WorldWideScience

Sample records for amplitude physics

  1. Connecting physical resonant amplitudes and lattice QCD

    Science.gov (United States)

    Bolton, Daniel R.; Briceño, Raúl A.; Wilson, David J.

    2016-06-01

    We present a determination of the isovector, P-wave ππ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using mπ = 236 MeV. The finite volume spectra are described using extensions of Lüscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at mπ = 140 MeV. The scattering phase shift is found to agree with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a ρ-resonance pole at Eρ = [ 755 (2) (1) (20 02) -i/2 129 (3) (1) (7 1) ] MeV. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.

  2. Connecting physical resonant amplitudes and lattice QCD

    CERN Document Server

    Bolton, Daniel R; Wilson, David J

    2015-01-01

    We present a determination of the isovector, $P$-wave $\\pi\\pi$ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using $m_\\pi =236$ MeV. The finite volume spectra are described using extensions of L\\"uscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at $m_\\pi= 140$ MeV. The scattering phase shift is found to be in good agreement with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a $\\rho$-resonance pole at $E_\\rho= \\left[755(2)(1)(^{20}_{02})-\\frac{i}{2}\\,129(3)(1)(^{7}_{1})\\right]~{\\rm MeV}$. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.

  3. A proposed physical analog for a quantum probability amplitude

    Science.gov (United States)

    Boyd, Jeffrey

    What is the physical analog of a probability amplitude? All quantum mathematics, including quantum information, is built on amplitudes. Every other science uses probabilities; QM alone uses their square root. Why? This question has been asked for a century, but no one previously has proposed an answer. We will present cylindrical helices moving toward a particle source, which particles follow backwards. Consider Feynman's book QED. He speaks of amplitudes moving through space like the hand of a spinning clock. His hand is a complex vector. It traces a cylindrical helix in Cartesian space. The Theory of Elementary Waves changes direction so Feynman's clock faces move toward the particle source. Particles follow amplitudes (quantum waves) backwards. This contradicts wave particle duality. We will present empirical evidence that wave particle duality is wrong about the direction of particles versus waves. This involves a paradigm shift; which are always controversial. We believe that our model is the ONLY proposal ever made for the physical foundations of probability amplitudes. We will show that our ``probability amplitudes'' in physical nature form a Hilbert vector space with adjoints, an inner product and support both linear algebra and Dirac notation.

  4. Calculation of hadronic transition amplitudes in charm physics

    International Nuclear Information System (INIS)

    Transitions of charmed hadrons are of significant importance, since they provide possibilities to extract the CKM matrix elements Vcd and Vcs from experimental data as well as interesting channels to search for new physics effects. However, quarks are bound in hadrons, and it is necessary to describe this effect in a reliable way, to study the underlying flavour dynamics. For this, one has to use nonperturbative tools, to determine the corresponding transition amplitudes. The results of such calculations can furthermore be of use, to test the predictions of QCD and to contribute to a deeper understanding of the structure of hadrons. In this thesis two topics are investigated using the method of QCD light-cone sum rules (LCSRs). The first topic consists in the form factors of the semileptonic decays D → πlνl and D → Klνl, for which new results are calculated using up-to-date input values. Since LCSRs are not applicable in the whole range of kinematics, they are extrapolated by the use of appropriate parametrisations and the results agree well with experimental data. The second topic are the transitions of charmed baryons to a nucleon. Here the corresponding transition form factors and in addition the hadronic ΛcD(*)N and ΣcD(*)N coupling constants are calculated - the latter by the consideration of double dispersion relations. These coupling constants are of special interest for the description of hadronic interactions, like open charm production in proton-antiprotoncollisions. Furthermore there appears the problem, that both parity states of a baryon contribute to the considered functional representation, for which a consistent way to separate them is presented. (orig.)

  5. ON MEASURING AMPLITUDES AND PERIODS OF PHYSICAL PENDULUM MICRO-SWINGS WITH ROLLING-CONTACT BEARING

    Directory of Open Access Journals (Sweden)

    N. N. Riznookaya

    2011-01-01

    Full Text Available The paper considers a method and an instrument for measuring amplitudes and  periods of physical pendulum oscillations with rolling-contact bearing in the regime of micro-swings when the oscillation amplitude is significantly less of an elastic contact angle. It has been established that the main factors limiting a measuring accuracy are noises of the measuring circuit, base vibration and analog-digital conversion. A new measuring methodology based on original algorithms of data processing and application of the well-known methods for statistic processing of a measuring signal is  proposed in the paper. The paper contains error estimations for measuring oscillation amplitudes justified by discreteness of a signal conversion in a photoelectric receptor and also by the influence of measuring circuit noise. The paper reveals that the applied methodologies make it possible to ensure measuring of amplitudes with an error of 0.2 second of arc and measuring of a period with an error of 10–4 s. The original measuring instrument including mechanical and optical devices and also an electric circuit of optical-to-electrical measuring signal conversion is described in the paper. 

  6. From arbitrariness to ambiguities in the evaluation of perturbative physical amplitudes and their symmetry relations

    International Nuclear Information System (INIS)

    A very general calculational strategy is applied to the evaluation of the divergent physical amplitudes which are typical of perturbative calculations. With this approach in the final results all the intrinsic arbitrariness of the calculations due to the divergent character is still present. We show that by using the symmetry properties as a guide to search for the (compulsory) choices in such a way as to avoid ambiguities, a deep and clear understanding of the role of regularization methods emerges. Requiring then a universal point of view for the problem, as allowed by our approach, very interesting conclusions can be stated about the possible justifications of the most intriguing aspect of perturbative calculations in quantum field theory: the triangle anomalies

  7. Study of the pion photoproduction amplitudes in the boundary of the physical region

    International Nuclear Information System (INIS)

    The γsub(p) → π+n and γsub(n) → π-n amplitudes are determined in the resonance energy region for cos theta - +-1, by using modulus-phase dispersion relations and experimental differential cross section data. Numerical values for these amplitudes and for the corresponding isoscalar and isovector components are given. The isoscalar and isovector couplings of some resonances appearing in the amplitudes are also determined. (author)

  8. Calculation of hadronic transition amplitudes in charm physics; Berechnung hadronischer Uebergangsamplituden in der Charm-Physik

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Christoph

    2011-09-23

    Transitions of charmed hadrons are of significant importance, since they provide possibilities to extract the CKM matrix elements V{sub cd} and V{sub cs} from experimental data as well as interesting channels to search for new physics effects. However, quarks are bound in hadrons, and it is necessary to describe this effect in a reliable way, to study the underlying flavour dynamics. For this, one has to use nonperturbative tools, to determine the corresponding transition amplitudes. The results of such calculations can furthermore be of use, to test the predictions of QCD and to contribute to a deeper understanding of the structure of hadrons. In this thesis two topics are investigated using the method of QCD light-cone sum rules (LCSRs). The first topic consists in the form factors of the semileptonic decays D {yields} {pi}l{nu}{sub l} and D {yields} Kl{nu}{sub l}, for which new results are calculated using up-to-date input values. Since LCSRs are not applicable in the whole range of kinematics, they are extrapolated by the use of appropriate parametrisations and the results agree well with experimental data. The second topic are the transitions of charmed baryons to a nucleon. Here the corresponding transition form factors and in addition the hadronic {lambda}{sub c}D{sup (*)}N and {sigma}{sub c}D{sup (*)}N coupling constants are calculated - the latter by the consideration of double dispersion relations. These coupling constants are of special interest for the description of hadronic interactions, like open charm production in proton-antiprotoncollisions. Furthermore there appears the problem, that both parity states of a baryon contribute to the considered functional representation, for which a consistent way to separate them is presented. (orig.)

  9. A fast time-amplitude converter for low-energy physics measurements

    International Nuclear Information System (INIS)

    This converter permits the measurement of neutron times of flight up to 150 ns. The saw-tooth generator employs a 6BN6 tube fed at low voltage. There are two main points to be noted. The first relates to the tube itself: the influence of the inter-electrode capacitances increases with the speed of the signals, so that it was necessary to provide efficient neutrodyning of the No. 3 grid anode capacitance, which disturbed the conversion. The other point is that the exactness of the time definition is limited owing to the amplitude spectrum of the signals from the photomultiplier which makes it difficult to determine the instant that corresponds to a pulse. To reduce this difficulty, the authors took a selection of measurements. The performance of the equipment was checked under simulated normal working conditions: the two instants are defined by two distinct detection channels, each having a photomultiplier and a scintillator. The half-height width of a peak corresponding to a fixed delay gives the time definition; values were obtained from 0.8 to 1.3 ns for the half-height width of the peak, depending on the setting, and the drift for 15 hours of operation remained less than 0.3 % of the range. The linearity of the response curve as measured by accident coincidence is better than ± 0.3 % between 5 and 95 % of the measured area. (author)

  10. Large-amplitude electron density and Hα fluctuations in the sustained spheromak physics experiment

    International Nuclear Information System (INIS)

    New types of toroidally rotating fluctuations (toroidal mode numbers n=1 and n=2) of line-integrated electron density and Hα emission, with frequencies ranging from 10 to 100 kHz, are observed in the sustained spheromak physics experiment (SSPX). The rotating directions of these fluctuations are the same as the direction determined by ExB, while the E and B directions are determined by the gun voltage and gun magnetic flux polarities, respectively. These results take advantage of one distinctive signature of spheromaks, i.e. it is possible to observe toroidal MHD activity during decay and sustainment at any toroidal angle. A theoretical constraint on line-integrated measurement is proposed and is found to be consistent with experimental observations. Fluctuation analysis in the time and frequency domains indicates that the observed density and Hα fluctuations correlate with magnetic modes. Observation of Hα fluctuations correlating with magnetic fluctuations indicates that, at least in some cases, MHD n=1 modes are due to the so-called 'dough-hook' current paths that connect the coaxial gun to the flux conserver, rather than internal kink instabilities. These results also show that electron density and Hα emission diagnostics complement other tools for spheromak mode study. (author)

  11. Periods and Superstring Amplitudes

    CERN Document Server

    Stieberger, S

    2016-01-01

    Scattering amplitudes which describe the interaction of physical states play an important role in determining physical observables. In string theory the physical states are given by vibrations of open and closed strings and their interactions are described (at the leading order in perturbation theory) by a world-sheet given by the topology of a disk or sphere, respectively. Formally, for scattering of N strings this leads to N-3-dimensional iterated real integrals along the compactified real axis or N-3-dimensional complex sphere integrals, respectively. As a consequence the physical observables are described by periods on M_{0,N} - the moduli space of Riemann spheres of N ordered marked points. The mathematical structure of these string amplitudes share many recent advances in arithmetic algebraic geometry and number theory like multiple zeta values, single-valued multiple zeta values, Drinfeld, Deligne associators, Hopf algebra and Lie algebra structures related to Grothendiecks Galois theory. We review the...

  12. Light Meson Distribution Amplitudes

    CERN Document Server

    Arthur, R; Brommel, D; Donnellan, M A; Flynn, J M; Juttner, A; de Lima, H Pedroso; Rae, T D; Sachrajda, C T; Samways, B

    2010-01-01

    We calculated the first two moments of the light-cone distribution amplitudes for the pseudoscalar mesons ($\\pi$ and $K$) and the longitudinally polarised vector mesons ($\\rho$, $K^*$ and $\\phi$) as part of the UKQCD and RBC collaborations' $N_f=2+1$ domain-wall fermion phenomenology programme. These quantities were obtained with a good precision and, in particular, the expected effects of $SU(3)$-flavour symmetry breaking were observed. Operators were renormalised non-perturbatively and extrapolations to the physical point were made, guided by leading order chiral perturbation theory. The main results presented are for two volumes, $16^3\\times 32$ and $24^3\\times 64$, with a common lattice spacing. Preliminary results for a lattice with a finer lattice spacing, $32^3\\times64$, are discussed and a first look is taken at the use of twisted boundary conditions to extract distribution amplitudes.

  13. Scattering amplitudes in gauge theories

    CERN Document Server

    Henn, Johannes M

    2014-01-01

    At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge.   These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...

  14. Self-consistent theory of large amplitude collective motion: Applications to approximate quantization of non-separable systems and to nuclear physics

    OpenAIRE

    Dang, G. Do; De Klein, A.; Walet, N. R.

    1999-01-01

    The goal of the present account is to review our efforts to obtain and apply a ``collective'' Hamiltonian for a few, approximately decoupled, adiabatic degrees of freedom, starting from a Hamiltonian system with more or many more degrees of freedom. The approach is based on an analysis of the classical limit of quantum-mechanical problems. Initially, we study the classical problem within the framework of Hamiltonian dynamics and derive a fully self-consistent theory of large amplitude collect...

  15. On the singularities of massive superstring amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1987-06-04

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism.

  16. Covariant method for calculating helicity amplitudes

    International Nuclear Information System (INIS)

    We present an alternative approach for calculating helicity amplitudes for processes involving both massless and massive fermions. With this method one can easily obtain covariant expressions for the helicity amplitudes. The final expressions involve only four-vector products and are independent of the basis for γ matrices or specific form of the spinors. We use the method to obtain the helicity amplitudes for several processes involving top quark production. copyright 1996 The American Physical Society

  17. On the singularities of massive superstring amplitudes

    International Nuclear Information System (INIS)

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism. (orig.)

  18. On the singularities of massive superstring amplitudes

    OpenAIRE

    Foda, O.

    1987-01-01

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: these can be defined only with massless external states. Consistent massive amplitudes require an off-shell formalism.

  19. Amplitude mediated chimera states

    OpenAIRE

    Sethia, Gautam C.; Sen, Abhijit; Johnston, George L.

    2013-01-01

    We investigate the possibility of obtaining chimera state solutions of the non-local Complex Ginzburg-Landau Equation (NLCGLE) in the strong coupling limit when it is important to retain amplitude variations. Our numerical studies reveal the existence of a variety of amplitude mediated chimera states (including stationary and non-stationary two cluster chimera states), that display intermittent emergence and decay of amplitude dips in their phase incoherent regions. The existence regions of t...

  20. Periods and Feynman amplitudes

    CERN Document Server

    Brown, Francis

    2016-01-01

    Feynman amplitudes in perturbation theory form the basis for most predictions in particle collider experiments. The mathematical quantities which occur as amplitudes include values of the Riemann zeta function and relate to fundamental objects in number theory and algebraic geometry. This talk reviews some of the recent developments in this field, and explains how new ideas from algebraic geometry have led to much progress in our understanding of amplitudes. In particular, the idea that certain transcendental numbers, such as $\\pi$, can be viewed as a representation of a group, provides a powerful framework to study amplitudes which reveals many hidden structures.

  1. Logarithmic torus amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Flohr, Michael [Physikalisches Institut, University of Bonn, Nussallee 12, D-53115 Bonn (Germany); Gaberdiel, Matthias R [Institut fuer Theoretische Physik, ETH Zuerich, ETH-Hoenggerberg, 8093 Zurich (Switzerland)

    2006-02-24

    For the example of the logarithmic triplet theory at c = -2, the chiral vacuum torus amplitudes are analysed. It is found that the space of these torus amplitudes is spanned by the characters of the irreducible representations, as well as a function that can be associated with the logarithmic extension of the vacuum representation. A few implications and generalizations of this result are discussed.

  2. Amplitudes, acquisition and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bloor, Robert

    1998-12-31

    Accurate seismic amplitude information is important for the successful evaluation of many prospects and the importance of such amplitude information is increasing with the advent of time lapse seismic techniques. It is now widely accepted that the proper treatment of amplitudes requires seismic imaging in the form of either time or depth migration. A key factor in seismic imaging is the spatial sampling of the data and its relationship to the imaging algorithms. This presentation demonstrates that acquisition caused spatial sampling irregularity can affect the seismic imaging and perturb amplitudes. Equalization helps to balance the amplitudes, and the dealing strategy improves the imaging further when there are azimuth variations. Equalization and dealiasing can also help with the acquisition irregularities caused by shot and receiver dislocation or missing traces. 2 refs., 2 figs.

  3. Scattering amplitudes in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2014-03-01

    First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.

  4. Protostring Scattering Amplitudes

    CERN Document Server

    Thorn, Charles B

    2016-01-01

    We calculate some tree level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a lightcone worldsheet which supports $s$ integer moded Grassmann fields. In the generalization we supplement this Grassmann worldsheet system with $d=24-s$ transverse coordinate worldsheet fields. The protostring corresponds to $s=24$ and the bosonic string to $s=0$. The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that $s$ is even we calculate the multi-string scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of $s/2$ compactified and $d$ uncompactified bosonic worldsheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then ...

  5. Grassmannian geometry of scattering amplitudes

    CERN Document Server

    Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav

    2016-01-01

    Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...

  6. CHY formula and MHV amplitudes

    CERN Document Server

    Du, Yi-jian; Wu, Yong-shi

    2016-01-01

    In this paper, we study the relation between the Cachazo-He-Yuan (CHY) formula and the maximal-helicity-violating (MHV) amplitudes of Yang-Mills and gravity in four dimensions. We prove that only one special rational solution of the scattering equations found by Weinzierl support the MHV amplitudes. Namely, localized at this solution, the integrated CHY formula reproduces the Parke-Taylor formula for Yang-Mills amplitudes as well as the Hodges formula for gravitational amplitudes. This is achieved by developing techniques, in a manifestly M\\"obius covariant formalism, to explicitly compute relevant reduced Pfaffians/determinants. We observe and prove two interesting properties (or identities), which facilitate the computations. We also check that all the other $(n-3)!-1$ solutions to the scattering equations do not support the MHV amplitudes, and prove analytically that this is indeed true for the other special rational solution proposed by Weinzierl, that actually supports the anti-MHV amplitudes.

  7. Hidden Beauty in Multiloop Amplitudes

    OpenAIRE

    Cachazo, Freddy(Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada); Spradlin, Marcus; Volovich, Anastasia

    2006-01-01

    Planar L-loop maximally helicity violating amplitudes in N = 4 supersymmetric Yang-Mills theory are believed to possess the remarkable property of satisfying iteration relations in L. We propose a simple new method for studying the iteration relations for four-particle amplitudes which involves the use of certain linear differential operators and eliminates the need to fully evaluate any loop integrals. We carry out this procedure in explicit detail for the two-loop amplitude and argue that t...

  8. Motivic amplitudes and cluster coordinates

    OpenAIRE

    J.K. Golden; Goncharov, A. B.; M. Spradlin; C. Vergu; Volovich, A.

    2014-01-01

    In this paper we study motivic amplitudes--objects which contain all of the essential mathematical content of scattering amplitudes in planar SYM theory in a completely canonical way, free from the ambiguities inherent in any attempt to choose particular functional representatives. We find that the cluster structure on the kinematic configuration space Conf_n(P^3) underlies the structure of motivic amplitudes. Specifically, we compute explicitly the coproduct of the two-loop seven-particle MH...

  9. Amplitude dependent closest tune approach

    CERN Document Server

    Tomas Garcia, Rogelio; Franchi, Andrea; Maclean, Ewen Hamish; CERN. Geneva. ATS Department

    2016-01-01

    Recent observations in the LHC point to the existence of an amplitude dependent closest tune approach. However this dynamical behavior and its underlying mechanism remain unknown. This effect is highly relevant for the LHC as an unexpectedly closest tune approach varying with amplitude modifies the frequency content of the beam and, hence, the Landau damping. Furthermore the single particle stability would also be affected by this effect as it would modify how particles with varying amplitudes approach and cross resonances. We present analytic derivations that lead to a mechanism generating an amplitude dependent closest tune approach.

  10. Ward identities for amplitudes with reggeized gluons

    Energy Technology Data Exchange (ETDEWEB)

    Bartles, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Fisica; Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; St. Petersburg Nuclear Physics Institute (Russian Federation); Vacca, G.P. [INFN, Sezione di Bologna (Italy)

    2012-05-15

    Starting from the effective action of high energy QCD we derive Ward identities for Green's functions of reggeized gluons. They follow from the gauge invariance of the effective action, and allow to derive new representations of amplitudes containing physical particles as well as reggeized gluons. We explicitly demonstrate their validity for the BFKL kernel, and we present a new derivation of the kernel.

  11. Inverse amplitude method and Adler zeros

    OpenAIRE

    Gómez Nicola, Ángel; Peláez Sagredo, José Ramón; Rios, G.

    2008-01-01

    The inverse amplitude method is a powerful unitarization technique to enlarge the energy applicability region of effective Lagrangians. It has been widely used to describe resonances in hadronic physics, combined with chiral perturbation theory, as well as in the strongly interacting symmetry breaking sector. In this work we show how it can be slightly modified to also account for the subthreshold region, incorporating correctly the Adler zeros required by chiral symmetry and eliminating spur...

  12. Inverse amplitude method and Adler zeros

    International Nuclear Information System (INIS)

    The inverse amplitude method is a powerful unitarization technique to enlarge the energy applicability region of effective Lagrangians. It has been widely used to describe resonances in hadronic physics, combined with chiral perturbation theory, as well as in the strongly interacting symmetry breaking sector. In this work we show how it can be slightly modified to also account for the subthreshold region, incorporating correctly the Adler zeros required by chiral symmetry and eliminating spurious poles. These improvements produce negligible effects on the physical region.

  13. CHY formula and MHV amplitudes

    Science.gov (United States)

    Du, Yi-Jian; Teng, Fei; Wu, Yong-Shi

    2016-05-01

    In this paper, we study the relation between the Cachazo-He-Yuan (CHY) formula and the maximal-helicity-violating (MHV) amplitudes of Yang-Mills and gravity in four dimensions. We prove that only one special rational solution of the scattering equations found by Weinzierl supports the MHV amplitudes. Namely, localized at this solution, the integrated CHY formula produces the Parke-Taylor formula for MHV Yang-Mills amplitudes as well as the Hodges formula for MHV gravitational amplitudes, with an arbitrary number of external gluons/gravitons. This is achieved by developing techniques, in a manifestly Möbius covariant formalism, to explicitly compute relevant reduced Pfaffians/determinants. We observe and prove two interesting properties (or identities), which facilitate the computations. We also check that all the other ( n - 3)! - 1 solutions to the scattering equations do not support the MHV amplitudes, and prove analytically that this is indeed true for the other special rational solution proposed by Weinzierl, that actually supports the anti-MHV amplitudes. Our results reveal a mysterious feature of the CHY formalism that in Yang-Mills and gravity theory, solutions of scattering equations, involving only external momenta, somehow know about the configuration of external polarizations of the scattering amplitudes.

  14. Cluster Functions and Scattering Amplitudes for Six and Seven Points

    CERN Document Server

    Harrington, Thomas

    2015-01-01

    Scattering amplitudes in planar super-Yang-Mills theory satisfy several basic physical and mathematical constraints, including physical constraints on their branch cut structure and various empirically discovered connections to the mathematics of cluster algebras. The power of the bootstrap program for amplitudes is inversely proportional to the size of the intersection between these physical and mathematical constraints: ideally we would like a list of constraints which determine scattering amplitudes uniquely. We explore this intersection quantitatively for two-loop six- and seven-point amplitudes by providing a complete taxonomy of the Gr(4,6) and Gr(4,7) cluster polylogarithm functions of arXiv:1401.6446 at weight 4.

  15. Teleporting Superpositions of Chiral Amplitudes

    CERN Document Server

    Maierle, C S; Harris, R A; Maierle, Christopher S.; Lidar, Daniel A.; Harris, Robert A.

    1998-01-01

    Chiral molecules may exist in superpositions of left- and right-handed states. We show how the amplitudes of such superpositions may be teleported to the polarization degrees of freedom of a photon. Two experimental schemes are proposed, one leading to perfect, the other to state-dependent teleportation. Both methods yield complete information about the amplitudes. This is the first explicit example of "inter-species" teleportation, where the amplitudes of the quantum superposition of one species are transferred at the end of the process to a different species. The latter is then easily accessible for measurement.

  16. ABJM amplitudes and the positive orthogonal Grassmannian

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yu-tin [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Wen, CongKao [Centre for Research in String Theory, Department of Physics,Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2014-02-25

    A remarkable connection between perturbative scattering amplitudes of four dimensional planar SYM, and the stratification of the positive Grassmannian, was revealed in the seminal work of Arkani-Hamed et al. Similar extension for three-dimensional ABJM theory was proposed. Here we establish a direct connection between planar scattering amplitudes of ABJM theory, and singularities thereof, to the stratification of the positive orthogonal Grassmannian. In particular, scattering processes are constructed through on-shell diagrams, which are simply iterative gluing of the fundamental four-point amplitude. Each diagram is then equivalent to the merging of fundamental OG{sub 2} orthogonal Grassmannian to form a larger OG{sub k}, where 2k is the number of external particles. The invariant information that is encoded in each diagram is precisely this stratification. This information can be easily read off via permutation paths of the on-shell diagram, which also can be used to derive a canonical representation of OG{sub k} that manifests the vanishing of consecutive minors as the singularity of all on-shell diagrams. Quite remarkably, for the BCFW recursion representation of the tree-level amplitudes, the on-shell diagram manifests the presence of all physical factorization poles, as well as the cancellation of the spurious poles. After analytically continuing the orthogonal Grassmannian to split signature, we reveal that each on-shell diagram in fact resides in the positive cell of the orthogonal Grassmannian, where all minors are positive. In this language, the amplitudes of ABJM theory is simply an integral of a product of dlog forms, over the positive orthogonal Grassmannian.

  17. New structures in scattering amplitudes: a review

    CERN Document Server

    Benincasa, Paolo

    2013-01-01

    We review some recent developments in the understanding of field theories in the perturbative regime. In particular, we discuss the notions of analyticity, unitarity and locality, and therefore the singularity structure of scattering amplitudes in general interacting theories. We describe their tree-level structure and their on-shell representations, as well as the links between the tree-level structure itself and the structure of the loop amplitudes. Finally, we describe the on-shell diagrammatics recently proposed both on general grounds and in the remarkable example of planar supersymmetric theories. This review is partially based on lectures given at: Dipartimento di Fisica and INFN, Universit\\`a di Bologna; Departamento de F{\\i}sica de Part{\\i}culas, Universidade de Santiago de Compostela; and as part of the program Strings@ar Lectures on Advanced Topics of High Energy Physics held at the IAFE

  18. Integrable spin chains and scattering amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J.; Prygarin, A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Petersburg Nuclear Physics Institute (Russian Federation); Sankt-Peterburgskij Univ., St. Petersburg (Russian Federation)

    2011-04-15

    In this review we show that the multi-particle scattering amplitudes in N=4 SYM at large N{sub c} and in the multi-Regge kinematics for some physical regions have the high energy behavior appearing from the contribution of the Mandelstam cuts in the complex angular momentum plane of the corresponding t-channel partial waves. These Mandelstam cuts or Regge cuts are resulting from gluon composite states in the adjoint representation of the gauge group SU(N{sub c}). In the leading logarithmic approximation (LLA) their contribution to the six point amplitude is in full agreement with the known two-loop result. The Hamiltonian for the Mandelstam states constructed from n gluons in LLA coincides with the local Hamiltonian of an integrable open spin chain. We construct the corresponding wave functions using the integrals of motion and the Baxter-Sklyanin approach. (orig.)

  19. PHYSICS

    CERN Multimedia

    P. Sphicas

    There have been three physics meetings since the last CMS week: “physics days” on March 27-29, the Physics/ Trigger week on April 23-27 and the most recent physics days on May 22-24. The main purpose of the March physics days was to finalize the list of “2007 analyses”, i.e. the few topics that the physics groups will concentrate on for the rest of this calendar year. The idea is to carry out a full physics exercise, with CMSSW, for select physics channels which test key features of the physics objects, or represent potential “day 1” physics topics that need to be addressed in advance. The list of these analyses was indeed completed and presented in the plenary meetings. As always, a significant amount of time was also spent in reviewing the status of the physics objects (reconstruction) as well as their usage in the High-Level Trigger (HLT). The major event of the past three months was the first “Physics/Trigger week” in Apri...

  20. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    A remarkable amount of progress has been made in Physics since the last CMS Week in June given the exponential growth in the delivered LHC luminosity. The first major milestone was the delivery of a variety of results to the ICHEP international conference held in Paris this July. For this conference, CMS prepared 15 Physics Analysis Summaries on physics objects and 22 Summaries on new and interesting physics measurements that exploited the luminosity recorded by the CMS detector. The challenge was incorporating the largest batch of luminosity that was delivered only days before the conference (300 nb-1 total). The physics covered from this initial running period spanned hadron production measurements, jet production and properties, electroweak vector boson production, and even glimpses of the top quark. Since then, the accumulated integrated luminosity has increased by a factor of more than 100, and all groups have been working tremendously hard on analysing this dataset. The September Physics Week was held ...

  1. PHYSICS

    CERN Multimedia

    P. Sphicas

    The CPT project came to an end in December 2006 and its original scope is now shared among three new areas, namely Computing, Offline and Physics. In the physics area the basic change with respect to the previous system (where the PRS groups were charged with detector and physics object reconstruction and physics analysis) was the split of the detector PRS groups (the old ECAL-egamma, HCAL-jetMET, Tracker-btau and Muons) into two groups each: a Detector Performance Group (DPG) and a Physics Object Group. The DPGs are now led by the Commissioning and Run Coordinator deputy (Darin Acosta) and will appear in the correspond¬ing column in CMS bulletins. On the physics side, the physics object groups are charged with the reconstruction of physics objects, the tuning of the simulation (in collaboration with the DPGs) to reproduce the data, the provision of code for the High-Level Trigger, the optimization of the algorithms involved for the different physics analyses (in collaboration with the analysis gr...

  2. PHYSICS

    CERN Multimedia

    J. Incandela

    There have been numerous developments in the physics area since the September CMS week. The biggest single event was the Physics/Trigger week in the end of Octo¬ber, whereas in terms of ongoing activities the “2007 analyses” went into high gear. This was in parallel with participation in CSA07 by the physics groups. On the or¬ganizational side, the new conveners of the physics groups have been selected, and a new database for man¬aging physics analyses has been deployed. Physics/Trigger week The second Physics-Trigger week of 2007 took place during the week of October 22-26. The first half of the week was dedicated to working group meetings. The ple¬nary Joint Physics-Trigger meeting took place on Wednesday afternoon and focused on the activities of the new Trigger Studies Group (TSG) and trigger monitoring. Both the Physics and Trigger organizations are now focused on readiness for early data-taking. Thus, early trigger tables and preparations for calibr...

  3. Scattering Amplitudes in Gauge Theories

    CERN Document Server

    Schubert, Ulrich

    2014-01-01

    This thesis is focused on the development of new mathematical methods for computing multi-loop scattering amplitudes in gauge theories. In this work we combine, for the first time, the unitarity-based construction for integrands, and the recently introduced integrand-reduction through multivariate polynomial division. After discussing the generic features of this novel reduction algorithm, we will apply it to the one- and two-loop five-point amplitudes in ${\\cal N}=4$ sYM. The integrands of the multiple-cuts are generated from products of tree-level amplitudes within the super-amplitudes formalism. The corresponding expressions will be used for the analytic reconstruction of the polynomial residues. Their parametric form is known a priori, as derived by means of successive polynomial divisions using the Gr\\"obner basis associated to the on-shell denominators. The integrand reduction method will be exploited to investigate the color-kinematic duality for multi-loop ${\\cal N}=4$ sYM scattering amplitudes. Our a...

  4. CP violation due to new ΔB = 1 amplitudes

    International Nuclear Information System (INIS)

    The authors make a systematic analysis of the effects of new physics in the B decay amplitudes on the CP asymmetries in neutral B decays. Although these are expected to be smaller than new physics effects on the mixing amplitude, they are easier to probe in some cases. The effects of new contributions to the mixing amplitude are felt universally across all decay modes, whereas the effects of new decay amplitudes could vary from mode to mode. In particular the prediction that the CP asymmetries in the B decay modes with b → c anti cs, b → c anti cd, b → c anti ud and b → s anti ss should all measure the same quantity (sin 2β in the Standard Model) could be violated

  5. Factorization of chiral string amplitudes

    Science.gov (United States)

    Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye

    2016-09-01

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.

  6. Factorization of Chiral String Amplitudes

    CERN Document Server

    Huang, Yu-tin; Yuan, Ellis Ye

    2016-01-01

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: As found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.

  7. Nonsinglet pentagons and NMHV amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Belitsky, A.V., E-mail: andrei.belitsky@asu.edu

    2015-07-15

    Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.

  8. Nonsinglet pentagons and NMHV amplitudes

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2015-07-01

    Full Text Available Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.

  9. PHYSICS

    CERN Multimedia

    Submitted by

    Physics Week: plenary meeting on physics groups plans for startup (14–15 May 2008) The Physics Objects (POG) and Physics Analysis (PAG) Groups presented their latest developments at the plenary meeting during the Physics Week. In the presentations particular attention was given to startup plans and readiness for data-taking. Many results based on the recent cosmic run were shown. A special Workshop on SUSY, described in a separate section, took place the day before the plenary. At the meeting, we had also two special DPG presentations on “Tracker and Muon alignment with CRAFT” (Ernesto Migliore) and “Calorimeter studies with CRAFT” (Chiara Rovelli). We had also a report from Offline (Andrea Rizzi) and Computing (Markus Klute) on the San Diego Workshop, described elsewhere in this bulletin. Tracking group (Boris Mangano). The level of sophistication of the tracking software increased significantly over the last few months: V0 (K0 and Λ) reconstr...

  10. Symmetry limit properties of decay amplitudes with mirror matter admixtures

    CERN Document Server

    Sánchez-Colón, G; Sanchez-Colon, Gabriel; Garcia, Augusto

    2006-01-01

    We extend our previous analysis on the symmetry limit properties of non-leptonic and weak radiative decay amplitudes of hyperons in a scheme of mirror matter admixtures in physical hadrons to include the two-body non-leptonic decays of $\\Omega^-$ and the two photon and two pion decays of kaons. We show that the so-called parity-conserving amplitudes predicted for all the decays vanish in the strong flavor SU(3) symmetry limit. We also establish the specific conditions under which the corresponding so-called parity-violating amplitudes vanish in the same limit.

  11. Jump phenomena. [large amplitude responses of nonlinear systems

    Science.gov (United States)

    Reiss, E. L.

    1980-01-01

    The paper considers jump phenomena composed of large amplitude responses of nonlinear systems caused by small amplitude disturbances. Physical problems where large jumps in the solution amplitude are important features of the response are described, including snap buckling of elastic shells, chemical reactions leading to combustion and explosion, and long-term climatic changes of the earth's atmosphere. A new method of rational functions was then developed which consists of representing the solutions of the jump problems as rational functions of the small disturbance parameter; this method can solve jump problems explicitly.

  12. Employing helicity amplitudes for resummation

    Science.gov (United States)

    Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.

    2016-05-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in 4- and d -dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard matching coefficients, for p p →H +0 , 1, 2 jets, p p →W /Z /γ +0 , 1, 2 jets, and p p →2 , 3 jets. These operator bases are completely crossing symmetric, so the results can easily be applied to processes with e+e- and e-p collisions.

  13. Discontinuity formulas for multiparticle amplitudes

    International Nuclear Information System (INIS)

    It is shown how discontinuity formulas for multiparticle scattering amplitudes are derived from unitarity and analyticity. The assumed analyticity property is the normal analytic structure, which was shown to be equivalent to the space-time macrocausality condition. The discontinuity formulas to be derived are the basis of multi-particle fixed-t dispersion relations

  14. Employing helicity amplitudes for resummation

    International Nuclear Information System (INIS)

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in 4- and d-dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard matching coefficients, for pp → H+0,1,2 jets, pp → W/Z/γ+0,1,2 jets, and pp → 2,3 jets. These operator bases are completely crossing symmetric, so the results can easily be applied to processes with e+e- and e-p collisions.

  15. Large amplitude oscillatory elongation flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Laillé, Philippe; Yu, Kaijia

    2008-01-01

    + Lambda[1 - cos( 2 pi Omega(epsilon) over dot(0)t)] where epsilon is the Hencky strain, (epsilon) over dot(0) is a constant elongational rate for the base elongational flow, Lambda the strain amplitude ( Lambda >= 0), and Omega the strain frequency. A narrow molecular mass distribution linear polystyrene...

  16. Discontinuity formulas for multiparticle amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Stapp, H.P.

    1976-03-01

    It is shown how discontinuity formulas for multiparticle scattering amplitudes are derived from unitarity and analyticity. The assumed analyticity property is the normal analytic structure, which was shown to be equivalent to the space-time macrocausality condition. The discontinuity formulas to be derived are the basis of multi-particle fixed-t dispersion relations.

  17. Positivity of spin foam amplitudes

    International Nuclear Information System (INIS)

    The amplitude for a spin foam in the Barrett-Crane model of Riemannian quantum gravity is given as a product over its vertices, edges and faces, with one factor of the Riemannian 10j symbols appearing for each vertex, and simpler factors for the edges and faces. We prove that these amplitudes are always nonnegative for closed spin foams. As a corollary, all open spin foams going between a fixed pair of spin networks have real amplitudes of the same sign. This means one can use the Metropolis algorithm to compute expectation values of observables in the Riemannian Barrett-Crane model, as in statistical mechanics, even though this theory is based on a real-time (eiS) rather than imaginary-time e-S path integral. Our proof uses the fact that when the Riemannian 10j symbols are nonzero, their sign is positive or negative depending on whether the sum of the ten spins is an integer or half-integer. For the product of 10j symbols appearing in the amplitude for a closed spin foam, these signs cancel. We conclude with some numerical evidence suggesting that the Lorentzian 10j symbols are always nonnegative, which would imply similar results for the Lorentzian Barrett-Crane model

  18. Extracting amplitudes from photoproduction data

    Science.gov (United States)

    Workman, R. L.

    2011-09-01

    We consider the problems associated with amplitude extraction, from meson photoproduction data, over the first resonance regions. The notion of a complete experiment has motivated the FROST program at Jefferson Lab. Exercises applied to pion photoproduction data illustrate the problems to be confronted in any attempt to extract underlying resonance signals from these data (without introducing a model for the resonant process).

  19. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.   Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish (we hoped) the readiness of CMS to do physics with the early collisions at the LHC. The agenda of the...

  20. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.  Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish how ready we are to do physics with the early collisions at the LHC. The agenda of the week was thus pac...

  1. PHYSICS

    CERN Multimedia

    Joe Incandela

    There have been two plenary physics meetings since the December CMS week. The year started with two workshops, one on the measurements of the Standard Model necessary for “discovery physics” as well as one on the Physics Analysis Toolkit (PAT). Meanwhile the tail of the “2007 analyses” is going through the last steps of approval. It is expected that by the end of January all analyses will have converted to using the data from CSA07 – which include the effects of miscalibration and misalignment. January Physics Days The first Physics Days of 2008 took place on January 22-24. The first two days were devoted to comprehensive re¬ports from the Detector Performance Groups (DPG) and Physics Objects Groups (POG) on their planning and readiness for early data-taking followed by approvals of several recent studies. Highlights of POG presentations are included below while the activities of the DPGs are covered elsewhere in this bulletin. January 24th was devo...

  2. PHYSICS

    CERN Multimedia

    J. Incandela

    The all-plenary format of the CMS week in Cyprus gave the opportunity to the conveners of the physics groups to present the plans of each physics analysis group for tackling early physics analyses. The presentations were complete, so all are encouraged to browse through them on the Web. There is a wealth of information on what is going on, by whom and on what basis and priority. The CMS week was followed by two CMS “physics events”, the ICHEP08 days and the physics days in July. These were two weeks dedicated to either the approval of all the results that would be presented at ICHEP08, or to the review of all the other Monte-Carlo based analyses that were carried out in the context of our preparations for analysis with the early LHC data (the so-called “2008 analyses”). All this was planned in the context of the beginning of a ramp down of these Monte Carlo efforts, in anticipation of data.  The ICHEP days are described below (agenda and talks at: http://indic...

  3. Physics

    CERN Document Server

    Cullen, Katherine

    2005-01-01

    Defined as the scientific study of matter and energy, physics explains how all matter behaves. Separated into modern and classical physics, the study attracts both experimental and theoretical physicists. From the discovery of the process of nuclear fission to an explanation of the nature of light, from the theory of special relativity to advancements made in particle physics, this volume profiles 10 pioneers who overcame tremendous odds to make significant breakthroughs in this heavily studied branch of science. Each chapter contains relevant information on the scientist''s childhood, research, discoveries, and lasting contributions to the field and concludes with a chronology and a list of print and Internet references specific to that individual.

  4. Gauge and Gravity Amplitude Relations

    CERN Document Server

    Carrasco, John Joseph M

    2015-01-01

    In these lectures I talk about simplifications and universalities found in scattering amplitudes for gauge and gravity theories. In contrast to Ward identities, which are understood to arise from familiar symmetries of the classical action, these structures are currently only understood in terms of graphical organizational principles, such as the gauge-theoretic color-kinematics duality and the gravitational double-copy structure, for local representations of multi-loop S-matrix elements. These graphical principles make manifest new relationships in and between gauge and gravity scattering amplitudes. My lectures will focus on arriving at such graphical organizations for generic theories with examples presented from maximal supersymmetry, and their use in unitarity-based multi-loop integrand construction.

  5. Pulse amplitude modulated chlorophyll fluorometer

    Science.gov (United States)

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  6. Amplitude of Perturbations from Inflation

    OpenAIRE

    Parker, Leonard

    2007-01-01

    The observed power spectrum of the cosmic microwave background (CMB) is consistent with inflationary cosmology, which predicts a nearly scale-invariant power spectrum of quantum fluctuations of the inflaton field as they exit the Hubble horizon during inflation. Here we report a very significant correction (of several orders of magnitude) to the predicted amplitude of the power spectrum. This correction does not alter the near scale-invariance of the spectrum, but is crucial for testing predi...

  7. PHYSICS

    CERN Multimedia

    Chris Hill

    2012-01-01

    The months that have passed since the last CMS Bulletin have been a very busy and exciting time for CMS physics. We have gone from observing the very first 8TeV collisions produced by the LHC to collecting a dataset of the collisions that already exceeds that recorded in all of 2011. All in just a few months! Meanwhile, the analysis of the 2011 dataset and publication of the subsequent results has continued. These results come from all the PAGs in CMS, including searches for the Higgs boson and other new phenomena, that have set the most stringent limits on an ever increasing number of models of physics beyond the Standard Model including dark matter, Supersymmetry, and TeV-scale gravity scenarios, top-quark physics where CMS has overtaken the Tevatron in the precision of some measurements, and bottom-quark physics where CMS made its first discovery of a new particle, the Ξ*0b baryon (candidate event pictured below). Image 2:  A Ξ*0b candidate event At the same time POGs and PAGs...

  8. PHYSICS

    CERN Multimedia

    Guenther Dissertori

    The time period between the last CMS week and this June was one of intense activity with numerous get-together targeted at addressing specific issues on the road to data-taking. The two series of workshops, namely the “En route to discoveries” series and the “Vertical Integration” meetings continued.   The first meeting of the “En route to discoveries” sequence (end 2007) had covered the measurements of the Standard Model signals as necessary prerequisite to any claim of signals beyond the Standard Model. The second meeting took place during the Feb CMS week and concentrated on the commissioning of the Physics Objects, whereas the third occurred during the April Physics Week – and this time the theme was the strategy for key new physics signatures. Both of these workshops are summarized below. The vertical integration meetings also continued, with two DPG-physics get-togethers on jets and missing ET and on electrons and photons. ...

  9. PHYSICS

    CERN Multimedia

    D. Acosta

    2011-01-01

    Since the last CMS Week, all physics groups have been extremely active on analyses based on the full 2010 dataset, with most aiming for a preliminary measurement in time for the winter conferences. Nearly 50 analyses were approved in a “marathon” of approval meetings during the first two weeks of March, and the total number of approved analyses reached 90. The diversity of topics is very broad, including precision QCD, Top, and electroweak measurements, the first observation of single Top production at the LHC, the first limits on Higgs production at the LHC including the di-tau final state, and comprehensive searches for new physics in a wide range of topologies (so far all with null results unfortunately). Most of the results are based on the full 2010 pp data sample, which corresponds to 36 pb-1 at √s = 7 TeV. This report can only give a few of the highlights of a very rich physics program, which is listed below by physics group...

  10. Variable-amplitude oscillatory shear response of amorphous materials

    Science.gov (United States)

    Perchikov, Nathan; Bouchbinder, Eran

    2014-06-01

    Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.

  11. Moments of pseudoscalar meson distribution amplitudes from the lattice

    International Nuclear Information System (INIS)

    Based on lattice simulations with two flavors of dynamical, O(a)-improved Wilson fermions we present results for the first two moments of the distribution amplitudes of pseudoscalar mesons at several values of the valence quark masses. By extrapolating our results to the physical masses of up/down and strange quarks, we find the first two moments of the K+ distribution amplitude and the second moment of the π+ distribution amplitude. We use nonperturbatively determined renormalization coefficients to obtain results in the MS scheme. At a scale of 4 GeV2 we find a2π=0.201(114) for the second Gegenbauer moment of the pion's distribution amplitude, while for the kaon, a1K=0.0453(9)(29) and a2K=0.175(18)(47)

  12. Fermion-fermion and boson-boson amplitudes: surprising similarities

    CERN Document Server

    Dvoeglazov, Valeri V

    2007-01-01

    Amplitudes for fermion-fermion, boson-boson and fermion-boson interactions are calculated in the second order of perturbation theory in the Lobachevsky space. An essential ingredient of the model is the Weinberg's 2(2j+1)-component formalism for describing a particle of spin j. The boson-boson amplitude is then compared with the two-fermion amplitude obtained long ago by Skachkov on the basis of the Hamiltonian formulation of quantum field theory on the mass hyperboloid, p_0^2 - p^2=M^2, proposed by Kadyshevsky. The parametrization of the amplitudes by means of the momentum transfer in the Lobachevsky space leads to same spin structures in the expressions of T-matrices for the fermion case and the boson case. However, certain differences are found. Possible physical applications are discussed.

  13. PHYSICS

    CERN Multimedia

    C. Hill

    2012-01-01

      The period since the last CMS Bulletin has been historic for CMS Physics. The pinnacle of our physics programme was an observation of a new particle – a strong candidate for a Higgs boson – which has captured worldwide interest and made a profound impact on the very field of particle physics. At the time of the discovery announcement on 4 July, 2012, prominent signals were observed in the high-resolution H→γγ and H→ZZ(4l) modes. Corroborating excess was observed in the H→W+W– mode as well. The fermionic channel analyses (H→bb, H→ττ), however, yielded less than the Standard Model (SM) expectation. Collectively, the five channels established the signal with a significance of five standard deviations. With the exception of the diphoton channel, these analyses have all been updated in the last months and several new channels have been added. With improved analyses and more than twice the i...

  14. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    The Physics Groups are actively engaged on analyses of the first data from the LHC at 7 TeV, targeting many results for the ICHEP conference taking place in Paris this summer. The first large batch of physics approvals is scheduled for this CMS Week, to be followed by four more weeks of approvals and analysis updates leading to the start of the conference in July. Several high priority analysis areas were organized into task forces to ensure sufficient coverage from the relevant detector, object, and analysis groups in the preparation of these analyses. Already some results on charged particle correlations and multiplicities in 7 TeV minimum bias collisions have been approved. Only one small detail remains before ICHEP: further integrated luminosity delivered by the LHC! Beyond the Standard Model measurements that can be done with these data, the focus changes to the search for new physics at the TeV scale and for the Higgs boson in the period after ICHEP. Particle Flow The PFT group is focusing on the ...

  15. PHYSICS

    CERN Multimedia

    Darin Acosta

    2010-01-01

    The collisions last year at 900 GeV and 2.36 TeV provided the long anticipated collider data to the CMS physics groups. Quite a lot has been accomplished in a very short time. Although the delivered luminosity was small, CMS was able to publish its first physics paper (with several more in preparation), and commence the commissioning of physics objects for future analyses. Many new performance results have been approved in advance of this CMS Week. One remarkable outcome has been the amazing agreement between out-of-the-box data with simulation at these low energies so early in the commissioning of the experiment. All of this is testament to the hard work and preparation conducted beforehand by many people in CMS. These analyses could not have happened without the dedicated work of the full collaboration on building and commissioning the detector, computing, and software systems combined with the tireless work of many to collect, calibrate and understand the data and our detector. To facilitate the efficien...

  16. PHYSICS

    CERN Multimedia

    C. Hill

    2012-01-01

      2012 has started off as a very busy year for the CMS Physics Groups. Planning for the upcoming higher luminosity/higher energy (8 TeV) operation of the LHC and relatively early Rencontres de Moriond are the high-priority activities for the group at the moment. To be ready for the coming 8-TeV data, CMS has made a concerted effort to perform and publish analyses on the 5 fb−1 dataset recorded in 2011. This has resulted in the submission of 16 papers already, including nine on the search for the Higgs boson. In addition, a number of preliminary results on the 2011 dataset have been released to the public. The Exotica and SUSY groups approved several searches for new physics in January, such as searches for W′ and exotic highly ionising particles. These were highlighted at a CERN seminar given on 24th  January. Many more analyses, from all the PAGs, including the newly formed SMP (Standard Model Physics) and FSQ (Forward and Small-x QCD), were approved in February. The ...

  17. PHYSICS

    CERN Multimedia

    L. Demortier

    Physics-wise, the CMS week in December was dominated by discussions of the analyses that will be carried out in the “next six months”, i.e. while waiting for the first LHC collisions.  As presented in December, analysis approvals based on Monte Carlo simulation were re-opened, with the caveat that for this work to be helpful to the goals of CMS, it should be carried out using the new software (CMSSW_2_X) and associated samples.  By the end of the week, the goal for the physics groups was set to be the porting of our physics commissioning methods and plans, as well as the early analyses (based an integrated luminosity in the range 10-100pb-1) into this new software. Since December, the large data samples from CMSSW_2_1 were completed. A big effort by the production group gave a significant number of events over the end-of-year break – but also gave out the first samples with the fast simulation. Meanwhile, as mentioned in December, the arrival of 2_2 meant that ...

  18. PHYSICS

    CERN Multimedia

    the PAG conveners

    2011-01-01

    The delivered LHC integrated luminosity of more than 1 inverse femtobarn by summer and more than 5 by the end of 2011 has been a gold mine for the physics groups. With 2011 data, we have submitted or published 14 papers, 7 others are in collaboration-wide review, and 75 Physics Analysis Summaries have been approved already. They add to the 73 papers already published based on the 2010 and 2009 datasets. Highlights from each physics analysis group are described below. Heavy ions Many important results have been obtained from the first lead-ion collision run in 2010. The published measurements include the first ever indications of Υ excited state suppression (PRL synopsis), long-range correlation in PbPb, and track multiplicity over a wide η range. Preliminary results include the first ever measurement of isolated photons (showing no modification), J/ψ suppression including the separation of the non-prompt component, further study of jet fragmentation, nuclear modification factor...

  19. Nonlinear amplitude dynamics in flagellar beating

    CERN Document Server

    Oriola, David; Casademunt, Jaume

    2016-01-01

    The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive crosslinkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatiotemporal dynamics of dynein populations and flagell...

  20. PHYSICS

    CERN Multimedia

    J. D'Hondt

    The Electroweak and Top Quark Workshop (16-17th of July) A Workshop on Electroweak and Top Quark Physics, dedicated on early measurements, took place on 16th-17th July. We had more than 40 presentations at the Workshop, which was an important milestone for 2007 physics analyses in the EWK and TOP areas. The Standard Model has been tested empirically by many previous experiments. Observables which are nowadays known with high precision will play a major role for data-based CMS calibrations. A typical example is the use of the Z to monitor electron and muon reconstruction in di-lepton inclusive samples. Another example is the use of the W mass as a constraint for di-jets in the kinematic fitting of top-quark events, providing information on the jet energy scale. The predictions of the Standard Model, for what concerns proton collisions at the LHC, are accurate to a level that the production of W/Z and top-quark events can be used as a powerful tool to commission our experiment. On the other hand the measure...

  1. PHYSICS

    CERN Multimedia

    Christopher Hill

    2013-01-01

    Since the last CMS Bulletin, the CMS Physics Analysis Groups have completed more than 70 new analyses, many of which are based on the complete Run 1 dataset. In parallel the Snowmass whitepaper on projected discovery potential of CMS for HL-LHC has been completed, while the ECFA HL-LHC future physics studies has been summarised in a report and nine published benchmark analyses. Run 1 summary studies on b-tag and jet identification, quark-gluon discrimination and boosted topologies have been documented in BTV-13-001 and JME-13-002/005/006, respectively. The new tracking alignment and performance papers are being prepared for submission as well. The Higgs analysis group produced several new results including the search for ttH with H decaying to ZZ, WW, ττ+bb (HIG-13-019/020) where an excess of ~2.5σ is observed in the like-sign di-muon channel, and new searches for high-mass Higgs bosons (HIG-13-022). Search for invisible Higgs decays have also been performed both using the associ...

  2. PHYSICS

    CERN Multimedia

    C. Hill

    2013-01-01

    The period since the last CMS bulletin has seen the end of proton collisions at a centre-of-mass energy 8 TeV, a successful proton-lead collision run at 5 TeV/nucleon, as well as a “reference” proton run at 2.76 TeV. With these final LHC Run 1 datasets in hand, CMS Physics Analysis Groups have been busy analysing these data in preparation for the winter conferences. Moreover, despite the fact that the pp run only concluded in mid-December (and there was consequently less time to complete data analyses), CMS again made a strong showing at the Rencontres de Moriond in La Thuile (EW and QCD) where nearly 40 new results were presented. The highlight of these preliminary results was the eagerly anticipated updated studies of the properties of the Higgs boson discovered in July of last year. Meanwhile, preparations for Run 2 and physics performance studies for Phase 1 and Phase 2 upgrade scenarios are ongoing. The Higgs analysis group produced updated analyses on the full Run 1 dataset (~25 f...

  3. PHYSICS

    CERN Multimedia

    C. Hill

    2013-01-01

    In the period since the last CMS Bulletin, the LHC – and CMS – have entered LS1. During this time, CMS Physics Analysis Groups have performed more than 40 new analyses, many of which are based on the complete 8 TeV dataset delivered by the LHC in 2012 (and in some cases on the full Run 1 dataset). These results were shown at, and well received by, several high-profile conferences in the spring of 2013, including the inaugural meeting of the Large Hadron Collider    Physics Conference (LHCP) in Barcelona, and the 26th International Symposium on Lepton Photon Interactions at High Energies (LP) in San Francisco. In parallel, there have been significant developments in preparations for Run 2 of the LHC and on “future physics” studies for both Phase 1 and Phase 2 upgrades of the CMS detector. The Higgs analysis group produced five new results for LHCP including a new H-to-bb search in VBF production (HIG-13-011), ttH with H to γ&ga...

  4. Oscillations of a Simple Pendulum with Extremely Large Amplitudes

    Science.gov (United States)

    Butikov, Eugene I.

    2012-01-01

    Large oscillations of a simple rigid pendulum with amplitudes close to 180[degrees] are treated on the basis of a physically justified approach in which the cycle of oscillation is divided into several stages. The major part of the almost closed circular path of the pendulum is approximated by the limiting motion, while the motion in the vicinity…

  5. Educing GPDs from Amplitudes of Hard Exclusive Processes

    CERN Document Server

    Polyakov, M V

    2007-01-01

    The dual parametrization of generalized parton distributions (GPDs) is considered in details. We discuss which part of information about hadron structure encoded in GPDs [part of total GPD image] can be restored from the known amplitude of a hard exclusive process. The physics content of this partial image is analyzed.

  6. Exact Amplitude--Based Resummation QCD Predictions and LHC Data

    CERN Document Server

    Ward, B F L; Yost, S A

    2014-01-01

    We present the current status of the comparisons with the respective data of the predictions of our approach of exact amplitude-based resummation in quantum field theory as applied to precision QCD calculations as needed for LHC physics, using the MC Herwiri1.031. The agreement between the theoretical predictions and the data exhibited continues to be encouraging.

  7. Amplitude recruitment of cochlear potential

    Institute of Scientific and Technical Information of China (English)

    LI Xingqi; SUN Wei; SUN Jianhe; YU Ning; JIANG Sichang

    2001-01-01

    Intracellular recordings were made from outer hair cells (OHC) and the cochlear microphonics (CM) were recorded from scala media (SM) in three turn of guinea pig cochlea,the compound action potential (CAP) were recorded at the round window (RW) before and after the animal were exposed to white noise. The results suggest that the nonlinear properties with “saduration” of Input/output (I/O) function of OHC AC recepter potential and CM were founded; the nonlinear properties with “Low”, “Platean” and “high” of CAP also were investigated. After explosion, the threshold shift of CAP has about 10 dB. The I/O of OHC responses and CM were changed in a linearizing (i.e., nonlinearity loss), the “platean” of I/O CAP disappeared and the growth rate of CAP amplitude were larger than before explosion. The response amplitude recruitment of OHC appears to result from reduction in gain (i.e., hearing loss); It was due to the nonlinear growth function of OHC receptor potentials was changed in linearzing that the basilar membrance motion was changed in linearizing. Since intensity coding in the inner ear depends on an interactions of nonlinear basilar membrance and nerve fibers. So that it must lead to a linearizing of CAP as input responses.

  8. PHYSICS

    CERN Multimedia

    V.Ciulli

    2011-01-01

    The main programme of the Physics Week held between 16th and 20th May was a series of topology-oriented workshops on di-leptons, di-photons, inclusive W, and all-hadronic final states. The goal of these workshops was to reach a common understanding for the set of objects (ID, cleaning...), the handling of pile-up, calibration, efficiency and purity determination, as well as to revisit critical common issues such as the trigger. Di-lepton workshop Most analysis groups use a di-lepton trigger or a combination of single and di-lepton triggers in 2011. Some groups need to collect leptons with as low PT as possible with strong isolation and identification requirements as for Higgs into WW at low mass, others with intermediate PT values as in Drell-Yan studies, or high PT as in the Exotica group. Electron and muon reconstruction, identification and isolation, was extensively described in the workshop. For electrons, VBTF selection cuts for low PT and HEEP cuts for high PT were discussed, as well as more complex d...

  9. Measuring the phase of the scattering amplitude with vortex beams

    CERN Document Server

    Ivanov, I P

    2012-01-01

    We show that colliding vortex beams instead of (approximate) plane waves can lead to a direct measurement of how the overall phase of the scattering amplitude changes with the scattering angle. Since the overall phase is inaccessible in a plane wave collision, this measurement would be of great importance for a number of topics in hadronic physics, for example, for meson production in the resonance region and for the physics of nucleon resonances. Although the required parameters of the vortex beams have not yet been achieved experimentally, they deserves further dedicated experimental research due to the high expected physics pay-off.

  10. RECOLA: REcursive Computation of One-Loop Amplitudes

    CERN Document Server

    Actis, Stefano; Hofer, Lars; Lang, Jean-Nicolas; Scharf, Andreas; Uccirati, Sandro

    2016-01-01

    We present the Fortran95 program Recola for the perturbative computation of next-to-leading-order transition amplitudes in the Standard Model of particle physics. The code provides numerical results in the 't Hooft-Feynman gauge. It uses the complex-mass scheme and allows for a consistent isolation of resonant contributions. Dimensional regularization is employed for ultraviolet and infrared singularities, with the alternative possibility of treating collinear and soft singularities in mass regularization. Recola supports various renormalization schemes for the electromagnetic and a dynamical Nf-flavour scheme for the strong coupling constant. The calculation of next-to-leading-order squared amplitudes, summed over spin and colour, is supported as well as the computation of colour- and spin-correlated leading-order squared amplitudes needed in the dipole subtraction formalism.

  11. BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[St. Petersburg Nuclear Physics Institute (Russian Federation); Sabio Vera, A. [CERN, Geneva (Switzerland)

    2008-02-15

    After a brief review of the BFKL approach to Regge processes in QCD and in supersymmetric (SUSY) gauge theories we propose a strategy for calculating the next-to-next-to-leading order corrections to the BFKL kernel. They can be obtained in terms of various cross-sections for Reggeized gluon interactions. The corresponding amplitudes can be calculated in the framework of the effective action for high energy scattering. In the case of N=4 SUSY it is also possible to use the Bern-Dixon-Smirnov (BDS) ansatz. For this purpose the analytic properties of the BDS amplitudes at high energies are investigated, in order to verify their self-consistency. It is found that, for the number of external particles being larger than five, these amplitudes, beyond one loop, are not in agreement with the BFKL approach which predicts the existence of Regge cuts in some physical channels. (orig.)

  12. Quantum Amplitude Amplification and Estimation

    CERN Document Server

    Brassard, G; Mosca, M; Tapp, A; Brassard, Gilles; Hoyer, Peter; Mosca, Michele; Tapp, Alain

    2000-01-01

    Consider a Boolean function $\\chi: X \\to \\{0,1\\}$ that partitions set $X$ between its good and bad elements, where $x$ is good if $\\chi(x)=1$ and bad otherwise. Consider also a quantum algorithm $\\mathcal A$ such that $A \\ket{0} = \\sum_{x\\in X} \\alpha_x \\ket{x}$ is a quantum superposition of the elements of $X$, and let $a$ denote the probability that a good element is produced if $A \\ket{0}$ is measured. If we repeat the process of running $A$, measuring the output, and using $\\chi$ to check the validity of the result, we shall expect to repeat $1/a$ times on the average before a solution is found. *Amplitude amplification* is a process that allows to find a good $x$ after an expected number of applications of $A$ and its inverse which is proportional to $1/\\sqrt{a}$, assuming algorithm $A$ makes no measurements. This is a generalization of Grover's searching algorithm in which $A$ was restricted to producing an equal superposition of all members of $X$ and we had a promise that a single $x$ existed such tha...

  13. Study of inelastic decay of amplitudes in 49V

    International Nuclear Information System (INIS)

    Inelastic decay amplitudes from d-wave resonances in 49V were obtained for 80 resonances in the proton energy range 2.2 to 3.1 MeV. With the 3 MV Van de Graaff accelerator and high resolution system at the Triangle Universities Nuclear Laboratory, an overall resolution of 350 eV was obtained. The experiment consisted of measurements of the angular distributions of the inelastically scattered protons and the subsequent deexcitation gamma rays. Forty five resonances were assigned J/sup π/ = 5/2+, while thirty five resonances were assigned 3/2+. The magnitudes of three inelastic decay amplitudes and the relative signs between these three amplitudes were determined. Large amplitude correlations were observed; the data are in the striking disagreement with the extreme statistical model. The present results provide the first explicit test of the multivariate reduced width amplitude distribution of Krieger and Porter; the agreement is excellent. The physical origin of these channel correlations has not yet been explained

  14. Lorentz constraints on massive three-point amplitudes

    Science.gov (United States)

    Conde, Eduardo; Marzolla, Andrea

    2016-09-01

    Using the helicity-spinor language we explore the non-perturbative constraints that Lorentz symmetry imposes on three-point amplitudes where the asymptotic states can be massive. As it is well known, in the case of only massless states the three-point amplitude is fixed up to a coupling constant by these constraints plus some physical requirements. We find that a similar statement can be made when some of the particles have mass. We derive the generic functional form of the three-point amplitude by virtue of Lorentz symmetry, which displays several functional structures accompanied by arbitrary constants. These constants can be related to the coupling constants of the theory, but in an unambiguous fashion only in the case of one massive particle. Constraints on these constants are obtained by imposing that in the UV limit the massive amplitude matches the massless one. In particular, there is a certain Lorentz frame, which corresponds to projecting all the massive momenta along the same null momentum, where the three-point massive amplitude is fully fixed, and has a universal form.

  15. The amplitude of solar oscillations using stellar techniques

    CERN Document Server

    Kjeldsen, Hans; Arentoft, Torben; Butler, R Paul; Dall, Thomas H; Karoff, Christoffer; Kiss, Laszlo L; Tinney, C G; Chaplin, William J

    2008-01-01

    The amplitudes of solar-like oscillations depend on the excitation and damping, both of which are controlled by convection. Comparing observations with theory should therefore improve our understanding of the underlying physics. However, theoretical models invariably compute oscillation amplitudes relative to the Sun, and it is therefore vital to have a good calibration of the solar amplitude using stellar techniques. We have used daytime spectra of the Sun, obtained with HARPS and UCLES, to measure the solar oscillations and made a detailed comparison with observations using the BiSON helioseismology instrument. We find that the mean solar amplitude measured using stellar techniques, averaged over one full solar cycle, is 18.7 +/- 0.7 cm/s for the strongest radial modes (l=0) and 25.2 +/- 0.9 cm/s for l=1. In addition, we use simulations to establish an equation that estimates the uncertainty of amplitude measurements that are made of other stars, given that the mode lifetime is known. Finally, we also give ...

  16. Relative amplitude preservation processing utilizing surface consistent amplitude correction. Part 3; Surface consistent amplitude correction wo mochiita sotai shinpuku hozon shori. 3

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, T. [Japan National Oil Corporation, Tokyo (Japan). Technology Research Center

    1996-10-01

    For the seismic reflection method conducted on the ground surface, generator and geophone are set on the surface. The observed waveforms are affected by the ground surface and surface layer. Therefore, it is required for discussing physical properties of the deep underground to remove the influence of surface layer, preliminarily. For the surface consistent amplitude correction, properties of the generator and geophone were removed by assuming that the observed waveforms can be expressed by equations of convolution. This is a correction method to obtain records without affected by the surface conditions. In response to analysis and correction of waveforms, wavelet conversion was examined. Using the amplitude patterns after correction, the significant signal region, noise dominant region, and surface wave dominant region would be separated each other. Since the amplitude values after correction of values in the significant signal region have only small variation, a representative value can be given. This can be used for analyzing the surface consistent amplitude correction. Efficiency of the process can be enhanced by considering the change of frequency. 3 refs., 5 figs.

  17. The Trace Formula of the Spinoriel Amplitude

    OpenAIRE

    Mekhfi, M.

    2009-01-01

    We re express the fermion's probability amplitude as a trace over spinor indices, which formulation surprisingly does not exist in literature. This formulation puts the probabilty amplitude and the the probabilty(squared amplitude) of a given process on equal footing at the compuational level and this is our principal motivation to write the present paper. We test the power of the trace formula in three applications: Calculation of the charge-current of fermions by using symbolic programs, wh...

  18. Effective anisotropy through traveltime and amplitude matching

    KAUST Repository

    Wang, Hui

    2014-08-05

    Introducing anisotropy to seismic wave propagation reveals more realistic physics of our Earth\\'s subsurface as compared to the isotropic assumption. However wavefield modeling, the engine of seismic inverse problems, in anisotropic media still suffers from computational burdens, in particular with complex anisotropy such as transversely isotropic (TI) and Orthorhombic anisotropy. We develop effective isotropic velocity and density models to package the effects of anisotropy such that the wave propagation behavior using these effective models approximate those of the original anisotropic model. We build these effective models through the high frequency asymptotic approximation based on the eikonal and transport equations. We match the geometrical behavior of the wave-fields, given by traveltimes, from the anisotropic and isotropic eikonal equations. This matching yields the effective isotropic velocity that approximates the kinematics of the anisotropic wavefield. Equivalently, we calculate the effective densities by equating the anisotropic and isotropic transport equations. The effective velocities and densities are then fed into the isotropic acoustic variable density wave equation to obtain cheaper anisotropic wavefields. We justify our approach by testing it on an elliptical anisotropic model. The numerical results demonstrate a good matching of both traveltime and amplitude between anisotropic and effective isotropic wavefields.

  19. Radiation Belt Electron Dynamics Driven by Large-Amplitude Whistlers

    Science.gov (United States)

    Khazanov, G. V.; Tel'nikhin, A. A.; Kronberg, T. K.

    2013-01-01

    Acceleration of radiation belt electrons driven by oblique large-amplitude whistler waves is studied. We show analytically and numerically that this is a stochastic process; the intensity of which depends on the wave power modified by Bessel functions. The type of this dependence is determined by the character of the nonlinear interaction due to coupling between action and phase. The results show that physically significant quantities have a relatively weak dependence on the wave power.

  20. Classical gluon production amplitude in heavy-ion collisions

    OpenAIRE

    Chirilli Giovanni Antonio

    2016-01-01

    The distribution of quarks and gluons produced in the initial stages of nuclear collisions, known as the initial condition of the Quark-Gluon Plasma formation, is the fundamental building block of heavy-ion theory. I will present the scattering amplitude, beyond the leading order, of the classical gluon produced in heavy-ion collisions. The result is obtained in the framework of saturation physics and Wilson lines formalism.

  1. Classical gluon production amplitude in heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Chirilli Giovanni Antonio

    2016-01-01

    Full Text Available The distribution of quarks and gluons produced in the initial stages of nuclear collisions, known as the initial condition of the Quark-Gluon Plasma formation, is the fundamental building block of heavy-ion theory. I will present the scattering amplitude, beyond the leading order, of the classical gluon produced in heavy-ion collisions. The result is obtained in the framework of saturation physics and Wilson lines formalism.

  2. Classical gluon production amplitude in heavy-ion collisions

    Science.gov (United States)

    Chirilli, Giovanni Antonio

    2016-03-01

    The distribution of quarks and gluons produced in the initial stages of nuclear collisions, known as the initial condition of the Quark-Gluon Plasma formation, is the fundamental building block of heavy-ion theory. I will present the scattering amplitude, beyond the leading order, of the classical gluon produced in heavy-ion collisions. The result is obtained in the framework of saturation physics and Wilson lines formalism.

  3. Singularity Structure of Maximally Supersymmetric Scattering Amplitudes

    DEFF Research Database (Denmark)

    Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy;

    2014-01-01

    We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic...

  4. Amplitude death in steadily forced chaotic systems

    Institute of Scientific and Technical Information of China (English)

    Feng Guo-Lin; He Wen-Ping

    2007-01-01

    Steady forcing can induce the amplitude death in chaotic systems, which generally exists in coupled dynamic systems. Using the Lorenz system as a typical example, this paper investigates the dynamic behaviours of the chaotic system with steady forcing numerically, and finds that amplitude death can occur as the strength of the steady forcing goes beyond a critical constant.

  5. Interlimb coupling strength scales with movement amplitude.

    Science.gov (United States)

    Peper, C Lieke E; de Boer, Betteco J; de Poel, Harjo J; Beek, Peter J

    2008-05-23

    The relation between movement amplitude and the strength of interlimb interactions was examined by comparing bimanual performance at different amplitude ratios (1:2, 1:1, and 2:1). For conditions with unequal amplitudes, the arm moving at the smaller amplitude was predicted to be more strongly affected by the contralateral arm than vice versa. This prediction was based on neurophysiological considerations and the HKB model of coupled oscillators. Participants performed rhythmic bimanual forearm movements at prescribed amplitude relations. After a brief mechanical perturbation of one arm, the relaxation process back to the initial coordination pattern was examined. This analysis focused on phase adaptations in the unperturbed arm, as these reflect the degree to which the movements of this arm were affected by the coupling influences stemming from the contralateral (perturbed) arm. The thus obtained index of coupling (IC) reflected the relative contribution of the unperturbed arm to the relaxation process. As predicted IC was larger when the perturbed arm moved at a larger amplitude than did the unperturbed arm, indicating that coupling strength scaled with movement amplitude. This result was discussed in relation to previous research regarding sources of asymmetry in coupling strength and the effects of amplitude disparity on interlimb coordination.

  6. On the singularities of massive superstring amplitudes

    NARCIS (Netherlands)

    Foda, O.

    1987-01-01

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are n

  7. Consistent Off-Shell Tree String Amplitudes

    CERN Document Server

    Liccardo, A; Marotta, R

    1999-01-01

    We give a construction of off-shell tree bosonic string amplitudes, based on the operatorial formalism of the N-string Vertex, with three external massless states both for open and closed strings by requiring their being projective invariant. In particular our prescription leads, in the low-energy limit, to the three-gluon amplitude in the usual covariant gauge.

  8. Scattering Amplitudes via Algebraic Geometry Methods

    DEFF Research Database (Denmark)

    Søgaard, Mads

    Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized...

  9. Breaking of Large Amplitude Electron Plasma Wave in a Maxwellian Plasma

    CERN Document Server

    Mukherjee, Arghya

    2016-01-01

    The determination of maximum possible amplitude of a coherent longitudinal plasma oscillation/wave is a topic of fundamental importance in non-linear plasma physics. The amplitudes of these large amplitude plasma waves is limited by a phenomena called wave breaking which may be induced by several non-linear processes. It was shown by Coffey [T. P. Coffey, Phys. Fluids 14, 1402 (1971)] using a "water-bag" distribution for electrons that, in a warm plasma the maximum electric field amplitude and density amplitude implicitly depend on the electron temperature, known as Coffey's limit. In this paper, the breaking of large amplitude freely running electron plasma wave in a homogeneous warm plasma where electron's velocity distribution is Maxwellian has been studied numerically using 1D Particle in Cell (PIC) simulation method. It is found that Coffey's propagating wave solutions, which was derived using a "water-bag" distribution for electrons, also represent propagating waves in a Maxwellian plasma. Coffey's wave...

  10. Effects of strength training on mechanomyographic amplitude

    International Nuclear Information System (INIS)

    The aim of the present study was to determine if the patterns of mechanomyographic (MMG) amplitude across force would change with strength training. Twenty-two healthy men completed an 8-week strength training program. During three separate testing visits (pre-test, week 4, and week 8), the MMG signal was detected from the vastus lateralis as the subjects performed isometric step muscle actions of the leg extensors from 10–100% of maximal voluntary contraction (MVC). During pre-testing, the MMG amplitude increased linearly with force to 66% MVC and then plateaued. Conversely, weeks 4 and 8 demonstrated an increase in MMG amplitude up to ∼85% of the subject's original MVC before plateauing. Furthermore, seven of the ten force levels (30–60% and 80–100%) showed a significant decrease in mean MMG amplitude values after training, which consequently led to a decrease in the slope of the MMG amplitude/force relationship. The decreases in MMG amplitude at lower force levels are indicative of hypertrophy, since fewer motor units would be required to produce the same absolute force if the motor units increased in size. However, despite the clear changes in the mean values, analyses of individual subjects revealed that only 55% of the subjects demonstrated a significant decrease in the slope of the MMG amplitude/force relationship. (paper)

  11. Scattering amplitudes in gauge theories: progress and outlook Scattering amplitudes in gauge theories: progress and outlook

    Science.gov (United States)

    Roiban, Radu; Spradlin, Marcus; Volovich, Anastasia

    2011-11-01

    This issue aims to serve as an introduction to our current understanding of the structure of scattering amplitudes in gauge theory, an area which has seen particularly rapid advances in recent years following decades of steady progress. The articles contained herein provide a snapshot of the latest developments which we hope will serve as a valuable resource for graduate students and other scientists wishing to learn about the current state of the field, even if our continually evolving understanding of the subject might soon render this compilation incomplete. Why the fascination with scattering amplitudes, which have attracted the imagination and dedicated effort of so many physicists? Part of it stems from the belief, supported now by numerous examples, that unexpected simplifications of otherwise apparently complicated calculations do not happen by accident. Instead they provide a strong motivation to seek out an underlying explanation. The insight thereby gained can subsequently be used to make the next class of seemingly impossible calculations not only possible, but in some cases even trivial. This two-pronged strategy of exploring and exploiting the structure of gauge theory amplitudes appeals to a wide audience from formal theorists interested in mathematical structure for the sake of its own beauty to more phenomenologically-minded physicists eager to speed up the next generation of analysis software. Understandably it is the maximally supersymmetric 𝒩 = 4 Yang-Mills theory (SYM) which has the simplest structure and has correspondingly received the most attention. Rarely in theoretical physics are we fortunate enough to encounter a toy model which is simple enough to be solved completely yet rich enough to possess interesting non-trivial structure while simultaneously, and most importantly, being applicable (even if only as a good approximation) to a wide range of 'real' systems. The canonical example in quantum mechanics is of course the harmonic

  12. Speech production in amplitude-modulated noise

    DEFF Research Database (Denmark)

    Macdonald, Ewen N; Raufer, Stefan

    2013-01-01

    the consequences of temporally fluctuating noise. In the present study, 20 talkers produced speech in a variety of noise conditions, including both steady-state and amplitude-modulated white noise. While listening to noise over headphones, talkers produced randomly generated five word sentences. Similar...... to previous studies, talkers raised the level of their voice in steady-state noise. While talkers also increased the level of their voice in amplitude-modulated noise, the increase was not as large as that observed in steady-state noise. Importantly, for the 2 and 4 Hz amplitude-modulated noise conditions...

  13. Softness and Amplitudes' Positivity for Spinning Particles

    CERN Document Server

    Bellazzini, Brando

    2016-01-01

    We derive positivity bounds for scattering amplitudes of particles with arbitrary spin using unitarity, analyticity and crossing symmetry. The bounds imply the positivity of certain low-energy coefficients of the effective action that controls the dynamics of the light degrees of freedom. We show that low-energy amplitudes strictly softer than $O(p^4)$ do not admit unitary ultraviolet completions unless the theory is free. This enforces a bound on the energy growth of scattering amplitudes in the region of validity of the effective theory. We discuss explicit examples including the Goldstino from spontaneous supersymmetry breaking, and the theory of a spin-1/2 fermion with a shift symmetry.

  14. Harmonic R-matrices for scattering amplitudes and spectral regularization

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, Livia; Plefka, Jan [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Lukowski, Tomasz [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Univ. Berlin (Germany). IRIS Adlershof; Meneghelli, Carlo [Hamburg Univ. (Germany). Fachbereich 11 - Mathematik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Staudacher, Matthias [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Potsdam (Germany)

    2012-12-15

    Planar N=4 super Yang-Mills appears to be integrable. While this allows to find this theory's exact spectrum, integrability has hitherto been of no direct use for scattering amplitudes. To remedy this, we deform all scattering amplitudes by a spectral parameter. The deformed tree-level four-point function turns out to be essentially the one-loop R-matrix of the integrable N=4 spin chain satisfying the Yang-Baxter equation. Deformed on-shell three-point functions yield novel three-leg R-matrices satisfying bootstrap equations. Finally, we supply initial evidence that the spectral parameter might find its use as a novel symmetry-respecting regulator replacing dimensional regularization. Its physical meaning is a local deformation of particle helicity, a fact which might be useful for a much larger class of non-integrable four-dimensional field theories.

  15. Fast calculation of HELAS amplitudes using graphics processing unit (GPU)

    CERN Document Server

    Hagiwara, K; Okamura, N; Rainwater, D L; Stelzer, T

    2009-01-01

    We use the graphics processing unit (GPU) for fast calculations of helicity amplitudes of physics processes. As our first attempt, we compute $u\\overline{u}\\to n\\gamma$ ($n=2$ to 8) processes in $pp$ collisions at $\\sqrt{s} = 14$TeV by transferring the MadGraph generated HELAS amplitudes (FORTRAN) into newly developed HEGET ({\\bf H}ELAS {\\bf E}valuation with {\\bf G}PU {\\bf E}nhanced {\\bf T}echnology) codes written in CUDA, a C-platform developed by NVIDIA for general purpose computing on the GPU. Compared with the usual CPU programs, we obtain 40-150 times better performance on the GPU.

  16. Amplitude analysis of resonant production in three pions

    CERN Document Server

    Jackura, Andrew; Szczepaniak, Adam

    2016-01-01

    We present some results on the analysis of three pion resonances. The analyses are motivated by the recent release of the largest data set on diffractively produced three pions by the COMPASS collaboration. We construct reaction amplitudes that satisfy fundamental $S$-matrix principles, which allows the use of models that have physical constraints to be used in fitting data. The models are motivated by the isobar model that satisfy unitarity constraints. The model consist of a Deck production amplitude with which final state interactions are constrained by unitarity. We employ the isobar model where two of the pions form a quasi-stable particle. The analysis is performed in the high-energy, single Regge limit. We specifically discuss the examples of the three pion $J^{PC}=2^{-+}$ resonance in the $\\rho\\pi$ and $f_2\\pi$ channels.

  17. Stora's fine notion of divergent amplitudes

    CERN Document Server

    Várilly, Joseph C

    2016-01-01

    Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of bosons of any mass and spin.

  18. Amplitudes for left-handed strings

    CERN Document Server

    Siegel, W

    2015-01-01

    We consider a class of string-like models introduced previously where all modes are left-handed, all states are massless, T-duality is manifest, and only a finite number of orders in the string tension can appear. These theories arise from standard string theories by a singular gauge limit and associated change in worldsheet boundary conditions. In this paper we show how to calculate amplitudes by using the gauge parameter as an infrared regulator. The amplitudes produce the Cachazo-He-Yuan delta-functions after some modular integration; the Mason-Skinner string-like action and amplitudes arise from the zero-tension (infinite-slope) limit. However, without the limit the amplitudes have the same problems as found in the Mason-Skinner formalism.

  19. Holomorphic Factorization of Superstring Scattering Amplitudes

    Institute of Scientific and Technical Information of China (English)

    Simon Davis

    2011-01-01

    The holomorphic factorization of the superstring partition function is verified at arbitrary genus.The evaluation of scattering amplitudes and the implications of genus-dependent estimates on the string coupling are given.

  20. Off-shell amplitudes in superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ashoke [Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad, 211019 (India)

    2015-04-01

    Computing the renormalized masses and S-matrix elements in string theory, involving states whose masses are not protected from quantum corrections, requires defining off-shell amplitude with certain factorization properties. While in the bosonic string theory one can in principle construct such an amplitude from string field theory, there is no fully consistent field theory for type II and heterotic string theory. In this paper we give a practical construction of off-shell amplitudes satisfying the desired factorization property using the formalism of picture changing operators. We describe a systematic procedure for dealing with the spurious singularities of the integration measure that we encounter in superstring perturbation theory. This procedure is also useful for computing on-shell amplitudes, as we demonstrate by computing the effect of Fayet-Iliopoulos D-terms in four dimensional heterotic string theory compactifications using this formalism. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Open string amplitudes of closed topological vertex

    International Nuclear Information System (INIS)

    The closed topological vertex is the simplest ‘off-strip’ case of non-compact toric Calabi–Yau threefolds with acyclic web diagrams. By the diagrammatic method of topological vertex, open string amplitudes of topological string theory therein can be obtained by gluing a single topological vertex to an ‘on-strip’ subdiagram of the tree-like web diagram. If non-trivial partitions are assigned to just two parallel external lines of the web diagram, the amplitudes can be calculated with the aid of techniques borrowed from the melting crystal models. These amplitudes are thereby expressed as matrix elements, modified by simple prefactors, of an operator product on the Fock space of 2D charged free fermions. This fermionic expression can be used to derive q-difference equations for generating functions of special subsets of the amplitudes. These q-difference equations may be interpreted as the defining equation of a quantum mirror curve. (paper)

  2. Off-shell Amplitudes in Superstring Theory

    CERN Document Server

    Sen, Ashoke

    2014-01-01

    Computing the renormalized masses and S-matrix elements in string theory, involving states whose masses are not protected from quantum corrections, requires defining off-shell amplitude with certain factorization properties. While in the bosonic string theory one can in principle construct such an amplitude from string field theory, there is no fully consistent field theory for superstring and heterotic string theory. In this paper we give a practical construction of off-shell amplitudes satisfying the desired factorization property using the formalism of picture changing operators. We describe a systematic procedure for dealing with the spurious singularities of the integration measure that we encounter when the supermoduli space is not holomorphically projected. This procedure is also useful for computing on-shell amplitudes, as we demonstrate by computing the effect of Fayet-Iliopoulos D-terms in four dimensional heterotic string theory compactifications using this formalism.

  3. Scattering Amplitudes via Algebraic Geometry Methods

    CERN Document Server

    Søgaard, Mads; Damgaard, Poul Henrik

    This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of ...

  4. Effective gluon interactions from superstring disk amplitudes

    International Nuclear Information System (INIS)

    In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full α' dependence. In this connection material for obtaining the α' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)

  5. Effective gluon interactions from superstring disk amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Oprisa, D.

    2006-05-15

    In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full {alpha}' dependence. In this connection material for obtaining the {alpha}' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)

  6. Mechanical models of amplitude and frequency modulation

    Energy Technology Data Exchange (ETDEWEB)

    Bellomonte, L; Guastella, I; Sperandeo-Mineo, R M [GRIAF - Research Group on Teaching/Learning Physics, DI.F.TE.R. -Dipartimento di Fisica e Tecnologie Relative, University of Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy)

    2005-05-01

    This paper presents some mechanical models for amplitude and frequency modulation. The equations governing both modulations are deduced alongside some necessary approximations. Computer simulations of the models are carried out by using available educational software. Amplitude modulation is achieved by using a system of two weakly coupled pendulums, whereas the frequency modulation is obtained by using a pendulum of variable length. Under suitable conditions (small oscillations, appropriate initial conditions, etc) both types of modulation result in significantly accurate and visualized simulations.

  7. Path integral evaluation of Dbrane amplitudes

    OpenAIRE

    Chaudhuri, Shyamoli

    1999-01-01

    We extend Polchinski's evaluation of the measure for the one-loop closed string path integral to open string tree amplitudes with boundaries and crosscaps embedded in Dbranes. We explain how the nonabelian limit of near-coincident Dbranes emerges in the path integral formalism. We give a careful path integral derivation of the cylinder amplitude including the modulus dependence of the volume of the conformal Killing group.

  8. Nucleon distribution amplitudes from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics; Kaltenbrunner, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (DE). John von Neumann-Inst. fuer Computing NIC] (and others)

    2008-04-15

    We calculate low moments of the leading-twist and next-to-leading twist nucleon distribution amplitudes on the lattice using two flavors of clover fermions. The results are presented in the MS scheme at a scale of 2 GeV and can be immediately applied in phenomenological studies. We find that the deviation of the leading-twist nucleon distribution amplitude from its asymptotic form is less pronounced than sometimes claimed in the literature. (orig.)

  9. Amplitude metrics for cellular circadian bioluminescence reporters.

    Science.gov (United States)

    St John, Peter C; Taylor, Stephanie R; Abel, John H; Doyle, Francis J

    2014-12-01

    Bioluminescence rhythms from cellular reporters have become the most common method used to quantify oscillations in circadian gene expression. These experimental systems can reveal phase and amplitude change resulting from circadian disturbances, and can be used in conjunction with mathematical models to lend further insight into the mechanistic basis of clock amplitude regulation. However, bioluminescence experiments track the mean output from thousands of noisy, uncoupled oscillators, obscuring the direct effect of a given stimulus on the genetic regulatory network. In many cases, it is unclear whether changes in amplitude are due to individual changes in gene expression level or to a change in coherence of the population. Although such systems can be modeled using explicit stochastic simulations, these models are computationally cumbersome and limit analytical insight into the mechanisms of amplitude change. We therefore develop theoretical and computational tools to approximate the mean expression level in large populations of noninteracting oscillators, and further define computationally efficient amplitude response calculations to describe phase-dependent amplitude change. At the single-cell level, a mechanistic nonlinear ordinary differential equation model is used to calculate the transient response of each cell to a perturbation, whereas population-level dynamics are captured by coupling this detailed model to a phase density function. Our analysis reveals that amplitude changes mediated at either the individual-cell or the population level can be distinguished in tissue-level bioluminescence data without the need for single-cell measurements. We demonstrate the effectiveness of the method by modeling experimental bioluminescence profiles of light-sensitive fibroblasts, reconciling the conclusions of two seemingly contradictory studies. This modeling framework allows a direct comparison between in vitro bioluminescence experiments and in silico ordinary

  10. Employing Helicity Amplitudes for Resummation in SCET

    CERN Document Server

    Moult, Ian; Tackmann, Frank J; Waalewijn, Wouter J

    2016-01-01

    Helicity amplitudes are the fundamental ingredients of many QCD calculations for multi-leg processes. We describe how these can seamlessly be combined with resummation in Soft-Collinear Effective Theory (SCET), by constructing a helicity operator basis for which the Wilson coefficients are directly given in terms of color-ordered helicity amplitudes. This basis is crossing symmetric and has simple transformation properties under discrete symmetries.

  11. Quartic amplitudes for Minkowski higher spin

    CERN Document Server

    Bengtsson, Anders K H

    2016-01-01

    The problem of finding general quartic interaction terms between fields of higher helicities on the light-front is discussed from the point of view of calculating the corresponding amplitudes directly from the cubic vertices using BCFW recursion. Amplitude based no-go results that has appeared in the literature are reviewed and discussed and it is pointed out how they may perhaps be circumvented.

  12. Amplitudes for Multiple M5 Branes

    CERN Document Server

    Czech, Bartlomiej; Rozali, Moshe

    2011-01-01

    We study N=(n,0) super-Poincare invariant six-dimensional massless and five-dimensional massive on-shell amplitudes. We demonstrate that in six dimensions all possible three-point amplitudes involving tensor multiplets are uniquely determined by super-Poincare invariance and are necessarily embedded in gravitational theories. For non-gravitational amplitudes we consider instead five-dimensional massive amplitudes with N=(2,0) supersymmetry, corresponding to compactifying the theory on a circle. Super-Poincare invariance and constraints motivated by four-dimensional S-duality uniquely fix the amplitude as well as the participating multiplets. The on-shell degrees of freedom are shown to match those of the massive particle states that arise from self-dual strings wrapping a circle. Along the way we find interesting hints of a fermionic symmetry in the (2,0) theory, which accompanies the self-dual tensor gauge symmetry. We also discuss novel theories with (3,0) and (4,0) supersymmetry. The three-point amplitudes...

  13. Scattering amplitudes in open superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Schlotterer, Oliver

    2011-07-15

    The present thesis deals with the theme field of the scattering amplitudes in theories of open superstrings. Especially two different formalisms for the handling of superstrings are introduced and applied for the calaculation of tree-level amplitudes - the Ramond- Neveu-Schwarz (RNS) and the Pure-Spinor (PS) formalism. The RNS approach is proved as flexible in order to describe compactification of the initially ten flat space-time dimensions to four dimensions. We solve the technical problems, which result from the interacting basing world-sheet theory with conformal symmetry. This is used to calculate phenomenologically relevant scattering amplitudes of gluons and quarks as well as production rates of massive harmonic vibrations, which were already identified as virtual exchange particles on the massless level. In the case of a low string mass scale in the range of some Tev the string-specific signatures in parton collisions can be observed in the near future in the LHC experiment at CERN and indicated as first experimental proof of the string theory. THose string effects occur universally for a wide class of string ground states respectively internal geometries and represent an elegant way to avoid the so-called landscape problem of the string theory. A further theme complex in this thesis is based on the PS formalism, which allows a manifestly supersymmetric treatment of scattering amplitudes in ten space-time dimension with sixteen supercharges. We introduce a family of superfields, which occur in massless amplitudes of the open string and can be naturally identified with diagrams of three-valued knots. Thereby we reach not only a compact superspace representation of the n-point field-theory amplitude but can also write the complete superstring n-point amplitude as minimal linear combination of partial amplitudes of the field theory as well as hypergeometric functions. The latter carry the string effects and are analyzed from different perspectives, above all

  14. Scattering amplitudes in open superstring theory

    International Nuclear Information System (INIS)

    The present thesis deals with the theme field of the scattering amplitudes in theories of open superstrings. Especially two different formalisms for the handling of superstrings are introduced and applied for the calaculation of tree-level amplitudes - the Ramond- Neveu-Schwarz (RNS) and the Pure-Spinor (PS) formalism. The RNS approach is proved as flexible in order to describe compactification of the initially ten flat space-time dimensions to four dimensions. We solve the technical problems, which result from the interacting basing world-sheet theory with conformal symmetry. This is used to calculate phenomenologically relevant scattering amplitudes of gluons and quarks as well as production rates of massive harmonic vibrations, which were already identified as virtual exchange particles on the massless level. In the case of a low string mass scale in the range of some Tev the string-specific signatures in parton collisions can be observed in the near future in the LHC experiment at CERN and indicated as first experimental proof of the string theory. THose string effects occur universally for a wide class of string ground states respectively internal geometries and represent an elegant way to avoid the so-called landscape problem of the string theory. A further theme complex in this thesis is based on the PS formalism, which allows a manifestly supersymmetric treatment of scattering amplitudes in ten space-time dimension with sixteen supercharges. We introduce a family of superfields, which occur in massless amplitudes of the open string and can be naturally identified with diagrams of three-valued knots. Thereby we reach not only a compact superspace representation of the n-point field-theory amplitude but can also write the complete superstring n-point amplitude as minimal linear combination of partial amplitudes of the field theory as well as hypergeometric functions. The latter carry the string effects and are analyzed from different perspectives, above all

  15. Amplitude scaling of asymmetry-induced transport

    International Nuclear Information System (INIS)

    Our initial experiments on asymmetry-induced transport in non-neutral plasmas found the radial particle flux at small radii to be proportional to φa2, where φa is the applied asymmetry amplitude. Other researchers, however, using the global expansion rate as a measure of the transport, have observed a φa1 scaling when the rigidity (the ratio of the axial bounce frequency to the azimuthal rotation frequency) is in the range one to ten. In an effort to resolve this discrepancy, we have extended our measurements to different radii and asymmetry frequencies. Although the results to date are generally in agreement with those previously reported (φa2 scaling at low asymmetry amplitudes falling off to a weaker scaling at higher amplitudes), we have observed some cases where the low amplitude scaling is closer to φa1. Both the φa2 and φa1 cases, however, have rigidities less than ten. Instead, we find that the φa1 cases are characterized by an induced flux that is comparable in magnitude but opposite in sign to the background flux. This suggests that the mixing of applied and background asymmetries plays an important role in determining the amplitude scaling of this transport

  16. Helicity Selection Rules and Non-Interference for BSM Amplitudes

    CERN Document Server

    Azatov, Aleksandr; Machado, Camila S; Riva, Francesco

    2016-01-01

    Precision studies of scattering processes at colliders provide powerful indirect constraints on new physics. We study the helicity structure of scattering amplitudes in the SM and in the context of an effective Lagrangian description of BSM dynamics. Our analysis reveals a novel set of helicity selection rules according to which, in the majority of 2 to 2 scattering processes at high energy, the SM and the leading BSM effects do not interfere. In such situations, the naive expectation that dimension-6 operators represent the leading BSM contribution is compromised, as corrections from dimension-8 operators can become equally (if not more) important well within the validity of the effective field theory approach.

  17. Action-Amplitude Approach to Controlled Entropic Self-Organization

    Directory of Open Access Journals (Sweden)

    Vladimir Ivancevic

    2014-05-01

    Full Text Available Motivated by the notion of perceptual error, as a core concept of the perceptual control theory, we propose an action-amplitude model for controlled entropic self-organization (CESO. We present several aspects of this development that illustrate its explanatory power: (i a physical view of partition functions and path integrals, as well as entropy and phase transitions; (ii a global view of functional compositions and commutative diagrams; (iii a local geometric view of the Kähler–Ricci flow and time-evolution of entropic action; and (iv a computational view using various path-integral approximations.

  18. Amplitude dependent orbital period in alternating gradient accelerators

    CERN Document Server

    Machida, S; Edmonds, C S; Kirkman, I W; Berg, J S; Jones, J K; Muratori, B D; Garland, J M

    2016-01-01

    Orbital period in a ring accelerator and time of flight in a linear accelerator depend on the amplitude of betatron oscillations. The variation is negligible in ordinary particle accelerators with relatively small beam emittance. In an accelerator for large emittance beams like muons and unstable nuclei, however, this effect cannot be ignored. We measured orbital period in a linear non-scaling fixed field alternating gradient (FFAG) accelerator, which is a candidate for muon acceleration, and compared with the theoretical prediction. The good agreement between them gives important ground for the design of particle accelerators for a new generation of particle and nuclear physics experiments.

  19. Integrability of scattering amplitudes in N=4 SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Lipatow, L.N. [St. Petersburg Nuclear Physics Institute (Russian Federation)]|[Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2009-02-15

    We argue, that the multi-particle scattering amplitudes in N=4 SUSY at large N{sub c} and in the multi-Regge kinematics for some physical regions have the high energy behavior appearing from the contribution of the Mandelstam cuts in the corresponding t-channel partial waves. The Mandelstam cuts correspond to gluon composite states in the adjoint representation of the gauge group SU(N{sub c}). The hamiltonian for these states in the leading logarithmic approximation coincides with the local hamiltonian of an integrable open spin chain. We construct the corresponding wave functions using the integrals of motion and the Baxter-Sklyanin approach. (orig.)

  20. Integrability of scattering amplitudes in N=4 SUSY

    International Nuclear Information System (INIS)

    We argue, that the multi-particle scattering amplitudes in N=4 SUSY at large Nc and in the multi-Regge kinematics for some physical regions have the high energy behavior appearing from the contribution of the Mandelstam cuts in the corresponding t-channel partial waves. The Mandelstam cuts correspond to gluon composite states in the adjoint representation of the gauge group SU(Nc). The hamiltonian for these states in the leading logarithmic approximation coincides with the local hamiltonian of an integrable open spin chain. We construct the corresponding wave functions using the integrals of motion and the Baxter-Sklyanin approach. (orig.)

  1. Dipole scattering amplitude in momentum space: investigating fluctuations at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Basso, E.; Ducati, M.B. Gay; Oliveira, E.G. de; Amaral, J.T. de Santana [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Fisica]. E-mails: ebasso@if.ufrgs.br; beatriz.gay@ufrgs.br; emmanuel.deoliveira@ufrgs.br; thiago.amaral@ufrgs.br

    2008-09-15

    We extend a recently proposed dipole model which relates the virtual photon-proton cross section to the dipole-proton forward scattering amplitude in momentum space investigating the effects of the gluon number fluctuations. The model interpolates between well known asymptotic behaviours predicted by perturbative QCD from the Balitsky-Kovchegov equation, which describes the rapidity evolution of the dipole-proton scattering amplitude in the mean field approximation. The model was shown to be successful in describing the last HERA data for the case where the strong coupling constant alpha{sub s} is fixed, showing also some important advantages when compared with other dipole models - all of them in coordinate space - in the literature. Based on the fact that the fluctuations may be important in the small-x evolution and on recent results obtained in coordinate space beyond the mean field approximation, we use this model to parametrize the proton structure function and confront it to HERA data using the average (physical) amplitude - then including fluctuations - within the momentum space framework. (author)

  2. Dependence of seismoelectric amplitudes on water content - a field study

    Science.gov (United States)

    Strahser, M. H. P.; Matthey, P.-D.; Jouniaux, L.; Sailhac, P.

    2009-04-01

    In porous saturated media, seismic compressional waves can cause seismoelectric and seismoelectromagnetic signals through electrokinetic coupling. It has been observed that these measureable signals also occur in partially saturated media, but the theory is largely unknown for these circumstances. Seismoelectromagnetic tomography is expected to combine the sensitivity of electrical properties to water-content and permeability, to the high spatial resolution of seismic surveys. A better understanding of the physical processes and a reliable quantification of the conversion between seismic and electric energy are necessary and need to take into account the effect of water-content, especially for shallow subsurface investigations. In order to quantify seismoelectric signals with changing water content, we repeated seismoelectric and seismic measurements on the same profile in the Vosges Mountains during several months. The electrical resistivity was also monitored to take into account the water-content variations. We show that an exponential relation can be established between the seismoelectric amplitudes normalized with the seismic amplitudes and the resistivity which in turn is related to the saturation: Increasing resistivity (decreasing water content) leads to decreasing normalized seismoelectric amplitudes. These results imply that the electrokinetic coefficient should increase with water-saturation, as measured in laboratory, but not predicted by theory. This work was funded by CNRS and Université Louis Pasteur de Strasbourg.

  3. Dipole scattering amplitude in momentum space: investigating fluctuations at HERA

    International Nuclear Information System (INIS)

    We extend a recently proposed dipole model which relates the virtual photon-proton cross section to the dipole-proton forward scattering amplitude in momentum space investigating the effects of the gluon number fluctuations. The model interpolates between well known asymptotic behaviours predicted by perturbative QCD from the Balitsky-Kovchegov equation, which describes the rapidity evolution of the dipole-proton scattering amplitude in the mean field approximation. The model was shown to be successful in describing the last HERA data for the case where the strong coupling constant alphas is fixed, showing also some important advantages when compared with other dipole models - all of them in coordinate space - in the literature. Based on the fact that the fluctuations may be important in the small-x evolution and on recent results obtained in coordinate space beyond the mean field approximation, we use this model to parametrize the proton structure function and confront it to HERA data using the average (physical) amplitude - then including fluctuations - within the momentum space framework. (author)

  4. Analytic Representations of Yang-Mills Amplitudes

    CERN Document Server

    Bjerrum-Bohr, N E J; Damgaard, Poul H; Feng, Bo

    2016-01-01

    Scattering amplitudes in Yang-Mills theory can be represented in the formalism of Cachazo, He and Yuan (CHY) as integrals over an auxiliary projective space---fully localized on the support of the scattering equations. Because solving the scattering equations is difficult and summing over the solutions algebraically complex, a method of directly integrating the terms that appear in this representation has long been sought. We solve this important open problem by first rewriting the terms in a manifestly Mobius-invariant form and then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for which combinatorial rules of integration are known. The result is a systematic procedure to obtain analytic, covariant forms of Yang-Mills tree-amplitudes for any number of external legs and in any number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up to six gluons of arbitrary helicities.

  5. Nonlinear (Super)Symmetries and Amplitudes

    CERN Document Server

    Kallosh, Renata

    2016-01-01

    There is an increasing interest in nonlinear supersymmetries in cosmological model building. Independently, elegant expressions for the all-tree amplitudes in models with nonlinear symmetries, like D3 brane Dirac-Born-Infeld-Volkov-Akulov theory, were recently discovered. Using the generalized background field method we show how, in general, nonlinear symmetries of the action, bosonic and fermionic, constrain amplitudes beyond soft limits. The same identities control, for example, bosonic E_{7(7)} scalar sector symmetries as well as the fermionic goldstino symmetries. We present a universal derivation of the vanishing amplitudes in the single (bosonic or fermionic) soft limit. We explain why, universally, the double-soft limit probes the coset space algebra. We also provide identities describing the multiple-soft limit. We discuss loop corrections to N\\geq 5 supergravity, to the D3 brane, and the UV completion of constrained multiplets in string theory.

  6. Scaling of saturation amplitudes in baroclinic instability

    International Nuclear Information System (INIS)

    By using finite-amplitude conservation laws for pseudomomentum and pseudoenergy, rigorous upper bounds have been derived on the saturation amplitudes in baroclinic instability for layered and continuously-stratified quasi-geostrophic models. Bounds have been obtained for both the eddy energy and the eddy potential enstrophy. The bounds apply to conservative (inviscid, unforced) flow, as well as to forced-dissipative flow when the dissipation is proportional to the potential vorticity. This approach provides an efficient way of extracting an analytical estimate of the dynamical scalings of the saturation amplitudes in terms of crucial non-dimensional parameters. A possible use is in constructing eddy parameterization schemes for zonally-averaged climate models. The scaling dependences are summarized, and compared with those derived from weakly-nonlinear theory and from baroclinic-adjustment estimates

  7. Spinfoam cosmology with the proper vertex amplitude

    CERN Document Server

    Vilensky, Ilya

    2016-01-01

    The proper vertex amplitude is derived from the EPRL vertex by restricting to a single gravitational sector in order to achieve the correct semi-classical behaviour. We apply the proper vertex to calculate a cosmological transition amplitude that can be viewed as the Hartle-Hawking wavefunction. To perform this calculation we deduce the integral form of the proper vertex and use extended stationary phase methods to estimate the large-volume limit. We show that the resulting amplitude satisfies an operator constraint whose classical analogue is the Hamiltonian constraint of the Friedmann-Robertson-Walker cosmology. We find that the constraint dynamically selects the relevant family of coherent states and demonstrate a similar dynamic selection in standard quantum mechanics.

  8. A description of seismic amplitude techniques

    Science.gov (United States)

    Shadlow, James

    2014-02-01

    The acquisition of seismic data is a non-invasive technique used for determining the sub surface geology. Changes in lithology and fluid fill affect the seismic wavelet. Analysing seismic data for direct hydrocarbon indicators (DHIs), such as full stack amplitude anomalies, or amplitude variation with offset (AVO), can help a seismic interpreter relate the geophysical response to real geology and, more importantly, to distinguish the presence of hydrocarbons. Inversion is another commonly used technique that attempts to tie the seismic data back to the geology. Much has been written about these techniques, and attempting to gain an understanding on the theory and application of them by reading through various journals can be quite daunting. The purpose of this paper is to briefly outline DHI analysis, including full stack amplitude anomalies, AVO and inversion and show the relationship between all three. The equations presented have been included for completeness, but the reader can pass over the mathematical detail.

  9. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter;

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  10. On Arbitrary Phases in Quantum Amplitude Amplification

    CERN Document Server

    Hoyer, P

    2000-01-01

    We consider the use of arbitrary phases in quantum amplitude amplification which is a generalization of quantum searching. We prove that the phase condition in amplitude amplification is given by $\\tan(\\phi/2)=\\tan(\\phi/2)(1-2a)$, where $\\phi$ and $\\phi$ are the phases used and where $a$ is the success probability of the given algorithm. Thus the choice of phases depends nontrivially and nonlinearly on the success probability. Utilizing this condition, we give methods for constructing quantum algorithms that succeed with certainty and for implementing arbitrary rotations. We also conclude that phase errors of order up to $\\frac{1}{\\sqrt{a}}$ can be tolerated in amplitude amplification.

  11. Gluon scattering amplitudes at strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Alday, Luis F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands); Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2007-06-15

    We describe how to compute planar gluon scattering amplitudes at strong coupling in N = 4 super Yang Mills by using the gauge/string duality. The computation boils down to finding a certain classical string configuration whose boundary conditions are determined by the gluon momenta. The results are infrared divergent. We introduce the gravity version of dimensional regularization to define finite quantities. The leading and subleading IR divergencies are characterized by two functions of the coupling that we compute at strong coupling. We compute also the full finite form for the four point amplitude and we find agreement with a recent ansatz by Bern, Dixon and Smirnov.

  12. Gluon scattering amplitudes at strong coupling

    CERN Document Server

    Alday, Luis F

    2007-01-01

    We describe how to compute planar gluon scattering amplitudes at strong coupling in N=4 super Yang Mills by using the gauge/string duality. The computation boils down to finding a certain classical string configuration whose boundary conditions are determined by the gluon momenta. The results are infrared divergent. We introduce the gravity version of dimensional regularization to define finite quantities. The leading and subleading IR divergencies are characterized by two functions of the coupling that we compute at strong coupling. We compute also the full finite form for the four point amplitude and we find agreement with a recent ansatz by Bern, Dixon and Smirnov.

  13. Topographic quantitative EEG amplitude in recovered alcoholics.

    Science.gov (United States)

    Pollock, V E; Schneider, L S; Zemansky, M F; Gleason, R P; Pawluczyk, S

    1992-05-01

    Topographic measures of electroencephalographic (EEG) amplitude were used to compare recovered alcoholics (n = 14) with sex- and age-matched control subjects. Delta, alpha, and beta activity did not distinguish the groups, but regional differences in theta distribution did. Recovered alcoholics showed more uniform distributions of theta amplitudes in bilateral anterior and posterior regions compared with controls. Because a minimum of 5 years had elapsed since the recovered alcoholic subjects fulfilled DSM-III-R criteria for alcohol abuse or dependence, it is unlikely these EEG theta differences reflect the effects of withdrawal.

  14. Softness, Polynomial Boundedness and Amplitudes' Positivity

    CERN Document Server

    Bai, Dong

    2016-01-01

    In this note, we study the connection between infrared (IR) and ultraviolet (UV) behaviors of scattering amplitudes of massless channels by exploiting dispersion relations and positivity bounds. Given forward scattering amplitudes which scale as $\\mathcal{A}(s)\\sim s^M$ in the IR ($s\\to0$) and could be embedded into UV completions satisfying unitarity, analyticity, crossing symmetry and polynomial boundedness $|\\mathcal{A}(s)|< c\\, |s|^N$ ($|s|\\to\\infty$), with $M$ and $N$ integers, we show that the inequality $2\\ceil*{\\frac{N}{2}}\\ge M \\ge 0$ must hold, where $\\ceil*{x}$ is the smallest integer greater than or equal to $x$.

  15. Amplitude Models for Discrimination and Yield Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    This seminar presentation describes amplitude models and yield estimations that look at the data in order to inform legislation. The following points were brought forth in the summary: global models that will predict three-component amplitudes (R-T-Z) were produced; Q models match regional geology; corrected source spectra can be used for discrimination and yield estimation; three-component data increase coverage and reduce scatter in source spectral estimates; three-component efforts must include distance-dependent effects; a community effort on instrument calibration is needed.

  16. Fatigue Reliability under Multiple-Amplitude Loads

    DEFF Research Database (Denmark)

    Talreja, R.

    1979-01-01

    A method to determine the fatigue of structures subjected to multiple-amplitude loads is presented. Unlike the more common cumulative damage methods, which are usually based on fatigue life data, the proposed method is based on tensile strength data. Assuming the Weibull distribution...... for the initial tensile strength and the fatigue life, the probability distributions for the residual tensile strength in both the crack initiation and the crack propagation stages of fatigue are determined. The method is illustrated for two-amplitude loads by means of experimental results obtained by testing...

  17. Amplitude Correction Factors of KVN Observations

    CERN Document Server

    Lee, Sang-Sung; Oh, Chung Sik; Kim, Hyo Ryoung; Kim, Jongsoo; Jung, Taehyun; Oh, Se-Jin; Roh, Duk-Gyoo; Jung, Dong-Kyu; Yeom, Jae-Hwan

    2015-01-01

    We report results of investigation of amplitude calibration for very long baseline interferometry (VLBI) observations with Korean VLBI Network (KVN). Amplitude correction factors are estimated based on comparison of KVN observations at 22~GHz correlated by Daejeon hardware correlator and DiFX software correlator in Korea Astronomy and Space Science Institute (KASI) with Very Long Baseline Array (VLBA) observations at 22~GHz by DiFX software correlator in National Radio Astronomy Observatory (NRAO). We used the observations for compact radio sources, 3C~454.3 and NRAO~512, which are almost unresolved for baselines in a range of 350-477~km. Visibility data of the sources obtained with similar baselines at KVN and VLBA are selected, fringe-fitted, calibrated, and compared for their amplitudes. We found that visibility amplitudes of KVN observations should be corrected by factors of 1.10 and 1.35 when correlated by DiFX and Daejeon correlators, respectively. These correction factors are attributed to the combinat...

  18. Connected formulas for amplitudes in standard model

    CERN Document Server

    He, Song

    2016-01-01

    Witten's twistor string theory has led to new representations of S-matrix in massless QFT as a single object, including Cachazo-He-Yuan formulas in general and connected formulas in four dimensions. As a first step towards more realistic processes of the standard model, we extend the construction to QCD tree amplitudes with massless quarks and those with a Higgs boson. For both cases, we find connected formulas in four dimensions for all multiplicities which are very similar to the one for Yang-Mills amplitudes. The formula for quark-gluon color-ordered amplitudes differs from the pure-gluon case only by a Jacobian factor that depends on flavors and orderings of the quarks. In the formula for Higgs plus multi-parton amplitudes, the massive Higgs boson is effectively described by two additional massless legs which do not appear in the Parke-Taylor factor. The latter also represents the first twistor-string/connected formula for form factors.

  19. Holographic Corrections to the Veneziano Amplitude

    CERN Document Server

    Armoni, Adi

    2016-01-01

    We propose a holographic computation of the $2\\rightarrow 2$ meson scattering in a curved string background, dual to a QCD-like theory. We recover the Veneziano amplitude and compute a perturbative correction due to the background curvature. The result implies a small deviation from a linear trajectory, which is a requirement of the UV regime of QCD.

  20. On Calculation of Amplitudes in Quantum Electrodynamics

    OpenAIRE

    Karplyuk, Kostyantyn; Zhmudsky, Oleksandr

    2012-01-01

    A new method of calculation of amplitudes of different processes in quantum electrodynamics is proposed. The method does not use the Feynman technique of trace of product of matrices calculation. The method strongly simplifies calculation of cross sections for different processes. The effectiveness of the method is shown on the cross-section calculation of Coulomb scattering, Compton scattering and electron-positron annihilation.

  1. Generalised Unitarity for Dimensionally Regulated Amplitudes

    CERN Document Server

    Bobadilla, W J Torres; Mastrolia, P; Mirabella, E

    2015-01-01

    We present a novel set of Feynman rules and generalised unitarity cut-conditions for computing one-loop amplitudes via d-dimensional integrand reduction algorithm. Our algorithm is suited for analytic as well as numerical result, because all ingredients turn out to have a four-dimensional representation. We will apply this formalism to NLO QCD corrections.

  2. Optical twists in phase and amplitude

    DEFF Research Database (Denmark)

    Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper

    2011-01-01

    Light beams with helical phase profile correspond to photons having orbital angular momentum (OAM). A Laguerre-Gaussian (LG) beam is an example where its helical phase sets a phase-singularity at the optical axis and forms a ring-shaped transverse amplitude profile. Here, we describe a unique beam...

  3. Hyperlogarithms and periods in Feynman amplitudes

    CERN Document Server

    Todorov, Ivan

    2016-01-01

    The role of hyperlogarithms and multiple zeta values (and their generalizations) in Feynman amplitudes is being gradually recognized since the mid 1990's. The present lecture provides a concise introduction to a fast developing subjects that attracts the attention to a wide range of specialists - from number theorists to particle physicists.

  4. Microwave Imaging using Amplitude-only Data

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy

    2010-01-01

    This paper discuss how the performance of an imaging system is affected when the phase information of the measurements are removed from the data, leaving only amplitude information as input for the imaging algorithm. Simulated data are used for this purpose, and the images resulting from using am...

  5. Differential Equations, Associators, and Recurrences for Amplitudes

    CERN Document Server

    Puhlfuerst, Georg

    2015-01-01

    We provide new methods to straightforwardly obtain compact and analytic expressions for epsilon-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different epsilon-orders of a power series solution in epsilon of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the epsilon-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also setup up our tools for computing epsilon-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system). Finally, we apply our methods to systematically get compact and explicit alpha'-expansions of tree-level superstring amplitudes to any order in alpha'.

  6. Differential equations, associators, and recurrences for amplitudes

    Science.gov (United States)

    Puhlfürst, Georg; Stieberger, Stephan

    2016-01-01

    We provide new methods to straightforwardly obtain compact and analytic expressions for ɛ-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different ɛ-orders of a power series solution in ɛ of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the ɛ-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also apply our tools for computing ɛ-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system). Finally, we set up our methods to systematically get compact and explicit α‧-expansions of tree-level superstring amplitudes to any order in α‧.

  7. Differential equations, associators, and recurrences for amplitudes

    Directory of Open Access Journals (Sweden)

    Georg Puhlfürst

    2016-01-01

    Full Text Available We provide new methods to straightforwardly obtain compact and analytic expressions for ϵ-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different ϵ-orders of a power series solution in ϵ of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the ϵ-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also apply our tools for computing ϵ-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system. Finally, we set up our methods to systematically get compact and explicit α′-expansions of tree-level superstring amplitudes to any order in α′.

  8. Planar scattering amplitudes from Wilson loops

    International Nuclear Information System (INIS)

    We derive an expression for parton scattering amplitudes of planar gauge theory in terms of sums of Wilson loops. We study in detail the example of Yang-Mills theory with an adjoint Higgs field. The expression exhibits the T-duality performed by Alday and Maldacena in the AdS dual as a Fourier transform in loop space. When combined with the AdS/CFT correspondence for Wilson loops and a strong coupling argument for the dominance of 1PI diagrams, this leads to a derivation of the Alday-Maldacena holographic prescription for scattering amplitudes in terms of momentum Wilson loops. The formula leads to a conjecture for a relationship between position-space and momentum-space Wilson loops in N = 4 SYM at finite coupling.

  9. Critical Initial Amplitude of Langmuir Wave Damping

    Institute of Scientific and Technical Information of China (English)

    徐慧; 盛政明

    2012-01-01

    By one-dimensional Vlasov-Poisson simulation, the critical initial state marking the transition between the Landau scenario, in which the electric fields definitively damped to zero and the O'NEIL scenario, in which the Landau damping is stopped after a certain damping stage, is studied. It is found that the critical initial amplitude e* can only exist when the product of the wave number (k~) and the electron thermal velocity (vth) is moderate, that is, 0.2 〈 k~vth 〈 0.7. Otherwise, no critical initial amplitude is found. The value c* increases with the increase in km for a fixed Vth, and also increases with the increase in Vth for a fixed kin. When kmVth is fixed, the value s* also changes with the wave number and the electron thermal velocity, even though the damping rate and the oscillation frequency are the same in this case.

  10. Evaluation of the CHY Gauge Amplitude

    CERN Document Server

    Lam, C S

    2016-01-01

    The Cachazo-He-Yuan (CHY) formula for $n$-gluon scattering is known to give the same amplitude as the one obtained from Feynman diagrams, though the former contains neither vertices nor propagators explicitly. The equivalence was shown by indirect means, not by a direct evaluation of the $(n\\! - \\!3)$-dimensional integral in the CHY formula. The purpose of this paper is to discuss how such a direct evaluation can be carried out. There are two basic difficulties in the calculation: how to handle the large number of terms in the reduced Pfaffian, and how to carry out the integrations in the presence of a $\\sigma$-dependence much more complicated than the Parke-Taylor form found in a CHY double-color scalar amplitude. We have solved both of these problems, and have formulated a method that can be applied to any $n$. Many examples are provided to illustrate these calculations.

  11. Automation of 2-loop Amplitude Calculations

    CERN Document Server

    Jones, S P

    2016-01-01

    Some of the tools and techniques that have recently been used to compute Higgs boson pair production at NLO in QCD are discussed. The calculation relies on the use of integral reduction, to reduce the number of integrals which must be computed, and expressing the amplitude in terms of a quasi-finite basis, which simplifies their numeric evaluation. Emphasis is placed on sector decomposition and Quasi-Monte Carlo (QMC) integration which are used to numerically compute the master integrals.

  12. Transversity Amplitudes in Hypercharge Exchange Processes

    International Nuclear Information System (INIS)

    ' In this work we present several techniques developed for the extraction of the. Transversity amplitudes governing quasi two-body meson baryon reactions with hypercharge exchange. We review the methods used in processes having a pure spin configuration, as well as the more relevant results obtained with data from Kp and Tp interactions at intermediate energies. The predictions of the additive quark model and the ones following from exchange degeneracy and etoxicity are discussed. We present a formalism for amplitude analysis developed for reactions with mixed spin configurations and discuss the methods of parametric estimation of the moduli and phases of the amplitudes, as well as the various tests employed to check the goodness of the fits. The calculation of the generalized joint density matrices is given and we propose a method based on the generalization of the idea of multipole moments, which allows to investigate the structure of the decay angular correlations and establishes the quality of the fits and the validity of the simplifying assumptions currently used in this type of studies. (Author) 43 refs

  13. Harmonic amplitude dependent dynamic stiffness of hydraulic bushings: Alternate nonlinear models and experimental validation

    Science.gov (United States)

    Fredette, Luke; Dreyer, Jason T.; Rook, Todd E.; Singh, Rajendra

    2016-06-01

    The dynamic stiffness properties of automotive hydraulic bushings exhibit significant amplitude sensitivity which cannot be captured by linear time-invariant models. Quasi-linear and nonlinear models are therefore proposed with focus on the amplitude sensitivity in magnitude and loss angle spectra (up to 50 Hz). Since production bushing model parameters are unknown, dynamic stiffness tests and laboratory experiments are utilized to extract model parameters. Nonlinear compliance and resistance elements are incorporated, including their interactions in order to improve amplitude sensitive predictions. New solution approximations for the new nonlinear system equations refine the multi-term harmonic balance term method. Quasi-linear models yield excellent accuracy but cannot predict trends in amplitude sensitivity since they rely on available dynamic stiffness measurements. Nonlinear models containing both nonlinear resistance and compliance elements yield superior predictions to those of prior models (with a single nonlinearity) while also providing more physical insight. Suggestion for further work is briefly mentioned.

  14. On the Short Distance Part of the QCD Anomaly Contribution to the b --> s eta' Amplitude

    CERN Document Server

    Eeg, J O; Picek, I

    2003-01-01

    In addressing the B --> eta' K puzzle, there has been a considerable hope in the literature to resolve it by the QCD anomaly contribution to the b --> s eta' amplitude. This contribution corresponds to the electroweak b --> s g* g* transition followed by the off-shell gluon fusion g* g* --> eta'. In the present paper we perform a critical reassessment of this issue. We show that for the hard virtual gluons in a loop there is a well defined short distance amplitude corresponding to a remnant of the QCD anomaly. However, we find that it cannot account for the measured amplitude. In addition, we point out that the reduction of the gluon fusion vertex for the off-shell gluons is compensated by an absence of the claimed suppression in the electroweak vertex, and that some nonperturbative contributions related to the QCD anomaly may still be viable in explaining the physical B --> eta' K amplitude.

  15. The Positive orthogonal Grassmannian and loop amplitudes of ABJM

    CERN Document Server

    Huang, Yu-tin; Xie, Dan

    2014-01-01

    In this paper we study the combinatorics associated with the positive orthogonal Grassmannian OG_k and its connection to ABJM scattering amplitudes. We present a canonical embedding of OG_k into the Grassmannian Gr(k,2k), from which we deduce the canonical volume form that is invariant under equivalence moves. Remarkably the canonical forms of all reducible graphs can be converted into irreducible ones with products of dLog forms. Unlike N=4 super Yang-Mills, here the Jacobian plays a crucial role to ensure the dLog form of the reduced representation. Furthermore, we identify the functional map that arises from the triangle equivalence move as a 3-string scattering S-matrix which satisfies the tetrahedron equations by Zamolodchikov, implying (2+1)-dimensional integrability. We study the solution to the BCFW recursion relation for loop amplitudes, and demonstrate the presence of all physical singularities as well as the absence of all spurious ones. The on-shell diagram solution to the loop recursion relation ...

  16. Planar scattering amplitudes from Wilson loops

    OpenAIRE

    McGreevy, John; Sever, Amit

    2008-01-01

    We derive an expression for parton scattering amplitudes of planar gauge theory in terms of sums of Wilson loops. We study in detail the example of Yang-Mills theory with an adjoint Higgs field. The expression exhibits the T-duality performed by Alday and Maldacena in the AdS dual as a Fourier transform in loop space. When combined with the AdS/CFT correspondence for Wilson loops and a strong coupling argument for the dominance of 1PI diagrams, this leads to a derivation of the Alday-Maldacen...

  17. Second moment of the pion's distribution amplitude

    International Nuclear Information System (INIS)

    We present preliminary results from the QCDSF/UKQCD collaborations for the second moment of the pion's distribution amplitude with two flavours of dynamical fermions. We use nonperturbatively determined renormalisation coefficients to convert our results to the MS scheme at 5 GeV2. Employing a linear chiral extrapolation from our large pion masses > 550 MeV, we find left angle ξ2 right angle = 0.281(28), leading to a value of α2 = 0.236(82) for the second Gegenbauer moment. (orig.)

  18. Second moment of the pion's distribution amplitude

    International Nuclear Information System (INIS)

    We present preliminary results from the QCDSF/UKQCD collaborations for the second moment of the pion's distribution amplitude with two flavours of dynamical fermions. We use nonperturbatively determined renormalisation coefficients to convert our results to the MS-bar scheme at 5GeV2. Employing a linear chiral extrapolation from our large pion masses >550MeV, we find 2>=0.281(28), leading to a value of a2=0.236(82) for the second Gegenbauer moment

  19. Approximate formulas for moderately small eikonal amplitudes

    CERN Document Server

    Kisselev, A V

    2015-01-01

    The eikonal approximation for moderately small scattering amplitudes is considered. With the purpose of using for their numerical estimations, the formulas are derived which contain no Bessel functions, and, hence, no rapidly oscillating integrands. To obtain these formulas, the improper integrals of the first kind which contain products of the Bessel functions J_0(z) are studied. The expression with four functions J_0(z) is generalized. The expressions for the integrals with the product of five and six Bessel functions J_0(z) are also found. The known formula for the improper integral with two functions J_nu(z) is generalized for non-integer nu.

  20. Relations and representations of QCD amplitudes

    CERN Document Server

    de la Cruz, Leonardo; Weinzierl, Stefan

    2016-01-01

    In this talk we review relations and representations of primitive QCD tree amplitudes. Topics covered include the BCJ relations, the CHY representation, and the KLT relations. We will put a special emphasis on how these relations and representations generalise from pure Yang-Mills theory to QCD. The generalisation of the KLT relations from pure Yang-Mills to QCD includes the case of massive quarks. On the gravity side we then obtain hypothetical particles interacting with gravitational strength, which can be massive and non-relativistic.

  1. Multiloop Integrand Reduction for Dimensionally Regulated Amplitudes

    CERN Document Server

    Mastrolia, P; Ossola, G; Peraro, T

    2013-01-01

    We present the integrand reduction via multivariate polynomial division as a natural technique to encode the unitarity conditions of Feynman amplitudes. We derive a recursive formula for the integrand reduction, valid for arbitrary dimensionally regulated loop integrals with any number of loops and external legs, which can be used to obtain the decomposition of any integrand analytically with a finite number of algebraic operations. The general results are illustrated by applications to two-loop Feynman diagrams in QED and QCD, showing that the proposed reduction algorithm can also be seamlessly applied to integrands with denominators appearing with arbitrary powers.

  2. Impact Representation of Generalized Distribution Amplitudes

    CERN Document Server

    Pire, B

    2003-01-01

    We develop an impact representation for the generalized distribution amplitude which describes the exclusive hadronization of a quark-antiquark pair to a pair of mesons. Experiments such as gamma^* gamma -> pi pi and gamma^* N -> pi pi N' are shown to probe the transverse size of the hadronization region of the quark antiquark pair that one can interpret as the transverse overlap of the two emerging mesons. An astonishing feature of this description is that low energy pi pi phase shift analysis can be used for understanding some properties of quark hadronization process.

  3. Effect of physical therapy on joint range of motion and muscle collagen deposition in the golden retriever muscular dystrophy (GRMD model Efeito da fisioterapia na amplitude de movimento articular e deposição de colágeno muscular no modelo golden retriever muscular dystrophy (GRMD

    Directory of Open Access Journals (Sweden)

    TP Gaiad

    2009-06-01

    Full Text Available OBJECTIVE: To elucidate the effect of physical therapy on joint range of motion (ROM and muscle fibrosis in GRMD animals. METHODS: This was a nonrandomized blinded study with a control group, with six months of intervention evaluated beforehand and afterwards. Six dystrophic male Golden Retrievers of mean age 10.16±3.46 months and weight 17.75±6.01 kg were divided into a treated group (n=3 and an untreated group. These groups of dogs were named: G1=treated group before treatment; G2=treated group after treatment; G3=untreated group before treatment; and G4=untreated group after treatment. G1 underwent a physical therapy program that consisted of a 300-meter circuit with obstacles. Stifle, tarsal, elbow and carpal ROM were assessed using a goniometer before and after treatment. The area of collagen in the vastus lateralis muscle was measured using histomorphometry. The locations of collagen types I, III and IV were studied using immunohistochemistry. RESULTS: The tarsal ROM values in G2 presented an increasing trend. The area of muscle collagen differed between the groups after treatment and an increasing trend in these values was observed in G4. Collagen types I and III were the ones most frequently observed, forming broad bands in the perimysium of both G2 and G4. Type I collagen was observed in the endomysium more than type III collagen. Type IV collagen was observed only in the basal layer. CONCLUSION: Physical Therapy seemed to improve tarsal ROM in the treated group without increasing muscular fibrosis.OBJETIVO: Elucidar o efeito da fisioterapia na Amplitude de Movimento Articular (ADM e na fibrose muscular em animais GRMD. MÉTODOS: Estudo não randomizado, com grupo controle, cego, seis meses de intervenção, avaliação antes e depois da intervenção. Seis animais da raça Golden Retriever, distróficos, machos, média de idade 10,16±3,46 meses e peso de 17,75±6,01 kg foram separados em grupo tratado (n=3 e não tratado. Esses

  4. Measuring amplitudes of harmonics and combination frequencies in variable stars

    Science.gov (United States)

    Bellinger, E. P.; Wysocki, D.; Kanbur, S. M.

    2016-05-01

    Discoveries of RR Lyrae and Cepheid variable stars with multiple modes of pulsation have increased tremendously in recent years. The Fourier spectra of these stars can be quite complicated due to the large number of combination frequencies that can exist between their modes. As a result, light- curve fits to these stars often suffer from undesirable ringing effects that arise from noisy observations and poor phase coverage. These non-physical overfitting artifacts also occur when fitting the harmonics of single-mode stars. Here we present a new method for fitting light curves that is much more robust against these effects. We prove that the amplitude measurement problem is very difficult (NP-hard) and provide a heuristic algorithm for solving it quickly and accurately.

  5. Measuring amplitudes of harmonics and combination frequencies in variable stars

    CERN Document Server

    Bellinger, Earl P; Kanbur, Shashi M

    2015-01-01

    Discoveries of RR Lyrae and Cepheid variable stars with multiple modes of pulsation have increased tremendously in recent years. The Fourier spectra of these stars can be quite complicated due to the large number of combination frequencies that can exist between their modes. As a result, light-curve fits to these stars often suffer from undesirable ringing effects that arise from noisy observations and poor phase coverage. These non-physical overfitting artifacts also occur when fitting the harmonics of single-mode stars as well. Here we present a new method for fitting light curves that is much more robust against these effects. We prove that the amplitude measurement problem is very difficult (NP-hard) and provide a heuristic algorithm for solving it quickly and accurately.

  6. About the Phasor Pathways in Analogical Amplitude Modulation

    CERN Document Server

    de Oliveira, H M

    2015-01-01

    The Phasor diagrams have long been used in Physics and Engineering. In telecommunications, this is particularly useful to clarify how the modulations work. This paper addresses rotating phasor pathways derived from different standard Amplitude Modulation Systems (e.g. A3E, H3E, J3E, C3F). A cornucopia of algebraic curves is then derived assuming a single tone or a double tone modulation signal. The ratio of the frequency of the tone modulator (fm) and carrier frequency (fc) is considered in two distinct cases, namely: fm/fc=1. The geometric figures are some sort of Lissajours figures. Different shapes appear looking like epicycloids (including cardioids), rhodonea curves, Lemniscates, folium of Descartes or Lam\\'e curves. The role played by the modulation index is elucidated in each case.

  7. "New" Veneziano amplitudes from "old" Fermat (hyper) surfaces

    CERN Document Server

    Kholodenko, A L

    2004-01-01

    The history of discovery of bosonic string theory is well documented. This theory evolved as an attempt to find a multidimensional analogue of Euler's beta function. Such an analogue had in fact been known in mathematics literature at least in 1922 and was studied subsequently by mathematicians such as Selberg, Weil and Deligne among others. The mathematical intpretation of this multidimensional beta function is markedly different from that described in physics literature. This paper aims to bridge the gap between the existing treatments. Preserving all results of conformal field theories intact, developed formalism employing topological, algebro-geometric, number-theoretic and combinatorial metods is aimed to provide better understanding of the Veneziano amplitudes and, thus, of string theories.

  8. Variation of force amplitude and its effects on local fatigue.

    Science.gov (United States)

    Yung, Marcus; Mathiassen, Svend Erik; Wells, Richard P

    2012-11-01

    Trends in industry are leaning toward stereotyped jobs with low workloads. Physical variation is an intervention to reduce fatigue and potentially musculoskeletal disorders in such jobs. Controlled laboratory studies have provided some insight into the effectiveness of physical variation, but very few have been devoted to force variation without muscular rest as a component. This study was undertaken to determine multiple physiological responses to five isometric elbow extension protocols with the same mean amplitude (15% maximum voluntary contraction, MVC), cycle time (6 s), and duty cycle (50 %). Sustained (15 %Sus) and intermittent contractions including zero force (0-30 %Int) differed significantly in 19 of 27 response variables. Contractions varying by half the mean force (7.5-22.5 %Int) led to 8 and 7 measured responses that were significantly different from 0-30 %Int and 15 %Sus, respectively. A sinusoidal condition (0-30 %Sine) resulted in 2 variables that were significantly different from 0-30 %Int, and 16 different from 15 %Sus. Finally, ten response variables suggested that varying forces with 1 % as the lower contraction level was significantly less fatiguing than 15 %Sus, while no responses were significantly different from 0-30 %Int. Sustained contractions led to decreased twitch force 24-h post-exercise, whereas recovery was complete within 60 min after intermittent contractions. This suggests that time-varying force may be a useful intervention to reduce local fatigue in workers performing low-load tasks, and also that rest per se did not seem to cause any extraordinary effects beyond those predictable from the force variation amplitude. PMID:22407330

  9. The Construction of Spin Foam Vertex Amplitudes

    Directory of Open Access Journals (Sweden)

    Eugenio Bianchi

    2013-01-01

    Full Text Available Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barrett, Crane, Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.

  10. Double unresolved approximations to multiparton scattering amplitudes

    International Nuclear Information System (INIS)

    We present approximations to tree-level multiparton scattering amplitudes which are appropriate when two partons are unresolved. These approximations are required for the analytic isolation of infrared singularities of n+2 parton scattering processes contributing to the next-to-next-to-leading order corrections to n jet cross sections. In each case the colour ordered matrix elements factorise and yield a function containing the singular factors multiplying the n-parton amplitudes. When the unresolved particles are colour unconnected, the approximations are simple products of the familiar eikonal and Altarelli-Parisi splitting functions used to describe single unresolved emission. However, when the unresolved particles are colour connected the factorisation is more complicated and we introduce new and general functions to describe the triple collinear and soft/collinear limits in addition to the known double soft gluon limits of Berends and Giele. As expected the triple collinear splitting functions obey an N=1 SUSY identity. To illustrate the use of these double unresolved approximations, we have examined the singular limits of the tree-level matrix elements for e+e- →5 partons when only three partons are resolved. When integrated over the unresolved regions of phase space, these expressions will be of use in evaluating the O(αs3) corrections to the three-jet rate in electron-positron annihilation. (orig.)

  11. Color-Kinematic Duality in ABJM Theory Without Amplitude Relations

    CERN Document Server

    Sivaramakrishnan, Allic

    2014-01-01

    We explicitly show that the Bern-Carrasco-Johansson color-kinematic duality holds at tree level through at least eight points in Aharony-Bergman-Jafferis-Maldacena theory with gauge group SU(N) x SU(N). At six points we give the explicit form of numerators in terms of amplitudes, displaying the generalized gauge freedom that leads to amplitude relations. However, at eight points no amplitude relations follow from the duality, so the diagram numerators are fixed unique functions of partial amplitudes. We provide the explicit amplitude-numerator decomposition and the numerator relations for eight-point amplitudes.

  12. Spurious cross-frequency amplitude-amplitude coupling in nonstationary, nonlinear signals

    Science.gov (United States)

    Yeh, Chien-Hung; Lo, Men-Tzung; Hu, Kun

    2016-07-01

    Recent studies of brain activities show that cross-frequency coupling (CFC) plays an important role in memory and learning. Many measures have been proposed to investigate the CFC phenomenon, including the correlation between the amplitude envelopes of two brain waves at different frequencies - cross-frequency amplitude-amplitude coupling (AAC). In this short communication, we describe how nonstationary, nonlinear oscillatory signals may produce spurious cross-frequency AAC. Utilizing the empirical mode decomposition, we also propose a new method for assessment of AAC that can potentially reduce the effects of nonlinearity and nonstationarity and, thus, help to avoid the detection of artificial AACs. We compare the performances of this new method and the traditional Fourier-based AAC method. We also discuss the strategies to identify potential spurious AACs.

  13. The Prediction of Maximum Amplitudes of Solar Cycles and the Maximum Amplitude of Solar Cycle 24

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We present a brief review of predictions of solar cycle maximum ampli-tude with a lead time of 2 years or more. It is pointed out that a precise predictionof the maximum amplitude with such a lead-time is still an open question despiteprogress made since the 1960s. A method of prediction using statistical character-istics of solar cycles is developed: the solar cycles are divided into two groups, ahigh rising velocity (HRV) group and a low rising velocity (LRV) group, dependingon the rising velocity in the ascending phase for a given duration of the ascendingphase. The amplitude of Solar Cycle 24 can be predicted after the start of thecycle using the formula derived in this paper. Now, about 5 years before the startof the cycle, we can make a preliminary prediction of 83.2-119.4 for its maximumamplitude.

  14. Topics in Nonsupersymmetric Scattering Amplitudes in Gauge and Gravity Theories

    Science.gov (United States)

    Nohle, Joshua David

    vanishing perturbative matrix elements in exactly D = 4 dimensions. Similarly, evanescent fields do not propagate in D = 4; a three-form field is in this class, since it is dual to a cosmological-constant contribution. In this chapter, we show that evanescent operators and fields modify the leading ultraviolet divergence in pure gravity. To analyze the divergence, we compute the two-loop identical-helicity four-graviton amplitude and determine the coefficient of the associated (non-evanescent) R3 counterterm studied long ago by Goroff and Sagnotti. We compare two pairs of theories that are dual in D = 4: gravity coupled to nothing or to three-form matter, and gravity coupled to zero-form or to two-form matter. Duff and van Nieuwenhuizen showed that, curiously, the one-loop conformal anomaly---the coefficient of the Gauss-Bonnet operator---changes under p-form duality transformations. We concur, and also find that the leading R3 divergence changes under duality transformations. Nevertheless, in both cases the physical renormalized two-loop identical-helicity four-graviton amplitude can be chosen to respect duality. Its renormalization-scale dependence is unaltered. (Abstract shortened by UMI.).

  15. Automating QCD amplitudes with on-shell methods

    CERN Document Server

    Badger, Simon

    2016-01-01

    We review some of the modern approaches to scattering amplitude computations in QCD and their application to precision LHC phenomenology. We emphasise the usefulness of momentum twistor variables in parameterising general amplitudes.

  16. Evaluation of new spin foam vertex amplitudes

    International Nuclear Information System (INIS)

    The Christensen-Egan algorithm is extended and generalized to efficiently evaluate new spin foam vertex amplitudes proposed by Engle, Pereira and Rovelli and Freidel and Krasnov, with or without (factored) boundary states. A concrete pragmatic proposal is made for comparing the different models using uniform methodologies, applicable to the behavior of large spin asymptotics and of expectation values of specific semiclassical observables. The asymptotics of the new models exhibit non-oscillatory, power-law decay similar to that of the Barrett-Crane model, though with different exponents. Also, an analysis of the semiclassical wave packet propagation problem indicates that the Magliaro, Rovelli and Perini's conjecture of good semiclassical behavior of the new models does not hold for generic factored states, which neglect spin-spin correlations.

  17. Amplitude determinant coupled cluster with pairwise doubles

    CERN Document Server

    Zhao, Luning

    2016-01-01

    Recently developed pair coupled cluster doubles (pCCD) theory successfully reproduces doubly occupied configuration interaction (DOCI) with mean field cost. However, the projective nature of pCCD makes the method non-variational and thus hard to improve systematically. As a variational alternative, we explore the idea of coupled-cluster-like expansions based on amplitude determinants and develop a specific theory similar to pCCD based on determinants of pairwise doubles. The new ansatz admits a variational treatment through Monte Carlo methods while remaining size-consistent and, crucially, polynomial cost. In the dissociations of LiH, HF, H2O and N2, the method performs very similarly to pCCD and DOCI, suggesting that coupled-cluster-like ansatzes and variational evaluation may not be mutually exclusive.

  18. Topological amplitudes in heterotic superstring theory

    CERN Document Server

    Antoniadis, Ignatios; Narain, Kumar S; Taylor, T R

    1996-01-01

    We show that certain heterotic string amplitudes are given in terms of correlators of the twisted topological (2,0) SCFT, corresponding to the internal sector of the N=1 spacetime supersymmetric background. The genus g topological partition function F^g corresponds to a term in the effective action of the form W^{2g}, where W is the gauge or gravitational superfield. We study also recursion relations related to holomorphic anomalies, showing that, contrary to the type II case, they involve correlators of anti-chiral superfields. The corresponding terms in the effective action are of the form W^{2g}\\Pi^n, where \\Pi is a chiral superfield obtained by chiral projection of a general superfield. We observe that the structure of the recursion relations is that of N=1 spacetime supersymmetry Ward identity. We give also a solution of the tree level recursion relations and discuss orbifold examples.

  19. Experimental generation of amplitude squeezed vector beams

    CERN Document Server

    Chille, Vanessa; Semmler, Marion; Banzer, Peter; Aiello, Andrea; Leuchs, Gerd; Marquardt, Christoph

    2016-01-01

    We present an experimental method for the generation of amplitude squeezed high-order vector beams. The light is modified twice by a spatial light modulator such that the vector beam is created by means of a collinear interferometric technique. A major advantage of this approach is that it avoids systematic losses, which are detrimental as they cause decoherence in continuous-variable quantum systems. The utilisation of a spatial light modulator (SLM) gives the flexibility to switch between arbitrary mode orders. The conversion efficiency with our setup is only limited by the efficiency of the SLM. We show the experimental generation of Laguerre-Gauss (LG) modes with radial indices up to 1 and azimuthal indices up to 3 with complex polarization structures and a quantum noise reduction up to -0.9dB$\\pm$0.1dB. The corresponding polarization structures are studied in detail by measuring the spatial distribution of the Stokes parameters.

  20. Amplitude-Squared Squeezing in a Kerr-Nonlinear Blackbody

    Institute of Scientific and Technical Information of China (English)

    WU Zi-Xia; CHENG Ze; ZHANG Yan-Min; CHENG Zheng-Ze

    2007-01-01

    We find that amplitude-squared squeezing of the photon field is present in a new blackbody, namely, a Kerrnonlinear blackbody. The squeezing effect decreases as temperature T increases. The amount of the amplitude-squared squeezing in a Kerr-nonlinear blackbody is much larger than the corresponding squeezing in normal blackbody, and the degree of amplitude-squared squeezing is much larger than the amplitude squeezing for the same range of parameters in a Kerr-nonlinear blackbody.

  1. Correlations for reduced-width amplitudes in 49V

    International Nuclear Information System (INIS)

    Measurement of the relative sign of inelastic proton-channel amplitudes permits the determination of amplitude correlations. Data were obtained for 45 5/2+ resonances in 49V. Although the reduced widths in each channel followed a Porter-Thomas distribution, large amplitude correlations were observed. The results are compared with the reduced-width--amplitude distribution of Krieger and Porter. This is the first direct test of the Krieger-Porter distribution

  2. Chiral Closed strings: Four massless states scattering amplitude

    CERN Document Server

    Leite, Marcelo M

    2016-01-01

    We compute the scattering amplitudes of four massless states for chiral (closed) bosonic and type II superstrings using the Kawai-Lewellen-Tye ($KLT$) factorization method. The amplitude in the chiral bosonic case is identical to a field theory amplitude corresponding to the spin-$2$ tachyon, massless gravitational sector and massive spin-2 tardyon states of the spectrum. Chiral type II superstrings amplitude only possess poles associated with the massless gravitational sector. We briefly discuss the extension of the calculation to heterotic superstrings.

  3. Rho-0 Meson Helicity Amplitude Ratios at HERMES

    CERN Document Server

    Murray, Morgan

    2012-01-01

    The study of {\\rho}0 meson helicity amplitude ratios at HERMES shows that the amplitude hierarchy expected from pQCD is confirmed. The contribution of Unnatural Parity Exchange in the production of {\\rho}0 mesons is significant at HERMES kinematics and there is a large phase-difference in the leading F11 and F01 amplitudes. The kinematic dependences of the amplitude ratios only sometimes follow theory-based expectations.

  4. Closed String Amplitudes in Open String Field Theory

    OpenAIRE

    Takahashi, Tomohiko; Zeze, Syoji

    2003-01-01

    We investigate gauge invariant operators corresponding to on-shell closed string states in open string field theory. Using both oscillator representation and conformal mapping techniques, we calculate a two closed string tachyon amplitude that connects two gauge invariant operators by an open string propagator.We find that this amplitude is in a complete agreement with the usual disc amplitude.

  5. Accurate Period Approximation for Any Simple Pendulum Amplitude

    Institute of Scientific and Technical Information of China (English)

    XUE De-Sheng; ZHOU Zhao; GAO Mei-Zhen

    2012-01-01

    Accurate approximate analytical formulae of the pendulum period composed of a few elementary functions for any amplitude are constructed.Based on an approximation of the elliptic integral,two new logarithmic formulae for large amplitude close to 180° are obtained.Considering the trigonometric function modulation results from the dependence of relative error on the amplitude,we realize accurate approximation period expressions for any amplitude between 0 and 180°.A relative error less than 0.02% is achieved for any amplitude.This kind of modulation is also effective for other large-amplitude logarithmic approximation expressions.%Accurate approximate analytical formulae of the pendulum period composed of a few elementary functions for any amplitude are constructed. Based on an approximation of the elliptic integral, two new logarithmic formulae for large amplitude close to 180° are obtained. Considering the trigonometric function modulation results from the dependence of relative error on the amplitude, we realize accurate approximation period expressions for any amplitude between 0 and 180°. A relative error less than 0.02% is achieved for any amplitude. This kind of modulation is also effective for other large-amplitude logarithmic approximation expressions.

  6. MHV Vertices And Tree Amplitudes In Gauge Theory

    OpenAIRE

    Cachazo, Freddy; Svrcek, Peter; Witten, Edward

    2004-01-01

    As an alternative to the usual Feynman graphs, tree amplitudes in Yang-Mills theory can be constructed from tree graphs in which the vertices are tree level MHV scattering amplitudes, continued off shell in a particular fashion. The formalism leads to new and relatively simple formulas for many amplitudes, and can be heuristically derived from twistor space.

  7. Computations of superstring amplitudes in pure spinor formalism via Cadabra

    CERN Document Server

    Suna, Ke-Sheng; Sun, Fei; Zhang, Hai-Bin

    2016-01-01

    The discovery of pure spinor formalism makes the computation of superstring s- cattering amplitudes possible. In this paper, we will illustrate how computer algebra system Cadabra is used in computing the supersymmetric amplitude in pure spinor formalism and provide the source code that computes the tree-level massless 5-gluon amplitude.

  8. Scattering Amplitudes Interpolating Between Instant Form and Front Form of Relativistic Dynamics

    International Nuclear Information System (INIS)

    Among the three forms of relativistic Hamiltonian dynamics proposed by Dirac in 1949, the front form has the largest number of kinematic generators. This distinction provides useful consequences in the analysis of physical observables in hadron physics. Using the method of interpolation between the instant form and the front form, we introduce the interpolating scattering amplitude that links the corresponding time-ordered amplitudes between the two forms of dynamics and provide the physical meaning of the kinematic transformations as they allow the invariance of each individual time-ordered amplitude for an arbitrary interpolation angle. We discuss the rationale for using front form dynamics, nowadays known as light-front dynamics (LFD), and present a few explicit examples of hadron phenomenology that LFD uniquely can offer from first-principles quantum chromodynamics. In particular, model-independent constraints are provided for the analyses of deuteron form factors and the N Δ transition form factors at large momentum transfer squared Q2. The swap of helicity amplitudes between the collinear and non-collinear kinematics is also discussed in deeply virtual Compton scattering. (author)

  9. π- and K-meson Bethe-Salpeter amplitudes

    International Nuclear Information System (INIS)

    Independent of assumptions about the form of the quark-quark scattering kernel K, we derive the explicit relation between the flavor-nonsinglet pseudoscalar-meson Bethe-Salpeter amplitude ΓH and the dressed-quark propagator in the chiral limit. In addition to a term proportional to γ5, ΓH necessarily contains qualitatively and quantitatively important terms proportional to γ5γ·P and γ5γ·kk·P, where P is the total momentum of the bound state. The axial-vector vertex contains a bound state pole described by ΓH, whose residue is the leptonic decay constant for the bound state. The pseudoscalar vertex also contains such a bound state pole and, in the chiral limit, the residue of this pole is related to the vacuum quark condensate. The axial-vector Ward-Takahashi identity relates these pole residues, with the Gell-Mann endash Oakes endash Renner relation a corollary of this identity. The dominant ultraviolet asymptotic behavior of the scalar functions in the meson Bethe-Salpeter amplitude is fully determined by the behavior of the chiral limit quark mass function, and is characteristic of the QCD renormalization group. The rainbow-ladder Ansatz for K, with a simple model for the dressed-quark-quark interaction, is used to illustrate and elucidate these general results. The model preserves the one-loop renormalization group structure of QCD. The numerical studies also provide a means of exploring procedures for solving the Bethe-Salpeter equation without a three-dimensional reduction. copyright 1997 The American Physical Society

  10. Phase and amplitude detection system for the Stanford Linear Accelerator

    International Nuclear Information System (INIS)

    A computer controlled phase and amplitude detection system to measure and stabilize the rf power sources in the Stanford Linear Accelerator is described. This system measures the instantaneous phase and amplitude of a 1 microsecond 2856 MHz rf pulse and will be used for phase feedback control and for amplitude and phase jitter detection. This paper discusses the measurement system performance requirements for the operation of the Stanford Linear Collider, and the design and implementation of the phase and amplitude detection system. The fundamental software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system

  11. Leading Wave Amplitude of a Tsunami

    Science.gov (United States)

    Kanoglu, U.

    2015-12-01

    Okal and Synolakis (EGU General Assembly 2015, Geophysical Research Abstracts-Vol. 17-7622) recently discussed that why the maximum amplitude of a tsunami might not occur for the first wave. Okal and Synolakis list observations from 2011 Japan tsunami, which reached to Papeete, Tahiti with a fourth wave being largest and 72 min later after the first wave; 1960 Chilean tsunami reached Hilo, Hawaii with a maximum wave arriving 1 hour later with a height of 5m, first wave being only 1.2m. Largest later waves is a problem not only for local authorities both in terms of warning to the public and rescue efforts but also mislead the public thinking that it is safe to return shoreline or evacuated site after arrival of the first wave. Okal and Synolakis considered Hammack's (1972, Ph.D. Dissertation, Calif. Inst. Tech., 261 pp., Pasadena) linear dispersive analytical solution with a tsunami generation through an uplifting of a circular plug on the ocean floor. They performed parametric study for the radius of the plug and the depth of the ocean since these are the independent scaling lengths in the problem. They identified transition distance, as the second wave being larger, regarding the parameters of the problem. Here, we extend their analysis to an initial wave field with a finite crest length and, in addition, to a most common tsunami initial wave form of N-wave as presented by Tadepalli and Synolakis (1994, Proc. R. Soc. A: Math. Phys. Eng. Sci., 445, 99-112). We compare our results with non-dispersive linear shallow water wave results as presented by Kanoglu et al. (2013, Proc. R. Soc. A: Math. Phys. Eng. Sci., 469, 20130015), investigating focusing feature. We discuss the results both in terms of leading wave amplitude and tsunami focusing. Acknowledgment: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 603839 (Project ASTARTE - Assessment, Strategy and Risk

  12. Writing CFT correlation functions as AdS scattering amplitudes

    CERN Document Server

    Penedones, Joao

    2010-01-01

    We explore the Mellin representation of conformal correlation functions recently proposed by Mack. Examples in the AdS/CFT context reinforce the analogy between Mellin amplitudes and scattering amplitudes. We conjecture a simple formula relating the bulk scattering amplitudes to the asymptotic behavior of Mellin amplitudes and show that previous results on the flat space limit of AdS follow from our new formula. We find that the Mellin amplitudes are particularly useful in the case of conformal gauge theories in the planar limit. In this case, the four point Mellin amplitudes are meromorphic functions whose poles and their residues are entirely determined by two and three point functions of single-trace operators. This makes the Mellin amplitudes the ideal objects to attempt the conformal bootstrap program in higher dimensions.

  13. Gauge and Gravity Amplitudes from Trees to Loops

    DEFF Research Database (Denmark)

    Huang, Rijun

    relates Yang-Mills amplitudes to gravity amplitudes. Based on many known works about KLT and super-KLT relations, we provide a complete map between super-gravity amplitudes and super-Yang-Mills amplitudes for any number of supersymmetry that allowed in 4-dimensional theory. We also provide an explanation...... for vanishing identities of Yang-Mills amplitudes as violation of linear symmetry groups based on KLT relation argument. The second subject is integrand reduction of multi-loop amplitude. The recent methods based on computational algebraic geometry make it possible to systematically study multi-loop amplitude...... with generalized unitarity cut. Using Grobner basis and primary decomposition, we thoroughly study integrand basis and solution space of equations from maximal unitarity cut for all 4-dimensional two-loop topologies. Algorithm and examples of this computation are illustrated in this thesis. We also study...

  14. A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes

    CERN Document Server

    Ellis, Richard Keith; Kunszt, Z

    2008-01-01

    Recent progress in unitarity techniques for one-loop scattering amplitudes makes a numerical implementation of this method possible. We present a 4-dimensional unitarity method for calculating the cut-constructible part of amplitudes and implement the method in a numerical procedure. Our technique can be applied to any one-loop scattering amplitude and offers the possibility that one-loop calculations can be performed in an automatic fashion, as tree-level amplitudes are currently done. Instead of individual Feynman diagrams, the ingredients for our one-loop evaluation are tree-level amplitudes, which are often already known. To study the practicality of this method we evaluate the cut-constructible part of the 4, 5 and 6 gluon one-loop amplitudes numerically, using the analytically known 4, 5 and 6 gluon tree-level amplitudes. Comparisons with analytic answers are performed to ascertain the numerical accuracy of the method.

  15. Control of dynamical instability in semiconductor quantum nanostructures diode lasers: role of phase-amplitude coupling

    CERN Document Server

    Kumar, Pramod

    2013-01-01

    We numerically investigate the complex nonlinear dynamics for two independent coupled lasers systems consisting of (i) mutually delay-coupled edge emitting diode lasers and (ii) injection-locked quantum nano-structures lasers. A comparative study in dependence on the dynamical role of alpha parameter, that determines phase-amplitude coupling of the optical field, in both the cases is probed. The variation of alpha leads to conspicuous changes of the dynamics of both the systems, which are characterized and investigated as a function of optical injection strength for the fixed coupled-cavity delay time. Our analysis is based on the observation that the cross-correlation and bifurcation measures unveil the signature of enhancement of amplitude-death islands in which the coupled lasers mutually stay in stable phase-locked states. In addition, we provide a qualitative understanding of the physical mechanisms underlying the observed dynamical behavior and its dependence on alpha. The amplitude death and existence ...

  16. Dipole modes with depressed amplitudes in red giants are mixed modes

    CERN Document Server

    Mosser, B; Pincon, C; Takata, M; Vrard, M; Barban, C; Goupil, M-J; Kallinger, T; Samadi, R

    2016-01-01

    Seismic observations have shown that a number of evolved stars exhibit low-amplitude dipole modes, which are referred to as depressed modes. Recently, these low amplitudes have been attributed to the presence of a strong magnetic field in the stellar core of those stars. We intend to study the properties of depressed modes in evolved stars, which is a necessary condition before concluding on the physical nature of the mechanism responsible for the reduction of the dipole mode amplitudes. We perform a thorough characterization of the global seismic parameters of depressed dipole modes and show that these modes have a mixed character. The observation of stars showing dipole mixed modes that are depressed is especially useful for deriving model-independent conclusions on the dipole mode damping. Observations prove that depressed dipole modes in red giants are not pure pressure modes but mixed modes. This result invalidates the hypothesis that the depressed dipole modes result from the suppression of the oscillat...

  17. Pitfalls of Path Integrals: Amplitudes for Spacetime Regions and the Quantum Zeno Effect

    CERN Document Server

    Halliwell, J J

    2012-01-01

    Path integrals appear to offer natural and intuitively appealing methods for defining quantum-mechanical amplitudes for questions involving spacetime regions. For example, the amplitude for entering a spatial region during a given time interval is typically defined by summing over all paths between given initial and final points but restricting them to pass through the region at any time. We argue that there is, however, under very general conditions, a significant complication in such constructions. This is the fact that the concrete implementation of the restrictions on paths over an interval of time corresponds, in an operator language, to sharp monitoring at every moment of time in the given time interval. Such processes suffer from the quantum Zeno effect -- the continual monitoring of a quantum system in a Hilbert subspace prevents its state from leaving that subspace. As a consequence, path integral amplitudes defined in this seemingly obvious way have physically and intuitively unreasonable properties...

  18. Parton distribution amplitudes of light vector mesons

    CERN Document Server

    Gao, Fei; Liu, Yu-Xin; Roberts, Craig D; Schmidt, Sebastian M

    2014-01-01

    A rainbow-ladder truncation of QCD's Dyson-Schwinger equations is used to calculate rho- and phi-meson valence-quark (twist-two parton) distribution amplitudes (PDAs) via a light-front projection of their Bethe-Salpeter wave functions, which possess S- and D-wave components of comparable size in the meson rest frame. All computed PDAs are broad concave functions, whose dilation with respect to the asymptotic distribution is an expression of dynamical chiral symmetry breaking. The PDAs can be used to define an ordering of valence-quark light-front spatial-extent within mesons: this size is smallest within the pion and increases through the perp-polarisation to the parallel-polarisation of the vector mesons; effects associated with the breaking of SU(3)-flavour symmetry are significantly smaller than those associated with altering the polarisation of vector mesons. Notably, the predicted pointwise behaviour of the rho-meson PDAs is in quantitative agreement with that inferred recently via an analysis of diffrac...

  19. A generalized fidelity amplitude for open systems.

    Science.gov (United States)

    Gorin, T; Moreno, H J; Seligman, T H

    2016-06-13

    We consider a central system which is coupled via dephasing to an open system, i.e. an intermediate system which in turn is coupled to another environment. Considering the intermediate and far environment as one composite system, the coherences in the central system are given in the form of fidelity amplitudes for a certain perturbed echo dynamics in the composite environment. On the basis of the Born-Markov approximation, we derive a master equation for the reduction of that dynamics to the intermediate system alone. In distinction to an earlier paper (Moreno et al 2015 Phys. Rev. A 92, 030104. (doi:10.1103/PhysRevA.92.030104)), where we discussed the stabilizing effect of the far environment on the decoherence in the central system, we focus here on the possibility of using the measurable coherences in the central system for probing the open quantum dynamics in the intermediate system. We illustrate our results for the case of chaotic dynamics in the near environment, where we compare random matrix simulations with our analytical result. PMID:27140969

  20. Open string topological amplitudes and gaugino masses

    CERN Document Server

    Antoniadis, Ignatios; Taylor, T R

    2005-01-01

    We show that the genus zero topological partition function $F^{(0,h)}$, on a world-sheet with $h$ boundaries, computes the moduli-dependent couplings of the higher derivative F-terms $(\\Tr W^2)^{h-1}$, where $W$ is the gauge N=1 chiral superfield. By string duality, these terms are also related to heterotic topological amplitudes studied in the past, with the topological twist applied only in the left-moving supersymmetric sector of the internal $N=(2,0)$ superconformal field theory. The holomorphic anomaly of these couplings relates them to terms of the form $\\Pi^n({\\rm Tr}W^2)^{h-2}$, where $\\Pi$'s represent chiral projections of non-holomorphic functions of chiral superfields. An important property of these couplings is that they violate R-symmetry for $h\\ge 3$. As a result, once supersymmetry is broken by D-term expectation values, $(\\Tr W^2)^2$ generates gaugino masses that can be hierarchically smaller than the scalar masses, behaving as $m_{1/2}\\sim m_0^4$ in string units. Similarly, $\\Pi{\\rm Tr}W^2$ g...

  1. Laryngeal-level amplitude modulation in vibrato.

    Science.gov (United States)

    Dromey, Christopher; Reese, Lorie; Hopkin, J Arden

    2009-03-01

    The goal of this investigation was to test a new methodology for measuring amplitude modulation (AM) at the level of the vocal folds during vibrato in trained singers, because previous research has suggested that AM arises in large part as an acoustic epiphenomenon through an interaction of the harmonics in the laryngeal source with the resonances of the vocal tract as the fundamental frequency oscillates. A within-subjects model was used to compare vocal activity across three pitch and three loudness conditions. Seventeen female singers with a range of training and experience were recorded with a microphone and an electroglottograph (EGG). Fluctuations in the ratio of closing to opening peaks in the first derivative of the EGG signal were used as an index of laryngeal-level AM. Evidence of laryngeal AM was found to a greater or lesser extent in all the singers, and its extent was not related to the degree of training. Across singers and pitch conditions, it was more prominent at lower intensities. The differentiated EGG signal lends itself to the measurement of AM at the level of the larynx, and the extent of the modulation appears more related to the level of vocal effort than to individual singer characteristics. PMID:17658720

  2. A generalized fidelity amplitude for open systems.

    Science.gov (United States)

    Gorin, T; Moreno, H J; Seligman, T H

    2016-06-13

    We consider a central system which is coupled via dephasing to an open system, i.e. an intermediate system which in turn is coupled to another environment. Considering the intermediate and far environment as one composite system, the coherences in the central system are given in the form of fidelity amplitudes for a certain perturbed echo dynamics in the composite environment. On the basis of the Born-Markov approximation, we derive a master equation for the reduction of that dynamics to the intermediate system alone. In distinction to an earlier paper (Moreno et al 2015 Phys. Rev. A 92, 030104. (doi:10.1103/PhysRevA.92.030104)), where we discussed the stabilizing effect of the far environment on the decoherence in the central system, we focus here on the possibility of using the measurable coherences in the central system for probing the open quantum dynamics in the intermediate system. We illustrate our results for the case of chaotic dynamics in the near environment, where we compare random matrix simulations with our analytical result.

  3. A new polarization amplitude bias reduction method

    Science.gov (United States)

    Vidal, Matias; Leahy, J. P.; Dickinson, C.

    2016-09-01

    Polarization amplitude estimation is affected by a positive noise bias, particularly important in regions with low signal-to-noise ratio (SNR). We present a new approach to correct for this bias in the case there is additional information about the polarization angle. We develop the `known-angle estimator' that works in the special case when there is an independent and high SNR (≳ 2σ) measurement of the polarization angle. It is derived for the general case where the uncertainties in the Q, U Stokes parameters are not symmetric. This estimator completely corrects for the polarization bias if the polarization angle is perfectly known. In the realistic case, where the angle template has uncertainties, a small residual bias remains, but that is shown to be much smaller that the one left by other classical estimators. We also test our method with more realistic data, using the noise properties of the three lower frequency maps of Wilkinson Microwave Anisotropy Probe. In this case, the known-angle estimator also produces better results than methods that do not include the angle information. This estimator is therefore useful in the case where the polarization angle is expected to be constant over different data sets with different SNR.

  4. The pulsed amplitude unit for the SLC

    International Nuclear Information System (INIS)

    There is a recurring requirement in the SLC for the control of devices such as magnets, phase shifters, and attenuators on a beam-by-beam basis. The Pulsed Amplitude Unit (PAU) is a single width CAMAC module developed for this purpose. It provides digitally programmed analog output voltages on a beam-by-beam basis. Up to 32 preprogrammed values of output voltage are available from the single analog output of the module, and any of these values can be associated with any of the 256 possible SLC beam definitions. A 12-bit Analog-to-Digital Converter (ADC) digitizes an analog input signal at the appropriate beam time and stores it in a buffer memory. This feature is normally used to monitor the response of the device being controlled by the PAU at each beam time. Initial application of the PAU is a part of the system that controls the output of Klystrons in the SLC. The PAU combines several different functions in a single module. In order to accommodate these functions in a single width CAMAC module, field programmed logic is used extensively. Field Programmable Logic Arrays, Programmed Array Logic, and a Field Programmable Logic Sequencer are employed

  5. Gearbox Vibration Signal Amplitude and Frequency Modulation

    Directory of Open Access Journals (Sweden)

    Fakher Chaari

    2012-01-01

    Full Text Available Gearboxes usually run under fluctuating load conditions during service, however most of papers available in the literature describe models of gearboxes under stationary load conditions. Main task of published papers is fault modeling for their detection. Considering real situation from industry, the assumption of stationarity of load conditions cannot be longer kept. Vibration signals issued from monitoring in maintenance operations differ from mentioned models (due to load non-stationarity and may be difficult to analyze which lead to erroneous diagnosis of the system. The objective of this paper is to study the influence of time varying load conditions on a gearbox dynamic behavior. To investigate this, a simple spur gear system without defects is modeled. It is subjected to a time varying load. The speed-torque characteristic of the driving motor is considered. The load variation induces speed variation, which causes a variation in the gearmesh stiffness period. Computer simulation shows deep amplitude modulations with sidebands that don't differ from those obtained when there is a defective tooth. In order to put in evidence the time varying load effects, Short Time Fourier Transform and then Smoothed Wigner-Ville distribution are used. Results show that the last one is well suited for the studied case.

  6. Transversity Amplitudes in Hypercharge Exchange Processes; Amplitudes de transversidad en procesos de intercambio de hipercarga

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar Benitez de Lugo, M.

    1979-07-01

    In this work we present several techniques developed for the extraction of the. Transversity amplitudes governing quasi two-body meson baryon reactions with hypercharge exchange. We review the methods used In processes having a pure spin configuration, as well as the more relevant results obtained with data from K{sup p} and Tp interactions at intermediate energies. The predictions of the additive quark model and the ones following from exchange degeneracy and etoxicity are discussed. We present a formalism for amplitude analysis developed for reactions with mixed spin configurations and discuss the methods of parametric estimation of the moduli and phases of.the amplitudes, as well as the various tests employed to check the goodness of the fits. The calculation of the generalized joint density matrices is given and we propose a method based on the generalization of the idea of multipole moments, which allows to investigate the structure of the decay angular correlations and establishes the quality of the fits and the validity of the simplifying assumptions currently used in this type of studies. (Author) 43 refs.

  7. Amplitude-Nth-power squeezing of PB phase coherent states

    Institute of Scientific and Technical Information of China (English)

    马志民; 马爱群; 陈国恒; 刘树田; 冯立峰

    2004-01-01

    PB Phase Coherent States are very important quantum states in quantum optics. In order to investigate the amplitude- Nth -power squeezing of PB Phase Coherent States, we introduce the algebraic properties of the PB phase operator and the PB Phase Coherent States which are constructed by PB phase theory. We applied amplitude- Nth -power squeezing theory to define the Amplitude- Nth -Power Squeezing of PB Phase Coherent States and investigate the characteristic of the amplitude- Nth -power squeezing of PB Phase Coherent States.Phase Coherent State), the results show that when Z is a real number there only exists amplitude- Nth -power squeezing of X component; when Z is a complex number, there exists amplitude- Nth -power squeezing ofX component and Y component; when Z is a pure imaginary number, if N is odd, then there does not exist amplitudeNth -power squeezing of X component, but there exists amplitude- Nth -power squeezing of Ycomponent and ifN is even, then there exists amplitude-Nth -power squeezing of X component, but there does not exist amplitudeNth -power squeezing of Y component.

  8. Scattering amplitudes in four- and six-dimensional gauge theories

    International Nuclear Information System (INIS)

    We study scattering amplitudes in quantum chromodynamics (QCD), N=4 super Yang-Mills (SYM) theory and the six-dimensional N=(1,1) SYM theory, focusing on the symmetries of and relations between the tree-level scattering amplitudes in these three gauge theories. We derive the tree level and one-loop color decomposition of an arbitrary QCD amplitude into primitive amplitudes. Furthermore, we derive identities spanning the null space among the primitive amplitudes. We prove that every color ordered tree amplitude of massless QCD can be obtained from gluon-gluino amplitudes of N=4 SYM theory. Furthermore, we derive analytical formulae for all gluon-gluino amplitudes relevant for QCD. We compare the numerical efficiency and accuracy of evaluating these closed analytic formulae for color ordered QCD tree amplitudes to a numerically efficient implementation of the Berends-Giele recursion. We derive the symmetries of massive tree amplitudes on the coulomb branch of N=4 SYM theory, which in turn can be obtained from N=(1,1) SYM theory by dimensional reduction. Furthermore, we investigate the tree amplitudes of N=(1, 1) SYM theory and explain how analytical formulae can be obtained from a numerical implementation of the supersymmetric BCFW recursion relation and investigate a potential uplift of the massless tree amplitudes of N=4 SYM theory. Finally we study an alternative to dimensional regularization of N=4 SYM theory. The infrared divergences are regulated by masses obtained from a Higgs mechanism. The corresponding string theory set-up suggests that the amplitudes have an exact dual conformal symmetry. We confirm this expectation and illustrate the calculational advantages of the massive regulator by explicit calculations.

  9. Virtual Color-Kinematics Duality: 6-pt 1-Loop MHV Amplitudes

    CERN Document Server

    Yuan, Ellis Ye

    2012-01-01

    We study 1-loop MHV amplitudes in N=4 super Yang-Mills theory and in N=8 supergravity. For Yang-Mills we find that the simple form for the full amplitude presented by Del Duca, Dixon and Maltoni naturally leads to one that has physical residues on all compact contours. After expanding the simple form in terms of standard scalar integrals, we introduce redundancies under certain symmetry considerations to impose the color-kinematics duality of Bern, Carrasco and Johansson (BCJ). For five particles we directly find the results of Carrasco and Johansson as well as a new compact form for the supergravity amplitude. For six particles we find that all kinematic dual Jacobi identities are encapsulated in a single functional equation relating the expansion coefficients. By the BCJ double-copy construction we obtain a formula for the corresponding N=8 supergravity amplitude. Quite surprisingly, all physical information becomes independent of the expansion coefficients modulo the functional equation. In other words, th...

  10. Topological Field Theory Amplitudes for $A_{N-1}$ Fibration

    CERN Document Server

    Iqbal, Amer; Qureshi, Babar A; Shabbir, Khurram; Shehper, Muhammad A

    2015-01-01

    We study the partition function ${\\cal N}=1$ 5D $U(N)$ gauge theory with $g$ adjoint hypermultiplets and show that for massless adjoint hypermultiplets it is equal to the partition function of a two dimensional topological field on a genus $g$ Riemann surface. We describe the topological field theory by its amplitudes associated with cap, propagator and pair of pants. These basic amplitudes are open topological string amplitudes associated with certain Calabi-Yau threefolds in the presence of Lagrangian branes.

  11. Laser beam complex amplitude measurement by phase diversity

    OpenAIRE

    Védrenne, Nicolas; Mugnier, Laurent M.; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-01-01

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named CAMELOT for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken ...

  12. Amplitudes and Ultraviolet Behavior of N = 8 Supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Zvi; /UCLA; Carrasco, John Joseph; /Stanford U., Phys. Dept.; Dixon, Lance J.; /SLAC /CERN; Johansson, Henrik; /Saclay, SPhT; Roiban, Radu; /Penn State U.

    2011-05-20

    In this contribution we describe computational tools that permit the evaluation of multi-loop scattering amplitudes in N = 8 supergravity, in terms of amplitudes in N = 4 super-Yang-Mills theory. We also discuss the remarkable ultraviolet behavior of N = 8 supergravity, which follows from these amplitudes, and is as good as that of N = 4 super-Yang-Mills theory through at least four loops.

  13. Measuring the phase of the scattering amplitude with vortex beams

    OpenAIRE

    Ivanov, I. P.

    2012-01-01

    We show that colliding vortex beams instead of (approximate) plane waves can lead to a direct measurement of how the overall phase of the plane wave scattering amplitude changes with the scattering angle. Since vortex beams are coherent superpositions of plane waves with different momenta, their scattering amplitude receives contributions from plane wave amplitudes with distinct kinematics. These contributions interfere, leading to the measurement of their phase difference. Although interfere...

  14. Bulk amplitude and degree of divergence in 4d spin foams

    CERN Document Server

    Chen, Lin-Qing

    2016-01-01

    We study the 4-d holomorphic Spin Foam amplitude on arbitrary connected 2-complexes and degrees of divergence. With recently developed tools and truncation scheme, we derive a formula for a certain class of graphs, which allows us to write down the value of bulk amplitudes simply based on graph properties. We then generalize the result to arbitrary connected 2-complexes and extract a simple expression for the degree of divergence only in terms of combinatorial properties and topological invariants. The distinct behaviors of the model in different regions of parameter space signal phase transitions. In the regime which is of physical interest for recovering diffeomorphsim symmetry in the continuum limit, the most divergent configurations are melonic graphs. We end with a discussion of physical implications.

  15. Advanced bridge (interferometric) phase and amplitude noise measurements

    CERN Document Server

    Rubiola, E; Rubiola, Enrico; Giordano, Vincent

    2005-01-01

    The measurement of the close-to-the-carrier noise of rf and microwave devices is a relevant issue in time and frequency metrology and in some fields of electronics, physics and optics. While phase noise is the main concern, amplitude noise is often of interest. The highest sensitivity is achieved with the bridge (interferometric) method, which consists of the amplification and synchronous detection of the noise sidebands after suppressing the carrier by vector subtraction of an equal signal. A substantial progress in understanding the flicker noise mechanism of the interferometer results in new schemes that improve by 20--30 dB the sensitivity at low Fourier frequencies. The article provides the complete theory and detailed design criteria, and reports on the implementation of a prototype. In real-time measurements, a background noise of -175 -180 dBrad^2/Hz has been obtained at f=1 Hz off the 100 MHz carrier. Exploiting correlation and averaging in similar conditions, the sensitivity exceeds -185 dBrad^2/Hz ...

  16. Transition to amplitude death in scale-free networks

    Energy Technology Data Exchange (ETDEWEB)

    Liu Weiqing; Lai, C.-H. [Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Wang Xingang [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Guan Shuguang [Temasek Laboratories, National University of Singapore, Singapore 117508 (Singapore)], E-mail: wangxg@zju.edu.cn

    2009-09-15

    Transition to amplitude death in scale-free networks of nonlinear oscillators is investigated both numerically and analytically. It is found that, as the coupling strength increases, the network will undergo three different stages in approaching the state of complete amplitude death (CAD). In the first stage of the transition, the amplitudes of the oscillators present a 'stair-like' arrangement, i.e. the squared amplitude of an oscillator linearly decreases with the number of links that the oscillator receives (node degree). In this stage, as the coupling strength increases, the amplitude stairs are eliminated hierarchically by descending order of the node degree. At the end of the first stage, except for a few synchronized oscillators, all other oscillators in the network have small amplitudes. Then, in the second stage of the transition, the synchronous clusters formed in the first stage gradually disappear and, as a consequence, the number of small-amplitude oscillators is increased. At the end of the second stage, almost all oscillators in the network have small but finite amplitudes. Finally, in the third stage of the transition, without the support of the synchronous clusters, the amplitudes of the oscillators are quickly decreased, eventually leading to the state of CAD.

  17. Tree-level amplitudes in the nonlinear sigma model

    Science.gov (United States)

    Kampf, Karol; Novotný, Jirí; Trnka, Jaroslav

    2013-05-01

    We study in detail the general structure and further properties of the tree-level amplitudes in the SU( N) nonlinear sigma model. We construct the flavor-ordered Feynman rules for various parameterizations of the SU( N) fields U ( x), write down the Berends-Giele relations for the semi-on-shell currents and discuss their efficiency for the amplitude calculation in comparison with those of renormalizable theories. We also present an explicit form of the partial amplitudes up to ten external particles. It is well known that the standard BCFW recursive relations cannot be used for reconstruction of the the on-shell amplitudes of effective theories like the SU( N) nonlinear sigma model because of the inappropriate behavior of the deformed on-shell amplitudes at infinity. We discuss possible generalization of the BCFW approach introducing "BCFW formula with subtractions" and with help of Berends-Giele relations we prove particular scaling properties of the semi-on-shell amplitudes of the SU( N) nonlinear sigma model under specific shifts of the external momenta. These results allow us to define alternative deformation of the semi-on-shell amplitudes and derive BCFW-like recursion relations. These provide a systematic and effective tool for calculation of Goldstone bosons scattering amplitudes and it also shows the possible applicability of on-shell methods to effective field theories. We also use these BCFW-like relations for the investigation of the Adler zeroes and double soft limit of the semi-on-shell amplitudes.

  18. New Relations for Einstein-Yang-Mills Amplitudes

    CERN Document Server

    Stieberger, Stephan

    2016-01-01

    We obtain new relations between Einstein-Yang-Mills (EYM) amplitudes involving N gauge bosons plus a single graviton and pure Yang-Mills amplitudes involving N gauge bosons plus one additional vector boson inserted in a way typical for a gauge boson of a "spectator" group commuting with the group associated to original N gauge bosons. We show that such EYM amplitudes satisfy U(1) decoupling relations similar to Kleiss-Kuijf relations for Yang-Mills amplitudes. We consider a D-brane embedding of EYM amplitudes in the framework of disk amplitudes involving open and closed strings. A new set of monodromy relations is derived for mixed open-closed amplitudes with one closed string inserted on the disk world-sheet and a number of open strings at the boundary. These relations allow expressing the latter in terms of pure open string amplitudes and, in the field-theory limit, they yield the U(1) decoupling relations for EYM amplitudes.

  19. Photometric amplitudes and phases of B-type main sequence pulsators: sources of inaccuracy

    CERN Document Server

    Szewczuk, Wojciech

    2010-01-01

    We discuss all possible sources of uncertainties in theoretical values of the photometric amplitudes and phases of B-type main sequence pulsators. These observables are of particular importance because they contain information about the mode geometry as well as about stellar physics. Here, we study effects of various parameters coming both from theory of linear nonadiabatic oscillations and from models of stellar atmospheres. In particular, we show effects of chemical composition, opacities and, for the first time, effects of the NLTE atmospheres.

  20. Source-Space Cross-Frequency Amplitude-Amplitude Coupling in Tinnitus

    Directory of Open Access Journals (Sweden)

    Oliver Zobay

    2015-01-01

    Full Text Available The thalamocortical dysrhythmia (TCD model has been influential in the development of theoretical explanations for the neurological mechanisms of tinnitus. It asserts that thalamocortical oscillations lock a region in the auditory cortex into an ectopic slow-wave theta rhythm (4–8 Hz. The cortical area surrounding this region is hypothesized to generate abnormal gamma (>30 Hz oscillations (“edge effect” giving rise to the tinnitus percept. Consequently, the model predicts enhanced cross-frequency coherence in a broad range between theta and gamma. In this magnetoencephalography study involving tinnitus and control cohorts, we investigated this prediction. Using beamforming, cross-frequency amplitude-amplitude coupling (AAC was computed within the auditory cortices for frequencies (f1,f2 between 2 and 80 Hz. We find the AAC signal to decompose into two distinct components at low (f1,f230 Hz frequencies, respectively. Studying the correlation of AAC with several key covariates (age, hearing level (HL, tinnitus handicap and duration, and HL at tinnitus frequency, we observe a statistically significant association between age and low-frequency AAC. Contrary to the TCD predictions, however, we do not find any indication of statistical differences in AAC between tinnitus and controls and thus no evidence for the predicted enhancement of cross-frequency coupling in tinnitus.

  1. Infrared Limit of Gluon Amplitudes at Strong Coupling

    OpenAIRE

    Buchbinder, Evgeny I.

    2007-01-01

    In this note, we propose that the infrared structure of gluon amplitudes at strong coupling can be fully extracted from a local consideration near cusps. This is consistent with field theory and correctly reproduces the infrared divergences of the four-gluon amplitude at strong coupling calculated recently by Alday and Maldacena.

  2. n-point Single-Minus Gravity Amplitudes

    CERN Document Server

    Alston, Sam D; Perkins, Warren B

    2015-01-01

    We construct an expression for the n-point one-loop graviton scattering amplitude with a single negative helicity external leg using an augmented recursion technique. We analyse the soft-limits of these amplitudes and demonstrate that they have soft behaviour beyond the conjectured universal behaviour.

  3. Gauge Theory Amplitudes In Twistor Space And Holomorphic Anomaly

    OpenAIRE

    Cachazo, Freddy; Svrcek, Peter; Witten, Edward

    2004-01-01

    We show that, in analyzing differential equations obeyed by one-loop gauge theory amplitudes, one must take into account a certain holomorphic anomaly. When this is done, the results are consistent with the simplest twistor-space picture of the available one-loop amplitudes.

  4. Four-Point Amplitude from Open Superstring Field Theory

    CERN Document Server

    Berkovits, N; Berkovits, Nathan; Echevarria, Carlos Tello

    2000-01-01

    An open superstring field theory action has been proposed which does not suffer from contact term divergences. In this paper, we compute the on-shell four-point tree amplitude from this action using the Giddings map. After including contributions from the quartic term in the action, the resulting amplitude agrees with the first-quantized prescription.

  5. Baryon octet distribution amplitudes in Wandzura-Wilczek approximation

    Energy Technology Data Exchange (ETDEWEB)

    Anikin, I.V. [Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Manashov, A.N. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2015-12-15

    We study higher twist distribution amplitudes for the SU{sub F}(3) baryon octet. We identify independent functions for all baryons in the isospin symmetry limit and calculate the Wandzura-Wilczek contributions to the twist-4 and 5 distributions amplitudes.

  6. Cross-Symmetric Expansion of $\\pi \\pi$ Amplitude Near Threshold

    CERN Document Server

    Bolokhov, A A; Manida, I S; Polyakov, M V; Sherman, S G

    1996-01-01

    The near-threshold expansion of the $\\pi \\pi$ amplitude is developed using the crossing-covariant independent variables. The independent threshold parameters entering the real part of the amplitude in an explicitly Lorentz-invariant way are free from restrictions of isotopic and crossing symmetries. Parameters of the expansion of the imaginary part are recovered by the perturbative unitarity relations.

  7. Finite temperature amplitudes and reaction rates in Thermofield dynamics

    CERN Document Server

    Rakhimov, A M

    2001-01-01

    We propose a method for calculating the reaction rates and transition amplitudes of generic process taking place in a many body system in equilibrium. The relationship of the scattering and decay amplitudes as calculated in Thermo Field Dynamics the conventional techniques is established. It is shown that in many cases the calculations are relatively easy in TFD.

  8. Discontinuities of BFKL amplitudes and the BDS ansatz

    Science.gov (United States)

    Fadin, V. S.; Fiore, R.

    2015-12-01

    We perform an examination of discontinuities of multiple production amplitudes, which are required for further development of the BFKL approach. It turns out that the discontinuities of 2 → 2 + n amplitudes obtained in the BFKL approach contradict to the BDS ansatz for amplitudes with maximal helicity violation in N = 4 supersymmetric Yang-Mills theory with large number of colors starting with n = 2. Explicit expressions for the discontinuities of the 2 → 3 and 2 → 4 amplitudes in the invariant mass of pairs of produced gluons are obtained in the planar N = 4 SYM in the next-to-leading logarithmic approximation. These expressions can be used for checking the conjectured duality between the light-like Wilson loops and the MHV amplitudes.

  9. Amplitudes of stochastically excited oscillations in main-sequence stars

    CERN Document Server

    Houdek, G; Christensen-Dalsgaard, J; Gough, D O

    1999-01-01

    We present estimates of the amplitudes of intrinsically stable stochastically excited radial oscillations in stars near the main sequence. The amplitudes are determined by the balance between acoustical energy generation by turbulent convection (the Lighthill mechanism) and linear damping. Convection is treated with a time-dependent, nonlocal, mixing-length model, which includes both convective heat flux and turbulent pressure in both the equilibrium model and the pulsations. Velocity and luminosity amplitudes are computed for stars with masses between 0.9 M_\\sun and 2.0 M_\\sun in the vicinity of the main sequence, for various metallicities and convection parameters. As in previous studies, the amplitudes are found to increase with stellar mass, and therefore with luminosity. Amongst those stars that are pulsationally stable, the largest amplitudes are predicted for a 1.6 M_\\sun model of spectral type F2; the values are approximately 15 times larger than those measured in the Sun.

  10. High Frequency Amplitude Detector for GMI Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2014-12-01

    Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.

  11. Renormalization of massless Feynman amplitudes in configuration space

    Science.gov (United States)

    Nikolov, Nikolay M.; Stora, Raymond; Todorov, Ivan

    2014-05-01

    A systematic study of recursive renormalization of Feynman amplitudes is carried out both in Euclidean and in Minkowski configuration spaces. For a massless quantum field theory (QFT), we use the technique of extending associate homogeneous distributions to complete the renormalization recursion. A homogeneous (Poincaré covariant) amplitude is said to be convergent if it admits a (unique covariant) extension as a homogeneous distribution. For any amplitude without subdivergences — i.e. for a Feynman distribution that is homogeneous off the full (small) diagonal — we define a renormalization invariant residue. Its vanishing is a necessary and sufficient condition for the convergence of such an amplitude. It extends to arbitrary — not necessarily primitively divergent — Feynman amplitudes. This notion of convergence is finer than the usual power counting criterion and includes cancellation of divergences.

  12. Renormalization of Massless Feynman Amplitudes in Configuration Space

    CERN Document Server

    Nikolov, Nikolay M; Todorov, Ivan

    2014-01-01

    A systematic study of recursive renormalization of Feynman amplitudes is carried out both in Euclidean and in Minkowski configuration space. For a massless quantum field theory (QFT) we use the technique of extending associate homogeneous distributions to complete the renormalization recursion. A homogeneous (Poincare covariant) amplitude is said to be convergent if it admits a (unique covariant) extension as a homogeneous distribution. For any amplitude without subdivergences - i.e. for a Feynman distribution that is homogeneous off the full (small) diagonal - we define a renormalization invariant residue. Its vanishing is a necessary and sufficient condition for the convergence of such an amplitude. It extends to arbitrary - not necessarily primitively divergent - Feynman amplitudes. This notion of convergence is finer than the usual power counting criterion and includes cancellation of divergences.

  13. Effective Field Theories from Soft Limits of Scattering Amplitudes.

    Science.gov (United States)

    Cheung, Clifford; Kampf, Karol; Novotny, Jiri; Trnka, Jaroslav

    2015-06-01

    We derive scalar effective field theories-Lagrangians, symmetries, and all-from on-shell scattering amplitudes constructed purely from Lorentz invariance, factorization, a fixed power counting order in derivatives, and a fixed order at which amplitudes vanish in the soft limit. These constraints leave free parameters in the amplitude which are the coupling constants of well-known theories: Nambu-Goldstone bosons, Dirac-Born-Infeld scalars, and Galilean internal shift symmetries. Moreover, soft limits imply conditions on the Noether current which can then be inverted to derive Lagrangians for each theory. We propose a natural classification of all scalar effective field theories according to two numbers which encode the derivative power counting and soft behavior of the corresponding amplitudes. In those cases where there is no consistent amplitude, the corresponding theory does not exist. PMID:26196613

  14. New amplitude equation of single-mode laser

    Institute of Scientific and Technical Information of China (English)

    张莉; 曹力; 吴大进

    2003-01-01

    The white-gain model and the white-loss model of a single-mode laser are investigated in the presence of crosscorrelations between the real and imaginary parts of quantum noise as well as pump noise. It was found that, like the white cubic model (2001 Chin. Phys. Lett. 18 370), the amplitude equations are all decoupled from the phase equations for the two models, and the same novel term appears in the amplitude equations of the two models. So we can put the amplitude equations of all the models into a general form, that is, the new amplitude equation. We further use this new amplitude equation to study specifically the stationary properties of the laser intensity for the white-gain model.

  15. Phase space spinor amplitudes for spin 1/2 systems

    CERN Document Server

    Watson, P

    2010-01-01

    The concept of phase space amplitudes for systems with continuous degrees of freedom is generalized to finite-dimensional spin systems. Complex amplitudes are obtained on both a sphere and a finite lattice, in each case enabling a more fundamental description of pure spin states than that previously given by Wigner functions on either the sphere or lattice. In each case the Wigner function can be expressed as the star product of the amplitude and its conjugate, so providing a generalized Born interpretation of amplitudes that emphasizes their more fundamental status. The case of spin-$\\half$ is treated in detail, and it is shown that the phase space amplitudes transform correctly as spinors under under rotations, on both the sphere and the lattice.

  16. New Formulas for Amplitudes from Higher-Dimensional Operators

    CERN Document Server

    He, Song

    2016-01-01

    In this paper we study tree-level amplitudes from higher-dimensional operators, including $F^3$ operator of gauge theory, and $R^2$, $R^3$ operators of gravity, in the Cachazo-He-Yuan formulation. As a generalization of the reduced Pfaffian in Yang-Mills theory, we find a new, gauge-invariant object that leads to gluon amplitudes with a single insertion of $F^3$, and gravity amplitudes by Kawai-Lewellen-Tye relations. When reduced to four dimensions for given helicities, the new object vanishes for any solution of scattering equations on which the reduced Pfaffian is non-vanishing. This intriguing behavior in four dimensions explains the vanishing of graviton helicity amplitudes produced by the Gauss-Bonnet $R^2$ term, and provides a scattering-equation origin of the decomposition into self-dual and anti-self-dual parts for $F^3$ and $R^3$ amplitudes.

  17. On discrete-amplitude signal analysis and its applications

    Institute of Scientific and Technical Information of China (English)

    孙洪; 姚天任

    1997-01-01

    Discrete-amplitude signal analysis is studied. A reconstruction theorem of an arbitrary signal quantized in amplitude hut continuous in time, from 2 bits of its binary representation, is devised. A new concept of discrete-amplitude multiresolution (DAM), with the signal representation precision taken as its scale, is proposed. The singularities and the residue reducing effect of 2-bit reconstruction of some discrete-time signals are investigated. Two practical examples of applying the discrete-amplitude signal analysis to data compression and signal detection are presented It is shown both analytically and practically that the discrete-amplitude signal analysis is of simple formulation, parallel processing and efficient computation, and is well suited to hardware implementation and real-time signal processing

  18. Vibration of low amplitude imaged in amplitude and phase by sideband versus carrier correlation digital holography

    CERN Document Server

    Verrier, N; Gross, M

    2015-01-01

    Sideband holography can be used to get fields images (E0 and E1) of a vibrating object for both the carrier (E0) and the sideband (E1) frequency with respect to vibration. We propose here to record E0 and E1 sequentially, and to image the correlation E1E * 0 . We show that this correlation is insensitive the phase related to the object roughness and directly reflect the phase of the mechanical motion. The signal to noise can be improved by averaging the correlation over neighbor pixel. Experimental validation is made with vibrating cube of wood and with a clarinet reed. At 2 kHz, vibrations of amplitude down to 0.01 nm are detected.

  19. Control of dynamical instability in semiconductor quantum nanostructures diode lasers: Role of phase-amplitude coupling

    Science.gov (United States)

    Kumar, P.; Grillot, F.

    2013-07-01

    We numerically investigate the complex nonlinear dynamics for two independently coupled laser systems consisting of (i) mutually delay-coupled edge emitting diode lasers and (ii) injection-locked quantum nanostructures lasers. A comparative study in dependence on the dynamical role of α parameter, which determine the phase-amplitude coupling of the optical field, in both the cases is probed. The variation of α lead to conspicuous changes in the dynamics of both the systems, which are characterized and investigated as a function of optical injection strength η for the fixed coupled-cavity delay time τ. Our analysis is based on the observation that the cross-correlation and bifurcation measures unveil the signature of enhancement of amplitude-death islands in which the coupled lasers mutually stay in stable phase-locked states. In addition, we provide a qualitative understanding of the physical mechanisms underlying the observed dynamical behavior and its dependence on α. The amplitude death and the existence of multiple amplitude death islands could be implemented for applications including diode lasers stabilization.

  20. Nonlinear reflection of high-amplitude laser pulses from relativistic electron mirrors

    Science.gov (United States)

    Kulagin, V. V.; Kornienko, V. N.; Cherepenin, V. A.

    2016-04-01

    A coherent X-ray pulse of attosecond duration can be formed in the reflection of a counterpropagating laser pulse from a relativistic electron mirror. The reflection of a high-amplitude laser pulse from the relativistic electron mirror located in the field of an accelerating laser pulse is investigated by means of two-dimensional (2D) numerical simulation. It is shown that provided the amplitude of the counterpropagating laser pulse is several times greater than the amplitude of the accelerating laser pulse, the reflection process is highly nonlinear, which causes a significant change in the X-ray pulse shape and its shortening up to generation of quasi-unipolar pulses and single-cycle pulses. A physical mechanism responsible for this nonlinearity of the reflection process is explained, and the parameters of the reflected X-ray pulses are determined. It is shown that the duration of these pulses may constitute 50 - 60 as, while their amplitude may be sub-relativistic.

  1. Superposed epoch analysis applied to large-amplitude travelling convection vortices

    Directory of Open Access Journals (Sweden)

    H. Lühr

    Full Text Available For the six months from 1 October 1993 to 1 April 1994 the recordings of the IMAGE magnetometer network have been surveyed in a search for large-amplitude travelling convection vortices (TCVs. The restriction to large amplitudes (>100 nT was chosen to ensure a proper detection of evens also during times of high activity. Readings of all stations of the northern half of the IMAGE network were employed to check the consistency of the ground signature with the notation of a dual-vortex structure moving in an azimuthal direction. Applying these stringent selection criteria we detected a total of 19 clear TCV events. The statistical properties of our selection resemble the expected characteristics of large-amplitude TCVs. New and unexpected results emerged from the superposed epoch analysis. TCVs tend to form during quiet intervals embedded in moderately active periods. The occurrence of events is not randomly distributed but rather shows a clustering around a few days. These clusters recur once or twice every 27 days. Within a storm cycle they show up five to seven days after the commencement. With regard to solar wind conditions, we see the events occurring in the middle of the IMF sector structure. Large-amplitude TCVs seem to require certain conditions to make solar wind transients 'geoeffective', which have the tendency to recur with the solar rotation period.

    Key words. Ionosphere (Aural ionosphere; Ionosphere- magnetosphere interactions · Magnetospheric Physics (current system

  2. Broadband metasurface holograms: toward complete phase and amplitude engineering

    Science.gov (United States)

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2016-09-01

    As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography.

  3. Bootstrapping Multi-Parton Loop Amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Zvi; /UCLA; Dixon, Lance J.; /SLAC; Kosower, David A.; /Saclay, SPhT

    2005-07-06

    The authors present a new method for computing complete one-loop amplitudes, including their rational parts, in non-supersymmetric gauge theory. This method merges the unitarity method with on-shell recursion relations. It systematizes a unitarity-factorization bootstrap approach previously applied by the authors to the one-loop amplitudes required for next-to-leading order QCD corrections to the processes e{sup +}e{sup -} {yields} Z, {gamma}* {yields} 4 jets and pp {yields} W + 2 jets. We illustrate the method by reproducing the one-loop color-ordered five-gluon helicity amplitudes in QCD that interfere with the tree amplitude, namely A{sub 5;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}) and A{sub 5;1}(1{sup -}, 2{sup +}, 3{sup -}, 4{sup +}, 5{sup +}). Then we describe the construction of the six- and seven-gluon amplitudes with two adjacent negative-helicity gluons, A{sub 6;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}, 6{sup +}) and A{sub 7;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}, 6{sup +}, 7{sup +}), which uses the previously-computed logarithmic parts of the amplitudes as input. They present a compact expression for the six-gluon amplitude. No loop integrals are required to obtain the rational parts.

  4. Broadband metasurface holograms: toward complete phase and amplitude engineering.

    Science.gov (United States)

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2016-01-01

    As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography. PMID:27615519

  5. Frequency adaptation for enhanced radiation force amplitude in dynamic elastography.

    Science.gov (United States)

    Ouared, Abderrahmane; Montagnon, Emmanuel; Kazemirad, Siavash; Gaboury, Louis; Robidoux, André; Cloutier, Guy

    2015-08-01

    In remote dynamic elastography, the amplitude of the generated displacement field is directly related to the amplitude of the radiation force. Therefore, displacement improvement for better tissue characterization requires the optimization of the radiation force amplitude by increasing the push duration and/or the excitation amplitude applied on the transducer. The main problem of these approaches is that the Food and Drug Administration (FDA) thresholds for medical applications and transducer limitations may be easily exceeded. In the present study, the effect of the frequency used for the generation of the radiation force on the amplitude of the displacement field was investigated. We found that amplitudes of displacements generated by adapted radiation force sequences were greater than those generated by standard nonadapted ones (i.e., single push acoustic radiation force impulse and supersonic shear imaging). Gains in magnitude were between 20 to 158% for in vitro measurements on agar-gelatin phantoms, and 170 to 336% for ex vivo measurements on a human breast sample, depending on focus depths and attenuations of tested samples. The signal-to-noise ratio was also improved more than 4-fold with adapted sequences. We conclude that frequency adaptation is a complementary technique that is efficient for the optimization of displacement amplitudes. This technique can be used safely to optimize the deposited local acoustic energy without increasing the risk of damaging tissues and transducer elements.

  6. Scattering Amplitudes and BCFW Recursion in Twistor Space

    CERN Document Server

    Mason, L

    2009-01-01

    A number of recent advances in our understanding of scattering amplitudes have been inspired by ideas from twistor theory. While there has been much work studying the twistor space support of scattering amplitudes, this has largely been done by examining the amplitudes in momentum space. In this paper, we construct the actual twistor scattering amplitudes themselves. The main reasons for doing so are to seek a formulation of scattering amplitudes in N=4 super Yang-Mills in which superconformal symmetry is manifest, and to use the progress in on-shell methods in momentum space to build our understanding of how to construct quantum field theory in twistor space. We show that the recursion relations of Britto, Cachazo, Feng and Witten have a natural twistor formulation that, together with the three-point seed amplitudes, allow us in principle to recursively construct general tree amplitudes in twistor space. The twistor space BCFW recursion is tractable, and we obtain explicit formulae for n-particle MHV and NMH...

  7. Discriminating Simulated Vocal Tremor Source Using Amplitude Modulation Spectra

    Science.gov (United States)

    Carbonell, Kathy M.; Lester, Rosemary A.; Story, Brad H.; Lotto, Andrew J.

    2014-01-01

    Objectives/Hypothesis Sources of vocal tremor are difficult to categorize perceptually and acoustically. This paper describes a preliminary attempt to discriminate vocal tremor sources through the use of spectral measures of the amplitude envelope. The hypothesis is that different vocal tremor sources are associated with distinct patterns of acoustic amplitude modulations. Study Design Statistical categorization methods (discriminant function analysis) were used to discriminate signals from simulated vocal tremor with different sources using only acoustic measures derived from the amplitude envelopes. Methods Simulations of vocal tremor were created by modulating parameters of a vocal fold model corresponding to oscillations of respiratory driving pressure (respiratory tremor), degree of vocal fold adduction (adductory tremor) and fundamental frequency of vocal fold vibration (F0 tremor). The acoustic measures were based on spectral analyses of the amplitude envelope computed across the entire signal and within select frequency bands. Results The signals could be categorized (with accuracy well above chance) in terms of the simulated tremor source using only measures of the amplitude envelope spectrum even when multiple sources of tremor were included. Conclusions These results supply initial support for an amplitude-envelope based approach to identify the source of vocal tremor and provide further evidence for the rich information about talker characteristics present in the temporal structure of the amplitude envelope. PMID:25532813

  8. ANOMALOUS INTERNAL FRICTION PEAKS AS FUNCTION OF STRAIN AMPLITUDE

    OpenAIRE

    Kê, T.

    1985-01-01

    Anelasticity, as suggested by Zener /1/ in 1948, gives rise to internal friction which is independent of the strain amplitude. The internal friction which increases with an increase of strain amplitude was explained by Koehler /2/ and Granato and Lücke /3/ in terms of vibration string and unpinning of dislocations. Early in 1949, Kê /4, 5/ observed in slightly cold-worked dilute aluminium-copper solid solutions a pronounced internal friction peak as a function of strain amplitude in which the...

  9. Color-factor symmetry and BCJ relations for QCD amplitudes

    CERN Document Server

    Brown, Robert W

    2016-01-01

    Tree-level $n$-point gauge-theory amplitudes with $n-2k$ gluons and $k$ pairs of (massless or massive) particles in the fundamental (or other) representation of the gauge group are invariant under a set of symmetries that act as momentum-dependent shifts on the color factors in the cubic decomposition of the amplitude. These symmetries lead to gauge-invariant constraints on the kinematic numerators. They also directly imply the BCJ relations among the Melia-basis primitive amplitudes previously obtained by Johansson and Ochirov.

  10. Higher Twist Distribution Amplitudes of the Nucleon in QCD

    CERN Document Server

    Braun, V M; Mahnke, N; Stein, E

    2000-01-01

    We present the first systematic study of higher-twist light-cone distribution amplitudes of the nucleon in QCD. We find that the valence three-quark state is described at small transverse separations by eight independent distribution amplitudes. One of them is leading twist-3, three distributions are twist-4 and twist-5, respectively, and one is twist-6. A complete set of distribution amplitudes is constructed, which satisfies equations of motion and constraints that follow from conformal expansion. Nonperturbative input parameters are estimated from QCD sum rules.

  11. On the collinear limit of scattering amplitudes at strong coupling

    CERN Document Server

    Basso, Benjamin; Vieira, Pedro

    2015-01-01

    In this letter we consider the collinear limit of gluon scattering amplitudes in planar N=4 SYM theory at strong coupling. We argue that in this limit scattering amplitudes map into correlators of twist fields in the two dimensional non-linear O(6) sigma model, similar to those appearing in recent studies of entanglement entropy. We provide evidence for this assertion by combining the intuition springing from the string worldsheet picture and the predictions coming from the OPE series. One of the main implications of these considerations is that scattering amplitudes receive equally important contributions at strong coupling from both the minimal string area and its fluctuations in the sphere.

  12. Phase Synchronization of Coupled Rossler Oscillators: Amplitude Effect

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wen; ZHENG Zhi-Gang

    2007-01-01

    Phase synchronization of two linearly coupled Rossler oscillators with parameter misfits is explored.It is found that depending on parameter mismatches,the synchronization of phases exhibits different manners.The synchronization regime can be divided into three regimes.For small mismatches,the amplitude-insensitive regime gives the phase-dominant synchronization; When the parameter misfit increases,the amplitudes and phases of oscillators are correlated,and the amplitudes will dominate the synchronous dynamics for very large mismatches.The lag time among phases exhibits a power law when phase synchronization is achieved.

  13. Direct Calculation of the Scattering Amplitude Without Partial Wave Analysis

    Science.gov (United States)

    Shertzer, J.; Temkin, A.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Two new developments in scattering theory are reported. We show, in a practical way, how one can calculate the full scattering amplitude without invoking a partial wave expansion. First, the integral expression for the scattering amplitude f(theta) is simplified by an analytic integration over the azimuthal angle. Second, the full scattering wavefunction which appears in the integral expression for f(theta) is obtained by solving the Schrodinger equation with the finite element method (FEM). As an example, we calculate electron scattering from the Hartree potential. With minimal computational effort, we obtain accurate and stable results for the scattering amplitude.

  14. Fatigue independent amplitude-frequency correlations in EMG signals

    CERN Document Server

    Siemienski, A; Klajner, P; Siemienski, Adam; Kebel, Alicja; Klajner, Piotr

    2006-01-01

    In order to assess fatigue independent amplitude-frequency correlations in EMG signals we asked nineteen male subjects to perform a series of isometric muscular contractions by extensors of the knee joint. Different amplitudes of the signal were due to randomly varying both the joint moment and the overall amplification factor of the EMG apparatus. Mean and median frequency, RMS and mean absolute value were calculated for every combination of joint moment and amplification at the original sampling rate of 5 kHz and at several simulated lower sampling rates. Negative Spearman and Kendall amplitude-frequency correlation coefficients were found, and they were more pronounced at high sampling rates.

  15. Statistical multiresolution analysis in amplitude-frequency domain

    Institute of Scientific and Technical Information of China (English)

    SUN Hong; GUAN Bao; Henri Maitre

    2004-01-01

    A concept of statistical multiresolution analysis in amplitude-frequency domain is proposed, which is to employ the wavelet transform on the statistical character of a signal in amplitude domain. In terms of the theorem of generalized ergodicity, an algorithm to estimate the transform coefficients based on the amplitude statistical multiresolution analysis (AMA) is presented. The principle of applying the AMA to Synthetic Aperture Radar (SAR) image processing is described, and the good experimental results imply that the AMA is an efficient tool for processing of speckled signals modeled by the multiplicative noise.

  16. Amplitude Modulation in the δ Sct star KIC 7106205

    Directory of Open Access Journals (Sweden)

    Bowman Dominic. M.

    2015-01-01

    Full Text Available The δ Sct star KIC 7106205 showed amplitude modulation in a single p mode, whilst all other p and g modes remained stable in amplitude and phase over 1470 d of the Kepler dataset. The data were divided into 30 time bins of equal length and a series of consecutive Fourier transforms was calculated. A fixed frequency, calculated from a least-squares fit of all data, allowed amplitude and phase for every mode in each time bin to be tracked. The missing p mode energy was not transferred to any other visible modes.

  17. MEASUREMENT OF ANGULAR VIBRATION AMPLITUDE BY ACTIVELY BLURRED IMAGES

    Institute of Scientific and Technical Information of China (English)

    GUAN Baiqing; WANG Shigang; LIU Chong; LI Qian

    2007-01-01

    A novel motion-blur-based method for measuring the angular amplitude of a high-frequency rotational vibration is schemed. The proposed approach combines the active vision concept and the mechanism of motion-from-blur, generates motion blur on the image plane actively by extending exposure time, and utilizes the motion blur information in polar images to estimate the angular amplitude of a high-frequency rotational vibration. This method obtains the analytical results of the angular vibration amplitude from the geometric moments of a motion blurred polar image and an unblurred image for reference. Experimental results are provided to validate the presented scheme.

  18. Observations and Implications of Large-Amplitude Longitudinal Oscillations in a Solar Filament

    CERN Document Server

    Luna, M; Muglach, K; Karpen, J; Gilbert, H; Kucera, T A; Uritsky, V

    2014-01-01

    On 20 August 2010 an energetic disturbance triggered large-amplitude longitudinal oscillations in a nearby filament. The triggering mechanism appears to be episodic jets connecting the energetic event with the filament threads. In the present work we analyze this periodic motion in a large fraction of the filament to characterize the underlying physics of the oscillation as well as the filament properties. The results support our previous theoretical conclusions that the restoring force of large-amplitude longitudinal oscillations is solar gravity, and the damping mechanism is the ongoing accumulation of mass onto the oscillating threads. Based on our previous work, we used the fitted parameters to determine the magnitude and radius of curvature of the dipped magnetic field along the filament, as well as the mass accretion rate onto the filament threads. These derived properties are nearly uniform along the filament, indicating a remarkable degree of cohesiveness throughout the filament channel. Moreover, the...

  19. The effects of shape and amplitude on the velocity of scrape-off layer filaments

    CERN Document Server

    Omotani, J T; Easy, L; Walkden, N R

    2015-01-01

    A complete model of the dynamics of scrape-off layer filaments will be rather complex, including temperature evolution, three dimensional geometry and finite Larmor radius effects. However, the basic mechanism of $\\boldsymbol{E}\\times\\boldsymbol{B}$ advection due to electrostatic potential driven by the diamagnetic current can be captured in a much simpler model; a complete understanding of the physics in the simpler model will then aid interpretation of more complex simulations, by allowing the new effects to be disentangled. Here we consider such a simple model, which assumes cold ions and isothermal electrons and is reduced to two dimensions. We derive the scaling with width and amplitude of the velocity of isolated scrape-off layer filaments, allowing for arbitrary elliptical cross-sections, where previously only circular cross-sections have been considered analytically. We also put the scaling with amplitude in a new and more satisfactory form. The analytical results are extensively validated with two di...

  20. Finite-amplitude shear-Alfv\\'en waves do not propagate in weakly magnetized collisionless plasmas

    CERN Document Server

    Squire, J; Schekochihin, A A

    2016-01-01

    It is shown that low-collisionality plasmas cannot support linearly polarized shear-Alfv\\'en fluctuations above a critical amplitude $\\delta B_{\\perp}/B_{0} \\sim \\beta^{\\,-1/2}$, where $\\beta$ is the ratio of thermal to magnetic pressure. Above this cutoff, a developing fluctuation will generate a pressure anisotropy that is sufficient to destabilize itself through the parallel firehose instability. This causes the wave frequency to approach zero, interrupting the fluctuation before any oscillation. The magnetic field lines rapidly relax into a sequence of angular zig-zag structures. Such a restrictive bound on shear-Alfv\\'en-wave amplitudes has far-reaching implications for the physics of magnetized turbulence in the high-$\\beta$ conditions prevalent in many astrophysical plasmas, as well as for the solar wind at $\\sim 1 \\mathrm{AU}$ where $\\beta \\gtrsim 1$.

  1. Amplitudes of solar-like oscillations: constraints from red giants in open clusters observed by Kepler

    CERN Document Server

    Stello, D; Kallinger, T; Basu, S; Mosser, B; Hekker, S; Mathur, S; Garcia, R A; Bedding, T R; Kjeldsen, H; Gilliland, R L; Verner, G A; Chaplin, W J; Benomar, O; Meibom, S; Grundahl, F; Elsworth, Y P; Molenda-Zakowicz, J; Szabó, R; Christensen-Dalsgaard, J; Tenenbaum, P; Twicken, J D; Uddin, K

    2011-01-01

    Scaling relations that link asteroseismic quantities to global stellar properties are important for gaining understanding of the intricate physics that underpins stellar pulsation. The common notion that all stars in an open cluster have essentially the same distance, age, and initial composition, implies that the stellar parameters can be measured to much higher precision than what is usually achievable for single stars. This makes clusters ideal for exploring the relation between the mode amplitude of solar-like oscillations and the global stellar properties. We have analyzed data obtained with NASA's Kepler space telescope to study solar-like oscillations in 100 red giant stars located in either of the three open clusters, NGC 6791, NGC 6819, and NGC 6811. By fitting the measured amplitudes to predictions from simple scaling relations that depend on luminosity, mass, and effective temperature, we find that the data cannot be described by any power of the luminosity-to-mass ratio as previously assumed. As a...

  2. Amplitudes of solar-like oscillations in red giants: Departures from the quasi-adiabatic approximation

    Directory of Open Access Journals (Sweden)

    Barban C.

    2013-03-01

    Full Text Available CoRoT and Kepler measurements reveal us that the amplitudes of solar-like oscillations detected in red giant stars scale from stars to stars in a characteristic way. This observed scaling relation is not yet fully understood but constitutes potentially a powerful diagnostic about mode physics. Quasi-adiabatic theoretical scaling relations in terms of mode amplitudes result in systematic and large differences with the measurements performed for red giant stars. The use of a non-adiabatic intensity-velocity relation derived from a non-adiabatic pulsation code significantly reduces the discrepancy with the CoRoT measurements. The origin of the remaining difference is still unknown. Departure from adiabatic eigenfunction is a very likely explanation that is investigated in the present work using a 3D hydrodynamical model of the surface layers of a representative red giant star.

  3. N >= 4 Supergravity Amplitudes from Gauge Theory at Two Loops

    CERN Document Server

    Boucher-Veronneau, C

    2011-01-01

    We present the full two-loop four-graviton amplitudes in N=4,5,6 supergravity. These results were obtained using the double-copy structure of gravity, which follows from the recently conjectured color-kinematics duality in gauge theory. The two-loop four-gluon scattering amplitudes in N=0,1,2 supersymmetric gauge theory are a second essential ingredient. The gravity amplitudes have the expected infrared behavior: the two-loop divergences are given in terms of the squares of the corresponding one-loop amplitudes. The finite remainders are presented in a compact form. The finite remainder for N=8 supergravity is also presented, in a form that utilizes a pure function with a very simple symbol.

  4. Pulse amplitude extraction in digital nuclear spectrometer system

    International Nuclear Information System (INIS)

    Background: The accuracy and real-time performance of pulse amplitude extraction in digital nuclear spectrometer system directly influence the system energy resolution and the maximum count rates. Purpose: This paper attempts to study the amplitude extraction method of digital nuclear signal, which comes from the high speed ADC. Methods: In this paper, according to the principle of operation, the extraction method is categorized into three types: direct comparison method, curve fitting method and filter shaper method, also the operating principle of the three methods are analysed and discussed. Results: The above three methods are employed to process actual sampled digital nuclear signal at the sampling frequency of 40 MHz, the curve fitting method and filter shaper method are respectively used to extract the pulse amplitude and get their energy spectrum. Conclusions: Taking into account the resolution and pulse counting rate, after theoretical analysis, experimental comparison and test, the optimal pulse amplitude extraction method is filter shaper method. (authors)

  5. Movement amplitude and tempo change in piano performance

    Science.gov (United States)

    Palmer, Caroline

    2001-05-01

    Music performance places stringent temporal and cognitive demands on individuals that should yield large speed/accuracy tradeoffs. Skilled piano performance, however, shows consistently high accuracy across a wide variety of rates. Movement amplitude may affect the speed/accuracy tradeoff, so that high accuracy can be obtained even at very fast tempi. The contribution of movement amplitude changes in rate (tempo) is investigated with motion capture. Cameras recorded pianists with passive markers on hands and fingers, who performed on an electronic (MIDI) keyboard. Pianists performed short melodies at faster and faster tempi until they made errors (altering the speed/accuracy function). Variability of finger movements in the three motion planes indicated most change in the plane perpendicular to the keyboard across tempi. Surprisingly, peak amplitudes of motion before striking the keys increased as tempo increased. Increased movement amplitudes at faster rates may reduce or compensate for speed/accuracy tradeoffs. [Work supported by Canada Research Chairs program, HIMH R01 45764.

  6. Amplitude Equation for Instabilities Driven at Deformable Surfaces - Rosensweig Instability

    Science.gov (United States)

    Pleiner, Harald; Bohlius, Stefan; Brand, Helmut R.

    2008-11-01

    The derivation of amplitude equations from basic hydro-, magneto-, or electrodynamic equations requires the knowledge of the set of adjoint linear eigenvectors. This poses a particular problem for the case of a free and deformable surface, where the adjoint boundary conditions are generally non-trivial. In addition, when the driving force acts on the system via the deformable surface, not only Fredholm's alternative in the bulk, but also the proper boundary conditions are required to get amplitude equations. This is explained and demonstrated for the normal field (or Rosensweig) instability in ferrofluids as well as in ferrogels. An important aspect of the problem is its intrinsic dynamic nature, although at the end the instability is stationary. The resulting amplitude equation contains cubic and quadratic nonlinearities as well as first and (in the gel case) second order time derivatives. Spatial variations of the amplitudes cannot be obtained by using simply Newell's method in the bulk.

  7. Utility of Amplitude-Integrated EEG in the NICU

    OpenAIRE

    J Gordon Millichap

    2009-01-01

    The problem of artifacts in using the amplitude-integrated electroencephalogram (AIE) to assess cortical function in premature infants in the NICU were studied at Weill Cornell Medical College, New York, NY.

  8. Laser beam complex amplitude measurement by phase diversity.

    Science.gov (United States)

    Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-02-24

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.

  9. Mean amplitudes of vibration of OTeF5-

    International Nuclear Information System (INIS)

    Mean amplitudes of vibration for OTeF5- have been calculated from known spectroscopic and structural data in a wide temperature range. The results are briefly discussed in comparison with those of related species. (author)

  10. Amplitude chimeras and chimera death in dynamical networks

    Science.gov (United States)

    Zakharova, Anna; Kapeller, Marie; Schöll, Eckehard

    2016-06-01

    We find chimera states with respect to amplitude dynamics in a network of Stuart- Landau oscillators. These partially coherent and partially incoherent spatio-temporal patterns appear due to the interplay of nonlocal network topology and symmetry-breaking coupling. As the coupling range is increased, the oscillations are quenched, amplitude chimeras disappear and the network enters a symmetry-breaking stationary state. This particular regime is a novel pattern which we call chimera death. It is characterized by the coexistence of spatially coherent and incoherent inhomogeneous steady states and therefore combines the features of chimera state and oscillation death. Additionally, we show two different transition scenarios from amplitude chimera to chimera death. Moreover, for amplitude chimeras we uncover the mechanism of transition towards in-phase synchronized regime and discuss the role of initial conditions.

  11. Some tree-level string amplitudes in the NSR formalism

    CERN Document Server

    Becker, Katrin; Melnikov, Ilarion V; Robbins, Daniel; Royston, Andrew B

    2015-01-01

    We calculate tree level scattering amplitudes for open strings using the NSR formalism. We present a streamlined symmetry-based and pedagogical approach to the computations, which we first develop by checking two-, three-, and four-point functions involving bosons and fermions. We calculate the five-point amplitude for massless gluons and find agreement with an earlier result by Brandt, Machado and Medina. We then compute the five-point amplitudes involving two and four fermions respectively, the general form of which has not been previously obtained in the NSR formalism. The results nicely confirm expectations from the supersymmetric $F^4$ effective action. Finally we use the prescription of Kawai, Lewellen and Tye (KLT) to compute the amplitudes for the closed string sector.

  12. Beyond Reggeization for two- and three-loop QCD amplitudes

    CERN Document Server

    Del Duca, Vittorio; Magnea, Lorenzo; Vernazza, Leonardo

    2013-01-01

    The high-energy factorization of gauge theory scattering amplitudes in terms of universal impact factors and a Reggeized exchange in the $t$-channel, corresponding to a Regge pole in the angular momentum plane, is know to conflict with the structure of soft anomalous dimensions starting at the two-loop level. We explore the implications of this violation of factorization for two- and three-loop QCD amplitudes: first we propose criteria to organize the amplitudes into factorizing and non-factorizing terms, then we test them by recovering a known result for non-logarithmic terms at two loops. Finally we predict the precise value of the leading non-factorizing energy logarithms at three loops, and we uncover a set of all-order identities constraining infrared finite terms in quark and gluon amplitudes.

  13. The Last of the Finite Loop Amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Zvi; Dixon, Lance J.; Kosower, David A.

    2005-05-31

    We use on-shell recursion relations to determine the one-loop QCD scattering amplitudes with a massless external quark pair and an arbitrary number (n - 2) of positive-helicity gluons. These amplitudes are the last of the unknown infrared- and ultraviolet-finite loop amplitudes of QCD. The recursion relations are similar to ones applied at tree level, but contain new non-trivial features corresponding to poles present for complex momentum arguments but absent for real momenta. We present the relations and the compact solutions to them, valid for all n. We also present compact forms for the previously-computed one-loop n-gluon amplitudes with a single negative helicity and the rest positive helicity.

  14. High Amplitude (delta)-Scutis in the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Garg, A; Cook, K H; Nikolaev, S; Huber, M E; Rest, A; Becker, A C; Challis, P; Clocchiatti, A; Miknaitis, G; Minniti, D; Morelli, L; Olsen, K; Prieto, J L; Suntzeff, N B; Welch, D L; Wood-Vasey, W M

    2010-01-25

    The authors present 2323 High-Amplitude {delta}-Scutis (HADS) candidates discovered in the Large Magellanic Cloud (LMC) by the SuperMACHO survey (Rest et al. 2005). Frequency analyses of these candidates reveal that several are multimode pulsators, including 119 whose largest amplitude of pulsation is in the fundamental (F) mode and 19 whose largest amplitude of pulsation is in the first overtone (FO) mode. Using Fourier decomposition of the HADS light curves, they find that the period-luminosity (PL) relation defined by the FO pulsators does not show a clear separation from the PL-relation defined by the F pulsators. This differs from other instability strip pulsators such as type c RR Lyrae. They also present evidence for a larger amplitude, subluminous population of HADS similar to that observed in Fornax (Poretti et al. 2008).

  15. Amplitude fluctuations in the Berezinskii-Kosterlitz-Thouless phase

    CERN Document Server

    Jakubczyk, Pawel

    2016-01-01

    We analyze the interplay of thermal amplitude and phase fluctuations in a $U(1)$ symmetric two-dimensional $\\phi^4$-theory. To this end, we derive coupled renormalization group equations for both types of fluctuations. Discarding the amplitude fluctuations, the expected Berezinskii-Kosterlitz-Thouless (BKT) phase characterized by a finite phase stiffness and an algebraic decay of order parameter correlations is recovered at low temperatures. However, in contrast to the widespread expectation, amplitude fluctuations are not innocuous, since their mass vanishes due to a strong renormalization by phase fluctuations. Even at low temperatures the amplitude fluctuations lead to a logarithmic renormalization group flow of the phase stiffness, which ultimately vanishes. Hence, the BKT phase is strictly speaking replaced by a symmetric phase with a finite correlation length, which is however exponentially large at low temperatures. The vortex-driven BKT transition is then rounded to a crossover, which may be practical...

  16. Off-shell amplitudes for nonoriented closed strings

    CERN Document Server

    Cappiello, L; Pettorino, R; Pezzella, F

    1998-01-01

    In the context of the bosonic closed string theory, by using the operatorial formalism, we give a simple expression of the off-shell amplitude with an arbitrary number of external massless states inserted on the Klein bottle.

  17. Broadband metasurface for independent control of reflected amplitude and phase

    OpenAIRE

    Sheng Li Jia; Xiang Wan; Pei Su; Yong Jiu Zhao; Tie Jun Cui

    2016-01-01

    We propose an ultra-thin metasurface to control the amplitudes and phases independently of the reflected waves by changing geometries and orientations of I-shaped metallic particles. We demonstrate that the particles can realize independent controls of reflection amplitudes and phases with a magnitude range of [0, 0.82] and a full phase range of 360° in broad frequency band. Based on such particles, two ultrathin metasurface gratings are further proposed to form anomalous reflection with pola...

  18. Threshold amplitudes for transition to turbulence in a pipe

    OpenAIRE

    Trefethen, Lloyd N.; Chapman, S. J.; Henningson, Dan S.; Meseguer, A.; Mullin, Tom; Nieuwstadt, F.T.M.

    2000-01-01

    Although flow in a circular pipe is stable to infinitesimal perturbations, it can be excited to turbulence by finite perturbations whose minimal amplitude shrinks as $R \\rightarrow \\infty ~(R =$ Reynolds number). Laboratory experiments have appeared to disagree with one another and with theoretical predictions about the dependence of this minimal amplitude on $R$, with published results ranging approximately from $R^{-1/4}$ to $R^{-3/2}$. Here it is shown that these discrepancies can be expla...

  19. On Superstring Disk Amplitudes in a Rolling Tachyon Background

    OpenAIRE

    Jokela, Niko; Keski-Vakkuri, Esko; Majumder, Jaydeep

    2005-01-01

    We study the tree level scattering or emission of n closed superstrings from a decaying non-BPS brane in Type II superstring theory. We attempt to calculate generic n-point superstring disk amplitudes in the rolling tachyon background. We show that these can be written as infinite power series of Toeplitz determinants, related to expectation values of a periodic function in Circular Unitary Ensembles. Further analytical progress is possible in the special case of bulk-boundary disk amplitudes...

  20. Lectures on scattering amplitudes via AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Alday, L.F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University (Netherlands)

    2008-08-05

    We review recent progress on computing scattering amplitudes of planar N=4 super Yang-Mills at strong coupling by using the AdS/CFT duality. We consider in detail the scattering of four gluons and do explicit computations by using both, dimensional regularization and a cut-off in the radial direction. The later scheme is particularly appropriate for understanding the conformal properties of the amplitudes. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  1. Large-N QCD and the Veneziano amplitude

    Science.gov (United States)

    Armoni, Adi

    2016-05-01

    We consider four scalar mesons scattering in large-Nc QCD. Using the worldline formalism we show that the scattering amplitude can be written as a formal sum over Wilson loops. The AdS/CFT correspondence maps this sum into a sum over string worldsheets in a confining background. We then argue that for well separated mesons the sum is dominated by flat space configurations. Under additional assumptions about the dual string path integral we obtain the Veneziano amplitude.

  2. Optimization of phase contrast in bimodal amplitude modulation AFM

    OpenAIRE

    Mehrnoosh Damircheli; Amir F. Payam; Ricardo Garcia

    2015-01-01

    Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM) by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM). Here we study the conditions to enhance the ...

  3. Large-N QCD and the Veneziano amplitude

    Directory of Open Access Journals (Sweden)

    Adi Armoni

    2016-05-01

    Full Text Available We consider four scalar mesons scattering in large-Nc QCD. Using the worldline formalism we show that the scattering amplitude can be written as a formal sum over Wilson loops. The AdS/CFT correspondence maps this sum into a sum over string worldsheets in a confining background. We then argue that for well separated mesons the sum is dominated by flat space configurations. Under additional assumptions about the dual string path integral we obtain the Veneziano amplitude.

  4. Effect Of Vibration Amplitude Level On Seated Occupant Reaction Time

    Directory of Open Access Journals (Sweden)

    Amzar Azizan

    2015-08-01

    Full Text Available The past decade has seen the rapid development of vibration comfort in the automotive industry. However little attention has been paid to vibration drowsiness. Eighteen male volunteers were recruited for this experiment. Before commencing the experiment total transmitted acceleration measured at interfaces between the seat cushion and seatback to human body was adjusted to become 0.2 ms-2 r.m.s and 0.4 ms-2 r.m.s for each volunteer. Seated volunteers were exposed to Gaussian random vibration with frequency band 1-15 Hz at two level of amplitude low vibration amplitude and medium vibration amplitude for 20-minutes in separate days. For the purpose of drowsiness measurement volunteers were asked to complete 10-minutes PVT test before and after vibration exposure and rate their subjective drowsiness by giving score using Karolinska Sleepiness Scale KSS before vibration every 5-minutes interval and following 20-minutes of vibration exposure. Strong evidence of drowsiness was found as there was a significant increase in reaction time and number of lapse following exposure to vibration in both conditions. However the effect is more apparent in medium vibration amplitude. A steady increase of drowsiness level can also be observed in KSS in all volunteers. However no significant differences were found in KSS between low vibration amplitude and medium vibration amplitude. The results of this investigation suggest that exposure to vibration has an adverse effect on human alertness level and more pronounced at higher vibration amplitude. Taken together these findings suggest a role of vibration in promoting drowsiness especially at higher vibration amplitude.

  5. Amplitude Modulated Sinusoidal Signal Decomposition for Audio Coding

    DEFF Research Database (Denmark)

    Christensen, M. G.; Jacobson, A.; Andersen, S. V.;

    2006-01-01

    In this paper, we present a decomposition for sinusoidal coding of audio, based on an amplitude modulation of sinusoids via a linear combination of arbitrary basis vectors. The proposed method, which incorporates a perceptual distortion measure, is based on a relaxation of a nonlinear least-squar......-squares minimization. Rate-distortion curves and listening tests show that, compared to a constant-amplitude sinusoidal coder, the proposed decomposition offers perceptually significant improvements in critical transient signals....

  6. Novel clutter map CFAR algorithm with amplitude limiter

    Institute of Scientific and Technical Information of China (English)

    单涛; 陶然; 王越; 周思永

    2004-01-01

    The traditional clutter map constant false alarm rate (CM-CFAR) detector is affected by interference and selfmasking[1] which will cause the low probability of detection. To solve these problems, a novel algorithm named clutter map CFAR with amplitude limiter (ALCM-CFAR) is proposed, in which the amplitude of the input signal is limited by a filter. The simulation results prove the effectiveness of ALCM-CFAR algorithm.

  7. Bootstrapping a Five-Loop Amplitude from Steinmann Relations

    CERN Document Server

    Caron-Huot, Simon; McLeod, Andrew; von Hippel, Matt

    2016-01-01

    The analytic structure of scattering amplitudes is restricted by Steinmann relations, which enforce the vanishing of certain discontinuities of discontinuities. We show that these relations dramatically simplify the function space for the hexagon function bootstrap in planar maximally supersymmetric Yang-Mills theory. Armed with this simplification, along with the constraints of dual conformal symmetry and Regge exponentiation, we obtain the complete five-loop six-particle amplitude.

  8. Amplitude chimeras and chimera death in dynamical networks

    OpenAIRE

    Zakharova, Anna; Kapeller, Marie; Schöll, Eckehard

    2015-01-01

    We find chimera states with respect to amplitude dynamics in a network of Stuart-Landau oscillators. These partially coherent and partially incoherent spatio-temporal patterns appear due to the interplay of nonlocal network topology and symmetry-breaking coupling. As the coupling range is increased, the oscillations are quenched, amplitude chimeras disappear and the network enters a symmetry-breaking stationary state. This particular regime is a novel pattern which we call chimera death. It i...

  9. Asymptotic Expansions of Feynman Amplitudes in a Generic Covariant Gauge

    OpenAIRE

    Linhares, C. A.; Malbouisson, A. P. C.; Roditi, I.

    2006-01-01

    We show in this paper how to construct Symanzik polynomials and the Schwinger parametric representation of Feynman amplitudes for gauge theories in an unspecified covariant gauge. The complete Mellin representation of such amplitudes is then established in terms of invariants (squared sums of external momenta and squared masses). From the scaling of the invariants by a parameter we extend for the present situation a theorem on asymptotic expansions, previously proven for the case of scalar fi...

  10. Three-point disc amplitudes in the RNS formalism

    Science.gov (United States)

    Becker, Katrin; Becker, Melanie; Robbins, Daniel; Su, Ning

    2016-06-01

    We calculate all tree level string theory vacuum to Dp-brane disc amplitudes involving an arbitrary RR-state and two NS-NS vertex operators. This computation was earlier performed by K. Becker, Guo, and Robbins for the simplest case of a RR-state of type C (p - 3). Here we use the aid of a computer to calculate all possible three-point amplitudes involving a RR-vertex operator of type C (p + 1 + 2 k).

  11. Sign and amplitude representation of the forex networks

    OpenAIRE

    Sylwia Gworek; Jaroslaw Kwapien; Stanislaw Drozdz

    2009-01-01

    We decompose the exchange rates returns of 41 currencies (incl. gold) into their sign and amplitude components. Then we group together all exchange rates with a common base currency, construct Minimal Spanning Trees for each group independently, and analyze properties of these trees. We show that both the sign and the amplitude time series have similar correlation properties as far as the core network structure is concerned. There exist however interesting peripheral differences that may open...

  12. Separation of musical instruments based on amplitude and frequency comodulation

    Science.gov (United States)

    Jacobson, Barry D.; Cauwenberghs, Gert; Quatieri, Thomas F.

    2002-05-01

    In previous work, amplitude comodulation was investigated as a basis for monaural source separation. Amplitude comodulation refers to similarities in amplitude envelopes of individual spectral components emitted by particular types of sources. In many types of musical instruments, amplitudes of all resonant modes rise/fall, and start/stop together during the course of normal playing. We found that under certain well-defined conditions, a mixture of constant frequency, amplitude comodulated sources can unambiguously be decomposed into its constituents on the basis of these similarities. In this work, system performance was improved by relaxing the constant frequency requirement. String instruments, for example, which are normally played with vibrato, are both amplitude and frequency comodulated sources, and could not be properly tracked under the constant frequency assumption upon which our original algorithm was based. Frequency comodulation refers to similarities in frequency variations of individual harmonics emitted by these types of sources. The analytical difficulty is in defining a representation of the source which properly tracks frequency varying components. A simple, fixed filter bank can only track an individual spectral component for the duration in which it is within the passband of one of the filters. Alternatives are therefore explored which are amenable to real-time implementation.

  13. Tree-level Amplitudes in the Nonlinear Sigma Model

    CERN Document Server

    Kampf, Karol; Trnka, Jaroslav

    2013-01-01

    We study in detail the general structure and further properties of the tree-level amplitudes in the SU(N) nonlinear sigma model. We construct the flavor-ordered Feynman rules for various parameterizations of the SU(N) fields U(x), write down the Berends-Giele relations for the semi-on-shell currents and discuss their efficiency for the amplitude calculation in comparison with those of renormalizable theories. We also present an explicit form of the partial amplitudes up to ten external particles. It is well known that the standard BCFW recursive relations cannot be used for reconstruction of the the on-shell amplitudes of effective theories like the SU(N) nonlinear sigma model because of the inappropriate behavior of the deformed on-shell amplitudes at infinity. We discuss possible generalization of the BCFW approach introducing "BCFW formula with subtractions" and with help of Berends-Giele relations we prove particular scaling properties of the semi-on-shell amplitudes of the SU(N) nonlinear sigma model und...

  14. Kinematics and amplitude evolution of global coronal extreme ultraviolet waves

    Institute of Scientific and Technical Information of China (English)

    Ting Li; Jun Zhang; Shu-Hong Yang; Wei Liu

    2012-01-01

    With the observations of the Solar-Terrestrial Relations Observatory (STEREO) and the Solar Dynamics Observatory (SDO),we analyze in detail the kinematics of global coronal waves together with their intensity amplitudes (so-called "perturbation profiles").We use a semi-automatic method to investigate the perturbation profiles of coronal waves.The location and amplitude of the coronal waves are calculated over a 30° sector on the sphere,where the wave signal is strongest.The position with the strongest perturbation at each time is considered as the location of the wave front.In all four events,the wave velocities vary with time for most of their lifetime,up to 15 min,while in the event observed by the Atmospheric Imaging Assembly there is an additional early phase with a much higher velocity.The velocity varies greatly between different waves from 216 to 440 km s-1.The velocity of the two waves initially increases,subsequently decreases,and then increases again.Two other waves show a deceleration followed by an acceleration.Three categories of amplitude evolution of global coronal waves are found for the four events.The first is that the amplitude only shows a decrease.The second is that the amplitude initially increases and then decreases,and the third is that the amplitude shows an orderly increase,a decrease,an increase again and then a decrease.All the extreme ultraviolet waves show a decrease in amplitude while propagating farther away,probably because the driver of the global coronal wave (coronal mass ejection) is moving farther away from the solar surface.

  15. A study of amplitude information-frequency characteristics for underwater active electrolocation system.

    Science.gov (United States)

    Peng, Jiegang

    2015-12-01

    Weakly electric fish sense their surroundings in complete darkness by their active electrolocation system. For biologists, the active electrolocation system has been investigated for near 60 years. And for engineers, bio-inspired active electrolocation sensor has been investigated for about 20 years. But how the amplitude information response will be affected by frequencies of detecting electric fields in the active electrolocation system was rarely investigated. In this paper, an electrolocation experiment system has been built. The amplitude information-frequency characteristics (AIFC) of the electrolocation system for sinusoidal electric fields of varying frequencies have been investigated. We find that AIFC of the electrolocation system have relevance to the material properties and geometric features of the probed object and conductivity of surrounding water. Detect frequency dead zone (DFDZ) and frequency inflection point (FIP) of AIFC for the electrolocation system were found. The analysis model of the electrolocation system has been investigated for many years, but DFDZ and FIP of AIFC can be difficult to explain by those models. In order to explain those AIFC phenomena for the electrolocation system, a simple relaxation model based on Cole-Cole model which is not only a mathematical explanation but it is a physical one for the electrolocation system was advanced. We also advance a hypothesis for physical mechanism of weakly electrical fish electrolocation system. It may have reference value for physical mechanism of weakly electrical fish active electrolocation system.

  16. Simulation of absolute amplitudes of ultrasound signals using equivalent circuits.

    Science.gov (United States)

    Johansson, Jonny; Martinsson, Pär-Erik; Delsing, Jerker

    2007-10-01

    Equivalent circuits for piezoelectric devices and ultrasonic transmission media can be used to cosimulate electronics and ultrasound parts in simulators originally intended for electronics. To achieve efficient system-level optimization, it is important to simulate correct, absolute amplitude of the ultrasound signal in the system, as this determines the requirements on the electronics regarding dynamic range, circuit noise, and power consumption. This paper presents methods to achieve correct, absolute amplitude of an ultrasound signal in a simulation of a pulse-echo system using equivalent circuits. This is achieved by taking into consideration loss due to diffraction and the effect of the cable that connects the electronics and the piezoelectric transducer. The conductive loss in the transmission line that models the propagation media of the ultrasound pulse is used to model the loss due to diffraction. Results show that the simulated amplitude of the echo follows measured values well in both near and far fields, with an offset of about 10%. The use of a coaxial cable introduces inductance and capacitance that affect the amplitude of a received echo. Amplitude variations of 60% were observed when the cable length was varied between 0.07 m and 2.3 m, with simulations predicting similar variations. The high precision in the achieved results show that electronic design and system optimization can rely on system simulations alone. This will simplify the development of integrated electronics aimed at ultrasound systems. PMID:18019234

  17. Tree and penguin amplitudes from B to pi pi, K pi, K bar{K}

    OpenAIRE

    Zenczykowski, Piotr

    2009-01-01

    The question of the relative size of tree and penguin amplitudes is analyzed using the data on B to pi pi, B^+ to pi^+ K^0, and B^+ to K^+ \\bar{K}^0 decays. Our discussion involves an estimate of SU(3) breaking in the final quark-pair-creating hadronization process. The estimate is based on Regge phenomenology, which many years ago proved very successful in the description of soft hadronic physics. Accepting the Regge prediction as solid, it is then shown that the relative size and phase of t...

  18. Turaev-Viro amplitudes from 2+1 loop quantum gravity

    Science.gov (United States)

    Pranzetti, Daniele

    2014-04-01

    The Turaev-Viro state sum model provides a covariant spin foam quantization of three-dimensional Riemannian gravity with a positive cosmological constant Λ. We complete the program to canonically quantize the theory in the BF formulation using the formalism of loop quantum gravity. In particular, we show first how quantum group structures arise from the requirement of the constraint algebra to be anomaly free. This allows us to generalize the construction of the physical scalar product, from the Λ=0 case, in the presence of a positive Λ. We prove the equivalence between the covariant and canonical quantizations by recovering the spin foam amplitudes.

  19. Comparisons of Predictions from Exact Amplitude-Based Resummation Methods with LHC and Cosmological Data

    CERN Document Server

    Ward, B F L; Yost, S A

    2013-01-01

    We present the current status of the comparisons with the respective data of the predictions of our approach of exact amplitude-based resummation in quantum field theory in two areas of investigation: precision QCD calculations of all four of us as needed for LHC physics and the resummed quantum gravity realization by one of us (B.F.L.W.) of Einstein's theory of general relativity as formulated by Feynman. The agreement between the theoretical predictions and the data exhibited continues to be encouraging.

  20. Methods of experimental physics

    CERN Document Server

    Pergament, M I

    2014-01-01

    IntroductionIndirect Data and Inverse ProblemsExperiment and Stochasticity of the Physical WorldGeneral Properties of Measuring-Recording SystemsLinear Measuring-Recording SystemsTransfer Function and Convolution EquationTransfer Ratio, Amplitude-Frequency and Phase-Frequency Characteristics, and Relation Between Input and Output Signals in Fourier SpaceSome ConsequencesDiscretizationCommunication Theory ApproachDetermination of the Measuring-Recording System ParametersStudying Pulse Processes<

  1. Adiabatic quenches and characterization of amplitude excitations in a continuous quantum phase transition.

    Science.gov (United States)

    Hoang, Thai M; Bharath, Hebbe M; Boguslawski, Matthew J; Anquez, Martin; Robbins, Bryce A; Chapman, Michael S

    2016-08-23

    Spontaneous symmetry breaking occurs in a physical system whenever the ground state does not share the symmetry of the underlying theory, e.g., the Hamiltonian. This mechanism gives rise to massless Nambu-Goldstone modes and massive Anderson-Higgs modes. These modes provide a fundamental understanding of matter in the Universe and appear as collective phase or amplitude excitations of an order parameter in a many-body system. The amplitude excitation plays a crucial role in determining the critical exponents governing universal nonequilibrium dynamics in the Kibble-Zurek mechanism (KZM). Here, we characterize the amplitude excitations in a spin-1 condensate and measure the energy gap for different phases of the quantum phase transition. At the quantum critical point of the transition, finite-size effects lead to a nonzero gap. Our measurements are consistent with this prediction, and furthermore, we demonstrate an adiabatic quench through the phase transition, which is forbidden at the mean field level. This work paves the way toward generating entanglement through an adiabatic phase transition. PMID:27503886

  2. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4" t" hfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia); Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Rock Fluid Imaging Lab., Bandung (Indonesia)

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.

  3. Adiabatic quenches and characterization of amplitude excitations in a continuous quantum phase transition

    Science.gov (United States)

    Hoang, Thai M.; Bharath, Hebbe M.; Boguslawski, Matthew J.; Anquez, Martin; Robbins, Bryce A.; Chapman, Michael S.

    2016-08-01

    Spontaneous symmetry breaking occurs in a physical system whenever the ground state does not share the symmetry of the underlying theory, e.g., the Hamiltonian. This mechanism gives rise to massless Nambu-Goldstone modes and massive Anderson-Higgs modes. These modes provide a fundamental understanding of matter in the Universe and appear as collective phase or amplitude excitations of an order parameter in a many-body system. The amplitude excitation plays a crucial role in determining the critical exponents governing universal nonequilibrium dynamics in the Kibble-Zurek mechanism (KZM). Here, we characterize the amplitude excitations in a spin-1 condensate and measure the energy gap for different phases of the quantum phase transition. At the quantum critical point of the transition, finite-size effects lead to a nonzero gap. Our measurements are consistent with this prediction, and furthermore, we demonstrate an adiabatic quench through the phase transition, which is forbidden at the mean field level. This work paves the way toward generating entanglement through an adiabatic phase transition.

  4. Adiabatic quenches and characterization of amplitude excitations in a continuous quantum phase transition

    Science.gov (United States)

    Hoang, Thai M.; Bharath, Hebbe M.; Boguslawski, Matthew J.; Anquez, Martin; Robbins, Bryce A.; Chapman, Michael S.

    2016-01-01

    Spontaneous symmetry breaking occurs in a physical system whenever the ground state does not share the symmetry of the underlying theory, e.g., the Hamiltonian. This mechanism gives rise to massless Nambu–Goldstone modes and massive Anderson–Higgs modes. These modes provide a fundamental understanding of matter in the Universe and appear as collective phase or amplitude excitations of an order parameter in a many-body system. The amplitude excitation plays a crucial role in determining the critical exponents governing universal nonequilibrium dynamics in the Kibble–Zurek mechanism (KZM). Here, we characterize the amplitude excitations in a spin-1 condensate and measure the energy gap for different phases of the quantum phase transition. At the quantum critical point of the transition, finite-size effects lead to a nonzero gap. Our measurements are consistent with this prediction, and furthermore, we demonstrate an adiabatic quench through the phase transition, which is forbidden at the mean field level. This work paves the way toward generating entanglement through an adiabatic phase transition. PMID:27503886

  5. Mammalian cycles: internally defined periods and interaction-driven amplitudes.

    Science.gov (United States)

    Ginzburg, L R; Krebs, C J

    2015-01-01

    The cause of mammalian cycles-the rise and fall of populations over a predictable period of time-has remained controversial since these patterns were first observed over a century ago. In spite of extensive work on observable mammalian cycles, the field has remained divided upon what the true cause is, with a majority of opinions attributing it to either predation or to intra-species mechanisms. Here we unite the eigenperiod hypothesis, which describes an internal, maternal effect-based mechanism to explain the cycles' periods with a recent generalization explaining the amplitude of snowshoe hare cycles in northwestern North America based on initial predator abundance. By explaining the period and the amplitude of the cycle with separate mechanisms, a unified and consistent view of the causation of cycles is reached. Based on our suggested theory, we forecast the next snowshoe hare cycle (predicted peak in 2016) to be of extraordinarily low amplitude.

  6. Amplitude variations on the Extreme Adaptive Optics testbed

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J; Thomas, S; Dillon, D; Gavel, D; Phillion, D; Macintosh, B

    2007-08-14

    High-contrast adaptive optics systems, such as those needed to image extrasolar planets, are known to require excellent wavefront control and diffraction suppression. At the Laboratory for Adaptive Optics on the Extreme Adaptive Optics testbed, we have already demonstrated wavefront control of better than 1 nm rms within controllable spatial frequencies. Corresponding contrast measurements, however, are limited by amplitude variations, including those introduced by the micro-electrical-mechanical-systems (MEMS) deformable mirror. Results from experimental measurements and wave optic simulations of amplitude variations on the ExAO testbed are presented. We find systematic intensity variations of about 2% rms, and intensity variations with the MEMS to be 6%. Some errors are introduced by phase and amplitude mixing because the MEMS is not conjugate to the pupil, but independent measurements of MEMS reflectivity suggest that some error is introduced by small non-uniformities in the reflectivity.

  7. On the four-dimensional formulation of dimensionally regulated amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Fazio, A.R. [Universidad Nacional de Colombia, Departamento de Fisica, Bogota (Colombia); Mastrolia, P. [Universita di Padova, Dipartimento di Fisica e Astronomia, Padua (Italy); Max-Planck-Institut fuer Physik, Munich (Germany); INFN, Padova (Italy); Mirabella, E. [Max-Planck-Institut fuer Physik, Munich (Germany); Torres Bobadilla, W.J. [Universidad Nacional de Colombia, Departamento de Fisica, Bogota (Colombia); Universita di Padova, Dipartimento di Fisica e Astronomia, Padua (Italy); INFN, Padova (Italy)

    2014-12-01

    Elaborating on the four-dimensional helicity scheme, we propose a pure four-dimensional formulation (FDF) of the d-dimensional regularization of one-loop scattering amplitudes. In our formulation particles propagating inside the loop are represented by massive internal states regulating the divergences. The latter obey Feynman rules containing multiplicative selection rules which automatically account for the effects of the extra-dimensional regulating terms of the amplitude. We present explicit representations of the polarization and helicity states of the four-dimensional particles propagating in the loop. They allow for a complete, four-dimensional, unitarity-based construction of d-dimensional amplitudes. Generalized unitarity within the FDF does not require any higher-dimensional extension of the Clifford and the spinor algebra. Finally we show how the FDF allows for the recursive construction of d-dimensional one-loop integrands, generalizing the four-dimensional open-loop approach. (orig.)

  8. Amplitude Analysis of the B+- ->phi K*(892)+- Decay

    CERN Document Server

    Aubert, B; Boutigny, D; Karyotakis, Yu; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Garra Tico, J; Graugès-Pous, E; López, L; Palano, A; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lopes-Pegna, D; Lynch, G; Mir, L M; Orimoto, T J; Ronan, M T; Tackmann, K; Wenzel, W A; Del Amo-Sánchez, P; Hawkes, C M; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Schröder, T; Steinke, M; Walker, D; Asgeirsson, D J; Çuhadar-Dönszelmann, T; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M A; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Williams, D C; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Brandt, T; Klose, V; Kobel, M J; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, C; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Nikolich, M B; Panduro-Vazquez, W; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Bequilleux, J; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F R; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flächer, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Zheng, Y; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, Gallieno; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Wong, Q K; Blount, N L; Brau, J E; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; La Vaissière, C de; Hamon, O; Leruste, P; Malcles, J; Ocariz, J; Pérez, A; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A

    2007-01-01

    We perform an amplitude analysis of B+- -> phi(1020) K*(892)+- decay with a sample of about 384 million BBbar pairs recorded with the BABAR detector. Overall, twelve parameters are measured, including the fractions of longitudinal f_L and parity-odd transverse f_perp amplitudes, branching fraction, strong phases, and six parameters sensitive to CP-violation. We use the dependence on the Kpi invariant mass of the interference between the JP=1- and 0+ Kpi components to resolve the discrete ambiguity in the determination of the strong and weak phases. Our measurements of f_L=0.49+-0.05+-0.03, f_perp=0.21+-0.05+-0.02, and the strong phases point to the presence of a substantial helicity-plus amplitude from a presently unknown source.

  9. Convergence of transition amplitudes obtained with the Schwinger variational principle

    CERN Document Server

    Rodríguez, V D

    2016-01-01

    An exactly solvable time-dependent quantum mechanical problem is employed to study the convergence properties of transition amplitudes calculated by using the Schwinger variational principle. A detailed comparison between the amplitudes approximated by the perturbative series and by their associated Schwinger variational principles is performed. The much better performance obtained by the variational principle is documented through different case studies. For a given order of the Schwinger principle, it is observed that the transition amplitudes do not converge to the exact one for large perturbations. The latter is true even though large combinations of unperturbed states with constant coefficients are taken as trial wave functions. As a matter of fact, it is shown that the improvement of the method comes from using better trial wave functions and increasing the order of the Schwinger principle employed.

  10. Root-mean-square pulse-amplitude-to-number converters

    International Nuclear Information System (INIS)

    The amplitude dispersion of pulses from gas-discharge and other detectors of ionizing radiation is determined by the sum of the analog additive noise and is proportional to the amplitude of the Poisson component. Losses of energy resolution or overexpenditure of channels are reduced by conversion of pulse amplitude to code by comparison of the peak value with a periodic parabolic voltage. The described converter has a scale that is linear with respect to atomic number and provides a constancy peak width that is acceptable for a digital spectrum filter with constant parameters. With 256 channels, the dead time is less than or equal to 25.6 microseconds and the error of the root-mean-square scale is less than 0.1% of the instantaneous value. The described converter has undergone prolonged testing under laboratory and field conditions in conjunction with an AMA-8 portable x-ray spectrometer and has shown sufficiently high metrological characteristics

  11. Kernel Phase and Kernel Amplitude in Fizeau Imaging

    CERN Document Server

    Pope, Benjamin J S

    2016-01-01

    Kernel phase interferometry is an approach to high angular resolution imaging which enhances the performance of speckle imaging with adaptive optics. Kernel phases are self-calibrating observables that generalize the idea of closure phases from non-redundant arrays to telescopes with arbitrarily shaped pupils, by considering a matrix-based approximation to the diffraction problem. In this paper I discuss the recent history of kernel phase, in particular in the matrix-based study of sparse arrays, and propose an analogous generalization of the closure amplitude to kernel amplitudes. This new approach can self-calibrate throughput and scintillation errors in optical imaging, which extends the power of kernel phase-like methods to symmetric targets where amplitude and not phase calibration can be a significant limitation, and will enable further developments in high angular resolution astronomy.

  12. Amplitude of Accommodation and its Relation to Refractive Errors

    Directory of Open Access Journals (Sweden)

    Abraham Lekha

    2005-01-01

    Full Text Available Aims: To evaluate the relationship between amplitude of accommodation and refractive errors in the peri-presbyopic age group. Materials and Methods: Three hundred and sixteen right eyes of 316 consecutive patients in the age group 35-50 years who attended our outpatient clinic were studied. Emmetropes, hypermetropes and myopes with best-corrected visual acuity of 6/6 J1 in both eyes were included. The amplitude of accommodation (AA was calculated by measuring the near point of accommodation (NPA. In patients with more than ± 2 diopter sphere correction for distance, the NPA was also measured using appropriate soft contact lenses. Results: There was a statistically significant difference in AA between myopes and hypermetropes ( P P P P P P >0.5. Conclusion: Our study showed higher amplitude of accommodation among myopes between 35 and 44 years compared to emmetropes and hypermetropes

  13. Berends-Giele recursion for double-color-ordered amplitudes

    Science.gov (United States)

    Mafra, Carlos R.

    2016-07-01

    Tree-level double-color-ordered amplitudes are computed using Berends-Giele recursion relations applied to the bi-adjoint cubic scalar theory. The standard notion of Berends-Giele currents is generalized to double-currents and their recursions are derived from a perturbiner expansion of linearized fields that solve the non-linear field equations. Two applications are given. Firstly, we prove that the entries of the inverse KLT matrix are equal to Berends-Giele double-currents (and are therefore easy to compute). And secondly, a simple formula to generate tree-level BCJ-satisfying numerators for arbitrary multiplicity is proposed by evaluating the field-theory limit of tree-level string amplitudes for various color orderings using double-color-ordered amplitudes.

  14. Amplitudes and Correlators to Ten Loops Using Simple, Graphical Bootstraps

    CERN Document Server

    Bourjaily, Jacob L; Tran, Vuong-Viet

    2016-01-01

    We introduce two new graphical-level relations among possible contributions to the four-point correlation function and scattering amplitude in planar, maximally supersymmetric Yang-Mills theory. When combined with the rung rule, these prove powerful enough to fully determine both functions through ten loops. This then also yields the full five-point amplitude to eight loops and the parity-even part to nine loops. We derive these rules, illustrate their applications, compare their relative strengths for fixing coefficients, and survey some of the features of the previously unknown nine and ten loop expressions. Explicit formulae for amplitudes and correlators through ten loops are available at: http://goo.gl/JH0yEc.

  15. Statistical amplitude scale estimation for quantization-based watermarking

    Science.gov (United States)

    Shterev, Ivo D.; Lagendijk, Reginald L.; Heusdens, Richard

    2004-06-01

    Quantization-based watermarking schemes are vulnerable to amplitude scaling. Therefore the scaling factor has to be accounted for either at the encoder, or at the decoder, prior to watermark decoding. In this paper we derive the marginal probability density model for the watermarked and attacked data, when the attack channel consists of amplitude scaling followed by additive noise. The encoder is Quantization Index Modulation with Distortion Compensation. Based on this model we obtain two estimation procedures for the scale parameter. The first approach is based on Fourier Analysis of the probability density function. The estimation of the scaling parameter relies on the structure of the received data. The second approach that we obtain is the Maximum Likelihood estimator of the scaling factor. We study the performance of the estimation procedures theoretically and experimentally with real audio signals, and compare them to other well known approaches for amplitude scale estimation in the literature.

  16. General mechanism for amplitude death in coupled systems.

    Science.gov (United States)

    Resmi, V; Ambika, G; Amritkar, R E

    2011-10-01

    We introduce a general mechanism for amplitude death in coupled synchronizable dynamical systems. It is known that when two systems are coupled directly, they can synchronize under suitable conditions. When an indirect feedback coupling through an environment or an external system is introduced in them, it is found to induce a tendency for antisynchronization. We show that, for sufficient strengths, these two competing effects can lead to amplitude death. We provide a general stability analysis that gives the threshold values for onset of amplitude death. We study in detail the nature of the transition to death in several specific cases and find that the transitions can be of two types--continuous and discontinuous. By choosing a variety of dynamics, for example, periodic, chaotic, hyperchaotic, and time-delay systems, we illustrate that this mechanism is quite general and works for different types of direct coupling, such as diffusive, replacement, and synaptic couplings, and for different damped dynamics of the environment.

  17. On the saturation amplitude of the f-mode instability

    CERN Document Server

    Kastaun, Wolfgang; Kokkotas, Kostas D

    2010-01-01

    We investigate strong nonlinear damping effects which occur during high amplitude oscillations of neutron stars, and the gravitational waves they produce. For this, we use a general relativistic nonlinear hydrodynamics code in conjunction with a fixed spacetime (Cowling approximation) and a polytropic equation of state (EOS). Gravitational waves are estimated using the quadrupole formula. Our main interest are $l=m=2$ $f$-modes subject to the CFS (Chandrasekhar, Friedman, Schutz) instability, but we also investigate axisymmetric and quasi-radial modes. We study various models to determine the influence of rotation rate and EOS. We find that axisymmetric oscillations at high amplitudes are predominantly damped by shock formation, while the non-axisymmetric $f$-modes are mainly damped by wave breaking and, for rapidly rotating models, coupling to non-axisymmetric inertial modes. From the observed nonlinear damping, we derive upper limits for the saturation amplitude of CFS-unstable $f$-modes. Finally, we estima...

  18. Air-segmented amplitude-modulated multiplexed flow analysis.

    Science.gov (United States)

    Inui, Koji; Uemura, Takeshi; Ogusu, Takeshi; Takeuchi, Masaki; Tanaka, Hideji

    2011-01-01

    Air-segmentation is applied to amplitude-modulated multiplexed flow analysis, which we proposed recently. Sample solutions, the flow rates of which are varied periodically, are merged with reagent and/or diluent solution. The merged stream is segmented by air-bubbles and, downstream, its absorbance is measured after deaeration. The analytes in the samples are quantified from the amplitudes of the respective wave components in the absorbance. The proposed method is applied to the determinations of a food dye, phosphate ions and nitrite ions. The air-segmentation is effective for limiting amplitude damping through the axial dispersion, resulting in an improvement in sensitivity. This effect is more pronounced at shorter control periods and longer flow path lengths.

  19. Disc amplitudes, picture changing and space-time actions

    CERN Document Server

    Becker, Katrin; Robbins, Daniel

    2011-01-01

    We study in detail the procedure for obtaining couplings of D-branes to closed string fields by evaluating string theory disc amplitudes. We perform a careful construction of the relevant vertex operators and discuss the effects of inserting the boundary state which encodes the presence of the D-brane. We confront the issue of non-decoupling of BRST-exact states and prove that the problem is evaded for the computations we need, thus demonstrating that our amplitudes are automatically gauge-invariant and independent of the distribution of picture charge. Finally, we compute explicitly the two-point amplitudes of two NS-NS fields or one NS-NS and one R-R field on the disc, and we carefully compare all the lowest order terms with predictions from supergravity.

  20. FPGA-based amplitude and phase detection in DLLRF

    Institute of Scientific and Technical Information of China (English)

    LIU Rong; WANG Zheng; PAN Wei-Min; WANG Guang-Wei; LIN Hai-Ying; SHA Peng; ZENG Ri-Hua

    2009-01-01

    The new generation particle accelerator requires a highly stable radio frequency (RF) system. The stability of the RF system is realized by the Low Level RF (LLRF) subsystem which controls the amplitude and phase of the RF signal. The detection of the RF signal's amplitude and phase is fundamental to LLRF controls. High-speed ADC (Analog to Digital Converter), DAC (Digital to Analog Converter) and FPGA (Field Programmable Gate Array) play very important roles in digital LLRF control systems. This paper describes the implementation of real-time amplitude and phase detection based of the FPGA with an analysis of the main factors that affect the detection accuracy such as jitter, algorithm's defects and non-linearity of devices, which is helpful for future work on high precision detection and control.

  1. Einstein-Yang-Mills from pure Yang-Mills amplitudes

    CERN Document Server

    Nandan, Dhritiman; Schlotterer, Oliver; Wen, Congkao

    2016-01-01

    We present new relations for scattering amplitudes of color ordered gluons and gravitons in Einstein-Yang-Mills theory. Tree-level amplitudes of arbitrary multiplicities and polarizations involving up to three gravitons and up to two color traces are reduced to partial amplitudes of pure Yang-Mills theory. In fact, the double-trace identities apply to Einstein-Yang-Mills extended by a dilaton and a B-field. Our results generalize recent work of Stieberger and Taylor for the single graviton case with a single color trace. As the derivation is made in the dimension-agnostic Cachazo-He-Yuan formalism, our results are valid for external bosons in any number of spacetime dimensions. Moreover, they generalize to the superamplitudes in theories with 16 supercharges.

  2. Amplitude Noise Reduction of Ion Lasers with Optical Feedback

    Science.gov (United States)

    Herring, Gregory C.

    2011-01-01

    A reduction in amplitude noise on the output of a multi-mode continuous-wave Ar-ion laser was previously demonstrated when a fraction of the output power was retroreflected back into the laser cavity. This result was reproduced in the present work and a Fabry-Perot etalon was used to monitor the longitudinal mode structure of the laser. A decrease in the number of operating longitudinal cavity modes was observed simultaneously with the introduction of the optical feedback and the onset of the amplitude noise reduction. The noise reduction is a result of a reduced number of lasing modes, resulting in less mode beating and amplitude fluctuations of the laser output power.

  3. Second-order amplitudes in loop quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Mamone, Davide; Rovelli, Carlo, E-mail: rovelli@cpt.univ-mrs.f [Centre de Physique Theorique de Luminy, Case 907, F-13288 Marseille (France)

    2009-12-21

    We explore some second-order amplitudes in loop quantum gravity. In particular, we compute some second-order contributions to diagonal components of the graviton propagator in the large distance limit, using the old version of the Barrett-Crane vertex amplitude. We illustrate the geometry associated with these terms. We find some peculiar phenomena in the large distance behavior of these amplitudes, related to the geometry of the generalized triangulations dual to the Feynman graphs of the corresponding group field theory. In particular, we point out a possible further difficulty with the old Barrett-Crane vertex: it appears to lead to flatness instead of Ricci flatness, at least in some situations. The observation raises the question whether this difficulty remains with the new version of the vertex.

  4. The influence of fluid properties and pulse amplitude on bubble dynamics in the field of a shock wave lithotripter.

    Science.gov (United States)

    Choi, M J; Coleman, A J; Saunders, J E

    1993-11-01

    This study concerns the radial dynamics of a bubble driven by pulsed ultrasound of the type generated during extracorporeal shock wave lithotripsy. In particular, a numerical model has been used to examine the sensitivity of the bubble oscillations to changes in both the amplitude of the driving field and the physical conditions of the fluid surrounding the bubble: viscosity, surface tension, temperature and gas content. It is shown that, at high negative pressures (p- = 10 MPa) as in lithotripsy, the timing and amplitude of bubble collapses have a considerably reduced sensitivity to the initial bubble size and all fluid parameters, except gas content, compared with those expected in lower-amplitude fields (p- = 0.2 MPa). This study indicates that, in the lithotripsy fields, the differences in the viscosity, surface tension and temperature of body fluids and the initial bubble size will have little effect on bubble dynamics compared with those expected in water.

  5. Controlling the amplitude of soliton in a growing Bose–Einstein condensate by means of Feshbach resonance

    International Nuclear Information System (INIS)

    By using Darboux transformation, this paper studies analytically the nonlinear dynamics of a one-dimensional growing Bose–Einstein condensate (BEC). It is shown that the growing model has an important effect on the amplitude of the soliton in the condensates. In the absence of the growing model, there exhibits the stable alternate bright solitons in the condensates. In the presence of the growing model, the obtained results show that the amplitude of the bright soliton decreases (increases) for the BEC growing coefficient Ω 0). Furthermore, we propose experimental protocols to manipulate the amplitude of the bright soliton by varying the scattering length via the Feshbach resonance in the future experiment. (nuclear physics)

  6. From QCD to Physical Resonances

    CERN Document Server

    Bolton, Daniel R; Wilson, David J

    2016-01-01

    In this talk, we present the first chiral extrapolation of a resonant scattering amplitude obtained from lattice QCD. Finite-volume spectra, determined by the Hadron Spectrum Collaboration at $m_\\pi = 236$ MeV, for the isotriplet $\\pi\\pi$ channel are analyzed using the L\\"uscher method to determine the infinite-volume scattering amplitude. Unitarized Chiral Perturbation Theory is then used to extrapolate the scattering amplitude to the physical light quark masses. The viability of this procedure is demonstrated by its agreement with the experimentally determined scattering phase shift up to center-of-mass energies of 1.2 GeV. Finally, we analytically continue the amplitude to the complex plane to obtain the $\\rho$-pole at $\\left[755(2)(1)\\left({}^{20}_{02}\\right) - \\frac{i}{2} 129(3)(1)\\left({}^7_1\\right)\\right]$ MeV.

  7. From QCD to physical resonances

    Science.gov (United States)

    Bolton, Daniel R.; Briceño, Raúl A.; Wilson, David J.

    2016-05-01

    In this talk, we present the first chiral extrapolation of a resonant scattering amplitude obtained from lattice QCD. Finite-volume spectra, determined by the Hadron Spectrum Collaboration at mπ = 236 MeV [1], for the isotriplet ππ channel are analyzed using the Lüscher method to determine the infinite-volume scattering amplitude. Unitarized Chiral Perturbation Theory is then used to extrapolate the scattering amplitude to the physical light quark masses. The viability of this procedure is demonstrated by its agreement with the experimentally determined scattering phase shift up to center-of-mass energies of 1.2 GeV. Finally, we analytically continue the amplitude to the complex plane to obtain the ρ-pole at [ 755 (2 )(1 )(02 20 ) -i/2 129 (3 )(1 )(1 7 ) ] MeV.

  8. Decadal amplitude modulation of two types of ENSO and its relationship with the mean state

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung; An, Soon-Il [Yonsei University, Department of Atmospheric Sciences, Global Environmental Laboratory, Seoul (Korea, Republic of); Yeh, Sang-Wook [Hanyang University, Department of Environmental Marine Science, Ansan (Korea, Republic of)

    2012-06-15

    In this study, we classified two types of El Nino-Southern Oscillation (ENSO) events within the decadal ENSO amplitude modulation cycle using a long-term coupled general circulation model simulation. We defined two climate states - strong and weak ENSO amplitude periods - and separated the characteristics of ENSO that occurred in both periods. There are two major features in the characteristics of ENSO: the first is the asymmetric spatial structure between El Nino and La Nina events; the second is that the El Nino-La Nina asymmetry is reversed during strong and weak ENSO amplitude periods. El Nino events during strong (weak) ENSO amplitude periods resemble the Eastern Pacific (Central Pacific) El Nino in terms of the spatial distribution of sea surface temperature anomalies (SSTA) and physical characteristics based on heat budget analysis. The spatial pattern of the thermocline depth anomaly for strong (weak) El Nino is identical to that for weak (strong) La Nina, but for an opposite sign and slightly different amplitude. The accumulated residuals of these asymmetric anomalies dominated by an east-west contrast structure could feed into the tropical Pacific mean state. Moreover, the residual pattern associated with El Nino-La Nina asymmetry resembles the first principal component analysis (PCA) mode of tropical Pacific decadal variability, indicating that the accumulated residuals could generate the change in climate state. Thus, the intensified ENSO amplitude yields the warm residuals due to strong El Nino and weak La Nina over the eastern tropical Pacific. This linear relationship between ENSO and the mean state is strong during the mature phases of decadal oscillation, but it is weak during the transition phases. Furthermore, the second PCA mode of tropical Pacific decadal variability plays an important role in changing the phase of the first mode. Consequently, the feedback between ENSO and the mean state is positive feedback to amplify the first PCA mode

  9. Analysis of amplitude spectra with overlapping peaks from scintillation detectors

    International Nuclear Information System (INIS)

    A technique is proposed for resolution of overlapping peaks in amplitude spectra obtained by scintillation detectors. Based on the technique, a program was developed and is being used in practical measurements at Kozloduy NPP. The program works in environment of MathCAD, version 2, of the firm MathSoft, Inc. As regards the handling of amplitude spectra, a software emulation on an multichannel analyzer with a personal computer was developed. The language used for program emulation is QuickBASIC, version 4.0 of the firm Microsoft Corp. (author)

  10. From maximal to minimal supersymmetry in string loop amplitudes

    CERN Document Server

    Berg, Marcus; Schlotterer, Oliver

    2016-01-01

    We calculate one-loop string amplitudes of open and closed strings with N=1,2,4 supersymmetry in four and six dimensions, by compactification on Calabi-Yau and K3 orbifolds. In particular, we develop a method to combine contributions from all spin structures for arbitrary number of legs at minimal supersymmetry. Each amplitude is cast into a compact form by reorganizing the kinematic building blocks and casting the worldsheet integrals in a basis. Infrared regularization plays an important role to exhibit the expected factorization limits. We comment on implications for the one-loop string effective action.

  11. Light-cone distribution amplitudes of the baryon octet

    CERN Document Server

    Bali, Gunnar S; Göckeler, Meinulf; Gruber, Michael; Hutzler, Fabian; Schäfer, Andreas; Simeth, Jakob; Söldner, Wolfgang; Sternbeck, Andre; Wein, Philipp

    2015-01-01

    We present results of the first ab initio lattice QCD calculation of the normalization constants and first moments of the leading twist distribution amplitudes of the full baryon octet, corresponding to the small transverse distance limit of the associated S-wave light-cone wave functions. The P-wave (higher twist) normalization constants are evaluated as well. The calculation is done using $N_f=2+1$ flavors of dynamical (clover) fermions on lattices of different volumes and pion masses down to 222 MeV. Significant SU(3) flavor symmetry violation effects in the shape of the distribution amplitudes are observed.

  12. Lorentzian spin foam amplitudes: graphical calculus and asymptotics

    International Nuclear Information System (INIS)

    The amplitude for the 4-simplex in a spin foam model for quantum gravity is defined using a graphical calculus for the unitary representations of the Lorentz group. The asymptotics of this amplitude are studied in the limit when the representation parameters are large, for various cases of boundary data. It is shown that for boundary data corresponding to a Lorentzian simplex, the asymptotic formula has two terms, with phase plus or minus the Lorentzian signature Regge action for the 4-simplex geometry, multiplied by an Immirzi parameter. Other cases of boundary data are also considered, including a surprising contribution from Euclidean signature metrics.

  13. Four-Derivative Brane Couplings from String Amplitudes

    CERN Document Server

    Becker, Katrin; Robbins, Daniel

    2011-01-01

    We evaluate the string theory disc amplitude of one Ramond-Ramond field C^(p-3) and two Neveu-Schwarz B-fields in the presence of a single Dp-brane in type II string theory. From this amplitude we extract the four-derivative (or equivalently order (alpha')^2) part of the Dp-brane action involving these fields. We show that the new couplings are invariant under R-R and NS-NS gauge transformations and compatible with linear T-duality.

  14. Three-Point Disc Amplitudes in the RNS Formalism

    CERN Document Server

    Becker, Katrin; Robbins, Daniel; Su, Ning

    2016-01-01

    We calculate all tree level string theory vacuum to Dp-brane disc amplitudes involving an arbitrary RR-state and two NS-NS vertex operators. This computation was earlier performed by K. Becker, Guo, and Robbins for the simplest case of a RR-state of type C_{p-3}. Here we use the aid of a computer to calculate all possible three-point amplitudes involving a RR-vertex operator of type C_{p+1+2k}.

  15. A class of amplitude modulating and invisible inhomogeneous media

    CERN Document Server

    Vial, Benjamin; Horsley, Simon A R; Philbin, Thomas G; Hao, Yang

    2016-01-01

    We propose a general method to arbitrarily manipulate the amplitude of an electromagnetic wave propagating in a two-dimensional medium, without introducing any scattering. This leads to a whole class of isotropic spatially varying permittivity and permeability profiles that are invisible while shaping the field magnitude. In addition, we propose a metamaterial structure working in the infrared that demonstrates deep sub-wavelength control of the electric field amplitude and strong reduction of the scattering. This work offers an alternative strategy to achieve invisibility with isotropic materials and paves the way for tailoring the propagation of light at the nanoscale.

  16. Measuring the local pressure amplitude in microchannel acoustophoresis

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Laurell, Thomas;

    2010-01-01

    A new method is reported on how to measure the local pressure amplitude and the Q factor of ultrasound resonances in microfluidic chips designed for acoustophoresis of particle suspensions. The method relies on tracking individual polystyrene tracer microbeads in straight water-filled silicon...... of the microbeads. From the curve fits we obtain the acoustic energy density, and hence the pressure amplitude as well as the acoustophoretic force. By plotting the obtained energy densities as a function of applied frequency, we obtain Lorentzian line shapes, from which the resonance frequency and the Q factor...

  17. Finite Amplitude Electron Plasma Waves in a Cylindrical Waveguide

    DEFF Research Database (Denmark)

    Juul Rasmussen, Jens

    1978-01-01

    the long-time slow modulation of the wave amplitude. From this equation the amplitude-dependent frequency and wavenumber shifts are calculated, and it is found that the electron waves with short wavelengths are modulationally unstable with respect to long-wavelength, low-frequency perturbations......The nonlinear behaviour of the electron plasma wave propagating in a cylindrical plasma waveguide immersed in an infinite axial magnetic field is investigated using the Krylov-Bogoliubov-Mitropolsky perturbation method, by means of which is deduced the nonlinear Schrodinger equation governing...

  18. Double collinear splitting amplitudes at next-to-leading order

    International Nuclear Information System (INIS)

    We compute the next-to-leading order (NLO) QCD corrections to the 1→2 splitting amplitudes in different dimensional regularization (DREG) schemes. Besides recovering previously known results, we explore new DREG schemes and analyze their consistency by comparing the divergent structure with the expected behavior predicted by Catani’s formula. Through the introduction of scalar-gluons, we show the relation among splittings matrices computed using different schemes. Also, we extended this analysis to cover the double collinear limit of scattering amplitudes in the context of QCD+QED

  19. Fatique of Copper Polycrystals at Low Plastic Strain Amplitudes

    DEFF Research Database (Denmark)

    Rasmussen, K. V.; Pedersen, Ole Bøcker

    1980-01-01

    microstructures were examined by transmission electron microscopy. The microstructure and mechanical behaviour observed for the single crystals are in close quantitative agreement with comparable existing fatigue data. The cyclic stress-strain curve of the polycrystals shows a plateau in a linear plot of the...... saturation stress versus the plastic strain amplitude. The area fraction of PSB's on the polycrystals increases roughly linearly with the plastic strain amplitude. The dislocation microstructure in bulk grains consists of regular wall structures embedded in a matrix of less regular structures. A Sachs type...

  20. Radiative corrections to chiral amplitudes in quasiperipheral kinematics

    CERN Document Server

    Bytev, V; Galynsky, M V; Kuraev, E A

    2005-01-01

    Chiral amplitudes for quasi-peripheral processes are calculated in Born and one loop corrections level. Amplitudes of subprocess describing interaction of virtual photon and real photon with creation of the charged fermion pair for various chiral states are considered in details. The similar results are presented for Compton subprocess with virtual photon. Contribution of emission of virtual, soft and hard real additional photons was taken into account explicitly. The relevant cross sections expressed in terms of impact factors are in agreement with structure functions approach in leading logarithmical approximation Contributions of next to leading terms are presented in analytical form. Accuracy estimation is discussed.

  1. Recovering Infinities in Graviton Scattering Amplitudes using Cutkosky rules

    OpenAIRE

    Norridge, Paul S.

    1996-01-01

    We use the Cutkosky rules as a tool for determining the infinities present in graviton scattering amplitudes. We are able to confirm theoretical derivations of counterterms in Einstein-Maxwell theory and to determine new results in the Dirac-Einstein counter-Lagrangian.

  2. Gauge independence of transition amplitudes in quantum electrodynamics

    International Nuclear Information System (INIS)

    Gauge independence of transition amplitudes in quantum electrodynamics is proved in the framework of covariant quantum electrodynamics exploited by Yokoyama. A systematic law of gauge transformation is given for general Green functions in QED. Gauge independence of the wave-function renormalization constant Z2 is also discussed to some extent. (author)

  3. Large Amplitude Oscillatory Extension of Soft Polymeric Networks

    DEFF Research Database (Denmark)

    Bejenariu, Anca Gabriela; Rasmussen, Henrik K.; Skov, Anne Ladegaard;

    2010-01-01

    sing a filament stretching rheometer (FSR) surrounded by a thermostatic chamber and equipped with a micrometric laser it is possible to measure large amplitude oscillatory elongation (LAOE) on elastomeric based networks with no base flow as in the LAOE method for polymer melts. Poly...

  4. The sunrise amplitude equation applied to an Egyptian temple

    CERN Document Server

    Sparavigna, Amelia Carolina

    2012-01-01

    An equation, fundamental for solar energy applications, can be used to determine the sunrise amplitude at given latitude. It is therefore suitable for being applied to archaeoastronomical calculations concerning the orientation of towns, worship places and buildings. Here it is discussed the case of the Great Temple of Amarna, Egypt, oriented toward the sunrise on the winter solstice.

  5. Path integral approach to the quantum fidelity amplitude.

    Science.gov (United States)

    Vaníček, Jiří; Cohen, Doron

    2016-06-13

    The Loschmidt echo is a measure of quantum irreversibility and is determined by the fidelity amplitude of an imperfect time-reversal protocol. Fidelity amplitude plays an important role both in the foundations of quantum mechanics and in its applications, such as time-resolved electronic spectroscopy. We derive an exact path integral formula for the fidelity amplitude and use it to obtain a series of increasingly accurate semiclassical approximations by truncating an exact expansion of the path integral exponent. While the zeroth-order expansion results in a remarkably simple, yet non-trivial approximation for the fidelity amplitude, the first-order expansion yields an alternative derivation of the so-called 'dephasing representation,' circumventing the use of a semiclassical propagator as in the original derivation. We also obtain an approximate expression for fidelity based on the second-order expansion, which resolves several shortcomings of the dephasing representation. The rigorous derivation from the path integral permits the identification of sufficient conditions under which various approximations obtained become exact. PMID:27140973

  6. Path integral approach to the quantum fidelity amplitude

    Science.gov (United States)

    2016-01-01

    The Loschmidt echo is a measure of quantum irreversibility and is determined by the fidelity amplitude of an imperfect time-reversal protocol. Fidelity amplitude plays an important role both in the foundations of quantum mechanics and in its applications, such as time-resolved electronic spectroscopy. We derive an exact path integral formula for the fidelity amplitude and use it to obtain a series of increasingly accurate semiclassical approximations by truncating an exact expansion of the path integral exponent. While the zeroth-order expansion results in a remarkably simple, yet non-trivial approximation for the fidelity amplitude, the first-order expansion yields an alternative derivation of the so-called ‘dephasing representation,’ circumventing the use of a semiclassical propagator as in the original derivation. We also obtain an approximate expression for fidelity based on the second-order expansion, which resolves several shortcomings of the dephasing representation. The rigorous derivation from the path integral permits the identification of sufficient conditions under which various approximations obtained become exact. PMID:27140973

  7. Nonlinear Saturation Amplitude in Classical Planar Richtmyer-Meshkov Instability

    Science.gov (United States)

    Liu, Wan-Hai; Wang, Xiang; Jiang, Hong-Bin; Ma, Wen-Fang

    2016-04-01

    The classical planar Richtmyer-Meshkov instability (RMI) at a fluid interface supported by a constant pressure is investigated by a formal perturbation expansion up to the third order, and then according to definition of nonlinear saturation amplitude (NSA) in Rayleigh-Taylor instability (RTI), the NSA in planar RMI is obtained explicitly. It is found that the NSA in planar RMI is affected by the initial perturbation wavelength and the initial amplitude of the interface, while the effect of the initial amplitude of the interface on the NSA is less than that of the initial perturbation wavelength. Without marginal influence of the initial amplitude, the NSA increases linearly with wavelength. The NSA normalized by the wavelength in planar RMI is about 0.11, larger than that corresponding to RTI. Supported by the National Natural Science Foundation of China under Grant Nos. 11472278 and 11372330, the Scientific Research Foundation of Education Department of Sichuan Province under Grant No. 15ZA0296, the Scientific Research Foundation of Mianyang Normal University under Grant Nos. QD2014A009 and 2014A02, and the National High-Tech ICF Committee

  8. Analytical synthesis technique for linear uniform‐amplitude sparse arrays

    NARCIS (Netherlands)

    Caratelli, D.; Viganó, M.C.

    2011-01-01

    A novel analytical approach to the synthesis of linear sparse arrays with uniform‐amplitude excitation is presented and thoroughly discussed in this paper. The proposed technique, based on the auxiliary array factor concept, is aimed at the deterministic determination of the optimal array element de

  9. Haptic discrimination of stimuli varying in amplitude and width

    NARCIS (Netherlands)

    Louw, S.; Kappers, A.M.L.; Koenderink, J.J.

    2002-01-01

    We studied active haptic discrimination of the geometrical features of an object. The geometrical parameters under investigation were the amplitude and width of a gaussian-shaped surface. Haptic discrimination thresholds were measured with regard to three values of these geometrical parameters. We f

  10. Precise Radial Velocities of Polaris: Detection of Amplitude Growth

    CERN Document Server

    Lee, Byeong-Cheol; Han, Inwoo; Park, Myeong-Gu; Kim, Kang-Min

    2008-01-01

    We present a first results from a long-term program of a radial velocity study of Cepheid Polaris (F7 Ib) aimed to find amplitude and period of pulsations and nature of secondary periodicities. 264 new precise radial velocity measurements were obtained during 2004-2007 with the fiber-fed echelle spectrograph Bohyunsan Observatory Echelle Spectrograph (BOES) of 1.8m telescope at Bohyunsan Optical Astronomy Observatory (BOAO) in Korea. We find a pulsational radial velocity amplitude and period of Polaris for three seasons of 2005.183, 2006.360, and 2007.349 as 2K = 2.210 +/- 0.048 km/s, 2K = 2.080 +/- 0.042 km/s, and 2K = 2.406 +/- 0.018 km/s respectively, indicating that the pulsational amplitudes of Polaris that had decayed during the last century is now increasing rapidly. The pulsational period was found to be increasing too. This is the first detection of a historical turnaround of pulsational amplitude change in Cepheids. We clearly find the presence of additional radial velocity variations on a time scal...

  11. Displaced phase-amplitude variables for waves on finite background

    NARCIS (Netherlands)

    Groesen, van E.; Andonowati,; Karjanto, N.

    2006-01-01

    Wave amplification in nonlinear dispersive wave equations may be caused by nonlinear focussing of waves from a certain background. In the model of nonlinear Schrödinger equation we will introduce a transformation to displaced phase-amplitude variables with respect to a background of monochromatic wa

  12. The Scattering amplitude for Newly found exactly solvable Potential

    OpenAIRE

    Yadav, Rajesh Kumar; Khare, Avinash; Mandal, Bhabani Prasad

    2012-01-01

    The scattering amplitude for the recently discovered exactly solvable shape invariant potential, which is isospectral to the generalized P\\"oschl-Taylor potential, is calculated explicitly by considering the asymptotic behavior of the $X_{1}$ Jacobi exceptional polynomials associated with this system.

  13. Forward scattering amplitude of the virtual longitudinal photon in QED

    OpenAIRE

    Samsonov, A. V.

    1997-01-01

    Forward scattering amplitude of the virtual longitudinal photon at zero energy on electron in QED in the limit of small photon virtualities is calculated. The first radiation corrections are taken into account. Two terms in the expansion over photon virtualities are obtained.

  14. One-loop corrections from higher dimensional tree amplitudes

    Science.gov (United States)

    Cachazo, Freddy; He, Song; Yuan, Ellis Ye

    2016-08-01

    We show how one-loop corrections to scattering amplitudes of scalars and gauge bosons can be obtained from tree amplitudes in one higher dimension. Starting with a complete tree-level scattering amplitude of n + 2 particles in five dimensions, one assumes that two of them cannot be "detected" and therefore an integration over their LIPS is carried out. The resulting object, function of the remaining n particles, is taken to be four-dimensional by restricting the corresponding momenta. We perform this procedure in the context of the tree-level CHY formulation of amplitudes. The scattering equations obtained in the procedure coincide with those derived by Geyer et al. from ambitwistor constructions and recently studied by two of the authors for bi-adjoint scalars. They have two sectors of solutions: regular and singular. We prove that the contribution from regular solutions generically gives rise to unphysical poles. However, using a BCFW argument we prove that the unphysical contributions are always homogeneous functions of the loop momentum and can be discarded. We also show that the contribution from singular solutions turns out to be homogeneous as well.

  15. One-Loop Corrections from Higher Dimensional Tree Amplitudes

    CERN Document Server

    Cachazo, Freddy; Yuan, Ellis Ye

    2015-01-01

    We show how one-loop corrections to scattering amplitudes of scalars and gauge bosons can be obtained from tree amplitudes in one higher dimension. Starting with a complete tree-level scattering amplitude of n+2 particles in five dimensions, one assumes that two of them cannot be "detected" and therefore an integration over their LIPS is carried out. The resulting object, function of the remaining n particles, is taken to be four-dimensional by restricting the corresponding momenta. We perform this procedure in the context of the tree-level CHY formulation of amplitudes. The scattering equations obtained in the procedure coincide with those derived by Geyer et al from ambitwistor constructions and recently studied by two of the authors for bi-adjoint scalars. They have two sectors of solutions: regular and singular. We prove that the contribution from regular solutions generically gives rise to unphysical poles. However, using a BCFW argument we prove that the unphysical contributions are always homogeneous f...

  16. Nonlinear Saturation Amplitude in Classical Planar Richtmyer–Meshkov Instability

    Science.gov (United States)

    Wan-Hai, Liu; Xiang, Wang; Hong-Bin, Jiang; Wen-Fang, Ma

    2016-04-01

    The classical planar Richtmyer–Meshkov instability (RMI) at a fluid interface supported by a constant pressure is investigated by a formal perturbation expansion up to the third order, and then according to definition of nonlinear saturation amplitude (NSA) in Rayleigh–Taylor instability (RTI), the NSA in planar RMI is obtained explicitly. It is found that the NSA in planar RMI is affected by the initial perturbation wavelength and the initial amplitude of the interface, while the effect of the initial amplitude of the interface on the NSA is less than that of the initial perturbation wavelength. Without marginal influence of the initial amplitude, the NSA increases linearly with wavelength. The NSA normalized by the wavelength in planar RMI is about 0.11, larger than that corresponding to RTI. Supported by the National Natural Science Foundation of China under Grant Nos. 11472278 and 11372330, the Scientific Research Foundation of Education Department of Sichuan Province under Grant No. 15ZA0296, the Scientific Research Foundation of Mianyang Normal University under Grant Nos. QD2014A009 and 2014A02, and the National High-Tech ICF Committee

  17. An Amplitude Spectral Capon Estimator with a Variable Filter Length

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Smaragdis, Paris; Christensen, Mads Græsbøll;

    2012-01-01

    The filter bank methods have been a popular non-parametric way of computing the complex amplitude spectrum. So far, the length of the filters in these filter banks has been set to some constant value independently of the data. In this paper, we take the first step towards considering the filter...

  18. The accretion rate dependence of burst oscillation amplitude

    CERN Document Server

    Ootes, Laura S; Galloway, Duncan K; Wijnands, Rudy

    2016-01-01

    Neutron stars in low mass X-ray binaries exhibit oscillations during thermonuclear bursts, attributed to asymmetric brightness patterns on the burning surfaces. All models that have been proposed to explain the origin of these asymmetries (spreading hotspots, surface waves, and cooling wakes) depend on the accretion rate. By analysis of archival RXTE data of six oscillation sources, we investigate the accretion rate dependence of the amplitude of burst oscillations. This more than doubles the size of the sample analysed previously by Muno et al. (2004), who found indications for a relationship between accretion rate and oscillation amplitudes. We find that burst oscillation signals can be detected at all observed accretion rates. Moreover, oscillations at low accretion rates are found to have relatively small amplitudes ($A_\\text{rms}\\leq0.10$) while oscillations detected in bursts observed at high accretion rates cover a broad spread in amplitudes ($0.05\\leq A_\\text{rms}\\leq0.20$). In this paper we present t...

  19. The status of the planar transverse amplitude phase pattern

    International Nuclear Information System (INIS)

    In this paper the evidence is reviewed in favor of the existence of a pattern in strong interaction processes in which the reaction amplitudes in an optimal frame in which the quantization directions are perpendicular to the helicity direction but are in the reaction plane have relative phases which are multiples of 90 degrees

  20. Planar-transverse amplitude-phase pattern in nonelastic reactions

    International Nuclear Information System (INIS)

    The first evidence is presented that the phase pattern of the planar-transverse optimal reaction amplitudes found previously for elastic-scattering strong-interaction reactions also holds for nonelastic reactions. The pattern is observed in the reaction p+p→d+π in the energy range between 300 and 800 MeV

  1. Planar-transverse amplitude-phase pattern in nonelastic reactions

    Science.gov (United States)

    Arash, Firooz; Moravcsik, Michael J.; Goldstein, Gary R.; Bugg, David V.

    1989-01-01

    The first evidence is presented that the phase pattern of the planar-transverse optimal reaction amplitudes found previously for elastic-scattering strong-interaction reactions also holds for nonelastic reactions. The pattern is observed in the reaction p+p-->d+π in the energy range between 300 and 800 MeV.

  2. Mirror symmetry, toric branes and topological string amplitudes as polynomials

    International Nuclear Information System (INIS)

    The central theme of this thesis is the extension and application of mirror symmetry of topological string theory. The contribution of this work on the mathematical side is given by interpreting the calculated partition functions as generating functions for mathematical invariants which are extracted in various examples. Furthermore the extension of the variation of the vacuum bundle to include D-branes on compact geometries is studied. Based on previous work for non-compact geometries a system of differential equations is derived which allows to extend the mirror map to the deformation spaces of the D-Branes. Furthermore, these equations allow the computation of the full quantum corrected superpotentials which are induced by the D-branes. Based on the holomorphic anomaly equation, which describes the background dependence of topological string theory relating recursively loop amplitudes, this work generalizes a polynomial construction of the loop amplitudes, which was found for manifolds with a one dimensional space of deformations, to arbitrary target manifolds with arbitrary dimension of the deformation space. The polynomial generators are determined and it is proven that the higher loop amplitudes are polynomials of a certain degree in the generators. Furthermore, the polynomial construction is generalized to solve the extension of the holomorphic anomaly equation to D-branes without deformation space. This method is applied to calculate higher loop amplitudes in numerous examples and the mathematical invariants are extracted. (orig.)

  3. Statistical amplitude scale estimation for quantization-based watermarking

    NARCIS (Netherlands)

    Shterev, I.D.; Lagendijk, I.L.; Heusdens, R.

    2004-01-01

    Quantization-based watermarking schemes are vulnerable to amplitude scaling. Therefore the scaling factor has to be accounted for either at the encoder, or at the decoder, prior to watermark decoding. In this paper we derive the marginal probability density model for the watermarked and attacked dat

  4. Local integrands for two-loop QCD amplitudes

    CERN Document Server

    Badger, Simon; Peraro, Tiziano

    2016-01-01

    In this talk we review the recent computation of the five- and six-gluon two-loop amplitudes in Yang-Mills theory using local integrands which make the infrared pole structure manifest. We make some remarks on the connection with BCJ relations and the all-multiplicity structure.

  5. Radial convection of finite ion temperature, high amplitude plasma blobs

    DEFF Research Database (Denmark)

    Wiesenberger, M.; Madsen, Jens; Kendl, Alexander

    2014-01-01

    We present results from simulations of seeded blob convection in the scrape-off-layer of magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is in line...

  6. Contextual Modulation of N400 Amplitude to Lexically Ambiguous Words

    Science.gov (United States)

    Titone, Debra A.; Salisbury, Dean F.

    2004-01-01

    Through much is known about the N400 component, an event-related EEG potential that is sensitive to semantic manipulations, it is unclear whether modulations of N400 amplitude reflect automatic processing, controlled processing, or both. We examined this issue using a semantic judgment task that manipulated local and global contextual cues. Word…

  7. Simulation of transients of high amplitude in pipe systems

    NARCIS (Netherlands)

    Boersma, J.M.; Looijmans, K.N.H.

    1999-01-01

    Fast high-amplitude transients ask for a non-linear modelling approach in which large density variations and heat exchange can be considered. Operation of safety-valves, relief valves, the occurrence of valve failure and the start-up or shutdown of rotating equipment in industrial pipe systems can l

  8. Amplitude analysis of D0->K+K-pi+pi-

    CERN Document Server

    Artuso, M; Mountain, R; Skwarnicki, T; Stone, S; Zhang, L M; Gershon, T; Bonvicini, G; Cinabro, D; Lincoln, A; Smith, M J; Zhou, P; Zhu, J; Naik, P; Rademacker, J; Asner, D M; Edwards, K W; Randrianarivony, K; Tatishvili, G; Briere, R A; Vogel, H; Onyisi, P U E; Rosner, J L; Alexander, J P; Cassel, D G; Das, S; Ehrlich, R; Gibbons, L; Gray, S W; Hartill, D L; Heltsley, B K; Kreinick, D L; Kuznetsov, V E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Sun, W M; Yelton, J; Rubin, P; Lowrey, N; Mehrabyan, S; Selen, M; Wiss, J; Libby, J; Kornicer, M; Mitchell, R E; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Hietala, J; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Xiao, T; Martin, L; Powell, A; Spradlin, P; Wilkinson, G; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Napolitano, J; Ecklund, K M; Insler, J; Muramatsu, H; Park, C S; Pearson, L J; Thorndike, E H; Ricciardi, S; Thomas, C

    2012-01-01

    The first flavor-tagged amplitude analysis of the decay D0 to the self-conjugate final state K+K-pi+pi- is presented. Data from the CLEO II.V, CLEO III, and CLEO-c detectors are used, from which around 3000 signal decays are selected. The three most significant amplitudes, which contribute to the model that best fits the data, are phirho0, K1(1270)+-K-+, and non-resonant K+K-pi+pi-. Separate amplitude analyses of D0 and D0-bar candidates indicate no CP violation among the amplitudes at the level of 5% to 30% depending on the mode. In addition, the sensitivity to the CP-violating parameter gamma/phi3 of a sample of 2000 B+ -> D0-tilde(K+K-pi+pi-)K+ decays, where D0-tilde is a D0 or D0-bar, collected at LHCb or a future flavor facility, is estimated to be (11.3 +/- 0.3) degrees using the favored model.

  9. Quantum Corrections to Scattering Amplitude in Conical Space-time

    CERN Document Server

    Shiraishi, Kiyoshi

    2015-01-01

    It is known that the vacuum polarization of zero-point field arises around a conical singularity generated by an infinite, straight cosmic string. In this paper we study quantum electromagnetic corrections to the gravitational Aharonov-Bohm effect around a cosmic string. We find the scattering amplitude from a conical defect for charged Klein-Gordon field.

  10. Investigating the amplitude of interactive footstep sounds and soundscape reproduction

    DEFF Research Database (Denmark)

    Turchet, Luca; Serafin, Stefania

    2013-01-01

    considered appropriate for different subjects while navigating in the acoustically-simulated environments. In order to answer such question, several experiments are run. Results show that subjects overall choose higher amplitudes when using sound delivery through headphones rather than speakers. The addition...

  11. Fundamental and second harmonic amplitudes in a collisional magnetoactive plasma

    Directory of Open Access Journals (Sweden)

    Jovanović B.M.

    2003-01-01

    Full Text Available We present a theoretical investigation of frequency doubling of electromagnetic wave in homogeneous, collisional and magnetized plasma. The coupled nonlinear equations for fundamental ordinary wave and second harmonic extraordinary wave have been solved. The amplitudes of these waves have been calculated for various values of collisional frequency and distance from the plasma boundary.

  12. Generalized string amplitude and wave equation for hadrons

    International Nuclear Information System (INIS)

    A gauge invariant Hamiltonian formulation of hadron dynamics involving a generalized string amplitude is proposed. Applied to the quark propagator, it yields a non-linear wave equation reflecting the shielding of the long range potential. The equation allows a solution consistent with the conventional notion of a spontaneous symmetry breaking. The solution also gives the pion wave function in the symmetry limit

  13. The Dynamics of Large-Amplitude Motion in Energized Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Perry, David S. [Univ. of Akron, OH (United States). Dept. of Chemistry

    2016-05-27

    Chemical reactions involve large-amplitude nuclear motion along the reaction coordinate that serves to distinguish reactants from products. Some reactions, such as roaming reactions and reactions proceeding through a loose transition state, involve more than one large-amplitude degree of freedom. Because of the limitation of exact quantum nuclear dynamics to small systems, one must, in general, define the active degrees of freedom and separate them in some way from the other degrees of freedom. In this project, we use large-amplitude motion in bound model systems to investigate the coupling of large-amplitude degrees of freedom to other nuclear degrees of freedom. This approach allows us to use the precision and power of high-resolution molecular spectroscopy to probe the specific coupling mechanisms involved, and to apply the associated theoretical tools. In addition to slit-jet spectra at the University of Akron, the current project period has involved collaboration with Michel Herman and Nathalie Vaeck of the Université Libre de Bruxelles, and with Brant Billinghurst at the Canadian Light Source (CLS).

  14. Path integral approach to the quantum fidelity amplitude.

    Science.gov (United States)

    Vaníček, Jiří; Cohen, Doron

    2016-06-13

    The Loschmidt echo is a measure of quantum irreversibility and is determined by the fidelity amplitude of an imperfect time-reversal protocol. Fidelity amplitude plays an important role both in the foundations of quantum mechanics and in its applications, such as time-resolved electronic spectroscopy. We derive an exact path integral formula for the fidelity amplitude and use it to obtain a series of increasingly accurate semiclassical approximations by truncating an exact expansion of the path integral exponent. While the zeroth-order expansion results in a remarkably simple, yet non-trivial approximation for the fidelity amplitude, the first-order expansion yields an alternative derivation of the so-called 'dephasing representation,' circumventing the use of a semiclassical propagator as in the original derivation. We also obtain an approximate expression for fidelity based on the second-order expansion, which resolves several shortcomings of the dephasing representation. The rigorous derivation from the path integral permits the identification of sufficient conditions under which various approximations obtained become exact.

  15. Mirror symmetry, toric branes and topological string amplitudes as polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Alim, Murad

    2009-07-13

    The central theme of this thesis is the extension and application of mirror symmetry of topological string theory. The contribution of this work on the mathematical side is given by interpreting the calculated partition functions as generating functions for mathematical invariants which are extracted in various examples. Furthermore the extension of the variation of the vacuum bundle to include D-branes on compact geometries is studied. Based on previous work for non-compact geometries a system of differential equations is derived which allows to extend the mirror map to the deformation spaces of the D-Branes. Furthermore, these equations allow the computation of the full quantum corrected superpotentials which are induced by the D-branes. Based on the holomorphic anomaly equation, which describes the background dependence of topological string theory relating recursively loop amplitudes, this work generalizes a polynomial construction of the loop amplitudes, which was found for manifolds with a one dimensional space of deformations, to arbitrary target manifolds with arbitrary dimension of the deformation space. The polynomial generators are determined and it is proven that the higher loop amplitudes are polynomials of a certain degree in the generators. Furthermore, the polynomial construction is generalized to solve the extension of the holomorphic anomaly equation to D-branes without deformation space. This method is applied to calculate higher loop amplitudes in numerous examples and the mathematical invariants are extracted. (orig.)

  16. Controlling Chaos in a Semiconductor Laser via Weak Optical Positive Feedback and Modulating Amplitude

    Institute of Scientific and Technical Information of China (English)

    YAN Sen-Lin

    2007-01-01

    Numerical analysis of weak optical positive feedback (OPF) controlling chaos is studied in a semiconductor laser.The physical model of controlling chaos produced via modulating the current of semiconductor laser is presented under the condition of OPF.We find the physical mechanism that the nonlinear gain coefficient and linewidth enhancement factor of the laser are affected by OPF so that the dynamical behaviour of the system can be efficiently controlled.Chaos is controlled into a single-periodic state,a dual-periodic state,a fri-periodic state,a quadr-periodic state,a pentaperiodic state,and the laser emitting powers are increased by OPF in simulations.Lastly,another chaos-control method with modulating the amplitude of the feedback light is presented and numerically simulated to control chaotic laser into multi-periodic states.

  17. Predicting amplitude of solar cycle 24 based on a new precursor method

    Directory of Open Access Journals (Sweden)

    A. Yoshida

    2010-02-01

    Full Text Available It is shown that the monthly smoothed sunspot number (SSN or its rate of decrease during the final years of a solar cycle is correlated with the amplitude of the succeeding cycle. Based on this relationship, the amplitude of solar cycle 24 is predicted to be 84.5±23.9, assuming that the monthly smoothed SSN reached its minimum in December 2008. It is further shown that the monthly SSN in the three-year period from 2006 through 2008 is well correlated with the monthly average of the intensity of the interplanetary magnetic field (IMF. This correlation indicates that the SSN in the final years of a solar cycle is a good proxy for the IMF, which is understood to reflect the magnetic field in the corona of the sun, and the IMF is expected to be smallest at the solar minimum. We believe that this finding illuminates a physical meaning underlying the well-known precursor method for forecasting the amplitude of the next solar cycle using the aa index at the solar minimum or its average value in the decaying phase of the solar cycle (e.g. Ohl, 1966, since it is known that the geomagnetic disturbance depends strongly on the intensity of the IMF. That is, the old empirical method is considered to be based on the fact that the intensity of the coronal magnetic field decreases in the late phase of a solar cycle in parallel with the SSN. It seems that the precursor method proposed by Schatten et al. (1978 and Svalgaard et al. (2005, which uses the intensity of the polar magnetic field of the sun several years before a solar minimum, is also based on the same physical phenomenon, but seen from a different angle.

  18. Scalar-field amplitudes in black-hole evaporation

    International Nuclear Information System (INIS)

    We consider the quantum-mechanical decay of a Schwarzschild-like black hole into almost-flat space and weak radiation at a very late time. That is, we are concerned with evaluating quantum amplitudes (not just probabilities) for transitions from initial to final states. In this quantum description, no information is lost because of the black hole. The Lagrangian is taken, in the first instance, to consist of the simplest locally supersymmetric generalization of Einstein gravity and a massless scalar field. The quantum amplitude to go from given initial to final bosonic data in a slightly complexified time-interval T=τexp(-iθ) at infinity may be approximated by the form constxexp(-I), where I is the (complex) Euclidean action of the classical solution filling in between the boundary data. Additionally, in a pure supergravity theory, the amplitude constxexp(-I) is exact. Suppose that Dirichlet boundary data for gravity and the scalar field are posed on an initial spacelike hypersurface extending to spatial infinity, just prior to collapse, and on a corresponding final spacelike surface, sufficiently far to the future of the initial surface to catch all the Hawking radiation. Only in an averaged sense will this radiation have an approximately spherically-symmetric distribution. If the time-interval T had been taken to be exactly real, then the resulting 'hyperbolic Dirichlet boundary-value problem' would, as is well known, not be well posed. Provided instead ('Euclidean strategy') that one takes T complex, as above (0<θ=<π/2), one expects that the field equations become strongly elliptic, and that there exists a unique solution to the classical boundary-value problem. Within this context, by expanding the bosonic part of the action to quadratic order in perturbations about the classical solution, one obtains the quantum amplitude for weak-field final configurations, up to normalization. Such amplitudes are here calculated for weak final scalar fields

  19. Observing rapid quasi-wave ionospheric disturbance using amplitude charts

    Science.gov (United States)

    Kurkin, Vladimir; Laryunin, Oleg; Podlesnyi, Alexey

    Data from vertical (quasi-vertical) sounding are traditionally used for determining a number of ionospheric parameters such as critical frequencies of E and F layers, peaks of these layers, and for reconstructing electron density profiles. In this respect, radio sounding is not used to its full capacity. Modern ionosondes provide additional information encoded in ionospheric echoes, including information on reflected-signal amplitude. The time dependence of the amplitude-frequency characteristic of reflected signal has been named "amplitude chart" (A-chart). Ionosondes used by the ISTP SB RAS Geophysical Observatory for constructing A-charts employ the frequency-modulated continuous-wave (FMCW) signal in a range 1.3-15 MHz. One-minute sounding interval allows a more detailed study of dynamic processes in the ionosphere. The ionosonde has a direct digital synthesizer and direct sampling receiver without automatic gain control (AGC). The absence of AGC and the high dynamic range enable determination of the relative field strength at a receiving point and registration of relative long-term variations in reflected-signal amplitude over the entire range of operating frequencies of the ionosonde. We have revealed that the passage of travelling ionospheric disturbances (TID) along with height-frequency distortion modulates amplitude characteristics of signal. The characteristic depth of the modulation reaches 40 dB. The pronounced alternate vertical stripes typical for A-charts are likely to be associated with focusing properties of TID. In order to examine the space-time structure of TID able to induce such a focusing of the radio waves, we performed ray tracing simulations. We used geometrical-optics approximation, took magneto-ionic effects into account and prescribed electron density to be a stratified electron density profile on which an undulating disturbance was superimposed. This work was supported by the RFBR grant №14-05-00259-а.

  20. Analytical parameters for amplitude-modulated multiplexed flow analysis.

    Science.gov (United States)

    Kurokawa, Yohei; Takeuchi, Masaki; Tanaka, Hideji

    2010-01-01

    Analytical conditions of amplitude-modulated multiplexed flow analysis, the basic concept of which was recently proposed by our group, are investigated for higher sample throughput rate. The performance of the improved system is evaluated by applying it to the determination of chloride ions. The flow rates of two sample solutions are independently varied in accordance with sinusoidal voltage signals, each having different frequency. The solutions are merged with a reagent solution and/or a diluent, while the total flow rate is held constant. Downstream, the analytical signal V(d) is monitored with a spectrophotometer. The V(d) shows a complicated profile resulting from amplitude modulated and multiplexed information on the two samples. The V(d) can, however, be deconvoluted to the contribution of each sample through fast Fourier transform (FFT). The amplitudes of the separated wave components are closely related to the concentrations of the analytes in the samples. By moving the window for FFT analysis with time, a temporal profile of the amplitudes can be obtained in real-time. Analytical conditions such as modulation period and system configuration have been optimized using aqueous solutions of Malachite Green (MG). Adequate amplitudes are obtained at the period of as low as 5 s. At this period, the calibration curve for the MG concentration of 0-30 micromol dm(-3) has enough linearity (r(2) = 0.999) and the limit of detection (3.3sigma) is 1.3 micromol dm(-3); the relative standard deviation of repeated measurements (C(MG) = 15 micromol dm(-3), n = 10) is 2.4%. The developed system has been applied to the determination of chloride ions by a mercury(II) thiocyanate method. The system can adequately follow the changes in analyte concentration. The recoveries of chloride ion spiked in real water samples (river and tap water) are satisfactory, around 100%. PMID:20631441

  1. Volumetric imaging with an amplitude-steered array.

    Science.gov (United States)

    Frazier, Catherine H; Hughes, W Jack; O'Brien, William D

    2002-12-01

    Volumetric acoustic imaging is desirable for the visualization of underwater objects and structures; however, the implementation of a volumetric imaging system is difficult due to the high channel count of a fully populated two-dimensional array. Recently, a linear amplitude-steered array with a reduced electronics requirement was presented, which is capable of collecting a two-dimensional set of data with a single transmit pulse. In this study, we demonstrate the use of the linear amplitude-steered array and associated image formation algorithms for collecting and displaying volumetric data; that is, proof of principle of the amplitude-steering concept and the associated image formation algorithms is demonstrated. Range and vertical position are obtained by taking advantage of the frequency separation of a vertical linear amplitude-steered array. The third dimension of data is obtained by rotating the array such that the mainlobe is mechanically steered in azimuth. Data are collected in a water tank at the Pennsylvania State University Applied Research Laboratory for two targets: a ladder and three pipes. These data are the first experimental data collected with an amplitude-steered array for the purposes of imaging. The array is 10 cm in diameter and is operated in the frequency range of 80 to 304 kHz. Although the array is small for high-resolution imaging at these frequencies, the rungs of the ladder are recognizable in the images. The three pipes are difficult to discern in two of the projection images; however, the pipes separated in range are clear in the image showing vertical position versus range. The imaging concept is demonstrated on measured data, and the simulations agree well with the experimental results. PMID:12508995

  2. The Correlation between Electroencephalography Amplitude and Interictal Abnormalities: Audit study

    Directory of Open Access Journals (Sweden)

    Sami F. Al-Rawas

    2014-10-01

    Full Text Available Objectives: The aim of this study was to establish the relationship between background amplitude and interictal abnormalities in routine electroencephalography (EEG. Methods: This retrospective audit was conducted between July 2006 and December 2009 at the Department of Clinical Physiology at Sultan Qaboos University Hospital (SQUH in Muscat, Oman. A total of 1,718 electroencephalograms (EEGs were reviewed. All EEGs were from patients who had been referred due to epilepsy, syncope or headaches. EEGs were divided into four groups based on their amplitude: group one ≤20 μV; group two 21–35 μV; group three 36–50 μV, and group four >50 μV. Interictal abnormalities were defined as epileptiform discharges with or without associated slow waves. Abnormalities were identified during periods of resting, hyperventilation and photic stimulation in each group. Results: The mean age ± standard deviation of the patients was 27 ± 12.5 years. Of the 1,718 EEGs, 542 (31.5% were abnormal. Interictal abnormalities increased with amplitude in all four categories and demonstrated a significant association (P <0.05. A total of 56 EEGs (3.3% had amplitudes that were ≤20 μV and none of these showed interictal epileptiform abnormalities. Conclusion: EEG amplitude is an important factor in determining the presence of interictal epileptiform abnormalities in routine EEGs. This should be taken into account when investigating patients for epilepsy. A strong argument is made for considering long-term EEG monitoring in order to identify unexplained seizures which may be secondary to epilepsy. It is recommended that all tertiary institutions provide EEG telemetry services.

  3. [Methods for quantifying phasic skin conductance amplitudes: threats to validity?].

    Science.gov (United States)

    Zimmer, H; Vossel, G

    1993-01-01

    Two methods of determining the event-related skin conductance response (SCR) amplitude are in common use. In one of these, the difference in conductance between the point of onset and the peak level of a single wave is measured (method 1). The second approach is to determine the difference between two measures, one characterizing the prestimulus level, the other the highest conductance point of the SCR reached within a fixed period following the stimulus (method 2). A problem with quantifying the SCR amplitude occurs when a SCR is elicited before an immediately preceding response has had time to recover, because in this case the two methods lead to quite different values. If the amplitude of each response is measured from its own individual deflection point, the measurable amplitude of the second response will be smaller when it occurs immediately after or in the ascending limb of the first response. The problem is most evident in situations with a high probability of response superimposition, such as when a large number of nonspecific responses occur at the same time as the SCRs. This is found in individuals with a high degree of electrodermal lability. Electrodermal lability refers to a psychophysiological construct that is operationally defined by the frequency of spontaneous electrodermal fluctuations. In the present study, we therefore systematically investigated the effects of the two score methods on SCR amplitude in relation to lability by analyzing electrodermal data from two habituation studies. As expected, several method-specific effects which were related to lability emerged. Results and questions concerning the relevance of the findings are discussed, with special emphasis on the validity of psychophysiological investigations.

  4. Spin- 1/2 amplitudes in black-hole evaporation

    International Nuclear Information System (INIS)

    In recent papers, we have studied the quantum-mechanical decay of a Schwarzschild-like black hole, formed by gravitational collapse, into almost-flat spacetime and weak radiation at a very late time. In this recent work, we have been concerned with evaluating quantum amplitudes (not just probabilities) for transitions from initial to final states. In a general asymptotically flat context, one may specify a quantum amplitude by posing boundary data on (say) an initial space-like hypersurface ΣI and a final space-like hypersurface ΣF. To complete the specification, one must also give the Lorentzian proper-time interval between the two boundary surfaces, as measured near spatial infinity. We have assumed that the Lagrangian contains Einstein gravity coupled to a massless scalar field φ, plus possible additional fields; there is taken to be a 'background' spherically symmetric solution (γμν, Φ) of the classical Einstein/scalar field equations. For bosonic fields, the gravitational and scalar boundary data can be taken to be gij and φ on the two hypersurfaces, where gij (i, j = 1, 2, 3) gives the intrinsic 3-metric on the boundary, and the 4-metric is gμν (μ, ν = 0, 1, 2, 3), the boundary being taken locally in the form {x0 = const}. The classical boundary value problem, corresponding to the calculation of this quantum amplitude, is badly posed, being a boundary value problem for a wave-like (hyperbolic) set of equations. Following Feynman's +iε prescription, one makes the problem well-posed by rotating the asymptotic time interval T into the complex: T → vertical barT vertical bar exp(-iθ), with 0 0, one then takes the 'Lorentzian limit' θ → 0+. Such quantum amplitudes have been calculated for weak s = 0 (scalar), s = 1 (photon) and s = 2 (graviton) anisotropic final data, propagating on the approximately Vaidya-like background geometry, in the region containing radially outgoing black-hole radiation. In this paper, we treat quantum amplitudes for

  5. Broadband metasurface for independent control of reflected amplitude and phase

    Science.gov (United States)

    Jia, Sheng Li; Wan, Xiang; Su, Pei; Zhao, Yong Jiu; Cui, Tie Jun

    2016-04-01

    We propose an ultra-thin metasurface to control the amplitudes and phases independently of the reflected waves by changing geometries and orientations of I-shaped metallic particles. We demonstrate that the particles can realize independent controls of reflection amplitudes and phases with a magnitude range of [0, 0.82] and a full phase range of 360° in broad frequency band. Based on such particles, two ultrathin metasurface gratings are further proposed to form anomalous reflection with polarization orthogonal to the incident waves. The simulated and measured results of the presented metasurfaces show very good agreements. The proposed method has potential applications in engineering high-efficiency holography and complex electromagnetic and optical patterns.

  6. Analytic Evolution of Singular Distribution Amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Radyushkin, Anatoly V. [Old Dominion University, Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tandogan Kunkel, Asli [Old Dominion University, Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-03-01

    We describe a method of analytic evolution of distribution amplitudes (DA) that have singularities, such as non-zero values at the end-points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a flat (constant) DA, anti-symmetric at DA and then use it for evolution of the two-photon generalized distribution amplitude. Our approach has advantages over the standard method of expansion in Gegenbauer polynomials, which requires infinite number of terms in order to accurately reproduce functions in the vicinity of singular points, and over a straightforward iteration of an initial distribution with evolution kernel. The latter produces logarithmically divergent terms at each iteration, while in our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve, with only one or two iterations needed afterwards in order to get rather precise results.

  7. Symbol rate identification for auxiliary amplitude modulation optical signal

    Science.gov (United States)

    Wei, Junyu; Dong, Zhi; Huang, Zhiping; Zhang, Yimeng

    2016-09-01

    In this paper, we creatively propose and demonstrate a method for symbol rate identification (SRI) of auxiliary amplitude modulation (AAM) optical signal based on asynchronous delay-tap sampling (ADTS) and average magnitude difference function (AMDF). The method can accurately estimate symbol rate and has large transmission impairments tolerance. Furthermore, it can be realized in the digital signal processor (DSP) with low logical resources because of multiplication-free. In order to improve the accuracy of SRI, the peak to valley ratio (PTVR) of AMDF is introduced into our method for blind chromatic dispersion (CD) compensation. The results of the numerical simulations show that the overall maximum SRI error is smaller 0.079% for return-to-zero (RZ) on-off keying (OOK), RZ differential phase-shift keying (DPSK), RZ differential quadrature phase-shift keying (DQPSK) and RZ 16-ary quadrature amplitude modulation (QAM) with 50% duty cycles.

  8. Damping and Frequency Shift of Large Amplitude Electron Plasma Waves

    DEFF Research Database (Denmark)

    Thomsen, Kenneth; Juul Rasmussen, Jens

    1983-01-01

    The initial evolution of large-amplitude one-dimensional electron waves is investigated by applying a numerical simulation. The initial wave damping is found to be strongly enhanced relative to the linear damping and it increases with increasing amplitude. The temporal evolution of the nonlinear ...... and oscillates around a negative asymptotic value. The results compare favourably with a recent theory by Sugihara et al. for the initial behaviour (t...... damping rate γ(t) shows that it increases with time within the initial phase of propagation, t≲π/ωB (ωB is the bounce frequency), whereafter it decreases and changes sign implying a regrowth of the wave. The shift in the wave frequency δω is observed to be positive for t≲π/ωB; then δω changes sign...

  9. Long-distance singularities in multi-leg scattering amplitudes

    CERN Document Server

    Gardi, Einan; Duhr, Claude

    2016-01-01

    We report on the recent completion of the three-loop calculation of the soft anomalous dimension in massless gauge-theory scattering amplitudes. This brings the state-of-the-art knowledge of long-distance singularities in multi-leg QCD amplitudes with any number of massless particles to three loops. The result displays some novel features: this is the first time non-dipole corrections appear, which directly correlate the colour and kinematic degrees of freedom of four coloured partons. We find that non-dipole corrections appear at three loops also for three coloured partons, but these are independent of the kinematics. The final result is remarkably simple when expressed in terms of single-valued harmonic polylogarithms, and it satisfies several non-trivial constraints. In particular, it is consistent with the high-energy limit behaviour and it satisfies the expected factorization properties in two-particle collinear limits.

  10. Cluster algebras in Scattering Amplitudes with special 2D kinematics

    CERN Document Server

    Torres, Marcus A C

    2013-01-01

    We study the cluster algebra of the kinematic configuration space $Conf_n(\\mathbb{P}^3)$ of a n-particle scattering amplitude restricted to the special 2D kinematics. We found that the n-points two loop MHV remainder function found in special 2D kinematics depend on a selection of \\XX-coordinates that are part of a special structure of the cluster algebra related to snake triangulations of polygons. This structure forms a necklace of hypercubes beads in the corresponding Stasheff polytope. Furthermore in $n = 12$, the cluster algebra and the selection of \\XX-coordinates in special 2D kinematics replicates the cluster algebra and the selection of \\XX-coordinates of $n=6$ two loop MHV amplitude in 4D kinematics.

  11. On-Shell Diagrams for N = 8 Supergravity Amplitudes

    CERN Document Server

    Heslop, Paul

    2016-01-01

    We define recursion relations for N = 8 supergravity amplitudes using a generalization of the on-shell diagrams developed for planar N = 4 super-Yang-Mills. Although the recursion relations generically give rise to non-planar on-shell diagrams, we show that at tree-level the recursion can be chosen to yield only planar diagrams, the same diagrams occurring in the planar N = 4 theory. This implies non-trivial identities for non-planar diagrams as well as interesting relations between the N = 4 and N = 8 theories. We show that the on-shell diagrams of N = 8 supergravity obey equivalence relations analogous to those of N = 4 super-Yang-Mills, and we develop a systematic algorithm for reading off Grassmannian integral formulae directly from the on-shell diagrams. We also show that the 1-loop 4-point amplitude of N = 8 supergravity can be obtained from on-shell diagrams.

  12. Amplitude modulation control of escape from a potential well

    Energy Technology Data Exchange (ETDEWEB)

    Chacón, R. [Departamento de Física Aplicada, Escuela de Ingenierías Industriales, Universidad de Extremadura, Apartado Postal 382, E-06006 Badajoz (Spain); Martínez García-Hoz, A. [Departamento de Física Aplicada, Escuela Universitaria Politécnica, Universidad de Castilla-La Mancha, E-13400 Almadén (Ciudad Real) (Spain); Miralles, J.J. [Departamento de Física Aplicada, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, E-02071 Albacete (Spain); Martínez, P.J. [Departamento de Física Aplicada, E.I.N.A., Universidad de Zaragoza, E-50018 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón, CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain)

    2014-03-01

    We demonstrate the effectiveness of periodic amplitude modulations in controlling (suppressing and enhancing) escape from a potential well through the universal model of a damped Helmholtz oscillator subjected to an external periodic excitation (the escape-inducing excitation) whose amplitude is periodically modulated (the escape-controlling excitation). Analytical and numerical results show that this multiplicative control works reliably for different subharmonic resonances between the two periodic excitations involved, and that its effectiveness is comparable to those of different methods of additive control. Additionally, we demonstrate the robustness of the multiplicative control against the presence of low-intensity Gaussian noise. -- Highlights: •Multiplicative control of escape from a potential well has been demonstrated. •Theoretical predictions are obtained from a Melnikov analysis. •It has been shown the robustness of the multiplicative control against noise.

  13. Large amplitude electromagnetic solitons in intense laser plasma interaction

    Institute of Scientific and Technical Information of China (English)

    Li Bai-Wen; Ishiguro S; Skoric M M

    2006-01-01

    This paper shows that the standing, backward- and forward-accelerated large amplitude relativistic electromagnetic solitons induced by intense laser pulse in long underdense collisionless homogeneous plasmas can be observed by particle simulations. In addition to the inhomogeneity of the plasma density, the acceleration of the solitons also depends upon not only the laser amplitude but also the plasma length. The electromagnetic frequency of the solitons is between about half and one of the unperturbed electron plasma frequency. The electrostatic field inside the soliton has a one-cycle structure in space, while the transverse electric and magnetic fields have half-cycle and one-cycle structure respectively.Analytical estimates for the existence of the solitons and their electromagnetic frequencies qualitatively coincide with our simulation results.

  14. Infrared singularities of scattering amplitudes in perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Thomas [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Neubert, Matthias [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany)

    2013-11-01

    An exact formula is derived for the infrared singularities of dimensionally regularized scattering amplitudes in massless QCD with an arbitrary number of legs, valid at any number of loops. It is based on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory contains only a single non-trivial color structure, whose coefficient is the cusp anomalous dimension of Wilson loops with light-like segments. Its color-diagonal part is characterized by two anomalous dimensions, which are extracted to three-loop order from known perturbative results for the quark and gluon form factors. This allows us to predict the three-loop coefficients of all 1/epsilon^k poles for an arbitrary n-parton scattering amplitudes, generalizing existing two-loop results.

  15. Scattering amplitudes in gauge theories with and without supersymmetry

    CERN Document Server

    Ochirov, Alexander

    2014-01-01

    This thesis aims at providing better understanding of the perturbative expansion of gauge theories with and without supersymmetry. At tree level, the BCFW recursion relations are analyzed with respect to their validity for general off-shell objects in Yang-Mills theory, which is a significant step away from their established zone of applicability. Unphysical poles constitute a new potential problem in addition to the boundary behavior issue, common to the on-shell case as well. For an infinite family of massive fermion currents, both obstacles are shown to be avoided under the certain conditions, which provides a natural recursion relation. At one loop, scattering amplitudes can be calculated from unitarity cuts through their expansion into known scalar integrals with free coefficients. A powerful method to obtain these coefficients, namely spinor integration, is discussed and rederived in a somewhat novel form. It is then used to compute analytically the infinite series of one-loop gluon amplitudes in N = 1 ...

  16. $K^+$-nucleus potentials from $K^+$-nucleon amplitudes

    CERN Document Server

    Friedman, E

    2016-01-01

    Optical potentials for $K^+$-nucleus interactions are constructed from $K^+$-nucleon amplitudes using recently developed algorithm based on $K^+$-N kinematics in the nuclear medium. With the deep penetration of $K^+$ mesons into the nucleus at momenta below 800~MeV/c it is possible to test this approach with greater sensitivity than hitherto done with $K^-$ and pions. The energy-dependence of experimental reaction and total cross sections on nuclei is better reproduced with this approach compared to fixed-energy amplitudes. The inclusion of Pauli correlations in the medium also improves the agreement between calculation and experiment. The absolute scale of the cross sections is reproduced very well for $^6$Li but for C, Si and Ca calculated cross sections are (23$\\pm4$)\\% smaller than experiment, in agreement with earlier analyses. Two phenomenological models that produce such missing strength suggest that the imaginary part of the potential needs about 40\\% enhancement.

  17. Infrared-Finite Amplitudes for Massless Gauge Theories

    CERN Document Server

    Forde, D A

    2003-01-01

    We present a method to construct infrared-finite amplitudes for gauge theories with massless fermions. Rather than computing $S$-matrix elements between usual states of the Fock space we construct order-by-order in perturbation theory dressed states that incorporate all long-range interactions. The $S$-matrix elements between these states are shown to be free from soft and collinear singularities. As an explicit example we consider the process $e^+ e^-\\to 2$ jets at next-to-leading order in the strong coupling. We verify by explicit calculation that the amplitudes are infrared finite and recover the well-known result for the total cross section $e^+ e^-\\to$ hadrons.

  18. Nth-powered amplitude squeezing in fan-states

    CERN Document Server

    Duc, T M

    2002-01-01

    Squeezing properties of the Hillery-type N-powered amplitude are investigated in the fan-state vertical bar xi; 2k, f> sub F which is linearly superposed by 2k 2k-quantum nonlinear coherent states in the phase-locked manner. The general expression of squeezing is derived analytically for arbitrary xi, k, N and f showing a multi-directional character of squeezing. For a given k, squeezing may appear to the even power N=2k if f ident to 1 and N>=2k if f not =1 and the number of directions along with the Nth-powered amplitude is squeezed is exactly equal to N, for both f ident to 1 (the light field) and f not =1 (the vibrational motion of the trapped ion). Discussions are also given elucidating the qualitative difference between the cases of f ident to 1 and f not =1.

  19. Generalised unitarity for dimensionally regulated amplitudes within FDF

    CERN Document Server

    Bobadilla, William J Torres

    2016-01-01

    We review the Four-Dimensional-Formulation variant of the Four-Dimensional-Helicity scheme, by showing two applications of this regularisation scheme. The first one is the computation of one-loop helicity amplitudes, for which we present preliminary results for the analytic expressions of the one-loop Higgs plus five- gluon amplitudes. In the second part, we study the Colour-Kinematics duality for off-shell diagrams in gauge theories coupled to matter, showing in a diagrammatic way that the Jacobi relations for the kinematic numerators of off-shell diagrams, built with Feynman rules in axial gauge, reduce to definite set of violating terms due to the contributions of sub-graphs only.

  20. TASI 2014: Lectures on Gauge and Gravity Amplitude Relations

    Science.gov (United States)

    Carrasco, John Joseph M.

    In these lectures I talk about simplifications and universalities found in scattering amplitudes for gauge and gravity theories. In contrast to Ward identities, which are understood to arise from familiar symmetries of the classical action, these structures are currently only understood in terms of graphical organizational principles, such as the gauge-theoretic color-kinematics duality and the gravitational double-copy structure, for local representations of multi-loop S-matrix elements. These graphical principles make manifest new relationships in and between gauge and gravity scattering amplitudes. My lectures will focus on arriving at such graphical organizations for generic theories with examples presented from maximal supersymmetry, and their use in unitarity-based multiloop integrand construction.

  1. K+-nucleus potentials from K+-nucleon amplitudes

    Science.gov (United States)

    Friedman, E.

    2016-10-01

    Optical potentials for K+-nucleus interactions are constructed from K+-nucleon amplitudes using recently developed algorithm based on K+-N kinematics in the nuclear medium. With the deep penetration of K+ mesons into the nucleus at momenta below 800 MeV / c it is possible to test this approach with greater sensitivity than hitherto done with K- and pions. The energy-dependence of experimental reaction and total cross sections on nuclei is better reproduced with this approach compared to fixed-energy amplitudes. The inclusion of Pauli correlations in the medium also improves the agreement between calculation and experiment. The absolute scale of the cross sections is reproduced very well for 6Li but for C, Si and Ca calculated cross sections are (23 ± 4)% smaller than experiment, in agreement with earlier analyses. Two phenomenological models that produce such missing strength suggest that the imaginary part of the potential needs about 40% enhancement.

  2. Gluon Wavefunctions and Amplitudes on the Light-Front

    CERN Document Server

    Cruz-Santiago, Christian A

    2013-01-01

    We investigate the tree level multi-gluon components of the gluon light cone wavefunctions in the light cone gauge keeping the exact kinematics of the gluon emissions. We focus on the components with all helicities identical to the helicity of the incoming gluon. The recurrence relations for the gluon wavefunctions are derived. In the case when the virtuality of the incoming gluon is neglected the exact form of the multi-gluon wavefunction as well as the fragmentation function is obtained. Furthermore we analyze the 2 to N tree-level gluon scattering in the framework of light-front perturbation theory and we demonstrate that the amplitude for this process can be obtained from the 1 to N+1 gluon wavefunction. Finally, we demonstrate that our results for selected helicity configurations are equivalent to the Parke-Taylor amplitudes.

  3. Broadband metasurface for independent control of reflected amplitude and phase

    Directory of Open Access Journals (Sweden)

    Sheng Li Jia

    2016-04-01

    Full Text Available We propose an ultra-thin metasurface to control the amplitudes and phases independently of the reflected waves by changing geometries and orientations of I-shaped metallic particles. We demonstrate that the particles can realize independent controls of reflection amplitudes and phases with a magnitude range of [0, 0.82] and a full phase range of 360° in broad frequency band. Based on such particles, two ultrathin metasurface gratings are further proposed to form anomalous reflection with polarization orthogonal to the incident waves. The simulated and measured results of the presented metasurfaces show very good agreements. The proposed method has potential applications in engineering high-efficiency holography and complex electromagnetic and optical patterns.

  4. Fidelity amplitude of the scattering matrix in microwave cavities

    Science.gov (United States)

    Schäfer, R.; Gorin, T.; Seligman, T. H.; Stöckmann, H.-J.

    2005-06-01

    The concept of fidelity decay is discussed from the point of view of the scattering matrix, and the 'scattering fidelity' is introduced as the parametric cross-correlation of a given S-matrix element, taken in the time domain, normalized by the corresponding autocorrelation function. We show that for chaotic systems, this quantity represents the usual fidelity amplitude, if appropriate ensemble and/or energy averages are taken. We present a microwave experiment where the scattering fidelity is measured for an ensemble of chaotic systems. The results are in excellent agreement with random matrix theory for the standard fidelity amplitude. The only parameter, namely the perturbation strength, could be determined independently from level dynamics of the system, thus providing agreement between theory and experiment without any free fit parameter.

  5. Fidelity amplitude of the scattering matrix in microwave cavities

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, R [Fachbereich Physik, Philipps-Universitaet Marburg, Renthof 5, D-35032 Marburg (Germany); Gorin, T [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str. 38, D-01187 Dresden (Germany); Seligman, T H [Centro de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, Campus Morelos, C. P. 62251, Cuernavaca, Morelos (Mexico); Stoeckmann, H-J [Fachbereich Physik, Philipps-Universitaet Marburg, Renthof 5, D-35032 Marburg (Germany)

    2005-06-01

    The concept of fidelity decay is discussed from the point of view of the scattering matrix, and the 'scattering fidelity' is introduced as the parametric cross-correlation of a given S-matrix element, taken in the time domain, normalized by the corresponding autocorrelation function. We show that for chaotic systems, this quantity represents the usual fidelity amplitude, if appropriate ensemble and/or energy averages are taken. We present a microwave experiment where the scattering fidelity is measured for an ensemble of chaotic systems. The results are in excellent agreement with random matrix theory for the standard fidelity amplitude. The only parameter, namely the perturbation strength, could be determined independently from level dynamics of the system, thus providing agreement between theory and experiment without any free fit parameter.

  6. Amplitude death of coupled hair bundles with stochastic channel noise

    CERN Document Server

    Kim, Kyung-Joong

    2014-01-01

    Hair cells conduct auditory transduction in vertebrates. In lower vertebrates such as frogs and turtles, due to the active mechanism in hair cells, hair bundles(stereocilia) can be spontaneously oscillating or quiescent. Recently, the amplitude death phenomenon has been proposed [K.-H. Ahn, J. R. Soc. Interface, {\\bf 10}, 20130525 (2013)] as a mechanism for auditory transduction in frog hair-cell bundles, where sudden cessation of the oscillations arises due to the coupling between non-identical hair bundles. The gating of the ion channel is intrinsically stochastic due to the stochastic nature of the configuration change of the channel. The strength of the noise due to the channel gating can be comparable to the thermal Brownian noise of hair bundles. Thus, we perform stochastic simulations of the elastically coupled hair bundles. In spite of stray noisy fluctuations due to its stochastic dynamics, our simulation shows the transition from collective oscillation to amplitude death as inter-bundle coupling str...

  7. Calculating eustatic amplitude of Middle Permian from reefs

    Institute of Scientific and Technical Information of China (English)

    吴亚生; 范嘉松

    2002-01-01

    Methods for calculating ancient eustatic change amplitudes according to reef fabric- facies are proposed, with a new method for determining sediment-loading subsidence. Compared with methods based on non-reefal deposits, these methods are more accurate in restoration of original sediment thickness, determination of sediment-loading subsidence, as well as restoration of ancient water depth. According to the reef in Guangxi, China, the amplitude of sea-level rise during Middle Permian (Neoschwagerina-Yabeina zone) is 249.5 m. According to the coeval reef of the Guadalupe Mountains, New Mexico and Texas, the coeval sea-level rise is 247 m. With these effective methods available, it is feasible to establish more accurate eustatic curve of Phanerozoic.

  8. Nonrelativistic Dynamics of the Amplitude (Higgs) Mode in Superconductors.

    Science.gov (United States)

    Cea, T; Castellani, C; Seibold, G; Benfatto, L

    2015-10-01

    Despite the formal analogy with the Higgs particle, the amplitude fluctuations of the order parameter in weakly coupled superconductors do not identify a real mode with a Lorentz-invariant dynamics. Indeed, its resonance occurs at 2Δ_{0}, which coincides with the threshold 2E_{gap} for quasiparticle excitations that spoil any relativistic dynamics. Here we investigate the fate of the Higgs mode in the unconventional case where 2E_{gap} becomes larger than 2Δ_{0}, as due to strong coupling or strong disorder. We show that also in this situation, the amplitude fluctuations never identify a real mode at 2Δ_{0}, since such a "bosonic" limit is always reached via strong mixing with the phase fluctuations, which dominate the low-energy part of the spectrum. Our results have direct implications for the interpretation of the subgap optical absorption in disordered superconductors. PMID:26550746

  9. Quantum secure direct communication over the collective amplitude damping channel

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    An efficient quantum secure direct communication protocol is presented over the amplitude damping channel.The protocol encodes logical bits in two-qubit noiseless states,and so it can function over a quantum channel subjected to collective amplitude damping.The feature of this protocol is that the sender encodes the secret directly on the quantum states,the receiver decodes the secret by performing determinate measurements,and there is no basis mismatch.The transmission’s safety is ensured by the nonorthogonality of the noiseless states traveling forward and backward on the quantum channel.Moreover,we construct the efficient quantum circuits to implement channel encoding and information encoding by means of primitive operations in quantum computation.

  10. Full phase and amplitude control in computer-generated holography.

    Science.gov (United States)

    Fratz, Markus; Fischer, Peer; Giel, Dominik M

    2009-12-01

    We report what we believe to be the first realization of a computer-generated complex-valued hologram recorded in a single film of photoactive polymer. Complex-valued holograms give rise to a diffracted optical field with control over its amplitude and phase. The holograms are generated by a one-step direct laser writing process in which a spatial light modulator (SLM) is imaged onto a polymer film. Temporal modulation of the SLM during exposure controls both the strength of the induced birefringence and the orientation of the fast axis. We demonstrate that complex holograms can be used to impart arbitrary amplitude and phase profiles onto a beam and thereby open new possibilities in the control of optical beams. PMID:19953153

  11. Evaluation of the Cachazo-He-Yuan gauge amplitude

    Science.gov (United States)

    Lam, C. S.; Yao, York-Peng

    2016-05-01

    The Cachazo-He-Yuan (CHY) formula for n -gluon scattering is known to give the same amplitude as the one obtained from Feynman diagrams, though the former contains neither vertices nor propagators explicitly. The equivalence was shown by indirect means, not by a direct evaluation of the (n -3 )-dimensional integral in the CHY formula. The purpose of this paper is to discuss how such a direct evaluation can be carried out. There are two basic difficulties in the calculation: how to handle the large number of terms in the reduced Pfaffian, and how to carry out the integrations in the presence of a σ dependence much more complicated than the Parke-Taylor form found in a CHY double-color scalar amplitude. We have solved both of these problems, and have formulated a method that can be applied to any n . Many examples are provided to illustrate these calculations.

  12. Thermal lens spectrometry: Optimizing amplitude and shortening the transient time

    Science.gov (United States)

    Silva, Rubens; de Araújo, Marcos A. C.; Jali, Pedro; Moreira, Sanclayton G. C.; Alcantara, Petrus; de Oliveira, Paulo C.

    2011-06-01

    Based on a model introduced by Shen et al. for cw laser induced mode-mismatched dual-beam thermal lens spectrometry (TLS), we explore the parameters related with the geometry of the laser beams and the experimental apparatus that influence the amplitude and time evolution of the transient thermal lens (TL) signal. By keeping the sample cell at the minimum waist of the excitation beam, our results show that high amplitude TL signals, very close to the optimized value, combined with short transient times may be obtained by reducing the curvature radius of the probe beam and the distance between the sample cell and the detector. We also derive an expression for the thermal diffusivity which is independent of the excitation laser beam waist, considerably improving the accuracy of the measurements. The sample used in the experiments was oleic acid, which is present in most of the vegetable oils and is very transparent in the visible spectral range.

  13. Thermal lens spectrometry: Optimizing amplitude and shortening the transient time

    Directory of Open Access Journals (Sweden)

    Rubens Silva

    2011-06-01

    Full Text Available Based on a model introduced by Shen et al. for cw laser induced mode-mismatched dual-beam thermal lens spectrometry (TLS, we explore the parameters related with the geometry of the laser beams and the experimental apparatus that influence the amplitude and time evolution of the transient thermal lens (TL signal. By keeping the sample cell at the minimum waist of the excitation beam, our results show that high amplitude TL signals, very close to the optimized value, combined with short transient times may be obtained by reducing the curvature radius of the probe beam and the distance between the sample cell and the detector. We also derive an expression for the thermal diffusivity which is independent of the excitation laser beam waist, considerably improving the accuracy of the measurements. The sample used in the experiments was oleic acid, which is present in most of the vegetable oils and is very transparent in the visible spectral range.

  14. Radiative Corrections to Chiral Amplitudes in Quasi-Peripheral Kinematics

    CERN Document Server

    Bytev, V V; Galynsky, M V; Kuraev, E A

    2006-01-01

    Chiral amplitudes for two jets processes in quasi-peripheral kinematics are calculated at the Born and one-loop correction levels. The amplitudes of subprocesses describing interaction of virtual and real photons with creation of a charged fermion pair for various chiral states are considered in detail. Similar results are presented for Compton subprocess with virtual photon. Contributions of emission of virtual, soft, and hard real additional photons are taken into account explicitly. The relevant cross sections expressed in terms of impact factors are in agreement with structure function approach in the leading logarithmic approximation. Contributions of the next-to-leading terms are presented in an analytical form. Accuracy estimation is discussed.

  15. Seizure Prediction and Detection via Phase and Amplitude Lock Values

    OpenAIRE

    Mark H Myers; Padmanabha, Akshay; Hossain, Gahangir; de Jongh Curry, Amy L.; Blaha, Charles D.

    2015-01-01

    A robust seizure prediction methodology would enable a “closed-loop” system that would only activate as impending seizure activity is detected. Such a system would eliminate ongoing stimulation to the brain, thereby eliminating such side effects as coughing, hoarseness, voice alteration, and paresthesias (Murphy et al., 1998; Ben-Menachem, 2001), while preserving overall battery life of the system. The seizure prediction and detection algorithm uses Phase/Amplitude Lock Values (PLV/ALV) which...

  16. Seizure Prediction and Detection via Phase and Amplitude Lock Values

    OpenAIRE

    Mark H Myers; Ashay ePadmanabha; Gahangir eHossain; Amy ede Jongh Curry; Blaha, Charles D.

    2016-01-01

    A robust seizure prediction methodology would enable a ‘closed-loop’ system that would only activate as impending seizure activity is detected. Such a system would eliminate ongoing stimulation to the brain, thereby eliminating such side effects as coughing, hoarseness, voice alteration, and paresthesias (Murphy et al., 1998, Ben-Menachem, 2001), while preserving overall battery life of the system. The seizure prediction and detection algorithm uses Phase/Amplitude Lock Values (PLV/ALV) whi...

  17. EPR = ER, scattering amplitude and entanglement entropy change

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Shigenori, E-mail: sigenori@hanyang.ac.kr [Research Institute for Natural Science, Hanyang University, Seoul 133-791 (Korea, Republic of); Sin, Sang-Jin, E-mail: sjsin@hanyang.ac.kr [Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2014-07-30

    We study the causal structure of the minimal surface of the four-gluon scattering, and find a world-sheet wormhole parametrized by Mandelstam variables, thereby demonstrate the EPR = ER relation for gluon scattering. We also propose that scattering amplitude is the change of the entanglement entropy by generalizing the holographic entanglement entropy of Ryu–Takayanagi to the case where two regions are divided in space–time.

  18. ALOHA: Automatic Libraries Of Helicity Amplitudes for Feynman diagram computations

    OpenAIRE

    de Aquino, Priscila; Link, William; Maltoni, Fabio; Mattelaer, Olivier; Stelzer, Tim

    2011-01-01

    We present an application that automatically writes the Helas library corresponding to the Feynman rules of any Lagrangian, renormalizable or not, in quantum field theory. The code, written in Python, takes the Universal FeynRules Output as an input and produces the complete set of routines (wave-functions and amplitudes) that are needed for the computation of Feynman diagrams at leading as well as at higher orders. The representation is language independent and outputs in Fortran, C++, Pytho...

  19. Entanglement-enhanced classical communication through generalized amplitude damping channel

    Institute of Scientific and Technical Information of China (English)

    Hou Li-Zhen; Fang Mao-Fa

    2007-01-01

    The problem of sending a single classical bit through a generalized amplitude damping channel is considered.When two transmissions through the channel are available as a resource, we find that two entangled transmissions can enhance the capability of receiver's judging information correctly under certain conditions compared with two productstate transmissions. In addition, we find a special case in which the two entangled transmissions can always make a classical bit more effectively disable the noise influence.

  20. Advanced methods for scattering amplitudes in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Peraro, Tiziano

    2014-09-24

    We present new techniques for the evaluation of multi-loop scattering amplitudes and their application to gauge theories, with relevance to the Standard Model phenomenology. We define a mathematical framework for the multi-loop integrand reduction of arbitrary diagrams, and elaborate algebraic approaches, such as the Laurent expansion method, implemented in the software Ninja, and the multivariate polynomial division technique by means of Groebner bases.

  1. Closed String Amplitudes from Gauge Fixed String Field Theory

    OpenAIRE

    Drukker, Nadav

    2002-01-01

    Closed string diagrams are derived from cubic open string field theory using a gauge fixed kinetic operator. The basic idea is to use a string propagator that does not generate a boundary to the world sheet. Using this propagator and the closed string vertex, the moduli space of closed string surfaces is covered, so closed string scattering amplitudes should be reproduced. This kinetic operator could be a gauge fixed form of the string field theory action around the closed string vacuum.

  2. Measurement of RT amplitudes and wavelengths of laser driven plates

    Energy Technology Data Exchange (ETDEWEB)

    Frank, A.M.; Gillespie, C.H.

    1997-10-16

    A laser drive plate, that is a dense solid plate drive by a laser heated, lower density plasma, is inherently Raleigh-Taylor (R-T) unstable, We have previously indicated that observed surface perturbation on the plate are probably R-T instabilities, initiated by the mode structure of the driving laser beam. Using a semi- transparent impact target viewed with a polarized Epi-Illuminated Confocal Streak Microscope, has allowed us to measure the amplitude and growth of the instability.

  3. Nontrapping arrest of Langmuir wave damping near the threshold amplitude

    OpenAIRE

    Ivanov, A.V.; Cairns, Iver H.

    2005-01-01

    Evolution of a Langmuir wave is studied numerically for finite amplitudes slightly above the threshold which separates damping from nondamping cases. Arrest of linear damping is found to be a second-order effect due to ballistic evolution of perturbations, resonant power transfer between field and particles, and organization of phase space into a positive slope for the average distribution function $f_{av}$ around the resonant wave phase speed $v_\\phi$. Near the threshold trapping in the wave...

  4. Oblique amplitude modulation of dust-acoustic plasma waves

    OpenAIRE

    Kourakis, I.; Shukla, P. K.

    2004-01-01

    Theoretical and numerical studies are presented of the nonlinear amplitude modulation of dust-acoustic (DA) waves propagating in an unmagnetized three component, weakly-coupled, fully ionized plasma consisting of electrons, positive ions and charged dust particles, considering perturbations oblique to the carrier wave propagation direction. The stability analysis, based on a nonlinear Schroedinger-type equation (NLSE), shows that the wave may become unstable; the stability criteria depend on ...

  5. Modulated amplitude waves in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    We analyze spatiotemporal structures in the Gross-Pitaevskii equation to study the dynamics of quasi-one-dimensional Bose-Einstein condensates (BECs) with mean-field interactions. A coherent structure ansatz yields a parametrically forced nonlinear oscillator, to which we apply Lindstedt's method and multiple-scale perturbation theory to determine the dependence of the intensity of periodic orbits ('modulated amplitude waves') on their wave number. We explore BEC band structure in detail using Hamiltonian perturbation theory and supporting numerical simulations

  6. Color-dressed recursive relations for multi-parton amplitudes

    CERN Document Server

    Duhr, C; Maltoni, F; Duhr, Claude; Hoeche, Stefan; Maltoni, Fabio

    2006-01-01

    Remarkable progress inspired by twistors has lead to very simple analytic expressions and to new recursive relations for multi-parton color-ordered amplitudes. We show how such relations can be extended to include color and present the corresponding color-dressed formulation for the Berends-Giele, BCF and a new kind of CSW recursive relations. A detailed comparison of the numerical efficiency of the different approaches to the calculation of multi-parton cross sections is performed.

  7. Large-amplitude motion in the Suzuki model

    International Nuclear Information System (INIS)

    The classical and quantum aspects for the analytically solvable one-dimensional pure monopole Suzuki model are studied to clarify the problem of quantization of classical collective motion. A set of nonlinear dynamic equations for a monopole moment of a nucleus are derived from the TDHF equation using the Wigner function moments model. It provides to describe large-amplitude monopole vibrations. The corresponding collective Hamiltonian is constructed and quantized. The anharmonicity of the collective spectra is analyzed in detal

  8. Phase and amplitude binning for 4D-CT imaging

    Science.gov (United States)

    Abdelnour, A. F.; Nehmeh, S. A.; Pan, T.; Humm, J. L.; Vernon, P.; Schöder, H.; Rosenzweig, K. E.; Mageras, G. S.; Yorke, E.; Larson, S. M.; Erdi, Y. E.

    2007-07-01

    We compare the consistency and accuracy of two image binning approaches used in 4D-CT imaging. One approach, phase binning (PB), assigns each breathing cycle 2π rad, within which the images are grouped. In amplitude binning (AB), the images are assigned bins according to the breathing signal's full amplitude. To quantitate both approaches we used a NEMA NU2-2001 IEC phantom oscillating in the axial direction and at random frequencies and amplitudes, approximately simulating a patient's breathing. 4D-CT images were obtained using a four-slice GE Lightspeed CT scanner operating in cine mode. We define consistency error as a measure of ability to correctly bin over repeated cycles in the same field of view. Average consistency error μe ± σe in PB ranged from 18% ± 20% to 30% ± 35%, while in AB the error ranged from 11% ± 14% to 20% ± 24%. In PB nearly all bins contained sphere slices. AB was more accurate, revealing empty bins where no sphere slices existed. As a proof of principle, we present examples of two non-small cell lung carcinoma patients' 4D-CT lung images binned by both approaches. While AB can lead to gaps in the coronal images, depending on the patient's breathing pattern, PB exhibits no gaps but suffers visible artifacts due to misbinning, yielding images that cover a relatively large amplitude range. AB was more consistent, though often resulted in gaps when no data existed due to patients' breathing pattern. We conclude AB is more accurate than PB. This has important consequences to treatment planning and diagnosis.

  9. Phase and amplitude binning for 4D-CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Abdelnour, A F [US Patent and Trademark Office, Alexandria, VA (United States); Nehmeh, S A [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Pan, T [M.D. Anderson Cancer Center, Houston, TX (United States); Humm, J L [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Vernon, P [GE Healthcare Technologies, Waukesha, WI (United States); Schoeder, H [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Rosenzweig, K E [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Mageras, G S [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Yorke, E [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Larson, S M [Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Erdi, Y E [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2007-07-21

    We compare the consistency and accuracy of two image binning approaches used in 4D-CT imaging. One approach, phase binning (PB), assigns each breathing cycle 2{pi} rad, within which the images are grouped. In amplitude binning (AB), the images are assigned bins according to the breathing signal's full amplitude. To quantitate both approaches we used a NEMA NU2-2001 IEC phantom oscillating in the axial direction and at random frequencies and amplitudes, approximately simulating a patient's breathing. 4D-CT images were obtained using a four-slice GE Lightspeed CT scanner operating in cine mode. We define consistency error as a measure of ability to correctly bin over repeated cycles in the same field of view. Average consistency error {mu}{sub e} {+-} {sigma}{sub e} in PB ranged from 18% {+-} 20% to 30% {+-} 35%, while in AB the error ranged from 11% {+-} 14% to 20% {+-} 24%. In PB nearly all bins contained sphere slices. AB was more accurate, revealing empty bins where no sphere slices existed. As a proof of principle, we present examples of two non-small cell lung carcinoma patients' 4D-CT lung images binned by both approaches. While AB can lead to gaps in the coronal images, depending on the patient's breathing pattern, PB exhibits no gaps but suffers visible artifacts due to misbinning, yielding images that cover a relatively large amplitude range. AB was more consistent, though often resulted in gaps when no data existed due to patients' breathing pattern. We conclude AB is more accurate than PB. This has important consequences to treatment planning and diagnosis.

  10. Baryon to meson transition distribution amplitudes and their spectral representation

    CERN Document Server

    Pire, Bernard; Szymanowski, Lech

    2011-01-01

    We consider the problem of construction of a spectral representation for nucleon to meson transition distribution amplitudes (TDAs), non-diagonal matrix elements of nonlocal three quark light-cone operators between a nucleon and a meson states. We introduce the notion of quadruple distributions and generalize Radyshkin's factorized Ansatz for this issue. Modelling of baryon to meson TDAs in the complete domain of their definition opens the way to quantitative estimates of cross-sections for various hard exclusive reactions.

  11. Radiative four-meson amplitudes in chiral perturbation theory

    CERN Document Server

    D'Ambrosio, G; Isidori, Gino; Neufeld, H

    1996-01-01

    We present a general discussion of radiative four--meson processes to O(p^4) in chiral perturbation theory. We propose a definition of ``generalized bremsstrahlung'' that takes full advantage of experimental information on the corresponding non--radiative process. We also derive general formulae for one--loop amplitudes which can be applied, for instance, to \\eta \\ra 3\\pi\\gamma, \\pi \\pi \\ra \\pi \\pi \\gamma and K \\ra 3\\pi\\gamma.

  12. Interpretation of second Born amplitudes in electron capture

    International Nuclear Information System (INIS)

    Exact sound Born amplitudes for 1s-1s electron capture are presented and interpreted in terms of contributions from intermediate states off the energy shell and on the energy shell. The classical model of Thomas corresponds to two-step scattering via one particular on-shell intermediate state. In the high-velocity limit for 1s-1s capture, this on-shell intermediate state of the Thomas model accounts for one-half of the total cross section, i.e., the second Born cross section. The other half comes from off-energy-shell intermediate states near the on-shell Thomas state. Above 5 MeV both the off-shell and on-shell amplitudes have a simple structure near the Thomas peak. Below 1 MeV, contributions from a broader range of intermediate states are evident in the amplitudes. Although the contribution from the Thomas state is not large below 1 MeV, other second Born effects are significant

  13. Amplitude scaling for interchange motions of plasma filaments

    CERN Document Server

    Kube, R; Garcia, O E

    2016-01-01

    We numerically study the interchange motion of seeded plasma blobs in a reduced two-field fluid model. If we neglect the compression of the electric drift in the model, the maximal radial center-of-mass velocity V of the filament follows the familiar square-root scaling V ~ (\\Delta n/N)^1/2, where \\Delta n is the blob amplitude and N is the background density. When including compression of the electric drift to account for an inhomogeneous magnetic field, the numerical simulations reveal that the maximal blob velocity depends linearly on its initial amplitude, V ~ \\Delta n/N. When the relative initial amplitude of the filament exceeds approximately unity we recover the square root velocity scaling. We explain the observed scaling laws in t erms of the conserved energy integrals of the model equations. The compression term leads to a constraint on the maximum kinetic energy of the blob, which is not present if the drift compression is ignored. If the compression term is included, only approximately half of the...

  14. Behaviour of nitriding layers for condition of small amplitude fretting

    Directory of Open Access Journals (Sweden)

    G.M. Drapak

    2007-01-01

    Full Text Available Purpose: It was explored fretting resistance titanic alloy VT3-1 (Ti-Al6-Cr2-Mo2,5 after low temperature ionicnitriding in unhydrogen environment.Design/methodology/approach: Small amplitude fretting was initiated by the dynamic contact of ball andflat in the regime of the partial slip on edge of spot of contact. A method differs by simplicity and expressdetermination of fretting resistance, namely areas of destruction by action of fretting for part nominally fixedcontact - how the functions of cycles of loading.Findings: As a result of fretting the central region of sticking decreasing, and the edge of areas of frettingare increasing.Practical implications: The method of initiation of small amplitude fretting within bounds of preliminarydisplacement is offered. On the offered method the destruction of titanic alloys is explored at fretting andinfluencing of ionic nitriding on fretting. By a computation method the work of forces of friction in the area ofwear, which in 5..6 times is less for nitriding titanic alloys, is appraised.Originality/value: A method allows defining reactionary power of nitriding layers for small amplitude fretting.

  15. Vibrational shear flow of anisotropic viscoelastic fluid with small amplitudes

    Institute of Scientific and Technical Information of China (English)

    韩式方

    2008-01-01

    Using the constitutive equation of co-rotational derivative type for anisotropic viscoelastic fluid-liquid crystalline(LC),polymer liquids was developed.Two relaxation times are introduced in the equation:λn represents relaxation of the normal-symmetric stress components;λs represents relaxation of the shear-unsymmetric stress components.A vibrational rotating flow in gap between cylinders with small amplitudes is studied for the anisotropic viscoelastic fluid-liquid crystalline polymer.The time-dependent constitutive equation are linearized with respect to parameter of small amplitude.For the normal-symmetric part of stress tensor analytical expression of the shear stress is obtained by the constitutive equation.The complex viscosity,complex shear modulus,dynamic and imaginary viscosities,storage modulus and loss modulus are obtained for the normal-symmetric stress case which are defined by the common shear rate.For the shear-unsymmetric stress part,two shear stresses are obtained thus two complex viscosities and two complex shear modulus(i.e.first and second one) are given by the constitutive equation which are defined by rotating shear rate introduced by author.The dynamic and imaginary viscosities,storage modulus and loss modulus are given for each complex viscosities and complex shear modulus.Using the constituive equation the rotating flow with small amplitudes in gap between two coaxial cylinders is studied.

  16. Compensating temperature-induced ultrasonic phase and amplitude changes

    Science.gov (United States)

    Gong, Peng; Hay, Thomas R.; Greve, David W.; Junker, Warren R.; Oppenheim, Irving J.

    2016-04-01

    In ultrasonic structural health monitoring (SHM), environmental and operational conditions, especially temperature, can significantly affect the propagation of ultrasonic waves and thus degrade damage detection. Typically, temperature effects are compensated using optimal baseline selection (OBS) or optimal signal stretch (OSS). The OSS method achieves compensation by adjusting phase shifts caused by temperature, but it does not fully compensate phase shifts and it does not compensate for accompanying signal amplitude changes. In this paper, we develop a new temperature compensation strategy to address both phase shifts and amplitude changes. In this strategy, OSS is first used to compensate some of the phase shifts and to quantify the temperature effects by stretching factors. Based on stretching factors, empirical adjusting factors for a damage indicator are then applied to compensate for the temperature induced remaining phase shifts and amplitude changes. The empirical adjusting factors can be trained from baseline data with temperature variations in the absence of incremental damage. We applied this temperature compensation approach to detect volume loss in a thick wall aluminum tube with multiple damage levels and temperature variations. Our specimen is a thick-walled short tube, with dimensions closely comparable to the outlet region of a frac iron elbow where flow-induced erosion produces the volume loss that governs the service life of that component, and our experimental sequence simulates the erosion process by removing material in small damage steps. Our results show that damage detection is greatly improved when this new temperature compensation strategy, termed modified-OSS, is implemented.

  17. An Alternative Method for Tilecal Signal Detection and Amplitude Estimation

    CERN Document Server

    Sotto-Maior Peralva, B; The ATLAS collaboration; Manhães de Andrade Filho, L; Manoel de Seixas, J

    2011-01-01

    The Barrel Hadronic calorimeter of ATLAS (Tilecal) is a detector used in the reconstruction of hadrons, jets, muons and missing transverse energy from the proton-proton collisions at the Large Hadron Collider (LHC). It comprises 10,000 channels in four readout partitions and each calorimeter cell is made of two readout channels for redundancy. The energy deposited by the particles produced in the collisions is read out by the several readout channels and its value is estimated by an optimal filtering algorithm, which reconstructs the amplitude and the time of the digitized signal pulse sampled every 25 ns. This work deals with signal detection and amplitude estimation for the Tilecal under low signal-to-noise ratio (SNR) conditions. It explores the applicability (at the cell level) of a Matched Filter (MF), which is known to be the optimal signal detector in terms of the SNR. Moreover, it investigates the impact of signal detection when summing both signals from the same cell before estimating the amplitude, ...

  18. Perceptual and statistical analysis of cardiac phase and amplitude images

    International Nuclear Information System (INIS)

    A perceptual experiment was conducted using cardiac phase and amplitude images. Estimates of statistical parameters were derived from the images and the diagnostic potential of human and statistical decisions compared. Five methods were used to generate the images from 75 gated cardiac studies, 39 of which were classified as pathological. The images were presented to 12 observers experienced in nuclear medicine. The observers rated the images using a five-category scale based on their confidence of an abnormality presenting. Circular and linear statistics were used to analyse phase and amplitude image data, respectively. Estimates of mean, standard deviation (SD), skewness, kurtosis and the first term of the spatial correlation function were evaluated in the region of the left ventricle. A receiver operating characteristic analysis was performed on both sets of data and the human and statistical decisions compared. For phase images, circular SD was shown to discriminate better between normal and abnormal than experienced observers, but no single statistic discriminated as well as the human observer for amplitude images. (orig.)

  19. Revised absolute amplitude calibration of the LOPES experiment

    CERN Document Server

    Link, K; Apel, W D; Arteaga-Velázquez, J C; Bähren, L; Bekk, K; Bertaina, M; Biermann, P L; Blümer, J; Bozdog, H; Brancus, I M; Cantoni, E; Chiavassa, A; Daumiller, K; de Souza, V; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Fuchs, B; Gemmeke, H; Grupen, C; Haungs, A; Heck, D; Hiller, R; Hörandel, J R; Horneffer, A; Huber, D; Isar, P G; Kampert, K-H; Kang, D; Krömer, O; Kuijpers, J; Łuczak, P; Ludwig, M; Mathes, H J; Melissas, M; Morello, C; Oehlschläger, J; Palmieri, N; Pierog, T; Rautenberg, J; Rebel, H; Roth, M; Rühle, C; Saftoiu, A; Schieler, H; Schmidt, A; Schoo, S; Schröder, F G; Sima, O; Toma, G; Trinchero, G C; Weindl, A; Wochele, J; Zabierowski, J; Zensus, J A

    2015-01-01

    One of the main aims of the LOPES experiment was the evaluation of the absolute amplitude of the radio signal of air showers. This is of special interest since the radio technique offers the possibility for an independent and highly precise determination of the energy scale of cosmic rays on the basis of signal predictions from Monte Carlo simulations. For the calibration of the amplitude measured by LOPES we used an external source. Previous comparisons of LOPES measurements and simulations of the radio signal amplitude predicted by CoREAS revealed a discrepancy of the order of a factor of two. A re-measurement of the reference calibration source, now performed for the free field, was recently performed by the manufacturer. The updated calibration values lead to a lowering of the reconstructed electric field measured by LOPES by a factor of $2.6 \\pm 0.2$ and therefore to a significantly better agreement with CoREAS simulations. We discuss the updated calibration and its impact on the LOPES analysis results.

  20. Type I/heterotic duality and M-theory amplitudes

    CERN Document Server

    Green, Michael B

    2016-01-01

    This paper investigates relationships between low-energy four-particle scattering amplitudes with external gauge particles and gravitons in the E_8 X E_8 and SO(32) heterotic string theories and the type I and type IA superstring theories by considering a variety of tree level and one-loop Feynman diagrams describing such amplitudes in eleven-dimensional supergravity in a Horava--Witten background compactified on a circle. This accounts for a number of perturbative and non-perturbative aspects of low order higher derivative terms in the low-energy expansion of string theory amplitudes, which are expected to be protected by half maximal supersymmetry from receiving corrections beyond one or two loops. It also suggests the manner in which type I/heterotic duality may be realised for certain higher derivative interactions that are not so obviously protected. For example, our considerations suggest that R**4 interactions (where R is the Riemann curvature) might receive no perturbative corrections beyond one loop ...

  1. Spectroscopic determination of the internal amplitude of frequency sweeping TAE

    Energy Technology Data Exchange (ETDEWEB)

    Pinches, S D [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, Boltzmannstrasse 2, D-85748 Garching (Germany); Berk, H L [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas, 78712 (United States); Gryaznevich, M P [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Sharapov, S E [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom)

    2004-07-01

    From an understanding of the processes that cause a marginally unstable eigenmode of the system to sweep in frequency, it is shown how the absolute peak amplitude of the mode can be determined from the spectroscopic measurements of the frequency sweeping rate, e.g. with Mirnov coils outside the plasma. In a first attempt to implement such a diagnostic calculation, the MISHKA code (Mikhailovskii A B et al 1997 Plasma Phys. Rep. 23 844) is used to determine the global mode structure of toroidal Alfven eigenmodes (TAEs) (Cheng C Z et al 1985 Ann. Phys. (NY) 161 21) observed in the MAST spherical tokamak (Sykes A et al 2001 Nucl. Fusion 41 1423). Simulations using the HAGIS code (Pinches S D 1996 PhD Thesis The University of Nottingham, Pinches S D et al 1998 Comput. Phys. Commun. 111 131) are then made, replicating the experimentally observed sweeping phenomena. The fundamental theory is then used together with these simulation results to predict the internal field amplitude from the observed frequency sweeping. The calculated mode amplitude is shown to agree with that obtained from Mirnov coil measurements.

  2. The Lorentzian proper vertex amplitude: Classical analysis and quantum derivation

    CERN Document Server

    Engle, Jonathan

    2015-01-01

    Spin foam models, an approach to defining the dynamics of loop quantum gravity, make use of the Plebanski formulation of gravity, in which gravity is recovered from a topological field theory via certain constraints called simplicity constraints. However, the simplicity constraints in their usual form select more than just one gravitational sector as well as a degenerate sector. This was shown, in previous work, to be the reason for the "extra" terms appearing in the semiclassical limit of the Euclidean EPRL amplitude. In this previous work, a way to eliminate the extra sectors, and hence terms, was developed, leading to the what was called the Euclidean proper vertex amplitude. In the present work, these results are extended to the Lorentzian signature, establishing what is called the Lorentzian proper vertex amplitude. This extension is non-trivial and involves a number of new elements since, for Lorentzian bivectors, the split into self-dual and anti-self-dual parts, on which the Euclidean derivation was b...

  3. Radial convection of finite ion temperature, high amplitude plasma blobs

    CERN Document Server

    Wiesenberger, M; Kendl, A

    2014-01-01

    We present results from simulations of seeded blob convection in the scrape-off-layer of magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is in line with conditions found in tokamak scrape-off-layers (SOL) regions. Varying the ion temperature, the initial blob width and the initial amplitude, we found an FLR dominated regime where the blob behavior is significantly different from what is predicted by cold-ion models. The transition to this regime is very well described by the ratio of the ion gyroradius to the characteristic gradient scale length of the blob. We compare the global gyrofluid model with a partly linearized local model. For low ion temperatures we find that simulations of the global model show more coherent blobs with an increased cross-field transport compared to blobs simulated with the local model. The maximal blob amplitude is significantly higher in ...

  4. AdS/CFT, DIS and multi-parton amplitudes

    International Nuclear Information System (INIS)

    Recent two topics related to the string theory and QCD, namely (1) AdS/CFT duality correspondence (string/gauge duality) and deep inelastic scattering (DIS), and (2) new calculation methods of multi-particle amplitude of QCD are described. For the first subject, it is shown at first that the hard behavior of the gauge theory, that is to say the power law behavior, can be derived in the frame of the string theory. Then, the structure function in the hard DIS is derived in the string dual picture. For the second subject, there exist the strong demands in the background to cope with the data to be produced by LHC at CERN which is expected to operate in near future. The way of calculation developed by Cachazo, Svreck and Witten (CSW) to obtain MHV (Maximally Helicity Violating) amplitudes using MHV diagrams in twistor space based on the spinor-helicity formalism is explained. The 'on-shell recursion method' which was found by Britto, Cashazo, Feng and Witten after the CSW method was brought forth is also explained as a remarkable way having compact form to calculate MHV amplitude using on-shell recursion diagrams. (S. Funahashi)

  5. Spectral saliency via automatic adaptive amplitude spectrum analysis

    Science.gov (United States)

    Wang, Xiaodong; Dai, Jialun; Zhu, Yafei; Zheng, Haiyong; Qiao, Xiaoyan

    2016-03-01

    Suppressing nonsalient patterns by smoothing the amplitude spectrum at an appropriate scale has been shown to effectively detect the visual saliency in the frequency domain. Different filter scales are required for different types of salient objects. We observe that the optimal scale for smoothing amplitude spectrum shares a specific relation with the size of the salient region. Based on this observation and the bottom-up saliency detection characterized by spectrum scale-space analysis for natural images, we propose to detect visual saliency, especially with salient objects of different sizes and locations via automatic adaptive amplitude spectrum analysis. We not only provide a new criterion for automatic optimal scale selection but also reserve the saliency maps corresponding to different salient objects with meaningful saliency information by adaptive weighted combination. The performance of quantitative and qualitative comparisons is evaluated by three different kinds of metrics on the four most widely used datasets and one up-to-date large-scale dataset. The experimental results validate that our method outperforms the existing state-of-the-art saliency models for predicting human eye fixations in terms of accuracy and robustness.

  6. Prediction of the Nighttime VLF Subionospheric Signal Amplitude by Using Nonlinear Autoregressive with Exogenous Input Neural Network Model

    Science.gov (United States)

    Santosa, H.; Hobara, Y.; Balikhin, M. A.

    2015-12-01

    Very Low Frequency (VLF) waves have been proposed as an approach to study and monitor the lower ionospheric conditions. The ionospheric perturbations are identified in relation with thunderstorm activity, geomagnetic storm and other factors. The temporal dependence of VLF amplitude has a complicated and large daily variabilities in general due to combinations of both effects from above (space weather effect) and below (atmospheric and crustal processes) of the ionosphere. Quantitative contributions from different external sources are not known well yet. Thus the modelling and prediction of VLF wave amplitude are important issues to study the lower ionospheric responses from various external parameters and to also detect the anomalies of the ionosphere. The purpose of the study is to model and predict nighttime average amplitude of VLF wave propagation from the VLF transmitter in Hawaii (NPM) to receiver in Chofu (CHO) Tokyo, Japan path using NARX neural network. The constructed model was trained for the target parameter of nighttime average amplitude of NPM-CHO path. The NARX model, which was built based on daily input variables of various physical parameters such as stratosphere temperature, cosmic rays and total column ozone, possessed good accuracies. As a result, the constructed models are capable of performing accurate multistep ahead predictions, while maintaining acceptable one step ahead prediction accuracy. The results of the predicted daily VLF amplitude are in good agreement with observed (true) value for one step ahead prediction (r = 0.92, RMSE = 1.99), multi-step ahead 5 days prediction (r = 0.91, RMSE = 1.14) and multi-step ahead 10 days prediction (r = 0.75, RMSE = 1.74). The developed model indicates the feasibility and reliability of predicting lower ionospheric properties by the NARX neural network approach, and provides physical insights on the responses of lower ionosphere due to various external forcing.

  7. SUSY Ward identities for multi-gluon helicity amplitudes with massive quarks

    OpenAIRE

    Schwinn, Christian; Weinzierl, Stefan

    2006-01-01

    We use supersymmetric Ward identities to relate multi-gluon helicity amplitudes involving a pair of massive quarks to amplitudes with massive scalars. This allows to use the recent results for scalar amplitudes with an arbitrary number of gluons obtained by on-shell recursion relations to obtain scattering amplitudes involving top quarks.

  8. First amplitude analysis of resonant structures in the 5-pion continuum at COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Neubert, Sebastian

    2012-07-06

    The study of hadronic scattering amplitudes and in particular the spectroscopy of light mesons provide a unique tool to investigate the strong interaction. At very lowenergies the meson spectrum is governed by the spontaneous breakdown of the chiral symmetry of the QCD vacuum. At higher masses a series of resonances appears. Their origin and their relation to chiral symmetry breaking is only partly understood. In particular for masses above {proportional_to} 1.6 GeV/c{sup 2} while a large number of states have been reported they are still poorly known experimentally. One complication are multi-body final states into which heavy mesons can decay. In this thesis a method for the amplitude analysis of the {pi}{sup -}{pi}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} system is being developed. The COMPASS experiment at CERN uses the diffractive dissociation of a 190 GeV pion beam as a source of meson resonances up to masses of about 3 GeV/c{sup 2}. A partial wave decomposition of the 5{pi} system is presented here which for the first time allows to search for mesonic 5-body resonances. A novel technique based on an evolutionary algorithm is developed to solve the problem of finding a reliable truncation of the partial wave expansion of the hadronic amplitude. The method for the first time allows the investigation of systematic uncertainties introduced by the use truncated isobar model amplitudes. The well known {pi}{sub 2}(1670) and {pi}(1800) states are found with good agreement to measurements in other channels. In addition there is evidence for several other resonant contributions, among them the controversial {pi}{sub 2}(1880) which is being discussed as a hybrid-meson candidate. In the course of the analysis a new software-framework for amplitude analysis has been developed, which is now being used by the COMPASS collaboration for the analysis of several hadronic channels. Future experiments in particle physics will have to collect large amounts of data in order to

  9. Quantum amplitudes in black-hole evaporation: coherent and squeezed states

    International Nuclear Information System (INIS)

    In earlier papers, the quantum amplitude for processes involving the formation and evaporation of black holes was calculated by means of a complex-time approach. Instead of taking a more familiar approach to black-hole evaporation, we simply followed Feynman's +iε approach in quantum field theory. The Lorentzian time interval T, measured at spatial infinity between a pair of asymptotically flat spacelike hypersurfaces ΣI and ΣF carrying initial and final boundary data for the gravitational and other fields, is rotated: T → |T|exp(-iδ), where 0 < δ ≤ π/2. Classically and quantum mechanically, this procedure is expected to lead to a well-posed boundary-value problem. Thus, what we have done is to find quantum amplitudes (not just probability densities) relating to a pure state at late times following gravitational collapse of matter to a black hole. Such pure states, arising from gravitational collapse, are then shown to admit a description in terms of coherent and squeezed states. Indeed, this description is not so different from that arising in a well-known context, namely, the highly squeezed final state of the relic radiation background in inflationary cosmology. For definiteness, we study the simplest model of collapse, based on Einstein gravity with a massless scalar field. Following the complex rotation above, one finds that, in an adiabatic approximation, the resulting quantum amplitude may be expressed in terms of generalized coherent states of the harmonic oscillator. A physical interpretation is given; further, a squeezed-state representation follows

  10. Large Amplitude Whistler Waves and Electron Acceleration in the Earth's Radiation Belts: A Review of STEREO and Wind Observations

    Science.gov (United States)

    Cattell, Cynthia; Breneman, A.; Goetz, K.; Kellogg, P.; Kersten, K.; Wygant, J.; Wilson, L. B., III; Looper, Mark D.; Blake, J. Bernard; Roth, I.

    2012-01-01

    One of the critical problems for understanding the dynamics of Earth's radiation belts is determining the physical processes that energize and scatter relativistic electrons. We review measurements from the Wind/Waves and STEREO S/Waves waveform capture instruments of large amplitude whistler-mode waves. These observations have provided strong evidence that large amplitude (100s mV/m) whistler-mode waves are common during magnetically active periods. The large amplitude whistlers have characteristics that are different from typical chorus. They are usually nondispersive and obliquely propagating, with a large longitudinal electric field and significant parallel electric field. We will also review comparisons of STEREO and Wind wave observations with SAMPEX observations of electron microbursts. Simulations show that the waves can result in energization by many MeV and/or scattering by large angles during a single wave packet encounter due to coherent, nonlinear processes including trapping. The experimental observations combined with simulations suggest that quasilinear theoretical models of electron energization and scattering via small-amplitude waves, with timescales of hours to days, may be inadequate for understanding radiation belt dynamics.

  11. Eikonal fit to $pp$ and $\\bar{p}p$ scattering and the edge in the scattering amplitude

    CERN Document Server

    Block, Martin M; Ha, Phuoc; Halzen, Francis

    2015-01-01

    We make a detailed eikonal fit to current data on the total and elastic scattering cross sections, the ratios $\\rho$ of the real to the imaginary parts of the forward elastic scattering amplitudes, and the logarithmic slopes $B$ of the differential cross sections $d\\sigma/dt$ at $t=0$, for proton-proton and antiproton-proton scattering at center-of-mass energies $W$ from 5 GeV to 57 TeV. The fit allows us to investigate the structure of the eikonal amplitudes in detail, including the impact-parameter structure of the energy-independent edge in the scattering amplitude shown to exist by Block {\\em et al.} \\cite{edge}. We show that the edge region has an essentially fixed shape with a peak at approximately the "black disk" radius $R_{\\rm tot}=\\sqrt{\\sigma_{\\rm tot}/2\\pi}$ of the scattering amplitude, a constant width $t_{\\rm edge}\\approx 1$ fm, and migrates to larger impact parameters with increasing energy proportionally to $R_{\\rm tot}$. We comment on possible physical mechanisms which could lead to the edge....

  12. Physical Abuse

    Science.gov (United States)

    ... Additional Resources Return to: What is Elder Abuse? Physical Abuse Physical abuse is physical force or violence that results in ... may be acquaintances, sons, daughters, grandchildren, or others. Physical abuse that is perpetrated by spouses or intimate partners ...

  13. Fatigue Strain and Damage Analysis of Concrete in Reinforced Concrete Beams under Constant Amplitude Fatigue Loading

    Directory of Open Access Journals (Sweden)

    Fangping Liu

    2016-01-01

    Full Text Available Concrete fatigue strain evolution plays a very important role in the evaluation of the material properties of concrete. To study fatigue strain and fatigue damage of concrete in reinforced concrete beams under constant amplitude bending fatigue loading, constant amplitude bending fatigue experiments with reinforced concrete beams with rectangular sections were first carried out in the laboratory. Then, by analyzing the shortcomings and limitations of existing fatigue strain evolution equations, the level-S nonlinear evolution model of fatigue strain was constructed, and the physical meaning of the parameters was discussed. Finally, the evolution of fatigue strain and fatigue damage of concrete in the compression zone of the experimental beam was analyzed based on the level-S nonlinear evolution model. The results show that, initially, fatigue strain grows rapidly. In the middle stages, fatigue strain is nearly a linear change. Because the experimental data for the third stage are relatively scarce, the evolution of the strain therefore degenerated into two phases. The model has strong adaptability and high accuracy and can reflect the evolution of fatigue strain. The fatigue damage evolution expression based on fatigue strain shows that fatigue strain and fatigue damage have similar variations, and, with the same load cycles, the greater the load level, the larger the damage, in line with the general rules of damage.

  14. Over Saturation in SiPMs: The Difference Between Signal Charge and Signal Amplitude

    CERN Document Server

    Ahnen, Max Ludwig

    2015-01-01

    A recent report on the over saturation in SiPMs is puzzling. The measurements, using a variety of SiPMs, show an excess in signal far beyond the physical limit of the number of SiPM microcells without indication of an ultimate saturation. In this work I propose a solution to this problem. Different measurements and theoretical models of avalanche propagation indicate that multiple simultaneous primary avalanches produce an ever narrower and faster signal. This is because of a speed-up of effective avalanche propagation processes. It means that SiPMs, operated at their saturation regime, should become faster the more light they detect. Therefore, signal extraction methods that use the amplitude of the signal should see an over saturation effect. Measurements with a commercial SiPM illuminated with bright picosecond pulses in the saturation regime demonstrate that indeed the rising edge of the SiPM signal gets faster as the light pulses get brighter. A signal extractor based on the amplitude shows a nonlinear b...

  15. Measurement of the B0->PhiK*0 Decay Amplitudes

    CERN Document Server

    Aubert, B; Boutigny, D; Couderc, F; Gaillard, J M; Hicheur, A; Karyotakis, Yu; Lees, J P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, Michael T; Shelkov, V G; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Wilson, F F; Çuhadar-Dönszelmann, T; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Thiessen, D; Khan, A; Kyberd, P; Teodorescu, L; Blinov, A E; Blinov, V E; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Foulkes, S D; Gary, J W; Shen, B C; Wang, K; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S M; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Smith, J G; Zhang, J; Zhang, L; Chen, A; Harton, J L; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q L; Altenburg, D; Brandt, T; Brose, J; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Petzold, A; Schubert, J; Schubert, Klaus R; Schwierz, R; Spaan, B; Sundermann, J E; Bernard, D; Bonneaud, G R; Brochard, F; Grenier, P; Schrenk, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Lavin, D; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Charles, M J; Grenier, G J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Biasini, M; Covarelli, R; Pioppi, M; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F R; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Coleman, J P; Forster, I J; Fry, J R; Gabathuler, Erwin; Gamet, R; Hutchcroft, D E; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Mohanty, G B; Cowan, G; Flack, R L; Flächer, H U; Green, M G; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Lafferty, G D; Lyon, A J; Williams, J C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Stängle, H; Willocq, S; Cowan, R; Sciolla, G; Sekula, S J; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L M; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cavallo, N; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; LoSecco, J M; Allmendinger, T; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonian, R; Wong, Q K; Brau, J E; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; La Vaissière, C de; Del Buono, L; Hamon, O; John, M J J; Leruste, P; Malcles, J; Ocariz, J; Pivk, M; Roos, L; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martínez-Vidal, F; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lau, Y P; Lü, C; Miftakov, V; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai-Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B J; Geddes, N I; Gopal, G P; Olaiya, E O; Aleksan, Roy; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel de Monchenault, G; Kozanecki, Witold; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yéche, C; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmüller, O L; Claus, R; Convery, M R; Cristinziani, M; De Nardo, Gallieno; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W M; Elsen, E E; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Lüth, V; Lynch, H L; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Vavra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Young, C C; Burchat, Patricia R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bóna, M; Gallo, F; Gamba, D; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R V; Roney, J M; Sobie, R J; Band, H R; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mihályi, A; Mohapatra, A K; Pan, Y; Prepost, R; Tan, P; Von Wimmersperg-Töller, J H; Wu, J; Wu, S L; Yu, Z; Greene, M G; Neal, H

    2004-01-01

    With a sample of about 227 million BB pairs recorded with the BABAR detector at the PEP-II storage ring we perform a full angular analysis of the decay B0->PhiK*0(892). We measure the branching fraction to be (9.2+-0.9+-0.5)10^-6 and determine the fractions of longitudinal and parity-odd transverse contributions as f_L=0.52+-0.05+-0.02 and f_perp=0.22+-0.05+-0.02, respectively. The phases of the parity-even and parity-odd transverse amplitudes relative to the longitudinal amplitude are found to be phi_parallel= 2.34+0.23-0.20+-0.05 rad and phi_perp=2.47+-0.25+-0.05 rad, respectively. We measure five CP asymmetries which provide important limits on CP violation originating from new physics. We also observe the decay B0->PhiK*0(1430).

  16. Quantitative measurement of the vibrational amplitude and phase in photorefractive time-average interferometry: A comparison with electronic speckle pattern interferometry

    DEFF Research Database (Denmark)

    Rohleder, Henrik; Petersen, Paul Michael; Marrakchi, A.

    1994-01-01

    and amplitude of the vibrating structure are demonstrated in photorefractive time average interferometry. The photorefractive interferometer is compared with the performance of a commercial electronic speckle pattern interferometer (ESPI). It is shown that the dynamic photorefractive holographic interferometer......Time-average interferometry is dealt with using four-wave mixing in photorefractive Bi12SiO20. By introducing a proper sinusoidal phase shift in the forward pump beam it is possible to measure the amplitude and phase everywhere on a vibrating object. Quantitative measurements of the phase...... improves the image quality considerably and is able to extend the measurable range for the acoustic vibration amplitude and frequency compared to what is obtainable with the ESPI equipment. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  17. Study of inelastic decay amplitudes in 51Mn

    International Nuclear Information System (INIS)

    Detailed angular distribution measurments on inelastically scattered protons and de-excitation γ-rays in the 50Cr(p,p') and 50Cr(p,p'γ) reactions were performed for 107 resonances in 51Mn in the proton energy range 3.0-4.4 MeV. An overall resolution of 425 eV was obtained with the tandem Van de Graaff accelerator and the high resolution system at the Triangle Universities Nuclear Laboratory. Spin and parity assignments for the 107 resonances studied were as follows: 1/2+ (4); 1/2- (6); 3/2- (30); 3/2+ (20); 5/2+ (38); 5/2- (7); 7/2+ (1); and 9/2+ (1). Mixing ratios for the inelastic decay amplitudes were uniquely determined for all resonances except those assigned J/sup π/ = 1/2+, 1/2-, or 3/2+. For 1/2+ and 1/2- resonances there is only one open decay channel. For 3/2+ resonances, insufficient information is obtained from this experiment to determine a unique solution for the mixing ratios. Statistical studies were performed on the set of 3/2- resonances and on the set of 5/2+ resonances. Strong channel-channel correlations were observed in the distributions of the reduced widths and the reduced width amplitudes for 5/2+ resonances. The existence of such correlations is a violation of the extreme statistical model. The present results agree with the reduced width amplitude distribution of Krieger and Porter which includes channel-channel correlations

  18. The Amplitude-Duration Relation of Observed El Nifio Events

    Institute of Scientific and Technical Information of China (English)

    Wu Yu-Jie; DUAN Wan-Suo

    2012-01-01

    The authors demonstrate that the E1 Nifio events in the pre- and post-1976 periods show two ampli- tude-duration relations. One is that the stronger E1 Nifio events have longer durations, which is robust for the moderate E1 Nifio events; the other is that the stronger E1 Nifio events have shorter durations but for strong E1 Nifio events. By estimating the sign and amplitude of the nonlinear dynamical heating (NDH) anomalies, the au- thors illustrate that the NDH anomalies are negligible for moderate E1 Nifio events but large for strong E1 Nifio events. In particular, the large NDH anomalies for strong E1 Nifio events are positive during the growth and mature phases, which favor warmer E1 Nifio events. During the decay phase, however, the negative NDH anomalies start to arise and become increasingly significant with the evolution of the E1 Nifio events, in which the negative NDH anomalies dampen the sea surface temperature anomalies (SSTA) and cause the E1 Nifio events to reach the SST normal state earlier. This pattern suggests that the nonlinearity tends to increase the intensities of strong E1 Nifio events and shorten their duration, which, together with the previous results showing a positive correlation between the strength of E1 Nifio events and the signifi- cance of the effect of nonlinear advection on the events (especially the suppression of nonlinearity on the SSTA during the decay phase), shows that the strong E1 Nifio events tend to have the amplitude-duration relation of the stronger E1 Nifio events with shorter durations. This result also lends support to the assertion that moderate E1 Nifio events possess the amplitude-duration relation of stronger E1 Nifio events with longer durations.

  19. COMPARISON OF HOLOGRAPHIC AND ITERATIVE METHODS FOR AMPLITUDE OBJECT RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    I. A. Shevkunov

    2015-01-01

    Full Text Available Experimental comparison of four methods for the wavefront reconstruction is presented. We considered two iterative and two holographic methods with different mathematical models and algorithms for recovery. The first two of these methods do not use a reference wave recording scheme that reduces requirements for stability of the installation. A major role in phase information reconstruction by such methods is played by a set of spatial intensity distributions, which are recorded as the recording matrix is being moved along the optical axis. The obtained data are used consistently for wavefront reconstruction using an iterative procedure. In the course of this procedure numerical distribution of the wavefront between the planes is performed. Thus, phase information of the wavefront is stored in every plane and calculated amplitude distributions are replaced for the measured ones in these planes. In the first of the compared methods, a two-dimensional Fresnel transform and iterative calculation in the object plane are used as a mathematical model. In the second approach, an angular spectrum method is used for numerical wavefront propagation, and the iterative calculation is carried out only between closely located planes of data registration. Two digital holography methods, based on the usage of the reference wave in the recording scheme and differing from each other by numerical reconstruction algorithm of digital holograms, are compared with the first two methods. The comparison proved that the iterative method based on 2D Fresnel transform gives results comparable with the result of common holographic method with the Fourier-filtering. It is shown that holographic method for reconstructing of the object complex amplitude in the process of the object amplitude reduction is the best among considered ones.

  20. Lattice results for low moments of light meson distribution amplitudes

    International Nuclear Information System (INIS)

    As part of the UKQCD and RBC collaborations' Nf = 2+1 domain-wall fermion phenomenology programme, we calculate the first two moments of the light-cone distribution amplitudes of the pseudoscalar mesons π and K and the (longitudinally-polarised) vector mesons ρ, K* and φ. We obtain the desired quantities with good precision and are able to discern the expected quark-mass dependence of SU(3)-flavour breaking effects. An important ingredient of the calculation is the nonperturbative renormalisation of lattice operators using the RI'/MOM technique. (orig.)

  1. Lattice Results for Low Moments of Light Meson Distribution Amplitudes

    CERN Document Server

    Arthur, R; Brommel, D; Donnellan, M A; Flynn, J M; Juttner, A; Rae, T D; Sachrajda, C T.C

    2011-01-01

    As part of the UKQCD and RBC collaborations' N_f=2+1 domain-wall fermion phenomenology programme, we calculate the first two moments of the light-cone distribution amplitudes of the pseudoscalar mesons pion and kaon and the (longitudinally-polarised) vector mesons rho, K-star and phi. We obtain the desired quantities with good precision and are able to discern the expected quark-mass dependence of SU(3)-flavour breaking effects. An important ingredient of the calculation is the nonperturbative renormalisation of lattice operators using the RI'/MOM technique.

  2. On planar gluon amplitudes/Wilson loops duality

    OpenAIRE

    Drummond, J M; Henn, J.; Korchemsky, G.P.; Sokatchev, E.

    2007-01-01

    There is growing evidence that on-shell gluon scattering amplitudes in planar N=4 SYM theory are equivalent to Wilson loops evaluated over contours consisting of straight, light-like segments defined by the momenta of the external gluons. This equivalence was first suggested at strong coupling using the AdS/CFT correspondence and has since been verified at weak coupling to one loop in perturbation theory. Here we perform an explicit two-loop calculation of the Wilson loop dual to the four-glu...

  3. On the Turbulence Beneath Finite Amplitude Water Waves

    CERN Document Server

    Babanin, Alexander V

    2015-01-01

    The paper by Beya et al. (2012, hereinafter BPB) has a general title of Turbulence Beneath Finite Amplitude Water Waves, but is solely dedicated to discussing the experiment by Babanin and Haus (2009, hereinafter BH) who conducted measurements of wave-induced non-breaking turbulence by particle image velocimetry (PIV). The authors of BPB conclude that their observations contradict those of BH. Here we argue that the outcomes of BPB do not contradict BH. In addition, although the main conclusion of BPB is that there is no turbulence observed in their experiment, it actually is observed.

  4. ALOHA: Automatic Libraries Of Helicity Amplitudes for Feynman diagram computations

    CERN Document Server

    de Aquino, Priscila; Maltoni, Fabio; Mattelaer, Olivier; Stelzer, Tim

    2011-01-01

    We present an application that automatically writes the Helas library corresponding to the Feynman rules of any Lagrangian, renormalizable or not, in quantum field theory. The code, written in Python, takes the Universal FeynRules Output as an input and produces the complete set of routines (wave-functions and amplitudes) that are needed for the computation of Feynman diagrams at leading as well as at higher orders. The representation is language independent and outputs in Fortran, C++, Python are currently available. A few key sample applications implemented in the MadGraph5 framework are presented.

  5. Attenuation of ground-motion spectral amplitudes in southeastern Australia

    Science.gov (United States)

    Allen, T.I.; Cummins, P.R.; Dhu, T.; Schneider, J.F.

    2007-01-01

    A dataset comprising some 1200 weak- and strong-motion records from 84 earthquakes is compiled to develop a regional ground-motion model for southeastern Australia (SEA). Events were recorded from 1993 to 2004 and range in size from moment magnitude 2.0 ??? M ??? 4.7. The decay of vertical-component Fourier spectral amplitudes is modeled by trilinear geometrical spreading. The decay of low-frequency spectral amplitudes can be approximated by the coefficient of R-1.3 (where R is hypocentral distance) within 90 km of the seismic source. From approximately 90 to 160 km, we observe a transition zone in which the seismic coda are affected by postcritical reflections from midcrustal and Moho discontinuities. In this hypocentral distance range, geometrical spreading is approximately R+0.1. Beyond 160 km, low-frequency seismic energy attenuates rapidly with source-receiver distance, having a geometrical spreading coefficient of R-1.6. The associated regional seismic-quality factor can be expressed by the polynomial: log Q(f) = 3.66 - 1.44 log f + 0.768 (log f)2 + 0.058 (log f)3 for frequencies 0.78 ??? f ??? 19.9 Hz. Fourier spectral amplitudes, corrected for geometrical spreading and anelastic attenuation, are regressed with M to obtain quadratic source scaling coefficients. Modeled vertical-component displacement spectra fit the observed data well. Amplitude residuals are, on average, relatively small and do not vary with hypocentral distance. Predicted source spectra (i.e., at R = 1 km) are consistent with eastern North American (ENA) Models at low frequencies (f less than approximately 2 Hz) indicating that moment magnitudes calculated for SEA earthquakes are consistent with moment magnitude scales used in ENA over the observed magnitude range. The models presented represent the first spectral ground-motion prediction equations develooed for the southeastern Australian region. This work provides a useful framework for the development of regional ground-motion relations

  6. Phase diffusion in localized spatio-temporal amplitude chaos

    CERN Document Server

    Granzow, G D; Granzow, Glen D; Riecke, Hermann

    1996-01-01

    We present numerical simulations of coupled Ginzburg-Landau equations describing parametrically excited waves which reveal persistent dynamics due to the occurrence of phase slips in sequential pairs, with the second phase slip quickly following and negating the first. Of particular interest are solutions where these double phase slips occur irregularly in space and time within a spatially localized region. An effective phase diffusion equation utilizing the long term phase conservation of the solution explains the localization of this new form of amplitude chaos.

  7. Lattice results for low moments of light meson distribution amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, R.; Boyle, P.A. [Edinburgh Univ. (United Kingdom). SUPA, School of Physics; Broemmel, D.; Flynn, J.M.; Rae, T.D.; Sachrajda, C.T.C. [Southampton Univ. (United Kingdom). School of Physics and Astronomy; Donnellan, M.A. [NIC/DESY Zeuthen (Germany); Juettner, A. [CERN, Geneva (Switzerland). Physics Dept.

    2010-12-15

    As part of the UKQCD and RBC collaborations' N{sub f} = 2+1 domain-wall fermion phenomenology programme, we calculate the first two moments of the light-cone distribution amplitudes of the pseudoscalar mesons {pi} and K and the (longitudinally-polarised) vector mesons {rho}, K{sup *} and {phi}. We obtain the desired quantities with good precision and are able to discern the expected quark-mass dependence of SU(3)-flavour breaking effects. An important ingredient of the calculation is the nonperturbative renormalisation of lattice operators using the RI{sup '}/MOM technique. (orig.)

  8. Amplitude tests of direct channel resonances: the dibaryon

    International Nuclear Information System (INIS)

    A recently formulated polarization amplitude test for the existence of one-particle-exchange mechanisms is modified to deal with direct-channel resonances. The results are applied to proton-proton elastic scattering at and around 800 MeV to test the suggested existence of a dibaryon resonance. This test is sensitive to somewhat different circumstances and parameters than the methods used in the past to find dibaryon resonances. The evidence, on the basis of the SAID data set, is negative for a resonance in any singlet partial wave, but is tantalizingly subliminal for a 3F3 resonance. 7 refs., 4 figs

  9. Amplitude-phase patterns: A new look at strong interactions

    Science.gov (United States)

    Goldstein, Gary R.; Arash, Firooz; Moravcsik, Michael J.

    1994-10-01

    The phases of complex spin-dependent scattering amplitudes for elastic processes NN, πN, πd, along with pp→d π+, are analyzed in various frames of reference for spin quantization. When all available energies and angles are compiled it is seen that the "phase histograms" for each reaction have remarkably simple properties in one choice of optimal frame; the phases tend to be integer multiples of 90°, within existing uncertainties. A two-component model for πN is presented that reproduces the striking pattern of phases and its generalization is discussed.

  10. Amplitude tests of direct channel resonances: The dibaryon

    Science.gov (United States)

    Goldstein, G. R.; Moravosik, M. J.; Arash, F.

    1985-02-01

    A recently formulated polarization amplitude test for the existence of one-particle-exchange mechanisms is modified to deal with direct-channel resonances. The results are applied to proton-proton elastic scattering at and around 800 MeV to test the suggested existence of a dibaryon resonance. This test is sensitive to somewhat different circumstances and parameters than the methods used in the past to find dibaryon resonances. The evidence, on the basis of the SAID data set, is negative for a resonance in any singlet partial wave, but is tantalizingly subliminal for a 3F3 resonance.

  11. Amplitude-phase patterns: A new look at strong interactions

    International Nuclear Information System (INIS)

    The phases of complex spin-dependent scattering amplitudes for elastic processes NN, πN, πd, along with pp→dπ+, are analyzed in various frames of reference for spin quantization. When all available energies and angles are compiled it is seen that the ''phase histograms'' for each reaction have remarkably simple properties in one choice of optimal frame; the phases tend to be integer multiples of 90 , within existing uncertainties. A two-component model for πN is presented that reproduces the striking pattern of phases and its generalization is discussed. ((orig.))

  12. Electroglottographic Quasi-open quotient and amplitude in crescendo phonation.

    Science.gov (United States)

    Hacki, T

    1996-12-01

    Crescendo phonation (swelltone) was used to evaluate the laryngeal tensioning behavior of seven normal speakers and of 12 dysphonic patients. EGG quasi-open quotient (qOq), stroboscopic open quotient, and vocal sound pressure level (SPL) were measured, and EGG amplitude and the mucosal wave were assessed qualitatively. For normal speakers, the qOq decreased greatly as vocal intensity increased. The same tendency was observed, but to a lesser extent, among hyperfunctional dysphonics. In contrast, qOq increased with vocal intensity among the hypofunctional dysphonics. The crescendo task combined with EGG assessment appears to offer a valid approach to the classification of laryngeal dysfunctions.

  13. Fluidic Oscillator Having Decoupled Frequency and Amplitude Control

    Science.gov (United States)

    Koklu, Mehti (Inventor)

    2016-01-01

    A fluidic oscillator having independent frequency and amplitude control includes a fluidic-oscillator main flow channel having a main flow inlet, a main flow outlet, and first and second control ports disposed at opposing sides thereof. A fluidic-oscillator controller has an inlet and outlet. A volume defined by the main flow channel is greater than the volume defined by the controller. A flow diverter coupled to the outlet of the controller defines a first fluid flow path from the controller's outlet to the first control port and defines a second fluid flow path from the controller's outlet to the second control port.

  14. Renormalization and applications of baryon distribution amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Rohrwild, Juergen Holger

    2009-07-17

    Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N{sup *}(1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N* distribution amplitudes. (orig.)

  15. Renormalization and applications of baryon distribution amplitudes QCD

    Energy Technology Data Exchange (ETDEWEB)

    Rohrwild, Juergen Holger

    2009-07-17

    Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N{sup *}(1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N{sup *} distribution amplitudes. (orig.)

  16. Short Large-Amplitude Magnetic Structures (SLAMS) at Venus

    Science.gov (United States)

    Collinson, G. A.; Wilson, L. B.; Sibeck, D. G.; Shane, N.; Zhang, T. L.; Moore, T. E.; Coates, A. J.; Barabash, S.

    2012-01-01

    We present the first observation of magnetic fluctuations consistent with Short Large-Amplitude Magnetic Structures (SLAMS) in the foreshock of the planet Venus. Three monolithic magnetic field spikes were observed by the Venus Express on the 11th of April 2009. The structures were approx.1.5->11s in duration, had magnetic compression ratios between approx.3->6, and exhibited elliptical polarization. These characteristics are consistent with the SLAMS observed at Earth, Jupiter, and Comet Giacobini-Zinner, and thus we hypothesize that it is possible SLAMS may be found at any celestial body with a foreshock.

  17. Reversible large amplitude planar extension of soft elastomers

    DEFF Research Database (Denmark)

    Jensen, Mette Krog; Skov, Anne Ladegaard; Rasmussen, Henrik K.;

    The newly developed planar elongation fixture, designed as an add-on to the filament stretch rheometer, is used to measure reversible large amplitude planar elongation on soft elastomers. The concept of the new fixture is to elongate an annulus by keeping the perimeter constant. The deformation...... the measured stress data, it is observed that there is some elastic recovery when reversing the flow. This is analyzed calculating the amount of work needed during the deformation, and it is observed that the sample itself contributes with work upon flow reversal....

  18. Shield Insertion to Minimize Noise Amplitude in Global Interconnects

    Directory of Open Access Journals (Sweden)

    Kalpana.A.B

    2012-09-01

    Full Text Available Shield insertion is an effective technique for minimise crosstalk noise and signal delay uncertainty .To reduce the effects of coupling uniform or simultaneous shielding may be used on either or both sides of a signal line. Shields are ground or power lines placed between two signal wires to prevent direct coupling between them as the shield width increases, the noise amplitude decreases, in this paper inserting a shield line between two coupled interconnects is shown to be more effective in reducing crosstalk noise for different technology nodes .

  19. Stochastic thermodynamics of macrospins with fluctuating amplitude and direction.

    Science.gov (United States)

    Bandopadhyay, Swarnali; Chaudhuri, Debasish; Jayannavar, A M

    2015-09-01

    We consider stochastic energy balance and entropy production (EP) in a generalized Langevin dynamics of macrospins, allowing for both amplitude and direction fluctuations, under external magnetic field. EP is calculated using a Fokker-Planck equation, distinguishing between reversible and irreversible parts of probability currents. The system entropy increases due to irreversible non-equilibrium processes, and reduces as heat dissipates to the surrounding environment. Using path probability distributions of time-forward trajectories and conjugate trajectories under time reversal, we obtain fluctuation theorems (FT) for total stochastic EP. We show that the choice of conjugate trajectories is crucial in obtaining entropy-like quantities that obey FTs. PMID:26465462

  20. Finite-amplitude vibration of a bubble and sonoluminescence

    Institute of Scientific and Technical Information of China (English)

    Qian Zu-Wen; Xiao Ling; Guo Liang-Hao

    2004-01-01

    Numerical solutions of the differential equation for a bubble performing finite-amplitude vibration are given in detail for a variety of situations. The results demonstrate that in lower acoustic pressure (maximum Mach number very low) its vibration has bounce. When acoustic pressure is in excess of 1.18atm and the instantaneous radius of the bubble approaches its equivalent Van der Waals radius, the maximum velocity and acceleration on the surface of a bubble have a huge increase in a very short period, which seems to favour the sonoluminescence. In vacuum environment (0.1atm),an intensive sonoluminescence could be generated.