOME MEASURES: (1) The survival rate of PC12 cells was detected by MTT assay and Hoechst staining. (2) The apoptosis rate of PC12 cells was detected utilizing flow cytometry with propidium iodide staining, and morphological changes of apoptotic cells were observed. (3) The mitochondrial membrane potential was detected by Rhodamine 123-combined flow cytometry. (4) The intracellular reactive oxygen species content was detected by dihydrorhodamine123-combined flow cytometry. RESULTS: A β 25-35 induced significantly decreased viability and increased percentage of apoptosis in PC 12 cells, as well as dissipated mitochondrial membrane potential

  4. Increase of beta-amyloid and C-reactive protein in liver transplant recipients with postoperative cognitive dysfunction

    Institute of Scientific and Technical Information of China (English)

    Xing Li; Da-Xiang Wen; Yan-Hong Zhao

    2013-01-01

    BACKGROUND: Postoperative  cognitive  dysfunction  (POCD) is  an  adverse  condition  characterized  by  declined  cognitive functions following surgeries and anesthesia. POCD has been associated  with  increased  hospital  stay  and  mortality.  There are histological similarities to Alzheimer's disease. Most early studies  were  conducted  in  patients  receiving  cardiac  surgery. Since there is no information about POCD in liver transplant recipients, we measured the incidence of POCD in patients after liver  transplantation  and  examined  the  correlation  between neurological  dysfunction  and  biological  markers  of  dementia-based diseases. METHODS: We studied 25 patients who had a liver transplan-tation between July 2008 and February 2009. Patients with prior encephalopathy or risk factors associated with the development of  POCD  were  excluded  from  the  study.  Five  validated neuropsychiatric  tests  were  used  for  diagnosis.  The  diagnosis was based on one standard deviation decline in two of the five neuropsychiatric tests. The correlation between patient variables and the development of POCD was examined. Serum levels of beta-amyloid and C-reactive protein were measured by standard ELISA and compared between patients with and without POCD. RESULTS: POCD  was  present  in  11  (44%)  of  the  25  patients. Patients  with  POCD  had  significantly  higher  MELD  scores, were more often Child-Pugh class C and received more blood transfusion  during  surgery.  The  serum  beta-amyloid  protein and  C-reactive  protein  concentrations

  5. Alzheimer's Therapeutics Targeting Amyloid Beta 1–42 Oligomers I: Abeta 42 Oligomer Binding to Specific Neuronal Receptors Is Displaced by Drug Candidates That Improve Cognitive Deficits

    Science.gov (United States)

    Izzo, Nicholas J.; Staniszewski, Agnes; To, Lillian; Fa, Mauro; Teich, Andrew F.; Saeed, Faisal; Wostein, Harrison; Walko, Thomas; Vaswani, Anisha; Wardius, Meghan; Syed, Zanobia; Ravenscroft, Jessica; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Finn, Patricia; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Miller, Miles; Johanson, Conrad; Stopa, Edward; Windisch, Manfred; Hutter-Paier, Birgit; Shamloo, Mehrdad; Arancio, Ottavio; LeVine, Harry; Catalano, Susan M.

    2014-01-01

    Synaptic dysfunction and loss caused by age-dependent accumulation of synaptotoxic beta amyloid (Abeta) 1–42 oligomers is proposed to underlie cognitive decline in Alzheimer's disease (AD). Alterations in membrane trafficking induced by Abeta oligomers mediates reduction in neuronal surface receptor expression that is the basis for inhibition of electrophysiological measures of synaptic plasticity and thus learning and memory. We have utilized phenotypic screens in mature, in vitro cultures of rat brain cells to identify small molecules which block or prevent the binding and effects of Abeta oligomers. Synthetic Abeta oligomers bind saturably to a single site on neuronal synapses and induce deficits in membrane trafficking in neuronal cultures with an EC50 that corresponds to its binding affinity. The therapeutic lead compounds we have found are pharmacological antagonists of Abeta oligomers, reducing the binding of Abeta oligomers to neurons in vitro, preventing spine loss in neurons and preventing and treating oligomer-induced deficits in membrane trafficking. These molecules are highly brain penetrant and prevent and restore cognitive deficits in mouse models of Alzheimer's disease. Counter-screening these compounds against a broad panel of potential CNS targets revealed they are highly potent and specific ligands of the sigma-2/PGRMC1 receptor. Brain concentrations of the compounds corresponding to greater than 80% receptor occupancy at the sigma-2/PGRMC1 receptor restore cognitive function in transgenic hAPP Swe/Ldn mice. These studies demonstrate that synthetic and human-derived Abeta oligomers act as pharmacologically-behaved ligands at neuronal receptors - i.e. they exhibit saturable binding to a target, they exert a functional effect related to their binding and their displacement by small molecule antagonists blocks their functional effect. The first-in-class small molecule receptor antagonists described here restore memory to normal in multiple AD

  6. Droplet-based magnetic bead immunoassay using microchannel-connected multiwell plates (μCHAMPs) for the detection of amyloid beta oligomers.

    Science.gov (United States)

    Park, Min Cheol; Kim, Moojong; Lim, Gun Taek; Kang, Sung Min; An, Seong Soo A; Kim, Tae Song; Kang, Ji Yoon

    2016-06-21

    Multiwell plates are regularly used in analytical research and clinical diagnosis but often require laborious washing steps and large sample or reagent volumes (typically, 100 μL per well). To overcome such drawbacks in the conventional multiwell plate, we present a novel microchannel-connected multiwell plate (μCHAMP) that can be used for automated disease biomarker detection in a small sample volume by performing droplet-based magnetic bead immunoassay inside the plate. In this μCHAMP-based immunoassay platform, small volumes (30-50 μL) of aqueous-phase working droplets are stably confined within each well by the simple microchannel structure (200-300 μm in height and 0.5-1 mm in width), and magnetic beads are exclusively transported into an adjacent droplet through the oil-filled microchannels assisted by a magnet array aligned beneath and controlled by a XY-motorized stage. Using this μCHAMP-based platform, we were able to perform parallel detection of synthetic amyloid beta (Aβ) oligomers as a model analyte for the early diagnosis of Alzheimer's disease (AD). This platform easily simplified the laborious and consumptive immunoassay procedure by achieving automated parallel immunoassay (32 assays per operation in 3-well connected 96-well plate) within 1 hour and at low sample consumption (less than 10 μL per assay) with no cumbersome manual washing step. Moreover, it could detect synthetic Aβ oligomers even below 10 pg mL(-1) concentration with a calculated detection limit of ∼3 pg mL(-1). Therefore, the μCHAMP and droplet-based magnetic bead immunoassay, with the combination of XY-motorized magnet array, would be a useful platform in the diagnosis of human disease, including AD, which requires low consumption of the patient's body fluid sample and automation of the entire immunoassay procedure for high processing capacity.

  7. Benefit of 13-desmethyl spirolide C treatment in triple transgenic mouse model of Alzheimer disease: beta-amyloid and neuronal markers improvement.

    Science.gov (United States)

    Alonso, Eva; Otero, Paz; Vale, Carmen; Alfonso, Amparo; Antelo, Alvaro; Giménez-Llort, Lydia; Chabaud, Laurent; Guillou, Catherine; Botana, Luis M

    2013-03-01

    Spirolides are marine toxins that are not currently in the routine monitoring assays. Nicotinic receptors seem to be the target of these compounds making them a promising pharmacological tool for related diseases as dementias as previously shown in vitro. In the present work, the bioavailability of 13-desMethyl spirolide C (13-desMeC) in the brain and in vivo effects were tested. Bioavailability was studied by ultra-performance liquid chromatography-mass spectrometry and its effect over Alzheimer hallmarks was studied by Proton magnetic resonance spectroscopy (H-MRS) and western blot. Only 2 minutes after its intraperitoneal injection it is found in brain and remains detectable even 24 hours post administration. Based on previous works that showed beneficial effects in an in vitro model of Alzheimer's disease (AD), we studied the effect in the same mice, 3xTg-AD, in vivo. We found that 13-desMeC (11.9 ug/kg, i.p.) induced positive effects on AD markers with an increase in N-acetyl aspartate (NAA) levels. These results were supported by an increase in synaptophysin levels and also a decrease in the intracellular amyloid beta levels in the hippocampus of treated 3xTg- AD versus non treated mice remarking the positive effects of this molecule in a well known model of AD. These data indicate for the first time that 13-desMeC cross the blood brain barrier and shows in vivo beneficial effects against AD after administration of low intraperitoneal doses of this marine toxin. This toxin may inspire a novel medical treatment of age-related diseases.

  8. Ethnic comparison of pharmacokinetics of {sup 18}F-florbetaben, a PET tracer for beta-amyloid imaging, in healthy Caucasian and Japanese subjects

    Energy Technology Data Exchange (ETDEWEB)

    Senda, Michio; Sasaki, Masahiro; Yamane, Tomohiko; Shimizu, Keiji [Institute of Biomedical Research and Innovation, Division of Molecular Imaging, 2-2 Minatojima-Minamimachi, Chuo-ku, Kobe (Japan); Patt, Marianne; Barthel, Henryk; Sattler, Bernhard; Sabri, Osama [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Nagasawa, Toshiki; Aitoku, Yasuko [Bayer Yakuhin Ltd, Osaka (Japan); Schultze-Mosgau, Marcus [Bayer HealthCare AG, Berlin (Germany); Dinkelborg, Ludger [Piramal Imaging GmbH, Berlin (Germany)

    2015-01-15

    {sup 18}F-Florbetaben is a positron emission tomography (PET) tracer indicated for imaging cerebral beta-amyloid deposition in adult patients with cognitive impairment who are being evaluated for Alzheimer's disease and other causes of cognitive decline. The present study examined ethnic comparability of the plasma pharmacokinetics, which is the input to the brain, between Caucasian and Japanese subjects. Two identical phase I trials were performed in 18 German and 18 Japanese healthy volunteers to evaluate the plasma pharmacokinetics of a single dose of 300 MBq {sup 18}F-florbetaben, either of low (≤5 μg, LD) or high (50-55 μg, HD) mass dose. Pharmacokinetic parameters were evaluated based on the total {sup 18}F radioactivity measurements in plasma followed by metabolite analysis using radio-HPLC. The pharmacokinetics of {sup 18}F-florbetaben was characterized by a rapid elimination from plasma. The dose-normalized areas under the curve of {sup 18}F-florbetaben in plasma as an indicator of the input to the brain were comparable between Germans (LD: 0.38 min/l, HD: 0.55 min/l) and Japanese (LD: 0.35 min/l, HD: 0.45 min/l) suggesting ethnic similarity, and the mass dose effect was minimal. A polar metabolite fraction was the main radiolabelled degradation product in plasma and was also similar between the doses and the ethnic groups. Absence of a difference in the pharmacokinetics of {sup 18}F-florbetaben in Germans and Japanese has warranted further global development of the PET imaging agent. (orig.)

  9. Blood amyloid beta levels in healthy, mild cognitive impairment and Alzheimer's disease individuals: replication of diastolic blood pressure correlations and analysis of critical covariates.

    Directory of Open Access Journals (Sweden)

    Agustín Ruiz

    Full Text Available Plasma amyloid beta (Aβ levels are being investigated as potential biomarkers for Alzheimer's disease. In AB128 cross-sectional study, a number of medical relevant correlates of blood Aβ40 or Aβ42 were analyzed in 140 subjects (51 Alzheimer's disease patients, 53 healthy controls and 36 individuals diagnosed with mild cognitive impairment. We determined the association between multiple variables with Aβ40 and Aβ42 levels measured in three different blood compartments called i Aβ directly accessible (DA in the plasma, ii Aβ recovered from the plasma matrix (RP after diluting the plasma sample in a formulated buffer, and iii associated with the remaining cellular pellet (CP. We confirmed that diastolic blood pressure (DBP is consistently correlated with blood DA Aβ40 levels (r=-0.19, P=0.032. These results were consistent in the three phenotypic groups studied. Importantly, the observation resisted covariation with age, gender or creatinine levels. Observed effect size and direction of Aβ40 levels/DBP correlation are in accordance with previous reports. Of note, DA Aβ40 and the RP Aβ40 were also strongly associated with creatinine levels (r=0.599, P<<0.001 and to a lesser extent to urea, age, hematocrit, uric acid and homocysteine (p<0.001. DBP and the rest of statistical significant correlates identified should be considered as potential confounder factors in studies investigating blood Aβ levels as potential AD biomarker. Remarkably, the factors affecting Aβ levels in plasma (DA, RP and blood cell compartments (CP seem completely different.

  10. Amyloid beta protein inhibits cellular MTT reduction not by suppression of mitochondrial succinate dehydrogenase but by acceleration of MTT formazan exocytosis in cultured rat cortical astrocytes.

    Science.gov (United States)

    Abe, K; Saito, H

    1998-08-01

    Alzheimer's disease amyloid beta protein (Abeta) inhibits cellular reduction of the dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Kaneko et al. have previously hypothesized that Abeta works by suppressing mitochondrial succinate dehydrogenase (SDH), but Liu and Schubert have recently demonstrated that Abeta decreases cellular MTT reduction by accelerating the exocytosis of MTT formazan in neuronal cells. To ask which is the case in astrocytes, we compared the effects of Abeta and 3-nitropropionic acid (3-NP), a specific SDH inhibitor, on MTT reduction in cultured rat cortical astrocytes. Treatment with 3-NP (10 mM) decreased cellular activity of MTT reduction, regardless of the time of incubation with MTT. On the other hand. Abeta-induced inhibition of cellular MTT reduction was dependent on the time of incubation with MTT. The cells treated with Abeta (0.1-1000 nM) exhibited normal capacity for MTT reduction at an early stage of incubation ( 1 h). Microscopic examination revealed that Abeta treatment accelerated the appearance of needle-like MTT formazan crystals at the cell surface. These observations support that Abeta accelerates the exocytosis of MTT formazan in astrocytes. In addition to inhibition of MTT reduction, Abeta is known to induce morphological changes in astrocytes. Following addition of Abeta (20 microM), polygonal astrocytes changed into process-bearing stellate cells. To explore a possible linkage between these two effects of Abeta, we tested if astrocyte stellation is induced by agents that mimic the effect of Abeta on MTT reduction. Cholesterol (5 5000 nM) and lysophosphatidic acid (0.2-20 microg/ml) were found to accelerate the exocytosis of MTT formazan in a similar manner to Abeta, but failed to induce astrocyte stellation. Therefore, Abeta-induced inhibition of MTT reduction is unlikely to be directly linked to its effect on astrocyte morphology.

  11. Regional Fluid-Attenuated Inversion Recovery (FLAIR at 7 Tesla correlates with Amyloid beta in Hippocampus and Brainstem of cognitively normal elderly subjects.

    Directory of Open Access Journals (Sweden)

    Simon J Schreiner

    2014-09-01

    Full Text Available Background: Accumulation of amyloid beta (Aβ may occur during healthy aging and is a risk factor for Alzheimer Disease (AD. While individual Aβ-accumulation can be measured non-invasively using Pittsburgh compound-B positron-emission-tomography (PiB-PET, Fluid-Attenuated Inversion Recovery (FLAIR is a Magnetic Resonance Imaging (MRI sequence, capable of indicating heterogeneous age-related brain pathologies associated with tissue-edema. In the current study cognitively normal elderly subjects were investigated for regional correlation of PiB- and FLAIR- intensity. Methods: 14 healthy elderly subjects without known history of cognitive impairment received 11C-PiB-PET for estimation of regional Aβ-load. In addition, whole brain T1-MPRAGE and FLAIR-MRI sequences were acquired at high field strength of 7 Tesla (7T. Volume-normalized intensities of brain regions were assessed by applying an automated subcortical segmentation algorithm for spatial definition of brain structures. Statistical dependence between FLAIR- and PiB-PET intensities was tested using Spearman's rank correlation coefficient (rho, followed by Holm-Bonferroni correction for multiple testing. Results: Neuropsychological testing revealed normal cognitive performance levels in all participants. Mean regional PiB-PET and FLAIR intensities were normally distributed and independent. Significant correlation between volume-normalized PiB-PET signals and FLAIR intensities resulted for Hippocampus (right:rho=0.86; left:rho=0.84, Brainstem (rho=0.85 and left Basal Ganglia vessel region (rho=0.82. Conclusions: Our finding of a significant relationship between PiB- and FLAIR-intensity mainly observable in the Hippocampus and Brainstem, indicates regional Aβ associated tissue-edema in cognitively normal elderly subjects. Further studies including clinical populations are necessary to clarify the relevance of our findings for estimating individual risk for age-related neurodegenerative

  12. Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons.

    Science.gov (United States)

    Yang, Wei-Na; Ma, Kai-Ge; Qian, Yi-Hua; Zhang, Jian-Shui; Feng, Gai-Feng; Shi, Li-Li; Zhang, Zhi-Chao; Liu, Zhao-Hui

    2015-07-01

    Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aβ). Reuptake of extracellular Aβ is believed to contribute significantly to the intraneuronal Aβ pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aβ1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells. However, there is no direct evidence supporting the role of LRP1 in Aβ internalization in primary neurons. Our recent study indicated that p38 MAPK and ERK1/2 signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor (α7nAChR)-mediated Aβ1-42 uptake in SH-SY5Y cells. This study was designed to explore the regulation of MAPK signaling pathways on LRP1-mediated Aβ internalization in neurons. We found that extracellular Aβ1-42 oligomers could be internalized into endosomes/lysosomes and mitochondria in cortical neurons. Aβ1-42 and LRP1 were also found co-localized in neurons during Aβ1-42 internalization, and they could form Aβ1-42-LRP1 complex. Knockdown of LRP1 expression significantly decreased neuronal Aβ1-42 internalization. Finally, we identified that p38 MAPK and ERK1/2 signaling pathways regulated the internalization of Aβ1-42 via LRP1. Therefore, these results demonstrated that LRP1, p38 MAPK and ERK1/2 mediated the internalization of Aβ1-42 in neurons and provided evidence that blockade of LRP1 or inhibitions of MAPK signaling pathways might be a potential approach to lowering brain Aβ levels and served a potential therapeutic target for AD.

  13. Amyloid beta deposition and phosphorylated tau accumulation are key features in aged choroidal vessels in the complement factor H knock out model of retinal degeneration.

    Science.gov (United States)

    Aboelnour, Asmaa; Kam, Jaimie Hoh; Elnasharty, M A; Sayed-Ahmed, Ahmed; Jeffery, Glen

    2016-06-01

    Extra-cellular deposition including amyloid beta (Aβ) is a feature of retinal ageing. It has been documented for Bruch's membrane (BM) where Aβ is elevated in complement factor H knockout mice (Cfh(-/-)) proposed as a model for age related macular degeneration. However, arterial deposition in choroidal vessels prior to perfusion across BM has not been examined. Aβ is associated with tau phosphorylation and these are linked in blood vessels in Alzheimers Disease where they can drive perivascular pathology. Here we ask if Aβ, tau and phosphorylated tau are features of ageing in choroidal vessels in 12 month C57 BL/6 and Cfh(-/-) mice, using immune staining and Western blot analysis. Greater levels of Aβ and phosphorylated tau are found in choroidal vessels in Cfh(-/-) mice. Western blot revealed a 40% increase in Aβ in Cfh(-/-) over C57 BL/6 mice. Aβ deposits coat around 55% of the luminal wall in Cfh(-/-) compared to only about 40% in C57 BL/6. Total tau was similar in both groups, but phosphorylated tau increased by >100% in Cfh(-/-) compared to C57 BL/6 and covered >75% of the luminal wall compared to 50% in C57 BL/6. Hence, phosphorylated tau is a marked choroidal feature in this mouse model. Aβ deposition was clumped in Cfh(-/-) mice and likely to influence blood flow dynamics. Disturbed flow is associated with atherogenesis and may be related to the accumulation of membrane attack complex recently identified between choroidal vessels in those at high risk of macular degeneration due to complement factor H polymorphisms.

  14. The ability of apolipoprotein E fragments to promote intraneuronal accumulation of amyloid beta peptide 42 is both isoform and size-specific

    Science.gov (United States)

    Dafnis, Ioannis; Argyri, Letta; Sagnou, Marina; Tzinia, Athina; Tsilibary, Effie C.; Stratikos, Efstratios; Chroni, Angeliki

    2016-01-01

    The apolipoprotein (apo) E4 isoform is the strongest risk factor for late-onset Alzheimer’s disease (AD). ApoE4 is more susceptible to proteolysis than apoE2 and apoE3 isoforms and carboxyl-terminal truncated apoE4 forms have been found in AD patients’ brain. We have previously shown that a specific apoE4 fragment, apoE4-165, promotes amyloid-peptide beta 42 (Aβ42) accumulation in human neuroblastoma SK-N-SH cells and increased intracellular reactive oxygen species formation, two events considered to occur early in AD pathogenesis. Here, we show that these effects are allele-dependent and absolutely require the apoE4 background. Furthermore, the exact length of the fragment is critical since longer or shorter length carboxyl-terminal truncated apoE4 forms do not elicit the same effects. Structural and thermodynamic analyses showed that apoE4-165 has a compact structure, in contrast to other carboxyl-terminal truncated apoE4 forms that are instead destabilized. Compared however to other allelic backgrounds, apoE4-165 is structurally distinct and less thermodynamically stable suggesting that the combination of a well-folded structure with structural plasticity is a unique characteristic of this fragment. Overall, our findings suggest that the ability of apoE fragments to promote Aβ42 intraneuronal accumulation is specific for both the apoE4 isoform and the particular structural and thermodynamic properties of the fragment. PMID:27476701

  15. Viewing ageing eyes: diverse sites of amyloid Beta accumulation in the ageing mouse retina and the up-regulation of macrophages.

    Directory of Open Access Journals (Sweden)

    Jaimie Hoh Kam

    Full Text Available BACKGROUND: Amyloid beta (Aβ accumulates in the ageing central nervous system and is associated with a number of age-related diseases, including age-related macular degeneration (AMD in the eye. AMD is characterised by accumulation of extracellular deposits called drusen in which Aβ is a key constituent. Aβ activates the complement cascade and its deposition is associated with activated macrophages. So far, little is known about the quantitative measurements of Aβ accumulation and definitions of its relative sites of ocular deposition in the normal ageing mouse. METHODOLOGY/PRINCIPAL FINDINGS: We have traced Aβ accumulation quantitatively in the ageing mouse retina using immunohistochemistry and Western blot analysis. We reveal that it is not only deposited at Bruch's membrane and along blood vessels, but unexpectedly, it also coats photoreceptor outer segments. While Aβ is present at all sites of deposition from 3 months of age, it increases markedly from 6 months onward. Progressive accumulation of deposits on outer segments was confirmed with scanning electron microscopy, revealing age-related changes in their morphology. Such progress of accumulation of Aβ on photoreceptor outer segments with age was also confirmed in human retinae using immunohistochemistry. We also chart the macrophage response to increases in Aβ showing up-regulation in their numbers using both confocal laser imaging of the eye in vivo followed by in vitro immunostaining. With age macrophages become bloated with cellular debris including Aβ, however, their increasing numbers fail to stop Aβ accumulation. CONCLUSIONS: Increasing Aβ deposition in blood vessels and Bruch's membrane will impact upon retinal perfusion and clearance of cellular waste products from the outer retina, a region of very high metabolic activity. This accumulation of Aβ may contribute to the 30% reduction of photoreceptors found throughout life and the shortening of those that remain. The

  16. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers I: Abeta 42 oligomer binding to specific neuronal receptors is displaced by drug candidates that improve cognitive deficits.

    Science.gov (United States)

    Izzo, Nicholas J; Staniszewski, Agnes; To, Lillian; Fa, Mauro; Teich, Andrew F; Saeed, Faisal; Wostein, Harrison; Walko, Thomas; Vaswani, Anisha; Wardius, Meghan; Syed, Zanobia; Ravenscroft, Jessica; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Finn, Patricia; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Miller, Miles; Johanson, Conrad; Stopa, Edward; Windisch, Manfred; Hutter-Paier, Birgit; Shamloo, Mehrdad; Arancio, Ottavio; LeVine, Harry; Catalano, Susan M

    2014-01-01

    Synaptic dysfunction and loss caused by age-dependent accumulation of synaptotoxic beta amyloid (Abeta) 1-42 oligomers is proposed to underlie cognitive decline in Alzheimer's disease (AD). Alterations in membrane trafficking induced by Abeta oligomers mediates reduction in neuronal surface receptor expression that is the basis for inhibition of electrophysiological measures of synaptic plasticity and thus learning and memory. We have utilized phenotypic screens in mature, in vitro cultures of rat brain cells to identify small molecules which block or prevent the binding and effects of Abeta oligomers. Synthetic Abeta oligomers bind saturably to a single site on neuronal synapses and induce deficits in membrane trafficking in neuronal cultures with an EC50 that corresponds to its binding affinity. The therapeutic lead compounds we have found are pharmacological antagonists of Abeta oligomers, reducing the binding of Abeta oligomers to neurons in vitro, preventing spine loss in neurons and preventing and treating oligomer-induced deficits in membrane trafficking. These molecules are highly brain penetrant and prevent and restore cognitive deficits in mouse models of Alzheimer's disease. Counter-screening these compounds against a broad panel of potential CNS targets revealed they are highly potent and specific ligands of the sigma-2/PGRMC1 receptor. Brain concentrations of the compounds corresponding to greater than 80% receptor occupancy at the sigma-2/PGRMC1 receptor restore cognitive function in transgenic hAPP Swe/Ldn mice. These studies demonstrate that synthetic and human-derived Abeta oligomers act as pharmacologically-behaved ligands at neuronal receptors--i.e. they exhibit saturable binding to a target, they exert a functional effect related to their binding and their displacement by small molecule antagonists blocks their functional effect. The first-in-class small molecule receptor antagonists described here restore memory to normal in multiple AD models

  17. Icariside II, a Broad-Spectrum Anti-cancer Agent, Reverses Beta-Amyloid-Induced Cognitive Impairment through Reducing Inflammation and Apoptosis in Rats

    Science.gov (United States)

    Deng, Yuanyuan; Long, Long; Wang, Keke; Zhou, Jiayin; Zeng, Lingrong; He, Lianzi; Gong, Qihai

    2017-01-01

    Beta-amyloid (Aβ) deposition, associated neuronal apoptosis and neuroinflammation are considered as the important factors which lead to cognitive deficits in Alzheimer’s disease (AD). Icariside II (ICS II), an active flavonoid compound derived from Epimedium brevicornum Maxim, has been extensively used to treat erectile dysfunction, osteoporosis and dementia in traditional Chinese medicine. Recently, ICS II attracts great interest due to its broad-spectrum anti-cancer property. ICS II shows an anti-inflammatory potential both in cancer treatment and cerebral ischemia-reperfusion. It is not yet clear whether the anti-inflammatory effect of ICS II could delay progression of AD. Therefore, the current study aimed to investigate the effects of ICS II on the behavioral deficits, Aβ levels, neuroinflammatory responses and apoptosis in Aβ25-35-treated rats. We found that bilateral hippocampal injection of Aβ25-35 induced cognitive impairment, neuronal damage, along with increase of Aβ, inflammation and apoptosis in hippocampus of rats. However, treatment with ICS II 20 mg/kg could improve the cognitive deficits, ameliorate neuronal death, and reduce the levels of Aβ in the hippocampus. Furthermore, ICS II could suppress microglial and astrocytic activation, inhibit expression of IL-1β, TNF-α, COX-2, and iNOS mRNA and protein, and attenuate the Aβ induced Bax/Bcl-2 ratio elevation and caspase-3 activation. In conclusion, these results showed that ICS II could reverse Aβ-induced cognitive deficits, possibly via the inhibition of neuroinflammation and apoptosis, which suggested a potential protective effect of ICS II on AD. PMID:28210222

  18. Distribution, Metabolism and Toxic Effects of Beta-Cypermethrin in Lizards (Eremias argus) Following Oral Administration.

    Science.gov (United States)

    Chen, Li; Xu, Peng; Diao, Jinling; Di, Shanshan; Li, Ruiting; Zhou, Zhiqiang

    2016-04-01

    Beta-cypermethrin (BCYP), a synthetic pyrethriod (PYR) pesticide which is a mixture of the alpha- and theta- cypermethrin, have been reported various toxicological profiles to non-target organisms. But little is known about assimilation, accumulation and toxic effects of BCYP in reptiles. The present study firstly elucidated absorption, tissue distribution, excretion of BCYP in Eremias argus . Treated group were administered orally with BCYP 20mg/kg body weight (bw) dissolved in corn oil. Neurotoxicity was observed at 24h after gavage, and the poisoning symptom ameliorated at 72h. The changes of BCYP concentration depended on degradation time and tissues. Lizards had a strong capacity to eliminate BCYP with different tissue distribution. The tissues concentration of BCYP from high to low were intestine, stomach, heart, kidney, blood, lung, liver and brain. Bimodal phenomena were observed in lung, liver and kidney. These results may be due to the activities of enzymes, circadian rhythm, and enterohepatic circulation in lizards. Based on the results of organ coefficient and histopathology analysis in liver, the liver was confirmed as the main target organ.

  19. Targeting amyloid-degrading enzymes as therapeutic strategies in neurodegeneration.

    Science.gov (United States)

    Turner, Anthony J; Fisk, Lilia; Nalivaeva, Natalia N

    2004-12-01

    The levels of amyloid beta-peptides (Abeta) in the brain represent a dynamic equilibrium state as a result of their biosynthesis from the amyloid precursor protein (APP) by beta- and gamma-secretases, their degradation by a team of amyloid-degrading enzymes, their subsequent oligomerization, and deposition into senile plaques. While most therapeutic attention has focused on developing inhibitors of secretases to prevent Abeta formation, enhancing the rate of Abeta degradation represents an alternative and viable strategy. Current evidence both in vivo and in vitro suggests that there are three major players in amyloid turnover: neprilysin, endothelin converting enzyme(s), and insulin-degrading enzyme, all of which are zinc metallopeptidases. Other proteases have also been implicated in amyloid metabolism, including angiotensin-converting enzyme, and plasmin but for these the evidence is less compelling. Neprilysin and endothelin converting enzyme(s) are homologous membrane proteins of the M13 peptidase family, which normally play roles in the biosynthesis and/or metabolism of regulatory peptides. Insulin-degrading enzyme is structurally and mechanistically distinct. The regional, cellular, and subcellular localizations of these enzymes differ, providing an efficient and diverse mechanism for protecting the brain against the normal accumulation of toxic Abeta peptides. Reduction in expression levels of some of these proteases following insults (e.g., hypoxia and ischemia) or aging might predispose to the development of Alzheimer's disease. Conversely, enhancement of their levels by gene delivery or pharmacological means could be neuroprotective. Even a relatively small enhancement of Abeta metabolism could slow the inexorable progression of the disease. The relative merits of targeting these enzymes for the treatment of Alzheimer's disease will be reviewed and possible side-effects of enhancing their activity evaluated.

  20. Metabolic changes may precede proteostatic dysfunction in a Drosophila model of amyloid beta peptide toxicity

    DEFF Research Database (Denmark)

    Ott, Stanislav; Vishnivetskaya, Anastasia; Malmendal, Anders;

    2016-01-01

    in flies expressing Aβ in their brains. We observed 2 genotype-linked metabolomic signals, the first reported the presence of any Aβ isoform and the second the effects of the lethal Arctic Aβ. Lethality was specifically associated with signs of oxidative respiration dysfunction and oxidative stress....

  1. Hemodynamic effects of combined focal cerebral ischemia and amyloid protein toxicity in a rat model: a functional CT study.

    Directory of Open Access Journals (Sweden)

    Jun Yang

    Full Text Available BACKGROUND/OBJECTIVE: Clinical evidence indicates that cerebral ischemia (CI and a pathological factor of Alzheimer's disease, the β-amyloid (Aβ protein, can increase the rate of cognitive impairment in the ageing population. Using the CT Perfusion (CTP functional imaging, we sought to investigate the interaction between CI and the Aβ protein on cerebral hemodynamics. METHODS: A previously established rat model of CI and Aβ was used for the CTP study. Iodinated contrast was given intravenously, while serial CT images of sixteen axial slices were acquired. Cerebral blood flow (CBF and blood volume (CBV parametric maps were co-registered to a rat brain atlas and regions of interest were drawn on the maps. Microvascular alteration was investigated with histopathology. RESULTS: CTP results revealed that ipsilateral striatum of Aβ+CI and CI groups showed significantly lower CBF and CBV than control at the acute phase. Striatal CBF and CBV increased significantly at week 1 in the CI and Aβ+CI groups, but not in the Aβ alone or control group. Histopathology showed that average density of dilated microvessels in the ipsilateral striatum in CI and Aβ+CI groups was significantly higher than control at week 1, indicating this could be associated with hyperperfusion and hypervolemia observed from CTP results. CONCLUSION: These results demonstrate that CTP can quantitatively measure the hemodynamic disturbance on CBF and CBV functional maps in a rat model of CI interacting with Aβ.

  2. Gallic acid is the major component of grape seed extract that inhibits amyloid fibril formation.

    Science.gov (United States)

    Liu, Yanqin; Pukala, Tara L; Musgrave, Ian F; Williams, Danielle M; Dehle, Francis C; Carver, John A

    2013-12-01

    Many protein misfolding diseases, for example, Alzheimer's, Parkinson's and Huntington's, are characterised by the accumulation of protein aggregates in an amyloid fibrillar form. Natural products which inhibit fibril formation are a promising avenue to explore as therapeutics for the treatment of these diseases. In this study we have shown, using in vitro thioflavin T assays and transmission electron microscopy, that grape seed extract inhibits fibril formation of kappa-casein (κ-CN), a milk protein which forms amyloid fibrils spontaneously under physiological conditions. Among the components of grape seed extract, gallic acid was the most active component at inhibiting κ-CN fibril formation, by stabilizing κ-CN to prevent its aggregation. Concomitantly, gallic acid significantly reduced the toxicity of κ-CN to pheochromocytoma12 cells. Furthermore, gallic acid effectively inhibited fibril formation by the amyloid-beta peptide, the putative causative agent in Alzheimer's disease. It is concluded that the gallate moiety has the fibril-inhibitory activity.

  3. Effects of ketone bodies in Alzheimer's disease in relation to neural hypometabolism, β-amyloid toxicity, and astrocyte function.

    Science.gov (United States)

    Hertz, Leif; Chen, Ye; Waagepetersen, Helle S

    2015-07-01

    Diet supplementation with ketone bodies (acetoacetate and β-hydroxybuturate) or medium-length fatty acids generating ketone bodies has consistently been found to cause modest improvement of mental function in Alzheimer's patients. It was suggested that the therapeutic effect might be more pronounced if treatment was begun at a pre-clinical stage of the disease instead of well after its manifestation. The pre-clinical stage is characterized by decade-long glucose hypometabolism in brain, but ketone body metabolism is intact even initially after disease manifestation. One reason for the impaired glucose metabolism may be early destruction of the noradrenergic brain stem nucleus, locus coeruleus, which stimulates glucose metabolism, at least in astrocytes. These glial cells are essential in Alzheimer pathogenesis. The β-amyloid peptide Aβ interferes with their cholinergic innervation, which impairs synaptic function because of diminished astrocytic glutamate release. Aβ also reduces glucose metabolism and causes hyperexcitability. Ketone bodies are similarly used against seizures, but the effectively used concentrations are so high that they must interfere with glucose metabolism and de novo synthesis of neurotransmitter glutamate, reducing neuronal glutamatergic signaling. The lower ketone body concentrations used in Alzheimer's disease may owe their effect to support of energy metabolism, but might also inhibit release of gliotransmitter glutamate. Alzheimer's disease is a panglial-neuronal disorder with long-standing brain hypometabolism, aberrations in both neuronal and astrocytic glucose metabolism, inflammation, hyperexcitability, and dementia. Relatively low doses of β-hydroxybutyrate can have an ameliorating effect on cognitive function. This could be because of metabolic supplementation or inhibition of Aβ-induced release of glutamate as gliotransmitter, which is likely to reduce hyperexcitability and inflammation. The therapeutic

  4. Towards a Pharmacophore for Amyloid

    Energy Technology Data Exchange (ETDEWEB)

    Landau, Meytal; Sawaya, Michael R.; Faull, Kym F.; Laganowsky, Arthur; Jiang, Lin; Sievers, Stuart A.; Liu, Jie; Barrio, Jorge R.; Eisenberg, David (UCLA)

    2011-09-16

    Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of {beta}-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine side chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases. The devastating and incurable dementia known as Alzheimer's disease affects the thinking, memory, and behavior of dozens of millions of people worldwide. Although amyloid fibers and oligomers of two proteins, tau and amyloid-{beta}, have been identified in association with this disease, the development of diagnostics and therapeutics has proceeded to date in a near vacuum of information about their structures. Here we report the first atomic structures of small molecules bound to amyloid. These are of the dye orange-G, the natural compound curcumin, and the Alzheimer's diagnostic compound DDNP bound to amyloid-like segments of tau and amyloid-{beta}. The structures reveal the molecular framework of small-molecule binding, within cylindrical cavities running along the {beta}-spines of the fibers. Negatively charged orange-G wedges into a specific binding site between two sheets of the fiber, combining apolar binding with electrostatic interactions, whereas uncharged compounds slide along the cavity. We observed that different amyloid polymorphs bind different small molecules, revealing that a

  5. Involvement of insulin-degrading enzyme in the clearance of beta-amyloid at the blood-CSF barrier: Consequences of lead exposure

    Directory of Open Access Journals (Sweden)

    Zhang Yanshu

    2009-09-01

    Full Text Available Abstract Background Alzheimer's disease (AD is characterized by the deposition of beta-amyloid (Aβ peptides in the brain extracellular matrix, resulting in pathological changes and neurobehavioral deficits. Previous work from this laboratory demonstrated that the choroid plexus (CP possesses the capacity to remove Aβ from the cerebrospinal fluid (CSF, and exposure to lead (Pb compromises this function. Since metalloendopeptidase insulin-degrading enzyme (IDE, has been implicated in the metabolism of Aβ, we sought to investigate whether accumulation of Aβ following Pb exposure was due to the effect of Pb on IDE. Methods Rats were injected with a single dose of Pb acetate or an equivalent concentration of Na-acetate; CP tissues were processed to detect the location of IDE by immunohistochemistry. For in vitro studies, choroidal epithelial Z310 cells were treated with Pb for 24 h in the presence or absence of a known IDE inhibitor, N-ethylmaleimide (NEM to assess IDE enzymatic activity and subsequent metabolic clearance of Aβ. Additionally, the expression of IDE mRNA and protein were determined using real time PCR and western blots respectively. Results Immunohistochemistry and confocal imaging revealed the presence of IDE towards the apical surface of the CP tissue with no visible alteration in either its intensity or location following Pb exposure. There was no significant difference in the expressions of either IDE mRNA or protein following Pb exposure compared to controls either in CP tissues or in Z310 cells. However, our findings revealed a significant decrease in the IDE activity following Pb exposure; this inhibition was similar to that seen in the cells treated with NEM alone. Interestingly, treatment with Pb or NEM alone significantly increased the levels of intracellular Aβ, and a greater accumulation of Aβ was seen when the cells were exposed to a combination of both. Conclusion These data suggest that Pb exposure inhibits IDE

  6. Effects of sodium ferulate on amyloid-beta-induced MKK3/MKK6-p38 MAPK-Hsp27 signal pathway and apoptosis in rat hippocampus

    Institute of Scientific and Technical Information of China (English)

    Ying JIN; Ying FAN; En-zhi YAN; Zhuo LIU; Zhi-hong ZONG; Zhi-min QI

    2006-01-01

    Aim: To observe the effects of sodium ferulate (SF) on amyloid beta (Aβ)1-40-induced p38 mitogen-activated protein kinase (MAPK) signal transduction pathway and the neuroprotective effects of SF. Methods: Rats were injected intracerebroventricularly with Aβ1-40. Six hours after injection, Western blotting was used to determine the expressions of phosphorylated mitogen-activated protein kinase kinase (MKK) 3/MKK6, phospho-p38 MAPK, interleukin (IL)-lβ, phospho-MAPK activating protein kinase 2 (MAPKAPK-2), the 27 kDa heat shock protein (Hsp27), procaspase-9, -3, and -7 cleavage, and poly (ADP-ribose) poly-merase (PARP) cleavage. Seven days after injection, Nissl staining was used to observe the morphological change in hippocampal CA1 regions. Results: Intracerebroventricular injection of Aβ1-40 induced an increase in phosphorylated MKK3/MKK6 and p38 MAPK expressions in hippocampal tissue. These increases, in combination with enhanced interleukin (IL)-lβ protein expression and reduced phospho-MAPKAPK2 and phospho-Hsp27 expression, mediate the Aβ-induced activation of cell death events as assessed by cleavage of procaspase-9, -3, and -7 and caspase-3 substrate PARP cleavage. Pretreatment with SF (100 mg/kg and 200 mg/kg daily, 3 weeks) significantly prevented Aβ1-40-induced increases in phosphorylated MKK3/MKK6 and p38 MAPK expression. The Aβ1-40-induced increase in IL-1β protein level was attenuated by pretreatment with SF. In addition, Aβ1-40-induced decreases in phosphorylated MAPKAPK2 and Hsp27 expression were abrogated by administration of SF. In parallel with these findings, Aβ1-40-induced changes in activation of caspase-9, caspase-7, and caspase-3 were inhibited by pretreatment with SF. Conclusion: SF prevents Aβ1-40-induced neurotoxicity through suppression of MKK3/MKK6-p38 MAPK activity and IL-lβ expression and upregulation of phospho-Hsp27 expression.

  7. [{sup 18}F]Flutemetamol amyloid-beta PET imaging compared with [{sup 11}C]PIB across the spectrum of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Hatashita, Shizuo; Yamasaki, Hidetomo [Shonan-Atsugi Hospital, Neurology, PET Center, Atsugi (Japan); Suzuki, Yutaka; Wakebe, Daichi; Hayakawa, Hideki [Shonan-Atsugi Hospital, Radiology, PET Center, Atsugi (Japan); Tanaka, Kumiko [Shonan-Atsugi Hospital, Pharmacology, PET Center, Atsugi (Japan)

    2014-02-15

    The aim was to identify the amyloid beta (Aβ) deposition by positron emission tomography (PET) imaging with the {sup 18}F-labeled Pittsburgh compound B (PIB) derivative [{sup 18}F]flutemetamol (FMM) across a spectrum of Alzheimer's disease (AD) and to compare Aβ deposition between [{sup 18}F]FMM and [{sup 11}C]PIB PET imaging. The study included 36 patients with AD, 68 subjects with mild cognitive impairment (MCI), 41 older healthy controls (HC) (aged ≥56), 11 young HC (aged ≤45), and 10 transitional HC (aged 46-55). All 166 subjects underwent 30-min static [{sup 18}F]FMM PET 85 min after injection, 60-min dynamic [{sup 11}C]PIB PET, and cognitive testing. [{sup 18}F]FMM scans were assessed visually, and standardized uptake value ratios (SUVR) were defined quantitatively in regions of interest identified on coregistered MRI (cerebellar cortex as a reference region). The PIB distribution volume ratios (DVR) were determined in the same regions. Of 36 AD patients, 35 had positive scans, while 36 of 41 older HC subjects had negative scans. [{sup 18}F]FMM scans had a sensitivity of 97.2 % and specificity of 85.3 % in distinguishing AD patients from older HC subjects, and a specificity of 100 % for young and transitional HC subjects. The [{sup 11}C]PIB scan had the same results. Interreader agreement was excellent (kappa score = 0.81). The cortical FMM SUVR in AD patients was significantly greater than in older HC subjects (1.76 ± 0.23 vs 1.30 ± 0.26, p < 0.01). Of the MCI patients, 68 had a bimodal distribution of SUVR, and 29 of them (42.6 %) had positive scans. Cortical FMM SUVR values were strongly correlated with PIB DVR (r = 0.94, n = 145, p < 0.001). [{sup 18}F]FMM PET imaging detects Aβ deposition in patients along the continuum from normal cognitive status to dementia of AD and discriminates AD patients from HC subjects, similar to [{sup 11}C]PIB PET. (orig.)

  8. Lipopolysaccharide impairs amyloid beta efflux from brain: altered vascular sequestration, cerebrospinal fluid reabsorption, peripheral clearance and transporter function at the blood–brain barrier

    Directory of Open Access Journals (Sweden)

    Erickson Michelle A

    2012-06-01

    Full Text Available Abstract Background Defects in the low density lipoprotein receptor-related protein-1 (LRP-1 and p-glycoprotein (Pgp clearance of amyloid beta (Aβ from brain are thought to contribute to Alzheimer’s disease (AD. We have recently shown that induction of systemic inflammation by lipopolysaccharide (LPS results in impaired efflux of Aβ from the brain. The same treatment also impairs Pgp function. Here, our aim is to determine which physiological routes of Aβ clearance are affected following systemic inflammation, including those relying on LRP-1 and Pgp function at the blood–brain barrier. Methods CD-1 mice aged between 6 and 8 weeks were treated with 3 intraperitoneal injections of 3 mg/kg LPS at 0, 6, and 24 hours and studied at 28 hours. 125I-Aβ1-42 or 125I-alpha-2-macroglobulin injected into the lateral ventricle of the brain (intracerebroventricular (ICV or into the jugular vein (intravenous (IV was used to quantify LRP-1-dependent partitioning between the brain vasculature and parenchyma and peripheral clearance, respectively. Disappearance of ICV-injected 14 C-inulin from brain was measured to quantify bulk flow of cerebrospinal fluid (CSF. Brain microvascular protein expression of LRP-1 and Pgp was measured by immunoblotting. Endothelial cell localization of LRP-1 was measured by immunofluorescence microscopy. Oxidative modifications to LRP-1 at the brain microvasculature were measured by immunoprecipitation of LRP-1 followed by immunoblotting for 4-hydroxynonenal and 3-nitrotyrosine. Results We found that LPS: caused an LRP-1-dependent redistribution of ICV-injected Aβ from brain parenchyma to brain vasculature and decreased entry into blood; impaired peripheral clearance of IV-injected Aβ; inhibited reabsorption of CSF; did not significantly alter brain microvascular protein levels of LRP-1 or Pgp, or oxidative modifications to LRP-1; and downregulated LRP-1 protein levels and caused LRP-1 mislocalization in cultured brain

  9. Dual effect of beta-amyloid on α7 and α4β2 nicotinic receptors controlling the release of glutamate, aspartate and GABA in rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Elisa Mura

    Full Text Available BACKGROUND: We previously showed that beta-amyloid (Aβ, a peptide considered as relevant to Alzheimer's Disease, is able to act as a neuromodulator affecting neurotransmitter release in absence of evident sign of neurotoxicity in two different rat brain areas. In this paper we focused on the hippocampus, a brain area which is sensitive to Alzheimer's Disease pathology, evaluating the effect of Aβ (at different concentrations on the neurotransmitter release stimulated by the activation of pre-synaptic cholinergic nicotinic receptors (nAChRs, α4β2 and α7 subtypes. Particularly, we focused on some neurotransmitters that are usually involved in learning and memory: glutamate, aspartate and GABA. METHODOLOGY/FINDINGS: WE USED A DUAL APPROACH: in vivo experiments (microdialysis technique on freely moving rats in parallel to in vitro experiments (isolated nerve endings derived from rat hippocampus. Both in vivo and in vitro the administration of nicotine stimulated an overflow of aspartate, glutamate and GABA. This effect was greatly inhibited by the highest concentrations of Aβ considered (10 µM in vivo and 100 nM in vitro. In vivo administration of 100 nM Aβ (the lowest concentration considered potentiated the GABA overflow evoked by nicotine. All these effects were specific for Aβ and for nicotinic secretory stimuli. The in vitro administration of either choline or 5-Iodo-A-85380 dihydrochloride (α7 and α4β2 nAChRs selective agonists, respectively elicited the hippocampal release of aspartate, glutamate, and GABA. High Aβ concentrations (100 nM inhibited the overflow of all three neurotransmitters evoked by both choline and 5-Iodo-A-85380 dihydrochloride. On the contrary, low Aβ concentrations (1 nM and 100 pM selectively acted on α7 subtypes potentiating the choline-induced release of both aspartate and glutamate, but not the one of GABA. CONCLUSIONS/SIGNIFICANCE: The results reinforce the concept that Aβ has relevant

  10. Cyclophilin A affects Bcl-2 and Bax expression following beta-amyloid fragment 25-35-induced injury to PC12 cells

    Institute of Scientific and Technical Information of China (English)

    Li Cheng; Chaodong Zhang

    2008-01-01

    BACKGROUND: Cyclophilin A can protect neurons against oxidative stress.OBJECTIVE: To investigate the effect of cyclophilin A on Bcl-2 and Bax protein expression in pheochromocytoma (PCI2) cells treated with beta-amyloid fragment 25-35 (A β25-35), and to verify the protection pathway ofcyclophilin A.DESIGN, TIME AND SETTING: The initial experiment was performed at the Laboratory of Department of Neurology, First Clinical College, China Medical University from November 2006 to July 2007.MATERIALS: PCI2 cells were cultured at the Cell Center of Peking Union Medical College. A β25-35 (Sigma, USA), antibodies of Bcl-2 and Bax (Wuhan Boster, China), and recombinant human cyclophilin A (Biomol, USA) were used in this study.METHODS: PC12 cells were divided into three groups. Cells in the control group were incubated in culture medium. Cells in the Aβ25-35 injury group were incubated in medium containing a final concentration of 10 μ mol/L of Aβ25-35. Cells in the cyclophilin A group were incubated in medium containing a final concentration of 10 nmol/L of cyclophilin A for 30 minutes, and then treated with 10 μmol/L Aβ25-35. MAIN OUTCOME MEASURES: After 24 hours of culture, immunohistochemistry was used to detect Bcl-2 and Bax expression in PC12 cells. Annexin-V flow cytometry was employed to measure the apoptosis rate of PC12 cells. The MTT method was applied to examine the survival rate of PC12 cells.RESULTS: Bcl-2 expression decreased, whereas Bax expression increased in PCI2 cells treated with Aβ25-35 (t = 2.277, 5.957, P<0.05). However, in PC12 cells treated with Aβ25-35 and cyclophilin A, Bcl-2 expression increased and Bax expression decreased (t = 4.497, 2.531, P < 0.05). The survival rate of PC12 cells significantly decreased and the apoptosis rate increased (t=8.509, 22.886, P < 0.05) following Aβ25-35 treatment. Cyclophilin A enhanced the survival rate of PC12 cells to Aβ25-35-induced apoptosis (t = 4.895, 10.042, P< 0.05).CONCLUSION: Cyclophilin A can

  11. Effect of combination of extracts of ginseng and ginkgo biloba on acetylcholine in amyloid beta-protein-treated rats determined by an improved HPLC

    Institute of Scientific and Technical Information of China (English)

    Jian-xun LIU; Wei-hong CONG; Li XU; Jian-nong WANG

    2004-01-01

    AIM: To determine the concentration of acetylcholine (ACh) in amyloid beta-protein (Aβ) treated rats and offer a method determining ACh as well. METHODS: A 1-month combination of extrats of ginseng and ginkgo biloba(Naoweikang) ig administration to rats was performed daily after bilateral injection of Aβ1-40 (4 g/L, 1 μL for each side) into hippocampus. After decollation, homogenizing, and centrifuging and extracting, a high pressure liquid chromatographic (HPLC) method using electrochemical detection (ECD) combined with two immobilized enzyme reactors was used to determine ACh in rat whole brain. RESULTS: With a mobile phase consisting of disodium hydrogen orthophosphate, tetramethylammonium chloride (TMAC1), octanesulfonic acid sodium salt (OSA) and"Reagent MB" at a final pH of 8.0, ACh was determined while removing the interfering choline in less than 10 min at a flow rate of 0.35 mL/min on a platinum (Pt) working electrode at a potential of +300 mV vs a solid-state palladium (Pd) reference electrode. Linear regression analysis of peak area vs concentration demonstrated linearity in the 28.01 to 1400.06 μg/L injection range. The r-value was 0.9978. The limit of detection (LOD) is 0.28 ng on column. ACh in whole brain decreased by 20.34 % (from 162.1±32.7 to 134.7±14.0 μg/L, P<0.05) after bilateral injection of Aβ into rat hippocampus. After Naoweikang administration (31 and 15.5 mg/kg, respectively), ACh increased by 19.97 % (from 134.7+14.0 to 161.6+26.2 μg/L, P<0.05) and 18.56 % (from 134.7+14.0 to 159.7+22.9 μg/L, P<0.05), respectively. CONCLUSION: Naoweikang significantly increased the level of ACh in whole brain of Aβ treated rats. And a sensitive, selective and reliable method for routinely determining ACh in rat whole brain was established in this study.

  12. In silico and in vitro studies to elucidate the role of Cu2+ and galanthamine as the limiting step in the amyloid beta (1-42) fibrillation process.

    Science.gov (United States)

    Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Benitez-Cardoza, Claudia G; Resendiz-Albor, Aldo Arturo; Rosales-Hernández, Martha C

    2013-10-01

    The formation of fibrils and oligomers of amyloid beta (Aβ) with 42 amino acid residues (Aβ 1-42 ) is the most important pathophysiological event associated with Alzheimer's disease (AD). The formation of Aβ fibrils and oligomers requires a conformational change from an α-helix to a β-sheet conformation, which is encouraged by the formation of a salt bridge between Asp 23 or Glu 22 and Lys 28. Recently, Cu(2+) and various drugs used for AD treatment, such as galanthamine (Reminyl(®) ), have been reported to inhibit the formation of Aβ fibrils. However, the mechanism of this inhibition remains unclear. Therefore, the aim of this work was to explore how Cu(2+) and galanthamine prevent the formation of Aβ1-42 fibrils using molecular dynamics (MD) simulations (20 ns) and in vitro studies using fluorescence and circular dichroism (CD) spectroscopies. The MD simulations revealed that Aβ1-42 acquires a characteristic U-shape before the α-helix to β-sheet conformational change. The formation of a salt bridge between Asp 23 and Lys 28 was also observed beginning at 5 ns. However, the MD simulations of Aβ 1-42 in the presence of Cu(2+) or galanthamine demonstrated that both ligands prevent the formation of the salt bridge by either binding to Glu 22 and Asp 23 (Cu(2+) ) or to Lys 28 (galanthamine), which prevents Aβ 1-42 from adopting the U-characteristic conformation that allows the amino acids to transition to a β-sheet conformation. The docking results revealed that the conformation obtained by the MD simulation of a monomer from the 1Z0Q structure can form similar interactions to those obtained from the 2BGE structure in the oligomers. The in vitro studies demonstrated that Aβ remains in an unfolded conformation when Cu(2+) and galanthamine are used. Then, ligands that bind Asp 23 or Glu 22 and Lys 28 could therefore be used to prevent β turn formation and, consequently, the formation of Aβ fibrils.

  13. Alcadein cleavages by amyloid beta-precursor protein (APP) alpha- and gamma-secretases generate small peptides, p3-Alcs, indicating Alzheimer disease-related gamma-secretase dysfunction.

    Science.gov (United States)

    Hata, Saori; Fujishige, Sayaka; Araki, Yoichi; Kato, Naoko; Araseki, Masahiko; Nishimura, Masaki; Hartmann, Dieter; Saftig, Paul; Fahrenholz, Falk; Taniguchi, Miyako; Urakami, Katsuya; Akatsu, Hiroyasu; Martins, Ralph N; Yamamoto, Kazuo; Maeda, Masahiro; Yamamoto, Tohru; Nakaya, Tadashi; Gandy, Sam; Suzuki, Toshiharu

    2009-12-25

    Alcadeins (Alcs) constitute a family of neuronal type I membrane proteins, designated Alc(alpha), Alc(beta), and Alc(gamma). The Alcs express in neurons dominantly and largely colocalize with the Alzheimer amyloid precursor protein (APP) in the brain. Alcs and APP show an identical function as a cargo receptor of kinesin-1. Moreover, proteolytic processing of Alc proteins appears highly similar to that of APP. We found that APP alpha-secretases ADAM 10 and ADAM 17 primarily cleave Alc proteins and trigger the subsequent secondary intramembranous cleavage of Alc C-terminal fragments by a presenilin-dependent gamma-secretase complex, thereby generating "APP p3-like" and non-aggregative Alc peptides (p3-Alcs). We determined the complete amino acid sequence of p3-Alc(alpha), p3-Alc(beta), and p3-Alc(gamma), whose major species comprise 35, 37, and 31 amino acids, respectively, in human cerebrospinal fluid. We demonstrate here that variant p3-Alc C termini are modulated by FAD-linked presenilin 1 mutations increasing minor beta-amyloid species Abeta42, and these mutations alter the level of minor p3-Alc species. However, the magnitudes of C-terminal alteration of p3-Alc(alpha), p3-Alc(beta), and p3-Alc(gamma) were not equivalent, suggesting that one type of gamma-secretase dysfunction does not appear in the phenotype equivalently in the cleavage of type I membrane proteins. Because these C-terminal alterations are detectable in human cerebrospinal fluid, the use of a substrate panel, including Alcs and APP, may be effective to detect gamma-secretase dysfunction in the prepathogenic state of Alzheimer disease subjects.

  14. Calcium binding to beta-2-microglobulin at physiological pH drives the occurrence of conformational changes which cause the protein to precipitate into amorphous forms that subsequently transform into amyloid aggregates.

    Directory of Open Access Journals (Sweden)

    Sukhdeep Kumar

    Full Text Available Using spectroscopic, calorimetric and microscopic methods, we demonstrate that calcium binds to beta-2-microglobulin (β2m under physiological conditions of pH and ionic strength, in biological buffers, causing a conformational change associated with the binding of up to four calcium atoms per β2m molecule, with a marked transformation of some random coil structure into beta sheet structure, and culminating in the aggregation of the protein at physiological (serum concentrations of calcium and β2m. We draw attention to the fact that the sequence of β2m contains several potential calcium-binding motifs of the DXD and DXDXD (or DXEXD varieties. We establish (a that the microscopic aggregation seen at physiological concentrations of β2m and calcium turns into actual turbidity and visible precipitation at higher concentrations of protein and β2m, (b that this initial aggregation/precipitation leads to the formation of amorphous aggregates, (c that the formation of the amorphous aggregates can be partially reversed through the addition of the divalent ion chelating agent, EDTA, and (d that upon incubation for a few weeks, the amorphous aggregates appear to support the formation of amyloid aggregates that bind to the dye, thioflavin T (ThT, resulting in increase in the dye's fluorescence. We speculate that β2m exists in the form of microscopic aggregates in vivo and that these don't progress to form larger amyloid aggregates because protein concentrations remain low under normal conditions of kidney function and β2m degradation. However, when kidney function is compromised and especially when dialysis is performed, β2m concentrations probably transiently rise to yield large aggregates that deposit in bone joints and transform into amyloids during dialysis related amyloidosis.

  15. The Golgi-Localized γ-Ear-Containing ARF-Binding (GGA Proteins Alter Amyloid-β Precursor Protein (APP Processing through Interaction of Their GAE Domain with the Beta-Site APP Cleaving Enzyme 1 (BACE1.

    Directory of Open Access Journals (Sweden)

    Bjoern von Einem

    Full Text Available Proteolytic processing of amyloid-β precursor protein (APP by beta-site APP cleaving enzyme 1 (BACE1 is the initial step in the production of amyloid beta (Aβ, which accumulates in senile plaques in Alzheimer's disease (AD. Essential for this cleavage is the transport and sorting of both proteins through endosomal/Golgi compartments. Golgi-localized γ-ear-containing ARF-binding (GGA proteins have striking cargo-sorting functions in these pathways. Recently, GGA1 and GGA3 were shown to interact with BACE1, to be expressed in neurons, and to be decreased in AD brain, whereas little is known about GGA2. Since GGA1 impacts Aβ generation by confining APP to the Golgi and perinuclear compartments, we tested whether all GGAs modulate BACE1 and APP transport and processing. We observed decreased levels of secreted APP alpha (sAPPα, sAPPβ, and Aβ upon GGA overexpression, which could be reverted by knockdown. GGA-BACE1 co-immunoprecipitation was impaired upon GGA-GAE but not VHS domain deletion. Autoinhibition of the GGA1-VHS domain was irrelevant for BACE1 interaction. Our data suggest that all three GGAs affect APP processing via the GGA-GAE domain.

  16. Beta-amyloid deposition and cognitive function in patients with major depressive disorder with different subtypes of mild cognitive impairment: {sup 18}F-florbetapir (AV-45/Amyvid) PET study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kuan-Yi; Liu, Chia-Yih; Chen, Chia-Hsiang; Lee, Chin-Pang [Chang Gung Memorial Hospital and Chang Gung University, Department of Psychiatry, Tao-Yuan (China); Chen, Cheng-Sheng [Kaohsiung Medical University Hospital and College of Medicine, Kaohsiung Medical University, Department of Psychiatry, Kaohsiung (China); Hsiao, Ing-Tsung; Hsieh, Chia-Ju; Yen, Tzu-Chen; Lin, Kun-Ju [Chang Gung Memorial Hospital, Department of Nuclear Medicine and Molecular Imaging Center, Kuei Shan Hsiang, Taoyuan (China); Chang Gung University, Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Tao-Yuan (China)

    2016-06-15

    The objective of this study was to evaluate the amyloid burden, as assessed by {sup 18}F-florbetapir (AV-45/Amyvid) positron emission tomography PET, in patients with major depressive disorder (MDD) with different subtypes of mild cognitive impairment (MCI) and the relationship between amyloid burden and cognition in MDD patients. The study included 55 MDD patients without dementia and 21 healthy control subjects (HCs) who were assessed using a comprehensive cognitive test battery and {sup 18}F-florbetapir PET imaging. The standardized uptake value ratios (SUVR) in eight cortical regions using the whole cerebellum as reference region were determined and voxel-wise comparisons between the HC and MDD groups were performed. Vascular risk factors, serum homocysteine level and the apolipoprotein E (ApoE) genotype were also determined. Among the 55 MDD patients, 22 (40.0 %) had MCI, 12 (21.8 %) non-amnestic MCI (naMCI) and 10 (18.2 %) amnestic MCI (aMCI). The MDD patients with aMCI had the highest relative {sup 18}F-florbetapir uptake in all cortical regions, and a significant difference in relative {sup 18}F-florbetapir uptake was found in the parietal region as compared with that in naMCI subjects (P < 0.05) and HCs (P < 0.01). Voxel-wise analyses revealed significantly increased relative {sup 18}F-florbetapir uptake in the MDD patients with aMCI and naMCI in the frontal, parietal, temporal and occipital areas (P < 0.005). The global cortical SUVR was significantly negatively correlated with MMSE score (r = -0.342, P = 0.010) and memory function (r = -0.328, P = 0.015). The negative correlation between the global SUVR and memory in the MDD patients remained significant in multiple regression analyses that included age, educational level, ApoE genotype, and depression severity (β = -3.607, t = -2.874, P = 0.006). We found preliminary evidence of brain beta-amyloid deposition in MDD patients with different subtypes of MCI. Our findings in MDD patients support the

  17. The nicotinic alpha7 acetylcholine receptor agonist ssr180711 is unable to activate limbic neurons in mice overexpressing human amyloid-beta1-42

    DEFF Research Database (Denmark)

    Soderman, A.; Spang-Thomsen, Mogens; Hansen, H.

    2008-01-01

    7 nAChR have not been examined. The aim of this study has been to evaluate the efficacy of alpha7 nAChR modulators in transgene mice that overexpress human amyloid precursor protein and accumulate Abeta1-40 and Abeta1-42. In accordance with observations in human Alzheimer tissues, we show here...

  18. Bovine Insulin Filaments Induced by Reducing Disulfide Bonds Show a Different Morphology, Secondary Structure, and Cell Toxicity from Intact Insulin Amyloid Fibrils

    OpenAIRE

    Zako, Tamotsu; Sakono, Masafumi; Hashimoto, Naomi; Ihara, Masaki; Maeda, Mizuo

    2009-01-01

    Amyloid fibrils are associated with more than 20 diseases, including Alzheimer's disease and type II diabetes. Insulin is a 51-residue polypeptide hormone, with its two polypeptide chains linked by one intrachain and two interchain disulfide bonds, and has long been known to self-assemble in vitro into amyloid fibrils. We demonstrate here that bovine insulin forms flexible filaments in the presence of a reducing agent, Tris (2-carboxyethyl) phosphine. The insulin filaments, possibly formed du...

  19. Effects of natural-cerebrolysin-containing serum on neurotoxicity and synaptogenesis in amyloid-beta 1-40-induced Alzheimer's disease in vitro models

    Institute of Scientific and Technical Information of China (English)

    Yinghong Li; Zhengzhi Wu; Andrew C. J. HuangO; Ming Li; XiaoLi Zhang; Jiguo Wang

    2009-01-01

    BACKGROUND: Neuronal loss, synapse mutilation, and increasing malnourished axons are pathologically related to Alzheimer's disease. Microtubule-associated protein 2 (MAP2) is of importance for neuronal, axonal, and dendritic generation, extension, and stabilization, as well as for the regulation of synaptic plasticity.OBJECTIVE: To investigate the antagonistic effects of natural-cerebrolysin-containing serum on beta amyloid protein 1-40 (Aβ1-40)-induced neurotoxicity from the standpoints of cell proliferation, synaptogenesis, and cytoskeleton formation (MAP2 expression).DESIGN, TIME AND SETTING: A paralleled, controlled, neural cell, and molecular biology experiment was performed at the Institute of Integrated Chinese and Western Medicine, Shenzhen Hospital, Southern Medical University between February 2006 and April 2008.MATERIALS: PC12 cells, derived from the rat central nervous system, were purchased from Shanghai Institute of Cell Biology, Chinese Academy of Sciences, China. A β1-40 was provided by Sigma, USA. Natural-cerebrolysin was provided by Shenzhen Institute of Integrated Chinese and Western Medicine, China. The natural-cerebrolysin was predominantly composed of Renshen (Radix Ginseng), Tianma (Rhizoma Gastrodiae), and Yixingye (Ginkgo Leaf) in a proportion of 1:2:2. Following conventional water extraction technology, an extract (1:20) was prepared. Each gram of extract equaled 20 grams of crude drug. In a total of 12 adult male New Zealand rabbits, six underwent intragastric administration of natural-cerebrolysin extract for 1 month to prepare administration of physiological saline to prepare normal blank serum.METHODS: An Alzheimer's disease in vitro model was induced in PC12 cells using Aβ1-40. The cells were incubated with varying doses of natural-cerebrolysin-containing serum (2.5%, 5%, and 10%). Normal blank serum-treated PC12 cells served as a blank control group.MAIN