WorldWideScience

Sample records for amplify high-latitude warming

  1. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming.

    Science.gov (United States)

    Cronin, Timothy W; Tziperman, Eli

    2015-09-15

    High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback--consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state--slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼ 10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the "lapse rate feedback" in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates.

  2. Increased Ocean Heat Convergence Into the High Latitudes With CO2 Doubling Enhances Polar-Amplified Warming

    Science.gov (United States)

    Singh, H. A.; Rasch, P. J.; Rose, B. E. J.

    2017-10-01

    We isolate the role of the ocean in polar climate change by directly evaluating how changes in ocean dynamics with quasi-equilibrium CO2 doubling impact high-latitude climate. With CO2 doubling, the ocean heat flux convergence (OHFC) shifts poleward in winter in both hemispheres. Imposing this pattern of perturbed OHFC in a global climate model results in a poleward shift in ocean-to-atmosphere turbulent heat fluxes (both sensible and latent) and sea ice retreat; the high latitudes warm, while the midlatitudes cool, thereby amplifying polar warming. Furthermore, midlatitude cooling is propagated to the polar midtroposphere on isentropic surfaces, augmenting the (positive) lapse rate feedback at high latitudes. These results highlight the key role played by the partitioning of meridional energy transport changes between the atmosphere and ocean in high-latitude climate change.

  3. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect.

    Science.gov (United States)

    Swann, Abigail L; Fung, Inez Y; Levis, Samuel; Bonan, Gordon B; Doney, Scott C

    2010-01-26

    Arctic climate is projected to change dramatically in the next 100 years and increases in temperature will likely lead to changes in the distribution and makeup of the Arctic biosphere. A largely deciduous ecosystem has been suggested as a possible landscape for future Arctic vegetation and is seen in paleo-records of warm times in the past. Here we use a global climate model with an interactive terrestrial biosphere to investigate the effects of adding deciduous trees on bare ground at high northern latitudes. We find that the top-of-atmosphere radiative imbalance from enhanced transpiration (associated with the expanded forest cover) is up to 1.5 times larger than the forcing due to albedo change from the forest. Furthermore, the greenhouse warming by additional water vapor melts sea-ice and triggers a positive feedback through changes in ocean albedo and evaporation. Land surface albedo change is considered to be the dominant mechanism by which trees directly modify climate at high-latitudes, but our findings suggest an additional mechanism through transpiration of water vapor and feedbacks from the ocean and sea-ice.

  4. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect

    Science.gov (United States)

    Swann, Abigail L.; Fung, Inez Y.; Levis, Samuel; Bonan, Gordon B.; Doney, Scott C.

    2010-01-01

    Arctic climate is projected to change dramatically in the next 100 years and increases in temperature will likely lead to changes in the distribution and makeup of the Arctic biosphere. A largely deciduous ecosystem has been suggested as a possible landscape for future Arctic vegetation and is seen in paleo-records of warm times in the past. Here we use a global climate model with an interactive terrestrial biosphere to investigate the effects of adding deciduous trees on bare ground at high northern latitudes. We find that the top-of-atmosphere radiative imbalance from enhanced transpiration (associated with the expanded forest cover) is up to 1.5 times larger than the forcing due to albedo change from the forest. Furthermore, the greenhouse warming by additional water vapor melts sea-ice and triggers a positive feedback through changes in ocean albedo and evaporation. Land surface albedo change is considered to be the dominant mechanism by which trees directly modify climate at high-latitudes, but our findings suggest an additional mechanism through transpiration of water vapor and feedbacks from the ocean and sea-ice. PMID:20080628

  5. Increased Ocean Heat Convergence Into the High Latitudes With CO 2 Doubling Enhances Polar-Amplified Warming: OCEAN HEAT AND POLAR WARMING

    Energy Technology Data Exchange (ETDEWEB)

    Singh, H. A. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, U.S. DOE Office of Science, Richland WA USA; Rasch, P. J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, U.S. DOE Office of Science, Richland WA USA; Rose, B. E. J. [Department of Atmospheric and Environmental Sciences, State University of New York at Albany, Albany NY USA

    2017-10-18

    We isolate the role of the ocean in polar climate change by directly evaluating how changes in ocean dynamics with quasi-equilibrium CO2-doubling impact high-latitude climate. With CO2-doubling, the ocean heat flux convergence (OHFC) shifts poleward in winter in both hemispheres. Imposing this pattern of perturbed OHFC in a global climate model results in a poleward shift in ocean-to-atmosphere turbulent heat fluxes (both sensible and latent) and sea ice retreat; the high-latitudes warm while the midlatitudes cool, thereby amplifying polar warming. Furthermore, midlatitude cooling is propagated to the polar mid-troposphere on isentropic surfaces, augmenting the (positive) lapse rate feedback at high latitudes. These results highlight the key role played by the partitioning of meridional energy transport changes between the atmosphere and ocean in high-latitude climate change.

  6. Amplified Late Pliocene terrestrial warmth in northern high latitudes from greater radiative forcing and closed Arctic Ocean gateways

    Science.gov (United States)

    Feng, Ran; Otto-Bliesner, Bette L.; Fletcher, Tamara L.; Tabor, Clay R.; Ballantyne, Ashley P.; Brady, Esther C.

    2017-05-01

    Proxy reconstructions of the mid-Piacenzian warm period (mPWP, between 3.264 and 3.025 Ma) suggest terrestrial temperatures were much warmer in the northern high latitudes (55°-90°N, referred to as NHL) than present-day. Climate models participating in the Pliocene Model Intercomparison Project Phase 1 (PlioMIP1) tend to underestimate this warmth. For instance, the underestimate is ∼10 °C on average across NHL and up to 17 °C in the Canadian Arctic region in the Community Climate System Model version 4 (CCSM4). Here, we explore potential mPWP climate forcings that might contribute to this mPWP mismatch. We carry out seven experiments to assess terrestrial temperature responses to Pliocene Arctic gateway closure, variations in CO2 level, and orbital forcing at millennial time scale. To better compare the full range of simulated terrestrial temperatures with sparse proxy data, we introduce a pattern recognition technique that simplifies the model surface temperatures to a few representative patterns that can be validate with the limited terrestrial proxy data. The pattern recognition technique reveals two prominent features of simulated Pliocene surface temperature responses. First, distinctive patterns of amplified warming occur in the NHL, which can be explained by lowered surface elevation of Greenland, pattern and amount of Arctic sea ice loss, and changing strength of Atlantic meridional overturning circulation. Second, patterns of surface temperature response are similar among experiments with different forcing mechanisms. This similarity is due to strong feedbacks from responses in surface albedo and troposphere water vapor content to sea ice changes, which overwhelm distinctions in forcings from changes in insolation, CO2 forcing, and Arctic gateway closure. By comparing CCSM4 simulations with proxy records, we demonstrate that both model and proxy records show similar patterns of mPWP NHL terrestrial warmth, but the model underestimates the magnitude

  7. Temperature-induced water stress in high-latitude forests in response to natural and anthropogenic warming.

    Science.gov (United States)

    Trahan, Matthew W; Schubert, Brian A

    2016-02-01

    The Arctic is particularly sensitive to climate change, but the independent effects of increasing atmospheric CO2 concentration (pCO2 ) and temperature on high-latitude forests are poorly understood. Here, we present a new, annually resolved record of stable carbon isotope (δ(13) C) data determined from Larix cajanderi tree cores collected from far northeastern Siberia in order to investigate the physiological response of these trees to regional warming. The tree-ring record, which extends from 1912 through 1961 (50 years), targets early twentieth-century warming (ETCW), a natural warming event in the 1920s to 1940s that was limited to Northern hemisphere high latitudes. Our data show that net carbon isotope fractionation (Δ(13) C), decreased by 1.7‰ across the ETCW, which is consistent with increased water stress in response to climate warming and dryer soils. To investigate whether this signal is present across the northern boreal forest, we compiled published carbon isotope data from 14 high-latitude sites within Europe, Asia, and North America. The resulting dataset covered the entire twentieth century and spanned both natural ETCW and anthropogenic Late Twentieth-Century Warming (~0.7 °C per decade). After correcting for a ~1‰ increase in Δ(13) C in response to twentieth century pCO2 rise, a significant negative relationship (r = -0.53, P forests across the twentieth century, of which approximately half is attributed to a decrease in stomatal conductance in order to conserve water in response to drying conditions, with the other half being attributed to increasing pCO2 . We conclude that annual tree-ring records from northern high-latitude forests record the effects of climate warming and pCO2 rise across the twentieth century. © 2015 John Wiley & Sons Ltd.

  8. Variable responses of benthic communities to anomalously warm sea temperatures on a high-latitude coral reef.

    Directory of Open Access Journals (Sweden)

    Tom C L Bridge

    Full Text Available High-latitude reefs support unique ecological communities occurring at the biogeographic boundaries between tropical and temperate marine ecosystems. Due to their lower ambient temperatures, they are regarded as potential refugia for tropical species shifting poleward due to rising sea temperatures. However, acute warming events can cause rapid shifts in the composition of high-latitude reef communities, including range contractions of temperate macroalgae and bleaching-induced mortality in corals. While bleaching has been reported on numerous high-latitude reefs, post-bleaching trajectories of benthic communities are poorly described. Consequently, the longer-term effects of thermal anomalies on high-latitude reefs are difficult to predict. Here, we use an autonomous underwater vehicle to conduct repeated surveys of three 625 m(2 plots on a coral-dominated high-latitude reef in the Houtman Abrolhos Islands, Western Australia, over a four-year period spanning a large-magnitude thermal anomaly. Quantification of benthic communities revealed high coral cover (>70%, comprising three main morphospecies prior to the bleaching event. Plating Montipora was most susceptible to bleaching, but in the plot where it was most abundant, coral cover did not change significantly because of post-bleaching increases in branching Acropora. In the other two plots, coral cover decreased while macroalgal cover increased markedly. Overall, coral cover declined from 73% to 59% over the course of the study, while macroalgal cover increased from 11% to 24%. The significant differences in impacts and post-bleaching trajectories among plots underline the importance of understanding the underlying causes of such variation to improve predictions of how climate change will affect reefs, especially at high-latitudes.

  9. Variable responses of benthic communities to anomalously warm sea temperatures on a high-latitude coral reef.

    Science.gov (United States)

    Bridge, Tom C L; Ferrari, Renata; Bryson, Mitch; Hovey, Renae; Figueira, Will F; Williams, Stefan B; Pizarro, Oscar; Harborne, Alastair R; Byrne, Maria

    2014-01-01

    High-latitude reefs support unique ecological communities occurring at the biogeographic boundaries between tropical and temperate marine ecosystems. Due to their lower ambient temperatures, they are regarded as potential refugia for tropical species shifting poleward due to rising sea temperatures. However, acute warming events can cause rapid shifts in the composition of high-latitude reef communities, including range contractions of temperate macroalgae and bleaching-induced mortality in corals. While bleaching has been reported on numerous high-latitude reefs, post-bleaching trajectories of benthic communities are poorly described. Consequently, the longer-term effects of thermal anomalies on high-latitude reefs are difficult to predict. Here, we use an autonomous underwater vehicle to conduct repeated surveys of three 625 m(2) plots on a coral-dominated high-latitude reef in the Houtman Abrolhos Islands, Western Australia, over a four-year period spanning a large-magnitude thermal anomaly. Quantification of benthic communities revealed high coral cover (>70%, comprising three main morphospecies) prior to the bleaching event. Plating Montipora was most susceptible to bleaching, but in the plot where it was most abundant, coral cover did not change significantly because of post-bleaching increases in branching Acropora. In the other two plots, coral cover decreased while macroalgal cover increased markedly. Overall, coral cover declined from 73% to 59% over the course of the study, while macroalgal cover increased from 11% to 24%. The significant differences in impacts and post-bleaching trajectories among plots underline the importance of understanding the underlying causes of such variation to improve predictions of how climate change will affect reefs, especially at high-latitudes.

  10. Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface warming

    Science.gov (United States)

    Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro

    2017-12-01

    Previous studies suggest large uncertainties in the stationary wave response under global warming. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface warming that mimics the effect of Arctic sea ice loss under global warming. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the warming response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the eddy driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface warming. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the eddy driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward eddy transport of heat and momentum. A stronger eddy-induced descending motion creates greater warming over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic warming response in a changing climate.

  11. Increases in the annual range of soil water storage at northern middle and high latitudes under global warming

    Science.gov (United States)

    Wu, Wen-Ying; Lan, Chia-Wei; Lo, Min-Hui; Reager, John T.; Famiglietti, James S.

    2015-05-01

    Soil water storage is a fundamental signal in the land hydrological cycle and changes in soil moisture can affect regional climate. In this study, we used simulations from Coupled Model Intercomparison Project Phase 5 archives to investigate changes in the annual range of soil water storage under global warming at northern middle and high latitudes. Results show that future warming could lead to significant declines in snowfall, and a corresponding lack of snowmelt water recharge to the soil, which makes soil water less available during spring and summer. Conversely, more precipitation as rainfall results in higher recharge to soil water during its accumulating season. Thus, the wettest month of soil water gets wetter, and the driest month gets drier, resulting in an increase of the annual range and suggesting that stronger heterogeneity in global water distribution (changing extremes) could occur under global warming; this has implications for water management and water security under a changing climate.

  12. Testing species distribution models across space and time: high latitude butterflies and recent warming

    DEFF Research Database (Denmark)

    Eskildsen, Anne; LeRoux, Peter C.; Heikkinen, Risto K.

    2013-01-01

    changes at expanding range margins can be predicted accurately. Location. Finland. Methods. Using 10-km resolution butterfly atlas data from two periods, 1992–1999 (t1) and 2002–2009 (t2), with a significant between-period temperature increase, we modelled the effects of climatic warming on butterfly...

  13. Asynchronous marine-terrestrial signals of the last deglacial warming in East Asia associated with low- and high-latitude climate changes.

    Science.gov (United States)

    Xu, Deke; Lu, Houyuan; Wu, Naiqin; Liu, Zhenxia; Li, Tiegang; Shen, Caiming; Wang, Luo

    2013-06-11

    A high-resolution multiproxy record, including pollen, foraminifera, and alkenone paleothermometry, obtained from a single core (DG9603) from the Okinawa Trough, East China Sea (ECS), provided unambiguous evidence for asynchronous climate change between the land and ocean over the past 40 ka. On land, the deglacial stage was characterized by rapid warming, as reflected by paleovegetation, and it began ca. 15 kaBP, consistent with the timing of the last deglacial warming in Greenland. However, sea surface temperature estimates from foraminifera and alkenone paleothermometry increased around 20-19 kaBP, as in the Western Pacific Warm Pool (WPWP). Sea surface temperatures in the Okinawa Trough were influenced mainly by heat transport from the tropical western Pacific Ocean by the Kuroshio Current, but the epicontinental vegetation of the ECS was influenced by atmospheric circulation linked to the northern high-latitude climate. Asynchronous terrestrial and marine signals of the last deglacial warming in East Asia were thus clearly related to ocean currents and atmospheric circulation. We argue that (i) early warming seawater of the WPWP, driven by low-latitude insolation and trade winds, moved northward via the Kuroshio Current and triggered marine warming along the ECS around 20-19 kaBP similar to that in the WPWP, and (ii) an almost complete shutdown of the Atlantic Meridional Overturning Circulation ca. 18-15 kaBP was associated with cold Heinrich stadial-1 and delayed terrestrial warming during the last deglacial warming until ca. 15 kaBP at northern high latitudes, and hence in East Asia. Terrestrial deglacial warming therefore lagged behind marine changes by ca. 3-4 ka.

  14. Amplified Arctic warming by phytoplankton under greenhouse warming.

    Science.gov (United States)

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  15. Equatorial counter electrojets and polar stratospheric sudden warmings – a classical example of high latitude-low latitude coupling?

    Directory of Open Access Journals (Sweden)

    C. Vineeth

    2009-08-01

    Full Text Available Favored occurrences of Equatorial Counter Electrojets (CEJs with a quasi 16-day periodicity over Trivandrum (8.5° N, 76.5° E, 0.5° N diplat. in association with the polar Stratospheric Sudden Warming (SSW events are presented. It is observed that, the stratospheric temperature at ~30 km over Trivandrum shows a sudden cooling prior to the SSWs and the CEJs of maximum intensity which occurs around this time. In general stronger CEJs are associated with more intense SSW events. The stratospheric zonal mean zonal wind over Trivandrum also exhibits a distinctly different pattern during the SSW period. These circulation changes are proposed to be conducive for the upward propagation of the lower atmospheric waves over the equatorial latitudes. The interaction of such waves with the tidal components at the upper mesosphere and its subsequent modification are suggested to be responsible for the occurrence of CEJs having planetary wave periods.

  16. Farmland shift due to climate warming and impacts on temporal-spatial distributions of water resources in a middle-high latitude agricultural watershed

    Science.gov (United States)

    Ouyang, Wei; Gao, Xiang; Hao, Zengchao; Liu, Hongbin; Shi, Yandan; Hao, Fanghua

    2017-04-01

    Climate warming increases the active accumulated temperature (AAT) of crops and may change crop structures and patterns. Climate warming along with farmland responses has combined consequences for watershed hydrological indicators, which would be expected to exhibit different temporal-spatial patterns. In our study we investigate the combined impacts of increased temperature and shifted farmland on the hydrological features in middle-high latitude agricultural watersheds. The AAT responses in latitudinal and altitudinal directions were revealed by using an agro-climate model under different warming scenarios (△T = 0.1 °C is applied to the interval from 0.7 °C to 1.5 °C). Then, the spatial distributions of dryland shifting to paddy land were determined considering △AAT. For every 1 °C increase in average annual temperature, the boundary for planting paddy fields will shift northward by approximately 160 km and upward in the altitudinal direction by 180 m. Increasing temperature values and the new crop distributions were imported into the SWAT model, which quantified the temporal (monthly and yearly) and spatial changes of runoff and actual evapotranspiration (ET). Annual runoff decreased at a rate of 9.5 mm/°C, and annual ET increased at a rate of 7 mm/°C under climate warming combined with shifted farmlands. Combined impacts increased runoff in February, March and September, and decreased runoff from April to July. ET increased from March to July and decreased in August and September. The comparison of spatial water resource responses indicated that lower altitude and lower latitude areas experienced larger changes in runoff and ET than was the case for higher altitude and higher latitude areas.

  17. Energy feedbacks of northern high-latitude ecosystems to the climate system due to reduced snow cover during 20th century warming

    Science.gov (United States)

    Euskirchen, E.S.; McGuire, A.D.; Chapin, F.S.

    2007-01-01

    The warming associated with changes in snow cover in northern high-latitude terrestrial regions represents an important energy feedback to the climate system. Here, we simulate snow cover-climate feedbacks (i.e. changes in snow cover on atmospheric heating) across the Pan-arctic over two distinct warming periods during the 20th century, 1910-1940 and 1970-2000. We offer evidence that increases in snow cover-climate feedbacks during 1970-2000 were nearly three times larger than during 1910-1940 because the recent snow-cover change occurred in spring, when radiation load is highest, rather than in autumn. Based on linear regression analysis, we also detected a greater sensitivity of snow cover-climate feedbacks to temperature trends during the more recent time period. Pan-arctic vegetation types differed substantially in snow cover-climate feedbacks. Those with a high seasonal contrast in albedo, such as tundra, showed much larger changes in atmospheric heating than did those with a low seasonal contrast in albedo, such as forests, even if the changes in snow-cover duration were similar across the vegetation types. These changes in energy exchange warrant careful consideration in studies of climate change, particularly with respect to associated shifts in vegetation between forests, grasslands, and tundra. ?? 2007 Blackwell Publishing Ltd.

  18. The ever-increasing CO2 seasonal cycle amplitude: contributions from high latitude warming, CO2 fertilization, and the agricultural Green Revolution

    Science.gov (United States)

    Zeng, N.; Martin, C.; Zhao, F.; Collatz, G. J.; Kalnay, E.; Salawitch, R. J.; West, T. O.; Guanter, L.

    2014-12-01

    Human activities has tranformed the Earth's surface in complex ways. Here we show that not only land cover change, but also the management intensity, namely the intensification of agriculture through the Green Revolution has had a profound impact on the carbon cycle. A long-standing puzzle in the global carbon cycle is the increase in the amplitude of the seasonal cycle of atmospheric CO2. This increase likely reflects enhanced biological activity in the Northern Hemisphere (NH). It has been hypothesized that vegetation growth may have been stimulated by higher concentrations of CO2 as well as warming in recent decades, but the role of such specific mechanisms has not been quantified and they have been unable to explain the full range and magnitude of observations. Here we suggest another potential driver of the increased seasonal amplitude: the intensification of agriculture from the Green Revolution to feed a rising population, that led to a 3-fold increase in world crop production over the last 5 decades. Our analysis of CO2 data and atmospheric inversions shows a robust 15% long-term increase in CO2 seasonal amplitude from 1961 to 2010 that is punctuated by large decadal and interannual variations. The three pillars of the Green Revolution, consisting of high yield cultivars, fertilizer use, and irrigation, are represented in a terrestrial carbon cycle model. The results reveal that the long-term increase in CO2 seasonal amplitude arises from two major regions in the NH: the mid-latitude cropland between 25N-60N that encompasses the world's major agriculture zones in Asia, Europe and North America, and the high-latitude natural vegetation between 50N-70N that includes much of the Northern boreal forests, tundra and some deciduous forests. The long-term trend of seasonal amplitude is 0.3% per year, of which sensitivity experiments attribute 43% to land use change, 31% to climate variability and change, and 26% to CO2 fertilization. Our results suggest that human

  19. Qualitative models of global warming amplifiers

    NARCIS (Netherlands)

    Milošević, U.; Bredeweg, B.; de Kleer, J.; Forbus, K.D.

    2010-01-01

    There is growing interest from ecological experts to create qualitative models of phenomena for which numerical information is sparse or missing. We present a number of successful models in the field of environmental science, namely, the domain of global warming. The motivation behind the effort is

  20. Amplified Arctic warming by phytoplankton under greenhouse warming

    OpenAIRE

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-01-01

    One of the important impacts of marine phytoplankton on climate systems is the geophysical feedback by which chlorophyll and the related pigments in phytoplankton absorb solar radiation and then change sea surface temperature. Yet such biogeophysical impact is still not considered in many climate projections by state-of-the-art climate models, nor is its impact on the future climate quantified. This study shows that, by conducting global warming simulations with and without an active marine e...

  1. Recently amplified arctic warming has contributed to a continual global warming trend

    Science.gov (United States)

    Huang, Jianbin; Zhang, Xiangdong; Zhang, Qiyi; Lin, Yanluan; Hao, Mingju; Luo, Yong; Zhao, Zongci; Yao, Yao; Chen, Xin; Wang, Lei; Nie, Suping; Yin, Yizhou; Xu, Ying; Zhang, Jiansong

    2017-12-01

    The existence and magnitude of the recently suggested global warming hiatus, or slowdown, have been strongly debated1-3. Although various physical processes4-8 have been examined to elucidate this phenomenon, the accuracy and completeness of observational data that comprise global average surface air temperature (SAT) datasets is a concern9,10. In particular, these datasets lack either complete geographic coverage or in situ observations over the Arctic, owing to the sparse observational network in this area9. As a consequence, the contribution of Arctic warming to global SAT changes may have been underestimated, leading to an uncertainty in the hiatus debate. Here, we constructed a new Arctic SAT dataset using the most recently updated global SATs2 and a drifting buoys based Arctic SAT dataset11 through employing the `data interpolating empirical orthogonal functions' method12. Our estimate of global SAT rate of increase is around 0.112 °C per decade, instead of 0.05 °C per decade from IPCC AR51, for 1998-2012. Analysis of this dataset shows that the amplified Arctic warming over the past decade has significantly contributed to a continual global warming trend, rather than a hiatus or slowdown.

  2. Farmland-atmosphere feedbacks amplify decreases in diffuse nitrogen pollution in a freeze-thaw agricultural area under climate warming conditions.

    Science.gov (United States)

    Gao, Xiang; Ouyang, Wei; Hao, Zengchao; Shi, Yandan; Wei, Peng; Hao, Fanghua

    2017-02-01

    Although climate warming and agricultural land use changes are two of the primary instigators of increased diffuse pollution, they are usually considered separately or additively. This likely lead to poor decisions regarding climate adaptation. Climate warming and farmland responses have synergistic consequences for diffuse nitrogen pollution, which are hypothesized to present different spatio-temporal patterns. In this study, we propose a modeling framework to simulate the synergistic impacts of climate warming and warming-induced farmland shifts on diffuse pollution. Active accumulated temperature response for latitudinal and altitudinal directions was predicted based on a simple agro-climate model under different temperature increments (△T 0 is from 0.8°C to 1.4°C at an interval of 0.2°C). Spatial distributions of dryland shift to paddy land were determined by considering accumulated temperature. Different temperature increments and crop distributions were inserted into Soil and Water Assessment Tool model, which quantified the spatio-temporal changes of nitrogen. Warming led to a decrease of the annual total nitrogen loading (2.6%-14.2%) in the low latitudes compared with baseline, which was larger than the decrease (0.8%-6.2%) in the high latitudes. The synergistic impacts amplified the decrease of the loading in the low and high latitudes at the sub-basin scale. Warming led to a decrease of the loading at a rate of 0.35kg/ha/°C, which was lower than the synergistic impacts (3.67kg/ha/°C) at the watershed level. However, warming led to the slight increase of the annual averaged NO3 (LAT) (0.16kg/ha/°C), which was amplified by the synergistic impacts (0.22kg/ha/°C). Expansion of paddy fields led to a decrease in the monthly total nitrogen loading throughout the year, but amplified an increase in the loading in August and September. The decreased response in spatio-temporal nitrogen patterns is substantially amplified by farmland-atmosphere feedbacks

  3. Late-season nitrogen applications in high-latitude strawberry ...

    African Journals Online (AJOL)

    USER

    2010-02-15

    Feb 15, 2010 ... Full Length Research Paper. Late-season nitrogen applications in high-latitude strawberry nurseries improve transplant production pattern in warm regions. Daniel S. Kirschbaum1*, Kirk D. Larson2, Steve A. Weinbaum2 and Theodore M. DeJong2. 1Instituto Nacional de Tecnología Agropecuaria (INTA).

  4. Symbiodinium spp. associated with high-latitude scleractinian corals from Jeju Island, South Korea

    Science.gov (United States)

    De Palmas, S.; Denis, V.; Ribas-Deulofeu, L.; Loubeyres, M.; Woo, S.; Hwang, S. J.; Song, J. I.; Chen, C. A.

    2015-09-01

    Most studies on endosymbiotic dinoflagellate algae (genus Symbiodinium) associated with scleractinian corals focus on tropical and sub-tropical reefs. Their diversity in outlying, non-reef coral communities at high latitudes is still not fully documented. In this study, we analyzed the Symbiodinium diversity associated with five scleractinian species collected at eight sites around Jeju Island (South Korea, 33.4°N) between 5 and 15 m depth. Denaturing gradient gel electrophoresis of amplified internal transcribed spacer region 2 distinguished five Symbiodinium types. We observed a high level of specificity between host genera and Symbiodinium spp. despite existing in an environment with large seasonal oscillations in temperature and light. Psammocora albopicta and Psammocora profundacella were associated with C1 and Montipora millepora with C17. Alveopora japonica was associated exclusively with an unusual F-type, the only known clade F representative functionally important to a scleractinian coral. Oulastrea crispata was associated with Symbiodinium boreum (type D15), occasionally co-occurring with type C3 (in 4 % of specimens). In addition to increasing the knowledge of Symbiodinium diversity in high-latitude coral communities, this study constitutes an important baseline upon which the effects of projected environmental change in the near future can be assessed. A better understanding of high-latitude coral communities is critical for understanding how a warming planet will affect the tempo and mode of shifts in the composition of temperate marine communities.

  5. Warming trends in Asia amplified by brown cloud solar absorption.

    Science.gov (United States)

    Ramanathan, Veerabhadran; Ramana, Muvva V; Roberts, Gregory; Kim, Dohyeong; Corrigan, Craig; Chung, Chul; Winker, David

    2007-08-02

    Atmospheric brown clouds are mostly the result of biomass burning and fossil fuel consumption. They consist of a mixture of light-absorbing and light-scattering aerosols and therefore contribute to atmospheric solar heating and surface cooling. The sum of the two climate forcing terms-the net aerosol forcing effect-is thought to be negative and may have masked as much as half of the global warming attributed to the recent rapid rise in greenhouse gases. There is, however, at least a fourfold uncertainty in the aerosol forcing effect. Atmospheric solar heating is a significant source of the uncertainty, because current estimates are largely derived from model studies. Here we use three lightweight unmanned aerial vehicles that were vertically stacked between 0.5 and 3 km over the polluted Indian Ocean. These unmanned aerial vehicles deployed miniaturized instruments measuring aerosol concentrations, soot amount and solar fluxes. During 18 flight missions the three unmanned aerial vehicles were flown with a horizontal separation of tens of metres or less and a temporal separation of less than ten seconds, which made it possible to measure the atmospheric solar heating rates directly. We found that atmospheric brown clouds enhanced lower atmospheric solar heating by about 50 per cent. Our general circulation model simulations, which take into account the recently observed widespread occurrence of vertically extended atmospheric brown clouds over the Indian Ocean and Asia, suggest that atmospheric brown clouds contribute as much as the recent increase in anthropogenic greenhouse gases to regional lower atmospheric warming trends. We propose that the combined warming trend of 0.25 K per decade may be sufficient to account for the observed retreat of the Himalayan glaciers.

  6. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures.

    Science.gov (United States)

    Douglas, Peter M J; Affek, Hagit P; Ivany, Linda C; Houben, Alexander J P; Sijp, Willem P; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-05-06

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10-17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands.

  7. Trends in Surface Temperature at High Latitudes

    Science.gov (United States)

    Comiso, Josefino C.

    2012-01-01

    The earliest signal of a climate change is expected to be found in the polar regions where warming is expected to be amplified on account of ice-albedo feedbacks associated with the high reflectivity of snow and ice. Because of general inaccessibility, there is a general paucity of in situ data and hence the need to use satellite data to observe the large-scale variability and trends in surface temperature in the region. Among the most important sensors for monitoring surface temperature has been the Advanced Very High Resolution Radiometer (AVHRR) which was first launched in 1978 and has provided continuous thermal infrared data since 1981. The top of the atmosphere data are converted to surface temperature data through various schemes that accounts for the unique atmospheric and surface conditions in the polar regions. Among the highest source of error in the data is cloud masking which is made more difficult in the polar region because of similar Signatures of clouds and snow lice covered areas. The availability of many more channels in the Moderate Resolution Imaging Spectroradiometer (MODIS) launched on board Terra satellite in December 1999 and on board Aqua in May 2002 (e.g., 36 visible and infrared channels compared to 5 for AVHRR) made it possible to minimize the error. Further capabilities were introduced with the Advanced Microwave Scanning Radiometer (AMSR) which has the appropriate frequency channels for the retrieval of sea surface temperature (SST). The results of analysis of the data show an amplified warming in the Arctic region, compared with global warming. The spatial distribution of warming is, however, not uniform and during the last 3 decades, positive temperature anomalies have been most pronounced in North America, Greenland and the Arctic basin. Some regions of the Arctic such as Siberia and the Bering Sea surprisingly show moderate cooling but this may be because these regions were anomalously warm in the 1980s when the satellite record

  8. Continuously amplified warming in the Alaskan Arctic: Implications for estimating global warming hiatus

    Science.gov (United States)

    Wang, Kang; Zhang, Tingjun; Zhang, Xiangdong; Clow, Gary D.; Jafarov, Elchin E.; Overeem, Irina; Romanovsky, Vladimir; Peng, Xiaoqing; Cao, Bin

    2017-09-01

    Historically, in situ measurements have been notoriously sparse over the Arctic. As a consequence, the existing gridded data of surface air temperature (SAT) may have large biases in estimating the warming trend in this region. Using data from an expanded monitoring network with 31 stations in the Alaskan Arctic, we demonstrate that the SAT has increased by 2.19°C in this region, or at a rate of 0.23°C/decade during 1921-2015. Meanwhile, we found that the SAT warmed at 0.71°C/decade over 1998-2015, which is 2 to 3 times faster than the rate established from the gridded data sets. Focusing on the "hiatus" period 1998-2012 as identified by the Intergovernmental Panel on Climate Change (IPCC) report, the SAT has increased at 0.45°C/decade, which captures more than 90% of the regional trend for 1951-2012. We suggest that sparse in situ measurements are responsible for underestimation of the SAT change in the gridded data sets. It is likely that enhanced climate warming may also have happened in the other regions of the Arctic since the late 1990s but left undetected because of incomplete observational coverage.

  9. Continuously amplified warming in the Alaskan Arctic: Implications for estimating global warming hiatus

    Science.gov (United States)

    Wang, Kang; Zhang, Tingjun; Zhang, Xiangdong; Clow, Gary D.; Jafarov, Elchin E.; Overeem, Irina; Romanovsky, Vladimir; Peng, Xiaoqing; Cao, Bin

    2017-01-01

    Historically, in situ measurements have been notoriously sparse over the Arctic. As a consequence, the existing gridded data of surface air temperature (SAT) may have large biases in estimating the warming trend in this region. Using data from an expanded monitoring network with 31 stations in the Alaskan Arctic, we demonstrate that the SAT has increased by 2.19°C in this region, or at a rate of 0.23°C/decade during 1921–2015. Meanwhile, we found that the SAT warmed at 0.71°C/decade over 1998–2015, which is 2 to 3 times faster than the rate established from the gridded data sets. Focusing on the “hiatus” period 1998–2012 as identified by the Intergovernmental Panel on Climate Change (IPCC) report, the SAT has increased at 0.45°C/decade, which captures more than 90% of the regional trend for 1951–2012. We suggest that sparse in situ measurements are responsible for underestimation of the SAT change in the gridded data sets. It is likely that enhanced climate warming may also have happened in the other regions of the Arctic since the late 1990s but left undetected because of incomplete observational coverage.

  10. High Latitude Dust in the Earth System

    Science.gov (United States)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; hide

    2016-01-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (> or = 50degN and > or = 40degS) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 sq km and contribute at least 80-100 Tg/yr1 of dust to the Earth system (approx. 5% of the global dust budget); both are projected to increase under future climate change scenarios.

  11. Long-term warming amplifies shifts in the carbon cycle of experimental ponds

    Science.gov (United States)

    Yvon-Durocher, Gabriel; Hulatt, Chris J.; Woodward, Guy; Trimmer, Mark

    2017-02-01

    Lakes and ponds cover only about 4% of the Earth’s non-glaciated surface, yet they represent disproportionately large sources of methane and carbon dioxide. Indeed, very small ponds (for example, <0.001 km2) may account for approximately 40% of all CH4 emissions from inland waters. Understanding how greenhouse gas emissions from aquatic ecosystems will respond to global warming is therefore vital for forecasting biosphere-carbon cycle feedbacks. Here, we present findings on the long-term effects of warming on the fluxes of GHGs and rates of ecosystem metabolism in experimental ponds. We show that shifts in CH4 and CO2 fluxes, and rates of gross primary production and ecosystem respiration, observed in the first year became amplified over seven years of warming. The capacity to absorb CO2 was nearly halved after seven years of warmer conditions. The phenology of greenhouse gas fluxes was also altered, with CO2 drawdown and CH4 emissions peaking one month earlier in the warmed treatments. These findings show that warming can fundamentally alter the carbon balance of small ponds over a number of years, reducing their capacity to sequester CO2 and increasing emissions of CH4; such positive feedbacks could ultimately accelerate climate change.

  12. Climate links and recent extremes in antarctic sea ice, high-latitude cyclones, Southern Annular Mode and ENSO

    Science.gov (United States)

    Pezza, Alexandre Bernardes; Rashid, Harun A.; Simmonds, Ian

    2012-01-01

    In this article, we study the climate link between the Southern Annular Mode (SAM) and the southern sea-ice extent (SIE), and discuss the possible role of stationary waves and synoptic eddies in establishing this link. In doing so, we have used a combination of techniques involving spatial correlations of SIE, eddy streamfunction and wind anomalies, and statistics of high-latitude cyclone strength. It is suggested that stationary waves may be amplified by eddy anomalies associated with high latitude cyclones, resulting in more sea ice when the SAM is in its positive phase for most, but not all, longitudes. A similar association is observed during ENSO (La Niña years). Although this synergy in the SAM/ENSO response may partially reflect preferential areas for wave amplification around Antarctica, the short extent of the climate records does not allow for a definite causality connection to be established with SIE. Stronger polar cyclones are observed over the areas where the stationary waves are amplified. These deeper cyclones will break up and export ice equatorward more efficiently, but the near-coastal regions are cold enough to allow for a rapid re-freeze of the resulting ice break-up. We speculate that if global warming continues this same effect could help reverse the current (positive) Antarctic SIE trends once the ice gets thinner, similarly to what has been observed in the Northern Hemisphere.

  13. Land–atmosphere feedbacks amplify aridity increase over land under global warming

    Science.gov (United States)

    Berg, Alexis; Findell, Kirsten; Lintner, Benjamin; Giannini, Alessandra; Seneviratne, Sonia I.; van den Hurk, Bart; Lorenz, Ruth; Pitman, Andy; Hagemann, Stefan; Meier, Arndt; Cheruy, Frédérique; Ducharne, Agnès; Malyshev, Sergey; Milly, Paul C. D.

    2016-01-01

    The response of the terrestrial water cycle to global warming is central to issues including water resources, agriculture and ecosystem health. Recent studies indicate that aridity, defined in terms of atmospheric supply (precipitation, P) and demand (potential evapotranspiration, Ep) of water at the land surface, will increase globally in a warmer world. Recently proposed mechanisms for this response emphasize the driving role of oceanic warming and associated atmospheric processes. Here we show that the aridity response is substantially amplified by land–atmosphere feedbacks associated with the land surface’s response to climate and CO2 change. Using simulations from the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we show that global aridity is enhanced by the feedbacks of projected soil moisture decrease on land surface temperature, relative humidity and precipitation. The physiological impact of increasing atmospheric CO2 on vegetation exerts a qualitatively similar control on aridity. We reconcile these findings with previously proposed mechanisms by showing that the moist enthalpy change over land is unaffected by the land hydrological response. Thus, although oceanic warming constrains the combined moisture and temperature changes over land, land hydrology modulates the partitioning of this enthalpy increase towards increased aridity.

  14. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures

    NARCIS (Netherlands)

    Douglas, P.M.J.; Affek, H.P.; Ivany, L.C.; Houben, A.J.P.; Sijp, W.P.; Sluijs, A.; Schouten, S.; Pagani, M.

    2014-01-01

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at

  15. High-latitude ocean ventilation and its role in Earth's climate transitions.

    Science.gov (United States)

    Naveira Garabato, Alberto C; MacGilchrist, Graeme A; Brown, Peter J; Evans, D Gwyn; Meijers, Andrew J S; Zika, Jan D

    2017-09-13

    The processes regulating ocean ventilation at high latitudes are re-examined based on a range of observations spanning all scales of ocean circulation, from the centimetre scales of turbulence to the basin scales of gyres. It is argued that high-latitude ocean ventilation is controlled by mechanisms that differ in fundamental ways from those that set the overturning circulation. This is contrary to the assumption of broad equivalence between the two that is commonly adopted in interpreting the role of the high-latitude oceans in Earth's climate transitions. Illustrations of how recognizing this distinction may change our view of the ocean's role in the climate system are offered.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Authors.

  16. Vulnerability of high-latitude soil organic carbon in North America to disturbance

    Science.gov (United States)

    Grosse, Guido; Harden, Jennifer W.; Turetsky, Merritt; McGuire, A. David; Camill, Philip; Tarnocai, Charles; Frolking, Steve; Schuur, Edward A.G.; Jorgenson, Torre; Marchenko, Sergei; Romanovsky, Vladimir; Wickland, Kimberly P.; French, Nancy; Waldrop, Mark P.; Bourgeau-Chavez, Laura L.; Striegl, Robert G.

    2011-01-01

    This synthesis addresses the vulnerability of the North American high-latitude soil organic carbon (SOC) pool to climate change. Disturbances caused by climate warming in arctic, subarctic, and boreal environments can result in significant redistribution of C among major reservoirs with potential global impacts. We divide the current northern high-latitude SOC pools into (1) near-surface soils where SOC is affected by seasonal freeze-thaw processes and changes in moisture status, and (2) deeper permafrost and peatland strata down to several tens of meters depth where SOC is usually not affected by short-term changes. We address key factors (permafrost, vegetation, hydrology, paleoenvironmental history) and processes (C input, storage, decomposition, and output) responsible for the formation of the large high-latitude SOC pool in North America and highlight how climate-related disturbances could alter this pool's character and size. Press disturbances of relatively slow but persistent nature such as top-down thawing of permafrost, and changes in hydrology, microbiological communities, pedological processes, and vegetation types, as well as pulse disturbances of relatively rapid and local nature such as wildfires and thermokarst, could substantially impact SOC stocks. Ongoing climate warming in the North American high-latitude region could result in crossing environmental thresholds, thereby accelerating press disturbances and increasingly triggering pulse disturbances and eventually affecting the C source/sink net character of northern high-latitude soils. Finally, we assess postdisturbance feedbacks, models, and predictions for the northern high-latitude SOC pool, and discuss data and research gaps to be addressed by future research.

  17. Cosmology with the WFIRST High Latitude Survey

    Science.gov (United States)

    Dore, Olivier

    Cosmic acceleration is the most surprising cosmological discovery in many decades. Testing and distinguishing among possible explanations requires cosmological measurements of extremely high precision that probe the full history of cosmic expansion and structure growth. The WFIRST-AFTA mission, as described in the Science Definition Team (SDT) reports (Spergel 2013, 2015), has the ability to improve these measurements by 1-2 orders of magnitude compared to the current state of the art, while simultaneously extending their redshift grasp, greatly improving control of systematic effects, and taking a unified approach to multiple probes that provide complementary physical information and cross-checks of cosmological results. We have assembled a team with the expertise and commitment needed to address the stringent challenges of the WFIRST dark energy program through the Project's formulation phase. After careful consideration, we have elected to address investigations A (Galaxy Redshift Survey) and C (Weak Lensing and Cluster Growth) of the WFIRST SIT NRA with a unified team, because the two investigations are tightly linked at both the technical level and the theoretical modeling level. The imaging and spectroscopic elements of the High Latitude Survey (HLS) will be realized as an integrated observing program, and they jointly impose requirements on instrument and telescope performance, operations, and data transfer. The methods for simulating and interpreting weak lensing and galaxy clustering observations largely overlap, and many members of our team have expertise in both areas. The team PI, Olivier Dore, is a cosmologist with a broad expertise in cosmic microwave background and large scale structures. Yun Wang and Chris Hirata will serve as Lead Co-Investigators for topics A and C, respectively. Many members of our team have been involved with the design and requirements of a dark energy space mission for a decade or more, including the Co-Chair and three

  18. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity

    Science.gov (United States)

    Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.

    2016-01-01

    Climate change is rapidly warming aquatic ecosystems including lakes and reservoirs. However, variability in lake characteristics can modulate how lakes respond to climate. Water clarity is especially important both because it influences the depth range over which heat is absorbed, and because it is changing in many lakes. Here, we show that simulated long-term water clarity trends influence how both surface and bottom water temperatures of lakes and reservoirs respond to climate change. Clarity changes can either amplify or suppress climate-induced warming, depending on lake depth and the direction of clarity change. Using a process-based model to simulate 1894 north temperate lakes from 1979 to 2012, we show that a scenario of decreasing clarity at a conservative yet widely observed rate of 0.92% yr−1 warmed surface waters and cooled bottom waters at rates comparable in magnitude to climate-induced warming. For lakes deeper than 6.5 m, decreasing clarity was sufficient to fully offset the effects of climate-induced warming on median whole-lake mean temperatures. Conversely, a scenario increasing clarity at the same rate cooled surface waters and warmed bottom waters relative to baseline warming rates. Furthermore, in 43% of lakes, increasing clarity more than doubled baseline bottom temperature warming rates. Long-term empirical observations of water temperature in lakes with and without clarity trends support these simulation results. Together, these results demonstrate that water clarity trends may be as important as rising air temperatures in determining how waterbodies respond to climate change.

  19. Vegetation controls on northern high latitude snow-albedo feedback: Observations and CMIP5 model simulations

    OpenAIRE

    Loranty, MM; Berner, LT; Goetz, SJ; Jin, Y; Randerson, JT

    2014-01-01

    The snow-masking effect of vegetation exerts strong control on albedo in northern high latitude ecosystems. Large-scale changes in the distribution and stature of vegetation in this region will thus have important feedbacks to climate. The snow-albedo feedback is controlled largely by the contrast between snow-covered and snow-free albedo (Δα), which influences predictions of future warming in coupled climate models, despite being poorly constrained at seasonal and century time scales. Here, ...

  20. Trophic dynamics influence climate at high latitudes

    Science.gov (United States)

    Oksanen, L.; Tuomi, M.; Hoset, K.; Oksanen, T.; Olofsson, J.; Dahlgren, J.; Nordic Center of Excellence-Tundra

    2011-12-01

    Abundance relationships between tall woody plants and low herbaceous plants influence ground albedo. Increasing abundance of erect woody plants on the tundra increase the amount of solar energy converted to heat, thus speeding up global warming. By transplanting vegetation blocks from an island with predatory mammals and gray-sided voles (Myodes rufocanus) to similar habitats on islands with gray-sided voles but no resident predators and to islands with neither voles nor predators, we show that changing trophic dynamics radically change the abundance relationships between woody and herbaceous plants. Impacts of food limited gray-sided voles result to devastation of all erect woody plants, regardless of their palatability, thus differing both quantitatively and qualitatively from the selective impacts of the same species in the presence of predators. The shift from vegetation dominated by erect woody plants to vegetation dominated by herbs or trailing dwarf shrubs also increases ground albedo. The relationship between climate and trophic dynamics is thus no one way street. Rather than responding passively to changes in climate, food webs can also influence climate via their impacts on ground albedo.

  1. Glacier-influenced sedimentation on high-latitude continental margins

    National Research Council Canada - National Science Library

    Dowdeswell, J. A; Cofaigh, C. Ó

    2002-01-01

    This book examines the process and patterns of glacier-influenced sedimentation on high-latitude continental margins and the geophysical and geological signatures of the resulting sediments and landform...

  2. High-latitude dust in the Earth system

    Science.gov (United States)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gassó, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; McKenna-Neuman, Cheryl; Mockford, Tom; Stewart, Helena; Thorsteinsson, Throstur

    2016-06-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (≥50°N and ≥40°S) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 km2 and contribute at least 80-100 Tg yr-1 of dust to the Earth system (~5% of the global dust budget); both are projected to increase under future climate change scenarios.

  3. High Latitude Dust Sources, Transport Pathways and Impacts

    Science.gov (United States)

    Bullard, J. E.; Baddock, M. C.; Darlington, E.; Mockford, T.; Van-Soest, M.

    2017-12-01

    Estimates from field studies, remote sensing and modelling all suggest around 5% of global dust emissions originate in the high latitudes (≥50°N and ≥40°S), a similar proportion to that from the USA (excluding Alaska) or Australia. This paper identifies contemporary sources of dust within the high latitudes and their role within local, regional and hemispherical environmental systems. Field data and remote sensing analyses are used to identify the environmental and climatic conditions that characterize high latitude dust sources in both hemispheres. Examples from Arctic and sub-Arctic dust sources are used to demonstrate and explain the different regional relationships among dust emissions, glacio-fluvial dynamics and snow cover. The relative timing of dust input to high latitude terrestrial, cryospheric and marine systems determines its short to medium term environmental impact. This is highlighted through quantifying the importance of locally-redistributed dust as a nutrient input to high latitude soils and lakes in West Greenland.

  4. Effect of high latitude filtering on NWP skill

    Science.gov (United States)

    Kalnay, E.; Takacs, L. L.; Hoffman, R. N.

    1984-01-01

    The high latitude filtering techniques commonly employed in global grid point models to eliminate the high frequency waves associated with the convergence of meridians, can introduce serious distortions which ultimately affect the solution at all latitudes. Experiments completed so far with the 4 deg x 5 deg, 9-level GLAS Fourth Order Model indicate that the high latitude filter currently in operation affects only minimally its forecasting skill. In one case, however, the use of pressure gradient filter significantly improved the forecast. Three day forecasts with the pressure gradient and operational filters are compared as are 5-day forecasts with no filter.

  5. Relationships between vegetation dynamics and hydroclimatic drivers in the northern high-latitude uplands

    Science.gov (United States)

    Wang, H.; Tetzlaff, D.; Buttle, J. M.; Carey, S. K.; Laudon, H.; McNamara, J. P.; Soulsby, C.; Spence, C.

    2015-12-01

    IPCC projections show that climate warming will be particularly high in northern high-latitude regions, which has profound ecohydrological implications: a small rise of temperature may result in lower water availability in summer due to less rainfall and more evapotranspiration, increase flooding risks by accelerating melting rates in spring, and more rain rather than snow in winter, etc. These impacts will affect vegetation communities by altering timing of the spring "green-up" and fall "senescence". Change in vegetation water use will feedback to atmospheric and hydrological cycles. Here, we report results from the PLATO "Plant-water interlinkages in northern uplands - mediation of climate change?" project where we investigate water uptake by plants and consequent water availability in northern regions along a cross-regional climate gradient to understand future responses to change in high-latitude uplands. Six sites in Sweden (Krycklan), Canada (Wolf Creek; Baker Creek; Dorset), Scotland (Girnock) and the USA (Dry Creek) span moisture and energy gradients found at high-latitudes. We are presenting preliminary results of vegetation phenology changes from 2000 to 2014 by analysing remote sensing vegetation indices. The relationship between vegetation phenology and climatic drivers (temperature and precipitation) is also investigated.

  6. Quantifying the trade-off between carbon sequestration and albedo in midlatitude and high-latitude North American forests

    Science.gov (United States)

    Mykleby, P. M.; Snyder, P. K.; Twine, T. E.

    2017-03-01

    Afforestation is a viable and widely practiced method of sequestering carbon dioxide from the atmosphere. However, because of a change in surface albedo, placement of less reflective forests can cause an increase in net-absorbed radiation and localized surface warming. This effect is enhanced in northern high latitudes where the presence of snow cover exacerbates the albedo difference. Regions where afforestation could provide a climate benefit are determined by comparing net ecosystem production and net radiation differences from afforestation in midlatitude and high latitude of North America. Using the dynamic vegetation model Integrated Biosphere Simulator, agricultural version (Agro-IBIS), we find a boundary through North America where afforestation results in a positive equivalent carbon balance (cooling) to the south, and a negative equivalent carbon balance (warming) to the north. Including the effects of stand age and fraction cover affect whether a site contributes to mitigating global warming.

  7. Climate Effects on High Latitude Daphnia via Food Quality and Thresholds.

    Directory of Open Access Journals (Sweden)

    Anna Przytulska

    Full Text Available Climate change is proceeding rapidly at high northern latitudes and may have a variety of direct and indirect effects on aquatic food webs. One predicted effect is the potential shift in phytoplankton community structure towards increased cyanobacterial abundance. Given that cyanobacteria are known to be a nutritionally poor food source, we hypothesized that such a shift would reduce the efficiency of feeding and growth of northern zooplankton. To test this hypothesis, we first isolated a clone of Daphnia pulex from a permafrost thaw pond in subarctic Québec, and confirmed that it was triploid but otherwise genetically similar to a diploid, reference clone of the same species isolated from a freshwater pond in southern Québec. We used a controlled flow-through system to investigate the direct effect of temperature and indirect effect of subarctic picocyanobacteria (Synechococcus on threshold food concentrations and growth rate of the high latitude clone. We also compared the direct effect of temperature on both Daphnia clones feeding on eukaryotic picoplankton (Nannochloropsis. The high latitude clone had a significantly lower food threshold for growth than the temperate clone at both 18 and 26°C, implying adaptation to lower food availability even under warmer conditions. Polyunsaturated fatty acids were present in the picoeukaryote but not the cyanobacterium, confirming the large difference in food quality. The food threshold for growth of the high latitude Daphnia was 3.7 (18°C to 4.2 (26°C times higher when fed Synechococcus versus Nannochloropsis, and there was also a significant negative effect of increased temperature and cyanobacterial food on zooplankton fatty acid content and composition. The combined effect of temperature and food quality on the performance of the high latitude Daphnia was greater than their effects added separately, further indicating the potentially strong indirect effects of climate warming on aquatic food web

  8. The potential for regime shifts in high latitude terrestrial ecosystems

    Science.gov (United States)

    Beck, P. S.; Goetz, S. J.

    2011-12-01

    Climate constrains the extent of the two major terrestrial biomes at high latitudes: boreal forests and arctic tundra. Model simulations provide considerable evidence that physical and biogeochemical feedbacks from these regions to the climate system act to maintain a status quo of climate and biome distribution. Ongoing anthropogenically driven changes in climate are particularly pronounced in high latitude regions, and empirical evidence for their influence on tundra and boreal ecosystems is mounting. Global vegetation models project changes to accelerate in coming decades, culminating in profound shifts in high latitude biomes by the end of this century. Regime shifts are surprisingly large changes in a system that occur when a it moves between alternative stable states ('attractors'), without the equivalent large shift of an external driver. In association with climate change, regime shifts in ecosystems could theoretically generate significant modifications to ecosystem-climate feedbacks, in the Arctic for example through the respiration or combustion of large amounts of soil carbon. Here we review evidence for historical regime shifts in terrestrial ecosystems at high latitudes, including shifts in species dominance and distribution. We describe ongoing changes in characteristics of these ecosystems, including vegetation productivity, composition, and the fire regime, and discuss whether they can be indicators of impeding regime shifts. Finally, we discuss the potential of exploiting regime shifts in tundra and boreal systems for climate change mitigation or resource management by forcing ecosystems to shift towards a more desirable stable state.

  9. Forest regeneration at high latitudes: experience from northern Sweden.

    Science.gov (United States)

    Mayo Murray

    1981-01-01

    The problem of obtaining adequate and economical forest regeneration is of major concern among the managers of high-latitude forest lands. In 1979 forest researchers and managers from Scandinavia and North America held the first of three workshops to address this topic by sharing experiences and research from each county. The first workshop was held in Umei, Sweden in...

  10. Quantifying Contributions to Polar Warming Amplification in a Coupled General Circulation Model

    Science.gov (United States)

    Cai, M.; Lu, J.

    2009-12-01

    An idealized coupled general circulation model is used to demonstrate that the surface warming due the doubling of CO2 can still be stronger in high latitudes than in low latitudes even without the negative evaporation feedback in low latitudes and positive ice-albedo feedback in high latitudes, as well as without the poleward latent heat transport. The new climate feedback analysis method formulated in Lu and Cai (2009) is used to isolate contributions from both radiative and non-radiative feedback processes to the total temperature change obtained with the coupled GCM. These partial temperature changes are additive and their sum is convergent to the total temperature change. The radiative energy flux perturbations due to the doubling of CO2 and water vapor feedback lead to a stronger warming in low latitudes than in high latitudes at the surface and throughout the entire troposphere. In the vertical, the temperature changes due to the doubling of CO2 and water vapor feedback are maximum near the surface and decrease with height at all latitudes. The simultaneous warming reduction in low latitudes and amplification in high latitudes by the enhanced poleward dry static energy transport reverses the warming pattern at the surface and in the lower troposphere into poleward increasing, but it is not able to do so in the upper troposphere. The enhanced vertical moist convections in the tropics acts to amplify the warming in the upper troposphere at an expense of reducing the warming in the lower troposphere and surface warming in the tropics. As a result, the final warming pattern shows the co-existence of a reduction of the meridional temperature gradient at the surface and in the lower troposphere with an increase of the meridional temperature gradient in the upper troposphere. In the tropics, the total warming is stronger in the upper troposphere than the surface warming.

  11. Quantifying contributions to polar warming amplification in an idealized coupled general circulation model

    Science.gov (United States)

    Lu, Jianhua; Cai, Ming

    2010-04-01

    An idealized coupled general circulation model is used to demonstrate that the surface warming due to the doubling of CO2 can still be stronger in high latitudes than in low latitudes even without the negative evaporation feedback in low latitudes and positive ice-albedo feedback in high latitudes, as well as without the poleward latent heat transport. The new climate feedback analysis method formulated in Lu and Cai (Clim Dyn 32:873-885, 2009) is used to isolate contributions from both radiative and non-radiative feedback processes to the total temperature change obtained with the coupled GCM. These partial temperature changes are additive and their sum is convergent to the total temperature change. The radiative energy flux perturbations due to the doubling of CO2 and water vapor feedback lead to a stronger warming in low latitudes than in high latitudes at the surface and throughout the entire troposphere. In the vertical, the temperature changes due to the doubling of CO2 and water vapor feedback are maximum near the surface and decrease with height at all latitudes. The simultaneous warming reduction in low latitudes and amplification in high latitudes by the enhanced poleward dry static energy transport reverses the poleward decreasing warming pattern at the surface and in the lower troposphere, but it is not able to do so in the upper troposphere. The enhanced vertical moist convection in the tropics acts to amplify the warming in the upper troposphere at an expense of reducing the warming in the lower troposphere and surface warming in the tropics. As a result, the final warming pattern shows the co-existence of a reduction of the meridional temperature gradient at the surface and in the lower troposphere with an increase of the meridional temperature gradient in the upper troposphere. In the tropics, the total warming in the upper troposphere is stronger than the surface warming.

  12. A Probabilistic Catalogue of Unresolved High Latitude Fermi LAT Sources

    Science.gov (United States)

    Portillo, Stephen; Daylan, Tansu; Finkbeiner, Douglas P.

    2016-01-01

    Several groups have identified a highly significant and spatially extended excess of GeV gamma-rays in the Inner Galaxy using data from the Fermi LAT. While this signal's properties are consistent with those expected from dark matter annihilation, another interpretation is that it is the emission from a population of unresolved point sources. Motivated by the point source interpretation, we implement a Bayesian method for producing probabilistic catalogues to constrain the population of point sources below the Fermi LAT detection limit. To validate our method, we apply it to the high latitude Fermi LAT data to confirm that the probabilistic catalogue recovers the resolved sources in the Fermi Collaboration's 3FGL catalogue. Then, we compare our constraints on the unresolved point source population at high latitude to those obtained using non-Poissonian template fitting.

  13. An accelerating high-latitude jet in Earth's core

    OpenAIRE

    Livermore, PW; Hollerbach, R; Finlay, CC

    2017-01-01

    Observations of the change in Earth's magnetic field—the secular variation—provide information about the motion of liquid metal within the core that is responsible for the magnetic field's generation. High-resolution observations from the European Space Agency's Swarm satellite mission show intense field change at high latitude, localized in a distinctive circular daisy-chain configuration centred on the north geographic pole. Here we show that this feature can be explained by a localized, no...

  14. Summertime low-ozone episodes at northern high latitudes

    OpenAIRE

    Orsolini, Y. J.; Eskes, H.; Hansen, G.; Hoppe, U.-P.; Kylling, A.; Kyrö, E.; Notholt, Justus; Van der A, R.; von der Gathen, Peter

    2003-01-01

    A pool of low-ozone air resides in the Arctic stratosphere in summer. Its formation and maintenance arise from a combination of chemical ozone-destruction and transport processes. The summertime ozone destruction is induced by gas-phase chemistry dominated by nitrogen and hydrogen catalytic cycles, which are efficient due to long summertime insolation at high latitudes. It is shown that, during events referred to as low-ozone episodes (LOEs), column ozone can locally decrease to values compar...

  15. Electric fields and electrostatic potentials in the high latitude ionosphere

    Science.gov (United States)

    Banks, P. M.; Saint Maurice, J.-P.; Heelis, R. A.; Hanson, W. B.

    1981-01-01

    Recent interpretive studies of electric field-driven ionospheric plasma convection data from the AE-C satellite are described, where the instruments employed include an ion drift meter and an ion-retarding potential analyzer. Electrostatic potential curves are derived from ion drift velocity measurements for high-latitude segments of the satellite's orbit. The potential curves are shown to be useful in determining the character of the global electrostatic potential pattern, with emphasis on the separation of convective cells. Results are given for six orbits, with attention to the mid-day auroral region.

  16. Pathways of high-latitude dust in the North Atlantic

    Science.gov (United States)

    Baddock, Matthew C.; Mockford, Tom; Bullard, Joanna E.; Thorsteinsson, Throstur

    2017-02-01

    The contribution of mineral dust from high-latitude sources has remained an under-examined feature of the global dust cycle. Dust events originating at high latitudes can provide inputs of aeolian sediment to regions lying well outside the subtropical dust belt. Constraining the seasonal variability and preferential pathways of dust from high-latitude sources is important for understanding the potential impacts that the dust may have on wider environmental systems, such as nearby marine or cryospheric domains. This study quantifies dust pathways from two areas exhibiting different emission dynamics in the north and south of Iceland, which is a prominent Northern Hemisphere dust source. The analysis uses air parcel trajectory modelling, and for the first time for high-latitude sources, explicitly links all trajectory simulations to time-specific (meteorological) observations of suspended dust. This approach maximises the potential for trajectories to represent dust, and illustrates that trajectory climatologies not limited to dust can grossly overestimate the potential for dust transport. Preferential pathways emerge that demonstrate the role of Iceland in supplying dust to the Northern Atlantic and sub-Arctic oceans. For dust emitted from northern sources, a dominant route exists to the northeast, into the Norwegian, Greenland and Barents Seas, although there is also potential for delivery to the North Atlantic in summer months. From the southern sources, the primary pathway extends into the North Atlantic, with a high density of trajectories extending as far south as 50°N, particularly in spring and summer. Common to both southern and northern sources is a pathway to the west-southwest of Iceland into the Denmark Strait and towards Greenland. For trajectories simulated at ≤500 m, the vertical development of dust plumes from Iceland is limited, likely due to the stable air masses of the region suppressing the potential for vertical motion. Trajectories rarely

  17. Vegetation controls on northern high latitude snow-albedo feedback: observations and CMIP5 model simulations.

    Science.gov (United States)

    Loranty, Michael M; Berner, Logan T; Goetz, Scott J; Jin, Yufang; Randerson, James T

    2014-02-01

    The snow-masking effect of vegetation exerts strong control on albedo in northern high latitude ecosystems. Large-scale changes in the distribution and stature of vegetation in this region will thus have important feedbacks to climate. The snow-albedo feedback is controlled largely by the contrast between snow-covered and snow-free albedo (Δα), which influences predictions of future warming in coupled climate models, despite being poorly constrained at seasonal and century time scales. Here, we compare satellite observations and coupled climate model representations of albedo and tree cover for the boreal and Arctic region. Our analyses reveal consistent declines in albedo with increasing tree cover, occurring south of latitudinal tree line, that are poorly represented in coupled climate models. Observed relationships between albedo and tree cover differ substantially between snow-covered and snow-free periods, and among plant functional type. Tree cover in models varies widely but surprisingly does not correlate well with model albedo. Furthermore, our results demonstrate a relationship between tree cover and snow-albedo feedback that may be used to accurately constrain high latitude albedo feedbacks in coupled climate models under current and future vegetation distributions. © 2013 John Wiley & Sons Ltd.

  18. Climate Change Impacts on Sediment Yield in Headwaters of a High-latitude Region in China

    Science.gov (United States)

    Zhou, Y.; Xu, Y. J.; Wang, J., , Dr; Weihua, X.; Huang, Y.

    2017-12-01

    Climate change is expected to have strongest effects in higher latitude regions. Despite intensive research on possible hydrological responses to global warming in these regions, our knowledge of climate change on surface erosion and sediment yield in high-latitude headwaters is limited. In this study, we used the Soil and Water Assessment Tool (SWAT) to predict future runoff and sediment yield from the headwaters of a high-latitude river basin in China's far northeast. The SWAT model was first calibrated with historical discharge records and the model parameterization achieved satisfactory validation. The calibrated model was then applied to two greenhouse gas concentration trajectories, RCP4.5 and RCP8.5, for the period from 2020 to 2050 to estimate future runoff. Sediment yields for this period were predicted using a discharge-sediment load rating curve developed from field measurements in the past nine years. Our preliminary results show an increasing trend of sediment yield under both climate change scenarios, and that the increase is more pronounced in the summer and autumn months. Changes in precipitation and temperature seem to exert variable impacts on runoff and sediment yield at interannual and seasonal scales in these headwaters. These findings imply that the current river basin management in the region needs to be reviewed and improved in order to be effective under a changing climate.

  19. Ecosystem responses to recent climate change and fire disturbance at northern high latitudes: observations and model results contrasting northern Eurasia and North America

    International Nuclear Information System (INIS)

    Goetz, S J; Mack, M C; Gurney, K R; Randerson, J T; Houghton, R A

    2007-01-01

    Vegetation composition at high latitudes plays a critical role in the climate and, in turn, is strongly affected by the climate. The increased frequency of fires expected as a result of climate warming at high latitudes will feedback positively to further warming by releasing carbon to the atmosphere, but will also feedback negatively by increasing the surface albedo. The net effect is complex because the severity of fire affects the trajectory of both carbon stocks and albedo change following a fire, and these are likely to differ between high latitude ecosystems in North America and northern Eurasia. Here we use growth trajectories, productivity trends and regional carbon fluxes to characterize these fire- and climate-driven changes

  20. CO observations of southern high-latitude clouds

    International Nuclear Information System (INIS)

    Keto, E.R.; Myers, P.C.

    1986-01-01

    Results from a survey of 2.6 mm emission in the J = 1 to 0 transition of CO of clouds are reported for 15 high Galactic latitude clouds and three clouds located on the fringe of a large molecular cloud in the Chameleon dark cloud complex. The line widths, excitation temperatures, sizes, and n(CO)/N(H2) ratio of these clouds are similar to those seen in dark clouds. The densities, extinctions, and masses of the high-latitude clouds are one order of magnitude less than those found in dark clouds. For its size and velocity dispersion, the typical cloud has a mass of at least 10 times less than that needed to bind the cloud by self-gravity alone. External pressures are needed to maintain the typical cloud in equilibrium, and these values are consistent with several estimates of the intercloud pressure. 32 references

  1. CONDITIONED ANALYSIS OF HIGH-LATITUDE SOLAR WIND INTERMITTENCY

    International Nuclear Information System (INIS)

    D'Amicis, R.; Consolini, G.; Bavassano, B.; Bruno, R.

    2012-01-01

    The solar wind is a turbulent medium displaying intermittency. Its intermittent features have been widely documented and studied, showing how the intermittent character is different in fast and slow wind. In this paper, a statistical conditioned analysis of the solar wind intermittency for a period of high-latitude fast solar wind is presented. In particular, the intermittent features are investigated as a function of the Alfvénic degree of fluctuations at a given scale. The results show that the main contribution to solar wind intermittency is due to non-Alfvénic structures, while Alfvénic increments are found to be characterized by a smaller level of intermittency than the previous ones. Furthermore, the lifetime statistics of Alfvénic periods are discussed in terms of a multiscale texture of randomly oriented flux tubes.

  2. Microinstabilities in the high latitude F region: a brief review

    International Nuclear Information System (INIS)

    Gary, S.P.

    1983-01-01

    This is a review of the theory of plasma microinstabilities that may arise in the high latitude F region ionosphere below 1000 km. Three free energy sources are considered: a density gradient perpendicular to the ambient magnetic field B, a current parallel to B and a steady electric field perpendicular to B. The BGK model for charged-neutral collisions is used, and the short wavelength properties of the universal density drift, current convective and E x B gradient drift instabilities are compared. At sufficiently high altitudes and sufficiently steep gradients, the universal instability is the short wavelength mode most likely to grow and, through wave-particle diffusion, to cause relatively steep wavenumber dependences in power spectra

  3. Energy-Efficient Office Buildings at High Latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lerum, V.

    1996-12-31

    This doctoral thesis describes a method for energy efficient office building design at high latitudes and cold climates. The method combines daylighting, passive solar heating, solar protection, and ventilative cooling. The thesis focuses on optimal design of an equatorial-facing fenestration system. A spreadsheet framework linking existing simplified methods is used. The daylight analysis uses location specific data on frequency distribution of diffuse daylight on vertical surfaces to estimate energy savings from optimal window and room configurations in combination with a daylight-responsive electric lighting system. The passive solar heating analysis is a generalization of a solar load ratio method adapted to cold climates by combining it with the Norwegian standard NS3031 for winter months when the solar savings fraction is negative. The emphasis is on very high computational efficiency to permit rapid and comprehensive examination of a large number of options early in design. The procedure is illustrated for a location in Trondheim, Norway, testing the relative significance of various design improvement options relative to a base case. The method is also tested for two other locations in Norway, at latitudes 58 and 70 degrees North. The band of latitudes between these limits covers cities in Alaska, Canada, Greenland, Iceland, Scandinavia, Finland, Russia, and Northern Japan. A comprehensive study of the ``whole building approach`` shows the impact of integrated daylighting and low-energy design strategies. In general, consumption of lighting electricity may be reduced by 50-80%, even at extremely high latitudes. The reduced internal heat from electric lights is replaced by passive solar heating. 113 refs., 85 figs., 25 tabs.

  4. Seasonal variations of the high-latitude F region for

    International Nuclear Information System (INIS)

    Sojka, J.J.; Schunk, R.W.; Raitt, W.J.

    1982-01-01

    We combined a plasma convection model with an inosphere-atmospheric composition model in order to study the seasonal variations of the high-latitude F region for strong convection. Our numerical study produced time-dependent, three-dimensional, ion density distributions for the ions NO + , O 2 + , N 2 + , O + , N + , and He + . We covered the high-latitude ionosphere above 42 0 N magnetic latitude and at altitudes between 160 and 800 km for a time period of one complete day. From our study we found the following: (1) For strong convection, the high-altitude ionosphere exhibits a significant UT variation both during winter and summer. (2) In general, the electron density is lower in winter than in summer. However, at certain universal times the electron density in the dayside polar cap is larger in winter than in summer owing to the effect of the mid-latitude 'winter anomaly' in combination with strong antisunward convection. (3) In both summer and winter, the major region of low electron density is associated with the main or mid-latitudde trough. The trough is deeper and its local time extend is much greater in winter than in summer. (4) Typically, the electron density exhibits a much larger variation with altitude in winter than in summer. (5) The ion composition and molecular/atomic ion transition altitude are highly UT dependent in both summer and winter. (6) The ion composition also displays a significant seasonal variation. However, at a given location the seasonal variation can be opposite at different universal times. (7) High-speed convection cells should display a marked seasonal variation, with a much larger concentration of molecular ions near the F region peak in summer than in winter

  5. Daylighting in linear atrium buildings at high latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Matusiak, Barbara

    1998-12-31

    This thesis proposes new criteria for visual comfort based on knowledge of visual perception and a method for estimating the modelling ability of light by using inter-reflection calculations. Simplified calculations are presented for the daylight factor in linear building structures, using the projected solid angle principle, for uniform sky and for CIE overcast sky conditions. The calculations are compared with experimental results. Simple diagrams are created based on calculations of the mean daylight factor in rooms adjacent to a narrow street. These diagrams and presented formulas and tables can be used as a simple design tool. Daylighting strategies for linear atrium buildings at high latitudes are developed and examined. These strategies are divided into three groups: (1) the atrium space and facades as light conductor/reflector, (2) the glass roof as a light conductor, and (3) light reflectors on the neighbouring roof. The atrium space and facade strategies are subdivided into passive and active. The strategies connected to the glazed roof includes different configurations of glazing: horizontal, single pitched, double pitched, and the use of laser cut panels and prismatic panels in the glazed roof. The shapes of reflectors on the neighbouring roof are a flat reflector, a parabolic reflector and a parabolic concentrator. Strategies from all three groups are examined on a physical model of scale 1:20 in the artificial sky of mirror box type. Simulations with artificial sun have also been done. The results from model studies are compared with computer simulations. All the active daylighting systems designed for use in the atrium space or on the atrium facades have a huge potential for use in atrium buildings. From the strategies connected with the glazed roof the negatively sloped glass is found to be the best alternative for glazed roofs at high latitudes. Among the roof reflectors, the flat one performs best. 82 refs., 122 figs., 27 tabs.

  6. Energetic Particles at High Latitudes of the Heliosphere

    International Nuclear Information System (INIS)

    Zhang Ming

    2004-01-01

    Ulysses has by now made two complete out-of-ecliptic orbits around the sun. The first encounter of the solar poles occurred in 1994-1995, when the sun was near the minimum of its activity cycle, while the second one was in 2000-2001, when the sun was at solar maximum. To our surprise, energetic particles of all origins at high latitude are not much different from those we observe near the ecliptic for at least these two phases of solar cycle. The latitude gradients of galactic and anomalous cosmic rays are positive but small at the 1994-1995 solar minimum and almost zero at the 2000-2001 solar maximum, while temporal solar cycle variation dominates their flux variation at all latitudes. Solar energetic particles from all large gradual events can be seen at both Ulysses and Earth no matter how large their spatial separations from the solar event are, and the particle flux often reaches a uniform level in the entire inner heliosphere within a few days after event onset and remains so throughout the decay phase that can sometimes last over a month. Energetic particles accelerated by low-latitude CIRs can appear at high latitudes, far beyond the latitudinal range of CIRs. All these observations suggest that latitudinal transport of energetic particles is quite easy. In addition, because the average magnetic field is radial at the pole, The Ulysses observations indicate that parallel diffusion and drift in the radial direction need to be reduced at the poles relative to their equatorial values. To achieve such behaviors of particle transport, the heliospheric magnetic field needs a significant latitudinal component at the poles. A non-zero latitudinal magnetic field component can be produced by latitudinal motion of the magnetic field line in solar corona, which can be in form of either random walk suggested by Jokipii or large scale systematic motion suggested by Fisk

  7. Status of High Latitude Precipitation Estimates from Observations and Reanalyses

    Science.gov (United States)

    Behrangi, Ali; Christensen, Matthew; Richardson, Mark; Lebsock, Matthew; Stephens, Graeme; Huffman, George J.; Bolvin, David T.; Adler, Robert F.; Gardner, Alex; Lambrigtsen, Bjorn H.; hide

    2016-01-01

    An intercomparison of high-latitude precipitation characteristics from observation-based and reanalysis products is performed. In particular, the precipitation products from CloudSat provide an independent assessment to other widely used products, these being the observationally based Global Precipitation Climatology Project (GPCP), Global Precipitation Climatology Centre, and Climate Prediction Center Merged Analysis of Precipitation (CMAP) products and the ERA-Interim, Modern-Era Retrospective Analysis for Research and Applications (MERRA), and National Centers for Environmental Prediction-Department of Energy Reanalysis 2 (NCEP-DOE R2) reanalyses. Seasonal and annual total precipitation in both hemispheres poleward of 55 latitude are considered in all products, and CloudSat is used to assess intensity and frequency of precipitation occurrence by phase, defined as rain, snow, or mixed phase. Furthermore, an independent estimate of snow accumulation during the cold season was calculated from the Gravity Recovery and Climate Experiment. The intercomparison is performed for the 20072010 period when CloudSat was fully operational. It is found that ERA-Interim and MERRA are broadly similar, agreeing more closely with CloudSat over oceans. ERA-Interim also agrees well with CloudSat estimates of snowfall over Antarctica where total snowfall from GPCP and CloudSat is almost identical. A number of disagreements on regional or seasonal scales are identified: CMAP reports much lower ocean precipitation relative to other products, NCEP-DOE R2 reports much higher summer precipitation over Northern Hemisphere land, GPCP reports much higher snowfall over Eurasia, and CloudSat overestimates precipitation over Greenland, likely due to mischaracterization of rain and mixed-phase precipitation. These outliers are likely unrealistic for these specific regions and time periods. These estimates from observations and reanalyses provide useful insights for diagnostic assessment of

  8. Aspects on interactions between mid- to high latitude atmospheric circulation and some surface processes

    International Nuclear Information System (INIS)

    Byrkjedal, Oeyvind

    2006-01-01

    The Arctic is a hot topic in Climate Research. A large number of signs of a warming Arctic Climate have been identified the latest years. This is of major concern in light of the increasing atmospheric content of greenhouse gases. The climate research community projects future warming of the climate in the high latitudes as a response to increased amounts of anthropogenic release of greenhouse gases since the pre-industrial era. The overall objectives of this work has been to study the mid- and high latitude climate and climate variability, and to evaluate how well some climate processes that contribute to determine the Arctic climate and variability are represented and simulated in climate models. A new data set of storm tracks trajectories and statistics over the Northern Hemisphere for the period 1948-2002 has been developed. The variability of the cyclones extending to the Nordic Seas is studied in particular, and it is found that both the number of storms and their intensity exhibits a strong decadal and interannual variability. The ocean volume transports into and out of the Nordic Seas shows a relatively close relation to the wintertime cyclone intensity and cyclone count. To have confidence in future projections of climate, it is necessary to evaluate how the model behaves in a climate regime different from modern day. To do this two model simulations of the last glacial maximum (LGM) was performed. The reconstructions of sea surface temperatures in the Nordic Seas in LGM differ from perennial sea ice cover to having open ocean during the summer. The large scale atmospheric circulation patterns of the two different climate reconstructions are studied. It is found that the perennial sea ice cover produces a circulation pattern which may be too zonal to support the existence of the large north Eurasian ice sheets. In the case with seasonally open ocean the air masses carries larger amounts of heat and moisture towards the ice sheets and represents a larger

  9. A numerical modeling study of the interaction between the tides and the circulation forced by high-latitude plasma convection

    International Nuclear Information System (INIS)

    Mikkelsen, I.S.; Larsen, M.F.

    1991-01-01

    A spectral, time-varying thermospheric general circulation model has been used to study the nonlinear interaction at high latitudes between the tides propagating into the thermosphere from below and the circulation induced by magnetospheric forcing and in situ solar heating. The model is discrete in the vertical with 27 layers spaced by half a scale height. In the horizontal, the fields are expanded in a series of spherical harmonics using a triangular truncation at wave number 31, equivalent to a homogeneous global resolution with a minimum wavelength of 1,270 km. A hypothetical uniform grid point model would require a horizontal spacing of 417 km to describe the same minimum wavelength. In the high-latitude F region the tides affect the dusk vortex of the neutral flow very little, but the dawn vortex is either suppressed or amplified dependent upon the universal time and tidal phase. In the E region neutral flow, both the dusk and dawn vortices are shifted in local time by the tides, again as a function of universal time and tidal phase. At dusk a nonlinear amplification of the sunward winds occurs for certain combination of parameters, and at dawn the winds may be completely suppressed. Below 120 km altitude the magnetospheric forcing creates a single cyclonic vortex which is also sensitive to the high-latitude tidal structure

  10. Climatology of GNSS ionospheric scintillation at high latitudes

    Science.gov (United States)

    Spogli, L.; Alfonsi, L.; de Franceschi, G.; Romano, V.; Aquino, M.; Dodson, A.; Mitchell, C. N.

    2009-12-01

    Under perturbed conditions caused by intense solar wind magnetosphere coupling, the ionosphere may become highly turbulent and irregularities, typically enhancements or depletions of the electron density embedded in the ambient ionosphere, can form. Such irregularities cause diffraction effects, mainly due to the random fluctuations of the refractive index of the ionosphere, on the satellites signals passing through them and consequent perturbations may cause GNSS navigation errors and outages, abruptly corrupting its performance. Due to the morphology of the geomagnetic field, whose lines are almost vertical at high latitude, polar areas are characterized by the presence of significant ionospheric irregularities having scale sizes ranging from hundreds of kilometers down to a few centimeters and with highly dynamic structures. The understanding of the effect of such phenomena is important, not only in preparation for the next solar cycle (24), whose maximum is expected in 2012, but also for a deeper comprehension of the dynamics of the high-latitude ionosphere. We analyze the fluctuations in the carrier frequency of the radio waves received on the ground, commonly referred to as ionospheric amplitude and phase scintillations, to investigate the physical processes causing them. The phase scintillations on GNSS signals are likely caused by ionospheric irregularities of scale size of hundreds of meters to few kilometers. The amplitude scintillations on GNSS signals are caused by ionospheric irregularities of scale size smaller than the Fresnel radius, which is of the order of hundreds of meters for GNSS signals, typically embedded into the patches. The Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Institute of Engineering Surveying and Space Geodesy (IESSG) of the University of Nottingham manage the same kind of GISTM (GPS Ionospheric Scintillation and TEC Monitor) receivers over the European high and mid latitude regions and over Antarctica. The

  11. A prediction and damage assessment model for snowmelt flood events in middle and high latitudes Region

    Science.gov (United States)

    Qiao, C.; Huang, Q.; Chen, T.; Zhang, X.

    2017-12-01

    In the context of global warming, the snowmelt flood events in the mountainous area of the middle and high latitudes are increasingly frequent and create severe casualties and property damages. Carrying out the prediction and risk assessment of the snowmelt flood is of great importance in the water resources management, the flood warning and prevention. Based on the remote sensing and GIS techniques, the relationships of the variables influencing the snowmelt flood such as the snow area, the snow depth, the air temperature, the precipitation, the land topography and land covers are analyzed and a prediction and damage assessment model for snowmelt floods is developed. This model analyzes and predicts the flood submerging area, flood depth, flood grade, and the damages of different underlying surfaces in the study area in a given time period based on the estimation of snowmelt amount, the snowmelt runoff, the direction and velocity of the flood. Then it was used to predict a snowmelt flood event in the Ertis River Basin in northern Xinjiang, China, during March and June, 2005 and to assess its damages including the damages of roads, transmission lines, settlements caused by the floods and the possible landslides using the hydrological and meteorological data, snow parameter data, DEM data and land use data. A comparison was made between the prediction results from this model and observation data including the flood measurement and its disaster loss data, which suggests that this model performs well in predicting the strength and impact area of snowmelt flood and its damage assessment. This model will be helpful for the prediction and damage assessment of snowmelt flood events in the mountainous area in the middle and high latitudes in spring, which has great social and economic significance because it provides a relatively reliable method for snowmelt flood prediction and reduces the possible damages caused by snowmelt floods.

  12. Coverage, diversity, and functionality of a high-latitude coral community (Tatsukushi, Shikoku Island, Japan).

    Science.gov (United States)

    Denis, Vianney; Mezaki, Takuma; Tanaka, Kouki; Kuo, Chao-Yang; De Palmas, Stéphane; Keshavmurthy, Shashank; Chen, Chaolun Allen

    2013-01-01

    Seawater temperature is the main factor restricting shallow-water zooxanthellate coral reefs to low latitudes. As temperatures increase, coral species and perhaps reefs may move into higher-latitude waters, increasing the chances of coral reef ecosystems surviving despite global warming. However, there is a growing need to understand the structure of these high-latitude coral communities in order to analyze their future dynamics and to detect any potential changes. The high-latitude (32.75°N) community surveyed was located at Tatsukushi, Shikoku Island, Japan. Coral cover was 60±2% and was composed of 73 scleractinian species partitioned into 7 functional groups. Although only 6% of species belonged to the 'plate-like' functional group, it was the major contributor to species coverage. This was explained by the dominance of plate-like species such as Acropora hyacinthus and A. solitaryensis. Comparison with historical data suggests a relatively recent colonization/development of A. hyacinthus in this region and a potential increase in coral diversity over the last century. Low coverage of macroalgae (2% of the benthic cover) contrasted with the low abundance of herbivorous fishes, but may be reasonably explained by the high density of sea urchins (12.9±3.3 individuals m⁻²). The structure and composition of this benthic community are relatively remarkable for a site where winter temperature can durably fall below the accepted limit for coral reef development. Despite limited functionalities and functional redundancy, the current benthic structure might provide a base upon which a reef could eventually develop, as characterized by opportunistic and pioneer frame-building species. In addition to increasing seawater temperatures, on-going management actions and sea urchin density might also explain the observed state of this community. A focus on such 'marginal' communities should be a priority, as they can provide important insights into how tropical corals

  13. An accelerating high-latitude jet in Earth's core

    Science.gov (United States)

    Livermore, P. W.; Finlay, C. C.; Hollerbach, R.

    2017-12-01

    Observations of the change in Earth's magnetic field, the secular variation, provide information on the motion of liquid metal within the core that is responsible for its generation. The very latest high-resolution observations from ESA's Swarm satellite mission show intense field change at high-latitude localised in a distinctive circular daisy-chain configuration centred on the north geographic pole. Here we explain this feature with a localised, nonaxisymmetric, westwards jet of 420 km width on the tangent cylinder, the cylinder of fluid within the core that is aligned with the rotation axis and tangent to the solid inner core. We find that the jet has increased in magnitude by a factor of three over the period 2000-2016 to about 40 km/yr, and is now much stronger than typical large-scale flows inferred for the core. The current accelerating phase may be a part of a longer term fluctuation of the jet causing both eastwards and westwards movement of magnetic features over historical periods, and may contribute to recent changes in torsional wave activity and the rotation direction of the inner core.

  14. Supersonic plasma flow between high latitude conjugate ionospheres

    International Nuclear Information System (INIS)

    Roesler, G.

    1975-01-01

    The polar wind problem has been investigated for closed field lines in situations where one of the two conjugate ionospheric regions is fully illuminated by the sun and the other darkness (solstices at high latitudes). A supersonic flow between hemispheres is possible; the magnetospheric part of this flow must be symmetric with respect to the equator. The daytime fluxes are proportional to the neutral hydrogen density. Fluxes of the order of 10 8 cm -2 sec -1 are only possible with density considerably higher than given by CIRA models. For stationary solutions higher flow speeds are needed on the dark side than provided from the illuminated side. It is concluded that shock waves with upward velocities of about 5 km/sec would form above the dark ionosphere. This implies a reduction by a factor of 3 to 5 of the plasma influx into the dark hemisphere, whereby F-layer densities of only up to 2 x 10 4 cm -3 can be maintained. (orig.) [de

  15. Tracking strategy for photovoltaic solar systems in high latitudes

    International Nuclear Information System (INIS)

    Quesada, Guillermo; Guillon, Laura; Rousse, Daniel R.; Mehrtash, Mostafa; Dutil, Yvan; Paradis, Pierre-Luc

    2015-01-01

    Highlights: • In cloudy conditions tracking the sun is ineffective. • A methodology to estimate a theoretical threshold for solar tracking was developed. • A tracking strategy to maximize electricity production was proposed. - Abstract: Several studies show that from about 20% to 50% more solar energy can be recovered by using photovoltaic systems that track the sun rather than systems set at a fixed angle. For overcast or cloudy days, recent studies propose the use of a set position in which each photovoltaic panel faces toward the zenith (horizontal position). Compared to a panel that follows the sun’s path, this approach claims that a horizontal panel increases the amount of solar radiation captured and subsequently the quantity of electricity produced. The present work assesses a solar tracking photovoltaic panel hourly and seasonally in high latitudes. A theoretical method based on an isotropic sky model was formulated, implemented, and used in a case study analysis of a grid-connected photovoltaic system in Montreal, Canada. The results obtained, based on the definition of a critical hourly global solar radiation, were validated numerically and experimentally. The study confirmed that a zenith-set sun tracking strategy for overcast or mostly cloudy days in summer is not advantageous

  16. Geosynchronous inclined orbits for high-latitude communications

    Science.gov (United States)

    Fantino, E.; Flores, R. M.; Di Carlo, M.; Di Salvo, A.; Cabot, E.

    2017-11-01

    We present and discuss a solution to the growing demand for satellite telecommunication coverage in the high-latitude geographical regions (beyond 55°N), where the signal from geostationary satellites is limited or unavailable. We focus on the dynamical issues associated to the design, the coverage, the maintenance and the disposal of a set of orbits selected for the purpose. Specifically, we identify a group of highly inclined, moderately eccentric geosynchronous orbits derived from the Tundra orbit (geosynchronous, eccentric and critically inclined). Continuous coverage can be guaranteed by a constellation of three satellites in equally spaced planes and suitably phased. By means of a high-precision model of the terrestrial gravity field and the relevant environmental perturbations, we study the evolution of these orbits. The effects of the different perturbations on the ground track (which is more important for coverage than the orbital elements themselves) are isolated and analyzed. The physical model and the numerical setup are optimized with respect to computing time and accuracy. We show that, in order to maintain the ground track unchanged, the key parameters are the orbital period and the argument of perigee. Furthermore, corrections to the right ascension of the ascending node are needed in order to preserve the relative orientation of the orbital planes. A station-keeping strategy that minimizes propellant consumption is then devised, and comparisons are made between the cost of a solution based on impulsive maneuvers and one with continuous thrust. Finally, the issue of end-of-life disposal is discussed.

  17. High latitude plasma convection: Predictions for EISCAT and Sondre Stromfjord

    International Nuclear Information System (INIS)

    Sojka, J.J.; Raitt, W.J.; Schunk, R.W.

    1979-01-01

    We have used a plasma convection model to predict diurnal patterns of horizontal drift velocities in the vicinity of the EISCAT incoherent scatter facility at Tromso, Norway and for Sondre Stromfjord, Greenland, a proposed new incoherent scatter facility site. The convection model includes the offset of 11.4 0 between the geographic and geomagnetic poles (northern hemisphere), the tendency of plasma to corotate about the geographic pole, and a magnetospheric electric field mapped to a circle about a center offset by 5 0 in the antisunward direction from the magnetic pole. Four different magnetospheric electric field configurations were considered, including a constant cross-tail electric field, asymmetric electric fields with enhancements on the dawn and dusk sides of the polar cap, and an electric field pattern that is not aligned parallel to the noon-midnight magnetic meridian. The different electric field configurations produce different signatures in the plasma convection pattern which are clearly identified. Both of the high-latitude sites are better suited to study magnetospheric convection effects than either Chatanika, Alaska or Millstone Hill, Massachusetts. Also, each site appears to have unique capabilities with regard to studying certain aspects of the magnetospheric electric field

  18. AO/NAO Response to Climate Change. 2; Relative Importance of Low- and High-Latitude Temperature Changes

    Science.gov (United States)

    Rind, D.; Perlwitz, J.; Lonergan, P.; Lerner, J.

    2005-01-01

    Using a variety of GCM experiments with various versions of the GISS model, we investigate how different aspects of tropospheric climate changes affect the extratropical Arctic Oscillation (AO)/North Atlantic Oscillation (NAO) circulation indices. The results show that low altitude changes in the extratropical latitudinal temperature gradient can have a strong impact on eddy forcing of the extratropical zonal wind, in the sense that when this latitudinal temperature gradient increases, it helps force a more negative AO/NAO phase. In addition, local conditions at high latitudes can stabilize/destabilize the atmosphere, inducing negative/positive phase changes. To the extent that there is not a large temperature change in the tropical upper troposphere (either through reduced tropical sensitivity at the surface, or limited transport of this change to high levels), the changes in the low level temperature gradient can provide the dominate influence on the extratropical circulation, so that planetary wave meridional refraction and eddy angular momentum transport changes become uncorrelated with potential vorticity transports. In particular, the climate change that produces the most positive NAO phase change would have substantial warming in the tropical upper troposphere over the Pacific Ocean, with high latitude warming in the North Atlantic. An increase in positive phase of these circulation indices is still more likely than not, but it will depend on the degree of tropical and high latitude temperature response and the transport of low level warming into the upper troposphere. These are aspects that currently differ among the models used for predicting the effects of global warning, contributing to the lack of consensus of future changes in the AO/NAO.

  19. High-latitude connectivity of the scleractinian coral Acropora tenuis ...

    African Journals Online (AJOL)

    Acropora sp. were sampled at four intertidal and subtidal sites over a distance of ~320 km, and assessed using primers that amplify the 3/550 nuclear intron found within the carbonic anhydrase gene and the mitochondrially encoded cytochrome oxidase I region of DNA. Results resolved the presence of four putative ...

  20. Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model

    International Nuclear Information System (INIS)

    Zhang Wenxin; Miller, Paul A; Smith, Benjamin; Wania, Rita; Koenigk, Torben; Döscher, Ralf

    2013-01-01

    One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model–downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961–1990) agreed well with a composite map of actual arctic vegetation. In the future (2051–2080), a poleward advance of the forest–tundra boundary, an expansion of tall shrub tundra, and a dominance shift from deciduous to evergreen boreal conifer forest over northern Eurasia were simulated. Ecosystems continued to sink carbon for the next few decades, although the size of these sinks diminished by the late 21st century. Hot spots of increased CH 4 emission were identified in the peatlands near Hudson Bay and western Siberia. In terms of their net impact on regional climate forcing, positive feedbacks associated with the negative effects of tree-line, shrub cover and forest phenology changes on snow-season albedo, as well as the larger sources of CH 4 , may potentially dominate over negative feedbacks due to increased carbon sequestration and increased latent heat flux. (letter)

  1. Seasonal dependence of high-latitude electric fields

    International Nuclear Information System (INIS)

    de la Beaujardiere, O.; Leger, C.; Alcayde, D.; Fontanari, J.

    1991-01-01

    The seasonal dependence of the high-latitude electric field was investigated using Sondrestrom incoherent scatter radar data. Average ExB drifts were derived from 5 years of measurements centered around solar minimum. The electrostatic potentials that best fit the observed average electric field were calculated. It was found that the large-scale convection pattern significantly changes with season. This change involves the overall shape of the convection pattern, as well as the electric field intensity, and thus the total dawn-dusk potential across the polar cap. The cross polar cap potential drop is largest in fall, followed by winter, spring and summer. The small difference found between the summer and winter cross polar cap potential can be attributed to differing field-aligned potential drops. In view of the well-known relationship between field-aligned currents and parallel potential drop, this is consistent with the observations that Birkeland currents are larger in the summer than in winter. Changes in the overall shape of the convection pattern are consistent with the simple notion that the whole pattern is shifted toward the nightside as well as, to a lesser extent, toward the dawnside in summer as compared to winter. This assumption is based on the following observed effects: (1) The rotation of the overall convection pattern toward earlier local times with respect to the noon-midnight direction is maximum for summer on the dayside. (2) On the nightside, the Harang discontinuity is typically located within the radar field of view (Λ=67 to 82) in the winter averaged patterns, but it is equatorward of the field of view in summer. (3) The line that joins the dawn and dusk potential maxima is shifted toward the midnight sector in summer as compared to winter by about 5 degree. (4) In the dawn cell, the latitude of the convection reversal is the lowest during summer; in the dusk cell the latitude of the reversal is the lowest during winter

  2. High-latitude geomagnetic disturbances during ascending solar cycle 24

    Science.gov (United States)

    Peitso, Pyry; Tanskanen, Eija; Stolle, Claudia; Berthou Lauritsen, Nynne; Matzka, Jürgen

    2015-04-01

    High-latitude regions are very convenient for study of several space weather phenomena such as substorms. Large geographic coverage as well as long time series of data are essential due to the global nature of space weather and the long duration of solar cycles. We will examine geomagnetic activity in Greenland from magnetic field measurements taken by DTU (Technical University of Denmark) magnetometers during the years 2010 to 2014. The study uses data from 13 magnetometer stations located on the east coast of Greenland and one located on the west coast. The original measurements are in one second resolution, thus the amount of data is quite large. Magnetic field H component (positive direction towards the magnetic north) was used throughout the study. Data processing will be described from calibration of original measurements to plotting of long time series. Calibration consists of determining the quiet hour of a given day and reducing the average of that hour from all the time steps of the day. This normalizes the measurements and allows for better comparison between different time steps. In addition to the full time line of measurements, daily, monthly and yearly averages will be provided for all stations. Differential calculations on the change of the H component will also be made available for the duration of the full data set. Envelope curve plots will be presented for duration of the time line. Geomagnetic conditions during winter and summer will be compared to examine seasonal variation. Finally the measured activity will be compared to NOAA (National Oceanic and Atmospheric Administration) issued geomagnetic space weather alerts from 2010 to 2014. Calculations and plotting of measurement data were done with MATLAB. M_map toolbox was used for plotting of maps featured in the study (http://www2.ocgy.ubc.ca/~rich/map.html). The study was conducted as a part of the ReSoLVE (Research on Solar Long-term Variability and Effects) Center of Excellence.

  3. Two dimensional hydrodynamic modeling of a high latitude braided river

    Science.gov (United States)

    Humphries, E.; Pavelsky, T.; Bates, P. D.

    2014-12-01

    Rivers are a fundamental resource to physical, ecologic and human systems, yet quantification of river flow in high-latitude environments remains limited due to the prevalence of complex morphologies, remote locations and sparse in situ monitoring equipment. Advances in hydrodynamic modeling and remote sensing technology allow us to address questions such as: How well can two-dimensional models simulate a flood wave in a highly 3-dimensional braided river environment, and how does the structure of such a flood wave differ from flow down a similar-sized single-channel river? Here, we use the raster-based hydrodynamic model LISFLOOD-FP to simulate flood waves, discharge, water surface height, and velocity measurements over a ~70 km reach of the Tanana River in Alaska. In order to use LISFLOOD-FP a digital elevation model (DEM) fused with detailed bathymetric data is required. During summer 2013, we surveyed 220,000 bathymetric points along the study reach using an echo sounder system connected to a high-precision GPS unit. The measurements are interpolated to a smooth bathymetric surface, using Topo to Raster interpolation, and combined with an existing five meter DEM (Alaska IfSAR) to create a seamless river terrain model. Flood waves are simulated using varying complexities in model solvers, then compared to gauge records and water logger data to assess major sources of model uncertainty. Velocity and flow direction maps are also assessed and quantified for detailed analysis of braided channel flow. The most accurate model output occurs with using the full two-dimensional model structure, and major inaccuracies appear to be related to DEM quality and roughness values. Future work will intercompare model outputs with extensive ground measurements and new data from AirSWOT, an airborne analog for the Surface Water and Ocean Topography (SWOT) mission, which aims to provide high-resolution measurements of terrestrial and ocean water surface elevations globally.

  4. Occurrence of polar mesosphere summer echoes at very high latitudes

    Directory of Open Access Journals (Sweden)

    M. Zecha

    2009-03-01

    Full Text Available Observations of polar mesosphere summer echoes (PMSE have been carried out during the summer periodes 1999–2001 and 2003–2004 at the very high latitude of 78° N using the SOUSY Svalbard Radar (53.5 MHz at Longyearbyen. Although the measurements could not be done continuously in these seasons, PMSE have been detected over more than 6600 h of 9300 h of observation time overall. Using this data base, particular PMSE occurrence characteristics have been determined. PMSE at Svalbard appear from the middle of May to the end of August with an almost permanent total occurrence in June and July. Diurnal variations are observable in the height-depend occurrence rates and in PMSE thickness, they show a maximum around 09:00–10:00 UTC and a minimum around 21:00–22:00 UTC. PMSE occur nearly exclusively between a height of 80 km and 92 km with a maximum near 85 km. However, PMSE appear not simultaneously over the entire height range, the mean vertical PMSE extension is around 4–6 km in June and July. Furthermore, typically PMSE are separated into several layers, and only 30% of all PMSE are single layers. The probability of multiple layers is greater in June and July than at the beginning and the end of the PMSE season and shows a marked 5-day-variation. The same variation is noticeable in the seasonal dependence of the PMSE occurrence and the PMSE thickness. We finally discuss potential geophysical processes to explain our observational results.

  5. Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models

    International Nuclear Information System (INIS)

    Rangwala, Imtiaz; Sinsky, Eric; Miller, James R

    2013-01-01

    We use output from global climate models available from the Coupled Model Intercomparison Project Phase 5 (CMIP5) for three different greenhouse gas emission scenarios to investigate whether the projected warming in mountains by the end of the 21st century is significantly different from that in low elevation regions. To remove the effects of latitudinal variation in warming rates, we focus on seasonal changes in the mid-latitude band of the northern hemisphere between 27.5° N and 40° N, where the two major mountain systems are the Tibetan Plateau/Himalayas in Asia and the Rocky Mountains in the United States. Results from the multi-model ensemble indicate that warming rates in mountains will be enhanced relative to non-mountain regions at the same latitude, particularly during the cold season. The strongest correlations of enhanced warming with elevation are obtained for the daily minimum temperature during winter, with the largest increases found for the Tibetan Plateau/Himalayas. The model projections indicate that this occurs, in part, because of proportionally greater increases in downward longwave radiation at higher elevations in response to increases in water vapor. The mechanisms for enhanced increases in winter and spring maximum temperatures in the Rockies appear to be influenced more by increases in surface absorption of solar radiation owing to a reduced snow cover. Furthermore, the amplification of warming with elevation is greater for a higher greenhouse gas emission scenario. (letter)

  6. Automated Detection of Thermo-Erosion in High Latitude Ecosystems

    Science.gov (United States)

    Lara, M. J.; Chipman, M. L.; Hu, F.

    2017-12-01

    conditions or wildfire. This work demonstrates the utility of meso-scale high frequency remote sensing products for advancing high latitude permafrost research.

  7. Will Enhanced Spring Vegetation Activity Under A Warming Climate Amplify Drought in the Summer: A Perspective from 2012 US Drought

    Science.gov (United States)

    Rao, Y.; Liang, S.

    2017-12-01

    Recent studies have shown that drought has become more frequent and intensive and could continue to do so under a warming climate. This pattern is suggested to be driven by oceanic warming and associated atmospheric processes. During the development of drought, both large scale processes and local land-atmosphere feedbacks play important roles. In this study, we use the severe summer drought experienced in continental United States during 2012 as a case study to examine the important role of land-atmosphere feedbacks, especially the role of vegetation. Based on both observational and reanalysis data, the severe summer drought is preceded with an unusual warm spring. The warm spring results in earlier vegetation activity comparing to climatology (1981-2010). The enhanced spring vegetation activity coincides with a significant increase of evaporation, which further impact on the surface heat flux partition. The increasing evaporation combined with the reduction of precipitation create an significant deficit of soil moisture starting from late spring. The moisture deficit persisted throughout the summer, which leads to the reduction of evaporation during to lack of available water and intensification of drought in later months. Using remotely sensed green vegetation fraction data, we find that this land-atmosphere feedbacks is two times stronger in regions with higher vegetation coverage than others.

  8. High-latitude regions of Siberia and Northeast Russia in the Paleogene: Stratigraphy, flora, climate, coal accumulation

    Science.gov (United States)

    Akhmetiev, M. A.

    2015-07-01

    The geological structure and development history of superposed depressions on the Arctic coast of East Siberia and Bering Sea region (Chukotka, Koryakiya, northern Kamchatka) in the Early Paleogene are considered with the analysis of their flora and climatic parameters. The paleofloral analysis revealed thermophilic assemblages that reflect phases of maximum warming at the Paleocene-Eocene transition and in the Early Eocene. The appearance of thermophilic plants (Magnoliaceae, Myrtaceae, Lauraceae, Araliaceae, Loranthaceae, and others) in the Siberian segment of the Arctic region is explained by the stable atmospheric heat transfer from the Tethys to higher latitudes and absence of the latitudinal orographic barrier (Alpine-Himalayan belt). The plants migrated to high latitudes also along the meridional seaway that connected the Tethys with the Arctic Ocean via marine basins of the Eastern Paratethys, Turgai Strait, and West Siberia. The migration from the American continent was realized along the southern coast of Beringia under influence of a warm current flowing from low latitudes along the western coast of North America. The palm genus Sabal migrated to northern Kamchatka and Koryakiya precisely in this way via southern Alaska. In the Oligocene, shallow-water marine sediments in high-latitude regions were replaced by terrestrial facies. The Late Oligocene was marked by maximum cooling. Coal accumulation in Northeast Russia through the Paleogene is reviewed.

  9. High-latitude tree-ring data: Records of climatic change and ecological response

    Energy Technology Data Exchange (ETDEWEB)

    Graumlich, L.J.

    1992-03-01

    Tree-ring data provide critical information regarding two fundamental questions as to the role of the polar regions in global change: (1) what is the nature of climatic variability; and (2) what is the response of vegetation to climatic variability. Tree-ring based climatic reconstructions document the variability of the climate system on time scales of years to centuries. Dendroclimatic reconstructions indicate that the climatic episodes defined on the basis of documentary evidence in western Europe (i.e., Medieval Warm Episode, ca. A.D. 1000-1300; Little Ice Age, ca. A.D. 15501850) can be observed at some high-latitude sites (ex., Polar Urals). Spatial variation in long-term temperature trends (ex., northern Fennoscandia vs Polar Urals) demonstrates the importance of regional-scale climatic controls. When collated into global networks, proxy-based climatic reconstructions can be used to test hypotheses as to the relative importance of external forcing vs. internal variation in governing climatic variation. Specifically, such a global network would allow the quantification of the climatic response to various permutations of factors thought to be important in governing decadal- to centennial-scale climatic variation (i.e., solar insolation, volcanic activity, trace gas concentrations)

  10. Impact of Wildfire Smoke Aerosol on Clouds and Precipitation in High Latitudes

    Science.gov (United States)

    Lu, Z.; Sokolik, I. N.

    2009-12-01

    The warming temperature at high latitudes is expected to increase the frequency and intensity of wildfires, with increased loadings of atmospheric aerosol originating from biomass burning processes. Smoke particles can affect clouds and the energy balance through a number of different processes, most likely leading to changes in precipitation. In this study, we examine the smoke aerosol-cloud-precipitation linkages using a modified version of the WRF-Chem model. The model was configured to simulate boreal forest wildfires occurred in the summer of 2007 in Alaska and Canada. The remote sensing product WF_ABBA was used to determine the total area burned. Several cases of initial smoke composition and size distribution were considered. The injection plume height was modeled following the approach of Freitas et al. (2007, 2009) that is incorporated in WRF-Chem. The MOSAIC aerosol module in WRF-Chem was used to simulate 3D smoke fields. The plume injection height and modeled smoke fields were validated against satellite observations (CALIPSO, MODIS, and OMI). The simulated smoke fields were incorporated into the two-moment bulk microphysics scheme developed by Morrison et al. (2005). We examine the evolution of smoke fields and associated changes in cloud properties and precipitation caused by smoke aerosol.

  11. An observational 71-year history of seasonally frozen ground changes in the Eurasian high latitudes

    International Nuclear Information System (INIS)

    Frauenfeld, Oliver W; Zhang Tingjun

    2011-01-01

    In recent decades, significant changes have occurred in high-latitude areas, particularly to the cryosphere. Sea ice extent and thickness have declined. In land areas, glaciers and ice sheets are experiencing negative mass balance changes, and there is substantial regional snow cover variability. Subsurface changes are also occurring in northern soils. This study focuses on these changes in the soil thermal regime, specifically the seasonally frozen ground region of Eurasia. We use a database of soil temperatures at 423 stations and estimate the maximum annual soil freezing depth at the 387 sites located on seasonally frozen ground. Evaluating seasonal freeze depth at these sites for 1930–2000 reveals a statistically significant trend of −4.5 cm/decade and a net change of −31.9 cm. Interdecadal variability is also evident such that there was no trend until the late 1960s, after which seasonal freeze depths decreased significantly until the early 1990s. From that point forward, likely through at least 2008, no change is evident. These changes in the soil thermal regime are most closely linked with the freezing index, but also mean annual air temperatures and snow depth. Antecedent conditions from the previous warm season do not appear to play a large role in affecting the subsequent cold season’s seasonal freeze depths. The strong decrease in seasonal freeze depths during the 1970s to 1990s was likely the result of strong atmospheric forcing from the North Atlantic Oscillation during that time period.

  12. High-latitude cooling associated with landscape changes from North American boreal forest fires

    Directory of Open Access Journals (Sweden)

    B. M. Rogers

    2013-02-01

    Full Text Available Fires in the boreal forests of North America are generally stand-replacing, killing the majority of trees and initiating succession that may last over a century. Functional variation during succession can affect local surface energy budgets and, potentially, regional climate. Burn area across Alaska and Canada has increased in the last few decades and is projected to be substantially higher by the end of the 21st century because of a warmer climate with longer growing seasons. Here we simulated changes in forest composition due to altered burn area using a stochastic model of fire occurrence, historical fire data from national inventories, and succession trajectories derived from remote sensing. When coupled to an Earth system model, younger vegetation from increased burning cooled the high-latitude atmosphere, primarily in the winter and spring, with noticeable feedbacks from the ocean and sea ice. Results from multiple scenarios suggest that a doubling of burn area would cool the surface by 0.23 ± 0.09 °C across boreal North America during winter and spring months (December through May. This could provide a negative feedback to winter warming on the order of 3–5% for a doubling, and 14–23% for a quadrupling, of burn area. Maximum cooling occurs in the areas of greatest burning, and between February and April when albedo changes are largest and solar insolation is moderate. Further work is needed to integrate all the climate drivers from boreal forest fires, including aerosols and greenhouse gasses.

  13. Mountain birch – potentially large source of sesquiterpenes into high latitude atmosphere

    Directory of Open Access Journals (Sweden)

    A. Arneth

    2009-11-01

    Full Text Available Emissions of volatile organic compounds (VOCs from mountain birches were measured in Abisko, northern Sweden. Mountain birches make up the majority of the tree biomass in Scandinavian high latitudes, a region subject to significant climate warming. The measurements were carried out in two growing seasons. The emissions of four branches, each from a different individual tree, were measured in June–August 2006 and one of them again in July 2007. The measurements were conducted using a dynamic flow through chamber covered with Teflon film. The studied mountain birches were found to emit substantial amounts of linalool, monoterpenes and sesquiterpenes. The monoterpene emission was dominated by sabinene. The magnitude and composition of the sesquiterpene emission changed dramatically between the years. For example, the average α-farnesene emission potential in 2006 was almost 2600 ng gdw−1 h−1 (3.5 pmol gdw−1 s−1 while in 2007 α-farnesene was not detected at all. Also the emissions of other sesquiterpenes decreased in 2007 to a fraction of that in 2006. One possible explanation for the change in emissions is the herbivory damage that occurred in the area in 2004. Herbivory is known to enhance the emissions of sesquiterpenes, especially those of α-farnesene, and the effect may last for several years.

  14. Extensive wet episodes in Late Glacial Australia resulting from high-latitude forcings

    Science.gov (United States)

    Bayon, Germain; de Deckker, Patrick; Magee, John W.; Germain, Yoan; Bermell, Sylvain; Tachikawa, Kazuyo; Norman, Marc D.

    2017-03-01

    Millennial-scale cooling events termed Heinrich Stadials punctuated Northern Hemisphere climate during the last glacial period. Latitudinal shifts of the intertropical convergence zone (ITCZ) are thought to have rapidly propagated these abrupt climatic signals southward, influencing the evolution of Southern Hemisphere climates and contributing to major reorganisation of the global ocean-atmosphere system. Here, we use neodymium isotopes from a marine sediment core to reconstruct the hydroclimatic evolution of subtropical Australia between 90 to 20 thousand years ago. We find a strong correlation between our sediment provenance proxy data and records for western Pacific tropical precipitations and Australian palaeolakes, which indicates that Northern Hemisphere cooling phases were accompanied by pronounced excursions of the ITCZ and associated rainfall as far south as about 32°S. Comparatively, however, each of these humid periods lasted substantially longer than the mean duration of Heinrich Stadials, overlapping with subsequent warming phases of the southern high-latitudes recorded in Antarctic ice cores. In addition to ITCZ-driven hydroclimate forcing, we infer that changes in Southern Ocean climate also played an important role in regulating late glacial atmospheric patterns of the Southern Hemisphere subtropical regions.

  15. Novel Solar Sail Mission Concepts for High-Latitude Earth and Lunar Observation

    NARCIS (Netherlands)

    Heiligers, M.J.; Parker, Jeffrey S.; Macdonald, Malcolm

    2016-01-01

    This paper proposes the use of solar sail periodic orbits in the Earth-Moon system for ob-servation of the high-latitudes of the Earth and Moon. At the Earth, the high-latitudes will be crucial in answering questions concerning global climate change, monitoring space weather events and ensuring

  16. Carbon stocks and fluxes in the high latitudes

    DEFF Research Database (Denmark)

    Chadburn, Sarah E.; Krinner, Gerhard; Porada, Philipp

    2017-01-01

    It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks...... from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which...

  17. Coverage, diversity, and functionality of a high-latitude coral community (Tatsukushi, Shikoku Island, Japan.

    Directory of Open Access Journals (Sweden)

    Vianney Denis

    Full Text Available BACKGROUND: Seawater temperature is the main factor restricting shallow-water zooxanthellate coral reefs to low latitudes. As temperatures increase, coral species and perhaps reefs may move into higher-latitude waters, increasing the chances of coral reef ecosystems surviving despite global warming. However, there is a growing need to understand the structure of these high-latitude coral communities in order to analyze their future dynamics and to detect any potential changes. METHODOLOGY/PRINCIPAL FINDINGS: The high-latitude (32.75°N community surveyed was located at Tatsukushi, Shikoku Island, Japan. Coral cover was 60±2% and was composed of 73 scleractinian species partitioned into 7 functional groups. Although only 6% of species belonged to the 'plate-like' functional group, it was the major contributor to species coverage. This was explained by the dominance of plate-like species such as Acropora hyacinthus and A. solitaryensis. Comparison with historical data suggests a relatively recent colonization/development of A. hyacinthus in this region and a potential increase in coral diversity over the last century. Low coverage of macroalgae (2% of the benthic cover contrasted with the low abundance of herbivorous fishes, but may be reasonably explained by the high density of sea urchins (12.9±3.3 individuals m⁻². CONCLUSIONS/SIGNIFICANCE: The structure and composition of this benthic community are relatively remarkable for a site where winter temperature can durably fall below the accepted limit for coral reef development. Despite limited functionalities and functional redundancy, the current benthic structure might provide a base upon which a reef could eventually develop, as characterized by opportunistic and pioneer frame-building species. In addition to increasing seawater temperatures, on-going management actions and sea urchin density might also explain the observed state of this community. A focus on such 'marginal' communities

  18. ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation

    Science.gov (United States)

    Guimberteau, Matthieu; Zhu, Dan; Maignan, Fabienne; Huang, Ye; Yue, Chao; Dantec-Nédélec, Sarah; Ottlé, Catherine; Jornet-Puig, Albert; Bastos, Ana; Laurent, Pierre; Goll, Daniel; Bowring, Simon; Chang, Jinfeng; Guenet, Bertrand; Tifafi, Marwa; Peng, Shushi; Krinner, Gerhard; Ducharne, Agnès; Wang, Fuxing; Wang, Tao; Wang, Xuhui; Wang, Yilong; Yin, Zun; Lauerwald, Ronny; Joetzjer, Emilie; Qiu, Chunjing; Kim, Hyungjun; Ciais, Philippe

    2018-01-01

    The high-latitude regions of the Northern Hemisphere are a nexus for the interaction between land surface physical properties and their exchange of carbon and energy with the atmosphere. At these latitudes, two carbon pools of planetary significance - those of the permanently frozen soils (permafrost), and of the great expanse of boreal forest - are vulnerable to destabilization in the face of currently observed climatic warming, the speed and intensity of which are expected to increase with time. Improved projections of future Arctic and boreal ecosystem transformation require improved land surface models that integrate processes specific to these cold biomes. To this end, this study lays out relevant new parameterizations in the ORCHIDEE-MICT land surface model. These describe the interactions between soil carbon, soil temperature and hydrology, and their resulting feedbacks on water and CO2 fluxes, in addition to a recently developed fire module. Outputs from ORCHIDEE-MICT, when forced by two climate input datasets, are extensively evaluated against (i) temperature gradients between the atmosphere and deep soils, (ii) the hydrological components comprising the water balance of the largest high-latitude basins, and (iii) CO2 flux and carbon stock observations. The model performance is good with respect to empirical data, despite a simulated excessive plant water stress and a positive land surface temperature bias. In addition, acute model sensitivity to the choice of input forcing data suggests that the calibration of model parameters is strongly forcing-dependent. Overall, we suggest that this new model design is at the forefront of current efforts to reliably estimate future perturbations to the high-latitude terrestrial environment.

  19. Climate change between the mid and late Holocene in northern high latitudes – Part 2: Model-data comparisons

    Directory of Open Access Journals (Sweden)

    K. Holmgren

    2010-09-01

    Full Text Available The climate response over northern high latitudes to the mid-Holocene orbital forcing has been investigated in three types of PMIP (Paleoclimate Modelling Intercomparison Project simulations with different complexity of the modelled climate system. By first undertaking model-data comparison, an objective selection method has been applied to evaluate the capability of the climate models to reproduce the spatial response pattern seen in proxy data. The possible feedback mechanisms behind the climate response have been explored based on the selected model simulations. Subsequent model-model comparisons indicate the importance of including the different physical feedbacks in the climate models. The comparisons between the proxy-based reconstructions and the best fit selected simulations show that over the northern high latitudes, summer temperature change follows closely the insolation change and shows a common feature with strong warming over land and relatively weak warming over ocean at 6 ka compared to 0 ka. Furthermore, the sea-ice-albedo positive feedback enhances this response. The reconstructions of temperature show a stronger response to enhanced insolation in the annual mean temperature than winter and summer temperature. This is verified in the model simulations and the behaviour is attributed to the larger contribution from the large response in autumn. Despite a smaller insolation during winter at 6 ka, a pronounced warming centre is found over Barents Sea in winter in the simulations, which is also supported by the nearby northern Eurasian continental and Fennoscandian reconstructions. This indicates that in the Arctic region, the response of the ocean and the sea ice to the enhanced summer insolation is more important for the winter temperature than the synchronous decrease of the insolation.

  20. Spread in the magnitude of climate model interdecadal global temperature variability traced to disagreements over high-latitude oceans

    Science.gov (United States)

    Brown, Patrick T.; Li, Wenhong; Jiang, Jonathan H.; Su, Hui

    2016-12-01

    Unforced variability in global mean surface air temperature can obscure or exaggerate global warming on interdecadal time scales; thus, understanding both the magnitude and generating mechanisms of such variability is of critical importance for both attribution studies as well as decadal climate prediction. Coupled atmosphere-ocean general circulation models (climate models) simulate a wide range of magnitudes of unforced interdecadal variability in global mean surface air temperature (UITglobal), hampering efforts to quantify the influence of UITglobal on contemporary global temperature trends. Recently, a preliminary consensus has emerged that unforced interdecadal variability in local surface temperatures (UITlocal) over the tropical Pacific Ocean is particularly influential on UITglobal. Therefore, a reasonable hypothesis might be that the large spread in the magnitude of UITglobal across climate models can be explained by the spread in the magnitude of simulated tropical Pacific UITlocal. Here we show that this hypothesis is mostly false. Instead, the spread in the magnitude of UITglobal is linked much more strongly to the spread in the magnitude of UITlocal over high-latitude regions characterized by significant variability in oceanic convection, sea ice concentration, and energy flux at both the surface and the top of the atmosphere. Thus, efforts to constrain the climate model produced range of UITglobal magnitude would be best served by focusing on the simulation of air-sea interaction at high latitudes.

  1. Effects of High-Latitude Forcing Uncertainty on the Low-Latitude and Midlatitude Ionosphere

    Science.gov (United States)

    Pedatella, N. M.; Lu, G.; Richmond, A. D.

    2018-01-01

    Ensemble simulations are performed using the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) in order to understand the role of high-latitude forcing uncertainty on the low-latitude and midlatitude ionosphere response to the April 2010 geomagnetic storm. The ensemble is generated by perturbing either the high-latitude electric potential or auroral energy flux in the assimilative mapping for ionosphere electrodynamics (AMIE). Simulations with perturbed high-latitude electric potential result in substantial intraensemble variability in the low-latitude and midlatitude ionosphere response to the geomagnetic storm, and the ensemble standard deviation for the change in NmF2 reaches 50-100% of the mean change. Such large intraensemble variability is not seen when perturbing the auroral energy flux. In this case, the effects of the forcing uncertainty are primarily confined to high latitudes. We therefore conclude that the specification of high-latitude electric fields is an important source of uncertainty when modeling the low-latitude and midlatitude ionosphere response to a geomagnetic storm. A multiple linear regression analysis of the results indicates that uncertainty in the storm time changes in the equatorial electric fields, neutral winds, and neutral composition can all contribute to the uncertainty in the ionosphere electron density. The results of the present study provide insight into the possible uncertainty in simulations of the low-latitude and midlatitude ionosphere response to geomagnetic storms due to imperfect knowledge of the high-latitude forcing.

  2. Sporadic-E and spread-F in high latitude region

    International Nuclear Information System (INIS)

    Tao, Kazuhiko

    1974-01-01

    The heretofore made morphological studies of sporadic-E and spread-F as the typical irregularities of electron density are reviewed. These phenomena have close correlation with other geophysical phenomena which occur in the atmosphere of superhigh altitude in high latitude region. Many of these phenomena occur from same causes. Although the quantitative data are insufficient, the sporadic-E and spread-F in high latitude region are supposed to be caused by the precipitating charged particles falling from magnetosphere. A system, which can observe such phenomena simultaneously using the measuring instruments carried by satellites in the atmosphere of high altitude over high latitude region, is desirable to solve such problems. In detail, the morphological study on sporadic-E obtained from the observation of vertically projected ionosphere and the morphological study on sporadic-E from the observation of forward scattering and slanting entrance are reviewed. The correlation of the occurrence frequency of sporadic-E with solar activity, geomagnetic activity and other phenomena was studied. The morphological study on spread-F occurrence is reviewed. The observation of the spread-F in high latitude region by the application of top side sounding is reviewed. The correlation of the sporadic-E and spread-F in high latitude region with other geophysical phenomena is discussed. Finally, the discrete phenomenon and the diffuse phenomenon are discussed too. (Iwakiri, K.)

  3. Spectral classification of medium-scale high-latitude F region plasma density irregularities

    International Nuclear Information System (INIS)

    Singh, M.; Rodriguez, P.; Szuszczewicz, E.P.; Sachs Freeman Associates, Bowie, MD)

    1985-01-01

    The high-latitude ionosphere represents a highly structured plasma. Rodriguez and Szuszczewicz (1984) reported a wide range of plasma density irregularities (150 km to 75 m) at high latitudes near 200 km. They have shown that the small-scale irregularities (7.5 km to 75 m) populated the dayside oval more often than the other phenomenological regions. It was suggested that in the lower F region the chemical recombination is fast enough to remove small-scale irregularities before convection can transport them large distances, leaving structured particle precipitation as the dominant source term for irregularities. The present paper provides the results of spectral analyses of pulsed plasma probe data collected in situ aboard the STP/S3-4 satellite during the period March-September 1978. A quantitative description of irregularity spectra in the high-latitude lower F region plasma density is given. 22 references

  4. Impacts of the high latitude electric field variability on ionosphere and thermosphere during a geomagnetic storm

    Science.gov (United States)

    Zhu, Q.; Deng, Y.; Maute, A. I.; Richmond, A. D.

    2017-12-01

    The small-scale electric field variability at high latitude is generally excluded from the general circulation models (GCMs), leading to an underestimation of the energy input from the magnetosphere in GCMs at high latitude. In this study, the small-scale electric field variability from an empirical model is included in Global Ionosphere Thermosphere Model (GITM) to study the possible impacts of the small-scale electric field variability on thermosphere and ionosphere during a moderate geomagnetic storm. We will focus on both high latitude and low and mid-latitude thermospheric and ionospheric responses due to the additional heating. Specifically, we will study the neutral mass density or the neutral composition responses, global scale traveling atmospheric disturbances (TADs), and influences on the equatorial ionosphere anomaly (EIA) and the equatorial thermosphere anomaly (ETA).

  5. Local endemicity and high diversity characterise high-latitude coral- Symbiodinium partnerships

    Science.gov (United States)

    Wicks, L. C.; Sampayo, E.; Gardner, J. P. A.; Davy, S. K.

    2010-12-01

    Obligate symbiotic dinoflagellates ( Symbiodinium) residing within the tissues of most reef invertebrates are important in determining the tolerance range of their host. Coral communities living at high latitudes experience wide fluctuations in environmental conditions and thus provide an ideal system to gain insights into the range within which the symbiotic relationship can be sustained. Further, understanding whether and how symbiont communities associated with high-latitude coral reefs are different from their tropical counterparts will provide clues to the potential of corals to cope with marginal or changing conditions. However, little is known of the host and symbiont partnerships at high latitudes. Symbiodinium diversity and specificity of high-latitude coral communities were explored using denaturing gradient gel electrophoresis (PCR-DGGE) analysis of the internal transcribed spacer regions (ITS1 and ITS2) of the ribosomal DNA at Lord Howe Island (31°S; Australia), and the Kermadec Islands (29°S; New Zealand). All but one host associated with clade C Symbiodinium, the exception being a soft coral ( Capnella sp.) that contained Symbiodinium B1. Besides ‘host-generalist’ Symbiodinium types C1 and C3, approximately 72% of the Symbiodinium identified were novel C types, and zonation of symbionts in relation to environmental parameters such as depth and turbidity was evident in certain host species. The high-latitude Symbiodinium communities showed little overlap and relatively high diversity compared with communities sampled on the tropical Great Barrier Reef. Although host specificity was maintained in certain species, others shared symbionts and this potential reduction of fidelity at high-latitude locations may be the result of locally challenging and highly variable environmental conditions.

  6. Population dynamic of high latitude copepods - with emphasis on Metridia longa

    DEFF Research Database (Denmark)

    Kjellerup, Sanne

    2014-01-01

    High latitude ecosystems are shaped by seasonality in light, ranging from complete darkness in winter to midnight sun in summer, influencing both temperature and primary production. Copepods are important grazers on phytoplankton in marine systems and occupy a central role in the marine food-web...

  7. Adaptation of Circadian Neuronal Network to Photoperiod in High-Latitude European Drosophilids.

    Science.gov (United States)

    Menegazzi, Pamela; Dalla Benetta, Elena; Beauchamp, Marta; Schlichting, Matthias; Steffan-Dewenter, Ingolf; Helfrich-Förster, Charlotte

    2017-03-20

    The genus Drosophila contains over 2,000 species that, stemming from a common ancestor in the Old World Tropics, populate today very different environments [1, 2] (reviewed in [3]). We found significant differences in the activity pattern of Drosophila species belonging to the holarctic virilis group, i.e., D. ezoana and D. littoralis, collected in Northern Europe, compared to that of the cosmopolitan D. melanogaster, collected close to the equator. These behavioral differences might have been of adaptive significance for colonizing high-latitude habitats and hence adjust to long photoperiods. Most interestingly, the flies' locomotor activity correlates with the neurochemistry of their circadian clock network, which differs between low and high latitude for the expression pattern of the blue light photopigment cryptochrome (CRY) and the neuropeptide Pigment-dispersing factor (PDF) [4-6]. In D. melanogaster, CRY and PDF are known to modulate the timing of activity and to maintain robust rhythmicity under constant conditions [7-11]. We could partly simulate the rhythmic behavior of the high-latitude virilis group species by mimicking their CRY/PDF expression patterns in a laboratory strain of D. melanogaster. We therefore suggest that these alterations in the CRY/PDF clock neurochemistry might have allowed the virilis group species to colonize high-latitude environments. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Mechanism for the formation of sporadic-E layers in the high-latitude ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vlasov, M.N.; Mishin, E.V.; Telegin, V.A.

    1980-09-01

    A model of the collective interaction of precipitating electrons and the ionospheric plasma is used to explain the formation of short-duration sporadic-E layers in the high-latitude ionosphere. The changes produced in electron density by this collective interaction mechanism are considered.

  9. GPS phase scintillation at high latitudes during the geomagnetic storm of 17-18 March 2015

    DEFF Research Database (Denmark)

    Prikryl, P.; Ghoddousi-Fard, R.; Weygand, J. M.

    2016-01-01

    The geomagnetic storm of 17–18 March 2015 was caused by the impacts of a coronal mass ejection and a high-speed plasma stream from a coronal hole. The high-latitude ionosphere dynamics is studied using arrays of ground-based instruments including GPS receivers, HF radars, ionosondes, riometers...

  10. Morphology and phenomenology of the high-latitude E and F regions

    Science.gov (United States)

    Hunsucker, R. D.

    1979-01-01

    Results obtained at high latitude observatories on the behavior of E and F region ionization are presented including a bibliography. Behavior of E and F region ionization during day and night for quiet and disturbed conditions in the auroral and polar regions is described. Daily, seasonal and sunspot variations are also outlined.

  11. Controls on winter ecosystem respiration at mid- and high-latitudes

    Czech Academy of Sciences Publication Activity Database

    Wang, T.; Ciais, P.; Piao, S.; Ottle, C.; Brender, P.; Maignan, F.; Arain, A.; Gianelle, D.; Gu, L.; Lafleur, P.; Laurila, T.; Margolis, H.; Montagnani, L.; Moors, E.; Nobuko, S.; Vesala, T.; Wohlfahrt, G.; Reichstein, M.; Migliavacca, M.; Ammann, C.; Aubinet, M.; Barr, A.; Bernacchi, C.; Bernhofer, C.; Black, T.; Davis, K.; Dellwik, E.; Dragoni, D.; Don, A.; Flangan, L.; Foken, T.; Granier, A.; Hadley, J.; Hirata, R.; Hollinger, D.; Kato, T.; Kutsch, W.; Marek, Michal V.; Matamala, R.; Matteucci, G.; Meyers, T.; Monson, R.; Munger, J.; Oechel, W.; Paw U, K.T.; Rebmann, C.; Tuba, Z.; Valentini, R.; Varlagin, A.; Verma, S.

    2010-01-01

    Roč. 7, č. 5 (2010), s. 6997-7027 ISSN 1810-6277 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : winter ecosystem respiration * mid- and high-latitudes Subject RIV: EH - Ecology, Behaviour www.biogeosciences-discuss.net/7/6997/2010/

  12. Detection of CH and CH+ in a high latitude molecular cloud

    NARCIS (Netherlands)

    Vries, de C.P.; Dishoeck, van E.F.

    1988-01-01

    Interstellar absorption lines of CH and CH(+) have been detected toward the star HD 210121, which is located behind a previously unknown high-latitude cloud. The CH observations and the measured extinction toward the star provide independent measures of the H2 column density along the line of sight,

  13. Current state and prospects of carbon management in high latitudes of Northern Eurasia

    Science.gov (United States)

    Schepaschenko, Dmitry; Shvidenko, Anatoly

    2010-05-01

    The current state and trajectories of future development of natural landscapes in high latitudes of Northern Eurasia are defined inter alia by (1) current unsatisfactory social and economic situation in boreal Northern Eurasia; (2) the dramatic magnitude of on-going and expected climatic change (warming up to 10-12oC under global warming at 4oC); (3) increasing anthropogenic pressure, particularly in regions of intensive oil and gas exploration and extraction; (4) large areas of sparsely populated and practically unmanaged land; (5) vulnerability of northern ecosystems which historically developed under cold climates and buffering capacity of which is not well known; (6) risk of catastrophic natural disturbances (fire, insect outbreaks) whose frequency and severity have accelerated during recent decades; and (7) high probability of irreversible changes of vegetation cover. These specifics are overlapped with insufficient governance of natural renewable resources (e.g., forests) and destructed practice of industrial development of new territories (oil and gas extraction and exploration, metallurgy etc.). Based on a full carbon account for terrestrial vegetation ecosystems of Northern Eurasia, we analyze the relative impacts of major drivers on magnitude and uncertainty of the Net Ecosystem Carbon Balance (NECB) under current and expected climate and environment. Dynamic trends and interannual variability of NECB are mostly dependent on weather conditions during growth seasons of individual years, regimes of natural disturbances, and anthropogenic impacts on ecosystems. In a short term, disturbances and human impacts cause a theoretically 'manageable' part of the full carbon account, which on average is estimated to be of about 20% of annual net primary production. In a long term, thawing of permafrost and change of hydrological regimes of vast territories may result in a catastrophic decline of the forested area and wide distribution of 'green desertification'. The

  14. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  15. Response of the convecting high-latitude F layer to a powerful HF wave

    Directory of Open Access Journals (Sweden)

    G. I. Mingaleva

    1997-10-01

    Full Text Available A numerical model of the high-latitude ionosphere, which takes into account the convection of the ionospheric plasma, has been developed and utilized to simulate the F-layer response at auroral latitudes to high-power radio waves. The model produces the time variations of the electron density, positive ion velocity, and ion and electron temperature profiles within a magnetic field tube carried over an ionospheric heater by the convection electric field. The simulations have been performed for the point with the geographic coordinates of the ionospheric HF heating facility near Tromso, Norway, when it is located near the midnight magnetic meridian. The calculations have been made for equinox, at high-solar-activity, and low-geomagnetic-activity conditions. The results indicate that significant variations of the electron temperature, positive ion velocity, and electron density profiles can be produced by HF heating in the convecting high-latitude F layer.

  16. Geologic isolation of nuclear waste at high latitudes: the role of ice sheets

    Science.gov (United States)

    Person, M.; McIntosh, J.; Iverson, N.; Neuzil, C.E.; Bense, V.

    2012-01-01

    Geologic isolation of high-level nuclear waste from the biosphere requires special consideration in countries at high latitudes (>40°N) owing to the possibility of future episodes of continental glaciation (Talbot 1999). It is now widely recognized that Pleistocene continental glaciations have had a profound effect on rates of sediment erosion (Cuffey & Paterson 2010) and deformation including tectonic thrusting (Pedersen 2005) as well as groundwater flow (Person et al. 2007; Lemieux et al. 2008a,b,c). In addition, glacial mechanical loads may have generated anomalous, or fossil, pore pressures within certain clay-rich confining units (e.g. Vinard et al. 2001). Because high-level nuclear wastes must be isolated from the biosphere as long as 1 million years (McMurry et al. 2003), the likelihood of one or more continental ice sheets overrunning high-latitude sites must be considered.

  17. Artificial periodic irregularities in the high-latitude ionosphere excited by the HAARP facility

    Science.gov (United States)

    Bakhmetieva, N. V.; Grach, S. M.; Sergeev, E. N.; Shindin, A. V.; Milikh, G. M.; Siefring, C. L.; Bernhardt, P. A.; McCarrick, M.

    2016-07-01

    We present results of the new observations of artificial periodic irregularities (APIs) in the ionosphere using the High Frequency Active Auroral Research Program (HAARP) heating facility carried out in late May and early June 2014.The objective of this work is to detect API using high-latitude facility and analyze possible differences of the temporal and spatial variations of the API echoes in the high (HAARP) and middle (Sura) latitudes. Irregularities were created by the powerful wave of X mode and were sounded using the short probing pulses signals of X mode. API echoes were observed in the D, E, and F regions of the ionosphere. Amplitudes and characteristic times of the API echoes were measured. The API growth and decay times at HAARP (high latitudes) observed were similar to those at the Sura heating facility (midlatitudes).

  18. High-latitude ionospheric convection during strong interplanetary magnetic field B-y

    DEFF Research Database (Denmark)

    Huang, C.S.; Sofko, G.J.; Murr, D.

    1999-01-01

    . The interplanetary magnetic field (IMF) conditions corresponding to the occurrence of the ionospheric convection were B-x approximate to 1 nT, B-y approximate to 10 nT, and B-z ...An unusual high-latitude ionospheric pattern was observed on March 23, 1995. ionospheric convection appeared as clockwise merging convection cell focused at 84 degrees magnetic latitude around 1200 MLT. No signature of the viscous convection cell in the afternoon sector was observed...

  19. High frequency Analysis of Stream Chemistry to Establish Elemental Cycling Regimes of High latitude Catchments

    Science.gov (United States)

    2017-02-13

    FINAL REPORT High-frequency Analysis of Stream Chemistry to Establish Elemental Cycling Regimes of High-latitude Catchments SERDP Project RC-2507... ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Strategic Environmental... organic matter. Technical considerations and improvements for implementing instream sensors as part of an environmental monitoring program include

  20. Carbon dioxide in northern high latitude oceans: Anthropogenic increase and air-sea flux variability

    International Nuclear Information System (INIS)

    Omar, Abdirahman M.

    2003-01-01

    The aim of this thesis is to further our knowledge of carbon dioxide in the northern high latitude oceans (northern North Atlantic, Barents Sea, and Arctic Ocean) by studying the anthropogenic change in the oceanic CO2, the inter-annual variability of the air-sea CO2 flux, and the relationship between this variability and changes in other oceanic processes. An introductory chapter and four papers are presented. Descriptions of the seawater carbonate system parameters, air-sea exchange of CO2, and related processes are given in the introduction chapter. The anthropogenic increase in partial pressure of CO2 (pCO2) in the surface water of the Barents Sea is evaluated in paper I. The effect of alternations of the Barents Sea climate between cold and warm modes on the annual cycles of seawater fugacity and air-sea flux of CO2 is investigated in paper II. Oceanic uptake of atmospheric CO2 associated with the seasonal formation of sea ice in Storfjorden and the implication for the entire Arctic Ocean is studied in paper III. An assessment of the variations of the air-sea flux of CO2 in the northern North Atlantic for 20 winters (1981-2001) is carried out in paper IV. PCO2 in the surface water of the Barents Sea is shown to have increased parallel with the atmospheric pCO2 between 1967 and 2000-2001 (paper I). This was determined by comparing seawater pCO2 from 1967 with that from 2000-2001. The former was estimated from surface seawater temperature (SST) while the latter was computed from data of total dissolved inorganic carbon and alkalinity. A procedure which accounts for the natural variability was applied and the difference between seawater pC02 of 1967 and that of 2000-2001 is attributed to the uptake of excess CO2. In the Atlantic sector of the Barents Sea, the surface seawater fugacity of CO2 (fCO s''w) is shown to be lower than the atmospheric fCO2 throughout the year, implying that the area is an annual sink of atmospheric CO2 (paper II). Additionally, changes

  1. Carbon dioxide in northern high latitude oceans: Anthropogenic increase and air-sea flux variability

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Abdirahman M.

    2003-07-01

    The aim of this thesis is to further our knowledge of carbon dioxide in the northern high latitude oceans (northern North Atlantic, Barents Sea, and Arctic Ocean) by studying the anthropogenic change in the oceanic CO2, the inter-annual variability of the air-sea CO2 flux, and the relationship between this variability and changes in other oceanic processes. An introductory chapter and four papers are presented. Descriptions of the seawater carbonate system parameters, air-sea exchange of CO2, and related processes are given in the introduction chapter. The anthropogenic increase in partial pressure of CO2 (pCO2) in the surface water of the Barents Sea is evaluated in paper I. The effect of alternations of the Barents Sea climate between cold and warm modes on the annual cycles of seawater fugacity and air-sea flux of CO2 is investigated in paper II. Oceanic uptake of atmospheric CO2 associated with the seasonal formation of sea ice in Storfjorden and the implication for the entire Arctic Ocean is studied in paper III. An assessment of the variations of the air-sea flux of CO2 in the northern North Atlantic for 20 winters (1981-2001) is carried out in paper IV. PCO2 in the surface water of the Barents Sea is shown to have increased parallel with the atmospheric pCO2 between 1967 and 2000-2001 (paper I). This was determined by comparing seawater pCO2 from 1967 with that from 2000-2001. The former was estimated from surface seawater temperature (SST) while the latter was computed from data of total dissolved inorganic carbon and alkalinity. A procedure which accounts for the natural variability was applied and the difference between seawater pC02 of 1967 and that of 2000-2001 is attributed to the uptake of excess CO2. In the Atlantic sector of the Barents Sea, the surface seawater fugacity of CO2 (fCO s''w) is shown to be lower than the atmospheric fCO2 throughout the year, implying that the area is an annual sink of atmospheric CO2 (paper II). Additionally

  2. ORCHIDEE-MICT (v8.4.1, a land surface model for the high latitudes: model description and validation

    Directory of Open Access Journals (Sweden)

    M. Guimberteau

    2018-01-01

    Full Text Available The high-latitude regions of the Northern Hemisphere are a nexus for the interaction between land surface physical properties and their exchange of carbon and energy with the atmosphere. At these latitudes, two carbon pools of planetary significance – those of the permanently frozen soils (permafrost, and of the great expanse of boreal forest – are vulnerable to destabilization in the face of currently observed climatic warming, the speed and intensity of which are expected to increase with time. Improved projections of future Arctic and boreal ecosystem transformation require improved land surface models that integrate processes specific to these cold biomes. To this end, this study lays out relevant new parameterizations in the ORCHIDEE-MICT land surface model. These describe the interactions between soil carbon, soil temperature and hydrology, and their resulting feedbacks on water and CO2 fluxes, in addition to a recently developed fire module. Outputs from ORCHIDEE-MICT, when forced by two climate input datasets, are extensively evaluated against (i temperature gradients between the atmosphere and deep soils, (ii the hydrological components comprising the water balance of the largest high-latitude basins, and (iii CO2 flux and carbon stock observations. The model performance is good with respect to empirical data, despite a simulated excessive plant water stress and a positive land surface temperature bias. In addition, acute model sensitivity to the choice of input forcing data suggests that the calibration of model parameters is strongly forcing-dependent. Overall, we suggest that this new model design is at the forefront of current efforts to reliably estimate future perturbations to the high-latitude terrestrial environment.

  3. Hemispheric Asymmetry of Global Warming Explained by a Conceptual Model

    Science.gov (United States)

    Funke, C. S.; Alexeev, V. A.

    2017-12-01

    Polar Amplification, the process of amplified warming at high latitudes, manifests itself differently in the Arctic and Antarctic. Not only is the temperature increase in the Arctic more pronounced than in the Antarctic but the dramatic sea ice decline in the Arctic over the last few decades also contrasts sharply with trendless to weak positive trend of Antarctic sea ice throughout the same period. This asymmetric behavior is often partly attributed to the differences in configuration of continents in the Arctic and Antarctic: the Arctic Ocean is surrounded by land while the Southern Ocean has a continent in the middle. A simple conceptual energy balance model of Budyko-Sellers type, accounting for differences between the Northern and Southern hemispheres, is applied to study the mechanisms of climate sensitivity to a variety of forcings. Asymmetry in major modes of variability is explained using an eigenmode analysis of the linearized model. Negative forcings over Antarctica such as from ozone depletion were found to have an amplified effect on southern hemisphere climate and may be an important cause of the muted warming and slightly positive Antarctic sea ice trend.

  4. Climate feedback analysis of the GFDL IPCC AR4 global warming simulation

    Science.gov (United States)

    Castet, Christelle

    Both observed and modeled global warming pattern shows a large surface polar warming and a large upper atmospheric warming in the tropics. This pattern leads to an amplification (reduction) of the temperature gradient at upper levels (surface). Physical processes behind this temperature change are the external radiative forcing, and subsequent feedback processes that may amplify or dampen the climate response. This unique warming pattern suggests that high latitudes are very sensitive to climate change and also the area where the largest warming projection uncertainties occur. The objective of this study is to apply a new coupled atmosphere-surface climate feedback-response analysis method to quantify the contributions of the external forcing alone (doubling of carbon dioxide), and subsequent feedback processes to the 3-D global warming pattern in the GFDL_CM2.0 model. The feedbacks under consideration include the water vapor feedback, surface albedo feedback, surface turbulent heat flux feedback, and the sum of the change in cloud radiative forcing (CRF), vertical convective, and large-scale scale dynamical feedback. The partial temperature changes due to the external forcing and due to individual feedbacks are additive and their sum converges toward the temperature change produced by the original GFDL_CM2.0 global warming simulations. Therefore, our attributions of the global warming patter to individual thermodynamic and dynamical processes are mathematically robust and physically meaningful. The partial temperature change due to the water vapor feedback is found to be the largest contributor to the globally averaged surface warming. It is twice as large as the warming due to the external radiative forcing alone. The surface albedo feedback and change in surface cloud radiative forcing increase the surface temperature by a smaller amount. In addition, the changes in atmospheric cloud forcing and large-scale dynamics, as well as the surface turbulent heat flux

  5. Ionospheric effects on GPS signal losses at low and high latitudes observed from the Swarm mission

    Science.gov (United States)

    Xiong, C.; Stolle, C.; Park, J.

    2017-12-01

    By using almost four years of GPS and electron density observations of the Swarm satellites, we have investigated the relation between the GPS signal loss for spacebore receivers and the surrounding electron density environment. Signal losses occur at low latitudes between ±5°-±20° magnetic latitude (MLAT) and at high latitudes above 60° MLAT in both hemispheres. These GPS signal loss events at all latitudes are observed mainly during equinoxes and December solstice months, while almost absent during June solstice. The events at low latitudes in the post-sunset time were confirmed to be related to equatorial plasma depletions, and an absolute density depletion larger than 10×1011 m-3 was found being critical in causing a 50% occurrence that Swarm received less than 4 GPS signals at a time, making precise orbit solutions impossible. We now also investigate the high-latitude events of signal losses. We observe more events in the southern than that in the northern hemisphere, and mainly at the cusp region and along nightside auroral latitudes at both hemispheres. The signal losses happen mainly for GPS rays with elevation angle less than 20°, and are associated with large gradients in electron density, and we will discuss associated thresholds for high latitudes. Our result also confirms that the capability of the Swarm receiver to keep lock of GPS satellites has been improved after the bandwidth of phase-locked loop widened, but it cannot fully avoid the interruption of tracking GPS satellite caused by the ionospheric plasma irregularities.

  6. Phenology and Cover of Plant Growth Forms Predict Herbivore Habitat Selection in a High Latitude Ecosystem

    Science.gov (United States)

    Fauchald, Per; Langeland, Knut; Ims, Rolf A.; Yoccoz, Nigel G.; Bråthen, Kari Anne

    2014-01-01

    The spatial and temporal distribution of forage quality is among the most central factors affecting herbivore habitat selection. Yet, for high latitude areas, forage quantity has been found to be more important than quality. Studies on large ungulate foraging patterns are faced with methodological challenges in both assessing animal movements at the scale of forage distribution, and in assessing forage quality with relevant metrics. Here we use first-passage time analyses to assess how reindeer movements relate to forage quality and quantity measured as the phenology and cover of growth forms along reindeer tracks. The study was conducted in a high latitude ecosystem dominated by low-palatable growth forms. We found that the scale of reindeer movement was season dependent, with more extensive area use as the summer season advanced. Small-scale movement in the early season was related to selection for younger stages of phenology and for higher abundances of generally phenologically advanced palatable growth forms (grasses and deciduous shrubs). Also there was a clear selection for later phenological stages of the most dominant, yet generally phenologically slow and low-palatable growth form (evergreen shrubs). As the summer season advanced only quantity was important, with selection for higher quantities of one palatable growth form and avoidance of a low palatable growth form. We conclude that both forage quality and quantity are significant predictors to habitat selection by a large herbivore at high latitude. The early season selectivity reflected that among dominating low palatability growth forms there were palatable phenological stages and palatable growth forms available, causing herbivores to be selective in their habitat use. The diminishing selectivity and the increasing scale of movement as the season developed suggest a response by reindeer to homogenized forage availability of low quality. PMID:24972188

  7. Seasonal Dependence of Geomagnetic Active-Time Northern High-Latitude Upper Thermospheric Winds

    Science.gov (United States)

    Dhadly, Manbharat S.; Emmert, John T.; Drob, Douglas P.; Conde, Mark G.; Doornbos, Eelco; Shepherd, Gordon G.; Makela, Jonathan J.; Wu, Qian; Nieciejewski, Richard J.; Ridley, Aaron J.

    2018-01-01

    This study is focused on improving the poorly understood seasonal dependence of northern high-latitude F region thermospheric winds under active geomagnetic conditions. The gaps in our understanding of the dynamic high-latitude thermosphere are largely due to the sparseness of thermospheric wind measurements. With current observational facilities, it is infeasible to construct a synoptic picture of thermospheric winds, but enough data with wide spatial and temporal coverage have accumulated to construct a meaningful statistical analysis. We use long-term data from eight ground-based and two space-based instruments to derive climatological wind patterns as a function of magnetic local time, magnetic latitude, and season. These diverse data sets possess different geometries and different spatial and solar activity coverage. The major challenge is to combine these disparate data sets into a coherent picture while overcoming the sampling limitations and biases among them. In our previous study (focused on quiet time winds), we found bias in the Gravity Field and Steady State Ocean Circulation Explorer (GOCE) cross-track winds. Here we empirically quantify the GOCE bias and use it as a correction profile for removing apparent bias before empirical wind formulation. The assimilated wind patterns exhibit all major characteristics of high-latitude neutral circulation. The latitudinal extent of duskside circulation expands almost 10∘ from winter to summer. The dawnside circulation subsides from winter to summer. Disturbance winds derived from geomagnetic active and quiet winds show strong seasonal and latitudinal variability. Comparisons between wind patterns derived here and Disturbance Wind Model (DWM07) (which have no seasonal dependence) suggest that DWM07 is skewed toward summertime conditions.

  8. H I and dust in the high latitude dark cloud L1642

    International Nuclear Information System (INIS)

    Liljestroem, T.; Mattila, K.

    1989-01-01

    The high latitude dark cloud L1642 in the 21 cm H I region was mapped using a 100 m radio telescope. A remarkable H I line broadening from 2.5 to 2.9 km/s is observed over a small area on the bright side of L1642, i.e., the side facing the galactic plane. Results are presented concerning the effects of the asymmetrical UV radiation field of OB stars on the H I gas and the very small dust grains associated with L1642

  9. Effects of Abrupt Variations of Solar Wind Dynamic Pressure on the High-Latitude Ionosphere

    Directory of Open Access Journals (Sweden)

    Igino Coco

    2011-01-01

    Full Text Available We show the results of a statistical study on the effects in the high-latitude ionosphere of abrupt variations of solar wind dynamic pressure, using Super Dual Auroral Radar Network (SuperDARN data in both hemispheres. We find that, during periods of quiet ionospheric conditions, the amount of radar backscatter increases when a variation in the dynamic pressure occurs, both positive (increase of the pressure and negative (decrease of the pressure. We also investigate the behaviour of the Cross-Polar Cap Potential (CPCP during pressure variations and show preliminary results.

  10. High-latitude ionospheric response to a sudden impulse event during northward IMF conditions

    DEFF Research Database (Denmark)

    Moretto, T.; Ridley, A.J.; Engebretson, M.J.

    2000-01-01

    A high-density structure under northward interplanetary magnetic field B-z conditions is identified at the Wind and IMP 8 satellites, both in the solar wind on August 22, 1995. A compression of the magnetosphere is observed by the GOES 7 magnetometer within a few minutes of the pressure increase......-latitude ionospheric potential patterns by means of the assimilative mapping of ionospheric electrodynamics technique. Convection cells in the polar cap are formed and disappear on minute timescales in accordance with previous results. However, the high-latitude ionospheric ground magnetic signature does not match...... the interpretation as events of traveling convection vortices, as has been suggested by past studies....

  11. Initial studies of high latitude magnetic field data during different magnetospheric conditions

    Science.gov (United States)

    Cersosimo, D. O.; Wanliss, J. A.

    2007-01-01

    We investigate the statistical properties of high-latitude magnetometer data for differing geomagnetic activity. This is achieved by characterizing changes in the nonlinear statistics of the geomagnetic field, by means of the Hurst exponent, measured from a single ground-based magnetometer station. The long-range statistical nature of the geomagnetic field at a local observation site can be described as a multifractional Brownian motion, thus suggesting the statistical structure required of mathematical models of magnetospheric activity. We also find that, in general, the average Hurst exponent for quiet magnetospheric intervals is smaller than that for more active intervals.

  12. Analysis of High-Latitude lonospheric Processes During HSS and CME-Induced Geomagnetic Storms

    DEFF Research Database (Denmark)

    Durgonics, Tibor; Komjathy, Attila; Verkhoglyadova, Olga

    processes responsible for the negative phase have less pronounced impact on the diurnal TEC variations than on patch formation. We also investigated and assessed storm influences on airborne navigation at high-latitudes in order to determine the possible cause of the radio communication disturbances......-breaking-down into patches and a decrease in patch formation in general throughout the Greenland sector. The negative phase developed as the PCN-index started to increase indicated energy input into the polarcap. (2) The rate of PCN increase was clearly different for the two types of storms. (3) The impact of the physical...

  13. Triassic-Jurassic climate in continental high-latitude Asia was dominated by obliquity-paced variations (Junggar Basin, Ürümqi, China).

    Science.gov (United States)

    Sha, Jingeng; Olsen, Paul E; Pan, Yanhong; Xu, Daoyi; Wang, Yaqiang; Zhang, Xiaolin; Yao, Xiaogang; Vajda, Vivi

    2015-03-24

    Empirical constraints on orbital gravitational solutions for the Solar System can be derived from the Earth's geological record of past climates. Lithologically based paleoclimate data from the thick, coal-bearing, fluvial-lacustrine sequences of the Junggar Basin of Northwestern China (paleolatitude ∼60°) show that climate variability of the warm and glacier-free high latitudes of the latest Triassic-Early Jurassic (∼198-202 Ma) Pangea was strongly paced by obliquity-dominated (∼40 ky) orbital cyclicity, based on an age model using the 405-ky cycle of eccentricity. In contrast, coeval low-latitude continental climate was much more strongly paced by climatic precession, with virtually no hint of obliquity. Although this previously unknown obliquity dominance at high latitude is not necessarily unexpected in a high CO2 world, these data deviate substantially from published orbital solutions in period and amplitude for eccentricity cycles greater than 405 ky, consistent with chaotic diffusion of the Solar System. In contrast, there are indications that the Earth-Mars orbital resonance was in today's 2-to-1 ratio of eccentricity to inclination. These empirical data underscore the need for temporally comprehensive, highly reliable data, as well as new gravitational solutions fitting those data.

  14. Triassic–Jurassic climate in continental high-latitude Asia was dominated by obliquity-paced variations (Junggar Basin, Ürümqi, China)

    Science.gov (United States)

    Sha, Jingeng; Olsen, Paul E.; Pan, Yanhong; Xu, Daoyi; Wang, Yaqiang; Zhang, Xiaolin; Yao, Xiaogang; Vajda, Vivi

    2015-01-01

    Empirical constraints on orbital gravitational solutions for the Solar System can be derived from the Earth’s geological record of past climates. Lithologically based paleoclimate data from the thick, coal-bearing, fluvial-lacustrine sequences of the Junggar Basin of Northwestern China (paleolatitude ∼60°) show that climate variability of the warm and glacier-free high latitudes of the latest Triassic–Early Jurassic (∼198–202 Ma) Pangea was strongly paced by obliquity-dominated (∼40 ky) orbital cyclicity, based on an age model using the 405-ky cycle of eccentricity. In contrast, coeval low-latitude continental climate was much more strongly paced by climatic precession, with virtually no hint of obliquity. Although this previously unknown obliquity dominance at high latitude is not necessarily unexpected in a high CO2 world, these data deviate substantially from published orbital solutions in period and amplitude for eccentricity cycles greater than 405 ky, consistent with chaotic diffusion of the Solar System. In contrast, there are indications that the Earth–Mars orbital resonance was in today’s 2-to-1 ratio of eccentricity to inclination. These empirical data underscore the need for temporally comprehensive, highly reliable data, as well as new gravitational solutions fitting those data. PMID:25759439

  15. Modeling interactions of soil hydrological dynamics and soil thermal and permafrost dynamics and their effects on carbon cycling in northern high latitudes

    Science.gov (United States)

    Zhuang, Q.; Tang, J.

    2008-12-01

    Large areas of northern high latitude ecosystems are underlain with permafrost. The warming temperature and fires deteriorate the stability of those permafrost, altering hydrological cycle, and consequently soil temperature and active layer depth. These changes will determine the fate of large carbon pools in soils and permafrost over the region. We developed a modeling framework of hydrology, permafrost, and biogeochemical dynamics based on our existing modules of these components. The framework was incorporated with a new snow dynamics module and the effects of soil moisture on soil thermal properties. The framework was tested for tundra and boreal forest ecosystems at field sites with respect to soil thermal and hydrological regimes in Alaska and was then applied to the whole Alaskan ecosystems for the period of 1923-2000 at a daily time step. Our two sets of simulations with and without considering soil moisture effects indicated that the soil temperature profile and active layer depth between two simulations are significant different. The differences of soil thermal regime would expect to result in different carbon dynamics. Next, we will verify the framework with the observed data of soil moisture and soil temperature at poor-drain, moderate-drain, and well-drain boreal forest sites in Alaska. With the verified framework, we will evaluate the effects of interactions of soil thermal and hydrological dynamics on carbon dynamics for the whole northern high latitudes.

  16. Test of GPS for permanent ionospheric TEC monitoring at high latitudes

    Directory of Open Access Journals (Sweden)

    N. Zarraoa

    Full Text Available The Global Positioning System (GPS observables are affected by the ionosphere. The dispersive nature of this effect and the use of two frequencies in the GPS observations make possible to measure the ionospheric total electron content (TEC from dual frequency GPS data. In this work we test the concept of permanent monitoring of TEC using a network of GPS receivers at high latitudes. We have used GPS data from five permanent receivers in Scandinavia, from 1-30 January 1994, with geographic latitudes ranging from 57.4°N to 78.9°N. The results show the capability of the method to monitor the evolution of TEC as a function of time and geographical location. We have detected night-time enhancements almost every night for some of the stations, and we have also been able to produce maps of the instantaneous TEC as a function of both latitude and longitude around the GPS network. We also present some of the current limitations in the use of GPS for estimating TEC at high latitudes such as the difficulties in solving for cycle-slips, and the necessity of reliable values for the receiver and satellite differential instrumental biases.

  17. Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas.

    Science.gov (United States)

    Clarke, Andrew; Crame, J Alistair

    2010-11-27

    Ecologists have long been fascinated by the flora and fauna of extreme environments. Physiological studies have revealed the extent to which lifestyle is constrained by low temperature but there is as yet no consensus on why the diversity of polar assemblages is so much lower than many tropical assemblages. The evolution of marine faunas at high latitudes has been influenced strongly by oceanic cooling during the Cenozoic and the associated onset of continental glaciations. Glaciation eradicated many shallow-water habitats, especially in the Southern Hemisphere, and the cooling has led to widespread extinction in some groups. While environmental conditions at glacial maxima would have been very different from those existing today, fossil evidence indicates that some lineages extend back well into the Cenozoic. Oscillations of the ice-sheet on Milankovitch frequencies will have periodically eradicated and exposed continental shelf habitat, and a full understanding of evolutionary dynamics at high latitude requires better knowledge of the links between the faunas of the shelf, slope and deep-sea. Molecular techniques to produce phylogenies, coupled with further palaeontological work to root these phylogenies in time, will be essential to further progress.

  18. Contrasting vulnerability of drained tropical and high-latitude peatlands to fluvial loss of stored carbon

    Science.gov (United States)

    Evans, Chris D.; Page, Susan E.; Jones, Tim; Moore, Sam; Gauci, Vincent; Laiho, Raija; Hruška, Jakub; Allott, Tim E. H.; Billett, Michael F.; Tipping, Ed; Freeman, Chris; Garnett, Mark H.

    2014-11-01

    Carbon sequestration and storage in peatlands rely on consistently high water tables. Anthropogenic pressures including drainage, burning, land conversion for agriculture, timber, and biofuel production, cause loss of pressures including drainage, burning, land conversion for agriculture, timber, and biofuel production, cause loss of peat-forming vegetation and exposure of previously anaerobic peat to aerobic decomposition. This can shift peatlands from net CO2 sinks to large CO2 sources, releasing carbon held for millennia. Peatlands also export significant quantities of carbon via fluvial pathways, mainly as dissolved organic carbon (DOC). We analyzed radiocarbon (14C) levels of DOC in drainage water from multiple peatlands in Europe and Southeast Asia, to infer differences in the age of carbon lost from intact and drained systems. In most cases, drainage led to increased release of older carbon from the peat profile but with marked differences related to peat type. Very low DOC-14C levels in runoff from drained tropical peatlands indicate loss of very old (centuries to millennia) stored peat carbon. High-latitude peatlands appear more resilient to drainage; 14C measurements from UK blanket bogs suggest that exported DOC remains young (air pollution and intensive land management have triggered Sphagnum loss and peat erosion, suggest that additional anthropogenic pressures may trigger fluvial loss of much older (>500 year) carbon in high-latitude systems. Rewetting at least partially offsets drainage effects on DOC age.

  19. The role played by thermal feedback in heated Farley-Buneman waves at high latitudes

    Directory of Open Access Journals (Sweden)

    J.-P. St.-Maurice

    Full Text Available It is becoming increasingly clear that electron thermal effects have to be taken into account when dealing with the theory of ionospheric instabilities in the high-latitude ionosphere. Unfortunately, the mathematical complexity often hides the physical processes at work. We follow the limiting cases of a complex but systematic generalized fluid approach to get to the heart of the thermal processes that affect the stability of E region waves during electron heating events. We try to show as simply as possible under what conditions thermal effects contribute to the destabilization of strongly field-aligned (zero aspect angle Farley-Buneman modes. We show that destabilization can arise from a combination of (1 a reduction in pressure gradients associated with temperature fluctuations that are out of phase with density fluctuations, and (2 thermal diffusion, which takes the electrons from regions of enhanced temperatures to regions of negative temperature fluctuations, and therefore enhanced densities. However, we also show that, contrary to what has been suggested in the past, for modes excited along the E0×B direction thermal feedback decreases the growth rate and raises the threshold speed of the Farley-Buneman instability. The increase in threshold speed appears to be important enough to explain the generation of `Type IV' waves in the high-latitude ionosphere.

    Key words: Ionosphere (auroral ionosphere; iono- spheric irregularities; plasma waves and instabilities

  20. Latitudinal gradients in climatic-niche evolution accelerate trait evolution at high latitudes.

    Science.gov (United States)

    Lawson, Adam M; Weir, Jason T

    2014-11-01

    Despite the importance of divergent selection to the speed of evolution, it remains poorly understood if divergent selection is more prevalent in the tropics (where species richness is highest), or at high latitudes (where paleoclimate change has been most intense). We tested whether the rate of climatic-niche evolution - one proxy for divergent selection - varies with latitude for 111 pairs of bird species. Using Brownian motion and Ornsetin-Ulhenbeck models, we show that evolutionary rates along two important axes of the climatic-niche - temperature and seasonality - have been faster at higher latitudes. We then tested whether divergence of the climatic-niche was associated with evolution in traits important in ecological differentiation (body mass) and reproductive isolation (song), and found that climatic divergence is associated with faster rates in both measures. These results highlight the importance of climate-mediated divergent selection pressures in driving evolutionary divergence and reproductive isolation at high latitudes. © 2014 John Wiley & Sons Ltd/CNRS.

  1. Parallel Gene Expression Differences between Low and High Latitude Populations of Drosophila melanogaster and D. simulans.

    Science.gov (United States)

    Zhao, Li; Wit, Janneke; Svetec, Nicolas; Begun, David J

    2015-05-01

    Gene expression variation within species is relatively common, however, the role of natural selection in the maintenance of this variation is poorly understood. Here we investigate low and high latitude populations of Drosophila melanogaster and its sister species, D. simulans, to determine whether the two species show similar patterns of population differentiation, consistent with a role for spatially varying selection in maintaining gene expression variation. We compared at two temperatures the whole male transcriptome of D. melanogaster and D. simulans sampled from Panama City (Panama) and Maine (USA). We observed a significant excess of genes exhibiting differential expression in both species, consistent with parallel adaptation to heterogeneous environments. Moreover, the majority of genes showing parallel expression differentiation showed the same direction of differential expression in the two species and the magnitudes of expression differences between high and low latitude populations were correlated across species, further bolstering the conclusion that parallelism for expression phenotypes results from spatially varying selection. However, the species also exhibited important differences in expression phenotypes. For example, the genomic extent of genotype × environment interaction was much more common in D. melanogaster. Highly differentiated SNPs between low and high latitudes were enriched in the 3' UTRs and CDS of the geographically differently expressed genes in both species, consistent with an important role for cis-acting variants in driving local adaptation for expression-related phenotypes.

  2. Space Weather effects on airline communications in the high latitude regions

    Science.gov (United States)

    Honary, Farideh

    2014-05-01

    Efficient air traffic management depends on reliable communications between aircraft and the air traffic control centres at all times. At high latitudes, and especially on polar routing, VHF ground infrastructure does not exist and the aircraft have to rely on HF radio for communications. HF relies on reflections from the ionosphere to achieve long distance communications. Unfortunately the high latitude ionosphere is affected by space weather events. During such events HF radio communication can be severely disrupted and aircraft are forced to use longer low latitude routes with consequent increased flight time, fuel consumption and cost. This presentation describes a new research programme at the University of Lancaster in collaboration with the University of Leicester, Solar Metrics Ltd and Natural Resources Canada for the development of a nowcasting and forecasting HF communications tool designed for the particular needs of civilian airlines. This project funded by EPSRC will access a wide variety of solar and interplanetary measurements to derive a complete picture of space weather disturbances affecting radio absorption and reflection

  3. The role played by thermal feedback in heated Farley-Buneman waves at high latitudes

    Directory of Open Access Journals (Sweden)

    J.-P. St.-Maurice

    2000-05-01

    Full Text Available It is becoming increasingly clear that electron thermal effects have to be taken into account when dealing with the theory of ionospheric instabilities in the high-latitude ionosphere. Unfortunately, the mathematical complexity often hides the physical processes at work. We follow the limiting cases of a complex but systematic generalized fluid approach to get to the heart of the thermal processes that affect the stability of E region waves during electron heating events. We try to show as simply as possible under what conditions thermal effects contribute to the destabilization of strongly field-aligned (zero aspect angle Farley-Buneman modes. We show that destabilization can arise from a combination of (1 a reduction in pressure gradients associated with temperature fluctuations that are out of phase with density fluctuations, and (2 thermal diffusion, which takes the electrons from regions of enhanced temperatures to regions of negative temperature fluctuations, and therefore enhanced densities. However, we also show that, contrary to what has been suggested in the past, for modes excited along the E0×B direction thermal feedback decreases the growth rate and raises the threshold speed of the Farley-Buneman instability. The increase in threshold speed appears to be important enough to explain the generation of `Type IV' waves in the high-latitude ionosphere.Key words: Ionosphere (auroral ionosphere; iono- spheric irregularities; plasma waves and instabilities

  4. Detection of Wetland Dynamics with Envisat ASAR in Support of Methane Modelling in High Latitudes

    Science.gov (United States)

    Bartsch, A.; Sabel, D.; Schlaffer, S.; Naeimi, V.; Wagner, W.

    2011-01-01

    Wetland dynamics play an important role for methane release in high latitudes. Inundation as well as changes in surface wetness at local to regional scale can be detected using especially SAR (Synthetic Aperture Radar) data. Acquisitions available from ENVISAT ASAR are assessed for their potential for regular wetland monitoring at high latitudes within the ESA STSE project ’ALANIS - Methane’. Open water surfaces larger than approximately two ha can be identified using a simple threshold-based classification applied to the normalized ENVISAT ASAR wide swath (WS) data. Specular reflection from calm water surfaces which results in low backscatter enables a straight forward identification of inundation in areas with limited vegetation coverage. Open peatland can also be identified with SAR due to their higher moisture content and thus higher backscatter. Both backscatter mechanisms are exploited for intra-seasonal wetland monitoring in Northern Eurasia for ALANIS Methane. Inter-annual variations of inundation are also derived at selected sites in boreal/arctic environment as part of the ESA DUE Permafrost project. This paper especially discusses limitations due to sampling frequency and the potential for improvements of regional scale wetland detection approaches.

  5. GPS TEC, scintillation and cycle slips observed at high latitudes during solar minimum

    Directory of Open Access Journals (Sweden)

    P. Prikryl

    2010-06-01

    Full Text Available High-latitude irregularities can impair the operation of GPS-based devices by causing fluctuations of GPS signal amplitude and phase, also known as scintillation. Severe scintillation events lead to losses of phase lock, which result in cycle slips. We have used data from the Canadian High Arctic Ionospheric Network (CHAIN to measure amplitude and phase scintillation from L1 GPS signals and total electron content (TEC from L1 and L2 GPS signals to study the relative role that various high-latitude irregularity generation mechanisms have in producing scintillation. In the first year of operation during the current solar minimum the amplitude scintillation has remained very low but events of strong phase scintillation have been observed. We have found, as expected, that auroral arc and substorm intensifications as well as cusp region dynamics are strong sources of phase scintillation and potential cycle slips. In addition, we have found clear seasonal and universal time dependencies of TEC and phase scintillation over the polar cap region. A comparison with radio instruments from the Canadian GeoSpace Monitoring (CGSM network strongly suggests that the polar cap scintillation and TEC variations are associated with polar cap patches which we therefore infer to be main contributors to scintillation-causing irregularities in the polar cap.

  6. Behavioral Strategies of Lanternfishes (Family Myctophidae) in a High-Latitude Fjord and the Tropical Red Sea

    KAUST Repository

    Dypvik, Eivind

    2012-12-01

    The diel vertical migration (DVM) and feeding periodicity of myctophids (lanternfishes) were studied in the high-latitude Masfjorden, Norway, and the tropical Red Sea. In Masfjorden, a bottom-mounted echo sounder permitted continuous studies throughout the year, and revealed a diverse seasonal DVM behavior. During spring and summer, when zooplankton peaks in the epipelagic zone, migrating glacier lanternfish performed normal DVM (NDVM), ascending to the epipelagic zone during night and residing below ~200m during daytime. During autumn and winter, when Calanus overwinters between ~150–300 m, migrating glacier lanternfish mainly performed inverse DVM (IDVM), ascending to feed on Calanus in mid-waters during daytime. Non migrating (NoDVM) individuals were present all year below ~300 m in Masfjorden. In the Red Sea, where zooplankton has an epipelagic distribution, the whole population of skinnycheek lanternfish performed NDVM, feeding in the epipelagic zone at night, while residing at ~500–750 m during daytime. The warm waters of the Red Sea were hypothesized to limit the time individuals can stay in the mesopelagic zone without migrating to feed in the epipelagic layers. The DVM behavior of myctophids largely seemed to relate to the distribution of zooplankton, and it was hypothesized that NDVM will prevail with epipelagic distribution of prey, while IDVM and NoDVM are common in areas where zooplankton migrate seasonally to mesopelagic depths. Potential predators were continuously present, found to apparently attack glacier lanternfish, at mesopelagic depth in Masfjorden. Thus, myctophids are under threat of predation even at mesopelagic depth.

  7. Distribution of Polycystine Radiolarians in Bottom Surface Sediments and Its Relation to Summer Sea Temperature in the High-Latitude North Atlantic

    Directory of Open Access Journals (Sweden)

    Alexander Matul

    2017-10-01

    Full Text Available An objective of the study is to get new biogeographic information on the modern polycystine radiolarians from the high-latitude North Atlantic. The quantitative radiolarian dataset was compiled from publications and own micropaleontological counts from samples of the bottom surface sediments of the North Atlantic north of 40°N and Nordic Seas. Standard statistical treatment of micropaleontological data by factor analysis reveals five radiolarian assemblages which have their highest load at the specific temperature range in agreement with the oceanographic setting. An occurrence of radiolarian assemblages reflects extension and interaction of the warm North Atlantic and cold Polar/Arctic waters. Radiolarian distribution exhibits good correlation with the climatically averaged summer sea temperature on depth level of 200 m.

  8. Operation amplifier

    NARCIS (Netherlands)

    Tetsuya, Saito; Nauta, Bram

    2008-01-01

    To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. SOLUTION: The operation amplifier comprises: a differential amplifier circuit 1;

  9. Dinosaurs on the North Slope, Alaska: High latitude, latest cretaceous environments

    Science.gov (United States)

    Brouwers, E.M.; Clemens, W.A.; Spicer, R.A.; Ager, T.A.; Carter, L.D.; Sliter, W.V.

    1987-01-01

    Abundant skeletal remains demonstrate that lambeosaurine hadrosaurid, tyrannosaurid, and troodontid dinosaurs lived on the Alaskan North Slope during late Campanian-early Maestrichtian time (about 66 to 76 million years ago) in a deltaic environment dominated by herbaceous vegetation. The high ground terrestrial plant community was a mild- to cold-temperate forest composed of coniferous and broad leaf trees. The high paleolatitude (about 70?? to 85?? North) implies extreme seasonal variation in solar insolation, temperature, and herbivore food supply. Great distances of migration to contemporaneous evergreen floras and the presence of both juvenile and adult hadrosaurs suggest that they remained at high latitudes year-round. This challenges the hypothesis that short-term periods of darkness and temperature decrease resulting from a bolide impact caused dinosaurian extinction.

  10. Are some of the luminous high-latitude stars accretion-powered runaways?

    International Nuclear Information System (INIS)

    Leonard, P.J.T.; Hills, J.G.; Dewey, R.J.

    1992-01-01

    It is well known that (1) runaway stars can be produced via supernova explosions in close binary systems, (2) most of such runaways should possess neutron star companions, and (3) neutron stars receive randomly oriented kicks of ≅ 100 to 200 km s -1 at birth. We find that this kick sometimes has the right amplitude and direction to make the neutron star fall into the runaway. Accretion onto a neutron star is a source of energy that is roughly an order of magnitude more mass efficient than nuclear burning. Thus, runaways containing neutron stars may live much longer than would normally be expected, which would allow them to travel great distances from their birthplaces during their lifetimes. Some of the early B-type stars far from the Galactic plane and the high-latitude F and G-type supergiants may be accretion-powered runaway stars

  11. Population dynamic of high latitude copepods - with emphasis on Metridia longa

    DEFF Research Database (Denmark)

    Kjellerup, Sanne

    2014-01-01

    diurnal and nocturnal sampling. The seasonal fjord study further identified different life strategies with respect to seasonal adaptations in reproduction and migration patterns. In contrast to the general assumption that large calanoid copepods dominate high latitude ecosystems, we find that smaller...... at depth. The large calanoid Metridia longa dominated the biomass in the fjord during spring and represented a significant part of the biomass in Baffin Bay and Davis Strait. Metridia longa exhibited a pronounced diel vertical migration, avoiding the upper 150 meters of the water column during day. Thus...... in the fjord, was more restricted and indicated a life-history strategy that combines the advantages of eggcarrying with inter-clutch duration independent of hatching time. Our findings stress the need for sampling with small meshed nets, sampling deeper in the water column, and sampling both diurnally...

  12. Impact of future Arctic shipping on high-latitude black carbon deposition (Invited)

    Science.gov (United States)

    Corbett, J. J.; Browse, J.; Carslaw, K. S.; Schmidt, A.

    2013-12-01

    The retreat of Arctic sea-ice has led to renewed calls to exploit Arctic shipping routes. The diversion of ship traffic through the Arctic will shorten shipping routes and possibly reduce global shipping emissions. However, deposition of black carbon (BC) aerosol emitted by additional Arctic ships could cause a reduction in the albedo of snow and ice, accelerating snow-melt and sea-ice loss. We use recently compiled Arctic shipping emission inventories for 2004 and 2050 together with a global aerosol microphysics model GLOMAP coupled to the chemical transport model TOMCAT to quantify the contribution of future Arctic shipping to high-latitude BC deposition. Emission rates of SOx (SO2 and SO4) and particulate matter (PM) were estimated for 2050 under both business-as-usual and high-growth scenarios. BC particles are assumed to be water-insoluble at emission but can become active in cloud drop formation through soluble material accumulation. After BC particles become cloud-active they are more efficiently wet scavenged, which accounts for 80% of modeled BC deposition. Current-day Arctic shipping contributes 0.3% to the BC mass deposited north of 60N (250 Gg). About 50% of modelled BC deposition is on open ocean, suggesting that current Arctic ship traffic may not significantly contribute to BC deposition on central Arctic sea ice. However, 6 - 8% of deposited BC on the west coast of Greenland originates from local ship traffic. Moreover, in-Arctic shipping contributes some 32% to high-latitude ship-sourced deposition despite accounting for less than 1.0% of global shipping emissions. This suggests that control of in-Arctic shipping BC emissions could yield greater decrease in high-latitude BC deposition than a similar control strategy applied only to the extra-Arctic shipping industry. Arctic shipping in 2050 will contribute less than 1% to the total BC deposition north of 60N due to the much greater relative contribution of BC transported from non-shipping sources

  13. Newton's second law versus modified-inertia MOND: A test using the high-latitude effect

    International Nuclear Information System (INIS)

    Ignatiev, A. Yu.

    2008-01-01

    The modified-inertia MOND is an approach that proposes a change in Newton's second law at small accelerations as an alternative to dark matter. Recently it was suggested that this approach can be tested in terrestrial laboratory experiments. One way of doing the test is based on the static high-latitude equinox modified-inertia effect: around each equinox date, 2 spots emerge on the Earth where static bodies experience spontaneous displacement due to the violation of Newton's second law required by the modified-inertia MOND. Here, a detailed theory of this effect is developed and estimates of the magnitude of the signal due to the effect are obtained. The expected displacement of a mirror in a gravitational-wave interferometer is found to be about 10 -14 m. Some experimental aspects of the proposal are discussed

  14. Calcium isotopic composition of high-latitude proxy carrier Neogloboquadrina pachyderma (sin.

    Directory of Open Access Journals (Sweden)

    A. Eisenhauer

    2009-01-01

    Full Text Available The accurate reconstruction of sea surface temperature (SST history in climate-sensitive regions (e.g. tropical and polar oceans became a challenging task in palaeoceanographic research. Biogenic shell carbonate SST proxies successfully developed for tropical regions often fail in cool water environments. Their major regional shortcomings and the cryptic diversity now found within the major high latitude proxy carrier Neogloboquadrina pachyderma (sin. highlight an urgent need to explore complementary SST proxies for these cool-water regions. Here we incorporate the genetic component into a calibration study of a new SST proxy for the high latitudes. We found that the calcium isotopic composition (δ44/40Ca of calcite from genotyped net catches and core-top samples of the planktonic foraminifera Neogloboquadrina pachyderma (sin. is related to temperature and unaffected by genetic variations. The temperature sensitivity has been found to be 0.17 (±0.02‰ per 1°C, highlighting its potential for downcore applications in open marine cool-water environments. Our results further indicate that in extreme polar environments, below a critical threshold temperature of 2.0 (±0.5°C associated with salinities below 33.0 (±0.5‰, a prominent shift in biomineralization affects the δ44/40Ca of genotyped and core-top N. pachyderma (sin., becoming insensitive to temperature. These findings highlight the need of more systematic calibration studies on single planktonic foraminiferal species in order to unravel species-specific factors influencing the temperature sensitivity of Ca isotope fractionation and to validate the proxies' applicability.

  15. Comparison of high-latitude thermospheric meridionalwinds I: optical and radar experimental comparisons

    Directory of Open Access Journals (Sweden)

    E. M. Griffin

    2004-03-01

    Full Text Available Thermospheric neutral winds at Kiruna, Sweden (67.4°N, 20.4°E are compared using both direct optical Fabry-Perot Interferometer (FPI measurements and those derived from European incoherent scatter radar (EISCAT measurements. This combination of experimental data sets, both covering well over a solar cycle of data, allows for a unique comparison of the thermospheric meridional component of the neutral wind as observed by different experimental techniques. Uniquely in this study the EISCAT measurements are used to provide winds for comparison using two separate techniques: the most popular method based on the work of Salah and Holt (1974 and the Meridional Wind Model (MWM (Miller et al., 1997 application of servo theory. The balance of forces at this location that produces the observed diurnal pattern are investigated using output from the Coupled Thermosphere and Ionosphere (CTIM numerical model. Along with detailed comparisons from short periods the climatological behaviour of the winds have been investigated for seasonal and solar cycle dependence using the experimental techniques. While there are features which are consistent between the 3 techniques, such as the evidence of the equinoctial asymmetry, there are also significant differences between the techniques both in terms of trends and absolute values. It is clear from this and previous studies that the high-latitude representation of the thermospheric neutral winds from the empirical Horizontal Wind Model (HWM, though improved from earlier versions, lacks accuracy in many conditions. The relative merits of each technique are discussed and while none of the techniques provides the perfect data set to address model performance at high-latitude, one or more needs to be included in future HWM reformulations. Key words. Meteorology and atmospheric dynamics (thermospheric dynamics, Ionosphere (ionosphere-atmosphere interactions, auroral ionosphere

  16. Comparison of high-latitude thermospheric meridionalwinds I: optical and radar experimental comparisons

    Directory of Open Access Journals (Sweden)

    E. M. Griffin

    2004-03-01

    Full Text Available Thermospheric neutral winds at Kiruna, Sweden (67.4°N, 20.4°E are compared using both direct optical Fabry-Perot Interferometer (FPI measurements and those derived from European incoherent scatter radar (EISCAT measurements. This combination of experimental data sets, both covering well over a solar cycle of data, allows for a unique comparison of the thermospheric meridional component of the neutral wind as observed by different experimental techniques. Uniquely in this study the EISCAT measurements are used to provide winds for comparison using two separate techniques: the most popular method based on the work of Salah and Holt (1974 and the Meridional Wind Model (MWM (Miller et al., 1997 application of servo theory. The balance of forces at this location that produces the observed diurnal pattern are investigated using output from the Coupled Thermosphere and Ionosphere (CTIM numerical model. Along with detailed comparisons from short periods the climatological behaviour of the winds have been investigated for seasonal and solar cycle dependence using the experimental techniques. While there are features which are consistent between the 3 techniques, such as the evidence of the equinoctial asymmetry, there are also significant differences between the techniques both in terms of trends and absolute values. It is clear from this and previous studies that the high-latitude representation of the thermospheric neutral winds from the empirical Horizontal Wind Model (HWM, though improved from earlier versions, lacks accuracy in many conditions. The relative merits of each technique are discussed and while none of the techniques provides the perfect data set to address model performance at high-latitude, one or more needs to be included in future HWM reformulations.

    Key words. Meteorology and atmospheric dynamics (thermospheric dynamics, Ionosphere (ionosphere-atmosphere interactions, auroral ionosphere

  17. Statistical study of high-latitude plasma flow during magnetospheric substorms

    Directory of Open Access Journals (Sweden)

    G. Provan

    2004-11-01

    Full Text Available We have utilised the near-global imaging capabilities of the Northern Hemisphere SuperDARN radars, to perform a statistical superposed epoch analysis of high-latitude plasma flows during magnetospheric substorms. The study involved 67 substorms, identified using the IMAGE FUV space-borne auroral imager. A substorm co-ordinate system was developed, centred on the magnetic local time and magnetic latitude of substorm onset determined from the auroral images. The plasma flow vectors from all 67 intervals were combined, creating global statistical plasma flow patterns and backscatter occurrence statistics during the substorm growth and expansion phases. The commencement of the substorm growth phase was clearly observed in the radar data 18-20min before substorm onset, with an increase in the anti-sunward component of the plasma velocity flowing across dawn sector of the polar cap and a peak in the dawn-to-dusk transpolar voltage. Nightside backscatter moved to lower latitudes as the growth phase progressed. At substorm onset a flow suppression region was observed on the nightside, with fast flows surrounding the suppressed flow region. The dawn-to-dusk transpolar voltage increased from ~40kV just before substorm onset to ~75kV 12min after onset. The low-latitude return flow started to increase at substorm onset and continued to increase until 8min after onset. The velocity flowing across the polar-cap peaked 12-14min after onset. This increase in the flux of the polar cap and the excitation of large-scale plasma flow occurred even though the IMF Bz component was increasing (becoming less negative during most of this time. This study is the first to statistically prove that nightside reconnection creates magnetic flux and excites high-latitude plasma flow in a similar way to dayside reconnection and that dayside and nightside reconnection, are two separate time-dependent processes.

  18. Design of ecoregional monitoring in conservation areas of high-latitude ecosystems under contemporary climate change

    Science.gov (United States)

    Beever, Erik A.; Woodward, Andrea

    2011-01-01

    Land ownership in Alaska includes a mosaic of federally managed units. Within its agency’s context, each unit has its own management strategy, authority, and resources of conservation concern, many of which are migratory animals. Though some units are geographically isolated, many are nevertheless linked by paths of abiotic and biotic flows, such as rivers, air masses, flyways, and terrestrial and aquatic migration routes. Furthermore, individual land units exist within the context of a larger landscape pattern of shifting conditions, requiring managers to understand at larger spatial scales the status and trends in the synchrony and spatial concurrence of species and associated suitable habitats. Results of these changes will determine the ability of Alaska lands to continue to: provide habitat for local and migratory species; absorb species whose ranges are shifting northward; and experience mitigation or exacerbation of climate change through positive and negative atmospheric feedbacks. We discuss the geographic and statutory contexts that influence development of ecological monitoring; argue for the inclusion of significant amounts of broad-scale monitoring; discuss the importance of defining clear programmatic and monitoring objectives; and draw from lessons learned from existing long-term, broad-scale monitoring programs to apply to the specific contexts relevant to high-latitude protected areas such as those in Alaska. Such areas are distinguished by their: marked seasonality; relatively large magnitudes of contemporary change in climatic parameters; and relative inaccessibility due to broad spatial extent, very low (or zero) road density, and steep and glaciated areas. For ecological monitoring to effectively support management decisions in high-latitude areas such as Alaska, a monitoring program ideally would be structured to address the actual spatial and temporal scales of relevant processes, rather than the artificial boundaries of individual land

  19. Observational estimation of radiative feedback to surface air temperature over Northern High Latitudes

    Science.gov (United States)

    Hwang, Jiwon; Choi, Yong-Sang; Kim, WonMoo; Su, Hui; Jiang, Jonathan H.

    2018-01-01

    The high-latitude climate system contains complicated, but largely veiled physical feedback processes. Climate predictions remain uncertain, especially for the Northern High Latitudes (NHL; north of 60°N), and observational constraint on climate modeling is vital. This study estimates local radiative feedbacks for NHL based on the CERES/Terra satellite observations during March 2000-November 2014. The local shortwave (SW) and longwave (LW) radiative feedback parameters are calculated from linear regression of radiative fluxes at the top of the atmosphere on surface air temperatures. These parameters are estimated by the de-seasonalization and 12-month moving average of the radiative fluxes over NHL. The estimated magnitudes of the SW and the LW radiative feedbacks in NHL are 1.88 ± 0.73 and 2.38 ± 0.59 W m-2 K-1, respectively. The parameters are further decomposed into individual feedback components associated with surface albedo, water vapor, lapse rate, and clouds, as a product of the change in climate variables from ERA-Interim reanalysis estimates and their pre-calculated radiative kernels. The results reveal the significant role of clouds in reducing the surface albedo feedback (1.13 ± 0.44 W m-2 K-1 in the cloud-free condition, and 0.49 ± 0.30 W m-2 K-1 in the all-sky condition), while the lapse rate feedback is predominant in LW radiation (1.33 ± 0.18 W m-2 K-1). However, a large portion of the local SW and LW radiative feedbacks were not simply explained by the sum of these individual feedbacks.

  20. Structure and growth rates of the high-latitude coral: Plesiastrea versipora

    Science.gov (United States)

    Burgess, S. N.; McCulloch, M. T.; Mortimer, G. E.; Ward, T. M.

    2009-12-01

    The high-latitude coral species Plesiastrea versipora was investigated to identify growth rates in colonies over 1 m in diameter. Six colonies from two temperate gulfs (latitudes of 33°-35°S) in Southern Australia were examined using X-ray, luminescence and 238U/230Th dating techniques. Annual density bands were present in each coral but varied in width and definition, suggesting different linear extension and calcification rates. Differences in density band width were observed at the local scale (amongst colonies on the same reef) and regional scales (between the two gulfs). Extension rates of the P. versipora colonies examined in this study varied between 1.2 and 7 mm per year, which are amongst the slowest growth rates reported for hermatypic corals. As only one of the six P. versipora colonies had obvious luminescent banding, we conclude that luminescent banding is not an accurate chronological marker in this species of temperate water coral. Coral age estimates derived from counting density bands in X-radiographs ranged from 90 to 320 years for the six colonies studied. U-Th ages from the same colonies determined by high-precision multi-collector inductively coupled plasma mass spectrometer established radiometric ages between 105 and 381 years. The chronological variation in absolute ages between the two techniques varied between 2 and 19% in different colonies, with the lowest growth rates (~1 mm) displaying the greatest variation between density band age and radiometric U-Th age. This result implies that the age of P. versipora and other slow-growing corals cannot be determined accurately from density bands alone. The outcome of this research demonstrates that P. versipora may be useful as a paleoclimate archive, recording several centuries in a single colony in high-latitude environments (corals found in latitudes greater than 30° in either hemisphere), where other well-established coral climate archives, such as Porites, do not occur.

  1. In-situ Balloon Measurements of Small Ice Particles in High-Latitude Cirrus

    Science.gov (United States)

    Kuhn, T.; Heymsfield, A.

    2015-12-01

    Thin cirrus clouds at high latitudes are often composed of small ice particles not larger than 100 μm. Cirrus clouds reflect incoming solar radiation, creating a cooling effect. At the same time these clouds absorb the infrared radiation from Earth, creating a greenhouse effect. The net effect, crucial for radiative transfer, depends on the cirrus microphysical properties, such as particle size distributions (PSD) and particle shapes. Knowledge of these cloud properties is also needed for calibrating/validating passive and active remote sensors. We report on a series of balloon-borne in-situ measurements that is carried out at a high-latitude location, Kiruna in northern Sweden (68N 21E). The measurements target upper tropospheric, cold cirrus clouds. The measurements are ongoing, and the method and first results are presented here. Ice particles in these clouds are predominantly very small, with a median size of measured particles of around 50 μm. Ice particles at these sizes are inherently difficult to measure with aircraft-mounted probes due to issues with resolution, sizing, and size-dependent sampling volume. These probes also suffer from problems with shattering of larger ice particles at the typically high aircraft speeds. The method used here avoids these issues. Furthermore, with a balloon-borne instrument data are collected as vertical profiles, more useful for calibrating or evaluating remote sensing measurements than data collected along horizontal traverses. Particles are collected on an oil-coated film at a sampling speed given directly by the ascending rate of the balloon, 4 m s-1. The collecting film is advanced uniformly inside the instrument so that an always un-used section of the film is exposed to ice particles, which are measured by imaging shortly after sampling. The high optical resolution of about 4 μm together with a pixel resolution of 1.65 μm allows particle detection at sizes of 10 μm and larger. For particles that are 20 μm (12

  2. High-latitude poynting flux from combined Iridium and SuperDARN data

    Directory of Open Access Journals (Sweden)

    C. L. Waters

    2004-09-01

    Full Text Available Field-aligned currents convey stress between the magnetosphere and ionosphere, and the associated low altitude magnetic and electric fields reflect the flow of electromagnetic energy to the polar ionosphere. We introduce a new technique to measure the global distribution of high latitude Poynting flux, S||, by combining electric field estimates from the Super Dual Auroral Radar Network (SuperDARN with magnetic perturbations derived using magnetometer data from the Iridium satellite constellation. Spherical harmonic methods are used to merge the data sets and calculate S|| for any magnetic local time (MLT from the pole to 60° magnetic latitude (MLAT. The effective spatial resolutions are 2° MLAT, 2h MLT, and the time resolution is about one hour due to the telemetry rate of the Iridium magnetometer data. The technique allows for the assessment of high-latitude net S|| and its spatial distribution on one hour time scales with two key advantages: (1 it yields the net S|| including the contribution of neutral winds; and (2 the results are obtained without recourse to estimates of ionosphere conductivity. We present two examples, 23 November 1999, 14:00-15:00 UT, and 11 March 2000, 16:00-17:00 UT, to test the accuracy of the technique and to illustrate the distributions of S|| that it gives. Comparisons with in-situ S|| estimates from DMSP satellites show agreement to a few mW/m2 and in the locations of S|| enhancements to within the technique's resolution. The total electromagnetic energy flux was 50GW for these events. At auroral latitudes, S|| tends to maximize in the morning and afternoon in regions less than 5° in MLAT by two hours in MLT having S||=10 to 20mW/m2 and total power up to 10GW. The power poleward of the Region 1 currents is about one-third of the total power, indicating significant energy flux over the polar cap.

  3. Ocean acidification at high latitudes: potential effects on functioning of the Antarctic bivalve Laternula elliptica.

    Directory of Open Access Journals (Sweden)

    Vonda Cummings

    Full Text Available Ocean acidification is a well recognised threat to marine ecosystems. High latitude regions are predicted to be particularly affected due to cold waters and naturally low carbonate saturation levels. This is of concern for organisms utilising calcium carbonate (CaCO(3 to generate shells or skeletons. Studies of potential effects of future levels of pCO(2 on high latitude calcifiers are at present limited, and there is little understanding of their potential to acclimate to these changes. We describe a laboratory experiment to compare physiological and metabolic responses of a key benthic bivalve, Laternula elliptica, at pCO(2 levels of their natural environment (430 µatm, pH 7.99; based on field measurements with those predicted for 2100 (735 µatm, pH 7.78 and glacial levels (187 µatm, pH 8.32. Adult L. elliptica basal metabolism (oxygen consumption rates and heat shock protein HSP70 gene expression levels increased in response both to lowering and elevation of pH. Expression of chitin synthase (CHS, a key enzyme involved in synthesis of bivalve shells, was significantly up-regulated in individuals at pH 7.78, indicating L. elliptica were working harder to calcify in seawater undersaturated in aragonite (Ω(Ar = 0.71, the CaCO(3 polymorph of which their shells are comprised. The different response variables were influenced by pH in differing ways, highlighting the importance of assessing a variety of factors to determine the likely impact of pH change. In combination, the results indicate a negative effect of ocean acidification on whole-organism functioning of L. elliptica over relatively short terms (weeks-months that may be energetically difficult to maintain over longer time periods. Importantly, however, the observed changes in L. elliptica CHS gene expression provides evidence for biological control over the shell formation process, which may enable some degree of adaptation or acclimation to future ocean acidification scenarios.

  4. Seasonal and diurnal variability of the meteor flux at high latitudes observed using PFISR

    Science.gov (United States)

    Sparks, J. J.; Janches, D.; Nicolls, M. J.; Heinselman, C. J.

    2009-05-01

    We report in this and a companion paper [Fentzke, J.T., Janches, D., Sparks, J.J., 2008. Latitudinal and seasonal variability of the micrometeor input function: A study using model predictions and observations from Arecibo and PFISR. Journal of Atmospheric and Solar-Terrestrial Physics, this issue, doi:10.1016/j.jastp.2008.07.015] a complete seasonal study of the micrometeor input function (MIF) at high latitudes using meteor head-echo radar observations performed with the Poker Flat Incoherent Scatter Radar (PFISR). This flux is responsible for a number of atmospheric phenomena; for example, it could be the source of meteoric smoke that is thought to act as condensation nuclei in the formation of ice particles in the polar mesosphere. The observations presented here were performed for full 24-h periods near the summer and winter solstices and spring and autumn equinoxes, times at which the seasonal variability of the MIF is predicted to be large at high latitudes [Janches, D., Heinselman, C.J., Chau, J.L., Chandran, A., Woodman, R., 2006. Modeling of the micrometeor input function in the upper atmosphere observed by High Power and Large Aperture Radars, JGR, 11, A07317, doi:10.1029/2006JA011628]. Precise altitude and radar instantaneous line-of-sight (radial) Doppler velocity information are obtained for each of the hundreds of events detected every day. We show that meteor rates, altitude, and radial velocity distributions have a large seasonal dependence. This seasonal variability can be explained by a change in the relative location of the meteoroid sources with respect to the observer. Our results show that the meteor flux into the upper atmosphere is strongly anisotropic and its characteristics must be accounted for when including this flux into models attempting to explain related aeronomical phenomena. In addition, the measured acceleration and received signal strength distribution do not seem to depend on season; which may suggest that these observed

  5. New insights from a nonlocal generalization of the Farley-Buneman instability problem at high latitudes

    Directory of Open Access Journals (Sweden)

    J. Drexler

    2002-12-01

    Full Text Available When their growth rate becomes too small, the E-region Farley-Buneman and gradient-drift instabilities switch from absolute to convective. The neutral density gradient is what gives the instabilities their convective character. At high latitudes, the orientation of the neutral density gradient is close to the geomagnetic field direction. We show that this causes the wave-vector component along the geomagnetic field to increase with time. This in turn leads to wave stabilization, since the increase goes hand-in-hand with an increase in parallel electric fields that ultimately short-circuits the irregularities. We show that from an equivalent point of view, the increase in the parallel wave vector is accompanied by a large upward group velocity that limits the time during which the perturbations are allowed to grow before escaping the unstable region. The goal of the present work is to develop a systematic formalism to account for the propagation and the growth/decay of high-latitude Farley-Buneman and gradient-drift waves through vertical convective effects. We note that our new formalism shies away from a plane wave decomposition along the magnetic field direction. A study of the solution to the resulting nonlinear aspect angle equation shows that, for a host of initial conditions, jump conditions are often triggered in the parallel wave-vector (defined here as the vertical derivative of the phase. When these jump conditions occur, the waves turn into strongly damped ion-acoustic modes, and their evolution is quickly terminated. We have limited this first study to Farley-Buneman modes and to a flow direction parallel to the electron E × B drift. Our initial findings indicate that, irrespective of whether or not a jump in aspect angle is triggered by initial conditions, the largest amplitude modes are usually near the ion-acoustic speed of the medium (although Doppler shifted by the ion motion, unless the growth rates are small, in which case

  6. Southern high latitude dune fields on Mars: Morphology, aeolian inactivity, and climate change

    Science.gov (United States)

    Fenton, L.K.; Hayward, R.K.

    2010-01-01

    In a study area spanning the martian surface poleward of 50?? S., 1190 dune fields have been identified, mapped, and categorized based on dune field morphology. Dune fields in the study area span ??? 116400km2, leading to a global dune field coverage estimate of ???904000km2, far less than that found on Earth. Based on distinct morphological features, the dune fields were grouped into six different classes that vary in interpreted aeolian activity level from potentially active to relatively inactive and eroding. The six dune field classes occur in specific latitude zones, with a sequence of reduced activity and degradation progressing poleward. In particular, the first signs of stabilization appear at ???60?? S., which broadly corresponds to the edge of high concentrations of water-equivalent hydrogen content (observed by the Neutron Spectrometer) that have been interpreted as ground ice. This near-surface ground ice likely acts to reduce sand availability in the present climate state on Mars, stabilizing high latitude dunes and allowing erosional processes to change their morphology. As a result, climatic changes in the content of near-surface ground ice are likely to influence the level of dune activity. Spatial variation of dune field classes with longitude is significant, suggesting that local conditions play a major role in determining dune field activity level. Dune fields on the south polar layered terrain, for example, appear either potentially active or inactive, indicating that at least two generations of dune building have occurred on this surface. Many dune fields show signs of degradation mixed with crisp-brinked dunes, also suggesting that more than one generation of dune building has occurred since they originally formed. Dune fields superposed on early and late Amazonian surfaces provide potential upper age limits of ???100My on the south polar layered deposits and ???3Ga elsewhere at high latitudes. No craters are present on any identifiable dune

  7. High-latitude poynting flux from combined Iridium and SuperDARN data

    Directory of Open Access Journals (Sweden)

    C. L. Waters

    2004-09-01

    Full Text Available Field-aligned currents convey stress between the magnetosphere and ionosphere, and the associated low altitude magnetic and electric fields reflect the flow of electromagnetic energy to the polar ionosphere. We introduce a new technique to measure the global distribution of high latitude Poynting flux, S||, by combining electric field estimates from the Super Dual Auroral Radar Network (SuperDARN with magnetic perturbations derived using magnetometer data from the Iridium satellite constellation. Spherical harmonic methods are used to merge the data sets and calculate S|| for any magnetic local time (MLT from the pole to 60° magnetic latitude (MLAT. The effective spatial resolutions are 2° MLAT, 2h MLT, and the time resolution is about one hour due to the telemetry rate of the Iridium magnetometer data. The technique allows for the assessment of high-latitude net S|| and its spatial distribution on one hour time scales with two key advantages: (1 it yields the net S|| including the contribution of neutral winds; and (2 the results are obtained without recourse to estimates of ionosphere conductivity. We present two examples, 23 November 1999, 14:00-15:00 UT, and 11 March 2000, 16:00-17:00 UT, to test the accuracy of the technique and to illustrate the distributions of S|| that it gives. Comparisons with in-situ S|| estimates from DMSP satellites show agreement to a few mW/m2 and in the locations of S|| enhancements to within the technique's resolution. The total electromagnetic energy flux was 50GW for these events. At auroral latitudes, S|| tends to maximize in the morning and afternoon in regions less than 5° in MLAT by two hours in MLT having S||=10 to 20mW/m2 and total power up to 10GW. The power poleward of the Region 1 currents is about one

  8. Climate Change Impacts on Flow and Suspended Sediment Yield in Headwaters of High-Latitude Regions—A Case Study in China’s Far Northeast

    Directory of Open Access Journals (Sweden)

    Yuyan Zhou

    2017-12-01

    Full Text Available Climate change is expected to have stronger effects on water resources in higher latitude regions. Despite intensive research on possible hydrological responses in those regions to a warmer environment, our knowledge on erosion and sediment yield induced by the climate change in high-latitude headwaters is still limited. In this study, we estimated suspended sediment yields from 2021 to 2050 in a typical headwater area of far Northeast China to elucidate potential impacts of future climate change on surface runoff and erosion in higher latitude regions. We first parameterized the Soil and Water Assessment Tool (SWAT using historical measurements to estimate runoff from the river basin. The model performed well in both the calibration (2006–2011 and the validation (2012–2014 periods, with an R2 of 0.85 and 0.88 and a Nash-Sutcliffe Efficiency (NSE of 0.7 and 0.73, respectively. We also utilized historical measurements on sediment yields from the period 2006–2014 to develop a runoff-sediment yield rating curve, and the rating curve obtained an excellent goodness of fit (R2 = 0.91, p < 0.001. We then applied the calibrated SWAT model to two climate change projections, also known as Representative Concentration Pathways (RCP4.5 and RCP8.5, for the period from 2021 to 2050 to obtain future runoff estimates. These runoff estimates were then used to predict future sediment yield by using the developed runoff-sediment yield rating curve. Our study found a significant increase of annual sediment yield (p < 0.05 for both climate change projections (RCP4.5 = 237%; RCP8.5 = 133% in this, China’s high-latitude region. The increases of sediment yield were prevalent in summer and autumn, varying from 102–299% between the two RCPs scenarios. Precipitation was the dominated factor that determined the variation of runoff and sediment yield. A warming climate could bring more snowmelt-induced spring runoff and longer rainy days in autumn, hence leading

  9. Responses of CO2 Fluxes to Arctic Browning Events in a Range of High Latitude, Shrub-Dominated Ecosystems

    Science.gov (United States)

    Phoenix, G. K.; Treharne, R.; Emberson, L.; Tømmervik, H. A.; Bjerke, J. W.

    2017-12-01

    impacts of different event drivers of arctic browning on the main ecosystem CO2 fluxes at a range of sites. These insights provide an important step towards incorporating extreme events into our understanding of how ecosystem CO2 balance at high latitudes will respond to continuing climate change.

  10. Influence of the solar flares in March 2012 on the conductivity profile of the high-latitude lower ionosphere

    Directory of Open Access Journals (Sweden)

    Lebed O. M.

    2016-03-01

    Full Text Available The ionospheric D-layer affects the electromagnetic waves propagated in the Earth – ionosphere waveguide. It is known that the propagation velocity of atmospherics – electromagnetic pulses from lightning discharge depends on the conductivity profile of the lower ionosphere. In this paper the authors have considered the influence of solar flares in March 2012 on the propagation velocity of atmospherics and thus the state of the high-latitude lower ionosphere. The possibility to estimate the conductivity profiles of the daytime ionosphere under disturbed and undisturbed geomagnetic conditions using the measurements of the propagation velocity of atmospherics along the high-latitude path has been demonstrated

  11. An accelerating high-latitude jet in Earth’s core

    Science.gov (United States)

    Livermore, Philip W.; Hollerbach, Rainer; Finlay, Christopher C.

    2017-01-01

    Observations of the change in Earth’s magnetic field--the secular variation--provide information about the motion of liquid metal within the core that is responsible for the magnetic field’s generation. High-resolution observations from the European Space Agency’s Swarm satellite mission show intense field change at high latitude, localized in a distinctive circular daisy-chain configuration centred on the north geographic pole. Here we show that this feature can be explained by a localized, non-axisymmetric, westward jet of 420 km width on the tangent cylinder, the cylinder of fluid within the core that is aligned with the rotation axis and tangent to the solid inner core. We find that the jet has increased in magnitude by a factor of three over the period 2000-2016 to about 40 km yr-1, and is now much stronger than typical large-scale flows inferred for the core. We suggest that the current accelerating phase may be part of a longer-term fluctuation of the jet causing both eastward and westward movement of magnetic features over historical periods, and may contribute to recent changes in torsional-wave activity and the rotation direction of the inner core.

  12. Metal stress consequences on frost hardiness of plants at northern high latitudes: a review and hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Taulavuori, Kari [Department of Biology, University of Oulu, PO Box 3000, FIN-90014, Oulu (Finland)]. E-mail: kari.taulavuori@oulu.fi; Prasad, M.N.V. [Department of Plant Sciences, University of Hyderabad, Hyderabad 500 046, Andhra Pradesh (India); Taulavuori, Erja [Department of Biology, University of Oulu, PO Box 3000, FIN-90014, Oulu (Finland); Laine, Kari [Department of Biology, University of Oulu, PO Box 3000, FIN-90014, Oulu (Finland)

    2005-05-01

    This paper reviews the potential of trace/heavy metal-induced stress to reduce plant frost hardiness at northern high latitudes. The scientific questions are first outlined prior to a brief summary of heavy metal tolerance. The concepts of plant capacity and survival adaptation were used to formulate a hypothesis, according to which heavy metal stress may reduce plant frost hardiness for the following reasons: (1) Heavy metals change membrane properties through impaired resource acquisition and subsequent diminution of the cryoprotectant pool. (2) Heavy metals change membrane properties directly through oxidative stress, i.e. an increase of active oxygen species. (3) The involved co-stress may further increase oxidative stress. (4) The risk of frost injury increases due to membrane alterations. An opposite perspective was also discussed: could metal stress result in enhanced plant frost hardiness? This phenomenon could be based on the metabolism (i.e. glutathione, polyamines, proline, heat shock proteins) underlying a possible general adaptation syndrome of stress (GAS). As a result of the review it was suggested that metal-induced stress seems to reduce rather than increase plant frost hardiness. - Metal stress may reduce plant frost hardiness.

  13. High-latitude propagation studies using a meridional chain of LF/MF/HF receivers

    Directory of Open Access Journals (Sweden)

    J. LaBelle

    2004-04-01

    Full Text Available For over a decade, Dartmouth College has operated programmable radio receivers at multiple high-latitude sites covering the frequency range 100-5000kHz with about a 1-s resolution. Besides detecting radio emissions of auroral origin, these receivers record characteristics of the ionospheric propagation of natural and man-made signals, documenting well-known effects, such as the diurnal variation in the propagation characteristics of short and long waves, and also revealing more subtle effects. For example, at auroral zone sites in equinoctial conditions, the amplitudes of distant transmissions on MF/HF frequencies are often enhanced by a few dB just before they fade away at dawn. The polarization and/or direction of the arrival of ionospherically propagating signals in the lower HF range (3-5MHz show a consistent variation between pre-midnight, post-midnight, and pre-dawn conditions. As is well known, magnetic storms and substorms dramatically affect ionospheric propagation; data from multiple stations spanning the invariant latitude range 67-79° reveal spatial patterns of propagation characteristics associated with magnetic storms and substorms. For example, in the hours preceding many isolated substorms, favorable propagation conditions occur at progressively lower latitudes as a function of time preceding the substorm onset. For some of these effects, explanations follow readily from elementary ionospheric physics, but understanding others requires further investigation.Key words. Magnetospheric physics (annual phenomena – Radio science (ionosphere propagation; radio-wave propagation6

  14. Diffuse galactic gamma rays at intermediate and high latitudes. I. Constraints on the ISM properties

    International Nuclear Information System (INIS)

    Cholis, Ilias; Tavakoli, Maryam; Evoli, Carmelo; Ullio, Piero; Maccione, Luca

    2012-01-01

    We study the high latitude (|b| > 10°) diffuse γ-ray emission in the Galaxy in light of the recently published data from the Fermi collaboration at energies between 100 MeV and 100 GeV. The unprecedented accuracy in these measurements allows to probe and constrain the properties of sources and propagation of cosmic rays (CRs) in the Galaxy, as well as confirming conventional assumptions made on the interstellar medium (ISM). Using the publicly available DRAGON code, that has been shown to reproduce local measurements of CRs, we study assumptions made in the literature on atomic (HI) and molecular hydrogen (H2) gas distributions in the ISM, and non spatially uniform models of diffusion in the Galaxy. By performing a combined analysis of CR and γ-ray spectra, we derive constraints on the properties of the ISM gas distribution and the vertical scale height of galactic CR diffusion, which may have implications also on indirect Dark Matter detection. We also discuss some of the possible interpretations of the break at high rigidity in CR protons and helium spectra, recently observed by PAMELA and their impact on γ-rays

  15. Epithermal Neutron Evidence for a Diurnal Surface Hydration Process in the Moon's High Latitudes

    Science.gov (United States)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Parsons, A.; Starr, R. D.; Evans, L. G.; Sanin, A.; Litvak, M.; Livengood, T.

    2015-01-01

    We report evidence from epithermal neutron flux observations that show that the Moon's high latitude surfaces are being actively hydrated, dehydrated and rehydrated in a diurnal cycle. The near-surface hydration is indicated by an enhanced suppression of the lunar epithermal neutron leakage flux on the dayside of the dawn terminator on poleward-facing slopes (PFS). At 0600 to 0800 local-time, hydrogen concentrations within the upper 1 meter of PFS are observed to be maximized relative to equivalent equator-facing slopes (EFS). During the lunar day surface hydrogen concentrations diminish towards dusk and then rebuild overnight. Surface hydration is determined by differential comparison of the averaged EFS to PFS epithermal neutron count rates above +/- 75 deg latitude. At dawn the contrast bias towards PFS is consistent with at least 15 to 25 parts-per-million (ppm) hydrogen that dissipates by dusk. We review several lines of evidence derived from temperature and epithermal neutron data by a correlated analysis of observations from the Lunar Reconnaissance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) that were mapped as a function of lunar local-time, Lunar Observing Laser Altimeter (LOLA) topography and Diviner (DLRE) surface temperature.

  16. Rapid sympatry explains greater color pattern divergence in high latitude birds.

    Science.gov (United States)

    Martin, Paul R; Montgomerie, Robert; Lougheed, Stephen C

    2010-02-01

    Latitudinal variation in patterns of evolution has fascinated biologists for over a century, but our understanding of latitudinal differences in evolutionary processes-such as selection and drift-remains limited. Here, we test for, and find, accelerated evolution of color patterns in bird taxa that breed at higher latitudes compared with those breeding in the tropics, analyzing data from seven diverse avian families. Most important, we show that the extent of overlap of species' breeding ranges (degree of sympatry) explains the elevated rate of color pattern evolution at higher latitudes. We suggest that the dynamic shifts in breeding ranges that accompanied climatic changes during the last 3 million years (Milankovitch Oscillations) resulted in more rapid and more frequent secondary contact at high latitudes. We argue that sympatry among diverging clades causes greater divergence of color traits in birds at higher latitudes through sexual, social, or ecological character displacement that accelerate rates of evolution, and through the selective elimination of weakly differentiated lineages that hybridize and fuse in sympatry (differential fusion).

  17. Metal stress consequences on frost hardiness of plants at northern high latitudes: a review and hypothesis

    International Nuclear Information System (INIS)

    Taulavuori, Kari; Prasad, M.N.V.; Taulavuori, Erja; Laine, Kari

    2005-01-01

    This paper reviews the potential of trace/heavy metal-induced stress to reduce plant frost hardiness at northern high latitudes. The scientific questions are first outlined prior to a brief summary of heavy metal tolerance. The concepts of plant capacity and survival adaptation were used to formulate a hypothesis, according to which heavy metal stress may reduce plant frost hardiness for the following reasons: (1) Heavy metals change membrane properties through impaired resource acquisition and subsequent diminution of the cryoprotectant pool. (2) Heavy metals change membrane properties directly through oxidative stress, i.e. an increase of active oxygen species. (3) The involved co-stress may further increase oxidative stress. (4) The risk of frost injury increases due to membrane alterations. An opposite perspective was also discussed: could metal stress result in enhanced plant frost hardiness? This phenomenon could be based on the metabolism (i.e. glutathione, polyamines, proline, heat shock proteins) underlying a possible general adaptation syndrome of stress (GAS). As a result of the review it was suggested that metal-induced stress seems to reduce rather than increase plant frost hardiness. - Metal stress may reduce plant frost hardiness

  18. High latitude stratospheric electrical measurements in fair and foul weather under various solar conditions

    International Nuclear Information System (INIS)

    Holzworth, R.H.

    1981-01-01

    Stratospheric electric field and conductivity measurements during a wide variety of weather and solar conditions are presented. These data are all from high latitude sites in the months of either April or August. The vector electric field is determined by orthogonal double probes connected through high impedance inputs to differential electrometers. The direct conductivity measurement involves determining the relaxation time constant of the medium after refloating a shorted pair of separated probes. Vertical electric field data from several balloon flights with average duration of 18 h at ceiling in fair weather are shown to be well modeled by a simple exponential altitude dependent equation. Examples of solar flare and magnetospheric effects on stratospheric electric fields are shown. Data collected over electrified clouds and thunderstorms are presented along with a discussion of the thunderstorm related electric currents. Lightning stroke signatures in the stratosphere during a large thunderstorm are identified in the electric field data. Current surges through the stratosphere due to DC currents as well as the sferic are calculated. In nearly 1000 h of balloon data no direct solar influence is identified in these data except during major flares. (author)

  19. Genome wide transcriptional profiling of acclimation to photoperiod in high-latitude accessions of Arabidopsis thaliana.

    Science.gov (United States)

    Lewandowska-Sabat, Anna Monika; Winge, Per; Fjellheim, Siri; Dørum, Guro; Bones, Atle Magnar; Rognli, Odd Arne

    2012-04-01

    Three Arabidopsis thaliana accessions originating from the northernmost boundary of the species distribution in Norway (59-68°N) were used to study global wide transcriptional responses to 16 and 24 h photoperiods during flower initiation. Significant analysis of microarrays (SAM), analyses of statistically overrepresented gene ontologies (GOstat) and gene set enrichment analyses (GSEA) were used to identify candidate genes and genetic pathways underlying phenotypic adaptations of accessions to different photoperiods. Statistical analyses identified 732 and 258 differentially expressed genes between accessions in 16 and 24 h photoperiod, respectively. Among significantly expressed genes, ethylene mediated signaling pathway was significantly overrepresented in 16 h photoperiod, while genes involved in response to auxin stimulus were found to be significantly overrepresented in 24 h photoperiod. Several gene sets were found to be differentially expressed among accessions, e.g. cold acclimation, dehydration response, phytochrome signaling, vernalization response and circadian clock regulated flowering time genes. These results revealed several candidate genes and pathways likely involved in transcriptional control of photoperiodic response. In particular, ethylene and auxin signaling pathway may represent candidate genes contributing to local adaptation of high-latitude accessions of A. thaliana. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. High-latitude propagation studies using a meridional chain of LF/MF/HF receivers

    Directory of Open Access Journals (Sweden)

    J. LaBelle

    2004-04-01

    Full Text Available For over a decade, Dartmouth College has operated programmable radio receivers at multiple high-latitude sites covering the frequency range 100-5000kHz with about a 1-s resolution. Besides detecting radio emissions of auroral origin, these receivers record characteristics of the ionospheric propagation of natural and man-made signals, documenting well-known effects, such as the diurnal variation in the propagation characteristics of short and long waves, and also revealing more subtle effects. For example, at auroral zone sites in equinoctial conditions, the amplitudes of distant transmissions on MF/HF frequencies are often enhanced by a few dB just before they fade away at dawn. The polarization and/or direction of the arrival of ionospherically propagating signals in the lower HF range (3-5MHz show a consistent variation between pre-midnight, post-midnight, and pre-dawn conditions. As is well known, magnetic storms and substorms dramatically affect ionospheric propagation; data from multiple stations spanning the invariant latitude range 67-79° reveal spatial patterns of propagation characteristics associated with magnetic storms and substorms. For example, in the hours preceding many isolated substorms, favorable propagation conditions occur at progressively lower latitudes as a function of time preceding the substorm onset. For some of these effects, explanations follow readily from elementary ionospheric physics, but understanding others requires further investigation.

    Key words. Magnetospheric physics (annual phenomena – Radio science (ionosphere propagation; radio-wave propagation6

  1. Elevated temperatures and bleaching on a high latitude coral reef: the 1988 Bermuda event

    Science.gov (United States)

    Cook, Clayton B.; Logan, Alan; Ward, Jack; Luckhurst, Brian; Berg, Carl J.

    1990-03-01

    Sea temperatures were normal in Bermuda during 1987, when Bermuda escaped the episodes of coral bleaching which were prevalent throughout the Caribbean region. Survey transecs in 1988 on 4 6 m reefs located on the rim margin and on a lagoonal patch reef revealed bleaching only of zoanthids between May and July. Transect and tow surveys in August and September revealed bleaching of several coral species; Millepora alcicornis on rim reefs was the most extensively affected. The frequency of bleaching in this species, Montastrea annularis and perhaps Diploria labyrinthiformis was significantly higher on outer reefs than on inshore reefs. This bleaching period coincided with the longest period of elevated sea temperatures in Bermuda in 38 years (28.9 30.9°C inshore, >28° offshore). By December, when temperatures had returned to normal, bleaching of seleractinians continued, but bleaching of M. alcicornis on the outer reefs was greatly reduced. Our observations suggest that corals which normally experience wide temperature ranges are less sensitive to thermal stress, and that high-latitude reef corals are sensitive to elevated temperatures which are within the normal thermal range of corals at lower latitudes.

  2. Hydrologic Regime Changes in a High-Latitude Glacierized Watershed under Future Climate Conditions

    Directory of Open Access Journals (Sweden)

    Melissa M. Valentin

    2018-01-01

    Full Text Available A calibrated conceptual glacio-hydrological monthly water balance model (MWBMglacier was used to evaluate future changes in water partitioning in a high-latitude glacierized watershed in Southcentral Alaska under future climate conditions. The MWBMglacier was previously calibrated and evaluated against streamflow measurements, literature values of glacier mass balance change, and satellite-based observations of snow covered area, evapotranspiration, and total water storage. Output from five global climate models representing two future climate scenarios (RCP 4.5 and RCP 8.5 was used with the previously calibrated parameters to drive the MWBMglacier at 2 km spatial resolution. Relative to the historical period 1949–2009, precipitation will increase and air temperature in the mountains will be above freezing for an additional two months per year by mid-century which significantly impacts snow/rain partitioning and the generation of meltwater from snow and glaciers. Analysis of the period 1949–2099 reveals that numerous hydrologic regime shifts already occurred or are projected to occur in the study area including glacier accumulation area, snow covered area, and forest vulnerability. By the end of the century, Copper River discharge is projected to increase by 48%, driven by 21% more precipitation and 53% more glacial melt water (RCP 8.5 relative to the historical period (1949–2009.

  3. A note on chaotic vs. stochastic behavior of the high-latitude ionospheric plasma density fluctuations

    Directory of Open Access Journals (Sweden)

    A. W. Wernik

    1996-01-01

    Full Text Available Four data sets of density fluctuations measured in-situ by the Dynamics Explorer (DE 2 were analyzed in an attempt to study chaotic nature of the high-latitude turbulence and, in this way to complement the conventional spectral analysis. It has been found that the probability distribution function of density differences is far from Gaussian and similar to that observed in the intermittent fluid or MBD turbulence. This indicates that ionospheric density fluctuations are not stochastic but coherent to some extent. Wayland's and surrogate data tests for determinism in a time series of density data allowed us to differentiate between regions of intense shear and moderate shear. We observe that in the region of strong field aligned currents (FAC and intense shear, or along the convection in the collisional regime, ionospheric turbulence behaves like a random noise with non-Gaussian statistics implying that the underlying physical process is nondeterministic. On the other hand, when FACs are weak, and shear is moderate or observations made in the inertial regime the turbulence is chaotic. The attractor dimension is lowest (1.9 for 'old' convected irregularities. The dimension 3.2 is found for turbulence in the inertial regime and considerably smaller (2.4 in the collisional regime. It is suggested that a high dimension in the inertial regime may be caused by a complicated velocity structure in the shear instability region.

  4. Nonlinear evolution of the Kelvin-Helmholtz instability in the high-latitude ionosphere

    International Nuclear Information System (INIS)

    Keskinen, M.J.; Mitchell, H.G.; Fedder, J.A.; Satyanarayana, P.; Zalesak, S.T.; Huba, J.D.

    1988-01-01

    The nonlinear evolution of the electrostatic Kelvin-Helmholtz instability, resulting from velocity-sheared plasma flows perpendicular to an ambient magnetic field, has been studied including Pedersen conductivity effects (i.e., ion-neutral collisions). We find that the Kelvin-Helmholtz instability develops in a distinctly different manner in the nonlinear regime with Pedersen coupling than without it. Specifically, we show that Pedersen coupling effects, in conjunction with a neutral wind and density gradient, (1) result in an increased time scale for Kelvin-Helmholtz instability wave growth, (2) inhibit Kelvin-Helmholtz vortex formation, (3) lead to nonlinear structures which can be described as ''breaking waves,'' and (4) generate, in the nonlinear regime, small scale turbulence by means of secondary instabilities growing on the primary waves. We have also computed the spatial power spectra of the electrostatic potential and density fluctuations and find that there is a tendency for the potential and density spectra to become shallower when Pedersen conductivity effects are included. We compare our results with recent Dynamics Explorer satellite observations of velocity-sheared plasma flows in the high-latitude, near-Earth space plasma and find good agreement. copyright American Geophysical Union 1988

  5. Diffuse galactic gamma rays at intermediate and high latitudes. Pt. 1. Constraints on the ISM properties

    Energy Technology Data Exchange (ETDEWEB)

    Cholis, Ilias; Tavakoli, Maryam; Ullio, Piero [SISSA, Trieste (Italy); INFN, Trieste (Italy); Evoli, Carmelo [SISSA, Trieste (Italy); Chinese Academy of Sciences, Beijing (China). National Astronomical Observatories; Maccione, Luca [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-06-15

    We study the high latitude (vertical stroke b vertical stroke >10 ) diffuse {gamma}-ray emission in the Galaxy in light of the recently published data from the Fermi collaboration at energies between 100 MeV and 100 GeV. The unprecedented accuracy in these measurements allows to probe and constrain the properties of sources and propagation of cosmic rays (CRs) in the Galaxy, as well as confirming conventional assumptions made on the interstellar medium (ISM). Using the publicly available DRAGON code, that has been shown to reproduce local measurements of CRs, we study assumptions made in the literature on HI and H2 gas distributions in the ISM, and non spatially uniform models of diffusion in the Galaxy. By performing a combined analysis of CR and {gamma}-ray spectra, we derive constraints on the properties of the ISM gas distribution and the vertical scale height of galactic CR diffusion, which may have implications also on indirect Dark Matter detection. We also discuss some of the possible interpretations of the break at {proportional_to}230 GeV in CR protons and helium spectra, recently observed by PAMELA and their impact on {gamma}-rays. (orig.)

  6. High-latitude Pc 1 bursts arising in the dayside boundary layer region

    International Nuclear Information System (INIS)

    Hansen, H.J.; Fraser, B.J.; Menk, F.W.; Hu, Y.D.; Newell, P.T.; Meng, C.I.; Morris, R.J.

    1992-01-01

    Dayside Pc 1 geomagnetic pulsation bursts have been studied using a three-station array of induction magnetometers located at high latitudes. Associated magnetic variations in the form of solitary pulses often lead the Pc 1 bursts by 1 to 2 min. These pulses are typically associated with riometer absorption events and consequently the precipitation of fluxes of keV electrons. The Pc 1 bursts are interpreted as resulting from ion cyclotron waves which have propagated to the ionosphere from the equatorial boundary layer region. The associated boundary layer ions, identified by the low-altitude DMSP F7 satellite, range between 1 and 5 keV in energy. These particles are considered to be the most likely free energy source for the ion cyclotron waves. It is considered that such resonant ions enter the magnetosphere via the cleft and cusp because this enables a prenoon time of occurrence of most of the observations to be explained. Measured time delays of 40 to 120 s between the associated riometer absorption and Pc 2 bursts are consistent with an ion cyclotron wave generations region located in the equatorial magnetosphere

  7. Lake trout otolith chronologies as multidecadal indicators of high-latitude freshwater ecosystems

    Science.gov (United States)

    Black, B.A.; Von Biela, V.R.; Zimmerman, C.E.; Brown, Randy J.

    2013-01-01

    High-latitude ecosystems are among the most vulnerable to long-term climate change, yet continuous, multidecadal indicators by which to gauge effects on biology are scarce, especially in freshwater environments. To address this issue, dendrochronology (tree-ring analysis) techniques were applied to growth-increment widths in otoliths from lake trout (Salvelinus namaycush) from the Chandler Lake system, Alaska (68.23°N, 152.70°W). All otoliths were collected in 1987 and exhibited highly synchronous patterns in growth-increment width. Increments were dated, the widths were measured, and age-related growth declines were removed using standard dendrochronology techniques. The detrended time series were averaged to generate an annually resolved chronology, which continuously spanned 1964–1984. The chronology positively and linearly correlated with August air temperature over the 22-year interval (p otolith chronologies could be used to examine responses between freshwater ecosystems and environmental variability across a range of temporal and spatial scales.

  8. Towards understanding the electrodynamics of the 3-dimensional high-latitude ionosphere: present and future

    Directory of Open Access Journals (Sweden)

    O. Amm

    2008-12-01

    Full Text Available Traditionally, due to observational constraints, ionospheric modelling and data analysis techniques have been devised either in one dimension (e.g. along a single radar beam, or in two dimensions (e.g. over a network of magnetometers. With new upcoming missions like the Swarm ionospheric multi-satellite project, or the EISCAT 3-D project, the time has come to take into account variations in all three dimensions simultaneously, as they occur in the real ionosphere. The link between ionospheric electrodynamics and the neutral atmosphere circulation which has gained increasing interest in the recent years also intrinsically requires a truly 3-dimensional (3-D description. In this paper, we identify five major science questions that need to be addressed by 3-D ionospheric modelling and data analysis. We briefly review what proceedings in the young field of 3-D ionospheric electrodynamics have been made in the past to address these selected question, and we outline how these issues can be addressed in the future with additional observations and/or improved data analysis and simulation techniques. Throughout the paper, we limit the discussion to high-latitude and mesoscale ionospheric electrodynamics, and to directly data-driven (not statistical data analysis.

  9. The influence of conductivities consistent with field-aligned currents on high-latitude convection patterns

    International Nuclear Information System (INIS)

    Blomberg, L.G.; Marklund, G.T.

    1988-02-01

    The influence on the high-latitude ionospheric convection of conductivities associated with upward field-aligned currents is investigated. Potential patterns are calculated from a given distribution of field-aligned currents and a conductivity model. The resulting patterns are shown to be modified considerably by including a coupling term between the conductivity and the field-aligned current in the conductivity model. The clockwise rotation of the entire potential pattern is reduced when the conductivity enhancement coincides with the regions of upward field-aligned current. Also, the electric field within these regions turns out to be rather insensitive to change in the magnitude of the current. In regions of downward current or when the current-dependent conductivity is excluded there is on the other hand an almost linear relationship between current and electric field. Although the particles producing the conductivity enhancement may not be the same as those carrying the major part of the field-aligned current it is clear from observations that there is a positive correlation between upward current conductivity. Therefore, the simple relationship used in this study is believed to reflect rather well the principal features of the current-conductivity coupling, which is of im- portance to the modelling of ionospheric electrodynamics. (With 26 refs.) (authors)

  10. Advances in Understanding the Role of Frozen Precipitation in High Latitude Hydrology

    Science.gov (United States)

    L'Ecuyer, T. S.; Wood, N.; Smalley, M.; McIlhattan, E.; Kulie, M.

    2017-12-01

    Satellite-based millimeter wavelength radar observations provide a unique perspective on the global character of frozen precipitation that has been difficult to detect using conventional spaceborne precipitation sensors. This presentation will describe the methodology underpinning the ten-year CloudSat global snowfall product and discuss the results of a number of complementary approaches that have been adopted to quantify its uncertainties. These datasets are shedding new light on the distribution, character, and impacts of frozen precipitation on high latitude hydrology. Inferred regional snowfall accumulations, for example, provide valuable constraints on projected changes in precipitation and mass balance on the Antarctic ice sheet in climate models. When placed in the broader context of complementary observations from other A-Train sensors, instantaneous snowfall estimates also hint at the large-scale processes that influence snow formation including air-sea interactions associated with cold-air outbreaks, lake-effect snows, and orographic enhancement. Simultaneous CloudSat and CALIPSO observations further emphasize the important role snowfall plays in the lifetime of super-cooled liquid containing clouds in the Arctic and highlight a model deficiency with important implications for surface energy and mass balance on the Greenland ice sheet.

  11. Seasonal migration to high latitudes results in major reproductive benefits in an insect.

    Science.gov (United States)

    Chapman, Jason W; Bell, James R; Burgin, Laura E; Reynolds, Donald R; Pettersson, Lars B; Hill, Jane K; Bonsall, Michael B; Thomas, Jeremy A

    2012-09-11

    Little is known of the population dynamics of long-range insect migrants, and it has been suggested that the annual journeys of billions of nonhardy insects to exploit temperate zones during summer represent a sink from which future generations seldom return (the "Pied Piper" effect). We combine data from entomological radars and ground-based light traps to show that annual migrations are highly adaptive in the noctuid moth Autographa gamma (silver Y), a major agricultural pest. We estimate that 10-240 million immigrants reach the United Kingdom each spring, but that summer breeding results in a fourfold increase in the abundance of the subsequent generation of adults, all of which emigrate southward in the fall. Trajectory simulations show that 80% of emigrants will reach regions suitable for winter breeding in the Mediterranean Basin, for which our population dynamics model predicts a winter carrying capacity only 20% of that of northern Europe during the summer. We conclude not only that poleward insect migrations in spring result in major population increases, but also that the persistence of such species is dependent on summer breeding in high-latitude regions, which requires a fundamental change in our understanding of insect migration.

  12. GPS scintillations and total electron content climatology in the southern low, middle and high latitude regions

    Directory of Open Access Journals (Sweden)

    Luca Spogli

    2013-06-01

    Full Text Available In recent years, several groups have installed high-frequency sampling receivers in the southern middle and high latitude regions, to monitor ionospheric scintillations and the total electron content (TEC changes. Taking advantage of the archive of continuous and systematic observations of the ionosphere on L-band by means of signals from the Global Positioning System (GPS, we present the first attempt at ionospheric scintillation and TEC mapping from Latin America to Antarctica. The climatology of the area considered is derived through Ground-Based Scintillation Climatology, a method that can identify ionospheric sectors in which scintillations are more likely to occur. This study also introduces the novel ionospheric scintillation 'hot-spot' analysis. This analysis first identifies the crucial areas of the ionosphere in terms of enhanced probability of scintillation occurrence, and then it studies the seasonal variation of the main scintillation and TEC-related parameters. The results produced by this sophisticated analysis give significant indications of the spatial/ temporal recurrences of plasma irregularities, which contributes to the extending of current knowledge of the mechanisms that cause scintillations, and consequently to the development of efficient tools to forecast space-weather-related ionospheric events.

  13. Diffuse galactic gamma rays at intermediate and high latitudes. Pt. 1. Constraints on the ISM properties

    International Nuclear Information System (INIS)

    Cholis, Ilias; Tavakoli, Maryam; Ullio, Piero; Evoli, Carmelo

    2011-06-01

    We study the high latitude (vertical stroke b vertical stroke >10 ) diffuse γ-ray emission in the Galaxy in light of the recently published data from the Fermi collaboration at energies between 100 MeV and 100 GeV. The unprecedented accuracy in these measurements allows to probe and constrain the properties of sources and propagation of cosmic rays (CRs) in the Galaxy, as well as confirming conventional assumptions made on the interstellar medium (ISM). Using the publicly available DRAGON code, that has been shown to reproduce local measurements of CRs, we study assumptions made in the literature on HI and H2 gas distributions in the ISM, and non spatially uniform models of diffusion in the Galaxy. By performing a combined analysis of CR and γ-ray spectra, we derive constraints on the properties of the ISM gas distribution and the vertical scale height of galactic CR diffusion, which may have implications also on indirect Dark Matter detection. We also discuss some of the possible interpretations of the break at ∝230 GeV in CR protons and helium spectra, recently observed by PAMELA and their impact on γ-rays. (orig.)

  14. Operational amplifiers

    CERN Document Server

    Dostal, Jiri

    1993-01-01

    This book provides the reader with the practical knowledge necessary to select and use operational amplifier devices. It presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits.Provides the reader with practical knowledge necessary to select and use operational amplifier devices. Presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits

  15. Operation Amplifier

    NARCIS (Netherlands)

    Tetsuya, Saito; Nauta, Bram

    2011-01-01

    PROBLEM TO BE SOLVED: To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. SOLUTION: The operation amplifier comprises: a

  16. Operation Amplifier

    NARCIS (Netherlands)

    Tetsuya, S.; Nauta, Bram

    2007-01-01

    PROBLEM TO BE SOLVED: To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. ; SOLUTION: The operation amplifier comprises: a

  17. Amplifier Distortion

    Science.gov (United States)

    Keeports, David

    2006-12-01

    By definition, a high fidelity amplifier's instantaneous output voltage is directly proportional to its instantaneous input voltage. While high fidelity is generally valued in the amplification of recorded music, nonlinearity, also known as distortion, is desirable in the amplification of some musical instruments. In particular, guitar amplifiers exploit nonlinearity to increase both the harmonic content and sustain of a guitar's sound. I will discuss how both modifications in sound result from saturation of triode tubes and transistors. Additionally, I will describe the difference in the symmetry of saturation curves for transistors and tubes and the reason why tube guitar amplifiers are generally considered to be superior to solid-state amplifiers. Finally, I will discuss attempts to use solid-state electronics to replicate the sound of tube amplifiers.

  18. Annotated bibliography on soil erosion and erosion control in subarctic and high-latitude regions of North America.

    Science.gov (United States)

    C.W. Slaughter; J.W. Aldrich

    1989-01-01

    This annotated bibliography emphasizes the physical processes of upland soil erosion, prediction of soil erosion and sediment yield, and erosion control. The bibliography is divided into two sections: (1) references specific to Alaska, the Arctic and subarctic, and similar high-latitude settings; and (2) references relevant to understanding erosion, sediment production...

  19. GPS phase scintillation at high latitudes during geomagnetic storms of 7–17 March 2012 – Part 2: Interhemispheric comparison

    Directory of Open Access Journals (Sweden)

    P. Prikryl

    2015-06-01

    Full Text Available During the ascending phase of solar cycle 24, a series of interplanetary coronal mass ejections (ICMEs in the period 7–17 March 2012 caused geomagnetic storms that strongly affected high-latitude ionosphere in the Northern and Southern Hemisphere. GPS phase scintillation was observed at northern and southern high latitudes by arrays of GPS ionospheric scintillation and TEC monitors (GISTMs and geodetic-quality GPS receivers sampling at 1 Hz. Mapped as a function of magnetic latitude and magnetic local time (MLT, the scintillation was observed in the ionospheric cusp, the tongue of ionization fragmented into patches, sun-aligned arcs in the polar cap, and nightside auroral oval and subauroral latitudes. Complementing a companion paper (Prikryl et al., 2015a that focuses on the high-latitude ionospheric response to variable solar wind in the North American sector, interhemispheric comparison reveals commonalities as well as differences and asymmetries between the northern and southern high latitudes, as a consequence of the coupling between the solar wind and magnetosphere. The interhemispheric asymmetries are caused by the dawn–dusk component of the interplanetary magnetic field controlling the MLT of the cusp entry of the storm-enhanced density plasma into the polar cap and the orientation relative to the noon–midnight meridian of the tongue of ionization.

  20. Dayside magnetic ULF power at high latitudes: A possible long-term proxy for the solar wind velocity?

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    1999-01-01

    We examine the occurrence of dayside high-latitude magnetic variations with periods between 2 and 10 min statistically using data from around 20 magnetic stations in Greenland, Scandinavia, and Canada, many of which have been in operation for a full solar cycle. We derive time series of the power...

  1. Impact of high-latitude energy input on the mid- and low-latitude ionosphere and thermosphere

    Science.gov (United States)

    Lu, G.; Sheng, C.

    2017-12-01

    High-latitude energy input has a profound impact on the ionosphere and thermosphere especially during geomagnetic storms. Intense auroral particle precipitation ionizes neutral gases and modifies ionospheric conductivity; collisions between neutrals and fast-moving ions accelerate the neutral winds and produce Joule frictional heating; and the excess Joule and particle heating causes atmospheric upwelling and changes neutral composition due to the rising of the heavier, molecular-rich air. In addition, impulsive Joule heating launches large-scale gravity waves that propagate equatorward toward middle and low latitudes and even into the opposite hemisphere, altering the mean global circulation of the thermosphere. Furthermore, high-latitude electric field can also directly penetrate to lower latitudes under rapidly changing external conditions, causing prompt ionospheric variations in the mid- and low-latitude regions. To study the effects of high-latitude energy input, we apply the different convection and auroral precipitation patterns based on both empirical models and the AMIE outputs. We investigate how the mid- and low-latitude regions respond to the different specifications of high-latitude energy input. The main purpose of the study is to delineate the various dynamical, electrodynamical, and chemical processes and to determine their relative importance in the resulting ionospheric and thermospheric properties at mid and low latitudes.

  2. Comparison of high-latitude thermospheric meridionalwinds II: combined FPI, radar and model Climatologies

    Directory of Open Access Journals (Sweden)

    E. M. Griffin

    2004-03-01

    Full Text Available The climatological behaviour of the thermospheric meridional wind above Kiruna, Sweden (67.4°N, 20.4°E has been investigated for seasonal and solar cycle dependence using six different techniques, comprising both model and experimental sources. Model output from both the empirical Horizontal Wind Model (HWM (Hedin et al., 1988 and the numerical Coupled Thermosphere and Ionosphere Model (CTIM are compared to the measured behaviour at Kiruna, as a single site example. The empirical International Reference Ionosphere (IRI model is used as input to an implementation of servo theory, to provide another climatology combining empirical input with a theoretical framework. The experimental techniques have been introduced in a companion paper in this issue and provide climatologies from direct measurements, using Fabry-Perot Interferometers (FPI, together with 2 separate techniques applied to the European Incoherent Scatter radar (EISCAT database to derive neutral winds. One of these techniques uses the same implementation of servo theory as has been used with the IRI model. Detailed comparisons for each season and solar activity category allow for conclusions to be drawn as to the major influences on the climatological behaviour of the wind at this latitude. Comparison of the incoherent scatter radar (ISR derived neutral winds with FPI, empirical model and numerical model winds is important to our understanding and judgement of the validity of the techniques used to derive thermospheric wind databases. The comparisons also test model performance and indicate possible reasons for differences found between the models. In turn, the conclusions point to possible improvements in their formulation. In particular it is found that the empirical models are over-reliant on mid-latitude data in their formulation, and fail to provide accurate estimates of the winds at high-latitudes.

    Key words. Meteorology and atmospheric dynamics (thermospheric dynamics

  3. Probe experiment characterizing 30-MHz radio wave scatter in the high-latitude ionosphere

    Science.gov (United States)

    Nishino, M.; Gorokhov, N.; Tanaka, Y.; Yamagishi, H.; Hansen, T.

    1999-07-01

    A probe experiment, consisting of radio links between a common 30-MHz transmitter located at Murmansk, Russia, and two receivers used as the imaging riometer (two-dimensional 64 multiple-beam antenna) located at Ny Ålesund, Svalbard, and Tjornes, Iceland, was carried out to characterize wave scatter in the high-latitude ionosphere. They are nearly aligned with and perpendicular to the geomagnetic meridian, respectively. In experiments conducted in March-April 1994, the 30-MHz probe signals were identified at nighttime more frequently than during the day at both receiver stations during periods of increased geomagnetic activity near the path midpoints, indicating that a relationship between the propagation path and the location of the auroral oval controls signal identification. For the nighttime propagation paths within or crossing through the auroral oval, duty cycles of the probe signals were roughly correlated with increases in geomagnetic activity. Their arrival directions showed a spread with a dominant power on the low elevation and a normal distribution in azimuth. These results indicate that the probe signals are characterized as nonmeteoric "auroral E" scatter caused by irregular, large-scale profiles of electron density enhancements at the lower edge of the ionosphere. However, on 2 days of weak geomagnetic activity, strong probe signals with bursty behavior were identified by an extremely high duty cycle (˜98%) for the nighttime meridian path only, and their arrival directions showed an isotropic spread in azimuth. Such nonmeteoric probe signals are characterized as "coherent" scatter caused by small-scale (˜5 m) field-aligned irregularities in electron density in the E region ionosphere, related to "sporadic E" occurrence.

  4. Seasonal patterns in the nocturnal distributionand behavior of the mesopelagic fish Maurolicus muelleri at high latitudes

    KAUST Repository

    Prihartato, Perdana

    2015-02-17

    Acoustic scattering layers (SL) ascribed to pearlside Maurolicus muelleri were studied in Masfjorden, Norway, using upward-looking echo sounders cabled to shore for continuous long-term measurements. The acoustic studies were accompanied by continuous measurements of surface light and supplemented with intermittent field campaigns. From autumn to spring, young M. muelleri formed an SL in the upper ∼75 to 150 m in the daytime, characterized by migration to near-surface water near dusk, subsequent \\'midnight sinking\\', followed by a dawn ascent before a return to the daytime habitat. Light levels were ∼1 order of magnitude lower during the dawn ascent than for ascent in the afternoon, with the latter terminating before fish reached upper layers on ∼1/3 of the nights from late November to mid-April. Adults showed less tendency of migration during autumn and winter, until the SLs of young and adults merged in late spring, and thereafter displayed coherent migration behavior. The midnight sinking became progressively deeper from autumn to winter but was strongly reduced from mid-May when the darkest nocturnal light intensity (PAR) at the surface was above 10-3 μmol m-2 s-1. The pearlside took on schooling in upper waters during the even lighter nights in early June, with minimum light of ∼5 × 10-3 to 10-1 μmol m-2 s-1 at the surface. Nocturnal schooling ceased in early July, and midnight sinking reappeared in mid-August. We suggest that the strong variation in nocturnal light intensity at high latitudes provides changing trade-offs between visual foraging and avoiding predators and hence varying time budgets for feeding in the upper, productive layers.

  5. Dawn song in natural and artificial continuous day: Light pollution affects songbirds at high latitudes.

    Science.gov (United States)

    Derryberry, Elizabeth P

    2017-10-01

    In Focus: Da Silva, A., & Kempenaers, B. (2017). Singing from North to South: Latitudinal variation in timing of dawn singing under natural and artificial light conditions. Journal of Animal Ecology, 86, 1286-1297. doi: 10.1111/1365-2656.12739 Satellite images of the world at night show bright dots connected by glowing lines crisscrossing the globe. As these connect-the-dots become brighter and expand into more and more remote regions, much of the flora and fauna of the world are experiencing evolutionarily unprecedented levels of light at night. Light cues are essential to most physiological and behavioural processes, and so the need to measure the effects of light pollution on these processes is critical. In this issue, Da Silva and Kempenaers take on this task using an important reproductive behaviour in songbirds-dawn song. The geographic, temporal and taxonomic breadth of sampling in this study allows for a close examination of a potentially complex interaction between light pollution and natural variation in the behaviour of dawn singing across latitude, season and species. Their extensive dataset highlights complexity in how songbirds respond to light pollution. Although light pollution has a strong effect on the timing of dawn song, not all songbirds respond the same way to light pollution, and the effects of light pollution vary with changes in natural light levels. Early dawn singers show more flexibility in the timing of dawn song across the season and across latitudes than late dawn singers, and also appear less affected by light pollution at high latitudes than are late dawn singers. These findings suggest that not all songbirds are responding to artificial continuous daylight as they do to natural continuous daylight, highlighting the general need to measure the fitness effects of light pollution. © 2017 The Author. Journal of Animal Ecology © 2017 British Ecological Society.

  6. On the Evolutionary State of High-Latitude Variable V534 Lyr

    Science.gov (United States)

    Klochkova, V. G.; Sendzikas, E. G.; Chentsov, E. L.

    2018-01-01

    Based on the high spectral resolution monitoring conducted at the 6-m BTA telescope, we study the optical spectrum of the high-latitude variable V534 Lyr. Heliocentric radial velocities V r corresponding to the positions of all metal absorption components, as well as the Na I D and H α lines were measured during all the observational sets. The analysis of the velocity field examining the lines of various nature revealed a low-amplitude variability of V r based on the lines with a high excitation potential, which are formed in deep layers of the stellar atmosphere, and allowed to estimate the systemic velocity of V sys ≈ -125 kms-1 ( V lsr ≈ -105 kms-1). The distance estimate of d ≈ 6 kpc for the star leads to its absolute magnitude of M_V ≈ - 5_ \\cdot ^m 3, what corresponds to the spectral classification. The previously undetected spectral phenomenon was revealed for this star: at certain times a splitting of the profiles of low-excited absorptions is observed, reaching Δ V r = 20-50 kms-1. A combination of the parameters: reduced metallicity [Met/H]⊙ = -0.28, high nitrogen abundance [N/Fe] = +1.10, large spatial velocity, high luminosity, a strong variability of the emission-absorption profiles of HI lines, splitting of metal absorptions at different times of observations and the variability of the velocity field in the atmosphere allow to classify V534 Lyr as a pulsating star in the thick disk of our Galaxy.

  7. Benthic foraminifera as indicators of pollution in high latitude marine environments

    Science.gov (United States)

    Dijkstra, N.; Junttila, J.; Husum, K.; Carroll, J.; Klitgaard-Kristensen, D.; Hald, M.

    2012-04-01

    An increasing number of studies demonstrate the potential of benthic foraminifera to characterize ecological status. However, the use of benthic foraminifera as bio-indicators has previously not been tested in high latitudes. This research contributes to the development of foraminifera as a bio-monitoring technique for the Arctic region, as industrial activities in this region will increase in the coming years. Surface sediments (0-1 cm) from sites close to gas fields in the SW Barents Sea were studied. In addition, to elucidate the range from less to very affected, surface sediments from the harbor of the town of Hammerfest (70° N) were studied. At least 300 living benthic foraminifera from the size fraction 100 µm-1 mm were counted and identified at species level. Pollution levels (heavy metals and persistent organic pollutants) and sediment properties (grainsize and TOC) were also analyzed. Pollution levels at the sea floor in the SW Barents Sea are of background to good level (level I-II) according to the definitions by the Water Framework Directorate (WFD). Benthic foraminiferal assemblages are influenced by natural environmental parameters such as water mass properties, water depth, nutrient availability, bottom current strength, and grain size. Surface sediments from the Hammerfest harbor are of moderate environmental status (WFD level II-III) based on heavy metal concentrations and of bad environmental status (WFD IV-V) based on persistent organic pollutant concentrations. Opportunistic benthic foraminifera are dominating the assemblages. The most polluted areas in the harbor are barren for foraminifera or have high amounts of deformed shells. In both environments the foraminiferal diversity of the samples, does not correspond to expected environmental status based on the pollution levels of the sediments. Environmental status classes, based on benthic foraminifera instead of macrofauna, would allow rapid analyses of the environmental impact of pollution.

  8. CUTLASS/IMAGE observations of high-latitude convection features during substorms

    Directory of Open Access Journals (Sweden)

    T. K. Yeoman

    1997-06-01

    Full Text Available The CUTLASS Finland HF radar has been operational since February 1995. The radar frequently observes backscatter during the midnight sector from a latitude range 70–75° geographic, latitudes often associated with the polar cap. These intervals of backscatter occur during intervals of substorm activity, predominantly in periods of relatively quiet magnetospheric activity, with Kp during the interval under study being 2- and ΣKp for the day being only 8-. During August 1995 the radar ran in a high time resolution mode, allowing measurements of line-of-sight convection velocities along a single beam with a temporal resolution of 14 s, and measurement of a full spatial scan of line-of-sight convection velocities every four minutes. Data from such scans reveal the radar to be measuring return flow convection during the interval of substorm activity. For three intervals during the period under study, a reduction in the spatial extent of radar backscatter occurred. This is a consequence of D region HF absorption and its limited extent in the present study is probably a consequence of the high latitude of the substorm activity, with the electrojet centre lying between 67° and 71° geomagnetic latitude. The high time resolution beam of the radar additionally demonstrates that the convection is highly time dependent. Pulses of equatorward flow exceeding ~600 m s–1 are observed with a duration of ~5 min and a repetition period of ~8 min. Their spatial extent in the CUTLASS field of view was 400–500 km in longitude, and 300–400 km in latitude. Each pulse of enhanced equatorward flow was preceded by an interval of suppressed flow and enhanced ionospheric Hall conductance. The transient features are interpreted as being due to ionospheric current vortices associated with field aligned current pairs. The relationship between these observations and substorm phenomena in the magnetotail is discussed.

  9. Global Hybrid Simulations of The Magnetopause Boundary Layers In Low- and High-latitude Magnetic Reconnections

    Science.gov (United States)

    Lin, Y.; Perez, J. D.

    A 2-D global hybrid simulation is carried out to study the structure of the dayside mag- netopause in the noon-midnight meridian plane associated with magnetic reconnec- tion. In the simulation the bow shock, magnetosheath, and magnetopause are formed self-consistently by supersonic solar wind passing the geomagnetic field. The recon- nection events at high- and low-latitudes are simulated for various IMF conditions. The following results will be presented. (1) Large-amplitude rotational discontinuities and Alfvén waves are present in the quasi-steady reconnection layer. (2) The rotational discontinuity possesses an electron sense, or right-hand polarization in the magnetic field as the discontinuity forms from the X line. Later, however, the rotational dis- continuity tends to evolve to a structure with a smallest field rotational angle and thus may reverse its sense of the field rotation. The Walén relation is tested for elec- tron and ion flows in the magnetopause rotational discontinuities with left-hand and right-hand polarizations. (3) The structure of the magnetopause discontinuities and that of the accelerated/decelerated flows are modified significantly by the presence of the local magnetosheath flow. (4) Field-aligned currents are generated in the magne- topause rotational discontinuities. Part of the magnetopause currents propagate with Alfvén waves along the field lines into the polar ionosphere, contributing to the field- aligned current system in the high latitudes. The generation of the parallel currents under northward and southward IMF conditions is investigated. (5) Finally, typical ion velocity distributions will be shown at various locations across the magnetopause northward and southward of the X lines. The ion distributions associated with single or multiple X lines will be discussed.

  10. High-Latitude Wintertime Urban Pollution: Particulate Matter Composition and Temporal Trends in Fairbanks, Alaska

    Science.gov (United States)

    Simpson, W. R.; Nattinger, K.; Hooper, M.

    2017-12-01

    High latitude cities often experience severe pollution episodes during wintertime exacerbated by thermal inversion trapping of pollutant emissions. Fairbanks, Alaska is an extreme example of this problem, currently being classified by the US Environmental Protection Agency (EPA) as a "serious" non-attainment area for fine particulate matter (PM2.5). For this reason, we have studied the chemical composition of PM2.5 at multiple EPA monitoring sites in the non-attainment area from 2006 to the present. The chemical composition is dominated by organic carbon with lesser amounts of black carbon and inorganic ionic species such as ammonium, sulfate, and nitrate. We find large spatial differences in composition and amount of PM2.5 that indicate a different mix of sources in residential areas as compared to the city center. Specifically, the difference in composition is consistent with increased wood smoke source in the residential areas. The extent to which organic matter could be secondary (formed through conversion of emitted gases) is also an area needing study. Ammonium sulfate is responsible for about a fifth to a quarter of the particles mass during the darkest months, possibly indicating a non-photochemical source of sulfate, but the chemical mechanism for this possible transformation is unclear. Therefore, we quantified the relationship between particulate sulfate concentrations and gas-phase sulfur dioxide concentrations along with particulate metals and inferred particulate acidity with the hopes that these data can assist in elucidation of the mechanism of particulate sulfate formation. We also analyze temporal trends in PM2.5 composition in an attempt to understand how the problem is changing over time and find most trends are small despite regulatory changes. Improving mechanistic understanding of particulate formation under cold and dark conditions could assist in reducing air-quality-related health effects.

  11. The High-Latitude Ionosphere and Its Effects on Radio Propagation

    Science.gov (United States)

    Moses, Ronald W., Jr.

    2004-05-01

    The ionosphere is indeed the place where Earth and space come together. Correspondingly, the ionosphere is subject to the details and complexities of both Earth and space. If one is to develop a logical understanding of even a limited portion of the ionosphere, that knowledge will be constructed on a foundation of many facts of nature. Awareness of those facts will in turn be supported by a vast historical array of scientific effort to ascertain the fundamentals of Earth and space that combine to form the ionosphere as we know it. Fortunately for us, R. D. Hunsucker and J. K. Hargreaves have written a book that goes from the Earth up and comes from the Sun down to arrive at a remarkably detailed physical description of the ionosphere and its impact on human activities, especially radio-frequency (RF) communications. The High-Latitude Ionosphere and its Effects on Radio Propagation is a bit of a misnomer, because the book covers many more topics than its title suggests. The authors set the stage by developing a detailed picture of the density, temperature, chemical, neutral, and charge states of the atmosphere-ionosphere system. Basic models of the ionization and recombination processes are presented with supporting mathematics and graphical examples. Concepts such as the Chapman production function are introduced and applied, whereby ionizing solar radiation produces electron-ion pairs. One can then grasp how the so-called D, E, and F layers of the ionosphere are related to the ionization of specific molecular species. Along the way, the authors are careful to introduce the extensive nomenclature of ionospheric descriptors. There is a comfortable relationship of prose, mathematics, and graphical material. Reading this book is a pleasure for the scientifically curious mind.

  12. Estimation of surface albedo from NOAA AVHRR data in high latitudes

    Science.gov (United States)

    Laine, Vesa; Heikinheimo, Martti

    1996-05-01

    A method for determining the surface albedo from routine daily NOAA AVHRR data is described and tested for applicability under high latitude conditions in a boreal-sub-arctic region. The test period included all received satellite data from April to October 1994, giving a good coverage of various and changing surface conditions. Albedo values obtained initially for each cloud-free pixel and satellite over-pass were averaged over nine-day periods to include a full cycle of measuring geometries and to obtain an adequate number of cloud-free pixels in the final average images. With the automated image navigation provided by the present receiving system, spatial averaging over a minimum of 24×24 pixel squares was needed to obtain acceptable repeatability of local albedo values. The atmospheric correction was made using a bi-directional atmospheric correction method. In early April, the albedo over the sea in the ice-covered northern Gulf of Bothnia and in the open mountain regions was typically above 60%. Over snow-covered forested areas, the albedo was near 50% in the sub-arctic zone, and near 30% for the central boreal forest-covered surface. The difference in albedo between the northern and southern forested locations in the presence of snow was attributed to the higher biomass density of forests in the south and possibly more snow remaining on trees in the north. For snow-free conditions, forested areas typically showed an albedo in the range 11 13%. Agricultural regions, mixed with minor patches of forest, generally showed an albedo below 15% for conditions of low crop leaf area coverage, but reached as high as 18% under conditions of maximum leaf area coverage in mid-summer. Retrieval of the edge of snow cover in spring and the appearance of newly fallen snow in autumn could readily be carried out using a threshold albedo of 20%.

  13. Analysis of Wind Vorticity and Divergence in the High-latitude Lower Thermosphere: Dependence on the Interplanetary Magnetic Field (IMF

    Directory of Open Access Journals (Sweden)

    Young-Sil Kwak

    2008-12-01

    Full Text Available To better understand the physical processes that control the high-latitude lower thermospheric dynamics, we analyze the divergence and vorticity of the high-latitude neutral wind field in the lower thermosphere during the southern summertime for different IMF conditions. For this study the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEG CM is used. The analysis of the large-scale vorticity and divergence provides basic understanding flow configurations to help elucidate the momentum sources that ultimately determine the total wind field in the lower polar thermosphere and provides insight into the relative strengths of the different sources of momentum responsible for driving winds. The mean neutral wind pattern in the high-latitude lower thermosphere is dominated by rotational flow, imparted primarily through the ion drag force, rather than by divergent flow, imparted primarily through Joule and solar heating. The difference vorticity, obtained by subtracting values with zero IMF from those with non-zero IMF, in the high-latitude lower thermosphere is much larger than the difference divergence for all IMF conditions, indicating that a larger response of the thermospheric wind system to enhancement in the momentum input generating the rotational motion with elevated IMF than the corresponding energy input generating the divergent motion. the difference vorticity in the high-latitude lower thermosphere depends on the direction of the IMF. The difference vorticity for negative and positive B_y shows positive and negative, respectively, at higher magnetic latitudes than -70°. For negative B_z, the difference vorticities have positive in the dusk sector and negative in the dawn sector. The difference vorticities for positive B_z have opposite sign. Negative IMF B_z has a stronger effect on the vorticity than does positive B_z.

  14. Relationships of Periglacial Processes to Habitat Quality and Thermal Environment of Pikas (Lagomorpha, Ochotona) in Alpine and High-Latitude Environments (Invited)

    Science.gov (United States)

    Millar, C. I.; Smith, A. T.; Hik, D. S.

    2009-12-01

    Patterned-ground and related periglacial features such as rock-glaciers and fractured-rock talus are emblematic of cold and dry arctic environments. The freeze-thaw processes that cause these features were first systematically investigated in the pioneering work of Linc Washburn. Unusual internal and autonomous micro-climatic and hydrologic processes of these features, however, are only beginning to be understood. Such features occur also in temperate latitude mountains, often in surprising abundance in regions such as the Great Basin (NV, USA) and San Juan Mtns (CO, USA), where they occur as active as well as relict (neoglacial or Pleistocene) features. Rock-dwelling species of pikas (Ochotona) in temperate North American and Asian mountains and in North American high-latitudes have long been known for their preference for talus habitats. We are investigating geomorphic, climatic, and hydrologic attributes of these periglacial features for their role in habitat quality and thermal environment of pikas. PRISM-modeled and observed climatic conditions from a range of talus types for Ochotona princeps in California and the western Great Basin (USA) indicate that, 1) thermal conditions of intra-talus-matrix in summer are significantly colder than talus-surface temperatures and colder than adjacent slopes and forefield wetlands where pika forage; 2) near-talus-surface locations (where haypiles are situated) are warmer in winter than intra-talus-matrix temperatures; 3) high-quality wetland vegetation in talus forefields is promoted by year-round persistence of outlet springs, seeps, and streams characteristic of active taluses. The importance of snowpack to winter thermal conditions is highlighted from these observations, suggesting a greater sensitivity of habitat in dry temperate regions such as eastern California and Nevada USA to warming winter minimum temperatures than in regions or elevations where snowpacks are more persistent. In regions where warming air

  15. The Effect of Elevated CO2 and Increased Temperature on in Vitro Fertilization Success and Initial Embryonic Development of Single Male:Female Crosses of Broad-Cast Spawning Corals at Mid- and High-Latitude Locations

    Directory of Open Access Journals (Sweden)

    Miriam Schutter

    2015-05-01

    Full Text Available The impact of global climate change on coral reefs is expected to be most profound at the sea surface, where fertilization and embryonic development of broadcast-spawning corals takes place. We examined the effect of increased temperature and elevated CO2 levels on the in vitro fertilization success and initial embryonic development of broadcast-spawning corals using a single male:female cross of three different species from mid- and high-latitude locations: Lyudao, Taiwan (22° N and Kochi, Japan (32° N. Eggs were fertilized under ambient conditions (27 °C and 500 μatm CO2 and under conditions predicted for 2100 (IPCC worst case scenario, 31 °C and 1000 μatm CO2. Fertilization success, abnormal development and early developmental success were determined for each sample. Increased temperature had a more profound influence than elevated CO2. In most cases, near-future warming caused a significant drop in early developmental success as a result of decreased fertilization success and/or increased abnormal development. The embryonic development of the male:female cross of A. hyacinthus from the high-latitude location was more sensitive to the increased temperature (+4 °C than the male:female cross of A. hyacinthus from the mid-latitude location. The response to the elevated CO2 level was small and highly variable, ranging from positive to negative responses. These results suggest that global warming is a more significant and universal stressor than ocean acidification on the early embryonic development of corals from mid- and high-latitude locations.

  16. Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges

    Directory of Open Access Journals (Sweden)

    Annett Bartsch

    2016-11-01

    resolution around 30 m has been shown to be suitable for a range of applications. This implies that the current Landsat-8, as well as Sentinel-2 missions would be adequate as input data. Recent studies have exemplified the value of Synthetic Aperture Radar (SAR in tundra regions. SAR missions may be therefore of added value for large-scale high latitude land cover mapping.

  17. An Automated Approach for Mapping Persistent Ice and Snow Cover over High Latitude Regions

    Directory of Open Access Journals (Sweden)

    David J. Selkowitz

    2015-12-01

    Full Text Available We developed an automated approach for mapping persistent ice and snow cover (glaciers and perennial snowfields from Landsat TM and ETM+ data across a variety of topography, glacier types, and climatic conditions at high latitudes (above ~65°N. Our approach exploits all available Landsat scenes acquired during the late summer (1 August–15 September over a multi-year period and employs an automated cloud masking algorithm optimized for snow and ice covered mountainous environments. Pixels from individual Landsat scenes were classified as snow/ice covered or snow/ice free based on the Normalized Difference Snow Index (NDSI, and pixels consistently identified as snow/ice covered over a five-year period were classified as persistent ice and snow cover. The same NDSI and ratio of snow/ice-covered days to total days thresholds applied consistently across eight study regions resulted in persistent ice and snow cover maps that agreed closely in most areas with glacier area mapped for the Randolph Glacier Inventory (RGI, with a mean accuracy (agreement with the RGI of 0.96, a mean precision (user’s accuracy of the snow/ice cover class of 0.92, a mean recall (producer’s accuracy of the snow/ice cover class of 0.86, and a mean F-score (a measure that considers both precision and recall of 0.88. We also compared results from our approach to glacier area mapped from high spatial resolution imagery at four study regions and found similar results. Accuracy was lowest in regions with substantial areas of debris-covered glacier ice, suggesting that manual editing would still be required in these regions to achieve reasonable results. The similarity of our results to those from the RGI as well as glacier area mapped from high spatial resolution imagery suggests it should be possible to apply this approach across large regions to produce updated 30-m resolution maps of persistent ice and snow cover. In the short term, automated PISC maps can be used to

  18. CUTLASS/IMAGE observations of high-latitude convection features during substorms

    Directory of Open Access Journals (Sweden)

    T. K. Yeoman

    Full Text Available The CUTLASS Finland HF radar has been operational since February 1995. The radar frequently observes backscatter during the midnight sector from a latitude range 70–75° geographic, latitudes often associated with the polar cap. These intervals of backscatter occur during intervals of substorm activity, predominantly in periods of relatively quiet magnetospheric activity, with Kp during the interval under study being 2- and ΣKp for the day being only 8-. During August 1995 the radar ran in a high time resolution mode, allowing measurements of line-of-sight convection velocities along a single beam with a temporal resolution of 14 s, and measurement of a full spatial scan of line-of-sight convection velocities every four minutes. Data from such scans reveal the radar to be measuring return flow convection during the interval of substorm activity. For three intervals during the period under study, a reduction in the spatial extent of radar backscatter occurred. This is a consequence of D region HF absorption and its limited extent in the present study is probably a consequence of the high latitude of the substorm activity, with the electrojet centre lying between 67° and 71° geomagnetic latitude. The high time resolution beam of the radar additionally demonstrates that the convection is highly time dependent. Pulses of equatorward flow exceeding ~600 m s–1 are observed with a duration of ~5 min and a repetition period of ~8 min. Their spatial extent in the CUTLASS field of view was 400–500 km in longitude, and 300–400 km in latitude. Each pulse of enhanced equatorward flow was preceded by an interval of suppressed flow and enhanced ionospheric Hall conductance. The transient features are interpreted as being due to ionospheric current vortices associated with field aligned current pairs. The relationship between these observations and substorm phenomena in the magnetotail is

  19. An automated approach for mapping persistent ice and snow cover over high latitude regions

    Science.gov (United States)

    Selkowitz, David J.; Forster, Richard R.

    2016-01-01

    We developed an automated approach for mapping persistent ice and snow cover (glaciers and perennial snowfields) from Landsat TM and ETM+ data across a variety of topography, glacier types, and climatic conditions at high latitudes (above ~65°N). Our approach exploits all available Landsat scenes acquired during the late summer (1 August–15 September) over a multi-year period and employs an automated cloud masking algorithm optimized for snow and ice covered mountainous environments. Pixels from individual Landsat scenes were classified as snow/ice covered or snow/ice free based on the Normalized Difference Snow Index (NDSI), and pixels consistently identified as snow/ice covered over a five-year period were classified as persistent ice and snow cover. The same NDSI and ratio of snow/ice-covered days to total days thresholds applied consistently across eight study regions resulted in persistent ice and snow cover maps that agreed closely in most areas with glacier area mapped for the Randolph Glacier Inventory (RGI), with a mean accuracy (agreement with the RGI) of 0.96, a mean precision (user’s accuracy of the snow/ice cover class) of 0.92, a mean recall (producer’s accuracy of the snow/ice cover class) of 0.86, and a mean F-score (a measure that considers both precision and recall) of 0.88. We also compared results from our approach to glacier area mapped from high spatial resolution imagery at four study regions and found similar results. Accuracy was lowest in regions with substantial areas of debris-covered glacier ice, suggesting that manual editing would still be required in these regions to achieve reasonable results. The similarity of our results to those from the RGI as well as glacier area mapped from high spatial resolution imagery suggests it should be possible to apply this approach across large regions to produce updated 30-m resolution maps of persistent ice and snow cover. In the short term, automated PISC maps can be used to rapidly

  20. High-latitude electromagnetic and particle energy flux during an event with sustained strongly northward IMF

    Directory of Open Access Journals (Sweden)

    H. Korth

    2005-06-01

    Full Text Available We present a case study of a prolonged interval of strongly northward orientation of the interplanetary magnetic field on 16 July 2000, 16:00-19:00 UT to characterize the energy exchange between the magnetosphere and ionosphere for conditions associated with minimum solar wind-magnetosphere coupling. With reconnection occurring tailward of the cusp under northward IMF conditions, the reconnection dynamo should be separated from the viscous dynamo, presumably driven by the Kelvin-Helmholtz (KH instability. Thus, these conditions are also ideal for evaluating the contribution of a viscous interaction to the coupling process. We derive the two-dimensional distribution of the Poynting vector radial component in the northern sunlit polar ionosphere from magnetic field observations by the constellation of Iridium satellites together with drift meter and magnetometer observations from the Defense Meteorological Satellite Program (DMSP F13 and F15 satellites. The electromagnetic energy flux is then compared with the particle energy flux obtained from auroral images taken by the far-ultraviolet (FUV instrument on the Imager for Magnetopause to Aurora Global Exploration (IMAGE spacecraft. The electromagnetic energy input to the ionosphere of 51 GW calculated from the Iridium/DMSP observations is eight times larger than the 6 GW due to particle precipitation all poleward of 78° MLAT. This result indicates that the energy transport is significant, particularly as it is concentrated in a small region near the magnetic pole, even under conditions traditionally considered to be quiet and is dominated by the electromagnetic flux. We estimate the contributions of the high and mid-latitude dynamos to both the Birkeland currents and electric potentials finding that high-latitude reconnection accounts for 0.8 MA and 45kV while we attribute <0.2MA and ~5kV to an interaction at lower latitudes having the sense of a viscous interaction. Given that these

  1. Statistical properties of Joule heating rate, electric field and conductances at high latitudes

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2009-07-01

    Full Text Available Statistical properties of Joule heating rate, electric field and conductances in the high latitude ionosphere are studied by a unique one-month measurement made by the EISCAT incoherent scatter radar in Tromsø (66.6 cgmlat from 6 March to 6 April 2006. The data are from the same season (close to vernal equinox and from similar sunspot conditions (about 1.5 years before the sunspot minimum providing an excellent set of data to study the MLT and Kp dependence of parameters with high temporal and spatial resolution. All the parameters show a clear MLT variation, which is different for low and high Kp conditions. Our results indicate that the response of morning sector conductances and conductance ratios to increased magnetic activity is stronger than that of the evening sector. The co-location of Pedersen conductance maximum and electric field maximum in the morning sector produces the largest Joule heating rates 03–05 MLT for Kp≥3. In the evening sector, a smaller maximum occurs at 18 MLT. Minimum Joule heating rates in the nightside are statistically observed at 23 MLT, which is the location of the electric Harang discontinuity. An important outcome of the paper are the fitted functions for the Joule heating rate as a function of electric field magnitude, separately for four MLT sectors and two activity levels (Kp<3 and Kp≥3. In addition to the squared electric field, the fit includes a linear term to study the possible anticorrelation or correlation between electric field and conductance. In the midday sector, positive correlation is found as well as in the morning sector for the high activity case. In the midnight and evening sectors, anticorrelation between electric field and conductance is obtained, i.e. high electric fields are associated with low conductances. This is expected to occur in the return current regions adjacent to auroral arcs as a result of ionosphere-magnetosphere coupling, as discussed by Aikio et al. (2004 In

  2. Statistical properties of Joule heating rate, electric field and conductances at high latitudes

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2009-07-01

    Full Text Available Statistical properties of Joule heating rate, electric field and conductances in the high latitude ionosphere are studied by a unique one-month measurement made by the EISCAT incoherent scatter radar in Tromsø (66.6 cgmlat from 6 March to 6 April 2006. The data are from the same season (close to vernal equinox and from similar sunspot conditions (about 1.5 years before the sunspot minimum providing an excellent set of data to study the MLT and Kp dependence of parameters with high temporal and spatial resolution.

    All the parameters show a clear MLT variation, which is different for low and high Kp conditions. Our results indicate that the response of morning sector conductances and conductance ratios to increased magnetic activity is stronger than that of the evening sector. The co-location of Pedersen conductance maximum and electric field maximum in the morning sector produces the largest Joule heating rates 03–05 MLT for Kp≥3. In the evening sector, a smaller maximum occurs at 18 MLT. Minimum Joule heating rates in the nightside are statistically observed at 23 MLT, which is the location of the electric Harang discontinuity.

    An important outcome of the paper are the fitted functions for the Joule heating rate as a function of electric field magnitude, separately for four MLT sectors and two activity levels (Kp<3 and Kp≥3. In addition to the squared electric field, the fit includes a linear term to study the possible anticorrelation or correlation between electric field and conductance. In the midday sector, positive correlation is found as well as in the morning sector for the high activity case. In the midnight and evening sectors, anticorrelation between electric field and conductance is obtained, i.e. high electric fields are associated with low conductances. This is expected to occur in the return current regions adjacent to

  3. Precipitation Mediates the Response of Carbon Cycle to Rising Temperature in the Mid-to-High Latitudes of the Northern Hemisphere.

    Directory of Open Access Journals (Sweden)

    Xin Lin

    Full Text Available Over the past decades, rising air temperature has been accompanied by changes in precipitation. Despite relatively robust literature on the temperature sensitivity of carbon cycle at continental to global scales, less is known about the way this sensitivity is affected by precipitation. In this study we investigate how precipitation mediates the response of the carbon cycle to warming over the mid-to-high latitudes in the Northern Hemisphere (north of 30 °N. Based on atmospheric CO2 observations at Point Barrow (BRW in Alaska, satellite-derived NDVI (a proxy of vegetation productivity, and temperature and precipitation data, we analyzed the responses of carbon cycle to temperature change in wet and dry years (with precipitation above or below the multiyear average. The results suggest that, over the past three decades, the net seasonal atmospheric CO2 changes at BRW were significantly correlated with temperature in spring and autumn, yet only weakly correlated with temperature and precipitation during the growing season. We further found that responses of the net CO2 changes to warming in spring and autumn vary with precipitation levels, with the absolute temperature sensitivity in wet years roughly twice that in dry years. The analyses of NDVI and climate data also identify higher sensitivity of vegetation growth to warming in wet years for the growing season, spring and summer. The different temperature sensitivities in wet versus dry years probably result from differences in soil moisture and/or nutrient availability, which may enhance (inhibit the responsiveness of carbon assimilation and/or decomposition to warming under high (low precipitation levels. The precipitation-mediated response of the terrestrial carbon cycle to warming reported here emphasizes the important role of precipitation in assessing the temporal variations of carbon budgets in the past as well as in the future. More efforts are required to reduce uncertainty in future

  4. Precipitation Mediates the Response of Carbon Cycle to Rising Temperature in the Mid-to-High Latitudes of the Northern Hemisphere.

    Science.gov (United States)

    Lin, Xin; Li, Junsheng; Luo, Jianwu; Wu, Xiaopu; Tian, Yu; Wang, Wei

    2015-01-01

    Over the past decades, rising air temperature has been accompanied by changes in precipitation. Despite relatively robust literature on the temperature sensitivity of carbon cycle at continental to global scales, less is known about the way this sensitivity is affected by precipitation. In this study we investigate how precipitation mediates the response of the carbon cycle to warming over the mid-to-high latitudes in the Northern Hemisphere (north of 30 °N). Based on atmospheric CO2 observations at Point Barrow (BRW) in Alaska, satellite-derived NDVI (a proxy of vegetation productivity), and temperature and precipitation data, we analyzed the responses of carbon cycle to temperature change in wet and dry years (with precipitation above or below the multiyear average). The results suggest that, over the past three decades, the net seasonal atmospheric CO2 changes at BRW were significantly correlated with temperature in spring and autumn, yet only weakly correlated with temperature and precipitation during the growing season. We further found that responses of the net CO2 changes to warming in spring and autumn vary with precipitation levels, with the absolute temperature sensitivity in wet years roughly twice that in dry years. The analyses of NDVI and climate data also identify higher sensitivity of vegetation growth to warming in wet years for the growing season, spring and summer. The different temperature sensitivities in wet versus dry years probably result from differences in soil moisture and/or nutrient availability, which may enhance (inhibit) the responsiveness of carbon assimilation and/or decomposition to warming under high (low) precipitation levels. The precipitation-mediated response of the terrestrial carbon cycle to warming reported here emphasizes the important role of precipitation in assessing the temporal variations of carbon budgets in the past as well as in the future. More efforts are required to reduce uncertainty in future precipitation

  5. 26-Day Variations of 7 MeV Electrons at high Latitudes and their Implications on the Heliospheric Magnetic Field

    Science.gov (United States)

    Sternal, Oliver; Engelbrecht, Eugene; Burger, Renier; Dunzlaff, Phillip; Ferreira, Stefan; Fichtner, Horst; Heber, Bernd; Kopp, Andreas; Potgieter, Marius; Scherer, Klaus

    The transport of energetic particles in the heliosphere is usually described by the Parker trans-port equation including the physical processes of diffusion, drift, convection and adiabatic energy changes. The Ulysses spacecraft provides unique insight into the flux of MeV electrons at high latitudes. In this contribution, we compare our model results for the Parker HMF model and the Fisk-type Schwadron-Parker HMF model to Ulysses measurements. The elec-tron flux at high latitudes has been used as a remote sensing method to investigate the imprint of a Fisk-type HMF. We show here for the first time that such an imprint exists and deduce a limitation on the Fisk HMF angle β.

  6. Shallow food for deep divers: Dynamic foraging behavior of male sperm whales in a high latitude habitat

    DEFF Research Database (Denmark)

    Teloni, Valeria; Johnson, M.P.; Miller, P.J.O.

    2008-01-01

    Groups of female and immature sperm whales live at low latitudes and show a stereotypical diving and foraging behavior with dives lasting about 45 min to depths of between 400 and 1200 m. In comparison, physically mature male sperm whales migrate to high latitudes where little is known about...... epipelagic prey, is consistent with the hypothesis that male sperm whales may migrate to high latitudes to access a productive, multi-layered foraging habitat....... their foraging behavior and ecology. Here we use acoustic recording tags to study the diving and acoustic behavior of male sperm whales foraging off northern Norway. Sixty-five hours of tag data provide detailed information about the movements and sound repertoire of four male sperm whales performing 83 dives...

  7. Recent Intensified Winter Coldness in the Mid-High Latitudes of Eurasia and Its Relationship with Daily Extreme Low Temperature Variability

    Directory of Open Access Journals (Sweden)

    Chuhan Lu

    2016-01-01

    Full Text Available Observational records in recent decades show a large-scale decrease in the cold-season temperature variance in the Northern Hemisphere midlatitudes under continuous global warming. However, severe low temperature events in winter frequently occurred in midlatitude Eurasia (MEA in the last decade. Here, we define a new coldness intensity (CI index for the near-surface based on the amplitude of daily anomalously cold temperatures in winter to demonstrate the CI of the variability of low temperature extremes. The results show that a sign-consistent mode dominates the CI variation in MEA, with a marked intensification during the last decade via empirical orthogonal function (EOF analysis. This leading mode is significantly related to the frequency of winter extreme events. The associated circulations are characterized by a remarkable anomalous anticyclone in Northwest Eurasia, which induced substantial cold advection in MEA. The widespread intensified CI in MEA is closely linked with strong surface anticyclones and synoptic blocking in the mid-high latitudes (25°E–85°E. Coincidently, positive phase shifts of the first two leading modes of the extratropical circulation, which feature similar blocking-like anomalies in the northwestern Eurasian subarctic, jointly play an important role in the recent frequency of severe winters.

  8. Large-scale traveling ionospheric disturbances observed using GPS receivers over high-latitude and equatorial regions

    Science.gov (United States)

    Idrus, Intan Izafina; Abdullah, Mardina; Hasbi, Alina Marie; Husin, Asnawi; Yatim, Baharuddin

    2013-09-01

    This paper presents the first results of large-scale traveling ionospheric disturbances (LSTIDs) observation during two moderate magnetic storm events on 28 May 2011 (SYM-H∼ -94 nT and Dst∼-80 nT) and 6 August 2011 (SYM-H∼-126 nT and Dst∼-113 nT) over the high-latitude region in Russia, Sweden, Norway, Iceland and Greenland and equatorial region in the Peninsular Malaysia using vertical total electron content (VTEC) from the Global Positioning System (GPS) observations measurement. The propagation of the LSTID signatures in the GPS TEC measurements over Peninsular Malaysia was also investigated using VTEC map. The LSTIDs were found to propagate both equatorward and poleward directions during these two events. The results showed that the LSTIDs propagated faster at high-latitude region with an average phase velocity of 1074.91 m/s than Peninsular Malaysia with an average phase velocity of 604.84 m/s. The LSTIDs at the high-latitude region have average periods of 150 min whereas the ones observed over Peninsular Malaysia have average periods of 115 min. The occurrences of these LSTIDs were also found to be the subsequent effects of substorm activities in the auroral region. To our knowledge, this is the first result of observation of LSTIDs over Peninsular Malaysia during the 24th solar cycle.

  9. Defining parasite biodiversity at high latitudes of North America: new host and geographic records for Onchocerca cervipedis (Nematoda: Onchocercidae in moose and caribou

    Directory of Open Access Journals (Sweden)

    Verocai Guilherme G

    2012-10-01

    Full Text Available Abstract Background Onchocerca cervipedis is a filarioid nematode of cervids reported from Central America to boreal regions of North America. It is found primarily in subcutaneous tissues of the legs, and is more commonly known as ‘legworm’. Blackflies are intermediate hosts and transmit larvae to ungulates when they blood-feed. In this article we report the first records of O. cervipedis from high latitudes of North America and its occurrence in previously unrecognized host subspecies including the Yukon-Alaska moose (Alces americanus gigas and the Grant’s caribou (Rangifer tarandus granti. Methods We examined the subcutaneous connective tissues of the metacarpi and/or metatarsi of 34 moose and one caribou for parasitic lesions. Samples were collected from animals killed by subsistence hunters or animals found dead in the Northwest Territories (NT, Canada and Alaska (AK, USA from 2005 to 2012. Genomic DNA lysate was prepared from nematode fragments collected from two moose. The nd5 region of the mitochondrial DNA was amplified by PCR and sequenced. Results Subcutaneous nodules were found in 12 moose from the NT and AK, and one caribou from AK. Nematodes dissected from the lesions were identified as Onchocerca cervipedis based on morphology of female and male specimens. Histopathological findings in moose included cavitating lesions with multifocal granulomatous cellulitis containing intralesional microfilariae and adults, often necrotic and partially mineralized. Lesions in the caribou included periosteitis with chronic cellulitis, eosinophilic and lymphoplasmacytic infiltrate, and abundant granulation associated with intralesional adult nematodes and larvae. Sequences of the nd5 region (471bp, the first generated for this species, were deposited with Genbank (JN580791 and JN580792. Representative voucher specimens were deposited in the archives of the United States National Parasite Collection. Conclusions The geographic range of O

  10. In Situ Balloon-Borne Ice Particle Imaging in High-Latitude Cirrus

    Science.gov (United States)

    Kuhn, Thomas; Heymsfield, Andrew J.

    2016-09-01

    Cirrus clouds reflect incoming solar radiation, creating a cooling effect. At the same time, these clouds absorb the infrared radiation from the Earth, creating a greenhouse effect. The net effect, crucial for radiative transfer, depends on the cirrus microphysical properties, such as particle size distributions and particle shapes. Knowledge of these cloud properties is also needed for calibrating and validating passive and active remote sensors. Ice particles of sizes below 100 µm are inherently difficult to measure with aircraft-mounted probes due to issues with resolution, sizing, and size-dependent sampling volume. Furthermore, artefacts are produced by shattering of particles on the leading surfaces of the aircraft probes when particles several hundred microns or larger are present. Here, we report on a series of balloon-borne in situ measurements that were carried out at a high-latitude location, Kiruna in northern Sweden (68N 21E). The method used here avoids these issues experienced with the aircraft probes. Furthermore, with a balloon-borne instrument, data are collected as vertical profiles, more useful for calibrating or evaluating remote sensing measurements than data collected along horizontal traverses. Particles are collected on an oil-coated film at a sampling speed given directly by the ascending rate of the balloon, 4 m s-1. The collecting film is advanced uniformly inside the instrument so that an always unused section of the film is exposed to ice particles, which are measured by imaging shortly after sampling. The high optical resolution of about 4 µm together with a pixel resolution of 1.65 µm allows particle detection at sizes of 10 µm and larger. For particles that are 20 µm (12 pixel) in size or larger, the shape can be recognized. The sampling volume, 130 cm3 s-1, is well defined and independent of particle size. With the encountered number concentrations of between 4 and 400 L-1, this required about 90- to 4-s sampling times to

  11. Effects of diffuse radiation on carbon and water fluxes of a high latitude temperate deciduous forest

    Science.gov (United States)

    Wang, Sheng; Ibrom, Andreas; Pilegaard, Kim; Bauer-Gottwein, Peter; Garcia, Monica

    2017-04-01

    Ecosystem carbon and water fluxes are controlled by the interplay of biophysical factors such as solar radiation, temperature and soil moisture. In high latitudes, cloudy days are prevalent with a low amount of solar radiation and a higher proportion of diffuse radiation. For instance, in Denmark 90% of all days are non-clear (fraction of direct radiation radiation, which can modify the coupled photosynthesis and transpiration rates in future. This study aims to evaluate effects of diffuse radiation on the ecosystem carbon and water fluxes in a temperate deciduous forest using long term eddy covariance observations. Eddy covariance records (Gross Primary Productivity: GPP; Evapotranspiration: ET) from 2002 to 2012, field data, Normalized Difference Vegetation Index (NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS), and sap flow data during the period of 2009-2011 at Sorø, a Danish beech forest flux site, were used for analysis. A Cloudiness Index (CI), which is based on actual and potential shortwave incoming radiation and can indicate the proportion of diffuse radiation, was used. First, multiple regression based path analysis was applied to daily and monthly observations to partition direct and indirect effects from CI to GPP and ET. Results indicate diffuse radiation increases the light use efficiency (LUE) with CI being as important as other constraints, e.g. air temperature (Tair), vapor pressure deficit (VPD) and Photosynthetically Active Radiation (PAR), on regulating LUE. An increase of the CI value of 0.1 can increase maximum LUE by about 0.286 gC•MJ-1. Following PAR and LAI, CI has the third largest effects on GPP. For ET, path analysis showed the impact of CI is limited. Further, the CI constraint was added to two physiologically based models for estimating GPP (LUE, Potter et al., 1993) and ET (Priestley-Taylor Jet Propulsion Laboratory, PT-JPL, Fisher et al., 2008) at the daily time scale to assess model improvement. When considering

  12. Energy balance of a sparse coniferous high-latitude forest under winter conditions

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, E.; Bruin, H.A.R. de

    2001-01-01

    and night were about equally long. At low solar elevation angles the forest shades most of the snow surface. Therefore an important part of the radiation never reaches the snow surface but is absorbed by the forest. The sensible heat flux above the forest was fairly large, reaching more than 100 W m(-2......). The measurements of sensible heat flux within and above the forest revealed that the sensible heat flux from the snow surface is negligible and the sensible heat flux above the forest stems from warming of the trees. A simple model for the surface energy balance of a sparse forest is presented. The model treats...

  13. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability.

    Science.gov (United States)

    Turner, John; Lu, Hua; White, Ian; King, John C; Phillips, Tony; Hosking, J Scott; Bracegirdle, Thomas J; Marshall, Gareth J; Mulvaney, Robert; Deb, Pranab

    2016-07-21

    Since the 1950s, research stations on the Antarctic Peninsula have recorded some of the largest increases in near-surface air temperature in the Southern Hemisphere. This warming has contributed to the regional retreat of glaciers, disintegration of floating ice shelves and a 'greening' through the expansion in range of various flora. Several interlinked processes have been suggested as contributing to the warming, including stratospheric ozone depletion, local sea-ice loss, an increase in westerly winds, and changes in the strength and location of low-high-latitude atmospheric teleconnections. Here we use a stacked temperature record to show an absence of regional warming since the late 1990s. The annual mean temperature has decreased at a statistically significant rate, with the most rapid cooling during the Austral summer. Temperatures have decreased as a consequence of a greater frequency of cold, east-to-southeasterly winds, resulting from more cyclonic conditions in the northern Weddell Sea associated with a strengthening mid-latitude jet. These circulation changes have also increased the advection of sea ice towards the east coast of the peninsula, amplifying their effects. Our findings cover only 1% of the Antarctic continent and emphasize that decadal temperature changes in this region are not primarily associated with the drivers of global temperature change but, rather, reflect the extreme natural internal variability of the regional atmospheric circulation.

  14. High Latitude North Atlantic Reservoir Age History: Implications for Age Models, Carbon Cycling, and the Timing of Ocean Circulation Changes

    Science.gov (United States)

    Stern, J.; Lisiecki, L. E.

    2012-12-01

    Unraveling the mechanisms responsible for past climate changes depends on the development of accurate and precise age models for paleoclimate records from widely distributed sites. The high latitude North Atlantic represents an area of particular interest because of its proximity to deepwater formation regions and the well-established importance of ocean circulation changes during millennial-scale and deglacial climate adjustments. However, high latitude North Atlantic time scales for marine cores are hampered by a lack of correlative features between surface ocean and Greenland ice core records between about 23-15 ka. Radiocarbon dating offers a route to circumvent these ambiguous surface proxy correlations. Our study is one of the first to constrain high latitude North Atlantic reservoir ages before 15 ka. We achieve regional-scale significance in our results by including constraints from many more sites than previous studies and a robust statistical treatment of the errors associated with our method. We developed an average high latitude North Atlantic reservoir age history for 0-40 ka by aligning benthic oxygen isotope records from 25 deep (>2000 m) North Atlantic sites and using these alignments to compare separate high (40-65°N; 12 sites) and low (0-40°N; 13 sites) latitude age models based on planktonic radiocarbon dates. This method assumes synchronous benthic oxygen isotopic change within the deep North Atlantic and constant low latitude reservoir ages of 400 yr. We find large average high latitude North Atlantic reservoir ages >1700 yr from 18.5-16.5 ka with similar-to-modern 400 yr reservoir ages for 40-24 ka and 12.5-0 ka. During the Last Glacial Maximum (approximately 23.5-19 ka), we find reservoir ages between 600-1000 yr. These results are significant for the development of accurate North Atlantic age models, provide an important constraint for understanding glacial and deglacial carbon cycling, and suggest that major ocean circulation changes

  15. High-latitude plasma convection during Northward IMF as derived from in-situ magnetospheric Cluster EDI measurements

    Directory of Open Access Journals (Sweden)

    M. Förster

    2008-09-01

    Full Text Available In this study, we investigate statistical, systematic variations of the high-latitude convection cell structure during northward IMF. Using 1-min-averages of Cluster/EDI electron drift observations above the Northern and Southern polar cap areas for six and a half years (February 2001 till July 2007, and mapping the spatially distributed measurements to a common reference plane at ionospheric level in a magnetic latitude/MLT grid, we obtained regular drift patterns according to the various IMF conditions. We focus on the particular conditions during northward IMF, where lobe cells at magnetic latitudes >80° with opposite (sunward convection over the central polar cap are a permanent feature in addition to the main convection cells at lower latitudes. They are due to reconnection processes at the magnetopause boundary poleward of the cusp regions. Mapped EDI data have a particular good coverage within the central part of the polar cap, so that these patterns and their dependence on various solar wind conditions are well verified in a statistical sense. On average, 4-cell convection pattern are shown as regular structures during periods of nearly northward IMF with the tendency of a small shift toward negative clock angles. The positions of these high-latitude convection foci are within 79° to 85° magnetic latitude and 09:00–15:00 MLT. The MLT positions are approximately symmetric ±2 h about 11:30 MLT, i.e. slightly offset from midday toward prenoon hours, while the maximum (minimum potential of the high-latitude cells is at higher magnetic latitudes near their maximum potential difference at ≈−10° to −15° clock angle for the North (South Hemisphere. With increasing clock angle distances from ≈IMFBz+, a gradual transition occurs from the 4-cell pattern via a 3-cell to the common 2-cell convection pattern, in the course of which one of the medium-scale high-latitude dayside cells diminishes and disappears while the

  16. Evolution of Late Pliocene heat transport to high latitudes: Centennial-scale d18O and Mg/Ca-based temperature records from ODP Site 984 (Bjorn Drift).

    Science.gov (United States)

    Bartoli, G.; Sarnthein, M.; Weinelt, M.; Lea, D.; Erlenkeuser, H.

    2003-04-01

    A general increase in surface water salinity and deep ventilation in the Carribean after 4.2 Ma suggests that the final closure of the Panama Isthmus may have led to an increased heat transport to the northern high latitudes (Haug &Tiedemann, 1998). In turn, this enhanced transport may have provided additional moisture for the built-up of the Greenland ice sheet, as reflected by a sudden increase in ice rafting in the northern North Atlantic after 2.7 Ma (Jansen et al. 2000). To test this hypothesis, we compare sea surface and deep-water temperature records at ODP Site 984. Sediments at this site monitor the surface water inflow to the Greenland Sea. In particular, we focus on two time windows i) 3.1 - 3.4 Ma, prior to, and ii) 2.6 - 2.9 Ma, subsequent to the onset of Quaternary-style glaciation. Major objectives are to search for precursor signals for the major climatic change about 2.74 Ma ago and to trace back short-term Dansgaard-Oescher climate instability, in particular, whether it is a feature specific of Late Pleistocene scenarios with the presence of large continental ice sheets. Multicentennial-scale sea surface temperature records based on Mg/Ca and d18O data of the planktonic foraminifer Globigerina bulloides (ODP Site 984) are employed to trace variations in the strength of the Irminger Current. First results suggest that glacial-to-interglacial amplitudes only reached 2 C (8-10 C) in the older interval and increased to 5 C (8-13 C) during the younger time window and thus indeed confirm an enhanced transport of warm water to high latitudes after the final closure of Panama. In contrast, the d18O amplitudes of 1per mil (1.8-2.8 per mil) remain constant over both time windows, either reflecting a parallel increase in salinity transport and/or a significant waxing of ice volume along with the closure.

  17. Tropical and high latitude forcing of enhanced megadroughts in Northern China during the last four terminations

    Science.gov (United States)

    Tang, Changyan; Yang, Huan; Pancost, Richard D.; Griffiths, Michael L.; Xiao, Guoqiao; Dang, Xinyue; Xie, Shucheng

    2017-12-01

    Understanding the origin and evolutionary history of drought events is of great significance, providing critical insight into future hydrological conditions under the changing climate. Due to the scarcity of drought proxies from northern China, the occurrence and underlying mechanisms of the drought events remains enigmatic on longer timescales. Here we utilize microbial lipid proxies to reconstruct significant drought events over the last four ice age terminations in the southernmost section (Weinan section) of the Chinese Loess Plateau. The abundance of archaeal isoprenoid GDGTs (glycerol dialkyl glycerol tetraethers) relative to bacterial branched GDGTs, measured by Ri/b and BIT indices, is diagnostic of enhanced drought conditions. The Ri/b (and BIT) indices are stable and low (high) throughout most of the loess section spanning the last 350 thousand years, but they do exhibit sharp transient peaks (valleys) during the intervals associated with the four ice age terminations, and especially Terminations II and IV. These enhanced drought events are, non-intuitively, associated with a significant decrease in the relative abundance of C4 plants, inferred by a decrease in the carbon isotope composition of bulk organic matter. Although the microbial records show some consistency with the Weinan grain size profiles, indicative of Eastern Asian winter monsoon variability, they also show some apparent difference. In fact, some features of the microbial records exhibit strong similarities with marine sediment planktonic foraminiferal δ13C records from the western Pacific warm pool, which reflect ENSO-like changes during glacial terminations. Therefore, enhanced droughts immediately before the interglacial warming in northern China could be explained, at least in part, by teleconnections in tropical ocean-atmosphere circulation via shifts in the Intertropical Convergence Zone (ITCZ) and associated Jet Stream over the Asian continent. According to our microbial biomarker

  18. Generation of kinetic Alfven waves in the high-latitude near-Earth magnetotail: A global hybrid simulation

    International Nuclear Information System (INIS)

    Guo, Zhifang; Hong, Minghua; Du, Aimin; Lin, Yu; Wang, Xueyi; Wu, Mingyu; Lu, Quanming

    2015-01-01

    In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x,z)=(−10.5R E ,0.3R E ), where R E is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k ⊥ ≫k ∥ are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δE z )/(δB y  )∼ω/k ∥ of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet

  19. Ground-based and satellite observations of high-latitude auroral activity in the dusk sector of the auroral oval

    Directory of Open Access Journals (Sweden)

    K. Kauristie

    2001-09-01

    Full Text Available On 7 December 2000, during 13:30–15:30 UT the MIRACLE all-sky camera at Ny Ålesund observed auroras at high-latitudes (MLAT ~ 76 simultaneously when the Cluster spacecraft were skimming the magnetopause in the same MLT sector (at ~ 16:00–18:00 MLT. The location of the auroras (near the ionospheric convection reversal boundary and the clear correlation between their dynamics and IMF variations suggests their close relationship with R1 currents. Consequently, we can assume that the Cluster spacecraft were making observations in the magnetospheric region associated with the auroras, although exact magnetic conjugacy between the ground-based and satellite observations did not exist. The solar wind variations appeared to control both the behaviour of the auroras and the magnetopause dynamics. Auroral structures were observed at Ny Ålesund especially during periods of negative IMF BZ. In addition, the Cluster spacecraft experienced periodic (T ~ 4 - 6 min encounters between magnetospheric and magnetosheath plasmas. These undulations of the boundary can be interpreted as a consequence of tailward propagating magnetopause surface waves. Simultaneous dusk sector ground-based observations show weak, but discernible magnetic pulsations (Pc 5 and occasionally periodic variations (T ~ 2 - 3 min in the high-latitude auroras. In the dusk sector, Pc 5 activity was stronger and had characteristics that were consistent with a field line resonance type of activity. When IMF BZ stayed positive for a longer period, the auroras were dimmer and the spacecraft stayed at the outer edge of the magnetopause where they observed electromagnetic pulsations with T ~ 1 min. We find these observations interesting especially from the viewpoint of previously presented studies relating poleward-moving high-latitude auroras with pulsation activity and MHD waves propagating at the magnetospheric boundary layers.Key words. Ionosphere (ionosphere-magnetosphere interaction

  20. Importance of post-shock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity

    Directory of Open Access Journals (Sweden)

    K. E. J. Huttunen

    2004-04-01

    Full Text Available Magnetic disturbances in the Earth's magnetosphere can be very different depending on the type of solar wind driver. We have determined the solar wind causes for intense magnetic storms (Dst<-100nT over a 6-year period from the beginning of 1997 to the end of 2002, using observations by the WIND and ACE spacecraft. We have taken into consideration whether the storm was caused by the sheath region or by the following interplanetary coronal mass ejection (ICME. We also divided ICMEs into those having a magnetic cloud structure and those without such a structure. We found that post-shock streams and sheath regions caused the largest fraction of intense magnetic storms. We present four periods of magnetospheric activity in more detail. One of the events was caused by a magnetic cloud (10-11 August 2000 and the rest (13-14 July 2000, 8-9 June 2000 and 17-18 April 2001 by sheath regions and post-shock streams. We have used several magnetic indices to monitor the low- and high-latitude magnetospheric response to these different solar wind structures. Two of the events are interesting examples where at first strong high-latitude activity took place and the low-latitude response followed several hours later. These events demonstrate that low- and high-latitude activity do not always occur concurrently and the level of activity may be very different. According to the examples shown the evolution of the pressure-corrected Dst index was more difficult to model for a sheath region or a post-shock stream driven storm than for a storm caused by a magnetic cloud.

  1. Potential role of vegetation feedback in the climate sensitivity of high-latitude regions: A case study at 6000 years B.P.

    Science.gov (United States)

    Kutzbach, J.-E.; Bartlein, P.J.; Foley, J.A.; Harrison, S.P.; Hosteller, S.W.; Liu, Z.; Prentice, I.C.; Webb, T.

    1996-01-01

    Previous climate model simulations have shown that the configuration of the Earth's orbit during the early to mid-Holocene (approximately 10-5 kyr) can account for the generally warmer-than-present conditions experienced by the high latitudes of the northern hemisphere. New simulations for 6 kyr with two atmospheric/mixed-layer ocean models (Community Climate Model, version 1, CCM1, and Global ENvironmental and Ecological Simulation of Interactive Systems, version 2, GENESIS 2) are presented here and compared with results from two previous simulations with GENESIS 1 that were obtained with and without the albedo feedback due to climate-induced poleward expansion of the boreal forest. The climate model results are summarized in the form of potential vegetation maps obtained with the global BIOME model, which facilitates visual comparisons both among models and with pollen and plant macrofossil data recording shifts of the forest-tundra boundary. A preliminary synthesis shows that the forest limit was shifted 100-200 km north in most sectors. Both CCM1 and GENESIS 2 produced a shift of this magnitude. GENESIS 1 however produced too small a shift, except when the boreal forest albedo feedback was included. The feedback in this case was estimated to have amplified forest expansion by approximately 50%. The forest limit changes also show meridional patterns (greatest expansion in central Siberia and little or none in Alaska and Labrador) which have yet to be reproduced by models. Further progress in understanding of the processes involved in the response of climate and vegetation to orbital forcing will require both the deployment of coupled atmosphere-biosphere-ocean models and the development of more comprehensive observational data sets.

  2. Final Report for High Latitude Climate Modeling: ARM Takes Us Beyond Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Lynn M [Scripps/UCSD; Lubin, Dan [Scripps/UCSD

    2013-06-18

    The main thrust of this project was to devise a method by which the majority of North Slope of Alaska (NSA) meteorological and radiometric data, collected on a daily basis, could be used to evaluate and improve global climate model (GCM) simulations and their parameterizations, particularly for cloud microphysics. Although the standard ARM Program sensors for a less complete suite of instruments for cloud and aerosol studies than the instruments on an intensive field program such as the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC), the advantage they offer lies in the long time base and large volume of data that covers a wide range of meteorological and climatological conditions. The challenge has been devising a method to interpret the NSA data in a practical way, so that a wide variety of meteorological conditions in all seasons can be examined with climate models. If successful, climate modelers would have a robust alternative to the usual “case study” approach (i.e., from intensive field programs only) for testing and evaluating their parameterizations’ performance. Understanding climate change on regional scales requires a broad scientific consideration of anthropogenic influences that goes beyond greenhouse gas emissions to also include aerosol-induced changes in cloud properties. For instance, it is now clear that on small scales, human-induced aerosol plumes can exert microclimatic radiative and hydrologic forcing that rivals that of greenhouse gas–forced warming. This project has made significant scientific progress by investigating what causes successive versions of climate models continue to exhibit errors in cloud amount, cloud microphysical and radiative properties, precipitation, and radiation balance, as compared with observations and, in particular, in Arctic regions. To find out what is going wrong, we have tested the models' cloud representation over the full range of meteorological conditions found in the Arctic using the

  3. Effects of high latitude protected areas on bird communities under rapid climate change.

    Science.gov (United States)

    Santangeli, Andrea; Rajasärkkä, Ari; Lehikoinen, Aleksi

    2017-06-01

    Anthropogenic climate change is rapidly becoming one of the main threats to biodiversity, along with other threats triggered by human-driven land-use change. Species are already responding to climate change by shifting their distributions polewards. This shift may create a spatial mismatch between dynamic species distributions and static protected areas (PAs). As protected areas represent one of the main pillars for preserving biodiversity today and in the future, it is important to assess their contribution in sheltering the biodiversity communities, they were designated to protect. A recent development to investigate climate-driven impacts on biological communities is represented by the community temperature index (CTI). CTI provides a measure of the relative temperature average of a community in a specific assemblage. CTI value will be higher for assemblages dominated by warm species compared with those dominated by cold-dwelling species. We here model changes in the CTI of Finnish bird assemblages, as well as changes in species densities, within and outside of PAs during the past four decades in a large boreal landscape under rapid change. We show that CTI has markedly increased over time across Finland, with this change being similar within and outside PAs and five to seven times slower than the temperature increase. Moreover, CTI has been constantly lower within than outside of PAs, and PAs still support communities, which show colder thermal index than those outside of PAs in the 1970s and 1980s. This result can be explained by the higher relative density of northern species within PAs than outside. Overall, our results provide some, albeit inconclusive, evidence that PAs may play a role in supporting the community of northern species. Results also suggest that communities are, however, shifting rapidly, both inside and outside of PAs, highlighting the need for adjusting conservation measures before it is too late. © 2016 John Wiley & Sons Ltd.

  4. A multi-diagnostic approach to understanding high-latitude plasma transport during the Halloween 2003 storm

    Directory of Open Access Journals (Sweden)

    P. Yin

    2008-09-01

    Full Text Available During the Halloween 2003 storm event, significant electron density enhancements at elevated F-layer altitudes were recorded by the EISCAT and ESR radars in northern Europe between 20:00 and 24:00 UT on 30 October. At the same time, a sequence of optical images from Qaanaaq in northern Greenland captured a series of eastward-propagating polar cap patches. In this paper, an advanced 4-D tomographic method based on the assimilation of global GPS data, coupled to a predictive Kalman filtering technique, has been used to reveal the linkage between these ionospheric structures. The combination of the various data sources has clearly established the time history of this extreme event, in which high-density plasma was uplifted in the dayside ionosphere and convected anti-sunward across the polar cap to European high latitudes at an elevated F-layer. Using this multi instrument approach, we can differentiate between those density structures observed at the ESR which occurred as a result of cross-polar transport and those more likely to have been produced by in-situ soft particle precipitation, a distinction which is supported by the ESR and EISCAT data. The multi-diagnostic approach reported here has the potential significantly to extend our current understanding of high latitude plasma transport and the origin of electron density enhancements.

  5. High-latitude dayside electric fields and currents during strong northward interplanetary magnetic field: Observations and model simulation

    International Nuclear Information System (INIS)

    Clauer, C.R.; Friis-Christensen, E.

    1988-01-01

    On July 23, 1983, the Interplanetary Magnetic Field turned strongly northward, becoming about 22 nT for several hours. Using a combined data set of ionospheric convection measurements made by the Sondre Stromfjord incoherent scatter radar and convection inferred from Greenland magnetometer measurements, we observe the onset of the reconfiguration of the high-latitude ionospheric currents to occur about 3 min following the northward IMF encountering the magnetopause. The large-scale reconfiguration of currents, however, appears to evolve over a period of about 22 min. Using a computer model in which the distribution of field-aligned current in the polar cleft is directly determined by the strength and orientation of the interplanetary electric field, we are able to simulate the time-varying pattern of ionospheric convection, including the onset of high-latitude ''reversed convection'' cells observed to form during the interval of strong northward IMF. These observations and the simulation results indicate that the dayside polar cap electric field observed during strong northward IMF is produced by a direct electrical current coupling with the solar wind. copyright American Geophysical Union 1988

  6. Wind Effects on Flow Patterns and Net Fluxes in Density-Driven High-Latitude Channel Flow

    Science.gov (United States)

    Huntley, Helga S.; Ryan, Patricia

    2018-01-01

    A semianalytic two-dimensional model is used to analyze the interplay between the different forces acting on density-driven flow in high-latitude channels. In particular, the balance between wind stress, viscous forces, baroclinicity, and sea surface slope adjustments under specified flux conditions is examined. Weak winds are found not to change flow patterns appreciably, with minimal (change the flow significantly, especially at the surface, by either strengthening the dual-jet pattern, established without wind, by a factor of 2-3 or initiating return flow at the surface. A nonzero flux does not result in the addition of a uniform velocity throughout the channel cross section, but modifies both along-channel and cross-channel velocities to become more symmetric, dominated by a down-channel jet centered in the domain and counter-clockwise lateral flow. We also consider formulations of the model that allow adjustments of the net flux in response to the wind. Flow patterns change, beyond uniform intensification or weakening, only for strong winds and high Ekman number. Comparisons of the model results to observational data collected in Nares Strait in the Canadian Archipelago in the summer of 2007 show rough agreement, but the model misses the upstream surface jet on the east side of the strait and propagates bathymetric effects too strongly in the vertical for this moderately high eddy viscosity. Nonetheless, the broad strokes of the observed high-latitude flow are reproduced.

  7. The Deep Space Gateway Lightning Mapper (DLM) - Monitoring Global Change and Thunderstorm Processes Through Observations of Earth's High-Latitude Lightning from Cis-Lunar Orbit

    Science.gov (United States)

    Lang, Timothy; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; hide

    2018-01-01

    Function: Monitor global change and thunderstorm processes through observations of Earth's high-latitude lightning. This instrument will combine long-lived sampling of individual thunderstorms with long-term observations of lightning at high latitudes: How is global change affecting thunderstorm patterns; How do high-latitude thunderstorms differ from low-latitude? Why is the Gateway the optimal facility for this instrument / research: Expected DSG (Deep Space Gateway) orbits will provide nearly continuous viewing of the Earth's high latitudes (50 degrees latitude and poleward); These regions are not well covered by existing lightning mappers (e.g., Lightning Imaging Sensor / LIS, or Geostationary Lightning Mapper / GLM); Polar, Molniya, Tundra, etc. Earth orbits have significant drawbacks related to continuous coverage and/or stable FOVs (Fields of View).

  8. Simulated high-latitude soil thermal dynamics during the past four decades

    Science.gov (United States)

    Peng, S.; Ciais, P.; Wang, T.; Gouttevin, I.; McGuire, A.D.; Lawrence, D.; Burke, E.; Chen, X.; Delire, C.; Koven, C.; MacDougall, A.; Rinke, A.; Saito, K.; Zhang, W.; Alkama, R.; Bohn, T. J.; Decharme, B.; Hajima, T.; Ji, D.; Lettenmaier, D.P.; Miller, P.A.; Moore, J.C.; Smith, B.; Sueyoshi, T.

    2015-01-01

    Soil temperature (Ts ) change is a key indicator of the dynamics of permafrost. On seasonal and inter-annual time scales, the variability of Ts determines the active layer depth, which regulates hydrological soil properties and biogeochemical processes. On the multi-decadal scale, increasing T 5 s not only drives permafrost thaw/retreat, but can also trigger and accelerate the decomposition of soil organic carbon. The magnitude of permafrost carbon feedbacks is thus closely linked to the rate of change of soil thermal regimes. In this study, we used nine process-based ecosystem models with permafrost processes, all forced by different observation-based climate forcing during the period 1960–2000, to characterize the warming rate of Ts 10 in permafrost regions. There is a large spread of Ts trends at 20 cm depth across the models, with trend values ranging from 0.010 ± 0.003 to 0.031 ± 0.005 ◦C yr−1 . Most models show smaller increase in Ts with increasing depth. Air temperature (Ta ) and longwave downward radiation (LWDR) are the main drivers of Ts trends, but their relative contributions differ 15 amongst the models. Different trends of LWDR used in the forcing of models can explain 61 % of their differences in Ts trends, while trends of Ta only explain 5 % of the differences in Ts trends. Uncertain climate forcing contributes a larger uncertainty in Ts trends (0.021 ± 0.008 ◦C yr−1 , mean ± SD) than the uncertainty of model structure (0.012 ± 0.001 ◦C yr−1 ), diagnosed from the range of response between different mod- 20 els, normalized to the same forcing. In addition, the loss rate of near-surface permafrost area, defined as total area where the maximum seasonal active layer thickness (ALT) is less than 3 m loss rate is found to be significantly correlated with the magnitude of the trends of Ts at 1 m depth across the models (R = −0.85, P = 0.003), but not with the initial total near-surface permafrost area (R = −0.30, P = 0.438). The

  9. Polar conic current sheets as sources and channels of energetic particles in the high-latitude heliosphere

    Science.gov (United States)

    Khabarova, Olga; Malova, Helmi; Kislov, Roman; Zelenyi, Lev; Obridko, Vladimir; Kharshiladze, Alexander; Tokumaru, Munetoshi; Sokół, Justyna; Grzedzielski, Stan; Fujiki, Ken'ichi; Malandraki, Olga

    2017-04-01

    The existence of a large-scale magnetically separated conic region inside the polar coronal hole has been predicted by the Fisk-Parker hybrid heliospheric magnetic field model in the modification of Burger and co-workers (Burger et al., ApJ, 2008). Recently, long-lived conic (or cylindrical) current sheets (CCSs) have been found from Ulysses observations at high heliolatitudes (Khabarova et al., ApJ, 2017). The characteristic scale of these structures is several times lesser than the typical width of coronal holes, and the CCSs can be observed at 2-3 AU for several months. CCS crossings in 1994 and 2007 are characterized by sharp decreases in the solar wind speed and plasma beta typical for predicted profiles of CCSs. In 2007, a CCS was detected directly over the South Pole and strongly highlighted by the interaction with comet McNaught. The finding is confirmed by restorations of solar coronal magnetic field lines that reveal the occurrence of conic-like magnetic separators over the solar poles both in 1994 and 2007. Interplanetary scintillation data analysis also confirms the existence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. The occurrence of long-lived CCSs in the high-latitude solar wind could shed light on how energetic particles reach high latitudes. Energetic particle enhancements up to tens MeV were observed by Ulysses at edges of CCSs both in 1994 and 2007. In 1994 this effect was clearer, probably due to technical reasons. Accelerated particles could be produced either by magnetic reconnection at the edges of a CCS in the solar corona or in the solar wind. We discuss the role of high-latitude CCSs in propagation of energetic particles in the heliosphere and revisit previous studies of energetic particle enhancements at high heliolatitudes. We also suggest that the existence of a CCS can modify the distribution of the solar wind as a function of heliolatitude and consequently impact ionization

  10. A Study on the Ionosphere and Thermosphere Interaction Based on NCAR-TIEGCM: Dependence of the Interplanetary Magnetic Field (IMF on the Momentum Forcing in the High-Latitude Lower Thermosphere

    Directory of Open Access Journals (Sweden)

    Young-Sil Kwak

    2005-06-01

    Full Text Available To understand the physical processes that control the high-latitude lower thermospheric dynamics, we quantify the forces that are mainly responsible for maintaining the high-latitude lower thermospheric wind system with the aid of the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM. Momentum forcing is statistically analyzed in magnetic coordinates, and its behavior with respect to the magnitude and orientation of the interplanetary magnetic field (IMF is further examined. By subtracting the values with zero IMF from those with non-zero IMF, we obtained the difference winds and forces in the high-latitude lower thermosphere( 0.8 |bar{B}_z| or negative(B_y 0.3125 |bar{B}_y| or negative(B_z 125 km the primary forces that determine the variations of the neutral winds are the pressure gradient, Coriolis and rotational Pedersen ion drag forces; however, at various locations and times significant contributions can be made by the horizontal advection force. On the other hand, at lower altitudes(108-125 km the pressure gradient, Coriolis and non-rotational Hall ion drag forces determine the variations of the neutral winds. At lower altitudes(<108 km it tends to generate a geostrophic motion with the balance between the pressure gradient and Coriolis forces. The northward component of IMF bar{B}_y-dependent average momentum forces act more significantly on the neutral motion except for the ion drag. At lower altitudes(108-125 km for negative IMF-bar{B}_y condition the ion drag force tends to generate a warm clockwise circulation with downward vertical motion associated with the adiabatic compress heating in the polar cap region. For positive IMF-bar{B}_y condition it tends to generate a cold anticlockwise circulation with upward vertical motion associated with the adiabatic expansion cooling in the polar cap region. For negative IMF-bar{B}_z the ion drag force tends to generate a

  11. Diurnal behaviour of the ionospheric Alfvén resonator signatures as observed at high latitude observatory Barentsburg (L=15

    Directory of Open Access Journals (Sweden)

    N. V. Semenova

    2008-08-01

    Full Text Available The signature of the ionospheric Alfvén resonator (IAR, so called spectral resonant structures (SRS in the spectra of the electromagnetic noise in the range of 0.1–10 Hz is rather frequently observed with the search coil magnetometer at observatory Barentsburg on Svalbard (L=15. In this report we discuss some peculiarities of diurnal occurrence of SRS at this high latitude station. We show that the pronounced minimum of the SRS occurrence around noon can not be explained by the diurnal variations of the solar zenith angle (illumination of ionosphere. We conclude that the SRS occurrence minimum is the result of the enhanced variability of ionospheric parameters when the observing point enters (during the Earth's rotation the region of the ionospheric projection of the dayside cusp and its vicinity.

  12. Characteristics of the mean radiant temperature in high latitude cities--implications for sensitive climate planning applications.

    Science.gov (United States)

    Lindberg, Fredrik; Holmer, Björn; Thorsson, Sofia; Rayner, David

    2014-07-01

    Knowledge of how the mean radiant temperature (T mrt ) is affected by factors such as location, climate and urban setting contributes to the practice of climate sensitive planning. This paper examines how T mrt varies within an urban setting and how it is influenced by cloudiness. In addition, variations of T mrt in three high latitude cities are investigated in order to analyse the impact of geographical context and climate conditions. Results showed large spatial variations between sunlit and shaded areas during clear weather conditions, with the highest values of T mrt close to sunlit walls and the lowest values in the areas shaded by buildings and vegetation. As cloudiness increases, the spatial pattern is altered and the differences are reduced. The highest T mrt under cloudy conditions is instead found in open areas where the proportion of shortwave diffuse radiation from the sky vault is high. A regional comparison between three Swedish coastal cities showed that T mrt during summer is similar regardless of latitudinal location. On the other hand, large differences in T mrt during winter were found. Shadows, both from buildings and vegetation are the most effective measure to reduce extreme values of T mrt. However, extensive areas of shadow are usually not desired within outdoor urban environments at high latitude cities. One solution is to create diverse outdoor urban spaces in terms of shadow and also ventilation. This would provide individuals with access to a choice of thermal environments which they can use to assist their thermal regulation, based on personal needs and desires.

  13. Comparison with oblique sounder data of high-latitude h-f propagation predictions from Radar C and Ambscom computer programs. Professional paper for May 1987

    Energy Technology Data Exchange (ETDEWEB)

    Dave, N.

    1987-11-01

    A study was done using two HF propagation prediction programs - Radar C and AMBCOM - to determine how well they predict median values of oblique sounder data of maximum observed frequencies (MOF) at high latitudes. The main differences between RADAR C and AMBCOM are the inclusion in the latter of high-latitude ionosphere and auroral absorption models, as well as a more-sophisticated and accurate ray-tracing scheme. The data for the Winnipeg-Resolute Bay corresponds to high sunspot number, while the others correspond to low sunspot number. Hence, this study provides information on the performance of the two programs for various high-latitude paths at both high and low sunspot number. AMBCOM was found to give generally better agreement with the above data than did RADAR C. Comparison of details of model predictions from the two computer programs for the above data-base is used to form an understanding of this improvement in prediction capability.

  14. Multiple Flux Rope Events at the High-Latitude Magnetopause: Cluster/Rapid Observation on January 26, 2001

    Science.gov (United States)

    Huang, Zong-Ying; Pu, Zu-Yin; Xiao, Chi-Jie; Xong, Qui-Gang; Fu, Sui-Yan; Xie, Lun; Shi, Quan-Qi; Cao, Jin-Bin; Liu, Zhen-Xing; Shen, Cao; Shi, Jian-Kui; Lu, Li; Wang, Nai-Quan; Chen, Tao; Fritz, T.; Glasmeier, K.-H.; Daly, P.; Reme, H.

    2004-04-01

    From 11:10 to 11:40UT on January 26, 2001 the four Cluster II spacecraft were located in the duskside high latitude regions of the magnetosheath and magnetosheath boundary layer (MSBL). During this time Interval the interplanetary magnetic field (IMF) had a negative Bz component. A detailed study on the multiple flux ropes (MFRs) observed in this period is conducted in this paper. It is found that: (1) The multiple flux ropes in the high latitude MSBL appeared quasi-periodically with a repeated time period of about 78s, which is much shorter than the averaged occurring period (about 8-11min) of the flux transfer events (FTEs) at the dayside magnetopause (MP). (2) All the flux ropes observed in this event had a strong core magnetic field. The axial orientation of the most flux ropes is found to lie in the direction of the minimum magnetic field variance; a few flux ropes had their axes lying in the direction of the middle magnetic field variance; while for the remainders their principle axes could not be determined by the method of Principal Axis Analysis (PAA). The reason that causes this complexity relys on the different trajectories of the spacecraft passing through the flux ropes. (3) Each flux rope had a good corresponding HT frame of reference in which it was in a quasi-steady state. All flux ropes moved along the surface of the MP in a similar direction indicating that these flux ropes all came from the dawnside low latitude. Their radial scale is 1-2RE, comparable to the normal diameter of FTEs observed atthe dayside MP. (4) The energetic ions originated from the magnetosphere flowed out to the magnetosheath on the whole, while the solar wind plasma flowed into the magnetosphere along the axis of the flux ropes. The flux ropes offered channels for the transport of the solar wind plasma into the magnetosphere and the escaping of the magnetospheric plasma into the interplanetary space. (5) Each event was accompanied by an enhanced reversal of the dusk

  15. Comparison of atmospheric CO2 columns at high latitudes from ground-based and satellite-based methods

    Science.gov (United States)

    Jacobs, N.; Simpson, W. R.; Parker, H. A.; Tu, Q.; Blumenstock, T.; Dubey, M. K.; Hase, F.; Osterman, G. B.

    2017-12-01

    Total column measurements of carbon-dioxide (CO2) from the Orbiting Carbon Observatory-2 (OCO-2) satellite have been validated at mid-latitudes by comparison to the Total Carbon Column Observing Network (TCCON), but there are still a limited number of sites providing high-latitude validation data for satellite observations of CO2, and no TCCON sites in Alaska. To understand the global distribution of CO2 sources and sinks, it is essential that we increase the abundance of validation sites, particularly in the climate-sensitive high-latitude Boreal forest. Therefore, we began the Arctic Mobile Infrared Greenhouse Gas Observations (AMIGGO) campaign in the Boreal Forest region around Fairbanks, Alaska with the goal of satellite validation and measurement of natural ecosystem fluxes. In this campaign, we used the EM27/SUN mobile solar-viewing Fourier-transform infrared spectrometer (EM27/SUN FTS) to retrieve the total CO2 column and column-averaged dry-air mole fraction of CO2 (XCO2) with the GGG2014 algorithm. The EM27/SUN FTS was developed by the Karlsruhe Institute of Technology (KIT) in collaboration with Bruker optics (Gisi et al., 2012, doi:10.5194/amt-5-2969-2012) and has been deployed in urban areas to measure anthropogenic fluxes of CO2 and CH4. To evaluate the EM27/SUN performance, co-located observations were made with two EM27/SUN spectrometers, and we found that XCO2 differences between spectrometers were small (0.24ppm on average) and very stable over time. In this presentation, we report on 14 OCO-2 targeted overpasses that occurred from August 2016 through July 2017, along with additional targets obtained during ongoing observations in 2017. We investigate underlying reasons for observed differences between OCO-2 and ground-based XCO2 using methods developed by Wunch et al. (2017, doi:10.5194/amt-10-2209-2017). As an additional point of comparison, coincident aircraft observations by NOAA Earth System Research Laboratory (ESRL) Global Monitoring

  16. Early onset of significant local warming in low latitude countries

    International Nuclear Information System (INIS)

    Mahlstein, I; Knutti, R; Solomon, S; Portmann, R W

    2011-01-01

    The Earth is warming on average, and most of the global warming of the past half-century can very likely be attributed to human influence. But the climate in particular locations is much more variable, raising the question of where and when local changes could become perceptible enough to be obvious to people in the form of local warming that exceeds interannual variability; indeed only a few studies have addressed the significance of local signals relative to variability. It is well known that the largest total warming is expected to occur in high latitudes, but high latitudes are also subject to the largest variability, delaying the emergence of significant changes there. Here we show that due to the small temperature variability from one year to another, the earliest emergence of significant warming occurs in the summer season in low latitude countries (∼25 deg. S-25 deg. N). We also show that a local warming signal that exceeds past variability is emerging at present, or will likely emerge in the next two decades, in many tropical countries. Further, for most countries worldwide, a mean global warming of 1 deg. C is sufficient for a significant temperature change, which is less than the total warming projected for any economically plausible emission scenario. The most strongly affected countries emit small amounts of CO 2 per capita and have therefore contributed little to the changes in climate that they are beginning to experience.

  17. The Vertical-Tube Solar Collector: A Low-Cost Design Suitable for Temperate High-Latitude Locations

    Directory of Open Access Journals (Sweden)

    Luis Juanicó

    2014-01-01

    Full Text Available A new low-cost solar collector based on thick (4.5′′ vertical tubes related to the previous design based on long 1.5′′ plastic hoses connected directly between water-grid supply and consumption is presented. This novel design could noticeably improve its performance for temperate locations mid and high latitudes, as was demonstrated by dynamic thermal modeling. This tool has been useful for understanding the particular characteristics of this kind of water-pond collector and besides, for noticeably improving its performance by optimizing its parameters, like tube diameter and number of glazing layers. By this way, the optimized design could fully satisfy the household demand up to midnight along the whole year for Buenos Aires (35°S and during summers (remaining as a useful preheater for the whole year for Ushuaia (55°S. Besides, its high simplicity makes it available for user’s own construction, costing down 50 dollars for a single-family unit.

  18. Causes of spring vegetation greenness trends in the northern mid-high latitudes from 1982 to 2004

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jiafu [ORNL; Shi, Xiaoying [ORNL; Thornton, Peter E [ORNL; Shilong, Dr. Piao [Peking University; Xuhui, Dr. Wang [Peking University

    2012-01-01

    The Community Land Model version 4 (CLM4) is applied to explore the spatial temporal patterns of spring (April May) vegetation growth trends over the northern mid high latitudes (NMH) (>25 N) between 1982 and 2004. During the spring season through the 23 yr period, both the satellite-derived and simulated normalized difference vegetation index (NDVI) anomalies show a statistically significant correlation and an overall greening trend within the study area. Consistently with the observed NDVI temperature relation, the CLM4 NDVI shows a significant positive association with the spring temperature anomaly for the NMH, North America and Eurasia. Large study areas experience temperature discontinuity associated with contrasting NDVI trends. Before and after the turning point (TP) of the temperature trends, climatic variability plays a dominant role, while the other environmental factors exert minor effects on the NDVI tendencies. Simulated vegetation growth is broadly stimulated by the increasing atmospheric CO2. Trends show that nitrogen deposition increases NDVI mostly in southeastern China, and decreases NDVI mainly in western Russia after the temperature TP. Furthermore, land use-induced NDVI trends vary roughly with the respective changes in land management practices (crop areas and forest coverage). Our results highlight how non-climatic factors mitigate or exacerbate the impact of temperature on spring vegetation growth, particularly across regions with intensive human activity.

  19. Causes of spring vegetation growth trends in the northern mid–high latitudes from 1982 to 2004

    International Nuclear Information System (INIS)

    Mao Jiafu; Shi Xiaoying; Thornton, Peter E; Piao Shilong; Wang Xuhui

    2012-01-01

    The Community Land Model version 4 (CLM4) is applied to explore the spatial–temporal patterns of spring (April–May) vegetation growth trends over the northern mid–high latitudes (NMH) (>25°N) between 1982 and 2004. During the spring season through the 23 yr period, both the satellite-derived and simulated normalized difference vegetation index (NDVI) anomalies show a statistically significant correlation and an overall greening trend within the study area. Consistently with the observed NDVI–temperature relation, the CLM4 NDVI shows a significant positive association with the spring temperature anomaly for the NMH, North America and Eurasia. Large study areas experience temperature discontinuity associated with contrasting NDVI trends. Before and after the turning point (TP) of the temperature trends, climatic variability plays a dominant role, while the other environmental factors exert minor effects on the NDVI tendencies. Simulated vegetation growth is broadly stimulated by the increasing atmospheric CO 2 . Trends show that nitrogen deposition increases NDVI mostly in southeastern China, and decreases NDVI mainly in western Russia after the temperature TP. Furthermore, land use-induced NDVI trends vary roughly with the respective changes in land management practices (crop areas and forest coverage). Our results highlight how non-climatic factors mitigate or exacerbate the impact of temperature on spring vegetation growth, particularly across regions with intensive human activity. (letter)

  20. A Study of Solar Flare Effects on Mid and High Latitude Radio Wave Propagation using SuperDARN.

    Science.gov (United States)

    Ruohoniemi, J. M.; Chakraborty, S.; Baker, J. B.

    2017-12-01

    Over the Horizon (OTH) communication is strongly dependent on the state of the ionosphere, which is sensitive to solar X-ray flares. The Super Dual Auroral Radar Network (SuperDARN), whose working principle is dependent on trans-ionospheric radio communication, uses HF radio waves to remotely sense the ionosphere. The backscatter returns from the terrestrial surface (also known as ground-scatter) transit the ionosphere four times and simulate the operation of an HF communications link. SuperDARN backscatter signal properties are altered (strongly attenuated and changes apparent phase) during a sudden ionospheric disturbance following a solar flare, commonly known as Short-Wave Fadeout or SWF. During an SWF the number of SuperDARN backscatter echoes drops suddenly (≈1 min) and sharply, often to near zero, and recovers within 30 minutes to an hour. In this study HF propagation data (SuperDARN backscatter) obtained during SWF events are analyzed for the purpose of validating and improving the performance of HF absorption models, such as, Space Weather Prediction Center (SWPC) D-region Absorption model (DRAP) and CCMC physics based AbbyNormal model. We will also present preliminary results from a physics based model for the mid and high latitude ionospheric response to flare-driven space weather anomalies, which can be used to estimate different physical parameters of the ionosphere such as electron density, collision frequency, absorption coefficients, response time of D-region etc.

  1. Eocene high-latitude temperature gradients over time and space based on d18O values of fossil shark teeth

    Science.gov (United States)

    Zeichner, S. S.; Kim, S.; Colman, A. S.

    2015-12-01

    Early-Mid Eocene (56.0-33.9Mya) is characterized by a temperate Antarctic climate and shallower latitudinal temperature gradients than those in present day. The warmer waters off the coast of the Antarctic Peninsula provided suitable habitats for taxa (i.e., sharks) that live today at lower latitudes. Stable isotope analysis of Eocene shark teeth provides a proxy to understand high latitude temperature gradients. However, shark ecology, in particular migration and occupation of tidal versus pelagic habitats, must be considered in the interpretation of stable isotope data. In this study, we analyze d18OPO4 values from the enameloid of Striatolamia (synonymized with Carcharias) shark teeth from the La Meseta formation (Seymour Island, Antarctica) to estimate paleotemperature in Early-Mid Eocene Antarctica, and assess the impact of ecology versus environmental signals on d18OPO4 values. We compare the ranges and offsets between our measured shark tooth d18OPO4 and published bivalve d18OCO3 values to test whether shark teeth record signals of migration across latitudinal temperature gradients, or instead reflect seasonal and long-term temporal variation across La Meseta stratigraphic units.

  2. High-Latitude Neutral Density Structures Investigated by Utilizing Multi-Instrument Satellite Data and NRLMSISE-00 Simulations

    Science.gov (United States)

    Horvath, Ildiko; Lovell, Brian C.

    2018-02-01

    This study investigates various types of neutral density features developed in the cusp region during magnetically active and quiet times. Multi-instrument Challenging Minisatellite Payload data provide neutral density, electron temperature, neutral wind speed, and small-scale field-aligned current (SS-FAC) values. Gravity Recovery and Climate Experiment neutral density data are also employed. During active times, cusp densities or density spikes appeared with their underlying flow channels (FCs) and enhanced SS-FACs implying upwelling, fueled by Joule heating, within/above FCs. Both the moderate nightside cusp enhancements under disturbed conditions and the minor dayside cusp enhancements under quiet conditions developed without any underlying FC and enhanced SS-FACs implying the role of particle precipitation in their development. Observations demonstrate the relations of FCs, density spikes, and upwelling-related divergent flows and their connections to the underlying (1) dayside magnetopause reconnection depositing magnetospheric energy into the high-latitude region and (2) Joule heating-driven disturbance dynamo effects. Results provide observational evidence that the moderate nightside cusp enhancements and the minor dayside cusp enhancements detected developed due to direct heating by weak particle precipitation. Chemical compositions related to the dayside density spike and low cusp densities are modeled by Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended 2000. Modeled composition outputs for the dayside density spike's plasma environment depict some characteristic upwelling signatures. Oppositely, in the case of low dayside cusp densities, composition outputs show opposite characteristics due to the absence of upwelling.

  3. Performances of Kevlar and Polyethylene as radiation shielding on-board the International Space Station in high latitude radiation environment.

    Science.gov (United States)

    Narici, Livio; Casolino, Marco; Di Fino, Luca; Larosa, Marianna; Picozza, Piergiorgio; Rizzo, Alessandro; Zaconte, Veronica

    2017-05-10

    Passive radiation shielding is a mandatory element in the design of an integrated solution to mitigate the effects of radiation during long deep space voyages for human exploration. Understanding and exploiting the characteristics of materials suitable for radiation shielding in space flights is, therefore, of primary importance. We present here the results of the first space-test on Kevlar and Polyethylene radiation shielding capabilities including direct measurements of the background baseline (no shield). Measurements are performed on-board of the International Space Station (Columbus modulus) during the ALTEA-shield ESA sponsored program. For the first time the shielding capability of such materials has been tested in a radiation environment similar to the deep-space one, thanks to the feature of the ALTEA system, which allows to select only high latitude orbital tracts of the International Space Station. Polyethylene is widely used for radiation shielding in space and therefore it is an excellent benchmark material to be used in comparative investigations. In this work we show that Kevlar has radiation shielding performances comparable to the Polyethylene ones, reaching a dose rate reduction of 32 ± 2% and a dose equivalent rate reduction of 55 ± 4% (for a shield of 10 g/cm 2 ).

  4. Testing the applicability of neural networks as a gap-filling method using CH4 flux data from high latitude wetlands

    DEFF Research Database (Denmark)

    Dengel, S.; Zona, D.; Sachs, T.

    2013-01-01

    no consensus on CH4 gap-filling methods, and methods applied are still study-dependent and often carried out on low resolution, daily data. In the current study, we applied artificial neural networks to six distinctively different CH4 time series from high latitudes, explain the method and test its...

  5. Modelling long term impacts of environmental change on mid- and high-latitude European forests and options for adaptive forest management

    NARCIS (Netherlands)

    Pussinen, A.; Nabuurs, G.J.M.M.; Wieggers, H.J.J.; Reinds, G.J.; Wamelink, G.W.W.; Kros, J.; Mol-Dijkstra, J.P.; Vries, de W.

    2009-01-01

    The process based model SMART–SUMO–WATBAL was applied to 166 intensive monitoring forest plots of mid- and high-latitude Europe to evaluate the effects of expected future changes in carbon dioxide concentration, temperature, precipitation and nitrogen deposition on forest growth (net annual

  6. Litter stoichiometric traits of plant species of high-latitude ecosystems show high responsiveness to global change without causing strong variation in litter decomposition.

    NARCIS (Netherlands)

    Aerts, R.; van Bodegom, P.M.; Cornelissen, J.H.C.

    2012-01-01

    High-latitude ecosystems are important carbon accumulators, mainly as a result of low decomposition rates of litter and soil organic matter. We investigated whether global change impacts on litter decomposition rates are constrained by litter stoichiometry. • Thereto, we investigated the

  7. Low apparent quantum yield in Arctic plants suggests that terrestrial biosphere models will over estimate carbon assimilation at high latitudes

    Science.gov (United States)

    Rogers, A.; Serbin, S.; Ely, K.; Wullschleger, S.

    2017-12-01

    Estimates of Gross Primary Productivity (GPP) by terrestrial biosphere models (TBMs) rely on accurate model representation of photosynthesis. In the Arctic, TBM uncertainty over GPP is the dominant driver of an uncertain Arctic carbon cycle. Previously we have shown that TBMs underestimate light saturated photosynthesis due to poor model representation of maximum carboxylation capacity and maximum electron transport. Here we extend this work to investigate model representation of the response of photosynthesis to irradiance. TBMs use an empirical relationship, typically a non-rectangular hyperbola, to estimate potential electron transport rate from incident irradiance. The key model inputs used to parameterize this formulation are; absorptance, quantum yield, and a curvature factor. TBMs show a high divergence in the response of photosynthesis to irradiance driven in part by variation in these parameters. In addition, most existing measurements used to parameterize TBMs have been made within a narrow temperature range (20-30°C) and the scarcity of data collected at low temperature has been highlighted as an important driver of model uncertainty at high latitudes. To address this issue we measured photosynthetic light response curves at 5 and 15°C and the leaf optical properties of six species growing on the Barrow Environmental Observatory, Barrow, Alaska. We determined leaf absorbtance, the convexity term, and apparent quantum yield. Our key finding was that measured apparent quantum yield was lower than model estimates, particularly at 5°C. Our results show that TBMs that rely on relatively high theoretical estimates of apparent quantum yield will likely overestimate carbon assimilation at low temperature and low irradiance.

  8. Snowmelt water drives higher soil erosion than rainfall water in a mid-high latitude upland watershed

    Science.gov (United States)

    Wu, Yuyang; Ouyang, Wei; Hao, Zengchao; Yang, Bowen; Wang, Li

    2018-01-01

    The impacts of precipitation and temperature on soil erosion are pronounced in mid-high latitude areas, which lead to seasonal variations in soil erosion. Determining the critical erosion periods and the reasons behind the increased erosion loads are essential for soil management decisions. Hence, integrated approaches combining experiments and modelling based on field investigations were applied to investigate watershed soil erosion characteristics and the dynamics of water movement through soils. Long-term and continuous data for surface runoff and soil erosion variation characteristics of uplands in a watershed were observed via five simulations by the Soil and Water Assessment Tool (SWAT). In addition, laboratory experiments were performed to quantify the actual soil infiltrabilities in snowmelt seasons (thawed treatment) and rainy seasons (non-frozen treatment). The results showed that over the course of a year, average surface runoff and soil erosion reached peak values of 31.38 mm and 1.46 t ha-1 a-1, respectively, in the month of April. They also ranked high in July and August, falling in the ranges of 23.73 mm to 24.91 mm and 0.55 t ha-1 a-1 to 0.59 t ha-1 a-1, respectively. With the infiltration time extended, thawed soils showed lower infiltrabilities than non-frozen soils, and the differences in soil infiltration amounts between these two were considerable. These results highlighted that soil erosion was very closely and positively correlated with surface runoff. Soil loss was higher in snowmelt periods than in rainy periods due to the higher surface runoff in early spring, and the decreased soil infiltrability in snowmelt periods contributed much to this higher surface runoff. These findings are helpful for identification of critical soil erosion periods when making soil management before critical months, especially those before snowmelt periods.

  9. Early Spring Post-Fire Snow Albedo Dynamics in High Latitude Boreal Forests Using Landsat-8 OLI Data

    Science.gov (United States)

    Wang, Zhuosen; Erb, Angela M.; Schaaf, Crystal B.; Sun, Qingsong; Liu, Yan; Yang, Yun; Shuai, Yanmin; Casey, Kimberly A.; Roman, Miguel O.

    2016-01-01

    thus play an important role in characterizing the carbon cycle and ecosystem processes of high latitude systems.

  10. Distribution and Characteristics of Boulder Halos at High Latitudes on Mars: Ground Ice and Surface Processes Drive Surface Reworking

    Science.gov (United States)

    Levy, J. S.; Fassett, C. I.; Rader, L. X.; King, I. R.; Chaffey, P. M.; Wagoner, C. M.; Hanlon, A. E.; Watters, J. L.; Kreslavsky, M. A.; Holt, J. W.; Russell, A. T.; Dyar, M. D.

    2018-02-01

    Boulder halos are circular arrangements of clasts present at Martian middle to high latitudes. Boulder halos are thought to result from impacts into a boulder-poor surficial unit that is rich in ground ice and/or sediments and that is underlain by a competent substrate. In this model, boulders are excavated by impacts and remain at the surface as the crater degrades. To determine the distribution of boulder halos and to evaluate mechanisms for their formation, we searched for boulder halos over 4,188 High Resolution Imaging Science Experiment images located between 50-80° north and 50-80° south latitude. We evaluate geological and climatological parameters at halo sites. Boulder halos are about three times more common in the northern hemisphere than in the southern hemisphere (19% versus 6% of images) and have size-frequency distributions suggesting recent Amazonian formation (tens to hundreds of millions of years). In the north, boulder halo sites are characterized by abundant shallow subsurface ice and high thermal inertia. Spatial patterns of halo distribution indicate that excavation of boulders from beneath nonboulder-bearing substrates is necessary for the formation of boulder halos, but that alone is not sufficient. Rather, surface processes either promote boulder halo preservation in the north or destroy boulder halos in the south. Notably, boulder halos predate the most recent period of near-surface ice emplacement on Mars and persist at the surface atop mobile regolith. The lifetime of observed boulders at the Martian surface is greater than the lifetime of the craters that excavated them. Finally, larger minimum boulder halo sizes in the north indicate thicker icy soil layers on average throughout climate variations driven by spin/orbit changes during the last tens to hundreds of millions of years.

  11. Geomagnetic Excursions and High-Latitude Paleomagnetic Records of Glaciomarine Sediments from the Western Greenland Margin (Baffin Bay)

    Science.gov (United States)

    Richter, C.; Jensen, S. R.; Acton, G. D.; Evans, H. F.

    2017-12-01

    We present new paleomagnetic results from Quaternary sediment samples recovered during the Baffin Bay Scientific Coring Expedition conducted by the JOIDES Resolution in 2012. The expedition recovered well-preserved core material from the Arctic Basin, providing an outstanding opportunity for the study of the behavior of the geomagnetic field at high latitude. We analyzed material from 12 sites cored at latitudes between 74°45.32'N and 75°46.68'N in the Melville Bay region (Cape York and Melville Ridge) of Baffin Bay located at an average water depth of 394 m. The Quaternary glaciomarine sediments are up to 150 m thick and consist of very soft diatom-bearing muds to clast-rich sandy and muddy diamicts, which suggest deposition in a subglacial to ice-procimal environment. We carried out paleomagnetic and rock magnetic measurements on the shipboard cryogenic magnetometer at 5-cm resolution on 32 split-core sections and a selected number of discrete samples, and recently processed measurements taken at 1-cm resolution on eight U-channel samples from the uppermost Holocene part of the section. Stepwise demagnetization of the NRM demonstrates excellent demagnetization behavior, with a viscous isothermal remanent magnetization overprint, induced by the coring and sampling process, and typically removed by the 20 mT demagnetization step. The magnetic inclination data are characterized by steep, 80°, normal inclinations, consistent with the site position near the North Pole. Thermal demagnetization, magnetic susceptibility, isothermal remanent magnetization, and hysteresis parameters indicate that the primary magnetic carrier consists of a low-coercivity mineral, e.g., magnetite and/or titanomagnetite, with minor traces of higher-coercivity minerals. Well-developed geomagnetic excursions in the upper part of the section can be correlated between several sites. Although dating of these sediments remains a challenge because of the lack of carbonates we will discuss

  12. Long-term dynamics of a high-latitude coral reef community at Sodwana Bay, South Africa

    Science.gov (United States)

    Porter, S. N.; Schleyer, M. H.

    2017-06-01

    Dynamics in reef cover, mortality and recruitment success of a high-latitude coral community in South Africa were studied over 20 yr with the aim to detect the effects of climate change. Coral communities at this locality are the southernmost on the African continent, non-accretive, attain high biodiversity and are dominated by soft corals. Long-term monitoring within fixed transects on representative reef was initiated in 1993 and has entailed annual photo-quadrat surveys and hourly temperature logging. Although sea temperatures rose by 0.15 °C p.a. at the site up to 2000, they have subsequently been decreasing, and the overall trend based on monthly means has been a significant decrease of 0.03 °C p.a. Despite this, minor bleaching was encountered in the region during the 1998 El Niño-Southern Oscillation event, again in the summer of 2000/2001 and in 2005. A significant decreasing trend of 0.95% p.a. in soft coral cover has been evident throughout the monitoring period, attributable to significant decreases in Sinularia and Lobophytum spp. cover. In contrast, hard coral cover gradually and significantly increased up to 2005, this being largely attributable to increases in cover by Acropora spp. Recruitment success and mortality of both soft and hard corals has displayed high inter-annual variability with increasing but non-significant trends in the last 5 yr. The reduction in soft coral cover has been more consistent and greater than that of hard corals, but it is difficult at this stage to attribute this to changes in water quality, acidification-linked accretion or temperature.

  13. The Largs high-latitude oxygen isotope anomaly (New Zealand) and climatic controls of oxygen isotopes in magma

    International Nuclear Information System (INIS)

    Blattner, P.; Williams, J.G.

    1991-01-01

    In northern Fiordland the Brook Street terrane of New Zealand consists of two units - the predominantly basaltic Plato and the predominantly andesitic Largs terrane. The Permian Plato terrane has normal to slightly enriched δ 18 O values, whereas the Largs terrane, which is of similar pre-early Triassic age, has not yielded a single normal δ 18 O SMOW result, with all of 17 total rocks showing less than 3.2per mille, seven less than -4per mille, and two less than -9per mille. These strongly anomalous data confirm an earlier suggested terrestrial character of Largs deposition, and demand the presence of Permo-Triassic geothermal systems running on subAntarctic to Antarctic meteoric water. The skewed data spectrum suggests a relatively immature flow system and likely values for the recharge water are -20per mille δ 18 O or less. For a climate distribution similar to the present one, inlcuding polar ice caps, this would indicate over 70deg of southern latitude. Rafts and xenoliths of Largs rocks have been entrained within Mackay Intrusives in the early Triassic. On field evidence the Mackay magmas have also intruded an early Darran Complex, but this complex has been substantially reactivated in the Cretaceous. It has δ 18 O values near 5.0per mille, which is distinctly low for island arc magmas. Since the complex is isotopically homogenous, its δ 18 O is unlikely to be a direct effect of the relatively shallow Largs terrane. More probable is a climate related slight depression of the δ 18 O of magma sources, in which other high-latitude, low-δ 18 O sediments and geothermal systems have been involved. (orig.)

  14. Model study of the influence of solar wind parameters on electric currents and fields in middle atmosphere at high latitudes

    International Nuclear Information System (INIS)

    Tonev, P.; Velinov, P.

    2012-01-01

    The electric currents and fields in the strato/mesosphere and lower ionosphere are a result mainly of tropospheric electrical generators (thunderstorms and electrified clouds) which principally determine their global distributions and magnitudes. There are, however, additional sources, e.g. the solar wind (SW), whose contribution to these currents and fields is realized by SW-magnetosphere-ionosphere coupling. This last causes creation of large trans-polar electric potential difference VPC in each polar cap of ∼ 30–140 kV and of horizontal scale ∼ 3000 km which is realized through field-aligned currents (FAC) and is controlled by SW parameters. The potential difference VPC forces formation of closure currents in the dynamo-region. Our study by simulation shows that much smaller currents penetrate into the lower atmospheric regions and influence characteristics of the global atmospheric electrical circuit (GEC). Also, the downward mapping of the horizontal electric fields due to the potential difference VPC leads to creation of very small, but non-negligible vertical electric fields at sea level. They have been demonstrated experimentally as significant (up to few tens of per cent) SW-controlled modifications of the GEC electric characteristics at the ground, at polar latitudes. Our model, based on simulation of Maxwell’s equations in the region 0–160 km under steady-state conditions show that similar but relatively much larger SW-dominated modifications of GEC characteristics take place in the strato/mesosphere and lower ionosphere at polar and high latitudes

  15. The Relationship of High-Latitude Thermospheric Wind With Ionospheric Horizontal Current, as Observed by CHAMP Satellite

    Science.gov (United States)

    Huang, Tao; Lühr, Hermann; Wang, Hui; Xiong, Chao

    2017-12-01

    The relationship between high-latitude ionospheric currents (Hall current and field-aligned current) and thermospheric wind is investigated. The 2-D patterns of horizontal wind and equivalent current in the Northern Hemisphere derived from the CHAMP satellite are considered for the first time simultaneously. The equivalent currents show strong dependences on both interplanetary magnetic field (IMF) By and Bz components. However, IMF By orientation is more important in controlling the wind velocity patterns. The duskside wind vortex as well as the antisunward wind in the morning polar cap is more evident for positive By. To better understand their spatial relation in different sectors, a systematic superposed epoch analysis is applied. Our results show that in the dusk sector, the vectors of the zonal wind and equivalent current are anticorrelated, and both of them form a vortical flow pattern for different activity levels. The currents and zonal wind are intensified with the increase of merging electric field. However, on the dawnside, where the relation is less clear, antisunward zonal winds dominate. Plasma drift seems to play a less important role for the wind than neutral forces in this sector. In the noon sector, the best anticorrelation between equivalent current and wind is observed for a positive IMF By component and it is less obvious for negative By. A clear seasonal effect with current intensities increasing from winter to summer is observed in the noon sector. Different from the currents, the zonal wind intensity shows little dependence on seasons. Our results indicate that the plasma drift and the neutral forces are of comparable influence on the zonal wind at CHAMP altitude in the noon sector.

  16. Evaluating the Dominant Components of Warming in Pliocene Climate Simulations

    Science.gov (United States)

    Hill, D. J.; Haywood, A. M.; Lunt, D. J.; Hunter, S. J.; Bragg, F. J.; Contoux, C.; Stepanek, C.; Sohl, L.; Rosenbloom, N. A.; Chan, W.-L.; hide

    2014-01-01

    The Pliocene Model Intercomparison Project (PlioMIP) is the first coordinated climate model comparison for a warmer palaeoclimate with atmospheric CO2 significantly higher than pre-industrial concentrations. The simulations of the mid-Pliocene warm period show global warming of between 1.8 and 3.6 C above pre-industrial surface air temperatures, with significant polar amplification. Here we perform energy balance calculations on all eight of the coupled ocean-atmosphere simulations within PlioMIP Experiment 2 to evaluate the causes of the increased temperatures and differences between the models. In the tropics simulated warming is dominated by greenhouse gas increases, with the cloud component of planetary albedo enhancing the warming in most of the models, but by widely varying amounts. The responses to mid-Pliocene climate forcing in the Northern Hemisphere midlatitudes are substantially different between the climate models, with the only consistent response being a warming due to increased greenhouse gases. In the high latitudes all the energy balance components become important, but the dominant warming influence comes from the clear sky albedo, only partially offset by the increases in the cooling impact of cloud albedo. This demonstrates the importance of specified ice sheet and high latitude vegetation boundary conditions and simulated sea ice and snow albedo feedbacks. The largest components in the overall uncertainty are associated with clouds in the tropics and polar clear sky albedo, particularly in sea ice regions. These simulations show that albedo feedbacks, particularly those of sea ice and ice sheets, provide the most significant enhancements to high latitude warming in the Pliocene.

  17. Global metabolic impacts of recent climate warming.

    Science.gov (United States)

    Dillon, Michael E; Wang, George; Huey, Raymond B

    2010-10-07

    Documented shifts in geographical ranges, seasonal phenology, community interactions, genetics and extinctions have been attributed to recent global warming. Many such biotic shifts have been detected at mid- to high latitudes in the Northern Hemisphere-a latitudinal pattern that is expected because warming is fastest in these regions. In contrast, shifts in tropical regions are expected to be less marked because warming is less pronounced there. However, biotic impacts of warming are mediated through physiology, and metabolic rate, which is a fundamental measure of physiological activity and ecological impact, increases exponentially rather than linearly with temperature in ectotherms. Therefore, tropical ectotherms (with warm baseline temperatures) should experience larger absolute shifts in metabolic rate than the magnitude of tropical temperature change itself would suggest, but the impact of climate warming on metabolic rate has never been quantified on a global scale. Here we show that estimated changes in terrestrial metabolic rates in the tropics are large, are equivalent in magnitude to those in the north temperate-zone regions, and are in fact far greater than those in the Arctic, even though tropical temperature change has been relatively small. Because of temperature's nonlinear effects on metabolism, tropical organisms, which constitute much of Earth's biodiversity, should be profoundly affected by recent and projected climate warming.

  18. Snow driven Radiative Forcing in High Latitude Areas of Disturbance Using Higher Resolution Albedo Products from Landsat and Sentinel-2

    Science.gov (United States)

    Erb, A.; Li, Z.; Schaaf, C.; Wang, Z.; Rogers, B. M.

    2017-12-01

    Land surface albedo plays an important role in the surface energy budget and radiative forcing by determining the proportion of absorbed incoming solar radiation available to drive photosynthesis and surface heating. In Arctic regions, albedo is particularly sensitive to land cover and land use change (LCLUC) and modeling efforts have shown it to be the primary driver of effective radiative forcing from the biogeophysical effects of LCLUC. In boreal forests, the effects of these changes are complicated during snow covered periods when newly exposed, highly reflective snow can serve as the primary driver of radiative forcing. In Arctic biomes disturbance scars from fire, pest and harvest can remain in the landscape for long periods of time. As such, understanding the magnitude and persistence of these disturbances, especially in the shoulder seasons, is critical. The Landsat and Sentinel-2 Albedo Products couple 30m and 20m surface reflectances with concurrent 500m BRDF Products from the MODerate resolution Imaging Spectroradiometer (MODIS). The 12 bit radiometric fidelity of Sentinel-2 and Landsat-8 allow for the inclusion of high-quality, unsaturated albedo calculations over snow covered surfaces at scales more compatible with fragmented landscapes. Recent work on the early spring albedo of fire scars has illustrated significant post-fire spatial heterogeneity of burn severity at the landscape scale and highlights the need for a finer spatial resolution albedo record. The increased temporal resolution provided by multiple satellite instruments also allows for a better understanding of albedo dynamics during the dynamic shoulder seasons and in historically difficult high latitude locations where persistent cloud cover limits high quality retrievals. Here we present how changes in the early spring albedo of recent boreal forest disturbance in Alaska and central Canada affects landscape-scale radiative forcing. We take advantage of the long historical Landsat record

  19. Beringia: Intercontinental exchange and diversification of high latitude mammals and their parasites during the Pliocene and Quaternary

    Science.gov (United States)

    Cook, Joseph A.; Hoberg, Eric P.; Koehler, Anson V.; Henttonen, Heikki; Wickström, Lotta; Haukisalmi, Voitto; Galbreath, Kurt E.; Chernyavski, Felix; Dokuchaev, Nikolai; Lahzuhtkin, Anatoli; MacDonald, Stephen O.; Hope, Andrew G.; Waltari, Eric; Runck, Amy; Veitch, Alasdair; Jenkins, Emily; Kutz, Susan; Eckerlin, Ralph P.

    2005-01-01

    Beringia is the region spanning eastern Asia and northwestern North America that remained ice-free during the full glacial events of the Pleistocene. Numerous questions persist regarding the importance of this region in the evolution of northern faunas. Beringia has been implicated as both a high latitude refugium and as the crossroads (Bering Land Bridge) of the northern continents for boreal mammals. The Beringian Coevolution Project (BCP) is an international collaboration that has provided material to assess the pattern and timing of faunal exchange across the crossroads of the northern continents and the potential impact of past climatic events on differentiation. Mammals and associated parasite specimens have been collected and preserved from more than 200 field sites in eastern Russia, Alaska and northwestern Canada since 1999. Previously, fossils and taxonomic comparisons between Asia and North America mammals have shed light on these events. Molecular phylogenetics based on BCP specimens is now being used to trace the history of faunal exchange and diversification. We have found substantial phylogeographic structure in the Arctic and in Beringia in mustelid carnivores, arvicoline rodents, arctic hares and soricine shrews, including spatially concordant clades and contact zones across taxa that correspond to the edges of Beringia. Among the tapeworms of these mammalian hosts, new perspectives on diversity have also been developed. Arostrilepis horrida (Hymenolepididae) was considered to represent a single widespread and morphologically variable species occurring in a diversity of voles and lemmings in eastern and western Beringia and more broadly across the Holarctic region. The BCP has demonstrated a complex of at least 10 species that are poorly differentiated morphologically. The diversity of Paranoplocephala spp. and Anolocephaloides spp. (Anoplocephalidae) in Beringia included relatively few widespread and morphologically variable species in arvicolines

  20. Temporal-spatial patterns of three types of pesticide loadings in a middle-high latitude agricultural watershed.

    Science.gov (United States)

    Ouyang, Wei; Cai, Guanqing; Tysklind, Mats; Yang, Wanyin; Hao, Fanghua; Liu, Hongbin

    2017-10-01

    Pesticide loadings to watersheds increase during agricultural development and may vary in accordance with different crop types and seasons. High pesticide loadings can potentially result in polluted stream water. The objective of this study was to determine the pesticide loadings and concentrations of three typical pesticides (atrazine, oxadiazon, and isoprothiolane) in river water from a middle-high latitude agricultural watershed in northern China. During this study, we evaluated the watershed pesticide loss patterns for two crop types over three decades. For this purpose, we integrated data from field investigations, laboratory experiments, and modeling simulations involving a distributed hydrological solute transport model (Soil and Water Assessment Tool, SWAT). SWAT was employed to compare the temporal-spatial fate and behaviors of atrazine, oxadiazon, and isoprothiolane from 1990 to 2014 in a watershed area amounting to 141.5 km 2 . The results showed that the three pesticides could be detected at different locations throughout the watershed, and isoprothiolane was detected at the maximum value of 1.082 μg/L in surface runoff of paddy land. The temporal trend for the yearly loading of atrazine decreased slightly over time, but the trends for oxadiazon and isoprothiolane increased markedly over an 18-year analysis period. In regard to the pesticide concentrations in water, atrazine was associated with the largest value of nearly 1.4 μg/L. July and August were the found to be prime periods for pesticide loss from paddy land, and the biggest monthly loss of atrazine from dryland appeared in June. Under similar usage conditions, isoprothiolane loading from paddy fields ranked as the largest one among the three types of pesticides and reached up to 17 g/ha. Limited monitoring data were useful for validating the model, which yielded valuable temporal-spatial data on the fate of pesticides in this watershed. With the expansion of paddy rice cultivation, risks

  1. Identifying the "Foot of the Continental Slope" of high-latitude continental margins influenced by trough mouth fans

    Science.gov (United States)

    Sverre Laberg, Jan

    2017-04-01

    The continental slope of high-latitude margins often include trough mouth fans, which are sediment fans situated in front of large troughs crossing the continental shelf. The troughs acted as corridors for paleo-ice streams, sectors of fast-flowing ice within the large ice sheets of the last glacial maximum as well as previous glacials. The paleo-ice streams were highly efficient erosional agents, eroding and transporting large volumes of sediments to the continental shelf edge. Here, these sediments were released to move downslope as large debris flows, the "building blocks" of these fans. Due to the very large sediment volume included within these fans, they represent prominent depocenters forming low-gradient sectors (axial gradient often being as low as 1 degree or less) with no clear morphological distinction of the continental slope including its lower limit. Under the UN Convention on the Law of the Sea, the criteria provided in Article 76 includes the lower limit or "foot" of the continental slope as one important parameter in the extended Continental Shelf delineation (i.e. beyond the 200 M exclusive economic zone). Because of this, the Norwegian submission regarding the outer limits of the continental shelf in the Norwegian Sea and the Arctic Ocean argued that the origin of the sub-sea floor sediments on the slope needed to be considered when identifying the location of the foot of the continental slope. This was done by mapping the outer limits of the large debris flow deposits of the trough mouth fans, deposits that without doubt have their origin from the continental shelf. Thus, in these cases, the foot of the continental slope coincide with the downslope termination of the large debris flow deposits and the outer limit of the continental shelf lies 60 M beyond this point. The data used for mapping includes swath bathymetry, sub-bottom profiles and short sediment samples (< 10 m), and we present and discuss examples from the Bear Island Trough Mouth

  2. Amplifier for nuclear spectrometry

    International Nuclear Information System (INIS)

    Suarez Canner, E.

    1996-01-01

    The spectroscopy amplifier model AE-020 is designed to adjust suitable the pulses coming from nuclear radiation detectors. Due to is capacity and specifications, the amplifier can be used together with high and medium resolution spectroscopy system

  3. Spread in the magnitude of climate model interdecadal global temperature variability traced to disagreements over high-latitude oceans

    OpenAIRE

    Brown, Patrick T.; Li, Wenhong; Jiang, Jonathan H.; Su, Hui

    2016-01-01

    Unforced variability in global mean surface air temperature can obscure or exaggerate global warming on interdecadal timescales, thus understanding both the magnitude and generating mechanisms of such variability is of critical importance for both attribution studies as well as decadal climate prediction. Coupled atmosphere-ocean general circulation models (climate models) simulate a wide range of magnitudes of unforced interdecadal variability in global mean surface air temperature (UITgloba...

  4. Buffering and Amplifying Interactions among OAW (Ocean Acidification & Warming) and Nutrient Enrichment on Early Life-Stage Fucus vesiculosus L. (Phaeophyceae) and Their Carry Over Effects to Hypoxia Impact.

    Science.gov (United States)

    Al-Janabi, Balsam; Kruse, Inken; Graiff, Angelika; Winde, Vera; Lenz, Mark; Wahl, Martin

    2016-01-01

    Ocean acidification and warming (OAW) are occurring globally. Additionally, at a more local scale the spreading of hypoxic conditions is promoted by eutrophication and warming. In the semi-enclosed brackish Baltic Sea, occasional upwelling in late summer and autumn may expose even shallow-water communities including the macroalga Fucus vesiculosus to particularly acidified, nutrient-rich and oxygen-poor water bodies. During summer 2014 (July-September) sibling groups of early life-stage F. vesiculosus were exposed to OAW in the presence and absence of enhanced nutrient levels and, subsequently to a single upwelling event in a near-natural scenario which included all environmental fluctuations in the Kiel Fjord, southwestern Baltic Sea, Germany (54°27 ´N, 10°11 ´W). We strove to elucidate the single and combined impacts of these potential stressors, and how stress sensitivity varies among genetically different sibling groups. Enhanced by a circumstantial natural heat wave, warming and acidification increased mortalities and reduced growth in F. vesiculosus germlings. This impact, however, was mitigated by enhanced nutrient conditions. Survival under OAW conditions strongly varied among sibling groups hinting at a substantial adaptive potential of the natural Fucus populations in the Western Baltic. A three-day experimental upwelling caused severe mortality of Fucus germlings, which was substantially more severe in those sibling groups which previously had been exposed to OAW. Our results show that global (OAW), regional (nutrient enrichment) and local pressures (upwelling), both alone and co-occurring may have synergistic and antagonistic effects on survival and/or growth of Fucus germlings. This result emphasizes the need to consider combined stress effects.

  5. Amplification factor variable amplifier

    NARCIS (Netherlands)

    Akitsugu, Oshita; Nauta, Bram

    2007-01-01

    PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ; SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and

  6. Amplification factor variable amplifier

    NARCIS (Netherlands)

    Akitsugu, Oshita; Nauta, Bram

    2010-01-01

    PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ;SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and can

  7. RF power amplifiers

    CERN Document Server

    Albulet, Mihai

    2001-01-01

    This text presents a full account of RF amplifiers and provides a thorough understanding of power amplifier principles and their applications. This comprehensive book covers all important design techniques for power amplifiers and includes mathematical derivations and the assumptions used to develop design rules.

  8. Investigating the Role of Biogeochemical Processes in the Northern High Latitudes on Global Climate Feedbacks Using an Efficient Scalable Earth System Model

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Atul K. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-09-14

    The overall objectives of this DOE funded project is to combine scientific and computational challenges in climate modeling by expanding our understanding of the biogeophysical-biogeochemical processes and their interactions in the northern high latitudes (NHLs) using an earth system modeling (ESM) approach, and by adopting an adaptive parallel runtime system in an ESM to achieve efficient and scalable climate simulations through improved load balancing algorithms.

  9. Monitoring Coral Health to Determine Coral Bleaching Response at High Latitude Eastern Australian Reefs: An Applied Model for A Changing Climate

    OpenAIRE

    Dalton, Steven J.; Carroll, Andrew G.

    2011-01-01

    Limited information is available on the bleaching susceptibility of coral species that dominate high latitude reefs along the eastern seaboard of Australia. The main aims of this study were to: (i) monitor coral health and spatial patterns of coral bleaching response at the Solitary Islands Marine Park (SIMP) and Lord Howe Island Marine Park (LHIMP), to determine variability of bleaching susceptibility among coral taxa; (ii) predict coral bleaching thresholds at 30 °S and 31.5 °S, extrapolate...

  10. Evolution determines how global warming and pesticide exposure will shape predator‐prey interactions with vector mosquitoes

    DEFF Research Database (Denmark)

    Tran, Tam H.; Janssens, Lizanne; Dinh, Khuong Van

    2016-01-01

    How evolution may mitigate the effects of global warming and pesticide exposure on predator–prey interactions is directly relevant for vector control. Using a space-for-time substitution approach, we addressed how 4°C warming and exposure to the pesticide endosulfan shape the predation on Culex...... pipiens mosquitoes by damselfly predators from replicated low- and high-latitude populations. Although warming was only lethal for the mosquitoes, it reduced predation rates on these prey. Possibly, under warming escape speeds of the mosquitoes increased more than the attack efficiency of the predators...... at the high latitude will be reduced under warming unless predators evolve toward the current low-latitude phenotype or low-latitude predators move poleward...

  11. Influence of high latitude light conditions on sensory quality and contents of health and sensory-related compounds in swede roots (Brassica napus L. ssp. rapifera Metzg.).

    Science.gov (United States)

    Mølmann, Jørgen Ab; Hagen, Sidsel Fiskaa; Bengtsson, Gunnar B; Johansen, Tor J

    2018-02-01

    Vegetable growers in Arctic areas must increasingly rely on market strategies based on regional origin and product quality. Swede roots (rutabaga) were grown in a phytotron to investigate the effect of high latitude light conditions on sensory quality and some health and sensory-related compounds. Experimental treatments included modifications of 24 h natural day length (69° 39' N) by moving plants at daily intervals to dark chambers with either no light, fluorescent growth light and/or low intensity photoperiod extension. Shortening the photosynthetic light period to 12 h produced smaller roots than 15.7 h and 18 h, with highest scores for bitter and sulfur taste, and lowest scores for sweetness, acidic taste and fibrousness. The photoperiod in combination with the photosynthetic light period also had an influence on glucosinolate (GLS) contents, with lowest concentrations in 24 h natural light and highest in 12 h natural light. Concentrations of vitamin C, glucose, fructose and sucrose were not significantly influenced by any of the treatments. High latitude light conditions, with long photosynthetic light periods and 24 h photoperiod, can enhance sweet/less bitter taste and reduce GLS contents in swede roots, compared to growth under short day conditions. This influence of light conditions on eating quality may benefit marketing of regional products from high latitudes. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Empirical model of the high-latitude boundary of the Earth's outer radiation belt at altitudes of up to 1000 km

    Science.gov (United States)

    Kalegaev, V. V.; Barinova, W. O.; Myagkova, I. N.; Eremeev, V. E.; Parunakyan, D. A.; Nguyen, M. D.; Barinov, O. G.

    2018-01-01

    An empirical model of the high-latitude boundary of the outer Earth's radiation belt (ERB) has been presented, which is based on the measurement data of electron fluxes on the polar low-orbit CORONAS-Photon, Meteor-M1, and Meteor-M2 satellites. The boundary was determined by a sharp decrease to the background level of the flux of trapped electrons with energies of 100 or 200 keV in the polar part of the profile of the outer radiation belt. A numerical algorithm has been implemented to determine the time moment, when the fastest flux changes are recorded. The primary search was carried out, first, on 30 s averaged data, then repeated on data with a higher resolution. A functional dependence was obtained in order to approximate the obtained set of intersections of the boundary by elliptical curve. The empirical model constructed using the CORONAS-Photon measurement data in the epoch of anomalously low geomagnetic activity reflects the longitude structure of the high-latitude boundary of the outer radiation belt associated with the internal Earth's magnetic field (MF), as well as its dependence on the universal time. Based on the data of intersections of the high-latitude boundary of the outer ERB (OERB) in the epoch of 2014-2016, the latitudinal shift of the boundary to the equator dependent on geomagnetic activity has been determined, as well as the nightside shift of the boundary due to the diurnal rotation of the Earth.

  13. A theoretical and empirical study of the response of the high latitude thermosphere to the sense of the 'Y' component of the interplanetary magnetic field

    International Nuclear Information System (INIS)

    Rees, D.; Fuller-Rowell, T.J.; Gordon, R.

    1986-01-01

    The strength and direction of the Interplanetary Magnetic Field (IMF) controls the transfer of solar wind momentum and energy to the high latitude thermosphere in a direct fashion. The sense of ''Y'' component of the IMF (BY) creates a significant asymmetry of the magnetospheric convection pattern as mapped onto the high latitude thermosphere and ionosphere. The resulting response of the polar thermospheric winds during periods when BY is either positive or negative is quite distinct, with pronounced changes in the relative strength of thermospheric winds in the dusk-dawn parts of the polar cap and in the dawn part of the auroral oval. In a study of four periods when there was a clear signature of BY, observed by the ISEE-3 satellite, with observations of polar winds and electric fields from the Dynamics Explorer-2 satellite and with wind observations by a ground-based Fabry-Perot interferometer located in Kiruna, Northern Sweden, it is possible to explain features of the high latitude thermospheric circulation using three dimensional global models including BY dependent, asymmetric, polar convection fields. Anomalously zonal wind velocities are often observed, for BY positive and when BY is negative. These are matched by the observation of strong anti-sunward polar-cap wind jets from the DE-2 satellite, on the dusk side with BY negative, and on the dawn side with BY positive. (author)

  14. Statistical Patterns of Ionospheric Convection Derived From Mid-Latitude, High-Latitude, and Polar SuperDARN HF Radar Observations

    Science.gov (United States)

    Thomas, E. G.; Shepherd, S. G.

    2017-12-01

    Global patterns of ionospheric convection have been widely studied in terms of the interplanetary magnetic field (IMF) magnitude and orientation in both the Northern and Southern Hemispheres using observations from the Super Dual Auroral Radar Network (SuperDARN). The dynamic range of driving conditions under which existing SuperDARN statistical models are valid is currently limited to periods when the high-latitude convection pattern remains above about 60° geomagnetic latitude. Cousins and Shepherd [2010] found this to correspond to intervals when the solar wind electric field Esw 0) the high-latitude radars often experience difficulties in measuring convection above about 85° geomagnetic latitude. In this presentation, we introduce a new statistical model of ionospheric convection which is valid for much more dominant IMF Bz conditions than was previously possible by including velocity measurements from the newly constructed tiers of radars in the Northern Hemisphere at midlatitudes and in the polar cap. This new model (TS17) is compared to previous statistical models derived from high-latitude SuperDARN observations (RG96, PSR10, CS10) and its impact on instantaneous Map Potential solutions is examined.

  15. Comparison with oblique sounder data of high-latitude HF propagation predictions from RADAR C and AMBCOM computer programs. Professional Paper for October 1987

    Energy Technology Data Exchange (ETDEWEB)

    Dave, N.

    1988-06-01

    A study was done using two High Frequency (HF) propagation prediction programs - RADAR C and AMBCOM - to determine how well they predict median values of oblique sounder data of maximum observed frequencies (MOF) at high latitudes. The main differences between RADAR C and AMBCOM are the inclusion in the latter of high-latitude ionosphere and auroral absorption models, as well as a more-sophisticated and accurate ray-tracing scheme. The data used for comparison are taken for the Winnipeg-Resolute Bay path in the year 1959 and for the Andoya-Ft. Monmouth and Andoya-College paths in 1964. The data for the Winnipeg-Resolute Bay corresponds to high sunspot number, while the others correspond to low sunspot number. Hence, the study provides information on the performance of the two programs for various high-latitude paths at both high and low sunspot number. AMBCOM was found to give generally better agreement with the above data than did RADAR C. Comparison of details of model predictions from the two computer programs for the above data-base is used to form an understanding of this improvement in prediction capability.

  16. Recent trends of high-latitude vegetation activity assessed and explained by contrasting modelling approaches with earth observation data

    Science.gov (United States)

    Forkel, M.; Carvalhais, N.; Reichstein, M.; Thonicke, K.

    2012-04-01

    Satellite observations of Normalized Difference Vegetation Index (NDVI) showed increasing trends in the arctic tundra and the boreal forests since the 1980s. This greening is related to an increase in photosynthetic activity and is driven by increasing temperatures and a prolongation of the growing season. However, NDVI experienced a decrease in large regions of the boreal forests since the mid-1990s. This browning is related to fire disturbances, temperature-induced summer drought and potentially to insect infestations and diseases. Terrestrial biosphere models (TBM) can be used to assess the impacts of these changes in vegetation productivity on the carbon and water cycles and on the climate system. In general, these models provide descriptions of ecosystem processes and states that are forced by and feedback to the climate system such as photosynthesis and transpiration, ecosystem respiration, soil carbon and water stocks and vegetation composition. The evaluation of TBMs against observations is a necessary step to assess their suitability to simulate such processes and dynamics. The increasing availability of long-term observations of vegetation activity enables us to evaluate the model ability to diagnose these vegetation greening and browning trends in arctic and boreal regions. The first aim of this study is to evaluate trends in vegetation activity in high-latitude regions as simulated by TBMs against observed trends in vegetation activity. The second aim is to identify potential drivers of these observed and simulated trends to evaluate the ability of models to reproduce the observed functional relations between climatic and environmental drivers and the vegetation trends. The trends in vegetation activity were estimated for a set of satellite-based remote sensing products: NDVI from AVHRR (Advanced Very High Resolution Radiometer) and MODIS (Moderate Resolution Imaging Spectrometer), as well as FAPAR observations (Fraction of Observed Photosynthetically

  17. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2007-06-01

    Full Text Available A set of coupled ocean-atmosphere(-vegetation simulations using state of the art climate models is now available for the Last Glacial Maximum (LGM and the Mid-Holocene (MH through the second phase of the Paleoclimate Modeling Intercomparison Project (PMIP2. Here we quantify the latitudinal shift of the location of the Intertropical Convergence Zone (ITCZ in the tropical regions during boreal summer and the change in precipitation in the northern part of the ITCZ. For both periods the shift is more pronounced over the continents and East Asia. The maritime continent is the region where the largest spread is found between models. We also clearly establish that the larger the increase in the meridional temperature gradient in the tropical Atlantic during summer at the MH, the larger the change in precipitation over West Africa. The vegetation feedback is however not as large as found in previous studies, probably due to model differences in the control simulation. Finally, we show that the feedback from snow and sea-ice at mid and high latitudes contributes for half of the cooling in the Northern Hemisphere for the LGM, with the remaining being achieved by the reduced CO2 and water vapour in the atmosphere. For the MH the snow and albedo feedbacks strengthen the spring cooling and enhance the boreal summer warming, whereas water vapour reinforces the late summer warming. These feedbacks are modest in the Southern Hemisphere. For the LGM most of the surface cooling is due to CO2 and water vapour.

  18. Wireless Josephson amplifier

    International Nuclear Information System (INIS)

    Narla, A.; Sliwa, K. M.; Hatridge, M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2014-01-01

    Josephson junction parametric amplifiers are playing a crucial role in the readout chain in superconducting quantum information experiments. However, their integration with current 3D cavity implementations poses the problem of transitioning between waveguide, coax cables, and planar circuits. Moreover, Josephson amplifiers require auxiliary microwave components, like directional couplers and/or hybrids, that are sources of spurious losses and impedance mismatches that limit measurement efficiency and amplifier tunability. We have developed a wireless architecture for these parametric amplifiers that eliminates superfluous microwave components and interconnects. This greatly simplifies their assembly and integration into experiments. We present an experimental realization of such a device operating in the 9–11 GHz band with about 100 MHz of amplitude gain-bandwidth product, on par with devices mounted in conventional sample holders. The simpler impedance environment presented to the amplifier also results in increased amplifier tunability.

  19. Strong delayed interactive effects of metal exposure and warming

    DEFF Research Database (Denmark)

    Debecker, Sara; Dinh, Khuong Van; Stoks, Robby

    2017-01-01

    As contaminants are often more toxic at higher temperatures, predicting their impact under global warming remains a key challenge for ecological risk assessment. Ignoring delayed effects, synergistic interactions between contaminants and warming, and differences in sensitivity across species......’ ranges could lead to an important underestimation of the risks. We addressed all three mechanisms by studying effects of larval exposure to zinc and warming before, during, and after metamorphosis in Ischnura elegans damselflies from high- and lowlatitude populations. By integrating these mechanisms...... was especially remarkable in high-latitude animals, as they appeared almost insensitive to zinc during the larval stage. Second, the well-known synergism between metals and warming was manifested not only during the larval stage but also after metamorphosis, yet notably only in low-latitude damselflies...

  20. Daytime geomagnetic disturbances at high latitudes during a strong magnetic storm of June 21-23, 2015: The storm initial phase

    Science.gov (United States)

    Gromova, L. I.; Kleimenova, N. G.; Levitin, A. E.; Gromov, S. V.; Dremukhina, L. A.; Zelinskii, N. R.

    2016-05-01

    The high-latitude geomagnetic effects of an unusually long initial phase of the largest magnetic storm ( SymH ~-220 nT) in cycle 24 of the solar activity are considered. Three interplanetary shocks characterized by considerable solar wind density jumps (up to 50-60 cm-3) at a low solar wind velocity (350-400 km/s) approached the Earth's magnetosphere during the storm initial phase. The first two dynamic impacts did not result in the development of a magnetic storm, since the IMF Bz remained positive for a long time after these shocks, but they caused daytime polar substorms (magnetic bays) near the boundary between the closed and open magnetosphere. The magnetic field vector diagrams at high latitudes and the behaviour of high-latitude long-period geomagnetic pulsations ( ipcl and vlp) made it possible to specify the dynamics of this boundary position. The spatiotemporal features of daytime polar substorms (the dayside polar electrojet, PE) caused by sudden changes in the solar wind dynamic pressure are discussed in detail, and the singularities of ionospheric convection in the polar cap are considered. It has been shown that the main phase of this two-stage storm started rapidly developing only when the third most intense shock approached the Earth against a background of large negative IMF Bz values (to-39 nT). It was concluded that the dynamics of convective vortices and the related restructing of the field-aligned currents can result in spatiotemporal fluctuations in the closing ionospheric currents that are registered on the Earth's surface as bay-like magnetic disturbances.

  1. Long-range dispersal and high-latitude environments influence the population structure of a "stress-tolerant" dinoflagellate endosymbiont.

    Directory of Open Access Journals (Sweden)

    D Tye Pettay

    Full Text Available The migration and dispersal of stress-tolerant symbiotic dinoflagellates (genus Symbiodinium may influence the response of symbiotic reef-building corals to a warming climate. We analyzed the genetic structure of the stress-tolerant endosymbiont, Symbiodinium glynni nomen nudum (ITS2 - D1, obtained from Pocillopora colonies that dominate eastern Pacific coral communities. Eleven microsatellite loci identified genotypically diverse populations with minimal genetic subdivision throughout the Eastern Tropical Pacific, encompassing 1000's of square kilometers from mainland Mexico to the Galapagos Islands. The lack of population differentiation over these distances corresponds with extensive regional host connectivity and indicates that Pocillopora larvae, which maternally inherit their symbionts, aid in the dispersal of this symbiont. In contrast to its host, however, subtropical populations of S. glynni in the Gulf of California (Sea of Cortez were strongly differentiated from populations in tropical eastern Pacific. Selection pressures related to large seasonal fluctuations in temperature and irradiance likely explain this abrupt genetic discontinuity. We infer that S. glynni genotypes harbored by host larvae arriving from more southern locations are rapidly replaced by genotypes adapted to more temperate environments. The strong population structure of S. glynni corresponds with fluctuating environmental conditions and suggests that these genetically diverse populations have the potential to evolve rapidly to changing environments and reveals the importance of environmental extremes in driving microbial eukaryote (e.g., plankton speciation in marine ecosystems.

  2. Late Cretaceous paleosols as paleoclimate proxies of high-latitude Southern Hemisphere: Mata Amarilla Formation, Patagonia, Argentina

    Science.gov (United States)

    Varela, Augusto N.; Raigemborn, M. Sol; Richiano, Sebastián; White, Tim; Poiré, Daniel G.; Lizzoli, Sabrina

    2018-01-01

    Although there is general consensus that a global greenhouse climate characterized the mid-Cretaceous, details of the climate state of the mid-Cretaceous Southern Hemisphere are less clearly understood. In particular, continental paleoclimate reconstructions are scarce and exclusively derived from paleontological records. Using paleosol-derived climofunction studies of the mid- to Upper Cretaceous Mata Amarilla Formation, southern Patagonia, Argentina, we present a reconstruction of the mid-Cretaceous climate of southern South America. Our results indicate that at 60° south paleolatitude during the Cenomanian-Santonian stages, the climate was subtropical temperate-warm (12 °C ± 2.1 °C) and humid (1404 ± 108 mm/yr) with marked rainfall seasonality. These results are consistent with both previous estimations from the fossil floras of the Mata Amarilla Formation and other units of the Southern Hemisphere, and with the previous observations of the displacement of tropical and subtropical floras towards the poles in both hemispheres. The data presented here show a more marked seasonality and slightly lower mean annual precipitation and mean annual temperature values than those recorded at the same paleolatitudes in the Northern Hemisphere.

  3. Energetic particle fluxes in the exterior cusp and the high-latitude dayside magnetosphere: statistical results from the Cluster/RAPID instrument

    Directory of Open Access Journals (Sweden)

    T. Asikainen

    2005-09-01

    Full Text Available In this paper we study the fluxes of energetic protons (30–4000 keV and electrons (20–400 keV in the exterior cusp and in the adjacent high-latitude dayside plasma sheet (HLPS with the Cluster/RAPID instrument. Using two sample orbits we demonstrate that the Cluster observations at high latitudes can be dramatically different because the satellite orbit traverses different plasma regions for different external conditions. We make a statistical study of energetic particles in the exterior cusp and HLPS by analysing all outbound Cluster dayside passes in February and March, 2002 and 2003. The average particle fluxes in HLPS are roughly three (protons or ten (electrons times larger than in the exterior cusp. This is also true on those Cluster orbits where both regions are visited within a short time interval. Moreover, the total electron fluxes, as well as proton fluxes above some 100 keV, in these two regions correlate with each other. This is true even for fluxes in every energy channel when considered separately. The spectral indices of electron and proton fluxes are the same in the two regions. We also examine the possible dependence of particle fluxes at different energies on the external (solar wind and IMF and internal (geomagnetic conditions. The energetic proton fluxes (but not electron fluxes in the cusp behave differently at low and high energies. At low energies (<70 keV, the fluxes increase strongly with the magnitude of IMF By. Instead, at higher energies the proton fluxes in the cusp depend on substorm/geomagnetic activity. In HLPS proton fluxes, irrespective of energy, depend strongly on the Kp and AE indices. The electron fluxes in HLPS depend both on the high-latitude dayside plasma sheet is the main source

  4. Equatorward dispersion of a high-latitude volcanic plume and its relation to the Asian summer monsoon: a case study of the Sarychev eruption in 2009

    Science.gov (United States)

    Wu, Xue; Griessbach, Sabine; Hoffmann, Lars

    2017-11-01

    Tropical volcanic eruptions have been widely studied for their significant contribution to stratospheric aerosol loading and global climate impacts, but the impact of high-latitude volcanic eruptions on the stratospheric aerosol layer is not clear and the pathway of transporting aerosol from high latitudes to the tropical stratosphere is not well understood. In this work, we focus on the high-latitude volcano Sarychev (48.1° N, 153.2° E), which erupted in June 2009, and the influence of the Asian summer monsoon (ASM) on the equatorward dispersion of the volcanic plume. First, the sulfur dioxide (SO2) emission time series and plume height of the Sarychev eruption are estimated with SO2 observations of the Atmospheric Infrared Sounder (AIRS) and a backward trajectory approach using the Lagrangian particle dispersion model Massive-Parallel Trajectory Calculations (MPTRAC). Then, the transport and dispersion of the plume are simulated using the derived SO2 emission time series. The transport simulations are compared with SO2 observations from AIRS and validated with aerosol observations from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). The MPTRAC simulations show that about 4 % of the sulfur emissions were transported to the tropical stratosphere within 50 days after the beginning of the eruption, and the plume dispersed towards the tropical tropopause layer (TTL) through isentropic transport above the subtropical jet. The MPTRAC simulations and MIPAS aerosol data both show that between the potential temperature levels of 360 and 400 K, the equatorward transport was primarily driven by anticyclonic Rossby wave breaking enhanced by the ASM in boreal summer. The volcanic plume was entrained along the anticyclone flows and reached the TTL as it was transported southwestwards into the deep tropics downstream of the anticyclone. Further, the ASM anticyclone influenced the pathway of aerosols by isolating an aerosol hole inside of the ASM, which

  5. Antares laser power amplifier

    International Nuclear Information System (INIS)

    Stine, R.D.; Ross, G.F.; Silvernail, C.

    1979-01-01

    The overall design of the Antares laser power amplifier is discussed. The power amplifier is the last stage of amplification in the 100-kJ Antares laser. In the power amplifier a single, cylindrical, grid-controlle, cold-cathode electron gun is surrounded by 12 large-aperture CO 2 electron-beam sustained laser discharge sectors. Each power amplifier will deliver 18 kJ and the six modules used in Antares will produce the required 100 kJ for delivery to the target. A large-scale interaction between optical, mechanical, and electrical disciplines is required to meet the design objectives. Significant component advances required by the power amplifier design are discussed

  6. Digital automatic gain amplifier

    Science.gov (United States)

    Holley, L. D.; Ward, J. O. (Inventor)

    1978-01-01

    A circuit is described for adjusting the amplitude of a reference signal to a predetermined level so as to permit subsequent data signals to be interpreted correctly. The circuit includes an operational amplifier having a feedback circuit connected between an output terminal and an input terminal; a bank of relays operably connected to a plurality of resistors; and a comparator comparing an output voltage of the amplifier with a reference voltage and generating a compared signal responsive thereto. Means is provided for selectively energizing the relays according to the compared signal from the comparator until the output signal from the amplifier equals to the reference signal. A second comparator is provided for comparing the output of the amplifier with a second voltage source so as to illuminate a lamp when the output signal from the amplifier exceeds the second voltage.

  7. Decadal variability of clouds, solar radiation and temperature at a high-latitude coastal site in Norway

    Directory of Open Access Journals (Sweden)

    Kajsa Parding

    2014-12-01

    Full Text Available The observed variability of shortwave (SW irradiance, clouds and temperature and the potential connections between them is studied for the subarctic site Bergen (60.4°N, 5.3°E, located on the Norwegian west coast. Focusing on the quality and spatial representativity of the data, we compare observations from independent instruments and neighbouring measurement sites. The observations indicate that the decrease of sunshine duration and SW irradiance during the 1970s and 80s in Bergen is associated with the increasing frequency of clouds, in particular clouds of low base heights. We argue that the observed cloud changes are indicative of increased frequencies of storms in northern Europe. The annual mean observational time series show an increase in SW irradiance since 1990, which is not accompanied by a cloud cover (NN decrease. This implies the influence of factors other than clouds, for example, decreasing aerosol emissions. Calculations of the aerosol optical depth (AOD based on irradiance observations for hours when the sun is unobscured by clouds confirm a decreasing aerosol load after 1990, from 0.15 to 0.10 AOD which corresponds to 2–6 Wm−2 of brightening. At the same time, a seasonal analysis reveals opposite changes in SW irradiance and NN during the months of strongest changes – March, April and August – also during the recent period of increasing SW irradiance. We conclude that the seasonally decreasing NN also contributes to the recent changes in SW irradiance. Finally, we address the relationship between temperature, SW irradiance and clouds. In winter (December–February, the surface air temperature in Bergen is statistically linked to the warming influence of clouds. In all other seasons, the North Atlantic sea surface temperature variability has a more dominant influence on the air temperature in Bergen compared to local cloud and SW irradiance variability.

  8. Recent Rapid Regional Climate Warming on the Antarctic Peninsula

    Science.gov (United States)

    Vaughan, D. G.; Marshall, G. J.; Connolley, W. M.; Parkinson, C.; Mulvaney, R.; Hodgson, D. A.; King, J. C.; Pudsey, C. J.; Turner, J.

    2002-12-01

    The Intergovernmental Panel on Climate Change (IPCC) confirmed that global warming was 0.6 ñ 0.2 degrees C during the 20th Century and cited increases in greenhouse gases as a likely contributor. But this average conceals the complexity of observed climate change, which is seasonally biased, decadally variable and geographically patchy. In particular, over the last 50 years three high-latitude areas have undergone recent rapid regional (RRR) warming ? substantially more rapid than the global mean. We discuss the spatial and temporal significance of RRR warming in one area, the Antarctic Peninsula. New analyses of station records show no ubiquitous polar amplification of global warming but significant RRR warming on the Antarctic Peninsula. We investigate the likelihood that this could be amplification of a global warming, and use climate-proxy data to indicate that this RRR warming on the Antarctic Peninsula is unprecedented over the last two millennia and unlikely to be a natural mode of variability. We can show a strong connection between RRR warming and reduced sea-ice duration in an area on the west of the Antarctic Peninsula, but here we cannot yet distinguish cause and effect. Thus for the present we cannot determine which process causes the RRR warming, and until the mechanism initiating and sustaining it is understood, and is convincingly reproduced in climate models, we lack a sound basis for predicting climate change in this region over the coming century.

  9. Changes in aridity in response to the global warming hiatus

    Science.gov (United States)

    Guan, Xiaodan; Huang, Jianping; Guo, Ruixia

    2017-02-01

    The global warming slowdown or warming hiatus, began around the year 2000 and has persisted for nearly 15 years. Most studies have focused on the interpretation of the hiatus in temperature. In this study, changes in a global aridity index (AI) were analyzed by using a newly developed dynamical adjustment method that can successfully identify and separate dynamically induced and radiatively forced aridity changes in the raw data. The AI and Palmer Drought Severity Index produced a wetting zone over the mid-to-high latitudes of the Northern Hemisphere in recent decades. The dynamical adjustment analysis suggested that this wetting zone occurred in response to the global warming hiatus. The dynamically induced AI (DAI) played a major role in the AI changes during the hiatus period, and its relationships with the North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO) also indicated that different phases of the NAO, PDO, and AMO contributed to different performances of the DAI over the Northern Hemisphere. Although the aridity wetting over the mid-to-high latitudes may relieve long-term drying in certain regions, the hiatus is temporary, and so is the relief. Accelerated global warming will return when the NAO, PDO, and AMO revert to their opposite phases in the future, and the wetting zone is likely to disappear.

  10. Auto-Zero Differential Amplifier

    Science.gov (United States)

    Quilligan, Gerard T. (Inventor); Aslam, Shahid (Inventor)

    2017-01-01

    An autozero amplifier may include a window comparator network to monitor an output offset of a differential amplifier. The autozero amplifier may also include an integrator to receive a signal from a latched window comparator network, and send an adjustment signal back to the differential amplifier to reduce an offset of the differential amplifier.

  11. The microbial fate of carbon in high-latitude seas: Impact of the microbial loop on oceanic uptake of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yager, P.L.

    1996-12-31

    This dissertation examines pelagic microbial processes in high-latitude seas, how they affect regional and global carbon cycling, and how they might respond to hypothesized changes in climate. Critical to these interests is the effect of cold temperature on bacterial activity. Also important is the extent to which marine biological processes in general impact the inorganic carbon cycle. The study area is the Northeast Water (NEW) Polynya, a seasonally-recurrent opening in the permanent ice situated over the northeastern Greenland continental shelf. This work was part of an international, multi-disciplinary research project studying carbon cycling in the coastal Arctic. The first chapter describes a simple model which links a complex marine food web to a simplified ocean and atmosphere. The second chapter investigates the inorganic carbon inventory of the summertime NEW Polynya surface waters to establish the effect of biological processes on the air-sea pCO{sub 2} gradient. The third and fourth chapters use a kinetic approach to examine microbial activities in the NEW Polynya as a function of temperature and dissolved organic substrate concentration, testing the so-called Pomeroy hypothesis that microbial activity is disproportionately reduced at low environmental temperatures owing to increased organic substrate requirements. Together, the suite of data collected on microbial activities, cell size, and grazing pressure suggest how unique survival strategies adopted by an active population of high-latitude bacteria may contribute to, rather than detract from, an efficient biological carbon pump.

  12. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models

    Science.gov (United States)

    Chadburn, Sarah E.; Krinner, Gerhard; Porada, Philipp; Bartsch, Annett; Beer, Christian; Belelli Marchesini, Luca; Boike, Julia; Ekici, Altug; Elberling, Bo; Friborg, Thomas; Hugelius, Gustaf; Johansson, Margareta; Kuhry, Peter; Kutzbach, Lars; Langer, Moritz; Lund, Magnus; Parmentier, Frans-Jan W.; Peng, Shushi; Van Huissteden, Ko; Wang, Tao; Westermann, Sebastian; Zhu, Dan; Burke, Eleanor J.

    2017-11-01

    It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that

  13. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models

    Directory of Open Access Journals (Sweden)

    S. E. Chadburn

    2017-11-01

    Full Text Available It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France. We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI, the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our

  14. Noise in Optical Amplifiers

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1997-01-01

    Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived.......Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived....

  15. Response of the extratropical middle atmosphere to the September 2002 major stratospheric sudden warming

    Science.gov (United States)

    Guharay, A.; Batista, P. P.; Clemesha, B. R.; Sarkhel, S.

    2014-01-01

    The effects of a major stratospheric sudden warming (SSW) at extratropical latitudes have been investigated with wind and temperature observations over a Brazilian station, Cachoeira Paulista (22.7°S, 45°W) during September-October 2002. In response to the warming at polar latitudes a corresponding cooling at tropical and extratropical latitudes is prominent in the stratosphere. A conspicuous signature of latitudinal propagation of a planetary wave of zonal wavenumbers 1 and 2 from polar to low latitude has been observed during the warming period. The polar vortex which split into two parts of different size is found to travel considerably low latitude. Significant air mass mixing between low and high latitudes is caused by planetary wave breaking. The meridional wind exhibits oscillations of period 2-4 days during the warming period in the stratosphere. No wave feature is evident in the mesosphere during the warming period, although a 12-14 day periodicity is observed after 2 weeks of the warming event, indicating close resemblance to the results of other simultaneous investigations carried out from high latitude Antarctic stations. Convective activity over the present extratropical station diminishes remarkably during the warming period. This behavior is possibly due to destabilization and shift of equatorial convective active regions towards the opposite hemisphere in response to changes in the mean meridional circulation in concert with the SSW.

  16. Controlled soil warming powered by alternative energy for remote field sites.

    Science.gov (United States)

    Johnstone, Jill F; Henkelman, Jonathan; Allen, Kirsten; Helgason, Warren; Bedard-Haughn, Angela

    2013-01-01

    Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2 °C in 1 m(2) plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes.

  17. A primer on potential impacts, management priorities, and future directions for Elodea spp. in high latitude systems: learning from the Alaskan experience

    Science.gov (United States)

    Carey, Michael P.; Sethi, Suresh A; Larsen, Sabrina J; Rich, Cecil F

    2016-01-01

    Invasive species introductions in Arctic and Subarctic ecosystems are growing as climate change manifests and human activity increases in high latitudes. The aquatic plants of the genus Elodea are potential invaders to Arctic and Subarctic ecosystems circumpolar and at least one species is already established in Alaska, USA. To illustrate the problems of preventing, eradicating, containing, and mitigating aquatic, invasive plants in Arctic and Subarctic ecosystems, we review the invasion dynamics of Elodea and provide recommendations for research and management efforts in Alaska. Foremost, we conclude the remoteness of Arctic and Subarctic systems such as Alaska is no longer a protective attribute against invasions, as transportation pathways now reach throughout these regions. Rather, high costs of operating in remote Arctic and Subarctic systems hinders detection of infestations and limits eradication or mitigation, emphasizing management priorities of prevention and containment of aquatic plant invaders in Alaska and other Arctic and Subarctic systems.

  18. A search for pre-main-sequence stars in high-latitude molecular clouds. 3: A survey of the Einstein database

    Science.gov (United States)

    Caillault, Jean-Pierre; Magnani, Loris; Fryer, Chris

    1995-01-01

    In order to discern whether the high-latitude molecular clouds are regions of ongoing star formation, we have used X-ray emission as a tracer of youthful stars. The entire Einstein database yields 18 images which overlap 10 of the clouds mapped partially or completely in the CO (1-0) transition, providing a total of approximately 6 deg squared of overlap. Five previously unidentified X-ray sources were detected: one has an optical counterpart which is a pre-main-sequence (PMS) star, and two have normal main-sequence stellar counterparts, while the other two are probably extragalactic sources. The PMS star is located in a high Galactic latitude Lynds dark cloud, so this result is not too suprising. The translucent clouds, though, have yet to reveal any evidence of star formation.

  19. Energetic particle fluxes in the exterior cusp and the high-latitude dayside magnetosphere: statistical results from the Cluster/RAPID instrument

    Directory of Open Access Journals (Sweden)

    T. Asikainen

    2005-09-01

    Full Text Available In this paper we study the fluxes of energetic protons (30–4000 keV and electrons (20–400 keV in the exterior cusp and in the adjacent high-latitude dayside plasma sheet (HLPS with the Cluster/RAPID instrument. Using two sample orbits we demonstrate that the Cluster observations at high latitudes can be dramatically different because the satellite orbit traverses different plasma regions for different external conditions. We make a statistical study of energetic particles in the exterior cusp and HLPS by analysing all outbound Cluster dayside passes in February and March, 2002 and 2003. The average particle fluxes in HLPS are roughly three (protons or ten (electrons times larger than in the exterior cusp. This is also true on those Cluster orbits where both regions are visited within a short time interval. Moreover, the total electron fluxes, as well as proton fluxes above some 100 keV, in these two regions correlate with each other. This is true even for fluxes in every energy channel when considered separately. The spectral indices of electron and proton fluxes are the same in the two regions. We also examine the possible dependence of particle fluxes at different energies on the external (solar wind and IMF and internal (geomagnetic conditions. The energetic proton fluxes (but not electron fluxes in the cusp behave differently at low and high energies. At low energies (<70 keV, the fluxes increase strongly with the magnitude of IMF By. Instead, at higher energies the proton fluxes in the cusp depend on substorm/geomagnetic activity. In HLPS proton fluxes, irrespective of energy, depend strongly on the Kp and AE indices. The electron fluxes in HLPS depend both on the <Kp index and the solar wind speed. In the cusp the electron fluxes mainly depend on the solar wind speed, and are higher for northward than southward IMF. These results give strong evidence in favour of the idea that the

  20. Incorporating diffuse radiation into a light use efficiency and evapotranspiration model: An 11-year study in a high latitude deciduous forest

    DEFF Research Database (Denmark)

    Wang, Sheng; Ibrom, Andreas; Bauer-Gottwein, Peter

    2018-01-01

    The fraction of diffuse photosynthetic active radiation (PAR) reaching the land surface is one of the biophysical factors regulating carbon and water exchange between terrestrial ecosystems and the atmosphere. This is especially relevant for high latitude ecosystems, where cloudy days are prevalent...... set were used to statistically explore the independent and joint effects of diffuse PAR on GPP, ET, incident light use efficiency (LUE), evaporative fraction (EF) and ecosystem water use efficiency (WUE). The independent and joint effects of CI were compared from global sensitivity analysis...... of the ‘top-down’ models. Results indicate that for independent effects, CI increased GPP, LUE, ET, EF and WUE. Analysis of joint effects shows that CI mainly interacted with the radiation intercepted in the canopy (PAR, net radiation and leaf area index) to influence GPP, ET and WUE. Moreover, Ta and vapor...

  1. A Study on Temperature Variation of the Upper Thermosphere in the High Latitude Through the Analysis of 6300 Å Airglow Data

    Directory of Open Access Journals (Sweden)

    Jong-Kyun Chung

    1997-06-01

    Full Text Available The temperature of the upper thermosphere is generally varied with the solar activity, and largely with geomagnetic activity in the high latitude. The data analyzed in this study are acquired at two ground stations, Thule Air Base(76.5 degN, 68.4 degW, ¡ü = 86deg and Sondre Stromfjord (67.0 degN, 50.9 degW, ¡ü = 74deg, Greenland. Both stations are located in the high latitude not only geographically but also geomagnetically. The terrestrial night glow at 6300 A from atomic oxygen has been observed from the two ground-based Fabry-Perot interferometers, during periods of 1986 - 1991 in Thule Air Base and of 1986 - 1994 in Sondre Stromfjord. Some features noted in this study are as follows: (1 The correlation between the solar activity and the measured thermospheric temperature is highest in the case of 3¡ÂKp¡Â4 in Thule, and increases with tile geomagnetic activity in Sondre Stromfjord. (2 The measured temperatures at Thule is generally higher than those at Sondre Stromfjord, but the latter shows steeper slope with the solar activity. (3 The harmonic analysis shows that the diurnal variation(24 hrs is the main feature of the daily temperature variation with a temperature peak at about 13 - 14 LT (LT = UT-4. However, the semi-diurnal variation is evident during the period of weak sole. activity. (4 Generally the predicted temperatures from both MSIS86 and VSH models are lower than the measured temperature, and this discrepancy grows as the solar activity increases. Therefore, we urge modelers to develope a new thermospheric model utilizing broader sets of measurements, especially for high solar activity.

  2. Low-latitude expressions of high-latitude forcing during Heinrich Stadial 1 and the Younger Dryas in northern South America

    Science.gov (United States)

    Bahr, André; Hoffmann, Julia; Schönfeld, Joachim; Schmidt, Matthew W.; Nürnberg, Dirk; Batenburg, Sietske J.; Voigt, Silke

    2018-01-01

    Changes in Atlantic Meridional Overturning Circulation (AMOC) strength exert a major influence on global atmospheric circulation patterns. However, the pacing and mechanisms of low-latitude responses to high-latitude forcing are insufficiently constrained so far. To elucidate the interaction of atmospheric and oceanic forcing in tropical South America during periods of major AMOC reductions (Heinrich Stadial 1 and the Younger Dryas) we generated a high-resolution foraminiferal multi-proxy record from off the Orinoco River based on Ba/Ca and Mg/Ca ratios, as well as stable isotope measurements. The data clearly indicate a three-phased structure of HS1 based on the reconfiguration of ocean currents in the tropical Atlantic Ocean. The initial phase (HS1a) is characterized by a diminished North Brazil Current, a southward displacement of the ITCZ, and moist conditions dominating northeastern Brazil. During subsequent HS1b, the NBC was even more diminished or yet reversed and the ITCZ shifted to its southernmost position. Hence, dryer conditions prevailed in northern South America, while eastern Brazil experienced maximally wet conditions. During the final stage, HS1c, conditions are similar to HS1a. The YD represents a smaller amplitude version of HS1 with a southward-shifted ITCZ. Our findings imply that the low-latitude continental climate response to high-latitude forcing is mediated by reconfigurations of surface ocean currents in low latitudes. Our new records demonstrate the extreme sensitivity of the terrestrial realm in tropical South America to abrupt perturbations in oceanic circulation during periods of unstable climate conditions.

  3. New advantages of the combined GPS and GLONASS observations for high-latitude ionospheric irregularities monitoring: case study of June 2015 geomagnetic storm

    Science.gov (United States)

    Cherniak, Iurii; Zakharenkova, Irina

    2017-05-01

    Monitoring, tracking and nowcasting of the ionospheric plasma density disturbances using dual-frequency measurements of the Global Positioning System (GPS) signals are effectively carried out during several decades. Recent rapid growth and modernization of the ground-based segment gives an opportunity to establish a great database consisting of more than 6000 stations worldwide which provide GPS signals measurements with an open access. Apart of the GPS signals, at least two-third of these stations receive simultaneously signals transmitted by another Global Navigation Satellite System (GNSS)—the Russian system GLONASS. Today, GLONASS signal measurements are mainly used in navigation and geodesy only and very rarely for ionosphere research. We present the first results demonstrating advantages of using several independent but compatible GNSS systems like GPS and GLONASS for improvement of the permanent monitoring of the high-latitude ionospheric irregularities. For the first time, the high-resolution two-dimensional maps of ROTI perturbation were made using not only GPS but also GLONASS measurements. We extend the use of the ROTI maps for analyzing ionospheric irregularities distribution. We demonstrate that the meridional slices of the ROTI maps can be effectively used to study the occurrence and temporal evolution of the ionospheric irregularities. The meridional slices of the geographical sectors with a high density of the GPS and GLONASS measurements can represent spatio-temporal dynamics of the intense ionospheric plasma density irregularities with very high resolution, and they can be effectively used for detailed study of the space weather drivers on the processes of the ionospheric irregularities generation, development and their lifetimes. Using a representative database of 5800 ground-based GNSS stations located worldwide, we have investigated the occurrence of the high-latitude ionospheric plasma density irregularities during the geomagnetic storm of

  4. The First in situ Observation of Kelvin-Helmholtz Waves at High-Latitude Magnetopause during Strongly Dawnward Interplanetary Magnetic Field Conditions

    Science.gov (United States)

    Hwang, K.-J.; Goldstein, M. L.; Kuznetsova, M. M.; Wang, Y.; Vinas, A. F.; Sibeck, D. G.

    2012-01-01

    We report the first in situ observation of high-latitude magnetopause (near the northern duskward cusp) Kelvin-Helmholtz waves (KHW) by Cluster on January 12, 2003, under strongly dawnward interplanetary magnetic field (IMF) conditions. The fluctuations unstable to Kelvin-Helmholtz instability (KHI) are found to propagate mostly tailward, i.e., along the direction almost 90 deg. to both the magnetosheath and geomagnetic fields, which lowers the threshold of the KHI. The magnetic configuration across the boundary layer near the northern duskward cusp region during dawnward IMF is similar to that in the low-latitude boundary layer under northward IMF, in that (1) both magnetosheath and magnetospheric fields across the local boundary layer constitute the lowest magnetic shear and (2) the tailward propagation of the KHW is perpendicular to both fields. Approximately 3-hour-long periods of the KHW during dawnward IMF are followed by the rapid expansion of the dayside magnetosphere associated with the passage of an IMF discontinuity that characterizes an abrupt change in IMF cone angle, Phi = acos (B(sub x) / absolute value of Beta), from approx. 90 to approx. 10. Cluster, which was on its outbound trajectory, continued observing the boundary waves at the northern evening-side magnetopause during sunward IMF conditions following the passage of the IMF discontinuity. By comparing the signatures of boundary fluctuations before and after the IMF discontinuity, we report that the frequencies of the most unstable KH modes increased after the discontinuity passed. This result demonstrates that differences in IMF orientations (especially in f) are associated with the properties of KHW at the high-latitude magnetopause due to variations in thickness of the boundary layer, and/or width of the KH-unstable band on the surface of the dayside magnetopause.

  5. Early season lightning storms followed by vapor pressure deficit anomalies contributed to an extreme wildfire season near the high latitude treeline in Northwest Canada in 2014

    Science.gov (United States)

    Veraverbeke, S.; Worthy, D. E. J.; Chan, D.; Chan, E.; Wiggins, E. B.; Miller, C. E.; Henderson, J.; Tosca, M. G., Jr.; Randerson, J. T.

    2015-12-01

    Fires are the most important landscape disturbance in the boreal forest. Fire location and extent in boreal ecosystems highly depend on ignitions by lightning and periods of high vapor pressure deficit (VPD) that promote the spread of the fires. We show, using fire perimeter and remotely sensed burned area, that during the 2014 fire season, the Northwest Territories in Canada experienced its most severe fire season since the beginning of the fire perimeter record in 1971. Using a pyrogenic carbon consumption model driven by remotely sensed tree cover and burn severity, and meteorological reanalysis data, we estimate total carbon emissions of 136 (SE = 25) Tg for the entire territory. We also found anomalously large fires relatively close (0-300 km) to the high latitude treeline where sparse black spruce forests transition into tundra, ecosystems that are traditionally less affected by fire disturbance. This area received below-average winter precipitation and experienced an early snow melt in 2014. Using data from the Canadian Lightning Detection Network we show that many of these fires were ignited during lightning storms in May and June, and expanded during periods of anomalously high VPD in June and July. Fires that were ignited before July 1 accounted for approximately 76% of the total annual burned area. We hypothesize that the extent and northward expansion of boreal fires, driven by climatic anomalies in lightning and VPD, may accelerate northward species migration with climate change. We also show, using plume heights retrieved from the Multi-angle Imaging Spectroradiometer (MISR), that maximum plume injection heights in 2014 were on average more than 300 m higher compared to observations from other years. These high injection heights combined with the high latitude location of the fires increase the potential for northward long-range transport of black carbon emissions towards Greenland and other vulnerable components of the northern cryosphere.

  6. Spatio-temporal analysis of the accuracy of tropical multisatellite precipitation analysis 3B42 precipitation data in mid-high latitudes of China.

    Directory of Open Access Journals (Sweden)

    Yancong Cai

    Full Text Available Satellite-based precipitation data have contributed greatly to quantitatively forecasting precipitation, and provides a potential alternative source for precipitation data allowing researchers to better understand patterns of precipitation over ungauged basins. However, the absence of calibration satellite data creates considerable uncertainties for The Tropical Rainfall Measuring Mission (TRMM Multisatellite Precipitation Analysis (TMPA 3B42 product over high latitude areas beyond the TRMM satellites latitude band (38°NS. This study attempts to statistically assess TMPA V7 data over the region beyond 40°NS using data obtained from numerous weather stations in 1998-2012. Comparative analysis at three timescales (daily, monthly and annual scale indicates that adoption of a monthly adjustment significantly improved correlation at a larger timescale increasing from 0.63 to 0.95; TMPA data always exhibits a slight overestimation that is most serious at a daily scale (the absolute bias is 103.54%. Moreover, the performance of TMPA data varies across all seasons. Generally, TMPA data performs best in summer, but worst in winter, which is likely to be associated with the effects of snow/ice-covered surfaces and shortcomings of precipitation retrieval algorithms. Temporal and spatial analysis of accuracy indices suggest that the performance of TMPA data has gradually improved and has benefited from upgrades; the data are more reliable in humid areas than in arid regions. Special attention should be paid to its application in arid areas and in winter with poor scores of accuracy indices. Also, it is clear that the calibration can significantly improve precipitation estimates, the overestimation by TMPA in TRMM-covered area is about a third as much as that in no-TRMM area for monthly and annual precipitation. The systematic evaluation of TMPA over mid-high latitudes provides a broader understanding of satellite-based precipitation estimates, and these

  7. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  8. Dynamical Polar Warming Amplification and a New Climate Feedback Analysis Framework

    Science.gov (United States)

    Cai, M.; Lu, J.

    2008-12-01

    An idealized coupled general circulation model is used to demonstrate that the surface warming due the doubling of CO2 can still be stronger in high latitudes than in low latitudes even without the negative evaporation feedback in low latitudes and positive ice-albedo feedback in high latitudes, as well as without the poleward latent heat transport. The new climate feedback analysis method formulated in Lu and Cai (2008) is used to isolate contributions to the total temperature change obtained with the full GCM model from both radiative and non-radiative feedback processes. The new feedback analysis method considers not only feedbacks that directly affect the TOA radiative fluxes but also those feedbacks that do not directly affect the TOA radiation (such as vertical convections and poleward energy transport). The feedback analysis reveals that the net effect of the external and water-vapor induced radiative energy flux perturbations gives rise a temperature change pattern showing a stronger warming in low latitudes than in high latitudes at the surface and throughout the troposphere and a cooling in the polar upper troposphere and in the stratosphere. The low latitude warming reduction and high-latitude amplification due to non-radiative energy flux perturbations, or dynamical feedbacks, revert the meridionally decreasing warming pattern due to radiative energy flux perturbations at the surface and in the lower troposphere, but not be able to do so in the upper troposphere. As a result, the final warming pattern shows the co-existence of a reduction of the meridional temperature gradient in the lower troposphere and at the surface with an increase of the meridional temperature gradient in the upper troposphere. In terms of the global mean, the external and water-vapor induced radiative energy flux perturbations cause the strongest warming at the surface and strongest cooling in the stratosphere sandwiched with a vertically decreasing warming profile from the

  9. Regional Contrasts of the Warming Rate over Land Significantly Depend on the Calculation Methods of Mean Air Temperature

    Science.gov (United States)

    Wang, Kaicun; Zhou, Chunlüe

    2015-01-01

    Global analyses of surface mean air temperature (Tm) are key datasets for climate change studies and provide fundamental evidences for global warming. However, the causes of regional contrasts in the warming rate revealed by such datasets, i.e., enhanced warming rates over the northern high latitudes and the “warming hole” over the central U.S., are still under debate. Here we show these regional contrasts depend on the calculation methods of Tm. Existing global analyses calculate Tm from daily minimum and maximum temperatures (T2). We found that T2 has a significant standard deviation error of 0.23 °C/decade in depicting the regional warming rate from 2000 to 2013 but can be reduced by two-thirds using Tm calculated from observations at four specific times (T4), which samples diurnal cycle of land surface air temperature more often. From 1973 to 1997, compared with T4, T2 significantly underestimated the warming rate over the central U.S. and overestimated the warming rate over the northern high latitudes. The ratio of the warming rate over China to that over the U.S. reduces from 2.3 by T2 to 1.4 by T4. This study shows that the studies of regional warming can be substantially improved by T4 instead of T2. PMID:26198976

  10. Fast pulse amplifier

    International Nuclear Information System (INIS)

    Lepetit, J.; Poussier, E.

    1984-01-01

    This amplifier comprises an inverter transformer, the primary circuit of which receives a pulse and the secondary circuit of which is connected to several amplifying elements in parallel. The inverter transformer is made of coaxial cable segments winded around a magnetic torus; the cable cores connected in series constitute the primary circuit and the braiding of cables, connected in parallel, are the secondary circuit. The transformer comprises, besides, delay lines in series with each braiding of the secondary circuit, these ones are such that pulses issued from each braiding arrive together to the secondary circuit connectors. This invention applies, noticeably in the case of a high voltage amplifier, to the control of deflection blocks of particles used in medicine or in particle accelerators [fr

  11. A micropower electrocardiogram amplifier.

    Science.gov (United States)

    Fay, L; Misra, V; Sarpeshkar, R

    2009-10-01

    We introduce an electrocardiogram (EKG) preamplifier with a power consumption of 2.8 muW, 8.1 muVrms input-referred noise, and a common-mode rejection ratio of 90 dB. Compared to previously reported work, this amplifier represents a significant reduction in power with little compromise in signal quality. The improvement in performance may be attributed to many optimizations throughout the design including the use of subthreshold transistor operation to improve noise efficiency, gain-setting capacitors versus resistors, half-rail operation wherever possible, optimal power allocations among amplifier blocks, and the sizing of devices to improve matching and reduce noise. We envision that the micropower amplifier can be used as part of a wireless EKG monitoring system powered by rectified radio-frequency energy or other forms of energy harvesting like body vibration and body heat.

  12. Global warming

    CERN Document Server

    Hulme, M

    1998-01-01

    Global warming-like deforestation, the ozone hole and the loss of species- has become one of the late 20the century icons of global environmental damage. The threat, is not the reality, of such a global climate change has motivated governments. businesses and environmental organisations, to take serious action ot try and achieve serious control of the future climate. This culminated last December in Kyoto in the agreement for legally-binding climate protocol. In this series of three lectures I will provide a perspective on the phenomenon of global warming that accepts the scientific basis for our concern, but one that also recognises the dynamic interaction between climate and society that has always exited The future will be no different. The challenge of global warning is not to pretend it is not happening (as with some pressure groups), nor to pretend it threatens global civilisation (as with other pressure groups), and it is not even a challenge to try and stop it from happening-we are too far down the ro...

  13. Assessment of Non-Point Source Total Phosphorus Pollution from Different Land Use and Soil Types in a Mid-High Latitude Region of China

    Directory of Open Access Journals (Sweden)

    Zhiwei Wang

    2016-11-01

    Full Text Available The transport characteristics of phosphorus in soil and the assessment of its environmental risk have become hot topics in the environmental and agricultural fields. The Sanjiang Plain is an important grain production base in China, and it is characterised by serious land use change caused by large-scale agricultural exploitation. Agricultural inputs and tillage management have destroyed the soil nutrient balance formed over long-term conditions. There are few studies on non-point source phosphorus pollution in the Sanjiang Plain, which is the largest swampy low plain in a mid-high-latitude region in China. Most studies have focused on the water quality of rivers in marsh areas, or the export mechanism of phosphorus from specific land uses. They were conducted using experimental methods or empirical models, and need further development towards mechanism models and the macro-scale. The question is how to find a way to couple processes in phosphorus cycling and a distributed hydrological model considering local hydrological features. In this study, we report an attempt to use a distributed phosphorus transport model to analyse non-point source total phosphorus pollution from different land uses and soil types on the Sanjiang Plain. The total phosphorus concentration generally shows an annually increasing trend in the study area. The total phosphorus load intensity is heterogeneous in different land use types and different soil types. The average total phosphorus load intensity of different land use types can be ranked in descending order from paddy field, dry land, wetlands, grassland, and forestland. The average total phosphorus load intensity of different soil types can be ranked in descending order: paddy soil, bog soil, planosol, meadow soil, black soil, and dark brown earth. The dry land and paddy fields account for the majority of total phosphorus load in the study area. This is mainly caused by extensive use of phosphate fertilizer on the

  14. A Statistical study of the Doppler spectral width of high-latitude ionospheric F-region echoes recorded with SuperDARN coherent HF radars

    Directory of Open Access Journals (Sweden)

    J.-P. Villain

    Full Text Available The HF radars of the Super Dual Auroral Radar Network (SuperDARN provide measurements of the E × B drift of ionospheric plasma over extended regions of the high-latitude ionosphere. We have conducted a statistical study of the associated Doppler spectral width of ionospheric F-region echoes. The study has been conducted with all available radars from the Northern Hemisphere for 2 specific periods of time. Period 1 corresponds to the winter months of 1994, while period 2 covers October 1996 to March 1997. The distributions of data points and average spectral width are presented as a function of Magnetic Latitude and Magnetic Local Time. The databases are very consistent and exhibit the same features. The most stringent features are: a region of very high spectral width, collocated with the ionospheric LLBL/cusp/mantle region; an oval shaped region of high spectral width, whose equator-ward boundary matches the poleward limit of the Holzworth and Meng auroral oval. A simulation has been conducted to evaluate the geometrical and instrumental effects on the spectral width. It shows that these effects cannot account for the observed spectral features. It is then concluded that these specific spectral width characteristics are the signature of ionospheric/magnetospheric coupling phenomena.

    Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; ionospheric irregularities

  15. Generation of the lower-thermospheric vertical wind estimated with the EISCAT KST radar at high latitudes during periods of moderate geomagnetic disturbance

    Directory of Open Access Journals (Sweden)

    S. Oyama

    2008-06-01

    Full Text Available Lower-thermospheric winds at high latitudes during moderately-disturbed geomagnetic conditions were studied using data obtained with the European Incoherent Scatter (EISCAT Kiruna-Sodankylä-Tromsø (KST ultrahigh frequency (UHF radar system on 9–10 September 2004. The antenna-beam configuration was newly designed to minimize the estimated measurement error of the vertical neutral-wind speed in the lower thermosphere. This method was also available to estimate the meridional and zonal components. The vertical neutral-wind speed at 109 km, 114 km, and 120 km heights showed large upward motions in excess of 30 m s−1 in association with an ionospheric heating event. Large downward speeds in excess of −30 m s−1 were also observed before and after the heating event. The meridional neutral-wind speed suddenly changed its direction from equatorward to poleward when the heating event began, and then returned equatorward coinciding with a decrease in the heating event. The magnetometer data from northern Scandinavia suggested that the center of the heated region was located about 80 km equatorward of Tromsø. The pressure gradient caused the lower-thermospheric wind to accelerate obliquely upward over Tromsø in the poleward direction. Acceleration of the neutral wind flowing on a vertically tilted isobar produced vertical wind speeds larger by more than two orders of magnitude than previously predicted, but still an order of magnitude smaller than observed speeds.

  16. Inconclusive Predictions and Contradictions: A Lack of Consensus on Seed Germination Response to Climate Change at High Altitude and High Latitude

    Directory of Open Access Journals (Sweden)

    Ganesh K. Jaganathan

    2016-01-01

    Full Text Available Climate change directly affects arctic-alpine plants and acute responses to increased temperatures may be seen in their reproductive fitness and germination ability. However, uncertainties prevail in predicting whether a future warmer climate favors or hampers seed germination in high latitude and high altitude soils and seed germination research in such systems has not been able to provide generalizable patterns of response. The available literature on this subject has been conducted at various locations contributing to difficulties in predicting the response of arctic-alpine seeds to climate change. Here, we show that discrepancies in seed collection, dormancy breaking treatments, and germination conditions found in the published literature are possible reasons for our inability to draw large scale conclusions. We explore how these factors influence the results and highlight the fact that many of the previous investigations have reported the effects of warmer temperature, rather than a warmer climate and all the associated complex environmental interactions, on seed germination. We recommend that long-term monitoring of seed response to treatments that mimic the present and future alpine climate is likely to produce more ecologically meaningful insights and suggest several practical steps that researchers can take that would facilitate greater coherence between studies.

  17. Generation of the lower-thermospheric vertical wind estimated with the EISCAT KST radar at high latitudes during periods of moderate geomagnetic disturbance

    Directory of Open Access Journals (Sweden)

    S. Oyama

    2008-06-01

    Full Text Available Lower-thermospheric winds at high latitudes during moderately-disturbed geomagnetic conditions were studied using data obtained with the European Incoherent Scatter (EISCAT Kiruna-Sodankylä-Tromsø (KST ultrahigh frequency (UHF radar system on 9–10 September 2004. The antenna-beam configuration was newly designed to minimize the estimated measurement error of the vertical neutral-wind speed in the lower thermosphere. This method was also available to estimate the meridional and zonal components. The vertical neutral-wind speed at 109 km, 114 km, and 120 km heights showed large upward motions in excess of 30 m s−1 in association with an ionospheric heating event. Large downward speeds in excess of −30 m s−1 were also observed before and after the heating event. The meridional neutral-wind speed suddenly changed its direction from equatorward to poleward when the heating event began, and then returned equatorward coinciding with a decrease in the heating event. The magnetometer data from northern Scandinavia suggested that the center of the heated region was located about 80 km equatorward of Tromsø. The pressure gradient caused the lower-thermospheric wind to accelerate obliquely upward over Tromsø in the poleward direction. Acceleration of the neutral wind flowing on a vertically tilted isobar produced vertical wind speeds larger by more than two orders of magnitude than previously predicted, but still an order of magnitude smaller than observed speeds.

  18. A Statistical study of the Doppler spectral width of high-latitude ionospheric F-region echoes recorded with SuperDARN coherent HF radars

    Directory of Open Access Journals (Sweden)

    J.-P. Villain

    2002-11-01

    Full Text Available The HF radars of the Super Dual Auroral Radar Network (SuperDARN provide measurements of the E × B drift of ionospheric plasma over extended regions of the high-latitude ionosphere. We have conducted a statistical study of the associated Doppler spectral width of ionospheric F-region echoes. The study has been conducted with all available radars from the Northern Hemisphere for 2 specific periods of time. Period 1 corresponds to the winter months of 1994, while period 2 covers October 1996 to March 1997. The distributions of data points and average spectral width are presented as a function of Magnetic Latitude and Magnetic Local Time. The databases are very consistent and exhibit the same features. The most stringent features are: a region of very high spectral width, collocated with the ionospheric LLBL/cusp/mantle region; an oval shaped region of high spectral width, whose equator-ward boundary matches the poleward limit of the Holzworth and Meng auroral oval. A simulation has been conducted to evaluate the geometrical and instrumental effects on the spectral width. It shows that these effects cannot account for the observed spectral features. It is then concluded that these specific spectral width characteristics are the signature of ionospheric/magnetospheric coupling phenomena.Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; ionospheric irregularities

  19. An NDVI-Based Vegetation Phenology Is Improved to be More Consistent with Photosynthesis Dynamics through Applying a Light Use Efficiency Model over Boreal High-Latitude Forests

    Directory of Open Access Journals (Sweden)

    Siheng Wang

    2017-07-01

    Full Text Available Remote sensing of high-latitude forests phenology is essential for understanding the global carbon cycle and the response of vegetation to climate change. The normalized difference vegetation index (NDVI has long been used to study boreal evergreen needleleaf forests (ENF and deciduous broadleaf forests. However, the NDVI-based growing season is generally reported to be longer than that based on gross primary production (GPP, which can be attributed to the difference between greenness and photosynthesis. Instead of introducing environmental factors such as land surface or air temperature like previous studies, this study attempts to make VI-based phenology more consistent with photosynthesis dynamics through applying a light use efficiency model. NDVI (MOD13C2 was used as a proxy for both fractional of absorbed photosynthetically active radiation (APAR and light use efficiency at seasonal time scale. Results show that VI-based phenology is improved towards tracking seasonal GPP changes more precisely after applying the light use efficiency model compared to raw NDVI or APAR, especially over ENF.

  20. Excitation thresholds of field-aligned irregularities and associated ionospheric hysteresis at very high latitudes observed using SPEAR-induced HF radar backscatter

    Directory of Open Access Journals (Sweden)

    D. M. Wright

    2009-07-01

    Full Text Available On 10 October 2006 the SPEAR high power radar facility was operated in a power-stepping mode where both CUTLASS radars were detecting backscatter from the SPEAR-induced field-aligned irregularities (FAIs. The effective radiated power of SPEAR was varied from 1–10 MW. The aim of the experiment was to investigate the power thresholds for excitation (Pt and collapse (Pc of artificially-induced FAIs in the ionosphere over Svalbard. It was demonstrated that FAI could be excited by a SPEAR ERP of only 1 MW, representing only 1/30th of SPEAR's total capability, and that once created the irregularities could be maintained for even lower powers. The experiment also demonstrated that the very high latitude ionosphere exhibits hysteresis, where the down-going part of the power cycle provided a higher density of irregularities than for the equivalent part of the up-going cycle. Although this second result is similar to that observed previously by CUTLASS in conjunction with the Tromsø heater, the same is not true for the equivalent incoherent scatter measurements. The EISCAT Svalbard Radar (ESR failed to detect any hysteresis in the plasma parameters over Svalbard in stark contract with the measurements made using the Tromsø UHF.

  1. Crop pests and pathogens move polewards in a warming world

    Science.gov (United States)

    Bebber, Daniel P.; Ramotowski, Mark A. T.; Gurr, Sarah J.

    2013-11-01

    Global food security is threatened by the emergence and spread of crop pests and pathogens. Spread is facilitated primarily by human transportation, but there is increasing concern that climate change allows establishment in hitherto unsuitable regions. However, interactions between climate change, crops and pests are complex, and the extent to which crop pests and pathogens have altered their latitudinal ranges in response to global warming is largely unknown. Here, we demonstrate an average poleward shift of 2.7+/-0.8kmyr-1 since 1960, in observations of hundreds of pests and pathogens, but with significant variation in trends among taxonomic groups. Observational bias, where developed countries at high latitudes detect pests earlier than developing countries at low latitudes, would result in an apparent shift towards the Equator. The observed positive latitudinal trends in many taxa support the hypothesis of global warming-driven pest movement.

  2. Electronic amplifiers for automatic compensators

    CERN Document Server

    Polonnikov, D Ye

    1965-01-01

    Electronic Amplifiers for Automatic Compensators presents the design and operation of electronic amplifiers for use in automatic control and measuring systems. This book is composed of eight chapters that consider the problems of constructing input and output circuits of amplifiers, suppression of interference and ensuring high sensitivity.This work begins with a survey of the operating principles of electronic amplifiers in automatic compensator systems. The succeeding chapters deal with circuit selection and the calculation and determination of the principal characteristics of amplifiers, as

  3. Simplified design of IC amplifiers

    CERN Document Server

    Lenk, John

    1996-01-01

    Simplified Design of IC Amplifiers has something for everyone involved in electronics. No matter what skill level, this book shows how to design and experiment with IC amplifiers. For experimenters, students, and serious hobbyists, this book provides sufficient information to design and build IC amplifier circuits from 'scratch'. For working engineers who design amplifier circuits or select IC amplifiers, the book provides a variety of circuit configurations to make designing easier.Provides basics for all phases of practical design.Covers the most popular forms for amplif

  4. Quantifying global soil carbon losses in response to warming

    Science.gov (United States)

    Crowther, T. W.; Todd-Brown, K. E. O.; Rowe, C. W.; Wieder, W. R.; Carey, J. C.; Machmuller, M. B.; Snoek, B. L.; Fang, S.; Zhou, G.; Allison, S. D.; Blair, J. M.; Bridgham, S. D.; Burton, A. J.; Carrillo, Y.; Reich, P. B.; Clark, J. S.; Classen, A. T.; Dijkstra, F. A.; Elberling, B.; Emmett, B. A.; Estiarte, M.; Frey, S. D.; Guo, J.; Harte, J.; Jiang, L.; Johnson, B. R.; Kröel-Dulay, G.; Larsen, K. S.; Laudon, H.; Lavallee, J. M.; Luo, Y.; Lupascu, M.; Ma, L. N.; Marhan, S.; Michelsen, A.; Mohan, J.; Niu, S.; Pendall, E.; Peñuelas, J.; Pfeifer-Meister, L.; Poll, C.; Reinsch, S.; Reynolds, L. L.; Schmidt, I. K.; Sistla, S.; Sokol, N. W.; Templer, P. H.; Treseder, K. K.; Welker, J. M.; Bradford, M. A.

    2016-12-01

    The majority of the Earth’s terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  5. Quantifying global soil carbon losses in response to warming.

    Science.gov (United States)

    Crowther, T W; Todd-Brown, K E O; Rowe, C W; Wieder, W R; Carey, J C; Machmuller, M B; Snoek, B L; Fang, S; Zhou, G; Allison, S D; Blair, J M; Bridgham, S D; Burton, A J; Carrillo, Y; Reich, P B; Clark, J S; Classen, A T; Dijkstra, F A; Elberling, B; Emmett, B A; Estiarte, M; Frey, S D; Guo, J; Harte, J; Jiang, L; Johnson, B R; Kröel-Dulay, G; Larsen, K S; Laudon, H; Lavallee, J M; Luo, Y; Lupascu, M; Ma, L N; Marhan, S; Michelsen, A; Mohan, J; Niu, S; Pendall, E; Peñuelas, J; Pfeifer-Meister, L; Poll, C; Reinsch, S; Reynolds, L L; Schmidt, I K; Sistla, S; Sokol, N W; Templer, P H; Treseder, K K; Welker, J M; Bradford, M A

    2016-11-30

    The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  6. Exploiting UV lambertian equivalent reflectivity data to infer changes in cloudiness and sea-ice in southern middle and high latitudes

    Science.gov (United States)

    Damiani, Alessandro

    2015-04-01

    Lambertian equivalent reflectivity (LER) ultraviolet (UV) data are routinely retrieved from many satellite-based instruments. Besides their original primarily function related to the retrieval of the ozone data, they also demonstrated to be useful as a cloudiness proxy comparable with data recorded from ground-based instruments, as well as for tracking ice/snow changes at high latitudes. LER time series spanning more than three decades can be retrieved from TOMS/OMI instruments although concerns related to the EP TOMS scan mirror degradation exist. Therefore, recently additional multi-satellite-based LER datasets have been created from SBUV instruments in the frame of the NASA MEaSUREs Program (Herman et al. 2013). In this presentation we report some recent applications of both datasets over southern middle and high latitudes focusing on cloudiness, surface UV and sea-ice. LER data have been analyzed over eight locations spanning from about 18° (north of Chile) to 62° S (Antarctic peninsula) covering years 1978-2011. Generally the distribution of the reflectivity of both TOMS datasets is similar. On the other hand, OMI LER data differ from TOMS ones in almost all locations. Daily CMF values from ground-based global solar irradiance measurements have been compared with OMI LER-based CMF data. The northernmost and southernmost locations characterized by prevalent clear sky and winter snow conditions, respectively, showed the worse agreement while the other stations showed a better correlation. For one location clear sky ground UV index values for have been estimated for years 1979-2011 by means of an empirical reconstruction model based on data recorded by a multichannel radiometer. Then, we exploit satellite LER data for computing actual surface UV by correcting clear sky UV with LER-based CMF data. Besides we also evaluated the cloud cover and the sea ice influence on the reflectivity in the Southern Ocean by comparing the MEaSUREs LER dataset with satellite

  7. Building valve amplifiers

    CERN Document Server

    Jones, Morgan

    2013-01-01

    Building Valve Amplifiers is a unique hands-on guide for anyone working with tube audio equipment--as an electronics hobbyist, audiophile or audio engineer. This 2nd Edition builds on the success of the first with technology and technique revisions throughout and, significantly, a major new self-build project, worked through step-by-step, which puts into practice the principles and techniques introduced throughout the book. Particular attention has been paid to answering questions commonly asked by newcomers to the world of the valve, whether audio enthusiasts tackling their first build or

  8. Low Noise Optical Amplifiers

    Science.gov (United States)

    2010-05-01

    Technical University of Denmark, Oersteds Plads 343, DK-2800 Kgs. Lyngby, Denmark lris@fotonik.dtu.dk, karo@fotonik.dtu.dk Abstract: Impact on the second...1990). 9. P. Kylemark, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Semi-analytic saturation theory of fiber optical parametric amplifiers,” J...a flat broadband gain over 87 nm. 2. Theory In general we consider an electric field consisting of four CW waves, at frequencies ω1 through ω4. In non

  9. Wideband amplifier design

    CERN Document Server

    Hollister, Allen L

    2007-01-01

    In this book, the theory needed to understand wideband amplifier design using the simplest models possible will be developed. This theory will be used to develop algebraic equations that describe particular circuits used in high frequency design so that the reader develops a ""gut level"" understanding of the process and circuit. SPICE and Genesys simulations will be performed to show the accuracy of the algebraic models. By looking at differences between the algebraic equations and the simulations, new algebraic models will be developed that include parameters originally left out of the model

  10. The relationship between small-scale and large-scale ionospheric electron density irregularities generated by powerful HF electromagnetic waves at high latitudes

    Directory of Open Access Journals (Sweden)

    E. D. Tereshchenko

    2006-11-01

    Full Text Available Satellite radio beacons were used in June 2001 to probe the ionosphere modified by a radio beam produced by the EISCAT high-power, high-frequency (HF transmitter located near Tromsø (Norway. Amplitude scintillations and variations of the phase of 150- and 400-MHz signals from Russian navigational satellites passing over the modified region were observed at three receiver sites. In several papers it has been stressed that in the polar ionosphere the thermal self-focusing on striations during ionospheric modification is the main mechanism resulting in the formation of large-scale (hundreds of meters to kilometers nonlinear structures aligned along the geomagnetic field (magnetic zenith effect. It has also been claimed that the maximum effects caused by small-scale (tens of meters irregularities detected in satellite signals are also observed in the direction parallel to the magnetic field. Contrary to those studies, the present paper shows that the maximum in amplitude scintillations does not correspond strictly to the magnetic zenith direction because high latitude drifts typically cause a considerable anisotropy of small-scale irregularities in a plane perpendicular to the geomagnetic field resulting in a deviation of the amplitude-scintillation peak relative to the minimum angle between the line-of-sight to the satellite and direction of the geomagnetic field lines. The variance of the logarithmic relative amplitude fluctuations is considered here, which is a useful quantity in such studies. The experimental values of the variance are compared with model calculations and good agreement has been found. It is also shown from the experimental data that in most of the satellite passes a variance maximum occurs at a minimum in the phase fluctuations indicating that the artificial excitation of large-scale irregularities is minimum when the excitation of small-scale irregularities is maximum.

  11. Density and temperature of energetic electrons in the Earth's magnetotail derived from high-latitude GPS observations during the declining phase of the solar cycle

    Directory of Open Access Journals (Sweden)

    M. H. Denton

    2011-10-01

    Full Text Available Single relativistic-Maxwellian fits are made to high-latitude GPS-satellite observations of energetic electrons for the period January 2006–November 2010; a constellation of 12 GPS space vehicles provides the observations. The derived fit parameters (for energies ~0.1–1.0 MeV, in combination with field-line mapping on the nightside of the magnetosphere, provide a survey of the energetic electron density and temperature distribution in the magnetotail between McIlwain L-values of L=6 and L=22. Analysis reveals the characteristics of the density-temperature distribution of energetic electrons and its variation as a function of solar wind speed and the Kp index. The density-temperature characteristics of the magnetotail energetic electrons are very similar to those found in the outer electron radiation belt as measured at geosynchronous orbit. The energetic electron density in the magnetotail is much greater during increased geomagnetic activity and during fast solar wind. The total electron density in the magnetotail is found to be strongly correlated with solar wind speed and is at least a factor of two greater for high-speed solar wind (VSW=500–1000 km s−1 compared to low-speed solar wind (VSW=100–400 km s−1. These results have important implications for understanding (a how the solar wind may modulate entry into the magnetosphere during fast and slow solar wind, and (b if the magnetotail is a source or a sink for the outer electron radiation belt.

  12. Biogeography of seabirds within a high-latitude ecosystem: Use of a data-assimilative ocean model to assess impacts of mesoscale oceanography

    Science.gov (United States)

    Santora, Jarrod A.; Eisner, Lisa B.; Kuletz, Kathy J.; Ladd, Carol; Renner, Martin; Hunt, George L., Jr.

    2018-02-01

    . Biogeographic assessments of LMEs that integrate top predator distributions resolve critical habitat requirements and will benefit assessment of climate change impacts (e.g., sea-ice loss) predicted to affect high-latitude marine ecosystems.

  13. Estimation of the soil heat flux/net radiation ratio based on spectral vegetation indexes in high-latitude Arctic areas

    International Nuclear Information System (INIS)

    Jacobsen, A.; Hansen, B.U.

    1999-01-01

    The vegetation communities in the Arctic environment are very sensitive to even minor climatic variations and therefore the estimation of surface energy fluxes from high-latitude vegetated areas is an important subject to be pursued. This study was carried out in July-August and used micro meteorological data, spectral reflectance signatures, and vegetation biomass to establish the relation between the soil heat flux/net radiation (G / Rn) ratio and spectral vegetation indices (SVIs). Continuous measurements of soil temperature and soil heat flux were used to calculate the surface ground heat flux by use of conventional methods, and the relation to surface temperature was investigated. Twenty-seven locations were established, and six samples per location, including the measurement of the surface temperature and net radiation to establish the G/Rn ratio and simultaneous spectral reflectance signatures and wet biomass estimates, were registered. To obtain regional reliability, the locations were chosen in order to represent the different Arctic vegetation communities in the study area; ranging from dry tundra vegetation communities (fell fields and dry dwarf scrubs) to moist/wet tundra vegetation communities (snowbeds, grasslands and fens). Spectral vegetation indices, including the simple ratio vegetation index (RVI) and the normalized difference vegetation index (NDVI), were calculated. A comparison of SVIs to biomass proved that RVI gave the best linear expression, and NDVI the best exponential expression. A comparison of SVIs and the surface energy flux ratio G / Rn proved that NDVI gave the best linear expression. SPOT HRV images from July 1989 and 1992 were used to map NDVI and G / Rn at a regional scale. (author)

  14. Topside Electron Density Representations for Middle and High Latitudes: A Topside Parameterization for E-CHAIM Based On the NeQuick

    Science.gov (United States)

    Themens, David R.; Jayachandran, P. T.; Bilitza, Dieter; Erickson, Philip J.; Häggström, Ingemar; Lyashenko, Mykhaylo V.; Reid, Benjamin; Varney, Roger H.; Pustovalova, Ljubov

    2018-02-01

    In this study, we present a topside model representation to be used by the Empirical Canadian High Arctic Ionospheric Model (E-CHAIM). In the process of this, we also present a comprehensive evaluation of the NeQuick's, and by extension the International Reference Ionosphere's, topside electron density model for middle and high latitudes in the Northern Hemisphere. Using data gathered from all available incoherent scatter radars, topside sounders, and Global Navigation Satellite System Radio Occultation satellites, we show that the current NeQuick parameterization suboptimally represents the shape of the topside electron density profile at these latitudes and performs poorly in the representation of seasonal and solar cycle variations of the topside scale thickness. Despite this, the simple, one variable, NeQuick model is a powerful tool for modeling the topside ionosphere. By refitting the parameters that define the maximum topside scale thickness and the rate of increase of the scale height within the NeQuick topside model function, r and g, respectively, and refitting the model's parameterization of the scale height at the F region peak, H0, we find considerable improvement in the NeQuick's ability to represent the topside shape and behavior. Building on these results, we present a new topside model extension of the E-CHAIM based on the revised NeQuick function. Overall, root-mean-square errors in topside electron density are improved over the traditional International Reference Ionosphere/NeQuick topside by 31% for a new NeQuick parameterization and by 36% for a newly proposed topside for E-CHAIM.

  15. Climate change between the mid and late Holocene in northern high latitudes – Part 1: Survey of temperature and precipitation proxy data

    Directory of Open Access Journals (Sweden)

    J. Nilsson

    2010-09-01

    Full Text Available We undertake a study in two parts, where the overall aim is to quantitatively compare results from climate proxy data with results from several climate model simulations from the Paleoclimate Modelling Intercomparison Project for the mid-Holocene period and the pre-industrial, conditions for the pan-arctic region, north of 60° N. In this first paper, we survey the available published local temperature and precipitation proxy records. We also discuss and quantifiy some uncertainties in the estimated difference in climate between the two periods as recorded in the available data. The spatial distribution of available published local proxies has a marked geographical bias towards land areas surrounding the North Atlantic sector, especially Fennoscandia. The majority of the reconstructions are terrestrial, and there is a large over-representation towards summer temperature records. The available reconstructions indicate that the northern high latitudes were warmer in both summer, winter and the in annual mean temperature at the mid-Holocene (6000 BP ± 500 yrs compared to the pre-industrial period (1500 AD ± 500 yrs. For usage in the model-data comparisons (in Part 1, we estimate the calibration uncertainty and also the internal variability in the proxy records, to derive a combined minimum uncertainty in the reconstructed temperature change between the two periods. Often, the calibration uncertainty alone, at a certain site, exceeds the actual reconstructed climate change at the site level. In high-density regions, however, neighbouring records can be merged into a composite record to increase the signal-to-noise ratio. The challenge of producing reliable inferred climate reconstructions for the Holocene cannot be underestimated, considering the fact that the estimated temperature and precipitation fluctuations during this period are in magnitude similar to, or lower than, the uncertainties the reconstructions. We advocate a more widespread

  16. Towards a more detailed representation of high-latitude vegetation in the global land surface model ORCHIDEE (ORC-HL-VEGv1.0

    Directory of Open Access Journals (Sweden)

    A. Druel

    2017-12-01

    Full Text Available Simulation of vegetation–climate feedbacks in high latitudes in the ORCHIDEE land surface model was improved by the addition of three new circumpolar plant functional types (PFTs, namely non-vascular plants representing bryophytes and lichens, Arctic shrubs and Arctic C3 grasses. Non-vascular plants are assigned no stomatal conductance, very shallow roots, and can desiccate during dry episodes and become active again during wet periods, which gives them a larger phenological plasticity (i.e. adaptability and resilience to severe climatic constraints compared to grasses and shrubs. Shrubs have a specific carbon allocation scheme, and differ from trees by their larger survival rates in winter, due to protection by snow. Arctic C3 grasses have the same equations as in the original ORCHIDEE version, but different parameter values, optimised from in situ observations of biomass and net primary productivity (NPP in Siberia. In situ observations of living biomass and productivity from Siberia were used to calibrate the parameters of the new PFTs using a Bayesian optimisation procedure. With the new PFTs, we obtain a lower NPP by 31 % (from 55° N, as well as a lower roughness length (−41 %, transpiration (−33 % and a higher winter albedo (by +3.6 % due to increased snow cover. A simulation of the water balance and runoff and drainage in the high northern latitudes using the new PFTs results in an increase of fresh water discharge in the Arctic ocean by 11 % (+140 km3 yr−1, owing to less evapotranspiration. Future developments should focus on the competition between these three PFTs and boreal tree PFTs, in order to simulate their area changes in response to climate change, and the effect of carbon–nitrogen interactions.

  17. Towards a more detailed representation of high-latitude vegetation in the global land surface model ORCHIDEE (ORC-HL-VEGv1.0)

    Science.gov (United States)

    Druel, Arsène; Peylin, Philippe; Krinner, Gerhard; Ciais, Philippe; Viovy, Nicolas; Peregon, Anna; Bastrikov, Vladislav; Kosykh, Natalya; Mironycheva-Tokareva, Nina

    2017-12-01

    Simulation of vegetation-climate feedbacks in high latitudes in the ORCHIDEE land surface model was improved by the addition of three new circumpolar plant functional types (PFTs), namely non-vascular plants representing bryophytes and lichens, Arctic shrubs and Arctic C3 grasses. Non-vascular plants are assigned no stomatal conductance, very shallow roots, and can desiccate during dry episodes and become active again during wet periods, which gives them a larger phenological plasticity (i.e. adaptability and resilience to severe climatic constraints) compared to grasses and shrubs. Shrubs have a specific carbon allocation scheme, and differ from trees by their larger survival rates in winter, due to protection by snow. Arctic C3 grasses have the same equations as in the original ORCHIDEE version, but different parameter values, optimised from in situ observations of biomass and net primary productivity (NPP) in Siberia. In situ observations of living biomass and productivity from Siberia were used to calibrate the parameters of the new PFTs using a Bayesian optimisation procedure. With the new PFTs, we obtain a lower NPP by 31 % (from 55° N), as well as a lower roughness length (-41 %), transpiration (-33 %) and a higher winter albedo (by +3.6 %) due to increased snow cover. A simulation of the water balance and runoff and drainage in the high northern latitudes using the new PFTs results in an increase of fresh water discharge in the Arctic ocean by 11 % (+140 km3 yr-1), owing to less evapotranspiration. Future developments should focus on the competition between these three PFTs and boreal tree PFTs, in order to simulate their area changes in response to climate change, and the effect of carbon-nitrogen interactions.

  18. Application of Satellite Solar-Induced Chlorophyll Fluorescence to Understanding Large-Scale Variations in Vegetation Phenology and Function Over Northern High Latitude Forests

    Science.gov (United States)

    Jeong, Su-Jong; Schimel, David; Frankenberg, Christian; Drewry, Darren T.; Fisher, Joshua B.; Verma, Manish; Berry, Joseph A.; Lee, Jung-Eun; Joiner, Joanna

    2016-01-01

    This study evaluates the large-scale seasonal phenology and physiology of vegetation over northern high latitude forests (40 deg - 55 deg N) during spring and fall by using remote sensing of solar-induced chlorophyll fluorescence (SIF), normalized difference vegetation index (NDVI) and observation-based estimate of gross primary productivity (GPP) from 2009 to 2011. Based on GPP phenology estimation in GPP, the growing season determined by SIF time-series is shorter in length than the growing season length determined solely using NDVI. This is mainly due to the extended period of high NDVI values, as compared to SIF, by about 46 days (+/-11 days), indicating a large-scale seasonal decoupling of physiological activity and changes in greenness in the fall. In addition to phenological timing, mean seasonal NDVI and SIF have different responses to temperature changes throughout the growing season. We observed that both NDVI and SIF linearly increased with temperature increases throughout the spring. However, in the fall, although NDVI linearly responded to temperature increases, SIF and GPP did not linearly increase with temperature increases, implying a seasonal hysteresis of SIF and GPP in response to temperature changes across boreal ecosystems throughout their growing season. Seasonal hysteresis of vegetation at large-scales is consistent with the known phenomena that light limits boreal forest ecosystem productivity in the fall. Our results suggest that continuing measurements from satellite remote sensing of both SIF and NDVI can help to understand the differences between, and information carried by, seasonal variations vegetation structure and greenness and physiology at large-scales across the critical boreal regions.

  19. Assessment of Evolving TRMM-Based Real-Time Precipitation Estimation Methods and Their Impacts on Hydrologic Prediction in a High-Latitude Basin

    Science.gov (United States)

    Yong, Bin; Hong, Yang; Ren, Li-Liang; Gourley, Jonathan; Huffman, George J.; Chen, Xi; Wang, Wen; Khan, Sadiq I.

    2013-01-01

    The real-time availability of satellite-derived precipitation estimates provides hydrologists an opportunity to improve current hydrologic prediction capability for medium to large river basins. Due to the availability of new satellite data and upgrades to the precipitation algorithms, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis real-time estimates (TMPA-RT) have been undergoing several important revisions over the past ten years. In this study, the changes of the relative accuracy and hydrologic potential of TMPA-RT estimates over its three major evolving periods were evaluated and inter-compared at daily, monthly and seasonal scales in the high-latitude Laohahe basin in China. Assessment results show that the performance of TMPA-RT in terms of precipitation estimation and streamflow simulation was significantly improved after 3 February 2005. Overestimation during winter months was noteworthy and consistent, which is suggested to be a consequence from interference of snow cover to the passive microwave retrievals. Rainfall estimated by the new version 6 of TMPA-RT starting from 1 October 2008 to present has higher correlations with independent gauge observations and tends to perform better in detecting rain compared to the prior periods, although it suffers larger mean error and relative bias. After a simple bias correction, this latest dataset of TMPA-RT exhibited the best capability in capturing hydrologic response among the three tested periods. In summary, this study demonstrated that there is an increasing potential in the use of TMPA-RT in hydrologic streamflow simulations over its three algorithm upgrade periods, but still with significant challenges during the winter snowing events.

  20. Superconducting digital logic amplifier

    International Nuclear Information System (INIS)

    Przybysz, J.X.

    1989-01-01

    This paper describes a superconducting digital logic amplifier for interfacing between a Josephson junction logic circuit having output current and a higher voltage semiconductor circuit input. The amplifier comprising: an input terminal for connection to a; an output terminal for connection to a semiconductor circuit input; an input, lower critical current, Josephson junction having first and second terminals; a first series string of at least three lower critical current Josephson junctions. The first series string being connected to the first terminal of the input Josephson junction such that the first series string is in series with the input Josephson junction to provide a series combination. The input terminal being connected to the first terminal of the input Josephson junction, and with the critical current of the lower critical current Josephson junctions of the input Josephson junction and the first series Josephson junctions being less than the output current of the low voltage Josephson junction circuit; a second series string of at least four higher critical current Josephson junctions. The second string being connected in parallel with the series combination to provide parallel strings having an upper common connection and a lower common connection. The lower common connection being connected to the second terminal of the input Josephson junction and the upper common connection being connected to the output terminal; and a pulsed DC current source connected the parallel strings at the upper common connection. The DC current source having a current at least equal to the critical current of the higher critical current Josephson junctions

  1. Global Warming and Energy Transition: A Public Policy Imperative

    Science.gov (United States)

    Stone, G. T.

    2006-12-01

    The historic transition from fossil fuels to alternative energy resources has begun. This development is commonly attributed to increasing energy costs and the need for energy security. Looming ever larger, however, is the issue that will soon drive the third energy revolution: global warming. A preponderance of evidence documents accelerating warming, enlarging impacts, and human causes -- principally combustion of fossil fuels. The carbon dioxide (C02) content of Earth's atmosphere has increased more than 35 percent since the beginning of the industrial revolution and is the highest in 650,000 years. This dramatic rise of C02 and attendant positive feedbacks are already forcing significant impacts worldwide. These include atmospheric warming with shifting climatic and habitat zones, spreading tropical disease, and more extreme weather events; rapid ice loss at high latitude and high altitude; ocean warming and acidification with coral reef bleaching and intensifying tropical storms; rising sea level; and accelerating extinction rates. The 2007 draft report of the Intergovernmental Panel on Climate Change (IPCC) predicts greater warming than in previous models. A tipping point to abrupt climate change may be imminent. It is incumbent upon geoscientists and geoscience educators to assume leadership in addressing this challenge through public outreach and general education. The following topics should be integrated into all appropriate courses: the evidence of global warming and its causes; observed present and predicted future impacts of global warming; mitigation and adaptation strategies; and implications for energy policies and economic opportunities. New entry-level science and general education courses -- such as Climate Change Fundamentals and Energy in Nature, Technology, and Society -- are proving to be effective should be widely developed In addition, by workshops and presentations to civic and business organizations and by demonstrated examples of

  2. Metatronic transistor amplifier

    Science.gov (United States)

    Chettiar, Uday K.; Engheta, Nader

    2015-10-01

    Utilizing the notion of metamaterials, in recent years the concept of a circuit and lumped circuit elements have been extended to the optical domains, providing the paradigm of optical metatronics, i.e., metamaterial-inspired optical nanocircuitry, as a powerful tool for design and study of more complex systems at the nanoscale. In this paper we present a design for a new metatronic element, namely, a metatronic transistor that functions as an amplifier. As shown by our analytical and numerical paper here, this metatronic transistor provides gain as well as isolation between the input and output ports of such two-port device. The cascadability and fan-out aspects of this element are also explored.

  3. Different responses of northern and southern high latitude ionospheric convection to IMF rotations: a case study based on SuperDARN observations

    Directory of Open Access Journals (Sweden)

    D. Ambrosino

    2009-06-01

    Full Text Available We use SuperDARN data to study high-latitude ionospheric convection over a three hour period (starting at 22:00 UT on 2 January 2003, during which the Interplanetary Magnetic Field (IMF flipped between two states, one with By>>|Bz| and one with Bz>0, both with negative Bx. We find, as expected from previous works, that day side ionospheric convection is controlled by the IMF in both hemispheres. For strongly northward IMF, we observed signatures of two reverse cells, both in the Northern Hemisphere (NH and in the Southern Hemisphere (SH, due to lobe reconnection. On one occasion, we also observed in the NH two viscous cells at the sides of the reverse cell pair. For duskward IMF, we observed in the NH a large dusk clockwise cell, accompanied by a smaller dawn cell, and the signature of a corresponding pattern in the SH. On two occasions, a three cell pattern, composed of a large clockwise cell and two viscous cells, was observed in the NH. As regards the timings of the NH and SH convection reconfigurations, we find that the convection reconfiguration from a positive Bz dominated to a positive By dominated pattern occurred almost simultaneously (i.e. within a few minutes in the two hemispheres. On the contrary, the reconfiguration from a By dominated to a northward IMF pattern started in the NH 8–13 min earlier than in the SH. We suggest that part of such a delay can be due to the following mechanism: as IMF Bx<0, the northward-tailward magnetosheath magnetic field reconnects with the magnetospheric field first tailward of the northern cusp and later on tailward of the southern cusp, due to the IMF draping around the magnetopause.

  4. Monitoring Coral Health to Determine Coral Bleaching Response at High Latitude Eastern Australian Reefs: An Applied Model for A Changing Climate

    Directory of Open Access Journals (Sweden)

    Andrew G. Carroll

    2011-09-01

    Full Text Available Limited information is available on the bleaching susceptibility of coral species that dominate high latitude reefs along the eastern seaboard of Australia. The main aims of this study were to: (i monitor coral health and spatial patterns of coral bleaching response at the Solitary Islands Marine Park (SIMP and Lord Howe Island Marine Park (LHIMP, to determine variability of bleaching susceptibility among coral taxa; (ii predict coral bleaching thresholds at 30 °S and 31.5 °S, extrapolated from published bleaching threshold data; and (iii propose a subtropical northern New South Wales coral bleaching model from biological and physical data. Between 2005 and 2007 minor bleaching was observed in dominant coral families including Pocilloporidae, Poritidae and Dendrophylliidae in the SIMP and Pocilloporidae, Poritidae and Acroporidae (Isopora and Montipora spp. in the LHIMP, with a clear difference in bleaching susceptibility found between sites, both within and between locations. Bleaching susceptibility was highest in Porites spp. at the most offshore island site within the SIMP during summer 2005. Patterns of subtropical family bleaching susceptibility within the SIMP and LHIMP differed to those previously reported for the central Great Barrier Reef (GBR. These differences may be due to a number of factors, including temperature history and/or the coral hosts association with different zooxanthellae clades, which may have lower thermal tolerances. An analysis of published estimates of coral bleaching thresholds from the Caribbean, South Africa, GBR and central and northern Pacific regions suggests that the bleaching threshold at 30–31.5 °S ranges between 26.5–26.8 °C. This predicted threshold was confirmed by an extensive coral bleaching event on the world’s southernmost coral reef at Lord Howe Island, during the 2010 austral summer season. These results imply that dominant coral taxa at subtropical reefs along the eastern Australian

  5. Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems.

    Science.gov (United States)

    Wullschleger, Stan D; Epstein, Howard E; Box, Elgene O; Euskirchen, Eugénie S; Goswami, Santonu; Iversen, Colleen M; Kattge, Jens; Norby, Richard J; van Bodegom, Peter M; Xu, Xiaofeng

    2014-07-01

    Earth system models describe the physical, chemical and biological processes that govern our global climate. While it is difficult to single out one component as being more important than another in these sophisticated models, terrestrial vegetation is a critical player in the biogeochemical and biophysical dynamics of the Earth system. There is much debate, however, as to how plant diversity and function should be represented in these models. Plant functional types (PFTs) have been adopted by modellers to represent broad groupings of plant species that share similar characteristics (e.g. growth form) and roles (e.g. photosynthetic pathway) in ecosystem function. In this review, the PFT concept is traced from its origin in the early 1800s to its current use in regional and global dynamic vegetation models (DVMs). Special attention is given to the representation and parameterization of PFTs and to validation and benchmarking of predicted patterns of vegetation distribution in high-latitude ecosystems. These ecosystems are sensitive to changing climate and thus provide a useful test case for model-based simulations of past, current and future distribution of vegetation. Models that incorporate the PFT concept predict many of the emerging patterns of vegetation change in tundra and boreal forests, given known processes of tree mortality, treeline migration and shrub expansion. However, representation of above- and especially below-ground traits for specific PFTs continues to be problematic. Potential solutions include developing trait databases and replacing fixed parameters for PFTs with formulations based on trait co-variance and empirical trait-environment relationships. Surprisingly, despite being important to land-atmosphere interactions of carbon, water and energy, PFTs such as moss and lichen are largely absent from DVMs. Close collaboration among those involved in modelling with the disciplines of taxonomy, biogeography, ecology and remote sensing will be

  6. Modeling of semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  7. An observation-based constraint on permafrost loss as a function of global warming

    Science.gov (United States)

    Chadburn, S. E.; Burke, E. J.; Cox, P. M.; Friedlingstein, P.; Hugelius, G.; Westermann, S.

    2017-04-01

    Permafrost, which covers 15 million km2 of the land surface, is one of the components of the Earth system that is most sensitive to warming. Loss of permafrost would radically change high-latitude hydrology and biogeochemical cycling, and could therefore provide very significant feedbacks on climate change. The latest climate models all predict warming of high-latitude soils and thus thawing of permafrost under future climate change, but with widely varying magnitudes of permafrost thaw. Here we show that in each of the models, their present-day spatial distribution of permafrost and air temperature can be used to infer the sensitivity of permafrost to future global warming. Using the same approach for the observed permafrost distribution and air temperature, we estimate a sensitivity of permafrost area loss to global mean warming at stabilization of million km2 °C-1 (1σ confidence), which is around 20% higher than previous studies. Our method facilitates an assessment for COP21 climate change targets: if the climate is stabilized at 2 °C above pre-industrial levels, we estimate that the permafrost area would eventually be reduced by over 40%. Stabilizing at 1.5 °C rather than 2 °C would save approximately 2 million km2 of permafrost.

  8. Response of ocean ecosystems to climate warming

    Science.gov (United States)

    Sarmiento, J. L.; Slater, R.; Barber, R.; Bopp, L.; Doney, S. C.; Hirst, A. C.; Kleypas, J.; Matear, R.; Mikolajewicz, U.; Monfray, P.; Soldatov, V.; Spall, S. A.; Stouffer, R.

    2004-09-01

    We examine six different coupled climate model simulations to determine the ocean biological response to climate warming between the beginning of the industrial revolution and 2050. We use vertical velocity, maximum winter mixed layer depth, and sea ice cover to define six biomes. Climate warming leads to a contraction of the highly productive marginal sea ice biome by 42% in the Northern Hemisphere and 17% in the Southern Hemisphere, and leads to an expansion of the low productivity permanently stratified subtropical gyre biome by 4.0% in the Northern Hemisphere and 9.4% in the Southern Hemisphere. In between these, the subpolar gyre biome expands by 16% in the Northern Hemisphere and 7% in the Southern Hemisphere, and the seasonally stratified subtropical gyre contracts by 11% in both hemispheres. The low-latitude (mostly coastal) upwelling biome area changes only modestly. Vertical stratification increases, which would be expected to decrease nutrient supply everywhere, but increase the growing season length in high latitudes. We use satellite ocean color and climatological observations to develop an empirical model for predicting chlorophyll from the physical properties of the global warming simulations. Four features stand out in the response to global warming: (1) a drop in chlorophyll in the North Pacific due primarily to retreat of the marginal sea ice biome, (2) a tendency toward an increase in chlorophyll in the North Atlantic due to a complex combination of factors, (3) an increase in chlorophyll in the Southern Ocean due primarily to the retreat of and changes at the northern boundary of the marginal sea ice zone, and (4) a tendency toward a decrease in chlorophyll adjacent to the Antarctic continent due primarily to freshening within the marginal sea ice zone. We use three different primary production algorithms to estimate the response of primary production to climate warming based on our estimated chlorophyll concentrations. The three algorithms give

  9. Warm arctic continents during the Palaeocene Eocene thermal maximum

    Science.gov (United States)

    Weijers, Johan W. H.; Schouten, Stefan; Sluijs, Appy; Brinkhuis, Henk; Sinninghe Damsté, Jaap S.

    2007-09-01

    The Palaeocene-Eocene Thermal Maximum (PETM; ˜55.5 Ma) is a geologically relatively brief episode of extreme warmth. Both deep and surface ocean temperatures increased by up to 5 °C in equatorial waters and up to 8 °C in mid and high latitude waters. From the continents, the annual mean air temperature response during the PETM is still largely unknown, mainly due to a lack of quantitative temperature proxies and sufficient suitable, continuous high resolution records. Recently, a new proxy for continental temperature reconstructions has been proposed, based on the distribution of membrane lipids of bacteria in present-day soils [ J.W.H. Weijers, S. Schouten, J.C. van den Donker, E.C. Hopmans, J.S. Sinninghe Damsté (2007) Environmental controls on bacterial tetraether membrane lipid distribution in soils, Geochimica et Cosmochimica Acta 71, 703-713] and shown to reconstruct annual mean air temperature. In this study we applied this new proxy in an attempt to reconstruct the air temperature in high latitude continental areas during the PETM by analysis of a marine sedimentary sequence obtained from the Lomonosov Ridge in the central Arctic Ocean (Integrated Ocean Drilling Program Expedition 302, Site 004, Hole A). The results indicate a warming of ˜8 °C above background values of ˜17 °C. This warming is coincident with a similar rise in sea surface temperatures documented earlier. Our results thus further confirm the warm conditions in the Arctic, and point to a strongly reduced latitudinal temperature gradient during the PETM.

  10. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability

    Science.gov (United States)

    Tokinaga, Hiroki; Xie, Shang-Ping; Mukougawa, Hitoshi

    2017-01-01

    With amplified warming and record sea ice loss, the Arctic is the canary of global warming. The historical Arctic warming is poorly understood, limiting our confidence in model projections. Specifically, Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing. Here, we show that the concurrent phase shift of Pacific and Atlantic interdecadal variability modes is the major driver for the rapid early 20th-century Arctic warming. Atmospheric model simulations successfully reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early 20th-century Arctic warming is associated with positive SST anomalies over the tropical and North Atlantic and a Pacific SST pattern reminiscent of the positive phase of the Pacific decadal oscillation. Atmospheric circulation changes are important for the early 20th-century Arctic warming. The equatorial Pacific warming deepens the Aleutian low, advecting warm air into the North American Arctic. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. Coupled ocean–atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, negative-to-positive phase shift of the Pacific and Atlantic interdecadal modes. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region. PMID:28559341

  11. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability

    Science.gov (United States)

    Tokinaga, Hiroki; Xie, Shang-Ping; Mukougawa, Hitoshi

    2017-06-01

    With amplified warming and record sea ice loss, the Arctic is the canary of global warming. The historical Arctic warming is poorly understood, limiting our confidence in model projections. Specifically, Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing. Here, we show that the concurrent phase shift of Pacific and Atlantic interdecadal variability modes is the major driver for the rapid early 20th-century Arctic warming. Atmospheric model simulations successfully reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early 20th-century Arctic warming is associated with positive SST anomalies over the tropical and North Atlantic and a Pacific SST pattern reminiscent of the positive phase of the Pacific decadal oscillation. Atmospheric circulation changes are important for the early 20th-century Arctic warming. The equatorial Pacific warming deepens the Aleutian low, advecting warm air into the North American Arctic. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, negative-to-positive phase shift of the Pacific and Atlantic interdecadal modes. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region.

  12. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability.

    Science.gov (United States)

    Tokinaga, Hiroki; Xie, Shang-Ping; Mukougawa, Hitoshi

    2017-06-13

    With amplified warming and record sea ice loss, the Arctic is the canary of global warming. The historical Arctic warming is poorly understood, limiting our confidence in model projections. Specifically, Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing. Here, we show that the concurrent phase shift of Pacific and Atlantic interdecadal variability modes is the major driver for the rapid early 20th-century Arctic warming. Atmospheric model simulations successfully reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early 20th-century Arctic warming is associated with positive SST anomalies over the tropical and North Atlantic and a Pacific SST pattern reminiscent of the positive phase of the Pacific decadal oscillation. Atmospheric circulation changes are important for the early 20th-century Arctic warming. The equatorial Pacific warming deepens the Aleutian low, advecting warm air into the North American Arctic. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, negative-to-positive phase shift of the Pacific and Atlantic interdecadal modes. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region.

  13. Evolutionary and ecological differentiation in the pantropical to warm-temperate seaweed Digenea simplex (Rhodophyta)

    NARCIS (Netherlands)

    Pakker, H; Klerk, H; vanCampen, JH; Olsen, JL; Breeman, AM

    Genetic differentiation among geographic isolates of the pantropical to warm-temperate red alga Digenea simplex (Wulfen) C. Agardh was investigated using random amplified polymorphic DNA (RAPD) markers, crossing studies, and temperature tolerances experiments. Eleven isolates representing

  14. CERN: Energy amplifier

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Even under the heavy burden of responsibility as CERN's Director General from 1989-3 the fertile mind of Carlo Rubbia the scientist was never still. A long-time Rubbia 'hobby' has been the search for new sources of nuclear energy, exploiting knowledge and skills from high energy physics. An initial objective was to adopt heavy ion techniques to induce controlled thermonuclear fusion, but in 1994 this quest changed direction. Putting the problems of thermonuclear fusion aside, Rubbia began to explore an alternative route to energy production through controlled nuclear fission. The idea is to use a particle accelerator producing neutrons by spallation (interaction of particles with a target) to feed a fuel/moderator assembly where the neutrons multiply by fission chain reactions. If the energy liberated becomes substantially greater than that needed to drive the accelerator, the process has a net gain and becomes selfsupporting. Hence the name ''Energy Amplifier'' (EA). Similar systems for energy production or for nuclear waste incineration have been proposed at Los Alamos and in Japan and Russia, but appear to require the prior development of innovative linear accelerators. For Rubbia's Amplifier, the requisite accelerator is a reasonable extrapolation of an existing cyclotron such that at the Swiss Paul Scherrer Institute. Moreover, the EA would require fuel rods very similar to those of conventional reactors, rather than demand-ing new technology using liquid fuel loops (molten salts) with on-line separation of radioactive products. Unlike a reactor, the EA's fission reaction is not self-sustaining: it is sub-critical and needs a continuous supply of neutrons from the accelerator. This makes Chernobyl-type meltdowns unlikely: if the accelerator stops, the reaction stops too. Another major advantage is that the old dream of using thorium as a fuel is now made possible. Thorium is not itself fissile, but under neutron

  15. Fully differential cryogenic transistor amplifier

    Science.gov (United States)

    Beev, Nikolai; Kiviranta, Mikko

    2013-10-01

    We have constructed a dc-coupled differential amplifier capable of operating in the 4.2 K-300 K temperature range. The amplifier can be operated at high-bias setting, where it dissipates 5 mW, has noise temperature TN ≈ 0.7 K at RS ≈ 5 kΩ and >40 MHz bandwidth at 4.2 K bath temperature. The bias setting can be adjusted: at our lowest tested setting the amplifier dissipates 2 MHz bandwidth. The 1/f noise corner frequency is a few times 10 kHz. We foresee the amplifier to have an application in the readout of Superconducting Quantum Interference Devices (SQUIDs), Superconducting Tunnel Junction Detectors (STJs) and Transition Edge Sensors (TESes). We have verified the practical use of the amplifier by reading out a 4.2 K 480-SQUID array with 40 MHz bandwidth and <8 × 10-8 Φ0/Hz1/2 flux noise.

  16. Millimeter-wave power amplifiers

    CERN Document Server

    du Preez, Jaco

    2017-01-01

    This book provides a detailed review of millimeter-wave power amplifiers, discussing design issues and performance limitations commonly encountered in light of the latest research. Power amplifiers, which are able to provide high levels of output power and linearity while being easily integrated with surrounding circuitry, are a crucial component in wireless microwave systems. The book is divided into three parts, the first of which introduces readers to mm-wave wireless systems and power amplifiers. In turn, the second focuses on design principles and EDA concepts, while the third discusses future trends in power amplifier research. The book provides essential information on mm-wave power amplifier theory, as well as the implementation options and technologies involved in their effective design, equipping researchers, circuit designers and practicing engineers to design, model, analyze, test and implement high-performance, spectrally clean and energy-efficient mm-wave systems.

  17. [Phylogenetic diversity and cold-adaptive hydrolytic enzymes of culturable psychrophilic bacteria associated with sea ice from high latitude ocean, Artic].

    Science.gov (United States)

    Yu, Yong; Li, Hui-Rong; Chen, Bo; Zeng, Yin-Xin; He, Jian-Feng

    2006-04-01

    The phylogenetic diversity of culturable psychrophilic bacteria associated with sea ice from high latitude sea (77 degrees 30'N - 81 degrees 12'N), Canadian Basin and Greenland sea Arctic, was investigated. A total of 37 psychrophilic strains were isolated using three different methods of ( i ) spread plate method: 100 microL of each dilution ice-melt sample was spreaded onto the surface of Marine 2216 agar (DIFCO laboratories, Detroit, MI) and incubated for 2 to 6 weeks at 4 degrees C; ( ii ) bath culture and spread plate method: 1 mL of sample was added to 9mL of NSW (unamended natural seawater, 0.2 microm prefiltered and autoclaved) and incubated for 1 months at - 1 degrees C, then spread plate method was used to isolate bacterial strains from the pre-cultured samples; ( iii ) cold shock, bath culture and spread plate method: samples were exposed to - 20 degrees C for 24h, then bacterial strains isolated by bath culture and spread plate method under aerobic conditions. Nearly half of psychrophilic strains are isolated by using method iii . 16S rDNA nearly full-length sequence analysis reveal that psychrophilic strains fall in two phylogenetic divisions, gamma-proteobacteria (in the genera Colwellia, Marinobacter, Shewanella, Thalassomonas, Glaciecola, Marinomonas and Pseudoalteromonas) and Cytophaga-Flexibacter-Bacteroides (in the genera Flavobacterium and Psychroflexus). Nine of bacterial isolates (BSi20007, BSi20497, BSi20517, BSi20537, BSi20170, BSi20001, BSi20002, BSi20675 and BSi20101) quite likely represent novel species (16S rDNA sequence similarity below 97%). One of strains (BSi20002) from Canadian Basin shows 100% sequence similarity to the Antarctic Weddell sea ice isolate Marinobacter sp. ANT8277, suggesting bacteria may have a bipolar distribution at the species level. AF283859 sequences were submitted to the BLAST search program of the National Center for Biotechnology Information website (NCBI, http://www. ncbi. nlm.nih. gov). Twenty sequences

  18. Ocean Heat Uptake Slows 21st Century Surface Warming Driven by Extratropical Cloud Feedbacks

    Science.gov (United States)

    Frey, W.; Maroon, E.; Pendergrass, A. G.; Kay, J. E.

    2017-12-01

    Equilibrium climate sensitivity (ECS), the warming in response to instantaneously doubled CO2, has long been used to compare climate models. In many models, ECS is well correlated with warming produced by transient forcing experiments. Modifications to cloud phase at high latitudes in a state-of-the-art climate model, the Community Earth System Model (CESM), produce a large increase in ECS (1.5 K) via extratropical cloud feedbacks. However, only a small surface warming increase occurs in a realistic 21st century simulation including a full-depth dynamic ocean and the "business as usual" RCP8.5 emissions scenario. In fact, the increase in surface warming is only barely above the internal variability-generated range in the CESM Large Ensemble. The small change in 21st century warming is attributed to subpolar ocean heat uptake in both hemispheres. In the Southern Ocean, the mean-state circulation takes up heat while in the North Atlantic a slowdown in circulation acts as a feedback to slow surface warming. These results show the importance of subpolar ocean heat uptake in controlling the pace of warming and demonstrate that ECS cannot be used to reliably infer transient warming when it is driven by extratropical feedbacks.

  19. Evolution determines how global warming and pesticide exposure will shape predator-prey interactions with vector mosquitoes.

    Science.gov (United States)

    Tran, Tam T; Janssens, Lizanne; Dinh, Khuong V; Op de Beeck, Lin; Stoks, Robby

    2016-07-01

    How evolution may mitigate the effects of global warming and pesticide exposure on predator-prey interactions is directly relevant for vector control. Using a space-for-time substitution approach, we addressed how 4°C warming and exposure to the pesticide endosulfan shape the predation on Culex pipiens mosquitoes by damselfly predators from replicated low- and high-latitude populations. Although warming was only lethal for the mosquitoes, it reduced predation rates on these prey. Possibly, under warming escape speeds of the mosquitoes increased more than the attack efficiency of the predators. Endosulfan imposed mortality and induced behavioral changes (including increased filtering and thrashing and a positional shift away from the bottom) in mosquito larvae. Although the pesticide was only lethal for the mosquitoes, it reduced predation rates by the low-latitude predators. This can be explained by the combination of the evolution of a faster life history and associated higher vulnerabilities to the pesticide (in terms of growth rate and lowered foraging activity) in the low-latitude predators and pesticide-induced survival selection in the mosquitoes. Our results suggest that predation rates on mosquitoes at the high latitude will be reduced under warming unless predators evolve toward the current low-latitude phenotype or low-latitude predators move poleward.

  20. Small signal microwave amplifier design

    CERN Document Server

    Grosch, Theodore

    2000-01-01

    This book explains techniques and examples for designing stable amplifiers for high-frequency applications in which the signal is small and the amplifier circuit is linear. An in-depth discussion of linear network theory provides the foundation needed to develop actual designs. Examples throughout the book will show you how to apply the knowledge gained in each chapter leading to the complex design of low noise amplifiers. Many exercises at the end of each chapter will help students to practice their skills. The solutions to these design problems are available in an accompanying solutions book

  1. Sudden Stratospheric Warming Compendium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sudden Stratospheric Warming Compendium (SSWC) data set documents the stratospheric, tropospheric, and surface climate impacts of sudden stratospheric warmings. This...

  2. Geochemistry of groundwater in front of a warm-based glacier in Southeast Greenland

    DEFF Research Database (Denmark)

    Kristiansen, Søren Munch; Yde, Jacob Clement; Bárcena, Teresa G

    2013-01-01

    Groundwater in front of warm-based glaciers is likely to become a more integrated part of the future proglacial hydrological system at high latitudes due to global warming. Here, we present the first monitoring results of shallow groundwater chemistry and geochemical fingerprinting of glacier...... meltwater in front of a warm-based glacier in Southeast Greenland (Mittivakkat Gletscher, 65 degrees 41 N, 37 degrees 48 W). The groundwater temperature, electrical conductivity and pressure head were monitored from August 2009 to August 2011, and water samples were collected in 2009 and analyzed for major...... ions and water isotopes (D, 18O). The 2yrs of monitoring revealed that major outbursts of glacier water during the ablation season flushed the proglacial aquifer and determined the groundwater quality for the next 2-8 weeks until stable chemical conditions were reached again. Water isotope composition...

  3. Global Warming: A Myth?

    Indian Academy of Sciences (India)

    warming trend. Efforts are on to explain this temperature anomaly and it may take time to say conclusively whether. 'global warming' exists or not. Introduction. Global warming is one ... puted, as atmospheric temperature trends measured by radio- sondes and .... heat and keeping the surroundings warmer. Burning of large.

  4. New Packaging for Amplifier Slabs

    Energy Technology Data Exchange (ETDEWEB)

    Riley, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thorsness, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Suratwala, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Steele, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rogowski, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-18

    The following memo provides a discussion and detailed procedure for a new finished amplifier slab shipping and storage container. The new package is designed to maintain an environment of <5% RH to minimize weathering.

  5. Operational amplifiers theory and design

    CERN Document Server

    Huijsing, Johan

    2017-01-01

    This proven textbook guides readers to a thorough understanding of the theory and design of operational amplifiers (OpAmps). The core of the book presents systematically the design of operational amplifiers, classifying them into a periodic system of nine main overall configurations, ranging from one gain stage up to four or more stages. This division enables circuit designers to recognize quickly, understand, and choose optimal configurations. Characterization of operational amplifiers is given by macro models and error matrices, together with measurement techniques for their parameters. Definitions are given for four types of operational amplifiers depending on the grounding of their input and output ports. Many famous designs are evaluated in depth, using a carefully structured approach enhanced by numerous figures. In order to reinforce the concepts introduced and facilitate self-evaluation of design skills, the author includes problems with detailed solutions, as well as simulation exercises. Provides te...

  6. TARC: Carlo Rubbia's Energy Amplifier

    CERN Multimedia

    Laurent Guiraud

    1997-01-01

    Transmutation by Adiabatic Resonance Crossing (TARC) is Carlo Rubbia's energy amplifier. This CERN experiment demonstrated that long-lived fission fragments, such as 99-TC, can be efficiently destroyed.

  7. Divergent surface and total soil moisture projections under global warming

    Science.gov (United States)

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  8. Recent Global Warming as Observed by AIRS and Depicted in GISSTEMP and MERRA-2

    Science.gov (United States)

    Susskind, Joel; Lee, Jae; Iredell, Lena

    2017-01-01

    AIRS Version-6 monthly mean level-3 surface temperature products confirm the result, depicted in the GISSTEMP dataset, that the earth's surface temperature has been warming since early 2015, though not before that. AIRS is at a higher spatial resolution than GISSTEMP, and produces sharper spatial features which are otherwise in excellent agreement with those of GISSTEMP. Version-6 AO Ts anomalies are consistent with those of Version-6 AIRS/AMSU. Version-7 AO anomalies should be even more accurate, especially at high latitudes. ARCs of MERRA-2 Ts anomalies are spurious as a result of a discontinuity which occurred somewhere between 2007 and 2008. This decreases global mean trends.

  9. Preliminary Evidence for the Amplification of Global Warming in Shallow, Intertidal Estuarine Waters

    Science.gov (United States)

    Over the past 50 years, mean annual water temperature in northeastern U.S. estuaries has increased by approximately 1.2°C, with most of the warming recorded in the winter and early spring. We hypothesize that this warming may be amplified in the shallow (<2m), nearshore portions ...

  10. Warm Paleocene/Eocene climate as simulated in ECHAM5/MPI-OM

    Directory of Open Access Journals (Sweden)

    M. Heinemann

    2009-12-01

    Full Text Available We investigate the late Paleocene/early Eocene (PE climate using the coupled atmosphere-ocean-sea ice model ECHAM5/MPI-OM. The surface in our PE control simulation is on average 297 K warm and ice-free, despite a moderate atmospheric CO2 concentration of 560 ppm. Compared to a pre-industrial reference simulation (PR, low latitudes are 5 to 8 K warmer, while high latitudes are up to 40 K warmer. This high-latitude amplification is in line with proxy data, yet a comparison to sea surface temperature proxy data suggests that the Arctic surface temperatures are still too low in our PE simulation.

    To identify the mechanisms that cause the PE-PR surface temperature differences, we fit two simple energy balance models to the ECHAM5/MPI-OM results. We find that about 2/3 of the PE-PR global mean surface temperature difference are caused by a smaller clear sky emissivity due to higher atmospheric CO2 and water vapour concentrations in PE compared to PR; 1/3 is due to a smaller planetary albedo. The reduction of the pole-to-equator temperature gradient in PE compared to PR is due to (1 the large high-latitude effect of the higher CO2 and water vapour concentrations in PE compared to PR, (2 the lower Antarctic orography, (3 the smaller surface albedo at high latitudes, and (4 longwave cloud radiative effects. Our results support the hypothesis that local radiative effects rather than increased meridional heat transports were responsible for the "equable" PE climate.

  11. A Contribution by Ice Nuclei to Global Warming

    Science.gov (United States)

    Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Hou, Arthur Y.; Xie, Shaocheng; Lang, Stephen; Li, Xiaowen; Starr, David O.; Li, Xiaofan

    2009-01-01

    Ice nuclei (IN) significantly affect clouds via supercooled droplets, that in turn modulate atmospheric radiation and thus climate change. Since the IN effect is relatively strong in stratiform clouds but weak in convective ones, the overall effect depends on the ratio of stratiform to convective cloud amount. In this paper, 10 years of TRMM (Tropical Rainfall Measuring Mission) satellite data are analyzed to confirm that stratiform precipitation fraction increases with increasing latitude, which implies that the IN effect is stronger at higher latitudes. To quantitatively evaluate the IN effect versus latitude, large-scale forcing data from ten field campaigns are used to drive a CRM (cloud-resolving model) to generate longterm cloud simulations. As revealed in the simulations, the increase in the net downward radiative flux at the TOA (top of the atmosphere) from doubling the current IN concentrations is larger at higher latitude, which is attributed to the meridional tendency in the stratiform precipitation fraction. Surface warming from doubling the IN concentrations, based on the radiative balance of the globe, is compared with that from anthropogenic COZ . It is found that the former effect is stronger than the latter in middle and high latitudes but not in the Tropics. With regard to the impact of IN on global warming, there are two factors to consider: the radiative effect from increasing the IN concentration and the increase in IN concentration itself. The former relies on cloud ensembles and thus varies mainly with latitude. In contrast, the latter relies on IN sources (e.g., the land surface distribution) and thus varies not only with latitude but also longitude. Global desertification and industrialization provide clues on the geographic variation of the increase in IN concentration since pre-industrial times. Thus, their effect on global warming can be inferred and then be compared with observations. A general match in geographic and seasonal

  12. Permafrost carbon-climate feedbacks accelerate global warming.

    Science.gov (United States)

    Koven, Charles D; Ringeval, Bruno; Friedlingstein, Pierre; Ciais, Philippe; Cadule, Patricia; Khvorostyanov, Dmitry; Krinner, Gerhard; Tarnocai, Charles

    2011-09-06

    Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH(4) emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO(2) by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO(2) fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH(4)/y to 41-70 Tg CH(4)/y, with increases due to CO(2) fertilization, permafrost thaw, and warming-induced increased CH(4) flux densities partially offset by a reduction in wetland extent.

  13. Competition magnifies the impact of a pesticide in a warming world by reducing heat tolerance and increasing autotomy.

    Science.gov (United States)

    Op de Beeck, Lin; Verheyen, Julie; Stoks, Robby

    2018-02-01

    There is increasing concern that standard laboratory toxicity tests may be misleading when assessing the impact of toxicants, because they lack ecological realism. Both warming and biotic interactions have been identified to magnify the effects of toxicants. Moreover, while biotic interactions may change the impact of toxicants, toxicants may also change the impact of biotic interactions. However, studies looking at the impact of biotic interactions on the toxicity of pesticides and vice versa under warming are very scarce. Therefore, we tested how warming (+4 °C), intraspecific competition (density treatment) and exposure to the pesticide chlorpyrifos, both in isolation and in combination, affected mortality, cannibalism, growth and heat tolerance of low- and high-latitude populations of the damselfly Ischnura elegans. Moreover, we addressed whether toxicant exposure, potentially in interaction with competition and warming, increased the frequency of autotomy, a widespread antipredator mechanism. Competition increased the toxicity of chlorpyrifos and made it become lethal. Cannibalism was not affected by chlorpyrifos but increased at high density and under warming. Chlorpyrifos reduced heat tolerance but only when competition was high. This is the first demonstration that a biotic interaction can be a major determinant of 'toxicant-induced climate change sensitivity'. Competition enhanced the impact of chlorpyrifos under warming for high-latitude larvae, leading to an increase in autotomy which reduces fitness in the long term. This points to a novel pathway how transient pesticide pulses may cause delayed effects on populations in a warming world. Our results highlight that the interplay between biotic interactions and toxicants have a strong relevance for ecological risk assessment in a warming polluted world. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Distribution and respiration of the high-latitude pelagic amphipod Themisto gaudichaudi in the Benguela Current in relation to upwelling intensity

    Science.gov (United States)

    Auel, Holger; Ekau, Werner

    2009-12-01

    The cold and highly productive waters of coastal upwelling areas provide habitats for marine species usually occurring at higher latitudes and allow those species to extend their distribution ranges towards the equator into regions otherwise characterised by warm and oligotrophic sub-tropical waters. The pelagic hyperiid amphipod Themisto gaudichaudi has a circum-Antarctic epipelagic distribution pattern generally south of 35°S and plays an important role in Antarctic food webs as effective link from zooplankton secondary production to higher trophic levels including seabirds and marine mammals. In the cold and productive waters of the Benguela Current coastal upwelling system, the distribution range of the species extents far northward into the subtropics. The present study focuses on the distribution of T. gaudichaudi at the northernmost limit of its range in the Benguela upwelling system in relation to upwelling intensity and hydrographic conditions (sea surface temperature) based on time-series data from 2002 to 2008. Moreover, field data on life-history traits and respiration rates in relation to water temperature are combined to elucidate the environmental and physiological factors limiting the distribution range. Compared to Themisto populations from higher latitudes, the relatively higher water temperatures in the coastal upwelling region lead to higher respiration rates, faster growth, earlier sexual maturity and smaller body size.

  15. Irrigation enhances local warming with greater nocturnal warming effects than daytime cooling effects

    Science.gov (United States)

    Chen, Xing; Jeong, Su-Jong

    2018-02-01

    To meet the growing demand for food, land is being managed to be more productive using agricultural intensification practices, such as the use of irrigation. Understanding the specific environmental impacts of irrigation is a critical part of using it as a sustainable way to provide food security. However, our knowledge of irrigation effects on climate is still limited to daytime effects. This is a critical issue to define the effects of irrigation on warming related to greenhouse gases (GHGs). This study shows that irrigation led to an increasing temperature (0.002 °C year-1) by enhancing nighttime warming (0.009 °C year-1) more than daytime cooling (-0.007 °C year-1) during the dry season from 1961-2004 over the North China Plain (NCP), which is one of largest irrigated areas in the world. By implementing irrigation processes in regional climate model simulations, the consistent warming effect of irrigation on nighttime temperatures over the NCP was shown to match observations. The intensive nocturnal warming is attributed to energy storage in the wetter soil during the daytime, which contributed to the nighttime surface warming. Our results suggest that irrigation could locally amplify the warming related to GHGs, and this effect should be taken into account in future climate change projections.

  16. Global warming, drought events, and GPP performance (Invited)

    Science.gov (United States)

    Yi, C.; Jensen, K.; Wei, S.; Hendrey, G.

    2013-12-01

    The first decade of the 21st century was the warmest decade recorded since the start of modern measurements in 1850, according to a new report on July 3, 2013 by the World Meteorological Organization (WMO). Global warming may now be exacerbating droughts in the world, and leading to more reduction in crop production, plant growth and hence carbon fixation, and further warming climate. How do we quantify the relationship between drought event and ecosystem performance? Here, we developed a method called 'perfect-deficit approach' and a local dryness index based on eddy-flux measurements. We applied these concepts and mathematical method to remote sensing observations (MODIS) to examine the world ecosystem performance in the first decade of 21st century and identify the associated climate extremes. The initial results show that the deficits of ecosystem performances in lower latitudes were caused mainly by drought events, while at high latitudes cold/warm events also exert substantial influences on ecosystem performances, particularly in spring season. Acknowledgements This research was financially supported by PSC-CUNY Award (PSC-CUNY-ENHC-44-83)

  17. Spectroscopic amplifier for pin diode

    International Nuclear Information System (INIS)

    Alonso M, M. S.; Hernandez D, V. M.; Vega C, H. R.

    2014-10-01

    The photodiode remains the basic choice for the photo-detection and is widely used in optical communications, medical diagnostics and field of corpuscular radiation. In detecting radiation it has been used for monitoring radon and its progeny and inexpensive spectrometric systems. The development of a spectroscopic amplifier for Pin diode is presented which has the following characteristics: canceler Pole-Zero (P/Z) with a time constant of 8 μs; constant gain of 57, suitable for the acquisition system; 4th integrator Gaussian order to waveform change of exponential input to semi-Gaussian output and finally a stage of baseline restorer which prevents Dc signal contribution to the next stage. The operational amplifier used is the TLE2074 of BiFET technology of Texas Instruments with 10 MHz bandwidth, 25 V/μs of slew rate and a noise floor of 17 nv/(Hz)1/2. The integrated circuit has 4 operational amplifiers and in is contained the total of spectroscopic amplifier that is the goal of electronic design. The results show like the exponential input signal is converted to semi-Gaussian, modifying only the amplitude according to the specifications in the design. The total system is formed by the detector, which is the Pin diode, a sensitive preamplifier to the load, the spectroscopic amplifier that is what is presented and finally a pulse height analyzer (Mca) which is where the spectrum is shown. (Author)

  18. Low-Noise Band-Pass Amplifier

    Science.gov (United States)

    Kleinberg, L.

    1982-01-01

    Circuit uses standard components to overcome common limitation of JFET amplifiers. Low-noise band-pass amplifier employs JFET and operational amplifier. High gain and band-pass characteristics are achieved with suitable choice of resistances and capacitances. Circuit should find use as low-noise amplifier, for example as first stage instrumentation systems.

  19. Capacitively-coupled chopper amplifiers

    CERN Document Server

    Fan, Qinwen; Huijsing, Johan H

    2017-01-01

    This book describes the concept and design of the capacitively-coupled chopper technique, which can be used in precision analog amplifiers. Readers will learn to design power-efficient amplifiers employing this technique, which can be powered by regular low supply voltage such as 2V and possibly having a +\\-100V input common-mode voltage input. The authors provide both basic design concepts and detailed design examples, which cover the area of both operational and instrumentation amplifiers for multiple applications, particularly in power management and biomedical circuit designs. Discusses basic working principles and details of implementation for proven designs; Includes a diverse set of applications, along with measurement results to demonstrate the effectiveness of the technique; Explains advantages and drawbacks of the technique, given particular circumstances.

  20. Influence of changes in wetland inundation extent on net fluxes of carbon dioxide and methane in northern high latitudes from 1993 to 2004

    Science.gov (United States)

    Zhuang, Qianlai; Zhu, Xudong; He, Yujie; Prigent, Catherine; Melillo, Jerry M.; McGuire, A. David; Prinn, Ronald G.; Kicklighter, David W.

    2015-01-01

    Estimates of the seasonal and interannual exchanges of carbon dioxide (CO2) and methane (CH4) between land ecosystems north of 45°N and the atmosphere are poorly constrained, in part, because of uncertainty in the temporal variability of water-inundated land area. Here we apply a process-based biogeochemistry model to evaluate how interannual changes in wetland inundation extent might have influenced the overall carbon dynamics of the region during the time period 1993–2004. We find that consideration by our model of these interannual variations between 1993 and 2004, on average, results in regional estimates of net methane sources of 67.8 ± 6.2 Tg CH4 yr−1, which is intermediate to model estimates that use two static inundation extent datasets (51.3 ± 2.6 and 73.0 ± 3.6 Tg CH4 yr−1). In contrast, consideration of interannual changes of wetland inundation extent result in regional estimates of the net CO2 sink of −1.28 ± 0.03 Pg C yr−1 with a persistent wetland carbon sink from −0.38 to −0.41 Pg C yr−1 and a upland sink from −0.82 to −0.98 Pg C yr−1. Taken together, despite the large methane emissions from wetlands, the region is a consistent greenhouse gas sink per global warming potential (GWP) calculations irrespective of the type of wetland datasets being used. However, the use of satellite-detected wetland inundation extent estimates a smaller regional GWP sink than that estimated using static wetland datasets. Our sensitivity analysis indicates that if wetland inundation extent increases or decreases by 10% in each wetland grid cell, the regional source of methane increases 13% or decreases 12%, respectively. In contrast, the regional CO2 sink responds with only 7–9% changes to the changes in wetland inundation extent. Seasonally, the inundated area changes result in higher summer CH4 emissions, but lower summer CO2 sinks, leading to lower summer negative greenhouse gas forcing. Our analysis further indicates that wetlands play a

  1. Warming of the Global Ocean: Spatial Structure and Water-Mass Trends

    Science.gov (United States)

    Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.

    2016-01-01

    This study investigates the multidecadal warming and interannual-to-decadal heat content changes in the upper ocean (0-700 m), focusing on vertical and horizontal patterns of variability. These results support a nearly monotonic warming over much of the World Ocean, with a shift toward Southern Hemisphere warming during the well-observed past decade. This is based on objectively analyzed gridded observational datasets and on a modeled state estimate. Besides the surface warming, a warming climate also has a subsurface effect manifesting as a strong deepening of the midthermocline isopycnals, which can be diagnosed directly from hydrographic data. This deepening appears to be a result of heat entering via subduction and spreading laterally from the high-latitude ventilation regions of subtropical mode waters. The basin-average multidecadal warming mainly expands the subtropical mode water volume, with weak changes in the temperature-salinity (u-S) relationship (known as ''spice'' variability). However, the spice contribution to the heat content can be locally large, for example in Southern Hemisphere. Multidecadal isopycnal sinking has been strongest over the southern basins and weaker elsewhere with the exception of the Gulf Stream/North Atlantic Current/subtropical recirculation gyre. At interannual to decadal time scales, wind-driven sinking and shoaling of density surfaces still dominate ocean heat content changes, while the contribution from temperature changes along density surfaces tends to decrease as time scales shorten.

  2. Onset of deglacial warming in West Antarctica driven by local orbital forcing

    Science.gov (United States)

    WAIS Divide Project Members,; Fudge, T. J.; Steig, Eric J.; Markle, Bradley R.; Schoenemann, Spruce W.; Ding, Qinghua; Taylor, Kendrick C.; McConnell, Joseph R.; Brook, Edward J.; Sowers, Todd; White, James W. C.; Alley, Richard B.; Cheng, Hai; Clow, Gary D.; Cole-Dai, Jihong; Conway, Howard; Cuffey, Kurt M.; Edwards, Jon S.; Edwards, R. Lawrence; Edwards, Ross; Fegyveresi, John M.; Ferris, David; Fitzpatrick, Joan J.; Johnson, Jay; Hargreaves, Geoffrey; Lee, James E.; Maselli, Olivia J.; Mason, William; McGwire, Kenneth C.; Mitchell, Logan E.; Mortensen, Nicolai B.; Neff, Peter; Orsi, Anais J.; Popp, Trevor J.; Schauer, Andrew J.; Severinghaus, Jeffrey P.; Sigl, Michael; Spencer, Matthew K.; Vaughn, Bruce H.; Voigt, Donald E.; Waddington, Edwin D.; Wang, Xianfeng; Wong, Gifford J.

    2013-01-01

    The cause of warming in the Southern Hemisphere during the most recent deglaciation remains a matter of debate. Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of warming seen in East Antarctic ice cores and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago. An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to warm independently. Here we present results from a new, annually resolved ice-core record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, warming in East Antarctica and cooling in the Northern Hemisphere associated with an abrupt decrease in Atlantic meridional overturning circulation. However, significant warming in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this warming. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice cores in the East Antarctic interior, which are largely isolated from sea-ice changes.

  3. Airborne Methane Measurements using Optical Parametric Amplifiers

    Science.gov (United States)

    Riris, H.; Numata, K.; Li, S.; Wu, S.; Ramanathan, A.; Dawsey, M.; Abshire, J. B.; Kawa, S. R.; Mao, J.

    2012-12-01

    We report on airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from clathrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment and more measurements are needed. In this paper we report on an airborne demonstration of atmospheric methane column optical depth measurements at 1.65 μm using widely tunable, seeded optical parametric amplifier (OPA) and a photon counting detector. Our results show good agreement between the experimentally derived optical depth measurements and theoretical calculations and follow the expected changes for aircraft altitudes from 3 to 11 km. The technique has also been used to measure carbon dioxide and monoxide, water vapor, and other trace gases in the near and mid-infrared spectral regions on the ground.

  4. Globalization to amplify economic climate losses

    Science.gov (United States)

    Otto, C.; Wenz, L.; Levermann, A.

    2015-12-01

    Economic welfare under enhanced anthropogenic carbon emissions and associated future warming poses a major challenge for a society with an evolving globally connected economy. Unabated climate change will impact economic output for example through heat-stress-related reductions in productivity. Since meteorologically-induced production reductions can propagate along supply chains, structural changes in the economic network may influence climate-related losses. The role of the economic network evolution for climate impacts has been neither quantified nor qualitatively understood. Here we show that since the beginning of the 21st century the structural change of the global supply network has been such that an increase of spillover losses due to unanticipated climatic events has to be expected. We quantify primary, secondary and higher-order losses from reduced labor productivity under past and present economic and climatic conditions and find that indirect losses are significant and increase with rising temperatures. The connectivity of the economic network has increased in such a way as to foster the propagation of production loss. This supply chain connectivity robustly exhibits the characteristic distribution of self-organized criticality which has been shifted towards higher values since 2001. Losses due to this structural evolution dominated over the effect of comparably weak climatic changes during this decade. Our finding suggests that the current form of globalization may amplify losses due to climatic extremes and thus necessitate structural adaptation that requires more foresight than presently prevalent.

  5. Change in the magnitude and mechanisms of global temperature variability with warming

    Science.gov (United States)

    Brown, Patrick T.; Ming, Yi; Li, Wenhong; Hill, Spencer A.

    2017-10-01

    Natural unforced variability in global mean surface air temperature (GMST) can mask or exaggerate human-caused global warming, and thus a complete understanding of this variability is highly desirable. Significant progress has been made in elucidating the magnitude and physical origins of present-day unforced GMST variability, but it has remained unclear how such variability may change as the climate warms. Here we present modelling evidence that indicates that the magnitude of low-frequency GMST variability is likely to decline in a warmer climate and that its generating mechanisms may be fundamentally altered. In particular, a warmer climate results in lower albedo at high latitudes, which yields a weaker albedo feedback on unforced GMST variability. These results imply that unforced GMST variability is dependent on the background climatological conditions, and thus climate model control simulations run under perpetual pre-industrial conditions may have only limited relevance for understanding the unforced GMST variability of the future.

  6. Change in the Magnitude and Mechanisms of Global Temperature Variability with Warming

    Science.gov (United States)

    Brown, P. T.; Ming, Y.; Li, W.; Hill, S. A.

    2017-12-01

    Natural unforced variability in global mean surface air temperature (GMST) can mask or exaggerate human-caused global warming, and thus a complete understanding of this variability is highly desirable. Significant progress has been made in elucidating the magnitude and physical origins of present-day unforced GMST variability, but it has remained unclear how such variability may change as the climate warms. Here we present modeling evidence that indicates that the magnitude of low-frequency GMST variability is likely to decline in a warmer climate and that its generating mechanisms may be fundamentally altered. In particular, a warmer climate results in lower albedo at high latitudes, which yields a weaker albedo feedback on unforced GMST variability. These results imply that unforced GMST variability is dependent on the background climatological conditions, and thus climate model control simulations run under perpetual preindustrial conditions may have only limited relevance for understanding the unforced GMST variability of the future.

  7. Mid-Pliocene warm-period deposits in the High Arctic yield insight into camel evolution.

    Science.gov (United States)

    Rybczynski, Natalia; Gosse, John C; Harington, C Richard; Wogelius, Roy A; Hidy, Alan J; Buckley, Mike

    2013-01-01

    The mid-Pliocene was a global warm period, preceding the onset of Quaternary glaciations. Here we use cosmogenic nuclide dating to show that a fossiliferous terrestrial deposit that includes subfossil trees and the northern-most evidence of Pliocene ice wedge casts in Canada's High Arctic (Ellesmere Island, Nunavut) was deposited during the mid-Pliocene warm period. The age estimates correspond to a general maximum in high latitude mean winter season insolation, consistent with the presence of a rich, boreal-type forest. Moreover, we report that these deposits have yielded the first evidence of a High Arctic camel, identified using collagen fingerprinting of a fragmentary fossil limb bone. Camels originated in North America and dispersed to Eurasia via the Bering Isthmus, an ephemeral land bridge linking Alaska and Russia. The results suggest that the evolutionary history of modern camels can be traced back to a lineage of giant camels that was well established in a forested Arctic.

  8. Early 20th Century Arctic Warming Intensified by Pacific and Atlantic Multidecadal Variability

    Science.gov (United States)

    Tokinaga, H.; Xie, S. P.; Mukougawa, H.

    2017-12-01

    We investigate the influence of Pacific and Atlantic multidecadal variability on the Arctic temperature, with a particular focus on the early 20th century Arctic warming. Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing than at present. We find that the concurrent phase shift of Pacific and Atlantic multidecadal variability is the major driver for the early 20th century Arctic warming. Atmospheric model simulations reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early Arctic warming is associated with the cold-to-warm phase shifts of Atlantic and Pacific multidecadal variability modes, a SST pattern reminiscent of the positive phase of the Pacific decadal and Atlantic multidecadal oscillations. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. The equatorial Pacific warming deepens the Aleutian low, advecting warm air to the North American Arctic. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, cold-to-warm phase shift of the Pacific and Atlantic multidecadal variability. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region.

  9. Low Cost RF Amplifier for Community TV

    Science.gov (United States)

    Ch, Syafaruddin; Sasongko, Sudi Mariyanto Al; Made Budi Suksmadana, I.; Mustiko Okta Muvianto, Cahyo; Ariessaputra, Suthami

    2016-01-01

    he capability of television to deliver audio video makes this media become the most effective method to spread information. This paper presents an experiment of RF amplifier design having low-cost design and providing sufficient RF power particularly for community television. The RF amplifier consists of two stages of amplifier. The first stage amplifier was used to leverage output of TV modulator from 11dBm to enable to drive next stage amplifier. CAD simulation and fabrication were run to reach optimum RF amplifier design circuit. The associated circuit was made by determining stability circle, stability gain, and matching impedance. Hence, the average power of first stage RF amplifier was 24.68dBm achieved. The second stage used RF modules which was ready match to 50 ohm for both input and output port. The experiment results show that the RF amplifier may operate at frequency ranging from 174 to 230MHz. The average output power of the 2nd stage amplifier was 33.38 Watt with the overall gain of 20.54dB. The proposed RF amplifier is a cheap way to have a stable RF amplifier for community TV. The total budget for the designed RF amplifier is only a 1/5 compared to local design of final TV amplifier.

  10. Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake.

    Science.gov (United States)

    de Wit, Heleen A; Bryn, Anders; Hofgaard, Annika; Karstensen, Jonas; Kvalevåg, Maria M; Peters, Glen P

    2014-07-01

    Expanding high-elevation and high-latitude forest has contrasting climate feedbacks through carbon sequestration (cooling) and reduced surface reflectance (warming), which are yet poorly quantified. Here, we present an empirically based projection of mountain birch forest expansion in south-central Norway under climate change and absence of land use. Climate effects of carbon sequestration and albedo change are compared using four emission metrics. Forest expansion was modeled for a projected 2.6 °C increase in summer temperature in 2100, with associated reduced snow cover. We find that the current (year 2000) forest line of the region is circa 100 m lower than its climatic potential due to land-use history. In the future scenarios, forest cover increased from 12% to 27% between 2000 and 2100, resulting in a 59% increase in biomass carbon storage and an albedo change from 0.46 to 0.30. Forest expansion in 2100 was behind its climatic potential, forest migration rates being the primary limiting factor. In 2100, the warming caused by lower albedo from expanding forest was 10 to 17 times stronger than the cooling effect from carbon sequestration for all emission metrics considered. Reduced snow cover further exacerbated the net warming feedback. The warming effect is considerably stronger than previously reported for boreal forest cover, because of the typically low biomass density in mountain forests and the large changes in albedo of snow-covered tundra areas. The positive climate feedback of high-latitude and high-elevation expanding forests with seasonal snow cover exceeds those of afforestation at lower elevation, and calls for further attention of both modelers and empiricists. The inclusion and upscaling of these climate feedbacks from mountain forests into global models is warranted to assess the potential global impacts. © 2013 John Wiley & Sons Ltd.

  11. Warm autoimmune hemolytic anemia.

    Science.gov (United States)

    Naik, Rakhi

    2015-06-01

    Warm autoimmune hemolytic anemia (AIHA) is defined as the destruction of circulating red blood cells (RBCs) in the setting of anti-RBC autoantibodies that optimally react at 37°C. The pathophysiology of disease involves phagocytosis of autoantibody-coated RBCs in the spleen and complement-mediated hemolysis. Thus far, treatment is aimed at decreasing autoantibody production with immunosuppression or reducing phagocytosis of affected cells in the spleen. The role of complement inhibitors in warm AIHA has not been explored. This article addresses the diagnosis, etiology, and treatment of warm AIHA and highlights the role of complement in disease pathology. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Early Pliocene Warming in DVDP-11 Drillcore, Antarctica

    Science.gov (United States)

    Verhagen, C. M.; Passchier, S.

    2016-12-01

    A geochemical analysis of drilled core, DVDP-11, was conducted to determine surface weathering conditions, as well as calcium carbonate (CaCO3) productivity in order to investigate the extent of global warming during a previous time in Earths history. DVDP-11 was drilled in Taylor Valley, Antarctica at a high polar latitude of about 77º and the sediments analyzed here date to the early Pliocene. 16 samples from DVDP-11 were obtained from a depth range of 188.36-244.60 meters below sea floor (mbsf). The samples were ground and prepped for ICP-AES analysis. Major element concentrations were measured to determine the chemical index of alteration (CIA) using the formula: CIA=[Al2O3/(Al2O33+CaO+Na2O+K2O)] x 100, with CaO* designating CaO in the silicate fraction. Following ICP evaluation samples were then analyzed for CaCO3 content. Out of the total 16 samples, 8 samples ranging in depths between 223.7-238.6 mbsf, reacted with hydrochloric acid in the presence of foraminiferal carbonate and were tested for total weight percent CaCO3 using acid digestion. An age model was then constructed for these samples using the available magnetostratigraphy for DVDP-11. CIA results ranged from 45-54 and are consistent with glacial clays showing little weathering. However, two peaks were present of 53 and 54 at sample depths of 239.6 and 223.7 mbsf. Percent weight CaCO3 was measured to be high in some samples, in particular 9% at 239.6 mbsf and 6% at 227.3 mbsf. The portion of DVDP-11 analyzed for this report is within Chron C2n and C3n giving it an age range of 3.5-4.6 million years ago (Ma). While the average CIA values are typical of high latitudes, the acid digestion results indicate substantial warming, allowing the precipitation of CaCO3. This is an unexpected result to find at a high latitude where waters would be consistently too cold for CaCO3 to accumulate. The age range for the CaCO3 accumulation is between 4.5-4.6 Ma and aligns with peaks in CIA values representing a

  13. Linearisation of RF Power Amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Per Asbeck

    2001-01-01

    This thesis deals with linearisation techniques of RF power amplifiers (PA), PA design techniques and integration of the necessary building blocks in a CMOS technology. The opening chapters introduces the theory of transmitter architectures, RF-signal representation and the principles of digital...... modulation. Furthermore different types of power amplifiers, models and measures of non-linearities are presented. A chapter is also devoted to different types of linearisation systems. The work carried out and described in this thesis can be divided into a more theoretical and system oriented treatment...... the polar loop architecture and it’s suitability to modern digital transmitters is discussed. A proposal of an architecture that is suitable for digital transmitters, which means that it has an interface to the digital back-end, defined by low-pass signals in polar form, is presented. Simulation guidelines...

  14. Single conversion stage amplifier - SICAM

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.

    2005-12-15

    This Ph.D. thesis presents a thorough analysis of the so called SICAM - SIngle Converter stage AMplifier approach to building direct energy conversion audio power amplifiers. The mainstream approach for building isolated audio power amplifiers today consists of isolated DC power supply and Class D amplifier, which essentially represents a two stage solution, where each of the components can be viewed as separate and independent part. The proposed SICAM solution strives for direct energy conversion from the mains to the audio output, by dedicating the operation of the components one to another and integrating their functions, so that the final audio power amplifier represents a single-stage topology with higher efficiency, lower volume, less board space, lower component count and subsequently lower cost. The SICAM approach is both applicable to non-isolated and isolated audio power amplifiers, but the problems encountered in these two cases are different. Non-isolated SICAM solutions are intended for both AC mains-connected and battery-powered devices. In non-isolated mains-connected SICAMs the main idea is to simplify the power supply or even provide integrated power factor correction (PFC) functions, while still maintaining low component stress and good audio performance by generally decreasing the input voltage level to the Class D audio power amplifier. On the other hand, non-isolated battery-powered SICAMs have to cope with the ever changing battery voltage and provide output voltage levels which are both lower and higher than the battery voltage, while still being simple and single-stage energy conversion solutions. In isolated SICAMs the isolation transformer adjusts the voltage level on the secondary side to the desired level, so the main challenges here are decreasing the size of the magnetic core and reducing the number and size of bulky reactive components as much as possible. The main focus of this thesis is directed towards the isolated SICAMs and

  15. Superconducting switch and amplifier device

    International Nuclear Information System (INIS)

    Faris, S.M.

    1982-01-01

    An amplifying or switching superconductive device is described whose current-voltage characteristic is drastically altered by heavy injection of excess energetic quasi-particles. In this device, the superconducting bandgap of a superconducting layer is greatly altered by overinjection of energetic quasi-particles so that the bandgap changes greatly with respect to its thermal equilibrium value, and in most cases is made to vanish. In a preferred embodiment, a three electrode device is fabricated where at least one of the electrodes is a superconductor. Tunnel barriers are located between the electrodes. A first tunnel junction is used to heavily inject energetic quasi-particles into the superconducting electrode to change its superconducting bandgap drastically. In turn, this greatly modifies the currentvoltage characteristics of the second tunnel junction. This device can be used to provide logic circuits, or as an amplifier, and has an output sufficiently large that it can drive other similar devices

  16. Numerical simulation of wave interactions during sudden stratospheric warming

    Science.gov (United States)

    Gavrilov, N. M.; Koval, A. V.; Pogoreltsev, A. I.; Savenkova, E. N.

    2017-11-01

    Parameterizations of normal atmospheric modes (NAMs) and orographic gravity waves (OGWs) are implemented into the mechanistic general circulation model of the middle and upper atmosphere (MUA). Numerical experiments of sudden stratospheric warming (SSW) events are performed for climatological conditions typical for January and February using meteorological reanalysis data from the UK MET Office in the MUA model averaged over the years 1992-2011 with the easterly phase of quasi-biennial oscillation (QBO). The simulation shows that an increase in the OGW amplitudes occurs at altitudes higher than 30 km in the Northern Hemisphere after SSW. The OGW amplitudes have maximums at altitudes of about 50 km over the North American and European mountain systems before and during SSW, as well as over the Himalayas after SSW. At high latitudes of the Northern Hemisphere, significant (up to 50-70%) variations in the amplitudes of stationary planetary waves (SPWs) are observed during and after the SSW. Westward travelling NAMs have local amplitude maximums not only in the Northern Hemisphere, but also in the Southern Hemisphere, where there are waveguides for the propagation of these modes. Calculated variations of SPW and NAM amplitudes correspond to changes in the mean temperature and wind fields, as well as the Eliassen-Palm flux and atmospheric refractive index for the planetary waves, during SSW. Including OGW thermal and dynamical effects leads to an increase in amplitude (by 30-70%) of almost all SPWs before and during SSW and to a decrease (up to 20-100%) after the SSW at middle and high latitudes of the Northern Hemisphere.

  17. Identification of amplified fragment length polymorphism (AFLP ...

    African Journals Online (AJOL)

    Identification of amplified fragment length polymorphism (AFLP) fragments linked to soybean mosaic virus resistance gene in Glycine soja and conversion to a sequence characterized amplified regions (SCAR) marker for rapid selection.

  18. Higher order mode optical fiber Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.

    2016-01-01

    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  19. High power regenerative laser amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John L. (Livermore, CA); Hackel, Lloyd A. (Livermore, CA); Dane, Clifford B. (Dublin, CA); Zapata, Luis E. (Livermore, CA)

    1994-01-01

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.

  20. SPS RF System Amplifier plant

    CERN Multimedia

    1977-01-01

    The picture shows a 2 MW, 200 MHz amplifier plant with feeder lines. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.

  1. Improved charge amplifier using hybrid hysteresis compensation

    Science.gov (United States)

    Amin-Shahidi, Darya; Trumper, David L.

    2013-08-01

    We present a novel charge amplifier, with a robust feedback circuit and a method for compensating piezoelectric actuator's hysteresis at low frequencies. The amplifier uses a modified feedback circuit which improves robustness to the addition of series load impedance such as in cabling. We also describe a hybrid hysteresis compensation method for enabling the charge amplifier to reduce hysteresis at low frequencies. Experimental results demonstrate the utility of the new amplifier design.

  2. Switching power amplifier for TAR3

    OpenAIRE

    Moore, Eric Wesley

    1995-01-01

    This thesis describes the theory, design, construction, and testing of a switching power amplifier. The major emphasis of the research and development effort reported herein is to design and construct an efficient power amplifier for varying load conditions which provides 40 Watts of power, at 85% efficiency, and with no more than 10% harmonic distortion. The power amplifier will need one voltage supply and one input audio signal. The amplifier will be used to power demonstration thermoacoust...

  3. Balanced Amplifier dengan Menggunakan Driver Op Amp

    OpenAIRE

    Khoswanto, Handry; T.D.S, Yohanes; Wahyudi, Iwan

    2004-01-01

    In Bahasa Indonesia : Pada umumnya amplifier konvensional melibatkan jalur power supply (ground) yang berhubungan dengan jalur audio. Hal ini mengakibatkan pengolahan sinyal audio akan muncul IHM (Interval Hum Modulation) noise. Oleh karena itu, untuk dapat menekan timbulnya noise seminimal mungkin, maka dibuat sebuah amplifier yang tidak bereferensi pada ground power supply. Amplifier tersebut harus benar-benar balance dari input sampai ke output. Untuk merealisasikan balance amplifier ...

  4. Challenges in higher order mode Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk

    2015-01-01

    A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...

  5. Global Warming: A Myth?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 7. Global Warming: A Myth? - Credibility of Climate Scenarios Predicted by Systems Simulations. Deepanjan Majumdar. General Article Volume 6 Issue 7 July 2001 pp 13-21 ...

  6. Warm and Cool Dinosaurs.

    Science.gov (United States)

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  7. Global Warming: A Myth?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 6. Global Warming: A Myth? - Anomalous Temperature Trends Recorded from Satellites and Radiosondes. Deepanjan Majumdar. General Article Volume 6 Issue 6 June 2001 pp 43-52 ...

  8. European Research on THz Vacuum Amplifiers

    DEFF Research Database (Denmark)

    Brunetti, F.; Cojocarua, C.-S.; de Rossi, A.

    2010-01-01

    The OPTHER (OPtically Driven TeraHertz AmplifiERs) project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within this project is a consolidation of efforts at the international level from the main players of the Eu...

  9. Spontaneous emission from saturated parametric amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Ott, Johan Raunkjær; Steffensen, Henrik

    2009-01-01

    Noise performance of parametric amplifiers is typically calculated assuming un-depleted operation. However, in many applications especially when applied as regenerative amplifiers in systems based on phase shift keyed modulation schemes, this assumption is not valid. Here we show the impact...... on accumulated spontaneous emission for a parametric amplifier operated in saturation....

  10. low pump power photonic crystal fibre amplifiers

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Broeng, Jes; Bjarklev, Anders Overgaard

    2003-01-01

    Designs of low pump power optical amplifiers, based on photonic crystal fibres are presented. The potential of these fibre amplifiers is investigated, and it is demonstrated that such amplifiers may deliver gains of more than 15 dB at 1550 nm with less than 1 mW of optical pump power....

  11. Radio frequency amplifier with effective decoupling

    NARCIS (Netherlands)

    Besling, W.F.A.; Bakker, T.W.; Lamy, Y.; Kochupurackal, J.; Roozeboom, F.

    2011-01-01

    A variety of circuits, methods and devices are implemented for radiofrequency amplifiers. According to one such implementation, a radiofrequency amplifier circuit is implemented in a SMD package. The circuit amplifies a radiofrequency signal having a base-band portion and a plurality of carrier

  12. Series transistors isolate amplifier from flyback voltage

    Science.gov (United States)

    Banks, W.

    1967-01-01

    Circuit enables high sawtooth currents to be passed through a deflection coil and isolate the coil driving amplifier from the flyback voltage. It incorporates a switch consisting of transistors in series with the driving amplifier and deflection coil. The switch disconnects the deflection coil from the amplifier during the retrace time.

  13. Remote Acquisition Amplifier For 50-Ohm Cable

    Science.gov (United States)

    Amador, Jose J.

    1995-01-01

    Buffer-amplifier unit designed to drive 50-Ohm cables up to 100 ft. (30 m) long, compensating for attenuation in cables and enabling remote operation of oscilloscopes. Variable resistor provides for adjustment of gain of amplifier, such that overall gain from input terminals of amplifier to output end of cable set to unity.

  14. Media Pembelajaran Global Warming

    OpenAIRE

    Tham, Fikri Jufri; Liliana, Liliana; Purba, Kristo Radion

    2016-01-01

    Computer based learning media is one of the media has an important role in learning. Learning media will be attractive when packaged through interactive media , such as interactive media created in paper manufacture " instructional media global warming" . The advantage gained is that it can increase knowledge, generally educate people to be more concerned about the environment , and also can be a means of entertainment. This application is focused to learn about global warming and packaged in...

  15. Compensatory mechanisms mitigate the effect of warming and drought on wood formation.

    Science.gov (United States)

    Balducci, Lorena; Cuny, Henri E; Rathgeber, Cyrille B K; Deslauriers, Annie; Giovannelli, Alessio; Rossi, Sergio

    2016-06-01

    Because of global warming, high-latitude ecosystems are expected to experience increases in temperature and drought events. Wood formation will have to adjust to these new climatic constraints to maintain tree mechanical stability and long-distance water transport. The aim of this study is to understand the dynamic processes involved in wood formation under warming and drought. Xylogenesis, gas exchange, water relations and wood anatomy of black spruce [Picea mariana (Mill.) B.S.P.] saplings were monitored during a greenhouse experiment where temperature was increased during daytime or night-time (+6 °C) combined with a drought period. The kinetics of tracheid development expressed as rate and duration of the xylogenesis sub-processes were quantified using generalized additive models. Drought and warming had a strong influence on cell production, but little effect on wood anatomy. The increase in cell production rate under warmer temperatures, and especially during the night-time warming at the end of the growing season, resulted in wider tree-rings. However, the strong compensation between rates and durations of cell differentiation processes mitigates warming and drought effects on tree-ring structure. Our results allowed quantification of how wood formation kinetics is regulated when water and heat stress increase, allowing trees to adapt to future environmental conditions. © 2015 John Wiley & Sons Ltd.

  16. Refrigeration and global warming

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Some aspects of global warming in general, and the implications for refrigerants and refrigerator efficiency in particular, are briefly considered in a question and answer format. The concepts of Global Warming Potential (GWP) and Total Equivalent Warming Impact (TEWI) are explained. GWP is an index which allows a simple comparison to be make between the warming effects of different gases on a kg to kg basis relative to carbon. The GWP depends both on the lifetime of a substance in the atmosphere and its infra-red absorption capacity. The overall warming effect of operating a refrigeration system for its entire life is measured by its TEWI. Chloroflourocarbons (CFCs) which have been widely used as refrigerants are powerful greenhouse gases with high GWPs. Because of the bank of CFCs in refrigerating systems, their levels in the atmosphere are still increasing and it will be some time before refrigerant changes will be effective in reducing the warming effects of refrigerant releases. Hydrocarbons, hydroflourocarbons and ammonia all have a part to play as substitute refrigerants. Refrigerator efficiency is very important in terms of reducing CO 2 emissions. (UK)

  17. Autumn photosynthetic decline and growth cessation in seedlings of white spruce are decoupled under warming and photoperiod manipulations.

    Science.gov (United States)

    Stinziano, Joseph R; Way, Danielle A

    2017-08-01

    Climate warming is expected to increase the seasonal duration of photosynthetic carbon fixation and tree growth in high-latitude forests. However, photoperiod, a crucial cue for seasonality, will remain constant, which may constrain tree responses to warming. We investigated the effects of temperature and photoperiod on weekly changes in photosynthetic capacity, leaf biochemistry and growth in seedlings of a boreal evergreen conifer, white spruce [Picea glauca (Moench) Voss]. Warming delayed autumn declines in photosynthetic capacity, extending the period when seedlings had high carbon uptake. While photoperiod was correlated with photosynthetic capacity, short photoperiods did not constrain the maintenance of high photosynthetic capacity under warming. Rubisco concentration dynamics were affected by temperature but not photoperiod, while leaf pigment concentrations were unaffected by treatments. Respiration rates at 25 °C were stimulated by photoperiod, although respiration at the growth temperatures was increased in warming treatments. Seedling growth was stimulated by increased photoperiod and suppressed by warming. We demonstrate that temperature is a stronger control on the seasonal timing of photosynthetic down-regulation than is photoperiod. Thus, while warming can stimulate carbon uptake in boreal conifers, the extra carbon may be directed towards respiration rather than biomass, potentially limiting carbon sequestration under climate change. © 2017 John Wiley & Sons Ltd.

  18. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  19. Global Warming and 21st Century Drying

    Science.gov (United States)

    Cook, Benjamin I.; Smerdun, Jason E.; Seager, Richard; Coats, Sloan

    2014-01-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twentyfirst century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman- Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  20. Global warming on trial

    International Nuclear Information System (INIS)

    Broeker, W.S.

    1992-01-01

    Jim Hansen, a climatologist at NASA's Goddard Space Institute, is convinced that the earth's temperature is rising and places the blame on the buildup of greenhouse gases in the atmosphere. Unconvinced, John Sununu, former White House chief of staff, doubts that the warming will be great enough to produce serious threat and fears that measures to reduce the emissions would throw a wrench into the gears that drive the Unites States' troubled economy. During his three years at the White House, Sununu's view prevailed, and although his role in the debate has diminished, others continue to cast doubt on the reality of global warming. A new lobbying group called the Climate Council has been created to do just this. Burning fossil fuels is not the only problem; a fifth of emissions of carbon dioxide now come from clearing and burning forests. Scientists are also tracking a host of other greenhouse gases that emanate from a variety of human activities; the warming effect of methane, chlorofluorocarbons and nitrous oxide combined equals that of carbon dioxide. Although the current warming from these gases may be difficult to detect against the background noise of natural climate variation, most climatologists are certain that as the gases continue to accumulate, increases in the earth's temperature will become evident even to skeptics. If the reality of global warming were put on trial, each side would have trouble making its case. Jim Hansen's side could not prove beyond a reasonable doubt that carbon dioxide and other greenhouse gases have warmed the planet. But neither could John Sununu's side prove beyond a reasonable doubt that the warming expected from greenhouse gases has not occurred. To see why each side would have difficulty proving its case, this article reviews the arguments that might be presented in such a hearing

  1. Long range global warming

    International Nuclear Information System (INIS)

    Rolle, K.C.; Pulkrabek, W.W.; Fiedler, R.A.

    1995-01-01

    This paper explores one of the causes of global warming that is often overlooked, the direct heating of the environment by engineering systems. Most research and studies of global warming concentrate on the modification that is occurring to atmospheric air as a result of pollution gases being added by various systems; i.e., refrigerants, nitrogen oxides, ozone, hydrocarbons, halon, and others. This modification affects the thermal radiation balance between earth, sun and space, resulting in a decrease of radiation outflow and a slow rise in the earth's steady state temperature. For this reason the solution to the problem is perceived as one of cleaning up the processes and effluents that are discharged into the environment. In this paper arguments are presented that suggest, that there is a far more serious cause for global warming that will manifest itself in the next two or three centuries; direct heating from the exponential growth of energy usage by humankind. Because this is a minor contributor to the global warming problem at present, it is overlooked or ignored. Energy use from the combustion of fuels and from the output of nuclear reactions eventually is manifest as warming of the surroundings. Thus, as energy is used at an ever increasing rate the consequent global warming also increases at an ever increasing rate. Eventually this rate will become equal to a few percent of solar radiation. When this happens the earth's temperature will have risen by several degrees with catastrophic results. The trends in world energy use are reviewed and some mathematical models are presented to suggest future scenarios. These models can be used to predict when the global warming problem will become undeniably apparent, when it will become critical, and when it will become catastrophic

  2. High temperature charge amplifier for geothermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.

    2015-12-08

    An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.

  3. Specific circuit design: electrocardiogram amplifier

    International Nuclear Information System (INIS)

    Laribiere, Laurent

    1991-01-01

    The electrocardiogram amplifier is a specific integrated circuit. It is based on a linear array of Raytheon. This circuit is fitted with the following functions and characteristics: - electrocardiogram signals amplification, - pacemaker detection, - electrode un-sticking detection, - defibrillator overload protection, - battery-powered, - internal regulation 5 V, - low supply current 2.5 mA, - according to French norms on electrocardiogram surveillance devices - 28 pin package, available in CMS version It can be used for any surveillance device, requiring an analog processing of cardiac signals. (author) [fr

  4. Audio power amplifier design handbook

    CERN Document Server

    Self, Douglas

    2013-01-01

    This book is essential for audio power amplifier designers and engineers for one simple reason...it enables you as a professional to develop reliable, high-performance circuits. The Author Douglas Self covers the major issues of distortion and linearity, power supplies, overload, DC-protection and reactive loading. He also tackles unusual forms of compensation and distortion produced by capacitors and fuses. This completely updated fifth edition includes four NEW chapters including one on The XD Principle, invented by the author, and used by Cambridge Audio. Cro

  5. Cathode-follower power amplifier

    International Nuclear Information System (INIS)

    Giordano, S.; Puglisi, M.

    1983-01-01

    In circular accelerators and particularly in storage rings it is essential that the total impedance, as seen by the beam, be kept below some critical value. A model of the accelerating system was built using a single-ended cathode-follower amplifier driving a ferrite-loaded cavity. The system operated at 234.5 kHz with a peak output voltage of +-10 kV on the gap. The dynamic output impedance, as measured on the gap, was < 15 ohms

  6. ENSO and greenhouse warming

    Science.gov (United States)

    Cai, Wenju; Santoso, Agus; Wang, Guojian; Yeh, Sang-Wook; An, Soon-Il; Cobb, Kim M.; Collins, Mat; Guilyardi, Eric; Jin, Fei-Fei; Kug, Jong-Seong; Lengaigne, Matthieu; McPhaden, Michael J.; Takahashi, Ken; Timmermann, Axel; Vecchi, Gabriel; Watanabe, Masahiro; Wu, Lixin

    2015-09-01

    The El Niño/Southern Oscillation (ENSO) is the dominant climate phenomenon affecting extreme weather conditions worldwide. Its response to greenhouse warming has challenged scientists for decades, despite model agreement on projected changes in mean state. Recent studies have provided new insights into the elusive links between changes in ENSO and in the mean state of the Pacific climate. The projected slow-down in Walker circulation is expected to weaken equatorial Pacific Ocean currents, boosting the occurrences of eastward-propagating warm surface anomalies that characterize observed extreme El Niño events. Accelerated equatorial Pacific warming, particularly in the east, is expected to induce extreme rainfall in the eastern equatorial Pacific and extreme equatorward swings of the Pacific convergence zones, both of which are features of extreme El Niño. The frequency of extreme La Niña is also expected to increase in response to more extreme El Niños, an accelerated maritime continent warming and surface-intensified ocean warming. ENSO-related catastrophic weather events are thus likely to occur more frequently with unabated greenhouse-gas emissions. But model biases and recent observed strengthening of the Walker circulation highlight the need for further testing as new models, observations and insights become available.

  7. The global warming problem

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In this chapter, a discussion is presented of the global warming problem and activities contributing to the formation of acid rain, urban smog and to the depletion of the ozone layer. Globally, about two-thirds of anthropogenic carbon dioxide emissions arise from fossil-fuel burning; the rest arise primarily from deforestation. Chlorofluorocarbons are the second largest contributor to global warming, accounting for about 20% of the total. The third largest contributor is methane, followed by ozone and nitrous oxide. A study of current activities in the US that contribute to global warming shows the following: electric power plants account for about 33% of carbon dioxide emissions; motor vehicles, planes and ships (31%); industrial plants (24%); commercial and residential buildings (11%)

  8. Northern hemisphere glaciation during the globally warm early Late Pliocene.

    Directory of Open Access Journals (Sweden)

    Stijn De Schepper

    Full Text Available The early Late Pliocene (3.6 to ∼3.0 million years ago is the last extended interval in Earth's history when atmospheric CO2 concentrations were comparable to today's and global climate was warmer. Yet a severe global glaciation during marine isotope stage (MIS M2 interrupted this phase of global warmth ∼3.30 million years ago, and is seen as a premature attempt of the climate system to establish an ice-age world. Here we propose a conceptual model for the glaciation and deglaciation of MIS M2 based on geochemical and palynological records from five marine sediment cores along a Caribbean to eastern North Atlantic transect. Our records show that increased Pacific-to-Atlantic flow via the Central American Seaway weakened the North Atlantic Current and attendant northward heat transport prior to MIS M2. The consequent cooling of the northern high latitude oceans permitted expansion of the continental ice sheets during MIS M2, despite near-modern atmospheric CO2 concentrations. Sea level drop during this glaciation halted the inflow of Pacific water to the Atlantic via the Central American Seaway, allowing the build-up of a Caribbean Warm Pool. Once this warm pool was large enough, the Gulf Stream-North Atlantic Current system was reinvigorated, leading to significant northward heat transport that terminated the glaciation. Before and after MIS M2, heat transport via the North Atlantic Current was crucial in maintaining warm climates comparable to those predicted for the end of this century.

  9. A system for biasing a differential amplifier

    International Nuclear Information System (INIS)

    Barbier, Daniel; Ittel, J.M.; Poujois, Robert

    1975-01-01

    This invention concerns a system for biasing a differential amplifier. It particularly applies to the integrated differential amplifiers designed with MOS field effect transistors. Variations in the technological parameters may well cause the amplifying transistors to work outside their usual operational area, in other words outside the linear part of the transfer characteristic. To ensure that these transistors function correctly, it is necessary that the value of the voltage difference at the output be equally null. To do this and to centre on the so called 'rest' point of the amplifier transfer charateristic, the condition will be set that the output potentials of each amplifier transistor should have a zero value or a constant value as sum. With this in view, the bias on the source (generally a transistor powered by its grid bias voltage) supplying current to the two amplifying transistors fitted in parallel, is permanently adjusted in a suitable manner [fr

  10. An Implantable CMOS Amplifier for Nerve Signals

    DEFF Research Database (Denmark)

    Nielsen, Jannik Hammel; Lehmann, Torsten

    2001-01-01

    on the amplifier input nodes. The method for signal recovery from noisy nerve signals is presented. A prototype amplifier is realized in a standard digital 0.5 μm CMOS single poly, n-well process. The prototype amplifier features a gain of 80 dB over a 3.6 kHz bandwidth, a CMRR of more than 87 dB and a PSRR......In this paper, a low noise high gain CMOS amplifier for minute nerve signals is presented. By using a mixture of weak- and strong inversion transistors, optimal noise suppression in the amplifier is achieved. A continuous-time offset-compensation technique is utilized in order to minimize impact...... greater than 84 dB. The equivalent input referred noise in the bandwidth of interest is 5 nV/√Hz. The amplifier power consumption is 275 μW....

  11. Asymmetric responses to simulated global warming by populations of Colobanthus quitensis along a latitudinal gradient.

    Science.gov (United States)

    Acuña-Rodríguez, Ian S; Torres-Díaz, Cristian; Hereme, Rasme; Molina-Montenegro, Marco A

    2017-01-01

    The increase in temperature as consequence of the recent global warming has been reported to generate new ice-free areas in the Antarctic continent, facilitating the colonization and spread of plant populations. Consequently, Antarctic vascular plants have been observed extending their southern distribution. But as the environmental conditions toward southern localities become progressively more departed from the species' physiological optimum, the ecophysiological responses and survival to the expected global warming could be reduced. However, if processes of local adaptation are the main cause of the observed southern expansion, those populations could appear constrained to respond positively to the expected global warming. Using individuals from the southern tip of South America, the South Shetland Islands and the Antarctic Peninsula, we assess with a long term experiment (three years) under controlled conditions if the responsiveness of Colobanthus quitensis populations to the expected global warming, is related with their different foliar traits and photoprotective mechanisms along the latitudinal gradient. In addition, we tested if the release of the stress condition by the global warming in these cold environments increases the ecophysiological performance. For this, we describe the latitudinal pattern of net photosynthetic capacity, biomass accumulation, and number of flowers under current and future temperatures respective to each site of origin after three growing seasons. Overall, was found a clinal trend was found in the foliar traits and photoprotective mechanisms in the evaluated C. quitensis populations. On the other hand, an asymmetric response to warming was observed for southern populations in all ecophysiological traits evaluated, suggesting that low temperature is limiting the performance of C. quitensis populations. Our results suggest that under a global warming scenario, plant populations that inhabiting cold zones at high latitudes could

  12. Asymmetric responses to simulated global warming by populations of Colobanthus quitensis along a latitudinal gradient

    Science.gov (United States)

    Acuña-Rodríguez, Ian S.; Torres-Díaz, Cristian; Hereme, Rasme

    2017-01-01

    The increase in temperature as consequence of the recent global warming has been reported to generate new ice-free areas in the Antarctic continent, facilitating the colonization and spread of plant populations. Consequently, Antarctic vascular plants have been observed extending their southern distribution. But as the environmental conditions toward southern localities become progressively more departed from the species’ physiological optimum, the ecophysiological responses and survival to the expected global warming could be reduced. However, if processes of local adaptation are the main cause of the observed southern expansion, those populations could appear constrained to respond positively to the expected global warming. Using individuals from the southern tip of South America, the South Shetland Islands and the Antarctic Peninsula, we assess with a long term experiment (three years) under controlled conditions if the responsiveness of Colobanthus quitensis populations to the expected global warming, is related with their different foliar traits and photoprotective mechanisms along the latitudinal gradient. In addition, we tested if the release of the stress condition by the global warming in these cold environments increases the ecophysiological performance. For this, we describe the latitudinal pattern of net photosynthetic capacity, biomass accumulation, and number of flowers under current and future temperatures respective to each site of origin after three growing seasons. Overall, was found a clinal trend was found in the foliar traits and photoprotective mechanisms in the evaluated C. quitensis populations. On the other hand, an asymmetric response to warming was observed for southern populations in all ecophysiological traits evaluated, suggesting that low temperature is limiting the performance of C. quitensis populations. Our results suggest that under a global warming scenario, plant populations that inhabiting cold zones at high latitudes could

  13. Asymmetric responses to simulated global warming by populations of Colobanthus quitensis along a latitudinal gradient

    Directory of Open Access Journals (Sweden)

    Ian S. Acuña-Rodríguez

    2017-09-01

    high latitudes could increase in their ecophysiological performance, enhancing the size of populations or their spread.

  14. Transverse pumped laser amplifier architecture

    Science.gov (United States)

    Bayramian, Andrew James; Manes, Kenneth; Deri, Robert; Erlandson, Al; Caird, John; Spaeth, Mary

    2013-07-09

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  15. Paralyzed warming world

    Czech Academy of Sciences Publication Activity Database

    Ač, Alexander

    2010-01-01

    Roč. 2, č. 2 (2010), s. 81-86 ISSN 1876-8156 Institutional research plan: CEZ:AV0Z60870520 Keywords : global warming * climate Subject RIV: EH - Ecology, Behaviour http://ojs.ubvu.vu.nl/alf/article/view/134/250

  16. Global Warming: A Myth?

    Indian Academy of Sciences (India)

    On replacing rela-tive humidity cloud scheme with water clouds in the models, global annual average surface temperature comes down from 5.2 OK to 2.7 OK. If cloud radiative properties are allowed to depend on the cloud water content, warming is further reduced to 1.9 OK [7]. (iii) Cloud Radiative Forcing: Clouds reflect a ...

  17. The global warming scare

    International Nuclear Information System (INIS)

    Sunavala, P.D.

    1992-01-01

    It is argued that the present propaganda about the global warming with its disastrous consequences is a scare spread by some First World countries, especially the United States, to prevent the rapid industrialization of developing third world countries. (author). 6 refs., 1 tab

  18. Silicon Germanium Cryogenic Low Noise Amplifiers

    Science.gov (United States)

    Bardin, J. C.; Montazeri, S.; Chang, Su-Wei

    2017-05-01

    Silicon germanium heterojunction bipolar transistors have emerged in the last decade as an excellent option for use in cryogenic low noise amplifiers. This paper begins with a review of the critical developments that have led to today’s cryogenic low noise amplifiers. Next, recent work focused on minimizing the power consumption of SiGe cryogenic amplifiers is presented. Finally, open issues related to the cryogenic noise properties of SiGe HBTs are discussed.

  19. Short Rayleigh Range Free Electron Laser Amplifiers

    CERN Document Server

    Yu, L H; Murphy, J B; Rose, J; Shaftan, T V; Wang, X J; Watanabe, T

    2005-01-01

    An important requirement for a high average power laser system is a manageable power density on the first optical element. One possibility to achieve this is a single pass amplifier which generates a short Rayleigh range (SRL) light beam. We present design parameters and calculated performances for several SRL configurations. These include a simulation of the optically guided (pinched) MW class FEL [1], the scalloped beam FEL amplifier [2] and high gain TOK amplifiers we propose to explore at our SDL facility.

  20. Long-term warming restructures Arctic tundra without changing net soil carbon storage.

    Science.gov (United States)

    Sistla, Seeta A; Moore, John C; Simpson, Rodney T; Gough, Laura; Shaver, Gaius R; Schimel, Joshua P

    2013-05-30

    High latitudes contain nearly half of global soil carbon, prompting interest in understanding how the Arctic terrestrial carbon balance will respond to rising temperatures. Low temperatures suppress the activity of soil biota, retarding decomposition and nitrogen release, which limits plant and microbial growth. Warming initially accelerates decomposition, increasing nitrogen availability, productivity and woody-plant dominance. However, these responses may be transitory, because coupled abiotic-biotic feedback loops that alter soil-temperature dynamics and change the structure and activity of soil communities, can develop. Here we report the results of a two-decade summer warming experiment in an Alaskan tundra ecosystem. Warming increased plant biomass and woody dominance, indirectly increased winter soil temperature, homogenized the soil trophic structure across horizons and suppressed surface-soil-decomposer activity, but did not change total soil carbon or nitrogen stocks, thereby increasing net ecosystem carbon storage. Notably, the strongest effects were in the mineral horizon, where warming increased decomposer activity and carbon stock: a 'biotic awakening' at depth.

  1. Prolonged exposure does not increase soil microbial community compositional response to warming along geothermal gradients.

    Science.gov (United States)

    Radujkovic, Dajana; Verbruggen, Erik; Sigurdsson, Bjarni D; Leblans, Niki I W; Janssens, Ivan A; Vicca, Sara; Weedon, James T

    2018-02-01

    Global change is expected to affect soil microbial communities through their responsiveness to temperature. It has been proposed that prolonged exposure to elevated temperatures may lead to progressively larger effects on soil microbial community composition. However, due to the relatively short-term nature of most warming experiments, this idea has been challenging to evaluate. The present study took the advantage of natural geothermal gradients (from +1°C to +19°C above ambient) in two subarctic grasslands to test the hypothesis that long-term exposure (>50 years) intensifies the effect of warming on microbial community composition compared to short-term exposure (5-7 years). Community profiles from amplicon sequencing of bacterial and fungal rRNA genes did not support this hypothesis: significant changes relative to ambient were observed only starting from the warming intensity of +9°C in the long term and +7°C/+3°C in the short term, for bacteria and fungi, respectively. Our results suggest that microbial communities in high-latitude grasslands will not undergo lasting shifts in community composition under the warming predicted for the coming 100 years (+2.2°C to +8.3°C). © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Striking Seasonality in the Secular Warming of the Northern Continents: Structure and Mechanisms

    Science.gov (United States)

    Nigam, S.; Thomas, N. P.

    2017-12-01

    The linear trend in twentieth-century surface air temperature (SAT)—a key secular warming signal— exhibits striking seasonal variations over Northern Hemisphere continents; SAT trends are pronounced in winter and spring but notably weaker in summer and fall. The SAT trends in historical twentieth-century climate simulations informing the Intergovernmental Panel for Climate Change's Fifth Assessment show varied (and often unrealistic) strength and structure, and markedly weaker seasonal variation. The large intra-ensemble spread of winter SAT trends in some historical simulations was surprising, especially in the context of century-long linear trends, with implications for the detection of the secular warming signal. The striking seasonality of observed secular warming over northern continents warrants an explanation and the representation of related processes in climate models. Here, the seasonality of SAT trends over North America is shown to result from land surface-hydroclimate interactions and, to an extent, also from the secular change in low-level atmospheric circulation and related thermal advection. It is argued that the winter dormancy and summer vigor of the hydrologic cycle over middle- to high-latitude continents permit different responses to the additional incident radiative energy from increasing greenhouse gas concentrations. The seasonal cycle of climate, despite its monotony, provides an expanded phase space for the exposition of the dynamical and thermodynamical processes generating secular warming, and an exceptional cost-effective opportunity for benchmarking climate projection models.

  3. A 400-year ice core melt layer record of summertime warming in the Alaska Range

    Science.gov (United States)

    Winski, D.; Osterberg, E. C.; Kreutz, K. J.; Wake, C. P.; Ferris, D. G.; Campbell, S. W.; Baum, M.; Raudzens Bailey, A.; Birkel, S. D.; Introne, D.; Handley, M.

    2017-12-01

    Warming in high-elevation regions has socially relevant impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While many terrestrial paleoclimate records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually-resolved temperature records from high elevations. We present a 400-year temperature record based on the melt-layer stratigraphy in two ice cores collected from Mt. Hunter in the Central Alaska Range. The ice core record shows a 60-fold increase in melt frequency and water equivalent melt thickness between the pre-industrial period (before 1850) and present day. We calibrate the melt record to summer temperatures based on local and regional weather station analyses, and find that the increase in melt production represents a summer warming of at least 2° C, exceeding rates of temperature increase at most low elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p<0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby-wave like pattern that induces high temperatures over Alaska. Our results show that rapid alpine warming has taken place in the Alaska Range for at least a century, and that conditions in the tropical oceans contribute to this warming.

  4. Variabilities of mesospheric tides and equatorial electrojet strength during major stratospheric warming events

    Directory of Open Access Journals (Sweden)

    S. Sridharan

    2009-11-01

    Full Text Available The present study demonstrates the relationship between the high latitude northern hemispheric major sudden stratospheric warming (SSW events and the reversal in the afternoon equatorial electrojet (EEJ, often called the counter-electrojet (CEJ, during the winter months of 1998–1999, 2001–2002, 2003–2004 and 2005–2006. As the EEJ current system is driven by tidal winds, an investigation of tidal variabilities in the MF radar observed zonal winds during the winters of 1998–1999 and 2005–2006 at 88 km over Tirunelveli, a site close to the magnetic equator, shows that there is an enhancement of semi-diurnal tidal amplitude during the days of a major SSW event and a suppression of the same immediately after the event. The significance of the present results lies in demonstrating the latitudinal coupling between the high latitude SSW phenomenon and the equatorial ionospheric current system with clear evidence for major SSW events influencing the day-to-day variability of the CEJ.

  5. Second workshop of I.A.G./A.I.G. SEDIBUD - Sediment Budgets in Cold Environments: Sediment fluxes and sediment budgets in changing high-latitude and high-altitude cold environments

    Energy Technology Data Exchange (ETDEWEB)

    Beylich, Achim A.; Lamoureux, Scott F.; Decaulne, Armelle

    2007-07-01

    This Second Workshop of the I.A.G./A.I.G. Working Group SEDIBUD (Sediment Budgets in Cold Environments) builds on four previous ESF SEDIFLUX Science Meetings held in Saudarkrokur (Iceland) in June 2004, Clermont-Ferrand (France) in January 2005, Durham (UK) in December 2005 and Trondheim (Norway) in the end of October/beginning of November 2006. A first kick-off Meeting of the new I.A.G./A.I.G. SEDIBUD Workshop. The theme of this Second I.A.G./A.I.G. SEDIBUD Workshop is Sediment FLuxes and Sediment Budgets in Changing High-Latitude Cold Environments. The Workshop is split between scientific paper and poster presentations, presentation and discussion of SEDIBUD key test sites, discussions within defined work groups and guided field trip to Kaerkevagge. This workshop will address the key aim of SEDIBUD to discuss Source-to-Sink-Fluxes and Sediment Budgets in Changing Cold Environments. Major emphasis will be given to consequences of climate change, scaling issues and source-to-sink correlations. Central issues will be presentation and discussion of the SEDIFLUX Manual (First Edition), the selection of SEDIBUD key test sites, the discussion and development of further ideas to extend the scientific activities within SEDIBUD in a global framework.(auth)

  6. Physics-based formula representations of high-latitude ionospheric outflows: H+ and O+ densities, flow velocities, and temperatures versus soft electron precipitation, wave-driven transverse heating, and solar zenith angle effects

    Science.gov (United States)

    Horwitz, J. L.; Zeng, W.

    2009-01-01

    Extensive systematic dynamic fluid kinetic (DyFK) model simulations are conducted to obtain advanced simulation-based formula representations of ionospheric outflow parameters, for possible use by global magnetospheric modelers. Under F10.7 levels of 142, corresponding to solar medium conditions, we obtain the H+ and O+ outflow densities, flow velocities, and perpendicular and parallel temperatures versus energy fluxes and characteristic energies of soft electron precipitation, wave spectral densities of ion transverse wave heating, and F region level solar zenith angle in the high-latitude auroral region. From the results of hundreds of DyFK simulations of auroral outflows for ranges of each of these driving agents, we depict the H+ and O+ outflow density and flow velocity parameters at 3 R E altitude at the ends of these 2-h simulation runs in spectrogram form versus various pairs of these influencing parameters. We further approximate these results by various distilled formula representations for the O+ and H+ outflow velocities, densities, and temperatures at 3 R E altitude, as functions of the above indicated four ``driver'' parameters. These formula representations provide insight into the physics of these driven outflows, and may provide a convenient set of tools to set the boundary conditions for ionospheric plasma sources in global magnetospheric simulations.

  7. UV-B absorbing pigments in spores: biochemical responses to shade in a high-latitude birch forest and implications for sporopollenin-based proxies of past environmental change

    Directory of Open Access Journals (Sweden)

    Terry V. Callaghan

    2011-08-01

    Full Text Available Current attempts to develop a proxy for Earth's surface ultraviolet-B (UV-B flux focus on the organic chemistry of pollen and spores because their constituent biopolymer, sporopollenin, contains UV-B absorbing pigments whose relative abundance may respond to the ambient UV-B flux. Fourier transform infrared (FTIR microspectroscopy provides a useful tool for rapidly determining the pigment content of spores. In this paper, we use FTIR to detect a chemical response of spore wall UV-B absorbing pigments that correspond with levels of shade beneath the canopy of a high-latitude Swedish birch forest. A 27% reduction in UV-B flux beneath the canopy leads to a significant (p<0.05 7.3% reduction in concentration of UV-B absorbing compounds in sporopollenin. The field data from this natural flux gradient in UV-B further support our earlier work on sporopollenin-based proxies derived from sedimentary records and herbaria collections.

  8. Dynamics of soliton cascades in fiber amplifiers.

    Science.gov (United States)

    Arteaga-Sierra, F R; Antikainen, A; Agrawal, Govind P

    2016-11-15

    We study numerically the formation of cascading solitons when femtosecond optical pulses are launched into a fiber amplifier with less energy than required to form a soliton of equal duration. As the pulse is amplified, cascaded fundamental solitons are created at different distances, without soliton fission, as each fundamental soliton moves outside the gain bandwidth through the Raman-induced spectral shifts. As a result, each input pulse creates multiple, temporally separated, ultrashort pulses of different wavelengths at the amplifier output. The number of pulses depends not only on the total gain of the amplifier but also on the width of the input pulse.

  9. Reflection amplifiers in self-regulated learning

    NARCIS (Netherlands)

    Verpoorten, Dominique

    2012-01-01

    Verpoorten, D. (2012). Reflection amplifiers in self-regulated learning. Doctoral thesis. November, 9, 2012, Heerlen, The Netherlands: Open Universiteit (CELSTEC). Datawyse / Universitaire Pers Maastricht.

  10. Asian climate change under 1.5–4 °C warming targets

    Directory of Open Access Journals (Sweden)

    Ying Xu

    2017-06-01

    Full Text Available Based on simulations of 18 CMIP5 models under three RCP scenarios, this article investigates changes in mean temperature and precipitation and their extremes over Asia in the context of global warming targets of 1.5–4 °C, and further compares the differences between 1.5 °C and 2 °C targets. Results show that relative to the pre-industrial era, the mean temperature over Asia increases by 2.3 °C, 3.0 °C, 4.6 °C, and 6.0 °C at warming targets of 1.5 °C, 2 °C, 3 °C, and 4 °C, respectively, with stronger warming in high latitudes than in low latitudes. The corresponding enhancement in mean precipitation over the entire Asian region is 4.4%, 5.8%, 10.2%, and 13.0%, with significant regional differences. In addition, an increase in warm extremes, a decrease in cold extremes, and a strengthening in the variability of amounts of extreme precipitation are projected. Under the 1.5 °C target, compared with the climate under the 2 °C target, the mean temperature will be lower by 0.5–1 °C over Asia; the mean precipitation will be less by 5%–20% over most of Asia, but will be greater by about 10%–15% over West Asia and western South Asia; extreme high temperatures will be uniformly cooler throughout the Asian region, and the warming in extreme low temperatures will decrease significantly in high latitudes of Asia; extreme precipitation will be weaker over most of Asia but will be stronger over West Asia and western South Asia. Under the 1.5 °C and 2 °C warming targets, the probability of very hot weather (anomalies greater than 1σ, σ is standard deviation, extremely hot weather (anomalies greater than 3σ, and extremely heavy precipitation (anomalies greater than 3σ occurring will increase by at least once, 10%, and 10%, respectively, compared to the reference period (1861–1900.

  11. Are Sierran Lakes Warming as a Result of Climate Change? The Effects of Climate Warming and Variation in Precipitation on Water Temperature in a Snowmelt-Dominated Lake

    Science.gov (United States)

    Sadro, S.; Melack, J. M.; Sickman, J. O.; Skeen, K.

    2016-12-01

    Water temperature regulates a broad range of fundamental ecosystem processes in lakes. While climate can be an important factor regulating lake temperatures, heterogeneity in the warming response of lakes is large, and variation in precipitation is rarely considered. We analyzed three decades of climate and water temperature data from a high-elevation catchment in the southern Sierra Nevada of California to illustrate the magnitude of warming taking place during different seasons and the role of precipitation in regulating lake temperatures. Significant climate warming trends were evident during all seasons except spring. Nighttime rates of climate warming were approximately 25% higher than daytime rates. Spatial patterns in warming were elevation dependent, with rates of temperature increase higher at sites above 2800 m.a.s.l. than below. Although interannual variation in snow deposition was high, the frequency and severity of recent droughts has contributed to a significant 3.4 mm year -1 decline in snow water equivalent over the last century. Snow accumulation, more than any other climate factor, regulated lake temperature; 94% of variation in summer lake temperature was regulated by precipitation as snow. For every 100 mm decrease in snow water equivalent there was a 0.62 ° increase in lake temperature. Drought years amplify warming in lakes by reducing the role of cold spring meltwaters in lake energy budgets and prolonging the ice-free period during which lakes warm. The combination of declining winter snowpack and warming air temperatures has the capacity to amplify the effect of climate warming on lake temperatures during drought years. Interactions among climatic factors need to be considered when evaluating ecosystem level effects, especially in mountain regions. For mountain lakes already affected by drought, continued climate warming during spring and autumn has the greatest potential to impact mean lake temperatures.

  12. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.

    2005-08-21

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.

  13. Distributed feedback laser amplifiers combining the functions of amplifiers and channel filters

    DEFF Research Database (Denmark)

    Wang, Z.; Durhuus, T.; Mikkelsen, Benny

    1994-01-01

    A dynamic model for distributed feedback amplifiers, including the mode coupled equations and the carrier rate equation, is established. The presented mode coupled equations have taken into account the interaction between fast changing optical signal and the waveguide with corrugations. By showin...... the possibility of amplifying 100 ps pulses without pulse broadening, we anticipate that a distributed feedback amplifier can be used as a combined amplifier and channel filter in high bit rate transmission systems....

  14. Slowing global warming

    International Nuclear Information System (INIS)

    Flavin, C.

    1990-01-01

    According to the authors, global warming promises to be one of the central environmental issues of the nineties. After a decade of scientific concern but popular neglect, the eighties ended with a growing political as well as scientific consensus that the world can no longer afford to procrastinate about this issue. This paper reports on coping with global warming which, according to the author, will force societies to move rapidly into uncharted terrain, reversing powerful trends that have dominated the industrial age. This challenge cannot be met without a strong commitment on the part of both individual consumers and governments. In terms of the earth's carbon balance, the unprecedented policy changes that have now become urgent include a new commitment to greater energy efficiency and renewable energy sources, a carbon tax on fossil fuels, a reversal of deforestation in tropical countries, and the rapid elimination of CFCs

  15. Thinking About Global Warming

    International Nuclear Information System (INIS)

    Baron, J.

    2006-01-01

    Attitudes toward global warming are influenced by various heuristics, which may distort policy away from what is optimal for the well-being of people. These possible distortions, or biases, include: a focus on harms that we cause, as opposed to those that we can remedy more easily; a feeling that those who cause a problem should fix it; a desire to undo a problem rather than compensate for its presence; parochial concern with one's own group (nation); and neglect of risks that are not available. Although most of these biases tend to make us attend relatively too much to global warming, other biases, such as wishful thinking, cause us to attend too little. I discuss these possible effects and illustrate some of them with an experiment conducted on the World Wide Web

  16. Climate change - global warming

    International Nuclear Information System (INIS)

    Ciconkov, Risto

    2001-01-01

    An explanation about climate, weather, climate changes. What is a greenhouse effect, i.e. global warming and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warming Potential) as a factor for estimating their influence on the greenhouse effect. Indicators of the climate changes in the previous period by known international institutions, higher concentrations of global average temperature. Projecting of likely scenarios for the future climate changes and consequences of them on the environment and human activities: industry, energy, agriculture, water resources. The main points of the Kyoto Protocol and problems in its realization. The need of preparing a country strategy concerning the acts of the Kyoto Protocol, suggestions which could contribute in the preparation of the strategy. A special attention is pointed to the energy, its resources, the structure of energy consumption and the energy efficiency. (Author)

  17. Reconstructing warm inflation

    Science.gov (United States)

    Herrera, Ramón

    2018-03-01

    The reconstruction of a warm inflationary universe model from the scalar spectral index n_S(N) and the tensor to scalar ratio r( N) as a function of the number of e-folds N is studied. Under a general formalism we find the effective potential and the dissipative coefficient in terms of the cosmological parameters n_S and r considering the weak and strong dissipative stages under the slow roll approximation. As a specific example, we study the attractors for the index n_S given by nS-1∝ N^{-1} and for the ratio r∝ N^{-2}, in order to reconstruct the model of warm inflation. Here, expressions for the effective potential V(φ ) and the dissipation coefficient Γ (φ ) are obtained.

  18. Design and development of a spectroscopy amplifier

    International Nuclear Information System (INIS)

    Ahmad, N.; Khalaf, M.A.

    1998-01-01

    Spectroscopy amplifier is an integral part of my detection system used for the measurement and spectroscopy of nuclear radiations. Its performance determination the contribution of the electronics to the energy resolution of the system. A spectroscopy amplifier has been designed and developed using locally available components. The design and description of this unit is discussed in this article. (author)

  19. Bevalac injector final stage RF amplifier upgrades

    International Nuclear Information System (INIS)

    Howard, D.; Calvert, J.; Dwinell, R.; Lax, J.; Lindner, A.; Richter, R.; Ridgeway, W.

    1991-01-01

    With the assistance of the DOE In-house Energy Management Program, the Bevalac injector final stage RF amplifier systems have been successfully upgraded to reduce energy consumption and operating costs. This recently completed project removed the energy-inefficient plate voltage modulator circuits that were used in conjunction with the final stage RF amplifiers. Construction, design, and operating parameters are described in detail

  20. BROADBAND TRAVELLING WAVE SEMICONDUCTOR OPTICAL AMPLIFIER

    DEFF Research Database (Denmark)

    2010-01-01

    Broadband travelling wave semiconductor optical amplifier (100, 200, 300, 400, 800) for amplification of light, wherein the amplifier (100, 200, 300, 400, 800) comprises a waveguide region (101, 201, 301, 401, 801) for providing confinement of the light in transverse directions and adapted...

  1. A CMOS current-mode operational amplifier

    DEFF Research Database (Denmark)

    Kaulberg, Thomas

    1993-01-01

    A fully differential-input, differential-output, current-mode operational amplifier (COA) is described. The amplifier utilizes three second-generation current conveyors (CCIIs) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanc...

  2. Enhanced Gain in Photonic Crystal Amplifiers

    DEFF Research Database (Denmark)

    Ek, Sara; Semenova, Elizaveta; Hansen, Per Lunnemann

    2012-01-01

    We experimentally demonstrate enhanced gain in the slow-light regime of quantum well photonic crystal amplifiers. A strong gain enhancement is observed with the increase of the group refractive index, due to light slow-down. The slow light enhancement is shown in a amplified spontaneous emission...

  3. High Average Power Optical FEL Amplifiers

    CERN Document Server

    Ben-Zvi, I; Litvinenko, V

    2005-01-01

    Historically, the first demonstration of the FEL w