WorldWideScience

Sample records for amplified polymorphic dna-polymerase

  1. Randomly amplified polymorphic DNA-polymerase chain reaction ...

    Indian Academy of Sciences (India)

    Genetic similarity and diversity of cultured catfish Silurus asotus populations collected from two areas in western Korea were examined using randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). Out of 20 random primers tested, 5 produced 1344 RAPD bands ranging from 8.2 to 13.6 polymorphic ...

  2. Randomly amplified polymorphic DNA-polymerase chain reaction ...

    Indian Academy of Sciences (India)

    Unknown

    The polymorphic DNA markers that were shown to genetically link to a trait of interest could be used for .... 2.3 Primers, markers and amplification conditions. Out of 20 decamer primers (Operon Technologies, ..... and stock structure of school mackerel and spotted mackerel in northern Australian waters; J. Fish Biol. 53 543– ...

  3. Identification of Species Related to Anopheles (Nyssorhynchus) albitarsis by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (Diptera: Culicidae)

    Science.gov (United States)

    1995-11-01

    plified polymorphic DNA in the population genet- ics and systematics of grasshoppers . Genome 35: 569-574. Galvgo ALA, Damesceno RG 1942. Sobre urn...iynchus) albitarsis by Random Amplified Polymorphic DNA -Polymerase Chain Reaction (Diptera: Culicidae) Richard C Wilkerson/+, Thomas V Caffigan, Jo...Instituto de Biologia do ExCrcito, Rua Francisco Manuel 102, 2091 l-270 Rio de Janeiro, RJ, Brasil Species-specific Random Amplified Polymorphic DNA

  4. Identification of three randomly amplified polymorphic DNA-polymerase chain reaction markers for distinguishing Asian and North American Gypsy Moths (Lepidoptera: Lymantriidae)

    Science.gov (United States)

    David E. Schreiber; Karen J. Garner; James M. Slavicek

    1997-01-01

    Gypsy moths originating in Asia have recently been introduced into North America, making it necessary to develop markers for distinguishing the Asian strain from the established North American population. We have identified 3 randomly amplified polymorphic DNA-polymerase chain reaction generated (RAPD-PCR) markers which are specific for either Asian or North American...

  5. Identification of species related to Anopheles (Nyssorhynchus albitarsis by random amplified polymorphic DNA-Polymerase chain reaction (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Richard C. Wilkerson

    1995-12-01

    Full Text Available Species-specific Random Amplified Polymorphic DNA-Polymerase chain Reaction (RAPD-PCR markers were used to identify four species related to Anopheles (Nyssorhynchus albitarsis Lynch-Arribàlzaga from 12 sites in Brazil and 4 in Venezuela. In a previous study (Wilkerson et al. 1995, which included sites in Paraguay and Argentina, these four species were designated "A", "B", "C" and "D". It was hypothesized that species A is An. (Nys. albitarsis, species B is undescribed, species C is An. (Nys marajoara Galvão and Damasceno and species D is An. (Nys. deaneorum Rosa-Freitas. Species D, previously characterized by RAPD-PCR from a small sample from northern Argentina and southern Brazil, is reported here from the type locality of An. (Nys. deaneorum, Guajará-Mirim, state of Rondônia, Brazil. Species C and D were found by RAPD-PCR to be sympatric at Costa Marques, state of Rondônia, Brazil. Species A and C have yet to be encountered at the same locality. The RAPD markers for species C were found to be conserved over 4,620 km; from Iguape, state of São Paulo, Brazil to rio Socuavo, state of Zulia, Venezuela. RAPD-PCR was determined to be an effective means for the identification of unknown species within this species complex.

  6. Analysis of ancient DNA from coprolites: a perspective with random amplified polymorphic DNA-polymerase chain reaction approach

    Directory of Open Access Journals (Sweden)

    Iñiguez Alena M

    2003-01-01

    Full Text Available The aim of this work was to determine approaches that would improve the quality of ancient DNA (aDNA present in coprolites to enhance the possibility of success in retrieving specific sequence targets. We worked with coprolites from South American archaeological sites in Brazil and Chile dating up to 7,000 years ago. Using established protocols for aDNA extraction we obtained samples showing high degradation as usually happens with this kind of material. The reconstructive polymerization pretreatment was essential to overcome the DNA degradation and the serial dilutions helped with to prevent polymerase chain reaction (PCR inhibitors. Moreover, the random amplified polymorphic DNA-PCR has been shown to be a reliable technique for further experiments to recover specific aDNA sequences.

  7. Genetic Differentiation of Archachatina marginata Populations from Three Vegetation Zones Using Radom Amplified Polymorphic DNA Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Comfort O. AFOLAYAN

    2015-09-01

    Full Text Available The genetic differentiation of Archachatina marginata populations from three different zones of Nigeria was studied with a view to delimiting them into sub-species. One hundred and nineteen (119 snail specimens were collected, comprising of forty (40 specimens from Yenagoa (Mangrove forest and from Kabba (Guinea Savanna and thirty nine (39 specimens were from Ile-Ife (Rainforest. Eight parameters of the shell specimens of A. marginata which included height of shell, width of shell, aperture height, aperture width, spire length, spire width, penultimate whorl length and first whorl length were subjected to Principal Component Analysis (PCA and Canonical Variates Analysis (CVA to delimit the populations into sub-species. DNA of the various populations was extracted from the foot muscle using CTAB (Cetyl Trimethyl Ammonium Bromide method, which was subjected to RAPD analysis. The RAPD studies employed five (5 oligonucleotide primers (OPB – 17, OPH – 12, OPH – 17, OPI – 06 and OPU – 14 to amplify DNA from 27 samples of A. marginata selected. All five primers produced different band patterns, and the number of fragments amplified per primer varied. Among them, OPB- 17 gave DNA profiles with more numerous bands than the others primers. Both PCA and CVA produced overlapped clusters of A. marginata specimens from the three vegetation zones. The height of shell was observed to be the most variable feature and preferably the most suitable parameter for population grouping. Analysis of the proportions of polymorphic loci and band sharing based on similarity indices for A. marginata samples indicated a relatively high level of genetic variation in the populations from the three areas.

  8. Whole Blood PCR Amplification with Pfu DNA Polymerase and Its Application in Single-Nucleotide Polymorphism Analysis.

    Science.gov (United States)

    Liu, Er-Ping; Wang, Yan; He, Xiao-Hui; Guan, Jun-Jie; Wang, Jin; Qin, Zheng-Hong; Sun, Wan-Ping

    2015-11-01

    Point-of-care genetic analysis may require polymerase chain reaction (PCR) to be carried out on whole blood. However, human blood contains natural inhibitors of PCR such as hemoglobin, immunoglobulin G, lactoferrin, and proteases, as well as anticoagulant agents, including EDTA and heparin that can reduce whole blood PCR efficiency. Our purpose was to develop a highly specific, direct whole blood single-nucleotide polymorphism (SNP) analysis method based on allele-specific (AS) PCR that is mediated by Pfu DNA polymerase and phosphorothioate-modified AS primers. At high Mg(2+) concentrations, Pfu DNA polymerase efficiently amplified genomic DNA in a reaction solution containing up to 14% whole blood. Among the three anticoagulants tested, Pfu DNA polymerase showed the highest activity with sodium citrate. Meanwhile, Triton X-100 and betaine inhibited Pfu DNA polymerase activity in whole blood PCR, whereas trehalose had virtually no effect. These findings provided for the development of a low-cost, simple, and fast direct whole blood genotyping method that uses Pfu DNA polymerase combined with phosphorothioate AS primers for CYP2C9*3 and VKORC1(-1639) loci. With its high DNA amplification efficiency and tolerance of various blood conditions, Pfu DNA polymerase can be used in clinical laboratories to analyze SNPs in whole blood samples.

  9. Amplified Detection of the Aptamer–Vanillin Complex with the Use of Bsm DNA Polymerase

    Directory of Open Access Journals (Sweden)

    Mariia Andrianova

    2017-12-01

    Full Text Available The electrochemical detection of interactions between aptamers and low-molecular-weight targets often lacks sensitivity. Signal amplification improves the detection of the aptamer-analyte complex; Bsm DNA polymerase was used to amplify the signal from the interaction of vanillin and its aptamer named Van_74 on an ion-sensitive field-effect transistor (ISFET-based biosensor. The aptamer was immobilized on the ISFET sensitive surface. A short DNA probe was hybridized with the aptamer and dissociated from it upon vanillin addition. A free probe interacted with a special DNA molecular beacon initiated the Bsm DNA polymerase reaction that was detected by ISFET. A buffer solution suitable for both aptamer action and Bsm DNA polymerase activity was determined. The ISFET was shown to detect the Bsm DNA polymerase reaction under the selected conditions. Vanillin at different concentrations (1 × 10−6–1 × 10−8 M was detected using the biosensor with signal amplification. The developed detection system allowed for the determination of vanillin, starting at a 10−8 M concentration. Application of the Bsm DNA polymerase resulted in a 15.5 times lower LoD when compared to the biosensor without signal amplification (10.1007/s00604-017-2586-4.

  10. Amplified Detection of the Aptamer-Vanillin Complex with the Use of Bsm DNA Polymerase.

    Science.gov (United States)

    Andrianova, Mariia; Komarova, Natalia; Grudtsov, Vitaliy; Kuznetsov, Evgeniy; Kuznetsov, Alexander

    2017-12-26

    The electrochemical detection of interactions between aptamers and low-molecular-weight targets often lacks sensitivity. Signal amplification improves the detection of the aptamer-analyte complex; Bsm DNA polymerase was used to amplify the signal from the interaction of vanillin and its aptamer named Van_74 on an ion-sensitive field-effect transistor (ISFET)-based biosensor. The aptamer was immobilized on the ISFET sensitive surface. A short DNA probe was hybridized with the aptamer and dissociated from it upon vanillin addition. A free probe interacted with a special DNA molecular beacon initiated the Bsm DNA polymerase reaction that was detected by ISFET. A buffer solution suitable for both aptamer action and Bsm DNA polymerase activity was determined. The ISFET was shown to detect the Bsm DNA polymerase reaction under the selected conditions. Vanillin at different concentrations (1 × 10 -6 -1 × 10 -8 M) was detected using the biosensor with signal amplification. The developed detection system allowed for the determination of vanillin, starting at a 10 -8 M concentration. Application of the Bsm DNA polymerase resulted in a 15.5 times lower LoD when compared to the biosensor without signal amplification (10.1007/s00604-017-2586-4).

  11. Cryptic Species in the Anopheles (Nyssorhynchus) albitarsis (Diptera: Culicidae) Complex: Incongruence Between Random Amplified Polymorphic DNA-Polymerase Chain Reaction Identification and Analysis of Mitochondrial DNA COI Gene Sequences

    OpenAIRE

    LEHR, M. A.; KILPATRICK, C. W.; WILKERSON, R. C.; CONN, J. E.

    2005-01-01

    Random amplified polymorphic DNA (RAPD) diagnostic bands are one tool used to differentiate cryptic mosquito species in the Anopheles albitarsis Complex. Monophyly of four species (A. albitarsis Lynch-Arribálzaga, A. albitarsis B, A. deaneorum Rosa-Freitas, and A. marajoara Galvão & Damasceno) currently identified with the RAPD technique was assessed using sequences of the cytochrome oxidase I (COI) mitochondrial DNA (mtDNA) gene. Maximum parsimony, maximum likelihood, and Bayesian analyses s...

  12. Randomly amplified polymorphic DNA-polymerase chain reaction ...

    Indian Academy of Sciences (India)

    Unknown

    Department of Animal Science, College of Industry Science, Kongju National University,. Yesan-kun ..... Appl. Genet. 97 1314–1320. Mohd-Azmi M, Ali A S and Kheng W K 2000 DNA finger- printing of red jungle fowl, village chicken and broilers;.

  13. Modulation of trinucleotide repeat instability by DNA polymerase β polymorphic variant R137Q.

    Directory of Open Access Journals (Sweden)

    Yaou Ren

    Full Text Available Trinucleotide repeat (TNR instability is associated with human neurodegenerative diseases and cancer. Recent studies have pointed out that DNA base excision repair (BER mediated by DNA polymerase β (pol β plays a crucial role in governing somatic TNR instability in a damage-location dependent manner. It has been shown that the activities and function of BER enzymes and cofactors can be modulated by their polymorphic variations. This could alter the function of BER in regulating TNR instability. However, the roles of BER polymorphism in modulating TNR instability remain to be elucidated. A previous study has shown that a pol β polymorphic variant, polβR137Q is associated with cancer due to its impaired polymerase activity and its deficiency in interacting with a BER cofactor, proliferating cell nuclear antigen (PCNA. In this study, we have studied the effect of the pol βR137Q variant on TNR instability. We showed that pol βR137Q exhibited weak DNA synthesis activity to cause TNR deletion during BER. We demonstrated that similar to wild-type pol β, the weak DNA synthesis activity of pol βR137Q allowed it to skip over a small loop formed on the template strand, thereby facilitating TNR deletion during BER. Our results further suggest that carriers with pol βR137Q polymorphic variant may not exhibit an elevated risk of developing human diseases that are associated with TNR instability.

  14. Preparation of Phi29 DNA Polymerase Free of Amplifiable DNA Using Ethidium Monoazide, an Ultraviolet-Free Light-Emitting Diode Lamp and Trehalose

    Science.gov (United States)

    Takahashi, Hirokazu; Yamazaki, Hiroyuki; Akanuma, Satoshi; Kanahara, Hiroko; Saito, Toshiyuki; Chimuro, Tomoyuki; Kobayashi, Takayoshi; Ohtani, Toshio; Yamamoto, Kimiko; Sugiyama, Shigeru; Kobori, Toshiro

    2014-01-01

    We previously reported that multiply-primed rolling circle amplification (MRPCA) using modified random RNA primers can amplify tiny amounts of circular DNA without producing any byproducts. However, contaminating DNA in recombinant Phi29 DNA polymerase adversely affects the outcome of MPRCA, especially for negative controls such as non-template controls. The amplified DNA in negative control casts doubt on the result of DNA amplification. Since Phi29 DNA polymerase has high affinity for both single-strand and double-stranded DNA, some amount of host DNA will always remain in the recombinant polymerase. Here we describe a procedure for preparing Phi29 DNA polymerase which is essentially free of amplifiable DNA. This procedure is realized by a combination of host DNA removal using appropriate salt concentrations, inactivation of amplifiable DNA using ethidium monoazide, and irradiation with visible light from a light-emitting diode lamp. Any remaining DNA, which likely exists as oligonucleotides captured by the Phi29 DNA polymerase, is degraded by the 3′-5′ exonuclease activity of the polymerase itself in the presence of trehalose, used as an anti-aggregation reagent. Phi29 DNA polymerase purified by this procedure has little amplifiable DNA, resulting in reproducible amplification of at least ten copies of plasmid DNA without any byproducts and reducing reaction volume. This procedure could aid the amplification of tiny amounts DNA, thereby providing clear evidence of contamination from laboratory environments, tools and reagents. PMID:24505243

  15. Preparation of Phi29 DNA polymerase free of amplifiable DNA using ethidium monoazide, an ultraviolet-free light-emitting diode lamp and trehalose.

    Directory of Open Access Journals (Sweden)

    Hirokazu Takahashi

    Full Text Available We previously reported that multiply-primed rolling circle amplification (MRPCA using modified random RNA primers can amplify tiny amounts of circular DNA without producing any byproducts. However, contaminating DNA in recombinant Phi29 DNA polymerase adversely affects the outcome of MPRCA, especially for negative controls such as non-template controls. The amplified DNA in negative control casts doubt on the result of DNA amplification. Since Phi29 DNA polymerase has high affinity for both single-strand and double-stranded DNA, some amount of host DNA will always remain in the recombinant polymerase. Here we describe a procedure for preparing Phi29 DNA polymerase which is essentially free of amplifiable DNA. This procedure is realized by a combination of host DNA removal using appropriate salt concentrations, inactivation of amplifiable DNA using ethidium monoazide, and irradiation with visible light from a light-emitting diode lamp. Any remaining DNA, which likely exists as oligonucleotides captured by the Phi29 DNA polymerase, is degraded by the 3'-5' exonuclease activity of the polymerase itself in the presence of trehalose, used as an anti-aggregation reagent. Phi29 DNA polymerase purified by this procedure has little amplifiable DNA, resulting in reproducible amplification of at least ten copies of plasmid DNA without any byproducts and reducing reaction volume. This procedure could aid the amplification of tiny amounts DNA, thereby providing clear evidence of contamination from laboratory environments, tools and reagents.

  16. Optimization of randomly amplified polymorphic DNA-polymerase chain reaction for molecular typing of Salmonella enterica serovar Typhi Otimização da reação de amplificação aleatória do DNA polimórfico - reação em cadeia da polimerase para tipagem molecular de Salmonella enterica sorovar Typhi

    Directory of Open Access Journals (Sweden)

    Bianca Ramalho Quintaes

    2004-03-01

    Full Text Available Optimization of the RAPD reaction for characterizing Salmonella enterica serovar Typhi strains was studied in order to ensure the reproducibility and the discriminatory power of this technique. Eight Salmonella serovar Typhi strains isolated from various regions in Brazil were examined for the fragment patterns produced using different concentrations of DNA template, primer, MgCl2 and Taq DNA polymerase. Using two different low stringency thermal cycle profiles, the RAPD fingerprints obtained were compared. A set of sixteen primers was evaluated for their ability to produce a high number of distinct fragments. We found that variations associated to all of the tested parameters modified the fingerprinting patterns. For the strains of Salmonella enterica serovar Typhi used in this experiment, we have defined a set of conditions for RAPD-PCR reaction, which result in a simple, fast and reproducible typing method.A otimização da reação de RAPD para a caracterização de cepas de Salmonella enterica sorovar Typhi foi estudada com o objetivo de assegurar a reprodutibilidade e o poder discriminatório desta técnica. Oito cepas de Salmonella sorovar Typhi isoladas de algumas regiões do Brasil foram usadas para examinar os padrões de fragmentação produzidos quando foram empregadas concentrações diferentes do DNA molde, do iniciador, do MgCl2 e da enzima Taq DNA polimerase. Com a utilização de dois diferentes perfis de ciclos termais de baixa estringência, foram comparados os padrões de bandeamento obtidos. Um conjunto de dezesseis iniciadores foi avaliado quanto à capacidade de produzir elevado número de fragmentos distintos. Observou-se que variações associadas a todos os parâmetros testados modificaram os padrões de bandeamento. Para as amostras de Salmonella enterica sorovar Typhi utilizadas neste experimento, definiu-se um conjunto de condições para a reação de RAPD-PCR que resultou num método de tipagem simples, rápido e

  17. Association of the polymorphism of the CAG repeat in the mitochondrial DNA polymerase gamma gene (POLG) with testicular germ-cell cancer

    DEFF Research Database (Denmark)

    Blomberg Jensen, M; Leffers, H; Petersen, J H

    2008-01-01

    patients with TGCT and in 869 controls by the analysis of the genomic DNA fragment. RESULTS: A significantly higher proportion of men homozygous allele of other than the common 10 CAG repeats was found among the patients with TGCT in comparison to the controls (4.9% versus 1.3%, respectively, P = 0...... of the common 10-CAG-long POLG allele with testicular cancer as well as previously reported in some European populations' association with male subfertility, which is a condition carrying an increased risk of TGCT. PATIENTS AND METHODS: The number of CAG repeats in both POLG alleles was established in 243......BACKGROUND: A possible association between the polymorphic CAG repeat in the DNA polymerase gamma (POLG) gene and the risk of testicular germ-cell tumours (TGCT) was investigated in this study. The hypothesis was prompted by an earlier preliminary study proposing an association of the absence...

  18. Identification of amplified fragment length polymorphism (AFLP ...

    African Journals Online (AJOL)

    Identification of amplified fragment length polymorphism (AFLP) fragments linked to soybean mosaic virus resistance gene in Glycine soja and conversion to a sequence characterized amplified regions (SCAR) marker for rapid selection.

  19. Complementary DNA-amplified fragment length polymorphism ...

    African Journals Online (AJOL)

    Complementary DNA-amplified fragment length polymorphism (AFLP-cDNA) analysis of differential gene expression from the xerophyte Ammopiptanthus mongolicus in response to cold, drought and cold together with drought.

  20. (ISSR) and randomly amplified polymorphic DNA

    African Journals Online (AJOL)

    ajl yemi

    2011-12-19

    Dec 19, 2011 ... The phylogenic relationship within four species of Polygonum (including Polygonum hyrcanicum Rech. f. (three samples), Polygonum persicaria Boiss & Bushe Boiss, Polygonum avicular L., and Polygonum hydropiper L. subsp. Hydropiper) was investigated by randomly amplified polymorphic DNA ...

  1. Application of randomly amplified polymorphic DNA (RAPD ...

    African Journals Online (AJOL)

    Jane

    2011-10-10

    Oct 10, 2011 ... Polymerase chain reaction (PCR) based molecular markers have become increasingly popular for fingerprinting and cultivars identification since the development of PCR technology. (Saiki et al., 1988). RAPD-PCR (randomly amplified polymorphic DNA) was first conducted by Williams et al. (1990).

  2. Complementary DNA-amplified fragment length polymorphism ...

    African Journals Online (AJOL)

    owner

    2011-05-09

    May 9, 2011 ... Complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) technology was used to analyze ... that 9 of the studied expressed sequence tags (ESTs) are related to protein modification, 12 ESTs are involved in the .... primers were used during the first strand synthesis of our cDNA synthesis ...

  3. Random amplified polymorphic DNA based genetic characterization ...

    African Journals Online (AJOL)

    Random amplified polymorphic DNA based genetic characterization of four important species of Bamboo, found in Raigad district, Maharashtra State, India. ... Bambusoideae are differentiated from other members of the family by the presence of petiolate blades with parallel venation and stamens are three, four, six or more, ...

  4. Detection of Bacillus cereus isolated during ultra high temperature milk production flowchart through random amplified polymorphic DNA polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Ana Maria Centola Vidal

    2015-01-01

    Full Text Available ABSTRACT:The present study focused on isolation Bacillus cereusduring the UHT milk production and shelf life, to assess the enterotoxigenic production capacity of isolates and to evaluate the use of the RAPD-PCR technique to verify whether Bacillus cereusisolated at different phases of UHT milk processing belongs to the same strain. For this, six groups of milk samples composed of raw, pasteurized and UHT milk were collected from a processing plant. The results revealed that bacteria belonging to the Bacillus cereusgroup were isolated from 51.6%, 81.6% and from 13.8% of raw, pasteurized and UHT milk samples, respectively. About 50.0% of isolates from raw milk, 19.2% isolates from pasteurized milk and 70.7% isolates from UHT milk were capable of producing enterotoxins. It was confirmed the genetic similarity amongBacillus cereusisolates from raw, pasteurized and UHT milk, therefore demonstrating that the microorganism is able to withstand UHT treatment. These results should serve as a warning to health authorities, given that 13.8% of samples were not in accordance with standards established by the Department of Health for containing a potentially pathogen agent, therefore indicating that contamination of milk by sporulating bacteria should be avoided.

  5. COMPARISON OF SIX COMMERCIALLY-AVAILABLE DNA POLYMERASES FOR DIRECT PCR

    Directory of Open Access Journals (Sweden)

    Masashi Miura

    2013-12-01

    Full Text Available SUMMARY The use of a “direct PCR” DNA polymerase enables PCR amplification without any prior DNA purification from blood samples due to the enzyme's resistance to inhibitors present in blood components. Such DNA polymerases are now commercially available. We compared the PCR performance of six direct PCR-type DNA polymerases (KOD FX, Mighty Amp, Hemo KlenTaq, Phusion Blood II, KAPA Blood, and BIOTAQ in dried blood eluted from a filter paper with TE buffer. GoTaq Flexi was used as a standard DNA polymerase. PCR performance was evaluated by a nested PCR technique for detecting Plasmodium falciparum genomic DNA in the presence of the blood components. Although all six DNA polymerases showed resistance to blood components compared to the standard Taq polymerase, the KOD FX and BIOTAQ DNA polymerases were resistant to inhibitory blood components at concentrations of 40%, and their PCR performance was superior to that of other DNA polymerases. When the reaction mixture contained a mild detergent, only KOD FX DNA polymerase retained the original amount of amplified product. These results indicate that KOD FX DNA polymerase is the most resistant to inhibitory blood components and/or detergents. Thus, KOD FX DNA polymerase could be useful in serological studies to simultaneously detect antibodies and DNA in eluents for antibodies. KOD FX DNA polymerase is thus not limited to use in detecting malaria parasites, but could also be employed to detect other blood-borne pathogens.

  6. DNA polymerases and biotechnological applications.

    Science.gov (United States)

    Aschenbrenner, Joos; Marx, Andreas

    2017-12-01

    A multitude of biotechnological techniques used in basic research as well as in clinical diagnostics on an everyday basis depend on DNA polymerases and their intrinsic capability to replicate DNA strands with astoundingly high fidelity. Applications with fundamental importance to modern molecular biology, including the polymerase chain reaction and DNA sequencing, would not be feasible without the advances made in characterizing these enzymes over the course of the last 60 years. Nonetheless, the still growing application scope of DNA polymerases necessitates the identification of novel enzymes with tailor-made properties. In the recent past, DNA polymerases optimized for diverse PCR and sequencing applications as well as enzymes that accept a variety of unnatural substrates for the synthesis and reverse transcription of modified nucleic acids have been developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A Population Genetics Study of Anopheles Darlingi (Diptera: Culicidae) from Colombia Based on Random Amplified Polymorphic DNA-Polymerase Chain Reaction and Amplified Fragment Length Polymorphism Markers

    Science.gov (United States)

    2007-06-01

    of Aedes aegypti from Puerto Rico, Apostol et aI. (1996) found an expected heterozygosity of 0.354. similar to that found by Posso et al. (2003) in An...ing on the marker type used. In Ae. aegypt ; from Trinidad and Tobago, they found that the heterozygosity observed with the Rt-:LPs was significantly...Reiter P, Miller BR 1996. Population genctics with RAPD-PCR markers: thc breeding structurc of Aedes aeRypt; in Puerto Rico. Heredity 76: 325-334

  8. Molecular markers. Amplified fragment length polymorphism

    Directory of Open Access Journals (Sweden)

    Pržulj Novo

    2005-01-01

    Full Text Available Amplified Fragment Length Polymorphism molecular markers (AFLPs has been developed combining procedures of RFLPs and RAPDs molekular markers, i.e. the first step is restriction digestion of the genomic DNA that is followed by selective amplification of the restricted fragments. The advantage of the AFLP technique is that it allows rapid generation of a large number of reproducible markers. The reproducibility of AFLPs markers is assured by the use of restriction site-specific adapters and adapter-specific primers for PCR reaction. Only fragments containing the restriction site sequence plus the additional nucleotides will be amplified and the more selected nucleotides added on the primer sequence the fewer the number of fragments amplified by PCR. The amplified products are normally separated on a sequencing gel and visualized after exposure to X-ray film or by using fluorescent labeled primers. AFLP shave proven to be extremely proficient in revealing diversity at below the species level. A disadvantage of AFLP technique is that AFLPs are essentially a dominant marker system and not able to identify heterozygotes.

  9. Detailed polymorphism study on cytomegalovirus DNA polymerase gene to reveal the most suitable genomic targets for quantitative Real-time PCR

    Science.gov (United States)

    Bilenoğlu, Onur; Altındiş, Mustafa; Öz, Ersoy; Yücel-Öz, Yeliz; İrigül-Sönmez, Öykü; Ünal, Can Bora

    2015-01-01

    The human cytomegalovirus (HCMV) is an important human pathogen primarily affecting immunocompromised patients, like transplant recipients or HIV-infected individuals. Early diagnosis of cytomegalovirus (CMV) infection in high-risk patients is essential in order to start preemptive treatments. pol (UL54) gene encoding for HCMV viral DNA polymerase is a well-defined target for HCMV detection in clinical samples and identifying most highly conserved regions for primer design remains crucial. Though real-time polymerase chain reaction (qPCR) is a rapid and sensitive method for HCMV detection, failure to detect some HCMV strains due to primer and target mismatches have led the researchers to explore more sensitive and reliable methods. Hence, to understand the broader diversity of the pol mutations in HCMV and to specify the most suitable region for primer-probe design to be used in qPCR assay, we studied both nucleotide and amino acid heterogeneities in 60 HCMV positive samples that were collected to represent national mutational prevalence of pol gene of HCMV in Turkey. The test was designed with a new set of primers-probe for HCMV detection and quantification based on the sequencing data which revealed the most conserved region on the pol gene. Statistical probit analysis was applied on qPCR studies which revealed a 95% detection limit of 100 copies/mL. In addition, linearity, reproducibility, and precision of the new test were assessed for diagnostic purposes. PMID:26295291

  10. Detailed polymorphism study on cytomegalovirus DNA polymerase gene to reveal the most suitable genomic targets for quantitative Real-time PCR

    Directory of Open Access Journals (Sweden)

    Onur Bilenoğlu

    2015-06-01

    Full Text Available The human cytomegalovirus (HCMV is an important human pathogen primarily affecting immunocompromised patients, like transplant recipients or HIV- infected individuals. Early diagnosis of cytomegalovirus (CMV infection in high-risk patients is essential in order to start preemptive treatments. pol (UL54 gene encoding for HCMV viral DNA polymerase is a well-defined target for HCMV detection in clinical samples and identifying most highly conserved regions for primer design remains crucial. Though real-time polymerase chain reaction (qPCR is a rapid and sensitive method for HCMV detection, failure to detect some HCMV strains due to primer and target mismatches have led the researchers to explore more sensitive and reliable methods. Hence, to understand the broader diversity of the pol mutations in HCMV and to specify the most suitable region for primer-probe design to be used in qPCR assay, we studied both nucleotide and amino acid heterogeneities in 60 HCMV positive samples that were collected to represent national mutational prevalence of pol gene of HCMV in Turkey. The test was designed with a new set of primers- probe for HCMV detection and quantification based on the sequencing data which revealed the most conserved region on the pol gene. Statistical probit analysis was applied on qPCR studies which revealed a 95% detection limit of 100 copies/mL. In addition, linearity, reproducibility, and precision of the new test were assessed for diagnostic purposes.

  11. Detailed polymorphism study on cytomegalovirus DNA polymerase gene to reveal the most suitable genomic targets for quantitative Real-time PCR.

    Science.gov (United States)

    Bilenoğlu, Onur; Altındiş, Mustafa; Öz, Ersoy; Yücel-Öz, Yeliz; İrigül-Sönmez, Öykü; Ünal, Can Bora

    2015-06-23

    The human cytomegalovirus (HCMV) is an important human pathogen primarily affecting immunocompromised patients, like transplant recipients or HIV- infected individuals. Early diagnosis of cytomegalovirus (CMV) infection in high-risk patients is essential in order to start preemptive treatments. pol (UL54) gene encoding for HCMV viral DNA polymerase is a well-defined target for HCMV detection in clinical samples and identifying most highly conserved regions for primer design remains crucial. Though real-time polymerase chain reaction (qPCR) is a rapid and sensitive method for HCMV detection, failure to detect some HCMV strains due to primer and target mismatches have led the researchers to explore more sensitive and reliable methods. Hence, to understand the broader diversity of the pol mutations in HCMV and to specify the most suitable region for primer-probe design to be used in qPCR assay, we studied both nucleotide and amino acid heterogeneities in 60 HCMV positive samples that were collected to represent national mutational prevalence of pol gene of HCMV in Turkey. The test was designed with a new set of primers- probe for HCMV detection and quantification based on the sequencing data which revealed the most conserved region on the pol gene. Statistical probit analysis was applied on qPCR studies which revealed a 95% detection limit of 100 copies/mL. In addition, linearity, reproducibility, and precision of the new test were assessed for diagnostic purposes.

  12. Conversion of the random amplified polymorphic DNA (RAPD ...

    African Journals Online (AJOL)

    Conversion of the random amplified polymorphic DNA (RAPD) marker UBC#116 linked to Fusarium crown and root rot resistance gene (Frl) into a co-dominant sequence characterized amplified region (SCAR) marker for marker-assisted selection of tomato.

  13. Methylation sensitive-sequence related amplified polymorphism (MS ...

    African Journals Online (AJOL)

    Methylation sensitive-sequence related amplified polymorphism (MS-SRAP) marker system and its application to de novo methylation detection in Brassica napus. ... Combined methylation sensitive restriction enzyme digested genomic DNA with SRAP and methylation sensitive-sequence related amplified polymorphism ...

  14. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    Science.gov (United States)

    Killelea, Tom; Ralec, Céline; Bossé, Audrey; Henneke, Ghislaine

    2014-01-01

    DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications. PMID:24847315

  15. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    Directory of Open Access Journals (Sweden)

    Tom eKillelea

    2014-05-01

    Full Text Available DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR, cDNA cloning, genome sequencing and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3’ primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications.

  16. PCR performance of a thermostable heterodimeric archaeal DNA polymerase.

    Science.gov (United States)

    Killelea, Tom; Ralec, Céline; Bossé, Audrey; Henneke, Ghislaine

    2014-01-01

    DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications.

  17. Crystal structure of Deep Vent DNA polymerase.

    Science.gov (United States)

    Hikida, Yasushi; Kimoto, Michiko; Hirao, Ichiro; Yokoyama, Shigeyuki

    2017-01-29

    DNA polymerases are useful tools in various biochemical experiments. We have focused on the DNA polymerases involved in DNA replication including the unnatural base pair between 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds) and 2-nitro-4-propynylpyrrole (Px). Many reports have described the different combinations between unnatural base pairs and DNA polymerases. As an example, for the replication of the Ds-Px pair, Deep Vent DNA polymerase exhibits high efficiency and fidelity, but Taq DNA polymerase shows much lower efficiency and fidelity. In the present study, we determined the crystal structure of Deep Vent DNA polymerase in the apo form at 2.5 Å resolution. Using this structure, we constructed structural models of Deep Vent DNA polymerase complexes with DNA containing an unnatural or natural base in the replication position. The models revealed that the unnatural Ds base in the template-strand DNA clashes with the side-chain oxygen of Thr664 in Taq DNA polymerase, but not in Deep Vent DNA polymerase. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Application of random amplified polymorphic DNA (RAPD) markers ...

    African Journals Online (AJOL)

    SAM

    2014-06-11

    1998). DNA fingerprinting of strawberry (Fragaria X ananassa) cultivars using randomly amplified polymorphic DNA (RAPD) markers. Euphytica. 102:247-253. Doyle JJ, Doyle LJ (1990). Isolation of plant DNA from fresh tissue.

  19. Mapping of randomly amplified polymorphic DNA primer (RAPD) on ...

    African Journals Online (AJOL)

    Mapping of randomly amplified polymorphic DNA primer (RAPD) on chromosome 2A of common wheat. Khamsa Parveen, Inamullah Inamullah, Habib Ahmad, Muhammad Sajjad Iqbal, Fida Muhammad Abbassi, Aziz ud-Din, Abdullah Khan, Imtiaz Ahmad Khan ...

  20. DNA Polymerase Fidelity: Beyond Right and Wrong.

    Science.gov (United States)

    Washington, M Todd

    2016-11-01

    Accurate DNA replication depends on the ability of DNA polymerases to discriminate between correctly and incorrectly paired nucleotides. In this issue of Structure, Batra et al. (2016) show the structural basis for why DNA polymerases do not efficiently add correctly paired nucleotides immediately after incorporating incorrectly paired ones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Efficiency of random amplified polymorphic DNA (RAPD) and inter ...

    African Journals Online (AJOL)

    Efficiency of random amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSR) markers for genotype fingerprinting and genetic diversity studies in canola ( ) ... The number of amplified fragments with RAPD primers ranged from 8 to 21, with the size of amplicons ranging from 162 to 3154 bp.

  2. Amplified fragment length polymorphism (AFLP) studies on Indian ...

    African Journals Online (AJOL)

    Jane

    2011-07-11

    Jul 11, 2011 ... Amplified fragment length polymorphism (AFLP) technology was used to reveal the genetic variation in six species of Cycas collected from eleven natural populations. Two sets of primer with 4-selective nucleotides were used in this study and 78% polymorphism was found. The results correlated with.

  3. DNA Polymerase e - More Than a Polymerase

    Directory of Open Access Journals (Sweden)

    Helmut Pospiech

    2003-01-01

    Full Text Available This paper presents a comprehensive review of the structure and function of DNA polymerase e. Together with DNA polymerases a and d, this enzyme replicates the nuclear DNA in the eukaryotic cell. During this process, DNA polymerase a lays down RNA-DNA primers that are utilized by DNA polymerases d and e for the bulk DNA synthesis. Attempts have been made to assign these two enzymes specifically to the synthesis of the leading and the lagging strand. Alternatively, the two DNA polymerases may be needed to replicate distinct regions depending on chromatin structure. Surprisingly, the essential function of DNA polymerase e does not depend on its catalytic activity, but resides in the nonenzymatic carboxy-terminal domain. This domain not only mediates the interaction of the catalytic subunit with the three smaller regulatory subunits, but also links the replication machinery to the S phase checkpoint. In addition to its role in DNA replication, DNA polymerase e fulfils roles in the DNA synthesis step of nucleotide excision and base excision repair, and has been implicated in recombinational processes in the cell.

  4. Development of an optimized random amplified polymorphic DNA protocol for fingerprinting of Klebsiella pneumoniae.

    Science.gov (United States)

    Ashayeri-Panah, M; Eftekhar, F; Feizabadi, M M

    2012-04-01

    To develop an optimized random amplified polymorphic DNA (RAPD) protocol for fingerprinting clinical isolates of Klebsiella pneumoniae. Employing factorial design of experiments, repeatable amplification patterns were obtained for 54 nosocomial isolates using 1 μmol 1(-1) primer, 4 mmol 1(-1) MgCl(2), 0·4 mmol 1(-1) dNTPs, 2·5 U Taq DNA polymerase and 90 ng DNA template in a total volume of 25 μl. The optimum thermocycling program was: initial denaturation at 94°C for 4 min followed by 50 cycles of 1 min at 94°C, 2 min at 34°C, 2 min at 72°C and a final extension at 72°C for 10 min. The optimized RAPD protocol was highly discriminatory (Simpson's diversity index, 0·982), and all isolates were typable with repeatable patterns (Pearson's similarity coefficient ≈ 100%). Seven main clusters were obtained on a similarity level of 70% and 32 distinct clusters on a similarity level of 85%, reflecting the heterogeneity of the isolates. Systematic optimization of RAPD generated reliable DNA fingerprints for nosocomial isolates of K. pneumoniae. This is the first report on RAPD optimization based on factorial design of experiments for discrimination of K. pneumoniae. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  5. using random amplified polymorphic DNA (RAPD)

    African Journals Online (AJOL)

    To study the pattern of genetic diversity in 45 genotypes of common bean, 19 RAPD primers were used. Of 253 bands produced, 236 bands (94.22%) were polymorphic in which maximum number (20 polymorphic bands) were observed in the profiles of the primer OPB-07. Highest PIC value (0.79) was observed for the ...

  6. Amplified restriction fragment length polymorphism in parasite genetics.

    Science.gov (United States)

    Masiga, D K; Tait, A; Turner, C M

    2000-08-01

    The amplified restriction fragment length polymorphism (AFLP) technique is a relatively new method for the analysis of polymorphism that has not yet been widely used in parasitology. In this article, Dan Masiga, Andy Tait and Mike Turner provide a brief introduction to AFLP and illustrate how it can be used in the investigation of marker inheritance in genetic crosses and in the analysis of polymorphism of field populations. They also briefly highlight the strengths and weaknesses of AFLP in comparison with other methods for detecting polymorphism and conclude that AFLP is a very useful addition to the range of techniques available.

  7. ( Quercus spp. ) using random amplified polymorphic DNA (RAPD)

    African Journals Online (AJOL)

    Quercus is one of the most important woody genera of the Northern hemisphere and considered as one of the main forest tree species in Iran. In this study, genetic relationships in the genus Quercus, using random amplified polymorphic DNA (RAPD) was examined. Five species, including: Quercus robur, Quercus ...

  8. Application of random amplified polymorphic DNA (RAPD) markers ...

    African Journals Online (AJOL)

    The random amplified polymorphic DNA (RAPD) technique has been widely applied to identify different varieties of plants for molecular breeding. However, application of RAPD markers to identify parthenogenesis in plants has not been reported. In this investigation, we used pedigree and RAPD markers to differentiate ...

  9. Random amplified polymorphic DNA (RAPD) markers reveal genetic ...

    African Journals Online (AJOL)

    The present study evaluated genetic variability of superior bael genotypes collected from different parts of Andaman Islands, India using fruit characters and random amplified polymorphic DNA (RAPD) markers. Genomic DNA extracted from leaf material using cetyl trimethyl ammonium bromide (CTAB) method was ...

  10. Random amplified polymorphic DNA (RAPD) based assessment of ...

    African Journals Online (AJOL)

    Knowledge of genetic distances between genotypes is important for efficient organization and conservation of plant genetic resources for crop improvement programs. In this study genetic distances between genotype pairs (complements of Jaccard's similarity coefficient) were estimated from Random Amplified Polymorphic ...

  11. Population structure of Salmonella investigated by amplified fragment length polymorphism

    DEFF Research Database (Denmark)

    Torpdahl, M.; Ahrens, Peter

    2004-01-01

    Aims: This study was undertaken to investigate the usefulness of amplified fragment length polymorphism (AFLP) in determining the population structure of Salmonella. Methods and Results: A total of 89 strains were subjected to AFLP analysis using the enzymes BglII and BspDI, a combination...

  12. Detection of somaclonal variation by random amplified polymorphic ...

    African Journals Online (AJOL)

    Detection of somaclonal variation by random amplified polymorphic DNA analysis during micropropagation of Phalaenopsis bellina (Rchb.f.) Christenson. ... Among the primers used, P 16 produced the highest number of bands (29), while primer OPU 10 produced the lowest number (15). The range of similarity coefficient ...

  13. Random amplified polymorphic DNA (RAPD) and simple sequence ...

    African Journals Online (AJOL)

    Knowledge as to genetic diversity and relationships among maize hybrids is important for breeding strategies. The main aims of this study were to (1) estimate molecular genetic diversity among 30 maize hybrids by random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers; and (2) compare ...

  14. Randomly Amplified Polymorphic DNA tests (RAPDs) cannot be ...

    African Journals Online (AJOL)

    The three South African crane species — the Blue Crane (Anthropoides paradisea), the Wattled Crane (Bugeranus carunculatus) and the Grey Crowned Crane (Balearica regulorum regulorum) — are listed as threatened by the IUCN. This study investigated the suitability of Randomly Amplified Polymorphic DNA markers in ...

  15. Structure and function of DNA polymerase μ

    International Nuclear Information System (INIS)

    Matsumoto, Takuro; Maezawa, So

    2013-01-01

    DNA polymerases are enzymes playing the central role in DNA metabolism, including DNA replication, DNA repair and recombination. DNA polymerase μ (pol μ DNA polymerase λ (pol λ) and terminal deoxynucleotidyltransferase (TdT) in X family DNA polymerases function in non-homologous end-joining (NHEJ), which is the predonmiant repair pathway for DNA double-strand breaks (DSBs). NHEJ involves enzymes that capture both ends of the broken DNA strand, bring them together in a synaptic DNA-protein complex, and repair the DSB. Pol μ and pol λ fill in the gaps at the junction to maintain the genomic integrity. TdT synthesizes N region at the junction during V(D)J recombination and promotes diversity of immunoglobulin or T-cell receptor gene. Among these three polymerases, the regulatory mechanisms of pol μ remain rather unclear. We have approached the mechanism of pol μ from both sides of structure and cellular dynamics. Here, we propose some new insights into pol μ and the probable NHEJ model including our findings. (author)

  16. Microchip capillary electrophoresis-based genetic comparison of closely related cyathostomin nematode parasites of horses using randomly amplified polymorphic DNA polymerase chain reaction.

    Science.gov (United States)

    Posedi, Janez; Drögemüller, Michaela; Schnieder, Thomas; Höglund, Johan; Lichtenfels, J Ralph; von Samson-Himmelstjerna, Georg

    2004-03-01

    The microchip-based capillary electrophoresis technology represents a valuable recent development for the analysis of complex DNA banding patterns. We have used this technology for the differentiation of the closely related cyathostomin species Cylicocyclus elongatus and C. insigne from the horse. We found that the Agilent 2100 bioanalyser in combination with the DNA 7500 Lab Chip were suited to perform a phylogenetic DNA fingerprinting analysis of the parasite species studied. The analysis of the electrophoretic data was optimised and it was possible to resolve a phylogenetic tree where all 12 individual worms of the two Cylicocyclus species studied were assigned to their species as determined by microscopic identification based on morphological traits. Thus, our data indicated that the procedure described here provides an additional powerful tool that can be employed for species delineation of closely related strains or species, such as the two taxa of Cylicocyclus investigated in the present study. Furthermore, by determining the second internal transcribed spacer region of three and nine individual worms for C. elongatus and C. insigne, respectively, low intraspecific variations of only up to 0.3% were demonstrated.

  17. DNA polymerase having modified nucleotide binding site for DNA sequencing

    Science.gov (United States)

    Tabor, Stanley; Richardson, Charles

    1997-01-01

    Modified gene encoding a modified DNA polymerase wherein the modified polymerase incorporates dideoxynucleotides at least 20-fold better compared to the corresponding deoxynucleotides as compared with the corresponding naturally-occurring DNA polymerase.

  18. PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases.

    Science.gov (United States)

    Cline, J; Braman, J C; Hogrefe, H H

    1996-09-15

    The replication fidelities of Pfu, Taq, Vent, Deep Vent and UlTma DNA polymerases were compared using a PCR-based forward mutation assay. Average error rates (mutation frequency/bp/duplication) increased as follows: Pfu (1.3 x 10(-6)) Pfu and UlTma (approximately 5 x 10(-5)). Buffer optimization experiments indicated that Pfu fidelity was highest in the presence of 2-3 mM MgSO4 and 100-300 microM each dNTP and at pH 8.5-9.1. Under these conditions, the error rate of exo- Pfu was approximately 40-fold higher (5 x 10(-5)) than the error rate of Pfu. As the reaction pH was raised from pH 8 to 9, the error rate of Pfu decreased approximately 2-fold, while the error rate of exo- Pfu increased approximately 9-fold. An increase in error rate with pH has also been noted for the exonuclease-deficient DNA polymerases Taq and exo- Klenow, suggesting that the parameters which influence replication error rates may be similar in pol l- and alpha-like polymerases. Finally, the fidelity of 'long PCR' DNA polymerase mixtures was examined. The error rates of a Taq/Pfu DNA polymerase mixture and a Klentaq/Pfu DNA polymerase mixture were found to be less than the error rate of Taq DNA polymerase, but approximately 3-4-fold higher than the error rate of Pfu DNA polymerase.

  19. Chromosomal location of the human gene for DNA polymerase β

    International Nuclear Information System (INIS)

    McBride, O.W.; Zmudzka, B.Z.; Wilson, S.H.

    1987-01-01

    Inhibition studies indicate that DNA polymerase β has a synthetic role in DNA repair after exposure of mammalian cells to some types of DNA-damaging agents. The primary structure of the enzyme is highly conserved in vertebrates, and nearly full-length cDNAs for the enzyme were recently cloned from mammalian cDNA libraries. Southern blot analysis of DNA from a panel of human-rodent somatic cell hybrids, using portions of the cDNA as probe, indicates that the gene for human DNA polymerase β is single copy and located on the short arm or proximal long arm of chromosome 8 (8pter-8q22). A restriction fragment length polymorphism (RFLP) was detected in normal individuals by using a probe from the 5' end of the cDNA, and this RFLP probably is due to an insertion or duplication of DNA in 20-25% of the population. This restriction site can be used as one marker for chromosome 8 genetic linkage studies and for family studies of traits potentially involving this DNA repair gene

  20. Amplified-fragment length polymorphism fingerprinting of Mycoplasma species

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Friis, N.F.; Jensen, J.S.

    1999-01-01

    Amplified-fragment length polymorphism (AFLP) is a whole-genome fingerprinting method based on selective amplification of restriction fragments. The potential of the method for the characterization of mycoplasmas was investigated in a total of 50 strains of human and animal origin, including......I restriction endonucleases and subsequent ligation of corresponding site-specific adapters. The amplification of AFLP templates with a single set of nonselective primers resulted in reproducible fingerprints of approximately 60 to 80 fragments in the size range of 50 to 500 bp, The method was able...

  1. Random amplified polymorphic DNA analysis of genetically modified organisms.

    Science.gov (United States)

    Yoke-Kqueen, Cheah; Radu, Son

    2006-12-15

    Randomly amplified polymorphic DNA (RAPD) was used to analyzed 78 samples comprises of certified reference materials (soya and maize powder), raw seeds (soybean and maize), processed food and animal feed. Combination assay of two arbitrary primers in the RAPD analysis enable to distinguish genetically modified organism (GMO) reference materials from the samples tested. Dendrogram analysis revealed 13 clusters at 45% similarity from the RAPD. RAPD analysis showed that the maize and soybean samples were clustered differently besides the GMO and non-GMO products.

  2. DNA repair synthesis in human fibroblasts requires DNA polymerase delta

    International Nuclear Information System (INIS)

    Nishida, C.; Reinhard, P.; Linn, S.

    1988-01-01

    When UV-irradiated cultured diploid human fibroblasts were permeabilized with Brij-58 then separated from soluble material by centrifugation, conservative DNA repair synthesis could be restored by a soluble factor obtained from the supernatant of similarly treated HeLa cells. Extensive purification of this factor yielded a 10.2 S, 220,000-dalton polypeptide with the DNA polymerase and 3'- to 5'-exonuclease activities reported for DNA polymerase delta II. Monoclonal antibody to KB cell DNA polymerase alpha, while binding to HeLa DNA polymerase alpha, did not bind to the HeLa DNA polymerase delta. Moreover, at micromolar concentrations N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate (BuPdGTP) and 2-(p-n-butylanilino)-2'-deoxyadenosine 5'-triphosphate (BuAdATP) were potent inhibitors of DNA polymerase alpha, but did not inhibit the DNA polymerase delta. Neither purified DNA polymerase alpha nor beta could promote repair DNA synthesis in the permeabilized cells. Furthermore, under conditions which inhibited purified DNA polymerase alpha by greater than 90%, neither monoclonal antibodies to DNA polymerase alpha, BuPdGTP, nor BuAdATP was able to inhibit significantly the DNA repair synthesis mediated by the DNA polymerase delta. Thus, it appears that a major portion of DNA repair synthesis induced by UV irradiation might be catalyzed by DNA polymerase delta. When xeroderma pigmentosum human diploid fibroblasts were utilized, DNA repair synthesis dependent upon ultraviolet light could be restored by addition of both T4 endonuclease V and DNA polymerase delta, but not by addition of either one alone

  3. Synthetic Nucleotides as Probes of DNA Polymerase Specificity

    Directory of Open Access Journals (Sweden)

    Jason M. Walsh

    2012-01-01

    Full Text Available The genetic code is continuously expanding with new nucleobases designed to suit specific research needs. These synthetic nucleotides are used to study DNA polymerase dynamics and specificity and may even inhibit DNA polymerase activity. The availability of an increasing chemical diversity of nucleotides allows questions of utilization by different DNA polymerases to be addressed. Much of the work in this area deals with the A family DNA polymerases, for example, Escherichia coli DNA polymerase I, which are DNA polymerases involved in replication and whose fidelity is relatively high, but more recent work includes other families of polymerases, including the Y family, whose members are known to be error prone. This paper focuses on the ability of DNA polymerases to utilize nonnatural nucleotides in DNA templates or as the incoming nucleoside triphosphates. Beyond the utility of nonnatural nucleotides as probes of DNA polymerase specificity, such entities can also provide insight into the functions of DNA polymerases when encountering DNA that is damaged by natural agents. Thus, synthetic nucleotides provide insight into how polymerases deal with nonnatural nucleotides as well as into the mutagenic potential of nonnatural nucleotides.

  4. Molecular Mechanisms of DNA Polymerase Clamp Loaders

    Science.gov (United States)

    Kelch, Brian; Makino, Debora; Simonetta, Kyle; O'Donnell, Mike; Kuriyan, John

    Clamp loaders are ATP-driven multiprotein machines that couple ATP hydrolysis to the opening and closing of a circular protein ring around DNA. This ring-shaped clamp slides along DNA, and interacts with numerous proteins involved in DNA replication, DNA repair and cell cycle control. Recently determined structures of clamp loader complexes from prokaryotic and eukaryotic DNA polymerases have revealed exciting new details of how these complex AAA+ machines perform this essential clamp loading function. This review serves as background to John Kuriyan's lecture at the 2010 Erice School, and is not meant as a comprehensive review of the contributions of the many scientists who have advanced this field. These lecture notes are derived from recent reviews and research papers from our groups.

  5. Directed evolution of DNA polymerases: construction and screening of DNA polymerase mutant libraries.

    Science.gov (United States)

    Gloeckner, Christian; Kranaster, Ramon; Marx, Andreas

    2010-06-01

    The protocols in this article describe the construction of a mutant DNA polymerase library using error-prone PCR (epPCR) as a method for gene randomization, followed by screening of the library using two different approaches. The examples described use an N-terminally truncated form of the thermostable DNA polymerase I of Thermus aquaticus (Taq DNA polymerase), namely Klentaq (KTQ), and protocols are included for the identification of variants with (1) increased DNA lesion-bypass ability and (2) enhanced selectivity for DNA match/mismatch recognition. The screening assays are based on double-stranded DNA detection (using SYBR Green I) which can be carried out using standard laboratory equipment. The described assays are designed for use in a 384-well plate format to increase screening throughput and reduce material costs. For improved accuracy and ease of liquid handling, the use of an automated liquid handling device is recommended. Curr. Protoc. Chem Biol. 2:89-109. © 2010 by John Wiley & Sons, Inc.

  6. Role for DNA polymerase beta in response to ionizing radiation.

    NARCIS (Netherlands)

    Vermeulen, C.; Verwijs-Janssen, M.; Cramers, P.; Begg, A.C.; Vens, C.

    2007-01-01

    Evidence for a role of DNA polymerase beta in determining radiosensitivity is conflicting. In vitro assays show an involvement of DNA polymerase beta in single strand break repair and base excision repair of oxidative damages, both products of ionizing radiation. Nevertheless the lack of DNA

  7. Molecular architecture and function of adenovirus DNA polymerase

    NARCIS (Netherlands)

    Brenkman, A.B. (Arjan Bernard)

    2002-01-01

    Central to this thesis is the role of adenovirus DNA polymerase (Ad pol) in adenovirus DNA replication. Ad pol is a member of the family B DNA polymerases but belongs to a distinct subclass of polymerases that use a protein as primer. As Ad pol catalyses both the initiation and elongation phases and

  8. Inhibition of Taq DNA polymerase by iridoid aglycone derivates.

    Science.gov (United States)

    Pungitore, C R; García, C; Sotero Martín, V; Tonn, C E

    2012-11-08

    Faithful replication of DNA molecules by DNA polymerases is essential for genome integrity and correct transmission of genetic information in all living organisms. DNA polymerases have recently emerged as important cellular targets for chemical intervention in the development of anti--cancer agents. Herein we report additional synthesis of simplified bicyclic aglycones of iridoids and their biological activity against Taq DNA polymerase with the object to find out some of the likely molecular targets implicated in the biological activity showed for this kind of compounds. The compounds 14, 33 and 34 showed inhibitory activity against Taq DNA polymerase with IC(50) values of 13.47, 17.65 and 18.31 μM, respectively. These results would allow proposing to DNA polymerases as the molecular targets implicated in this bioactivity and enhance the iridoid aglycones as leader molecule to develop new drugs for cancer therapy.

  9. Kinetic mechanism of DNA polymerase I (Klenow)

    International Nuclear Information System (INIS)

    Kuchta, R.D.; Mizrahi, V.; Benkovic, P.A.; Johnson, K.A.; Benkovic, S.J.

    1987-01-01

    The minimal kinetic scheme for DNA polymerization catalyzed by the Klenow fragment of DNA polymerase I (KF) from Escherichia coli has been determined with short DNA oligomers of defined sequence, labeled with [ 32 P]-nucleotides. A key feature of this scheme is a minimal two-step sequence that interconverts the ternary KF-DNA/sub n/-dNTP and KF-DNA/sub n+1/-PP/sub i/ complexes. The rate is not limited by the actual polymerization but by a separate step, possibly important in ensuring fidelity. Evidence for this sequence is supplied by the observation of biphasic kinetics in single-turnover pyrophosphorolysis experiments (the microscopic reverse of polymerization). Data analysis then provides an estimate of the internal equilibrium constant. The dissociations of DNA, dNTP, and PP/sub i/ from the various binary and ternary complexes were measured by partitioning (isotope-trapping) experiments. The rate constant for DNA dissociation from KF is sequence dependent and is rate limiting during nonprocessive DNA synthesis. The combination of single-turnover (both directions) and isotope-trapping experiments provides sufficient information to permit a quantitative evaluation of the kinetic scheme for specific DNA sequences

  10. Replicative DNA polymerase mutations in cancer☆

    Science.gov (United States)

    Heitzer, Ellen; Tomlinson, Ian

    2014-01-01

    Three DNA polymerases — Pol α, Pol δ and Pol ɛ — are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson–Crick base pairing and 3′exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to ‘polymerase proofreading associated polyposis’ (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an ‘ultramutator’ phenotype, with a dramatic increase in base substitutions. PMID:24583393

  11. Replicative DNA polymerase mutations in cancer.

    Science.gov (United States)

    Heitzer, Ellen; Tomlinson, Ian

    2014-02-01

    Three DNA polymerases - Pol α, Pol δ and Pol ɛ - are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson-Crick base pairing and 3'exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to 'polymerase proofreading associated polyposis' (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an 'ultramutator' phenotype, with a dramatic increase in base substitutions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Composting oily sludges: Characterizing microflora using randomly amplified polymorphic DNA

    International Nuclear Information System (INIS)

    Persson, A.; Quednau, M.; Ahrne, S.

    1995-01-01

    Laboratory-scale composts in which oily sludge was composted under mesophilic conditions with amendments such as peat, bark, and fresh or decomposed horse manure, were studied with respect to basic parameters such as oil degradation, respirometry, and bacterial numbers. Further, an attempt was made to characterize a part of the bacterial flora using randomly amplified polymorphic DNA (RAPD). The compost based on decomposed horse manure showed the greatest reduction of oil (85%). Comparison with a killed control indicated that microbial degradation actually had occurred. However, a substantial part of the oil was stabilized rather than totally broken down. Volatiles, on the contrary, accounted for a rather small percentage (5%) of the observed reduction. RAPD indicated that a selection had taken place and that the dominating microbial flora during the active degradation of oil were not the same as the ones dominating the different basic materials. The stabilized compost, on the other hand, had bacterial flora with similarities to the ones found in peat and bark

  13. Genotyping via Sequence Related Amplified Polymorphism Markers in Fusarium culmorum

    Directory of Open Access Journals (Sweden)

    Işıl Melis Zümrüt

    2018-02-01

    Full Text Available Fusarium culmorum is predominating causal agent of head blight (HB and root rot (RR in cereals worldwide. Since F. culmorum has a great level of genetic diversity and the parasexual stage is assumed for this phytopathogen, characterization of isolates from different regions is significant step in food safety and controlling the HB. In this study, it was aimed to characterize totally 37 F. culmorum isolates from Turkey via sequence related amplified polymorphism (SRAP marker based genotyping. MAT-1/MAT-2 type assay was also used in order to reveal intraspecific variation in F. culmorum. MAT-1 and MAT-2 specific primer pairs for mating assays resulted in 210 and 260 bp bands, respectively. 11 of isolates were belonged to MAT-1 type whereas 19 samples were of MAT-2. Remaining 7 samples yielded both amplicons. Totally 9 SRAP primer sets yielded amplicons from all isolates. Genetic similarity values were ranged from 39 to 94.7%. Total band number was 127 and PCR product sizes were in the range of 0.1-2.5 kb. Amplicon numbers for individuals were ranged from 1 to 16. According to data obtained from current study, SRAP based genotyping is powerful tool for supporting the data obtained from investigations including phenotypic and agro-ecological characteristics. Findings showed that SRAP-based markers could be useful in F. culmorum characterization.

  14. Human DNA polymerase η accommodates RNA for strand extension.

    Science.gov (United States)

    Su, Yan; Egli, Martin; Guengerich, F Peter

    2017-11-03

    Ribonucleotides are the natural analogs of deoxyribonucleotides, which can be misinserted by DNA polymerases, leading to the most abundant DNA lesions in genomes. During replication, DNA polymerases tolerate patches of ribonucleotides on the parental strands to different extents. The majority of human DNA polymerases have been reported to misinsert ribonucleotides into genomes. However, only PrimPol, DNA polymerase α, telomerase, and the mitochondrial human DNA polymerase (hpol) γ have been shown to tolerate an entire RNA strand. Y-family hpol η is known for translesion synthesis opposite the UV-induced DNA lesion cyclobutane pyrimidine dimer and was recently found to incorporate ribonucleotides into DNA. Here, we report that hpol η is able to bind DNA/DNA, RNA/DNA, and DNA/RNA duplexes with similar affinities. In addition, hpol η, as well as another Y-family DNA polymerase, hpol κ, accommodates RNA as one of the two strands during primer extension, mainly by inserting dNMPs opposite unmodified templates or DNA lesions, such as 8-oxo-2'-deoxyguanosine or cyclobutane pyrimidine dimer, even in the presence of an equal amount of the DNA/DNA substrate. The discovery of this RNA-accommodating ability of hpol η redefines the traditional concept of human DNA polymerases and indicates potential new functions of hpol η in vivo . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Amplified fragment length polymorphism and pulsed field gel electrophoresis for subspecies differentiation of Serpulina pilosicoli

    DEFF Research Database (Denmark)

    Møller, Kristian; Jensen, Tim Kåre; Boye, Mette

    1999-01-01

    Pulsed field gel electrophoresis (PFGE) and amplified fragment length polymorphism (AFLP) were compared for their ability to differentiate between 50 porcine Serpulina pilosicoli isolates. Both techniques were highly sensitive, dividing the isolates into 36 and 38 groups, respectively. Due...

  16. Genetic variability of cultivated cowpea in Benin assessed by random amplified polymorphic DNA

    NARCIS (Netherlands)

    Zannou, A.; Kossou, D.K.; Ahanchédé, A.; Zoundjihékpon, J.; Agbicodo, E.; Struik, P.C.; Sanni, A.

    2008-01-01

    Characterization of genetic diversity among cultivated cowpea [Vigna unguiculata (L.) Walp.] varieties is important to optimize the use of available genetic resources by farmers, local communities, researchers and breeders. Random amplified polymorphic DNA (RAPD) markers were used to evaluate the

  17. Inhibiting DNA Polymerases as a Therapeutic Intervention against Cancer

    Directory of Open Access Journals (Sweden)

    Anthony J. Berdis

    2017-11-01

    Full Text Available Inhibiting DNA synthesis is an important therapeutic strategy that is widely used to treat a number of hyperproliferative diseases including viral infections, autoimmune disorders, and cancer. This chapter describes two major categories of therapeutic agents used to inhibit DNA synthesis. The first category includes purine and pyrmidine nucleoside analogs that directly inhibit DNA polymerase activity. The second category includes DNA damaging agents including cisplatin and chlorambucil that modify the composition and structure of the nucleic acid substrate to indirectly inhibit DNA synthesis. Special emphasis is placed on describing the molecular mechanisms of these inhibitory effects against chromosomal and mitochondrial DNA polymerases. Discussions are also provided on the mechanisms associated with resistance to these therapeutic agents. A primary focus is toward understanding the roles of specialized DNA polymerases that by-pass DNA lesions produced by DNA damaging agents. Finally, a section is provided that describes emerging areas in developing new therapeutic strategies targeting specialized DNA polymerases.

  18. Discovery of cyanophage genomes which contain mitochondrial DNA polymerase.

    Science.gov (United States)

    Chan, Yi-Wah; Mohr, Remus; Millard, Andrew D; Holmes, Antony B; Larkum, Anthony W; Whitworth, Anna L; Mann, Nicholas H; Scanlan, David J; Hess, Wolfgang R; Clokie, Martha R J

    2011-08-01

    DNA polymerase γ is a family A DNA polymerase responsible for the replication of mitochondrial DNA in eukaryotes. The origins of DNA polymerase γ have remained elusive because it is not present in any known bacterium, though it has been hypothesized that mitochondria may have inherited the enzyme by phage-mediated nonorthologous displacement. Here, we present an analysis of two full-length homologues of this gene, which were found in the genomes of two bacteriophages, which infect the chlorophyll-d containing cyanobacterium Acaryochloris marina. Phylogenetic analyses of these phage DNA polymerase γ proteins show that they branch deeply within the DNA polymerase γ clade and therefore share a common origin with their eukaryotic homologues. We also found homologues of these phage polymerases in the environmental Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA) database, which fell in the same clade. An analysis of the CAMERA assemblies containing the environmental homologues together with the filter fraction metadata indicated some of these assemblies may be of bacterial origin. We also show that the phage-encoded DNA polymerase γ is highly transcribed as the phage genomes are replicated. These findings provide data that may assist in reconstructing the evolution of mitochondria.

  19. PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases.

    OpenAIRE

    Cline, J; Braman, J C; Hogrefe, H H

    1996-01-01

    The replication fidelities of Pfu, Taq, Vent, Deep Vent and UlTma DNA polymerases were compared using a PCR-based forward mutation assay. Average error rates (mutation frequency/bp/duplication) increased as follows: Pfu (1.3 x 10(-6)) < Deep Vent (2.7 x 10(-6)) < Vent (2.8 x 10(-6)) < Taq (8.0 x 10(-6)) < < exo- Pfu and UlTma (approximately 5 x 10(-5)). Buffer optimization experiments indicated that Pfu fidelity was highest in the presence of 2-3 mM MgSO4 and 100-300 microM each dNTP and at p...

  20. Mapping of randomly amplified polymorphic DNA primer (RAPD) on ...

    African Journals Online (AJOL)

    Genet & Botany only

    2012-08-14

    Aug 14, 2012 ... (Islam and Shepherd, 1992). But these markers were not considered suitable for large scale mapping. With the recent introduction of molecular biology, DNA based markers including polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP), single nucleotide polymorphisms ...

  1. Optimal conditions to use Pfu exo(-) DNA polymerase for highly efficient ligation-mediated polymerase chain reaction protocols.

    Science.gov (United States)

    Angers, M; Cloutier, J F; Castonguay, A; Drouin, R

    2001-08-15

    Ligation-Mediated Polymerase Chain Reaction (LMPCR) is the most sensitive sequencing technique available to map single-stranded DNA breaks at the nucleotide level of resolution using genomic DNA. LMPCR has been adapted to map DNA damage and reveal DNA-protein interactions inside living cells. However, the sequence context (GC content), the global break frequency and the current combination of DNA polymerases used in LMPCR affect the quality of the results. In this study, we developed and optimized an LMPCR protocol adapted for Pyrococcus furiosus exo(-) DNA polymerase (Pfu exo(-)). The relative efficiency of Pfu exo(-) was compared to T7-modified DNA polymerase (Sequenase 2.0) at the primer extension step and to Thermus aquaticus DNA polymerase (Taq) at the PCR amplification step of LMPCR. At all break frequencies tested, Pfu exo(-) proved to be more efficient than Sequenase 2.0. During both primer extension and PCR amplification steps, the ratio of DNA molecules per unit of DNA polymerase was the main determinant of the efficiency of Pfu exo(-), while the efficiency of Taq was less affected by this ratio. Substitution of NaCl for KCl in the PCR reaction buffer of Taq strikingly improved the efficiency of the DNA polymerase. Pfu exo(-) was clearly more efficient than Taq to specifically amplify extremely GC-rich genomic DNA sequences. Our results show that a combination of Pfu exo(-) at the primer extension step and Taq at the PCR amplification step is ideal for in vivo DNA analysis and DNA damage mapping using LMPCR.

  2. Switching between polymerase and exonuclease sites in DNA polymerase ε

    Science.gov (United States)

    Ganai, Rais A.; Bylund, Göran O.; Johansson, Erik

    2015-01-01

    The balance between exonuclease and polymerase activities promotes DNA synthesis over degradation when nucleotides are correctly added to the new strand by replicative B-family polymerases. Misincorporations shift the balance toward the exonuclease site, and the balance tips back in favor of DNA synthesis when the incorrect nucleotides have been removed. Most B-family DNA polymerases have an extended β-hairpin loop that appears to be important for switching from the exonuclease site to the polymerase site, a process that affects fidelity of the DNA polymerase. Here, we show that DNA polymerase ε can switch between the polymerase site and exonuclease site in a processive manner despite the absence of an extended β-hairpin loop. K967 and R988 are two conserved amino acids in the palm and thumb domain that interact with bases on the primer strand in the minor groove at positions n−2 and n−4/n−5, respectively. DNA polymerase ε depends on both K967 and R988 to stabilize the 3′-terminus of the DNA within the polymerase site and on R988 to processively switch between the exonuclease and polymerase sites. Based on a structural alignment with DNA polymerase δ, we propose that arginines corresponding to R988 might have a similar function in other B-family polymerases. PMID:25550436

  3. Mutations in DNA polymerase eta are not detected in squamous cell carcinoma of the skin.

    Science.gov (United States)

    Glick, Eitan; White, Lisa M; Elliott, Nathan A; Berg, Daniel; Kiviat, Nancy B; Loeb, Lawrence A

    2006-11-01

    The major etiological agent in skin cancer is exposure to UV-irradiation and the concomitant DNA damage. UV-induced DNA lesions, such as thymine dimers, block DNA synthesis by the major DNA polymerases and inhibit the progression of DNA replication. Bypass of thymine dimers and related lesions is dependent on the translesion polymerase DNA polymerase eta (Poleta). In the inherited disorder, xeroderma pigmentosum variant (XPV), inactivation of Poleta results in extreme sensitivity to UV light and a marked increase in the incidence of skin cancer. Here, we tested the hypothesis that somatic mutations and/or polymorphisms in the POLH gene that encodes Poleta are associated with the induction of UV-dependent skin cancers. We sequenced the exonic regions of the Poleta open reading frame in DNA from 17 paired samples of squamous cell skin carcinoma and adjacent histologically normal tissue. We analyzed approximately 120,000 nucleotides and detected no mutations in POLH in the tumors. However, we identified 6 different single-nucleotide polymorphisms, 3 of them previously undocumented, which were present in both the tumor and paired normal tissue. We conclude that neither mutations nor polymorphisms in the coding regions of POLH are required for the generation of human skin squamous cell carcinoma.

  4. Application of amplified fragment length polymorphism (AFLPs) for ...

    African Journals Online (AJOL)

    Uapaca kirkiana Muell. Årg is a dioecious fruit tree species for priority domestication in Southern Africa. It reaches reproductive maturity in eight to ten years with male plants making up 50% of breeding populations. Early identification of sex of seedlings is a prerequisite for selection and tree improvement. The amplified ...

  5. Mapping of randomly amplified polymorphic DNA primer (RAPD) on ...

    African Journals Online (AJOL)

    Genet & Botany only

    2012-08-14

    Aug 14, 2012 ... 500. Figure 1. PCR amplification profile of the two genetic stocks of common wheat,. NT2A2B and NT1D1B using RAPD primer GLC-07. M = Molecular size marker (100 bp DNA ladder, Gene Link, USA). important crops species including wheat (T. aestivum L.). Among the DNA markers, randomly amplified.

  6. Integration of random amplification of polymorphic DNA-polymerase ...

    African Journals Online (AJOL)

    Echinococcus granulosus a parasite characterized with intra-species variability and genetic studies show existence of 10 genotypes (G1-G10). Host specificity and different susceptibility to intermediate hosts has also been demonstrated. Better understanding of this parasitosis can assist in designing appropriate control and ...

  7. Hepatitis B virus DNA polymerase gene polymorphism based ...

    African Journals Online (AJOL)

    Background: Hepatitis B Virus (HBV) infection is one of the major causes of liver cirrhosis, hepatocellular carcinoma and deaths due to the acute or chronic consequences worldwide. HBV is distributed into various genotypes based on nucleic acid sequence variation. Objectives: To develop a method of HBV genotyping and ...

  8. Hepatitis B virus DNA polymerase gene polymorphism based ...

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... Methods: This study was performed on 98 HBV infected patients' serum samples from Western India. A nested PCR protocol ... typing has gained immense importance in guiding treat- ment decisions, improving vaccination .... DNA isolation from serum samples was performed using. High Pure Viral Nucleic ...

  9. Genetic Diversity and Sectional Relationships from an Amplified Fragment Length Polymorphism Analysis of Taiwan Bananas

    OpenAIRE

    Chang, Shu-Fen; Chang, Yueh-Long; Yen, Yung-Fu; Miyajima, Ikuo; Huang, Kuang-Liang

    2017-01-01

    Phylogenetic relationships among 19 Musa species or cultivars were examined through DNA fingerprinting with amplified fragment length polymorphism (AFLP) analysis. The AFLP analysis was performed on the Musa species or cultivars with 21 primer combinations, yielding a total of 6,348 DNA bands, among which 6,113 (96.3%) were polymorphic. M. itinerans var. formosana demonstrated 133 monomorphic bands, which is the most among all samples. Unweighted pair–group method with arithmetic averages was...

  10. [Recent advances of amplified fragment length polymorphism and its applications in forensic botany].

    Science.gov (United States)

    Li, Cheng-Tao; Li, Li

    2008-10-01

    Amplified fragment length polymorphism (AFLP) is a new molecular marker to detect genomic polymorphism. This new technology has advantages of high resolution, good stability, and reproducibility. Great achievements have been derived in recent years in AFLP related technologies with several AFLP expanded methodologies available. AFLP technology has been widely used in the fields of plant, animal, and microbes. It has become one of the hotspots in Forensic Botany. This review focuses on the recent advances of AFLP and its applications in forensic biology.

  11. Arbitrarily primed sequence-related amplified polymorphism (AP ...

    African Journals Online (AJOL)

    Additionally, 80 SRAP primers were used to screen markers in seven plant species (Chinese cabbage, Chinese kale, eggplant, pepper, cucumber, rose and lily), which indicated obvious polymorphism. The primers of AP-SRAP combine simply and reliably. It can overcome the limitation of the number of standard SRAP ...

  12. Enhancement of DNA polymerase activity in potato tuber slices

    International Nuclear Information System (INIS)

    Watanabe, Akira; Imaseki, Hidemasa

    1977-01-01

    DNA polymerase was extracted from potato (Soleum tuberosum L.) tuber discs and the temporal correlation of its activity change to DNA synthesis in vivo was examined during aging of the discs. Most of the DNA polymerase was recovered as a bound form in the 18,000 x g precipitate. Reaction with the bound-form enzyme was dependent on the presence of four deoxynucleoside triphosphates, Mg 2+ , and a template. ''Activated'' DNA and heat-denatured DNA, but not native DNA, were utilized as templates. The polymerase activity was sensitive to SH reagents. Fresh discs, which do not synthesize DNA in vivo, contained a significant amount of DNA polymerase and its activity increased linearly with time until 48 hr after slicing and became four times that of fresh discs after 72 hr, whereas the activity of DNA synthesis in vivo increased with time and decreased after reaching a maximum at 30 hr. Cycloheximide inhibited the enhancement of polymerase activity. DNA polymerase from aged and fresh discs had identical requirements for deoxynucleotides and a template in their reactions, sensitivity to SH reagent, and affinity to thymidine triphosphate. (auth.)

  13. Atomistic Molecular Dynamics Simulations of Mitochondrial DNA Polymerase γ

    DEFF Research Database (Denmark)

    Euro, Liliya; Haapanen, Outi; Róg, Tomasz

    2017-01-01

    DNA polymerase γ (Pol γ) is a key component of the mitochondrial DNA replisome and an important cause of neurological diseases. Despite the availability of its crystal structures, the molecular mechanism of DNA replication, the switch between polymerase and exonuclease activities, the site...

  14. Rapid purification of high activity Taq DNA polymerase expressed in ...

    African Journals Online (AJOL)

    A simplified method is described here for the preparation of a thermostable Taq DNA polymerase enzyme from Escherichia coli (E. coli) strain DH5a carrying the pTTQ18 expression vector transformed with the Taq polymerase gene. Standard purifications were done with 1 litre batch cultures of E. coli cells and produced ...

  15. New Insights into DNA Polymerase Function Revealed by Phosphonoacetic Acid-Sensitive T4 DNA Polymerases.

    Science.gov (United States)

    Zhang, Likui

    2017-11-20

    The bacteriophage T4 DNA polymerase (pol) and the closely related RB69 DNA pol have been developed into model enzymes to study family B DNA pols. While all family B DNA pols have similar structures and share conserved protein motifs, the molecular mechanism underlying natural drug resistance of nonherpes family B DNA pols and drug sensitivity of herpes DNA pols remains unknown. In the present study, we constructed T4 phages containing G466S, Y460F, G466S/Y460F, P469S, and V475W mutations in DNA pol. These amino acid substitutions replace the residues in drug-resistant T4 DNA pol with residues found in drug-sensitive herpes family DNA pols. We investigated whether the T4 phages expressing the engineered mutant DNA pols were sensitive to the antiviral drug phosphonoacetic acid (PAA) and characterized the in vivo replication fidelity of the phage DNA pols. We found that G466S substitution marginally increased PAA sensitivity, whereas Y460F substitution conferred resistance. The phage expressing a double mutant G466S/Y460F DNA pol was more PAA-sensitive. V475W T4 DNA pol was highly sensitive to PAA, as was the case with V478W RB69 DNA pol. However, DNA replication was severely compromised, which resulted in the selection of phages expressing more robust DNA pols that have strong ability to replicate DNA and contain additional amino acid substitutions that suppress PAA sensitivity. Reduced replication fidelity was observed in all mutant phages expressing PAA-sensitive DNA pols. These observations indicate that PAA sensitivity and fidelity are balanced in DNA pols that can replicate DNA in different environments.

  16. Molecular typing of Borrelia burgdorferi sensu lato by randomly amplified polymorphic DNA fingerprinting analysis

    NARCIS (Netherlands)

    Wang, G.; van Dam, A. P.; Spanjaard, L.; Dankert, J.

    1998-01-01

    To study whether pathogenic clusters of Borrelia burgdorferi sensu lato strains occur, we typed 136 isolates, cultured from specimens from patients (n = 49) with various clinical entities and from ticks (n = 83) or dogs (n = 4) from different geographic regions, by randomly amplified polymorphic DNA

  17. Genotyping and genetic diversity of Arcobacter butzleri by amplified fragment length polymorphism (AFLP) analysis

    DEFF Research Database (Denmark)

    On, Stephen L.W.; Atabay, H.I.; Amisu, K.O.

    2004-01-01

    Aims: To investigate the potential of amplified fragment length polymorphism (AFLP) profiling for genotyping Arcobacter butzleri and to obtain further data on the genetic diversity of this organism. Methods and Results: Seventy-three isolates of Danish, British, Turkish, Swedish, Nigerian and Nor...

  18. Intraspecific genetic diversity of Drechslera tritici-repentis as detected by random amplified polymorphic DNA analysis

    Directory of Open Access Journals (Sweden)

    Ana Maria Pujol Vieira dos Santos

    2002-01-01

    Full Text Available The phytopathogenic fungus Drechslera tritici-repentis causes tan spot, an important disease of wheat in the southern Brazilian state of Rio Grande do Sul. Twelve D. tritici-repentis isolates were obtained from wheat seeds from different locations in the state. Their colony morphology on potato dextrose agar and polymorphisms in genomic DNA by the random amplified polymorphic DNA (RAPD method were investigated. For the RAPD method, 23 primers were tested of which nine were selected for use in the study of D. tritici-repentis polymorphisms. The degree of similarity between isolates was calculated using a simple matching coefficient and dendrograms constructed by the unweighted pair-group method with arithmetical averages (UPGMA. The morphological and RAPD analyses showed intraspecific polymorphisms within the isolates, but it was not possible to establish a relationship between these polymorphisms and the geographical regions from where the host seeds were collected.

  19. Random amplified polymorphic DNA and restriction enzyme analysis of PCR amplified rDNA in taxonomy: Two identification techniques for food-borne yeasts

    NARCIS (Netherlands)

    Baleiras Couto, M.M.; Vogels, J.T.W.E.; Hofstra, H.; Veld, J.H.J. Huis in't; Vossen, J.M.B.M. van der

    1995-01-01

    The random amplified polymorphic DNA (RAPD) assay and the restriction enzyme analysis of PCR amplified rDNA are compared for the identification of the common spoilage yeasts Zygosaccharomyces bailii, Z. rouxii, Saccharomyces cerevisiae, Candida valida and C. lipolytica. Both techniques proved to be

  20. Sequence-Related Amplified Polymorphism (SRAP Markers: A Potential Resource for Studies in Plant Molecular Biology

    Directory of Open Access Journals (Sweden)

    Daniel W. H. Robarts

    2014-07-01

    Full Text Available In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR, random-amplified polymorphic DNA (RAPD, and amplified fragment length polymorphism (AFLP to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use. highly variable marker with inherent biological significance.

  1. Structure of the family B DNA polymerase from the hyperthermophilic archaeon Pyrobaculum calidifontis.

    Science.gov (United States)

    Guo, Jingxu; Zhang, Wenling; Coker, Alun R; Wood, Steve P; Cooper, Jonathan B; Ahmad, Shazeel; Ali, Syed; Rashid, Naeem; Akhtar, Muhummad

    2017-05-01

    The family B DNA polymerase from Pyrobaculum calidifontis (Pc-polymerase) consists of 783 amino acids and is magnesium-ion dependent. It has an optimal pH of 8.5, an optimal temperature of 75°C and a half-life of 4.5 h at 95°C, giving it greater thermostability than the widely used Taq DNA polymerase. The enzyme is also capable of PCR-amplifying larger DNA fragments of up to 7.5 kb in length. It was shown to have functional, error-correcting 3'-5' exonuclease activity, as do the related high-fidelity DNA polymerases from Pyrococcus furiosus, Thermococcus kodakarensis KOD1 and Thermococcus gorgonarius, which have extensive commercial applications. Pc-polymerase has a quite low sequence identity of approximately 37% to these enzymes, which, in contrast, have very high sequence identity to each other, suggesting that the P. calidifontis enzyme is distinct. Here, the structure determination of Pc-polymerase is reported, which has been refined to an R factor of 24.47% and an R free of 28.81% at 2.80 Å resolution. The domains of the enzyme are arranged in a circular fashion to form a disc with a narrow central channel. One face of the disc has a number of connected crevices in it, which allow the protein to bind duplex and single-stranded DNA. The central channel is thought to allow incoming nucleoside triphosphates to access the active site. The enzyme has a number of unique structural features which distinguish it from other archaeal DNA polymerases and may account for its high processivity. A model of the complex with the primer-template duplex of DNA indicates that the largest conformational change that occurs upon DNA binding is the movement of the thumb domain, which rotates by 7.6° and moves by 10.0 Å. The surface potential of the enzyme is dominated by acidic groups in the central region of the molecule, where catalytic magnesium ions bind at the polymerase and exonuclease active sites. The outer regions are richer in basic amino acids that

  2. DNA Polymerase Gamma in Mitochondrial DNA Replication and Repair

    Directory of Open Access Journals (Sweden)

    William C. Copeland

    2003-01-01

    Full Text Available Mutations in mitochondrial DNA (mtDNA are associated with aging, and they can cause tissue degeneration and neuromuscular pathologies known as mitochondrial diseases. Because DNA polymerase γ (pol γ is the enzyme responsible for replication and repair of mitochondrial DNA, the burden of faithful duplication of mitochondrial DNA, both in preventing spontaneous errors and in DNA repair synthesis, falls on pol γ. Investigating the biological functions of pol γ and its inhibitors aids our understanding of the sources of mtDNA mutations. In animal cells, pol γ is composed of two subunits, a larger catalytic subunit of 125–140 kDa and second subunit of 35–55 kDa. The catalytic subunit contains DNA polymerase activity, 3’-5’ exonuclease activity, and a 5’-dRP lyase activity. The accessory subunit is required for highly processive DNA synthesis and increases the affinity of pol gamma to the DNA.

  3. Thioredoxin suppresses microscopic hopping of T7 DNA polymerase on duplex DNA

    NARCIS (Netherlands)

    Etson, Candice M.; Hamdan, Samir M.; Richardson, Charles C.; Oijen, Antoine M. van; Richardson, Charles C.

    2010-01-01

    The DNA polymerases involved in DNA replication achieve high processivity of nucleotide incorporation by forming a complex with processivity factors. A model system for replicative DNA polymerases, the bacteriophage T7 DNA polymerase (gp5), encoded by gene 5, forms a tight, 1:1 complex with

  4. Mechanism of Ribonucleotide Incorporation by Human DNA Polymerase η.

    Science.gov (United States)

    Su, Yan; Egli, Martin; Guengerich, F Peter

    2016-02-19

    Ribonucleotides and 2'-deoxyribonucleotides are the basic units for RNA and DNA, respectively, and the only difference is the extra 2'-OH group on the ribonucleotide sugar. Cellular rNTP concentrations are much higher than those of dNTP. When copying DNA, DNA polymerases not only select the base of the incoming dNTP to form a Watson-Crick pair with the template base but also distinguish the sugar moiety. Some DNA polymerases use a steric gate residue to prevent rNTP incorporation by creating a clash with the 2'-OH group. Y-family human DNA polymerase η (hpol η) is of interest because of its spacious active site (especially in the major groove) and tolerance of DNA lesions. Here, we show that hpol η maintains base selectivity when incorporating rNTPs opposite undamaged DNA and the DNA lesions 7,8-dihydro-8-oxo-2'-deoxyguanosine and cyclobutane pyrimidine dimer but with rates that are 10(3)-fold lower than for inserting the corresponding dNTPs. X-ray crystal structures show that the hpol η scaffolds the incoming rNTP to pair with the template base (dG) or 7,8-dihydro-8-oxo-2'-deoxyguanosine with a significant propeller twist. As a result, the 2'-OH group avoids a clash with the steric gate, Phe-18, but the distance between primer end and Pα of the incoming rNTP increases by 1 Å, elevating the energy barrier and slowing polymerization compared with dNTP. In addition, Tyr-92 was identified as a second line of defense to maintain the position of Phe-18. This is the first crystal structure of a DNA polymerase with an incoming rNTP opposite a DNA lesion. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Mechanism of Ribonucleotide Incorporation by Human DNA Polymerase η*

    Science.gov (United States)

    Su, Yan; Egli, Martin; Guengerich, F. Peter

    2016-01-01

    Ribonucleotides and 2′-deoxyribonucleotides are the basic units for RNA and DNA, respectively, and the only difference is the extra 2′-OH group on the ribonucleotide sugar. Cellular rNTP concentrations are much higher than those of dNTP. When copying DNA, DNA polymerases not only select the base of the incoming dNTP to form a Watson-Crick pair with the template base but also distinguish the sugar moiety. Some DNA polymerases use a steric gate residue to prevent rNTP incorporation by creating a clash with the 2′-OH group. Y-family human DNA polymerase η (hpol η) is of interest because of its spacious active site (especially in the major groove) and tolerance of DNA lesions. Here, we show that hpol η maintains base selectivity when incorporating rNTPs opposite undamaged DNA and the DNA lesions 7,8-dihydro-8-oxo-2′-deoxyguanosine and cyclobutane pyrimidine dimer but with rates that are 103-fold lower than for inserting the corresponding dNTPs. X-ray crystal structures show that the hpol η scaffolds the incoming rNTP to pair with the template base (dG) or 7,8-dihydro-8-oxo-2′-deoxyguanosine with a significant propeller twist. As a result, the 2′-OH group avoids a clash with the steric gate, Phe-18, but the distance between primer end and Pα of the incoming rNTP increases by 1 Å, elevating the energy barrier and slowing polymerization compared with dNTP. In addition, Tyr-92 was identified as a second line of defense to maintain the position of Phe-18. This is the first crystal structure of a DNA polymerase with an incoming rNTP opposite a DNA lesion. PMID:26740629

  6. DNA polymerase delta is required for early mammalian embryogenesis.

    Directory of Open Access Journals (Sweden)

    Arikuni Uchimura

    Full Text Available BACKGROUND: In eukaryotic cells, DNA polymerase delta (Poldelta, whose catalytic subunit p125 is encoded in the Pold1 gene, plays a central role in chromosomal DNA replication, repair, and recombination. However, the physiological role of the Poldelta in mammalian development has not been thoroughly investigated. METHODOLOGY/PRINCIPAL FINDINGS: To examine this role, we used a gene targeting strategy to generate two kinds of Pold1 mutant mice: Poldelta-null (Pold1(-/- mice and D400A exchanged Poldelta (Pold1(exo/exo mice. The D400A exchange caused deficient 3'-5' exonuclease activity in the Poldelta protein. In Poldelta-null mice, heterozygous mice developed normally despite a reduction in Pold1 protein quantity. In contrast, homozygous Pold1(-/- mice suffered from peri-implantation lethality. Although Pold1(-/- blastocysts appeared normal, their in vitro culture showed defects in outgrowth proliferation and DNA synthesis and frequent spontaneous apoptosis, indicating Poldelta participates in DNA replication during mouse embryogenesis. In Pold1(exo/exo mice, although heterozygous Pold1(exo/+ mice were normal and healthy, Pold1(exo/exo and Pold1(exo/- mice suffered from tumorigenesis. CONCLUSIONS: These results clearly demonstrate that DNA polymerase delta is essential for mammalian early embryogenesis and that the 3'-5' exonuclease activity of DNA polymerase delta is dispensable for normal development but necessary to suppress tumorigenesis.

  7. Analysis of genetic diversity identified by amplified fragment length polymorphism marker in hybrid wheat.

    Science.gov (United States)

    Ejaz, M; Qidi, Z; Gaisheng, Z; Na, N; Huiyan, Z; Qunzhu, W

    2015-08-07

    Amplified fragment length polymorphism markers were used to assess genetic diversity in 10 male sterile wheat crop lines (hetero-cytoplasm with the same nucleus) in relation to a restorer wheat line. These male sterile lines were evaluated using 64 amplified fragment length polymorphism primer combinations, and 13 primers produced polymorphic bands, generating a total 682 fragments. Of the 682 fragments, 113 were polymorphic. The polymorphic information content and marker index values demonstrated the utility of the primer combinations used in the present study. Unweighted pair group method with arithmetic mean and principal coordinate analysis of the genotypic data revealed clustering of accessions based on genetic relationships, and accessions were separated into 2 groups with their restorer line. Jaccard's similarity coefficient values suggested good variability among the male sterile lines, indicating their utility in breeding programs. The fallouts of analysis of molecular variance showed large within-group population variation, accounting for 77% of variation, while among-group comparison accounted for 23% of the total molecular variation, which was statistically significant. The molecular diversity observed in this study will be useful for selecting appropriate accessions for plant improvement and hybridization through molecular-breeding approaches and for developing suitable conservation strategies.

  8. Assessing the germplasm of Laminaria (phaeophyceae) with random amplified polymorphic DNA (RAPD) method

    Science.gov (United States)

    He, Yingjun; Zou, Yuping; Wang, Xiaodong; Zheng, Zhiguo; Zhang, Daming; Duan, Delin

    2003-06-01

    Eighteen gametophytes including L. japonica, L. ochotensis and L. longissima, were verified with random amplified polymorphic DNA (RAPD) technique. Eighteen ten-base primers were chosen from 100 primers selected for final amplification test. Among the total of 205 bands amplified, 181 (88.3%) were polymorphic. The genetic distance among different strains ranged from 0.072 to 0.391. The dendrogram constructed by unweighted pair-group method with arithmetic (UPGMA) method showed that the female and male gametophytes of the same cell lines could be grouped in pairs respectively. It indicated that RAPD analysis could be used not only to distinguish different strains of Laminaria, but also to distinguish male and female gametophyte within the same cell lines. There is ambiguous systematic relationship if judged merely by the present data. It seems that the use of RAPD marker is limited to elucidation of the phylogenetic relationship among the species of Laminaria.

  9. Development of Randomly Amplified Polymorphic DNA Based SCAR Marker for Identification of Ipomoea mauritiana Jacq (Convolvulaceae

    Directory of Open Access Journals (Sweden)

    Kambiranda Devaiah

    2011-01-01

    Full Text Available Vidari is an Ayurvedic herbal drug used as aphrodisiac, galactagogue and is also used in the preparation of Chyavanaprash. Tubers of Ipomoea mauritiana Jacq. (Convolvulaceae, Pueraria tuberosa (Roxb. ex Willd. DC (Fabaceae, Adenia hondala (Gaertn. de Wilde (Passifloraceae and pith of Cycas circinalis L. (Cycadaceae are all traded in the name of Vidari, creating issues of botanical authenticity of the Ayurvedic raw drug. DNA-based markers have been developed to distinguish I. mauritiana from the other Vidari candidates. A putative 600-bp polymorphic sequence, specific to I. mauritiana was identified using randomly amplified polymorphic DNA (RAPD technique. Furthermore, sequence characterized amplified region (SCAR primers (IM1F and IM1R were designed from the unique RAPD amplicon. The SCAR primers produced a specific 323-bp amplicon in authentic I. mauritiana and not in the allied species.

  10. Development of Randomly Amplified Polymorphic DNA Based SCAR Marker for Identification of Ipomoea mauritiana Jacq (Convolvulaceae)

    Science.gov (United States)

    Devaiah, Kambiranda; Balasubramani, Subramani Paranthaman; Venkatasubramanian, Padma

    2011-01-01

    Vidari is an Ayurvedic herbal drug used as aphrodisiac, galactagogue and is also used in the preparation of Chyavanaprash. Tubers of Ipomoea mauritiana Jacq. (Convolvulaceae), Pueraria tuberosa (Roxb. ex Willd.) DC (Fabaceae), Adenia hondala (Gaertn.) de Wilde (Passifloraceae) and pith of Cycas circinalis L. (Cycadaceae) are all traded in the name of Vidari, creating issues of botanical authenticity of the Ayurvedic raw drug. DNA-based markers have been developed to distinguish I. mauritiana from the other Vidari candidates. A putative 600-bp polymorphic sequence, specific to I. mauritiana was identified using randomly amplified polymorphic DNA (RAPD) technique. Furthermore, sequence characterized amplified region (SCAR) primers (IM1F and IM1R) were designed from the unique RAPD amplicon. The SCAR primers produced a specific 323-bp amplicon in authentic I. mauritiana and not in the allied species. PMID:21738554

  11. Genomic variations of Mycoplasma capricolum subsp capripneumoniae detected by amplified fragment length polymorphism (AFLP) analysis

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Bolske, G.; Ahrens, Peter

    2000-01-01

    The genetic diversity of Mycoplasma capricolum subsp. capripneumoniae strains based on determination of amplified fragment length polymorphisms (AFLP) is described. AFLP fingerprints of 38 strains derived from different countries in Africa and the Middle East consisted of over 100 bands in the size...... found by 16S rDNA analysis. The present data support previous observations regarding genetic homogeneity of M. capricolum subsp. capripneumoniae, and confirm the two evolutionary lines of descent found by analysis of 16S rRNA genes....

  12. Identification and DNA fingerprinting of Legionella strains by randomly amplified polymorphic DNA analysis.

    OpenAIRE

    Bansal, N S; McDonell, F

    1997-01-01

    The randomly amplified polymorphic DNA (RAPD) technique was used in the development of a fingerprinting (typing) and identification protocol for Legionella strains. Twenty decamer random oligonucleotide primers were screened for their discriminatory abilities. Two candidate primers were selected. By using a combination of these primers, RAPD analysis allowed for the differentiation between all different species, between the serogroups, and further differentiation between subtypes of the same ...

  13. High-resolution genotyping of Listeria monocytogenes by fluorescent amplified fragment length polymorphism analysis compared to pulsed-field gel electrophoresis, random amplified polymorphic DNA analysis, ribotyping, and PCR-restriction fragment length polymorphism analysis

    DEFF Research Database (Denmark)

    Vogel, Birte Fonnesbech; Fussing, V.; Ojeniyi, B.

    2004-01-01

    The purpose of this study was to evaluate fluorescent amplified fragment length polymorphism (AFLP) analysis for the inter- and intraspecies differentiation of a collection of 96 strains of Listeria monocytogenes and 10 non- L. monocytogenes strains representing six other Listeria species...... of different origin. The AFLP technique was compared with three other molecular typing methods - ribotyping, random amplified polymorphic DNA analysis (RAPD), and pulsed-field gel electrophoresis (PFGE) - in terms of discriminatory ability. PCR-restriction fragment length polymorphism was included....... Isolates with identical DNA profiles were distributed across the spectrum of origin. It was not possible to associate certain types with specific food sectors or clinical cases, which is indicative of the spread of L. monocytogenes clones across species. Overall, AFLP fingerprinting was suitable...

  14. Application of fluorescent amplified fragment length polymorphism for comparison of human and animal isolates of Yersinia enterocolitica

    DEFF Research Database (Denmark)

    Fearnley, C.; On, S.L.W.; Kokotovic, Branko

    2005-01-01

    An amplified fragment length polymorphism (AFLP) method, developed to genotype Yersinia enterocolitica, has been used to investigate 70 representative strains isolated from humans, pigs, sheep, and cattle in the United Kingdom. AFLP primarily distinguished Y enterocolitica strains according to th...

  15. High-resolution genomic fingerprinting of Campylobacter jejuni and Campylobacter coli by analysis of amplified fragment length polymorphisms

    DEFF Research Database (Denmark)

    Kokotovic, Branko; On, Stephen L.W.

    1999-01-01

    A method for high-resolution genomic fingerprinting of the enteric pathogens Campylobacter jejuni and Campylobacter coli, based on the determination of amplified fragment length polymorphism, is described. The potential of this method for molecular epidemiological studies of these species...... to available epidemiological data. We conclude that this amplified fragment length polymorphism fingerprinting method may be a highly effective tool for molecular epidemiological studies of Campylobacter spp....

  16. The role of DNA polymerase {iota} in UV mutational spectra

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun-Hyuk [Division of Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010 (United States); Besaratinia, Ahmad [Division of Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010 (United States); Lee, Dong-Hyun [Division of Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010 (United States); Lee, Chong-Soon [Department of Biochemistry, College of Natural Sciences, Yeungnam University, Gyongsan 712-749 (Korea, Republic of); Pfeifer, Gerd P. [Division of Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010 (United States)]. E-mail: gpfeifer@coh.org

    2006-07-25

    UVB (280-320 nm) and UVC (200-280 nm) irradiation generate predominantly cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts in DNA. CPDs are thought to be responsible for most of the UV-induced mutations. Thymine-thymine CPDs, and probably also CPDs containing cytosine, are replicated in vivo in a largely accurate manner by a DNA polymerase {eta} (Pol {eta}) dependent process. Pol {eta} is a DNA damage-tolerant and error-prone DNA polymerase encoded by the POLH (XPV) gene in humans. Another member of the Y family of error-prone DNA polymerases is POLI encoding DNA polymerase iota (Pol {iota}). In order to clarify the specific role of Pol {iota} in UV mutagenesis, we have used an siRNA knockdown approach in combination with a supF shuttle vector which replicates in mammalian cells, similar as we have previously done for Pol {eta}. Synthetic RNA duplexes were used to efficiently inhibit Pol {iota} expression in 293T cells. The supF shuttle vector was irradiated with 254 nm UVC and replicated in 293T cells in presence of anti-Pol {iota} siRNA. Surprisingly, there was a consistent reduction of recovered plasmid from cells with Pol {iota} knockdown and this was independent of UV irradiation of the plasmid. The supF mutant frequency was unchanged in the siRNA knockdown cells relative to control cells confirming that Pol {iota} does not play an important role in UV mutagenesis. UV-induced supF mutants were sequenced from siRNA-treated cells and controls. Neither the type of mutations nor their distribution along the supF gene were significantly different between controls and siRNA knockdown cells and were predominantly C to T and CC to TT transitions at dipyrimidine sites. These results show that Pol {iota} has no significant role in UV lesion bypass and mutagenesis in vivo and provides some initial data suggesting that this polymerase may be involved in replication of extrachromosomal DNA.

  17. High-resolution genotyping of Listeria monocytogenes by fluorescent amplified fragment length polymorphism analysis compared to pulsed-field gel electrophoresis, random amplified polymorphic DNA analysis, ribotyping, and PCR-restriction fragment length polymorphism analysis

    DEFF Research Database (Denmark)

    Vogel, Birte Fonnesbech; Fussing, V.; Ojeniyi, B.

    2004-01-01

    of different origin. The AFLP technique was compared with three other molecular typing methods - ribotyping, random amplified polymorphic DNA analysis (RAPD), and pulsed-field gel electrophoresis (PFGE) - in terms of discriminatory ability. PCR-restriction fragment length polymorphism was included...... for virulence gene allele characterization. The 96 L. monocytogenes strains were divided into two major clusters by AFLP fingerprinting at a similarity level of 82% in concordance with the results of PFGE, RAPD, and ribotyping. One main cluster consisted of all of the 24 L. monocytogenes hly allele 1 strains...

  18. DNA polymerase beta participates in mitochondrial DNA repair

    DEFF Research Database (Denmark)

    Sykora, P; Kanno, S; Akbari, M

    2017-01-01

    We have detected DNA polymerase beta (Polβ), known as a key nuclear base excision repair (BER) protein, in mitochondrial protein extracts derived from mammalian tissue and cells. Manipulation of the N-terminal sequence affected the amount of Polβ in the mitochondria. Using Polβ fragments, mitocho......We have detected DNA polymerase beta (Polβ), known as a key nuclear base excision repair (BER) protein, in mitochondrial protein extracts derived from mammalian tissue and cells. Manipulation of the N-terminal sequence affected the amount of Polβ in the mitochondria. Using Polβ fragments......, mitochondrial-specific protein partners were identified, with the interactors mainly functioning in DNA maintenance and mitochondrial import. Of particular interest was the identification of the proteins TWINKLE, SSBP1 and TFAM, all of which are mitochondria specific DNA effectors and are known to function...... in the nucleoid. Polβ directly interacted with, and influenced the activity of, the mitochondrial helicase TWINKLE. Human kidney cells with Polβ knock-out (KO) had higher endogenous mtDNA damage. Mitochondrial extracts derived from heterozygous Polβ mouse tissue and KO cells had lower nucleotide incorporation...

  19. General misincorporation frequency: Re-evaluation of the fidelity of DNA polymerases.

    Science.gov (United States)

    Yang, Jie; Li, Bianbian; Liu, Xiaoying; Tang, Hong; Zhuang, Xiyao; Yang, Mingqi; Xu, Ying; Zhang, Huidong; Yang, Chun

    2018-02-19

    DNA replication in cells is performed in the presence of four dNTPs and four rNTPs. In this study, we re-evaluated the fidelity of DNA polymerases using the general misincorporation frequency consisting of three incorrect dNTPs and four rNTPs but not using the traditional special misincorporation frequency with only the three incorrect dNTPs. We analyzed both the general and special misincorporation frequencies of nucleotide incorporation opposite dG, rG, or 8-oxoG by Pseudomonas aeruginosa phage 1 (PaP1) DNA polymerase Gp90 or Sulfolobus solfataricus DNA polymerase Dpo4. Both misincorporation frequencies of other DNA polymerases published were also summarized and analyzed. The general misincorporation frequency is obviously higher than the special misincorporation frequency for many DNA polymerases, indicating the real fidelity of a DNA polymerase should be evaluated using the general misincorporation frequency. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Translesion Synthesis: Insights into the Selection and Switching of DNA Polymerases

    Directory of Open Access Journals (Sweden)

    Linlin Zhao

    2017-01-01

    Full Text Available DNA replication is constantly challenged by DNA lesions, noncanonical DNA structures and difficult-to-replicate DNA sequences. Two major strategies to rescue a stalled replication fork and to ensure continuous DNA synthesis are: (1 template switching and recombination-dependent DNA synthesis; and (2 translesion synthesis (TLS using specialized DNA polymerases to perform nucleotide incorporation opposite DNA lesions. The former pathway is mainly error-free, and the latter is error-prone and a major source of mutagenesis. An accepted model of translesion synthesis involves DNA polymerase switching steps between a replicative DNA polymerase and one or more TLS DNA polymerases. The mechanisms that govern the selection and exchange of specialized DNA polymerases for a given DNA lesion are not well understood. In this review, recent studies concerning the mechanisms of selection and switching of DNA polymerases in eukaryotic systems are summarized.

  1. Development of Random Amplified Polymorphic DNA markers for authentification of Cissus repanda vahl.

    Science.gov (United States)

    Harisha, C R; Acharya, Rabinarayan; Chauhan, Maltiben G

    2012-04-01

    Cissus repanda Vahl. belongs to the family Vitaceae, commonly known in Hindi as "Panivel," is a large climber distributed all over India. The crushed or powder of root is prescribed by tribal people and traditional medical practitioners of Orissa for its healing properties in cases of bone fracture, cuts and wounds, swellings, and so on. In spite of its reputation, its leaves have not been investigated scientifically. The present study deals with pharmacognostical and molecular characterization by Random Amplified Polymorphic DNA (RAPD) markers and their role in laying down standardization and pharmacopoeial parameters. Genomic isolation of DNA from fresh leaves was amplified by RAPD markers. The diagnostic characters are mucilage, calcium oxalate rosette crystals, spiral vessels, and fibers. The unique bands obtained in Polymerase Chain Reaction (PCR) amplification clearly discriminated having, many bright and light bands indicating the genuinity of the plant. RAPD may serve as a complementary tool in quality control of many herbal sources.

  2. Lesion Orientation of O4-Alkylthymidine Influences Replication by Human DNA Polymerase η

    OpenAIRE

    O’Flaherty, D. K.; Patra, A.; Su, Y.; Guengerich, F. P.; Egli, M.; Wilds, C. J.

    2016-01-01

    DNA lesions that elude repair may undergo translesion synthesis catalyzed by Y-family DNA polymerases. O4-Alkylthymidines, persistent adducts that can result from carcinogenic agents, may be encountered by DNA polymerases. The influence of lesion orientation around the C4-O4 bond on processing by human DNA polymerase η (hPol η) was studied for oligonucleotides containing O4-methylthymidine, O4-ethylthymidine, and analogs restricting the O4-methylene group in an anti-orientation. Primer extens...

  3. Genetic variation in an endemic salamander, Salamandra atra, using amplified fragment length polymorphism.

    Science.gov (United States)

    Riberon, Alexandre; Miaud, Claude; Guyetant, R; Taberlet, P

    2004-06-01

    The pattern of genetic differentiation of the endemic alpine salamander, Salamandra atra, has been studied using amplified fragment length polymorphism (AFLP) from 11 populations throughout the range of the two currently recognized subspecies, atra and aurorae. Five different primer combinations produced 706 bands and were analyzed by constructing a phylogenetic tree using NJ and principal component analysis. Significant genetic variation was revealed by AFLP between and within populations but, our results show a lack of genetic structure. AFLP markers seems to be unsuitable to investigate complex and recent diversification.

  4. Genomic diversity among Danish field strains of Mycoplasma hyosynoviae assessed by amplified fragment length polymorphism analysis

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Friis, Niels F.; Nielsen, Elisabeth O.

    2002-01-01

    Genomic diversity among strains of Mycoplasma hyosynoviae isolated in Denmark was assessed by using amplified fragment length polymorphism (AFLP) analysis. Ninety-six strains, obtained from different specimens and geographical locations during 30 years and the type strain of M. hyosynoviae S16(T......) were concurrently examined for variance in BglII-MfeI and EcoRI-Csp6I-A AFLP markers. A total of 56 different genomic fingerprints having an overall similarity between 77 and 96% were detected. No correlation between AFLP variability and period of isolation or anatomical site of isolation could...

  5. Genetic variation in hemp and marijuana (Cannabis sativa L.) according to amplified fragment length polymorphisms.

    Science.gov (United States)

    Datwyler, Shannon L; Weiblen, George D

    2006-03-01

    Cannabis sativa L. (Cannabaceae) is one of the earliest known cultivated plants and is important in the global economy today as a licit and an illicit crop. Molecular markers distinguishing licit and illicit cultivars have forensic utility, but no direct comparison of hemp and marijuana amplified fragment length polymorphism (AFLP) has been made to date. Genetic variation was surveyed in three populations of fiber hemp and a potent cultivar of marijuana using AFLP markers. Ten primer pairs yielded 1206 bands, of which 88% were polymorphic. Eighteen bands represented fixed differences between all fiber populations and the drug cultivar. These markers have practical utility for (1) establishing conspiracy in the cultivation and distribution of marijuana, (2) identifying geographic sources of seized drugs, and (3) discriminating illegal, potent marijuana cultivars from hemp where the cultivation of industrial hemp is permitted.

  6. Retrotransposon Microsatellite Amplified Polymorphism Strain Fingerprinting Markers Applicable to Various Mushroom Species

    Science.gov (United States)

    Le, Quy Vang; Won, Hyo-Kyung; Lee, Tae-Soo; Lee, Chang-Yun; Lee, Hyun-Sook

    2008-01-01

    The retrotransposon marY1 is a gypsy family retroelement, which is detected ubiquitously within the fungal taxonomic groups in which mushrooms are included. To utilize marY1 as a molecular marker for the DNA fingerprinting of mushrooms, oligonucleotides marY1-LTR-L and marY1-LTR-R were designed on the basis of highly conserved regions from the multiple sequence alignment of 30 marY1 sequences retrieved from a nucleotide sequence database. In accordance with Retrotransposon Microsatellite Amplified Polymorphism (REMAP) fingerprinting methodology, the two oligonucleotides were utilized together with the short sequence repeat primers UBC807 and UBC818 for polymerase chain reaction using templates from different mushroom genomic DNAs. Among the tested oligonucleotides, the marY1-LTR-L and UBC807 primer set yielded the greatest amount of abundance and variation in terms of DNA band numbers and patterns. This method was successfully applied to 10 mushroom species, and the primer set successfully discriminated between different commercial mushroom cultivars of the same strains of 14 Pleurotus ostreatus and 16 P. eryngii. REMAP reproducibility was superior to other popular DNA fingerprinting methodologies including the random amplified polymorphic DNA method. PMID:23997618

  7. Genetic Diversity and Population Structure of Toona Ciliata Roem. Based on Sequence-Related Amplified Polymorphism (SRAP) Markers

    OpenAIRE

    Li, Pei; Zhan, Xin; Que, Qingmin; Qu, Wenting; Liu, Mingqian; Ouyang, Kunxi; Li, Juncheng; Deng, Xiaomei; Zhang, Junjie; Liao, Boyong; Pian, Ruiqi; Chen, Xiaoyang

    2015-01-01

    Sequence-related amplified polymorphism (SRAP) markers were used to investigate the genetic diversity among 30 populations of Toona ciliata Roem. sampled from the species’ distribution area in China. To analyze the polymorphism in the SRAP profiles, 1505 primer pairs were screened and 24 selected. A total of 656 SRAP bands ranging from 100 to 1500 bp were acquired, of these 505 bands (77%) were polymorphic. The polymorphism information content (PIC) values ranged from 0.32 to 0.45, with an av...

  8. Analysis of DNA polymerase ν function in meiotic recombination, immunoglobulin class-switching, and DNA damage tolerance.

    Directory of Open Access Journals (Sweden)

    Kei-Ichi Takata

    2017-06-01

    Full Text Available DNA polymerase ν (pol ν, encoded by the POLN gene, is an A-family DNA polymerase in vertebrates and some other animal lineages. Here we report an in-depth analysis of pol ν-defective mice and human cells. POLN is very weakly expressed in most tissues, with the highest relative expression in testis. We constructed multiple mouse models for Poln disruption and detected no anatomic abnormalities, alterations in lifespan, or changed causes of mortality. Mice with inactive Poln are fertile and have normal testis morphology. However, pol ν-disrupted mice have a modestly reduced crossover frequency at a meiotic recombination hot spot harboring insertion/deletion polymorphisms. These polymorphisms are suggested to generate a looped-out primer and a hairpin structure during recombination, substrates on which pol ν can operate. Pol ν-defective mice had no alteration in DNA end-joining during immunoglobulin class-switching, in contrast to animals defective in the related DNA polymerase θ (pol θ. We examined the response to DNA crosslinking agents, as purified pol ν has some ability to bypass major groove peptide adducts and residues of DNA crosslink repair. Inactivation of Poln in mouse embryonic fibroblasts did not alter cellular sensitivity to mitomycin C, cisplatin, or aldehydes. Depletion of POLN from human cells with shRNA or siRNA did not change cellular sensitivity to mitomycin C or alter the frequency of mitomycin C-induced radial chromosomes. Our results suggest a function of pol ν in meiotic homologous recombination in processing specific substrates. The restricted and more recent evolutionary appearance of pol ν (in comparison to pol θ supports such a specialized role.

  9. Chimeric thermostable DNA polymerases with reverse transcriptase and attenuated 3'-5' exonuclease activity.

    Science.gov (United States)

    Schönbrunner, Nancy J; Fiss, Ellen H; Budker, Olga; Stoffel, Susanne; Sigua, Christopher L; Gelfand, David H; Myers, Thomas W

    2006-10-24

    The synthesis of accurate, full-length cDNA from low-abundance RNA and the subsequent PCR amplification under conditions which provide amplicon that contains minimal mutations remain a difficult molecular biological process. Many of the challenges associated with performing sensitive, long RT/PCR have been alleviated by using a mixture of DNA polymerases. These mixtures have typically contained a DNA polymerase devoid of 3'-5' exonuclease, or "proofreading", activity blended with a small amount of an Archaea DNA polymerase possessing 3'-5' exonuclease activity, since reverse transcriptases lack 3'-5' exonuclease activity and generally have low fidelity. To create a DNA polymerase with efficient reverse transcriptase and 3'-5' exonuclease activity, a family of mutant DNA polymerases with a range of attenuated 3'-5' exonuclease activities was constructed from a chimeric DNA polymerase derived from Thermus species Z05 and Thermotoga maritima DNA polymerases. These "designer" DNA polymerases were fashioned using structure-based tools to identify amino acid residues involved in the substrate-binding site of the exonuclease domain of a thermostable DNA polymerase. Mutation of some of these residues resulted in proteins in which DNA polymerase activity was unaffected, while proofreading activity ranged from 60% of the wild-type level to undetectable levels. Kinetic characterization of the exonuclease activity indicated that the mutations affected catalysis much more than binding. On the basis of their specificity constants (kcat/KM), the mutant enzymes have a 5-15-fold stronger preference for a double-stranded mismatched substrate over a single-stranded substrate than the wild-type DNA polymerase, a desirable attribute for RT/PCR. The utility of these enzymes was evaluated in a RT/PCR assay to generate a 1.7 kb amplicon from HIV-1 RNA.

  10. Comparison of the value of pulsed-field gel electrophoresis, random amplified polymorphic DNA and amplified rDNA restriction analysis for subtyping Taylorella equigenitalis.

    Science.gov (United States)

    Kagawa, S; Moore, J E; Murayama, O; Matsuda, M

    2001-05-01

    Eight strains of Taylorella equigenitalis were identified by a polymerase chain reaction using a primer pair specific to the 16S rDNA of T equigenitalis. These eight strains were chosen because they had previously been shown to represent eight distinct genotypes by pulsed-field gel electrophoresis analysis after separate digestion of the genomic DNA with ApaI or NotI. The eight strains could be classified into six or seven types by random amplified polymorphic DNA analysis using different kinds of primers. Amplified rDNA restriction analysis after separate digestion with five restriction enzymes, including AluI and MboI, of the 1,500 bp fragments of rDNA amplified by polymerase chain reaction did not discriminate the genomic variations among the eight strains of T equigenitalis. Thus, pulsed-field gel electrophoresis was shown to discriminate these eight organisms better than random amplified polymorphic DNA analysis, while amplified rDNA restriction analysis was found to be unsuitable for subtyping T equigenitalis.

  11. Application of random amplified polymorphic DNA (RAPD) to detect the genotoxic effect of heavy metals.

    Science.gov (United States)

    Enan, Mohamed R

    2006-03-01

    This paper presents the results of a study on the influence of lead, copper, manganese and cadmium on DNA integrity in plant cells. Plants, as biological indicators, can measure the potential effects of pollutants when they are used to measure effects of heavy metals. The genotoxicity of heavy metals in kidney-bean (Phaseolus vulgaris) seedlings was subjected to RAPD (random amplified polymorphic DNA) analysis. An RAPD 'fingerprinting' technique was used to detect DNA damage in the kidney-bean seedlings treated with two selected heavy metals at concentrations of 150 and 350 mg x l(-1). Polymorphisms became evident as the presence and/or absence of DNA fragments in treated samples compared with the untreated one. At 350 mg x l(-1), a high number of both missing bands and new amplified fragment were observed. Results suggested that a qualitative measure reflecting changes in RAPD profiles were significantly affected at higher concentrations (350 mg x l(-1)) of the tested heavy metals. A total of 467 RAPD fragments in RAPD profiles were detected by using six random primers (decamers) and 224 of these fragments showed polymorphism. There was a distinct distance between the band patterns of treated plants and the control samples when the cluster method was applied. In addition, the result derived from numerical analysis revealed a considerable distance between the band pattern of the plant samples treated with 350 mg x l(-1) heavy metals and the control sample. Finally, a comparison between untreated and treated genomes shows that RAPD analysis can be used to evaluate how the environmental pollutants modify the structure of DNA in living organisms.

  12. DNA polymerase betas from liver and testes of cherry salmon, Oncorhynchus masou: purification and characterization of DNA polymerase betas with acidic isoelectric points.

    Science.gov (United States)

    Yamaguchi, T; Nishimura, S; Takahashi, K; Yoshikuni, M; Masaki, J; Hirai, T; Saneyoshi, M

    1996-01-01

    DNA polymerase betas from cherry salmon, Oncorhynchus masou, liver and testes were purified to near homogeneity, and no substantial differences between the enzymes were observed. The molecular weight of both enzymes, determined by SDS-polyacrylamide gel electrophoresis, was 39,000. The amino acid sequences of the N-terminus of the liver and testes enzymes were determined and compared with that of the rat enzyme. Of the N-terminal 30 amino acid residues of salmon liver DNA polymerase beta, 21 (70%) were identical to those of the rat enzyme sequence. However, unlike most eukaryotic DNA polymerase betas, the isoelectric points (pIs) of the DNA polymerase betas from salmon liver and testes were both estimated to be 6.2, which is significantly different from the alkaline isoelectric points (pI = 8.5-9.5) established for other highly purified vertebrate DNA polymerase betas. The cherry salmon DNA polymerase betas were still active at below 10 degrees C, compared with the rat enzyme.

  13. Translesion DNA polymerases Pol ζ, Pol η, Pol ι, Pol κ and Rev1 are ...

    Indian Academy of Sciences (India)

    MADU

    Kozmin S G, Pavlov Y I, Kunkel T A and Sage E 2003 Roles of Saccharomyces cerevisiae DNA polymerases Pol η and. Pol ζ in response to simulated sunlight; Nucleic Acids Res. 31. 4541–4552. Lawrence C W 2002 Cellular roles of DNA polymerase ζ and Rev. 1 protein; DNA Repair 1 425–435. Lemontt J F 1971 Mutants ...

  14. Intensive Linkage Mapping in a Wasp (Bracon Hebetor) and a Mosquito (Aedes Aegypti) with Single-Strand Conformation Polymorphism Analysis of Random Amplified Polymorphic DNA Markers

    OpenAIRE

    Antolin, M. F.; Bosio, C. F.; Cotton, J.; Sweeney, W.; Strand, M. R.; Black-IV, W. C.

    1996-01-01

    The use of random amplified polymorphic DNA from the polymerase chain reaction (RAPD-PCR) allows efficient construction of saturated linkage maps. However, when analyzed by agarose gel electrophoresis, most RAPD-PCR markers segregate as dominant alleles, reducing the amount of linkage information obtained. We describe the use of single strand conformation polymorphism (SSCP) analysis of RAPD markers to generate linkage maps in a haplodiploid parasitic wasp Bracon (Habrobracon) hebetor and a d...

  15. A specific subdomain in φ29 DNA polymerase confers both processivity and strand-displacement capacity

    Science.gov (United States)

    Rodríguez, Irene; Lázaro, José M.; Blanco, Luis; Kamtekar, Satwik; Berman, Andrea J.; Wang, Jimin; Steitz, Thomas A.; Salas, Margarita; de Vega, Miguel

    2005-01-01

    Recent crystallographic studies of φ29 DNA polymerase have provided structural insights into its strand displacement and processivity. A specific insertion named terminal protein region 2 (TPR2), present only in protein-primed DNA polymerases, together with the exonuclease, thumb, and palm subdomains, forms two tori capable of interacting with DNA. To analyze the functional role of this insertion, we constructed a φ29 DNA polymerase deletion mutant lacking TPR2 amino acid residues Asp-398 to Glu-420. Biochemical analysis of the mutant DNA polymerase indicates that its DNA-binding capacity is diminished, drastically decreasing its processivity. In addition, removal of the TPR2 insertion abolishes the intrinsic capacity of φ29 DNA polymerase to perform strand displacement coupled to DNA synthesis. Therefore, the biochemical results described here directly demonstrate that TPR2 plays a critical role in strand displacement and processivity. PMID:15845765

  16. Interaction of gold nanoparticles with Pfu DNA polymerase and effect on polymerase chain reaction.

    Science.gov (United States)

    Sun, L-P; Wang, S; Zhang, Z-W; Ma, Y-Y; Lai, Y-Q; Weng, J; Zhang, Q-Q

    2011-03-01

    The interaction of gold nanoparticles with Pfu DNA polymerase has been investigated by a number of biological, optical and electronic spectroscopic techniques. Polymerase chain reaction was performed to show gold nanoparticles' biological effect. Ultraviolet-visible and circular dichroism spectra analysis were applied to character the structure of Pfu DNA polymerase after conjugation with gold nanoparticles. X-ray photoelectron spectroscopy was used to investigate the bond properties of the polymerase-gold nanoparticles complex. The authors demonstrate that gold nanoparticles do not affect the amplification efficiency of polymerase chain reaction using Pfu DNA polymerase, and Pfu DNA polymerase displays no significant changes of the secondary structure upon interaction with gold nanoparticles. The adsorption of Pfu DNA polymerase to gold nanoparticles is mainly through Au-NH(2) bond and electrostatic interaction. These findings may have important implications regarding the safety issue as gold nanoparticles are widely used in biomedical applications.

  17. Phylogenetic analysis and evolutionary origins of DNA polymerase X-family members

    Science.gov (United States)

    Bienstock, Rachelle J.; Beard, William A.; Wilson, Samuel H.

    2014-01-01

    Mammalian DNA polymerase (pol) β is the founding member of a large group of DNA polymerases now termed the X-family. DNA polymerase β has been kinetically, structurally, and biologically well characterized and can serve as a phylogenetic reference. Accordingly, we have performed a phylogenetic analysis to understand the relationship between pol β and other members of the X-family of DNA polymerases. The bacterial X-family DNA polymerases, Saccharomyces cerevisiae pol IV, and four mammalian X-family polymerases appear to be directly related. These enzymes originated from an ancient common ancestor characterized in two Bacillus species. Understanding distinct functions for each of the X-family polymerases, evolving from a common bacterial ancestor is of significant interest in light of the specialized roles of these enzymes in DNA metabolism. PMID:25112931

  18. Genetic relatedness of artichoke (Cynara scolymus L.) hybrids using random amplified polymorphic DNA (RAPD) fingerprinting.

    Science.gov (United States)

    Sharaf-Eldin, M A; Al-Tamimi, A; Alam, P; Elkholy, S F; Jordan, J R

    2015-12-28

    The artichoke (Cynara scolymus L.) is an important food and medicinal crop that is cultivated in Mediterranean countries. Morphological characteristics, such as head shape and diameter, leaf shape, and bract shape, are mainly affected by environmental conditions. A molecular marker approach was used to analyze the degree of polymorphism between artichoke hybrid lines. The degree of genetic difference among three artichoke hybrids was evaluated using random amplified polymorphic DNA-PCR (RAPD-PCR). In this study, the DNA fingerprints of three artichoke lines (A13-010, A11-018, and A12-179) were generated, and a total of 10 decamer primers were applied for RAPD-PCR analyses. Polymorphism  (16.66 to 62.50%) was identified using eight arbitrary decamers and total genomic DNA extracted from the hybrids. Of the 59 loci detected, there were 25 polymorphic and 34 monomorphic loci. Jaccard's similarity index (JSI) ranged between 1.0 and 0.84. Based on the unweighted pair group method with arithmetic mean (UPGMA) similarity matrix and dendrogram, the results indicated that two hybrids (A13-010 and A11-018) were closely related to each other, and the A12-179 line showed more divergence. When identifying correct accessions, consideration of the genetic variation and genetic relationships among the genotypes are required. The RAPD-PCR fingerprinting of artichoke lines clearly showed that it is possible to analyze the RAPD patterns for correlation between genetic means and differences or resemblance between close accessions (A13-010 and A11- 018) at the genomic level.

  19. DNA polymerase ι: The long and the short of it!

    Science.gov (United States)

    Frank, Ekaterina G; McLenigan, Mary P; McDonald, John P; Huston, Donald; Mead, Samantha; Woodgate, Roger

    2017-10-01

    The cDNA encoding human DNA polymerase ι (POLI) was cloned in 1999. At that time, it was believed that the POLI gene encoded a protein of 715 amino acids. Advances in DNA sequencing technologies led to the realization that there is an upstream, in-frame initiation codon that would encode a DNA polymerase ι (polι) protein of 740 amino acids. The extra 25 amino acid region is rich in acidic residues (11/25) and is reasonably conserved in eukaryotes ranging from fish to humans. As a consequence, the curated Reference Sequence (RefSeq) database identified polι as a 740 amino acid protein. However, the existence of the 740 amino acid polι has never been shown experimentally. Using highly specific antibodies to the 25 N-terminal amino acids of polι, we were unable to detect the longer 740 amino acid (ι-long) isoform in western blots. However, trace amounts of the ι-long isoform were detected after enrichment by immunoprecipitation. One might argue that the longer isoform may have a distinct biological function, if it exhibits significant differences in its enzymatic properties from the shorter, well-characterized 715 amino acid polι. We therefore purified and characterized recombinant full-length (740 amino acid) polι-long and compared it to full-length (715 amino acid) polι-short in vitro. The metal ion requirements for optimal catalytic activity differ slightly between ι-long and ι-short, but under optimal conditions, both isoforms exhibit indistinguishable enzymatic properties in vitro. We also report that like ι-short, the ι-long isoform can be monoubiquitinated and polyubiuquitinated in vivo, as well as form damage induced foci in vivo. We conclude that the predominant isoform of DNA polι in human cells is the shorter 715 amino acid protein and that if, or when, expressed, the longer 740 amino acid isoform has identical properties to the considerably more abundant shorter isoform. Published by Elsevier B.V.

  20. ALIS-FLP: Amplified ligation selected fragment-length polymorphism method for microbial genotyping

    DEFF Research Database (Denmark)

    Brillowska-Dabrowska, A.; Wianecka, M.; Dabrowski, Slawomir

    2008-01-01

    A DNA fingerprinting method known as ALIS-FLP (amplified ligation selected fragment-length polymorphism) has been developed for selective and specific amplification of restriction fragments from TspRI restriction endonuclease digested genomic DNA. The method is similar to AFLP, but differs......RI genomic DNA fragment, and a short, degenerated, oligonucleotide covering the remaining TspRI cohesive ends. Other cohesive ends are covered by a short degenerated oligonucleotide lacking the primer site. The ligation mixture is used as a template for amplification using a single primer corresponding...... for differentiation of the organisms without previous knowledge of their DNA sequence. The usefulness of the method is confirmed by genotyping of 70 previously characterized clinical E. coli isolates. The grouping obtained was identical to the results of REA-PFGE. Versatility of the method is highlighted, i.e. its...

  1. Random amplified polymorphic DNA analysis of Anopheles nuneztovari (Diptera: Culicidae from Western and Northeastern Colombia

    Directory of Open Access Journals (Sweden)

    Carmen Elisa Posso

    2003-06-01

    Full Text Available Random amplified polymorphic DNA (RAPD markers were used to analyze 119 DNA samples of three Colombian Anopheles nuneztovari populations to study genetic variation and structure. Genetic diversity, estimated from heterozygosity, averaged 0.34. Genetic flow was greater between the two populations located in Western Colombia (F ST: 0.035; Nm: 6.8 but lower between these two and the northeastern population (F ST: 0.08; Nm: 2.8. According to molecular variance analysis, the genetic distance between populations was significant (phiST 0.1131, P < 0.001. The variation among individuals within populations (phiST 0.8869, P < 0.001was also significant, suggesting a greater degree of population subdivision, not considered in this study. Both the parameters evaluated and the genetic flow suggest that Colombian An. nuneztovari populations are co-specific.

  2. Molecular Characterization of Some Turkish Olive Cultivars Using Random Amplified Polymorphic DNA (RAPD Markers

    Directory of Open Access Journals (Sweden)

    Ergün KAYA

    2015-03-01

    Full Text Available Olive (Olea europea L. is one of the oldest cultivated plants characteristic in the Mediterranean area, where it is the most important oilproducing crop. The cultivated olive (O. europaea L. var. europaea is propagated by cutting or grafting, whereas wild olive (O. europaea L. var. sylvestris is reproduced from seeds. These two olive types are interfertile and have led to a large number of varieties. Morphological descriptions are not entirely reliable, due to numerous synonyms and homonyms in designations, labelling mistakes, the presence of varietal clones, and the uncertain identification methods thus far applied. Molecular markers, as random amplified polymorphic DNA (RAPD markers, are environment-independent and efficient to identify olive varieties and to detect synonymous and homonymous. In this study, fifteen selected RAPD markers are used for determination of relationships among twenty individuals belonging to four important Turkish olive cultivars. Our results showed that RAPD markers can be used to differentiate olive cultivars

  3. Identification and characterization of some aromatic rice mutants using amplified fragment length polymorphism (AFLP) technique

    International Nuclear Information System (INIS)

    Fahmy, E.M.; Sobieh, S. E. S.; Ayaad, M. H.; El-Gohary, A. A.; Rownak, A.

    2012-12-01

    Accurate identifying of the genotypes is considered one of the most important mechanisms used in the recording or the protection of plant varieties. The investigation was conducted at the experimental form belonging to the egyptian Atomic Energy Authority, Inshas. The aim was to evaluate grain quality characteristics and molecular genetic variation using Amplified Fragment Length Polymorphism (AFLP) technique among six rice genotypes, Egyptian Jasmine aromatic rice cultivar and five aromatic rice mutants in (M3 mutagenic generation). Two mutation (Egy22 and Egy24) were selected from irradiated Sakha 102 population with 200 and 400Gy of gamma rays in the M2 generation, respectively, and three mutations ( Egy32, Egy33, and Egy34) were selected from irradiated Sakha 103 population with 200, 300, 400Gy of gamma rays in the M2 generation, respectively. The obtained results showed that the strong aroma was obtained for mutant Egy22 as compared with Egyptian Jasmine rice cultivar (moderate aroma). Seven primer combinations were used through six rice genotypes on the molecular level using AFLP marker. The size of AFLP Fragments Were Ranged from 51- 494bp. The total number of amplified bands was 997 band among them 919 polymorphic bans representing 92.2%. The highest similarity index (89%) was observed between Egyptian Jasmine and Egy32 followed by (82%) observed between Egyptian Jasmine and Egy34. On the other hand, the lowest similarity index was (48%) between Egyptian Jasmine and Egy24. In six rice genotypes, Egy24 produced the highest number of the AFLP makers giving 49 unique markers (23 positive and 26 negative), then Egy22 showed 23 unique markers (27 positive and 6 negative) while Egy33 was characterized by 17 unique markers (12 positive and 5 negative). At last Egyptian Jasmine was discriminated by the lowest number of markets, 10 (6 positive and 4 negative). The study further confirmed that AFLP technique was able to differentiate rice genotypes by a higher number

  4. DNA polymerase III of Escherichia coli is required for UV and ethyl methanesulfonate mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Hagensee, M.E.; Timme, T.L.; Bryan, S.K.; Moses, R.E.

    1987-06-01

    Strains of Escherichia coli possessing the pcbA1 mutation, a functional DNA polymerase I, and a temperature-sensitive mutation in DNA polymerase III can survive at the restrictive temperature (43 degrees C) for DNA polymerase III. The mutation rate of the bacterial genome of such strains after exposure to either UV light or ethyl methanesulfonate was measured by its rifampicin resistance or amino acid requirements. In addition, Weigle mutagenesis of preirradiated lambda phage was also measured. In all cases, no increase in mutagenesis was noted at the restrictive temperature for DNA polymerase III. Introduction of a cloned DNA polymerase III gene returned the mutation rate of the bacterial genome as well as the Weigle mutagenesis to normal at 43 degrees C. Using a recA-lacZ fusion, the SOS response after UV irradiation was measured and found to be normal at the restrictive and permissive temperature for DNA polymerase III, as was induction of lambda prophage. Recombination was also normal at either temperature. Our studies demonstrate that a functional DNA polymerase III is strictly required for mutagenesis at a step other than SOS induction.

  5. Variants of sequence family B Thermococcus kodakaraensis DNA polymerase with increased mismatch extension selectivity.

    Directory of Open Access Journals (Sweden)

    Claudia Huber

    Full Text Available Fidelity and selectivity of DNA polymerases are critical determinants for the biology of life, as well as important tools for biotechnological applications. DNA polymerases catalyze the formation of DNA strands by adding deoxynucleotides to a primer, which is complementarily bound to a template. To ensure the integrity of the genome, DNA polymerases select the correct nucleotide and further extend the nascent DNA strand. Thus, DNA polymerase fidelity is pivotal for ensuring that cells can replicate their genome with minimal error. DNA polymerases are, however, further optimized for more specific biotechnological or diagnostic applications. Here we report on the semi-rational design of mutant libraries derived by saturation mutagenesis at single sites of a 3'-5'-exonuclease deficient variant of Thermococcus kodakaraensis DNA polymerase (KOD pol and the discovery for variants with enhanced mismatch extension selectivity by screening. Sites of potential interest for saturation mutagenesis were selected by their proximity to primer or template strands. The resulting libraries were screened via quantitative real-time PCR. We identified three variants with single amino acid exchanges-R501C, R606Q, and R606W-which exhibited increased mismatch extension selectivity. These variants were further characterized towards their potential in mismatch discrimination. Additionally, the identified enzymes were also able to differentiate between cytosine and 5-methylcytosine. Our results demonstrate the potential in characterizing and developing DNA polymerases for specific PCR based applications in DNA biotechnology and diagnostics.

  6. Genetic variability in yam cultivars from Guinea-Sudan of Benin assessed by random amplified polymorphic DNA

    NARCIS (Netherlands)

    Zannou, A.; Agbicodo, E.; Zoundjihékpon, J.; Struik, P.C.; Ahanchédé, A.; Kossou, D.K.; Sanni, A.

    2009-01-01

    Yam (Dioscorea spp.) is an important food and cash crop in the Guinea-Sudan zone of Benin. The genetic diversity of about 70 cultivars of Dioscorea cayenensis/Dioscorea rotundata (Guinea yam) and about 20 cultivars of Dioscorea alata (water yam) was analysed using random amplified polymorphic DNA

  7. Genetic diversity and relationship of chicory (Cichorium intybus L.) using sequence-related amplified polymorphism markers.

    Science.gov (United States)

    Liang, X Y; Zhang, X Q; Bai, S Q; Huang, L K; Luo, X M; Ji, Y; Jiang, L F

    2014-09-26

    Chicory is a crop with economically important roles and is cultivated worldwide. The genetic diversity and relationship of 80 accessions of chicories and endives were evaluated by sequence-related amplified polymorphism (SRAP) markers to provide a theoretical basis for future breeding programs in China. The polymorphic rate was 96.83%, and the average polymorphic information content was 0.323, suggesting the rich genetic diversity of chicory. The genetic diversity degree of chicory was higher (GS = 0.677) than that of endive (GS = 0.701). The accessions with the highest genetic diversity (effective number of alleles, NE = 1.609; Nei's genetic diversity, H = 0.372; Shannon information index, I = 0.556) were from Italy. The richest genetic diversity was revealed in a chicory line (NE = 1.478, H = 0.289, I = 0.443) among the 3 types (line, wild, and cultivar). The chicory genetic structure of 8 geographical groups showed that the genetic differentiation coefficient (GST) was 14.20% and the number of immigrants per generation (Nm) was 3.020. A GST of 6.80% and an Nm of 6.853 were obtained from different types. This observation suggests that these chicory lines, especially those from the Mediterranean region, have potential for providing rich genetic resources for further breeding programs, that the chicory genetic structure among different countries obviously differs with a certain amount of gene flow, and that SRAP markers could be applied to analyze genetic relationships and classifications of Cichorium intybus and C. endivia.

  8. The vaccinia virus DNA polymerase and its processivity factor.

    Science.gov (United States)

    Czarnecki, Maciej W; Traktman, Paula

    2017-04-15

    Vaccinia virus is the prototypic poxvirus. The 192 kilobase double-stranded DNA viral genome encodes most if not all of the viral replication machinery. The vaccinia virus DNA polymerase is encoded by the E9L gene. Sequence analysis indicates that E9 is a member of the B family of replicative polymerases. The enzyme has both polymerase and 3'-5' exonuclease activities, both of which are essential to support viral replication. Genetic analysis of E9 has identified residues and motifs whose alteration can confer temperature-sensitivity, drug resistance (phosphonoacetic acid, aphidicolin, cytosine arabinsode, cidofovir) or altered fidelity. The polymerase is involved both in DNA replication and in recombination. Although inherently distributive, E9 gains processivity by interacting in a 1:1 stoichiometry with a heterodimer of the A20 and D4 proteins. A20 binds to both E9 and D4 and serves as a bridge within the holoenzyme. The A20/D4 heterodimer has been purified and can confer processivity on purified E9. The interaction of A20 with D4 is mediated by the N'-terminus of A20. The D4 protein is an enzymatically active uracil DNA glycosylase. The DNA-scanning activity of D4 is proposed to keep the holoenzyme tethered to the DNA template but allow polymerase translocation. The crystal structure of D4, alone and in complex with A20 1-50 and/or DNA has been solved. Screens for low molecular weight compounds that interrupt the A20 1-50 /D4 interface have yielded hits that disrupt processive DNA synthesis in vitro and/or inhibit plaque formation. The observation that an active DNA repair enzyme is an integral part of the holoenzyme suggests that DNA replication and repair may be coupled. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Interaction between DNA Polymerase β and BRCA1.

    Directory of Open Access Journals (Sweden)

    Aya Masaoka

    Full Text Available The breast cancer 1 (BRCA1 protein is a tumor suppressor playing roles in DNA repair and cell cycle regulation. Studies of DNA repair functions of BRCA1 have focused on double-strand break (DSB repair pathways and have recently included base excision repair (BER. However, the function of BRCA1 in BER is not well defined. Here, we examined a BRCA1 role in BER, first in relation to alkylating agent (MMS treatment of cells and the BER enzyme DNA polymerase β (pol β. MMS treatment of BRCA1 negative human ovarian and chicken DT40 cells revealed hypersensitivity, and the combined gene deletion of BRCA1 and pol β in DT40 cells was consistent with these factors acting in the same repair pathway, possibly BER. Using cell extracts and purified proteins, BRCA1 and pol β were found to interact in immunoprecipitation assays, yet in vivo and in vitro assays for a BER role of BRCA1 were negative. An alternate approach with the human cells of immunofluorescence imaging and laser-induced DNA damage revealed negligible BRCA1 recruitment during the first 60 s after irradiation, the period typical of recruitment of pol β and other BER factors. Instead, 15 min after irradiation, BRCA1 recruitment was strong and there was γ-H2AX co-localization, consistent with DSBs and repair. The rapid recruitment of pol β was similar in BRCA1 positive and negative cells. However, a fraction of pol β initially recruited remained associated with damage sites much longer in BRCA1 positive than negative cells. Interestingly, pol β expression was required for BRCA1 recruitment, suggesting a partnership between these repair factors in DSB repair.

  10. Structures of DNA Polymerases caught processing size-augmented nucleotide probes

    OpenAIRE

    Betz, Karin; Streckenbach, Frank; Schnur, Andreas; Exner, Thomas E.; Welte, Wolfram; Diederichs, Kay; Marx, Andreas

    2010-01-01

    The integrity of the genome relies primarily on the ability of DNA polymerases to efficiently catalyze selective DNA synthesis according to the Watson Crick rule in a templatedirected manner during DNA replication, repair, and recombination. Remarkably, some DNA polymerases achieve selective information transfer to the offspring in line with the Watson Crick rule with intrinsic error rates as low as one mistake per one million synthesized nucleotides.[1] This is far below the value that would...

  11. In vitro expansion of mammalian telomere repeats by DNA polymerase α-primase

    Science.gov (United States)

    Nozawa, Katsura; Suzuki, Motoshi; Takemura, Masaharu; Yoshida, Shonen

    2000-01-01

    Among the polymerases, DNA polymerase α-primase is involved in lagging strand DNA synthesis. A previous report indicated that DNA polymerase α-primase initiates primer RNA synthesis with purine bases on a single-stranded G-rich telomere repeat. In this study, we found that DNA polymerase α-primase precisely initiated with adenosine opposite the 3′-side thymidine in the G-rich telomere repeat 5′-(TTAGGG)n-3′ under rATP-rich conditions. Then, DNA polymerase α-primase synthesized the nascent DNA fragments by extending the primer. It was remarkable that DNA polymerase α-primase further expanded the product DNA far beyond the length of the template DNA, as ladders of multiple hexanucleotides on polyacrylamide gel electrophoresis. Using an oligomer duplex 5′-A(GGGTTA)5-3′/5′-(TAACCC)5T-3′ as a template–primer, we show that both the Klenow fragment of Escherichia coli DNA polymerase I and HIV reverse transcriptase could expand telomere DNA sequences as well, giving products greater than the size of the template DNA. The maximum product lengths with these polymerases were ∼40–90 nt longer than the template length. Our data imply that DNA polymerases have an intrinsic activity to expand the hexanucleotide repeats of the telomere sequence by a slippage mechanism and that DNA polymerase α uses both the repeat DNA primers and the de novo RNA primers for expansion. On the other hand, a plasmid harboring a eukaryotic telomere repeat showed remarkable genetic instability in E.coli. The telomere repeats exhibited either expansions or deletions by multiple hexanucleotide repeats during culture for a number of generations, suggesting involvement of the slippage mechanism in the instability of telomeric DNA in vivo. PMID:10931927

  12. DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present

    Science.gov (United States)

    Chen, Cheng-Yao

    2014-01-01

    Next-generation sequencing (NGS) technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. Escherichia coli DNA polymerase I proteolytic (Klenow) fragment was originally utilized in Sanger’s dideoxy chain-terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today’s standard capillary electrophoresis (CE) and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ϕ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ϕ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies. PMID:25009536

  13. A euryarchaeal histone modulates strand displacement synthesis by replicative DNA polymerases.

    Science.gov (United States)

    Sun, Fei; Huang, Li

    2016-07-01

    Euryarchaeota and Crenarchaeota, the two main lineages of the domain Archaea, encode different chromatin proteins and differ in the use of replicative DNA polymerases. Crenarchaea possess a single family B DNA polymerase (PolB), which is capable of strand displacement modulated by the chromatin proteins Cren7 and Sul7d. Euryarchaea have two distinct replicative DNA polymerases, PolB and PolD, a family D DNA polymerase. Here we characterized the strand displacement activities of PolB and PolD from the hyperthermophilic euryarchaeon Pyrococcus furiosus and investigated the influence of HPfA1, a homolog of eukaryotic histones from P. furiosus, on these activities. We showed that both PolB and PolD were efficient in strand displacement. HPfA1 inhibited DNA strand displacement by both DNA polymerases but exhibited little effect on the displacement of a RNA strand annealed to single-stranded template DNA. This is consistent with the finding that HPfA1 bound more tightly to double-stranded DNA than to a RNA:DNA hybrid. Our results suggest that, although crenarchaea and euryarchaea differ in chromosomal packaging, they share similar mechanisms in modulating strand displacement by DNA polymerases during lagging strand DNA synthesis.

  14. DNA Polymerases Drive DNA Sequencing-by-Synthesis Technologies: Both Past and Present

    Directory of Open Access Journals (Sweden)

    Cheng-Yao eChen

    2014-06-01

    Full Text Available Next-generation sequencing (NGS technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. E. coli DNA polymerase I proteolytic (Klenow fragment was originally utilized in Sanger's dideoxy chain terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today's standard capillary electrophoresis (CE and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ⱷ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ⱷ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies.

  15. A simple random amplified polymorphic DNA genotyping method for field isolates of Dermatophilus congolensis.

    Science.gov (United States)

    Larrasa, J; Garcia, A; Ambrose, N C; Alonso, J M; Parra, A; de Mendoza, M Hermoso; Salazar, J; Rey, J; de Mendoza, J Hermoso

    2002-04-01

    Dermatophilus congolensis is the pathogenic actinomycete that causes dermatophilosis in cattle, lumpy wool in sheep and rain scald in horses. Phenotypic variation between isolates has previously been described, but its genetic basis, extent and importance have not been investigated. Standard DNA extraction methods are not always successful for D. congolensis due to its complex life cycle, one stage of which is encapsulated. Here we describe the development of rapid and reliable DNA extraction and random amplified polymorphic DNA (RAPD) methods that can be used for genotyping D. congolensis field isolates. Our results suggest that genotypic variation between isolates correlates with host species. Several DNA extraction methods and RAPD protocols were compared. An extraction method based on incubation of the bacterium in lysozyme, sodium dodecyl sulphate (SDS) and proteinase K treatments and phenolic extraction yielded high-quality DNA, which was used to optimize RAPD-polymerase chain reaction (PCR) protocols for two random primers. An alternative rapid, non-phenolic extraction method based on proteinase K treatment and thermal shock was selected for routine RAPD typing of isolates. DNA extracted from reference strains from cattle, sheep and horse using either method gave reproducible banding patterns with different DNA batches and different thermal cyclers. The rapid DNA extraction method and RAPD-PCR were applied to 38 D. congolensis field isolates. The band patterns of the field and type isolates correlated with host species but not with geographical location.

  16. Using randomly amplified polymorphic DNA for evaluating genetic relationships among papaya cultivars.

    Science.gov (United States)

    Stiles, J I; Lemme, C; Sondur, S; Morshidi, M B; Manshardt, R

    1993-02-01

    We have applied the recently developed technique of random amplification of polymorphic DNA (RAPD) to the analysis of the relationships among ten cultivars of papaya (Carica papaya L.). Eleven ten-base synthetic oligonucleotides were chosen that gave multiple PCR amplification products using papaya DNA as template. These 11 primers amplified a total of 102 distinct fragments. Cultivars were scored for presence or absence of RAPD fragments and grouped by cluster analysis using simple matching coefficients of similarity. A dendrogram of the ten cultivars was constructed. Of the ten cultivars seven were of the Hawaiian type, and all of these grouped to one branch of the tree. Divisions within the Hawaiian, branch were mostly consistent with the known genetic background of these cultivars. Three non-Hawaiian, cultivars were also analyzed. The minimum similarity detected was 0.7 suggesting that the domesticated papaya germ plasm is quite narrow. Our results show that RAPD technology is a rapid, precise and sensitive technique for genomic analysis.

  17. RAGE and arthritis: the G82S polymorphism amplifies the inflammatory response.

    Science.gov (United States)

    Hofmann, M A; Drury, S; Hudson, B I; Gleason, M R; Qu, W; Lu, Y; Lalla, E; Chitnis, S; Monteiro, J; Stickland, M H; Bucciarelli, L G; Moser, B; Moxley, G; Itescu, S; Grant, P J; Gregersen, P K; Stern, D M; Schmidt, A M

    2002-05-01

    The receptor for advanced glycation end products (RAGE) and its proinflammatory S100/calgranulin ligands are enriched in joints of subjects with rheumatoid arthritis (RA) and amplify the immune/inflammatory response. In a model of inflammatory arthritis, blockade of RAGE in mice immunized and challenged with bovine type II collagen suppressed clinical and histologic evidence of arthritis, in parallel with diminished levels of TNF-alpha, IL-6, and matrix metalloproteinases (MMP) 3, 9 and 13 in affected tissues. Allelic variation within key domains of RAGE may influence these proinflammatory mechanisms, thereby predisposing individuals to heightened inflammatory responses. A polymorphism of the RAGE gene within the ligand-binding domain of the receptor has been identified, consisting of a glycine to serine change at position 82. Cells bearing the RAGE 82S allele displayed enhanced binding and cytokine/MMP generation following ligation by a prototypic S100/calgranulin compared with cells expressing the RAGE 82G allele. In human subjects, a case-control study demonstrated an increased prevalence of the 82S allele in patients with RA compared with control subjects. These data suggest that RAGE 82S upregulates the inflammatory response upon engagement of S100/calgranulins, and, thereby, may contribute to enhanced proinflammatory mechanisms in immune/inflammatory diseases.

  18. Using amplified fragment length polymorphism analysis to differentiate isolates of Pasteurella multocida serotype 1

    Science.gov (United States)

    Blehert, D.S.; Jefferson, K.L.; Heisey, D.M.; Samuel, M.D.; Berlowski, B.M.; Shadduck, D.J.

    2008-01-01

    Avian cholera, an infectious disease caused by the bacterium Pasteurella multocida, kills thousands of North American wild waterfowl annually. Pasteurella multocida serotype 1 isolates cultured during a laboratory challenge study of Mallards (Anas platyrhynchos) and collected from wild birds and environmental samples during avian cholera outbreaks were characterized using amplified fragment length polymorphism (AFLP) analysis, a whole-genome DNA fingerprinting technique. Comparison of the AFLP profiles of 53 isolates from the laboratory challenge demonstrated that P. multocida underwent genetic changes during a 3-mo period. Analysis of 120 P. multocida serotype 1 isolates collected from wild birds and environmental samples revealed that isolates were distinguishable from one another based on regional and temporal genetic characteristics. Thus, AFLP analysis had the ability to distinguish P. multocida isolates of the same serotype by detecting spatiotemporal genetic changes and provides a tool to advance the study of avian cholera epidemiology. Further application of AFLP technology to the examination of wild bird avian cholera outbreaks may facilitate more effective management of this disease by providing the potential to investigate correlations between virulence and P. multocida genotypes, to identify affiliations between bird species and bacterial genotypes, and to elucidate the role of specific bird species in disease transmission. ?? Wildlife Disease Association 2008.

  19. Genetic variability of the stable fly assessed on a global scale using amplified fragment length polymorphism.

    Science.gov (United States)

    Kneeland, Kathleen M; Skoda, Steven R; Foster, John E

    2016-10-01

    The stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), is a blood-feeding, economically important pest of animals and humans worldwide. Improved management strategies are essential and their development would benefit from studies on genetic diversity of stable flies. Especially if done on a global scale, such research could generate information necessary for the development and application of more efficient control methods. Herein we report on a genetic study of stable flies using amplified fragment length polymorphism, with samples of 10-40 individuals acquired from a total of 25 locations in the Nearctic, Neotropic, Palearctic, Afrotropic and Australasian biogeographical regions. We hypothesized that genetic differentiation would exist across geographical barriers. Although FST (0.33) was moderately high, the GST (0.05; representing genetic diversity between individuals) was very low; Nm values (representing gene flow) were high (9.36). The mismatch distribution and tests of neutrality suggested population expansion, with no genetic differentiation between locations. The analysis of molecular variance (AMOVA) results showed the majority of genetic diversity was within groups. The mantel test showed no correlation between geographic and genetic distance; this strongly supports the AMOVA results. These results suggest that stable flies did not show genetic differentiation but are panmictic, with no evidence of isolation by distance or across geographical barriers. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  20. Molecular characterization of Pasteurella multocida isolates from swine lungs by Randomly Amplified Polymorphic DNA

    Directory of Open Access Journals (Sweden)

    Cristiane Silva Chitarra

    2016-01-01

    Full Text Available ABSTRACT: Swine respiratory diseases such as atrophic rhinitis and bronchopneumonia caused by Pasteurella (P. multocida cause important economic losses to the modern swine industry. The purpose of this study was to characterize P. multocida strains isolated from swine lungs by RAPD (Randomly Amplified Polymorphic DNA to demonstrate their genetic diversity. Ninety-four samples of fragments from lungs with pneumonia and sixty one samples without pneumonia were collected in slaughterhouses in Mato Grosso during the period from December 2009 to March 2010. Clinical cases in 2012 and 2013 were also included in this study. Among the lung fragments with macroscopic lesions, without macroscopic lesions and clinical samples, 40.42%, 4.49% and 100% were positive for P. multocida, respectively. Bacterial identification culturing was confirmed by PCR (polymerase chain reaction by means of the amplification of the gene kmt1. RAPD technique was performed for 46 isolates, and in every isolate, a total of 7 to 11 amplification bands were detected, composed of 8 clusters based on genetic similarity. Thus, treatment, control and preventive measures should consider the genetic diversity of P. multocida populations in swine herds in order to improve the development of new protocols to produce antimicrobials and vaccines.

  1. New insights into the QuikChange™ process guide the use of Phusion DNA polymerase for site-directed mutagenesis.

    Science.gov (United States)

    Xia, Yongzhen; Chu, Wenqiao; Qi, Qingsheng; Xun, Luying

    2015-01-01

    The QuikChange™ site-directed mutagenesis method is popular but imperfect. An improvement by using partially overlapping primers has been reported several times; however, it is incompatible with the proposed mechanism. The QuikChange™ method using complementary primers is proposed to linearly amplify a target plasmid with the products annealing to produce double-stranded DNA molecules with 5'-overhangs. The overhang annealing is supposed to form circular plasmids with staggered breaks, which can be repaired in Escherichia coli after transformation. Here, we demonstrated that the PCR enzyme fills the 5'-overhangs in the early cycles, and the product is then used as the template for exponential amplification. The linear DNA molecules with homologous ends are joined to generate the plasmid with the desired mutations through homologous recombination in E. coli. The correct understanding is important to method improvements, guiding us to use partially overlapping primers and Phusion DNA polymerase for site-directed mutagenesis. Phusion did not amplify a plasmid with complementary primers but used partially overlapping primers to amplify the plasmid, producing linear DNA molecules with homologous ends for site-directed mutagenesis. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Molecular Typing of Borrelia burgdorferi Sensu Lato by Randomly Amplified Polymorphic DNA Fingerprinting Analysis

    Science.gov (United States)

    Wang, Guiqing; van Dam, Alje P.; Spanjaard, Lodewijk; Dankert, Jacob

    1998-01-01

    To study whether pathogenic clusters of Borrelia burgdorferi sensu lato strains occur, we typed 136 isolates, cultured from specimens from patients (n = 49) with various clinical entities and from ticks (n = 83) or dogs (n = 4) from different geographic regions, by randomly amplified polymorphic DNA (RAPD) fingerprinting with four arbitrary primers. The RAPD patterns were reproducible up to the 95% similarity level as shown in duplicate experiments. In these experiments the purified DNAs prepared on different days, from different colonies, and after various passages were used as templates. With an intergroup difference of 55%, the 136 strains could be divided into seven genetic clusters. Six clusters comprised and corresponded to the established species B. burgdorferi sensu stricto (n = 23), Borrelia garinii (n = 39), Borrelia afzelii (n = 59), Borrelia japonica (n = 1), Borrelia valaisiana (n = 12), and genomic group DN127 (n = 1). One strain from a patient with erythema migrans (EM) did not belong to any of the species or genomic groups known up to now. The RAPD types of B. burgdorferi sensu stricto, B. garinii, and B. afzelii isolates, which may give rise to human Lyme borreliosis (LB), were associated with their geographic origins. A high degree of genetic diversity was observed among the 39 B. garinii strains, and six subgroups could be recognized. One of these comprised eight isolates from patients with disseminated LB only and no tick isolates. B. afzelii strains from patients with EM or acrodermatitis chronica atrophicans were not clustered in particular branches. Our study showed that RAPD analysis is a powerful tool for discriminating different Borrelia species as well as Borrelia isolates within species. PMID:9508310

  3. Reproductive Fitness and Random Amplified Polymorphic DNA Variation among Isolates of Pratylenchus vulnus.

    Science.gov (United States)

    Pinochet, P; Cenis, J L; Fernández, C; Doucet, M; Maruli, J

    1994-09-01

    The reproductive fitness of seven isolates of Pratylenchus vulnus from different geographical areas and hosts was assessed in monoxenic cultures (carrot), and greenhouse cultures (plum, sour orange, and quince). The genetic makeup of the different isolates was compared by Random Amplified Polymorphic DNA (RAPD-PCR). The apple (PvAP-S) and apricot (PvAT-F) isolates reproduced less in monoxenic cultures than the rose (PvRO-S) and walnut (PvWA-A and PvWA-U) isolates. On plum, the rose isolate (PvRO-S) reproduced better than the apple (PvAP-S) and walnut isolate from the United States (PvWA-U). On sour orange, the apple (PvAP-S), unknown origin (PvU-UK), and walnut isolate from Argentina (PvWA-A) multiplied well, whereas the walnut isolate from the United States (PvWA-U), apricot (PvAT-F), and rose (PvRO-S) did not. On quince, the apple (PvAP-S) and walnut (PvWA-U) isolates showed a higher reproduction than the one from unknown origin (PvU-UK). RAPD-PCR patterns among the seven P. vulnus isolates were similar, although high intraspecific varibility was detected. Very few bands of P. neglectus were shared by any population of P. vulnus. A high degree of similarity was found among the patterns corresponding to the rose (PvRO-S), apple (PvAP-S), walnut from the United States (PvWA-U), and unknown origin (PvUK-U) isolates. The apricot isolate (PvAT-F) was the most dissimilar among the seven isolates. No correlation could be established between the genetic variation of P. vulnus detected by RAPD-PCR and reproductive fitness. Results demonstrate high genetic varibility between geographically separated populations of P. vulnus.

  4. Unexpected role for Helicobacter pylori DNA polymerase I as a source of genetic variability.

    Directory of Open Access Journals (Sweden)

    María-Victoria García-Ortíz

    2011-06-01

    Full Text Available Helicobacter pylori, a human pathogen infecting about half of the world population, is characterised by its large intraspecies variability. Its genome plasticity has been invoked as the basis for its high adaptation capacity. Consistent with its small genome, H. pylori possesses only two bona fide DNA polymerases, Pol I and the replicative Pol III, lacking homologues of translesion synthesis DNA polymerases. Bacterial DNA polymerases I are implicated both in normal DNA replication and in DNA repair. We report that H. pylori DNA Pol I 5'- 3' exonuclease domain is essential for viability, probably through its involvement in DNA replication. We show here that, despite the fact that it also plays crucial roles in DNA repair, Pol I contributes to genomic instability. Indeed, strains defective in the DNA polymerase activity of the protein, although sensitive to genotoxic agents, display reduced mutation frequencies. Conversely, overexpression of Pol I leads to a hypermutator phenotype. Although the purified protein displays an intrinsic fidelity during replication of undamaged DNA, it lacks a proofreading activity, allowing it to efficiently elongate mismatched primers and perform mutagenic translesion synthesis. In agreement with this finding, we show that the spontaneous mutator phenotype of a strain deficient in the removal of oxidised pyrimidines from the genome is in part dependent on the presence of an active DNA Pol I. This study provides evidence for an unexpected role of DNA polymerase I in generating genomic plasticity.

  5. Effect of γ-irradiated DNA on the activity of DNA polymerase

    International Nuclear Information System (INIS)

    Leadon, S.A.; Ward, J.F.

    1981-01-01

    A cell-free assay was developed to measure the effect of γ-irradiated DNA template on the ability of DNA polymerase to copy unirradiated template. Doses as low as 1 krad were able to decrease (approx. 15%) the activity of both bacterial and mammalian DNA polymerases in the assay. The percentage of polymerase activity decreased as the dose received by the template increased. The reduction in DNA polymerase activity was shown to be due to an inhibition of the enzyme by the irradiated DNA. Irradiated poly(dA-dT) was more effective in reducing polymerase activity than calf thymus DNA. Thus the polymerase-inhibition site(s) appears to be associated with base damage, specifically adenine or thymine. Using a free-radical scavenger, OH radicals were found to be involved in producing the damage sites. The interaction between irradiated DNA and DNA polymerase was found to be specific for the enzyme and not for other proteins present in the assay. The inhibition of DNA polymerase occurred prior to or during the initiation of DNA synthesis rather than after initiation of synthesis, i.e., during elongation

  6. Expression and Characterization of the RKOD DNA Polymerase in Pichia pastoris.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available The present study assessed high-level expression of the KOD DNA polymerase in Pichia pastoris. Thermococcus kodakaraensis KOD1 is a DNA polymerase that is widely used in PCR. The DNA coding sequence of KOD was optimized based on the codon usage bias of P. pastoris and synthesized by overlapping PCR, and the nonspecific DNA-binding protein Sso7d from the crenarchaeon Sulfolobus solfataricus was fused to the C-terminus of KOD. The resulting novel gene was cloned into a pHBM905A vector and introduced into P. pastoris GS115 for secretory expression. The yield of the target protein reached approximately 250 mg/l after a 6-d induction with 1% (v/v methanol in shake flasks. This yield is much higher than those of other DNA polymerases expressed heterologously in Escherichia coli. The recombinant enzyme was purified, and its enzymatic features were studied. Its specific activity was 19,384 U/mg. The recombinant KOD expressed in P. pastoris exhibited excellent thermostability, extension rate and fidelity. Thus, this report provides a simple, efficient and economic approach to realize the production of a high-performance thermostable DNA polymerase on a large scale. This is the first report of the expression in yeast of a DNA polymerase for use in PCR.

  7. Characterization of family D DNA polymerase from Thermococcus sp. 9°N.

    Science.gov (United States)

    Greenough, Lucia; Menin, Julie F; Desai, Nirav S; Kelman, Zvi; Gardner, Andrew F

    2014-07-01

    Accurate DNA replication is essential for maintenance of every genome. All archaeal genomes except Crenarchaea, encode for a member of Family B (polB) and Family D (polD) DNA polymerases. Gene deletion studies in Thermococcus kodakaraensis and Methanococcus maripaludis show that polD is the only essential DNA polymerase in these organisms. Thus, polD may be the primary replicative DNA polymerase for both leading and lagging strand synthesis. To understand this unique archaeal enzyme, we report the biochemical characterization of a heterodimeric polD from Thermococcus. PolD contains both DNA polymerase and proofreading 3'-5' exonuclease activities to ensure efficient and accurate genome duplication. The polD incorporation fidelity was determined for the first time. Despite containing 3'-5' exonuclease proofreading activity, polD has a relatively high error rate (95 × 10(-5)) compared to polB (19 × 10(-5)) and at least 10-fold higher than the polB DNA polymerases from yeast (polε and polδ) or Escherichia coli DNA polIII holoenzyme. The implications of polD fidelity and biochemical properties in leading and lagging strand synthesis are discussed.

  8. RNA Primer Extension Hinders DNA Synthesis byEscherichia coliMutagenic DNA Polymerase IV.

    Science.gov (United States)

    Tashjian, Tommy F; Lin, Ida; Belt, Verena; Cafarelli, Tiziana M; Godoy, Veronica G

    2017-01-01

    In Escherichia coli the highly conserved DNA damage regulated dinB gene encodes DNA Polymerase IV (DinB), an error prone specialized DNA polymerase with a central role in stress-induced mutagenesis. Since DinB is the DNA polymerase with the highest intracellular concentrations upon induction of the SOS response, further regulation must exist to maintain genomic stability. Remarkably, we find that DinB DNA synthesis is inherently poor when using an RNA primer compared to a DNA primer, while high fidelity DNA polymerases are known to have no primer preference. Moreover, we show that the poor DNA synthesis from an RNA primer is conserved in DNA polymerase Kappa, the human DinB homolog. The activity of DinB is modulated by interactions with several other proteins, one of which is the equally evolutionarily conserved recombinase RecA. This interaction is known to positively affect DinB's fidelity on damaged templates. We find that upon interaction with RecA, DinB shows a significant reduction in DNA synthesis when using an RNA primer. Furthermore, with DinB or DinB:RecA a robust pause, sequence and lesion independent, occurs only when RNA is used as a primer. The robust pause is likely to result in abortive DNA synthesis when RNA is the primer. These data suggest a novel mechanism to prevent DinB synthesis when it is not needed despite its high concentrations, thus protecting genome stability.

  9. RNA Primer Extension Hinders DNA Synthesis by Escherichia coli Mutagenic DNA Polymerase IV

    Science.gov (United States)

    Tashjian, Tommy F.; Lin, Ida; Belt, Verena; Cafarelli, Tiziana M.; Godoy, Veronica G.

    2017-01-01

    In Escherichia coli the highly conserved DNA damage regulated dinB gene encodes DNA Polymerase IV (DinB), an error prone specialized DNA polymerase with a central role in stress-induced mutagenesis. Since DinB is the DNA polymerase with the highest intracellular concentrations upon induction of the SOS response, further regulation must exist to maintain genomic stability. Remarkably, we find that DinB DNA synthesis is inherently poor when using an RNA primer compared to a DNA primer, while high fidelity DNA polymerases are known to have no primer preference. Moreover, we show that the poor DNA synthesis from an RNA primer is conserved in DNA polymerase Kappa, the human DinB homolog. The activity of DinB is modulated by interactions with several other proteins, one of which is the equally evolutionarily conserved recombinase RecA. This interaction is known to positively affect DinB’s fidelity on damaged templates. We find that upon interaction with RecA, DinB shows a significant reduction in DNA synthesis when using an RNA primer. Furthermore, with DinB or DinB:RecA a robust pause, sequence and lesion independent, occurs only when RNA is used as a primer. The robust pause is likely to result in abortive DNA synthesis when RNA is the primer. These data suggest a novel mechanism to prevent DinB synthesis when it is not needed despite its high concentrations, thus protecting genome stability. PMID:28298904

  10. Mitochondrial DNA polymerase from embryos of Drosophila melanogaster: purification, subunit structure, and partial characterization

    International Nuclear Information System (INIS)

    Wernette, C.M.; Kaguni, L.S.

    1986-01-01

    The mitochondrial DNA polymerase has been purified to near-homogeneity from early embryos of Drosophila melanogaster. Sodium dodecyl sulfate gel electrophoresis of the highly purified enzyme reveals two polypeptides with molecular masses of 125,000 and 35,000 daltons, in a ratio of 1:1. The enzyme has a sedimentation coefficient of 7.6 S and a stokes radius of 51 A. Taken together, the data suggest that the D. melanogaster DNA polymerase γ is a heterodimer. DNA polymerase activity gel analysis has allowed the assignment of the DNA polymerization function to the large subunit. The DNA polymerase exhibits a remarkable ability to utilize efficiently a variety of template-primers including gapped DNA, poly(rA).oligo(dT) and singly primed phiX174 DNA. Both the crude and the highly purified enzymes are stimulated by KCl, and inhibited by dideoxythymidine triphosphate and by N-ethylmaleimide. Thus, the catalytic properties of the near-homogeneous Drosophila enzyme are consistent with those of DNA polymerase γ as partially purified from several vertebrates

  11. [The chromatographic properties of the DNA-dependent DNA polymerases from Acholeplasma laidlawii PG-8].

    Science.gov (United States)

    Bezuglyĭ, S V; Skripal', I G; Babichev, V V

    1992-01-01

    The DNA-dependent DNA-polymerase (DNA polymerase I which is not sorbed on the column with DEAE-cellulose, and DNA-polymerase II, which is absorbed by this column and is eluted from it by 0.3 M of NaCl), have been isolated from Acholeplasma laidlawii PG-8. DNA-polymerase I in homogeneous state was obtained as a result of the stepwise treatment by heparin-sepharose (elution at 0.35 M of NaCl) and poly-U-sepharose (elution at 0.3 M of NaCl). It was presented on the electrophoregram by one polypeptide with molecular weight of 72 kDalton. The second form of DNA polymerase was also obtained in homogeneous state as a result of sequential treatment on heparin-sepharose (elution at 0.3 M of NaCl) and on poly-A-sepharose (elution at 0.25 M of NaCl): the protein which had manifested polymerase activity was a polypeptide with molecular weight of 45 kDalton.

  12. Kinetic analysis of reverse transcriptase activity of bacterial family A DNA polymerases.

    Science.gov (United States)

    Yasukawa, Kiyoshi; Konishi, Atsushi; Shinomura, Mayu; Nagaoka, Eriko; Fujiwara, Shinsuke

    2012-10-26

    Some bacterial thermostable, wild-type or genetically engineered family A DNA polymerases have reverse transcriptase activity. However, difference in reverse transcriptase activities of family A DNA polymerases and retroviral reverse transcriptases (RTs) is unclear. In this study, comparative kinetic analysis was performed for the reverse transcriptase activities of the wild-type enzyme of family A DNA polymerase (M1pol(WT)) from Thermus thermophilus M1 and the variant enzyme of family A DNA polymerase (K4pol(L329A)), in which the mutation of Leu329→Ala is undertaken, from Thermotoga petrophila K4. In the incorporation of dTTP into poly(rA)-p(dT)(45), the reaction rates of K4pol(L329A) and M1pol(WT) exhibited a saturated profile of the Michaelis-Menten kinetics for dTTP concentrations but a substrate inhibition profile for poly(rA)-p(dT)(45) concentrations. In contrast, the reaction rates of Moloney murine leukemia virus (MMLV) RT exhibited saturated profiles for both dTTP and poly(rA)-p(dT)(45) concentrations. This suggests that high concentrations of DNA-primed RNA template decrease the efficiency of cDNA synthesis with bacterial family A DNA polymerases. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Sequence and transcription analysis of the human cytomegalovirus DNA polymerase gene

    International Nuclear Information System (INIS)

    Kouzarides, T.; Bankier, A.T.; Satchwell, S.C.; Weston, K.; Tomlinson, P.; Barrell, B.G.

    1987-01-01

    DNA sequence analysis has revealed that the gene coding for the human cytomegalovirus (HCMV) DNA polymerase is present within the long unique region of the virus genome. Identification is based on extensive amino acid homology between the predicted HCMV open reading frame HFLF2 and the DNA polymerase of herpes simplex virus type 1. The authors present here a 5280 base-pair DNA sequence containing the HCMV pol gene, along with the analysis of transcripts encoded within this region. Since HCMV pol also shows homology to the predicted Epstein-Barr virus pol, they were able to analyze the extent of homology between the DNA polymerases of three distantly related herpes viruses, HCMV, Epstein-Barr virus, and herpes simplex virus. The comparison shows that these DNA polymerases exhibit considerable amino acid homology and highlights a number of highly conserved regions; two such regions show homology to sequences within the adenovirus type 2 DNA polymerase. The HCMV pol gene is flanked by open reading frames with homology to those of other herpes viruses; upstream, there is a reading frame homologous to the glycoprotein B gene of herpes simplex virus type I and Epstein-Barr virus, and downstream there is a reading frame homologous to BFLF2 of Epstein-Barr virus

  14. A conservative isoleucine to leucine mutation causes major rearrangements and cold sensitivity in KlenTaq1 DNA polymerase.

    Science.gov (United States)

    Wu, Eugene Y; Walsh, Amanda R; Materne, Emma C; Hiltner, Emily P; Zielinski, Bryan; Miller, Bill R; Mawby, Lily; Modeste, Erica; Parish, Carol A; Barnes, Wayne M; Kermekchiev, Milko B

    2015-01-27

    Assembly of polymerase chain reactions at room temperature can sometimes lead to low yields or unintentional products due to mispriming. Mutation of isoleucine 707 to leucine in DNA polymerase I from Thermus aquaticus substantially decreases its activity at room temperature without compromising its ability to amplify DNA. To understand why a conservative change to the enzyme over 20 Å from the active site can have a large impact on its activity at low temperature, we solved the X-ray crystal structure of the large (5'-to-3' exonuclease-deleted) fragment of Taq DNA polymerase containing the cold-sensitive mutation in the ternary (E-DNA-ddNTP) and binary (E-DNA) complexes. The I707L KlenTaq1 ternary complex was identical to the wild-type in the closed conformation except for the mutation and a rotamer change in nearby phenylalanine 749, suggesting that the enzyme should remain active. However, soaking out of the nucleotide substrate at low temperature results in an altered binary complex made possible by the rotamer change at F749 near the tip of the polymerase O-helix. Surprisingly, two adenosines in the 5'-template overhang fill the vacated active site by stacking with the primer strand, thereby blocking the active site at low temperature. Replacement of the two overhanging adenosines with pyrimidines substantially increased activity at room temperature by keeping the template overhang out of the active site, confirming the importance of base stacking. These results explain the cold-sensitive phenotype of the I707L mutation in KlenTaq1 and serve as an example of a large conformational change affected by a conservative mutation.

  15. A Conservative Isoleucine to Leucine Mutation Causes Major Rearrangements and Cold Sensitivity in KlenTaq1 DNA Polymerase

    Science.gov (United States)

    2015-01-01

    Assembly of polymerase chain reactions at room temperature can sometimes lead to low yields or unintentional products due to mispriming. Mutation of isoleucine 707 to leucine in DNA polymerase I from Thermus aquaticus substantially decreases its activity at room temperature without compromising its ability to amplify DNA. To understand why a conservative change to the enzyme over 20 Å from the active site can have a large impact on its activity at low temperature, we solved the X-ray crystal structure of the large (5′-to-3′ exonuclease-deleted) fragment of Taq DNA polymerase containing the cold-sensitive mutation in the ternary (E–DNA–ddNTP) and binary (E–DNA) complexes. The I707L KlenTaq1 ternary complex was identical to the wild-type in the closed conformation except for the mutation and a rotamer change in nearby phenylalanine 749, suggesting that the enzyme should remain active. However, soaking out of the nucleotide substrate at low temperature results in an altered binary complex made possible by the rotamer change at F749 near the tip of the polymerase O-helix. Surprisingly, two adenosines in the 5′-template overhang fill the vacated active site by stacking with the primer strand, thereby blocking the active site at low temperature. Replacement of the two overhanging adenosines with pyrimidines substantially increased activity at room temperature by keeping the template overhang out of the active site, confirming the importance of base stacking. These results explain the cold-sensitive phenotype of the I707L mutation in KlenTaq1 and serve as an example of a large conformational change affected by a conservative mutation. PMID:25537790

  16. DNA repair in DNA-polymerase-deficient mutants of Escherichia coli

    International Nuclear Information System (INIS)

    Smith, D.W.; Tait, R.C.; Harris, A.L.

    1975-01-01

    Escherichia coli mutants deficient in DNA polymerase I, in DNA polymerases I and II, or in DNA polymerase III can efficiently and completely execute excision-repair and postreplication repair of the uv-damaged DNA at 30 0 C and 43 0 C when assayed by alkaline sucrose gradients. Repair by Pol I - and Pol I - , Pol II - cells is inhibited by 1-β-D-arabinofuranosylcytosine (araC) at 43 0 C but not at 30 0 C, whereas that by Pol III - cells is insensitive to araC at any temperature. Thus, either Pol I or Pol III is required for complete and efficient repair, and in their absence Pol II mediates a limited, incomplete dark repair of uv-damaged DNA

  17. Sulfolobus Replication Factor C stimulates the activity of DNA Polymerase B1

    DEFF Research Database (Denmark)

    Xing, Xuanxuan; Zhang, Likui; Guo, Li

    2014-01-01

    Replication factor C (RFC) is known to function in loading proliferating cell nuclear antigen (PCNA) onto primed DNA, allowing PCNA to tether DNA polymerase for highly processive DNA synthesis in eukaryotic and archaeal replication. In this report, we show that an RFC complex from...... the hyperthermophilic archaea of the genus Sulfolobus physically interacts with DNA polymerase B1 (PolB1) and enhances both the polymerase and 3'-5' exonuclease activities of PolB1 in an ATP-independent manner. Stimulation of the PolB1 activity by RFC is independent of the ability of RFC to bind DNA but is consistent...... with the ability of RFC to facilitate DNA binding by PolB1 through protein-protein interaction. These results suggest that Sulfolobus RFC may play a role in recruiting DNA polymerase for efficient primer extension, in addition to clamp loading, during DNA replication....

  18. Characterization of family IV UDG from Aeropyrum pernix and its application in hot-start PCR by family B DNA polymerase.

    Directory of Open Access Journals (Sweden)

    Xi-Peng Liu

    Full Text Available Recombinant uracil-DNA glycosylase (UDG from Aeropyrum pernix (A. pernix was expressed in E. coli. The biochemical characteristics of A. pernix UDG (ApeUDG were studied using oligonucleotides carrying a deoxyuracil (dU base. The optimal temperature range and pH value for dU removal by ApeUDG were 55-65°C and pH 9.0, respectively. The removal of dU was inhibited by the divalent ions of Zn, Cu, Co, Ni, and Mn, as well as a high concentration of NaCl. The opposite base in the complementary strand affected the dU removal by ApeUDG as follows: U/C≈U/G>U/T≈U/AP≈U/->U/U≈U/I>U/A. The phosphorothioate around dU strongly inhibited dU removal by ApeUDG. Based on the above biochemical characteristics and the conservation of amino acid residues, ApeUDG was determined to belong to the IV UDG family. ApeUDG increased the yield of PCR by Pfu DNA polymerase via the removal of dU in amplified DNA. Using the dU-carrying oligonucleotide as an inhibitor and ApeUDG as an activator of Pfu DNA polymerase, the yield of undesired DNA fragments, such as primer-dimer, was significantly decreased, and the yield of the PCR target fragment was increased. This strategy, which aims to amplify the target gene with high specificity and yield, can be applied to all family B DNA polymerases.

  19. Random amplified polymorphic DNA markers of the Brassica alboglabra chromosome of a B. campestris-alboglabra addition line

    DEFF Research Database (Denmark)

    Bagger Jørgensen, Rikke; Chen, B.Y.; Cheng, B.F.

    1996-01-01

    The alien C-genome chromosome in a Brassica campestris-alboglabra monosomic addition line was characterized by random amplified polymorphic DNA (RAPD) analysis. The alien chromosome carried three loci, E(c), W-c and Lap-1C, controlling synthesis of erucic acid, white flower colour and a fast......-migrating band of leucine aminopeptidase (Lap-1C(c)) respectively. The RAPD analysis revealed 17 markers specific to the alien chromosome. Among 45 offspring plants from the selfed addition line the alien C-chromosome was transmitted to 15 plants, four plants had only parts of this chromosome and the remaining...

  20. Genotypic characterization of Salmonella by multilocus sequence typing, pulsed-field gel electrophoresis and amplified fragment length polymorphism

    DEFF Research Database (Denmark)

    Torpdahl, Mia; Skov, Marianne N.; Sandvang, Dorthe

    2005-01-01

    subspecies enterica isolates. A total of 25 serotypes were investigated that had been isolated from humans or veterinary sources in Denmark between 1995 and 2001. All isolates were genotyped by multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE) and amplified fragment length...... polymorphism (AFLP). When making genetic trees, all three methods resulted in similar clustering that often corresponded with serotype, although some serotypes displayed more diversity than others. Of the three techniques, MLST was the easiest to interpret and compare between laboratories. Unfortunately...

  1. Toward the authentication of wines of Nemea denomination of origin through cleaved amplified polymorphic sequence (CAPS)-based assay.

    Science.gov (United States)

    Spaniolas, Stelios; Tsachaki, Maroussa; Bennett, Malcolm J; Tucker, Gregory A

    2008-09-10

    In the present study, we developed a cleaved amplified polymorphic sequence (CAPS)-based assay as a first attempt to detect fraud in grapevine musts with a long-term objective to establish an analytical methodology to authenticate wines of Nemea denomination of origin (Agiorgitiko). The analytical assay makes use of a single nucleotide polymorphism that discriminates Agiorgitiko and Cabernet Sauvignon varieties. The latter grape variety is one of the major adulterants for Nemea wines. Agiorgitiko grapevine must was spiked with Cabernet Sauvignon in several ratios (v/v) from 50 down to 10%, and the subsequent mixes were subjected to alcoholic microfermentation. DNA was extracted from all mixture samples up to the end of the fermentation process and was subjected to the CAPS assay. Both standard agarose gel and lab-on-a-chip capillary electrophoresis illustrated the ability of the method to detect the presence of Cabernet Sauvignon down to 10% throughout the whole fermentation process.

  2. Random amplified polymorphic DNA profiles as a tool for the characterization of Brazilian keratitis isolates of the genus Acanthamoeba

    Directory of Open Access Journals (Sweden)

    Alves J.M.P.

    2000-01-01

    Full Text Available The genus Acanthamoeba comprises free-living amebae identified as opportunistic pathogens of humans and other animal species. Morphological, biochemical and molecular approaches have shown wide genetic diversity within the genus. In an attempt to determine the genetic relatedness among isolates of Acanthamoeba we analyzed randomly amplified polymorphic DNA (RAPD profiles of 11 Brazilian isolates from cases of human keratitis and 8 American type culture collection (ATCC reference strains. We found that ATCC strains belonging to the same species present polymorphic RAPD profiles whereas strains of different species show very similar profiles. Although most Brazilian isolates could not be assigned with certainty to any of the reference species, they could be clustered according to pattern similarities. The results show that RAPD analysis is a useful tool for the rapid characterization of new isolates and the assessment of genetic relatedness of Acanthamoeba spp. A comparison between RAPD analyses and morphological characteristics of cyst stages is also discussed.

  3. Genetic diversity of pinus roxburghii sarg. Collected from different himalayan regions of India assessed by random amplified polymorphic DNA analysis.

    Science.gov (United States)

    Sinha, Dwaipayan; Singh, Jyotsna; Tandon, P K; Kakkar, Poonam

    2013-09-01

    Present study was aimed at molecular genetic fingerprint profile of 15 genotypes of three populations of Pinus roxburghii Sarg. from Himalayan regions of India using random amplified polymorphic DNA (RAPD) based markers. Needles of Pinus roxburghii Sarg. were collected from Dharamshala, Himachal Pradesh (HP), Nainital, Uttarakhand (UK) and Darjeeling, West Bengal (WB) regions of India. The samples were subjected to DNA extraction and RAPD analysis using oligonucleotide purification cartridge (OPC) primers. Out of 15 primers tested, nine primers gave scorable bands. Altogether 48 bands were obtained, out of which 43 were found to be polymorphic. Number of amplified fragments with RAPD primers ranged from four to eight with the size of amplicon ranging from 500 to 7,000bp. Investigation of natural diversity at intraspecies level was performed with 15 genotypes. Forty-eight amplification products were scored by RAPD and showed 89.58% polymorphism with a mean intrapopulation genetic diversity (Hpop) of 0.2754. A significant inter- and intrapopulation diversity was observed, with the percentage of polymorphic loci (Pp) ranging from 50.09 to 70.83%, Shannon's information index (I) from 0.3262 to 0.4689 and Nei's gene diversity (h) from 0.2032 to 0.3335 with mean Nei's gene diversity 0.377 and the overall estimate of gene flow being (Nm) 1.3555. Unweighted pair-group method with arithmetic average (UPGMA) analysis based Dendrogram showed single cluster. The variation amongst the samples of the three ecological regions can be attributed to varied climatic conditions and may help in conservation/future cultivation of these species.

  4. Genetic Diversity and Population Structure of Toona Ciliata Roem. Based on Sequence-Related Amplified Polymorphism (SRAP Markers

    Directory of Open Access Journals (Sweden)

    Pei Li

    2015-04-01

    Full Text Available Sequence-related amplified polymorphism (SRAP markers were used to investigate the genetic diversity among 30 populations of Toona ciliata Roem. sampled from the species’ distribution area in China. To analyze the polymorphism in the SRAP profiles, 1505 primer pairs were screened and 24 selected. A total of 656 SRAP bands ranging from 100 to 1500 bp were acquired, of these 505 bands (77% were polymorphic. The polymorphism information content (PIC values ranged from 0.32 to 0.45, with an average of 0.41. An analysis of molecular variance (AMOVA indicated that the most significant variation was attributable to differences among the populations and that variation within the populations was small. STRUCTURE analysis divided the 30 populations into two parts. The unweighted pair group method of arithmetic averages (UPGMA clustering and principal coordinates analysis (PCoA showed that the 30 populations could be classified into four types. The results demonstrate a clear geographical trend for T. ciliata in China and provide a theoretical basis for future breeding and conservation strategy of T. ciliata.

  5. Genetic variations of Lansium domesticum Corr. accessions from Java, Sumatra and Ceram based on Random Amplified Polymorphic DNA fingerprints

    Directory of Open Access Journals (Sweden)

    KUSUMADEWI SRI YULITA

    2011-07-01

    Full Text Available Yulita KS (2011 Genetic variations of Lansium domesticum Corr. accessions from Java, Bengkulu and Ceram based on Random Amplified Polymorphic DNA fingerprints. Biodiversitas 12: 125-130. Duku (Lansium domesticum Corr. is one of popular tropical fruits in SE Asia. The spesies has three varieties, known as duku, langsat and kokosan; and duku is the most popular one for being the sweetiest fruit. Indonesia has several local varieties of duku, such as duku Condet, duku Sumber and duku Palembang. This present study aimed to assess genetic diversity of 47 accessions of duku from Java, Sumatra, and Ceram based on RAPD fingerprints. Ten RAPD’s primers were initially screened and five were selected for the analysis. These five primers (OPA 7, 13, 18, OPB 7, and OPN 12 generated 53 scorable bands with an average of 10.6 polymorphic fragment per primer. Percentage of polymorphism ranged from 16.89% (OPA 7 and OPN 12 to 24.54% (OPB 7 with an average of 20.16% polymorphism. OPB 7 at 450 bp was exclusively possessed by accession 20 (Java, OPA 18 at 500 bp was by accession 6 (Java, 550 bp by 3 clones from Bengkulu. While OPN 12 at 300 bp and OPA 13 at 450 bp were shared among the accessions. Clustering analysis was performed based on RAPD profiles using the UPGMA method. The range of genetic similarity value among accessions was 0.02-0.65 suggesting high variation of gene pool existed among accessions.

  6. DNA polymerases in the mitochondria: A critical review of the evidence.

    Science.gov (United States)

    Krasich, Rachel; Copeland, William C

    2017-01-01

    Since 1970, the DNA polymerase gamma (PolG) has been known to be the DNA polymerase responsible for replication and repair of mitochondrial DNA, and until recently it was generally accepted that this was the only polymerase present in mitochondria. However, recent data has challenged that opinion, as several polymerases are now proposed to have activity in mitochondria. To date, their exact role of these other DNA polymerases is unclear and the amount of evidence supporting their role in mitochondria varies greatly. Further complicating matters, no universally accepted standards have been set for definitive proof of the mitochondrial localization of a protein. To gain an appreciation of these newly proposed DNA polymerases in the mitochondria, we review the evidence and standards needed to establish the role of a polymerase in the mitochondria. Employing PolG as an example, we established a list of criteria necessary to verify the existence and function of new mitochondrial proteins. We then apply this criteria towards several other putative mitochondrial polymerases. While there is still a lot left to be done in this exciting new direction, it is clear that PolG is not acting alone in mitochondria, opening new doors for potential replication and repair mechanisms.

  7. Plasimids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    Science.gov (United States)

    Lacks, Sanford A.; Martinez, Susana; Lopez, Paloma; Espinosa, Manuel

    1991-01-01

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of Streptococcus pneumoniae. Plasmid pSM22, the vector containing the pneumocccal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme.

  8. Engineered split in Pfu DNA polymerase fingers domain improves incorporation of nucleotide γ-phosphate derivative

    Science.gov (United States)

    Hansen, Connie J.; Wu, Lydia; Fox, Jeffrey D.; Arezi, Bahram; Hogrefe, Holly H.

    2011-01-01

    Using compartmentalized self-replication (CSR), we evolved a version of Pyrococcus furiosus (Pfu) DNA polymerase that tolerates modification of the γ-phosphate of an incoming nucleotide. A Q484R mutation in α-helix P of the fingers domain, coupled with an unintended translational termination-reinitiation (split) near the finger tip, dramatically improve incorporation of a bulky γ-phosphate-O-linker-dabcyl substituent. Whether synthesized by coupled translation from a bicistronic (−1 frameshift) clone, or reconstituted from separately expressed and purified fragments, split Pfu mutant behaves identically to wild-type DNA polymerase with respect to chromatographic behavior, steady-state kinetic parameters (for dCTP), and PCR performance. Although naturally-occurring splits have been identified previously in the finger tip region of T4 gp43 variants, this is the first time a split (in combination with a point mutation) has been shown to broaden substrate utilization. Moreover, this latest example of a split hyperthermophilic archaeal DNA polymerase further illustrates the modular nature of the Family B DNA polymerase structure. PMID:21062827

  9. Engineered split in Pfu DNA polymerase fingers domain improves incorporation of nucleotide gamma-phosphate derivative.

    Science.gov (United States)

    Hansen, Connie J; Wu, Lydia; Fox, Jeffrey D; Arezi, Bahram; Hogrefe, Holly H

    2011-03-01

    Using compartmentalized self-replication (CSR), we evolved a version of Pyrococcus furiosus (Pfu) DNA polymerase that tolerates modification of the γ-phosphate of an incoming nucleotide. A Q484R mutation in α-helix P of the fingers domain, coupled with an unintended translational termination-reinitiation (split) near the finger tip, dramatically improve incorporation of a bulky γ-phosphate-O-linker-dabcyl substituent. Whether synthesized by coupled translation from a bicistronic (-1 frameshift) clone, or reconstituted from separately expressed and purified fragments, split Pfu mutant behaves identically to wild-type DNA polymerase with respect to chromatographic behavior, steady-state kinetic parameters (for dCTP), and PCR performance. Although naturally-occurring splits have been identified previously in the finger tip region of T4 gp43 variants, this is the first time a split (in combination with a point mutation) has been shown to broaden substrate utilization. Moreover, this latest example of a split hyperthermophilic archaeal DNA polymerase further illustrates the modular nature of the Family B DNA polymerase structure.

  10. Replicative DNA polymerase defects in human cancers: Consequences, mechanisms, and implications for therapy.

    Science.gov (United States)

    Barbari, Stephanie R; Shcherbakova, Polina V

    2017-08-01

    The fidelity of DNA replication relies on three error avoidance mechanisms acting in series: nucleotide selectivity of replicative DNA polymerases, exonucleolytic proofreading, and post-replicative DNA mismatch repair (MMR). MMR defects are well known to be associated with increased cancer incidence. Due to advances in DNA sequencing technologies, the past several years have witnessed a long-predicted discovery of replicative DNA polymerase defects in sporadic and hereditary human cancers. The polymerase mutations preferentially affect conserved amino acid residues in the exonuclease domain and occur in tumors with an extremely high mutation load. Thus, a concept has formed that defective proofreading of replication errors triggers the development of these tumors. Recent studies of the most common DNA polymerase variants, however, suggested that their pathogenicity may be determined by functional alterations other than loss of proofreading. In this review, we summarize our current understanding of the consequences of DNA polymerase mutations in cancers and the mechanisms of their mutator effects. We also discuss likely explanations for a high recurrence of some but not other polymerase variants and new ideas for therapeutic interventions emerging from the mechanistic studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Dynamic DNA Helicase-DNA Polymerase Interactions Assure Processive Replication Fork Movement

    NARCIS (Netherlands)

    Hamdan, Samir M.; Johnson, Donald E.; Tanner, Nathan A.; Lee, Jong-Bong; Qimron, Udi; Tabor, Stanley; Oijen, Antoine M. van; Richardson, Charles C.

    2007-01-01

    A single copy of bacteriophage T7 DNA polymerase and DNA helicase advance the replication fork with a processivity greater than 17,000 nucleotides. Nonetheless, the polymerase transiently dissociates from the DNA without leaving the replisome. Ensemble and single-molecule techniques demonstrate that

  12. Localized Cerebral Energy Failure in DNA Polymerase Gamma-Associated Encephalopathy Syndromes

    Science.gov (United States)

    Tzoulis, Charalampos; Neckelmann, Gesche; Mork, Sverre J.; Engelsen, Bernt E.; Viscomi, Carlo; Moen, Gunnar; Ersland, Lars; Zeviani, Massimo; Bindoff, Laurence A.

    2010-01-01

    Mutations in the catalytic subunit of the mitochondrial DNA-polymerase gamma cause a wide spectrum of clinical disease ranging from infantile hepato-encephalopathy to juvenile/adult-onset spinocerebellar ataxia and late onset progressive external ophthalmoplegia. Several of these syndromes are associated with an encephalopathy that…

  13. Probing the Conformational Landscape of DNA Polymerases Using Diffusion-Based Single-Molecule FRET

    NARCIS (Netherlands)

    Hohlbein, J.; Kapanidis, A.N.

    2016-01-01

    Monitoring conformational changes in DNA polymerases using single-molecule Förster resonance energy transfer (smFRET) has provided new tools for studying fidelity-related mechanisms that promote the rejection of incorrect nucleotides before DNA synthesis. In addition to the previously known open

  14. Variations of Human DNA Polymerase Genes as Biomarkers of Prostate Cancer Progression

    Science.gov (United States)

    2013-07-01

    mutations because they have a higher chance of causing functional effects. Briefly, we reconstructed all missense Pol β mutations in an appropriate...Fotiadou P, Henegariu O, Sweasy JB. (2004). DNA polymerase beta interacts with TRF2 and induces telomere dysfunction in a murine mammary cell

  15. Plasmids containing the gene for DNA polymerase I from Streptococcus pneumoniae

    Science.gov (United States)

    Lacks, S.A.; Martinez, S.; Lopez, P.; Espinosa, M.

    1987-08-28

    A method is disclosed for cloning the gene which encodes a DNA polymerase-exonuclease of /und Streptococcus/ /und pneumoniae/. Plasmid pSM22, the vector containing the pneumococcal polA gene, facilitates the expression of 50-fold greater amounts of the PolI enzyme. 1 fig., 1 tab.

  16. An unusual polyanion from Physarum polycephalum that inhibits homologous DNA polymerase α in vitro

    International Nuclear Information System (INIS)

    Fischer, H.; Erdmann, S.; Holler, E.

    1989-01-01

    From extracts of microplasmodia of Physarum polycephalum and their culture medium, an unusual substance was isolated which inhibited homologous DNA polymerase α of this slime mold but not β-like DNA polymerase and not heterologous DNA polymerases. Analysis, especially NMR spectroscopy, revealed the major component to be an anionic polyester of L-malic acid and the inhibition to be due to poly(L-malate) in binding reversibly to DNA polymerase α. The mode of inhibition is competitive with substrate DNA and follows an inhibition constant K i = 10 ng/mL. Inhibition is reversed in the presence of spermine, spermidine, poly(ethylene imine), and calf thymus histone H1. According to its ester nature, the inhibitor is slightly labile at neutral and instable at acid and alkaline conditions. Its largest size corresponds to a molecular mass of 40-50 kDa, but the bulk of the material after purification has lower molecular masses. The inhibitory activity depends on the polymer size and has a minimal size requirement

  17. Cell cycle phase dependent role of DNA polymerase beta in DNA repair and survival after ionizing radiation.

    NARCIS (Netherlands)

    Vermeulen, C.; Verwijs-Janssen, M.; Begg, A.C.; Vens, C.

    2008-01-01

    PURPOSE: The purpose of the present study was to determine the role of DNA polymerase beta in repair and response after ionizing radiation in different phases of the cell cycle. METHODS AND MATERIALS: Synchronized cells deficient and proficient in DNA polymerase beta were irradiated in different

  18. Cooperation between catalytic and DNA binding domains enhances thermostability and supports DNA synthesis at higher temperatures by thermostable DNA polymerases.

    Science.gov (United States)

    Pavlov, Andrey R; Pavlova, Nadejda V; Kozyavkin, Sergei A; Slesarev, Alexei I

    2012-03-13

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A.99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 °C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases.

  19. Identification of velvet antler by random amplified polymorphism DNA combined with non-gel sieving capillary electrophoresis.

    Science.gov (United States)

    Yuan, Guangxin; Sun, Jiyan; Li, Hongyu; Fu, Guilian; Xu, Guangyu; Li, Mingcheng; Zhang, Lihua; Fan, Xintian

    2016-01-01

    Mitochondrial DNA of velvet antler was amplified with random amplified polymorphic DNA (RAPD) technique and the PCR products were detected with non-gel sieving capillary electrophoresis to establish a RAPD-HPCE method used for identifying the authenticity of velvet antler or it counterfeits. Factors that could affect the PCR amplification and capillary electrophoresis were optimized. Under the optimized conditions, namely, 20 mmol L(-1) NaH2PO4-Na2HPO4-2 mmol L(-1) EDTA buffer solution [0.8% (W/V) HPMC, 15 mmol L(-1) TBAP and pH 7.3], -10 kV injection voltage and -8 kV separation voltage, Cervus nippon Temminck antler, Cervus elaphus Linnaeus antler, Rangifer tarandus antler, Cervus canadensis antler and Elaphurus davidianus antler were analyzed. The analysis on the similarity of obtained elctrophoretograms showed that there were significant differences in similarities of different velvet antlers, which could be used for the quick identification of the authenticity of velvet antler samples. It can be found that the technique of RAPD combined with HPCE is advantageous in rich polymorphism, high detection rate, simple and convenient performance, high efficiency, rapidness and sensitivity, indicating that it should be suitable for the quick identification of the authenticity of velvet antler samples.

  20. Genetic differentiation of Octopus minor (Mollusca, Cephalopoda) off the northern coast of China as revealed by amplified fragment length polymorphisms.

    Science.gov (United States)

    Yang, J M; Sun, G H; Zheng, X D; Ren, L H; Wang, W J; Li, G R; Sun, B C

    2015-12-02

    Octopus minor (Sasaki, 1920) is an economically important cephalopod that is found in the northern coastal waters of China. In this study, we investigated genetic differentiation in fishery populations using amplified fragment length polymorphisms (AFLPs). A total of 150 individuals were collected from five locations: Dalian (DL), Yan-tai (YT), Qingdao (QD), Lianyungang (LY), and Zhoushan (ZS), and 243 reproducible bands were amplified using five AFLP primer combinations. The percentage of polymorphic bands ranged from 53.33 to 76.08%. Nei's genetic identity ranged from 0.9139 to 0.9713, and the genetic distance ranged from 0.0291 to 0.0900. A phylogenetic tree was constructed using the unweighted pair group method with arithmetic mean, based on the genetic distance. The DL and YT populations originated from one clade, while the QD, LY, and ZS populations originated from another. The results indicate that the O. minor stock consisted of two genetic populations with an overall significantly analogous FST value (0.1088, P octopus fisheries, so that this marine resource can be conserved for its long-term utilization.

  1. Genetic variation in wild and hatchery populations of giant freshwater prawn (Macrobrachium rosenbergii revealed by randomly amplified polymorphic DNA markers

    Directory of Open Access Journals (Sweden)

    Babul Bala

    2017-06-01

    Full Text Available Sustainable improvement and conservation of any genetic resource depend on the assessment of its intra- and inter-population genetic variation. In order to estimate genetic variation in both wild and hatchery populations of Macrobrachium rosenbergii, randomly amplified polymorphic DNA (RAPD analysis was performed. Analyses of 51 polymorphic loci amplified from genomic DNA by three decamer random primers revealed different degrees of genetic variation in two wild (Bhairab and Rupsha rivers and hatchery-derived gher (Gher-1 and Gher-2 populations. The proportion of polymorphic loci was found to be higher in wild populations (0.90 and 0.65 for the Bhairab and Rupsha populations, respectively than the hatchery-derived gher populations (0.29 and 0.16 for Gher-1 and Gher-2, respectively. Likewise, the river populations contained higher levels of gene diversity (0.221 and 0.179 for Bhairab and Rupsha populations, respectively than the gher populations (0.114 and 0.045 for Gher-1 and Gher-2, respectively. These results suggest reduction of genetic variation and heterozygosity in the hatchery-derived gher populations. Inter-population similarity indices and pairwise genetic distance values showed that variation between the wild or between the gher populations were lower than those between the wild and hatchery populations. On average, 14 loci exhibited significant deviation from homogeneity in wild vs hatchery population pairs, whereas 2 and 3 loci showed heterogeneity in Gher-1 vs Gher-2 and Bhairab vs Rupsha population pairs, respectively. A genetic distance-based UPGMA dendrogram segregated river populations from the gher populations. Our study, therefore, revealed substantial levels of genetic variation between wild and hatchery populations of M. rosenbergii.

  2. Genetic analysis of Apuleia leiocarpa as revealed by random amplified polymorphic DNA markers: prospects for population genetic studies.

    Science.gov (United States)

    Lencina, K H; Konzen, E R; Tsai, S M; Bisognin, D A

    2016-12-19

    Apuleia leiocarpa (Vogel) J.F. MacBride is a hardwood species native to South America, which is at serious risk of extinction. Therefore, it is of prime importance to examine the genetic diversity of this species, information required for developing conservation, sustainable management, and breeding strategies. Although scarcely used in recent years, random amplified polymorphic DNA markers are useful resources for the analysis of genetic diversity and structure of tree species. This study represents the first genetic analysis based on DNA markers in A. leiocarpa that aimed to investigate the levels of polymorphism and to select markers for the precise characterization of its genetic structure. We adapted the original DNA extraction protocol based on cetyltrimethyl ammonium bromide, and describe a simple procedure that can be used to obtain high-quality samples from leaf tissues of this tree. Eighteen primers were selected, revealing 92 bands, from which 75 were polymorphic and 61 were sufficient to represent the overall genetic structure of the population without compromising the precision of the analysis. Some fragments were conserved among individuals, which can be sequenced and used to analyze nucleotide diversity parameters through a wider set of A. leiocarpa individuals and populations. The individuals were separated into 11 distinct groups with variable levels of genetic diversity, which is important for selecting desirable genotypes and for the development of a conservation and sustainable management program. Our results are of prime importance for further investigations concerning the genetic characterization of this important, but vulnerable species.

  3. Genetic diversity and phylogenetic relationship among Tunisian cactus species (Opuntia) as revealed by random amplified microsatellite polymorphism markers.

    Science.gov (United States)

    Bendhifi Zarroug, M; Baraket, G; Zourgui, L; Souid, S; Salhi Hannachi, A

    2015-02-13

    Opuntia ficus indica is one of the most economically important species in the Cactaceae family. Increased interest in this crop stems from its potential contribution to agricultural diversification, application in the exploitation of marginal lands, and utility as additional income sources for farmers. In Tunisia, O. ficus indica has been affected by drastic genetic erosion resulting from biotic and abiotic stresses. Thus, it is imperative to identify and preserve this germplasm. In this study, we focused on the use of random amplified microsatellite polymorphisms to assess genetic diversity among 25 representatives of Tunisian Opuntia species maintained in the collection of the National Institute of Agronomic Research of Tunisia. Seventy-two DNA markers were screened to discriminate accessions using 16 successful primer combinations. The high percentage of polymorphic band (100%), the resolving power value (5.68), the polymorphic information content (0.94), and the marker index (7.2) demonstrated the efficiency of the primers tested. Therefore, appropriate cluster analysis used in this study illustrated a divergence among the cultivars studied and exhibited continuous variation that occurred independently of geographic origin. O. ficus indica accessions did not cluster separately from the other cactus pear species, indicating that their current taxonomical classifications are not well aligned with their genetic variability or locality of origin.

  4. Binding Affinities among DNA Helicase-Primase, DNA Polymerase, and Replication Intermediates in the Replisome of Bacteriophage T7*

    Science.gov (United States)

    Zhang, Huidong; Tang, Yong; Lee, Seung-Joo; Wei, Zeliang; Cao, Jia; Richardson, Charles C.

    2016-01-01

    The formation of a replication loop on the lagging strand facilitates coordinated synthesis of the leading- and lagging-DNA strands and provides a mechanism for recycling of the lagging-strand DNA polymerase. As an Okazaki fragment is completed, the loop is released, and a new loop is formed as the synthesis of a new Okazaki fragment is initiated. Loop release requires the dissociation of the complex formed by the interactions among helicase, DNA polymerase, and DNA. The completion of the Okazaki fragment may result in either a nick or a single-stranded DNA region. In the replication system of bacteriophage T7, the dissociation of the polymerase from either DNA region is faster than that observed for the dissociation of the helicase from DNA polymerase, implying that the replication loop is released more likely through the dissociation of the lagging-strand DNA from polymerase, retaining the polymerase at replication fork. Both dissociation of DNA polymerase from DNA and that of helicase from a DNA polymerase·DNA complex are much faster at a nick DNA region than the release from a ssDNA region. These results suggest that the replication loop is released as a result of the nick formed when the lagging-strand DNA polymerase encounters the previously synthesized Okazaki fragment, releasing lagging-strand DNA and retaining DNA polymerase at the replication fork for the synthesis of next Okazaki fragment. PMID:26620561

  5. New lupane triterpenoids from Solidago canadensis that inhibit the lyase activity of DNA polymerase beta.

    Science.gov (United States)

    Chaturvedula, V S Prakash; Zhou, Bing-Nan; Gao, Zhijie; Thomas, Shannon J; Hecht, Sidney M; Kingston, David G I

    2004-12-01

    Bioassay-directed fractionation of a methyl ethyl ketone extract of Solidago canadensis L. (Asteraceae), using an assay to detect the lyase activity of DNA polymerase beta, resulted in the isolation of the four new lupane triterpenoids 1-4 and the seven known compounds lupeol, lupeyl acetate, ursolic acid, cycloartenol, cycloartenyl palmitate, alpha-amyrin acetate, and stigmasterol. The structures of the new compounds were established as 3beta-(3R-acetoxyhexadecanoyloxy)-lup-20(29)-ene (1), 3beta-(3-ketohexadecanoyloxy)-lup-20(29)-ene (2), 3beta-(3R-acetoxyhexadecanoyloxy)-29-nor-lupan-20-one (3), and 3beta-(3-hetohexadecanoyloxy)-29-nor-lupan-20-one (4), respectively, on the basis of extensive 1D and 2D NMR spectroscopic interpretation and chemical modification studies. All 11 compounds were inhibitory to the lyase activity of DNA polymerase beta.

  6. Single-molecule microscopy reveals new insights into nucleotide selection by DNA polymerase I

    Science.gov (United States)

    Markiewicz, Radoslaw P.; Vrtis, Kyle B.; Rueda, David; Romano, Louis J.

    2012-01-01

    The mechanism by which DNA polymerases achieve their extraordinary accuracy has been intensely studied because of the linkage between this process and mutagenesis and carcinogenesis. Here, we have used single-molecule fluorescence microscopy to study the process of nucleotide selection and exonuclease action. Our results show that the binding of Escherichia coli DNA polymerase I (Klenow fragment) to a primer-template is stabilized by the presence of the next correct dNTP, even in the presence of a large excess of the other dNTPs and rNTPs. These results are consistent with a model where nucleotide selection occurs in the open complex prior to the formation of a closed ternary complex. Our assay can also distinguish between primer binding to the polymerase or exonuclease domain and, contrary to ensemble-averaged studies, we find that stable exonuclease binding only occurs with a mismatched primer terminus. PMID:22669904

  7. Multiple competition reactions for RPA order the assembly of the DNA polymerase delta holoenzyme.

    Science.gov (United States)

    Yuzhakov, A; Kelman, Z; Hurwitz, J; O'Donnell, M

    1999-11-01

    Processive extension of DNA in eukaryotes requires three factors to coordinate their actions. First, DNA polymerase alpha-primase synthesizes the primed site. Then replication factor C loads a proliferating cell nuclear antigen (PCNA) clamp onto the primer. Following this, DNA polymerase delta assembles with PCNA for processive extension. This report shows that these proteins each bind the primed site tightly and trade places in a highly coordinated fashion such that the primer terminus is never left free of protein. Replication protein A (RPA), the single-stranded DNA-binding protein, forms a common touchpoint for each of these proteins and they compete with one another for it. Thus these protein exchanges are driven by competition-based protein switches in which two proteins vie for contact with RPA.

  8. Innate Reverse Transcriptase Activity of DNA Polymerase for Isothermal RNA Direct Detection.

    Science.gov (United States)

    Shi, Chao; Shen, Xiaotong; Niu, Shuyan; Ma, Cuiping

    2015-11-04

    RNA detection has become one of the most robust parts in molecular biology, medical diagnostics and drug discovery. Conventional RNA detection methods involve an extra reverse transcription step, which limits their further application for RNA rapid detection. We herein report a novel finding that Bst and Klenow DNA polymerases possess innate reverse transcriptase activities, so that the reverse transcription step and next amplification reaction can be combined to one step in isothermal RNA detection. We have demonstrated that Bst and Klenow DNA polymerases could be successfully used to reverse transcribe RNA within 125-nt length by real time RT-PCR and polyacrylamide gel electrophoresis (PAGE). Our findings will spur the development of a myriad of simple and easy to use RNA detection technologies for isothermal RNA direct detection. This will just meet the future needs of bioanalysis and clinical diagnosis to RNA rapid detection in POC settings and inspection and quarantine.

  9. The (I/Y)XGG motif of adenovirus DNA polymerase affects template DNA binding and the transition from initiation to elongation

    NARCIS (Netherlands)

    Brenkman, AB; Heideman, MR; Truniger, [No Value; Salas, M; van der Vliet, PC

    2001-01-01

    Adenovirus DNA polymerase (Ad poI) is a eukaryotic-type DNA polymerase involved in the catalysis of protein-primed initiation as well as DNA polymerization. The functional significance of the (I/Y)XGG motif, highly conserved among eukaryotic-type DNA polymerases, was analyzed in Ad pol by

  10. Variations of Human DNA Polymerase Genes as Biomarkers of Prostate Cancer Progression

    Science.gov (United States)

    2011-07-01

    labeled DNA polymerase beta. Biochemistry 43:8911–8922. Boudsocq F, Ling H, Yang W, Woodgate R. 2002. Structure-based interpretation of missense mutations...Friedberg EC. 2003. DNA damage and repair. Nature 421:436–440. Fuja TJ, Lin F, Osann KE, Bryant PJ. 2004. Somatic mutations and altered expression...Kim MK, Lee JR, Park SR, Woo JG, Lim YP, Yun HD. 2004. Analysis of bgl operon structure and characterization of b-glucosidase from Pectobacterium

  11. Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide.

    Science.gov (United States)

    Ong, Jennifer L; Loakes, David; Jaroslawski, Szymon; Too, Kathleen; Holliger, Philipp

    2006-08-18

    DNA polymerases enable key technologies in modern biology but for many applications, native polymerases are limited by their stringent substrate recognition. Here we describe short-patch compartmentalized self-replication (spCSR), a novel strategy to expand the substrate spectrum of polymerases in a targeted way. spCSR is based on the previously described CSR, but unlike CSR only a short region (a "patch") of the gene under investigation is diversified and replicated. This allows the selection of polymerases under conditions where catalytic activity and processivity are compromised to the extent that full self-replication is inefficient. We targeted two specific motifs involved in substrate recognition in the active site of DNA polymerase I from Thermus aquaticus (Taq) and selected for incorporation of both ribonucleotide- (NTP) and deoxyribonucleotide-triphosphates (dNTPs) using spCSR. This allowed the isolation of multiple variants of Taq with apparent dual substrate specificity. They were able to synthesize RNA, while still retaining essentially wild-type (wt) DNA polymerase activity as judged by PCR. One such mutant (AA40: E602V, A608V, I614M, E615G) was able to incorporate both NTPs and dNTPs with the same catalytic efficiency as the wt enzyme incorporates dNTPs. AA40 allowed the generation of mixed RNA-DNA amplification products in PCR demonstrating DNA polymerase, RNA polymerase as well as reverse transcriptase activity within the same polypeptide. Furthermore, AA40 displayed an expanded substrate spectrum towards other 2'-substituted nucleotides and was able to synthesize nucleic acid polymers in which each base bore a different 2'-substituent. Our results suggest that spCSR will be a powerful strategy for the generation of polymerases with altered substrate specificity for applications in nano- and biotechnology and in the enzymatic synthesis of antisense and RNAi probes.

  12. Structural Transformation of Wireframe DNA Origami via DNA Polymerase Assisted Gap-Filling.

    Science.gov (United States)

    Agarwal, Nayan P; Matthies, Michael; Joffroy, Bastian; Schmidt, Thorsten L

    2018-03-27

    The programmability of DNA enables constructing nanostructures with almost any arbitrary shape, which can be decorated with many functional materials. Moreover, dynamic structures can be realized such as molecular motors and walkers. In this work, we have explored the possibility to synthesize the complementary sequences to single-stranded gap regions in the DNA origami scaffold cost effectively by a DNA polymerase rather than by a DNA synthesizer. For this purpose, four different wireframe DNA origami structures were designed to have single-stranded gap regions. This reduced the number of staple strands needed to determine the shape and size of the final structure after gap filling. For this, several DNA polymerases and single-stranded binding (SSB) proteins were tested, with T4 DNA polymerase being the best fit. The structures could be folded in as little as 6 min, and the subsequent optimized gap-filling reaction was completed in less than 3 min. The introduction of flexible gap regions results in fully collapsed or partially bent structures due to entropic spring effects. Finally, we demonstrated structural transformations of such deformed wireframe DNA origami structures with DNA polymerases including the expansion of collapsed structures and the straightening of curved tubes. We anticipate that this approach will become a powerful tool to build DNA wireframe structures more material-efficiently, and to quickly prototype and test new wireframe designs that can be expanded, rigidified, or mechanically switched. Mechanical force generation and structural transitions will enable applications in structural DNA nanotechnology, plasmonics, or single-molecule biophysics.

  13. Backbone assignment of the binary complex of the full length Sulfolobus solfataricus DNA polymerase IV and DNA.

    Science.gov (United States)

    Lee, Eunjeong; Fowler, Jason D; Suo, Zucai; Wu, Zhengrong

    2017-04-01

    Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase, bypasses a wide range of DNA lesions in vitro and in vivo. In this paper, we report the backbone chemical shift assignments of the full length Dpo4 in its binary complex with a 14/14-mer DNA substrate. Upon DNA binding, several β-stranded regions in the isolated catalytic core and little finger/linker fragments of Dpo4 become more structured. This work serves as a foundation for our ongoing investigation of conformational dynamics of Dpo4 and future determination of the first solution structures of a DNA polymerase and its binary and ternary complexes.

  14. Uso do Random Amplified Polymorphic DNA (RAPD no estudo populacional do Triatoma brasiliensis Neiva, 1911 Use of Random Amplified Polymorphic DNA (RAPD in the populational study of Triatoma brasiliensis Neiva, 1911

    Directory of Open Access Journals (Sweden)

    Érika C. Borges

    2000-01-01

    Full Text Available Para o estudo de variabilidade genética em Triatoma brasiliensis, o principal vetor da doença de Chagas no Nordeste brasileiro, espécimes de três diferentes populações intradomiciliares foram analisados. Regiões do DNA genômico foram amplificadas utilizando dois iniciadores randômicos através da técnica de RAPD (Random Amplified Polymorphic DNA, visualizados em géis de poliacrilamida corados pela prata. Os perfis originados se mostraram bastante homogêneos quando comparados intrapopulacionalmente. Populações capturadas em duas regiões diferentes do Estado do Ceará também apresentaram homogeneidade entre si, mas, quando comparadas com a população proveniente do Piauí, foi possível diferenciá-las. Esses resultados, preliminares, indicam que o RAPD pode ser usado com sucesso nos estudos de variabilidade em triatomíneos, bem como sugerem a existência de variabilidade entre diferentes populações de T. brasiliensis pertencentes a uma mesma subespécie.We evaluated the genetic variability of Triatoma brasiliensis, the main vector of Chagas disease in Northeast Brazil, using specimens from three populations. Regions of genomic DNA were amplified by RAPD (Random Amplified Polimorphic DNA, using two primers. The products were visualized after polyacrylamide gel electrophoresis followed by silver staining. A dendrogram constructed through the Dice similarity coefficient allowed for separation of the tested specimens into three distinct groups. The populations captured in areas from Ceará State showed similar profiles, but different from that captured in Piauí State. Our results indicate that RAPD can be used successfully in triatomine studies and suggest the presence of genetic variability between different populations of T. brasiliensis.

  15. Data of self-made Taq DNA polymerase prepared for screening purposes

    Directory of Open Access Journals (Sweden)

    E.V. Konovalova

    2017-04-01

    Full Text Available DNA analysis is a key procedure in genetic engineering. Nowadays the analysis is often done by PCR with Taq DNA polymerase. Although the last enzyme price is quite low, demand for numerous analyses results in much money expenditure which are not affordable for many laboratories. In a meanwhile, many screening tasks do not require the highly purified enzyme. Taking into account the enzyme unique properties it makes possible to marginally simplify its production without resorting to costly or lengthy techniques such as column chromatography and/or dialysis. Here the data of routine usage of Taq DNA polymerase prepared according to the protocol developed in our laboratory is presented. The protocol takes only several hours to realize and does not need qualified personnel or expensive equipment. Yet it gives the enzyme preparation suitable for most screening purposes. The isolated Taq DNA polymerase stock can be stored as ammonium sulfate suspension in a refrigerator for prolonged period, not less than 6 months. The working enzyme solution is prepared from the stock suspension on demand, not more than once in a month and can be stored also in a refrigerator.

  16. Nuclear DNA polymerase beta from Leishmania infantum. Cloning, molecular analysis and developmental regulation

    Science.gov (United States)

    Taladriz, Soraya; Hanke, Tobias; Ramiro, María J.; García-Díaz, Miguel; Lacoba, Mario García de; Blanco, Luis; Larraga, Vicente

    2001-01-01

    We have identified a novel polymerase beta (Pol β)-like enzyme from Leishmania infantum, a parasite protozoon causing disease in humans. This protein, named Li Pol β, shows a nuclear localization that contrasts with the mitochondrial localization of Pol β from Crithidia fasciculata, a closely related parasite, the only polymerase β described so far in Trypanosomatidae. Li Pol β, that belongs to the DNA polymerase X family, displays an evolutionarily conserved Pol β-type DNA polymerase core, in which most of the key residues involved in DNA binding, nucleotide binding, dRPase and polymerization catalysis are conserved. In agreement with this, Li Pol β, overproduced in Escherichia coli, displayed intrinsic DNA polymerase activity. Cell synchronization experiments showed a correlation between both Li Pol β mRNA and protein levels along the parasite cell cycle. Analysis of these parameters at the different growth phases of the parasite, from the proliferative (non-infective) logarithmic phase to the non-dividing (highly infectious) stationary phase, showed high levels of Li Pol β at the infective phase of the parasite. The data suggest a role of Li Pol β in base excision repair in L.infantum, a parasite usually affected by oxygen stress environments into the macrophage host cells. PMID:11557814

  17. Role of DNA polymerase α in chromosomal aberration production by ionizing radiation

    International Nuclear Information System (INIS)

    Bender, M.A.

    1983-01-01

    Aphidicolin is a tetracyclic diterpinoid fungal antibiotic which inhibits DNA synthesis in eukaryotic cells by interfering specifically with DNA polymerase α, apparently by binding to and inactivating the DNA-polymerase α complex. We have shown that aphidicolin, like other inhibitors of DNA synthesis, both induces chromosomal aberrations in human peripheral lymphocytes, and, as a post-treatment, interacts synergistically with x rays to produce greatly enhanced aberration yields. The present experiments explore the effects of aphidicolin in human lymphocytes in the post-DNA-synthetic G 2 phase of the cell cycle. These experiments utilized labeling with tritiated thymidine to positively identify cells in the S phase at the time of treatment, and used serial colcemid collections and fixations to determine aberration yields over as much of the G 2 phase as feasible. Because DNA polymerase α is the only DNA synthetic or repair enzyme known to be affected by aphidicolin, we infer that this enzyme is directly involved in the repair of DNA lesions which can result in visible chromosomal aberrations. (DT)

  18. Design and Discovery of New Combinations of Mutant DNA Polymerases and Modified DNA Substrates.

    Science.gov (United States)

    Rosenblum, Sydney L; Weiden, Aurora G; Lewis, Eliza L; Ogonowsky, Alexie L; Chia, Hannah E; Barrett, Susanna E; Liu, Mira D; Leconte, Aaron M

    2017-04-18

    Chemical modifications can enhance the properties of DNA by imparting nuclease resistance and generating more-diverse physical structures. However, native DNA polymerases generally cannot synthesize significant lengths of DNA with modified nucleotide triphosphates. Previous efforts have identified a mutant of DNA polymerase I from Thermus aquaticus DNA (SFM19) as capable of synthesizing a range of short, 2'-modified DNAs; however, it is limited in the length of the products it can synthesize. Here, we rationally designed and characterized ten mutants of SFM19. From this, we identified enzymes with substantially improved activity for the synthesis of 2'F-, 2'OH-, 2'OMe-, and 3'OMe-modified DNA as well as for reverse transcription of 2'OMe DNA. We also evaluated mutant DNA polymerases previously only tested for synthesis for 2'OMe DNA and showed that they are capable of an expanded range of modified DNA synthesis. This work significantly expands the known combinations of modified DNA and Taq DNA polymerase mutants. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Crystal structure of Pfu, the high fidelity DNA polymerase from Pyrococcus furiosus.

    Science.gov (United States)

    Kim, Suhng Wook; Kim, Dong-Uk; Kim, Jin Kwang; Kang, Lin-Woo; Cho, Hyun-Soo

    2008-05-01

    We have determined a 2.6A resolution crystal structure of Pfu DNA polymerase, the most commonly used high fidelity PCR enzyme, from Pyrococcus furiosus. Although the structures of Pfu and KOD1 are highly similar, the structure of Pfu elucidates the electron density of the interface between the exonuclease and thumb domains, which has not been previously observed in the KOD1 structure. The interaction of these two domains is known to coordinate the proofreading and polymerization activity of DNA polymerases, especially via H147 that is present within the loop (residues 144-158) of the exonuclease domain. In our structure of Pfu, however, E148 rather than H147 is located at better position to interact with the thumb domain. In addition, the structural analysis of Pfu and KOD1 shows that both the Y-GG/A and beta-hairpin motifs of Pfu are found to differ with that of KOD1, and may explain differences in processivity. This information enables us to better understand the mechanisms of polymerization and proofreading of DNA polymerases.

  20. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair.

    Science.gov (United States)

    Mentegari, Elisa; Kissova, Miroslava; Bavagnoli, Laura; Maga, Giovanni; Crespan, Emmanuele

    2016-08-31

    DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell's genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.

  1. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair

    Directory of Open Access Journals (Sweden)

    Elisa Mentegari

    2016-08-01

    Full Text Available DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell’s genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.

  2. A new iridoid, verbascoside and derivatives with inhibitory activity against Taq DNA polymerase.

    Science.gov (United States)

    Garro, Hugo A; García, Celina; Martín, Victor S; Tonn, Carlos E; Pungitore, Carlos R

    2015-02-15

    DNA polymerases are enzymes that play a crucial role in DNA metabolism such as replication, repair, transcription, recombination, and chromosome segregation during mitosis. Herein we report the isolation of a new iridoid (6-epi-catalpol, 2) and per-O-acetyl-verbascoside (11) from aerial part of Buddleja cordobensis Grisebach (Buddlejaceae). From compound 2, we have obtained eight compounds by chemical transformation. This group of compounds at a concentration of 500μM was assayed against Taq DNA polymerase. Compound 11 (per-O-acetyl-verbascoside) was the most active with an IC50 of 1.21±0.18μM; compounds 9, 2 and 8 were strong inhibitors with IC50 values of 5.57±0.70, 21.62±0.22 and 78.13±0.93μM, respectively. Compounds 11 and 9 could be a leader structures to development new anticancer chemotherapy medicines and a useful tool to investigate DNA polymerase activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Specific Inhibition of Herpes Simplex Virus DNA Polymerase by Helical Peptides Corresponding to the Subunit Interface

    Science.gov (United States)

    Digard, Paul; Williams, Kevin P.; Hensley, Preston; Brooks, Ian S.; Dahl, Charles E.; Coen, Donald M.

    1995-02-01

    The herpes simplex virus DNA polymerase consists of two subunits-a catalytic subunit and an accessory subunit, UL42, that increases processivity. Mutations affecting the extreme C terminus of the catalytic subunit specifically disrupt subunit interactions and ablate virus replication, suggesting that new antiviral drugs could be rationally designed to interfere with polymerase heterodimerization. To aid design, we performed circular dichroism (CD) spectroscopy and analytical ultracentrifugation studies, which revealed that a 36-residue peptide corresponding to the C terminus of the catalytic subunit folds into a monomeric structure with partial α-helical character. CD studies of shorter peptides were consistent with a model where two separate regions of α-helix interact to form a hairpin-like structure. The 36-residue peptide and a shorter peptide corresponding to the C-terminal 18 residues blocked UL42-dependent long-chain DNA synthesis at concentrations that had no effect on synthesis by the catalytic subunit alone or by calf thymus DNA polymerase δ and its processivity factor. These peptides, therefore, represent a class of specific inhibitors of herpes simplex virus DNA polymerase that act by blocking accessory-subunit-dependent synthesis. These peptides or their structures may form the basis for the synthesis of clinically effective drugs.

  4. Structure of the SSB-DNA polymerase III interface and its role in DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Marceau, Aimee H; Bahng, Soon; Massoni, Shawn C; George, Nicholas P; Sandler, Steven J; Marians, Kenneth J; Keck, James L [MSKCC; (UMASS, Amherst); (UW-MED)

    2012-05-22

    Interactions between single-stranded DNA-binding proteins (SSBs) and the DNA replication machinery are found in all organisms, but the roles of these contacts remain poorly defined. In Escherichia coli, SSB's association with the χ subunit of the DNA polymerase III holoenzyme has been proposed to confer stability to the replisome and to aid delivery of primers to the lagging-strand DNA polymerase. Here, the SSB-binding site on χ is identified crystallographically and biochemical and cellular studies delineate the consequences of destabilizing the χ/SSB interface. An essential role for the χ/SSB interaction in lagging-strand primer utilization is not supported. However, sequence changes in χ that block complex formation with SSB lead to salt-dependent uncoupling of leading- and lagging-strand DNA synthesis and to a surprising obstruction of the leading-strand DNA polymerase in vitro, pointing to roles for the χ/SSB complex in replisome establishment and maintenance. Destabilization of the χ/SSB complex in vivo produces cells with temperature-dependent cell cycle defects that appear to arise from replisome instability.

  5. Lesion Orientation of O4-Alkylthymidine Influences Replication by Human DNA Polymerase η.

    Science.gov (United States)

    O'Flaherty, D K; Patra, A; Su, Y; Guengerich, F P; Egli, M; Wilds, C J

    2016-08-01

    DNA lesions that elude repair may undergo translesion synthesis catalyzed by Y-family DNA polymerases. O 4 -Alkylthymidines, persistent adducts that can result from carcinogenic agents, may be encountered by DNA polymerases. The influence of lesion orientation around the C4- O 4 bond on processing by human DNA polymerase η (hPol η ) was studied for oligonucleotides containing O 4 -methylthymidine, O 4 -ethylthymidine, and analogs restricting the O 4 -methylene group in an anti -orientation. Primer extension assays revealed that the O 4 -alkyl orientation influences hPol η bypass. Crystal structures of hPol η •DNA•dNTP ternary complexes with O 4 -methyl- or O 4 -ethylthymidine in the template strand showed the nucleobase of the former lodged near the ceiling of the active site, with the syn - O 4 -methyl group engaged in extensive hydrophobic interactions. This unique arrangement for O 4 -methylthymidine with hPol η , inaccessible for the other analogs due to steric/conformational restriction, is consistent with differences observed for nucleotide incorporation and supports the concept that lesion conformation influences extension across DNA damage. Together, these results provide mechanistic insights on the mutagenicity of O 4 MedT and O 4 EtdT when acted upon by hPol η .

  6. Role of DNA polymerase. cap alpha. in chromosomal aberration production by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.A.

    1983-01-01

    Aphidicolin is a tetracyclic diterpinoid fungal antibiotic which inhibits DNA synthesis in eukaryotic cells by interfering specifically with DNA polymerase ..cap alpha.., apparently by binding to and inactivating the DNA-polymerase ..cap alpha.. complex. We have shown that aphidicolin, like other inhibitors of DNA synthesis, both induces chromosomal aberrations in human peripheral lymphocytes, and, as a post-treatment, interacts synergistically with x rays to produce greatly enhanced aberration yields. The present experiments explore the effects of aphidicolin in human lymphocytes in the post-DNA-synthetic G/sub 2/ phase of the cell cycle. These experiments utilized labeling with tritiated thymidine to positively identify cells in the S phase at the time of treatment, and used serial colcemid collections and fixations to determine aberration yields over as much of the G/sub 2/ phase as feasible. Because DNA polymerase ..cap alpha.. is the only DNA synthetic or repair enzyme known to be affected by aphidicolin, we infer that this enzyme is directly involved in the repair of DNA lesions which can result in visible chromosomal aberrations. (DT)

  7. Reverse Transcription of Threose Nucleic Acid by a Naturally Occurring DNA Polymerase.

    Science.gov (United States)

    Dunn, Matthew R; Chaput, John C

    2016-10-04

    Recent advances in polymerase engineering have enabled the replication of xenonucleic acid (XNA) polymers with backbone structures distinct from those found in nature. By introducing a selective amplification step into the replication cycle, functional XNA molecules have been isolated by in vitro selection with binding and catalytic activity. Despite these successes, coding and decoding genetic information in XNA polymers remains limited by the fidelity and catalytic efficiency of engineered XNA polymerases. In particular, the process of reverse transcribing XNA back into DNA for amplification by PCR has been problematic. Here, we show that Geobacillus stearothermophilus (Bst) DNA polymerase I functions as an efficient and faithful threose nucleic acid (TNA)-dependent DNA polymerase. Bst DNA polymerase generates ∼twofold more cDNA with threefold fewer mutations than Superscript II (SSII), which was previously the best TNA reverse transcriptase. Notably, Bst also functions under standard magnesium-dependent conditions, whereas SSII requires manganese ions to relax the enzyme's substrate specificity. We further demonstrate that Bst DNA polymerase can support the in vitro selection of TNA aptamers by evolving a TNA aptamer to human α-thrombin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. [The random amplified polymorphic DNA identification of 9 Taenia saginata isolates from four provinces].

    Science.gov (United States)

    Zhang, Ke; Yang, Ming; Bao, Huai-En

    2006-12-01

    To make molecular identification for 9 isolates of Taenia saginata from 4 provinces. Genomic DNA was extracted from the segments of adult tapeworms collected from Taoyuan of Taiwan (TW1), Duyun of Guizhou (DY1, DY2), Congjiang of Guizhou (CJ1, CJ2, CJ3, CJ4), Dali of Yunnan (DL1) and Wushi of Xinjiang (XJ1) respectively. PCRs were carried out with 13 random primers. A phylogenetic tree of different geographical strains was constructed. 331 DNA fragments were amplified. The number of DNA fragments amplified by single primer was between 3 and 28. The average number of amplified DNA fragments by the 13 primers was 14.15. The average number of fragments from the 9 isolates of T. saginata was 14.08. Phylogenetic tree revealed that there were two branches in the tree, DY1, DY2, DL1 and TW1 occupied one branch, while CJ1, CJ2, CJ3, CJ4 and XJ1 occupied the other one. By the RAPD analysis, the isolates DY1, DY2, DL1 and TW1 belong to Taenia saginata asiatica, and the isolates CJ1, CJ2, CJ3, CJ4 and XJ1 belong to T. saginata saginata.

  9. [Cloning of the gene for thermostable Thermus aquaticus YT1 DNA polymerase and its expression in Escherichia coli].

    Science.gov (United States)

    Patrushev, L I; Valiaev, A G; Golovchenko, P A; Vinogradov, S V; Chikindas, M L; Kiselev, V I

    1993-01-01

    Using the phasmid vector pSL5, the genomic DNA fragment of T. aquaticus YT1 which contained the thermostable DNA polymerase (Taq-polymerase) gene was cloned. The BglII fragment of this genome locus was subcloned in the BamHI site of the pUC19 plasmid. To optimize the Taq-polymerase gene expression in E. coli cells, the gene was cloned in the correct reading frame regarding the initiation ATG codon of the pPR-TGATG-1 expression vector. The gene expression in this vector was controlled by the phage lambda PR promoter and the temperature-sensitive phage lambda repressor. We used PCR to amplify the short 5'-end fragment of the Taq-polymerase gene coding for the part into which an artificial SacI site was introduced. This site has been used for cloning the PCR product into the pPR-TGATG-1 vector, and the missing gene part was cloned into the KpnI site of the PCR product from the natural cloned gene. The cells of the E. coli PVG-A1 strain, which was obtained in the end, expressed efficiently the Taq-polymerase gene at the nonpermissive temperature. The content of the recombinant Taq-polymerase in the cells was about 1-2% of total proteins. The purified nearly homogeneous Taq-polymerase amplified efficiently in the PCR DNA fragments up to 5.5 kb long and was useful in DNA sequencing the by Sanger method. The half-life of the purified Taq polymerase was about 60 min at 95 degrees C, it was active for at least 65 standard PCR circles. The specific activity of recombinant enzyme preparations was about 180-200,000 units per mg of protein. The E. coli PVG-A1 strain enables one to isolate up to 500,000 units of purified enzyme from 2 l of bacterial culture.

  10. Accurate Digital Polymerase Chain Reaction Quantification of Challenging Samples Applying Inhibitor-Tolerant DNA Polymerases.

    Science.gov (United States)

    Sidstedt, Maja; Romsos, Erica L; Hedell, Ronny; Ansell, Ricky; Steffen, Carolyn R; Vallone, Peter M; Rådström, Peter; Hedman, Johannes

    2017-02-07

    Digital PCR (dPCR) enables absolute quantification of nucleic acids by partitioning of the sample into hundreds or thousands of minute reactions. By assuming a Poisson distribution for the number of DNA fragments present in each chamber, the DNA concentration is determined without the need for a standard curve. However, when analyzing nucleic acids from complex matrixes such as soil and blood, the dPCR quantification can be biased due to the presence of inhibitory compounds. In this study, we evaluated the impact of varying the DNA polymerase in chamber-based dPCR for both pure and impure samples using the common PCR inhibitor humic acid (HA) as a model. We compared the TaqMan Universal PCR Master Mix with two alternative DNA polymerases: ExTaq HS and Immolase. By using Bayesian modeling, we show that there is no difference among the tested DNA polymerases in terms of accuracy of absolute quantification for pure template samples, i.e., without HA present. For samples containing HA, there were great differences in performance: the TaqMan Universal PCR Master Mix failed to correctly quantify DNA with more than 13 pg/nL HA, whereas Immolase (1 U) could handle up to 375 pg/nL HA. Furthermore, we found that BSA had a moderate positive effect for the TaqMan Universal PCR Master Mix, enabling accurate quantification for 25 pg/nL HA. Increasing the amount of DNA polymerase from 1 to 5 U had a strong effect for ExTaq HS, elevating HA-tolerance four times. We also show that the average Cq values of positive reactions may be used as a measure of inhibition effects, e.g., to determine whether or not a dPCR quantification result is reliable. The statistical models developed to objectively analyze the data may also be applied in quality control. We conclude that the choice of DNA polymerase in dPCR is crucial for the accuracy of quantification when analyzing challenging samples.

  11. Identification of Leishmania Species Causing Cutaneous Leishmaniasis Using Random Amplified Polymorphic DNA (RAPD-PCR in Kharve, Iran

    Directory of Open Access Journals (Sweden)

    Fatemeh Saadabadi

    2013-05-01

    Full Text Available Background: Leishmaniasis, especially cutaneous leishmaniasis, is considered an important health problem in many parts of Iran including Kharve, Khorasan Razavi province. Cutaneous leishmaniasis is caused by various species of Leishmania, each having a different secondary host. Thus, identifying the parasites’ specie is of paramount importance for containment strategy planning. The morphological differentiation of Leishmania species is not possible, rendering the molecular methods as the sole means to this purpose. Therefore, to identify the causative agent of cutaneous leishmaniasis in Kharve, Random Amplified Polymorphic DNA-PCR (RAPD-PCR was used. Methods: The disease was first confirmed by direct smears. Samples were gathered from 22 patients with established cutaneous leishmaniasis. The samples were immediately cultured in NNN medium, followed by sub-culture in RPMI-1640. Afterwards, DNA was extracted and amplified using RAPD-PCR. Electrophoresis patterns from each isolate were compared with reference strains of Leishmania major (L. major and Leishmania tropica (L. tropica. Results: The results of this study indicated that the parasite causing cutaneous leishmaniasis in Kharve is L. tropica. Conclusion: It seems that L. tropica is the only causative agent of cutaneous leishmaniasis in Kharve, and RAPD-PCR is a suitable tool for Leishmania characterization in epidemiological studies.

  12. Development of Random Amplified Polymorphism DNA Markers Linked to CMV-B2 Resistance Gene in Melon

    Directory of Open Access Journals (Sweden)

    BUDI SETIADI DARYONO

    2009-12-01

    Full Text Available Two random amplified polymorphic DNA (RAPD markers linked to CMV-B2 resistance gene (Creb-2 in melon cultivar Yamatouri were cloned and sequenced to design sequence characterized amplified region (SCAR markers for detection of CMV-B2 resistance gene (Creb-2 in melon. SCOPE14 derived from OPE-14 yielded a single DNA band at 541 bp, while SCAPB05 derived from APB-05, yielded a single DNA band at 1,046 bp, respectively. Segregation of SCOPE14 and SCAPB05 markers in bulk of F2 plants demonstrated that they were co-segregated with RAPD markers from which the SCAR markers were originated. Furthermore, results of SCAR analysis in diverse melons showed SCAPB05 primers obtained a single 1,046 bp linked to Creb-2 in resistant cultivars Sanuki-shirouri and Kohimeuri. However, SCOPE14 failed to detect Creb-2 in diverse melons. Results of this study revealed that SCAR analysis not only confirmed melons that had been clearly scored for resistance to CMV-B2 by RAPD markers, but also clarified the ambiguous resistance results obtained by the RAPD markers.

  13. Random amplified polymorphic DNA (RAPD) detection of dwarf off-types in micropropagated Cavendish (Musa spp. AAA) bananas.

    Science.gov (United States)

    Damasco, O P; Graham, G C; Henry, R J; Adkins, S W; Smiths, M K; Godwin, I D

    1996-11-01

    A RAPD marker specific to the dwarf off-type (hereafter known as dwarf) from micropropagation of Cavendish banana (Musa spp. AAA) cultivars New Guinea Cavendish and Williams was identified following an analysis of 57 normal (true-to-type) and 59 dwarf plants generated from several different micropropagation events. Sixty-six random decamer primers were used in the initial screen, of which 19 (28.8%) revealed polymorphisms between normal and dwarf plants. Primer OPJ-04 (5'-CCGAACACGG-3') was found to amplify an approx. 1.5 kb band which was consistently present in all normal but absent in all dwarf plants of both cultivars. Reliable detection of dwarf plants was achieved using this marker, providing the only available means ofin vitro detection of dwarfs. The use of this marker could facilitate early detection and elimination of dwarfs from batches of micropropagated bananas, and may be a useful tool in determining what factors in the tissue culture process lead to this off type production.Other micropropagation-induced RAPD polymorphisms were observed but were not associated with the dwarf trait.

  14. Use of Random Amplified Polymorphic DNA (RAPD) Technique to Study the Genetic Diversity of Eight Aloe Species.

    Science.gov (United States)

    Ezzat, Shahira M; El Sayed, Abeer M; Salama, Maha M

    2016-10-01

    The genus Aloe comprises over 400 species of flowering succulent plants. Aloe leaves are used in the treatment of asthma, gastrointestinal ulcers, cardiovascular disease, tumors, burns, and diabetes. They are rich in anthraquinones, such as aloin, aloe-emodin, chrysophanol, aloinoside A, and aloinoside B. The various species of Aloe show chemical and morphological similarity and diversity, which depend on the genotype and environmental conditions. In a continuity to our interest in the genus Aloe , this study targets the authentication of eight different Aloe species, Aloe vera (A 1 ) , Aloe arborescens (A 2 ) , Aloe eru (A 3 ) , Aloe grandidentata (A 4 ) , Aloe perfoliata (A 5 ), Aloe brevifolia (A 6 ) , Aloe saponaria (A 7 ), and Aloe ferox (A 8 ), grown in Egypt by using the technique of random amplified polymorphic DNA. Twelve decamer primers were screened in amplification with genomic DNA extracted from all species, of which five primers yielded species-specific reproducible bands. Out of 156 loci detected, the polymorphic, monomorphic, and unique loci were 107, 26, and 23, respectively. Based on a dendrogram and similarity matrix, the eight Aloe species were differentiated from each other and showed more divergence. Aloe species prevailed similarity coefficients of 54-70 % by which they could be classified into three major groups. Thus, this technique may contribute to the identification of these Aloe species that have great morphological similarity in the Egyptian local markets. Georg Thieme Verlag KG Stuttgart · New York.

  15. Restriction fragment length polymorphism (RFLP) analysis of PCR products amplified from 18S ribosomal RNA gene of Trypanosoma congolense

    International Nuclear Information System (INIS)

    Osanyo, A.; Majiwa, P.W.

    2006-01-01

    Oligonucleotide primers were designed from the conserved nucleotide sequences of 18S ribosomal RNA (18S rRNA) gene of protozoans: Trypanosoma brucei, Leishmania donovani, Triponema aequale and Lagenidium gigantum. The primers were used in polymerace chain reaction (PCR) to generate PCR products of approximately 1 Kb using genomic DNA from T. brucei and the four genotypic groups of T. congolense as template. The five PCR products so produced were digested with several restriction enzymes and hybridized to a DNA probe made from T. brucei PCR product of the same 18S rRNA gene region. Most restriction enzyme digests revealed polymorphism with respect to the location of their recognition sites on the five PCR products. The restriction fragment length polymorphism (RFLP) pattern observed indicate that the 18S rRNA gene sequences of trypanosomes: T. brucei and the four genotypes of T.congolence group are heterogeneous. The results further demonstrate that the region that was amplified can be used in specific identification of trypanosomes species and subspecies.(author)

  16. Estimating Genetic Conformism of Korean Mulberry Cultivars Using Random Amplified Polymorphic DNA and Inter-Simple Sequence Repeat Profiling

    Directory of Open Access Journals (Sweden)

    Sunirmal Sheet

    2018-03-01

    Full Text Available Apart from being fed to silkworms in sericulture, the ecologically important Mulberry plant has been used for traditional medicine in Asian countries as well as in manufacturing wine, food, and beverages. Germplasm analysis among Mulberry cultivars originating from South Korea is crucial in the plant breeding program for cultivar development. Hence, the genetic deviations and relations among 8 Morus alba plants, and one Morus lhou plant, of different cultivars collected from South Korea were investigated using 10 random amplified polymorphic DNA (RAPD and 10 inter-simple sequence repeat (ISSR markers in the present study. The ISSR markers exhibited a higher polymorphism (63.42% among mulberry genotypes in comparison to RAPD markers. Furthermore, the similarity coefficient was estimated for both markers and found to be varying between 0.183 and 0.814 for combined pooled data of ISSR and RAPD. The phenogram drawn using the UPGMA cluster method based on combined pooled data of RAPD and ISSR markers divided the nine mulberry genotypes into two divergent major groups and the two individual independent accessions. The distant relationship between Dae-Saug (SM1 and SangchonJo Sang Saeng (SM5 offers a possibility of utilizing them in mulberry cultivar improvement of Morus species of South Korea.

  17. Estimating Genetic Conformism of Korean Mulberry Cultivars Using Random Amplified Polymorphic DNA and Inter-Simple Sequence Repeat Profiling.

    Science.gov (United States)

    Sheet, Sunirmal; Ghosh, Kuntal; Acharya, Satabdi; Kim, Kwang-Pyo; Lee, Yang Soo

    2018-03-15

    Apart from being fed to silkworms in sericulture, the ecologically important Mulberry plant has been used for traditional medicine in Asian countries as well as in manufacturing wine, food, and beverages. Germplasm analysis among Mulberry cultivars originating from South Korea is crucial in the plant breeding program for cultivar development. Hence, the genetic deviations and relations among 8 Morus alba plants, and one Morus lhou plant, of different cultivars collected from South Korea were investigated using 10 random amplified polymorphic DNA (RAPD) and 10 inter-simple sequence repeat (ISSR) markers in the present study. The ISSR markers exhibited a higher polymorphism (63.42%) among mulberry genotypes in comparison to RAPD markers. Furthermore, the similarity coefficient was estimated for both markers and found to be varying between 0.183 and 0.814 for combined pooled data of ISSR and RAPD. The phenogram drawn using the UPGMA cluster method based on combined pooled data of RAPD and ISSR markers divided the nine mulberry genotypes into two divergent major groups and the two individual independent accessions. The distant relationship between Dae-Saug (SM1) and SangchonJo Sang Saeng (SM5) offers a possibility of utilizing them in mulberry cultivar improvement of Morus species of South Korea.

  18. GENETIC VARIABILITY OF GIANT GOURAMY STRAINS REVEALED BY RANDOM AMPLIFIED POLYMORPHISM DNA

    Directory of Open Access Journals (Sweden)

    Estu Nugroho

    2013-12-01

    Full Text Available Genetic variability of giant gouramy strains has been observed using RAPD Marker. Genomic DNA was extracted from giant gouramy fin clip, and amplified using primers OPA 1-20. There was no significant difference among three strains of giant gouramy analyzed. Based on two primers of RAPD (OPA 4 and 7, the highest variability was observed in Bluesafir with heterogeneity value of 0.3050 and followed by Paris (0.2832 and Soang (0.2360 respectively. The average of Nei’s genetic distance is 0.118, and the smallest on is between Paris and Bluesafir.

  19. The translesion DNA polymerases Pol ζ and Rev1 are activated independently of PCNA ubiquitination upon UV radiation in mutants of DNA polymerase δ.

    Science.gov (United States)

    Tellier-Lebegue, Carine; Dizet, Eléa; Ma, Emilie; Veaute, Xavier; Coïc, Eric; Charbonnier, Jean-Baptiste; Maloisel, Laurent

    2017-12-01

    Replicative DNA polymerases cannot insert efficiently nucleotides at sites of base lesions. This function is taken over by specialized translesion DNA synthesis (TLS) polymerases to allow DNA replication completion in the presence of DNA damage. In eukaryotes, Rad6- and Rad18-mediated PCNA ubiquitination at lysine 164 promotes recruitment of TLS polymerases, allowing cells to efficiently cope with DNA damage. However, several studies showed that TLS polymerases can be recruited also in the absence of PCNA ubiquitination. We hypothesized that the stability of the interactions between DNA polymerase δ (Pol δ) subunits and/or between Pol δ and PCNA at the primer/template junction is a crucial factor to determine the requirement of PCNA ubiquitination. To test this hypothesis, we used a structural mutant of Pol δ in which the interaction between Pol3 and Pol31 is inhibited. We found that in yeast, rad18Δ-associated UV hypersensitivity is suppressed by pol3-ct, a mutant allele of the POL3 gene that encodes the catalytic subunit of replicative Pol δ. pol3-ct suppressor effect was specifically dependent on the Rev1 and Pol ζ TLS polymerases. This result strongly suggests that TLS polymerases could rely much less on PCNA ubiquitination when Pol δ interaction with PCNA is partially compromised by mutations. In agreement with this model, we found that the pol3-FI allele suppressed rad18Δ-associated UV sensitivity as observed for pol3-ct. This POL3 allele carries mutations within a putative PCNA Interacting Peptide (PIP) motif. We then provided molecular and genetic evidence that this motif could contribute to Pol δ-PCNA interaction indirectly, although it is not a bona fide PIP. Overall, our results suggest that the primary role of PCNA ubiquitination is to allow TLS polymerases to outcompete Pol δ for PCNA access upon DNA damage.

  20. Label-free monitoring of DNA polymerase activity based on a thrombin-binding aptamer G-quadruplex.

    Science.gov (United States)

    Wang, Jing; Liu, Haisheng; Ma, Changbei; Wang, Jun; Zhong, Linxiu; Wu, Kefeng

    2017-04-01

    We have developed a label-free assay for the detection of DNA polymerase activity based on a thrombin-binding aptamer (TBA) G-quadruplex. In the presence of DNA polymerase, the 3'-OH termini of the hairpin substrate are immediately elongated to replace the TBA, which can be recognized quickly by the ThT dye and results in an increase of fluorescence. This method is highly sensitive with a detection limit of 0.1 U/mL. It is simple and cost-effective without any requirement of labeling with a fluorophore-quencher pair. Furthermore, the proposed method can also be applied to analyze the inhibition of DNA polymerase, which clearly indicates that the proposed method can be applied for screening of potential DNA polymerase inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. [The kinetic and functional characteristics of DNA-dependent DNA-polymerases in Acholeplasma laidlawii PG-8].

    Science.gov (United States)

    Bezuglyĭ, S V; Skripal', I G; Babichev, V V

    1993-01-01

    The kinetic and functional characteristics of I and II forms of DNA-dependent DNA-polymerases of Acholeplasma laidlawii PG-8 have been studied. It is stated that I form of DNA polymerase possesses 5'-3'-exonuclease activity and is a typical replicase; II form of DNA-polymerase possesses both 5'-3'-polymerase and 3'-5'-exonuclease activity and is, evidently, a reparase. Both forms of enzyme give preference to poly(U)- and poly(A)-matrices having extremely high activity on these polymers. The enzymatic reactions realized by both forms of DNA-polymerases are described by the first-order equation. The calculated Michaelis-Menten constants equaled 180 and 250 microM for I and II forms of polymerases, respectively. It indicates that affinity to substrate in II form of polymerase is one-third higher than in I form of enzyme.

  2. Genotyping of human and porcine Yersinia enterocolitica, Yersinia intertmedia, and Yersinia bercovieri strains from Switzerland by amplified fragment length polymorphism analysis

    DEFF Research Database (Denmark)

    Kuehni-Boghenbor, Kathrin; On, Stephen L.W.; Kokotovic, Branko

    2006-01-01

    In this study, 231 strains of Yersinia enterocolitica, 25 strains of Y. intermedia, and 10 strains of Y. bercovieri from human and porcine sources (including reference strains) were analyzed using amplified fragment length polymorphism (AFLP), a whole-genome fingerprinting method for subtyping ba...

  3. Mutations of mtDNA polymerase-γ and hyperlactataemia in the HIV-infected Zulu population of South Africa.

    Science.gov (United States)

    Ojwach, D B A; Aldous, C; Kochleff, P; Sartorius, B

    2016-12-01

    Mitochondrial toxicity, particularly symptomatic hyperlactataemia or lactic acidosis (SHL/LA), has been attributed to the use of nucleoside reverse transcriptase inhibitors (NRTIs), possibly because of their capacity to impede human mitochondrial DNA polymerase-γ (POLG), which is responsible for the replication of mitochondrial DNA. To determine whether known monogenic POLG1 polymorphisms could be linked with the unexpectedly high incidence of SHL/LA observed in HIV-infected Zulu-speaking patients exposed to the NRTIs stavudine or zidovudine in their antiretroviral therapy. One hundred and sixteen patients from Edendale Hospital, Pietermaritzburg, South Africa, participated in the study between March and August 2014. Fifty-nine symptomatic cases were compared with 57 non-symptomatic controls on stavudine for ≥24 months. Among the symptomatic patients, 13 had SHL with measured lactate between 3.0 and 4.99 mmol/L, and 46 had LA with a lactate level ≥5 mmol/L. Genomic DNA from 113 samples was used for subsequent allelic discrimination polymerase chain reaction screening for the R964C and E1143G single-nucleotide polymorphisms of POLG1. Sequencing was performed for 40/113 randomly selected samples for confirmation of the genotyping results. Neither of the two known POLG1 mutations was observed. The cases presented with SHL/LA between 4 and 18 months on stavudine. Females (70.4%) were significantly (p<0.001) more likely to be cases (adjusted odds ratio 24.24, 95% CI 5.14 - 114.25) compared with males. This study has shown that our sample of the Zulu-speaking population does not exhibit a genetic predisposition to SHL/LA associated with known monogenic POLG1 mutations, indicating another possible predisposing factor for increased risk of SHL/LA.

  4. Involvement of DNA polymerase δ in DNA repair synthesis in human fibroblasts at late times after ultraviolet irradiation

    International Nuclear Information System (INIS)

    Dresler, S.L.; Gowans, B.J.; Robinson-Hill, R.M.; Hunting, D.J.

    1988-01-01

    DNA repair synthesis following UV irradiation of confluent human fibroblasts has a biphasic time course with an early phase of rapid nucleotide incorporation and a late phase of much slower nucleotide incorporation. The biphasic nature of this curve suggests that two distinct DNA repair systems may be operative. Previous studies have specifically implicated DNA polymerase δ as the enzyme involved in DNA repair synthesis occurring immediately after UV damage. In this paper, the authors describe studies of DNA polymerase involvement in DNA repair synthesis in confluent human fibroblasts at late times after UV irradiation. Late UV-induced DNA repair synthesis in both intact and permeable cells was found to be inhibited by aphidicolin, indicating the involvement of one of the aphidicolin-sensitive DNA polymerases, α or δ. In permeable cells, the process was further analyzed by using the nucleotide analogue (butylphenyl)-2'-deoxyguanosine 5'-triphosphate, which inhibits DNA polymerase α several hundred times more strongly than it inhibits DNA polymerase δ. The (butylphenyl)-2'-deoxyguanosine 5'-triphosphate inhibition curve for late UV-induced repair synthesis was very similar to that for polymerase δ. It appears that repair synthesis at late time after UV irradiation, like repair synthesis at early times, is mediated by DNA polymerase δ

  5. Requirement for transient metal ions revealed through computational analysis for DNA polymerase going in reverse

    Science.gov (United States)

    Perera, Lalith; Freudenthal, Bret D.; Beard, William A.; Shock, David D.; Pedersen, Lee G.; Wilson, Samuel H.

    2015-01-01

    DNA polymerases facilitate faithful insertion of nucleotides, a central reaction occurring during DNA replication and repair. DNA synthesis (forward reaction) is “balanced,” as dictated by the chemical equilibrium by the reverse reaction of pyrophosphorolysis. Two closely spaced divalent metal ions (catalytic and nucleotide-binding metals) provide the scaffold for these reactions. The catalytic metal lowers the pKa of O3′ of the growing primer terminus, and the nucleotide-binding metal facilitates substrate binding. Recent time-lapse crystallographic studies of DNA polymerases have identified an additional metal ion (product metal) associated with pyrophosphate formation, leading to the suggestion of its possible involvement in the reverse reaction. Here, we establish a rationale for a role of the product metal using quantum mechanical/molecular mechanical calculations of the reverse reaction in the confines of the DNA polymerase β active site. Additionally, site-directed mutagenesis identifies essential residues and metal-binding sites necessary for pyrophosphorolysis. The results indicate that the catalytic metal site must be occupied by a magnesium ion for pyrophosphorolysis to occur. Critically, the product metal site is occupied by a magnesium ion early in the pyrophosphorolysis reaction path but must be removed later. The proposed dynamic nature of the active site metal ions is consistent with crystallographic structures. The transition barrier for pyrophosphorolysis was estimated to be significantly higher than that for the forward reaction, consistent with kinetic activity measurements of the respective reactions. These observations provide a framework to understand how ions and active site changes could modulate the internal chemical equilibrium of a reaction that is central to genome stability. PMID:26351676

  6. Limited ability of DNA polymerase kappa to suppress benzo[a]pyrene-induced genotoxicity in vivo.

    Science.gov (United States)

    Masumura, Kenichi; Toyoda-Hokaiwado, Naomi; Niimi, Naoko; Grúz, Petr; Wada, Naoko A; Takeiri, Akira; Jishage, Kou-Ichi; Mishima, Masayuki; Nohmi, Takehiko

    2017-12-01

    DNA polymerase kappa (Polk) is a specialized DNA polymerase involved in translesion DNA synthesis. To understand the protective roles against genotoxins in vivo, we established inactivated Polk knock-in gpt delta (inactivated Polk KI) mice that possessed reporter genes for mutations and expressed inactive Polk. In this study, we examined genotoxicity of benzo[a]pyrene (BP) to determine whether Polk actually suppressed BP-induced genotoxicity as predicted by biochemistry and in vitro cell culture studies. Seven-week-old inactivated Polk KI and wild-type (WT) mice were treated with BP at doses of 5, 15, or 50 mg/(kg·day) for three consecutive days by intragastric gavage, and mutations in the colon and micronucleus formation in the peripheral blood were examined. Surprisingly, no differences were observed in the frequencies of mutations and micronucleus formation at 5 or 50 mg/kg doses. Inactivated Polk KI mice exhibited approximately two times higher gpt mutant frequency than did WT mice only at the 15 mg/kg dose. The frequency of micronucleus formation was slightly higher in inactivated Polk KI than in WT mice at the same dose, but it was statistically insignificant. The results suggest that Polk has a limited ability to suppress BP-induced genotoxicity in the colon and bone marrow and also that the roles of specialized DNA polymerases in mutagenesis and carcinogenesis should be examined not only by in vitro assays but also by in vivo mouse studies. We also report the spontaneous mutagenesis in inactivated Polk KI mice at young and old ages. Environ. Mol. Mutagen. 58:644-653, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Fidelity and mutational spectrum of Pfu DNA polymerase on a human mitochondrial DNA sequence.

    Science.gov (United States)

    André, P; Kim, A; Khrapko, K; Thilly, W G

    1997-08-01

    The study of rare genetic changes in human tissues requires specialized techniques. Point mutations at fractions at or below 10(-6) must be observed to discover even the most prominent features of the point mutational spectrum. PCR permits the increase in number of mutant copies but does so at the expense of creating many additional mutations or "PCR noise". Thus, each DNA sequence studied must be characterized with regard to the DNA polymerase and conditions used to avoid interpreting a PCR-generated mutation as one arising in human tissue. The thermostable DNA polymerase derived from Pyrococcus furiosus designated Pfu has the highest fidelity of any DNA thermostable polymerase studied to date, and this property recommends it for analyses of tissue mutational spectra. Here, we apply constant denaturant capillary electrophoresis (CDCE) to separate and isolate the products of DNA amplification. This new strategy permitted direct enumeration and identification of point mutations created by Pfu DNA polymerase in a 96-bp low melting domain of a human mitochondrial sequence despite the very low mutant fractions generated in the PCR process. This sequence, containing part of the tRNA glycine and NADH dehydrogenase subunit 3 genes, is the target of our studies of mitochondrial mutagenesis in human cells and tissues. Incorrectly synthesized sequences were separated from the wild type as mutant/wild-type heteroduplexes by sequential enrichment on CDCE. An artificially constructed mutant was used as an internal standard to permit calculation of the mutant fraction. Our study found that the average error rate (mutations per base pair duplication) of Pfu was 6.5 x 10(-7), and five of its more frequent mutations (hot spots) consisted of three transversions (GC-->TA, AT-->TA, and AT-->CG), one transition (AT-->GC), and one 1-bp deletion (in an AAAAAA sequence). To achieve an even higher sensitivity, the amount of Pfu-induced mutants must be reduced.

  8. The DnaE polymerase from Deinococcus radiodurans features RecA-dependent DNA polymerase activity.

    Science.gov (United States)

    Randi, Lorenzo; Perrone, Alessandro; Maturi, Mirko; Dal Piaz, Fabrizio; Camerani, Michela; Hochkoeppler, Alejandro

    2016-12-01

    We report in the present study on the catalytic properties of the Deinococcus radiodurans DNA polymerase III α subunit (αDr). The αDr enzyme was overexpressed in Escherichia coli, both in soluble form and as inclusion bodies. When purified from soluble protein extracts, αDr was found to be tightly associated with E. coli RNA polymerase, from which αDr could not be dissociated. On the contrary, when refolded from inclusion bodies, αDr was devoid of E. coli RNA polymerase and was purified to homogeneity. When assayed with different DNA substrates, αDr featured slower DNA extension rates when compared with the corresponding enzyme from E. coli (E. coli DNA Pol III, αEc), unless under high ionic strength conditions or in the presence of manganese. Further assays were performed using a ssDNA and a dsDNA, whose recombination yields a DNA substrate. Surprisingly, αDr was found to be incapable of recombination-dependent DNA polymerase activity, whereas αEc was competent in this action. However, in the presence of the RecA recombinase, αDr was able to efficiently extend the DNA substrate produced by recombination. Upon comparing the rates of RecA-dependent and RecA-independent DNA polymerase activities, we detected a significant activation of αDr by the recombinase. Conversely, the activity of αEc was found maximal under non-recombination conditions. Overall, our observations indicate a sharp contrast between the catalytic actions of αDr and αEc, with αDr more performing under recombination conditions, and αEc preferring DNA substrates whose extension does not require recombination events. © 2016 The Author(s).

  9. Influence of PCR reagents on DNA polymerase extension rates measured on real-time PCR instruments.

    Science.gov (United States)

    Montgomery, Jesse L; Wittwer, Carl T

    2014-02-01

    Radioactive DNA polymerase activity methods are cumbersome and do not provide initial extension rates. A simple extension rate assay would enable study of basic assumptions about PCR and define the limits of rapid PCR. A continuous assay that monitors DNA polymerase extension using noncovalent DNA dyes on common real-time PCR instruments was developed. Extension rates were measured in nucleotides per second per molecule of polymerase. To initiate the reaction, a nucleotide analog was heat activated at 95 °C for 5 min, the temperature decreased to 75 °C, and fluorescence monitored until substrate exhaustion in 30-90 min. The assay was linear with time for over 40% of the reaction and for polymerase concentrations over a 100-fold range (1-100 pmol/L). Extension rates decreased continuously with increasing monovalent cation concentrations (lithium, sodium, potassium, cesium, and ammonium). Melting-temperature depressors had variable effects. DMSO increased rates up to 33%, whereas glycerol had little effect. Betaine, formamide, and 1,2-propanediol decreased rates with increasing concentrations. Four common noncovalent DNA dyes inhibited polymerase extension. Heat-activated nucleotide analogs were 92% activated after 5 min, and hot start DNA polymerases were 73%-90% activated after 20 min. Simple DNA extension rate assays can be performed on real-time PCR instruments. Activity is decreased by monovalent cations, DNA dyes, and most melting temperature depressors. Rational inclusion of PCR components on the basis of their effects on polymerase extension is likely to be useful in PCR, particularly rapid-cycle or fast PCR.

  10. Mutagenic Replication of N2-Deoxyguanosine Benzo[a]pyrene Adducts by Escherichia coli DNA Polymerase I and Sulfolobus solfataricus DNA Polymerase IV.

    Science.gov (United States)

    Gowda, A S Prakasha; Krzeminski, Jacek; Amin, Shantu; Suo, Zucai; Spratt, Thomas E

    2017-05-15

    Benzo[a]pyrene, a potent human carcinogen, is metabolized in vivo to a diol epoxide that reacts with the N 2 -position of guanine to produce N 2 -BP-dG adducts. These adducts are mutagenic causing G to T transversions. These adducts block replicative polymerases but can be bypassed by the Y-family translesion synthesis polymerases. The mechanisms by which mutagenic bypass occurs is not well-known. We have evaluated base pairing structures using atomic substitution of the dNTP with two stereoisomers, 2'-deoxy-N-[(7R,8S,9R,10S)-7,8,9,10-tetrahydro-7,8,9-trihydroxybenzo[a]pyren-10-yl]guanosine and 2'-deoxy-N-[(7S,8R,9S,10R)-7,8,9,10-tetrahydro-7,8,9-trihydroxybenzo[a]pyren-10-yl]guanosine. We have examined the kinetics of incorporation of 1-deaza-dATP, 7-deaza-dATP, 2'-deoxyinosine triphosphate, and 7-deaza-dGTP, analogues of dATP and dGTP in which single atoms are changed. Changes in rate will occur if that atom provided a critical interaction in the transition state of the reaction. We examined two polymerases, Escherichia coli DNA polymerase I (Kf) and Sulfolobus solfataricus DNA polymerase IV (Dpo4), as models of a high fidelity and TLS polymerase, respectively. We found that with Kf, substitution of the nitrogens on the Watson-Crick face of the dNTPs resulted in decreased rate of reactions. This result is consistent with a Hoogsteen base pair in which the template N 2 -BP-dG flipped from the anti to syn conformation. With Dpo4, while the substitution did not affect the rate of reaction, the amplitude of the reaction decreased with all substitutions. This result suggests that Dpo4 bypasses N 2 -BP-dG via Hoogsteen base pairs but that the flipped nucleotide can be either the dNTP or the template.

  11. RANDOMLY AMPLIFIED POLYMORPHIC DNA (RAPD FINGERPRINTING OF SIX INDONESIAN POPULATIONS OF GIANT FRESHWATER PRAWN, Macrobrachium rosenbergii

    Directory of Open Access Journals (Sweden)

    Imron Imron

    2009-12-01

    Full Text Available Indonesia is rich of giant fresh water prawn (GFP germ plasms. Best utilization of these resources for the purpose of either aquaculture development or conservation of genetic resources requires some information on the structure and levels of their genetic diversity. This study was aimed to characterize those GFP genetic resources by applying RAPD genetic markers. Six Indonesian populations of GFP from Asahan, Barito, Ciasem, Ogan, GImacro and Papua were collected and analyzed for their genetic variation using five RAPD primers. The results showed the diversity within the populations, as revealed by the level of polymorphism, ranged from 29% to 76% while genetic divergence between populations as shown by genetic distance ranged from 0.04 to 0.50. In terms of genetic divergence, two genetically distinct groups of GFP, namely the Papua GFP in one group and the remaining five GFP populations in the other, were identified. The results also showed the presence of specific population markers that are useful for genetic identification of GFP populations. Implication of these finding with regard to breed development is discussed.

  12. Molecular epidemiologic investigations of Mycoplasma gallisepticum conjunctivitis in songbirds by random amplified polymorphic DNA analyses.

    Science.gov (United States)

    Ley, D. H.; Berkhoff, J. E.; Levisohn, S.

    1997-01-01

    An ongoing outbreak of conjunctivitis in free-ranging house finches (Carpodacus mexicanus) began in 1994 in the eastern United States. Bacterial organisms identified as Mycoplasma gallisepticum (MG) were isolated from lesions of infected birds. MG was also isolated from a blue jay (Cyanocitta cristata) that contracted conjunctivitis after being housed in a cage previously occupied by house finches with conjunctivitis, and from free-ranging American goldfinches (Carduelis tristis) in North Carolina in 1996. To investigate the molecular epidemiology of this outbreak, we produced DNA fingerprints of MG isolates by random amplification of polymorphic DNA (RAPD). We compared MG isolates from songbirds examined from 1994 through 1996 in 11 states, representing three host species, with vaccine and reference strains and with contemporary MG isolates from commercial poultry. All MG isolates from songbirds had RAPD banding patterns identical to each other but different from other strains and isolates tested. These results indicate that the outbreak of MG in songbirds is caused by the same strain, which suggests a single source; the outbreak is not caused by the vaccine or reference strains analyzed; and MG infection has not been shared between songbirds and commercial poultry. PMID:9284386

  13. In Silico Screening Hepatitis B Virus DNA Polymerase Inhibitors from Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Mokhtar Nosrati

    2017-08-01

    Full Text Available Abstract Background: Hepatitis B virus infection (HBV is a significant global health problem and is a major cause of morbidity and mortality worldwide. Therefore, currently, introducing novel anti Hepatitis B drugs is taken into consideration. This study was planned to in silico screening novel Hepatitis B virus DNA polymerase inhibitors from two medicinal plants Terminalis chebula and Caesalpinia sappan. Materials and Methods: This is a descriptive-analytic study. In the study, three-dimensional structure of the Hepatitis B virus DNA polymerase was predicted using homology modeling method. A set of phytochemicals from mentioned plants were retrieved from Pubchem database in SDF format. In silico screening was carried out using molecular docking between mentioned phytochemicals and modeled polymerase by iGemdock 2.1 software. Results: Results of the study confirmed that all evaluated ligands have appropriate interactions to the polymerase with least toxicity and without genotoxicity potential. Results also showed that most interactions occur in reverse transcriptase domain which located in 354-694 area in the amino acid sequence of tested polymerase. Analysis of energy and amino acids involved in ligand-polymerase interaction revealed that Terchebin, Chebulinic Acid and Terflavin A have more effective interaction with the polymerase in compared to other ligands. Conclusion: Based on the results it can be concluded that evaluated compounds could be good candidates for in vitro and in vivo research in order to develop novel anti- Hepatitis B drugs.

  14. A parallel synthesis scheme for generating libraries of DNA polymerase substrates and inhibitors.

    Science.gov (United States)

    Strobel, Heike; Dugué, Laurence; Marlière, Philippe; Pochet, Sylvie

    2002-12-02

    We report a combinatorial approach aimed at producing in a single step a large family of nucleoside triphosphate derivatives that could be tested for their ability to be substrates for DNA polymerases. We propose as a unique triphosphate building block a nucleotide with a hydrazine function anchored to an imidazole ring. Condensation between the 5'-triphosphate derivative of 1-(2-deoxy-beta-D-erythro-pentofuranosyl)-imidazole-4-hydrazide (dY(NH(2))TP) and any aldehyde or ketone, followed by reduction of the intermediate hydrazones dXmTP, resulted in the corresponding hydrazides (dXnTP). Following this scheme, a series of aldehydes having various aromatic parts yielded a number of adducts dY(NHR)TP. Vent (exo-) DNA polymerase is found to be able to catalyse the single incorporation of these bulky triphosphate derivatives. Subsequent extensions of the modified pairs with canonical triphosphates resulted mainly in abortive elongations at primer+2, except after the incorporation of dY(NHben)TP and, to a lesser extent, dY(NHphe)TP opposite C. These results illustrate the potential of this parallel synthetic scheme for generating new substrates or inhibitors of replication in a single step.

  15. Mechanistic Studies with DNA Polymerases Reveal Complex Outcomes following Bypass of DNA Damage

    Directory of Open Access Journals (Sweden)

    Robert L. Eoff

    2010-01-01

    Full Text Available DNA is a chemically reactive molecule that is subject to many different covalent modifications from sources that are both endogenous and exogenous in origin. The inherent instability of DNA is a major obstacle to genomic maintenance and contributes in varying degrees to cellular dysfunction and disease in multi-cellular organisms. Investigations into the chemical and biological aspects of DNA damage have identified multi-tiered and overlapping cellular systems that have evolved as a means of stabilizing the genome. One of these pathways supports DNA replication events by in a sense adopting the mantra that one must “make the best of a bad situation” and tolerating covalent modification to DNA through less accurate copying of the damaged region. Part of this so-called DNA damage tolerance pathway involves the recruitment of specialized DNA polymerases to sites of stalled or collapsed replication forks. These enzymes have unique structural and functional attributes that often allow bypass of adducted template DNA and successful completion of genomic replication. What follows is a selective description of the salient structural features and bypass properties of specialized DNA polymerases with an emphasis on Y-family members.

  16. Replication slippage of the thermophilic DNA polymerases B and D from the Euryarchaeota Pyrococcus abyssi

    Directory of Open Access Journals (Sweden)

    Melissa G. eCastillo-Lizardo

    2014-08-01

    Full Text Available Replication slippage or slipped-strand mispairing involves the misalignment of DNA strands during the replication of repeated DNA sequences, and can lead to genetic rearrangements such as microsatellite instability. Here, we show that PolB and PolD replicative DNA polymerases from the archaeal model Pyrococcus abyssi (Pab slip in vitro during replication of a single-stranded DNA template carrying a hairpin structure and short direct repeats. We find that this occurs in both their wild-type (exo+ and exonuclease deficient (exo- forms. The slippage behavior of PabPolB and PabPolD, probably due to limited strand displacement activity, resembles that observed for the high fidelity Pyrococcus furiosus (Pfu DNA polymerase. The presence of PabPCNA inhibited PabPolB and PabPolD slippage. We propose a model whereby PabPCNA stimulates strand displacement activity and polymerase progression through the hairpin, thus permitting the error-free replication of repetitive sequences.

  17. Construction, Expression, and Characterization of Recombinant Pfu DNA Polymerase in Escherichia coli.

    Science.gov (United States)

    Zheng, Wenjun; Wang, Qingsong; Bi, Qun

    2016-04-01

    Pfu DNA polymerase (Pfu) is a DNA polymerase isolated from the hyperthermophilic archaeon Pyrococcus furiosus. With its excellent thermostability and high fidelity, Pfu is well known as one of the enzymes widely used in the polymerase chain reaction. In this study, the recombinant plasmid pLysS His6-tagged Pfu-pET28a was constructed. His-tagged Pfu was expressed in Escherichia coli BL21 (DE3) competent cells and then successfully purified with the ÄKTAprime plus compact one-step purification system by Ni(2+) chelating affinity chromatography after optimization of the purification conditions. The authenticity of the purified Pfu was further confirmed by peptide mass fingerprinting. A bio-assay indicated that its activity in the polymerase chain reaction was equivalent to that of commercial Pfu and its isoelectric point was found to be between 6.85 and 7.35. These results will be useful for further studies on Pfu and its wide application in the future.

  18. DNA replication fidelity in Escherichia coli: a multi-DNA polymerase affair

    Science.gov (United States)

    Fijalkowska, Iwona J.; Schaaper, Roel M.; Jonczyk, Piotr

    2012-01-01

    High accuracy (fidelity) of DNA replication is important for cells to preserve genetic identity and to prevent accumulation of deleterious mutations. The error rate during DNA replication is as low as 10−9 to 10−11 errors per base pair. How this low level is achieved is an issue of major interest. This review is concerned with the mechanisms underlying the fidelity of the chromosomal replication in the model system Escherichia coli by DNA polymerase III holoenzyme (HE), with further emphasis on participation of the other, accessory DNA polymerases, of which E. coli contains four (Pols I, II, IV, and V). Detailed genetic analysis of mutation rates revealed that (i) Pol II has an important role as a back-up proofreader for Pol III, (ii) Pols IV and V do not normally contribute significantly to replication fidelity, but can readily do so under conditions of elevated expression, (iii) participation of Pols IV and V, in contrast to that of Pol II, is specific to the lagging strand, and (iv) Pol I also makes a lagging-strand specific fidelity contribution, limited however to the faithful filling of the Okazaki fragment gaps. The fidelity role of the Pol III τ subunit is also reviewed. PMID:22404288

  19. Processive searching ability varies among members of the gap-filling DNA polymerase X family.

    Science.gov (United States)

    Howard, Michael J; Wilson, Samuel H

    2017-10-20

    DNA repair proteins must locate rare damaged sites within the genome. DNA polymerase β (Pol β), a member of the DNA polymerase X family that is involved in base excision repair, uses a processive hopping search mechanism to locate substrates. This effectively enhances its search footprint on DNA, increasing the probability of locating damaged sites. Processive searching has been reported or proposed for many DNA-binding proteins, raising the question of how widespread or specific to certain enzymes the ability to perform this function is. To provide insight into this question, we compared the ability of three homologous DNA Pol X family members to perform a processive search for 1-nucleotide gaps in DNA using a previously developed biochemical assay. We found that at near-predicted physiological ionic strengths, the intramolecular searching ability of Pol β is at least 4-fold higher than that of Pol μ and ∼2-fold higher than that of Pol λ. Pol β also was able to perform intersegmental transfer with the intersegmental searching ability of Pol β being at least 6- and ∼2-fold higher than that of Pols μ and λ, respectively. Mutational analysis suggested that differences in the N-terminal domains of these polymerases are responsible for the varying degrees of searching competence. Of note, the differences in processive searching ability observed among the DNA Pol X family members correlated with their proposed biological functions in base excision repair and nonhomologous end joining.

  20. Revealing the role of the product metal in DNA polymerase β catalysis.

    Science.gov (United States)

    Perera, Lalith; Freudenthal, Bret D; Beard, William A; Pedersen, Lee G; Wilson, Samuel H

    2017-03-17

    DNA polymerases catalyze a metal-dependent nucleotidyl transferase reaction during extension of a DNA strand using the complementary strand as a template. The reaction has long been considered to require two magnesium ions. Recently, a third active site magnesium ion was identified in some DNA polymerase product crystallographic structures, but its role is not known. Using quantum mechanical/ molecular mechanical calculations of polymerase β, we find that a third magnesium ion positioned near the newly identified product metal site does not alter the activation barrier for the chemical reaction indicating that it does not have a role in the forward reaction. This is consistent with time-lapse crystallographic structures following insertion of Sp-dCTPαS. Although sulfur substitution deters product metal binding, this has only a minimal effect on the rate of the forward reaction. Surprisingly, monovalent sodium or ammonium ions, positioned in the product metal site, lowered the activation barrier. These calculations highlight the impact that an active site water network can have on the energetics of the forward reaction and how metals or enzyme side chains may interact with the network to modulate the reaction barrier. These results also are discussed in the context of earlier findings indicating that magnesium at the product metal position blocks the reverse pyrophosphorolysis reaction. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  1. DNA polymerase η mutational signatures are found in a variety of different types of cancer.

    Science.gov (United States)

    Rogozin, Igor B; Goncearenco, Alexander; Lada, Artem G; De, Subhajyoti; Yurchenko, Vyacheslav; Nudelman, German; Panchenko, Anna R; Cooper, David N; Pavlov, Youri I

    2018-02-15

    DNA polymerase (pol) η is a specialized error-prone polymerase with at least two quite different and contrasting cellular roles: to mitigate the genetic consequences of solar UV irradiation, and promote somatic hypermutation in the variable regions of immunoglobulin genes. Misregulation and mistargeting of pol η can compromise genome integrity. We explored whether the mutational signature of pol η could be found in datasets of human somatic mutations derived from normal and cancer cells. A substantial excess of single and tandem somatic mutations within known pol η mutable motifs was noted in skin cancer as well as in many other types of human cancer, suggesting that somatic mutations in A:T bases generated by DNA polymerase η are a common feature of tumorigenesis. Another peculiarity of pol ηmutational signatures, mutations in YCG motifs, led us to speculate that error-prone DNA synthesis opposite methylated CpG dinucleotides by misregulated pol η in tumors might constitute an additional mechanism of cytosine demethylation in this hypermutable dinucleotide.

  2. Proficient Replication of the Yeast Genome by a Viral DNA Polymerase.

    Science.gov (United States)

    Stodola, Joseph L; Stith, Carrie M; Burgers, Peter M

    2016-05-27

    DNA replication in eukaryotic cells requires minimally three B-family DNA polymerases: Pol α, Pol δ, and Pol ϵ. Pol δ replicates and matures Okazaki fragments on the lagging strand of the replication fork. Saccharomyces cerevisiae Pol δ is a three-subunit enzyme (Pol3-Pol31-Pol32). A small C-terminal domain of the catalytic subunit Pol3 carries both iron-sulfur cluster and zinc-binding motifs, which mediate interactions with Pol31, and processive replication with the replication clamp proliferating cell nuclear antigen (PCNA), respectively. We show that the entire N-terminal domain of Pol3, containing polymerase and proofreading activities, could be effectively replaced by those from bacteriophage RB69, and could carry out chromosomal DNA replication in yeast with remarkable high fidelity, provided that adaptive mutations in the replication clamp PCNA were introduced. This result is consistent with the model that all essential interactions for DNA replication in yeast are mediated through the small C-terminal domain of Pol3. The chimeric polymerase carries out processive replication with PCNA in vitro; however, in yeast, it requires an increased involvement of the mutagenic translesion DNA polymerase ζ during DNA replication. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Replication slippage of the thermophilic DNA polymerases B and D from the Euryarchaeota Pyrococcus abyssi.

    Science.gov (United States)

    Castillo-Lizardo, Melissa; Henneke, Ghislaine; Viguera, Enrique

    2014-01-01

    Replication slippage or slipped-strand mispairing involves the misalignment of DNA strands during the replication of repeated DNA sequences, and can lead to genetic rearrangements such as microsatellite instability. Here, we show that PolB and PolD replicative DNA polymerases from the archaeal model Pyrococcus abyssi (Pab) slip in vitro during replication of a single-stranded DNA template carrying a hairpin structure and short direct repeats. We find that this occurs in both their wild-type (exo+) and exonuclease deficient (exo-) forms. The slippage behavior of PabPolB and PabPolD, probably due to limited strand displacement activity, resembles that observed for the high fidelity P. furiosus (Pfu) DNA polymerase. The presence of PabPCNA inhibited PabPolB and PabPolD slippage. We propose a model whereby PabPCNA stimulates strand displacement activity and polymerase progression through the hairpin, thus permitting the error-free replication of repetitive sequences.

  4. DNA polymerases ν and θ are required for efficient immunoglobulin V gene diversification in chicken

    Science.gov (United States)

    Kohzaki, Masaoki; Nishihara, Kana; Hirota, Kouji; Sonoda, Eiichiro; Yoshimura, Michio; Ekino, Shigeo; Butler, John E.; Watanabe, Masami; Halazonetis, Thanos D.

    2010-01-01

    The chicken DT40 B lymphocyte line diversifies its immunoglobulin (Ig) V genes through translesion DNA synthesis–dependent point mutations (Ig hypermutation) and homologous recombination (HR)–dependent Ig gene conversion. The error-prone biochemical characteristic of the A family DNA polymerases Polν and Polθ led us to explore the role of these polymerases in Ig gene diversification in DT40 cells. Disruption of both polymerases causes a significant decrease in Ig gene conversion events, although POLN−/−/POLQ−/− cells exhibit no prominent defect in HR-mediated DNA repair, as indicated by no increase in sensitivity to camptothecin. Polη has also been previously implicated in Ig gene conversion. We show that a POLH−/−/POLN−/−/POLQ−/− triple mutant displays no Ig gene conversion and reduced Ig hypermutation. Together, these data define a role for Polν and Polθ in recombination and suggest that the DNA synthesis associated with Ig gene conversion is accounted for by three specialized DNA polymerases. PMID:20584917

  5. Reevaluation of the role of DNA polymerase theta in somatic hypermutation of immunoglobulin genes.

    Science.gov (United States)

    Martomo, Stella A; Saribasak, Huseyin; Yokoi, Masayuki; Hanaoka, Fumio; Gearhart, Patricia J

    2008-09-01

    DNA polymerase theta has been implicated in the process of somatic hypermutation in immunoglobulin variable genes based on several reports of alterations in the frequency and spectra of mutations from Polq(-/-) mice. However, these studies have contrasting results on mutation frequencies and the types of nucleotide substitutions, which question the role of polymerase theta in hypermutation. DNA polymerase eta has a dominant effect on mutation and may substitute in the absence of polymerase theta to affect the pattern. Therefore, we have examined mutation in mice deficient for both polymerases theta and eta. The mutation frequencies in rearranged variable genes from Peyer's patches were similar in wild type, Polq(-/-), Polh(-/-), and Polq(-/-)Polh(-/-) mice. The types of substitutions were also similar between wild type and Polq(-/-) clones, and between Polh(-/-) and Polq(-/-)Polh(-/-) clones. Furthermore, there was no difference in heavy chain class switching in splenic B cells from the four groups of mice. These results indicate that polymerase theta does not play a significant role in the generation of somatic mutation in immunoglobulin genes.

  6. Modulating the DNA polymerase β reaction equilibrium to dissect the reverse reaction.

    Science.gov (United States)

    Shock, David D; Freudenthal, Bret D; Beard, William A; Wilson, Samuel H

    2017-10-01

    DNA polymerases catalyze efficient and high-fidelity DNA synthesis. While this reaction favors nucleotide incorporation, polymerases also catalyze a reverse reaction, pyrophosphorolysis, that removes the DNA primer terminus and generates deoxynucleoside triphosphates. Because pyrophosphorolysis can influence polymerase fidelity and sensitivity to chain-terminating nucleosides, we analyzed pyrophosphorolysis with human DNA polymerase β and found the reaction to be inefficient. The lack of a thio-elemental effect indicated that this reaction was limited by a nonchemical step. Use of a pyrophosphate analog, in which the bridging oxygen is replaced with an imido group (PNP), increased the rate of the reverse reaction and displayed a large thio-elemental effect, indicating that chemistry was now rate determining. Time-lapse crystallography with PNP captured structures consistent with a chemical equilibrium favoring the reverse reaction. These results highlight the importance of the bridging atom between the β- and γ-phosphates of the incoming nucleotide in reaction chemistry, enzyme conformational changes, and overall reaction equilibrium.

  7. Single-Molecule Measurements of Synthesis by DNA Polymerase with Base-Pair Resolution

    Science.gov (United States)

    Christian, Thomas; Romano, Louis; Rueda, David

    2010-03-01

    The catalytic mechanism of DNA polymerases involves multiple steps that precede and follow the transfer of a nucleotide to the 3'-hydroxyl of the growing DNA chain. Here we report a single-molecule approach to monitor the movement of E. coli DNA polymerase I (Klenow fragment) on a DNA template during DNA synthesis with single base-pair resolution. As each nucleotide is incorporated, the single-molecule F"orster resonance energy transfer intensity drops in discrete steps to values consistent with single nucleotide incorporations. Purines and pyrimidines are incorporated with comparable rates. A mismatched primer-template junction exhibits dynamics consistent with the primer moving into the exonuclease domain, which was used to determine the fraction of primer-termini bound to the exonuclease and polymerase sites. Most interestingly, we observe a structural change following the incorporation of a correctly paired nucleotide, consistent with transient movement of the polymerase past the pre-insertion site or a conformational change in the polymerase. This may represent a previously unobserved step in the mechanism of DNA synthesis that could be part of the proofreading process.

  8. Coumarins as Potential Inhibitors of DNA Polymerases and Reverse Transcriptases. Searching New Antiretroviral and Antitumoral Drugs.

    Science.gov (United States)

    Garro, Hugo A; Pungitore, Carlos R

    2015-01-01

    Human Immunodeficiency Virus (HIV) is the viral agent of Acquired Immunodeficiency Syndrome (AIDS), and at present, there is no effective vaccine against HIV. Reverse Transcriptase (RT) is an essential enzyme for retroviral replication, such as HIV as well as for other RNA infectious viruses like Human T lymphocyte virus. Polymerases act in DNA metabolism, modulating different processes like mitosis, damage repair, transcription and replication. It has been widely documented that DNA Polymerases and Reverse Transcriptases serve as molecular targets for antiviral and antitumoral chemotherapy. Coumarins are oxygen heterocycles that are widely distributed throughout the plant kingdom. Natural coumarins have attraction due to their bioactive properties such as tumor promotion inhibitory effects, and anti-HIV activity. Coumarins and derivates exhibit potent inhibitory effects on HIV-1 replication in lymphocytes and compounds isolated from Calophyllum inophyllum or DCK derivates showed inhibitory activity against human RT. Furthermore, natural isocoumarins isolated from cultures of fungi or hydroxycoumarins were able to inhibit human DNA polymerase. In view of their importance as drugs and biologically active natural products, and their medicinally useful properties, extensive studies have been carried out on the synthesis of coumarin compounds in recent years. Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs), a class of antiretroviral chemotherapeutic agents, act by binding to an allosteric pocket showing, generally, low toxicity. This work tries to summarize the investigation about natural and synthetic coumarins with the ability to inhibit key enzymes that play a crucial role in DNA metabolism and their possible application as antiretroviral and antitumoral agents.

  9. UV-B radiation induces epithelial tumors in mice lacking DNA polymerase eta and mesenchymal tumors in mice deficient for DNA polymerase iota.

    Science.gov (United States)

    Ohkumo, Tsuyoshi; Kondo, Yuji; Yokoi, Masayuki; Tsukamoto, Tetsuya; Yamada, Ayumi; Sugimoto, Taiki; Kanao, Rie; Higashi, Yujiro; Kondoh, Hisato; Tatematsu, Masae; Masutani, Chikahide; Hanaoka, Fumio

    2006-10-01

    DNA polymerase eta (Pol eta) is the product of the Polh gene, which is responsible for the group variant of xeroderma pigmentosum, a rare inherited recessive disease which is characterized by susceptibility to sunlight-induced skin cancer. We recently reported in a study of Polh mutant mice that Pol eta is involved in the somatic hypermutation of immunoglobulin genes, but the cancer predisposition of Polh-/- mice has not been examined until very recently. Another translesion synthesis polymerase, Pol iota, a Pol eta paralog encoded by the Poli gene, is naturally deficient in the 129 mouse strain, and the function of Pol iota is enigmatic. Here, we generated Polh Poli double-deficient mice and compared the tumor susceptibility of them with Polh- or Poli-deficient animals under the same genetic background. While Pol iota deficiency does not influence the UV sensitivity of mouse fibroblasts irrespective of Polh genotype, Polh Poli double-deficient mice show slightly earlier onset of skin tumor formation. Intriguingly, histological diagnosis after chronic treatment with UV light reveals that Pol iota deficiency leads to the formation of mesenchymal tumors, such as sarcomas, that are not observed in Polh(-/-) mice. These results suggest the involvement of the Pol eta and Pol iota proteins in UV-induced skin carcinogenesis.

  10. UV-B Radiation Induces Epithelial Tumors in Mice Lacking DNA Polymerase η and Mesenchymal Tumors in Mice Deficient for DNA Polymerase ι

    Science.gov (United States)

    Ohkumo, Tsuyoshi; Kondo, Yuji; Yokoi, Masayuki; Tsukamoto, Tetsuya; Yamada, Ayumi; Sugimoto, Taiki; Kanao, Rie; Higashi, Yujiro; Kondoh, Hisato; Tatematsu, Masae; Masutani, Chikahide; Hanaoka, Fumio

    2006-01-01

    DNA polymerase η (Pol η) is the product of the Polh gene, which is responsible for the group variant of xeroderma pigmentosum, a rare inherited recessive disease which is characterized by susceptibility to sunlight-induced skin cancer. We recently reported in a study of Polh mutant mice that Pol η is involved in the somatic hypermutation of immunoglobulin genes, but the cancer predisposition of Polh−/− mice has not been examined until very recently. Another translesion synthesis polymerase, Pol ι, a Pol η paralog encoded by the Poli gene, is naturally deficient in the 129 mouse strain, and the function of Pol ι is enigmatic. Here, we generated Polh Poli double-deficient mice and compared the tumor susceptibility of them with Polh- or Poli-deficient animals under the same genetic background. While Pol ι deficiency does not influence the UV sensitivity of mouse fibroblasts irrespective of Polh genotype, Polh Poli double-deficient mice show slightly earlier onset of skin tumor formation. Intriguingly, histological diagnosis after chronic treatment with UV light reveals that Pol ι deficiency leads to the formation of mesenchymal tumors, such as sarcomas, that are not observed in Polh−/− mice. These results suggest the involvement of the Pol η and Pol ι proteins in UV-induced skin carcinogenesis. PMID:17015482

  11. New insights into the QuikChangeTM process guide the use of Phusion DNA polymerase for site-directed mutagenesis

    Science.gov (United States)

    Xia, Yongzhen; Chu, Wenqiao; Qi, Qingsheng; Xun, Luying

    2015-01-01

    The QuikChangeTM site-directed mutagenesis method is popular but imperfect. An improvement by using partially overlapping primers has been reported several times; however, it is incompatible with the proposed mechanism. The QuikChangeTM method using complementary primers is proposed to linearly amplify a target plasmid with the products annealing to produce double-stranded DNA molecules with 5′-overhangs. The overhang annealing is supposed to form circular plasmids with staggered breaks, which can be repaired in Escherichia coli after transformation. Here, we demonstrated that the PCR enzyme fills the 5′-overhangs in the early cycles, and the product is then used as the template for exponential amplification. The linear DNA molecules with homologous ends are joined to generate the plasmid with the desired mutations through homologous recombination in E. coli. The correct understanding is important to method improvements, guiding us to use partially overlapping primers and Phusion DNA polymerase for site-directed mutagenesis. Phusion did not amplify a plasmid with complementary primers but used partially overlapping primers to amplify the plasmid, producing linear DNA molecules with homologous ends for site-directed mutagenesis. PMID:25399421

  12. Amplified fragment length polymorphism analysis to assess crossover interference and homozygosity in gynogenetic diploid Pacific abalone (Haliotis discus hannai).

    Science.gov (United States)

    Nie, H-T; Li, Q; Kong, L-F

    2014-06-01

    Recombination analysis in gynogenetic diploids is a powerful tool for assessing the degree of inbreeding, investigating crossover events and understanding chiasma interference during meiosis. To estimate the marker-centromere recombination rate, the inheritance pattern of 654 amplified fragment length polymorphism (AFLP) markers was examined in the 72-h veliger larvae of two meiogynogenetic diploid families in the Pacific abalone (Haliotis discus hannai). The second-division segregation frequency (y) of the AFLP loci ranged from 0.00 to 0.96, with 23.9% of loci showing y-values higher than 0.67, evidencing the existence of interference. The average recombination frequency across the 654 AFLP loci was 0.45, allowing estimation of the fixation index of 0.55, indicating that meiotic gynogenesis could provide an effective means of rapid inbreeding in the Pacific abalone. The AFLP loci have a small proportion (4.4%) of y-values greater than 0.90, suggesting that a relatively low or intermediate degree of chiasma interference occurred in the abalone chromosomes. The information obtained in this study will enhance our understanding of the abalone genome and will be useful for genetic studies in the species. © 2014 Stichting International Foundation for Animal Genetics.

  13. Selection criteria for scoring amplified fragment length polymorphisms (AFLPs) positively affect the reliability of population genetic parameter estimates.

    Science.gov (United States)

    Herrmann, Doris; Poncet, Bénédicte N; Manel, Stéphanie; Rioux, Delphine; Gielly, Ludovic; Taberlet, Pierre; Gugerli, Felix

    2010-04-01

    A reliable data set is a fundamental prerequisite for consistent results and conclusions in population genetic studies. However, marker scoring of genetic fingerprints such as amplified fragment length polymorphisms (AFLPs) is a highly subjective procedure, inducing inconsistencies owing to personal or laboratory-specific criteria. We applied two alternative marker selection algorithms, the newly developed script scanAFLP and the recently published AFLPScore, to a large AFLP genome scan to test how population genetic parameters and error rates were affected. These results were confronted with replicated random selections of marker subsets. We show that the newly developed marker selection criteria reduced the mismatch error rate and had a notable influence on estimates of genetic diversity and differentiation. Both effects are likely to influence biological inference. For example, genetic diversity (HS) was 29% lower while genetic differentiation (FST) was 8% higher when applying scanAFLP compared with AFLPScore. Likewise, random selections of markers resulted in substantial deviations of population genetic parameters compared with the data sets including specific selection criteria. These randomly selected marker sets showed surprisingly low variance among replicates. We conclude that stringent marker selection and phenotype calling reduces noise in the data set while retaining patterns of population genetic structure.

  14. Evaluation of randomly amplified polymorphic DNA and pulsed field gel electrophoresis techniques for molecular typing of Dermatophilus congolensis.

    Science.gov (United States)

    Larrasa, José; García-Sánchez, Alfredo; Ambrose, Nicholas C; Parra, Alberto; Alonso, Juan M; Rey, Joaquín M; Hermoso-de-Mendoza, Miguel; Hermoso-de-Mendoza, Javier

    2004-11-01

    This study aimed to evaluate molecular typing methods useful for standardization of strains in experimental work on dermatophilosis. Fifty Dermatophilus congolensis isolates, collected from sheep, cattle, horse and a deer, were analyzed by randomly amplified polymorphic DNA (RAPD) method using twenty-one different primers, and the results were compared with those obtained by typing with a pulsed field gel electrophoresis (PFGE) method using the restriction digest enzyme Sse8387I. The typeability, reproducibility and discriminatory power of RAPD and Sse8387I-PFGE typing were calculated. Both typing methods were highly reproducible. Of the two techniques, Sse8387I-PFGE was the least discriminating (Dice Index (DI), 0.663) and could not distinguish between epidemiologically related isolates, whereas RAPD showed an excellent discriminatory power (DI, 0.7694-0.9722). Overall, the degree of correlation between RAPD and PFGE typing was significantly high (r, 0.8822). We conclude that the DNA profiles generated by either RAPD or PFGE can be used to differentiate epidemiologically unrelated isolates. The results of this study strongly suggest that at least two independent primers are used for RAPD typing in order to improve its discriminatory power, and that PFGE is used for confirmation of RAPD results.

  15. Amplified fragment length polymorphism used to investigate genetic variability of the stable fly (Diptera: Muscidae) across North America.

    Science.gov (United States)

    Kneeland, K M; Skoda, S R; Foster, J E

    2013-09-01

    The stable fly, Stomoxys calcitrans (L.), is a cosmopolitan pest of livestock and humans. The pestiferous nature and painful bite cause stress to cattle and other animals. The stress and resulting avoidance behaviors manifest as reductions in weight gain or milk production in cattle; estimated annual economic loss in the United States exceeds US$2 billion. Understanding the population genetics of stable flies could provide information on their population dynamics, origins of outbreaks, and geographical patterns of insecticide resistance, resulting in a tactical advantage for developing management strategies. Previous studies, mostly on a local scale, reported a high level of gene flow between locations. Here, we report results wherein amplified fragment length polymorphism was used to determine genetic diversity of stable fly samples consisting of 11-40 individuals from 12 locations representing the United States, Canada, and Panama. The Analysis of Molecular Variance showed that the majority of genetic diversity was within groups; very little was among groups. The F(ST) and G(ST) values were low ( 1.0). The tests of neutrality suggested population expansion, and no genetic differentiation was found between locations. These results show that stable flies have a high level of gene flow on a continental scale, with limited isolation owing to distance or geographical barriers.

  16. Comparison of statistical methods for identification of Streptococcus thermophilus, Enterococcus faecalis, and Enterococcus faecium from randomly amplified polymorphic DNA patterns.

    Science.gov (United States)

    Moschetti, G; Blaiotta, G; Villani, F; Coppola, S; Parente, E

    2001-05-01

    Thermophilic streptococci play an important role in the manufacture of many European cheeses, and a rapid and reliable method for their identification is needed. Randomly amplified polymorphic DNA (RAPD) PCR (RAPD-PCR) with two different primers coupled to hierarchical cluster analysis has proven to be a powerful tool for the classification and typing of Streptococcus thermophilus, Enterococcus faecium, and Enterococcus faecalis (G. Moschetti, G. Blaiotta, M. Aponte, P. Catzeddu, F. Villani, P. Deiana, and S. Coppola, J. Appl. Microbiol. 85:25-36, 1998). In order to develop a fast and inexpensive method for the identification of thermophilic streptococci, RAPD-PCR patterns were generated with a single primer (XD9), and the results were analyzed using artificial neural networks (Multilayer Perceptron, Radial Basis Function network, and Bayesian network) and multivariate statistical techniques (cluster analysis, linear discriminant analysis, and classification trees). Cluster analysis allowed the identification of S. thermophilus but not of enterococci. A Bayesian network proved to be more effective than a Multilayer Perceptron or a Radial Basis Function network for the identification of S. thermophilus, E. faecium, and E. faecalis using simplified RAPD-PCR patterns (obtained by summing the bands in selected areas of the patterns). The Bayesian network also significantly outperformed two multivariate statistical techniques (linear discriminant analysis and classification trees) and proved to be less sensitive to the size of the training set and more robust in the response to patterns belonging to unknown species.

  17. Application of Fluorescent Amplified Fragment Length Polymorphism for Comparison of Human and Animal Isolates of Yersinia enterocolitica

    Science.gov (United States)

    Fearnley, Catherine; On, Stephen L. W.; Kokotovic, Branko; Manning, Georgina; Cheasty, Tom; Newell, Diane G.

    2005-01-01

    An amplified fragment length polymorphism (AFLP) method, developed to genotype Yersinia enterocolitica, has been used to investigate 70 representative strains isolated from humans, pigs, sheep, and cattle in the United Kingdom. AFLP primarily distinguished Y. enterocolitica strains according to their biotype, with strains dividing into two distinct clusters: cluster A, comprising largely the putatively pathogenic biotypes (BT2 to -4), and cluster B, comprising the putatively nonpathogenic biotype 1A strains and a single BT1B isolate. Within these two clusters, subclusters formed largely on the basis of serotype. However, AFLP profiles also allowed differentiation of strains within these serotype-related subclusters, indicating the high discriminatory power of the technique for Y. enterocolitica. Investigation of the relationship between strain AFLP profile and host confirmed that pigs are, and provides further proof that sheep may be, potential sources of human infection with putatively pathogenic strains. However, the results suggest that some strains causing human disease do not come from veterinary sources identifiable at this time. The distribution of some BT1A isolates within cluster A raises questions about the relationship between virulence potential and biotype. PMID:16151073

  18. Random amplified polymorphic DNA typing of clinical and environmental Aeromonas hydrophila strains from Limpopo province, South Africa.

    Science.gov (United States)

    Ramalivhana, J N; Obi, C L; Samie, A; Labuschagne, C; Weldhagen, G F

    2010-02-01

    The aim of the present study was to determine the genetic relatedness of strains isolated from diarrhoeal stool and water specimens collected from water-storage containers from different geographical areas in the Limpopo province. In total, 32 Aeromonas strains isolated from stool specimens collected from HIV/AIDS patients suffering from gastroenteritis and their household drinking-water stored in 20-L and 25-L containers were analyzed by random amplified polymorphic DNA PCR (RAPD). The RAPD fingerprints obtained proved reproducible when repeated on three different occasions using whole-cell DNA isolated from the Aeromonas strains. In total, 12 unique RAPD fingerprints were found. The results revealed a tendency of the isolates to cluster according to their origin of isolation (best-cut test 0.80 and bootstrap values >50%). However, a certain degree of similarity was also observed between isolates of water sources and clinical sources which indicated genetic relatedness. There were also genetic similarities between the clinical and the environmental strains of Aeromonas spp. isolated from different geographical areas. This study has demonstrated the genetic relatedness of Aeromonas hydrophila isolates from household drinking-water and clinical sources in South Africa, which may be due to cross-contamination from water to patients or vice-versa. This observation is of public-health significance, particularly in the era of HIV/AIDS. This study points to the importance of monitoring and evaluating infection-control measures for improved hygiene and to prevent cross-contaminations.

  19. Maintenance of Genome Integrity: How Mammalian Cells Orchestrate Genome Duplication by Coordinating Replicative and Specialized DNA Polymerases

    Directory of Open Access Journals (Sweden)

    Ryan Barnes

    2017-01-01

    Full Text Available Precise duplication of the human genome is challenging due to both its size and sequence complexity. DNA polymerase errors made during replication, repair or recombination are central to creating mutations that drive cancer and aging. Here, we address the regulation of human DNA polymerases, specifically how human cells orchestrate DNA polymerases in the face of stress to complete replication and maintain genome stability. DNA polymerases of the B-family are uniquely adept at accurate genome replication, but there are numerous situations in which one or more additional DNA polymerases are required to complete genome replication. Polymerases of the Y-family have been extensively studied in the bypass of DNA lesions; however, recent research has revealed that these polymerases play important roles in normal human physiology. Replication stress is widely cited as contributing to genome instability, and is caused by conditions leading to slowed or stalled DNA replication. Common Fragile Sites epitomize “difficult to replicate” genome regions that are particularly vulnerable to replication stress, and are associated with DNA breakage and structural variation. In this review, we summarize the roles of both the replicative and Y-family polymerases in human cells, and focus on how these activities are regulated during normal and perturbed genome replication.

  20. Randomly amplified polymorphic DNA analysis provides rapid differentiation of methicillin-resistant coagulase-negative staphylococcus bacteremia isolates in pediatric hospital.

    Science.gov (United States)

    Bingen, E; Barc, M C; Brahimi, N; Vilmer, E; Beaufils, F

    1995-01-01

    Coagulase-negative staphylococci (CoNS) are now recognized as the most common cause of nosocomial bacteremia in pediatric patients. Randomly amplified polymorphic DNA analysis was used to study the relationships among 12 isolates of CoNS obtained from eight patients with catheter-related bacteremia in two distinct wards of our hospital and 6 epidemiologically unrelated strains. With this method, we were able to discriminate isolates that otherwise were indistinguishable by conventional criteria such as biochemical typing and antibiotic susceptibility patterns. Our results indicate that there were episodes of cross-infections among four patients in one ward but independent infectious episodes among four patients in the other ward. Randomly amplified polymorphic DNA analysis is a rapid method which seems particularly well suited to the epidemiological study of CoNS isolates. PMID:7650208

  1. The essential DNA polymerases δ and ε are involved in repair of UV-damaged DNA in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Halas, A.; Policinska, Z.; Baranowska, H.; Jachymczyk, W.J.

    1999-01-01

    We have studied the ability of yeast DNA polymerases to carry out repair of lesions caused by UV irradiation in Saccharomyces cerevisiae. By the analysis of postirradiation relative molecular mass changes in cellular DNA of different DNA polymerases mutant strains, it was established that mutations in DNA polymerases δ and ε showed accumulation of single-strand breaks indicating defective repair. Mutations in other DNA polymerase genes exhibited no defects in DNA repair. Thus, the data obtained suggest that DNA polymerases δ and ε are both necessary for DNA replication and for repair of lesions caused by UV irradiation. The results are discussed in the light of current concepts concerning the specificity of DNA polymerases in DNA repair. (author)

  2. Application of Amplified Fragment Length Polymorphism Fingerprinting for Taxonomy and Identification of the Soft Rot Bacteria Erwinia carotovora and Erwinia chrysanthemi

    OpenAIRE

    Avrova, Anna O.; Hyman, Lizbeth J.; Toth, Rachel L.; Toth, Ian K.

    2002-01-01

    The soft rot bacteria Erwinia carotovora and Erwinia chrysanthemi are important pathogens of potato and other crops. However, the taxonomy of these pathogens, particularly at subspecies level, is unclear. An investigation using amplified fragment length polymorphism (AFLP) fingerprinting was undertaken to determine the taxonomic relationships within this group based on their genetic relatedness. Following cluster analysis on the similarity matrices derived from the AFLP gels, four clusters (c...

  3. Penentuan Marka Genetik Escherichia coli O157:H7 Asal Hewan dan Manusia dengan Metode Random Amplified Polymorphic DNA (GENETIC MARKERS IDENTIFICATION OF ESCHERICHIA COLI O157:H7 ORIGINATED FROM ANIMALS AND HUMAN BY USING RANDOM AMPLIFIED POLYMORPHIC DNA

    Directory of Open Access Journals (Sweden)

    I Wayan Suardana

    2014-10-01

    Full Text Available The use of random amplified polymorphic DNA (RAPD as a method to identify a genetic markerof bacteria is widely used by researcher. This method is known as a simple, faster, and reliabletechnicque. This study is to find out the aplication of RAPD method in order to identify specific markersof E. coli O157:H7 as a zoonotic agent. The study began by cultivating of 20 isolates of E. coli O157:H7colected by previous study that consist of 2 isolates originated from cattle feces, 2 isolates originatedfrom beef, 2 isolates originated from chicken feces, 2 isolates originated from healthy human and 11isolates originated from unhealthy human (human with kidney failure. All isolates were confirmed byculturing on selective medium sorbitol MacConkey agar (SMAC. Confirmation were followed by testingon O157 latex aglutination, and finally by testing on H7 antiserum. RAPD method as molecularanalysis was performed using decamer primers mixture OPA-01, OPA-02, OPA-03, and OPA-04.Results of study showed both bands 1721 and 700 bp are specifically to differentiate of isolatesoriginated from cases of healthy and unhealthy human. On the other hand, bands with position 1721 bp,300 bp, and 250 bp indicate the isolates originated from unhealthy human, healthy human and chicken,respectively. Isolates from beef are characterized by both bands 1400 and 429 bp, and the isolates fromcattle feces are identified by band with position 342 bp. The specific bands are considered as markers inorder to know the source of E. coli O157:H7 fastly.

  4. DnaB gene product-independence of DNA polymerase III-directed repair synthesis in Escherichia coli K-12

    International Nuclear Information System (INIS)

    Billen, D.; Hellermann, G.R.

    1977-01-01

    An investigation has been carried out into the role of dnaB gene product in X-ray-induced repair synthesis carried out by DNA polymerase III in toluene-treated Escherichia coli K-12. A polAl polBlOO dnaB mutant deficient in both DNA polymerase I and II activities was used, and it was shown that the level of X-ray-induced, ATP-dependent, non-conservative DNA synthesis was, unlike semi-conservative DNA synthesis, unaffected by a temperature shift from 30 0 to 42 0 C. The dnaB gene product was not therefore necessary for DNA polymerase III-directed repair synthesis, which occurred in the absence of replicative synthesis. (U.K.)

  5. [The isolation and partial purification of 2 DNA-dependent DNA polymerases from Acholeplasma laidlawii PG-8].

    Science.gov (United States)

    Bezuglyĭ, S V; Babichev, V V; Skripal', I G; Malinovskaia, L P

    1991-01-01

    Two forms of DNA-dependent DNA-polymerase have been isolated and partially purified from the limited amount of biomass of cells Acholeplasma laidlawii PG-8, a typical representative of genus Acholeplasmataceae, as a result of successive chromatography on the columns with DEAE-cellulose DE-52 and Green A-sepharose. The first form of DNA-polymerase is eluted from the ion-exchange column with NaCl concentration of 0.1 M from the column with Green A-sepharose of 0.27 M, while the second form-with NaCl concentrations of 0.6 and 0.4 M, respectively. The both enzymatic activities are able to implement DNA synthesis. The conditions of DNA-polymerase production proved to be rather convenient for isolation of the concentrated and highly active enzymes.

  6. Fidelity and Mutational Spectrum of Pfu DNA Polymerase on a Human Mitochondrial DNA Sequence

    Science.gov (United States)

    André, Paulo; Kim, Andrea; Khrapko, Konstantin; Thilly, William G.

    1997-01-01

    The study of rare genetic changes in human tissues requires specialized techniques. Point mutations at fractions at or below 10−6 must be observed to discover even the most prominent features of the point mutational spectrum. PCR permits the increase in number of mutant copies but does so at the expense of creating many additional mutations or “PCR noise”. Thus, each DNA sequence studied must be characterized with regard to the DNA polymerase and conditions used to avoid interpreting a PCR-generated mutation as one arising in human tissue. The thermostable DNA polymerase derived from Pyrococcus furiosus designated Pfu has the highest fidelity of any DNA thermostable polymerase studied to date, and this property recommends it for analyses of tissue mutational spectra. Here, we apply constant denaturant capillary electrophoresis (CDCE) to separate and isolate the products of DNA amplification. This new strategy permitted direct enumeration and identification of point mutations created by Pfu DNA polymerase in a 96-bp low melting domain of a human mitochondrial sequence despite the very low mutant fractions generated in the PCR process. This sequence, containing part of the tRNA glycine and NADH dehydrogenase subunit 3 genes, is the target of our studies of mitochondrial mutagenesis in human cells and tissues. Incorrectly synthesized sequences were separated from the wild type as mutant/wild-type heteroduplexes by sequential enrichment on CDCE. An artificially constructed mutant was used as an internal standard to permit calculation of the mutant fraction. Our study found that the average error rate (mutations per base pair duplication) of Pfu was 6.5 × 10−7, and five of its more frequent mutations (hot spots) consisted of three transversions (GC → TA, AT → TA, and AT → CG), one transition (AT → GC), and one 1-bp deletion (in an AAAAAA sequence). To achieve an even higher sensitivity, the amount of Pfu-induced mutants must be

  7. Genetic relationship and diversity in a sesame (Sesamum indicum L. germplasm collection using amplified fragment length polymorphism (AFLP

    Directory of Open Access Journals (Sweden)

    Karlovsky Petr

    2006-02-01

    Full Text Available Abstract Background Sesame is an important oil crop in tropical and subtropical areas. Despite its nutritional value and historic and cultural importance, the research on sesame has been scarce, particularly as far as its genetic diversity is concerned. The aims of the present study were to clarify genetic relationships among 32 sesame accessions from the Venezuelan Germplasm Collection, which represents genotypes from five diversity centres (India, Africa, China-Korea-Japan, Central Asia and Western Asia, and to determine the association between geographical origin and genetic diversity using amplified fragment length polymorphism (AFLP. Results Large genetic variability was found within the germplasm collection. A total of 457 AFLP markers were recorded, 93 % of them being polymorphic. The Jaccard similarity coefficient ranged from 0.38 to 0.85 between pairs of accessions. The UPGMA dendrogram grouped 25 of 32 accessions in two robust clusters, but it has not revealed any association between genotype and geographical origin. Indian, African and Chinese-Korean-Japanese accessions were distributed throughout the dendrogram. A similar pattern was obtained using principal coordinates analysis. Genetic diversity studies considering five groups of accessions according to the geographic origin detected that only 20 % of the total diversity was due to diversity among groups using Nei's coefficient of population differentiation. Similarly, only 5% of the total diversity was attributed to differences among groups by the analysis of molecular variance (AMOVA. This small but significant difference was explained by the fact that the Central Asia group had a lower genetic variation than the other diversity centres studied. Conclusion We found that our sesame collection was genetically very variable and did not show an association between geographical origin and AFLP patterns. This result suggests that there was considerable gene flow among diversity centres

  8. Genetic relationship and diversity in a sesame (Sesamum indicum L.) germplasm collection using amplified fragment length polymorphism (AFLP)

    Science.gov (United States)

    Laurentin, Hernán E; Karlovsky, Petr

    2006-01-01

    Background Sesame is an important oil crop in tropical and subtropical areas. Despite its nutritional value and historic and cultural importance, the research on sesame has been scarce, particularly as far as its genetic diversity is concerned. The aims of the present study were to clarify genetic relationships among 32 sesame accessions from the Venezuelan Germplasm Collection, which represents genotypes from five diversity centres (India, Africa, China-Korea-Japan, Central Asia and Western Asia), and to determine the association between geographical origin and genetic diversity using amplified fragment length polymorphism (AFLP). Results Large genetic variability was found within the germplasm collection. A total of 457 AFLP markers were recorded, 93 % of them being polymorphic. The Jaccard similarity coefficient ranged from 0.38 to 0.85 between pairs of accessions. The UPGMA dendrogram grouped 25 of 32 accessions in two robust clusters, but it has not revealed any association between genotype and geographical origin. Indian, African and Chinese-Korean-Japanese accessions were distributed throughout the dendrogram. A similar pattern was obtained using principal coordinates analysis. Genetic diversity studies considering five groups of accessions according to the geographic origin detected that only 20 % of the total diversity was due to diversity among groups using Nei's coefficient of population differentiation. Similarly, only 5% of the total diversity was attributed to differences among groups by the analysis of molecular variance (AMOVA). This small but significant difference was explained by the fact that the Central Asia group had a lower genetic variation than the other diversity centres studied. Conclusion We found that our sesame collection was genetically very variable and did not show an association between geographical origin and AFLP patterns. This result suggests that there was considerable gene flow among diversity centres. Future germplasm

  9. Absence of ultraviolet-inducible DNA polymerase I-like activity in Escherichia coli strains harbouring R plasmids

    International Nuclear Information System (INIS)

    Upton, C.; Pinney, R.J.

    1981-01-01

    No DNA polymerase I-like activity was found associated with the ultraviolet (u.v.)-protecting plasmids R205, R46 or pKM101 in either uninduced or u.v.-induced wild-type or DNA polymerase I-deficient strains of Escherichia coli. Nor was any plasmid-associated polymerase activity detectable in similar systems containing u.v.-irradiated DNA as template. However, plasmids R205, R46 and pKM 101 still increased survival and mutagenesis of the polymerase I-deficient E. coli strain after u.v. irradiation. (author)

  10. Antimicrobial susceptibility, virulence genes, and randomly amplified polymorphic DNA analysis of Staphylococcus aureus recovered from bovine mastitis in Ningxia, China.

    Science.gov (United States)

    Wang, Dong; Zhang, Limei; Zhou, Xuezhang; He, Yulong; Yong, Changfu; Shen, Mingliang; Szenci, Otto; Han, Bo

    2016-12-01

    Staphylococcus aureusis the leading pathogen involved inbovine mastitis, but knowledgeabout antimicrobial resistance, virulence factors, and genotypes of Staphylococcus aureus resulting in bovine mastitis in Ningxia, China, is limited. Therefore, antimicrobial susceptibility, virulence gene, and randomly amplified polymorphic DNA (RAPD) analyses of Staph. aureus were carried out. A total of 327 milk samples from cows with clinical and subclinical mastitis in 4 regions of Ningxia were used for the isolation and identification of pathogens according to phenotypic and molecular characteristics. Antimicrobial susceptibility against 22 antimicrobial agents was determined by disk diffusion. The presence of 8 virulence genes in Staph. aureus isolates was tested by PCR. Genotypes of isolates were investigated based on RAPD. Results showed that 35 isolates obtained from mastitis milk samples were identified as Staph. aureus. The isolates were resistant to sulfamethoxazole (100%), penicillin G (94.3%), ampicillin (94.3%), erythromycin (68.6%), azithromycin (68.6%), clindamycin (25.7%), amoxicillin (11.4%), and tetracycline (5.7%). All of the isolates contained one or more virulence genes with average (standard deviation) of 6.6±1.6. The most prevalent virulence genes were hlb (97.1%), followed by fnbpA, hla, coa (94.3% each), nuc (85.7%), fnbpB (80%), clfA (77.1%), and tsst-1 (40%). Nine different gene patterns were found and 3 of them were the dominant gene combinations (77.1%). Staphylococcus aureus isolates (n=35) were divided into 6 genotypes by RAPD tying, the genotypes III and VI were the most prevalent genotypes. There was greatvariation in genotypes of Staph. aureus isolates, not only among different farms, but also within the same herd in Ningxia province. The study showed a high incidence of Staph. aureus with genomic variation of resistance genes, which is matter of great concern in public and animal health in Ningxia province of China. Copyright © 2016 American

  11. A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering

    Directory of Open Access Journals (Sweden)

    Nørholm Morten HH

    2010-03-01

    Full Text Available Abstract Background The combined use of restriction enzymes with PCR has revolutionized molecular cloning, but is inherently restricted by the content of the manipulated DNA sequences. Uracil-excision based cloning is ligase and sequence independent and allows seamless fusion of multiple DNA sequences in simple one-tube reactions, with higher accuracy than overlapping PCR. Results Here, the addition of a highly efficient DNA polymerase and a low-background-, large-insertion- compatible site-directed mutagenesis protocol is described, largely expanding the versatility of uracil-excision DNA engineering. Conclusions The different uracil-excision based molecular tools that have been developed in an open-source fashion, constitute a comprehensive, yet simple and inexpensive toolkit for any need in molecular cloning.

  12. A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering.

    Science.gov (United States)

    Nørholm, Morten H H

    2010-03-16

    The combined use of restriction enzymes with PCR has revolutionized molecular cloning, but is inherently restricted by the content of the manipulated DNA sequences. Uracil-excision based cloning is ligase and sequence independent and allows seamless fusion of multiple DNA sequences in simple one-tube reactions, with higher accuracy than overlapping PCR. Here, the addition of a highly efficient DNA polymerase and a low-background-, large-insertion- compatible site-directed mutagenesis protocol is described, largely expanding the versatility of uracil-excision DNA engineering. The different uracil-excision based molecular tools that have been developed in an open-source fashion, constitute a comprehensive, yet simple and inexpensive toolkit for any need in molecular cloning.

  13. Molecular events during translocation and proofreading extracted from 200 static structures of DNA polymerase

    Science.gov (United States)

    Ren, Zhong

    2016-01-01

    DNA polymerases in family B are workhorses of DNA replication that carry out the bulk of the job at a high speed with high accuracy. A polymerase in this family relies on a built-in exonuclease for proofreading. It has not been observed at the atomic resolution how the polymerase advances one nucleotide space on the DNA template strand after a correct nucleotide is incorporated, that is, a process known as translocation. It is even more puzzling how translocation is avoided after the primer strand is excised by the exonuclease and returned back to the polymerase active site once an error occurs. The structural events along the bifurcate pathways of translocation and proofreading have been unwittingly captured by hundreds of structures in Protein Data Bank. This study analyzes all available structures of a representative member in family B and reveals the orchestrated event sequence during translocation and proofreading. PMID:27325739

  14. Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase γ.

    Science.gov (United States)

    Copeland, William C; Kasiviswanathan, Rajesh; Longley, Matthew J

    2016-01-01

    Mitochondrial DNA is replicated by the nuclear-encoded DNA polymerase γ (pol γ) which is composed of a single 140 kDa catalytic subunit and a dimeric 55 kDa accessory subunit. Mitochondrial DNA is vulnerable to various forms of damage, including several types of oxidative lesions, UV-induced photoproducts, chemical adducts from environmental sources, as well as alkylation and inter-strand cross-links from chemotherapy agents. Although many of these lesions block DNA replication, pol γ can bypass some lesions by nucleotide incorporation opposite a template lesion and further extension of the DNA primer past the lesion. This process of translesion synthesis (TLS) by pol γ can occur in either an error-free or an error-prone manner. Assessment of TLS requires extensive analysis of oligonucleotide substrates and replication products by denaturing polyacrylamide sequencing gels. This chapter presents protocols for the analysis of translesion DNA synthesis.

  15. Rapid Detection and Identification of a Pathogen's DNA Using Phi29 DNA Polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.; Dunn, J.; Gao, S.; Bruno, J. F.; Luft, B. J.

    2008-10-31

    Zoonotic pathogens including those transmitted by insect vectors are some of the most deadly of all infectious diseases known to mankind. A number of these agents have been further weaponized and are widely recognized as being potentially significant biothreat agents. We describe a novel method based on multiply-primed rolling circle in vitro amplification for profiling genomic DNAs to permit rapid, cultivation-free differential detection and identification of circular plasmids in infectious agents. Using Phi29 DNA polymerase and a two-step priming reaction we could reproducibly detect and characterize by DNA sequencing circular DNA from Borrelia burgdorferi B31 in DNA samples containing as little as 25 pg of Borrelia DNA amongst a vast excess of human DNA. This simple technology can ultimately be adapted as a sensitive method to detect specific DNA from both known and unknown pathogens in a wide variety of complex environments.

  16. DNA polymerase-α regulates type I interferon activation through cytosolic RNA:DNA synthesis

    Science.gov (United States)

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J.; Xing, Chao; Wang, Richard C.; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K.; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R.; Burstein, Ezra

    2016-01-01

    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations disrupting nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts expression of POLA1, the gene encoding the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency results in increased type I interferon production. This enzyme is necessary for RNA:DNA primer synthesis during DNA replication and strikingly, POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Altogether, this work identified POLA1 as a critical regulator of the type I interferon response. PMID:27019227

  17. Functional Analysis of Cancer-Associated DNA Polymerase ε Variants in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Stephanie R. Barbari

    2018-03-01

    Full Text Available DNA replication fidelity relies on base selectivity of the replicative DNA polymerases, exonucleolytic proofreading, and postreplicative DNA mismatch repair (MMR. Ultramutated human cancers without MMR defects carry alterations in the exonuclease domain of DNA polymerase ε (Polε. They have been hypothesized to result from defective proofreading. However, modeling of the most common variant, Polε-P286R, in yeast produced an unexpectedly strong mutator effect that exceeded the effect of proofreading deficiency by two orders of magnitude and indicated the involvement of other infidelity factors. The in vivo consequences of many additional Polε mutations reported in cancers remain poorly understood. Here, we genetically characterized 13 cancer-associated Polε variants in the yeast system. Only variants directly altering the DNA binding cleft in the exonuclease domain elevated the mutation rate. Among these, frequently recurring variants were stronger mutators than rare variants, in agreement with the idea that mutator phenotype has a causative role in tumorigenesis. In nearly all cases, the mutator effects exceeded those of an exonuclease-null allele, suggesting that mechanisms distinct from loss of proofreading may drive the genome instability in most ultramutated tumors. All mutator alleles were semidominant, supporting the view that heterozygosity for the polymerase mutations is sufficient for tumor development. In contrast to the DNA binding cleft alterations, peripherally located variants, including a highly recurrent V411L, did not significantly elevate mutagenesis. Finally, the analysis of Polε variants found in MMR-deficient tumors suggested that the majority cause no mutator phenotype alone but some can synergize with MMR deficiency to increase the mutation rate.

  18. A structural role for the PHP domain in E. coli DNA polymerase III.

    Science.gov (United States)

    Barros, Tiago; Guenther, Joel; Kelch, Brian; Anaya, Jordan; Prabhakar, Arjun; O'Donnell, Mike; Kuriyan, John; Lamers, Meindert H

    2013-05-14

    In addition to the core catalytic machinery, bacterial replicative DNA polymerases contain a Polymerase and Histidinol Phosphatase (PHP) domain whose function is not entirely understood. The PHP domains of some bacterial replicases are active metal-dependent nucleases that may play a role in proofreading. In E. coli DNA polymerase III, however, the PHP domain has lost several metal-coordinating residues and is likely to be catalytically inactive. Genomic searches show that the loss of metal-coordinating residues in polymerase PHP domains is likely to have coevolved with the presence of a separate proofreading exonuclease that works with the polymerase. Although the E. coli Pol III PHP domain has lost metal-coordinating residues, the structure of the domain has been conserved to a remarkable degree when compared to that of metal-binding PHP domains. This is demonstrated by our ability to restore metal binding with only three point mutations, as confirmed by the metal-bound crystal structure of this mutant determined at 2.9 Å resolution. We also show that Pol III, a large multi-domain protein, unfolds cooperatively and that mutations in the degenerate metal-binding site of the PHP domain decrease the overall stability of Pol III and reduce its activity. While the presence of a PHP domain in replicative bacterial polymerases is strictly conserved, its ability to coordinate metals and to perform proofreading exonuclease activity is not, suggesting additional non-enzymatic roles for the domain. Our results show that the PHP domain is a major structural element in Pol III and its integrity modulates both the stability and activity of the polymerase.

  19. DNA polymerase θ (POLQ), double-strand break repair, and cancer.

    Science.gov (United States)

    Wood, Richard D; Doublié, Sylvie

    2016-08-01

    DNA polymerase theta (pol θ) is encoded in the genomes of many eukaryotes, though not in fungi. Pol θ is encoded by the POLQ gene in mammalian cells. The C-terminal third of the protein is a family A DNA polymerase with additional insertion elements relative to prokaryotic homologs. The N-terminal third is a helicase-like domain with DNA-dependent ATPase activity. Pol θ is important in the repair of genomic double-strand breaks (DSBs) from many sources. These include breaks formed by ionizing radiation and topoisomerase inhibitors, breaks arising at stalled DNA replication forks, breaks introduced during diversification steps of the mammalian immune system, and DSB induced by CRISPR-Cas9. Pol θ participates in a route of DSB repair termed "alternative end-joining" (altEJ). AltEJ is independent of the DNA binding Ku protein complex and requires DNA end resection. Pol θ is able to mediate joining of two resected 3' ends harboring DNA sequence microhomology. "Signatures" of Pol θ action during altEJ are the frequent utilization of longer microhomologies, and the insertion of additional sequences at joining sites. The mechanism of end-joining employs the ability of Pol θ to tightly grasp a 3' terminus through unique contacts in the active site, allowing extension from minimally paired primers. Pol θ is involved in controlling the frequency of chromosome translocations and preserves genome integrity by limiting large deletions. It may also play a backup role in DNA base excision repair. POLQ is a member of a cluster of similarly upregulated genes that are strongly correlated with poor clinical outcome for breast cancer, ovarian cancer and other cancer types. Inhibition of pol θ is a compelling approach for combination therapy of radiosensitization. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Translesion Synthesis Past Acrolein-derived DNA Adducts by Human Mitochondrial DNA Polymerase γ*

    Science.gov (United States)

    Kasiviswanathan, Rajesh; Minko, Irina G.; Lloyd, R. Stephen; Copeland, William C.

    2013-01-01

    Acrolein, a mutagenic aldehyde, is produced endogenously by lipid peroxidation and exogenously by combustion of organic materials, including tobacco products. Acrolein reacts with DNA bases forming exocyclic DNA adducts, such as γ-hydroxy-1,N2-propano-2′-deoxyguanosine (γ-HOPdG) and γ-hydroxy-1,N6-propano-2′-deoxyadenosine (γ-HOPdA). The bulky γ-HOPdG adduct blocks DNA synthesis by replicative polymerases but can be bypassed by translesion synthesis polymerases in the nucleus. Although acrolein-induced adducts are likely to be formed and persist in mitochondrial DNA, animal cell mitochondria lack specialized translesion DNA synthesis polymerases to tolerate these lesions. Thus, it is important to understand how pol γ, the sole mitochondrial DNA polymerase in human cells, acts on acrolein-adducted DNA. To address this question, we investigated the ability of pol γ to bypass the minor groove γ-HOPdG and major groove γ-HOPdA adducts using single nucleotide incorporation and primer extension analyses. The efficiency of pol γ-catalyzed bypass of γ-HOPdG was low, and surprisingly, pol γ preferred to incorporate purine nucleotides opposite the adduct. Pol γ also exhibited ∼2-fold lower rates of excision of the misincorporated purine nucleotides opposite γ-HOPdG compared with the corresponding nucleotides opposite dG. Extension of primers from the termini opposite γ-HOPdG was accomplished only following error-prone purine nucleotide incorporation. However, pol γ preferentially incorporated dT opposite the γ-HOPdA adduct and efficiently extended primers from the correctly paired terminus, indicating that γ-HOPdA is probably nonmutagenic. In summary, our data suggest that acrolein-induced exocyclic DNA lesions can be bypassed by mitochondrial DNA polymerase but, in the case of the minor groove γ-HOPdG adduct, at the cost of unprecedented high mutation rates. PMID:23543747

  1. Domain topology of the DNA polymerase D complex from a hyperthermophilic archaeon Pyrococcus horikoshii.

    Science.gov (United States)

    Tang, Xiao-Feng; Shen, Yulong; Matsui, Eriko; Matsui, Ikuo

    2004-09-21

    Family D DNA polymerase (PolD) is a recently found DNA polymerase extensively existing in Euryarchaeota of Archaea. Here, we report the domain function of PolD in oligomerization and interaction with other proteins, which were characterized with the yeast two-hybrid (Y2H) and surface plasmon resonance (SPR) assays. A proliferating cell nuclear antigen, PhoPCNA, interacted with the N-terminus of the small subunit, DP1(1-200). Specific interaction between the remaining part of the small subunit, DP1(201-622), and the N-terminus of the large subunit, DP2(1-300), was detected by the Y2H assay. The SPR assay also indicated the intrasubunit interaction within the N-terminus, DP2(1-100), and the C-terminus, DP2(792-1163), of the large subunit. A synthetic 21 amino acid peptide corresponding to the sequence from cysteine cluster II, DP2(1290-1310), tightly interacted (a dissociation constant K(D) = 4.3 nM) with the N-terminus of the small subunit, DP1(1-200). Since the peptide could increase the 3'-5' exonuclease activity of DP1 [Shen et al. (2004) Nucleic Acids Res. 32, 158], the short region DP2(1290-1310) seems to play dual roles to form the PhoPolD complex and to regulate the 3'-5' exonuclease activity of DP1 through interaction with DP1(1-200). Furthermore, DP2(792-1163) containing the catalytic residues for DNA polymerization, Asp1122 and Asp1124, interacted with the intrasubunit domain, DP2(1-100), and the intersubunit domain, DP1(1-200). DP2(792-1163) probably forms the most important domain deeply involved in both the catalysis of DNA polymerization and stabilization of the PhoPolD complex through these multiple interactions.

  2. Diversity of structure and function of DNA polymerase (gp43) of T4-related bacteriophages.

    Science.gov (United States)

    Petrov, V M; Karam, J D

    2004-11-01

    The replication DNA polymerase (gp43) of the bacteriophage T4 is a member of the pol B family of DNA polymerases, which are found in all divisions of life in the biosphere. The enzyme is a modularly organized protein that has several activities in one polypeptide chain (approximately 900 amino acid residues). These include two catalytic functions, POL (polymerase) and EXO (3 -exonuclease), and specific binding activities to DNA, the mRNA for gp43, deoxyribonucleotides (dNTPs), and other T4 replication proteins. The gene for this multifunctional enzyme (gene 43) has been preserved in evolution of the diverse group of T4-like phages in nature, but has diverged in sequence, organization, and specificity of the binding functions of the gene product. We describe here examples of T4-like phages where DNA rearrangements have created split forms of gene 43 consisting of two cistrons instead of one. These gene 43 variants specify separate gp43A (N-terminal) and gp43B (C-terminal) subunits of a split form of gp43. Compared to the monocistronic form, the interruption in contiguity of the gene 43 reading frame maps in a highly diverged sequence separating the code for essential components of two major modules of this pol B enzyme, the FINGERS and PALM domains, which contain the dNTP binding pocket and POL catalytic residues of the enzyme. We discuss the biological implications of these gp43 splits and compare them to other types of pol B splits in nature. Our studies suggest that DNA mobile elements may allow genetic information for pol B modules to be exchanged between organisms.

  3. Escherichia coli processivity clamp β from DNA polymerase III is dynamic in solution†

    Science.gov (United States)

    Fang, Jing; Engen, John R.; Beuning, Penny J.

    2011-01-01

    Escherichia coli DNA polymerase III is a highly processive replicase due to the presence of the β clamp protein that tethers DNA polymerases to DNA. The β clamp is a head-to-tail ring-shaped homodimer, in which each protomer contains three structurally similar domains. Although multiple studies have probed the functions of the β clamp, a detailed understanding of the conformational dynamics of the β clamp in solution is lacking. Here we used hydrogen exchange mass spectrometry to characterize the conformation and dynamics of the intact dimer β clamp and a variant form (I272A/L273A) with diminished ability to dimerize in solution. Our data indicate that the β clamp is not a static closed ring but rather is dynamic in solution. The three domains showed different dynamics though they share a highly similar tertiary structure. Domain I, which controls the opening of the clamp by dissociating from Domain III, contained several highly flexible peptides that underwent partial cooperative unfolding (EX1 kinetics) with a half-life ~4 h. The comparison between the β monomer variant and the wild-type β clamp showed that the β monomer was more dynamic. In the monomer, partial unfolding was much faster and additional regions of Domain III also underwent partial unfolding with a half-life ~1 h. Our results suggest that the δ subunit of the clamp loader may function as a “ring holder” to stabilize the transient opening of the β clamp, rather than as a “ring opener”. PMID:21657794

  4. Effect of DNA polymerase inhibitors on DNA repair in intact and permeable human fibroblasts: Evidence that DNA polymerases δ and β are involved in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine

    International Nuclear Information System (INIS)

    Hammond, R.A.; Miller, M.R.; McClung, J.K.

    1990-01-01

    The involvement of DNA polymerases α, β, and δ in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was investigated in human fibroblasts (HF). The effects of anti-(DNA polymerase α) monoclonal antibody, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), dideoxythymidine triphosphate (ddTTP), and aphidicolin on MNNG-induced DNA repair synthesis were investigated to dissect the roles of the different DNA polymerases. A subcellular system (permeable cells), in which DNA repair synthesis and DNA replication were differentiated by CsCl gradient centrifugation of BrdUMP density-labeled DNA, was used to examine the effects of the polymerase inhibitors. Another approach investigated the effects of several of these inhibitors of MNNG-induced DNA repair synthesis in intact cells by measuring the amount of [ 3 H]thymidine incorporated into repair DNA as determined by autoradiography and quantitation with an automated video image analysis system. In permeable cells, MNNG-induced DNA repair synthesis was inhibited 56% by 50 μg of aphidicolin/mL, 6% by 10 μM BuPdGTP, 13% by anti-(DNA polymerse α) monoclonal antibodies, and 29% by ddTTP. In intact cells, MNNG-induced DNA repair synthesis was inhibited 57% by 50 μg of aphidicolin/mL and was not significantly inhibited by microinjecting anti-(DNA polymerase α) antibodies into HF nuclei. These results indicate that both DNA polymerase δ and β are involved in repairing DNA damage caused by MNNG

  5. Inhibition of non-templated nucleotide addition by DNA polymerases in primer extension using twisted intercalating nucleic acid modified templates

    Czech Academy of Sciences Publication Activity Database

    Güixens-Gallardo, Pedro; Hocek, Michal; Perlíková, Pavla

    2016-01-01

    Roč. 26, č. 2 (2016), s. 288-291 ISSN 0960-894X R&D Projects: GA ČR GBP206/12/G151 Institutional support: RVO:61388963 Keywords : DNA polymerases * nucleotide addition * primer extension * oligonucleotides * twisted intercalating nucleic acid Subject RIV: CC - Organic Chemistry Impact factor: 2.454, year: 2016

  6. Comparative molecular dynamics studies of heterozygous open reading frames of DNA polymerase eta (η) in pathogenic yeast Candida albicans

    Science.gov (United States)

    Satpati, Suresh; Manohar, Kodavati; Acharya, Narottam; Dixit, Anshuman

    2017-01-01

    Genomic instability in Candida albicans is believed to play a crucial role in fungal pathogenesis. DNA polymerases contribute significantly to stability of any genome. Although Candida Genome database predicts presence of S. cerevisiae DNA polymerase orthologs; functional and structural characterizations of Candida DNA polymerases are still unexplored. DNA polymerase eta (Polη) is unique as it promotes efficient bypass of cyclobutane pyrimidine dimers. Interestingly, C. albicans is heterozygous in carrying two Polη genes and the nucleotide substitutions were found only in the ORFs. As allelic differences often result in functional differences of the encoded proteins, comparative analyses of structural models and molecular dynamic simulations were performed to characterize these orthologs of DNA Polη. Overall structures of both the ORFs remain conserved except subtle differences in the palm and PAD domains. The complementation analysis showed that both the ORFs equally suppressed UV sensitivity of yeast rad30 deletion strain. Our study has predicted two novel molecular interactions, a highly conserved molecular tetrad of salt bridges and a series of π-π interactions spanning from thumb to PAD. This study suggests these ORFs as the homologues of yeast Polη, and due to its heterogeneity in C. albicans they may play a significant role in pathogenicity.

  7. Development of an efficient process intensification strategy for enhancing Pfu DNA polymerase production in recombinant Escherichia coli.

    Science.gov (United States)

    Hu, Jian-Hua; Wang, Feng; Liu, Chun-Zhao

    2015-04-01

    An efficient induction strategy that consisted of multiple additions of small doses of isopropyl-β-D-thiogalactopyranoside (IPTG) in the early cell growth phase was developed for enhancing Pfu DNA polymerase production in Escherichia coli. In comparison to the most commonly used method of a single induction of 1 mM IPTG, the promising induction strategy resulted in an increase in the Pfu activity of 13.5% in shake flasks, while simultaneously decreasing the dose of IPTG by nearly half. An analysis of the intracellular IPTG concentrations indicated that the cells need to maintain an optimum intracellular IPTG concentration after 6 h for efficient Pfu DNA polymerase production. A significant increase in the Pfu DNA polymerase activity of 31.5% under the controlled dissolved oxygen concentration of 30% in a 5 L fermentor was achieved using the multiple IPTG induction strategy in comparison with the single IPTG induction. The induction strategy using multiple inputs of IPTG also avoided over accumulation of IPTG and reduced the cost of Pfu DNA polymerase production.

  8. Involvement of DNA polymerase beta in repair of ionizing radiation damage as measured by in vitro plasmid assays.

    NARCIS (Netherlands)

    Vens, C.; Hofland, I.; Begg, A.C.

    2007-01-01

    Characteristic of damage introduced in DNA by ionizing radiation is the induction of a wide range of lesions. Single-strand breaks (SSBs) and base damages outnumber double-strand breaks (DSBs). If unrepaired, these lesions can lead to DSBs and increased mutagenesis. XRCC1 and DNA polymerase beta

  9. Arabidopsis DNA polymerase lambda mutant is mildly sensitive to DNA double strand breaks but defective in integration of a transgene

    Czech Academy of Sciences Publication Activity Database

    Furukawa, T.; Angelis, Karel; Britt, A.B.

    2015-01-01

    Roč. 6, MAY 27 (2015) ISSN 1664-462X R&D Projects: GA ČR GA13-06595S Institutional support: RVO:61389030 Keywords : DNA polymerase * DNA repair * Non homologous end joining Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.495, year: 2015

  10. Analysis of UV-induced mutation spectra in Escherichia coli by DNA polymerase {eta} from Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, Maria Jesus [Departamento de Genetica, Facultad de Ciencias, Edificio Gregor Mendel, Campus Rabanales, Universidad de Cordoba (Spain); Alejandre-Duran, Encarna [Departamento de Genetica, Facultad de Ciencias, Edificio Gregor Mendel, Campus Rabanales, Universidad de Cordoba (Spain); Ruiz-Rubio, Manuel [Departamento de Genetica, Facultad de Ciencias, Edificio Gregor Mendel, Campus Rabanales, Universidad de Cordoba (Spain)]. E-mail: ge1rurum@uco.es

    2006-10-10

    DNA polymerase {eta} belongs to the Y-family of DNA polymerases, enzymes that are able to synthesize past template lesions that block replication fork progression. This polymerase accurately bypasses UV-associated cis-syn cyclobutane thymine dimers in vitro and therefore may contributes to resistance against sunlight in vivo, both ameliorating survival and decreasing the level of mutagenesis. We cloned and sequenced a cDNA from Arabidopsis thaliana which encodes a protein containing several sequence motifs characteristics of Pol{eta} homologues, including a highly conserved sequence reported to be present in the active site of the Y-family DNA polymerases. The gene, named AtPOLH, contains 14 exons and 13 introns and is expressed in different plant tissues. A strain from Saccharomyces cerevisiae, deficient in Pol{eta} activity, was transformed with a yeast expression plasmid containing the AtPOLH cDNA. The rate of survival to UV irradiation in the transformed mutant increased to similar values of the wild type yeast strain, showing that AtPOLH encodes a functional protein. In addition, when AtPOLH is expressed in Escherichia coli, a change in the mutational spectra is detected when bacteria are irradiated with UV light. This observation might indicate that AtPOLH could compete with DNA polymerase V and then bypass cyclobutane pyrimidine dimers incorporating two adenylates.

  11. [The effect of physicochemical factors on the activity of DNA-dependent DNA polymerases in Acholeplasma laidlawii PG-8].

    Science.gov (United States)

    Bezuglyĭ, S V; Skripal', I G; Babichev, V V; Malinovskaia, L P

    1992-01-01

    The biological and physico-chemical properties of DNA-dependent DNA-polymerases of Acholeplasma laidlawii PG-8 have been studied. The optimal parameters of maximal enzymatic activity are determined. It is stated that N-ethylmaleimide in concentration of 1 mM activated DNA-polymerase I by 52%, whereas DNA-polymerase II with reagent concentration of 0.5 mM demonstrated the peak of activity exceeding the control only by 10%. Spermidine in concentration of 1.5 mM for the first form of DNA-polymerase and 0.15 mM-for the second one increased the ability of both forms of polymerases to synthesize DNA by 10%. Aphidicolin added to the reaction medium up to concentration of 10 mg/ml decreased activity of forms I and II of enzymes by 83 and 68%, respectively. The presence of 0.6 mM of EDTA in the medium also negatively affected the activity of polymerases inhibiting it by 83% in form I and by 77%-in form II.

  12. Binding of Mn-deoxyribonucleoside Triphosphates to the Active Site of the DNA Polymerase of Bacteriophage T7

    Energy Technology Data Exchange (ETDEWEB)

    B Akabayov; C Richardson

    2011-12-31

    Divalent metal ions are crucial as cofactors for a variety of intracellular enzymatic activities. Mg{sup 2+}, as an example, mediates binding of deoxyribonucleoside 5'-triphosphates followed by their hydrolysis in the active site of DNA polymerase. It is difficult to study the binding of Mg{sup 2+} to an active site because Mg{sup 2+} is spectroscopically silent and Mg{sup 2+} binds with low affinity to the active site of an enzyme. Therefore, we substituted Mg{sup 2+} with Mn{sup 2+}:Mn{sup 2+} that is not only visible spectroscopically but also provides full activity of the DNA polymerase of bacteriophage T7. In order to demonstrate that the majority of Mn{sup 2+} is bound to the enzyme, we have applied site-directed titration analysis of T7 DNA polymerase using X-ray near edge spectroscopy. Here we show how X-ray near edge spectroscopy can be used to distinguish between signal originating from Mn{sup 2+} that is free in solution and Mn{sup 2+} bound to the active site of T7 DNA polymerase. This method can be applied to other enzymes that use divalent metal ions as a cofactor.

  13. Cooperation between Catalytic and DNA-binding Domains Enhances Thermostability and Supports DNA Synthesis at Higher Temperatures by Thermostable DNA Polymerases

    Science.gov (United States)

    Pavlov, Andrey R.; Pavlova, Nadejda V.; Kozyavkin, Sergei A.; Slesarev, Alexei I.

    2012-01-01

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases (Pavlov et. al., (2002) Proc. Natl. Acad. Sci. USA 99, 13510–13515). The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various non-specific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting Helix-hairpin-Helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species, but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of TopoV HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105°C by maintaining processivity of DNA synthesis at high temperatures. We also found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding templates to DNA polymerases. PMID:22320201

  14. Effects of two different high-fidelity DNA polymerases on genetic analysis of the cyanobacterial community structure in a subtropical deep freshwater reservoir

    DEFF Research Database (Denmark)

    Zhen, Zhuo; Liu, Jingwen; Rensing, Christopher Günther T

    2017-01-01

    The use of molecular methods to investigate the community structure and diversity of microalgae has largely replaced the previous morphological methods that were routinely carried out by microscopy. Different DNA polymerases can lead to bias in PCR amplification and affect the downstream community...... and diversity analysis. In this study, two clone libraries were constructed with two different DNA polymerases, Q5 high-fidelity DNA polymerase and exTaq polymerase, to compare the differences in their capability to accurately reflect the cyanobacterial community structure and diversity in a subtropical deep......-fidelity DNA polymerase. It is noteworthy that so far Q5 high-fidelity DNA polymerase was the first time to be employed in the genetic analysis of cyanobacterial community. And it is for the first time that the cyanobacterial community structure in Dongzhen reservoir was analyzed using molecular methods...

  15. High-resolution melt-curve analysis of random amplified polymorphic DNA (RAPD-HRM) for the characterisation of pathogenic leptospires

    DEFF Research Database (Denmark)

    Tulsiani, Suhella; Craig, S B; Graham, G C

    2010-01-01

    High-resolution melt-curve analysis of random amplified polymorphic DNA (RAPD-HRM) is a novel technology that has emerged as a possible method to characterise leptospires to serovar level. RAPD-HRM has recently been used to measure intra-serovar convergence between strains of the same serovar...... as well as inter-serovar divergence between strains of different serovars. The results indicate that intra-serovar heterogeneity and inter-serovar homogeneity may limit the application of RAPD-HRM in routine diagnostics. They also indicate that genetic attenuation of aged, high-passage-number isolates...

  16. Characterization of Mycoplasma hyosynoviae strains by amplified fragment length polymorphism analysis, pulsed-field gel electrophoresis and 16S ribosomal DNA sequencing

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Friis, N.F.; Ahrens, Peter

    2002-01-01

    , were investigated by analysis of amplified fragment length polymorphisms of the Bgl II and Mfe I restriction sites and by pulsed-field gel electrophoresis of a Bss HII digest of chromosomal DNA. Both methods allowed unambiguous differentiation of the analysed strains and showed similar discriminatory...... potential for the differentiation of M. hyosynoviae isolates. Concordant results obtained with the two whole-genome fingerprinting techniques evidence the considerable intraspecies genetic heterogeneity of M. hyosynoviae . Sixteen field strains of M. hyosynoviae and the type strain S16(T) were further...

  17. Assessment of the genotoxicity of heavy metals in Phaseolus vulgaris L. as a model plant system by Random Amplified Polymorphic DNA (RAPD) analysis.

    Science.gov (United States)

    Gjorgieva, Darinka; Kadifkova-Panovska, Tatjana; Mitrev, Saša; Kovacevik, Biljana; Kostadinovska, Emilija; Bačeva, Katerina; Stafilov, Trajče

    2012-01-01

    Impact assessments of environmental pollutants are important in eco-genotoxicology. A random amplified polymorphic DNA (RAPD) technique was used to detect genotoxicity-induced DNA damage in Phaseolus vulgaris L. from heavy metals at two different concentrations. The results from six 10-base pair (bp) random RAPD primers with 60-70% GC content used, showed a total of 295 RAPD fragments of 700-4000 bp in molecular size in the seedlings of untreated and treated samples, of which only 163 fragments were polymorphic. Polymorphisms became evident as the disappearance and/or appearance of DNA fragments in treated samples compared to the control. A dendrogram constructed using the Numerical Taxonomy and Multivariate Analysis System (NTSYSps), showed that the control group merged with groups treated with CuSO(4)·5H(2)O (150 mg L(-1)) and MnSO(4)·H(2)O (150 mg L(-1)) in a separate cluster. These groups were linked with all of the other samples treated with metals at concentrations of 150 mg L(-1) and CuSO(4)·5H(2)O and Cd(NO(3))(2) at concentrations of 350 mg L(-1). Finally, the samples treated with metals at concentrations of 350 mg L(-1) together with NiSO(4) at the concentration of 150 mg L(-1), clustered separately. The DNA polymorphism detected by RAPD analysis offered a useful biomarker assay for the detection of toxic chemicals genotoxicity in plant model systems.

  18. Novel fluorescent sequence-related amplified polymorphism(FSRAP markers for the construction of a genetic linkage map of wheat(Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Zhao Lingbo

    2017-01-01

    Full Text Available Novel fluorescent sequence-related amplified polymorphism (FSRAP markers were developed based on the SRAP molecular marker. Then, the FSRAP markers were used to construct the genetic map of a wheat (Triticum aestivumL. recombinant inbred line population derived from a Chuanmai 42×Chuannong 16 cross. Reproducibility and polymorphism tests indicated that the FSRAP markers have repeatability and better reflect the polymorphism of wheat varieties compared with SRAP markers. A total of 430 polymorphic loci between Chuanmai 42 and Chuannong 16 were detected with 189 FSRAP primer combinations. A total of 281 FSARP markers and 39 SSR markers re classified into 20 linkage groups. The maps spanned a total length of 2499.3cM with an average distance of 7.81cM between markers. A total of 201 markers were mapped on the B genome and covered a distance of 1013cM. On the A genome, 84 markers were mapped and covered a distance of 849.6cM. On the D genome, however, only 35 markers were mapped and covered a distance of 636.7cM. No FSRAP markers were distributed on the 7D chromosome. The results of the present study revealed that the novel FSRAP markers can be used to generate dense, uniform genetic maps of wheat.

  19. Culture-Negative Endocarditis Diagnosed Using 16S DNA Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Stephen Duffett

    2012-01-01

    Full Text Available 16S DNA polymerase chain reaction (PCR is a molecular amplification technique that can be used to identify bacterial pathogens in culture-negative endocarditis. Bacterial DNA can be isolated from surgically excised valve tissue or from blood collected in EDTA vials. Use of this technique is particularly helpful in identifying the bacterial pathogen in cases of culture-negative endocarditis. A case involving a 48-year-old man who presented with severe aortic regurgitation and a four-month prodrome of low-grade fever is reported. Blood and valve tissue cultures following valve replacement were negative. A valve tissue sample was sent for investigation with 16S DNA PCR, which successfully identified Streptococcus salivarius and was interpreted as the true diagnosis. A review of the literature suggests that 16S DNA PCR from valve tissue is a more sensitive diagnostic test than culture. It is also extremely specific, based on a sequence match of at least 500 base pairs.

  20. Identification of two functional PCNA-binding domains in human DNA polymerase κ.

    Science.gov (United States)

    Yoon, Jung-Hoon; Acharya, Narottam; Park, Jeseong; Basu, Debashree; Prakash, Satya; Prakash, Louise

    2014-07-01

    Previously, we have shown that human DNA polymerase (Pol) η has two functional PCNA-binding motifs, PIP1 and PIP2, and that a C-terminal deletion of Polη that lacks the ubiquitin-binding UBZ domain and the PIP2 domain but retains the PIP1 domain promotes normal levels of translesion synthesis (TLS) opposite a cis-syn TT dimer in human cells. Here, we identify two PIP domains in Polκ and show that TLS occurs normally in human fibroblast cells in which the pip1 or pip2 mutant Polκ is expressed, but mutational inactivation of both PIP domains renders Polκ nonfunctional in TLS opposite the thymine glycol lesion. Thus, the two PIP domains of Polκ function redundantly in TLS opposite this DNA lesion in human cells. However, and surprisingly, whereas mutational inactivation of the PIP1 domain completely inhibits the stimulation of DNA synthesis by Polκ in the presence of proliferating cell nuclear antigen (PCNA), replication factor C, and replication protein A, mutations in PIP2 have no adverse effect on PCNA-dependent DNA synthesis. This raises the possibility that activation of Polκ PIP2 as a PCNA-binding domain occurs during TLS in human cells and that protein-protein interactions and post-transcriptional modifications are involved in such activation. © 2014 The Authors Genes to Cells © 2014 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  1. Prediction of Active Site and Distal Residues in E. coli DNA Polymerase III alpha Polymerase Activity.

    Science.gov (United States)

    Parasuram, Ramya; Coulther, Timothy A; Hollander, Judith M; Keston-Smith, Elise; Ondrechen, Mary Jo; Beuning, Penny J

    2018-02-20

    The process of DNA replication is carried out with high efficiency and accuracy by DNA polymerases. The replicative polymerase in E. coli is DNA Pol III, which is a complex of 10 different subunits that coordinates simultaneous replication on the leading and lagging strands. The 1160-residue Pol III alpha subunit is responsible for the polymerase activity and copies DNA accurately, making one error per 10 5 nucleotide incorporations. The goal of this research is to determine the residues that contribute to the activity of the polymerase subunit. Homology modeling and the computational methods of THEMATICS and POOL were used to predict functionally important amino acid residues through their computed chemical properties. Site-directed mutagenesis and biochemical assays were used to validate these predictions. Primer extension, steady-state single-nucleotide incorporation kinetics, and thermal denaturation assays were performed to understand the contribution of these residues to the function of the polymerase. This work shows that the top 15 residues predicted by POOL, a set that includes the three previously known catalytic aspartate residues, seven remote residues, plus five previously unexplored first-layer residues, are important for function. Six previously unidentified residues, R362, D405, K553, Y686, E688, and H760, are each essential to Pol III activity; three additional residues, Y340, R390, and K758, play important roles in activity.

  2. Crystal structure of DNA polymerase III β sliding clamp from Mycobacterium tuberculosis.

    Science.gov (United States)

    Gui, Wen-Jun; Lin, Shi-Qiang; Chen, Yuan-Yuan; Zhang, Xian-En; Bi, Li-Jun; Jiang, Tao

    2011-02-11

    The sliding clamp is a key component of DNA polymerase III (Pol III) required for genome replication. It is known to function with diverse DNA repair proteins and cell cycle-control proteins, making it a potential drug target. To extend our understanding of the structure/function relationship of the sliding clamp, we solved the crystal structure of the sliding clamp from Mycobacterium tuberculosis (M. tuberculosis), a human pathogen that causes most cases of tuberculosis (TB). The sliding clamp from M. tuberculosis forms a ring-shaped head-to-tail dimer with three domains per subunit. Each domain contains two α helices in the inner ring that lie against two β sheets in the outer ring. Previous studies have indicated that many Escherichia coli clamp-binding proteins have a conserved LF sequence, which is critical for binding to the hydrophobic region of the sliding clamp. Here, we analyzed the binding affinities of the M. tuberculosis sliding clamp and peptides derived from the α and δ subunits of Pol III, which indicated that the LF motif also plays an important role in the binding of the α and δ subunits to the sliding clamp of M. tuberculosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. DNA polymerase β: A missing link of the base excision repair machinery in mammalian mitochondria.

    Science.gov (United States)

    Prasad, Rajendra; Çağlayan, Melike; Dai, Da-Peng; Nadalutti, Cristina A; Zhao, Ming-Lang; Gassman, Natalie R; Janoshazi, Agnes K; Stefanick, Donna F; Horton, Julie K; Krasich, Rachel; Longley, Matthew J; Copeland, William C; Griffith, Jack D; Wilson, Samuel H

    2017-12-01

    Mitochondrial genome integrity is fundamental to mammalian cell viability. Since mitochondrial DNA is constantly under attack from oxygen radicals released during ATP production, DNA repair is vital in removing oxidatively generated lesions in mitochondrial DNA, but the presence of a strong base excision repair system has not been demonstrated. Here, we addressed the presence of such a system in mammalian mitochondria involving the primary base lesion repair enzyme DNA polymerase (pol) β. Pol β was localized to mammalian mitochondria by electron microscopic-immunogold staining, immunofluorescence co-localization and biochemical experiments. Extracts from purified mitochondria exhibited base excision repair activity that was dependent on pol β. Mitochondria from pol β-deficient mouse fibroblasts had compromised DNA repair and showed elevated levels of superoxide radicals after hydrogen peroxide treatment. Mitochondria in pol β-deficient fibroblasts displayed altered morphology by electron microscopy. These results indicate that mammalian mitochondria contain an efficient base lesion repair system mediated in part by pol β and thus pol β plays a role in preserving mitochondrial genome stability. Published by Elsevier B.V.

  4. Enrichment of deleterious variants of mitochondrial DNA polymerase gene (POLG1) in bipolar disorder.

    Science.gov (United States)

    Kasahara, Takaoki; Ishiwata, Mizuho; Kakiuchi, Chihiro; Fuke, Satoshi; Iwata, Nakao; Ozaki, Norio; Kunugi, Hiroshi; Minabe, Yoshio; Nakamura, Kazuhiko; Iwata, Yasuhide; Fujii, Kumiko; Kanba, Shigenobu; Ujike, Hiroshi; Kusumi, Ichiro; Kataoka, Muneko; Matoba, Nana; Takata, Atsushi; Iwamoto, Kazuya; Yoshikawa, Takeo; Kato, Tadafumi

    2017-08-01

    Rare missense variants, which likely account for a substantial portion of the genetic 'dark matter' for a common complex disease, are challenging because the impacts of variants on disease development are difficult to substantiate. This study aimed to examine the impacts of amino acid substitution variants in the POLG1 found in bipolar disorder, as an example and proof of concept, in three different modalities of assessment: in silico predictions, in vitro biochemical assays, and clinical evaluation. We then tested whether deleterious variants in POLG1 contributed to the genetics of bipolar disorder. We searched for variants in the POLG1 gene in 796 Japanese patients with bipolar disorder and 767 controls and comprehensively investigated all 23 identified variants in the three modalities of assessment. POLG1 encodes mitochondrial DNA polymerase and is one of the causative genes for a Mendelian-inheritance mitochondrial disease, which is occasionally accompanied by mood disorders. The healthy control data from the Tohoku Medical Megabank Organization were also employed. Although the frequency of carriers of deleterious variants varied from one method to another, every assessment achieved the same conclusion that deleterious POLG1 variants were significantly enriched in the variants identified in patients with bipolar disorder compared to those in controls. Together with mitochondrial dysfunction in bipolar disorder, the present results suggested deleterious POLG1 variants as a credible risk for the multifactorial disease. © 2016 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.

  5. Study of the activity of DNA polymerases β and λ using 5-formyluridine containing DNA substrates

    Directory of Open Access Journals (Sweden)

    Lavrik O. I.

    2012-06-01

    Full Text Available Aim. To investigate the TLS-activity of human DNA polymerases β and λ (pols β and λ using 5-formyluridine (5-foU containing DNA duplexes which are imitating the intermediates during replication of the leading DNA strand, and to study the influence of replication factors hRPA and hPCNA on this activity. Methods. The EMSA and the methods of enzyme’s kinetics were used. Results. The capability of pols β and λ to catalyze DNA synthesis across 5-foU was investigated and the kinetic characteristics of this process in the presence and in the absence of protein factors hRPA and hPCNA were evaluated. Conclusions. It was shown that: (i both proteins are able to catalyze TLS on used DNA substrates regardless of the reaction conditions, however, pol λ was more accurate enzyme; (ii hRPA can stimulate the efficacy of the nonmutagenic TLS catalyzed by pol at the nucleotide incorporation directly opposite of 5-foU, at the same time it doesn’t influence the incorporation efficacy if the damage displaced into the duplex; (iii hPCNA doesn’t influence the efficacy of TLS catalyzed by both enzymes.

  6. Pirh2 E3 ubiquitin ligase targets DNA polymerase eta for 20S proteasomal degradation.

    Science.gov (United States)

    Jung, Yong-Sam; Liu, Gang; Chen, Xinbin

    2010-02-01

    DNA polymerase eta (PolH), a Y family translesion polymerase, is required for repairing UV-induced DNA damage, and loss of PolH is responsible for early onset of malignant skin cancers in patients with xeroderma pigmentosum variant (XPV), an autosomal recessive disorder. Here, we show that PolH, a target of the p53 tumor suppressor, is a short-half-life protein. We found that PolH is degraded by proteasome, which is enhanced upon UV irradiation. We also found that PolH interacts with Pirh2 E3 ligase, another target of the p53 tumor suppressor, via the polymerase-associated domain in PolH and the RING finger domain in Pirh2. In addition, we show that overexpression of Pirh2 decreases PolH protein stability, whereas knockdown of Pirh2 increases it. Interestingly, we found that PolH is recruited by Pirh2 and degraded by 20S proteasome in a ubiquitin-independent manner. Finally, we observed that Pirh2 knockdown leads to accumulation of PolH and, subsequently, enhances the survival of UV-irradiated cells. We postulate that UV irradiation promotes cancer formation in part by destabilizing PolH via Pirh2-mediated 20S proteasomal degradation.

  7. Regulated Proteolysis of DNA Polymerase Eta During the DNA Damage Response in C. elegans

    Science.gov (United States)

    Kim, Seung-Hwan; Michael, W. Matthew

    2009-01-01

    SUMMARY Both the POLH-1 (pol eta) trans-lesion synthesis DNA polymerase and the GEI-17 SUMO E3 ligase are essential for the efficient replication of damaged chromosomes in C. elegans embryos. Here, we study how POLH-1 is regulated during a DNA damage response in these embryos. We report that DNA damage triggers the degradation of POLH-1, and that degradation is mediated by the Cul4-Ddb1-Cdt2 (CRL4-Cdt2) pathway that has previously been shown to degrade the replication factor Cdt1 during S phase. We also show that GEI-17 protects POLH-1 from CRL4-Cdt2 mediated destruction, until after it has performed its function in TLS, and this is likely via SUMOylation of POLH-1. These studies reveal that POLH-1 undergoes DNA damage-induced proteolysis, and that GEI-17 regulates the timing of this proteolysis. Implications for how this system may control the removal of POLH-1 from replication forks after TLS are discussed. PMID:19111656

  8. Pirh2 E3 Ubiquitin Ligase Targets DNA Polymerase Eta for 20S Proteasomal Degradation ▿

    Science.gov (United States)

    Jung, Yong-Sam; Liu, Gang; Chen, Xinbin

    2010-01-01

    DNA polymerase eta (PolH), a Y family translesion polymerase, is required for repairing UV-induced DNA damage, and loss of PolH is responsible for early onset of malignant skin cancers in patients with xeroderma pigmentosum variant (XPV), an autosomal recessive disorder. Here, we show that PolH, a target of the p53 tumor suppressor, is a short-half-life protein. We found that PolH is degraded by proteasome, which is enhanced upon UV irradiation. We also found that PolH interacts with Pirh2 E3 ligase, another target of the p53 tumor suppressor, via the polymerase-associated domain in PolH and the RING finger domain in Pirh2. In addition, we show that overexpression of Pirh2 decreases PolH protein stability, whereas knockdown of Pirh2 increases it. Interestingly, we found that PolH is recruited by Pirh2 and degraded by 20S proteasome in a ubiquitin-independent manner. Finally, we observed that Pirh2 knockdown leads to accumulation of PolH and, subsequently, enhances the survival of UV-irradiated cells. We postulate that UV irradiation promotes cancer formation in part by destabilizing PolH via Pirh2-mediated 20S proteasomal degradation. PMID:20008555

  9. Structural basis for the suppression of skin cancers by DNA polymerase [eta

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, Timothy D.; Johnson, Robert E.; Jain, Rinku; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K. (Texas-MED); (Mount Sinai Hospital)

    2010-09-13

    DNA polymerase {eta} (Pol{eta}) is unique among eukaryotic polymerases in its proficient ability for error-free replication through ultraviolet-induced cyclobutane pyrimidine dimers, and inactivation of Pol{eta} (also known as POLH) in humans causes the variant form of xeroderma pigmentosum (XPV). We present the crystal structures of Saccharomyces cerevisiae Pol{eta} (also known as RAD30) in ternary complex with a cis-syn thymine-thymine (T-T) dimer and with undamaged DNA. The structures reveal that the ability of Pol{eta} to replicate efficiently through the ultraviolet-induced lesion derives from a simple and yet elegant mechanism, wherein the two Ts of the T-T dimer are accommodated in an active site cleft that is much more open than in other polymerases. We also show by structural, biochemical and genetic analysis that the two Ts are maintained in a stable configuration in the active site via interactions with Gln55, Arg73 and Met74. Together, these features define the basis for Pol{eta}'s action on ultraviolet-damaged DNA that is crucial in suppressing the mutagenic and carcinogenic consequences of sun exposure, thereby reducing the incidence of skin cancers in humans.

  10. WRNIP1 functions upstream of DNA polymerase η in the UV-induced DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Akari, E-mail: akari_yo@stu.musashino-u.ac.jp [Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585 (Japan); Kobayashi, Yume [Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585 (Japan); Tada, Shusuke [Department of Medical Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510 (Japan); Seki, Masayuki [Department of Biochemistry, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai-shi, Miyagi 981-8558 (Japan); Enomoto, Takemi [Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585 (Japan)

    2014-09-12

    Highlights: • The UV sensitivity of POLH{sup −/−} cells was suppressed by disruption of WRNIP1. • In WRNIP1{sup −/−/−}/POLH{sup −/−} cells, mutation frequencies and SCE after irradiation reduced. • WRNIP1 defect recovered rate of fork progression after irradiation in POLH{sup −/−} cells. • WRNIP1 functions upstream of Polη in the translesion DNA synthesis pathway. - Abstract: WRNIP1 (WRN-interacting protein 1) was first identified as a factor that interacts with WRN, the protein that is defective in Werner syndrome (WS). WRNIP1 associates with DNA polymerase η (Polη), but the biological significance of this interaction remains unknown. In this study, we analyzed the functional interaction between WRNIP1 and Polη by generating knockouts of both genes in DT40 chicken cells. Disruption of WRNIP1 in Polη-disrupted (POLH{sup −/−}) cells suppressed the phenotypes associated with the loss of Polη: sensitivity to ultraviolet light (UV), delayed repair of cyclobutane pyrimidine dimers (CPD), elevated frequency of mutation, elevated levels of UV-induced sister chromatid exchange (SCE), and reduced rate of fork progression after UV irradiation. These results suggest that WRNIP1 functions upstream of Polη in the response to UV irradiation.

  11. Regulated proteolysis of DNA polymerase eta during the DNA-damage response in C. elegans.

    Science.gov (United States)

    Kim, Seung-Hwan; Michael, W Matthew

    2008-12-26

    Both the POLH-1 (pol eta) translesion synthesis (TLS) DNA polymerase and the GEI-17 SUMO E3 ligase are essential for the efficient replication of damaged chromosomes in Caenorhabditis elegans embryos. Here we study how POLH-1 is regulated during a DNA-damage response in these embryos. We report that DNA damage triggers the degradation of POLH-1 and that degradation is mediated by the Cul4-Ddb1-Cdt2 (CRL4-Cdt2) pathway that has previously been shown to degrade the replication factor Cdt1 during S phase. We also show that GEI-17 protects POLH-1 from CRL4-Cdt2-mediated destruction until after it has performed its function in TLS, and this is likely via SUMOylation of POLH-1. These studies reveal that POLH-1 undergoes DNA-damage-induced proteolysis and that GEI-17 regulates the timing of this proteolysis. Implications for how this system may control the removal of POLH-1 from replication forks after TLS are discussed.

  12. DNA polymerase β deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes.

    Science.gov (United States)

    Sykora, Peter; Misiak, Magdalena; Wang, Yue; Ghosh, Somnath; Leandro, Giovana S; Liu, Dong; Tian, Jane; Baptiste, Beverly A; Cong, Wei-Na; Brenerman, Boris M; Fang, Evandro; Becker, Kevin G; Hamilton, Royce J; Chigurupati, Soumya; Zhang, Yongqing; Egan, Josephine M; Croteau, Deborah L; Wilson, David M; Mattson, Mark P; Bohr, Vilhelm A

    2015-01-01

    We explore the role of DNA damage processing in the progression of cognitive decline by creating a new mouse model. The new model is a cross of a common Alzheimer's disease (AD) mouse (3xTgAD), with a mouse that is heterozygous for the critical DNA base excision repair enzyme, DNA polymerase β. A reduction of this enzyme causes neurodegeneration and aggravates the AD features of the 3xTgAD mouse, inducing neuronal dysfunction, cell death and impairing memory and synaptic plasticity. Transcriptional profiling revealed remarkable similarities in gene expression alterations in brain tissue of human AD patients and 3xTg/Polβ(+/-) mice including abnormalities suggestive of impaired cellular bioenergetics. Our findings demonstrate that a modest decrement in base excision repair capacity can render the brain more vulnerable to AD-related molecular and cellular alterations. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by US Government employees and is in the public domain in the US.

  13. Characterization of Recombinant Thermococcus kodakaraensis (KOD) DNA Polymerases Produced Using Silkworm-Baculovirus Expression Vector System

    KAUST Repository

    Yamashita, Mami

    2017-05-08

    The KOD DNA polymerase from Thermococcus kodakarensis (Tkod-Pol) has been preferred for PCR due to its rapid elongation rate, extreme thermostability and outstanding fidelity. Here in this study, we utilized silkworm-baculovirus expression vector system (silkworm-BEVS) to express the recombinant Tkod-Pol (rKOD) with N-terminal (rKOD-N) or C-terminal (rKOD-C) tandem fusion tags. By using BEVS, we produced functional rKODs with satisfactory yields, about 1.1 mg/larva for rKOD-N and 0.25 mg/larva for rKOD-C, respectively. Interestingly, we found that rKOD-C shows higher thermostability at 95 °C than that of rKOD-N, while that rKOD-N is significantly unstable after exposing to long period of heat-shock. We also assessed the polymerase activity as well as the fidelity of purified rKODs under various conditions. Compared with commercially available rKOD, which is expressed in E. coli expression system, rKOD-C exhibited almost the same PCR performance as the commercial rKOD did, while rKOD-N did lower performance. Taken together, our results suggested that silkworm-BEVS can be used to express and purify efficient rKOD in a commercial way.

  14. Inhibition of DNA polymerase λ and associated inflammatory activities of extracts from steamed germinated soybeans.

    Science.gov (United States)

    Mizushina, Yoshiyuki; Kuriyama, Isoko; Yoshida, Hiromi

    2014-04-01

    During the screening of selective DNA polymerase (pol) inhibitors from more than 50 plant food materials, we found that the extract from steamed germinated soybeans (Glycine max L.) inhibited human pol λ activity. Among the three processed soybean samples tested (boiled soybeans, steamed soybeans, and steamed germinated soybeans), both the hot water extract and organic solvent extract from the steamed germinated soybeans had the strongest pol λ inhibition. We previously isolated two glucosyl compounds, a cerebroside (glucosyl ceramide, AS-1-4, compound ) and a steroidal glycoside (eleutheroside A, compound ), from dried soybean, and these compounds were prevalent in the extracts of the steamed germinated soybeans as pol inhibitors. The hot water and organic solvent extracts of the steamed germinated soybeans and compounds and selectively inhibited the activity of eukaryotic pol λ in vitro but did not influence the activities of other eukaryotic pols, including those from the A-family (pol γ), B-family (pols α, δ, and ε), and Y-family (pols η, ι, and κ), and also showed no effect on the activity of pol β, which is of the same family (X) as pol λ. The tendency for in vitro pol λ inhibition by these extracts and compounds showed a positive correlation with the in vivo suppression of TPA (12-O-tetradecanoylphorbol-13-acetate)-induced inflammation in mouse ear. These results suggest that steamed germinated soybeans, especially the glucosyl compound components, may be useful for their anti-inflammatory properties.

  15. Pathogenicity in POLG syndromes: DNA polymerase gamma pathogenicity prediction server and database.

    Science.gov (United States)

    Nurminen, Anssi; Farnum, Gregory A; Kaguni, Laurie S

    2017-06-01

    DNA polymerase gamma (POLG) is the replicative polymerase responsible for maintaining mitochondrial DNA (mtDNA). Disorders related to its functionality are a major cause of mitochondrial disease. The clinical spectrum of POLG syndromes includes Alpers-Huttenlocher syndrome (AHS), childhood myocerebrohepatopathy spectrum (MCHS), myoclonic epilepsy myopathy sensory ataxia (MEMSA), the ataxia neuropathy spectrum (ANS) and progressive external ophthalmoplegia (PEO). We have collected all publicly available POLG-related patient data and analyzed it using our pathogenic clustering model to provide a new research and clinical tool in the form of an online server. The server evaluates the pathogenicity of both previously reported and novel mutations. There are currently 176 unique point mutations reported and found in mitochondrial patients in the gene encoding the catalytic subunit of POLG, POLG . The mutations are distributed nearly uniformly along the length of the primary amino acid sequence of the gene. Our analysis shows that most of the mutations are recessive, and that the reported dominant mutations cluster within the polymerase active site in the tertiary structure of the POLG enzyme. The POLG Pathogenicity Prediction Server (http://polg.bmb.msu.edu) is targeted at clinicians and scientists studying POLG disorders, and aims to provide the most current available information regarding the pathogenicity of POLG mutations.

  16. Sites and roles of phosphorylation of the human cytomegalovirus DNA polymerase subunit UL44

    International Nuclear Information System (INIS)

    Silva, Laurie A.; Strang, Blair L.; Lin, Eric W.; Kamil, Jeremy P.; Coen, Donald M.

    2011-01-01

    The human cytomegalovirus DNA polymerase subunit UL44 is a phosphoprotein, but its sites and roles of phosphorylation have not been investigated. We compared sites of phosphorylation of UL44 in vitro by the viral protein kinase UL97 and cyclin-dependent kinase 1 with those in infected cells. Transient treatment of infected cells with a UL97 inhibitor greatly reduced labeling of two minor UL44 phosphopeptides. Viruses containing alanine substitutions of most UL44 residues that are phosphorylated in infected cells exhibited at most modest effects on viral DNA synthesis and yield. However, substitution of highly phosphorylated sites adjacent to the nuclear localization signal abolished viral replication. The results taken together are consistent with UL44 being phosphorylated directly by UL97 during infection, and a crucial role for phosphorylation-mediated nuclear localization of UL44 for viral replication, but lend little support to the widely held hypothesis that UL97-mediated phosphorylation of UL44 is crucial for viral DNA synthesis.

  17. Competition of Escherichia coli DNA polymerases I, II and III with DNA Pol IV in stressed cells.

    Directory of Open Access Journals (Sweden)

    P J Hastings

    2010-05-01

    Full Text Available Escherichia coli has five DNA polymerases, one of which, the low-fidelity Pol IV or DinB, is required for stress-induced mutagenesis in the well-studied Lac frameshift-reversion assay. Although normally present at approximately 200 molecules per cell, Pol IV is recruited to acts of DNA double-strand-break repair, and causes mutagenesis, only when at least two cellular stress responses are activated: the SOS DNA-damage response, which upregulates DinB approximately 10-fold, and the RpoS-controlled general-stress response, which upregulates Pol IV about 2-fold. DNA Pol III was also implicated but its role in mutagenesis was unclear. We sought in vivo evidence on the presence and interactions of multiple DNA polymerases during stress-induced mutagenesis. Using multiply mutant strains, we provide evidence of competition of DNA Pols I, II and III with Pol IV, implying that they are all present at sites of stress-induced mutagenesis. Previous data indicate that Pol V is also present. We show that the interactions of Pols I, II and III with Pol IV result neither from, first, induction of the SOS response when particular DNA polymerases are removed, nor second, from proofreading of DNA Pol IV errors by the editing functions of Pol I or Pol III. Third, we provide evidence that Pol III itself does not assist with but rather inhibits Pol IV-dependent mutagenesis. The data support the remaining hypothesis that during the acts of DNA double-strand-break (DSB repair, shown previously to underlie stress-induced mutagenesis in the Lac system, there is competition of DNA polymerases I, II and III with DNA Pol IV for action at the primer terminus. Up-regulation of Pol IV, and possibly other stress-response-controlled factor(s, tilt the competition in favor of error-prone Pol IV at the expense of more accurate polymerases, thus producing stress-induced mutations. This mutagenesis assay reveals the DNA polymerases operating in DSB repair during stress and also

  18. A Lateral Flow Biosensor for the Detection of Single Nucleotide Polymorphisms.

    Science.gov (United States)

    Zeng, Lingwen; Xiao, Zhuo

    2017-01-01

    A lateral flow biosensor (LFB) is introduced for the detection of single nucleotide polymorphisms (SNPs). The assay is composed of two steps: circular strand displacement reaction and lateral flow biosensor detection. In step 1, the nucleotide at SNP site is recognized by T4 DNA ligase and the signal is amplified by strand displacement DNA polymerase, which can be accomplished at a constant temperature. In step 2, the reaction product of step 1 is detected by a lateral flow biosensor, which is a rapid and cost effective tool for nuclei acid detection. Comparing with conventional methods, it requires no complicated machines. It is suitable for the use of point of care diagnostics. Therefore, this simple, cost effective, robust, and promising LFB detection method of SNP has great potential for the detection of genetic diseases, personalized medicine, cancer related mutations, and drug-resistant mutations of infectious agents.

  19. Female-only sex-linked amplified fragment length polymorphism markers support ZW/ZZ sex determination in the giant freshwater prawn Macrobrachium rosenbergii.

    Science.gov (United States)

    Jiang, Xue-Hui; Qiu, Gao-Feng

    2013-12-01

    Sex determination mechanisms in many crustacean species are complex and poorly documented. In the giant freshwater prawn, Macrobrachium rosenbergii, a ZW/ZZ sex determination system was previously proposed based on sex ratio data obtained by crosses of sex-reversed females (neomales). To provide molecular evidence for the proposed system, novel sex-linked molecular markers were isolated in this species. Amplified fragment length polymorphism (AFLP) using 64 primer combinations was employed to screen prawn genomes for DNA markers linked with sex loci. Approximately 8400 legible fragments were produced, 13 of which were uniquely identified in female prawns with no indication of corresponding male-specific markers. These AFLP fragments were reamplified, cloned and sequenced, producing two reliable female-specific sequence characterized amplified region (SCAR) markers. Additional individuals from two unrelated geographic populations were used to verify these findings, confirming female-specific amplification of single bands. Detection of internal polymorphic sites was conducted by designing new primer pairs based on these internal fragments. The internal SCAR fragments also displayed specificity in females, indicating high levels of variation between female and male specimens. The distinctive feature of female-linked SCAR markers can be applied for rapid detection of prawn gender. These sex-specific SCAR markers and sex-associated AFLP candidates unique to female specimens support a sex determination system consistent with female heterogamety (ZW) and male homogamety (ZZ). © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  20. [Inhibitors of nucleic acid synthesis as a means of identifying the forms of DNA-dependent DNA polymerases in Acholeplasma laidlawii PG-8 and of determining their functions].

    Science.gov (United States)

    Skripal', I G; Bezuglyĭ, S V; Babichev, V V

    1993-01-01

    Antibiotics, inhibitors of nucleic acids' synthesis from the group of chromomycins (olivomycin of sodium salt), anthracyclines (carminomycin and doxorubicin) and streptonigrin (bruneomycin) have been studied for their effect on DNA synthesis in vitro performed by DNA polymerases (1st and 2nd forms) of Acholeplasma laidlawii PG-8. It has been stated that olivomycin inhibits the function of both the first and second forms of DNA polymerases in proportion to an increase of the antibiotic concentration in the medium. Carminomycin in the concentration of about 1 microgram/ml almost completely inhibited the activity of both DNA polymerases. However, doxorubicin also belonging to the group of anthracyclins completely inhibited the activity of the first form of DNA polymerase in the concentration of 1 microgram/ml and practically has no effect in the concentration up to 100 micrograms/ml on the activity of the second form possessing 3'-->5'-function. Streptonigrin also proved to be suitable for differentiate the forms of DNA polymerases and to determine their functions. The first form of DNA polymerase with 5'-->3'-polymerase and exonuclease functions was not sensitive by this antibiotic in the concentration of 1000 micrograms/ml, while the activity of the second form of DNA polymerase with 3'-->5'-exonuclease functions was fully inhibited by this concentration of the antibiotic in the medium. The combination of doxorhubicin and streptonigrin in the medium can be used to determine the form of DNA polymerases and to identify their 5'-->3'- or 3'-->5'-exonuclease function and for selectivity inhibition of the function of one or another DNA polymerase in the medium.

  1. A method for filling in the cohesive ends of double-stranded DNA using Pfu DNA polymerase.

    Science.gov (United States)

    Yang, Shaohui; Li, Xin; Ding, Dongfeng; Hou, Jianhua; Jin, Zhaoxia; Yu, Xinchun; Bo, Tao; Li, Weidong; Li, Minggang

    2005-12-01

    The present paper reports a highly efficient method of making blunt ends from cohesive ends of double-stranded DNA. Klenow fragment and Pfu DNA polymerases were used to fill in the cohesive ends. Since the transformation efficiency can directly reflect the filling-in efficiency, similar ligation and transformation conditions were used, and the filling-in efficiency was compared with the corresponding transformation efficiency. The results indicate that the filling-in efficiency of Pfu DNA polymerase was 1.96 times that of Klenow fragment and its efficiency was markedly higher than that of Klenow fragment (P<0.01). The optimization experiments on reaction conditions indicate, when the pH is 8.5 and the temperature is 74 degrees C, that the filling-in efficiency was highest upon using a buffer containing 3 mM MgSO4 and 300 microM dNTP.

  2. The thumb domain is not essential for the catalytic action of HoLaMa DNA polymerase.

    Science.gov (United States)

    Gatius, Angela Gala Morena; Piaz, Fabrizio Dal; Hochkoeppler, Alejandro

    2017-12-01

    A structural and kinetic characterization of a fragment of the HoLaMa DNA polymerase is presented here. In particular, a truncated form of HoLaMa, devoid of a consistent portion of the thumb domain, was isolated and purified. This HoLaMa fragment, denoted as ΔNter-HoLaMa, is surprisingly competent in catalyzing DNA extension, albeit featuring a k cat one order of magnitude lower than the corresponding kinetic constant of its full-length counterpart. The conformational rearrangements, if any, of enzyme tryptophanes triggered by DNA binding or extension were assayed under pre-steady-state conditions. The fluorescence of HoLaMa tryptophanes was found to significantly change upon DNA binding and extension. On the contrary, no fluorescence changes of ΔNter-HoLaMa tryptophanes were detected under the same conditions, suggesting that major conformational transitions are not required for DNA binding or extension by this truncated DNA polymerase.

  3. Mutagenesis by alkylating agents: coding properties for DNA polymerase of poly (dC) template containing 3-methylcytosine

    Energy Technology Data Exchange (ETDEWEB)

    Boiteux, S.; Laval, J. (Institut Gustave-Roussy, 94 - Villejuif (France))

    After treatment of poly(dC) by the simple alkylating agent (/sup 3/H)dimethylsulfate, 90 percent of the radioactivity cochromatographed with 3-methylcytosine and 10 percent with 5-methylcytosine which is the normally occurring methylated base. In order to study the influence of 3-methylcytosine on DNA replication, untreated and MDS-treated poly(dC) were used as templates for E. coli DNA polymerase I. The alkylation of poly(dC) inhibits DNA chain elongation, and does not induce any mispairing under high fidelity conditions. The alteration of DNA polymerase I fidelity by manganese ions allows some replication of 3-methylcytosine which mispairs with either dAMP or dTMP. Our results suggest that 3-methylcytosine could be responsible, at least partially, for killing and the mutagenesis observed after cell treatment by alkylating agents.

  4. A new family of polymerases related to superfamily A DNA polymerases and T7-like DNA-dependent RNA polymerases

    Directory of Open Access Journals (Sweden)

    Aravind L

    2008-10-01

    Full Text Available Abstract Using sequence profile methods and structural comparisons we characterize a previously unknown family of nucleic acid polymerases in a group of mobile elements from genomes of diverse bacteria, an algal plastid and certain DNA viruses, including the recently reported Sputnik virus. Using contextual information from domain architectures and gene-neighborhoods we present evidence that they are likely to possess both primase and DNA polymerase activity, comparable to the previously reported prim-pol proteins. These newly identified polymerases help in defining the minimal functional core of superfamily A DNA polymerases and related RNA polymerases. Thus, they provide a framework to understand the emergence of both DNA and RNA polymerization activity in this class of enzymes. They also provide evidence that enigmatic DNA viruses, such as Sputnik, might have emerged from mobile elements coding these polymerases. Reviewers This article was reviewed by Eugene Koonin and Mark Ragan.

  5. Compartmentalized self-replication (CSR) selection of Thermococcus litoralis Sh1B DNA polymerase for diminished uracil binding.

    Science.gov (United States)

    Tubeleviciute, Agne; Skirgaila, Remigijus

    2010-08-01

    The thermostable archaeal DNA polymerase Sh1B from Thermococcus litoralis has a typical uracil-binding pocket, which in nature plays an essential role in preventing the accumulation of mutations caused by cytosine deamination to uracil and subsequent G-C base pair transition to A-T during the genomic DNA replication. The uracil-binding pocket recognizes and binds uracil base in a template strand trapping the polymerase. Since DNA replication stops, the repair systems have a chance to correct the promutagenic event. Archaeal family B DNA polymerases are employed in various PCR applications. Contrary to nature, in PCR the uracil-binding property of archaeal polymerases is disadvantageous and results in decreased DNA amplification yields and lowered sensitivity. Furthermore, in diagnostics qPCR, RT-qPCR and end-point PCR are performed using dNTP mixtures, where dTTP is partially or fully replaced by dUTP. Uracil-DNA glycosylase treatment and subsequent heating of the samples is used to degrade the DNA containing uracil and prevent carryover contamination, which is the main concern in diagnostic laboratories. A thermostable archaeal DNA polymerase with the abolished uracil binding would be a highly desirable and commercially interesting product. An attempt to disable uracil binding in DNA polymerase Sh1B from T. litoralis by generating site-specific mutants did not yield satisfactory results. However, a combination of random mutagenesis of the whole polymerase gene and compartmentalized self-replication was successfully used to select variants of thermostable Sh1B polymerase capable of performing PCR with dUTP instead of dTTP.

  6. Nucleotide-mimetic synthetic ligands for DNA-recognizing enzymes One-step purification of Pfu DNA polymerase.

    Science.gov (United States)

    Melissis, S; Labrou, N E; Clonis, Y D

    2006-07-28

    The commercial availability of DNA polymerases has revolutionized molecular biotechnology and certain sectors of the bio-industry. Therefore, the development of affinity adsorbents for purification of DNA polymerases is of academic interest and practical importance. In the present study we describe the design, synthesis and evaluation of a combinatorial library of novel affinity ligands for the purification of DNA polymerases (Pols). Pyrococcus furiosus DNA polymerase (Pfu Pol) was employed as a proof-of-principle example. Affinity ligand design was based on mimicking the natural interactions between deoxynucleoside-triphosphates (dNTPs) and the B-motif, a conserved structural moiety found in Pol-I and Pol-II family of enzymes. Solid-phase 'structure-guided' combinatorial chemistry was used to construct a library of 26 variants of the B-motif-binding 'lead' ligand X-Trz-Y (X is a purine derivative and Y is an aliphatic/aromatic sulphonate or phosphonate derivative) using 1,3,5-triazine (Trz) as the scaffold for assembly. The 'lead' ligand showed complementarity against a Lys and a Tyr residue of the polymerase B-motif. The ligand library was screened for its ability to bind and purify Pfu Pol from Escherichia coli extract. One immobilized ligand (oABSAd), bearing 9-aminoethyladenine (AEAd) and sulfanilic acid (oABS) linked on the triazine scaffold, displayed the highest purifying ability and binding capacity (0,55 mg Pfu Pol/g wet gel). Adsorption equilibrium studies with this affinity ligand and Pfu Pol determined a dissociation constant (K(D)) of 83 nM for the respective complex. The oABSAd affinity adsorbent was exploited in the development of a facile Pfu Pol purification protocol, affording homogeneous enzyme (>99% purity) in a single chromatography step. Quality control tests showed that Pfu Pol purified on the B-motif-complementing ligand is free of nucleic acids and contaminating nuclease activities, therefore, suitable for experimental use.

  7. In vitro gap-directed translesion DNA synthesis of an abasic site involving human DNA polymerases epsilon, lambda, and beta

    Czech Academy of Sciences Publication Activity Database

    Villani, G.; Hübscher, U.; Gironis, N.; Parkkinen, S.; Pospiech, H.; Shevelev, Igor; di Cicco, G.; Markennen, E.; Syvaaja, J.E.; Le Gac, N.T.

    2011-01-01

    Roč. 286, č. 37 (2011), s. 32094-32104 ISSN 0021-9258 Grant - others:Academy of Finland(FI) 106986; Academy of Finland(FI) 123082 Institutional research plan: CEZ:AV0Z50520514 Keywords : DNA damage * DNA polymerase * DNA repair * DNA replication * DNA-protein interaction Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.773, year: 2011

  8. Genotyping the hepatitis B virus with a fragment of the HBV DNA polymerase gene in Shenyang, China

    Directory of Open Access Journals (Sweden)

    Juan Feng

    2011-06-01

    Full Text Available Abstract The hepatitis B virus (HBV has been classified into eight genotypes (A-H based on intergenotypic divergence of at least 8% in the complete nucleotide sequence or more than 4% in the S gene. To facilitate the investigation of the relationship between the efficacy of drug treatment and the mutation with specific genotype of HBV, we have established a new genotyping strategy based on a fragment of the HBV DNA polymerase gene. Pairwise sequence and phylogenetic analyses were performed using CLUSTAL V (DNASTAR on the eight (A-H standard full-length nucleotide sequences of HBV DNA from GenBank (NCBI and the corresponding semi-nested PCR products from the HBV DNA polymerase gene. The differences in the semi-nested PCR fragments of the polymerase genes among genotypes A through F were greater than 4%, which is consistent with the intergenotypic divergence of at least 4% in HBV DNA S gene sequences. Genotyping using the semi-nested PCR products of the DNA polymerase genes revealed that only genotypes B, C, and D were present in the 50 cases, from Shenyang, China, with a distribution of 11 cases (22%, 25 cases (50%, and 14 cases (28% respectively. These results demonstrate that our new genotyping method utilizing a fragment of the HBV DNA polymerase gene is valid and can be employed as a general genotyping strategy in areas with prevalent HBV genotypes A through F. In Shenyang, China, genotypes C, B, and D were identified with this new genotyping method, and genotype C was demonstrated to be the dominant genotype.

  9. Molecular Diversity of Antagonistic Streptomyces spp. against Botrytis allii, the agent of onion gray mold using Random Amplified Polymorphic DNA (RAPD Markers

    Directory of Open Access Journals (Sweden)

    M. Jorjandi

    2014-08-01

    Full Text Available As an aim in sustainable agriculture, biological control of plant diseases has received intensive attention mainly as a response to public concern about the use of chemical fungicides in the environment. Soil Actinomycetes particularly Streptomyces spp. enhance soil fertility and have antagonistic activity against wide range of plant pathogens. To investigate for biocontrol means against the pathogen, 30 isolates of Actinomycetes have been isolated from agricultural soils of Kerman province of Iran and assayed for antagonistic activity against Botrytis allii, the agent of onion gray mold. RAPD DNA analysis has been used to determine the relatedness of active and non-active isolates based on their RAPD-PCR fingerprints. PCR amplifiable DNA samples have been isolated using the CTAB method and amplified fragments have been obtained from 5 random 10-mer primers. Different DNA fingerprinting patterns have been obtained for all of the isolates. Electrophoretic and cluster analysis of the amplification products has revealed incidence of polymorphism among the isolates. A total of 138 bands, ranging in size from 150-2800 bp, have been amplified from primers which 63.7% of the observed bands have been polymorphic. Genetic distances among different varieties have been analyzed with a UPGMA (Unweighted pair-group method, arithmetic average-derived dendrogram. Resulting dendrogram has showed from 0.65 to 0.91 similarities among varieties and divided the isolates into five major groups. Isolates which haven’t had any antagonistic activity against B. allii have been separated into a group and other isolates classified into four groups. The results indicate that RAPD is an efficient method for discriminating and studying genetic diversity of Streptomyces isolates.

  10. The arabidopsis DNA polymerase δ has a role in the deposition of transcriptionally active epigenetic marks, development and flowering.

    Directory of Open Access Journals (Sweden)

    Francisco M Iglesias

    2015-02-01

    Full Text Available DNA replication is a key process in living organisms. DNA polymerase α (Polα initiates strand synthesis, which is performed by Polε and Polδ in leading and lagging strands, respectively. Whereas loss of DNA polymerase activity is incompatible with life, viable mutants of Polα and Polε were isolated, allowing the identification of their functions beyond DNA replication. In contrast, no viable mutants in the Polδ polymerase-domain were reported in multicellular organisms. Here we identify such a mutant which is also thermosensitive. Mutant plants were unable to complete development at 28°C, looked normal at 18°C, but displayed increased expression of DNA replication-stress marker genes, homologous recombination and lysine 4 histone 3 trimethylation at the SEPALLATA3 (SEP3 locus at 24°C, which correlated with ectopic expression of SEP3. Surprisingly, high expression of SEP3 in vascular tissue promoted FLOWERING LOCUS T (FT expression, forming a positive feedback loop with SEP3 and leading to early flowering and curly leaves phenotypes. These results strongly suggest that the DNA polymerase δ is required for the proper establishment of transcriptionally active epigenetic marks and that its failure might affect development by affecting the epigenetic control of master genes.

  11. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea

    KAUST Repository

    Takahashi, Masateru

    2018-01-24

    The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein’s surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of KOD DNA polymerase.—Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

  12. Cell cycle regulation of DNA polymerase beta in rotenone-based Parkinson's disease models.

    Directory of Open Access Journals (Sweden)

    Hongcai Wang

    Full Text Available In Parkinson's disease (PD, neuronal cells undergo mitotic catastrophe and endoreduplication prior to cell death; however, the regulatory mechanisms remain to be defined. In this study, we investigated cell cycle regulation of DNA polymerase β (poly β in rotenone-based dopaminergic cellular and animal models. Incubation with a low concentration (0.25 µM of rotenone for 1.5 to 7 days resulted in a flattened cell body and decreased DNA replication during S phase, whereas a high concentration (2 µM of rotenone exposure resulted in enlarged, multi-nucleated cells and converted the mitotic cycle into endoreduplication. Consistently, DNA poly β, which is mainly involved in DNA repair synthesis, was upregulated to a high level following exposure to 2 µM rotenone. The abrogation of DNA poly β by siRNA transfection or dideoxycytidine (DDC treatment attenuated the rotenone-induced endoreduplication. The cell cycle was reactivated in cyclin D-expressing dopaminergic neurons from the substantia nigra (SN of rats following stereotactic (ST infusion of rotenone. Increased DNA poly β expression was observed in the substantia nigra pars compacta (SNc and the substantia nigra pars reticulate (SNr of rotenone-treated rats. Collectively, in the in vitro model of rotenone-induced mitotic catastrophe, the overexpression of DNA poly β promotes endoreduplication; in the in vivo model, the upregulation of DNA poly β and cell cycle reentry were also observed in the adult rat substantia nigra. Therefore, the cell cycle regulation of DNA poly β may be involved in the pathological processes of PD, which results in the induction of endoreduplication.

  13. Elucidation of Kinetic Mechanisms of Human Translesion DNA Polymerase κ Using Tryptophan Mutants

    Science.gov (United States)

    Zhao, Linlin; Pence, Matthew G.; Eoff, Robert L.; Yuan, Shuai; Fercu, Catinca A.; Guengerich, F. Peter

    2014-01-01

    In order to investigate the conformational dynamics of human DNA polymerase κ (hpol κ), we generated two mutants, Y50W (N-clasp region) and Y408W (linker between the thumb and little finger domains), using a Trp-null mutant (W214Y/W392H) of the hpol κ catalytic core enzyme. These mutants retained catalytic activity and similar patterns of selectivity for bypassing the DNA adduct 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxoG), as judged by the results of steady-state and pre-steady-state kinetic experiments. Stopped-flow kinetic assays with hpol κ Y50W and T408W revealed a decrease in Trp fluorescence with the template G:dCTP pair but not for any mispairs. This decrease in fluorescence was not rate-limiting and is considered to be related to a conformational change necessary for correct nucleotidyl transfer. When a free 3′-hydroxyl was present on the primer, the Trp fluorescence returned to the baseline level at a rate similar to the observed kcat, suggesting that this change occurs during or after nucleotidyl transfer. However, polymerization rates (kpol) of extended-product formation were fast, indicating that the slow fluorescence step follows phosphodiester bond formation and is rate-limiting. Pyrophosphate formation and release were fast and are likely to precede the slower relaxation step. The available kinetic data were used to fit a simplified minimal model. The extracted rate constants confirmed that the conformational change after phosphodiester formation was rate-limiting for hpol κ catalysis with the template G:dCTP pair. PMID:25065501

  14. Dideoxynucleoside triphosphate-sensitive DNA polymerase from rice is involved in base excision repair and immunologically similar to mammalian DNA pol beta.

    Science.gov (United States)

    Sarkar, Sailendra Nath; Bakshi, Sankar; Mokkapati, Sanath K; Roy, Sujit; Sengupta, Dibyendu N

    2004-07-16

    A single polypeptide with ddNTP-sensitive DNA polymerase activity was purified to near homogeneity from the shoot tips of rice seedlings and analysis of the preparations by SDS-PAGE followed by silver staining showed a polypeptide of 67 kDa size. The DNA polymerase activity was found to be inhibitory by ddNTP in both in vitro DNA polymerase activity assay and activity gel analysis. Aphidicolin, an inhibitor of other types of DNA polymerases, had no effect on plant enzyme. The 67 kDa rice DNA polymerase was found to be recognized by the polyclonal antibody (purified IgG) made against rat DNA polymerase beta (pol beta) both in solution and also on Western blot. The recognition was found to be very specific as the activity of Klenow enzyme was unaffected by the antibody. The ability of rice nuclear extract to correct G:U mismatch of oligo-duplex was observed when oligo-duplex with 32P-labeled lower strand containing U (at 22nd position) was used as substrate. Differential appearance of bands at 21-mer, 22-mer, and 51-mer position in presence of dCTP was visible only with G:U mismatch oligo-duplex, but not with G:C oligo-duplex. While ddCTP or polyclonal antibody against rat-DNA pol beta inhibits base excision repair (BER), aphidicolin had no effect. These results for the first time clearly demonstrate the ability of rice nuclear extract to run BER and the involvement of ddNTP-sensitive pol beta type DNA polymerase. Immunological similarity of the ddNTP-sensitive DNA polymerase beta of rice and rat and its involvement in BER revealed the conservation of structure and function of ddNTP-sensitive DNA pol beta in plant and animal.

  15. Catalytic effects of mutations of distant protein residues in human DNA polymerase β: theory and experiment.

    Science.gov (United States)

    Klvaňa, Martin; Murphy, Drew L; Jeřábek, Petr; Goodman, Myron F; Warshel, Arieh; Sweasy, Joann B; Florián, Jan

    2012-11-06

    We carried out free-energy calculations and transient kinetic experiments for the insertion of the right (dC) and wrong (dA) nucleotides by wild-type (WT) and six mutant variants of human DNA polymerase β (Pol β). Since the mutated residues in the point mutants, I174S, I260Q, M282L, H285D, E288K, and K289M, were not located in the Pol β catalytic site, we assumed that the WT and its point mutants share the same dianionic phosphorane transition-state structure of the triphosphate moiety of deoxyribonucleotide 5'-triphosphate (dNTP) substrate. On the basis of this assumption, we have formulated a thermodynamic cycle for calculating relative dNTP insertion efficiencies, Ω = (k(pol)/K(D))(mut)/(k(pol)/K(D))(WT) using free-energy perturbation (FEP) and linear interaction energy (LIE) methods. Kinetic studies on five of the mutants have been published previously using different experimental conditions, e.g., primer-template sequences. We have performed a presteady kinetic analysis for the six mutants for comparison with wild-type Pol β using the same conditions, including the same primer/template DNA sequence proximal to the dNTP insertion site used for X-ray crystallographic studies. This consistent set of kinetic and structural data allowed us to eliminate the DNA sequence from the list of factors that can adversely affect calculated Ω values. The calculations using the FEP free energies scaled by 0.5 yielded 0.9 and 1.1 standard deviations from the experimental log Ω values for the insertion of the right and wrong dNTP, respectively. We examined a hybrid FEP/LIE method in which the FEP van der Waals term for the interaction of the mutated amino acid residue with its surrounding environment was replaced by the corresponding van der Waals term calculated using the LIE method, resulting in improved 0.4 and 1.0 standard deviations from the experimental log Ω values. These scaled FEP and FEP/LIE methods were also used to predict log Ω for R283A and R283L Pol

  16. Substrate rescue of DNA polymerase β containing a catastrophic L22P mutation.

    Science.gov (United States)

    Kirby, Thomas W; Derose, Eugene F; Beard, William A; Shock, David D; Wilson, Samuel H; London, Robert E

    2014-04-15

    DNA polymerase (pol) β is a multidomain enzyme with two enzymatic activities that plays a central role in the overlapping base excision repair and single-strand break repair pathways. The high frequency of pol β variants identified in tumor-derived tissues suggests a possible role in the progression of cancer, making the determination of the functional consequences of these variants of interest. Pol β containing a proline substitution for leucine 22 in the lyase domain (LD), identified in gastric tumors, has been reported to exhibit severe impairment of both lyase and polymerase activities. Nuclear magnetic resonance (NMR) spectroscopic evaluations of both pol β and the isolated LD containing the L22P mutation demonstrate destabilization sufficient to result in LD-selective unfolding with minimal structural perturbations to the polymerase domain. Unexpectedly, addition of single-stranded or hairpin DNA resulted in partial refolding of the mutated lyase domain, both in isolation and for the full-length enzyme. Further, formation of an abortive ternary complex using Ca(2+) and a complementary dNTP indicates that the fraction of pol β(L22P) containing the folded LD undergoes conformational activation similar to that of the wild-type enzyme. Kinetic characterization of the polymerase activity of L22P pol β indicates that the L22P mutation compromises DNA binding, but nearly wild-type catalytic rates can be observed at elevated substrate concentrations. The organic osmolyte trimethylamine N-oxide (TMAO) is similarly able to induce folding and kinetic activation of both polymerase and lyase activities of the mutant. Kinetic data indicate synergy between the TMAO cosolvent and substrate binding. NMR data indicate that the effect of the DNA results primarily from interaction with the folded LD(L22P), while the effect of the TMAO results primarily from destabilization of the unfolded LD(L22P). These studies illustrate that substrate-induced catalytic activation of pol

  17. Characterization of the χψ subcomplex of Pseudomonas aeruginosa DNA polymerase III

    Directory of Open Access Journals (Sweden)

    Witte Gregor

    2011-09-01

    Full Text Available Abstract Background DNA polymerase III, the main enzyme responsible for bacterial DNA replication, is composed of three sub-assemblies: the polymerase core, the β-sliding clamp, and the clamp loader. During replication, single-stranded DNA-binding protein (SSB coats and protects single-stranded DNA (ssDNA and also interacts with the χψ heterodimer, a sub-complex of the clamp loader. Whereas the χ subunits of Escherichia coli and Pseudomonas aeruginosa are about 40% homologous, P. aeruginosa ψ is twice as large as its E. coli counterpart, and contains additional sequences. It was shown that P. aeruginosa χψ together with SSB increases the activity of its cognate clamp loader 25-fold at low salt. The E. coli clamp loader, however, is insensitive to the addition of its cognate χψ under similar conditions. In order to find out distinguishing properties within P. aeruginosa χψ which account for this higher stimulatory effect, we characterized P. aeruginosa χψ by a detailed structural and functional comparison with its E. coli counterpart. Results Using small-angle X-ray scattering, analytical ultracentrifugation, and homology-based modeling, we found the N-terminus of P. aeruginosa ψ to be unstructured. Under high salt conditions, the affinity of the χψ complexes from both organisms to their cognate SSB was similar. Under low salt conditions, P. aeruginosa χψ, contrary to E. coli χψ, binds to ssDNA via the N-terminus of ψ. Whereas it is also able to bind to double-stranded DNA, the affinity is somewhat reduced. Conclusions The binding to DNA, otherwise never reported for any other ψ protein, enhances the affinity of P. aeruginosa χψ towards the SSB/ssDNA complex and very likely contributes to the higher stimulatory effect of P. aeruginosa χψ on the clamp loader. We also observed DNA-binding activity for P. putida χψ, making this activity most probably a characteristic of the ψ proteins from the Pseudomonadaceae.

  18. Encapsulation dehydration colligative cryoprotective strategies and amplified fragment length polymorphism markers to verify the identity and genetic stability of euglenoids following cryopreservation.

    Science.gov (United States)

    Harding, Keith; Miller, Julia; Timmermann, Hella; Lorenz, Maike; Day, John G; Friedl, Thomas

    2010-01-01

    An encapsulation/dehydration procedure was developed for Euglena gracilis Klebs as a 'model alga' to examine various cryoprotective regimes combined with controlled rate cooling to cryopreserve other Euglenoid taxa. Cryoprotective variables were optimised to enable reproducible growth following a combination of alginate encapsulation, sucrose osmotic dehydration, air desiccation, methanol treatment, cooling to -40 degrees C and plunging into liquid nitrogen (LN). Amplified Fragment Length Polymorphism (AFLP) analysis was adapted to: (i) verify algal identity by discriminating between different Euglenoids and (ii) examine the genetic stability of algal cultures prior to various stages of cryoprotective treatments and following exposure to LN. AFLPs were highly reproducible (> 99%) as reliable diagnostic markers, where a single DNA fragment change accounted for -0.4% of the detectable variation in an AFLP pattern. AFLP changes were detected in cryoprotective treatments following LN exposure. Successive stages of the dehydration and desiccation treatments did not accumulate AFLP changes indicating these are random events.

  19. First characterization of Candida albicans by random amplified polymorphic DNA method in Nicaragua and comparison of the diagnosis methods for vaginal candidiasis in Nicaraguan women

    Directory of Open Access Journals (Sweden)

    Bello Martha Darce

    2002-01-01

    Full Text Available A total of 106 women with vaginitis in Nicaragua were studied. The positive rate for the identification of Candida species was 41% (44 positive cultures out of 106 women with vaginitis. The sensitivity of microscopic examination of wet mount with the potassium hydroxide (KOH was 61% and 70% with Gram's stain when using the culture of vaginal fluid as gold standard for diagnosis of candidiasis. Among the 44 positives cultures, isolated species of yeast from vaginal swabs were C. albicans (59%, C. tropicalis (23%, C. glabrata (14% and C. krusei (4%. This study reports the first characterization of 26 C. albicans stocks from Nicaragua by the random amplified polymorphic DNA method. The genetic analysis in this small C. albicans population showed the existence of linkage disequilibrium, which is consistent with the hypothesis that C. albicans undergoes a clonal propagation.

  20. Genetic relatedness among Campylobacter jejuni serotyped isolates of diverse origin as determined by numerical analysis of amplified fragment length polymorphism (AFLP) profiles

    DEFF Research Database (Denmark)

    Siemer, B.L.; Harrington, C.S.; Nielsen, E.M.

    2004-01-01

    health. The remaining 30 groups contained isolates from humans, chickens and associated food products, cattle, sheep, turkeys, ostriches and/or dogs. Strains assigned to serotypes 2, 6/7, 11 and 12 formed major clusters at the 77.6% S-level. Most other serotypes did not form homogeneous clusters......Aims: To use amplified fragment length polymorphism (AFLP) analysis to evaluate the genetic relatedness among 254 Campylobacter jejuni reference and field strains of diverse origin representing all defined 'Penner' serotypes for this species. Methods and Results: Field strains (n = 207) from human...... diarrhoea and diverse animal and environmental sources were collected mainly through a National surveillance programme in Denmark and serotyped by use of the established 'Penner' scheme. Genetic relationships among these isolates, and the archetypal serotype reference strains, were assessed by numerical...

  1. Clonality Analysis of Helicobacter pylori in Patients Isolated from Several Biopsy Specimens and Gastric Juice in a Japanese Urban Population by Random Amplified Polymorphic DNA Fingerprinting

    Directory of Open Access Journals (Sweden)

    Nariaki Toita

    2013-01-01

    Full Text Available Background. The number of Helicobacter pylori clones infecting a single host has been discussed in numerous reports. The number has been suggested to vary depending on the regions in the world. Aim. The purpose of this study was to examine the number of clones infecting a single host in a Japanese urban population. Materials and Methods. Thirty-one Japanese patients undergoing upper gastrointestinal endoscopy were enrolled in this study. H. pylori isolates (total 104 strains were obtained from biopsy specimens (antrum, corpus, and duodenum and gastric juice. Clonal diversity was examined by the random amplified polymorphic DNA (RAPD fingerprinting method. Results. The RAPD fingerprinting patterns of isolates from each patient were identical or very similar. And the isolates obtained from several patients with 5- to 9-year intervals showed identical or very similar RAPD patterns. Conclusion. Each Japanese individual of an urban population is predominantly infected with a single H. pylori clone.

  2. The use of random amplified polymorphic DNA to evaluate the genetic variability of Ponkan mandarin (Citrus reticulata Blanco accessions

    Directory of Open Access Journals (Sweden)

    Coletta Filho Helvécio Della

    2000-01-01

    Full Text Available RAPD analysis of 19 Ponkan mandarin accessions was performed using 25 random primers. Of 112 amplification products selected, only 32 were polymorphic across five accessions. The absence of genetic variability among the other 14 accessions suggested that they were either clonal propagations with different local names, or that they had undetectable genetic variability, such as point mutations which cannot be detected by RAPD.

  3. Population structure of a lodgepole pine (Pinus contorta) and jack pine (P. banksiana) complex as revealed by random amplified polymorphic DNA.

    Science.gov (United States)

    Ye, Terrance Z; Yang, Rong-Cai; Yeh, Francis C

    2002-06-01

    We studied the population structure of a lodgepole (Pinus contorta Dougl.) and jack pine (Pinus banksiana Lamb.) complex in west central Alberta and neighboring areas by assessing random amplified polymorphic DNA (RAPD) variability in 23 lodgepole pine, 9 jack pine, and 8 putative hybrid populations. Of 200 random primers screened, 10 that amplified 39 sharp and reproducible RAPDs were chosen for the study. None of the 39 RAPDs were unique to the parental species. RAPD diversity ranged from 0.085 to 0.190 among populations and averaged 0.143 for lodgepole pine, 0.156 for jack pine, 0.152 for hybrids, and 0.148 for all 40 populations. The estimated population differentiation based on G(ST) was 0.168 for hybrids, 0.162 for lodgepole pine, 0.155 for jack pine, and 0.247 across all 40 populations. Cluster analysis of genetic distances generally separated jack pine from lodgepole pine and hybrids, but no division could be identified that further separated lodgepole pine from hybrids. The observed weak to mild trend of "introgression by distance" in the complex and neighbouring areas was consistent with the view that introgressive hybridization between lodgepole and jack pines within and outside the hybrid zone may have been through secondary contact and primary intergradation, respectively.

  4. DNA methylation levels analysis in four tissues of sea cucumber Apostichopus japonicus based on fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) during aestivation.

    Science.gov (United States)

    Zhao, Ye; Chen, Muyan; Storey, Kenneth B; Sun, Lina; Yang, Hongsheng

    2015-03-01

    DNA methylation plays an important role in regulating transcriptional change in response to environmental stimuli. In the present study, DNA methylation levels of tissues of the sea cucumber Apostichopus japonicus were analyzed by the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) technique over three stages of the aestivation cycle. Overall, a total of 26,963 fragments were amplified including 9112 methylated fragments among four sea cucumber tissues using 18 pairs of selective primers. Results indicated an average DNA methylation level of 33.79% for A. japonicus. The incidence of DNA methylation was different across tissue types in the non-aestivation stage: intestine (30.16%), respiratory tree (27.61%), muscle (27.94%) and body wall (56.25%). Our results show that hypermethylation accompanied deep-aestivation in A. japonicus, which suggests that DNA methylation may have an important role in regulating global transcriptional suppression during aestivation. Further analysis indicated that the main DNA modification sites were focused on intestine and respiratory tree tissues and that full-methylation but not hemi-methylation levels exhibited significant increases in the deep-aestivation stage. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Fusion of Taq DNA polymerase with single-stranded DNA binding-like protein of Nanoarchaeum equitans-Expression and characterization.

    Directory of Open Access Journals (Sweden)

    Marcin Olszewski

    Full Text Available DNA polymerases are present in all organisms and are important enzymes that synthesise DNA molecules. They are used in various fields of science, predominantly as essential components for in vitro DNA syntheses, known as PCR. Modern diagnostics, molecular biology and genetic engineering need DNA polymerases which demonstrate improved performance. This study was aimed at obtaining a new NeqSSB-TaqS fusion DNA polymerase from the Taq DNA Stoffel domain and a single-stranded DNA binding-like protein of Nanoarchaeum equitans in order to significantly improve the properties of DNA polymerase. The DNA coding sequence of Taq Stoffel DNA polymerase and the nonspecific DNA-binding protein of Nanoarchaeum equitans (NeqSSB-like protein were fused. A novel recombinant gene was obtained which was cloned into the pET-30 Ek/LIC vector and introduced into E. coli for expression. The recombinant enzyme was purified and its enzymatic properties including DNA polymerase activity, PCR amplification rate, thermostability, processivity and resistance to inhibitors, were tested. The yield of the target protein reached approximately 18 mg/l after 24 h of the IPTG induction. The specific activity of the polymerase was 2200 U/mg. The recombinant NeqSSB-TaqS exhibited a much higher extension rate (1000 bp template in 20 s, processivity (19 nt, thermostability (half-life 35 min at 95°C and higher tolerance to PCR inhibitors (0.3-1.25% of whole blood, 0.84-13.5 μg of lactoferrin and 4.7-150 ng of heparin than Taq Stoffel DNA polymerase. Furthermore, our studies show that NeqSSB-TaqS DNA polymerase has a high level of flexibility in relation to Mg2+ ions (from 1 to 5 mM and KCl or (NH42SO4 salts (more than 60 mM and 40 mM, respectively. Using NeqSSB-TaqS DNA polymerase instead of the Taq DNA polymerase could be a better choice in many PCR applications.

  6. Drosophila DNA polymerase zeta interacts with recombination repair protein 1, the Drosophila homologue of human abasic endonuclease 1.

    Science.gov (United States)

    Takeuchi, Ryo; Ruike, Tatsushi; Nakamura, Ryo-ichi; Shimanouchi, Kaori; Kanai, Yoshihiro; Abe, Yoko; Ihara, Ayumi; Sakaguchi, Kengo

    2006-04-28

    Abasic (AP) sites are a threat to cellular viability and genomic integrity, since they impede transcription and DNA replication. In mammalian cells, DNA polymerase (pol) beta plays an important role in the repair of AP sites. However, it is known that many organisms, including Drosophila melanogaster, do not have a pol beta homologue, and it is unclear how they repair AP sites. Here, we screened for DNA polymerases that interact with the Drosophila AP endonuclease 1 homologue, Rrp1 (recombination repair protein 1), and found that Drosophila pol zeta (Dmpol zeta), DmREV3 and DmREV7 bound to Rrp1 in a protein affinity column. Rrp1 directly interacted with DmREV7 in vitro and in vivo but not with DmREV3. These findings suggest that the DNA polymerase partner for Rrp1 is Dmpol zeta and that this interaction occurs through DmREV7. Interestingly, DmREV7 bound to the N-terminal region of Rrp1, which has no known protein homologue, suggesting that this binding is a species-specific event. Moreover, DmREV7 could stimulate the AP endonuclease activity of Rrp1, but not the 3'-exonuclease activity, and form a homomultimer. DmREV3 could not incorporate nucleotides at the 5'-incised tetrahydrofran sites but did show strand displacement activity for one-nucleotide-gapped DNA, which was not influenced by either DmREV7 or Rrp1. Methyl methanesulfonate and hydrogen peroxide treatments increased mRNA levels of DmREV3 and DmREV7. On the basis of the direct interaction between DmREV7 and Rrp1, we suggest that Dmpol zeta may be involved in the repair pathway of AP sites in DNA.

  7. Plant organellar DNA primase-helicase synthesizes RNA primers for organellar DNA polymerases using a unique recognition sequence.

    Science.gov (United States)

    Peralta-Castro, Antolín; Baruch-Torres, Noe; Brieba, Luis G

    2017-10-13

    DNA primases recognize single-stranded DNA (ssDNA) sequences to synthesize RNA primers during lagging-strand replication. Arabidopsis thaliana encodes an ortholog of the DNA primase-helicase from bacteriophage T7, dubbed AtTwinkle, that localizes in chloroplasts and mitochondria. Herein, we report that AtTwinkle synthesizes RNA primers from a 5'-(G/C)GGA-3' template sequence. Within this sequence, the underlined nucleotides are cryptic, meaning that they are essential for template recognition but are not instructional during RNA synthesis. Thus, in contrast to all primases characterized to date, the sequence recognized by AtTwinkle requires two nucleotides (5'-GA-3') as a cryptic element. The divergent zinc finger binding domain (ZBD) of the primase module of AtTwinkle may be responsible for template sequence recognition. During oligoribonucleotide synthesis, AtTwinkle shows a strong preference for rCTP as its initial ribonucleotide and a moderate preference for rGMP or rCMP incorporation during elongation. RNA products synthetized by AtTwinkle are efficiently used as primers for plant organellar DNA polymerases. In sum, our data strongly suggest that AtTwinkle primes organellar DNA polymerases during lagging strand synthesis in plant mitochondria and chloroplast following a primase-mediated mechanism. This mechanism contrasts to lagging-strand DNA replication in metazoan mitochondria, in which transcripts synthesized by mitochondrial RNA polymerase prime mitochondrial DNA polymerase γ. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Inhibition of DNA replication, DNA repair synthesis, and DNA polymerases. cap alpha. and delta by butylphenyl deoxyguanosine triphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Dreslor, S.L.; Frattini, M.G.

    1987-05-01

    Semiconservative DNA replication in growing mammalian cells and ultraviolet (UV)-induced DNA repair synthesis in nongrowing mammalian cells are mediated by one or both of the aphidicolin-sensitive DNA polymerases, ..cap alpha.. and/or delta. They have studied the inhibition of replication and repair synthesis in permeable human cells by N/sup 2/ (p-n-butylphenyl)-2'-deoxyguanosine-5'-triphosphate (BuPh dGTP), an agent which inhibits polymerase ..cap alpha.. strongly and polymerase delta weakly. Both processes are inhibited by BuPh-dGTP in competition with dGTP. The K/sub i/'s are, for replication, 2-3 ..mu..M and, for repair synthesis, 3-4 ..mu..M, consistent with the involvement of the same DNA polymerase in both processes. Inhibition of isolated human polymerase ..cap alpha.. by BuPh-dGTP is also competitive with dGTP, but the K/sub i/ is approximately 10 nM, several hundred-fold lower than the K/sub i/'s of replication and repair synthesis. Isolated polymerase delta is inhibited by BuPh-dGTP at doses similar to those which inhibit replication and repair synthesis, however, attempts to determine the K/sub i/ of polymerase delta were hampered by the finding that the dependence of delta activity on deoxyribunucleotide concentration is parabolic at low doses. This behavior differs from the behavior of polymerase ..cap alpha.. and of cellular DNA replication and repair synthesis, all of which show a simple, hyperbolic relationship between activity and deoxyribonucleotide concentration. Thus, inhibition of DNA replication and UV induced DNA repair synthesis by BuPh dGTP is quantitatively similar to DNA polymerase delta, but some other characteristics of the cellular processes are more similar to those of polymerase ..cap alpha...

  9. An analysis on DNA fingerprints of thirty papaya cultivars (Carica papaya L.), grown in Thailand with the use of amplified fragment length polymorphisms technique.

    Science.gov (United States)

    Ratchadaporn, Janthasri; Sureeporn, Katengam; Khumcha, U

    2007-09-15

    The experiment was carried out at the Department of Horticulture, Ubon Ratchathani University, Ubon Ratchathani province, Northeast Thailand during June 2002 to May 2003 aims to identify DNA fingerprints of thirty papaya cultivars with the use of Amplified Fragment Length Polymorphisms (AFLP) technique. Papaya cultivars were collected from six different research centers in Thailand. Papaya plants of each cultivar were grown under field conditions up to four months then leaf numbers 2 and 3 of each cultivar (counted from top) were chosen for DNA extraction and the samples were used for AFLP analysis. Out of 64 random primers being used, 55 pairs gave an increase in DNA bands but only 12 pairs of random primers were randomly chosen for the final analysis of the experiment. The results showed that AFLP markers gave Polymorphic Information Contents (PIC) of three ranges i.e., AFLP markers of 235 lied on a PIC range of 0.003-0.05, 47 for a PIC range of 0.15-0.20 and 12 for a PIC range of 0.35-0.40. The results on dendrogram cluster analysis revealed that the thirty papaya cultivars were classified into six groups i.e., (1) Kaeg Dum and Malador (2) Kaeg Nuan (3) Pakchong and Solo (4) Taiwan (5) Co Coa Hai Nan and (6) Sitong. Nevertheless, in spite of the six papaya groups all papaya cultivars were genetically related to each other where diversity among the cultivars was not significantly found.

  10. Sex Determination from Fragmented and Degenerated DNA by Amplified Product-Length Polymorphism Bidirectional SNP Analysis of Amelogenin and SRY Genes

    Science.gov (United States)

    Masuyama, Kotoka; Shojo, Hideki; Nakanishi, Hiroaki; Inokuchi, Shota; Adachi, Noboru

    2017-01-01

    Sex determination is important in archeology and anthropology for the study of past societies, cultures, and human activities. Sex determination is also one of the most important components of individual identification in criminal investigations. We developed a new method of sex determination by detecting a single-nucleotide polymorphism in the amelogenin gene using amplified product-length polymorphisms in combination with sex-determining region Y analysis. We particularly focused on the most common types of postmortem DNA damage in ancient and forensic samples: fragmentation and nucleotide modification resulting from deamination. Amplicon size was designed to be less than 60 bp to make the method more useful for analyzing degraded DNA samples. All DNA samples collected from eight Japanese individuals (four male, four female) were evaluated correctly using our method. The detection limit for accurate sex determination was determined to be 20 pg of DNA. We compared our new method with commercial short tandem repeat analysis kits using DNA samples artificially fragmented by ultraviolet irradiation. Our novel method was the most robust for highly fragmented DNA samples. To deal with allelic dropout resulting from deamination, we adopted “bidirectional analysis,” which analyzed samples from both sense and antisense strands. This new method was applied to 14 Jomon individuals (3500-year-old bone samples) whose sex had been identified morphologically. We could correctly identify the sex of 11 out of 14 individuals. These results show that our method is reliable for the sex determination of highly degenerated samples. PMID:28052096

  11. Sex Determination from Fragmented and Degenerated DNA by Amplified Product-Length Polymorphism Bidirectional SNP Analysis of Amelogenin and SRY Genes.

    Directory of Open Access Journals (Sweden)

    Kotoka Masuyama

    Full Text Available Sex determination is important in archeology and anthropology for the study of past societies, cultures, and human activities. Sex determination is also one of the most important components of individual identification in criminal investigations. We developed a new method of sex determination by detecting a single-nucleotide polymorphism in the amelogenin gene using amplified product-length polymorphisms in combination with sex-determining region Y analysis. We particularly focused on the most common types of postmortem DNA damage in ancient and forensic samples: fragmentation and nucleotide modification resulting from deamination. Amplicon size was designed to be less than 60 bp to make the method more useful for analyzing degraded DNA samples. All DNA samples collected from eight Japanese individuals (four male, four female were evaluated correctly using our method. The detection limit for accurate sex determination was determined to be 20 pg of DNA. We compared our new method with commercial short tandem repeat analysis kits using DNA samples artificially fragmented by ultraviolet irradiation. Our novel method was the most robust for highly fragmented DNA samples. To deal with allelic dropout resulting from deamination, we adopted "bidirectional analysis," which analyzed samples from both sense and antisense strands. This new method was applied to 14 Jomon individuals (3500-year-old bone samples whose sex had been identified morphologically. We could correctly identify the sex of 11 out of 14 individuals. These results show that our method is reliable for the sex determination of highly degenerated samples.

  12. Characterization of Grain Amaranth (Amaranthus spp. Germplasm in South West Nigeria Using Morphological, Nutritional, and Random Amplified Polymorphic DNA (RAPD Analysis

    Directory of Open Access Journals (Sweden)

    Pamela E. Akin-Idowu

    2016-01-01

    Full Text Available Efficient utilization of plant genetic resources for nutrition and crop improvement requires systematic understanding of the important traits. Amaranthus species are distributed worldwide with an interesting diversity of landraces and cultivars whose leaves and seeds are consumed. Despite their potential to enhance food security and economic livelihoods, grain amaranth breeding to improve nutritional quality and adoption by farmers in sub-Saharan Africa is scanty. This study assessed the variation among 29 grain amaranth accessions using 27 phenotypic (10 morphological and 17 nutritional characters and 16 random amplified polymorphic DNA (RAPD primers. Multivariate analysis of phenotypic characters showed the first four principal components contributing 57.53% of observed variability, while cluster analysis yielded five groups at 87.5% similarity coefficient. RAPD primers generated a total of 193 amplicons with an average of 12.06 amplicons per primer, 81% of which were polymorphic. Genetic similarities based on Jaccard’s coefficient ranged from 0.61 to 0.88. The RAPD-based unweighted pair group method with arithmetic mean dendrogram grouped the accessions into nine clusters, with the same species clustering together. RAPD primers distinguished the accessions more effectively than phenotypic markers. Accessions in the different clusters as obtained can be exploited for heterotic gain in desired nutritional traits.

  13. High-Resolution Amplified Fragment Length Polymorphism Typing of Lactococcus lactis Strains Enables Identification of Genetic Markers for Subspecies-Related Phenotypes▿

    Science.gov (United States)

    Kütahya, Oylum Erkus; Starrenburg, Marjo J. C.; Rademaker, Jan L. W.; Klaassen, Corné H. W.; van Hylckama Vlieg, Johan E. T.; Smid, Eddy J.; Kleerebezem, Michiel

    2011-01-01

    A high-resolution amplified fragment length polymorphism (AFLP) methodology was developed to achieve the delineation of closely related Lactococcus lactis strains. The differentiation depth of 24 enzyme-primer-nucleotide combinations was experimentally evaluated to maximize the number of polymorphisms. The resolution depth was confirmed by performing diversity analysis on 82 L. lactis strains, including both closely and distantly related strains with dairy and nondairy origins. Strains clustered into two main genomic lineages of L. lactis subsp. lactis and L. lactis subsp. cremoris type-strain-like genotypes and a third novel genomic lineage rooted from the L. lactis subsp. lactis genomic lineage. Cluster differentiation was highly correlated with small-subunit rRNA homology and multilocus sequence analysis (MLSA) studies. Additionally, the selected enzyme-primer combination generated L. lactis subsp. cremoris phenotype-specific fragments irrespective of the genotype. These phenotype-specific markers allowed the differentiation of L. lactis subsp. lactis phenotype from L. lactis subsp. cremoris phenotype strains within the same L. lactis subsp. cremoris type-strain-like genomic lineage, illustrating the potential of AFLP for the generation of phenotype-linked genetic markers. PMID:21666014

  14. A Unique Primer with an Inosine Chain at the 5'-Terminus Improves the Reliability of SNP Analysis Using the PCR-Amplified Product Length Polymorphism Method.

    Directory of Open Access Journals (Sweden)

    Hideki Shojo

    Full Text Available Polymerase chain reaction-amplified product length polymorphism (PCR-APLP is one of the most convenient and reliable methods for single nucleotide polymorphism (SNP analysis. This method is based on PCR, but uses allele-specific primers containing SNP sites at the 3'-terminus of each primer. To use this method at least two allele-specific primers and one "counter-primer", which serves as a common forward or reverse primer of the allele-specific primers, are required. The allele-specific primers have SNP sites at the 3'-terminus, and another primer should have a few non-complementary flaps at the 5'-terminus to detect SNPs by determining the difference of amplicon length by PCR and subsequent electrophoresis. A major disadvantage of the addition of a non-complementary flap is the non-specific annealing of the primer with non-complementary flaps. However, a design principle for avoiding this undesired annealing has not been fully established, therefore, it is often difficult to design effective APLP primers. Here, we report allele-specific primers with an inosine chain at the 5'-terminus for PCR-APLP analysis. This unique design improves the competitiveness of allele-specific primers and the reliability of SNP analysis when using the PCR-APLP method.

  15. Bypass of Aflatoxin B[subscript 1] Adducts by the Sulfolobus solfataricus DNA Polymerase IV

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Surajit; Brown, Kyle L.; Egli, Martin; Stone, Michael P. (Vanderbilt)

    2012-07-18

    Aflatoxin B{sub 1} (AFB{sub 1}) is oxidized to an epoxide in vivo, which forms an N7-dG DNA adduct (AFB{sub 1}-N7-dG). The AFB{sub 1}-N7-dG can rearrange to a formamidopyrimidine (AFB{sub 1}-FAPY) derivative. Both AFB{sub 1}-N7-dG and the {beta}-anomer of the AFB{sub 1}-FAPY adduct yield G {yields} T transversions in Escherichia coli, but the latter is more mutagenic. We show that the Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) bypasses AFB{sub 1}-N7-dG in an error-free manner but conducts error-prone replication past the AFB{sub 1}-FAPY adduct, including misinsertion of dATP, consistent with the G {yields} T mutations observed in E. coli. Three ternary (Dpo4-DNA-dNTP) structures with AFB{sub 1}-N7-dG adducted template:primers have been solved. These demonstrate insertion of dCTP opposite the AFB{sub 1}-N7-dG adduct, and correct vs incorrect insertion of dATP vs dTTP opposite the 5'-template neighbor dT from a primed AFB{sub 1}-N7-dG:dC pair. The insertion of dTTP reveals hydrogen bonding between the template N3 imino proton and the O{sup 2} oxygen of dTTP, and between the template T O{sup 4} oxygen and the N3 imino proton of dTTP, perhaps explaining why this polymerase does not efficiently catalyze phosphodiester bond formation from this mispair. The AFB{sub 1}-N7-dG maintains the 5'-intercalation of the AFB{sub 1} moiety observed in DNA. The bond between N7-dG and C8 of the AFB{sub 1} moiety remains in plane with the alkylated guanine, creating a 16{sup o} inclination of the AFB{sub 1} moiety with respect to the guanine. A binary (Dpo4-DNA) structure with an AFB{sub 1}-FAPY adducted template:primer also maintains 5'-intercalation of the AFB{sub 1} moiety. The {beta}-deoxyribose anomer is observed. Rotation about the FAPY C5-N{sup 5} bond orients the bond between N{sup 5} and C8 of the AFB{sub 1} moiety out of plane in the 5'-direction, with respect to the FAPY base. The formamide group extends in the 3'-direction. This improves

  16. Investigation of Nascent Base Pair and Polymerase Behavior in the Presence of Mismatches in DNA Polymerase I Using Molecular Dynamics.

    Science.gov (United States)

    Yeager, Andrew; Humphries, Kathryn; Farmer, Ellen; Cline, Gene; Miller, Bill R

    2018-02-26

    Optimizing DNA polymerases for a broad range of tasks requires an understanding of the factors influencing polymerase fidelity, but many details of polymerase behavior remain unknown, especially in the presence of mismatched nascent base pairs. Using molecular dynamics, the large fragment of Bacillus stearothermophilus DNA polymerase I is simulated in the presence of all 16 possible standard nucleoside triphosphate-template (dNTP-dN) pairs, including four Watson-Crick pairs and 12 mismatches. The precatalytic steps of nucleotide addition from nucleotide insertion to immediately preceding catalysis are explored using three starting structures representing different stages of nucleotide addition. From these simulations, interactions between dNTPs and the DNA-protein complex formed by the polymerase are elucidated. Patterns of large-scale conformational shifts, classification of nucleotide pairs based on composition, and investigation of the roles of residues interacting with dNTPs are completed on 50+ μs of simulation. The role of molecular dynamics in studies of polymerase behavior is discussed.

  17. Effects of coordination of diammineplatinum(II) with DNA on the activities of Escherichia coli DNA polymerase I

    International Nuclear Information System (INIS)

    Bernges, F.; Holler, E.

    1988-01-01

    The effects of the reaction of cis- and trans-diamminedichloroplatinum(II) with DNA have been measured with regard to DNA synthesis, 3'-5' exonuclease (proofreading), and 5'-3' exonuclease (repair) activities of Escherichia coli DNA polymerase I. Both isomers inhibit DNA synthetic activity of the polymerase through an increase in K/sub m/ values and a decrease in V/sub max/ values for platinated DNA but not for the nucleoside 5'-triphosphates as the varied substrates. The inhibition is a consequence of lowered binding affinity between platinated DNA and DNA polymerase, and of a platination-induced separation of template and primer strands. Strand separation enhances initial rates of 3'-5' excision of [ 3 H]dCMP from platinated DNA (proofreading), while total excision levels of nucleotides are decreased. In contrast to proofreading activity, the 5'-3' exonuclease activity (repair) discriminates between DNA which had reacted with cis- and with trans-diamminedichloroplatinum(II). While both initial rates and total excision are inhibited for the cis isomer, they are almost not affected for the trans isomer. This differential effect could explain why bacterial growth inhibition requires much higher concentrations of trans- than cis-diamminedichloroplatinum(II)

  18. Primer-Independent DNA Synthesis by a Family B DNA Polymerase from Self-Replicating Mobile Genetic Elements

    Directory of Open Access Journals (Sweden)

    Modesto Redrejo-Rodríguez

    2017-11-01

    Full Text Available Family B DNA polymerases (PolBs play a central role during replication of viral and cellular chromosomes. Here, we report the discovery of a third major group of PolBs, which we denote primer-independent PolB (piPolB, that might be a link between the previously known protein-primed and RNA/DNA-primed PolBs. PiPolBs are encoded by highly diverse mobile genetic elements, pipolins, integrated in the genomes of diverse bacteria and also present as circular plasmids in mitochondria. Biochemical characterization showed that piPolB displays efficient DNA polymerization activity that can use undamaged and damaged templates and is endowed with proofreading and strand displacement capacities. Remarkably, the protein is also capable of template-dependent de novo DNA synthesis, i.e., DNA-priming activity, thereby breaking the long-standing dogma that replicative DNA polymerases require a pre-existing primer for DNA synthesis. We suggest that piPolBs are involved in self-replication of pipolins and may also contribute to bacterial DNA damage tolerance.

  19. The dnaN gene codes for the beta subunit of DNA polymerase III holoenzyme of escherichia coli.

    Science.gov (United States)

    Burgers, P M; Kornberg, A; Sakakibara, Y

    1981-09-01

    An Escherichia coli mutant, dnaN59, stops DNA synthesis promptly upon a shift to a high temperature; the wild-type dnaN gene carried in a transducing phage encodes a polypeptide of about 41,000 daltons [Sakakibara, Y. & Mizukami, T. (1980) Mol. Gen. Genet. 178, 541-553; Yuasa, S. & Sakakibara, Y. (1980) Mol. Gen. Genet. 180, 267-273]. We now find that the product of dnaN gene is the beta subunit of DNA polymerase III holoenzyme, the principal DNA synthetic multipolypeptide complex in E. coli. The conclusion is based on the following observations: (i) Extracts from dnaN59 cells were defective in phage phi X174 and G4 DNA synthesis after the mutant cells had been exposed to the increased temperature. (ii) The enzymatic defect was overcome by addition of purified beta subunit but not by other subunits of DNA polymerase III holoenzyme or by other replication proteins required for phi X174 DNA synthesis. (iii) Partially purified beta subunit from the dnaN mutant, unlike that from the wild type, was inactive in reconstituting the holoenzyme when mixed with the other purified subunits. (iv) Increased dosage of the dnaN gene provided by a plasmid carrying the gene raised cellular levels of the beta subunit 5- to 6-fold.

  20. Dynamics of termination during in vitro replication of ultraviolet-irradiated DNA with DNA polymerase III holoenzyme of Escherichia coli

    International Nuclear Information System (INIS)

    Shwartz, H.; Livneh, Z.

    1987-01-01

    During in vitro replication of UV-irradiated single-stranded DNA with Escherichia coli DNA polymerase III holoenzyme termination frequently occurs at pyrimidine photodimers. The termination stage is dynamic and characterized by at least three different events: repeated dissociation-reinitiation cycles of the polymerase at the blocked termini; extensive hydrolysis of ATP to ADP and inorganic phosphate; turnover of dNTPs into dNMP. The reinitiation events are nonproductive and are not followed by further elongation. The turnover of dNTPs into dNMPs is likely to result from repeated cycles of insertion of dNMP residues opposite the blocking lesions followed by their excision by the 3'----5' exonucleolytic activity of the polymerase. Although all dNTPs are turned over, there is a preference for dATP, indicating that DNA polymerase III holoenzyme has a preference for inserting a dAMP residue opposite blocking pyrimidine photodimers. We suggest that the inability of the polymerase to bypass photodimers during termination is due to the formation of defective initiation-like complexes with reduced stability at the blocked termini

  1. The Roles of Family B and D DNA Polymerases in Thermococcus Species 9°N Okazaki Fragment Maturation*

    Science.gov (United States)

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F.

    2015-01-01

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. PMID:25814667

  2. Subunit interaction and regulation of activity through terminal domains of the family D DNA polymerase from Pyrococcus horikoshii.

    Science.gov (United States)

    Shen, Y; Tang, X-F; Matsui, E; Matsui, I

    2004-04-01

    Family D DNA polymerase (PolD) has recently been found in the Euryarchaeota subdomain of Archaea. Its genes are adjacent to several other genes related to DNA replication, repair and recombination in the genome, suggesting that this enzyme may be the major DNA replicase in Euryarchaeota. We successfully cloned, expressed, and purified the family D DNA polymerase from Pyrococcus horikoshii (PolDPho). By site-directed mutagenesis, we identified amino acid residues Asp-1122 and Asp-1124 of a large subunit as the essential residues responsible for DNA-polymerizing activity. We analysed the domain structure using proteins truncated at the N- and C-termini of both small and large subunits (DP1Pho and DP2Pho), and identified putative regions responsible for subunit interaction, oligomerization and regulation of the 3'-5' exonuclease activity in PolDPho. It was also found that the internal region of the putative zinc finger motif (cysteine cluster II) at the C-terminal of DP2Pho is involved in the 3'-5' exonuclease activity. Using gel filtration analysis, we determined the molecular masses of the recombinant PolDPho and the N-terminal putative dimerization domain of the large subunit, and proposed that PolD from P. horikoshii probably forms a heterotetrameric structure in solution. Based on these results, a model regarding the subunit interaction and regulation of activity of PolDPho is proposed.

  3. The roles of family B and D DNA polymerases in Thermococcus species 9°N Okazaki fragment maturation.

    Science.gov (United States)

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F

    2015-05-15

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Variants of a Thermus aquaticus DNA polymerase with increased selectivity for applications in allele- and methylation-specific amplification.

    Directory of Open Access Journals (Sweden)

    Matthias Drum

    Full Text Available The selectivity of DNA polymerases is crucial for many applications. For example, high discrimination between the extension of matched versus mismatched primer termini is desired for the detection of a single nucleotide variation at a particular locus within the genome. Here we describe the generation of thermostable mutants of the large fragment of Thermus aquaticus DNA polymerase (KlenTaq with increased mismatch extension selectivity. In contrast to previously reported much less active KlenTaq mutants with mismatch discrimination abilities, many of the herein discovered mutants show conserved wild-type-like high activities. We demonstrate for one mutant containing the single amino acid exchange R660V the suitability for application in allele-specific amplifications directly from whole blood without prior sample purification. Also the suitability of the mutant for methylation specific amplification in the diagnostics of 5-methyl cytosines is demonstrated. Furthermore, the identified mutant supersedes other commercially available enzymes in human leukocyte antigen (HLA analysis by sequence-specific primed polymerase chain reactions (PCRs.

  5. Mechanism of error-free DNA synthesis across N1-methyl-deoxyadenosine by human DNA polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Rinku; Choudhury, Jayati Roy; Buku, Angeliki; Johnson, Robert E.; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K.

    2017-03-08

    N1-methyl-deoxyadenosine (1-MeA) is formed by methylation of deoxyadenosine at the N1 atom. 1-MeA presents a block to replicative DNA polymerases due to its inability to participate in Watson-Crick (W-C) base pairing. Here we determine how human DNA polymerase-ι (Polι) promotes error-free replication across 1-MeA. Steady state kinetic analyses indicate that Polι is ~100 fold more efficient in incorporating the correct nucleotide T versus the incorrect nucleotide C opposite 1-MeA. To understand the basis of this selectivity, we determined ternary structures of Polι bound to template 1-MeA and incoming dTTP or dCTP. In both structures, template 1-MeA rotates to the syn conformation but pairs differently with dTTP versus dCTP. Thus, whereas dTTP partakes in stable Hoogsteen base pairing with 1-MeA, dCTP fails to gain a “foothold” and is largely disordered. Together, our kinetic and structural studies show how Polι maintains discrimination between correct and incorrect incoming nucleotide opposite 1-MeA in preserving genome integrity.

  6. Pyrovanadolysis: a Pyrophosphorolysis-like Reaction Mediated by Pyrovanadate MN2plus and DNA Polymerase of Bacteriophage T7

    Energy Technology Data Exchange (ETDEWEB)

    B Akabayov; A Kulczyk; S Akabayov; C Thiele; L McLaughlin; B Beauchamp; C Richardson

    2011-12-31

    DNA polymerases catalyze the 3'-5'-pyrophosphorolysis of a DNA primer annealed to a DNA template in the presence of pyrophosphate (PP{sub i}). In this reversal of the polymerization reaction, deoxynucleotides in DNA are converted to deoxynucleoside 5'-triphosphates. Based on the charge, size, and geometry of the oxygen connecting the two phosphorus atoms of PP{sub i}, a variety of compounds was examined for their ability to carry out a reaction similar to pyrophosphorolysis. We describe a manganese-mediated pyrophosphorolysis-like activity using pyrovanadate (VV) catalyzed by the DNA polymerase of bacteriophage T7. We designate this reaction pyrovanadolysis. X-ray absorption spectroscopy reveals a shorter Mn-V distance of the polymerase-VV complex than the Mn-P distance of the polymerase-PP{sub i} complex. This structural arrangement at the active site accounts for the enzymatic activation by Mn-VV. We propose that the Mn{sup 2+}, larger than Mg{sup 2+}, fits the polymerase active site to mediate binding of VV into the active site of the polymerase. Our results may be the first documentation that vanadium can substitute for phosphorus in biological processes.

  7. Involvement of specialized DNA polymerases Pol II, Pol IV and DnaE2 in DNA replication in the absence of Pol I in Pseudomonas putida

    International Nuclear Information System (INIS)

    Sidorenko, Julia; Jatsenko, Tatjana; Saumaa, Signe; Teras, Riho; Tark-Dame, Mariliis; Horak, Rita; Kivisaar, Maia

    2011-01-01

    The majority of bacteria possess a different set of specialized DNA polymerases than those identified in the most common model organism Escherichia coli. Here, we have studied the ability of specialized DNA polymerases to substitute Pol I in DNA replication in Pseudomonas putida. Our results revealed that P. putida Pol I-deficient cells have severe growth defects in LB medium, which is accompanied by filamentous cell morphology. However, growth of Pol I-deficient bacteria on solid rich medium can be restored by reduction of reactive oxygen species in cells. Also, mutants with improved growth emerge rapidly. Similarly to the initial Pol I-deficient P. putida, its adapted derivatives express a moderate mutator phenotype, which indicates that DNA replication carried out in the absence of Pol I is erroneous both in the original Pol I-deficient bacteria and the adapted derivatives. Analysis of the spectra of spontaneous Rif r mutations in P. putida strains lacking different DNA polymerases revealed that the presence of specialized DNA polymerases Pol II and Pol IV influences the frequency of certain base substitutions in Pol I-proficient and Pol I-deficient backgrounds in opposite ways. Involvement of another specialized DNA polymerase DnaE2 in DNA replication in Pol I-deficient bacteria is stimulated by UV irradiation of bacteria, implying that DnaE2-provided translesion synthesis partially substitutes the absence of Pol I in cells containing heavily damaged DNA.

  8. Dual Role of φ29 DNA Polymerase Lys529 in Stabilisation of the DNA Priming-Terminus and the Terminal Protein-Priming Residue at the Polymerisation Site

    Science.gov (United States)

    del Prado, Alicia; Lázaro, José M.; Villar, Laurentino; Salas, Margarita; de Vega, Miguel

    2013-01-01

    Resolution of the crystallographic structure of φ29 DNA polymerase binary and ternary complexes showed that residue Lys529, located at the C-terminus of the palm subdomain, establishes contacts with the 3′ terminal phosphodiester bond. In this paper, site-directed mutants at this Lys residue were used to analyse its functional importance for the synthetic activities of φ29 DNA polymerase, an enzyme that starts linear φ29 DNA replication using a terminal protein (TP) as primer. Our results show that single replacement of φ29 DNA polymerase residue Lys529 by Ala or Glu decreases the stabilisation of the primer-terminus at the polymerisation active site, impairing both the insertion of the incoming nucleotide when DNA and TP are used as primers and the translocation step required for the next incoming nucleotide incorporation. In addition, combination of the DNA polymerase mutants with a TP derivative at residue Glu233, neighbour to the priming residue Ser232, leads us to infer a direct contact between Lys529 and Glu233 for initiation of TP-DNA replication. Altogether, the results are compatible with a sequential binding of φ29 DNA polymerase residue Lys529 with TP and DNA during replication of TP-DNA. PMID:24023769

  9. Inhibition of the DNA polymerase and RNase H activities of HIV-1 reverse transcriptase and HIV-1 replication by Brasenia schreberi (Junsai) and Petasites japonicus (Fuki) components.

    Science.gov (United States)

    Hisayoshi, Tetsuro; Shinomura, Mayu; Yokokawa, Kanta; Kuze, Ikumi; Konishi, Atsushi; Kawaji, Kumi; Kodama, Eiichi N; Hata, Keishi; Takahashi, Saori; Nirasawa, Satoru; Sakuda, Shohei; Yasukawa, Kiyoshi

    2015-07-01

    Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) possesses two distinct enzymatic activities: those of RNA- and DNA-dependent DNA polymerases and RNase H. In the current HIV-1 therapy, all HIV-1 RT inhibitors inhibit the activity of DNA polymerase, but not that of RNase H. We previously reported that ethanol and water extracts of Brasenia schreberi (Junsai) inhibited the DNA polymerase activity of HIV-1 RT [Hisayoshi et al. (2014) J Biol Macromol 14:59-65]. In this study, we screened 43 edible plants and found that ethanol and water extracts of Brasenia schreberi and water extract of Petasites japonicus strongly inhibit not only the activity of DNA polymerase to incorporate dTTP into poly(rA)-p(dT)15 but also the activity of RNase H to hydrolyze the RNA strand of an RNA/DNA hybrid. In addition, these three extracts inhibit HIV-1 replication in human cells, with EC50 values of 1-2 µg/ml. These results suggest that Brasenia schreberi and Petasites japonicus contain substances that block HIV-1 replication by inhibiting the DNA polymerase activity and/or RNase H activity of HIV-1 RT.

  10. Involvement of specialized DNA polymerases Pol II, Pol IV and DnaE2 in DNA replication in the absence of Pol I in Pseudomonas putida

    Energy Technology Data Exchange (ETDEWEB)

    Sidorenko, Julia; Jatsenko, Tatjana; Saumaa, Signe; Teras, Riho; Tark-Dame, Mariliis; Horak, Rita [Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010 Tartu (Estonia); Kivisaar, Maia, E-mail: maiak@ebc.ee [Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010 Tartu (Estonia)

    2011-09-01

    The majority of bacteria possess a different set of specialized DNA polymerases than those identified in the most common model organism Escherichia coli. Here, we have studied the ability of specialized DNA polymerases to substitute Pol I in DNA replication in Pseudomonas putida. Our results revealed that P. putida Pol I-deficient cells have severe growth defects in LB medium, which is accompanied by filamentous cell morphology. However, growth of Pol I-deficient bacteria on solid rich medium can be restored by reduction of reactive oxygen species in cells. Also, mutants with improved growth emerge rapidly. Similarly to the initial Pol I-deficient P. putida, its adapted derivatives express a moderate mutator phenotype, which indicates that DNA replication carried out in the absence of Pol I is erroneous both in the original Pol I-deficient bacteria and the adapted derivatives. Analysis of the spectra of spontaneous Rif{sup r} mutations in P. putida strains lacking different DNA polymerases revealed that the presence of specialized DNA polymerases Pol II and Pol IV influences the frequency of certain base substitutions in Pol I-proficient and Pol I-deficient backgrounds in opposite ways. Involvement of another specialized DNA polymerase DnaE2 in DNA replication in Pol I-deficient bacteria is stimulated by UV irradiation of bacteria, implying that DnaE2-provided translesion synthesis partially substitutes the absence of Pol I in cells containing heavily damaged DNA.

  11. Analysis of genetic variability in endemic medicinal plants of genus Chlorophytum from the Indian subcontinent using amplified fragment length polymorphism marker.

    Science.gov (United States)

    Patil, Swapnil Mahadeo; Chandanshive, Vishal Vinayak; Tamboli, Asif Shabodin; Adsul, Avinash Asraji; Yadav, Shrirang Ramchandra; Govindwar, Sanjay Prabhu

    2015-12-01

    The genus Chlorophytum consists of medicinally important species like Chlorophytum borivilianum, C. tuberosum and C. attenuatum. Uncontrolled harvest of this plant from wild habitat due to its high commercial value made the species of this genus be listed in the Red Data Book of Indian plants as an endangered species. In India, approximately nineteen species of Chlorophytum are found; out of these, only C. borivilianum is cultivated commercially. The objective of this study was to measure genetic diversity, population structure and phylogenetic relationship among the species using Amplified Fragment Length Polymorphisms (AFLP). Fifteen pairs of primer (out of 64 primer pairs screened) were used to analyse the genetic diversity in eighteen species of genus Chlorophytum. Cluster analysis, estimation of the gene flow among the species and of the phylogeographic distribution of this genus were carried out using an AFLP data matrix. A high level of genetic diversity was observed on the basis of the percentage of polymorphic bands (99.91%), Shannon's information index (0.3592) and Nei's gene diversity (0.2085) at species level. Cluster analysis of UPGMA dendrogram, principal component analysis and Bayesian method analysis resolved these species in three different clusters, which was supported by morphological information. The Mantel test (r=0.4432) revealed a significant positive correlation between genetic and geographic distances. The collected data have an important implication in the identification, authentication, and conservation of the species of the genus Chlorophytum. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  12. Genetic diversity and population structure of the narrow endemic and endangered species Heteroplexis microcephala Y. L. Chen. in China revealed by random amplified polymorphic DNA markers

    Directory of Open Access Journals (Sweden)

    Shi Yancai

    2016-01-01

    Full Text Available Heteroplexis microcephala Y. L. Chen. is an endemic and endangered species found only in karst limestone regions in the Yangshuo County of the Guangxi Zhuang Autonomous Region in China: it is a habitat representative of species in the Heteroplexis genus. To provide basic genetic information for its conservation, in this study we evaluated the genetic variation and differentiation among six wild populations of H. microcephala by random amplified polymorphic DNA markers (RAPD. The leaves of 141 individuals were sampled. Based on 12 primers, 113 DNA fragments were generated. Genetic diversity was low at the population level (Nei’s gene diversity (h=0.0579; Shannon information index (I=0.0924; percentage of polymorphic bands (PPB=23.30%, but relatively high at the species level (h=0.1701; I=0.2551; PPB=46.34%. The coefficient of genetic differentiation based on Nei’s genetic diversity analysis (0.6661 was high, indicating that there was significant genetic differentiation among populations, which was confirmed by AMOVA analysis exhibiting population differentiation among populations of 68.77%. Low gene flow among populations (0.2507 may result from several factors, such as a harsh pollination environment, population isolation and low seed dispersal distance. Limited gene flow and self-compatibility are the primary reasons for the high genetic differentiation observed for this species. We propose the collection of seeds from more populations with fewer individuals and core populations for ex situ conservation and suggest methods to increase seed germination rates.

  13. Detection of genetic variability in Basmati and non-Basmati rice varieties and their radiation induced mutants through random amplified polymorphic DNA (RAPD)

    International Nuclear Information System (INIS)

    Farooq, S.; Iqbal, N.; Arif, M.

    1998-01-01

    Random Amplified Polymorphic DNA (RAPDs) markers were utilized to detect polymorphism between pure lines and commercially available Basmati rice varieties to assess variation which may be helpful in quality control and varietal identification (Basmati-370 and derived radiation induced mutants), differentiation of mutants and parents, and identification of RAPD markers co-segregating with important agronomic traits including plant height, days to flower and grain quality. Basmati varieties were distinguished from non-Basmati varieties with the help of five diagnostic markers which will be useful for detecting mixing of non-Basmati and Basmati rices, currently a serious marketing problem. Different Basmati cultivars were identified with the help of diagnostic RAPD markers which can be used in quality control as well as for ''fingerprinting'' of cultivars. Different radiation induced mutants were also successfully distinguished from the parents on the basis of variety specific and mutant specific markers which will be useful for varietal identification. In addition to this, other markers were also identified which can differentiate mutants from each other and are being, used for the fingerprinting of different mutants, particularly the dwarf mutants having similar appearance but different parentage. For identification of RAPD markers co-segregating with plant height and days to flower, 50 F 2 plants and four F 3 families were studied from a reciprocal cross made between Kashmir Basmati (tall and early) and Basmati-198 (dwarf and late). Segregating bands were observed within these populations, and indicating the possible use of RAPD markers for tagging gene(s) of agronomic importance in rice. (author)

  14. Genetic diversity of pigeon pea (Cajanus cajan (l.) Millsp.) based on molecular characterization using randomly amplified polymorphic DNA (RAPD) markers

    Science.gov (United States)

    Khoiriyah, N.; Yuniastuti, E.; Purnomo, D.

    2018-03-01

    Pigeon pea (Cajanus cajan (L.) Millsp.) is an annual leguminous crop (perennial) which has advantages over other local leguminous crops as drought resistant, hold collapsed and strong pods. The research on drought resistance plant is very important to adapt to climate change adverse impact to support food security. The potential of pigeon pie has not been supported by accurate data. To explore the potential of pigeon pea, it is necessary to record the important properties by characterization, one of which is molecular. Increasing genetic diversity can be done through mutation which widely used gamma ray for the induction. The purpose of this study was to identify the genetic diversity of pigeon pea of black, white and brown seeds type resulted by gamma-ray irradiation with a wavelength of 100, 200 and 300 grays by using RAPD method. The experiment resulted 14 bands, 12 of them are polymorphic bands and 2 of them are monomorphic with size varied from 300 bp to 1.3 kbp. The dendrogram showed from 30 accessions are divided into two main clusters, B shows clear genetical divergence from other clusters and some others split randomly. The range of similarity coefficient is from 0.43 to 1.00

  15. The SWI/SNF Chromatin Regulator BRG1 Modulates the Transcriptional Regulatory Activity of the Epstein-Barr Virus DNA Polymerase Processivity Factor BMRF1.

    Science.gov (United States)

    Su, Mei-Tzu; Wang, Ya-Ting; Chen, Yen-Ju; Lin, Su-Fang; Tsai, Ching-Hwa; Chen, Mei-Ru

    2017-05-01

    During the lytic phase of Epstein-Barr virus (EBV), binding of the transactivator Zta to the origin of lytic replication (oriLyt) and the BHLF1 transcript, forming a stable RNA-DNA hybrid, is required to initiate viral DNA replication. EBV-encoded viral DNA replication proteins form complexes to amplify viral DNA. BMRF1, the viral DNA polymerase accessory factor, is essential for lytic DNA replication and also known as a transcriptional regulator of the expression of BHLF1 and BALF2 (single-stranded DNA [ssDNA]-binding protein). In order to determine systematically how BMRF1 regulates viral transcription, a BMRF1 knockout bacmid was generated to analyze viral gene expression using a viral DNA microarray. We found that a subset of Rta-responsive late genes, including BcLF1, BLLF1, BLLF2, and BDLF3, were downregulated in cells harboring a BMRF1 knockout EBV bacmid (p2089ΔBMRF1). In reporter assays, BMRF1 appears to transactivate a subset of viral late promoters through distinct pathways. BMRF1 activates the BDLF3 promoter in an SP1-dependent manner. Notably, BMRF1 associates with the transcriptional regulator BRG1 in EBV-reactivated cells. BMRF1-mediated transactivation activities on the BcLF1 and BLLF1 promoters were attenuated by knockdown of BRG1. In BRG1-depleted EBV-reactivated cells, BcLF1 and BLLF1 transcripts were reduced in number, resulting in reduced virion secretion. BMRF1 and BRG1 bound to the adjacent upstream regions of the BcLF1 and BLLF1 promoters, and depletion of BRG1 attenuated the recruitment of BMRF1 onto both promoters, suggesting that BRG1 is involved in BMRF1-mediated regulation of these two genes. Overall, we reveal a novel pathway by which BMRF1 can regulate viral promoters through interaction with BRG1. IMPORTANCE The cascade of viral gene expression during Epstein-Barr virus (EBV) replication is exquisitely regulated by the coordination of the viral DNA replication machinery and cellular factors. Upon lytic replication, the EBV immediate

  16. DNA polymerase I is crucial for the repair of potentially lethal damage caused by the indirect effects of X irradiation in Escherichia coli

    International Nuclear Information System (INIS)

    Billen, D.

    1985-01-01

    The radiosensitivity of an Escherichia coli mutant deficient in DNA polymerase I was measured in the presence of OH radical scavengers. The extreme X-ray sensitivity of the mutant could be abolished by OH radical scavengers if a sufficiently high level of radioprotector was present. There was a direct correlation between the OH radical scavenging activity of the chemicals tested (NO 2 - , n-butanol, glycerol, t-amyl alcohol, and t-butanol) and their protective ability. The author interprets the data as showing that the indirect actions of X rays (primarily OH radicals) result in major damage to the bacterial DNA which in large part consists of potentially lethal lesions. This potentially lethal damage is repaired through an enzymatic pathway requiring DNA polymerase I. I. In the mutant lacking DNA polymerase I, these potentially lethal lesions are expressed as cell lethality

  17. Polymerase study: Improved detection of Salmonella and Campylobacter through the optimized use of DNA polymerases in diagnostic real-time PCR

    DEFF Research Database (Denmark)

    Søndergaard, Mette Sofie Rousing; Löfström, Charlotta; Al-Habib, Zahra Fares Sayer

    DNA extractions and intermediate or bad with the crude extractions, while TaKaRa ExTaq HS only performed well with the purest extractions of fecal samples and intermediate with semi-automated magnetic beads based extracted fecal samples. In conclusion, our data shows that exchanging the DNA polymerase...... on sample matrices known to contain PCR inhibitors (i.e. minced meat samples for Salmonella and chicken fecal samples for Campylobacter). The samples were prepared for PCR by three methods: No DNA extraction, lysis by boiling and semi-automated DNA extraction for Salmonella and lysis by boiling and two...... different DNA extraction methods for Campylobacter. Results show that VeriQuest qPCR master mix have the best general performance, while the AmpliTaq Gold and HotMasterTaq DNA polymerases performed well with meat samples and poorly with fecal samples. Tth DNA polymerase performed well only with the purest...

  18. Are stressful developmental processes of youths leading to health problems amplified by genetic polymorphisms? The case of body mass index.

    Science.gov (United States)

    Wickrama, Kandauda K A S; O'Neal, Catherine Walker; Oshri, Assaf

    2014-07-01

    Although previous research has documented the adverse influence of early socioeconomic disadvantage on youths' physical health outcomes and the increase in health inequalities over the early life course, little is known about genetically informed sequential life course developmental processes leading to health outcomes. Consistent with the life course-stress process perspective, we hypothesized that early socioeconomic adversity initiates a stress process over the early life course. This process involves the disrupted transition from adolescence to young adulthood, which increases the risk of health problems during young adulthood. Behavioral, psychosocial, and genetic data were collected from 12,424 adolescents (53 % female) over a period of 13 years participating in the nationally representative National Longitudinal Study of Adolescent Health (Add Health). Early cumulative socioeconomic adversity and the polygenic influence were measured using composite indices. The study provided evidence for stressful developmental processes of adolescents, involving parental rejection, depressive symptoms, and adolescents' precocious transition. This longitudinal process was initiated by early cumulative socioeconomic adversity and eventuated with young adults' increased body mass index (BMI). Furthermore, the study provided evidence for the influence of life context-gene interactions (G × E) on adolescents' precocious development and young adult BMI (after controlling for the lagged measure) amplifying the stress process over the early life course. These findings emphasize the need for incorporating individual genetic characteristics in a longitudinal context into life course stress research. Furthermore, policies focused on eradicating childhood/adolescent adversities are necessary as well as youth programs and policies that promote youth competencies that aid in their successful transition to young adulthood.

  19. Structural Basis for Proficient Incorporation of dTTP Opposite O[superscript 6]-Methylguanine by Human DNA Polymerase [iota

    Energy Technology Data Exchange (ETDEWEB)

    Pence, Matthew G.; Choi, Jeong-Yun; Egli, Martin; Guengerich, F. Peter (EWHA); (Vanderbilt)

    2012-03-15

    O{sup 6}-Methylguanine (O{sup 6}-methylG) is highly mutagenic and is commonly found in DNA exposed to methylating agents, even physiological ones (e.g. S-adenosylmethionine). The efficiency of a truncated, catalytic DNA polymerase L core enzyme was determined for nucleoside triphosphate incorporation opposite O{sup 6}-methylG, using steady-state kinetic analyses. The results presented here corroborate previous work from this laboratory using full-length pol L, which showed that dTTP incorporation occurs with high efficiency opposite O{sup 6}-methylG. Misincorporation of dTTP opposite O{sup 6}-methylG occurred with {approx}6-fold higher efficiency than incorporation of dCTP. Crystal structures of the truncated form of pol L with O{sup 6}-methylG as the template base and incoming dCTP or dTTP were solved and showed that O{sup 6}-methylG is rotated into the syn conformation in the pol L active site and that dTTP misincorporation by pol L is the result of Hoogsteen base pairing with the adduct. Both dCTP and dTTP base paired with the Hoogsteen edge of O{sup 6}-methylG. A single, short hydrogen bond formed between the N3 atom of dTTP and the N7 atom of O{sup 6}-methylG. Protonation of the N3 atom of dCTP and bifurcation of the N3 hydrogen between the N7 and O{sup 6} atoms of O{sup 6}-methylG allow base pairing of the lesion with dCTP. We conclude that differences in the Hoogsteen hydrogen bonding between nucleotides is the main factor in the preferential selectivity of dTTP opposite O{sup 6}-methylG by human pol L, in contrast to the mispairing modes observed previously for O{sup 6}-methylG in the structures of the model DNA polymerases Sulfolobus solfataricus Dpo4 and Bacillus stearothermophilus DNA polymerase I.

  20. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  1. Stable interaction between the human proliferating cell nuclear antigen loader complex Ctf18-replication factor C (RFC) and DNA polymerase {epsilon} is mediated by the cohesion-specific subunits, Ctf18, Dcc1, and Ctf8.

    Science.gov (United States)

    Murakami, Takeshi; Takano, Ryuji; Takeo, Satoshi; Taniguchi, Rina; Ogawa, Kaori; Ohashi, Eiji; Tsurimoto, Toshiki

    2010-11-05

    One of the proliferating cell nuclear antigen loader complexes, Ctf18-replication factor C (RFC), is involved in sister chromatid cohesion. To examine its relationship with factors involved in DNA replication, we performed a proteomics analysis of Ctf18-interacting proteins. We found that Ctf18 interacts with a replicative DNA polymerase, DNA polymerase ε (pol ε). Co-immunoprecipitation with recombinant Ctf18-RFC and pol ε demonstrated that their binding is direct and mediated by two distinct interactions, one weak and one stable. Three subunits that are specifically required for cohesion in yeast, Ctf18, Dcc1, and Ctf8, formed a trimeric complex (18-1-8) and together enabled stable binding with pol ε. The C-terminal 23-amino acid stretch of Ctf18 was necessary for the trimeric association of 18-1-8 and was required for the stable interaction. The weak interaction was observed with alternative loader complexes including Ctf18-RFC(5), which lacks Dcc1 and Ctf8, suggesting that the common loader structures, including the RFC small subunits (RFC2-5), are responsible for the weak interaction. The two interaction modes, mediated through distinguishable structures of Ctf18-RFC, both occurred through the N-terminal half of pol ε, which includes the catalytic domain. The addition of Ctf18-RFC or Ctf18-RFC(5) to the DNA synthesis reaction caused partial inhibition and stimulation, respectively. Thus, Ctf18-RFC has multiple interactions with pol ε that promote polymorphic modulation of DNA synthesis. We propose that their interaction alters the DNA synthesis mode to enable the replication fork to cooperate with the establishment of cohesion.

  2. Replication past a trans-4-Hydroxynonenal Minor-Groove Adduct by the Sequential Action of Human DNA Polymerases ι and κ

    OpenAIRE

    Wolfle, William T.; Johnson, Robert E.; Minko, Irina G.; Lloyd, R. Stephen; Prakash, Satya; Prakash, Louise

    2006-01-01

    The X-ray crystal structure of human DNA polymerase ι (Polι) has shown that it differs from all known Pols in its dependence upon Hoogsteen base pairing for synthesizing DNA. Hoogsteen base pairing provides an elegant mechanism for synthesizing DNA opposite minor-groove adducts that present a severe block to synthesis by replicative DNA polymerases. Germane to this problem, a variety of DNA adducts form at the N2 minor-groove position of guanine. Previously, we have shown that proficient and ...

  3. Evaluation of powdery mildew-resistance of grape germplasm and rapid amplified polymorphic DNA markers associated with the resistant trait in Chinese wild Vitis.

    Science.gov (United States)

    Zhang, J; Zhang, Y; Yu, H; Wang, Y

    2014-05-09

    The resistance of wild Vitis germplasm, including Chinese and American wild Vitis and Vitis vinifera cultivars, to powdery mildew (Uncinula necator Burr.) was evaluated for two consecutive years under natural conditions. Most of the Chinese and North American species displayed a resistant phenotype, whereas all of the European species were highly susceptible. The Alachua and Conquistador accessions of Vitis rotundifolia species, which originated in North America, were immune to the disease, while Baihe-35-1, one of the accessions of Vitis pseudoreticulata, showed the strongest resistance among all Chinese accessions evaluated. Three rapid amplified polymorphic DNA (RAPD) markers, OPW02-1756, OPO11-964, and OPY13-661, were obtained after screening 520 random primers among various germplasm, and these markers were found to be associated with powdery mildew resistance in Baihe-35-1 and in some Chinese species, but not in any European species. Analysis of F₁ and F₂ progenies of a cross between resistant Baihe-35-1 and susceptible Carignane (V. vinifera) revealed that the three RAPD markers were linked to the powdery resistant trait in Baihe-35-1 plants. Potential applications of the identified RAPD markers for gene mapping, marker-assisted selection, and breeding were investigated in 168 F₂ progenies of the same cross. Characterization of the resistant phenotype of the selected F₂ seedlings for breeding a new disease-resistant grape cultivar is in progress.

  4. Comparison of ultraviolet-induced genotoxicity detected by random amplified polymorphic DNA with chlorophyll fluorescence and growth in a marine macroalgae, Palmaria palmata.

    Science.gov (United States)

    Atienzar; Cordi; Donkin; Evenden; Jha; Depledge

    2000-08-01

    The random amplified polymorphic DNA (RAPD) technique was used to detect DNA damage in the sublittoral macroalgae Palmaria palmata (Rhodophyta) exposed to both ambient and elevated irradiances of UV-B (280-315 nm). To investigate the potential of this method in ecotoxicological assessments, the qualitative and quantitative modifications in RAPD profiles were compared with changes in a number of physiological and fitness parameters. RAPD detectable modifications in DNA profiles were observed in all UV exposed individuals compared with controls. Changes in chlorophyll fluorescence (F(v)/F(m) ratio), in vivo pigment absorptance, thallus growth and RAPD profiles, examined simultaneously, provided a sensitive measure of UV-induced toxicity. In conclusion, the application of the RAPD method in conjunction with other suitable physiological and fitness measurements, may prove to be a valuable tool for investigating the specific effects of genotoxic agents upon marine algal populations. Ultimately, this methodology may allow the ecotoxicological examination of the link between molecular alterations and measurable adverse effects at higher levels of biological organisation.

  5. Multiple correspondence analysis and random amplified polymorphic DNA molecular typing to assess the sources of Staphylococcus aureus contamination in alheira production lines.

    Science.gov (United States)

    Esteves, A; Patarata, L; Aymerich, T; Garriga, M; Martins, C

    2007-03-01

    Sources and tracing of Staphylococcus aureus in alheira (garlic sausage) production were evaluated by multifactorial correspondence analysis (MCA) of occurrence data and a random amplified polymorphic DNA (RAPD) on S. aureus isolates. Samples from four production lines, four different production batches, and 14 different sampling sites (including raw material, different contact surfaces, and several stages of alheira manufacturing) were analyzed at four sampling times. From the 896 microbial analyses completed, a collection of 170 S. aureus isolates was obtained. Although analysis of the occurrence data alone was not elucidative enough, MCA and RAPD-PCR were able to assess the sources of contamination and to trace the spread of this microorganism along the production lines. MCA results indicated that the presence of S. aureus in alheira was related to its presence in the intermediate manufacturing stages after heat treatment but before stuffing in the casings. It was also possible to associate a cross-contamination path related to handler procedures. RAPD-PCR typing in accordance to MCA results confirmed the cross-contamination path between the raw material and casings and the role of handlers as an important cross-contamination vehicle.

  6. AFLPMax: a user-friendly application for computing the optimal number of amplified fragment length polymorphism markers needed in phylogenetic reconstruction.

    Science.gov (United States)

    García-Pereira, M J; Quesada, H; Caballero, A; Carvajal-Rodríguez, A

    2012-05-01

    Amplified fragment length polymorphisms (AFLPs) are widely used for phylogenetic inference especially in non-model species. Frequently, trees obtained with other nuclear or mitochondrial markers or with morphological information need additional resolution, increased branch support, or independent data sources (i.e. unlinked loci). In such cases, the use of AFLPs is a quick and cheap option. Computer simulation has shown that dominant AFLP markers lead to less accurate tree topologies than bi-allelic codominant markers such as SNPs, but this difference becomes negligible for shallow trees when using AFLP data sets that include a sufficiently large number of characters. Thus, determining how many AFLP characters are required to recover a given phylogeny is a key issue regarding the appropriateness of AFLPs for phylogenetic reconstruction. Here, we present a user-friendly, java-based graphical interface, AFLPMax, which executes an automatic pipeline of different programs providing the user with the optimal number of AFLP characters needed to recover a given phylogeny with high accuracy and support. Executables for Windows, linux and MacOS X operating systems, source code and user manual are available from: http://webs.uvigo.es/acraaj/AFLPMax.htm. © 2012 Blackwell Publishing Ltd.

  7. Intrafamilial, Preferentially Mother-to-Child and Intraspousal, Helicobacter pylori Infection in Japan Determined by Mutilocus Sequence Typing and Random Amplified Polymorphic DNA Fingerprinting.

    Science.gov (United States)

    Yokota, Shin-ichi; Konno, Mutsuko; Fujiwara, Shin-ichi; Toita, Nariaki; Takahashi, Michiko; Yamamoto, Soh; Ogasawara, Noriko; Shiraishi, Tsukasa

    2015-10-01

    The infection route of Helicobacter pylori has been recognized to be mainly intrafamilial, preferentially mother-to-child, especially in developed countries. To determine the transmission route, we examined whether multilocus sequence typing (MLST) was useful for analysis of intrafamilial infection. The possibility of intraspousal infection was also evaluated. Clonal relationships between strains derived from 35 index Japanese pediatric patients, and their family members were analyzed by two genetic typing procedures, MLST and random amplified polymorphic DNA (RAPD) fingerprinting. Mostly coincident results were obtained by MLST and RAPD. By MLST, the allele of loci in the isolates mostly matched between the index child and both the father and mother for 9 (25.7%) of the 35 patients, between the index child and the mother for 25 (60.0%) of the 35 patients. MLST is useful for analyzing the infection route of H. pylori as a highly reproducible method. Intrafamilial, especially mother-to-children and sibling, infection is the dominant transmission route. Intraspousal infection is also thought to occur in about a quarter in the Japanese families. © 2015 John Wiley & Sons Ltd.

  8. Application of amplified fragment length polymorphism fingerprinting for taxonomy and identification of the soft rot bacteria Erwinia carotovora and Erwinia chrysanthemi.

    Science.gov (United States)

    Avrova, Anna O; Hyman, Lizbeth J; Toth, Rachel L; Toth, Ian K

    2002-04-01

    The soft rot bacteria Erwinia carotovora and Erwinia chrysanthemi are important pathogens of potato and other crops. However, the taxonomy of these pathogens, particularly at subspecies level, is unclear. An investigation using amplified fragment length polymorphism (AFLP) fingerprinting was undertaken to determine the taxonomic relationships within this group based on their genetic relatedness. Following cluster analysis on the similarity matrices derived from the AFLP gels, four clusters (clusters 1 to 4) resulted. Cluster 1 contained Erwinia carotovora subsp. carotovora (subclusters 1a and 1b) and Erwinia carotovora subsp. odorifera (subcluster 1c) strains, while cluster 2 contained Erwinia carotovora subsp. atroseptica (subcluster 2a) and Erwinia carotovora subsp. betavasculorum (subcluster 2b) strains. Clusters 3 and 4 contained Erwinia carotovora subsp. wasabiae and E. chrysanthemi strains, respectively. While E. carotovora subsp. carotovora and E. chrysanthemi showed a high level of molecular diversity (23 to 38% mean similarity), E. carotovora subsp. odorifera, E. carotovora subsp. betavasculorum, E. carotovora subsp. atroseptica, and E. carotovora subsp. wasabiae showed considerably less (56 to 76% mean similarity), which may reflect their limited geographical distributions and/or host ranges. The species- and subspecies-specific banding profiles generated from the AFLPs allowed rapid identification of unknown isolates and the potential for future development of diagnostics. AFLP fingerprinting was also found to be more differentiating than other techniques for typing the soft rot erwinias and was applicable to all strain types, including different serogroups.

  9. cDNA-amplified fragment length polymorphism to study the transcriptional responses of Lactobacillus rhamnosus growing in cheese-like medium.

    Science.gov (United States)

    Bove, C G; Lazzi, C; Bernini, V; Bottari, B; Neviani, E; Gatti, M

    2011-10-01

    Lactobacillus rhamnosus is a dominant species during Parmigiano Reggiano cheese ripening and exhibits a great adaptability to unfavourable growth conditions. Gene expression of a Lact. rhamnosus, isolated from Parmigiano Reggiano cheese, grown in a rich medium (MRS) and in a cheese-like medium (CB) has been compared by a novel cDNA-amplified fragment length polymorphism (cDNA-AFLP) protocol. Two techniques, capillary and gel electrophoresis cDNA-AFLP, were applied to generate unique transcript tags from reverse-transcribed messenger RNA using the immobilization of biotinylated 3'-terminal cDNA fragments on streptavidin-coated Dynabeads. The use of three pairs of primers allowed detecting 64 genes expressed in MRS and 96 in CB. Different transcripts were observed when Lact. rhamnosus was cultured on CB and MRS. The cDNA-AFLP approach proved to be able to show that Lact. rhamnosus modifies the expression of a large part of genes when cultivated in CB compared with growth under optimal conditions (MRS). In particular, the profiles of the strain grown in CB were more complex probably because the cells activate different metabolic pathways to generate energy and to respond to the environmental changes. This is the first research on Lact. rhamnosus isolated from cheese and represents one of the few concerning bacterial transcriptomic analysis towards cDNA-AFLP approaches. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  10. Development of an efficient fungal DNA extraction method to be used in random amplified polymorphic DNA-PCR analysis to differentiate cyclopiazonic acid mold producers.

    Science.gov (United States)

    Sánchez, Beatriz; Rodríguez, Mar; Casado, Eva M; Martín, Alberto; Córdoba, Juan J

    2008-12-01

    A variety of previously established mechanical and chemical treatments to achieve fungal cell lysis combined with a semiautomatic system operated by a vacuum pump were tested to obtain DNA extract to be directly used in randomly amplified polymorphic DNA (RAPD)-PCR to differentiate cyclopiazonic acid-producing and -nonproducing mold strains. A DNA extraction method that includes digestion with proteinase K and lyticase prior to using a mortar and pestle grinding and a semiautomatic vacuum system yielded DNA of high quality in all the fungal strains and species tested, at concentrations ranging from 17 to 89 ng/microl in 150 microl of the final DNA extract. Two microliters of DNA extracted with this method was directly used for RAPD-PCR using primer (GACA)4. Reproducible RAPD fingerprints showing high differences between producer and nonproducer strains were observed. These differences in the RAPD patterns did not differentiate all the strains tested in clusters by cyclopiazonic acid production but may be very useful to distinguish cyclopiazonic acid producer strains from nonproducer strains by a simple RAPD analysis. Thus, the DNA extracts obtained could be used directly without previous purification and quantification for RAPD analysis to differentiate cyclopiazonic acid producer from nonproducer mold strains. This combined analysis could be adaptable to other toxigenic fungal species to enable differentiation of toxigenic and non-toxigenic molds, a procedure of great interest in food safety.

  11. Persistence of Lactobacillus fermentum RC-14 and Lactobacillus rhamnosus GR-1 but Not L. rhamnosus GG in the Human Vagina as Demonstrated by Randomly Amplified Polymorphic DNA

    Science.gov (United States)

    Gardiner, Gillian E.; Heinemann, Christine; Bruce, Andrew W.; Beuerman, Dee; Reid, Gregor

    2002-01-01

    Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 are well-characterized probiotic strains with efficacy in the prevention and treatment of urogenital infections in women. The aim of the present study was to apply a molecular biology-based methodology for the detection of these strains and L. rhamnosus GG (a commercially available intestinal probiotic) in the human vagina in order to assess probiotic persistence at this site. Ten healthy women inserted vaginally a capsule containing either a combination of strains GR-1 and RC-14 or the GG strain for 3 consecutive nights. Vaginal swabs taken before and at various time points after probiotic insertion were analyzed, and the Lactobacillus flora was assessed by randomly amplified polymorphic DNA (RAPD) analysis. This method generated discrete DNA fingerprints for GR-1, RC-14, and GG and enabled successful detection of these strains in the vagina. Strain GR-1 and/or strain RC-14 was found to persist in the vaginal tract for up to 19 days after vaginal instillation, while L. rhamnosus GG was detectable for up to 5 days postadministration. In conclusion, the fates of probiotic L. rhamnosus and L. fermentum strains were successfully monitored in the human vagina by RAPD analysis. This technique provides molecular biology-based evidence that RC-14 and GR-1, strains selected as urogenital probiotics, persist in the human vagina and may be more suited to vaginal colonization than L. rhamnosus GG. This highlights the importance of proper selection of strains for urogenital probiotic applications. PMID:11777835

  12. Insights into the error bypass of 1-Nitropyrene DNA adduct by DNA polymerase ι: A QM/MM study

    Science.gov (United States)

    Li, Yanwei; Bao, Lei; Zhang, Ruiming; Tang, Xiaowen; Zhang, Qingzhu; Wang, Wenxing

    2017-10-01

    The error bypass mechanism of DNA polymerase ι toward N-(deoxyguanosin-8-yl)-1-aminopyrene adduction was studied by using quantum mechanics/molecular mechanics method. The most favorable mechanism highlights three elementary steps: proton transfer from dC to dATP, phosphoryl transfer, and deprotonation of dAMP. The phosphoryl transfer step was found to be rate-determining. The calculated average barrier (23.8 kcal mol-1) is in accordance with the experimental value (21.5 kcal mol-1). Electrostatic influence analysis indicates that residues Asp126 and Lys207 significantly suppress the error bypass while Glu127 facilitates the process. These results highlight the origins of the mutagenicity of nitrated polycyclic aromatic hydrocarbons in molecular detail.

  13. Biochemical techniques for the characterization of G-quadruplex structures: EMSA, DMS footprinting, and DNA polymerase stop assay.

    Science.gov (United States)

    Sun, Daekyu; Hurley, Laurence H

    2010-01-01

    The proximal promoter region of many human growth-related genes contains a polypurine/polypyrimidine tract that serves as multiple binding sites for Sp1 or other transcription factors. These tracts often contain a guanine-rich sequence consisting of four runs of three or more contiguous guanines separated by one or more bases, corresponding to a general motif known for the formation of an intramolecular G-quadruplex. Recent results provide strong evidence that specific G-quadruplex structures form naturally within these polypurine/polypyrimidine tracts in many human promoter regions, raising the possibility that the transcriptional control of these genes can be modulated by G-quadruplex-interactive agents. In this chapter, we describe three general biochemical methodologies, electrophoretic mobility shift assay (EMSA), dimethylsulfate (DMS) footprinting, and the DNA polymerase stop assay, which can be useful for initial characterization of G-quadruplex structures formed by G-rich sequences.

  14. Domain Structures and Inter-Domain Interactions Defining the Holoenzyme Architecture of Archaeal D-Family DNA Polymerase

    Directory of Open Access Journals (Sweden)

    Hideshi Yokoyama

    2013-07-01

    Full Text Available Archaea-specific D-family DNA polymerase (PolD forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large subunit plays a key role in the homodimeric assembly and the self-cyclization of the large subunit and is deeply involved in the archaeal PolD stability and activity. We also discuss the evolutional transformation from archaeal D-family to eukaryotic B-family polymerase on the basis of the structural information.

  15. Domain structures and inter-domain interactions defining the holoenzyme architecture of archaeal d-family DNA polymerase.

    Science.gov (United States)

    Matsui, Ikuo; Matsui, Eriko; Yamasaki, Kazuhiko; Yokoyama, Hideshi

    2013-07-05

    Archaea-specific D-family DNA polymerase (PolD) forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large subunit plays a key role in the homodimeric assembly and the self-cyclization of the large subunit and is deeply involved in the archaeal PolD stability and activity. We also discuss the evolutional transformation from archaeal D-family to eukaryotic B-family polymerase on the basis of the structural information.

  16. Recapitulation of the cellular xeroderma pigmentosum-variant phenotypes using short interfering RNA for DNA polymerase H.

    Science.gov (United States)

    Laposa, Rebecca R; Feeney, Luzviminda; Cleaver, James E

    2003-07-15

    The lesion-specific DNA polymerase POLH gene is mutated in xeroderma pigmentosum variant (XP-V) patients who exhibit an increased skin cancer incidence from UV exposure. Normal cells in which POLH expression was reduced using short interfering RNAs (siRNAs) were compared with the XP-V cellular phenotype that results from naturally occurring inactivating mutations. Stable clones expressing siRNA had partially reduced POLH protein levels, and intermediate levels of UV sensitivity and S phase checkpoint activation, but similar levels of Mre11 foci as in XP-V cells. Therefore, suppression of POLH expression levels by siRNA recapitulates most of the phenotypes seen in cells from XP-V patients with inactivating mutations in POLH.

  17. Development and utility of cleaved amplified polymorphic sequences (CAPS) and restriction fragment length polymorphisms (RFLPs) linked to the Fom-2 fusarium wilt resistance gene in melon (Cucumis melo L.).

    Science.gov (United States)

    Zheng, X Y; Wolff, D W; Baudracco-Arnas, S; Pitrat, M

    1999-08-01

    Fusarium wilt, caused by Fusarium oxysporum Schlecht f. sp. melonis Snyder & Hans, is a worldwide soil-borne disease of melon (Cucumis melo L.). Resistance to races 0 and 1 of Fusarium wilt is conditioned by the dominant gene Fom-2. To facilitate marker-assisted backcrossing with selection for Fusarium wilt resistance, we developed cleaved amplified polymorphic sequences (CAPS) and restriction fragment length polymorphisms (RFLP) markers by converting RAPD markers E07 (a 1.25-kb band) and G17 (a 1.05-kb band), respectively. The RAPD-PCR polymorphic fragments from the susceptible line 'Vedrantais' were cloned and sequenced in order to construct primers that would amplify only the target fragment. The derived primers, E07SCAR-1/E07SCAR-2 from E07 and G17SCAR-1/G17SCAR-2 from G17, yielded a single 1.25-kb fragment (designated SCE07) and a 1.05-kb fragment (designated SCG17) (the same as RAPD markers E07 and G17), respectively, from both resistant and susceptible melon lines, thus demonstrating locus-specific associated primers. Potential CAPS markers were first revealed by comparing sequence data between fragments amplified from resistant (PI 161375) and susceptible ('Vedrantais') lines and were then confirmed by electrophoresis of restriction endonuclease digestion products. Twelve restriction endonucleases were evaluated for their potential use as CAPS markers within the SCE07 fragment. Three (BclI, MspI, and BssSI) yielded ideal CAPS markers and were subsequently subjected to extensive testing using an additional 88 diverse melon cultigens, 93 and 119 F(2) individuals from crosses of 'Vedrantais' x PI 161375 and 'Ananas Yokneam'×MR-1 respectively, and 17 families from a backcross BC(1)S(1) population derived from the breeding line 'MD8654' as a resistance source. BclI- and MspI-CAPS are susceptible-linked markers, whereas the BssSI-CAPS is a resistant-linked marker. The CAPS markers that resulted from double digestion by BclI and BssSI are co-dominant. Results

  18. α,β-D-constrained nucleic acids are strong terminators of thermostable DNA polymerases in polymerase chain reaction.

    Directory of Open Access Journals (Sweden)

    Olivier Martínez

    Full Text Available (S(C5', R(P α,β-D- Constrained Nucleic Acids (CNA are dinucleotide building blocks that can feature either B-type torsional angle values or non-canonical values, depending on their 5'C and P absolute stereochemistry. These CNA are modified neither on the nucleobase nor on the sugar structure and therefore represent a new class of nucleotide with specific chemical and structural characteristics. They promote marked bending in a single stranded DNA so as to preorganize it into a loop-like structure, and they have been shown to induce rigidity within oligonucleotides. Following their synthesis, studies performed on CNA have only focused on the constraints that this family of nucleotides introduced into DNA. On the assumption that bending in a DNA template may produce a terminator structure, we investigated whether CNA could be used as a new strong terminator of polymerization in PCR. We therefore assessed the efficiency of CNA as a terminator in PCR, using triethylene glycol phosphate units as a control. Analyses were performed by denaturing gel electrophoresis and several PCR products were further analysed by sequencing. The results showed that the incorporation of only one CNA was always skipped by the polymerases tested. On the other hand, two CNA units always stopped proofreading polymerases, such as Pfu DNA polymerase, as expected for a strong replication terminator. Non-proofreading enzymes, e.g. Taq DNA polymerase, did not recognize this modification as a strong terminator although it was predominantly stopped by this structure. In conclusion, this first functional use of CNA units shows that these modified nucleotides can be used as novel polymerization terminators of proofreading polymerases. Furthermore, our results lead us to propose that CNA and their derivatives could be useful tools for investigating the behaviour of different classes of polymerases.

  19. Molecular Recognition of Azelaic Acid and Related Molecules with DNA Polymerase I Investigated by Molecular Modeling Calculations.

    Science.gov (United States)

    Shawon, Jakaria; Khan, Akib Mahmud; Rahman, Adhip; Hoque, Mohammad Mazharol; Khan, Mohammad Abdul Kader; Sarwar, Mohammed G; Halim, Mohammad A

    2016-10-01

    Molecular recognition has central role on the development of rational drug design. Binding affinity and interactions are two key components which aid to understand the molecular recognition in drug-receptor complex and crucial for structure-based drug design in medicinal chemistry. Herein, we report the binding affinity and the nonbonding interactions of azelaic acid and related compounds with the receptor DNA polymerase I (2KFN). Quantum mechanical calculation was employed to optimize the modified drugs using B3LYP/6-31G(d,p) level of theory. Charge distribution, dipole moment and thermodynamic properties such as electronic energy, enthalpy and free energy of these optimized drugs are also explored to evaluate how modifications impact the drug properties. Molecular docking calculation was performed to evaluate the binding affinity and nonbonding interactions between designed molecules and the receptor protein. We notice that all modified drugs are thermodynamically more stable and some of them are more chemically reactive than the unmodified drug. Promise in enhancing hydrogen bonds is found in case of fluorine-directed modifications as well as in the addition of trifluoroacetyl group. Fluorine participates in forming fluorine bonds and also stimulates alkyl, pi-alkyl interactions in some drugs. Designed drugs revealed increased binding affinity toward 2KFN. A1, A2 and A3 showed binding affinities of -8.7, -8.6 and -7.9 kcal/mol, respectively against 2KFN compared to the binding affinity -6.7 kcal/mol of the parent drug. Significant interactions observed between the drugs and Thr358 and Asp355 residues of 2KFN. Moreover, designed drugs demonstrated improved pharmacokinetic properties. This study disclosed that 9-octadecenoic acid and drugs containing trifluoroacetyl and trifluoromethyl groups are the best 2KFN inhibitors. Overall, these results can be useful for the design of new potential candidates against DNA polymerase I.

  20. DNA polymerase eta is targeted by Mdm2 for polyubiquitination and proteasomal degradation in response to ultraviolet irradiation.

    Science.gov (United States)

    Jung, Yong-Sam; Qian, Yingjuan; Chen, Xinbin

    2012-02-01

    DNA polymerase eta (PolH), the product of the xeroderma pigmentosum variant (XPV) gene and a Y-family DNA polymerase, plays a pivotal role in translesion DNA synthesis. Loss of PolH leads to early onset of malignant skin cancer in XPV patients and increases UV-induced carcinogenesis. Thus, the pathways by which PolH expression and activity are controlled may be explored as a strategy to prevent UV-induced cancer. In this study, we found that Mdm2, a RING finger E3 ligase, promotes PolH degradation. Specifically, we showed that knockdown of Mdm2 increases PolH expression in both p53-proficient and -deficient cells. In addition, we showed that UV-induced PolH degradation is attenuated by Mdm2 knockdown. In contrast, ectopically expression of Mdm2 decreases PolH expression, which can be abrogated by the proteasome inhibitor MG132. Moreover, we showed that Mdm2 physically associates with PolH and promotes PolH polyubiquitination in vivo and in vitro. Finally, we showed that knockdown of Mdm2 increases the formation of PolH replication foci and decreases the sensitivity of cells to UV-induced lesions in a PolH-dependent manner. Taken together, we uncovered that Mdm2 serves as an E3 ligase for PolH polyubiquitination and proteasomal degradation in cells under the basal condition and in response to UV irradiation. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. The steric gate amino acid tyrosine 112 is required for efficient mismatched-primer extension by human DNA polymerase kappa.

    Science.gov (United States)

    Niimi, Naoko; Sassa, Akira; Katafuchi, Atsushi; Grúz, Petr; Fujimoto, Hirofumi; Bonala, Radha-Rani; Johnson, Francis; Ohta, Toshihiro; Nohmi, Takehiko

    2009-05-26

    Human DNA is continuously damaged by exogenous and endogenous genotoxic insults. To counteract DNA damage and ensure the completion of DNA replication, cells possess specialized DNA polymerases (Pols) that bypass a variety of DNA lesions. Human DNA polymerase kappa (hPolkappa) is a member of the Y-family of DNA Pols and a direct counterpart of DinB in Escherichia coli. hPolkappa is characterized by its ability to bypass several DNA adducts [e.g., benzo[a]pyrene diolepoxide-N(2)-deoxyguanine (BPDE-N(2)-dG) and thymine glycol] and efficiently extend primers with mismatches at the termini. hPolkappa is structurally distinct from E. coli DinB in that it possesses an approximately 100-amino acid extension at the N-terminus. Here, we report that tyrosine 112 (Y112), the steric gate amino acid of hPolkappa, which distinguishes dNTPs from rNTPs by sensing the 2'-hydroxy group of incoming nucleotides, plays a crucial role in extension reactions with mismatched primer termini. When Y112 was replaced with alanine, the amino acid change severely reduced the catalytic constant, i.e., k(cat), of the extending mismatched primers and lowered the efficiency, i.e., k(cat)/K(m), of this process by approximately 400-fold compared with that of the wild-type enzyme. In contrast, the amino acid replacement did not reduce the insertion efficiency of dCMP opposite BPDE-N(2)-dG in template DNA, nor did it affect the ability of hPolkappa to bind strongly to template-primer DNA with BPDE-N(2)-dG/dCMP. We conclude that the steric gate of hPolkappa is a major fidelity factor that regulates extension reactions from mismatched primer termini.

  2. Effects of non-catalytic, distal amino acid residues on activity of E. coli DinB (DNA polymerase IV).

    Science.gov (United States)

    Walsh, Jason M; Parasuram, Ramya; Rajput, Pradyumna R; Rozners, Eriks; Ondrechen, Mary Jo; Beuning, Penny J

    2012-12-01

    DinB is one of two Y family polymerases in E. coli and is involved in copying damaged DNA. DinB is specialized to bypass deoxyguanosine adducts that occur at the N(2) position, with its cognate lesion being the furfuryl adduct. Active site residues have been identified that make contact with the substrate and carry out deoxynucleotide triphosphate (dNTP) addition to the growing DNA strand. In DNA polymerases, these include negatively charged aspartate and glutamate residues (D8, D103, and E104 in E. coli DNA polymerase IV DinB). These residues position the essential magnesium ions correctly to facilitate nucleophilic attack by the primer hydroxyl group on the α-phosphate group of the incoming dNTP. To study the contribution of DinB residues to lesion bypass, the computational methods THEMATICS and POOL were employed. These methods correctly predict the known active site residues, as well as other residues known to be important for activity. In addition, these methods predict other residues involved in substrate binding as well as more remote residues. DinB variants with mutations at the predicted positions were constructed and assayed for bypass of the N(2) -furfuryl-dG lesion. We find a wide range of effects of predicted residues, including some mutations that abolish damage bypass. Moreover, most of the DinB variants constructed are unable to carry out the extension step of lesion bypass. The use of computational prediction methods represents another tool that will lead to a more complete understanding of translesion DNA synthesis. Copyright © 2012 Wiley Periodicals, Inc.

  3. Thermodynamics of the DNA structural selectivity of the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus.

    Science.gov (United States)

    Wowor, Andy J; Datta, Kausiki; Brown, Hiromi S; Thompson, Gregory S; Ray, Sreerupa; Grove, Anne; LiCata, Vince J

    2010-06-16

    Understanding the thermodynamics of substrate selection by DNA polymerase I is important for characterizing the balance between replication and repair for this enzyme in vivo. Due to their sequence and structural similarities, Klenow and Klentaq, the large fragments of the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus, are considered functional homologs. Klentaq, however, does not have a functional proofreading site. Examination of the DNA binding thermodynamics of Klenow and Klentaq to different DNA structures: single-stranded DNA (ss-DNA), primer-template DNA (pt-DNA), and blunt-end double-stranded DNA (ds-DNA) show that the binding selectivity pattern is similar when examined across a wide range of salt concentration, but can significantly differ at any individual salt concentration. For both proteins, binding of single-stranded DNA shifts from weakest to tightest binding of the three structures as the salt concentration increases. Both Klenow and Klentaq release two to three more ions when binding to pt-DNA and ds-DNA than when binding to ss-DNA. Klenow exhibits significant differences in the Delta C(p) of binding to pt-DNA versus ds-DNA, and a difference in pI for these two complexes, whereas Klentaq does not, suggesting that Klenow and Klentaq discriminate between these two structures differently. Taken together, the data suggest that the two polymerases bind ds-DNA very differently, but that both bind pt-DNA and ss-DNA similarly, despite the absence of a proofreading site in Klentaq. (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. The Crystal Structure of PF-8, the DNA Polymerase Accessory Subunit from Kaposi's Sarcoma-Associated Herpesvirus

    Energy Technology Data Exchange (ETDEWEB)

    Baltz, Jennifer L.; Filman, David J.; Ciustea, Mihai; Silverman, Janice Elaine Y.; Lautenschlager, Catherine L.; Coen, Donald M.; Ricciardi, Robert P.; Hogle, James M.; (UPENN)

    2009-12-01

    Kaposi's sarcoma-associated herpesvirus is an emerging pathogen whose mechanism of replication is poorly understood. PF-8, the presumed processivity factor of Kaposi's sarcoma-associated herpesvirus DNA polymerase, acts in combination with the catalytic subunit, Pol-8, to synthesize viral DNA. We have solved the crystal structure of residues 1 to 304 of PF-8 at a resolution of 2.8 {angstrom}. This structure reveals that each monomer of PF-8 shares a fold common to processivity factors. Like human cytomegalovirus UL44, PF-8 forms a head-to-head dimer in the form of a C clamp, with its concave face containing a number of basic residues that are predicted to be important for DNA binding. However, there are several differences with related proteins, especially in loops that extend from each monomer into the center of the C clamp and in the loops that connect the two subdomains of each protein, which may be important for determining PF-8's mode of binding to DNA and to Pol-8. Using the crystal structures of PF-8, the herpes simplex virus catalytic subunit, and RB69 bacteriophage DNA polymerase in complex with DNA and initial experiments testing the effects of inhibition of PF-8-stimulated DNA synthesis by peptides derived from Pol-8, we suggest a model for how PF-8 might form a ternary complex with Pol-8 and DNA. The structure and the model suggest interesting similarities and differences in how PF-8 functions relative to structurally similar proteins.

  5. DNA polymerase-beta is expressed early in neurons of Alzheimer's disease brain and is loaded into DNA replication forks in neurons challenged with beta-amyloid

    NARCIS (Netherlands)

    Copani, Agata; Hoozemans, Jeroen J. M.; Caraci, Filippo; Calafiore, Marco; van Haastert, Elise S.; Veerhuis, Robert; Rozemuller, Annemieke J. M.; Aronica, Eleonora; Sortino, Maria Angela; Nicoletti, Ferdinando

    2006-01-01

    Cultured neurons exposed to synthetic beta-amyloid (Abeta) fragments reenter the cell cycle and initiate a pathway of DNA replication that involves the repair enzyme DNA polymerase-beta (DNA pol-beta) before undergoing apoptotic death. In this study, by performing coimmunoprecipitation experiments

  6. Study on Suitability of KOD DNA Polymerase for Enzymatic Production of Artificial Nucleic Acids Using Base/Sugar Modified Nucleoside Triphosphates

    Directory of Open Access Journals (Sweden)

    Satoshi Obika

    2010-11-01

    Full Text Available Recently, KOD and its related DNA polymerases have been used for preparing various modified nucleic acids, including not only base-modified nucleic acids, but also sugar-modified ones, such as bridged/locked nucleic acid (BNA/LNA which would be promising candidates for nucleic acid drugs. However, thus far, reasons for the effectiveness of KOD DNA polymerase for such purposes have not been clearly elucidated. Therefore, using mutated KOD DNA polymerases, we studied here their catalytic properties upon enzymatic incorporation of nucleotide analogues with base/sugar modifications. Experimental data indicate that their characteristic kinetic properties enabled incorporation of various modified nucleotides. Among those KOD mutants, one achieved efficient successive incorporation of bridged nucleotides with a 2′-ONHCH2CH2-4′ linkage. In this study, the characteristic kinetic properties of KOD DNA polymerase for modified nucleoside triphosphates were shown, and the effectiveness of genetic engineering in improvement of the enzyme for modified nucleotide polymerization has been demonstrated.

  7. A uv-sensitive Chinese hamster lung fibroblast cell line (V79/UC) with a possible defect in DNA polymerase activity is deficient in DNA repair

    International Nuclear Information System (INIS)

    Creissen, D.M.; Hill, C.K.

    1991-01-01

    Studies of repair enzyme activities in a uv-sensitive cell line (V79/UC) derived from Chinese hamster V79 cells have revealed levels of total DNA polymerase that are about 50% of the levels in the parental cell line. There are a number of DNA polymerase inhibitors available which allow us to distinguish between the major forms of DNA polymerase (alpha, beta, gamma, and delta) identified in mammalian cells. Enzyme assays with these inhibitors indicate that the aphidicolin-sensitive DNA polymerase is defective in the V79/UC cell line. This could be either polymerase alpha or delta, or both. The V79/UC cells do not express resistance to aphidicolin in standard toxicity studies. However, when aphidicolin is added postirradiation in survival assays designed to measure the extent of inhibitable repair, V79/UC cells do not respond with the further decrease in survival seen in the parental line. Further evidence of a polymerase-dependent repair defect is evident from alkaline elution data. In this case the V79/UC cells show the appearance of single-strand breaks following uv irradiation in the absence of any added inhibitor. Cells of the V79/M12G parental line, on the other hand, show the appearance of single-strand breaks only when aphidicolin is present

  8. DNA Polymerases BI and D from the Hyperthermophilic Archaeon Pyrococcus furiosus Both Bind to Proliferating Cell Nuclear Antigen with Their C-Terminal PIP-Box Motifs▿

    Science.gov (United States)

    Tori, Kazuo; Kimizu, Megumi; Ishino, Sonoko; Ishino, Yoshizumi

    2007-01-01

    Proliferating cell nuclear antigen (PCNA) is the sliding clamp that is essential for the high processivity of DNA synthesis during DNA replication. Pyrococcus furiosus, a hyperthermophilic archaeon, has at least two DNA polymerases, polymerase BI (PolBI) and PolD. Both of the two DNA polymerases interact with the archaeal P. furiosus PCNA (PfuPCNA) and perform processive DNA synthesis in vitro. This phenomenon, in addition to the fact that both enzymes display 3′-5′ exonuclease activity, suggests that both DNA polymerases work in replication fork progression. We demonstrated here that both PolBI and PolD functionally interact with PfuPCNA at their C-terminal PIP boxes. The mutant PolBI and PolD enzymes lacking the PIP-box sequence do not respond to the PfuPCNA at all in an in vitro primer extension reaction. This is the first experimental evidence that the PIP-box motif, located at the C termini of the archaeal DNA polymerases, is actually critical for PCNA binding to form a processive DNA-synthesizing complex. PMID:17496095

  9. DNA polymerases BI and D from the hyperthermophilic archaeon Pyrococcus furiosus both bind to proliferating cell nuclear antigen with their C-terminal PIP-box motifs.

    Science.gov (United States)

    Tori, Kazuo; Kimizu, Megumi; Ishino, Sonoko; Ishino, Yoshizumi

    2007-08-01

    Proliferating cell nuclear antigen (PCNA) is the sliding clamp that is essential for the high processivity of DNA synthesis during DNA replication. Pyrococcus furiosus, a hyperthermophilic archaeon, has at least two DNA polymerases, polymerase BI (PolBI) and PolD. Both of the two DNA polymerases interact with the archaeal P. furiosus PCNA (PfuPCNA) and perform processive DNA synthesis in vitro. This phenomenon, in addition to the fact that both enzymes display 3'-5' exonuclease activity, suggests that both DNA polymerases work in replication fork progression. We demonstrated here that both PolBI and PolD functionally interact with PfuPCNA at their C-terminal PIP boxes. The mutant PolBI and PolD enzymes lacking the PIP-box sequence do not respond to the PfuPCNA at all in an in vitro primer extension reaction. This is the first experimental evidence that the PIP-box motif, located at the C termini of the archaeal DNA polymerases, is actually critical for PCNA binding to form a processive DNA-synthesizing complex.

  10. Phenetic studies on randomly amplified polymorphic DNA-polymerase chain reaction-variability of four geographical populations of Lutzomyia whitmani (Diptera: Psychodidae in Brazil Estudos fenéticos de variabilidade de polimorfismos de DNA amplificados ao acaso pela reação em cadeia da polimerase em quatro populações geográficas de Lutzomyia whitmani (Diptera: Psychodidade no Brasil

    Directory of Open Access Journals (Sweden)

    Carina Margonari de Souza

    2004-03-01

    Full Text Available Previous evaluation of the genetic variability of four biogeographical populations of Lutzomyia whitmani from known foci of cutaneous leishmaniasis in Brazil demonstrated two main spatial clusters: Corte de Pedra-BA, Ilhéus-BA and Serra de Baturité-CE in the first cluster, and Martinho Campos-MG in the second. Further analysis showed a high degree of homogeneity in Corte de Pedra population but not in the others, which presented a significant percentage of specimens displaced from their phenon of origin (discrepant individuals. In the present work we analyzed the frequencies of association coefficients in the matrixes of similarity per population of Lutzomyia whitmani from both sexes and the general phenograms obtained, in a more detailed study of those discrepant specimens. Populational stability was observed for Corte de Pedra population, whereas the three remaining populations showed varying degrees of heterogeneity and different displacements according to sex. Our results strongly suggested the existence of a genetic flow between the lineages North-South/North-East and Ilhéus/Serra do Baturité of Lutzomyia whitmani.Uma avaliação prévia da variabilidade genética de quatro populações biogeográficas de Lutzomyia whitmani oriundas de focus conhecidos de leishmaniose cutânea no Brasil, evidenciou 2 agrupamentos espaciais principais: Corte de Pedra (BA, Ilhéus (BA e Serra de Baturité (CE no primeiro grupo, e Martinho Campos (MG em um segundo. O aprofundamento da análise acusou um alto grau de homogeneidade na população de Corte de Pedra mas não nas outras, nas quais uma porcentagem significativa de espécimens deslocou-se do seu feno de origem (indivíduos discrepantes. Neste trabalho analisamos as freqüências dos coeficientes de associação nas matrizes de similaridade por população de Lutzomyia whitmani, de ambos os sexos, e o fenograma geral obtido, em um estudo mais detalhado daqueles espécimens discrepantes. Para Corte de Pedra foi observada estabilidade populacional, enquanto as outras três populações restantes mostraram graus de heterogeneidade variáveis e deslocamentos distintos, de acordo com o sexo dos indivíduos. Nossos resultados sugerem fortemente a existência de um fluxo genético entre as linhagens Norte-Sul/Norte-Leste e Ilhéus/Serra do Baturité de Lutzomyia whitmani.

  11. Development of a new method for detection and identification of Oenococcus oeni bacteriophages based on endolysin gene sequence and randomly amplified polymorphic DNA.

    Science.gov (United States)

    Doria, Francesca; Napoli, Chiara; Costantini, Antonella; Berta, Graziella; Saiz, Juan-Carlos; Garcia-Moruno, Emilia

    2013-08-01

    Malolactic fermentation (MLF) is a biochemical transformation conducted by lactic acid bacteria (LAB) that occurs in wine at the end of alcoholic fermentation. Oenococcus oeni is the main species responsible for MLF in most wines. As in other fermented foods, where bacteriophages represent a potential risk for the fermentative process, O. oeni bacteriophages have been reported to be a possible cause of unsuccessful MLF in wine. Thus, preparation of commercial starters that take into account the different sensitivities of O. oeni strains to different phages would be advisable. However, currently, no methods have been described to identify phages infecting O. oeni. In this study, two factors are addressed: detection and typing of bacteriophages. First, a simple PCR method was devised targeting a conserved region of the endolysin (lys) gene to detect temperate O. oeni bacteriophages. For this purpose, 37 O. oeni strains isolated from Italian wines during different phases of the vinification process were analyzed by PCR for the presence of the lys gene, and 25 strains gave a band of the expected size (1,160 bp). This is the first method to be developed that allows identification of lysogenic O. oeni strains without the need for time-consuming phage bacterial-lysis induction methods. Moreover, a phylogenetic analysis was conducted to type bacteriophages. After the treatment of bacteria with UV light, lysis was obtained for 15 strains, and the 15 phage DNAs isolated were subjected to two randomly amplified polymorphic DNA (RAPD)-PCRs. By combining the RAPD profiles and lys sequences, 12 different O. oeni phages were clearly distinguished.

  12. Fluorescent amplified fragment length polymorphism (FAFLP genotyping demonstrates the role of biofilm-producing methicillin-resistant periocular Staphylococcus epidermidis strains in postoperative endophthalmitis

    Directory of Open Access Journals (Sweden)

    Hasnain Seyed E

    2006-01-01

    Full Text Available Abstract Background An observational case series was used to study the virulence characteristics and genotypes of paired Staphylococcus epidermidis isolates cultured from intraocular samples and from periocular environment of patients with postcataract surgery endophthalmitis. Methods Eight S. epidermidis isolates were obtained from three patients (2 from patients #1 and 2 and 4 from patient #3 whose vitreous and/or anterior chamber (AC specimens and preoperative lid/conjunctiva samples were culture positive. Cultures were identified by API-Staph phenotypic identification system and genotypically characterized by Fluorescent Amplified Fragment Length Polymorphism (FAFLP and checked for their antimicrobial susceptibility. The isolates were tested for biofilm-production and methicillin-resistance (MR by PCR amplification of icaAB and mecA gene respectively. Results Four out of eight S. epidermidis strains showed multiple drug resistance (MDR. All the eight strains were PCR positive for mecA gene whereas seven out of eight strains were positive for icaAB genes. In all three patients FAFLP typing established vitreous isolates of S. epidermidis strains to be indistinguishable from the strains isolated from the patient's conjunctival swabs. However, from patient number three there was one isolate (1030b from lid swab, which appeared to be nonpathogenic and ancestral having minor but significant differences from other three strains from the same patient. This strain also lacked icaAB gene. In silico analysis indicated possible evolution of other strains from this strain in the patient. Conclusion Methicillin-resistant biofilm positive S. epidermidis strains colonizing the conjunctiva and eyelid were responsible for postoperative endophthalmitis (POE.

  13. Differential Gene Expression in Response to Papaya ringspot virus Infection in Cucumis metuliferus Using cDNA- Amplified Fragment Length Polymorphism Analysis

    Science.gov (United States)

    Lin, Chia-Wei; Chung, Chien-Hung; Chen, Jo-Chu; Yeh, Shy-Dong; Ku, Hsin-Mei

    2013-01-01

    A better understanding of virus resistance mechanisms can offer more effective strategies to control virus diseases. Papaya ringspot virus (PRSV), Potyviridae, causes severe economical losses in papaya and cucurbit production worldwide. However, no resistance gene against PRSV has been identified to date. This study aimed to identify candidate PRSV resistance genes using cDNA-AFLP analysis and offered an open architecture and transcriptomic method to study those transcripts differentially expressed after virus inoculation. The whole genome expression profile of Cucumis metuliferus inoculated with PRSV was generated using cDNA-amplified fragment length polymorphism (cDNA-AFLP) method. Transcript derived fragments (TDFs) identified from the resistant line PI 292190 may represent genes involved in the mechanism of PRSV resistance. C. metuliferus susceptible Acc. 2459 and resistant PI 292190 lines were inoculated with PRSV and subsequently total RNA was isolated for cDNA-AFLP analysis. More than 400 TDFs were expressed specifically in resistant line PI 292190. A total of 116 TDFs were cloned and their expression patterns and putative functions in the PRSV-resistance mechanism were further characterized. Subsequently, 28 out of 116 candidates which showed two-fold higher expression levels in resistant PI 292190 than those in susceptible Acc. 2459 after virus inoculation were selected from the reverse northern blot and bioinformatic analysis. Furthermore, the time point expression profiles of these candidates by northern blot analysis suggested that they might play roles in resistance against PRSV and could potentially provide valuable information for controlling PRSV disease in the future. PMID:23874746

  14. Ambivalent Incorporation of the Fluorescent Cytosine Analogues tC and tCo by Human DNA Polymerase α and Klenow Fragment #

    Science.gov (United States)

    Stengel, Gudrun; Purse, Byron W.; Wilhelmsson, L. Marcus; Urban, Milan; Kuchta, Robert D.

    2009-01-01

    We studied the incorporation of the fluorescent cytidine analogues 1, 3-diaza-2-oxo-phenothiazine (tC) and 1, 3-diaza-2-oxo-phenoxazine (tCo) by human DNA polymerase α and Klenow fragment of DNA polymerase I (E. coli). These tricyclic nucleobases possess the regular hydrogen bonding interface of cytosine but are significantly size expanded toward the major groove. Despite the size alteration both DNA polymerases insert dtCTP and dtCoTP with remarkable catalytic efficiency. Polymerization opposite guanine is comparable to the insertion of dCTP, while the insertion opposite adenine is only ∼4-11 times less efficient than the formation of a T-A base pair. Both enzymes readily extend the formed tC(o)-G and tC(o)-A base pairs, and can incorporate at least 4 consecutive nucleotide analogues. Consistent with these results, both DNA polymerases efficiently polymerize dGTP and dATP when tC and tCo are in the template strand. KF inserts dGTP with a 4- to 9-fold higher probability than dATP, while pol α favors dGTP over dATP by a factor of 30-65. Overall, the properties of tC(o) as templating base and as incoming nucleotide are surprisingly symmetrical and may be universal for A and B family DNA polymerases. This finding suggests that the aptitude for ambivalent base pairing is a consequence of the electronic properties of tC(o). PMID:19580325

  15. Ambivalent incorporation of the fluorescent cytosine analogues tC and tCo by human DNA polymerase alpha and Klenow fragment.

    Science.gov (United States)

    Stengel, Gudrun; Purse, Byron W; Wilhelmsson, L Marcus; Urban, Milan; Kuchta, Robert D

    2009-08-11

    We studied the incorporation of the fluorescent cytidine analogues 1,3-diaza-2-oxophenothiazine (tC) and 1,3-diaza-2-oxophenoxazine (tCo) by human DNA polymerase alpha and Klenow fragment of DNA polymerase I (Escherichia coli). These tricyclic nucleobases possess the regular hydrogen bonding interface of cytosine but are significantly expanded in size toward the major groove. Despite the size alteration, both DNA polymerases insert dtCTP and dtCoTP with remarkable catalytic efficiency. Polymerization opposite guanine is comparable to the insertion of dCTP, while the insertion opposite adenine is only approximately 4-11 times less efficient than the formation of a T-A base pair. Both enzymes readily extend the formed tC(o)-G and tC(o)-A base pairs and can incorporate at least four consecutive nucleotide analogues. Consistent with these results, both DNA polymerases efficiently polymerize dGTP and dATP when tC and tCo are in the template strand. Klenow fragment inserts dGTP with a 4-9-fold higher probability than dATP, while polymerase alpha favors dGTP over dATP by a factor of 30-65. Overall, the properties of tC(o) as a templating base and as an incoming nucleotide are surprisingly symmetrical and may be universal for A and B family DNA polymerases. This finding suggests that the aptitude for ambivalent base pairing is a consequence of the electronic properties of tC(o).

  16. Pre-steady-state Kinetic Analysis of a Family D DNA Polymerase from Thermococcus sp. 9°N Reveals Mechanisms for Archaeal Genomic Replication and Maintenance.

    Science.gov (United States)

    Schermerhorn, Kelly M; Gardner, Andrew F

    2015-09-04

    Family D DNA polymerases (polDs) have been implicated as the major replicative polymerase in archaea, excluding the Crenarchaeota branch, and bear little sequence homology to other DNA polymerase families. Here we report a detailed kinetic analysis of nucleotide incorporation and exonuclease activity for a Family D DNA polymerase from Thermococcus sp. 9°N. Pre-steady-state single-turnover nucleotide incorporation assays were performed to obtain the kinetic parameters, kpol and Kd, for correct nucleotide incorporation, incorrect nucleotide incorporation, and ribonucleotide incorporation by exonuclease-deficient polD. Correct nucleotide incorporation kinetics revealed a relatively slow maximal rate of polymerization (kpol ∼ 2.5 s(-1)) and especially tight nucleotide binding (Kd (dNTP) ∼ 1.7 μm), compared with DNA polymerases from Families A, B, C, X, and Y. Furthermore, pre-steady-state nucleotide incorporation assays revealed that polD prevents the incorporation of incorrect nucleotides and ribonucleotides primarily through reduced nucleotide binding affinity. Pre-steady-state single-turnover assays on wild-type 9°N polD were used to examine 3'-5' exonuclease hydrolysis activity in the presence of Mg(2+) and Mn(2+). Interestingly, substituting Mn(2+) for Mg(2+) accelerated hydrolysis rates > 40-fold (kexo ≥ 110 s(-1) versus ≥ 2.5 s(-1)). Preference for Mn(2+) over Mg(2+) in exonuclease hydrolysis activity is a property unique to the polD family. The kinetic assays performed in this work provide critical insight into the mechanisms that polD employs to accurately and efficiently replicate the archaeal genome. Furthermore, despite the unique properties of polD, this work suggests that a conserved polymerase kinetic pathway is present in all known DNA polymerase families. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Pre-steady-state Kinetic Analysis of a Family D DNA Polymerase from Thermococcus sp. 9°N Reveals Mechanisms for Archaeal Genomic Replication and Maintenance*

    Science.gov (United States)

    Schermerhorn, Kelly M.; Gardner, Andrew F.

    2015-01-01

    Family D DNA polymerases (polDs) have been implicated as the major replicative polymerase in archaea, excluding the Crenarchaeota branch, and bear little sequence homology to other DNA polymerase families. Here we report a detailed kinetic analysis of nucleotide incorporation and exonuclease activity for a Family D DNA polymerase from Thermococcus sp. 9°N. Pre-steady-state single-turnover nucleotide incorporation assays were performed to obtain the kinetic parameters, kpol and Kd, for correct nucleotide incorporation, incorrect nucleotide incorporation, and ribonucleotide incorporation by exonuclease-deficient polD. Correct nucleotide incorporation kinetics revealed a relatively slow maximal rate of polymerization (kpol ∼2.5 s−1) and especially tight nucleotide binding (Kd(dNTP) ∼1.7 μm), compared with DNA polymerases from Families A, B, C, X, and Y. Furthermore, pre-steady-state nucleotide incorporation assays revealed that polD prevents the incorporation of incorrect nucleotides and ribonucleotides primarily through reduced nucleotide binding affinity. Pre-steady-state single-turnover assays on wild-type 9°N polD were used to examine 3′-5′ exonuclease hydrolysis activity in the presence of Mg2+ and Mn2+. Interestingly, substituting Mn2+ for Mg2+ accelerated hydrolysis rates >40-fold (kexo ≥110 s−1 versus ≥2.5 s−1). Preference for Mn2+ over Mg2+ in exonuclease hydrolysis activity is a property unique to the polD family. The kinetic assays performed in this work provide critical insight into the mechanisms that polD employs to accurately and efficiently replicate the archaeal genome. Furthermore, despite the unique properties of polD, this work suggests that a conserved polymerase kinetic pathway is present in all known DNA polymerase families. PMID:26160179

  18. A Crystallographic Study of the Role of Sequence Context in Thymine Glycol Bypass by a Replicative DNA Polymerase Serendipitously Sheds Light on the Exonuclease Complex

    Energy Technology Data Exchange (ETDEWEB)

    Aller, Pierre; Duclos, Stéphanie; Wallace, Susan S.; Doublié, Sylvie (Vermont)

    2012-06-27

    Thymine glycol (Tg) is the most common oxidation product of thymine and is known to be a strong block to replicative DNA polymerases. A previously solved structure of the bacteriophage RB69 DNA polymerase (RB69 gp43) in complex with Tg in the sequence context 5'-G-Tg-G shed light on how Tg blocks primer elongation: The protruding methyl group of the oxidized thymine displaces the adjacent 5'-G, which can no longer serve as a template for primer elongation [Aller, P., Rould, M. A., Hogg, M, Wallace, S. S. and Doublie S. (2007). A structural rationale for stalling of a replicative DNA polymerase at the most common oxidative thymine lesion, thymine glycol. Proc. Natl. Acad. Sci. USA, 104, 814-818.]. Several studies showed that in the sequence context 5'-C-Tg-purine, Tg is more likely to be bypassed by Klenow fragment, an A-family DNA polymerase. We set out to investigate the role of sequence context in Tg bypass in a B-family polymerase and to solve the crystal structures of the bacteriophage RB69 DNA polymerase in complex with Tg-containing DNA in the three remaining sequence contexts: 5'-A-Tg-G, 5'-T-Tg-G, and 5'-C-Tg-G. A combination of several factors - including the associated exonuclease activity, the nature of the 3' and 5' bases surrounding Tg, and the cis-trans interconversion of Tg - influences Tg bypass. We also visualized for the first time the structure of a well-ordered exonuclease complex, allowing us to identify and confirm the role of key residues (Phe123, Met256, and Tyr257) in strand separation and in the stabilization of the primer strand in the exonuclease site.

  19. DNA polymerase kappa protects human cells against MMC-induced genotoxicity through error-free translesion DNA synthesis.

    Science.gov (United States)

    Kanemaru, Yuki; Suzuki, Tetsuya; Sassa, Akira; Matsumoto, Kyomu; Adachi, Noritaka; Honma, Masamitsu; Numazawa, Satoshi; Nohmi, Takehiko

    2017-01-01

    Interactions between genes and environment are critical factors for causing cancer in humans. The genotoxicity of environmental chemicals can be enhanced via the modulation of susceptible genes in host human cells. DNA polymerase kappa (Pol κ) is a specialized DNA polymerase that plays an important role in DNA damage tolerance through translesion DNA synthesis. To better understand the protective roles of Pol κ, we previously engineered two human cell lines either deficient in expression of Pol κ (KO) or expressing catalytically dead Pol κ (CD) in Nalm-6-MSH+ cells and examined cytotoxic sensitivity against various genotoxins. In this study, we set up several genotoxicity assays with cell lines possessing altered Pol κ activities and investigated the protective roles of Pol κ in terms of genotoxicity induced by mitomycin C (MMC), a therapeutic agent that induces bulky DNA adducts and crosslinks in DNA. We introduced a frameshift mutation in one allele of the thymidine kinase (TK) gene of the KO, CD, and wild-type Pol κ cells (WT), thereby establishing cell lines for the TK gene mutation assay, namely TK+/- cells. In addition, we formulated experimental conditions to conduct chromosome aberration (CA) and sister chromatid exchange (SCE) assays with cells. By using the WT TK+/- and KO TK+/- cells, we assayed genotoxicity of MMC. In the TK gene mutation assay, the cytotoxic and mutagenic sensitivities of KO TK+/- cells were higher than those of WT TK+/- cells. MMC induced loss of heterozygosity (LOH), base pair substitutions at CpG sites and tandem mutations at GpG sites in both cell lines. However, the frequencies of LOH and base substitutions at CpG sites were significantly higher in KO TK+/- cells than in WT TK+/- cells. MMC also induced CA and SCE in both cell lines. The KO TK+/- cells displayed higher sensitivity than that displayed by WT TK+/- cells in the SCE assay. These results suggest that Pol κ is a modulating factor for the genotoxicity of MMC and

  20. Autographa californica multiple nucleopolyhedrovirus DNA polymerase C terminus is required for nuclear localization and viral DNA replication.

    Science.gov (United States)

    Feng, Guozhong; Krell, Peter J

    2014-09-01

    The DNA polymerase (DNApol) of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is essential for viral DNA replication. The DNApol exonuclease and polymerase domains are highly conserved and are considered functional in DNA replication. However, the role of the DNApol C terminus has not yet been characterized. To identify whether only the exonuclease and polymerase domains are sufficient for viral DNA replication, several DNApol C-terminal truncations were cloned into a dnapol-null AcMNPV bacmid with a green fluorescent protein (GFP) reporter. Surprisingly, most of the truncation constructs, despite containing both exonuclease and polymerase domains, could not rescue viral DNA replication and viral production in bacmid-transfected Sf21 cells. Moreover, GFP fusions of these same truncations failed to localize to the nucleus. Truncation of the C-terminal amino acids 950 to 984 showed nuclear localization but allowed for only limited and delayed viral spread. The C terminus contains a typical bipartite nuclear localization signal (NLS) motif at residues 804 to 827 and a monopartite NLS motif at residues 939 to 948. Each NLS, as a GFP fusion peptide, localized to the nucleus, but both NLSs were required for nuclear localization of DNApol. Alanine substitutions in a highly conserved baculovirus DNApol sequence at AcMNPV DNApol amino acids 972 to 981 demonstrated its importance for virus production and DNA replication. Collectively, the data indicated that the C terminus of AcMNPV DNApol contains two NLSs and a conserved motif, all of which are required for nuclear localization of DNApol, viral DNA synthesis, and virus production. The baculovirus DNA polymerase (DNApol) is a highly specific polymerase that allows viral DNA synthesis and hence virus replication in infected insect cells. We demonstrated that the exonuclease and polymerase domains of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) alone are insufficient for viral

  1. Distinct energetics and closing pathways for DNA polymerase β with 8-oxoG template and different incoming nucleotides

    Directory of Open Access Journals (Sweden)

    Wang Yanli

    2007-02-01

    Full Text Available Abstract Background 8-Oxoguanine (8-oxoG is a common oxidative lesion frequently encountered by DNA polymerases such as the repair enzyme DNA polymerase β (pol β. To interpret in atomic and energetic detail how pol β processes 8-oxoG, we apply transition path sampling to delineate closing pathways of pol β 8-oxoG complexes with dCTP and dATP incoming nucleotides and compare the results to those of the nonlesioned G:dCTP and G:dATPanalogues. Results Our analyses show that the closing pathways of the 8-oxoG complexes are different from one another and from the nonlesioned analogues in terms of the individual transition states along each pathway, associated energies, and the stability of each pathway's closed state relative to the corresponding open state. In particular, the closed-to-open state stability difference in each system establishes a hierarchy of stability (from high to low as G:C > 8-oxoG:C > 8-oxoG:A > G:A, corresponding to -3, -2, 2, 9 kBT, respectively. This hierarchy of closed state stability parallels the experimentally observed processing efficiencies for the four pairs. Network models based on the calculated rate constants in each pathway indicate that the closed species are more populated than the open species for 8-oxoG:dCTP, whereas the opposite is true for 8-oxoG:dATP. Conclusion These results suggest that the lower insertion efficiency (larger Km for dATP compared to dCTP opposite 8-oxoG is caused by a less stable closed-form of pol β, destabilized by unfavorable interactions between Tyr271 and the mispair. This stability of the closed vs. open form can also explain the higher insertion efficiency for 8-oxoG:dATP compared to the nonlesioned G:dATP pair, which also has a higher overall conformational barrier. Our study offers atomic details of the complexes at different states, in addition to helping interpret the different insertion efficiencies of dATP and dCTP opposite 8-oxoG and G.

  2. Genetic insertions and diversification of the PolB-type DNA polymerase (gp43) of T4-related phages.

    Science.gov (United States)

    Petrov, Vasiliy M; Ratnayaka, Swarnamala; Karam, Jim D

    2010-01-22

    In Escherichia coli phage T4 and many of its phylogenetic relatives, gene 43 consists of a single cistron that encodes a PolB family (PolB-type) DNA polymerase. We describe the divergence of this phage gene and its protein product (gp43) (gene product 43) among 26 phylogenetic relatives of T4 and discuss our observations in the context of diversity among the widely distributed PolB enzymes in nature. In two T4 relatives that grow in Aeromonas salmonicida phages 44RR and 25, gene 43 is fragmented by different combinations of three distinct types of DNA insertion elements: (a) a short intercistronic untranslated sequence (IC-UTS) that splits the polymerase gene into two cistrons, 43A and 43B, corresponding to N-terminal (gp43A) and C-terminal (gp43B) protein products; (b) a freestanding homing endonuclease gene (HEG) inserted between the IC-UTS and the 43B cistron; and (c) a group I intron in the 43B cistron. Phage 25 has all three elements, whereas phage 44RR has only the IC-UTS. We present evidence that (a) the split gene of phage 44RR encodes a split DNA polymerase consisting of a complex between gp43A and gp43B subunits; (b) the putative HEG encodes a double-stranded DNA endonuclease that specifically cleaves intron-free homologues of the intron-bearing 43B site; and (c) the group I intron is a self-splicing RNA. Our results suggest that some freestanding HEGs can mediate the homing of introns that do not encode their own homing enzymes. The results also suggest that different insertion elements can converge on a polB gene and evolve into a single integrated system for lateral transfer of polB genetic material. We discuss the possible pathways for the importation of such insertion elements into the genomes of T4-related phages. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. The Establishment of an Assay to Measure DNA Polymerase-Catalyzed Repair of UVB-Induced DNA Damage in Skin Cells and Screening of DNA Polymerase Enhancers from Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Sawako Ikeoka

    2016-05-01

    Full Text Available An in vitro assay method was established to measure the activity of cellular DNA polymerases (Pols in cultured normal human epidermal keratinocytes (NHEKs by modifying Pol inhibitor activity. Ultraviolet (UV irradiation enhanced the activity of Pols, especially DNA repair-related Pols, in the cell extracts of NHEKs. The optimal ultraviolet B (UVB exposure dose and culture time to upregulate Pols activity was 100 mJ/cm2 and 4-h incubation, respectively. We screened eight extracts of medicinal plants for enhancement of UVB-exposed cellular Pols activity using NHEKs, and found that rose myrtle was the strongest Pols enhancer. A Pols’ enhancement compound was purified from an 80% ethanol extract of rose myrtle, and piceatannol was isolated by spectroscopic analysis. Induction of Pol activity involved synergy between UVB irradiation and rose myrtle extract and/or piceatannol. Both the extract and piceatannol reduced UVB-induced cyclobutane pyrimidine dimer production, and prevented UVB-induced cytotoxicity. These results indicate that rose myrtle extract and piceatannol, its component, are potential photo-protective candidates for UV-induced skin damage.

  4. Proliferating cell nuclear antigen binds DNA polymerase-β and mediates 1-methyl-4-phenylpyridinium-induced neuronal death.

    Directory of Open Access Journals (Sweden)

    Zhentao Zhang

    Full Text Available The mechanisms leading to dopaminergic neuronal loss in the substantia nigra of patients with Parkinson disease (PD remain poorly understood. We recently reported that aberrant DNA replication mediated by DNA polymerase-β (DNA pol-β plays a causal role in the death of postmitotic neurons in an in vitro model of PD. In the present study, we show that both proliferating cell nuclear antigen (PCNA and DNA pol-β are required for MPP(+-induced neuronal death. PCNA binds to the catalytic domain of DNA pol-β in MPP(+-treated neurons and in post-mortem brain tissues of PD patients. The PCNA-DNA pol-β complex is loaded into DNA replication forks and mediates DNA replication in postmitotic neurons. The aberrant DNA replication mediated by the PCNA-DNA pol-β complex induces p53-dependent neuronal cell death. Our results indicate that the interaction of PCNA and DNA pol-β contributes to neuronal death in PD.

  5. Mutation of the little finger domain in human DNA polymerase η alters fidelity when copying undamaged DNA.

    Science.gov (United States)

    Beardslee, Renee A; Suarez, Samuel C; Toffton, Shannon M; McCulloch, Scott D

    2013-10-01

    DNA polymerase η (pol η) synthesizes past cyclobutane pyrimidine dimer and possibly 7,8-dihydro-8-oxoguanine (8-oxoG) lesions during DNA replication. Loss of pol η is associated with an increase in mutation rate, demonstrating its indispensable role in mutation suppression. It has been recently reported that β-strand 12 (amino acids 316-324) of the little finger region correctly positions the template strand with the catalytic core of the enzyme. The authors hypothesized that modification of β-strand 12 residues would disrupt correct enzyme-DNA alignment and alter pol η's activity and fidelity. To investigate this, the authors purified proteins containing the catalytic core of the polymerase, incorporated single amino acid changes to select β-strand 12 residues, and evaluated DNA synthesis activity for each pol η. Lesion bypass efficiencies and replication fidelities when copying DNA-containing cis-syn cyclobutane thymine-thymine dimer and 8-oxoG lesions were determined and compared with the corresponding values for the wild-type polymerase. The results confirm the importance of the β-strand in polymerase function and show that fidelity is most often altered when undamaged DNA is copied. Additionally, it is shown that DNA-protein contacts distal to the active site can significantly affect the fidelity of synthesis. Copyright © 2013 Wiley Periodicals, Inc.

  6. Roles of POLD4, smallest subunit of DNA polymerase {delta}, in nuclear structures and genomic stability of human cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qin Miao [Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya (Japan); Akashi, Tomohiro [Division of Molecular Mycology and Medicine, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya (Japan); Masuda, Yuji; Kamiya, Kenji [Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553 (Japan); Takahashi, Takashi [Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya (Japan); Suzuki, Motoshi, E-mail: msuzuki@med.nagoya-u.ac.jp [Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya (Japan)

    2010-01-01

    Mammalian DNA polymerase {delta} (pol {delta}) is essential for DNA replication, though the functions of this smallest subunit of POLD4 have been elusive. We investigated pol {delta} activities in vitro and found that it was less active in the absence of POLD4, irrespective of the presence of the accessory protein PCNA. shRNA-mediated reduction of POLD4 resulted in a marked decrease in colony formation activity by Calu6, ACC-LC-319, and PC-10 cells. We also found that POLD4 reduction was associated with an increased population of karyomere-like cells, which may be an indication of DNA replication stress and/or DNA damage. The karyomere-like cells retained an ability to progress through the cell cycle, suggesting that POLD4 reduction induces modest genomic instability, while allowing cells to grow until DNA damage reaches an intolerant level. Our results indicate that POLD4 is required for the in vitro pol {delta} activity, and that it functions in cell proliferation and maintenance of genomic stability of human cells.

  7. Roles of POLD4, smallest subunit of DNA polymerase δ, in nuclear structures and genomic stability of human cells

    International Nuclear Information System (INIS)

    Huang, Qin Miao; Akashi, Tomohiro; Masuda, Yuji; Kamiya, Kenji; Takahashi, Takashi; Suzuki, Motoshi

    2010-01-01

    Mammalian DNA polymerase δ (pol δ) is essential for DNA replication, though the functions of this smallest subunit of POLD4 have been elusive. We investigated pol δ activities in vitro and found that it was less active in the absence of POLD4, irrespective of the presence of the accessory protein PCNA. shRNA-mediated reduction of POLD4 resulted in a marked decrease in colony formation activity by Calu6, ACC-LC-319, and PC-10 cells. We also found that POLD4 reduction was associated with an increased population of karyomere-like cells, which may be an indication of DNA replication stress and/or DNA damage. The karyomere-like cells retained an ability to progress through the cell cycle, suggesting that POLD4 reduction induces modest genomic instability, while allowing cells to grow until DNA damage reaches an intolerant level. Our results indicate that POLD4 is required for the in vitro pol δ activity, and that it functions in cell proliferation and maintenance of genomic stability of human cells.

  8. The C-terminal region of translesion synthesis DNA polymerase η is partially unstructured and has high conformational flexibility

    Science.gov (United States)

    Powers, Kyle T; Washington, M Todd

    2018-01-01

    Abstract Eukaryotic DNA polymerase η catalyzes translesion synthesis of thymine dimers and 8-oxoguanines. It is comprised of a polymerase domain and a C-terminal region, both of which are required for its biological function. The C-terminal region mediates interactions with proliferating cell nuclear antigen (PCNA) and other translesion synthesis proteins such as Rev1. This region contains a ubiquitin-binding/zinc-binding (UBZ) motif and a PCNA-interacting protein (PIP) motif. Currently little structural information is available for this region of polymerase η. Using a combination of approaches—including genetic complementation assays, X-ray crystallography, Langevin dynamics simulations, and small-angle X-ray scattering—we show that the C-terminal region is partially unstructured and has high conformational flexibility. This implies that the C-terminal region acts as a flexible tether linking the polymerase domain to PCNA thereby increasing its local concentration. Such tethering would facilitate the sampling of translesion synthesis polymerases to ensure that the most appropriate one is selected to bypass the lesion. PMID:29385534

  9. Systematic biochemical analysis of somatic missense mutations in DNA polymerase β found in prostate cancer reveal alteration of enzymatic function.

    Science.gov (United States)

    An, Chang Long; Chen, Desheng; Makridakis, Nick M

    2011-04-01

    DNA polymerase β is essential for short-patch base excision repair. We have previously identified 20 somatic pol β mutations in prostate tumors, many of them missense. In the current article we describe the effect of all of these somatic missense pol β mutations (p.K27N, p.E123K, p.E232K, p.P242R, p.E216K, p.M236L, and the triple mutant p.P261L/T292A/I298T) on the biochemical properties of the polymerase in vitro, following bacterial expression and purification of the respective enzymatic variants. We report that all missense somatic pol β mutations significantly affect enzyme function. Two of the pol β variants reduce catalytic efficiency, while the remaining five missense mutations alter the fidelity of DNA synthesis. Thus, we conclude that a significant proportion (9 out of 26; 35%) of prostate cancer patients have functionally important somatic mutations of pol β. Many of these missense mutations are clonal in the tumors, and/or are associated with loss of heterozygosity and microsatellite instability. These results suggest that interfering with normal polymerase β function may be a frequent mechanism of prostate tumor progression. Furthermore, the availability of detailed structural information for pol β allows understanding of the potential mechanistic effects of these mutants on polymerase function. © 2011 Wiley-Liss, Inc.

  10. Alteration in the cavity size adjacent to the active site of RB69 DNA polymerase changes its conformational dynamics.

    Science.gov (United States)

    Xia, Shuangluo; Wood, Marcus; Bradley, Michael J; De La Cruz, Enrique M; Konigsberg, William H

    2013-10-01

    Internal cavities are a common feature of many proteins, often having profound effects on the dynamics of their interactions with substrate and binding partners. RB69 DNA polymerase (pol) has a hydrophobic cavity right below the nucleotide binding pocket at the tip of highly conserved L415 side chain. Replacement of this residue with Gly or Met in other B family pols resulted in higher mutation rates. When similar substitutions for L415 were introduced into RB69pol, only L415A and L415G had dramatic effects on pre-steady-state kinetic parameters, reducing base selectivity by several hundred fold. On the other hand, the L415M variant behaved like the wild-type. Using a novel tC(o)-tCnitro Förster Resonance Energy Transfer (FRET) assay, we were able to show that the partition of the primer terminus between pol and exonuclease (exo) domains was compromised with the L415A and L415G mutants, but not with the L415M variant. These results could be rationalized by changes in their structures as determined by high resolution X-ray crystallography.

  11. Deficiency of the Caenorhabditis elegans DNA polymerase eta homologue increases sensitivity to UV radiation during germ-line development.

    Science.gov (United States)

    Ohkumo, Tsuyoshi; Masutani, Chikahide; Eki, Toshihiko; Hanaoka, Fumio

    2006-01-01

    Defects in the human XPV/POLH gene result in the variant form of the disease xeroderma pigmentosum (XP-V). The gene encodes DNA polymerase eta (Poleta), which catalyzes translesion synthesis (TLS) past UV-induced cyclobutane pyrimidine dimers (CPDs) and other lesions. To further understand the roles of Poleta in multicellular organisms, we analyzed phenotypes caused by suppression of Caenorhabditis elegans POLH (Ce-POLH) by RNA interference (RNAi). F1 and F2 progeny from worms treated by Ce-POLH-specific RNAi grew normally, but F1 eggs laid by worms treated by RNAi against Ce-POLD, which encodes Poldelta did not hatch. These results suggest that Poldelta but not Poleta is essential for C. elegans embryogenesis. Poleta-targeted embryos UV-irradiated after egg laying were only moderately sensitive. In contrast, Poleta-targeted embryos UV-irradiated prior to egg laying exhibited severe sensitivity, indicating that Poleta contributes significantly to damage tolerance in C. elegans in early embryogenesis but only modestly at later stages. As early embryogenesis is characterized by high levels of DNA replication, Poleta may confer UV resistance in C. elegans, perhaps by catalyzing TLS in early embryogenesis.

  12. DNA polymerase eta is regulated by poly(rC)-binding protein 1 via mRNA stability

    Science.gov (United States)

    Ren, Cong; Cho, Seong-Jun; Jung, Yong-Sam; Chen, Xinbin

    2015-01-01

    DNA polymerase eta (POLH), a target of p53 tumor suppressor, plays a key role in translesion DNA synthesis (TLS). Loss of POLH is responsible for human cancer prone syndrome, Xeroderma Pigmentosum Variant (XPV). Due to its critical role in DNA repair and genome stability, POLH expression and activity are regulated by multiple pathways. In this study, we found that the levels of both POLH transcript and protein were decreased upon knockdown of the transcript encoding poly(rC)-binding protein 1 (PCBP1). We also found that the half-life of POLH mRNA was markedly decreased upon knockdown of PCBP1. Moreover, we found that PCBP1 directly bound to POLH 3′UTR and the PCBP1-binding site in POLH mRNA is an atypical AU-rich element. Finally, we showed that the AU-rich element in POLH 3′UTR was responsive to PCBP1 and sufficient for PCBP1 to regulate POLH expression. Altogether, we uncovered a novel mechanism by which POLH expression is controlled by PCBP1 via mRNA stability. PMID:25268038

  13. DNA polymerase η is regulated by poly(rC)-binding protein 1 via mRNA stability.

    Science.gov (United States)

    Ren, Cong; Cho, Seong-Jun; Jung, Yong-Sam; Chen, Xinbin

    2014-12-15

    POLH (DNA polymerase η), a target of p53 tumour suppressor, plays a key role in TLS (translesion DNA synthesis). Loss of POLH is responsible for the human cancer-prone syndrome XPV (xeroderma pigmentosum variant). Owing to its critical role in DNA repair and genome stability, POLH expression and activity are regulated by multiple pathways. In the present study, we found that the levels of both POLH transcript and protein were decreased upon knockdown of the transcript encoding PCBP1 [poly(rC)-binding protein 1]. We also found that the half-life of POLH mRNA was markedly decreased upon knockdown of PCBP1. Moreover, we found that PCBP1 directly bound to the POLH 3'-UTR and the PCBP1-binding site in POLH mRNA is an atypical AU-rich element. Finally, we showed that the AU-rich element in POLH 3'-UTR was responsive to PCBP1 and sufficient for PCBP1 to regulate POLH expression. Taken together, we uncovered a novel mechanism by which POLH expression is controlled by PCBP1 via mRNA stability.

  14. DNA polymerase η modulates replication fork progression and DNA damage responses in platinum-treated human cells

    Science.gov (United States)

    Sokol, Anna M.; Cruet-Hennequart, Séverine; Pasero, Philippe; Carty, Michael P.

    2013-11-01

    Human cells lacking DNA polymerase η (polη) are sensitive to platinum-based cancer chemotherapeutic agents. Using DNA combing to directly investigate the role of polη in bypass of platinum-induced DNA lesions in vivo, we demonstrate that nascent DNA strands are up to 39% shorter in human cells lacking polη than in cells expressing polη. This provides the first direct evidence that polη modulates replication fork progression in vivo following cisplatin and carboplatin treatment. Severe replication inhibition in individual platinum-treated polη-deficient cells correlates with enhanced phosphorylation of the RPA2 subunit of replication protein A on serines 4 and 8, as determined using EdU labelling and immunofluorescence, consistent with formation of DNA strand breaks at arrested forks in the absence of polη. Polη-mediated bypass of platinum-induced DNA lesions may therefore represent one mechanism by which cancer cells can tolerate platinum-based chemotherapy.

  15. Single-stranded DNA-binding protein recruits DNA polymerase V to primer termini on RecA-coated DNA.

    Science.gov (United States)

    Arad, Gali; Hendel, Ayal; Urbanke, Claus; Curth, Ute; Livneh, Zvi

    2008-03-28

    Translesion DNA synthesis (TLS) by DNA polymerase V (polV) in Escherichia coli involves accessory proteins, including RecA and single-stranded DNA-binding protein (SSB). To elucidate the role of SSB in TLS we used an in vitro exonuclease protection assay and found that SSB increases the accessibility of 3' primer termini located at abasic sites in RecA-coated gapped DNA. The mutant SSB-113 protein, which is defective in protein-protein interactions, but not in DNA binding, was as effective as wild-type SSB in increasing primer termini accessibility, but deficient in supporting polV-catalyzed TLS. Consistently, the heterologous SSB proteins gp32, encoded by phage T4, and ICP8, encoded by herpes simplex virus 1, could replace E. coli SSB in the TLS reaction, albeit with lower efficiency. Immunoprecipitation experiments indicated that polV directly interacts with SSB and that this interaction is disrupted by the SSB-113 mutation. Taken together our results suggest that SSB functions to recruit polV to primer termini on RecA-coated DNA, operating by two mechanisms: 1) increasing the accessibility of 3' primer termini caused by binding of SSB to DNA and 2) a direct SSB-polV interaction mediated by the C terminus of SSB.

  16. Escherichia coli DNA polymerase III is responsible for the high level of spontaneous mutations in mutT strains.

    Science.gov (United States)

    Yamada, Masami; Shimizu, Masatomi; Katafuchi, Atsushi; Grúz, Petr; Fujii, Shingo; Usui, Yukio; Fuchs, Robert P; Nohmi, Takehiko

    2012-12-01

    Reactive oxygen species induce oxidative damage in DNA precursors, i.e. dNTPs, leading to point mutations upon incorporation. Escherichia coli mutT strains, deficient in the activity hydrolysing 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP), display more than a 100-fold higher spontaneous mutation frequency over the wild-type strain. 8-oxo-dGTP induces A to C transversions when misincorporated opposite template A. Here, we report that DNA pol III incorporates 8-oxo-dGTP ≈ 20 times more efficiently opposite template A compared with template C. Single, double or triple deletions of pol I, pol II, pol IV or pol V had modest effects on the mutT mutator phenotype. Only the deletion of all four polymerases led to a 70% reduction of the mutator phenotype. While pol III may account for nearly all 8-oxo-dGTP incorporation opposite template A, it only extends ≈ 30% of them, the remaining 70% being extended by the combined action of pol I, pol II, pol IV or pol V. The unique property of pol III, a C-family DNA polymerase present only in eubacteria, to preferentially incorporate 8-oxo-dGTP opposite template A during replication might explain the high spontaneous mutation frequency in E. coli mutT compared with the mammalian counterparts lacking the 8-oxo-dGTP hydrolysing activities. © 2012 Blackwell Publishing Ltd.

  17. Oxidative DNA Damage Bypass in Arabidopsis thaliana Requires DNA Polymerase λ and Proliferating Cell Nuclear Antigen 2[W

    Science.gov (United States)

    Amoroso, Alessandra; Concia, Lorenzo; Maggio, Caterina; Raynaud, Cécile; Bergounioux, Catherine; Crespan, Emmanuele; Cella, Rino; Maga, Giovanni

    2011-01-01

    The oxidized base 7,8-oxoguanine (8-oxo-G) is the most common DNA lesion generated by reactive oxygen species. This lesion is highly mutagenic due to the frequent misincorporation of A opposite 8-oxo-G during DNA replication. In mammalian cells, the DNA polymerase (pol) family X enzyme DNA pol λ catalyzes the correct incorporation of C opposite 8-oxo-G, together with the auxiliary factor proliferating cell nuclear antigen (PCNA). Here, we show that Arabidopsis thaliana DNA pol λ, the only member of the X family in plants, is as efficient in performing error-free translesion synthesis past 8-oxo-G as its mammalian homolog. Arabidopsis, in contrast with animal cells, possesses two genes for PCNA. Using in vitro and in vivo approaches, we observed that PCNA2, but not PCNA1, physically interacts with DNA pol λ, enhancing its fidelity and efficiency in translesion synthesis. The levels of DNA pol λ in transgenic plantlets characterized by overexpression or silencing of Arabidopsis POLL correlate with the ability of cell extracts to perform error-free translesion synthesis. The important role of DNA pol λ is corroborated by the observation that the promoter of POLL is activated by UV and that both overexpressing and silenced plants show altered growth phenotypes. PMID:21325140

  18. Herpes Simplex Virus 1 DNA Polymerase RNase H Activity Acts in a 3'-to-5' Direction and Is Dependent on the 3'-to-5' Exonuclease Active Site.

    Science.gov (United States)

    Lawler, Jessica L; Mukherjee, Purba; Coen, Donald M

    2018-03-01

    The catalytic subunit (Pol) of herpes simplex virus 1 (HSV-1) DNA polymerase has been extensively studied both as a model for other family B DNA polymerases and for its differences from these enzymes as an antiviral target. Among the activities of HSV-1 Pol is an intrinsic RNase H activity that cleaves RNA from RNA-DNA hybrids. There has long been a controversy regarding whether this activity is due to the 3'-to-5' exonuclease of Pol or whether it is a separate activity, possibly acting on 5' RNA termini. To investigate this issue, we compared wild-type HSV-1 Pol and a 3'-to-5' exonuclease-deficient mutant, D368A Pol, for DNA polymerase activity, 3'-to-5' exonuclease activity, and RNase H activity in vitro Additionally, we assessed the RNase H activity using differentially end-labeled templates with 5' or 3' RNA termini. The mutant enzyme was at most modestly impaired for DNA polymerase activity but was drastically impaired for 3'-to-5' exonuclease activity, with no activity detected even at high enzyme-to-DNA substrate ratios. Importantly, the mutant showed no detectable ability to excise RNA with either a 3' or 5' terminus, while the wild-type HSV-1 Pol was able to cleave RNA from the annealed RNA-DNA hairpin template, but only detectably with a 3' RNA terminus in a 3'-to-5' direction and at a rate lower than that of the exonuclease activity. These results suggest that HSV-1 Pol does not have an RNase H separable from its 3'-to-5' exonuclease activity and that this activity prefers DNA degradation over degradation of RNA from RNA-DNA hybrids. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a member of the Herpesviridae family of DNA viruses, several of which cause morbidity and mortality in humans. Although the HSV-1 DNA polymerase has been studied for decades and is a crucial target for antivirals against HSV-1 infection, several of its functions remain to be elucidated. A hypothesis suggesting the existence of a 5'-to-3' RNase H activity intrinsic to this enzyme

  19. Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors.

    Science.gov (United States)

    Tahirov, Tahir H; Makarova, Kira S; Rogozin, Igor B; Pavlov, Youri I; Koonin, Eugene V

    2009-03-18

    Evolution of DNA polymerases, the key enzymes of DNA replication and repair, is central to any reconstruction of the history of cellular life. However, the details of the evolutionary relationships between DNA polymerases of archaea and eukaryotes remain unresolved. We performed a comparative analysis of archaeal, eukaryotic, and bacterial B-family DNA polymerases, which are the main replicative polymerases in archaea and eukaryotes, combined with an analysis of domain architectures. Surprisingly, we found that eukaryotic Polymerase epsilon consists of two tandem exonuclease-polymerase modules, the active N-terminal module and a C-terminal module in which both enzymatic domains are inactivated. The two modules are only distantly related to each other, an observation that suggests the possibility that Pol epsilon evolved as a result of insertion and subsequent inactivation of a distinct polymerase, possibly, of bacterial descent, upstream of the C-terminal Zn-fingers, rather than by tandem duplication. The presence of an inactivated exonuclease-polymerase module in Pol epsilon parallels a similar inactivation of both enzymatic domains in a distinct family of archaeal B-family polymerases. The results of phylogenetic analysis indicate that eukaryotic B-family polymerases, most likely, originate from two distantly related archaeal B-family polymerases, one form giving rise to Pol epsilon, and the other one to the common ancestor of Pol alpha, Pol delta, and Pol zeta. The C-terminal Zn-fingers that are present in all eukaryotic B-family polymerases, unexpectedly, are homologous to the Zn-finger of archaeal D-family DNA polymerases that are otherwise unrelated to the B family. The Zn-finger of Polepsilon shows a markedly greater similarity to the counterpart in archaeal PolD than the Zn-fingers of other eukaryotic B-family polymerases. Evolution of eukaryotic DNA polymerases seems to have involved previously unnoticed complex events. We hypothesize that the archaeal

  20. Translesion Synthesis of the N(2)-2'-Deoxyguanosine Adduct of the Dietary Mutagen IQ in Human Cells: Error-Free Replication by DNA Polymerase κ and Mutagenic Bypass by DNA Polymerases η, ζ, and Rev1.

    Science.gov (United States)

    Bose, Arindam; Millsap, Amy D; DeLeon, Arnie; Rizzo, Carmelo J; Basu, Ashis K

    2016-09-19

    Translesion synthesis (TLS) of the N(2)-2'-deoxyguanosine (dG-N(2)-IQ) adduct of the carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) was investigated in human embryonic kidney 293T cells by replicating plasmid constructs in which the adduct was individually placed at each guanine (G1, G2, or G3) of the NarI sequence (5'-CG1G2CG3CC-3'). TLS efficiency was 38%, 29%, and 25% for the dG-N(2)-IQ located at G1, G2, and G3, respectively, which suggests that dG-N(2)-IQ is bypassed more efficiently by one or more DNA polymerases at G1 than at either G2 or G3. TLS efficiency was decreased 8-35% in cells with knockdown of pol η, pol κ, pol ι, pol ζ, or Rev1. Up to 75% reduction in TLS occurred when pol η, pol ζ, and Rev1 were simultaneously knocked down, suggesting that these three polymerases play important roles in dG-N(2)-IQ bypass. Mutation frequencies (MFs) of dG-N(2)-IQ at G1, G2, and G3 were 23%, 17%, and 11%, respectively, exhibiting a completely reverse trend of the previously reported MF of the C8-dG adduct of IQ (dG-C8-IQ), which is most mutagenic at G3 ( ( 2015 ) Nucleic Acids Res. 43 , 8340 - 8351 ). The major type of mutation induced by dG-N(2)-IQ was targeted G → T, as was reported for dG-C8-IQ. In each site, knockdown of pol κ resulted in an increase in MF, whereas MF was reduced when pol η, pol ι, pol ζ, or Rev1 was knocked down. The reduction in MF was most pronounced when pol η, pol ζ, and Rev1 were simultaneously knocked down and especially when the adduct was located at G3, where MF was reduced by 90%. We conclude that pol κ predominantly performs error-free TLS of the dG-N(2)-IQ adduct, whereas pols η, pol ζ, and Rev1 cooperatively carry out the error-prone TLS. However, in vitro experiments using yeast pol ζ and κ showed that the former was inefficient in full-length primer extension on dG-N(2)-IQ templates, whereas the latter was efficient in both error-free and error-prone extensions. We believe that the observed differences

  1. Translesion Synthesis of the N2-2′-Deoxyguanosine Adduct of the Dietary Mutagen IQ in Human Cells: Error-Free Replication by DNA Polymerase κ and Mutagenic Bypass by DNA Polymerases η, ζ, and Rev1

    Science.gov (United States)

    2016-01-01

    Translesion synthesis (TLS) of the N2-2′-deoxyguanosine (dG-N2-IQ) adduct of the carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) was investigated in human embryonic kidney 293T cells by replicating plasmid constructs in which the adduct was individually placed at each guanine (G1, G2, or G3) of the NarI sequence (5′-CG1G2CG3CC-3′). TLS efficiency was 38%, 29%, and 25% for the dG-N2-IQ located at G1, G2, and G3, respectively, which suggests that dG-N2-IQ is bypassed more efficiently by one or more DNA polymerases at G1 than at either G2 or G3. TLS efficiency was decreased 8–35% in cells with knockdown of pol η, pol κ, pol ι, pol ζ, or Rev1. Up to 75% reduction in TLS occurred when pol η, pol ζ, and Rev1 were simultaneously knocked down, suggesting that these three polymerases play important roles in dG-N2-IQ bypass. Mutation frequencies (MFs) of dG-N2-IQ at G1, G2, and G3 were 23%, 17%, and 11%, respectively, exhibiting a completely reverse trend of the previously reported MF of the C8-dG adduct of IQ (dG-C8-IQ), which is most mutagenic at G3 ((2015) Nucleic Acids Res.43, 8340−835126220181). The major type of mutation induced by dG-N2-IQ was targeted G → T, as was reported for dG-C8-IQ. In each site, knockdown of pol κ resulted in an increase in MF, whereas MF was reduced when pol η, pol ι, pol ζ, or Rev1 was knocked down. The reduction in MF was most pronounced when pol η, pol ζ, and Rev1 were simultaneously knocked down and especially when the adduct was located at G3, where MF was reduced by 90%. We conclude that pol κ predominantly performs error-free TLS of the dG-N2-IQ adduct, whereas pols η, pol ζ, and Rev1 cooperatively carry out the error-prone TLS. However, in vitro experiments using yeast pol ζ and κ showed that the former was inefficient in full-length primer extension on dG-N2-IQ templates, whereas the latter was efficient in both error-free and error-prone extensions. We believe that the observed differences between

  2. Successful application of FTA Classic Card technology and use of bacteriophage phi29 DNA polymerase for large-scale field sampling and cloning of complete maize streak virus genomes.

    Science.gov (United States)

    Owor, Betty E; Shepherd, Dionne N; Taylor, Nigel J; Edema, Richard; Monjane, Adérito L; Thomson, Jennifer A; Martin, Darren P; Varsani, Arvind

    2007-03-01

    Leaf samples from 155 maize streak virus (MSV)-infected maize plants were collected from 155 farmers' fields in 23 districts in Uganda in May/June 2005 by leaf-pressing infected samples onto FTA Classic Cards. Viral DNA was successfully extracted from cards stored at room temperature for 9 months. The diversity of 127 MSV isolates was analysed by PCR-generated RFLPs. Six representative isolates having different RFLP patterns and causing either severe, moderate or mild disease symptoms, were chosen for amplification from FTA cards by bacteriophage phi29 DNA polymerase using the TempliPhi system. Full-length genomes were inserted into a cloning vector using a unique restriction enzyme site, and sequenced. The 1.3-kb PCR product amplified directly from FTA-eluted DNA and used for RFLP analysis was also cloned and sequenced. Comparison of cloned whole genome sequences with those of the original PCR products indicated that the correct virus genome had been cloned and that no errors were introduced by the phi29 polymerase. This is the first successful large-scale application of FTA card technology to the field, and illustrates the ease with which large numbers of infected samples can be collected and stored for downstream molecular applications such as diversity analysis and cloning of potentially new virus genomes.

  3. Operation amplifier

    NARCIS (Netherlands)

    Tetsuya, Saito; Nauta, Bram

    2008-01-01

    To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. SOLUTION: The operation amplifier comprises: a differential amplifier circuit 1;

  4. Associations of POU1F1 gene polymorphisms and protein structure ...

    Indian Academy of Sciences (India)

    the DNA. Polymerase chain reaction (PCR), single-strand conformation polymorphism (SSCP) and sequence analyses were carried out to examine the exon 3 of POU1F1 to high- light possible SNPs. ... POU1F1 gene mutations by PCR-SSCP and DNA sequenc- ... of 4 μL PCR products were mixed with 12 μL denaturing.

  5. A CRISPR/Cas9 approach reveals that the polymerase activity of DNA polymerase β is dispensable for HIV-1 infection in dividing and nondividing cells.

    Science.gov (United States)

    Goetze, Russell W; Kim, Dong-Hyun; Schinazi, Raymond F; Kim, Baek

    2017-08-25

    Retrovirus integration into the host genome relies on several host enzymes, potentially including DNA polymerase β (Pol β). However, whether human Pol β is essential for lentivirus replication in human cells is unclear. Here, we abolished DNA polymerase β (Pol β) expression by targeting its DNA polymerase domain with CRISPR/Cas9 in human monocytic THP-1 cells to investigate the role of Pol β in HIV-1 transduction in both dividing and nondividing macrophage stages of THP-1 cells. Pol β-knock-out was confirmed by enhanced sensitivity to methyl methanesulfonate-induced DNA damage. Of note, nuclear extracts from Pol β-knock-out THP-1 cells prepared from both dividing and nondividing stages displayed significantly reduced capability to repair the gapped HIV-1 integration intermediate DNA substrate in a biochemical simulation. However, nuclear extract from both dividing and nondividing stages of the Pol β-KO cells had detectable gap repair activity, suggesting that other host DNA polymerases also repair gapped HIV-1 DNA, particularly in dividing cells. Next, when we compared transduction using HIV-1 and simian immunodeficiency virus in control and Pol β-KO cells, the loss of the Pol β expression did not affect transduction efficiency of these lentiviruses in both dividing and nondividing stages. Finally, the gap repair assay indicated that limited cellular dNTP pools, but not Pol β expression, are a primary factor for HIV-1 DNA gap repair, particularly in nondividing cells. These data support the idea that Pol β polymerase activity is dispensable for HIV-1 infection in both dividing and nondividing stages of human cells targeted by the virus. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. High sensitive RNA detection by one-step RT-PCR using the genetically engineered variant of DNA polymerase with reverse transcriptase activity from hyperthermophilies.

    Science.gov (United States)

    Okano, Hiroyuki; Baba, Misato; Kawato, Katsuhiro; Hidese, Ryota; Yanagihara, Itaru; Kojima, Kenji; Takita, Teisuke; Fujiwara, Shinsuke; Yasukawa, Kiyoshi

    2018-03-01

    One-step RT-PCR has not been widely used even though some thermostable DNA polymerases with reverse transcriptase (RT) activity were developed from bacterial and archaeal polymerases, which is owing to low cDNA synthesis activity from RNA. In the present study, we developed highly-sensitive one-step RT-PCR using the single variant of family A DNA polymerase with RT activity, K4pol L329A (L329A), from the hyperthermophilic bacterium Thermotoga petrophila K4 or the 16-tuple variant of family B DNA polymerase with RT activity, RTX, from the hyperthermophilic archaeon Thermococcus kodakarensis. Optimization of reaction condition revealed that the activities for cDNA synthesis and PCR of K4pol L329A and RTX were highly affected by the concentrations of MgCl 2 and Mn(OCOCH 3 ) 2 as well as those of K4pol L329A or RTX. Under the optimized condition, 300 copies/μl of target RNA in 10 μl reaction volumes were successfully detected by the one-step RT-PCR with K4pol L329A or RTX, which was almost equally sensitive enough compared with the current RT-PCR condition using retroviral RT and thermostable DNA polymerase. Considering that K4pol L329A and RTX are stable even at 90-100°C, our results suggest that the one-step RT-PCR with K4pol L329A or RTX is more advantageous than the current one. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Mode of inhibition of HIV-1 reverse transcriptase by polyacetylenetriol, a novel inhibitor of RNA- and DNA-directed DNA polymerases.

    Science.gov (United States)

    Loya, Shoshana; Rudi, Amira; Kashman, Yoel; Hizi, Amnon

    2002-03-15

    Polyacetylenetriol (PAT), a natural marine product from the Mediterranean sea sponge Petrosia sp., was found to be a novel general potent inhibitor of DNA polymerases. It inhibits equally well the RNA- and DNA-dependent DNA polymerase activities of retroviral reverse transcriptases (RTs) (i.e. of HIV, murine leukaemia virus and mouse mammary tumour virus) as well as cellular DNA polymerases (i.e. DNA polymerases alpha and beta and Escherichia coli polymerase I). A study of the mode and mechanism of the polymerase inhibition by PAT has been conducted with HIV-1 RT. PAT was shown to be a reversible non-competitive inhibitor. PAT binds RT independently and at a site different from that of the primer-template and dNTP substrates with high affinity (K(i)=0.51 microM and K(i)=0.53 microM with dTTP and with dGTP as the variable substrates respectively). Blocking the polar hydroxy groups of PAT has only a marginal effect on the inhibitory capacity, thus hydrophobic interactions are likely to play a major role in inhibiting RT. Preincubation of RT with the primer-template substrate prior to the interaction with PAT reduces substantially the inhibition capacity, probably by preventing these contacts. PAT does not interfere with the first step of polymerization, the binding of RT to DNA, nor does the inhibitor interfere with the binding of dNTP to RT/DNA complex, as evident from the steady-state kinetic study, whereby K(m) remains unchanged. We assume, therefore, that PAT interferes with subsequent catalytic steps of DNA polymerization. The inhibitor may alter the optimal stereochemistry of the polymerase active site relative to the primer terminus, bound dNTP and the metal ions that are crucial for efficient catalysis or, alternatively, may interfere with the thumb sub-domain movement and, thus, with the translocation of the primer-template following nucleotide incorporation.

  8. Integrative genomic analysis identifies ancestry-related expression quantitative trait loci on DNA polymerase β and supports the association of genetic ancestry with survival disparities in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Ramakodi, Meganathan P; Devarajan, Karthik; Blackman, Elizabeth; Gibbs, Denise; Luce, Danièle; Deloumeaux, Jacqueline; Duflo, Suzy; Liu, Jeffrey C; Mehra, Ranee; Kulathinal, Rob J; Ragin, Camille C

    2017-03-01

    African Americans with head and neck squamous cell carcinoma (HNSCC) have a lower survival rate than whites. This study investigated the functional importance of ancestry-informative single-nucleotide polymorphisms (SNPs) in HNSCC and also examined the effect of functionally important genetic elements on racial disparities in HNSCC survival. Ancestry-informative SNPs, RNA sequencing, methylation, and copy number variation data for 316 oral cavity and laryngeal cancer patients were analyzed across 178 DNA repair genes. The results of expression quantitative trait locus (eQTL) analyses were also replicated with a Gene Expression Omnibus (GEO) data set. The effects of eQTLs on overall survival (OS) and disease-free survival (DFS) were evaluated. Five ancestry-related SNPs were identified as cis-eQTLs in the DNA polymerase β (POLB) gene (false discovery rate [FDR] ancestry (P = .002). An association was observed between these eQTLs and OS (P ancestry-related alleles could act as eQTLs in HNSCC and support the association of ancestry-related genetic factors with survival disparities in patients diagnosed with oral cavity and laryngeal cancer. Cancer 2017;123:849-60. © 2016 American Cancer Society. © 2016 American Cancer Society.

  9. Molecular dynamics simulations suggest changes in electrostatic interactions as a potential mechanism through which serine phosphorylation inhibits DNA Polymerase β's activity.

    Science.gov (United States)

    Homouz, Dirar; Joyce-Tan, Kwee Hong; Shahir Shamsir, Mohd; Moustafa, Ibrahim M; Idriss, Haitham

    2018-01-01

    DNA polymerase β is a 39kDa enzyme that is a major component of Base Excision Repair in human cells. The enzyme comprises two major domains, a 31kDa domain responsible for the polymerase activity and an 8kDa domain, which bind ssDNA and has a deoxyribose phosphate (dRP) lyase activity. DNA polymerase β was shown to be phosphorylated in vitro with protein kinase C (PKC) at serines 44 and 55 (S44 and S55), resulting in loss of its polymerase enzymic activity, but not its ability to bind ssDNA. In this study, we investigate the potential phosphorylation-induced structural changes for DNA polymerase β using molecular dynamics. The simulations show drastic conformational changes of the polymerase structure as a result of S44 phosphorylation. Phosphorylation-induced conformational changes transform the closed (active) enzyme structure into an open one. Further analysis of the results points to a key hydrogen bond and newly formed salt bridges as potential drivers of these structural fluctuations. The changes observed with S44/55 and S55 phosphorylation were less dramatic than S44 and the integrity of the H-bond was not compromised. Thus the phosphorylation of S44 is likely the major contributor to structural fluctuations that lead to loss of enzymatic activity. Copyright © 2017. Published by Elsevier Inc.

  10. Functions of replication factor C and proliferating-cell nuclear antigen: Functional similarity of DNA polymerase accessory proteins from human cells and bacteriophage T4

    International Nuclear Information System (INIS)

    Tsurimoto, Toshiki; Stillman, B.

    1990-01-01

    The proliferating-cell nuclear antigen (PCNA) and the replication factors A and C (RF-A and RF-C) are cellular proteins essential for complete elongation of DNA during synthesis from the simian virus 40 origin of DNA replication in vitro. All three cooperate to stimulate processive DNA synthesis by DNA polymerase δ on a primed single-stranded M13 template DNA and as such can be categorized as DNA polymerase accessory proteins. Biochemical analyses with highly purified RF-C and PCNA have demonstrated functions that are completely analogous to the functions of bacteriophage T4 DNA polymerase accessory proteins. A primer-template-specific DNA binding activity and a DNA-dependent ATPase activity copurified with the multisubunit protein RF-C and are similar to the functions of the phage T4 gene 44/62 protein complex. Furthermore, PCNA stimulated the RF-C ATPase activity and is, therefore, analogous to the phage T4 gene 45 protein, which stimulates the ATPase function of the gene 44/62 protein complex. Indeed, some primary sequence similarities between human PCNA and the phage T4 gene 45 protein could be detected. These results demonstrate a striking conservation of the DNA replication apparatus in human cells and bacteriophage T4

  11. Active-site modification of mammalian DNA polymerase β with pyridoxal 5'-phosphate: Mechanism of inhibition and identification of lysine 71 in the deoxynucleoside triphosphate binding pocket

    International Nuclear Information System (INIS)

    Basu, A.; Kedar, P.; Wilson, S.H.; Modak, M.J.

    1989-01-01

    Pyridoxal 5'-phosphate is a potent inhibitor of the DNA polymerase activity of recombinant rat DNA polymerase β. Kinetic studies indicate that the mechanism of PLP inhibition is complex. In a lower range of PLP concentration, inhibition is competitive with respect to substrate dNTP, whereas at higher levels of PLP several forms of enzyme combine with PLP and are involved in the overall inhibition, and a possible model for these interactions during the catalytic process is suggested. Reduction of the PLP-treated enzyme with sodium [ 3 H]borohydride results in covalent incorporation of about 4 mol of PLP/mol of enzyme, and the modified enzyme is not capable of DNA polymerase activity. The presence of dNTP during the modification reaction blocks incorporation of 1 mol of PLP/mol of enzyme, and the enzyme so modified is almost fully active. This protective effect is not observed in the absence of template-primer. Tryptic peptide mapping of the PLP-modified enzyme reveals four major sites of modification. Of these four sites, only one is protected by dNTP from pyridoxylation. Sequence analysis of the tryptic peptide corresponding to the protected site reveals that it spans residues 68-80 in the amino acid sequence of the enzyme, with Lys 71 as the site of pyridoxylation. These results indicate that Lys 71 is at or near the binding pocket for the dNTP substrate

  12. Nucleotide selectivity defect and mutator phenotype conferred by a colon cancer-associated DNA polymerase δ mutation in human cells.

    Science.gov (United States)

    Mertz, T M; Baranovskiy, A G; Wang, J; Tahirov, T H; Shcherbakova, P V

    2017-08-01

    Mutations in the POLD1 and POLE genes encoding DNA polymerases δ (Polδ) and ɛ (Polɛ) cause hereditary colorectal cancer (CRC) and have been found in many sporadic colorectal and endometrial tumors. Much attention has been focused on POLE exonuclease domain mutations, which occur frequently in hypermutated DNA mismatch repair (MMR)-proficient tumors and appear to be responsible for the bulk of genomic instability in these tumors. In contrast, somatic POLD1 mutations are seen less frequently and typically occur in MMR-deficient tumors. Their functional significance is often unclear. Here we demonstrate that expression of the cancer-associated POLD1-R689W allele is strongly mutagenic in human cells. The mutation rate increased synergistically when the POLD1-R689W expression was combined with a MMR defect, indicating that the mutator effect of POLD1-R689W results from a high rate of replication errors. Purified human Polδ-R689W has normal exonuclease activity, but the nucleotide selectivity of the enzyme is severely impaired, providing a mechanistic explanation for the increased mutation rate in the POLD1-R689W-expressing cells. The vast majority of mutations induced by the POLD1-R689W are GC→︀TA transversions and GC→︀AT transitions, with transversions showing a strong strand bias and a remarkable preference for polypurine/polypyrimidine sequences. The mutational specificity of the Polδ variant matches that of the hypermutated CRC cell line, HCT15, in which this variant was first identified. The results provide compelling evidence for the pathogenic role of the POLD1-R689W mutation in the development of the human tumor and emphasize the need to experimentally determine the significance of Polδ variants present in sporadic tumors.

  13. Mechanism of Error-Free DNA Replication Past Lucidin-Derived DNA Damage by Human DNA Polymerase κ.

    Science.gov (United States)

    Yockey, Oliver P; Jha, Vikash; Ghodke, Pratibha P; Xu, Tianzuo; Xu, Wenyan; Ling, Hong; Pradeepkumar, P I; Zhao, Linlin

    2017-11-20

    DNA damage impinges on genetic information flow and has significant implications in human disease and aging. Lucidin-3-O-primeveroside (LuP) is an anthraquinone derivative present in madder root, which has been used as a coloring agent and food additive. LuP can be metabolically converted to genotoxic compound lucidin, which subsequently forms lucidin-specific N 2 -2'-deoxyguanosine (N 2 -dG) and N 6 -2'-deoxyadenosine (N 6 -dA) DNA adducts. Lucidin is mutagenic and carcinogenic in rodents but has low carcinogenic risks in humans. To understand the molecular mechanism of low carcinogenicity of lucidin in humans, we performed DNA replication assays using site-specifically modified oligodeoxynucleotides containing a structural analogue (LdG) of lucidin-N 2 -dG DNA adduct and determined the crystal structures of DNA polymerase (pol) κ in complex with LdG-bearing DNA and an incoming nucleotide. We examined four human pols (pol η, pol ι, pol κ, and Rev1) in their efficiency and accuracy during DNA replication with LdG; these pols are key players in translesion DNA synthesis. Our results demonstrate that pol κ efficiently and accurately replicates past the LdG adduct, whereas DNA replication by pol η, pol ι is compromised to different extents. Rev1 retains its ability to incorporate dCTP opposite the lesion albeit with decreased efficiency. Two ternary crystal structures of pol κ illustrate that the LdG adduct is accommodated by pol κ at the enzyme active site during insertion and postlesion-extension steps. The unique open active site of pol κ allows the adducted DNA to adopt a standard B-form for accurate DNA replication. Collectively, these biochemical and structural data provide mechanistic insights into the low carcinogenic risk of lucidin in humans.

  14. The role of the PHP domain associated with DNA polymerase X from Thermus thermophilus HB8 in base excision repair.

    Science.gov (United States)

    Nakane, Shuhei; Nakagawa, Noriko; Kuramitsu, Seiki; Masui, Ryoji

    2012-11-01

    Base excision repair (BER) is one of the most commonly used DNA repair pathways involved in genome stability. X-family DNA polymerases (PolXs) play critical roles in BER, especially in filling single-nucleotide gaps. In addition to a polymerase core domain, bacterial PolXs have a polymerase and histidinol phosphatase (PHP) domain with phosphoesterase activity which is also required for BER. However, the role of the PHP domain of PolX in bacterial BER remains unresolved. We found that the PHP domain of Thermus thermophilus HB8 PolX (ttPolX) functions as two types of phosphoesterase in BER, including a 3'-phosphatase and an apurinic/apyrimidinic (AP) endonuclease. Experiments using T. thermophilus HB8 cell lysates revealed that the majority of the 3'-phosphatase and AP endonuclease activities are attributable to the another phosphoesterase in T. thermophilus HB8, endonuclease IV (ttEndoIV). However, ttPolX possesses significant 3'-phosphatase activity in ΔttendoIV cell lysate, indicating possible complementation. Our experiments also reveal that there are only two enzymes that display the 3'-phosphatase activity in the T. thermophilus HB8 cell, ttPolX and ttEndoIV. Furthermore, phenotypic analysis of ΔttpolX, ΔttendoIV, and ΔttpolX/ΔttendoIV using hydrogen peroxide and sodium nitrite supports the hypothesis that ttPolX functions as a backup for ttEndoIV in BER. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. DNA polymerases eta and kappa exchange with the polymerase delta holoenzyme to complete common fragile site synthesis.

    Science.gov (United States)

    Barnes, Ryan P; Hile, Suzanne E; Lee, Marietta Y; Eckert, Kristin A

    2017-09-01

    Common fragile sites (CFSs) are inherently unstable genomic loci that are recurrently altered in human tumor cells. Despite their instability, CFS are ubiquitous throughout the human genome and associated with large tumor suppressor genes or oncogenes. CFSs are enriched with repetitive DNA sequences, one feature postulated to explain why these loci are inherently difficult to replicate, and sensitive to replication stress. We have shown that specialized DNA polymerases (Pols) η and κ replicate CFS-derived sequences more efficiently than the replicative Pol δ. However, we lacked an understanding of how these enzymes cooperate to ensure efficient CFS replication. Here, we designed a model of lagging strand replication with RFC loaded PCNA that allows for maximal activity of the four-subunit human Pol δ holoenzyme, Pol η, and Pol κ in polymerase mixing assays. We discovered that Pol η and κ are both able to exchange with Pol δ stalled at repetitive CFS sequences, enhancing Normalized Replication Efficiency. We used this model to test the impact of PCNA mono-ubiquitination on polymerase exchange, and found no change in polymerase cooperativity in CFS replication compared with unmodified PCNA. Finally, we modeled replication stress in vitro using aphidicolin and found that Pol δ holoenzyme synthesis was significantly inhibited in a dose-dependent manner, preventing any replication past the CFS. Importantly, Pol η and κ were still proficient in rescuing this stalled Pol δ synthesis, which may explain, in part, the CFS instability phenotype of aphidicolin-treated Pol η and Pol κ-deficient cells. In total, our data support a model wherein Pol δ stalling at CFSs allows for free exchange with a specialized polymerase that is not driven by PCNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Synergistic Effects of thein cisT251I and P587L Mitochondrial DNA Polymerase γ Disease Mutations.

    Science.gov (United States)

    DeBalsi, Karen L; Longley, Matthew J; Hoff, Kirsten E; Copeland, William C

    2017-03-10

    Human mitochondrial DNA (mtDNA) polymerase γ (Pol γ) is the only polymerase known to replicate the mitochondrial genome. The Pol γ holoenzyme consists of the p140 catalytic subunit (POLG) and the p55 homodimeric accessory subunit (POLG2), which enhances binding of Pol γ to DNA and promotes processivity of the holoenzyme. Mutations within POLG impede maintenance of mtDNA and cause mitochondrial diseases. Two common POLG mutations usually found in cis in patients primarily with progressive external ophthalmoplegia generate T251I and P587L amino acid substitutions. To determine whether T251I or P587L is the primary pathogenic allele or whether both substitutions are required to cause disease, we overproduced and purified WT, T251I, P587L, and T251I + P587L double variant forms of recombinant Pol γ. Biochemical characterization of these variants revealed impaired DNA binding affinity, reduced thermostability, diminished exonuclease activity, defective catalytic activity, and compromised DNA processivity, even in the presence of the p55 accessory subunit. However, physical association with p55 was unperturbed, suggesting intersubunit affinities similar to WT. Notably, although the single mutants were similarly impaired, a dramatic synergistic effect was found for the double mutant across all parameters. In conclusion, our analyses suggest that individually both T251I and P587L substitutions functionally impair Pol γ, with greater pathogenicity predicted for the single P587L variant. Combining T251I and P587L induces extreme thermal lability and leads to synergistic nucleotide and DNA binding defects, which severely impair catalytic activity and correlate with presentation of disease in patients. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Structural basis for the inefficient nucleotide incorporation opposite cisplatin-DNA lesion by human DNA polymerase β.

    Science.gov (United States)

    Koag, Myong-Chul; Lai, Lara; Lee, Seongmin

    2014-11-07

    Human DNA polymerase β (polβ) has been suggested to play a role in cisplatin resistance, especially in polβ-overexpressing cancer cells. Polβ has been shown to accurately albeit slowly bypass the cisplatin-1,2-d(GpG) (Pt-GG) intramolecular cross-link in vitro. Currently, the structural basis for the inefficient Pt-GG bypass mechanism of polβ is unknown. To gain structural insights into the mechanism, we determined two ternary structures of polβ incorporating dCTP opposite the templating Pt-GG lesion in the presence of the active site Mg(2+) or Mn(2+). The Mg(2+)-bound structure shows that the bulky Pt-GG adduct is accommodated in the polβ active site without any steric hindrance. In addition, both guanines of the Pt-GG lesion form Watson-Crick base pairing with the primer terminus dC and the incoming dCTP, providing the structural basis for the accurate bypass of the Pt-GG adduct by polβ. The Mn(2+)-bound structure shows that polβ adopts a catalytically suboptimal semiclosed conformation during the insertion of dCTP opposite the templating Pt-GG, explaining the inefficient replication across the Pt-GG lesion by polβ. Overall, our studies provide the first structural insights into the mechanism of the potential polβ-mediated cisplatin resistance. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Effects of Intermediates between Vitamins K2 and K3 on Mammalian DNA Polymerase Inhibition and Anti-Inflammatory Activity

    Directory of Open Access Journals (Sweden)

    Takeshi Azuma

    2011-02-01

    Full Text Available Previously, we reported that vitamin K3 (VK3, but not VK1 or VK2 (=MK-4, inhibits the activity of human DNA polymerase γ (pol γ. In this study, we chemically synthesized three intermediate compounds between VK2 and VK3, namely MK-3, MK-2 and MK-1, and investigated the inhibitory effects of all five compounds on the activity of mammalian pols. Among these compounds, MK-2 was the strongest inhibitor of mammalian pols α, κ and λ, which belong to the B, Y and X families of pols, respectively; whereas VK3 was the strongest inhibitor of human pol γ, an A-family pol. MK-2 potently inhibited the activity of all animal species of pol tested, and its inhibitory effect on pol λ activity was the strongest with an IC50 value of 24.6 μM. However, MK-2 did not affect the activity of plant or prokaryotic pols, or that of other DNA metabolic enzymes such as primase of pol α, RNA polymerase, polynucleotide kinase or deoxyribonuclease I. Because we previously found a positive relationship between pol λ inhibition and anti-inflammatory action, we examined whether these compounds could inhibit inflammatory responses. Among the five compounds tested, MK-2 caused the greatest reduction in 12-O-tetradecanoylphorbol-13-acetate (TPA-induced acute inflammation in mouse ear. In addition, in a cell culture system using mouse macrophages, MK-2 displayed the strongest suppression of the production of tumor necrosis factor (TNF-α induced by lipopolysaccharide (LPS. Moreover, MK-2 was found to inhibit the action of nuclear factor (NF-κB. In an in vivo mouse model of LPS-evoked acute inflammation, intraperitoneal injection of MK-2 in mice led to suppression of TNF-α production in serum. In conclusion, this study has identified VK2 and VK3 intermediates, such as MK-2, that are promising anti-inflammatory candidates.

  19. GCN5 protects vertebrate cells against UV-irradiation via controlling gene expression of DNA polymerase η.

    Science.gov (United States)

    Kikuchi, Hidehiko; Kuribayashi, Futoshi; Imajoh-Ohmi, Shinobu; Nishitoh, Hideki; Takami, Yasunari; Nakayama, Tatsuo

    2012-11-16

    By UV-irradiation, cells are subjected to DNA damage followed by mutation, cell death and/or carcinogenesis. DNA repair systems such as nucleotide excision repair (NER) and translesion DNA synthesis (TLS) protect cells against UV-irradiation. To understand the role of histone acetyltransferase GCN5 in regulation of DNA repair, we studied the sensitivity of GCN5-deficient DT40, GCN5(-/-), to various DNA-damaging agents including UV-irradiation, and effects of GCN5-deficiency on the expression of NER- and TLS-related genes. After UV-irradiation, cell death and DNA fragmentation of GCN5(-/-) were appreciably accelerated as compared with those of DT40. Interestingly, GCN5(-/-) showed a remarkable sensitivity to only UV-irradiation but not to other DNA-damaging agents tested. Semiquantitative RT-PCR showed that transcription of DNA polymerase η (POLH) gene whose deficiency is responsible for a variant form of xeroderma pigmentosum was drastically down-regulated in GCN5(-/-) (to ∼25%). In addition, ectopic expression of human POLH in GCN5(-/-) dramatically reversed the sensitivity to UV-irradiation of GCN5(-/-) to almost the same level of wild type DT40. Moreover, chromatin immunoprecipitation assay revealed that GCN5 binds to the chicken POLH gene 5'-flanking region that contains a typical CpG island and acetylates Lys-9 of histone H3, but not Lys-14 in vivo. These data suggest that GCN5 takes part in transcription regulation of POLH gene through alterations in the chromatin structure by direct interaction with its 5'-flanking region, and protects vertebrate cells against UV-induced DNA damage via controlling POLH gene expression.

  20. GCN5 Protects Vertebrate Cells against UV-irradiation via Controlling Gene Expression of DNA Polymerase η*

    Science.gov (United States)

    Kikuchi, Hidehiko; Kuribayashi, Futoshi; Imajoh-Ohmi, Shinobu; Nishitoh, Hideki; Takami, Yasunari; Nakayama, Tatsuo

    2012-01-01

    By UV-irradiation, cells are subjected to DNA damage followed by mutation, cell death and/or carcinogenesis. DNA repair systems such as nucleotide excision repair (NER) and translesion DNA synthesis (TLS) protect cells against UV-irradiation. To understand the role of histone acetyltransferase GCN5 in regulation of DNA repair, we studied the sensitivity of GCN5-deficient DT40, GCN5−/−, to various DNA-damaging agents including UV-irradiation, and effects of GCN5-deficiency on the expression of NER- and TLS-related genes. After UV-irradiation, cell death and DNA fragmentation of GCN5−/− were appreciably accelerated as compared with those of DT40. Interestingly, GCN5−/− showed a remarkable sensitivity to only UV-irradiation but not to other DNA-damaging agents tested. Semiquantitative RT-PCR showed that transcription of DNA polymerase η (POLH) gene whose deficiency is responsible for a variant form of xeroderma pigmentosum was drastically down-regulated in GCN5−/− (to ∼25%). In addition, ectopic expression of human POLH in GCN5−/− dramatically reversed the sensitivity to UV-irradiation of GCN5−/− to almost the same level of wild type DT40. Moreover, chromatin immunoprecipitation assay revealed that GCN5 binds to the chicken POLH gene 5′-flanking region that contains a typical CpG island and acetylates Lys-9 of histone H3, but not Lys-14 in vivo. These data suggest that GCN5 takes part in transcription regulation of POLH gene through alterations in the chromatin structure by direct interaction with its 5′-flanking region, and protects vertebrate cells against UV-induced DNA damage via controlling POLH gene expression. PMID:23033487

  1. Colon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity.

    Science.gov (United States)

    Mertz, Tony M; Sharma, Sushma; Chabes, Andrei; Shcherbakova, Polina V

    2015-05-12

    Defects in DNA polymerases δ (Polδ) and ε (Polε) cause hereditary colorectal cancer and have been implicated in the etiology of some sporadic colorectal and endometrial tumors. We previously reported that the yeast pol3-R696W allele mimicking a human cancer-associated variant, POLD1-R689W, causes a catastrophic increase in spontaneous mutagenesis. Here, we describe the mechanism of this extraordinary mutator effect. We found that the mutation rate increased synergistically when the R696W mutation was combined with defects in Polδ proofreading or mismatch repair, indicating that pathways correcting DNA replication errors are not compromised in pol3-R696W mutants. DNA synthesis by purified Polδ-R696W was error-prone, but not to the extent that could account for the unprecedented mutator phenotype of pol3-R696W strains. In a search for cellular factors that augment the mutagenic potential of Polδ-R696W, we discovered that pol3-R696W causes S-phase checkpoint-dependent elevation of dNTP pools. Abrogating this elevation by strategic mutations in dNTP metabolism genes eliminated the mutator effect of pol3-R696W, whereas restoration of high intracellular dNTP levels restored the mutator phenotype. Further, the use of dNTP concentrations present in pol3-R696W cells for in vitro DNA synthesis greatly decreased the fidelity of Polδ-R696W and produced a mutation spectrum strikingly similar to the spectrum observed in vivo. The results support a model in which (i) faulty synthesis by Polδ-R696W leads to a checkpoint-dependent increase in dNTP levels and (ii) this increase mediates the hypermutator effect of Polδ-R696W by facilitating the extension of mismatched primer termini it creates and by promoting further errors that continue to fuel the mutagenic pathway.

  2. Conserved interaction of Ctf18-RFC with DNA polymerase ε is critical for maintenance of genome stability in Saccharomyces cerevisiae.

    Science.gov (United States)

    Okimoto, Hiroko; Tanaka, Seiji; Araki, Hiroyuki; Ohashi, Eiji; Tsurimoto, Toshiki

    2016-05-01

    Human Ctf18-RFC, a PCNA loader complex, interacts with DNA polymerase ε (Polε) through a structure formed by the Ctf18, Dcc1 and Ctf8 subunits. The C-terminal stretch of Ctf18, which is highly conserved from yeast to human, is necessary to form the Polε-capturing structure. We found that in the budding yeast Saccharomyces cerevisiae, Ctf18, Dcc1 and Ctf8 formed the same structure through the conserved C-terminus and interacted specifically with Polε. Thus, the specific interaction of Ctf18-RFC with Polε is a conserved feature between these proteins. A C-terminal deletion mutant of Ctf18 (ctf18(ΔC) ) exhibited the same high sensitivity to hydroxyurea as the complete deletion strain (ctf18Δ) or ATPase-deficient mutant (ctf18(K189A) ), but was somewhat less sensitive to methyl methanesulfonate than either of them. These phenotypes were also observed in dcc1Δ and ctf8Δ, predicted to be deficient in the interaction with Polε. Furthermore, both plasmid loss and gross chromosomal rearrangement (GCR) rates were increased in ctf18(ΔC) cells to the same extent as in ctf18Δ cells. These results indicate that the Ctf18-RFC/Polε interaction plays a crucial role in maintaining genome stability in budding yeast, probably through recruitment of this PCNA loader to the replication fork. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  3. Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding.

    Science.gov (United States)

    Bailey, Michael F; Van der Schans, Edwin J C; Millar, David P

    2007-07-10

    Upon associating with a proofreading polymerase, the nascent 3' end of a DNA primer/template has two possible fates. Depending upon its suitability as a substrate for template-directed extension or postsynthetic repair, it will bind either to the 5'-3' polymerase active site, yielding a polymerizing complex, or to the 3'-5' exonuclease site, yielding an editing complex. In this investigation, we use a combination of biochemical and biophysical techniques to probe the stoichiometry, thermodynamic, and kinetic stability of the polymerizing and editing complexes. We use the Klenow fragment of Escherichia coli DNA polymerase I (KF) as a model proofreading polymerase and oligodeoxyribonucleotide primer/templates as model DNA substrates. Polymerizing complexes are produced by mixing KF with correctly base paired (matched) primer/templates, whereas editing complexes are produced by mixing KF with multiply mismatched primer/templates. Electrophoretic mobility shift titrations carried out with matched and multiply mismatched primer/templates give rise to markedly different electrophoretic patterns. In the case of the matched primer/template, the KF.DNA complex is represented by a slow moving band. However, in the case of the multiply mismatched primer/template, the complex is predominantly represented by a fast moving band. Analytical ultracentrifugation measurements indicate that the fast and slow moving bands correspond to 1:1 and 2:1 KF.DNA complexes, respectively. Fluorescence anisotropy titrations reveal that KF binds with a higher degree of cooperativity to the matched primer/template. Taken together, these results indicate that KF is able to dimerize on a DNA primer/template and that dimerization is favored when the first molecule is bound in the polymerizing mode, but disfavored when it is bound in the editing mode. We suggest that self-association of the polymerase may play an important and as yet unexplored role in coordinating high-fidelity DNA replication.

  4. Modulation of DNA polymerase beta-dependent base excision repair in cultured human cells after low dose exposure to arsenite

    International Nuclear Information System (INIS)

    Sykora, Peter; Snow, Elizabeth T.

    2008-01-01

    Base excision repair (BER) is crucial for development and for the repair of endogenous DNA damage. However, unlike nucleotide excision repair, the regulation of BER is not well understood. Arsenic, a well-established human carcinogen, is known to produce oxidative DNA damage, which is repaired primarily by BER, whilst high doses of arsenic can also inhibit DNA repair. However, the mechanism of repair inhibition by arsenic and the steps inhibited are not well defined. To address this question we have investigated the regulation of DNA polymerase β (Pol β) and AP endonuclease (APE1), in response to low, physiologically relevant doses of arsenic. GM847 lung fibroblasts and HaCaT keratinocytes were exposed to sodium arsenite, As(III), and mRNA, protein levels and BER activity were assessed. Both Pol β and APE1 mRNA exhibited significant dose-dependant down regulation at doses of As(III) above 1 μM. However, at lower doses Pol β mRNA and protein levels, and consequently, BER activity were significantly increased. In contrast, APE1 protein levels were only marginally increased by low doses of As(III) and there was no correlation between APE1 and overall BER activity. Enzyme supplementation of nuclear extracts confirmed that Pol β was rate limiting. These changes in BER correlated with overall protection against sunlight UV-induced toxicity at low doses of As(III) and produced synergistic toxicity at high doses. The results provide evidence that changes in BER due to low doses of arsenic could contribute to a non-linear, threshold dose response for arsenic carcinogenesis

  5. Modulation of DNA polymerase beta-dependent base excision repair in cultured human cells after low dose exposure to arsenite.

    Science.gov (United States)

    Sykora, Peter; Snow, Elizabeth T

    2008-05-01

    Base excision repair (BER) is crucial for development and for the repair of endogenous DNA damage. However, unlike nucleotide excision repair, the regulation of BER is not well understood. Arsenic, a well-established human carcinogen, is known to produce oxidative DNA damage, which is repaired primarily by BER, whilst high doses of arsenic can also inhibit DNA repair. However, the mechanism of repair inhibition by arsenic and the steps inhibited are not well defined. To address this question we have investigated the regulation of DNA polymerase beta (Pol beta) and AP endonuclease (APE1), in response to low, physiologically relevant doses of arsenic. GM847 lung fibroblasts and HaCaT keratinocytes were exposed to sodium arsenite, As(III), and mRNA, protein levels and BER activity were assessed. Both Pol beta and APE1 mRNA exhibited significant dose-dependant down regulation at doses of As(III) above 1 microM. However, at lower doses Pol beta mRNA and protein levels, and consequently, BER activity were significantly increased. In contrast, APE1 protein levels were only marginally increased by low doses of As(III) and there was no correlation between APE1 and overall BER activity. Enzyme supplementation of nuclear extracts confirmed that Pol beta was rate limiting. These changes in BER correlated with overall protection against sunlight UV-induced toxicity at low doses of As(III) and produced synergistic toxicity at high doses. The results provide evidence that changes in BER due to low doses of arsenic could contribute to a non-linear, threshold dose response for arsenic carcinogenesis.

  6. Distinct co-evolution patterns of genes associated to DNA polymerase III DnaE and PolC

    Directory of Open Access Journals (Sweden)

    Engelen Stefan

    2012-02-01

    Full Text Available Abstract Background Bacterial genomes displaying a strong bias between the leading and the lagging strand of DNA replication encode two DNA polymerases III, DnaE and PolC, rather than a single one. Replication is a highly unsymmetrical process, and the presence of two polymerases is therefore not unexpected. Using comparative genomics, we explored whether other processes have evolved in parallel with each polymerase. Results Extending previous in silico heuristics for the analysis of gene co-evolution, we analyzed the function of genes clustering with dnaE and polC. Clusters were highly informative. DnaE co-evolves with the ribosome, the transcription machinery, the core of intermediary metabolism enzymes. It is also connected to the energy-saving enzyme necessary for RNA degradation, polynucleotide phosphorylase. Most of the proteins of this co-evolving set belong to the persistent set in bacterial proteomes, that is fairly ubiquitously distributed. In contrast, PolC co-evolves with RNA degradation enzymes that are present only in the A+T-rich Firmicutes clade, suggesting at least two origins for the degradosome. Conclusion DNA replication involves two machineries, DnaE and PolC. DnaE co-evolves with the core functions of bacterial life. In contrast PolC co-evolves with a set of RNA degradation enzymes that does not derive from the degradosome identified in gamma-Proteobacteria. This suggests that at least two independent RNA degradation pathways existed in the progenote community at the end of the RNA genome world.

  7. Docking of anti-HIV-1 oxoquinoline-acylhydrazone derivatives as potential HSV-1 DNA polymerase inhibitors

    Science.gov (United States)

    Yoneda, Julliane Diniz; Albuquerque, Magaly Girão; Leal, Kátia Zaccur; Santos, Fernanda da Costa; Batalha, Pedro Netto; Brozeguini, Leonardo; Seidl, Peter R.; de Alencastro, Ricardo Bicca; Cunha, Anna Cláudia; de Souza, Maria Cecília B. V.; Ferreira, Vitor F.; Giongo, Viveca A.; Cirne-Santos, Cláudio; Paixão, Izabel C. P.

    2014-09-01

    Although there are many antiviral drugs available for the treatment of herpes simplex virus (HSV) infections, still the synthesis of new anti-HSV candidates is an important strategy to be pursued, due to the emergency of resistant HSV strains mainly in human immunodeficiency virus (HIV) co-infected patients. Some 1,4-dihydro-4-oxoquinolines, such as PNU-183792 (1), show a broad spectrum antiviral activity against human herpes viruses, inhibiting the viral DNA polymerase (POL) without affecting the human POLs. Thus, on an ongoing antiviral research project, our group has synthesized ribonucleosides containing the 1,4-dihydro-4-oxoquinoline (quinolone) heterocyclic moiety, such as the 6-Cl derivative (2), which is a dual antiviral agent (HSV-1 and HIV-1). Molecular dynamics simulations of the complexes of 1 and 2 with the HSV-1 POL suggest that structural modifications of 2 should increase its experimental anti-HSV-1 activity, since its ribosyl and carboxyl groups are highly hydrophilic to interact with a hydrophobic pocket of this enzyme. Therefore, in this work, comparative molecular docking simulations of 1 and three new synthesized oxoquinoline-acylhydrazone HIV-1 inhibitors (3-5), which do not contain those hydrophilic groups, were carried out, in order to access these modifications in the proposition of new potential anti-HSV-1 agents, but maintaining the anti-HIV-1 activity. Among the docked compounds, the oxoquinoline-acylhydrazone 3 is the best candidate for an anti-HSV-1 agent, and, in addition, it showed anti-HIV-1 activity (EC50 = 3.4 ± 0.3 μM). Compounds 2 and 3 were used as templates in the design of four new oxoquinoline-acylhydrazones (6-9) as potential anti-HSV-1 agents to increase the antiviral activity of 2. Among the docked compounds, oxoquinoline-acylhydrazone 7 was selected as the best candidate for further development of dual anti-HIV/HSV activity.

  8. Crystal structure of the DNA polymerase III β subunit (β-clamp) from the extremophile Deinococcus radiodurans.

    Science.gov (United States)

    Niiranen, Laila; Lian, Kjersti; Johnson, Kenneth A; Moe, Elin

    2015-02-27

    Deinococcus radiodurans is an extremely radiation and desiccation resistant bacterium which can tolerate radiation doses up to 5,000 Grays without losing viability. We are studying the role of DNA repair and replication proteins for this unusual phenotype by a structural biology approach. The DNA polymerase III β subunit (β-clamp) acts as a sliding clamp on DNA, promoting the binding and processivity of many DNA-acting proteins, and here we report the crystal structure of D. radiodurans β-clamp (Drβ-clamp) at 2.0 Å resolution. The sequence verification process revealed that at the time of the study the gene encoding Drβ-clamp was wrongly annotated in the genome database, encoding a protein of 393 instead of 362 amino acids. The short protein was successfully expressed, purified and used for crystallisation purposes in complex with Cy5-labeled DNA. The structure, which was obtained from blue crystals, shows a typical ring-shaped bacterial β-clamp formed of two monomers, each with three domains of identical topology, but with no visible DNA in electron density. A visualisation of the electrostatic surface potential reveals a highly negatively charged outer surface while the inner surface and the dimer forming interface have a more even charge distribution. The structure of Drβ-clamp was determined to 2.0 Å resolution and shows an evenly distributed electrostatic surface charge on the DNA interacting side. We hypothesise that this charge distribution may facilitate efficient movement on encircled DNA and help ensure efficient DNA metabolism in D. radiodurans upon exposure to high doses of ionizing irradiation or desiccation.

  9. Field expansion of DNA polymerase chain reaction for early infant diagnosis of HIV-1: The Ethiopian experience

    Directory of Open Access Journals (Sweden)

    Peter Fonjungo

    2013-05-01

    Full Text Available Background: Early diagnosis of infants infected with HIV (EID and early initiation of treatment significantly reduces the rate of disease progression and mortality. One of the challengesto identification of HIV-1-infected infants is availability and/or access to quality molecular laboratory facilities which perform molecular virologic assays suitable for accurate identificationof the HIV status of infants. Method: We conducted a joint site assessment and designed laboratories for the expansion of DNA polymerase chain reaction (PCR testing based on dried blood spot (DBS for EID insix regions of Ethiopia. Training of appropriate laboratory technologists and development of required documentation including standard operating procedures (SOPs was carried out. The impact of the expansion of EID laboratories was assessed by the number of tests performed as well as the turn-around time. Results: DNA PCR for EID was introduced in 2008 in six regions. From April 2006 to April 2008, a total of 2848 infants had been tested centrally at the Ethiopian Health and Nutrition Research Institute (EHNRI in Addis Ababa, and which was then the only laboratory with the capability to perform EID; 546 (19.2% of the samples were positive. By November 2010, EHNRI and the six laboratories had tested an additional 16 985 HIV-exposed infants, of which 1915 (11.3% were positive. The median turn-around time for test results was 14 days (range 14−21 days. Conclusion: Expansion of HIV DNA PCR testing facilities that can provide quality and reliable results is feasible in resource-limited settings. Regular supervision and monitoring for quality assurance of these laboratories is essential to maintain accuracy of testing.

  10. Development of cleaved amplified polymorphic sequence markers and a CAPS-based genetic linkage map in watermelon (Citrullus lanatus [Thunb.] Matsum. and Nakai) constructed using whole-genome re-sequencing data.

    Science.gov (United States)

    Liu, Shi; Gao, Peng; Zhu, Qianglong; Luan, Feishi; Davis, Angela R; Wang, Xiaolu

    2016-03-01

    Cleaved amplified polymorphic sequence (CAPS) markers are useful tools for detecting single nucleotide polymorphisms (SNPs). This study detected and converted SNP sites into CAPS markers based on high-throughput re-sequencing data in watermelon, for linkage map construction and quantitative trait locus (QTL) analysis. Two inbred lines, Cream of Saskatchewan (COS) and LSW-177 had been re-sequenced and analyzed by Perl self-compiled script for CAPS marker development. 88.7% and 78.5% of the assembled sequences of the two parental materials could map to the reference watermelon genome, respectively. Comparative assembled genome data analysis provided 225,693 and 19,268 SNPs and indels between the two materials. 532 pairs of CAPS markers were designed with 16 restriction enzymes, among which 271 pairs of primers gave distinct bands of the expected length and polymorphic bands, via PCR and enzyme digestion, with a polymorphic rate of 50.94%. Using the new CAPS markers, an initial CAPS-based genetic linkage map was constructed with the F2 population, spanning 1836.51 cM with 11 linkage groups and 301 markers. 12 QTLs were detected related to fruit flesh color, length, width, shape index, and brix content. These newly CAPS markers will be a valuable resource for breeding programs and genetic studies of watermelon.

  11. Yield of DNA strand breaks and their relationship to DNA polymerase I-dependent repair synthesis and ligation following x-ray exposure of toluene-treated Escherichia coli

    International Nuclear Information System (INIS)

    Billen, D.

    1981-01-01

    In Escherichia coli made permeable to nucleotides by toluene treatment, a DNA polymerase I-directed repair synthesis is observed. This is an exaggerated repair synthesis which can be abruptly terminated by the addition of the DNA ligase cofactor, nicotinamide adenine dinucleotide. This communication describes experiments which bear on the relationship between measurable strand breaks, DNA polymerase I-directed, exaggerated repair synthesis, and strand-break repair

  12. Polymorphic patterns of the merozoite surface protein-3β in Korean isolates of Plasmodium vivax.

    Science.gov (United States)

    Kang, Jung-Mi; Ju, Hye-Lim; Cho, Pyo Yun; Moon, Sung-Ung; Ahn, Seong Kyu; Sohn, Woon-Mok; Lee, Hyeong-Woo; Kim, Tong-Soo; Na, Byoung-Kuk

    2014-03-17

    The merozoite surface protein-3β of Plasmodium vivax (PvMSP-3β) is one of the candidate antigens for blood stage malaria vaccine development. The polymorphisms in PvMSP-3β have been reported in certain P. vivax isolates. However, the diversity of PvMSP-3β throughout its global distribution has not been well understood. In this study, the genetic diversity and the effects of natural selection in PvMSP-3β among P. vivax Korean isolates were analysed. Blood samples were collected from 95 patients with vivax malaria in Korea. The region flanking full-length PvMSP-3β was amplified by polymerase chain reaction and cloned into a TA cloning vector. The PvMSP-3β sequence of each isolate was determined and the polymorphic characteristics and effects of natural selection were analysed using the DNASTAR, MEGA4, and DnaSP programs. Five different subtypes of PvMSP-3β were identified based on single nucleotide polymorphisms (SNPs), insertions, and deletions. Although a high level of sequence diversity was observed in the PvMSP-3β gene, the coiled-coil tertiary structure of the PvMSP-3β protein was well conserved in all of the sequences. The PvMSP-3β of Korean isolates is under natural selection. DNA polymerase slippage and intragenic recombination likely contributed to PvMSP-3β diversity in Korean P. vivax isolates. The PvMSP-3β of Korean P. vivax isolates displayed polymorphisms, with SNPs, insertions and deletions scattered throughout of the gene. These results of parasite heterogeneity are relevant to the development of a PvMSP-3β based vaccine against P. vivax and the implementation of malaria control programmes in Korea.

  13. DNA polymerase β decrement triggers death of olfactory bulb cells and impairs olfaction in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Misiak, Magdalena; Vergara Greeno, Rebeca; Baptiste, Beverly A; Sykora, Peter; Liu, Dong; Cordonnier, Stephanie; Fang, Evandro F; Croteau, Deborah L; Mattson, Mark P; Bohr, Vilhelm A

    2017-02-01

    Alzheimer's disease (AD) involves the progressive degeneration of neurons critical for learning and memory. In addition, patients with AD typically exhibit impaired olfaction associated with neuronal degeneration in the olfactory bulb (OB). Because DNA base excision repair (BER) is reduced in brain cells during normal aging and AD, we determined whether inefficient BER due to reduced DNA polymerase