WorldWideScience

Sample records for amplification

  1. Hybrid Chirped Pulse Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, I; Barty, C P J

    2002-05-07

    We present a novel chirped pulse amplification method which combines optical parametric amplification and laser amplification. We have demonstrated this hybrid CPA concept with a combination of beta-barium borate and Ti:sapphire. High-efficiency, multi-terawatt compatible amplification is achieved without gain narrowing and without electro-optic modulators using a simple commercial pump laser.

  2. The Seneca Amplification Construction

    Directory of Open Access Journals (Sweden)

    Wallace Chafe

    2012-01-01

    Full Text Available The polysynthetic morphology of the Northern Iroquoian languages presents a challenge to studies of clause combining. The discussion here focuses on a Seneca construction that may appear within a single clause but may also straddle clause boundaries. It amplifies the information provided by a referent, here called the trigger, that is introduced by the pronominal prefix within a verb or occasionally in some other way. The particle neh signals that further information about that referent will follow. This construction is found at four levels of syntactic complexity. At the first level the trigger and its amplification occur within the same prosodic phrase and the amplification is a noun. At the second level the amplification occurs in a separate prosodic phrase but remains a noun. At the third level the amplification exhibits verb morphology but has been lexicalized with a nominal function. At the fourth level the amplification functions as a full clause and neh serves as a marker of clause combining. Several varieties of amplification are discussed, as are cases in which the speaker judges that no amplification is needed. It is suggested that the typologically similar Caddo language illustrates a situation in which this construction could never arise, simply because Caddo verbs lack the pronominal element that triggers the construction in Seneca.

  3. Early amplification options.

    Science.gov (United States)

    Gabbard, Sandra Abbott; Schryer, Jennifer

    2003-01-01

    Children with permanent hearing loss have been remediated with hearing amplification devices for decades. The influx of young infants identified with hearing loss through successful newborn hearing screening programs has established a need for amplification resources for infants within the first six months of life. For the approximately two of every 1000 infants born who are identified with bilateral hearing loss [Mehl and Thomson, 1998, Pediatrics 101, p. e4], the use of amplification is commonly the first step in treating the sequella of their loss. The use of hearing aids, combined with early intervention, has been shown to significantly improve the speech and language skills of young children with hearing loss [Yoshinaga-Itano, 2000, Seminars in Hearing 21, p. 309]. Speech and language delays have contributed to compromised academic performance of school aged children with hearing loss [Johnson et al., 1997, Educational Audiology Handbook, Singular Publishing, San Diego]. Most hard-of-hearing and deaf children use hearing aids and other assistive listening devices every day throughout their lifetime and the life expectancy of a hearing aid is only five to eight years. The current challenge for pediatric audiologists is selecting and evaluating the available amplification to provide the best options for children and their families. Amplification technology has seen an explosion in growth the past few years and the options continue to expand rapidly. This article examines currently available amplification technology and reviews the selection criteria that may be used for infants and young children. Issues such as style, type, amplification features, signal processing strategies, and verification and validation tools are also discussed. PMID:14648816

  4. Quantum Feedback Amplification

    Science.gov (United States)

    Yamamoto, Naoki

    2016-04-01

    Quantum amplification is essential for various quantum technologies such as communication and weak-signal detection. However, its practical use is still limited due to inevitable device fragility that brings about distortion in the output signal or state. This paper presents a general theory that solves this critical issue. The key idea is simple and easy to implement: just a passive feedback of the amplifier's auxiliary mode, which is usually thrown away. In fact, this scheme makes the controlled amplifier significantly robust, and furthermore it realizes the minimum-noise amplification even under realistic imperfections. Hence, the presented theory enables the quantum amplification to be implemented at a practical level. Also, a nondegenerate parametric amplifier subjected to a special detuning is proposed to show that, additionally, it has a broadband nature.

  5. Flux amplification in SSPX

    Science.gov (United States)

    Lodestro, Lynda; Hooper, E. B.; Jayakumar, R. J.; Pearlstein, L. D.; Wood, R. D.; McLean, H. S.

    2007-11-01

    Flux amplification---the ratio of poloidal flux enclosed between the magnetic and geometric axes to that between the separatrix and the geometric axis---is a key measure of efficiency for edge-current-driven spheromaks. With the new, modular capacitor bank, permitting flexible programming of the gun current, studies of flux amplification under various drive scenarios can be performed. Analysis of recent results of pulsed operation with the new bank finds an efficiency ˜ 0.2, in selected shots, of the conversion of gun energy to confined magnetic energy during the pulses, and suggests a route toward sustained efficiency at 0.2. Results of experiments, a model calculation of field build-up, and NIMROD simulations exploring this newly suggested scenario will be presented.

  6. Coherent white light amplification

    Science.gov (United States)

    Jovanovic, Igor; Barty, Christopher P.

    2004-05-25

    A system for coherent simultaneous amplification of a broad spectral range of light that includes an optical parametric amplifier and a source of a seed pulse is described. A first angular dispersive element is operatively connected to the source of a seed pulse. A first imaging telescope is operatively connected to the first angular dispersive element and operatively connected to the optical parametric amplifier. A source of a pump pulse is operatively connected to the optical parametric amplifier. A second imaging telescope is operatively connected to the optical parametric amplifier and a second angular dispersive element is operatively connected to the second imaging telescope.

  7. Efficient Audio Power Amplification - Challenges

    DEFF Research Database (Denmark)

    Andersen, Michael Andreas E.

    2005-01-01

    For more than a decade efficient audio power amplification has evolved and today switch-mode audio power amplification in various forms are the state-of-the-art. The technical steps that lead to this evolution are described and in addition many of the challenges still to be faced and where extens...

  8. Efficient audio power amplification - challenges

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Michael A.E.

    2005-07-01

    For more than a decade efficient audio power amplification has evolved and today switch-mode audio power amplification in various forms are the state-of-the-art. The technical steps that lead to this evolution are described and in addition many of the challenges still to be faced and where extensive research and development are needed is covered. (au)

  9. Next generation Chirped Pulse Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nees, J.; Biswal, S.; Mourou, G. [Univ. Michigan, Center for Ultrafast Optical Science, Ann Arbor, MI (United States); Nishimura, Akihiko; Takuma, Hiroshi

    1998-03-01

    The limiting factors of Chirped Pulse Amplification (CPA) are discussed and experimental results of CPA in Yb:glass regenerative amplifier are given. Scaling of Yb:glass to the petawatt level is briefly discussed. (author)

  10. Optical chirped beam amplification and propagation

    Science.gov (United States)

    Barty, Christopher P.

    2004-10-12

    A short pulse laser system uses dispersive optics in a chirped-beam amplification architecture to produce high peak power pulses and high peak intensities without the potential for intensity dependent damage to downstream optical components after amplification.

  11. Double regenerative amplification of picosecond pulses

    Science.gov (United States)

    Bai, Zhen-ao; Chen, Li-yuan; Bai, Zhen-xu; Chen, Meng; Li, Gang

    2012-04-01

    An double Nd:YAG regenerative amplification picosecond pulse laser is demonstrated under the semiconductor saturable absorption mirror(SESAM) mode-locking technology and regenerative amplification technology, using BBO crystal as PC electro-optic crystal. The laser obtained is 20.71ps pulse width at 10 KHz repetition rate, and the energy power is up to 4W which is much larger than the system without pre-amplification. This result will lay a foundation for the following amplification.

  12. Comprehensive human genome amplification using multiple displacement amplification

    OpenAIRE

    Dean, Frank B.; Hosono, Seiyu; Fang, Linhua; Wu, Xiaohong; Faruqi, A. Fawad; Bray-Ward, Patricia; Zhenyu SUN; Zong, Qiuling; Du, Yuefen; Du, Jing; Driscoll, Mark; Song, Wanmin; Kingsmore, Stephen F.; Egholm, Michael; Lasken, Roger S.

    2002-01-01

    Fundamental to most genetic analysis is availability of genomic DNA of adequate quality and quantity. Because DNA yield from human samples is frequently limiting, much effort has been invested in developing methods for whole genome amplification (WGA) by random or degenerate oligonucleotide-primed PCR. However, existing WGA methods like degenerate oligonucleotide-primed PCR suffer from incomplete coverage and inadequate average DNA size. We describe a method, termed multi...

  13. Hybrid chirped pulse amplification system

    Science.gov (United States)

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  14. Spheromak Impedance and Current Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T K; Hua, D D; Stallard, B W

    2002-01-31

    It is shown that high current amplification can be achieved only by injecting helicity on the timescale for reconnection, {tau}{sub REC}, which determines the effective impedance of the spheromak. An approximate equation for current amplification is: dI{sub TOR}{sup 2}/dt {approx} I{sup 2}/{tau}{sub REC} - I{sub TOR}{sup 2}/{tau}{sub closed} where I is the gun current, I{sub TOR} is the spheromak toroidal current and {tau}{sub CLOSED} is the ohmic decay time of the spheromak. Achieving high current amplification, I{sub TOR} >> I, requires {tau}{sub REC} <<{tau}{sub CLOSED}. For resistive reconnection, this requires reconnection in a cold zone feeding helicity into a hot zone. Here we propose an impedance model based on these ideas in a form that can be implemented in the Corsica-based helicity transport code. The most important feature of the model is the possibility that {tau}{sub REC} actually increases as the spheromak temperature increases, perhaps accounting for the ''voltage sag'' observed in some experiments, and a tendency toward a constant ratio of field to current, B {proportional_to} I, or I{sub TOR} {approx} I. Program implications are discussed.

  15. Heralded amplification of photonic qubits.

    Science.gov (United States)

    Bruno, Natalia; Pini, Vittorio; Martin, Anthony; Verma, Varun B; Nam, Sae Woo; Mirin, Richard; Lita, Adriana; Marsili, Francesco; Korzh, Boris; Bussières, Félix; Sangouard, Nicolas; Zbinden, Hugo; Gisin, Nicolas; Thew, Rob

    2016-01-11

    We demonstrate postselection free heralded qubit amplification for Time-Bin qubits and single photon states in an all-fibre, telecom-wavelength, scheme that highlights the simplicity, stability and potential for fully integrated photonic solutions. Exploiting high-efficiency superconducting detectors, the gain, fidelity and the performance of the amplifier are studied as a function of loss. We also demonstrate the first heralded single photon amplifier with independent sources. This provides a significant advance towards demonstrating device-independent quantum key distribution as well as fundamental tests of quantum mechanics over extended distances. PMID:26832244

  16. Resonant primordial gravitational waves amplification

    Directory of Open Access Journals (Sweden)

    Chunshan Lin

    2016-01-01

    Full Text Available We propose a mechanism to evade the Lyth bound in models of inflation. We minimally extend the conventional single-field inflation model in general relativity (GR to a theory with non-vanishing graviton mass in the very early universe. The modification primarily affects the tensor perturbation, while the scalar and vector perturbations are the same as the ones in GR with a single scalar field at least at the level of linear perturbation theory. During the reheating stage, the graviton mass oscillates coherently and leads to resonant amplification of the primordial tensor perturbation. After reheating the graviton mass vanishes and we recover GR.

  17. Dynamics and Control of DNA Sequence Amplification

    CERN Document Server

    Marimuthu, Karthikeyan

    2014-01-01

    DNA amplification is the process of replication of a specified DNA sequence \\emph{in vitro} through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction (PCR) as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal tempe...

  18. Dynamics and control of DNA sequence amplification

    International Nuclear Information System (INIS)

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions

  19. Dynamics and control of DNA sequence amplification

    Energy Technology Data Exchange (ETDEWEB)

    Marimuthu, Karthikeyan [Department of Chemical Engineering and Center for Advanced Process Decision-Making, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Chakrabarti, Raj, E-mail: raj@pmc-group.com, E-mail: rajc@andrew.cmu.edu [Department of Chemical Engineering and Center for Advanced Process Decision-Making, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Division of Fundamental Research, PMC Advanced Technology, Mount Laurel, New Jersey 08054 (United States)

    2014-10-28

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.

  20. Risk Perception and Social Amplification

    International Nuclear Information System (INIS)

    This paper seeks to consider social amplification as it applies to risk perception. Perceptions of the magnitude of a risk are conditioned by issues such as the degree of uncertainty in probability and consequences, the nature of the consequences and the relative weightings placed on probability and consequences. Risk perceptions are also influenced by factors such as confidence in the operator of an industrial process, trust in the regulator and the perceived fairness of regulatory decision-making. Different people may hold different views about these issues and there may also be difficulties in communication. The paper identifies and discusses self-reinforcing mechanisms, which will be labelled 'lock-in' here. They appear to apply in many situations where social amplification is observed. Historically, the term 'lock-in' has been applied mainly in the technological context but, in this paper, four types of lock-in are identified, namely scientific/technological, economic, social and institutional lock-in. One type of lock-in tends to lead to the next and all are buttressed by people's general acceptance of the familiar, fear of the unknown and resistance to change. The regulator seeks to make decisions which achieve the common good rather than supporting or perpetuating any set of vested interests. In this regard the locked-in positions of stakeholders, whether organisations, interest groups, or individual members of the public, are obstacles and challenges. Existing methods of consultation are unsatisfactory in terms of achieving a proper and productive level of dialogue with stakeholders

  1. Tsunami Amplification due to Focusing

    Science.gov (United States)

    Moore, C. W.; Kanoglu, U.; Titov, V. V.; Aydin, B.; Spillane, M. C.; Synolakis, C. E.

    2012-12-01

    Tsunami runup measurements over the periphery of the Pacific Ocean after the devastating Great Japan tsunami of 11 March 2011 showed considerable variation in far-field and near-field impact. This variation of tsunami impact have been attributed to either directivity of the source or by local topographic effects. Directivity arguments alone, however, cannot explain the complexity of the radiated patterns in oceans with trenches and seamounts. Berry (2007, Proc. R. Soc. Lond. A 463, 3055-3071) discovered how such underwater features may concentrate tsunamis into cusped caustics and thus cause large local amplifications at specific focal points. Here, we examine focusing and local amplification, not by considering the effects of underwater diffractive lenses, but by considering the details of the dipole nature of the initial profile, and propose that certain regions of coastline are more at-risk, not simply because of directivity but because typical tsunami deformations create focal regions where abnormal tsunami wave height can be registered (Marchuk and Titov, 1989, Proc. IUGG/IOC International Tsunami Symposium, Novosibirsk, USSR). In this work, we present a new general analytical solution of the linear shallow-water wave equation for the propagation of a finite-crest-length source over a constant depth without any restriction on the initial profile. Unlike the analytical solution of Carrier and Yeh (2005, Comp. Mod. Eng. & Sci. 10(2), 113-121) which was restricted to initial conditions with Gaussian profiles and involved approximation, our solution is not only exact, but also general and allows the use of realistic initial waveform such as N-waves as defined by Tadepalli and Synolakis (1994, Proc. R. Soc. Lond. A 445, 99-112). We then verify our analytical solution for several typical wave profiles, both with the NOAA tsunami forecast model MOST (Titov and Synolakis, 1998, J. Waterw. Port Coast. Ocean Eng. 124(4), 157-171) which is validated and verified through

  2. Multiscale image contrast amplification (MUSICA)

    Science.gov (United States)

    Vuylsteke, Pieter; Schoeters, Emile P.

    1994-05-01

    This article presents a novel approach to the problem of detail contrast enhancement, based on multiresolution representation of the original image. The image is decomposed into a weighted sum of smooth, localized, 2D basis functions at multiple scales. Each transform coefficient represents the amount of local detail at some specific scale and at a specific position in the image. Detail contrast is enhanced by non-linear amplification of the transform coefficients. An inverse transform is then applied to the modified coefficients. This yields a uniformly contrast- enhanced image without artefacts. The MUSICA-algorithm is being applied routinely to computed radiography images of chest, skull, spine, shoulder, pelvis, extremities, and abdomen examinations, with excellent acceptance. It is useful for a wide range of applications in the medical, graphical, and industrial area.

  3. Mechanisms of Metal-Induced Centrosome Amplification

    OpenAIRE

    Holmes, Amie L.; Wise, John Pierce

    2010-01-01

    Exposure to toxic and carcinogenic metals is widespread; however, their mechanisms of action remain largely unknown. One potential mechanism for metal-induced carcinogenicity and toxicity is centrosome amplification. Here, we review the mechanisms for metal-induced centrosome amplification, including arsenic, chromium, mercury and nano-titanium dioxide.

  4. Risk Perception and Social Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.E. [Environment Agency (United Kingdom)

    2001-07-01

    This paper seeks to consider social amplification as it applies to risk perception. Perceptions of the magnitude of a risk are conditioned by issues such as the degree of uncertainty in probability and consequences, the nature of the consequences and the relative weightings placed on probability and consequences. Risk perceptions are also influenced by factors such as confidence in the operator of an industrial process, trust in the regulator and the perceived fairness of regulatory decision-making. Different people may hold different views about these issues and there may also be difficulties in communication. The paper identifies and discusses self-reinforcing mechanisms, which will be labelled 'lock-in' here. They appear to apply in many situations where social amplification is observed. Historically, the term 'lock-in' has been applied mainly in the technological context but, in this paper, four types of lock-in are identified, namely scientific/technological, economic, social and institutional lock-in. One type of lock-in tends to lead to the next and all are buttressed by people's general acceptance of the familiar, fear of the unknown and resistance to change. The regulator seeks to make decisions which achieve the common good rather than supporting or perpetuating any set of vested interests. In this regard the locked-in positions of stakeholders, whether organisations, interest groups, or individual members of the public, are obstacles and challenges. Existing methods of consultation are unsatisfactory in terms of achieving a proper and productive level of dialogue with stakeholders.

  5. Linking Arctic amplification and local feedbacks

    Science.gov (United States)

    Balcerak, Ernie

    2011-11-01

    Climate simulations show that as the Earth warms, the Arctic warms more than the average global warming. However, models differ on how much more the Arctic warms, and although scientists have proposed a variety of mechanisms to explain the Arctic warming amplification, there is no consensus on the main reasons for it. To shed light on this issue, Hwang et al. investigated the relationship between Arctic amplification and poleward energy transport and local Arctic feedbacks, such as changes in cloud cover or ice loss, across a group of models. The researchers noted that differences in atmospheric energy transport did not explain the ranges of polar amplification; rather, models with more amplification showed less energy transport into high latitudes. The authors found that decreasing energy transport is due to a coupled relationship between Arctic amplification and energy transport: Arctic amplification reduces the equator-to-pole temperature gradient, which strongly decreases energy transport. They suggest that this coupled relationship should be taken into account in studies of Arctic amplification. (Geophysical Research Letters, doi:10.1029/2011GL048546, 2011)

  6. Quantum Amplitude Amplification and Estimation

    CERN Document Server

    Brassard, G; Mosca, M; Tapp, A; Brassard, Gilles; Hoyer, Peter; Mosca, Michele; Tapp, Alain

    2000-01-01

    Consider a Boolean function $\\chi: X \\to \\{0,1\\}$ that partitions set $X$ between its good and bad elements, where $x$ is good if $\\chi(x)=1$ and bad otherwise. Consider also a quantum algorithm $\\mathcal A$ such that $A \\ket{0} = \\sum_{x\\in X} \\alpha_x \\ket{x}$ is a quantum superposition of the elements of $X$, and let $a$ denote the probability that a good element is produced if $A \\ket{0}$ is measured. If we repeat the process of running $A$, measuring the output, and using $\\chi$ to check the validity of the result, we shall expect to repeat $1/a$ times on the average before a solution is found. *Amplitude amplification* is a process that allows to find a good $x$ after an expected number of applications of $A$ and its inverse which is proportional to $1/\\sqrt{a}$, assuming algorithm $A$ makes no measurements. This is a generalization of Grover's searching algorithm in which $A$ was restricted to producing an equal superposition of all members of $X$ and we had a promise that a single $x$ existed such tha...

  7. Isothermal DNA amplification in vitro: the helicase-dependent amplification system.

    Science.gov (United States)

    Jeong, Yong-Joo; Park, Kkothanahreum; Kim, Dong-Eun

    2009-10-01

    Since the development of polymerase chain reaction, amplification of nucleic acids has emerged as an elemental tool for molecular biology, genomics, and biotechnology. Amplification methods often use temperature cycling to exponentially amplify nucleic acids; however, isothermal amplification methods have also been developed, which do not require heating the double-stranded nucleic acid to dissociate the synthesized products from templates. Among the several methods used for isothermal DNA amplification, the helicase-dependent amplification (HDA) is discussed in this review with an emphasis on the reconstituted DNA replication system. Since DNA helicase can unwind the double-stranded DNA without the need for heating, the HDA system provides a very useful tool to amplify DNA in vitro under isothermal conditions with a simplified reaction scheme. This review describes components and detailed aspects of current HDA systems using Escherichia coli UvrD helicase and T7 bacteriophage gp4 helicase with consideration of the processivity and efficiency of DNA amplification. PMID:19629390

  8. Raman amplification in optical communication systems

    DEFF Research Database (Denmark)

    Kjær, Rasmus

    2008-01-01

    Fiber Raman amplifiers are investigated with the purpose of identifying new applications and limitations for their use in optical communication systems. Three main topics are investigated, namely: New applications of dispersion compensating Raman amplifiers, the use Raman amplification to increase...

  9. Can Anomalous Amplification be Attained without Postselection?

    Science.gov (United States)

    Martínez-Rincón, Julián; Liu, Wei-Tao; Viza, Gerardo I.; Howell, John C.

    2016-03-01

    We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without discarding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected. A tunable phase controls the strength of the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We show that in the presence of technical noise the effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique.

  10. Can Anomalous Amplification be Attained Without Postselection?

    CERN Document Server

    Martínez-Rincón, Julián; Viza, Gerardo I; Howell, John C

    2015-01-01

    We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without the need of postselection, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected, and a phase controls the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. The effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique...

  11. Rolling circle amplification of metazoan mitochondrialgenomes

    Energy Technology Data Exchange (ETDEWEB)

    Simison, W. Brian; Lindberg, D.R.; Boore, J.L.

    2005-07-31

    Here we report the successful use of rolling circle amplification (RCA) for the amplification of complete metazoan mt genomes to make a product that is amenable to high-throughput genome sequencing techniques. The benefits of RCA over PCR are many and with further development and refinement of RCA, the sequencing of organellar genomics will require far less time and effort than current long PCR approaches.

  12. Onshore seismic amplifications due to bathymetric features

    Science.gov (United States)

    Rodríguez-Castellanos, A.; Carbajal-Romero, M.; Flores-Guzmán, N.; Olivera-Villaseñor, E.; Kryvko, A.

    2016-08-01

    We perform numerical calculations for onshore seismic amplifications, taking into consideration the effect of bathymetric features on the propagation of seismic movements. To this end, the boundary element method is applied. Boundary elements are employed to irradiate waves and, consequently, force densities can be obtained for each boundary element. From this assumption, Huygens’ principle is applied, and since the diffracted waves are built at the boundary from which they are radiated, this idea is equivalent to Somigliana’s representation theorem. The application of boundary conditions leads to a linear system being obtained (Fredholm integral equations). Several numerical models are analyzed, with the first one being used to verify the proposed formulation, and the others being used to estimate onshore seismic amplifications due to the presence of bathymetric features. The results obtained show that compressional waves (P-waves) generate onshore seismic amplifications that can vary from 1.2 to 5.2 times the amplitude of the incident wave. On the other hand, the shear waves (S-waves) can cause seismic amplifications of up to 4.0 times the incident wave. Furthermore, an important result is that in most cases the highest seismic amplifications from an offshore earthquake are located on the shoreline and not offshore, despite the seafloor configuration. Moreover, the influence of the incident angle of seismic waves on the seismic amplifications is highlighted.

  13. Heat induces gene amplification in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Bin, E-mail: yanbin@mercyhealth.com [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Mercy Cancer Center, Mercy Medical Center-North Iowa, Mason City, IA 50401 (United States); Ouyang, Ruoyun [Department of Respiratory Medicine, The Second Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410011 (China); Huang, Chenghui [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Department of Oncology, The Third Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410013 (China); Liu, Franklin [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Neill, Daniel [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Li, Chuanyuan [Dermatology, Duke University Medical Center, Durham, NC 27710 (United States); Dewhirst, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  14. Heat induces gene amplification in cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. ► Hyperthermia induces DNA double strand breaks. ► DNA double strand breaks are considered to be required for the initiation of gene amplification. ► The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 °C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) γH2AX immunostaining to detect γH2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 °C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 °C for 30 min induces DNA double strand breaks in HCT116 cells as shown by γH2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and telomere functions are denatured. To our knowledge, this is the first study to provide direct evidence of hyperthermia induced gene amplification.

  15. One New Method of Nucleic Acid Amplification-Loop-mediated Isothermal Amplification of DNA

    Institute of Scientific and Technical Information of China (English)

    Xue-en FANG; Jian LI; Qin CHEN

    2008-01-01

    Loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification method, which amplifies DNA with high specificity, sensitivity, rapidity and efficiency under isothermal conditions using a set of four specially designed primers and a Bst DNA polymerase with strand displacement activity. The basic principle, characteristics, development of LAMP and its applications are summarized in this article.

  16. Time varying arctic climate change amplification

    Energy Technology Data Exchange (ETDEWEB)

    Chylek, Petr [Los Alamos National Laboratory; Dubey, Manvendra K [Los Alamos National Laboratory; Lesins, Glen [DALLHOUSIE U; Wang, Muyin [NOAA/JISAO

    2009-01-01

    During the past 130 years the global mean surface air temperature has risen by about 0.75 K. Due to feedbacks -- including the snow/ice albedo feedback -- the warming in the Arctic is expected to proceed at a faster rate than the global average. Climate model simulations suggest that this Arctic amplification produces warming that is two to three times larger than the global mean. Understanding the Arctic amplification is essential for projections of future Arctic climate including sea ice extent and melting of the Greenland ice sheet. We use the temperature records from the Arctic stations to show that (a) the Arctic amplification is larger at latitudes above 700 N compared to those within 64-70oN belt, and that, surprisingly; (b) the ratio of the Arctic to global rate of temperature change is not constant but varies on the decadal timescale. This time dependence will affect future projections of climate changes in the Arctic.

  17. ESTIMATION OF AMPLIFICATION FACTOR IN EARTHQUAKE ENGINEERING

    Directory of Open Access Journals (Sweden)

    Nazarov Yuriy Pavlovich

    2015-03-01

    Full Text Available The authors are the developers of Odyssey Software (Eurosoft Co. for the analysis of seismological data and computing of seismic loads and their parameters. While communicating with the users of the software, the authors have revealed some uncertainty about both understanding of the term "amplification factor (AF" and calculation of the amplification factor using various methods. In this article, a simple example shows that the determination of the amplification factor as the ratio of the acceleration’s spectrum to the maximal acceleration is derived from the classical definition of AF in the form of the ratio of maximal dynamic displacement to the displacement by the action of static load. Deterministic and probabilistic ap-proaches for the calculating of the AF were discussed. There was an example of AFs calculation and their envelopes for translational and rotational components of seismic impact by using Odyssey Software.

  18. Amplification, Redundancy, and Quantum Chernoff Information

    Science.gov (United States)

    Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.

    2014-04-01

    Amplification was regarded, since the early days of quantum theory, as a mysterious ingredient that endows quantum microstates with macroscopic consequences, key to the "collapse of the wave packet," and a way to avoid embarrassing problems exemplified by Schrödinger's cat. Such a bridge between the quantum microworld and the classical world of our experience was postulated ad hoc in the Copenhagen interpretation. Quantum Darwinism views amplification as replication, in many copies, of the information about quantum states. We show that such amplification is a natural consequence of a broad class of models of decoherence, including the photon environment we use to obtain most of our information. This leads to objective reality via the presence of robust and widely accessible records of selected quantum states. The resulting redundancy (the number of copies deposited in the environment) follows from the quantum Chernoff information that quantifies the information transmitted by a typical elementary subsystem of the environment.

  19. On Arbitrary Phases in Quantum Amplitude Amplification

    CERN Document Server

    Hoyer, P

    2000-01-01

    We consider the use of arbitrary phases in quantum amplitude amplification which is a generalization of quantum searching. We prove that the phase condition in amplitude amplification is given by $\\tan(\\phi/2)=\\tan(\\phi/2)(1-2a)$, where $\\phi$ and $\\phi$ are the phases used and where $a$ is the success probability of the given algorithm. Thus the choice of phases depends nontrivially and nonlinearly on the success probability. Utilizing this condition, we give methods for constructing quantum algorithms that succeed with certainty and for implementing arbitrary rotations. We also conclude that phase errors of order up to $\\frac{1}{\\sqrt{a}}$ can be tolerated in amplitude amplification.

  20. Continuous phase amplification with a Sagnac interferometer

    CERN Document Server

    Starling, David J; Williams, Nathan S; Jordan, Andrew N; Howell, John C

    2009-01-01

    We describe a weak value inspired phase amplification technique in a Sagnac interferometer. We monitor the relative phase between two paths of a slightly misaligned interferometer by measuring the average position of a split-Gaussian mode in the dark port. Although we monitor only the dark port, we show that the signal varies linearly with phase and that we can obtain similar sensitivity to balanced homodyne detection. We derive the source of the amplification both with classical wave optics and as an inverse weak value.

  1. Parametric Amplification For Detecting Weak Optical Signals

    Science.gov (United States)

    Hemmati, Hamid; Chen, Chien; Chakravarthi, Prakash

    1996-01-01

    Optical-communication receivers of proposed type implement high-sensitivity scheme of optical parametric amplification followed by direct detection for reception of extremely weak signals. Incorporates both optical parametric amplification and direct detection into optimized design enhancing effective signal-to-noise ratios during reception in photon-starved (photon-counting) regime. Eliminates need for complexity of heterodyne detection scheme and partly overcomes limitations imposed on older direct-detection schemes by noise generated in receivers and by limits on quantum efficiencies of photodetectors.

  2. A dual amplification fluorescent strategy for sensitive detection of DNA methyltransferase activity based on strand displacement amplification and DNAzyme amplification.

    Science.gov (United States)

    Cui, Wanling; Wang, Lei; Jiang, Wei

    2016-03-15

    DNA methyltransferase (MTase) plays a critical role in many biological processes and has been regarded as a predictive cancer biomarker and a therapeutic target in cancer treatment. Sensitive detection of DNA MTase activity is essential for early cancer diagnosis and therapeutics. Here, we developed a dual amplification fluorescent strategy for sensitive detection of DNA MTase activity based on strand displacement amplification (SDA) and DNAzyme amplification. A trifunctional double-stranded DNA (dsDNA) probe was designed including a methylation site for DNA MTase recognition, a complementary sequence of 8-17 DNAzyme for synthesizing DNAzyme, and a nicking site for nicking enzyme cleavage. Firstly, the trifunctional dsDNA probe was methylated by DNA MTase to form the methylated dsDNA. Subsequently, HpaII restriction endonuclease specifically cleaved the residue of unmethylated dsDNA. Next, under the action of polymerase and nicking enzyme, the methylared dsDNA initiated SDA, releasing numbers of 8-17 DNAzymes. Finally, the released 8-17 DNAzymes triggered DNAzyme amplification reaction to induce a significant fluorescence enhancement. This strategy could detect DNA MTase activity as low as 0.0082U/mL. Additionally, the strategy was successfully applied for evaluating the inhibitions of DNA MTase using two anticancer drugs, 5-azacytidine and 5-aza-2'-deoxycytidine. The results indicate the proposed strategy has a potential application in early cancer diagnosis and therapeutics.

  3. Desert Amplification in a Warming Climate

    Science.gov (United States)

    Zhou, Liming

    2016-08-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950–2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor.

  4. Optical Pattern Recognition With Self-Amplification

    Science.gov (United States)

    Liu, Hua-Kuang

    1994-01-01

    In optical pattern recognition system with self-amplification, no reference beam used in addressing mode. Polarization of laser beam and orientation of photorefractive crystal chosen to maximize photorefractive effect. Intensity of recognition signal is orders of magnitude greater than other optical correlators. Apparatus regarded as real-time or quasi-real-time optical pattern recognizer with memory and reprogrammability.

  5. Social amplification of risk: a conceptual framework

    International Nuclear Information System (INIS)

    One of the most perplexing problems in risk analysis is why some relatively minor risks or risk events, as assessed by technical experts, often elicit strong public concerns and result in substantial impacts upon society and economy. This article sets forth a conceptual framework that seeks to link systematically the technical assessment of risk with psychological, sociological, and cultural perspectives of risk perception and risk-related behavior. The main thesis is that hazards interact with psychological, social, institutional, and cultural processes in ways that may amplify or attenuate public responses to the risk or risk event. A structural description of the social amplification of risk is now possible. Amplification occurs at two stages: in the transfer of information about the risk, and in the response mechanisms of society. Signals about risk are processed by individual and social amplification stations, including the scientist who communicates the risk assessment, the news media, cultural groups, interpersonal networks, and others. Key steps of amplifications can be identified at each stage. The amplified risk leads to behavioral responses, which, in turn, result in secondary impacts. Models are presented that portray the elements and linkages in the proposed conceptual framework

  6. Desert Amplification in a Warming Climate

    Science.gov (United States)

    Zhou, Liming

    2016-01-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950–2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor. PMID:27538725

  7. Desert Amplification in a Warming Climate.

    Science.gov (United States)

    Zhou, Liming

    2016-01-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950-2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor. PMID:27538725

  8. Electromagnetic waves amplification in a coaxial triode with virtual cathode

    Energy Technology Data Exchange (ETDEWEB)

    Grigoryev, V.P.; Antoshkin, M.Y.; Koval, T.V.; Kuryakov, A.M. [Tomsk Politechnical Univ. (Russian Federation)

    1995-11-01

    The present paper presents the results of analytical and numerical investigations on the amplification of microwaves in the vircator triode of coaxial making. The range of a parameters of the greatest amplification was define for TH and TE-modes.

  9. A new evolutionary theory deduced mathematically from entropy amplification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new evolutionary theory which is able to unite the present evolutionary debates is deduced mathematically from the principle of entropy amplification.It suggests that the extensive evolution is driven by the amplification of entropy,or microscopic diversity,and the biological evolution is driven by the amplification of biodiversity.Forming high hierarchies is the most important way for the amplification and brings out spontaneously three kinds of selection.This theory has some positive cultural meanings.

  10. Parametric Amplification of Vacuum Fluctuations in a Spinor Condensate

    DEFF Research Database (Denmark)

    Klempt, C.; Topic, O.; Gebreyesus, G.;

    2010-01-01

    Parametric amplification of vacuum fluctuations is crucial in modern quantum optics, enabling the creation of squeezing and entanglement. We demonstrate the parametric amplification of vacuum fluctuations for matter waves using a spinor F=2 87Rb condensate. Interatomic interactions lead to correl......Parametric amplification of vacuum fluctuations is crucial in modern quantum optics, enabling the creation of squeezing and entanglement. We demonstrate the parametric amplification of vacuum fluctuations for matter waves using a spinor F=2 87Rb condensate. Interatomic interactions lead...

  11. Quantitation of viral load using real-time amplification techniques

    NARCIS (Netherlands)

    Niesters, H G

    2001-01-01

    Real-time PCR amplification techniques are currently used to determine the viral load in clinical samples for an increasing number of targets. Real-time PCR reduces the time necessary to generate results after amplification. In-house developed PCR and nucleic acid sequence-based amplification (NASBA

  12. Plasmonic Terahertz Amplification in Graphene-Based Asymmetric Hyperbolic Metamaterial

    Directory of Open Access Journals (Sweden)

    Igor Nefedov

    2015-05-01

    Full Text Available We propose and theoretically explore terahertz amplification, based on stimulated generation of plasmons in graphene asymmetric hyperbolic metamaterials (AHMM, strongly coupled to terahertz radiation. In contrast to the terahertz amplification in resonant nanocavities, AHMM provides a wide-band THz amplification without any reflection in optically thin graphene multilayers.

  13. RNA amplification for successful gene profiling analysis

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2005-07-01

    Full Text Available Abstract The study of clinical samples is often limited by the amount of material available to study. While proteins cannot be multiplied in their natural form, DNA and RNA can be amplified from small specimens and used for high-throughput analyses. Therefore, genetic studies offer the best opportunity to screen for novel insights of human pathology when little material is available. Precise estimates of DNA copy numbers in a given specimen are necessary. However, most studies investigate static variables such as the genetic background of patients or mutations within pathological specimens without a need to assess proportionality of expression among different genes throughout the genome. Comparative genomic hybridization of DNA samples represents a crude exception to this rule since genomic amplification or deletion is compared among different specimens directly. For gene expression analysis, however, it is critical to accurately estimate the proportional expression of distinct RNA transcripts since such proportions directly govern cell function by modulating protein expression. Furthermore, comparative estimates of relative RNA expression at different time points portray the response of cells to environmental stimuli, indirectly informing about broader biological events affecting a particular tissue in physiological or pathological conditions. This cognitive reaction of cells is similar to the detection of electroencephalographic patterns which inform about the status of the brain in response to external stimuli. As our need to understand human pathophysiology at the global level increases, the development and refinement of technologies for high fidelity messenger RNA amplification have become the focus of increasing interest during the past decade. The need to increase the abundance of RNA has been met not only for gene specific amplification, but, most importantly for global transcriptome wide, unbiased amplification. Now gene

  14. Amplification of postwildfire peak flow by debris

    Science.gov (United States)

    Kean, J. W.; McGuire, L. A.; Rengers, F. K.; Smith, J. B.; Staley, D. M.

    2016-08-01

    In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.

  15. Gravito-magnetic amplification in cosmology

    CERN Document Server

    Tsagas, Christos G

    2009-01-01

    Magnetic fields interact with gravitational waves in various ways. We consider the coupling between the Weyl and the Maxwell fields in cosmology and study the effects of the former on the latter. The approach is fully analytical and the results are gauge-invariant. We show that the nature and the outcome of the gravito-magnetic interaction depends on the electric properties of the cosmic medium. When the conductivity is high, gravitational waves reduce the standard (adiabatic) decay rate of the B-field, leading to its superadiabatic amplification. In poorly conductive environments, on the other hand, Weyl-curvature distortions can result into the resonant amplification of large-scale cosmological magnetic fields. Driven by the gravitational waves, these B-fields oscillate with an amplitude that is found to diverge when the wavelengths of the two sources coincide. We present technical and physical aspects of the gravito-magnetic interaction and discuss its potential implications.

  16. Diffusive shock acceleration and magnetic field amplification

    CERN Document Server

    Schure, K M; Drury, L O'C; Bykov, A M

    2012-01-01

    Diffusive shock acceleration is the theory of particle acceleration through multiple shock crossings. In order for this process to proceed at a rate that can be reconciled with observations of high-energy electrons in the vicinity of the shock, and for cosmic rays protons to be accelerated to energies up to observed galactic values, significant magnetic field amplification is required. In this review we will discuss various theories on how magnetic field amplification can proceed in the presence of a cosmic ray population. On both short and long scales, cosmic ray streaming can induce instabilities that act to amplify the magnetic field. Developments in this area that have occurred over the past decade are the main focus of this paper.

  17. Parametric nanomechanical amplification at very high frequency.

    Science.gov (United States)

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  18. Introduction to Quantum Noise, Measurement and Amplification

    OpenAIRE

    Clerk, A. A.; Devoret, M. H.; Girvin, S. M.; Marquardt, F.; Schoelkopf, R. J.

    2008-01-01

    The topic of quantum noise has become extremely timely due to the rise of quantum information physics and the resulting interchange of ideas between the condensed matter and AMO/quantum optics communities. This review gives a pedagogical introduction to the physics of quantum noise and its connections to quantum measurement and quantum amplification. After introducing quantum noise spectra and methods for their detection, we describe the basics of weak continuous measurements. Particular atte...

  19. Non-instrumented nucleic acid amplification assay

    Science.gov (United States)

    Weigl, Bernhard H.; Domingo, Gonzalo; Gerlach, Jay; Tang, Dennis; Harvey, Darrel; Talwar, Nick; Fichtenholz, Alex; van Lew, Bill; LaBarre, Paul

    2008-02-01

    We have developed components of a diagnostic disposable platform that has the dual purpose of providing molecular diagnostics at the point of care (POC) as well as stabilizing specimens for further analysis via a centralized surveillance system. This diagnostic is targeted for use in low-resource settings by minimally trained health workers. The disposable device does not require any additional instrumentation and will be almost as rapid and simple to use as a lateral flow strip test - yet will offer the sensitivity and specificity of nucleic acid amplification tests (NAATs). The low-cost integrated device is composed of three functional components: (1) a sample-processing subunit that generates clean and stabilized DNA from raw samples containing nucleic acids, (2) a NA amplification subunit, and (3) visual amplicon detection sub-unit. The device integrates chemical exothermic heating, temperature stabilization using phase-change materials, and isothermal nucleic acid amplification. The aim of developing this system is to provide pathogen detection with NAAT-level sensitivity in low-resource settings where there is no access to instrumentation. If a disease occurs, patients would be tested with the disposable in the field. A nucleic acid sample would be preserved within the spent disposable which could be sent to a central laboratory facility for further analysis if needed.

  20. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases.

    Science.gov (United States)

    Sahoo, Pravas Ranjan; Sethy, Kamadev; Mohapatra, Swagat; Panda, Debasis

    2016-05-01

    India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease. PMID:27284221

  1. Parametric Amplification of Gravitational Fluctuations during Reheating

    International Nuclear Information System (INIS)

    Cosmological perturbations can undergo amplification by parametric resonance during preheating even on scales larger than the Hubble radius, without violating causality. A unified description of gravitational and matter fluctuations is crucial to determine the strength of the instability. To extract specific signatures of the oscillating inflaton field during reheating, it is essential to focus on a variable describing metric fluctuations which is constant in the standard analyses of inflation. For a massive inflaton without self-coupling, we find no additional growth of superhorizon modes during reheating beyond the usual predictions. For a massless self-coupled inflaton, there is a sub-Hubble scale resonance. copyright 1999 The American Physical Society

  2. Amplification Effects and Unconventional Monetary Policies

    Directory of Open Access Journals (Sweden)

    Cécile BASTIDON GILLES

    2012-02-01

    Full Text Available Global financial crises trigger off amplification effects, which allow relatively small shocks to propagate through the whole financial system. For this reason, the range of Central banks policies is now widening beyond conventional monetary policies and lending of last resort. The aim of this paper is to establish a rule for this practice. The model is based on the formalization of funding conditions in various types of markets. We conduct a comprehensive analysis of the “unconventional monetary policies”, and especially quantify government bonds purchases by the Central bank.

  3. Amplification of fluorescence using collinear picosecond optical parametric amplification at degeneracy

    Institute of Scientific and Technical Information of China (English)

    Zhang Jing; Zhang Qiu-Lin; Jiang Man; Zhang Dong-Xiang; Feng Bao-Hua; Zhang Jing-Yuan

    2012-01-01

    We demonstrate the output characteristic of broadband parametric amplification of incoherent light pulses in a 355-nm pumped degenerate picosecond optical parametric amplification with either saturated or unsaturated amplification.The optical parametric amplifier is seeded by the fluorescence generated in a solution of pyridine-1 dye in ethanol.With the saturated amplification,we can obtain high energy incoherent light pulses,whose full widtth at half maximum bandwidth varies from 16 nm to 53 nm for the different phase matching angles near degeneracy.Moreover,the unsaturated bandwidth of the amplified pulses fits well to the calculated result at degeneracy.Selecting s-polarized fluorescence with a Glan-Taylor prism,the maximum bandwidth of the amplified fluorescence is found to be 59 nm for a purely s-polarized seed.The maximum output energy is 0.67 mJ for the optical parametric amplifier.By using an optical filter and compressor,the generated high energy incoherent light has great potential as the incoherent pump,signal or idler wave of a parametric down-conversion process,so that a wave with a high degree of coherence can be generated from an incoherent pump light.

  4. Multiplex allele-specific target amplification based on PCR suppression

    OpenAIRE

    Broude, Natalia E.; Zhang, Lingang; Woodward, Karen; Englert, David; Cantor, Charles R.

    2001-01-01

    We have developed a strategy for multiplex PCR based on PCR suppression. PCR suppression allows DNA target amplification with only one sequence-specific primer per target and a second primer that is common for all targets. Therefore, an n-plex PCR would require only n + 1 primers. We have demonstrated uniform, efficient amplification of targeted sequences in 14-plex PCR. The high specificity of suppression PCR also provides multiplexed amplification with allele specifi...

  5. Loss of KLF14 triggers centrosome amplification and tumorigenesis

    OpenAIRE

    Fan, Guangjian; Sun, Lianhui; Shan, Peipei; Zhang, Xianying; Huan, Jinliang; Li, Dali; Wang, Tingting; Wei, Tingting; Zhang, Xiaohong; Gu, Xiaoyang; Yao, Liangfang; Xuan, Yang; Hou, Zhaoyuan; Cui, Yongping; Cao, Liu

    2015-01-01

    Centrosome amplification is frequent in cancer, but the underlying mechanisms remain unclear. Here we report that disruption of the Kruppel-like factor 14 (KLF14) gene in mice causes centrosome amplification, aneuploidy and spontaneous tumorigenesis. Molecularly, KLF14 functions as a transcriptional repressor of Plk4, a polo-like kinase whose overexpression induces centrosome overduplication. Transient knockdown of KLF14 is sufficient to induce Plk4-directed centrosome amplification. Clinical...

  6. Experimental noiseless linear amplification using weak measurements

    Science.gov (United States)

    Ho, Joseph; Boston, Allen; Palsson, Matthew; Pryde, Geoff

    2016-09-01

    The viability of quantum communication schemes rely on sending quantum states of light over long distances. However, transmission loss can degrade the signal strength, adding noise. Heralded noiseless amplification of a quantum signal can provide a solution by enabling longer direct transmission distances and by enabling entanglement distillation. The central idea of heralded noiseless amplification—a conditional modification of the probability distribution over photon number of an optical quantum state—is suggestive of a parallel with weak measurement: in a weak measurement, learning partial information about an observable leads to a conditional back-action of a commensurate size. Here we experimentally investigate the application of weak, or variable-strength, measurements to the task of heralded amplification, by using a quantum logic gate to weakly couple a small single-optical-mode quantum state (the signal) to an ancilla photon (the meter). The weak measurement is carried out by choosing the measurement basis of the meter photon and, by conditioning on the meter outcomes, the signal is amplified. We characterise the gain of the amplifier as a function of the measurement strength, and use interferometric methods to show that the operation preserves the coherence of the signal.

  7. Space Optical Communications Using Laser Beam Amplification

    Science.gov (United States)

    Agrawal, Govind

    2015-01-01

    The Space Optical Communications Using Laser Beam Amplification (SOCLBA) project will provide a capability to amplify a laser beam that is received in a modulating retro-reflector (MRR) located in a satellite in low Earth orbit. It will also improve the pointing procedure between Earth and spacecraft terminals. The technology uses laser arrays to strengthen the reflected laser beam from the spacecraft. The results of first year's work (2014) show amplification factors of 60 times the power of the signal beam. MMRs are mirrors that reflect light beams back to the source. In space optical communications, a high-powered laser interrogator beam is directed from the ground to a satellite. Within the satellite, the beam is redirected back to ground using the MMR. In the MMR, the beam passes through modulators, which encode a data signal onto the returning beam. MMRs can be used in small spacecraft for optical communications. The SOCLBA project is significant to NASA and small spacecraft due to its application to CubeSats for optical data transmission to ground stations, as well as possible application to spacecraft for optical data transmission.

  8. Optimization of noncollinear optical parametric amplification

    Science.gov (United States)

    Schimpf, D. N.; Rothardt, J.; Limpert, J.; Tünnermann, A.

    2007-02-01

    Noncollinearly phase-matched optical parametric amplifiers (NOPAs) - pumped with the green light of a frequency doubled Yb-doped fiber-amplifier system 1, 2 - permit convenient generation of ultrashort pulses in the visible (VIS) and near infrared (NIR) 3. The broad bandwidth of the parametric gain via the noncollinear pump configuration allows amplification of few-cycle optical pulses when seeded with a spectrally flat, re-compressible signal. The short pulses tunable over a wide region in the visible permit transcend of frontiers in physics and lifescience. For instance, the resulting high temporal resolution is of significance for many spectroscopic techniques. Furthermore, the high magnitudes of the peak-powers of the produced pulses allow research in high-field physics. To understand the demands of noncollinear optical parametric amplification using a fiber pump source, it is important to investigate this configuration in detail 4. An analysis provides not only insight into the parametric process but also determines an optimal choice of experimental parameters for the objective. Here, the intention is to design a configuration which yields the shortest possible temporal pulse. As a consequence of this analysis, the experimental setup could be optimized. A number of aspects of optical parametric amplifier performance have been treated analytically and computationally 5, but these do not fully cover the situation under consideration here.

  9. Magnetic Field Amplification in Young Galaxies

    CERN Document Server

    Schober, Jennifer; Klessen, Ralf S

    2013-01-01

    The Universe at present is highly magnetized, with fields of the order of a few 10^-5 G and coherence lengths larger than 10 kpc in typical galaxies like the Milky Way. We propose that the magnetic field was amplified to this values already during the formation and the early evolution of the galaxies. Turbulence in young galaxies is driven by accretion as well as by supernova (SN) explosions of the first generation of stars. The small-scale dynamo can convert the turbulent kinetic energy into magnetic energy and amplify very weak primordial magnetic seed fields on short timescales. The amplification takes place in two phases: in the kinematic phase the magnetic field grows exponentially, with the largest growth on the smallest non-resistive scale. In the following non-linear phase the magnetic energy is shifted towards larger scales until the dynamo saturates on the turbulent forcing scale. To describe the amplification of the magnetic field quantitatively we model the microphysics in the interstellar medium ...

  10. Seismic Wave Amplification in 3D Alluvial Basins: 3D/1D Amplification Ratios from Fast Multipole BEM Simulations

    CERN Document Server

    Fajardo, Kristel C Meza; Chaillat, Stéphanie; Lenti, Luca

    2016-01-01

    In this work, we study seismic wave amplification in alluvial basins having 3D standard geometries through the Fast Multipole Boundary Element Method in the frequency domain. We investigate how much 3D amplification differs from the 1D (horizontal layering) case. Considering incident fields of plane harmonic waves, we examine the relationships between the amplification level and the most relevant physical parameters of the problem (impedance contrast, 3D aspect ratio, vertical and oblique incidence of plane waves). The FMBEM results show that the most important parameters for wave amplification are the impedance contrast and the so-called equivalent shape ratio. Using these two parameters, we derive simple rules to compute the fundamental frequency for various 3D basin shapes and the corresponding 3D/1D amplification factor for 5% damping. Effects on amplification due to 3D basin asymmetry are also studied and incorporated in the derived rules.

  11. Signal Amplification of Bioassay Using Zinc Nanomaterials

    Science.gov (United States)

    Cowles, Chad L.

    An emerging trend in the analytical detection sciences is the employment of nanomaterials for bioassay signal transduction to identify analytes critical to public health. These nanomaterials have been specifically investigated for applications which require identification of trace levels of cells, proteins, or other molecules that can have broad ranging impacts to human health in fields such as clinical diagnostics, environmental monitoring, food and drink control, and the prevention of bioterrorism. Oftentimes these nanoparticle-based signal transduction or amplification approaches offer distinct advantages over conventional methods such as increased sensitivity, rapidity, or stability. The biological application of nanoparticles however, does suffer from drawbacks that have limited more widespread adoption of these techniques. Some of these drawbacks are, high cost and toxicity, arduous synthesis methods, functionalization and bioconjugation challenges, and laboratory disposal and environmental hazard issues, all of which have impeded the progression of this technology in some way or another. This work aims at developing novel techniques that offer solutions to a number of these hurdles through the development of new nanoparticle-based signal transduction approaches and the description of a previously undescribed nanomaterial. Zinc-based nanomaterials offer the opportunity to overcome some of the limitations that are encountered when other nanomaterials are employed for bioassay signal transduction. On the other hand, the biological application of zinc nanomaterials has been difficult because in general their fluorescence is in the blue range and the reported quantum yields are usually too low for highly sensitive applications. The advantages of using zinc nanomaterials for biological applications, such as reduced toxicity, simple synthesis, low cost, and straightforward functionalization strategies contribute to the research interest in their application as

  12. Broadening and Amplification of an Infrared Femtosecond Pulse for Optical Parametric Chirped-Pulse Amplification

    Institute of Scientific and Technical Information of China (English)

    WANG He-Lin; YANG Ai-Jun; LENG Yu-Xin

    2011-01-01

    A high-average-power diode-pumped narrowband regenerative chirped pulse amplifier is developed using the thin-rod Nd:YAG laser architecture for optical parametric chirped-pulse amplification (OPCPA).The effect of the etalons on the amplified pulse in the regenerative cavity is studied experimentally and theoretically.By inserting glass etalons of thickness 1 mm and 5 mm into the regenerative cavity,the pre-stretching pulse from an (O)ffner stretcher is further broadened to above 200ps,which matches the amplification windows of the signal pulses in OPCPA and is suitable for use as a pump source in the OPCPA system.The bandwidth of the amplified pulse is 1.5 nm,and an output energy of 2mJ is achieved at a repetition rate of 10 Hz.Optical parametric chirped pulse amplification (OPCPA)[1-4] has attracted a great deal of attention as the most promising technique for generating ultrashort ultrahigh-peak-power laser pulses because of its very broad gain bandwidth,negligible thermal load on the nonlinear crystal,and extremely high singlepass gain as compared to amplifiers based on laser gain media.For efficient amplification and high fidelity of dispersion compensation in OPCPA,a femtosecond seed pulse is first stretched to several tens of picoseconds with a bulk grating stretcher or a fiber stretcher.%A high-average-power diode-pumped narrowband regenerative chirped pulse amplifier is developed using the thin-rod Nd:YAG laser architecture for optical parametric chirped-pulse amplification (OPCPA). The effect of the etalons on the amplified pulse in the regenerative cavity is studied experimentally and theoretically. By inserting glass etalons of thickness 1 mm and 5 mm into the regenerative cavity, the pre-stretching pulse from an (O)finer stretcher is further broadened to above 200 ps, which matches the amplification windows of the signal pulses in OPCPA and is suitable for use as a pump source in the OPCPA system. The bandwidth of the amplified pulse is 1.5 nm, and an

  13. Magnetic field amplification in turbulent astrophysical plasmas

    CERN Document Server

    Federrath, Christoph

    2016-01-01

    Magnetic fields play an important role in astrophysical accretion discs, and in the interstellar and intergalactic medium. They drive jets, suppress fragmentation in star-forming clouds and can have a significant impact on the accretion rate of stars. However, the exact amplification mechanisms of cosmic magnetic fields remain relatively poorly understood. Here I start by reviewing recent advances in the numerical and theoretical modelling of the 'turbulent dynamo', which may explain the origin of galactic and inter-galactic magnetic fields. While dynamo action was previously investigated in great detail for incompressible plasmas, I here place particular emphasis on highly compressible astrophysical plasmas, which are characterised by strong density fluctuations and shocks, such as the interstellar medium. I find that dynamo action works not only in subsonic plasmas, but also in highly supersonic, compressible plasmas, as well as for low and high magnetic Prandtl numbers. I further present new numerical simu...

  14. Anisotropic metamaterials with simultaneous attenuation and amplification

    CERN Document Server

    Mackay, Tom G

    2015-01-01

    Anisotropic metamaterials that are neither wholly dissipative nor wholly active at a specific frequency are permitted by classical electromagnetic theory. Well-established formalisms for the homogenization of particulate composite materials indicate that such a metamaterial may be conceptualized quite simply as a random mixture of electrically small spheroidal particles of at least two different isotropic dielectric materials, one of which must be dissipative but the other active. The realization of this metametarial is influenced by the volume fraction, spatial distribution, particle shape and size, and the relative permittivities of the component materials. Metamaterials displaying both dissipation and amplification at the same frequency with more complicated linear as well as nonlinear constitutive properties are possible.

  15. Amplification sans bruit d'images optiques

    Science.gov (United States)

    Gigan, S.; Delaubert, V.; Lopez, L.; Treps, N.; Maitre, A.; Fabre, C.

    2004-11-01

    Nous utilisons un Oscillateur Paramétrique Optique (OPO) pompé sous le seuil dans le but d'amplifier une image multimode transverse sans dégradation du rapport signal à bruit. Le dispositif expérimental met en œuvre un OPO de type II triplement résonant et semi-confocal pour le faisceau amplifié. L'existence d'effets quantiques lors de l'amplification multimode dans un tel dispositif a été montrée expérimentalement. Plus généralement, ceci nous a amené à étudier les propriétés quantiques transverses des faisceaux lumineux amplifiés. Une telle étude peut trouver des applications non seulement en imagerie, mais également dans le traitement quantique de l'information.

  16. Strengthening weak value amplification with recycled photons

    CERN Document Server

    Dressel, Justin; Jordan, Andrew N; Graham, Trent M; Kwiat, Paul G

    2013-01-01

    We consider the use of cyclic weak measurements to improve the sensitivity of weak-value amplification precision measurement schemes. Previous weak-value experiments have used only a small fraction of events, while discarding the rest through the process of "post-selection". We extend this idea by considering recycling of events which are typically unused in a weak measurement. Here we treat a sequence of polarized laser pulses effectively trapped inside an interferometer using a Pockels cell and polarization optics. In principle, all photons can be post-selected, which will improve the measurement sensitivity. We first provide a qualitative argument for the expected improvements from recycling photons, followed by the exact result for the recycling of collimated beam pulses, and numerical calculations for diverging beams. We show that beam degradation effects can be mitigated via profile flipping or Zeno reshaping. The main advantage of such a recycling scheme is an effective power increase, while maintainin...

  17. Dispersion compensation in chirped pulse amplification systems

    Science.gov (United States)

    Bayramian, Andrew James; Molander, William A.

    2014-07-15

    A chirped pulse amplification system includes a laser source providing an input laser pulse along an optical path. The input laser pulse is characterized by a first temporal duration. The system also includes a multi-pass pulse stretcher disposed along the optical path. The multi-pass pulse stretcher includes a first set of mirrors operable to receive input light in a first plane and output light in a second plane parallel to the first plane and a first diffraction grating. The pulse stretcher also includes a second set of mirrors operable to receive light diffracted from the first diffraction grating and a second diffraction grating. The pulse stretcher further includes a reflective element operable to reflect light diffracted from the second diffraction grating. The system further includes an amplifier, a pulse compressor, and a passive dispersion compensator disposed along the optical path.

  18. Beyond the diffraction limit via optical amplification

    CERN Document Server

    Kellerer, Aglae N

    2016-01-01

    In a previous article we suggested a method to overcome the diffraction limit behind a telescope. We refer to theory and recent numerical simulations, and test whether it is indeed possible to use photon amplification to enhance the angular resolution of a telescope or a microscope beyond the diffraction limit. An essential addition is the proposal to select events with above-average ratio of stimulated to spontaneous photons. We find that the diffraction limit of a telescope is surpassed by a factor ten for an amplifier gain of 200, if the analysis is restricted to a tenth of the incoming astronomical photons. A gain of 70 is sufficient with a hundredth of the photons.

  19. Short-Pulse Amplification by Strongly-Coupled Brillouin Scattering

    CERN Document Server

    Edwards, Matthew R; Mikhailova, Julia M; Fisch, Nathaniel J

    2016-01-01

    We examine the feasibility of strongly-coupled stimulated Brillouin scattering as a mechanism for the plasma-based amplification of sub-picosecond pulses. In particular, we use fluid theory and particle-in-cell simulations to compare the relative advantages of Raman and Brillouin amplification over a broad range of achievable parameters.

  20. A Theoretical Evaluation of Optical Parametric Amplification in BBO Crystal

    Institute of Scientific and Technical Information of China (English)

    邵敏; 薛绍林; 林尊琪

    2005-01-01

    The noncollinear optical parametric amplification in BBO crystal is theoretically investigated. The phase matching angle, gain bandwidth, optimal noncollinear angle and conversion efficiency for both type-Ⅰ and type-Ⅱ BBO are simulated. The numerical simulation results are important to the practical optical parametric amplification experiments with BBO crystal.

  1. The Quantum Theory of Optical Parametric Amplification

    Science.gov (United States)

    Hussain, N. A.

    Available from UMI in association with The British Library. Requires signed TDF. The aim of this thesis is to investigate the effect of parametric amplification on various forms of light. In particular we shall consider number and coherent states, but many of the calculations hold for those states whose operators satisfy the properties, = = ==0 e.g. chaotic light. The first chapter lays down the fundamental preliminaries necessary for our calculations and reviews linear amplifier theory. We consider the phase sensitive and insensitive forms of amplifiers modelling the former on the degenerate parametric amplifier and the latter on the non-degenerate and inverted population amplifiers. Chapter 2 deals with balanced homodyne detection of a narrow band coherent state before and after degenerate parametric amplification. In chapter 3 we consider a continuous mode number state produced by atomic emission and parametrically amplified using the formalism of Collett and Gardiner. We give general results for the output flux intensity and also consider the simpler case where the atomic decay rate is much smaller than the parametric cavity decay rate. Also we consider the degree of second order coherence using this simplified theory. Chapters 4 and 5 consider the double amplifier interferometer, using single and continuous mode theories, and enable us to determine the form of amplifier which produces the best visibility and hence lowest noise figures. The travelling-wave parametric amplifier is discussed in chapter 6 and is contrasted with the cavity parametric amplifier discussed in chapters 1 and 2. Finally we consider the much contemplated idea of using amplifiers to boost signals in fibre optic transmission lines using our model of the parametric amplifier and examining the degradation of the signal-to-noise ratio. We consider both coherent and squeezed inputs and our results hold for both cavity and travelling -wave amplifiers.

  2. Mechanism of Gene Amplification via Yeast Autonomously Replicating Sequences

    Directory of Open Access Journals (Sweden)

    Shelly Sehgal

    2015-01-01

    Full Text Available The present investigation was aimed at understanding the molecular mechanism of gene amplification. Interplay of fragile sites in promoting gene amplification was also elucidated. The amplification promoting sequences were chosen from the Saccharomyces cerevisiae ARS, 5S rRNA regions of Plantago ovata and P. lagopus, proposed sites of replication pausing at Ste20 gene locus of S. cerevisiae, and the bend DNA sequences within fragile site FRA11A in humans. The gene amplification assays showed that plasmid bearing APS from yeast and human beings led to enhanced protein concentration as compared to the wild type. Both the in silico and in vitro analyses were pointed out at the strong bending potential of these APS. In addition, high mitotic stability and presence of TTTT repeats and SAR amongst these sequences encourage gene amplification. Phylogenetic analysis of S. cerevisiae ARS was also conducted. The combinatorial power of different aspects of APS analyzed in the present investigation was harnessed to reach a consensus about the factors which stimulate gene expression, in presence of these sequences. It was concluded that the mechanism of gene amplification was that AT rich tracts present in fragile sites of yeast serve as binding sites for MAR/SAR and DNA unwinding elements. The DNA protein interactions necessary for ORC activation are facilitated by DNA bending. These specific bindings at ORC promote repeated rounds of DNA replication leading to gene amplification.

  3. A mechanism of gene amplification driven by small DNA fragments.

    Directory of Open Access Journals (Sweden)

    Kuntal Mukherjee

    Full Text Available DNA amplification is a molecular process that increases the copy number of a chromosomal tract and often causes elevated expression of the amplified gene(s. Although gene amplification is frequently observed in cancer and other degenerative disorders, the molecular mechanisms involved in the process of DNA copy number increase remain largely unknown. We hypothesized that small DNA fragments could be the trigger of DNA amplification events. Following our findings that small fragments of DNA in the form of DNA oligonucleotides can be highly recombinogenic, we have developed a system in the yeast Saccharomyces cerevisiae to capture events of chromosomal DNA amplification initiated by small DNA fragments. Here we demonstrate that small DNAs can amplify a chromosomal region, generating either tandem duplications or acentric extrachromosomal DNA circles. Small fragment-driven DNA amplification (SFDA occurs with a frequency that increases with the length of homology between the small DNAs and the target chromosomal regions. SFDA events are triggered even by small single-stranded molecules with as little as 20-nt homology with the genomic target. A double-strand break (DSB external to the chromosomal amplicon region stimulates the amplification event up to a factor of 20 and favors formation of extrachromosomal circles. SFDA is dependent on Rad52 and Rad59, partially dependent on Rad1, Rad10, and Pol32, and independent of Rad51, suggesting a single-strand annealing mechanism. Our results reveal a novel molecular model for gene amplification, in which small DNA fragments drive DNA amplification and define the boundaries of the amplicon region. As DNA fragments are frequently found both inside cells and in the extracellular environment, such as the serum of patients with cancer or other degenerative disorders, we propose that SFDA may be a common mechanism for DNA amplification in cancer cells, as well as a more general cause of DNA copy number variation

  4. Complementary weak-value amplification with concatenated postselections

    CERN Document Server

    Viza, Gerardo I; Liu, Wei-Tao; Howell, John C

    2016-01-01

    We measure a transverse momentum kick in a Sagnac interferometer using weak-value amplification with two postselections. The first postselection is controlled by a polarization dependent phase mismatch between both paths of a Sagnac interferometer and the second postselection is controlled by a polarizer at the exit port. By monitoring the darkport of the interferometer, we study the complementary amplification of the concatenated postselections, where the polarization extinction ratio is greater than the contrast of the spatial interference. In this case, we find an improvement in the amplification of the signal of interest by introducing a second postselection to the system.

  5. Amplification of Spin Waves by Thermal Spin-Transfer Torque

    Science.gov (United States)

    Padrón-Hernández, E.; Azevedo, A.; Rezende, S. M.

    2011-11-01

    We observe amplification of spin-wave packets propagating along a film of single-crystal yttrium iron garnet subject to a transverse temperature gradient. The spin waves are excited and detected with standard techniques used in magnetostatic microwave delay lines in the 1-2 GHz frequency range. The amplification is attributed to the action of a thermal spin-transfer torque acting on the magnetization that opposes the relaxation and which is created by spin currents generated through the spin-Seebeck effect. The experimental data are interpreted with a spin-wave model that gives an amplification gain in very good agreement with the data.

  6. Amplification and chromosomal dispersion of human endogenous retroviral sequences

    International Nuclear Information System (INIS)

    Endogenous retroviral sequences have undergone amplification events involving both viral and flanking cellular sequences. The authors cloned members of an amplified family of full-length endogenous retroviral sequences. Genomic blotting, employing a flanking cellular DNA probe derived from a member of this family, revealed a similar array of reactive bands in both humans and chimpanzees, indicating that an amplification event involving retroviral and associated cellular DNA sequences occurred before the evolutionary separation of these two primates. Southern analyses of restricted somatic cell hybrid DNA preparations suggested that endogenous retroviral segments are widely dispersed in the human genome and that amplification and dispersion events may be linked

  7. PCR amplification on microarrays of gel immobilized oligonucleotides

    Science.gov (United States)

    Strizhkov, Boris; Tillib, Sergei; Mikhailovich, Vladimir; Mirzabekov, Andrei

    2003-11-04

    The invention relates two general methods for performing PCR amplification, combined with the detection and analysis of the PCR products on a microchip. In the first method, the amplification occurs both outside and within a plurality of gel pads on a microchip, with at least one oligonucleotide primer immobilized in a gel pad. In the second method, PCR amplification also takes place within gel pads on a microchip, but the pads are surrounded by a hydrophobic liquid such as that which separates the individual gel pads into environments which resemble micro-miniaturized test tubes.

  8. Thermal amplification of field-correlation harvesting

    CERN Document Server

    Brown, Eric G

    2013-01-01

    We study the harvesting of quantum and classical correlations from a hot scalar field in a periodic cavity by a pair of spatially separated oscillator-detectors. Specifically, we utilize non-perturbative and exact (non-numerical) techniques to solve for the evolution of the detectors-field system and then we examine how the entanglement, Gaussian quantum discord, and mutual information obtained by the detectors change with the temperature of the field. While (as expected) the harvested entanglement rapidly decays to zero as temperature is increased, we find remarkably that both the mutual information and the discord can actually be increased by multiple orders of magnitude via increasing the temperature. We go on to explain this phenomenon by taking advantage of the translational invariance of the field and use this to make accurate predictions of the behavior of thermal amplification; by this we also introduce a new perspective on field-correlation harvesting that we feel is worthy of consideration in its ow...

  9. Small Sample Whole-Genome Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Hara, C A; Nguyen, C P; Wheeler, E K; Sorensen, K J; Arroyo, E S; Vrankovich, G P; Christian, A T

    2005-09-20

    Many challenges arise when trying to amplify and analyze human samples collected in the field due to limitations in sample quantity, and contamination of the starting material. Tests such as DNA fingerprinting and mitochondrial typing require a certain sample size and are carried out in large volume reactions; in cases where insufficient sample is present whole genome amplification (WGA) can be used. WGA allows very small quantities of DNA to be amplified in a way that enables subsequent DNA-based tests to be performed. A limiting step to WGA is sample preparation. To minimize the necessary sample size, we have developed two modifications of WGA: the first allows for an increase in amplified product from small, nanoscale, purified samples with the use of carrier DNA while the second is a single-step method for cleaning and amplifying samples all in one column. Conventional DNA cleanup involves binding the DNA to silica, washing away impurities, and then releasing the DNA for subsequent testing. We have eliminated losses associated with incomplete sample release, thereby decreasing the required amount of starting template for DNA testing. Both techniques address the limitations of sample size by providing ample copies of genomic samples. Carrier DNA, included in our WGA reactions, can be used when amplifying samples with the standard purification method, or can be used in conjunction with our single-step DNA purification technique to potentially further decrease the amount of starting sample necessary for future forensic DNA-based assays.

  10. Local Runup Amplification By Resonant Wave Interactions

    CERN Document Server

    Stefanakis, Themistoklis; Dutykh, Denys

    2011-01-01

    Until now the analysis of long wave runup on a plane beach has been focused on finding its maximum value, failing to capture the existence of resonant regimes. One-dimensional numerical simulations in the framework of the Nonlinear Shallow Water Equations (NSWE) are used to investigate the Boundary Value Problem (BVP) for plane and non-trivial beaches. Monochromatic waves, as well as virtual wave-gage recordings from real tsunami simulations, are used as forcing conditions to the BVP. Resonant phenomena between the incident wavelength and the beach slope are found to occur, which result in enhanced runup of non-leading waves. The evolution of energy reveals the existence of a quasi-periodic state for the case of sinusoidal waves, the energy level of which, as well as the time required to reach that state, depend on the incident wavelength for a given beach slope. Dispersion is found to slightly reduce the value of maximum runup, but not to change the overall picture. Runup amplification occurs for both leadin...

  11. AGAPE Andromeda Gravitational Amplification Pixel Experiment

    CERN Document Server

    Ansari, R; Baillon, Paul; Bouquet, A; Coupinot, G; Coutures, C; Ghesquière, C; Giraud-Héraud, Yannick; Gondolo, P; Hecquet, J; Kaplan, J; Le Du, Y; Melchior, A L; Moniez, M; Picat, J P; Soucail, G

    1999-01-01

    The aim of the AGAPE (Andromeda Gravitational Amplification Pixel Experiment), experiment which has been first proposed in June 1992 is to examine the distribution of massive astrophysical compact halo objects ((MACHO's) which possibly are in the galactic haloes and which could account for the missing dark matter. Those objects have a mass which is a fraction of solar mass and could be detected by gravitational microlensing: the light of a star is amplified when a MACHO is crossing its line of sight from the earth. This technique has been proposed by Paczy\\'nski in 1986. The AGAPE collaboration applies this technique in an original way by using, as target stars, the stars of another galaxy without resolving them. The recent progresses in photometry with CCD allow now to see tiny variations of the surface brightness of a galaxy like M~31. Those tiny variations can be the result of a single microlensing event on the background stars contributing to the surface brightness. The AGAPE collaboration has now cumulat...

  12. A PCR amplification method without DNA extraction.

    Science.gov (United States)

    Li, Hongwei; Xu, Haiyue; Zhao, Chunjiang; Sulaiman, Yiming; Wu, Changxin

    2011-02-01

    To develop a simple and inexpensive method for direct PCR amplification of animal DNA from tissues, we optimized different components and their concentration in lysis buffer systems. Finally, we acquired the optimized buffer system composed of 10 mmol tris(hydroxymethyl)aminomethane (Tris)-Cl (pH 8.0), 2 mmol ethylene diamine tetraacetic (EDTA) (pH 8.0), 0.2 mol NaCl and 200 μg/mL Proteinase K. Interestingly, the optimized buffer is also very effective when working with common human sample types, including blood, buccal cells and hair. The direct PCR method requires fewer reagents (Tris-Cl, EDTA, Protease K and NaCl) and less incubation time (only 35 min). The cost of treating every sample is less than $0.02, and all steps can be completed on a thermal cycler in a 96-well format. So, the proposed method will significantly improve high-throughput PCR-based molecular assays in animal systems and in common human sample types.

  13. Generation of recombinant pestiviruses using a full genome amplification strategy

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Reimann, Ilona; Uttenthal, Åse;

    Aim Complete genome amplification of viral RNA provides a new tool for generation of modified pestiviruses. We have recently reported a full genome amplification strategy for direct recovery of infectious pestivirus (Rasmussen et al., 2008). This comprised rescue of BDV strain “Gifhorn” from a full......-length RT-PCR amplicon demonstrating that long RT-PCR can be used for direct generation of an infectious pestivirus. The strategy is not limited to amplification of BDV “Gifhorn”, but can be further utilized for amplification of a diverse selection of pestivirus strains and for the generation of modified...... of an existing infectious clone. The long RT-PCR strategy significantly simplifies and streamlines the workflow and facilitates generation of new modified pestiviruses and also allows direct full-length sequence analysis. References Rasmussen et al., J. Virol. Methods 149(2), 330 (2008)....

  14. Nonlinear Zel'dovich effect: Parametric amplification from medium rotation

    CERN Document Server

    Faccio, Daniele

    2016-01-01

    The interaction of light with rotating media has attracted recent interest for both fundamental and applied studies including rotational Doppler shift measurements. It is also possible to obtain amplification through the scattering of light with orbital angular momentum from a rotating and absorbing cylinder, as proposed by Zel'dovich more than 40 years ago. This amplification mechanism has never been observed experimentally yet has connections to other fields such as Penrose superradiance in rotating black holes. Here we propose a nonlinear optics system whereby incident light carrying orbital angular momentum drives parametric interaction in a rotating medium. The crystal rotation is shown to take the phase-mismatched parametric interaction with negligible energy exchange at zero rotation to amplification for sufficiently large rotation rates. The amplification is shown to result from breaking of anti-PT symmetry induced by the medium rotation.

  15. Isothermal DNA amplification strategies for duplex microorganism detection.

    Science.gov (United States)

    Santiago-Felipe, Sara; Tortajada-Genaro, Luis Antonio; Morais, Sergi; Puchades, Rosa; Maquieira, Ángel

    2015-05-01

    A valid solution for micro-analytical systems is the selection of a compatible amplification reaction with a simple, highly-integrated efficient design that allows the detection of multiple genomic targets. Two approaches under isothermal conditions are presented: recombinase polymerase amplification (RPA) and multiple displacement amplification (MDA). Both methods were applied to a duplex assay specific for Salmonella spp. and Cronobacter spp., with excellent amplification yields (0.2-8.6 · 10(8) fold). The proposed approaches were successfully compared to conventional PCR and tested for the milk sample analysis as a microarray format on a compact disc (support and driver). Satisfactory results were obtained in terms of resistance to inhibition, selectivity, sensitivity (10(1)-10(2)CFU/mL) and reproducibility (below 12.5%). The methods studied are efficient and cost-effective, with a high potential to automate microorganisms detection by integrated analytical systems working at a constant low temperature.

  16. Ultrabroadband noncollinear optical parametric amplification with LBO crystal.

    Science.gov (United States)

    Zhao, Baozhen; Jiang, Yongliang; Sueda, Keiich; Miyanaga, Noriaki; Kobayashi, Takayoshi

    2008-11-10

    Ultrabroadband visible noncollinear optical parametric amplification (NOPA) was achieved in an LBO crystal, with a continuum seed pulse generated from a sapphire plate. The spectral bandwidth of the amplified visible pulse was about 200 nm, which can support sub-5 fs pulse amplification. An amplified output of 0.21 microJ with an average gain of about 210 was achieved. This provides, to the best of our knowledge, the first-time demonstration of such broadband amplification with a biaxial nonlinear optical crystal. Both the simulation and experimental results indicate that the LBO has a great potential as nonlinear medium in power amplifier for TW to PW noncollinear optical parametric chirped pulse amplification (NOPCPA) systems. PMID:19581976

  17. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    OpenAIRE

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten; Galili, Michael; Peucheret, Christophe

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.

  18. Fingerprinting Internet DNS Amplification DDoS Activities

    OpenAIRE

    Fachkha, Claude; Bou-Harb, Elias; Debbabi, Mourad

    2013-01-01

    This work proposes a novel approach to infer and characterize Internet-scale DNS amplification DDoS attacks by leveraging the darknet space. Complementary to the pioneer work on inferring Distributed Denial of Service (DDoS) activities using darknet, this work shows that we can extract DDoS activities without relying on backscattered analysis. The aim of this work is to extract cyber security intelligence related to DNS Amplification DDoS activities such as detection period, attack duration, ...

  19. Measurement-Based Noiseless Linear Amplification for Quantum Communication

    OpenAIRE

    Chrzanowski, Helen M.; Walk, Nathan; Assad, Syed M.; Janousek, Jiri; Hosseini, Sara; Ralph, Timothy C.; Symul, Thomas; Lam, Ping Koy

    2014-01-01

    Entanglement distillation is an indispensable ingredient in extended quantum communication networks. Distillation protocols are necessarily non-deterministic and require advanced experimental techniques such as noiseless amplification. Recently it was shown that the benefits of noiseless amplification could be extracted by performing a post-selective filtering of the measurement record to improve the performance of quantum key distribution. We apply this protocol to entanglement degraded by t...

  20. On the amplification of acoustic phonons in carbon nanotube

    OpenAIRE

    Dompreh, K. A.; Mensah, N. G.; Sakyi-Arthur, D.; Mensah, S. Y.

    2016-01-01

    We present a theoretical study of acoustic phonons amplification in Carbon Nanotubes (CNT). The phenomenon is via Cerenkov emission (CE) of acoustic phonons using intraband transitions proposed by Mensah et. al.,~\\cite{1} in Semiconductor Superlattices (SSL) and confirmed in ~\\cite{2}. From this, an asymmetric graph of $\\Gamma^{CNT}$ on $\\frac{V_d}{V_s}$ and $\\Omega\\tau$ were obtained where amplification ($\\Gamma_{amp}^{CNT}$) $>>$ absorption ($\\Gamma_{abs}^{CNT}$). The ratio, $\\frac{\\vert \\G...

  1. Engineering targeted chromosomal amplifications in human breast epithelial cells.

    Science.gov (United States)

    Springer, Simeon; Yi, Kyung H; Park, Jeenah; Rajpurohit, Anandita; Price, Amanda J; Lauring, Josh

    2015-07-01

    Chromosomal amplifications are among the most common genetic alterations found in human cancers. However, experimental systems to study the processes that lead to specific, recurrent amplification events in human cancers are lacking. Moreover, some common amplifications, such as that at 8p11-12 in breast cancer, harbor multiple driver oncogenes, which are poorly modeled by conventional overexpression approaches. We sought to develop an experimental system to model recurrent chromosomal amplification events in human cell lines. Our strategy is to use homologous-recombination-mediated gene targeting to deliver a dominantly selectable, amplifiable marker to a specified chromosomal location. We used adeno-associated virus vectors to target human MCF-7 breast cancer cells at the ZNF703 locus, in the recurrent 8p11-12 amplicon, using the E. coli inosine monophosphate dehydrogenase (IMPDH) enzyme as a marker. We applied selective pressure using IMPDH inhibitors. Surviving clones were found to have increased copy number of ZNF703 (average 2.5-fold increase) by droplet digital PCR and FISH. Genome-wide array comparative genomic hybridization confirmed that amplifications had occurred on the short arm of chromosome 8, without changes on 8q or other chromosomes. Patterns of amplification were variable and similar to those seen in primary human breast cancers, including "sawtooth" patterns, distal copy number loss, and large continuous regions of copy number gain. This system will allow study of the cis- and trans-acting factors that are permissive for chromosomal amplification and provide a model to analyze oncogene cooperativity in amplifications harboring multiple candidate driver genes.

  2. Aerosol Lidar for the Relative Backscatter Amplification Measurements

    Science.gov (United States)

    Razenkov, Igor A.; Banakh, Victor A.; Nadeev, Alexander I.

    2016-06-01

    Backscatter amplification presents only in a turbulent atmosphere, when the laser beam is propagates twice through the same inhomogeneities. We proposed technical solution to detect backscatter amplification. An aerosol micro pulse lidar with a beam expansion via receiving telescope was built to study this effect. Our system allows simultaneous detection of two returns from the same scattering volume: exactly on the axis of the laser beam and off the axis.

  3. Methods for microbial DNA extraction from soil for PCR amplification

    OpenAIRE

    Yeates C; Gillings, MR; Davison AD; Altavilla N; Veal DA

    1998-01-01

    Amplification of DNA from soil is often inhibited by co-purified contaminants. A rapid, inexpensive, large-scale DNA extraction method involving minimal purification has been developed that is applicable to various soil types (1). DNA is also suitable for PCR amplification using various DNA targets. DNA was extracted from 100g of soil using direct lysis with glass beads and SDS followed by potassium acetate precipitation, polyethylene glycol precipitation, phenol extraction and isopropanol pr...

  4. Aerosol Lidar for the Relative Backscatter Amplification Measurements

    Directory of Open Access Journals (Sweden)

    Razenkov Igor A.

    2016-01-01

    Full Text Available Backscatter amplification presents only in a turbulent atmosphere, when the laser beam is propagates twice through the same inhomogeneities. We proposed technical solution to detect backscatter amplification. An aerosol micro pulse lidar with a beam expansion via receiving telescope was built to study this effect. Our system allows simultaneous detection of two returns from the same scattering volume: exactly on the axis of the laser beam and off the axis.

  5. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten;

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  6. Controllable Amplification of Entanglement for Two Qutrits under Decoherence

    Institute of Scientific and Technical Information of China (English)

    ZHENG Qiang; XIE Xiao-Yao; ZHI Qi-Jun; REN Zhong-Zhou

    2011-01-01

    Entanglement dynamics of a two-qutrit Heisenberg spin chain with the external magnetic fields and DM interaction under the intrinsic decoherence is investigated. Depending on whether there is inhomogeneous magnetic field,the entanglement amplification, i.e. the phenomenon that the finally stable entanglement is bigger than that of the initial one, is found for one kind of initial states. The reasons for the controllable entanglement amplification are discussed.

  7. Problems encountered when defining Arctic amplification as a ratio.

    Science.gov (United States)

    Hind, Alistair; Zhang, Qiong; Brattström, Gudrun

    2016-01-01

    In climate change science the term 'Arctic amplification' has become synonymous with an estimation of the ratio of a change in Arctic temperatures compared with a broader reference change under the same period, usually in global temperatures. Here, it is shown that this definition of Arctic amplification comes with a suite of difficulties related to the statistical properties of the ratio estimator itself. Most problematic is the complexity of categorizing uncertainty in Arctic amplification when the global, or reference, change in temperature is close to 0 over a period of interest, in which case it may be impossible to set bounds on this uncertainty. An important conceptual distinction is made between the 'Ratio of Means' and 'Mean Ratio' approaches to defining a ratio estimate of Arctic amplification, as they do not only possess different uncertainty properties regarding the amplification factor, but are also demonstrated to ask different scientific questions. Uncertainty in the estimated range of the Arctic amplification factor using the latest global climate models and climate forcing scenarios is expanded upon and shown to be greater than previously demonstrated for future climate projections, particularly using forcing scenarios with lower concentrations of greenhouse gases. PMID:27461918

  8. Targeting MET Amplification as a New Oncogenic Driver

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hisato [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Okamoto, Isamu, E-mail: okamotoi@kokyu.med.kyushu-u.ac.jp [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Center for Clinical and Translational Research, Kyushu University Hospital, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582 (Japan); Okamoto, Wataru [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Division of Transrlational Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577 (Japan); Tanizaki, Junko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, HIM223, 450 Brookline Avenue, Boston, MA 02215 (United States); Nakagawa, Kazuhiko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Nishio, Kazuto [Department of Genome Biology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan)

    2014-07-22

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy.

  9. Targeting MET Amplification as a New Oncogenic Driver

    Directory of Open Access Journals (Sweden)

    Hisato Kawakami

    2014-07-01

    Full Text Available Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy.

  10. Rapid Diagnosis of Human Herpesvirus 6 Infection by a Novel DNA Amplification Method, Loop-Mediated Isothermal Amplification

    OpenAIRE

    Ihira, Masaru; Yoshikawa, Tetsushi; Enomoto, Yoshihiko; Akimoto, Shiho; Ohashi, Masahiro; Suga, Sadao; Nishimura, Naoko; Ozaki, Takao; Nishiyama, Yukihiro; Notomi, Tsugunori; Ohta, Yoshinori; Asano, Yoshizo

    2004-01-01

    A novel nucleic acid amplification method, termed loop-mediated isothermal amplification (LAMP), which amplifies DNA with high specificity, efficiency, and rapidity under isothermal conditions, may be a valuable tool for the rapid detection of infectious agents. LAMP was developed for human herpesvirus 6 (HHV-6), and its reliability was evaluated in this study. Although LAMP products were detected in HHV-6 B and HHV-6 A DNA, they were not detected in HHV-7 and human cytomegalovirus DNA. The s...

  11. ASAP: Amplification, sequencing & annotation of plastomes

    Directory of Open Access Journals (Sweden)

    Folta Kevin M

    2005-12-01

    Full Text Available Abstract Background Availability of DNA sequence information is vital for pursuing structural, functional and comparative genomics studies in plastids. Traditionally, the first step in mining the valuable information within a chloroplast genome requires sequencing a chloroplast plasmid library or BAC clones. These activities involve complicated preparatory procedures like chloroplast DNA isolation or identification of the appropriate BAC clones to be sequenced. Rolling circle amplification (RCA is being used currently to amplify the chloroplast genome from purified chloroplast DNA and the resulting products are sheared and cloned prior to sequencing. Herein we present a universal high-throughput, rapid PCR-based technique to amplify, sequence and assemble plastid genome sequence from diverse species in a short time and at reasonable cost from total plant DNA, using the large inverted repeat region from strawberry and peach as proof of concept. The method exploits the highly conserved coding regions or intergenic regions of plastid genes. Using an informatics approach, chloroplast DNA sequence information from 5 available eudicot plastomes was aligned to identify the most conserved regions. Cognate primer pairs were then designed to generate ~1 – 1.2 kb overlapping amplicons from the inverted repeat region in 14 diverse genera. Results 100% coverage of the inverted repeat region was obtained from Arabidopsis, tobacco, orange, strawberry, peach, lettuce, tomato and Amaranthus. Over 80% coverage was obtained from distant species, including Ginkgo, loblolly pine and Equisetum. Sequence from the inverted repeat region of strawberry and peach plastome was obtained, annotated and analyzed. Additionally, a polymorphic region identified from gel electrophoresis was sequenced from tomato and Amaranthus. Sequence analysis revealed large deletions in these species relative to tobacco plastome thus exhibiting the utility of this method for structural and

  12. Regulation of ribosomal DNA amplification by the TOR pathway.

    Science.gov (United States)

    Jack, Carmen V; Cruz, Cristina; Hull, Ryan M; Keller, Markus A; Ralser, Markus; Houseley, Jonathan

    2015-08-01

    Repeated regions are widespread in eukaryotic genomes, and key functional elements such as the ribosomal DNA tend to be formed of high copy repeated sequences organized in tandem arrays. In general, high copy repeats are remarkably stable, but a number of organisms display rapid ribosomal DNA amplification at specific times or under specific conditions. Here we demonstrate that target of rapamycin (TOR) signaling stimulates ribosomal DNA amplification in budding yeast, linking external nutrient availability to ribosomal DNA copy number. We show that ribosomal DNA amplification is regulated by three histone deacetylases: Sir2, Hst3, and Hst4. These enzymes control homologous recombination-dependent and nonhomologous recombination-dependent amplification pathways that act in concert to mediate rapid, directional ribosomal DNA copy number change. Amplification is completely repressed by rapamycin, an inhibitor of the nutrient-responsive TOR pathway; this effect is separable from growth rate and is mediated directly through Sir2, Hst3, and Hst4. Caloric restriction is known to up-regulate expression of nicotinamidase Pnc1, an enzyme that enhances Sir2, Hst3, and Hst4 activity. In contrast, normal glucose concentrations stretch the ribosome synthesis capacity of cells with low ribosomal DNA copy number, and we find that these cells show a previously unrecognized transcriptional response to caloric excess by reducing PNC1 expression. PNC1 down-regulation forms a key element in the control of ribosomal DNA amplification as overexpression of PNC1 substantially reduces ribosomal DNA amplification rate. Our results reveal how a signaling pathway can orchestrate specific genome changes and demonstrate that the copy number of repetitive DNA can be altered to suit environmental conditions.

  13. Optical Parametric Amplification for High Peak and Average Power

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, I

    2001-11-26

    Optical parametric amplification is an established broadband amplification technology based on a second-order nonlinear process of difference-frequency generation (DFG). When used in chirped pulse amplification (CPA), the technology has been termed optical parametric chirped pulse amplification (OPCPA). OPCPA holds a potential for producing unprecedented levels of peak and average power in optical pulses through its scalable ultrashort pulse amplification capability and the absence of quantum defect, respectively. The theory of three-wave parametric interactions is presented, followed by a description of the numerical model developed for nanosecond pulses. Spectral, temperature and angular characteristics of OPCPA are calculated, with an estimate of pulse contrast. An OPCPA system centered at 1054 nm, based on a commercial tabletop Q-switched pump laser, was developed as the front end for a large Nd-glass petawatt-class short-pulse laser. The system does not utilize electro-optic modulators or multi-pass amplification. The obtained overall 6% efficiency is the highest to date in OPCPA that uses a tabletop commercial pump laser. The first compression of pulses amplified in highly nondegenerate OPCPA is reported, with the obtained pulse width of 60 fs. This represents the shortest pulse to date produced in OPCPA. Optical parametric amplification in {beta}-barium borate was combined with laser amplification in Ti:sapphire to produce the first hybrid CPA system, with an overall conversion efficiency of 15%. Hybrid CPA combines the benefits of high gain in OPCPA with high conversion efficiency in Ti:sapphire to allow significant simplification of future tabletop multi-terawatt sources. Preliminary modeling of average power limits in OPCPA and pump laser design are presented, and an approach based on cascaded DFG is proposed to increase the average power beyond the single-crystal limit. Angular and beam quality effects in optical parametric amplification are modeled

  14. Problems encountered when defining Arctic amplification as a ratio

    Science.gov (United States)

    Hind, Alistair; Zhang, Qiong; Brattström, Gudrun

    2016-07-01

    In climate change science the term ‘Arctic amplification’ has become synonymous with an estimation of the ratio of a change in Arctic temperatures compared with a broader reference change under the same period, usually in global temperatures. Here, it is shown that this definition of Arctic amplification comes with a suite of difficulties related to the statistical properties of the ratio estimator itself. Most problematic is the complexity of categorizing uncertainty in Arctic amplification when the global, or reference, change in temperature is close to 0 over a period of interest, in which case it may be impossible to set bounds on this uncertainty. An important conceptual distinction is made between the ‘Ratio of Means’ and ‘Mean Ratio’ approaches to defining a ratio estimate of Arctic amplification, as they do not only possess different uncertainty properties regarding the amplification factor, but are also demonstrated to ask different scientific questions. Uncertainty in the estimated range of the Arctic amplification factor using the latest global climate models and climate forcing scenarios is expanded upon and shown to be greater than previously demonstrated for future climate projections, particularly using forcing scenarios with lower concentrations of greenhouse gases.

  15. Magnetic Amplification by Magnetized Cosmic Rays in SNR Shocks

    CERN Document Server

    Riquelme, Mario A

    2009-01-01

    (Abridged) X-ray observations of synchrotron rims in supernova remnant (SNR) shocks show evidence of strong magnetic field amplification (a factor of ~100 between the upstream and downstream medium). This amplification may be due to plasma instabilities driven by shock-accelerated cosmic rays (CRs). One candidate is the cosmic ray current-driven (CRCD) instability (Bell 2004), caused by the electric current of large Larmor radii CRs propagating parallel to the upstream magnetic field. Particle-in-cell (PIC) simulations have shown that the back-reaction of the amplified field on CRs would limit the amplification factor of this instability to less than ~10 in galactic SNRs. In this paper, we study the possibility of further amplification driven near shocks by "magnetized" CRs, whose Larmor radii are smaller than the length scale of the field that was previously amplified by the CRCD instability. We find that additional amplification can occur due to a new instability, driven by the CR current perpendicular to t...

  16. Adaptive base-isolation of civil structures using variable amplification

    Institute of Scientific and Technical Information of China (English)

    Kenneth K. Walsh; Makola M. Abdullah

    2006-01-01

    Semi-active dampers are used in base-isolation to reduce the seismic response of civil engineering structures.In the present study, a new semi-active damping system using variable amplification will be investigated for adaptive baseisolation. It uses a novel variable amplification device (VAD) connected in series with a passive damper. The VAD is capable of producing multiple amplification factors, each corresponding to a different amplification state. Forces from the damper are amplified to the structure according to the current amplification state, which is selected via a semi-active control algorithm specifically tailored to the system's unique damping characteristics. To demonstrate the effectiveness of the VAD-damper system for adaptive base-isolation, numerical simulations are conducted for three and seven-story base-isolated buildings subject to both far and near-field ground motions. The results indicate that the system can achieve significant reductions in response compared to the base-isolated buildings with no damper. The proposed system is also found to perform well compared to a typical semi-active damper.

  17. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities

    Science.gov (United States)

    Saba, M.; Ciuti, C.; Bloch, J.; Thierry-Mieg, V.; André, R.; Dang, Le Si; Kundermann, S.; Mura, A.; Bongiovanni, G.; Staehli, J. L.; Deveaud, B.

    2001-12-01

    Cavity polaritons, the elementary optical excitations of semiconductor microcavities, may be understood as a superposition of excitons and cavity photons. Owing to their composite nature, these bosonic particles have a distinct optical response, at the same time very fast and highly nonlinear. Very efficient light amplification due to polariton-polariton parametric scattering has recently been reported in semiconductor microcavities at liquid-helium temperatures. Here we demonstrate polariton parametric amplification up to 120K in GaAlAs-based microcavities and up to 220K in CdTe-based microcavities. We show that the cut-off temperature for the amplification is ultimately determined by the binding energy of the exciton. A 5-µm-thick planar microcavity can amplify a weak light pulse more than 5,000 times. The effective gain coefficient of an equivalent homogeneous medium would be 107cm-1. The subpicosecond duration and high efficiency of the amplification could be exploited for high-repetition all-optical microscopic switches and amplifiers. 105 polaritons occupy the same quantum state during the amplification, realizing a dynamical condensate of strongly interacting bosons which can be studied at high temperature.

  18. Amplification of Information by Photons and the Quantum Chernoff Bound

    Science.gov (United States)

    Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.

    2014-03-01

    Amplification was regarded, since the early days of quantum theory, as a mysterious ingredient that endows quantum microstates with macroscopic consequences, key to the ``collapse of the wavepacket,'' and a way to avoid embarrassing problems exemplified by Schrödinger's cat. This bridge between the quantum microworld and the classical world of our experience was postulated ad hoc in the Copenhagen Interpretation. Quantum Darwinism views amplification as replication, in many copies, of information about quantum states. We show that such amplification is a natural consequence of a broad class of models of decoherence, including the photon environment we use to obtain most of our information. The resultant amplification is huge, proportional to # ξQCB . Here, #  is the environment size and ξQCB is the ``typical'' Quantum Chernoff Information, which quantifies the efficiency of the amplification. The information communicated though the environment is imprinted in the states of individual environment subsystems, e.g., in single photons, which document the transfer of information into the environment and result in the emergence of the classical world. See, http://mike.zwolak.org

  19. Modeling Loss Amplification After Devastating Disasters

    Science.gov (United States)

    Boissonnade, A. C.; Muir Wood, R.

    2008-05-01

    With the catastrophic events that occurred in 2004 and 2005 came the realization that Catastrophic (Cat) loss models were not properly modeling insured losses and their associated uncertainty. One reason was that major catastrophes were generally characterized by losses caused by the primary initiating events. Such approaches are not adequate when losses can result from the compounded impacts of scenarios of secondary cascading events (physical, economic, social and political) that can have much larger impacts than those due to the primary events themselves. Situations where more and more cascading events can occur will result in different outcomes, some leading to extreme loss events, generally referred as Super Cats. These situations occurred in December 2004 with the Sumatra earthquake and tsunami and in August 2005 with hurricane Katrina and resulting New Orleans flooding. A review of historical events shows that these events are not exceptions. Modeling such scenarios adds new levels of complexity and different perspectives in the understanding of characterizing and assessing impacts of catastrophic events. Modeling economic consequences of extreme events can be improved by developing scenarios of cascades of secondary events triggered by the primary event(s). The likelihood of each scenario should be modeled, along with the hazards of primary and secondary events and resulting losses with their impacts to the different stakeholders. In addition, it is also important to model the impacts of the hazards on the infrastructure and the resulting disruption to the residents and the local economy because these can result in additional losses. This paper describes current work with the goals of better modeling the full economic impacts from catastrophic events, and of a more comprehensive treatment of uncertainty. We will present approaches for modeling loss amplification that account for all the ways in which the cost incurred for a certain level of damage due to a

  20. Measurement-based noiseless linear amplification for quantum communication

    Science.gov (United States)

    Chrzanowski, H. M.; Walk, N.; Haw, J. Y.; Thearle, O.; Assad, S. M.; Janousek, J.; Hosseini, S.; Ralph, T. C.; Symul, T.; Lam, P. K.

    2014-11-01

    Entanglement distillation is an indispensable ingredient in extended quantum communication networks. Distillation protocols are necessarily non-deterministic and require non-trivial experimental techniques such as noiseless amplification. We show that noiseless amplification could be achieved by performing a post-selective filtering of measurement outcomes. We termed this protocol measurement-based noiseless linear amplification (MBNLA). We apply this protocol to entanglement that suffers transmission loss of up to the equivalent of 100km of optical fibre and show that it is capable of distilling entanglement to a level stronger than that achievable by transmitting a maximally entangled state through the same channel. We also provide a proof-of-principle demonstration of secret key extraction from an otherwise insecure regime via MBNLA. Compared to its physical counterpart, MBNLA not only is easier in term of implementation, but also allows one to achieve near optimal probability of success.

  1. Amplification of spin waves by the spin Seebeck effect

    Science.gov (United States)

    Padrón-Hernández, E.; Azevedo, A.; Rezende, S. M.

    2012-04-01

    We observe amplification of spin-wave packets propagating along a film of single-crystal yttrium iron garnet (YIG) subject to a transverse temperature gradient. The spin waves are excited and detected with standard techniques used to study volume or surface magnetostatic waves in the 1-2 GHz frequency range. Amplification gains larger than 20 are observed in a YIG film heated by a current of 20 mA in a Pt layer in a simple YIG/Pt bilayer. The amplification is attributed to the action of a spin-transfer thermal torque acting on the magnetization that opposes the relaxation and which is created by spin currents generated through the spin Seebeck effect. The experimental data are interpreted with a spin-wave model.

  2. Identification of genetic elements associated with EPSPs gene amplification.

    Directory of Open Access Journals (Sweden)

    Todd A Gaines

    Full Text Available Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS gene evolved in the weed species Amaranthus palmeri to confer resistance to glyphosate, the world's most important herbicide. However, the gene amplification mechanism is unknown. We sequenced the EPSPS gene and genomic regions flanking EPSPS loci in A. palmeri, and searched for mobile genetic elements or repetitive sequences. The EPSPS gene was 10,229 bp, containing 8 exons and 7 introns. The gene amplification likely proceeded through a DNA-mediated mechanism, as introns exist in the amplified gene copies and the entire amplified sequence is at least 30 kb in length. Our data support the presence of two EPSPS loci in susceptible (S A. palmeri, and that only one of these was amplified in glyphosate-resistant (R A. palmeri. The EPSPS gene amplification event likely occurred recently, as no sequence polymorphisms were found within introns of amplified EPSPS copies from R individuals. Sequences with homology to miniature inverted-repeat transposable elements (MITEs were identified next to EPSPS gene copies only in R individuals. Additionally, a putative Activator (Ac transposase and a repetitive sequence region were associated with amplified EPSPS genes. The mechanism controlling this DNA-mediated amplification remains unknown. Further investigation is necessary to determine if the gene amplification may have proceeded via DNA transposon-mediated replication, and/or unequal recombination between different genomic regions resulting in replication of the EPSPS gene.

  3. The Efficiency of Magnetic Field Amplification at Shocks by Turbulence

    Science.gov (United States)

    Ji(), Suoqing; Oh, S. Peng; Ruszkowski, M.; Markevitch, M.

    2016-09-01

    Turbulent dynamo field amplification has often been invoked to explain the strong field strengths in thin rims in supernova shocks (˜100 μG) and in radio relics in galaxy clusters (˜μG). We present high resolution MHD simulations of the interaction between pre-shock turbulence, clumping and shocks, to quantify the conditions under which turbulent dynamo amplification can be significant. We demonstrate numerically converged field amplification which scales with Alfvén Mach number, B/B_0 ∝ M_A, up to M_A ˜ 150. This implies that the post-shock field strength is relatively independent of the seed field. Amplification is dominated by compression at low M_A, and stretching (turbulent amplification) at high M_A. For high M_A, the B-field grows exponentially and saturates at equipartition with turbulence, while the vorticity jumps sharply at the shock and subsequently decays; the resulting field is orientated predominately along the shock normal (an effect only apparent in 3D and not 2D). This agrees with the radial field bias seen in supernova remnants. By contrast, for low M_A, field amplification is mostly compressional, relatively modest, and results in a predominantly perpendicular field. The latter is consistent with the polarization seen in radio relics. Our results are relatively robust to the assumed level of gas clumping. Our results imply that the turbulent dynamo may be important for supernovae, but is only consistent with the field strength, and not geometry, for cluster radio relics. For the latter, this implies strong pre-existing B-fields in the ambient cluster outskirts.

  4. The emergence of surface-based Arctic amplification

    Directory of Open Access Journals (Sweden)

    M. C. Serreze

    2009-02-01

    Full Text Available Rises in surface and lower troposphere air temperatures through the 21st century are projected to be especially pronounced over the Arctic Ocean during the cold season. This Arctic amplification is largely driven by loss of the sea ice cover, allowing for strong heat transfers from the ocean to the atmosphere. Consistent with observed reductions in sea ice extent, fields from both the NCEP/NCAR and JRA-25 reanalyses point to emergence of surface-based Arctic amplification in the last decade.

  5. Influence of environmental noise on the weak value amplification

    Science.gov (United States)

    Zhu, Xuannmin; Zhang, Yu-Xiang

    2016-05-01

    Quantum systems are always disturbed by environmental noise. We have investigated the influence of the environmental noise on the amplification in weak measurements. Three typical quantum noise processes are discussed in this article. The maximum expectation values of the observables of the measuring device decrease sharply with the strength of the depolarizing and phase damping channels, while the amplification effect of weak measurement is immune to the amplitude damping noise. To obtain significantly amplified signals, we must ensure that the preselection quantum systems are kept away from the depolarizing and phase damping processes.

  6. Nanoscale field effect transistor for biomolecular signal amplification

    CERN Document Server

    Chen, Yu; Hong, Mi K; Erramilli, Shyamsunder; Rosenberg, Carol; Mohanty, Pritiraj

    2008-01-01

    We report amplification of biomolecular recognition signal in lithographically defined silicon nanochannel devices. The devices are configured as field effect transistors (FET) in the reversed source-drain bias region. The measurement of the differential conductance of the nanowire channels in the FET allows sensitive detection of changes in the surface potential due to biomolecular binding. Narrower silicon channels demonstrate higher sensitivity to binding due to increased surface-to-volume ratio. The operation of the device in the negative source-drain region demonstrates signal amplification. The equivalence between protein binding and change in the surface potential is described.

  7. Ultra-broad bandwidth parametric amplification at degeneracy.

    Science.gov (United States)

    Limpert, J; Aguergaray, C; Montant, S; Manek-Hönninger, I; Petit, S; Descamps, D; Cormier, E; Salin, F

    2005-09-19

    We report on a novel approach of ultra-broad bandwidth parametric amplification around degeneracy. A bandwidth of up to 400 nm centered around 800 nm is amplified in a BBO crystal by using chirped pump pulses with a bandwitdth as broad as 10 nm. A supercontinuum signal is generated in a microstructured fiber, having to first order a quadratic chirp, which is necessary to ensure temporal overlap of the interacting waves over this broad bandwidth. Furthermore, we discuss the potential of this approach for an octave-spanning parametric amplification.

  8. Methods for microbial DNA extraction from soil for PCR amplification

    Directory of Open Access Journals (Sweden)

    Yeates C

    1998-01-01

    Full Text Available Amplification of DNA from soil is often inhibited by co-purified contaminants. A rapid, inexpensive, large-scale DNA extraction method involving minimal purification has been developed that is applicable to various soil types (1. DNA is also suitable for PCR amplification using various DNA targets. DNA was extracted from 100g of soil using direct lysis with glass beads and SDS followed by potassium acetate precipitation, polyethylene glycol precipitation, phenol extraction and isopropanol precipitation. This method was compared to other DNA extraction methods with regard to DNA purity and size.

  9. Theory of light amplification in active fishnet metamaterials

    CERN Document Server

    Hamm, Joachim M; Tsakmakidis, Kosmas L; Hess, Ortwin

    2011-01-01

    We establish a theory that traces light amplification in an active double-fishnet metamaterial back to its microscopic origins. Based on ab initio calculations of the light/plasmon fields we extract energy rates and conversion efficiencies associated with gain/loss channels directly from Poynting's theorem. We find that for the negative refactive index mode both radiative loss and gain outweigh resistive loss by more than a factor of two, opening a broad window of steady-state amplification (free of instabilities) accessible even when a gain reduction close to the metal is taken into account.

  10. Raman amplification in the broken-wave regime

    CERN Document Server

    Farmer, John P

    2015-01-01

    In regimes far beyond the wavebreaking theshold of Raman amplification, we show that significant amplifcation can occur after the onset of wavebreaking, before phase mixing destroys the coupling between pump and probe. The amplification efficiency in this regime is therefore strongly dependent on the energy-transfer rate when wavebreaking occurs, and is, as such, sensitive to both the probe amplitude and profile. In order to access the higher-efficiency broken-wave regime, a short, intense probe is required. Parameter scans show the marked difference in behaviour compared to below wavebreaking, where longer, more energetic pulses lead to improved efficiencies.

  11. Femtosecond pulse amplification in cladding-pumped fibers

    OpenAIRE

    Minelly, J. D.; Galvanauskas, A.; Fermann, M. E.; Harter, D.; Caplen, J.E.; Chen, Z.J.; Payne, D. N.

    1995-01-01

    Femtosecond pulse amplification in a cladding-pumped fiber amplifier is demonstrated for the first time to our knowledge. Using a cladding-pumped erbium-doped fiber power amplifier and a passively mode-locked fiber seed oscillator in conjunction with an all-fiber chirped-pulse amplification system, we obtain 380-fs near-bandwidth-limited pulses with an average power of 260 mW. The pulse repetition rate is varied between 5 and 50 MHz, and pulse energies as high as 20 nJ are generated.

  12. Divided-pulse amplification to the joule level.

    Science.gov (United States)

    Webb, Benjamin; Azim, Ahmad; Bodnar, Nathan; Chini, Michael; Shah, Lawrence; Richardson, Martin

    2016-07-01

    Divided-pulse amplification (DPA) has proven to be a valuable tool in scaling the peak power of diode-pumped ytterbium-doped amplifiers to beyond the single-pulse threshold for parasitic nonlinear effects. DPA enables the amplification of picosecond pulses in solid-state amplifiers with limited bandwidth beyond the single-pulse damage threshold. In this Letter, we demonstrate DPA of picosecond pulses in a flashlamp-pumped Nd:YAG amplifier for the first time, to the best of our knowledge, yielding a combined pulse energy of 167 mJ. PMID:27367113

  13. Influence of environmental noise on the weak value amplification

    Science.gov (United States)

    Zhu, Xuannmin; Zhang, Yu-Xiang

    2016-08-01

    Quantum systems are always disturbed by environmental noise. We have investigated the influence of the environmental noise on the amplification in weak measurements. Three typical quantum noise processes are discussed in this article. The maximum expectation values of the observables of the measuring device decrease sharply with the strength of the depolarizing and phase damping channels, while the amplification effect of weak measurement is immune to the amplitude damping noise. To obtain significantly amplified signals, we must ensure that the preselection quantum systems are kept away from the depolarizing and phase damping processes.

  14. Amplification of Short Pulse High Power UV Laser

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    At recent year, with the development of CPA and other amplification technology, laser intensity achieves great increase and laser power can be high to PW(105) now, this ultrashort pulse lasers offer scientists a route to investigate laser-matter interaction in an absolute new regime.So far the researches on ultrashort pulse laser-matter interaction concentrated on infrared regime, yet ultraviolet laser has the advantage in intense field physics and ICF researches for its short wavelength and less nonlinear effects. KrF excimer is the best medium in UV ultrashort pulse amplification for its small saturation energy and high contrast ratio accessible.

  15. Ultra-broad bandwidth parametric amplification at degeneracy.

    Science.gov (United States)

    Limpert, J; Aguergaray, C; Montant, S; Manek-Hönninger, I; Petit, S; Descamps, D; Cormier, E; Salin, F

    2005-09-19

    We report on a novel approach of ultra-broad bandwidth parametric amplification around degeneracy. A bandwidth of up to 400 nm centered around 800 nm is amplified in a BBO crystal by using chirped pump pulses with a bandwitdth as broad as 10 nm. A supercontinuum signal is generated in a microstructured fiber, having to first order a quadratic chirp, which is necessary to ensure temporal overlap of the interacting waves over this broad bandwidth. Furthermore, we discuss the potential of this approach for an octave-spanning parametric amplification. PMID:19498762

  16. Highly efficient amplification of chronic wasting disease agent by protein misfolding cyclic amplification with beads (PMCAb.

    Directory of Open Access Journals (Sweden)

    Chad J Johnson

    Full Text Available Protein misfolding cyclic amplification (PMCA has emerged as an important technique for detecting low levels of pathogenic prion protein in biological samples. The method exploits the ability of the pathogenic prion protein to convert the normal prion protein to a proteinase K-resistant conformation. Inclusion of Teflon® beads in the PMCA reaction (PMCAb has been previously shown to increase the sensitivity and robustness of detection for the 263 K and SSLOW strains of hamster-adapted prions. Here, we demonstrate that PMCAb with saponin dramatically increases the sensitivity of detection for chronic wasting disease (CWD agent without compromising the specificity of the assay (i.e., no false positive results. Addition of Teflon® beads increased the robustness of the PMCA reaction, resulting in a decrease in the variability of PMCA results. Three rounds of serial PMCAb allowed detection of CWD agent from a 6.7 × 10(-13 dilution of 10% brain homogenate (1.3 fg of source brain. Titration of the same brain homogenate in transgenic mice expressing cervid prion protein (Tg(CerPrP1536(+/- mice allowed detection of CWD agent from the 10(-6 dilution of 10% brain homogenate. PMCAb is, thus, more sensitive than bioassay in transgenic mice by a factor exceeding 10(5. Additionally, we are able to amplify CWD agent from brain tissue and lymph nodes of CWD-positive white-tailed deer having Prnp alleles associated with reduced disease susceptibility.

  17. Highly efficient amplification of chronic wasting disease agent by protein misfolding cyclical amplification with beads (PMCAb)

    Science.gov (United States)

    Johnson, Chad J.; Aiken, Judd M.; McKenzie, Debbie; Samuel, Michael D.; Pedersen, Joel A.

    2012-01-01

    Protein misfolding cyclic amplification (PMCA) has emerged as an important technique for detecting low levels of pathogenic prion protein in biological samples. The method exploits the ability of the pathogenic prion protein to convert the normal prion protein to a proteinase K-resistant conformation. Inclusion of Teflon® beads in the PMCA reaction (PMCAb) has been previously shown to increase the sensitivity and robustness of detection for the 263 K and SSLOW strains of hamster-adapted prions. Here, we demonstrate that PMCAb with saponin dramatically increases the sensitivity of detection for chronic wasting disease (CWD) agent without compromising the specificity of the assay (i.e., no false positive results). Addition of Teflon® beads increased the robustness of the PMCA reaction, resulting in a decrease in the variability of PMCA results. Three rounds of serial PMCAb allowed detection of CWD agent from a 6.7×10−13 dilution of 10% brain homogenate (1.3 fg of source brain). Titration of the same brain homogenate in transgenic mice expressing cervid prion protein (Tg(CerPrP)1536+/−mice) allowed detection of CWD agent from the 10−6 dilution of 10% brain homogenate. PMCAb is, thus, more sensitive than bioassay in transgenic mice by a factor exceeding 105. Additionally, we are able to amplify CWD agent from brain tissue and lymph nodes of CWD-positive white-tailed deer having Prnp alleles associated with reduced disease susceptibility.

  18. Whole genome amplification and its impact on CGH array profiles

    Directory of Open Access Journals (Sweden)

    Meldrum Cliff

    2008-07-01

    Full Text Available Abstract Background Some array comparative genomic hybridisation (array CGH platforms require a minimum of micrograms of DNA for the generation of reliable and reproducible data. For studies where there are limited amounts of genetic material, whole genome amplification (WGA is an attractive method for generating sufficient quantities of genomic material from miniscule amounts of starting material. A range of WGA methods are available and the multiple displacement amplification (MDA approach has been shown to be highly accurate, although amplification bias has been reported. In the current study, WGA was used to amplify DNA extracted from whole blood. In total, six array CGH experiments were performed to investigate whether the use of whole genome amplified DNA (wgaDNA produces reliable and reproducible results. Four experiments were conducted on amplified DNA compared to unamplified DNA and two experiments on unamplified DNA compared to unamplified DNA. Findings All the experiments involving wgaDNA resulted in a high proportion of losses and gains of genomic material. Previously, amplification bias has been overcome by using amplified DNA in both the test and reference DNA. Our data suggests that this approach may not be effective, as the gains and losses introduced by WGA appears to be random and are not reproducible between different experiments using the same DNA. Conclusion In light of these findings, the use of both amplified test and reference DNA on CGH arrays may not provide an accurate representation of copy number variation in the DNA.

  19. Direct Extraction and Amplification of DNA from Soil.

    Science.gov (United States)

    Trevors, Jack T.; Leung, K.

    1998-01-01

    Presents an exercise that describes the direct extraction and purification of DNA from a small soil sample. Also discusses the subsequent amplification of a 343-bp Tn7 transposate A gene fragment (tnsA) from a strain of Pseudomonas aureofaciens 3732RNL11. Contains 21 references. (DDR)

  20. Soft x-ray amplification in an ablative capillary discharge

    International Nuclear Information System (INIS)

    Soft x-ray amplification in CVI 18.2 nm line is observed in an ablative UHMW-PE capillary discharge. The gain coefficient is measured to be 1.9 cm-1. The electron density is about 2 x 1019 cm-3. This indicates that capillary discharge pumping device can be a source for a compact soft x-ray laser. (author)

  1. Controlling the amplification of chirality in hydrogen-bonded assemblies

    NARCIS (Netherlands)

    Mateos-Timoneda, Miguel A.; Crego-Calama, Mercedes; Reinhoudt, David N.

    2005-01-01

    The amplification of chirality (a high enantiomeric or diastereomeric excess induced by a small initial amount of chiral bias) on hydrogen-bonded assemblies has been studied using “sergeants-and-soldiers” experiments under thermodynamically controlled conditions. Here it is shown that different subs

  2. Reversible Gating of Plasmonic Coupling for Optical Signal Amplification.

    Science.gov (United States)

    Khoury, Christopher G; Fales, Andrew M; Vo-Dinh, Tuan

    2016-07-20

    Amplification of optical signals is useful for a wide variety of applications, ranging from data signal transmission to chemical sensing and biomedical diagnostics. One such application in chemical sensing is surface-enhanced Raman scattering (SERS), an important technique for increasing the Raman signal using the plasmonic effect of enhanced electromagnetic fields associated with metallic nanostructures. One of the most important limitations of SERS-based amplification is the difficulty to reproducibly control the SERS signal. Here, we describe the design and implementation of a unique hybrid system capable of producing reversible gating of plasmonic coupling for Raman signal amplification. The hybrid system is composed of two subsystems: (1) colloidal magneto-plasmonic nanoparticles for SERS enhancement and (2) a micromagnet substrate with an externally applied magnetic field to modulate the colloidal nanoparticles. For this proof of concept demonstration, the nanoparticles were labeled with a Raman-active dye, and it was shown that the detected SERS signal could be reproducibly modulated by controlling the externally applied magnetic field. The developed system provides a simple, robust, inexpensive, and reusable device for SERS signal modulation. These properties will open up new possibilities for optical signal amplification and gating as well for high-throughput, reproducible SERS detection.

  3. Ultrafast double-pulse parametric amplification for precision Ramsey metrology

    NARCIS (Netherlands)

    Kandula, D.Z.; Renault, A.A.L.; Gohle, C.; Wolf, A.L.; Witte, S.; Hogervorst, W.; Ubachs, W.M.G.; Eikema, K.S.E.

    2008-01-01

    We demonstrate phase stable, mJ-level parametric amplification of pulse pairs originating from a Ti: Sapphire frequency comb laser. The amplifier-induced phase shift between the pulses has been determined interferometrically with an accuracy of approximate to 10 mrad. Typical phase shifts are on the

  4. Resonant amplification of quantum fluctuations in a spinor gas

    DEFF Research Database (Denmark)

    Topic, O.; Scherer, M.; Gebreyesus, G.;

    2010-01-01

    Bose-Einstein condensates of atoms with non-zero spin are known to constitute an ideal system to investigate fundamental properties of magnetic superfluids. More recently it was realized that they also provide the fascinating opportunity to investigate the macroscopic amplification of quantum and...

  5. Transient amplification limits noise suppression in biochemical networks

    Science.gov (United States)

    Dixon, John; Lindemann, Anika; McCoy, Jonathan H.

    2016-01-01

    Cell physiology is orchestrated, on a molecular level, through complex networks of biochemical reactions. The propagation of random fluctuations through these networks can significantly impact cell behavior, raising challenging questions about how network design shapes the cell's ability to suppress or exploit these fluctuations. Here, drawing on insights from statistical physics, fluid dynamics, and systems biology, we explore how transient amplification phenomena arising from network connectivity naturally limit a biochemical system's ability to suppress small fluctuations around steady-state behaviors. We find that even a simple system consisting of two variables linked by a single interaction is capable of amplifying small fluctuations orders of magnitude beyond the levels predicted by linear stability theory. We also find that adding additional interactions can promote further amplification, even when these interactions implement classic design strategies known to suppress fluctuations. These results establish that transient amplification is an essential factor determining baseline noise levels in stable intracellular networks. Significantly, our analysis is not bound to specific systems or interaction mechanisms: we find that noise amplification is an emergent phenomenon found near steady states in any network containing sufficiently strong interactions, regardless of its form or function.

  6. Loss of KLF14 triggers centrosome amplification and tumorigenesis.

    Science.gov (United States)

    Fan, Guangjian; Sun, Lianhui; Shan, Peipei; Zhang, Xianying; Huan, Jinliang; Zhang, Xiaohong; Li, Dali; Wang, Tingting; Wei, Tingting; Zhang, Xiaohong; Gu, Xiaoyang; Yao, Liangfang; Xuan, Yang; Hou, Zhaoyuan; Cui, Yongping; Cao, Liu; Li, Xiaotao; Zhang, Shengping; Wang, Chuangui

    2015-01-01

    Centrosome amplification is frequent in cancer, but the underlying mechanisms remain unclear. Here we report that disruption of the Kruppel-like factor 14 (KLF14) gene in mice causes centrosome amplification, aneuploidy and spontaneous tumorigenesis. Molecularly, KLF14 functions as a transcriptional repressor of Plk4, a polo-like kinase whose overexpression induces centrosome overduplication. Transient knockdown of KLF14 is sufficient to induce Plk4-directed centrosome amplification. Clinically, KLF14 transcription is significantly downregulated, whereas Plk4 transcription is upregulated in multiple types of cancers, and there exists an inverse correlation between KLF14 and Plk4 protein expression in human breast and colon cancers. Moreover, KLF14 depletion promotes AOM/DSS-induced colon tumorigenesis. Our findings reveal that KLF14 reduction serves as a mechanism leading to centrosome amplification and tumorigenesis. On the other hand, forced expression of KLF14 leads to mitotic catastrophe. Collectively, our findings identify KLF14 as a tumour suppressor and highlight its potential as biomarker and therapeutic target for cancer. PMID:26439168

  7. Reversible Gating of Plasmonic Coupling for Optical Signal Amplification.

    Science.gov (United States)

    Khoury, Christopher G; Fales, Andrew M; Vo-Dinh, Tuan

    2016-07-20

    Amplification of optical signals is useful for a wide variety of applications, ranging from data signal transmission to chemical sensing and biomedical diagnostics. One such application in chemical sensing is surface-enhanced Raman scattering (SERS), an important technique for increasing the Raman signal using the plasmonic effect of enhanced electromagnetic fields associated with metallic nanostructures. One of the most important limitations of SERS-based amplification is the difficulty to reproducibly control the SERS signal. Here, we describe the design and implementation of a unique hybrid system capable of producing reversible gating of plasmonic coupling for Raman signal amplification. The hybrid system is composed of two subsystems: (1) colloidal magneto-plasmonic nanoparticles for SERS enhancement and (2) a micromagnet substrate with an externally applied magnetic field to modulate the colloidal nanoparticles. For this proof of concept demonstration, the nanoparticles were labeled with a Raman-active dye, and it was shown that the detected SERS signal could be reproducibly modulated by controlling the externally applied magnetic field. The developed system provides a simple, robust, inexpensive, and reusable device for SERS signal modulation. These properties will open up new possibilities for optical signal amplification and gating as well for high-throughput, reproducible SERS detection. PMID:27347606

  8. Loop-mediated isothermal amplification of single pollen grains

    Institute of Scientific and Technical Information of China (English)

    Ali Bektaş; Ignacio Chapela

    2014-01-01

    The polymerase chain reaction (PCR) has been a reliable and fruitful method for many applications in ecology. Nevertheless, unavoidable technical and instrumental require-ments of PCR have limited its widespread application in field situations. The recent development of isothermal DNA amplifica-tion methods provides an alternative to PCR, which circumvents key limitations of PCR for direct amplification in the field. Being able to analyze DNA in the pol en cloud of an ecosystem would provide very useful ecological information, yet would require a field-enabled, high-throughput method for this potential to be realized. Here, we demonstrate the applicability of the loop-mediated DNA amplification method (LAMP), an isothermal DNA amplification technique, to be used in pol en analysis. We demonstrate that LAMP can provide a reliable method to identify species from the pol en cloud, and that it can amplify successful y with sensitivity down to single pol en grains, thus opening the possibility of field-based, high-throughput analysis.

  9. Four-quadrant flyback converter for direct audio power amplification

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a bidirectional, four-quadrant flyback converter for use in direct audio power amplification. When compared to the standard Class-D switching audio power amplifier with a separate power supply, the proposed four-quadrant flyback converter provides simple solution with better...

  10. Soil amplification with a strong impedance contrast: Boston, Massachusetts

    Science.gov (United States)

    Baise, Laurie G.; Kaklamanos, James; Berry, Bradford M; Thompson, Eric

    2016-01-01

    In this study, we evaluate the effect of strong sediment/bedrock impedance contrasts on soil amplification in Boston, Massachusetts, for typical sites along the Charles and Mystic Rivers. These sites can be characterized by artificial fill overlying marine sediments overlying glacial till and bedrock, where the depth to bedrock ranges from 20 to 80 m. The marine sediments generally consist of organic silts, sand, and Boston Blue Clay. We chose these sites because they represent typical foundation conditions in the city of Boston, and the soil conditions are similar to other high impedance contrast environments. The sediment/bedrock interface in this region results in an impedance ratio on the order of ten, which in turn results in a significant amplification of the ground motion. Using stratigraphic information derived from numerous boreholes across the region paired with geologic and geomorphologic constraints, we develop a depth-to-bedrock model for the greater Boston region. Using shear-wave velocity profiles from 30 locations, we develop average velocity profiles for sites mapped as artificial fill, glaciofluvial deposits, and bedrock. By pairing the depth-to-bedrock model with the surficial geology and the average shear-wave velocity profiles, we can predict soil amplification in Boston. We compare linear and equivalent-linear site response predictions for a soil layer of varying thickness over bedrock, and assess the effects of varying the bedrock shear-wave velocity (VSb) and quality factor (Q). In a moderate seismicity region like Boston, many earthquakes will result in ground motions that can be modeled with linear site response methods. We also assess the effect of bedrock depth on soil amplification for a generic soil profile in artificial fill, using both linear and equivalent-linear site response models. Finally, we assess the accuracy of the model results by comparing the predicted (linear site response) and observed site response at the Northeastern

  11. Bacteriophage Amplification-Coupled Detection and Identification of Bacterial Pathogens

    Science.gov (United States)

    Cox, Christopher R.; Voorhees, Kent J.

    Current methods of species-specific bacterial detection and identification are complex, time-consuming, and often require expensive specialized equipment and highly trained personnel. Numerous biochemical and genotypic identification methods have been applied to bacterial characterization, but all rely on tedious microbiological culturing practices and/or costly sequencing protocols which render them impractical for deployment as rapid, cost-effective point-of-care or field detection and identification methods. With a view towards addressing these shortcomings, we have exploited the evolutionarily conserved interactions between a bacteriophage (phage) and its bacterial host to develop species-specific detection methods. Phage amplification-coupled matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) was utilized to rapidly detect phage propagation resulting from species-specific in vitro bacterial infection. This novel signal amplification method allowed for bacterial detection and identification in as little as 2 h, and when combined with disulfide bond reduction methods developed in our laboratory to enhance MALDI-TOF-MS resolution, was observed to lower the limit of detection by several orders of magnitude over conventional spectroscopy and phage typing methods. Phage amplification has been combined with lateral flow immunochromatography (LFI) to develop rapid, easy-to-operate, portable, species-specific point-of-care (POC) detection devices. Prototype LFI detectors have been developed and characterized for Yersinia pestis and Bacillus anthracis, the etiologic agents of plague and anthrax, respectively. Comparable sensitivity and rapidity was observed when phage amplification was adapted to a species-specific handheld LFI detector, thus allowing for rapid, simple, POC bacterial detection and identification while eliminating the need for bacterial culturing or DNA isolation and amplification techniques.

  12. Geometric Effects on the Amplification of First Mode Instability Waves

    Science.gov (United States)

    Kirk, Lindsay C.; Candler, Graham V.

    2013-01-01

    The effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. The DAKOTA optimization software package was used to optimize an axisymmetric geometry to maximize the amplification of the waves at first mode frequencies as computed by the 2D STABL hypersonic boundary layer stability analysis tool. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature were examined separately to determine the individual effects on the first mode amplification. Finally, all geometric parameters were allowed to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. Since first mode waves are known to be most unstable in the form of oblique wave, the geometries were optimized using a broad range of wave frequencies as well as a wide range of oblique wave angles to determine the geometry that most amplifies the first mode waves. Since first mode waves are seen most often in flows with low Mach numbers at the edge of the boundary layer, the edge Mach number for each geometry was recorded to determine any relationship between edge Mach number and the stability of first mode waves. Results indicate that an axisymmetric cone with a sharp nose and a slight flare at the aft end under the Mach 6 freestream conditions used here will lower the Mach number at the edge of the boundary layer to less than 4, and the corresponding stability analysis showed maximum first mode N factors of 3.

  13. Systematic evaluation of bias in microbial community profiles induced by whole genome amplification

    NARCIS (Netherlands)

    S.O.L. Direito; E. Zaura; M. Little; P. Ehrenfreund; W.F.M. Röling

    2014-01-01

    Whole genome amplification methods facilitate the detection and characterization of microbial communities in low biomass environments. We examined the extent to which the actual community structure is reliably revealed and factors contributing to bias. One widely used [multiple displacement amplific

  14. New perspectives on microbial community distortion after whole-genome amplification

    Science.gov (United States)

    Whole-genome amplification (WGA) has become an important tool to explore the genomic information of microorganisms in an environmental sample with limited biomass, however potential selective biases during the amplification processes are poorly understood. Here, we describe the e...

  15. Digital Droplet Multiple Displacement Amplification (ddMDA) for Whole Genome Sequencing of Limited DNA Samples

    OpenAIRE

    Minsoung Rhee; Yooli K Light; Meagher, Robert J.; Anup K. Singh

    2016-01-01

    Multiple displacement amplification (MDA) is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples) before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA) technique where partitioning of the template D...

  16. Fiber-Optical Parametric Amplification of Sub-Picosecond Pulses for High-Speed Optical Communications

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Cristofori, Valentina; Rottwitt, Karsten;

    2015-01-01

    This article reviews recent results of amplification of short optical pulses using fiber-optical parametric amplifiers. This includes chirped-pulse amplification of 400 fs pulses, error-free amplification of a 640-Gbit/s optical time-division multiplexed signal with less than a 1-dB power penalty...

  17. The separability of two-mode Gaussian state under amplification and symmetric damping

    Institute of Scientific and Technical Information of China (English)

    Chen Xiao-Yu; Jiang Li-Zhen; Wu Liang-Neng

    2007-01-01

    The performances of a two-mode Gaussian state under parametric amplification, symmetric amplitude damping and thermal noise are studied. The time-dependent complex correlation matrix of the state in evolution is given. The separability of the final two-mode Gaussian state is examined under symmetric amplification and asymmetric amplification separately.

  18. Amplification of target-specific, ligation-dependent circular probe.

    Science.gov (United States)

    Zhang, D Y; Brandwein, M; Hsuih, T C; Li, H

    1998-05-12

    We describe a novel polymerase chain reaction (PCR)-based gene amplification method utilizing a circularizable oligodeoxyribonucleotide probe (C-probe). The C-probe contains two target complementary regions located at each terminus and an interposed generic PCR primer binding region. The hybridization of C-probe to a target brings two termini in direct apposition as the complementary regions of C-probe wind around the target to form a double helix. Subsequent ligation of the two termini results in a covalently linked C-probe that becomes 'locked on to' the target. The circular nature of the C-probe allows for the generation of a multimeric single-stranded DNA (ssDNA) via extension of the antisense primer by Taq DNA polymerase along the C-probe and displacement of downstream strand, analogous to 'rolling circle' replication of bacteriophage in vivo. This multimeric ssDNA then serves as a template for multiple sense primers to hybridize, extend, and displace downstream DNA, generating a large ramified (branching) DNA complex. Subsequent thermocycling denatures the dsDNA and initiates the next round of primer extension and ramification. This model results in significantly improved amplification kinetics (super-exponential) as compared to conventional PCR. Our results show that the C-probe was 1000 times more sensitive than the corresponding linear hemiprobes for detecting Epstein-Barr virus early RNA. The C-probe not only increases the power of amplification but also offers a means for decontaminating carryover amplicons. As the ligated C-probes possess no free termini, they are resistant to exonuclease digestion, whereas contaminated linear amplicons are susceptible to digestion. Treatment of the ligation reaction mixture with exonuclease prior to amplification eliminated the amplicon contaminant, which could also have been co-amplified with the same PCR primers; only the ligated C-probes were amplified. The combined advantages of the C-probe and thermocycling have a

  19. Construction Strategy for an Internal Amplification Control for Real-Time Diagnostic Assays Using Nucleic Acid Sequence-Based Amplification: Development and Clinical Application

    OpenAIRE

    Rodríguez-Lázaro, David; D'Agostino, Martin; Pla, Maria; Cook, Nigel

    2005-01-01

    An important analytical control in molecular amplification-based methods is an internal amplification control (IAC), which should be included in each reaction mixture. An IAC is a nontarget nucleic acid sequence which is coamplified simultaneously with the target sequence. With negative results for the target nucleic acid, the absence of an IAC signal indicates that amplification has failed. A general strategy for the construction of an IAC for inclusion in molecular beacon-based real-time nu...

  20. Spin noise amplification and giant noise in optical microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S. [Spin-Optics Laboratory, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Kavokin, A. V. [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Spin-Optics Laboratory, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Lagoudakis, P. V. [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-06-14

    When studying the spin-noise-induced fluctuations of Kerr rotation in a quantum-well microcavity, we have found a dramatic increase of the noise signal (by more than two orders of magnitude) in the vicinity of anti-crossing of the polariton branches. The effect is explained by nonlinear optical instability of the microcavity giving rise to the light-power-controlled amplification of the polarization noise signal. In the framework of the developed model of built-in amplifier, we also interpret the nontrivial spectral and intensity-related properties of the observed noise signal below the region of anti-crossing of polariton branches. The discovered effect of optically controllable amplification of broadband polarization signals in microcavities in the regime of optical instability may be of interest for detecting weak oscillations of optical anisotropy in fundamental research and for other applications in optical information processing.

  1. Signal amplification in a qubit-resonator system

    International Nuclear Information System (INIS)

    We study the dynamics of a qubit-resonator system, when the resonator is driven by two signals. The interaction of the qubit with the high-amplitude driving we consider in terms of the qubit dressed states. Interaction of the dressed qubit with the second probing signal can essentially change the amplitude of this signal. We calculate the transmission amplitude of the probe signal through the resonator as a function of the qubit energy and the driving frequency detuning. The regions of increase and attenuation of the transmitted signal are calculated and demonstrated graphically. We present the influence of the signal parameters on the value of the amplification, and discuss the values of the qubit-resonator system parameters for an optimal amplification and attenuation of the weak probe signal.

  2. Narrow band amplification of light carrying orbital angular momentum

    CERN Document Server

    Borba, G C; Pruvost, L; Felinto, D; Tabosa, J W R

    2016-01-01

    We report on the amplification of an optical vortex beam carrying orbital angular momentum via induced narrow Raman gain in an ensemble of cold cesium atoms. A 20\\% single-pass Raman gain of a weak vortex signal field is observed with a spectral width of order of 1 MHz, much smaller than the natural width, demonstrating that the amplification process preserves the phase structure of the vortex beam. The gain is observed in the degenerated two-level system associated with the hyperfine transition $6S_{1/2}(F=3)\\leftrightarrow 6P_{3/2}(F^{\\prime}=2)$ of cesium. Our experimental observations are explained with a simple theoretical model based on a three-level $\\Lambda$ system interacting coherently with the weak Laguerre-Gauss field and a strong coupling field, including an incoherent pumping rate between the two degenerate ground-states.

  3. Whole genome amplification - Review of applications and advances

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, Trevor L.; Detter, J.C.; Richardson, Paul

    2001-11-15

    The concept of Whole Genome Amplification is something that has arisen in the past few years as modifications to the polymerase chain reaction (PCR) have been adapted to replicate regions of genomes which are of biological interest. The applications here are many--forensics, embryonic disease diagnosis, bio terrorism genome detection, ''imoralization'' of clinical samples, microbial diversity, and genotyping. The key question is if DNA can be replicated a genome at a time without bias or non random distribution of the target. Several papers published in the last year and currently in preparation may lead to the conclusion that whole genome amplification may indeed be possible and therefore open up a new avenue to molecular biology.

  4. DC-driven thermoelectric Peltier device for precise DNA amplification

    Science.gov (United States)

    Yamaguchi, Shigeo; Suzuki, Tadzunu; Inoue, Kazuhito; Azumi, Yoshitaka

    2015-05-01

    Using a DC-driven Peltier device, we fabricated a DNA amplification system [polymerase chain reaction (PCR) system] with the aim of increasing its speed and precision. The Peltier device had a well block sandwiched by Bi2Se0.37Te2.36 as an N-type thermoelectric material and Bi0.59Sb1.30Te3 as a P-type material. The well block was directly controlled by the electric current, leading to a high thermal response. Using the Peltier device with the well block, we performed thermal cycles of a PCR, and we demonstrated that our PCR system produces a smaller amount of nonspecific products for the genome DNA (gDNA) of Arabidopsis thaliana, leading to a more precise DNA amplification system.

  5. Resonant Amplification of Turbulence by the Blast Wawes

    CERN Document Server

    Zankovich, A M

    2016-01-01

    We discuss an idea whether spherical blast waves can amplify by a non-local resonant hydrodynamic mechanism inhomogeneities formed by turbulence or phase segregation in the interstellar medium. We consider the problem of a blast-wave-turbulence interaction in the Linear Interaction Approximation. Mathematically, this is an eigenvalue problem for finding the structure and amplitude of eigenfunctions describing the response of the shock-wave flow to forced oscillations by external perturbations in the ambient interstellar medium. Linear analysis shows that the blast wave can amplify density and vorticity perturbations for a wide range of length scales with amplification coefficients of up to 20, with amplification the greater, the larger the length. There also exist resonant harmonics for which the gain becomes formally infinite in the linear approximation. Their orbital wavenumbers are within the range of macro- ($l \\sim 1$), meso- ($l \\sim 20$) and microscopic ($l > 200$) scales. Since the resonance width is ...

  6. Assessing Linearity of the Parasite Varroa destructor DNA Amplification

    Directory of Open Access Journals (Sweden)

    ODAGIU Antonia

    2009-12-01

    Full Text Available The importance of honeybee products make of disease prevention and control in honeybees one of the mainconcerns of beekeepers in the world. The PCR – RT reaction represents an alternative for amplification performed inorder to realize the Varroa destructor O. genotypization, very important stage in haoneybee resistance to parasitedescription and also in management of the treatments. The linearity data is a very important parameter and very usefulin determination of the amplification of the parasite DNA and success of the genotypization process. The amplificationefficiency was very satisfactory, fact revealed by the value of the regression line y = - 2.3103 * 26.552 together withcoefficient of determination equal (r2 = 0.9691, meaning that more than 96% of the reaction efficiency may beexplained by the process liniarity. The implementation of the RT-PCR method was successful and it represents apremise for validation process evolution.

  7. Quantum Privacy Amplification for a Sequence of Single Qubits

    Institute of Scientific and Technical Information of China (English)

    DENG Fu-Guo; LONG Gui-Lu

    2006-01-01

    We present a scheme for quantum privacy amplification (QPA) for a sequence of single qubits. The QPA procedure uses a unitary operation with two controlled-not gates and a Hadamard gate. Every two qubits are performed with the unitary gate operation, and a measurement is made on one photon and the other one is retained.The retained qubit carries the state information of the discarded one. In this way, the information leakage is reduced.The procedure can be performed repeatedly so that the information leakage is reduced to any arbitrarily low level. With this QPA scheme, the quantum secure direct communication with single qubits can be implemented with arbitrarily high security. We also exploit this scheme to do privacy amplification on the single qubits in quantum information sharing for long-distance communication with quantum repeaters.

  8. Phase Sensitive Amplification using Parametric Processes in Optical Fibers

    DEFF Research Database (Denmark)

    Kang, Ning

    Phase sensitive amplification using the parametric processes in fiber has the potential of delivering high gain and broadband operation with ultralow noise. It is able to regenerate both amplitude and phase modulated signals, simultaneously, with the appropriate design. This thesis concerns......, in specific, the design and optimization of such phase sensitive amplifiers (PSAs). For phase sensitive amplification in highly nonlinear fibers, optima points of operation have been identified for both the standard and the novel high stimulated Brillouin scattering (SBS) threshold highly nonlinear fiber....... Further, phase sensitive parametric processes in a nano-engineered silicon waveguide have been measured experimentally for the first time. Numerical optimizations show that with reduced waveguide propagation loss and reduced carrier life time, larger signal phase sensitive extinction ratio is achievable...

  9. Optical parametric chirped pulse amplification based on photonic crystal fibre

    Institute of Scientific and Technical Information of China (English)

    Wang He-Lin; Yang Ai-Jun; Leng Yu-Xin; Wang Cheng; Xu Zhi-Zhan; Hou Lan-Tian

    2011-01-01

    A compact two-stage optical parametric chirped pulse amplifier based on photonic crystal fibre is demonstrated.A 1064-nm soliton pulse is obtained in a home-made photonic crystal fibre(PCF)with femtosecond pulse pumping and then amplified to 2 mJ in an Nd:YAG regenerative amplifier.After the amplified pulses pass through the LBO crystal,the 532-nm double-frequency light with an energy of 0.8 mJ and a duration of over 100 ps at 10-Hz repetition rate is generated as a pump source in the following two-stage optical parametric amplification(OPA).The 850-am chirped signal light gain from the stretcher is 1.5×104in the first-stage OPA while it is 120 in the second-stage OPA.The total signal gain of optical parametric chirped pulse amplification(OPCPA)can reach 1.8×106.

  10. Analytical model of signal amplification in silicon waveguides

    Science.gov (United States)

    Meng, Fan; Yu, Chong-Xiu; Yuan, Jin-Hui

    2012-07-01

    In this paper, an analytical model to investigate the parametric amplification (PA) and the PA + stimulated Raman scattering (SRS) in silicon waveguides is put forward. When two pump signals are employed, the PA bandwidth of the probe signal is so large that the Raman contribution has to be considered. When Raman contribution fraction f is set to be 0, only the PA occurs to amplify the probe signal, and when f is set to be 0.043, the PA and the SRS amplify the probe signal at the same time. The signal amplifications of both single and dual pump schemes are investigated by using this model. With this model, three main affecting factors, i.e., zero dispersion wavelength (ZDWL), third-order dispersion (TOD), and fourth-order dispersion (FOD), are discussed in detail.

  11. Amplification, Decoherence, and the Acquisition of Information by Spin Environments

    Science.gov (United States)

    Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.

    2016-05-01

    Quantum Darwinism recognizes the role of the environment as a communication channel: Decoherence can selectively amplify information about the pointer states of a system of interest (preventing access to complementary information about their superpositions) and can make records of this information accessible to many observers. This redundancy explains the emergence of objective, classical reality in our quantum Universe. Here, we demonstrate that the amplification of information in realistic spin environments can be quantified by the quantum Chernoff information, which characterizes the distinguishability of partial records in individual environment subsystems. We show that, except for a set of initial states of measure zero, the environment always acquires redundant information. Moreover, the Chernoff information captures the rich behavior of amplification in both finite and infinite spin environments, from quadratic growth of the redundancy to oscillatory behavior. These results will considerably simplify experimental testing of quantum Darwinism, e.g., using nitrogen vacancies in diamond.

  12. Separate TRP channels mediate amplification and transduction in drosophila

    Science.gov (United States)

    Lehnert, Brendan P.; Baker, Allison E.; Wilson, Rachel I.

    2015-12-01

    Auditory receptor cells rely on mechanically-gated channels to transform sound stimuli into neural activity. Several TRP channels have been implicated in Drosophila auditory transduction, but mechanistic studies have been hampered by the inability to record subthreshold signals from receptor neurons. We developed a non-invasive method for measuring these signals by recording from a central neuron that is electrically coupled to a genetically-defined population of auditory receptors. We find that the TRPN family member NompC, which is necessary for the active amplification of motion by the auditory organ, is not required for transduction. Instead, NompC sensitizes the transduction complex to movement and precisely regulates the static forces on the complex. In contrast, the TRPV channels Nanchung and Inactive are required for responses to sound, suggesting they are components of the transduction complex. Thus, transduction and active amplification are genetically separable processes in Drosophila hearing.

  13. Retrieval and Amplification of DNA from Unstained Histopathological Sections

    Institute of Scientific and Technical Information of China (English)

    DonnaC.MONTAGUE; BeverlyD.LYN-COOK; 等

    1993-01-01

    Testing of compounds for carcinogenic potential in vivo involves various experimental designs.A few of these techniques are directed to demonstrate the genotoxicity and mutagenicity of the compound by histopathology.These changes shown by histochemical means include monoclonal antibody directed cellular markers.Development of the polymerase chain reaction technique(PCR)for amplification of DNA has facilitated the investigation of molecular events related to the formation of malignant neoplasms.We describe here a method for screening tissues for mutations of the H-ras gene using monoclonal antibodies directed toward normal and mutant p21 proteins.Formalin-fixed,paraffinembedded tissue sections are used to subsequently confirm the gene mutation by PCR amplification of the H-ras gene.The results indicated a successful application of this technique to demonstrate the presence of p21 oncoprotein in the tissues tested.

  14. Weak value amplification is suboptimal for estimation and detection.

    Science.gov (United States)

    Ferrie, Christopher; Combes, Joshua

    2014-01-31

    We show by using statistically rigorous arguments that the technique of weak value amplification does not perform better than standard statistical techniques for the tasks of single parameter estimation and signal detection. Specifically, we prove that postselection, a necessary ingredient for weak value amplification, decreases estimation accuracy and, moreover, arranging for anomalously large weak values is a suboptimal strategy. In doing so, we explicitly provide the optimal estimator, which in turn allows us to identify the optimal experimental arrangement to be the one in which all outcomes have equal weak values (all as small as possible) and the initial state of the meter is the maximal eigenvalue of the square of the system observable. Finally, we give precise quantitative conditions for when weak measurement (measurements without postselection or anomalously large weak values) can mitigate the effect of uncharacterized technical noise in estimation.

  15. Optical Amplification and Photosensitivity in Sol-Gel Based Waveguides

    OpenAIRE

    Selvarajan, A; T. Srinivas

    2001-01-01

    The sol-gel process has emerged as an effective route for the fabrication of optical waveguides and guided wave devices and circuits. In particular, it is possible to incorporate active dopants like neodymium, erbium, and cesium for integrated optical active devices and circuits. In this paper, a review of recent research on active devices and circuits based on sol-gel process is made. Specific studies undertaken in our laboratory on optical amplification and photosensitivity characteristi...

  16. Purely nonlinear disorder-induced localizations and their parametric amplification

    CERN Document Server

    Folli, Viola; Conti, Claudio

    2013-01-01

    We investigate spatial localization in a quadratic nonlinear medium in the presence of randomness. By means of numerical simulations and theoretical analyses we show that, in the down conversion regime, the transverse random modulation of the nonlinear susceptibility generates localizations of the fundamental wave that grow exponentially in propagation. The localization length is optically controlled by the pump intensity which determines the amplification rate. The results also apply to cubic nonlinearities.

  17. Hyper dispersion pulse compressor for chirped pulse amplification systems

    Energy Technology Data Exchange (ETDEWEB)

    Barty, Christopher P. J. (Hayward, CA)

    2011-11-29

    A grating pulse compressor configuration is introduced for increasing the optical dispersion for a given footprint and to make practical the application for chirped pulse amplification (CPA) to quasi-narrow bandwidth materials, such as Nd:YAG. The grating configurations often use cascaded pairs of gratings to increase angular dispersion an order of magnitude or more. Increased angular dispersion allows for decreased grating separation and a smaller compressor footprint.

  18. Uncertainty of site amplification derived from ground response analysis

    OpenAIRE

    Afshari, K; Stewart, JP

    2015-01-01

    Site-specific geotechnical ground response analyses (GRAs) are typically performed to evaluate stress and strain demands within soil profiles and/or to improve the estimation of site response relative to generic site terms from empirical prediction equations. Implementation of GRA results in probabilistic seismic hazard analysis (PSHA) requires knowledge of the mean and standard deviation of site amplification from GRA. We provide expressions for evaluating within-event standard deviations of...

  19. Risk communication and the social amplification of risk

    OpenAIRE

    Renn, Ortwin

    1991-01-01

    Risk communication is a novel concept in the scientific pursuit to understand and analyze risk related decisions and behavior in modem society. But the new term has only changed the focus of attention from a static description of what risk means for different communities to a dynamic analysis on how these communities exchange information about risk and adjust their behavior.The concept of social amplification of risk provides a framework for the analysis of communication as well as other soci...

  20. Whole genome amplification of DNA for genotyping pharmacogenetics candidate genes.

    Directory of Open Access Journals (Sweden)

    Santosh ePhilips

    2012-03-01

    Full Text Available Whole genome amplification (WGA technologies can be used to amplify genomic DNA when only small amounts of DNA are available. The Multiple Displacement Amplification Phi polymerase based amplification has been shown to accurately amplify DNA for a variety of genotyping assays; however, it has not been tested for genotyping many of the clinically relevant genes important for pharmacogenetic studies, such as the cytochrome P450 genes, that are typically difficult to genotype due to multiple pseudogenes, copy number variations, and high similarity to other related genes. We evaluated whole genome amplified samples for Taqman™ genotyping of SNPs in a variety of pharmacogenetic genes. In 24 DNA samples from the Coriell human diversity panel, the call rates and concordance between amplified (~200-fold amplification and unamplified samples was 100% for two SNPs in CYP2D6 and one in ESR1. In samples from a breast cancer clinical trial (Trial 1, we compared the genotyping results in samples before and after WGA for four SNPs in CYP2D6, one SNP in CYP2C19, one SNP in CYP19A1, two SNPs in ESR1, and two SNPs in ESR2. The concordance rates were all >97%. Finally, we compared the allele frequencies of 143 SNPs determined in Trial 1 (whole genome amplified DNA to the allele frequencies determined in unamplified DNA samples from a separate trial (Trial 2 that enrolled a similar population. The call rates and allele frequencies between the two trials were 98% and 99.7%, respectively. We conclude that the whole genome amplified DNA is suitable for Taqman™ genotyping for a wide variety of pharmacogenetically relevant SNPs.

  1. Amplification of acoustic waves in laminated piezoelectric semiconductor plates

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.S.; Yang, X.M.; Turner, J.A. [University of Nebraska, Department of Engineering Mechanics, Lincoln, NE (United States)

    2004-12-01

    Two-dimensional equations for coupled extensional, flexural and thickness-shear motions of laminated plates of piezoelectric semiconductors are obtained systematically from the three-dimensional equations by retaining lower order terms in power series expansions in the plate thickness coordinate. The equations are used to analyze extensional waves in a composite plate of piezoelectric ceramics and semiconductors. Dispersion and dissipation due to semiconduction as well as wave amplification by a dc electric field are discussed. (orig.)

  2. Rapid Diagnosis of Extrapulmonary Tuberculosis by Ligase Chain Reaction Amplification

    OpenAIRE

    Gamboa, Fredy; Dominguez, José; Padilla, Eduardo; Manterola, José M.; Gazapo, Elena; Lonca, Joan; Matas, Lurdes; Hernandez, Agueda; Cardona, Pere Joan; Ausina, Vicente

    1998-01-01

    A rapid amplification-based test for the diagnosis of extrapulmonary tuberculosis, the LCx Mycobacterium tuberculosis Assay from Abbott Laboratories, was evaluated. Results from the LCx M. tuberculosis Assay were compared with those from culture and the final clinical diagnosis for each patient. A total of 526 nonrespiratory specimens from 492 patients were tested. The specimens included urine; feces; lymph node exudates; pleural, cerebrospinal, articular, and ascitic fluids; tissue biopsies;...

  3. Invertible Clipping for Increasing the Power Efficiency of OFDM Amplification

    OpenAIRE

    Ragusa, Salvatore; Palicot, Jacques; Louët, Yves; Lereau, Christian

    2006-01-01

    International audience Large fluctuations of OFDM signal amplitude represent an important problem for power amplification in mobile communication systems. In this paper, we propose a new Peak-to-Average Power Ratio (PAPR) reduction method based on the well known clipping and filtering one. Called "invertible clipping", it is performed thanks to a "soft clipping function". Since this soft clipping can be inverted in reception side, degradations are compensated. The derived method benefits f...

  4. Swing amplification and global modes reciprocity in models with cusps

    CERN Document Server

    Polyachenko, Evgeny

    2016-01-01

    Using 3D N-body simulations we analyse an onset of the bar in cuspy models, and argue that role of swing amplification is twofold. Amplified shot noise due to disc discreteness hampers bar formation, while induced resonance perturbations allow bar amplitude to overcome shots. A bar pattern speed and a growth rate obtained in N-body simulations agree well with global mode analysis.

  5. MYC Amplification in Angiosarcoma Arising from an Arteriovenous Graft Site

    Directory of Open Access Journals (Sweden)

    Kristen M. Paral

    2015-01-01

    Full Text Available Angiosarcoma arising in association with an arteriovenous graft (AVG or fistula is a unique clinicopathologic scenario that appears to be gaining recognition in the literature. Among reported cases, none has described high-level MYC gene amplification, a genetic aberration that is increasingly unifying the various clinicopathologic subdivisions of angiosarcoma. We therefore report the MYC gene status in a case of angiosarcoma arising at an AVG site.

  6. Topographic amplification from recorded earthquake data and numerical simulations

    OpenAIRE

    Cauzzi, Carlo; Swiss Seismological Service (SED-ETHZ), Zürich, Switzerland; Fäh, Donat; Swiss Seismological Service (SED-ETHZ), Zürich, Switzerland; Pessina, Vera; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italia; Faccioli, Ezio; Department of Structural Engineering, Politecnico di Milano, Italy; Smerzini, Chiara; Department of Structural Engineering, Politecnico di Milano, Italy

    2012-01-01

    With the aim of contributing to the refinement of the next generation of tools for seismic hazard analyses, we present here an attempt at including topographic amplification factors in GMPEs, thus broadening the traditional options for site effects. With a view to critically discuss and complement with new data the approach of Cauzzi et al. (2010) and Paolucci (2002), information from additional numerical models including crustal layering are taken into account. The indications obtained from ...

  7. Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics.

    Science.gov (United States)

    Linnes, J C; Rodriguez, N M; Liu, L; Klapperich, C M

    2016-04-01

    Devices based on rapid, paper-based, isothermal nucleic acid amplification techniques have recently emerged with the potential to fill a growing need for highly sensitive point-of-care diagnostics throughout the world. As this field develops, such devices will require optimized materials that promote amplification and sample preparation. Herein, we systematically investigated isothermal nucleic acid amplification in materials currently used in rapid diagnostics (cellulose paper, glass fiber, and nitrocellulose) and two additional porous membranes with upstream sample preparation capabilities (polyethersulfone and polycarbonate). We compared amplification efficiency from four separate DNA and RNA targets (Bordetella pertussis, Chlamydia trachomatis, Neisseria gonorrhoeae, and Influenza A H1N1) within these materials using two different isothermal amplification schemes, helicase dependent amplification (tHDA) and loop-mediated isothermal amplification (LAMP), and traditional PCR. We found that the current paper-based diagnostic membranes inhibited nucleic acid amplification when compared to membrane-free controls; however, polyethersulfone allowed for efficient amplification in both LAMP and tHDA reactions. Further, observing the performance of traditional PCR amplification within these membranes was not predicative of their effects on in situ LAMP and tHDA. Polyethersulfone is a new material for paper-based nucleic acid amplification, yet provides an optimal support for rapid molecular diagnostics for point-of-care applications. PMID:26906904

  8. Enhanced sequencing coverage with digital droplet multiple displacement amplification.

    Science.gov (United States)

    Sidore, Angus M; Lan, Freeman; Lim, Shaun W; Abate, Adam R

    2016-04-20

    Sequencing small quantities of DNA is important for applications ranging from the assembly of uncultivable microbial genomes to the identification of cancer-associated mutations. To obtain sufficient quantities of DNA for sequencing, the small amount of starting material must be amplified significantly. However, existing methods often yield errors or non-uniform coverage, reducing sequencing data quality. Here, we describe digital droplet multiple displacement amplification, a method that enables massive amplification of low-input material while maintaining sequence accuracy and uniformity. The low-input material is compartmentalized as single molecules in millions of picoliter droplets. Because the molecules are isolated in compartments, they amplify to saturation without competing for resources; this yields uniform representation of all sequences in the final product and, in turn, enhances the quality of the sequence data. We demonstrate the ability to uniformly amplify the genomes of single Escherichia coli cells, comprising just 4.7 fg of starting DNA, and obtain sequencing coverage distributions that rival that of unamplified material. Digital droplet multiple displacement amplification provides a simple and effective method for amplifying minute amounts of DNA for accurate and uniform sequencing.

  9. EGFR Amplification and Glioblastoma Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Katrin Liffers

    2015-01-01

    Full Text Available Glioblastoma (GBM, the most common malignant brain tumor in adults, contains a subpopulation of cells with a stem-like phenotype (GS-cells. GS-cells can be maintained in vitro using serum-free medium supplemented with epidermal growth factor, basic fibroblast growth factor-2, and heparin. However, this method does not conserve amplification of the Epidermal Growth Factor Receptor (EGFR gene, which is present in over 50% of all newly diagnosed GBM cases. GS-cells with retained EGFR amplification could overcome the limitations of current in vitro model systems and contribute significantly to preclinical research on EGFR-targeted therapy. This review recapitulates recent methodological approaches to expand stem-like cells from GBM with different EGFR status in order to maintain EGFR-dependent intratumoral heterogeneity in vitro. Further, it will summarize the current knowledge about the impact of EGFR amplification and overexpression on the stem-like phenotype of GBM-derived GS-cells and different approaches to target the EGFR-dependent GS-cell compartment of GBM.

  10. Diagnosis of brugian filariasis by loop-mediated isothermal amplification.

    Directory of Open Access Journals (Sweden)

    Catherine B Poole

    Full Text Available In this study we developed and evaluated a Brugia Hha I repeat loop-mediated isothermal amplification (LAMP assay for the rapid detection of Brugia genomic DNA. Amplification was detected using turbidity or fluorescence as readouts. Reactions generated a turbidity threshold value or a clear visual positive within 30 minutes using purified genomic DNA equivalent to one microfilaria. Similar results were obtained using DNA isolated from blood samples containing B. malayi microfilariae. Amplification was specific to B. malayi and B. timori, as no turbidity was observed using DNA from the related filarial parasites Wuchereria bancrofti, Onchocerca volvulus or Dirofilaria immitis, or from human or mosquito. Furthermore, the assay was most robust using a new strand-displacing DNA polymerase termed Bst 2.0 compared to wild-type Bst DNA polymerase, large fragment. The results indicate that the Brugia Hha I repeat LAMP assay is rapid, sensitive and Brugia-specific with the potential to be developed further as a field tool for diagnosis and mapping of brugian filariasis.

  11. Diagnosis of brugian filariasis by loop-mediated isothermal amplification.

    Science.gov (United States)

    Poole, Catherine B; Tanner, Nathan A; Zhang, Yinhua; Evans, Thomas C; Carlow, Clotilde K S

    2012-01-01

    In this study we developed and evaluated a Brugia Hha I repeat loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Brugia genomic DNA. Amplification was detected using turbidity or fluorescence as readouts. Reactions generated a turbidity threshold value or a clear visual positive within 30 minutes using purified genomic DNA equivalent to one microfilaria. Similar results were obtained using DNA isolated from blood samples containing B. malayi microfilariae. Amplification was specific to B. malayi and B. timori, as no turbidity was observed using DNA from the related filarial parasites Wuchereria bancrofti, Onchocerca volvulus or Dirofilaria immitis, or from human or mosquito. Furthermore, the assay was most robust using a new strand-displacing DNA polymerase termed Bst 2.0 compared to wild-type Bst DNA polymerase, large fragment. The results indicate that the Brugia Hha I repeat LAMP assay is rapid, sensitive and Brugia-specific with the potential to be developed further as a field tool for diagnosis and mapping of brugian filariasis.

  12. Mechanism of seasonal Arctic sea ice evolution and Arctic amplification

    Science.gov (United States)

    Kim, Kwang-Yul; Hamlington, Benjamin D.; Na, Hanna; Kim, Jinju

    2016-09-01

    Sea ice loss is proposed as a primary reason for the Arctic amplification, although the physical mechanism of the Arctic amplification and its connection with sea ice melting is still in debate. In the present study, monthly ERA-Interim reanalysis data are analyzed via cyclostationary empirical orthogonal function analysis to understand the seasonal mechanism of sea ice loss in the Arctic Ocean and the Arctic amplification. While sea ice loss is widespread over much of the perimeter of the Arctic Ocean in summer, sea ice remains thin in winter only in the Barents-Kara seas. Excessive turbulent heat flux through the sea surface exposed to air due to sea ice reduction warms the atmospheric column. Warmer air increases the downward longwave radiation and subsequently surface air temperature, which facilitates sea surface remains to be free of ice. This positive feedback mechanism is not clearly observed in the Laptev, East Siberian, Chukchi, and Beaufort seas, since sea ice refreezes in late fall (November) before excessive turbulent heat flux is available for warming the atmospheric column in winter. A detailed seasonal heat budget is presented in order to understand specific differences between the Barents-Kara seas and Laptev, East Siberian, Chukchi, and Beaufort seas.

  13. Raman amplification in plasma: thermal effects and damping

    Science.gov (United States)

    Farmer, J. P.; Ersfeld, B.; Raj, G.; Jaroszynski, D. A.

    2009-05-01

    The role of thermal effects on Raman amplification are investigated. The direct effects of damping on the process are found to be limited, leading only to a decrease from the peak output intensity predicted by cold plasma models. However, the shift in plasma resonance due to the Bohm-Gross shift can have a much larger influence, changing the required detuning between pump and probe and introducing an effective chirp through heating of the plasma by the pump pulse. This "thermal chirp" can both reduce the efficiency of the interaction and alter the evolution of the amplified probe, avoiding the increase in length observed in the linear regime without significant pump depletion. The influence of this chirp can be reduced by using a smaller ratio of laser frequency to plasma frequency, which simultaneously increases the growth rate of the probe and decreases the shift in plasma resonance. As such, thermal effects only serve to suppress the amplification of noise at low growth rates. The use of a chirped pump pulse can be used to suppress noise for higher growth rates, and has a smaller impact on the peak output intensity for seeded amplification. For the parameter ranges considered, Landau damping was found to be negligible, as Landau damping rates are typically small, and the low collisionality of the plasma causes the process to saturate quickly.

  14. Practical optimization of amplification mechanisms for piezoelectric actuators

    Science.gov (United States)

    Loveday, Philip W.

    2003-08-01

    A method for designing practical displacement amplification mechanisms for piezoelectric stack actuators was developed. The amplification mechanisms and the piezoelectric stack actuators were modeled using plane-strain finite elements. Optimal sizing and topology optimization were performed simultaneously to maximize the first natural frequency while satisfying free stroke and stress constraints. Optimal sizing variables were selected to control the kinematic behavior of the mechanism while a restricted variable thickness sheet topology optimization method was used to remove unnecessary material from stiff regions of the structure. Calculation of sensitivities was very efficient for the topology optimization variables but required the major portion of computational time for the optimal sizing variables. The method was applied to beam-type lever amplification mechanisms and two devices that included pre-stressing of the piezoelectric ceramics and pure translation of the output point were optimized, manufactured and tested. The results demonstrate that the method presented can be used to design amplified piezoelectric actuators that can be manufactured without interpretation by the designer.

  15. Three-dimensional topographic amplification of seismic motion: Engineering Applications

    Science.gov (United States)

    Assimaki, D.; Mohammadi, K.

    2012-12-01

    Topography effects are associated with the presence of strong topographic relief; documented observations during strong seismic events have shown that structures on the tops of hills, ridges, and canyons had suffered greater damage than similar structures at the hill bases or on level ground. While there is qualitative agreement between theory and observations on topography effects, there is clear quantitative discrepancy: numerical predictions of crest-to-base amplification factors rarely exceed the value of 2, while amplification values observed in the field are as high as 10. We here investigate the focusing and scattering of seismic waves in 3D features by means of a systematic parametric study of the seismic response of idealized geometries on the surface of homogeneous elastic half space using finite differences, to quantify the role of geometry, material properties and ground motion characteristics in the predicted ground surface response. We specifically focus on pyramid (convex) geometries and elastic homogeneous material behavior, and use Ricker wavelets as vertical and oblique incident pulses on ground surface. Results are compared to analytical solutions and thereafter extended to account for soil layering, nonlinear response and broadband incident motion characteristics. We then develop geometry, material and ground motion dependent dimensionless amplification factors that can multiply flat ground surface response spectra and account for topography effects as part of engineering design code provisions.omparison of the scattered wavefield complexity emanating at the vertex and toe of a 45deg single slope upon incidence of a vertical, a forward and a backward oblique wave.

  16. Diagnosis of brugian filariasis by loop-mediated isothermal amplification.

    Science.gov (United States)

    Poole, Catherine B; Tanner, Nathan A; Zhang, Yinhua; Evans, Thomas C; Carlow, Clotilde K S

    2012-01-01

    In this study we developed and evaluated a Brugia Hha I repeat loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Brugia genomic DNA. Amplification was detected using turbidity or fluorescence as readouts. Reactions generated a turbidity threshold value or a clear visual positive within 30 minutes using purified genomic DNA equivalent to one microfilaria. Similar results were obtained using DNA isolated from blood samples containing B. malayi microfilariae. Amplification was specific to B. malayi and B. timori, as no turbidity was observed using DNA from the related filarial parasites Wuchereria bancrofti, Onchocerca volvulus or Dirofilaria immitis, or from human or mosquito. Furthermore, the assay was most robust using a new strand-displacing DNA polymerase termed Bst 2.0 compared to wild-type Bst DNA polymerase, large fragment. The results indicate that the Brugia Hha I repeat LAMP assay is rapid, sensitive and Brugia-specific with the potential to be developed further as a field tool for diagnosis and mapping of brugian filariasis. PMID:23272258

  17. Amplification of seismic ground motion in the Tunis basin: Numerical BEM simulations vs experimental evidences

    CERN Document Server

    Kham, Marc; Bouden-Romdhane, Nejla

    2013-01-01

    This paper aims at the analysis of seismic wave amplification in a deep alluvial basin in the city of Tunis in Tunisia. This sedimentary basin is 3000m wide and 350m deep. Since the seismic hazard is significant in this area, the depth of the basin and the strong impedance ratio raise the need for an accurate estimation of seismic motion amplification. Various experimental investigations were performed in previous studies to characterize site effects. The Boundary Element Method is considered herein to assess the parameter sensitivity of the amplification process and analyse the prevailing phenomena. The various frequencies of maximum amplification are correctly estimated by the BEM simulations. The maximum amplification level observed in the field is also well retrieved by the numerical simulations but, due to the sensitivity of the location of maximum amplification in space, the overall maximum amplification has to be considered. The influence of the wave-field incidence and material damping is also discuss...

  18. Rapid Amplification of Plasmid and Phage DNA Using Phi29 DNA Polymerase and Multiply-Primed Rolling Circle Amplification

    OpenAIRE

    Dean, Frank B.; Nelson, John R.; Giesler, Theresa L.; Lasken, Roger S.

    2001-01-01

    We describe a simple method of using rolling circle amplification to amplify vector DNA such as M13 or plasmid DNA from single colonies or plaques. Using random primers and φ29 DNA polymerase, circular DNA templates can be amplified 10,000-fold in a few hours. This procedure removes the need for lengthy growth periods and traditional DNA isolation methods. Reaction products can be used directly for DNA sequencing after phosphatase treatment to inactivate unincorporated nucleotides. Amplified ...

  19. KRAS and MAPK1 Gene Amplification in Type II Ovarian Carcinomas

    Directory of Open Access Journals (Sweden)

    Noriyuki Ishikawa

    2013-07-01

    Full Text Available In this study, we examined the clinical significance of KRAS and MAPK1 amplification and assessed whether these amplified genes were potential therapeutic targets in type II ovarian carcinoma. Using fluorescence in situ hybridization, immunohistochemistry, and retrospectively collected clinical data, KRAS and MAPK1 amplifications were identified in 9 (13.2% and 5 (7.4% of 68 type II ovarian carcinoma tissue samples, respectively. Interestingly, co-amplification of KRAS and MAPK1 seemed to be absent in the type II ovarian carcinomas tested, except one case. Active phospho-ERK1/2 was identified in 26 (38.2% out of 68 type II ovarian carcinomas and did not correlate with KRAS or MAPK1 amplification. There was no significant relationship between KRAS amplification and overall or progression-free survival in patients with type II ovarian carcinoma. However, patients with MAPK1 amplification had significantly poorer progression-free survival than patients without MAPK1 amplification. Moreover, type II ovarian carcinoma cells with concomitant KRAS amplification and mutation exhibited dramatic growth reduction following treatment with the MEK inhibitor PD0325901. These findings indicate that KRAS/MAPK1 amplification is critical for the growth of a subset of type II ovarian carcinomas. Additionally, RAS/RAF/MEK/ERK pathway-targeted therapy may benefit selected patients with type II ovarian carcinoma harboring KRAS/MAPK1 amplifications.

  20. Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification.

    Directory of Open Access Journals (Sweden)

    David S Boyle

    Full Text Available Improved access to effective tests for diagnosing tuberculosis (TB has been designated a public health priority by the World Health Organisation. In high burden TB countries nucleic acid based TB tests have been restricted to centralised laboratories and specialised research settings. Requirements such as a constant electrical supply, air conditioning and skilled, computer literate operators prevent implementation of such tests in many settings. Isothermal DNA amplification technologies permit the use of simpler, less energy intensive detection platforms more suited to low resource settings that allow the accurate diagnosis of a disease within a short timeframe. Recombinase Polymerase Amplification (RPA is a rapid, low temperature isothermal DNA amplification reaction. We report here RPA-based detection of Mycobacterium tuberculosis complex (MTC DNA in <20 minutes at 39 °C. Assays for two MTC specific targets were investigated, IS6110 and IS1081. When testing purified MTC genomic DNA, limits of detection of 6.25 fg (IS6110 and 20 fg (IS1081were consistently achieved. When testing a convenience sample of pulmonary specimens from suspected TB patients, RPA demonstrated superior accuracy to indirect fluorescence microscopy. Compared to culture, sensitivities for the IS1081 RPA and microscopy were 91.4% (95%CI: 85, 97.9 and 86.1% (95%CI: 78.1, 94.1 respectively (n = 71. Specificities were 100% and 88.6% (95% CI: 80.8, 96.1 respectively. For the IS6110 RPA and microscopy sensitivities of 87.5% (95%CI: 81.7, 93.2 and 70.8% (95%CI: 62.9, 78.7 were obtained (n = 90. Specificities were 95.4 (95% CI: 92.3,98.1 and 88% (95% CI: 83.6, 92.4 respectively. The superior specificity of RPA for detecting tuberculosis was due to the reduced ability of fluorescence microscopy to distinguish Mtb complex from other acid fast bacteria. The rapid nature of the RPA assay and its low energy requirement compared to other amplification technologies suggest RPA-based TB

  1. Weak value amplification via second-order correlated technique

    CERN Document Server

    Cui, Ting; Liu, Xiang; Zeng, Gui-Hua

    2015-01-01

    We propose a new framework combining weak measurement and second-order correlated technique. The theoretical analysis shows that WVA experiment can also be implemented by a second-order correlated system. We then build two-dimensional second-order correlated function patterns for achieving higher amplification factor and discuss the signal-to-noise ratio influence. Several advantages can be obtained by our proposal. For instance, detectors with high resolution are not necessary. Moreover, detectors with low saturation intensity are available in WVA setup. Finally, type-one technical noise can be effectively suppressed.

  2. Limits of Femtosecond Fiber Amplification by Parabolic Pre-Shaping

    CERN Document Server

    Fu, Walter; McComb, Timothy S; Lowder, Tyson L; Wise, Frank W

    2016-01-01

    We explore parabolic pre-shaping as a means of generating and amplifying ultrashort pulses. We develop a theoretical framework for modeling the technique and use its conclusions to design a femtosecond fiber amplifier. Starting from 9 ps pulses, we obtain 4.3 $\\mu$J, nearly transform-limited pulses 275 fs in duration, simultaneously achieving over 40 dB gain and 33-fold compression. Finally, we show that this amplification scheme is limited by Raman scattering, and outline a method by which the pulse duration and energy may be further improved and tailored for a given application.

  3. High power amplification of a tailored-pulse fiber laser

    Science.gov (United States)

    Saby, Julien; Sangla, Damien; Caplette, Stéphane; Boula-Picard, Reynald; Drolet, Mathieu; Reid, Benoit; Salin, François

    2013-02-01

    We demonstrate the amplification of a 1064nm pulse-programmable fiber laser with Large Pitch Rod-Type Fibers of various Mode field diameters from 50 to 70 μm. We have developed a high power fiber amplifier at 1064nm delivering up to 100W/1mJ at 15ns pulses and 30W/300μJ at 2ns with linearly polarized and diffraction limited output beam (M²LBO crystals leading to 50W at 532nm and 25W at 355nm with a diffraction limited output. Similar experiments performed at 1032nm are also reported.

  4. Genomic Amplifications Cause False Positives in CRISPR Screens.

    Science.gov (United States)

    Sheel, Ankur; Xue, Wen

    2016-08-01

    In CRISPR-based screens for essential genes, Munoz and colleagues and Aguirre and colleagues show that gene-independent targeting of genomic amplifications in human cancer cell lines reduces proliferation or survival. The correlation between CRISPR target site copy number and lethality demonstrates the need for scrutiny and complementary approaches to rule out off-target effects and false positives in CRISPR screens. Cancer Discov; 6(8); 824-6. ©2016 AACR.See related article by Munoz et al., p. 900See related article by Aguirre et al., p. 914. PMID:27485003

  5. On the amplification of magnetic fields in cosmic filaments and galaxy clusters

    CERN Document Server

    Vazza, F; Gheller, C; Wang, P

    2014-01-01

    The amplification of primordial magnetic fields via a small-scale turbulent dynamo during structure formation might be able to explain the observed magnetic fields in galaxy clusters. The magnetisation of more tenuous large-scale structures such as cosmic filaments is more uncertain, as it is challenging for numerical simulations to achieve the required dynamical range. In this work, we present magneto-hydrodynamical cosmological simulations on large uniform grids to study the amplification of primordial seed fields in the intracluster medium (ICM) and in the warm-hot-intergalactic medium (WHIM). In the ICM, we confirm that turbulence caused by structure formation can produce a significant dynamo amplification, even if the amplification is smaller than what is reported in other papers. In the WHIM inside filaments, we do not observe significant dynamo amplification, even though we achieve Reynolds numbers of $R_{\\rm e} \\sim 200-300$. The maximal amplification for large filaments is of the order of $\\sim 100$ ...

  6. A robust method for the amplification of RNA in the sense orientation

    OpenAIRE

    Quackenbush John; Marko Nicholas F; Frank Bryan; Lee Norman H

    2005-01-01

    Abstract Background Small quantities of RNA (1–4 μg total RNA) available from biological samples frequently require a single round of amplification prior to analysis, but current amplification strategies have limitations that may restrict their usefulness in downstream genomic applications. The Eberwine amplification method has been extensively validated but is limited by its ability to produce only antisense RNA. Alternatives lack extensive validation and are often confounded by problems wit...

  7. Fiber-Optical Parametric Amplification of Sub-Picosecond Pulses for High-Speed Optical Communications

    Science.gov (United States)

    Lali-Dastjerdi, Zohreh; Cristofori, Valentina; Rottwitt, Karsten; Galili, Michael; Peucheret, Christophe

    2015-03-01

    This article reviews recent results of amplification of short optical pulses using fiber-optical parametric amplifiers. This includes chirped-pulse amplification of 400 fs pulses, error-free amplification of a 640-Gbit/s optical time-division multiplexed signal with less than a 1-dB power penalty, and all-optical phase-preserving amplitude regeneration of a 640-Gbit/s return-to-zero differential phase-shift keying optical time-division multiplexed signal.

  8. Amplification of realistic Schrödinger-cat-state-like states by homodyne heralding

    DEFF Research Database (Denmark)

    Laghaout, Amine; Neergaard-Nielsen, Jonas S.; Rigas, Ioannes;

    2013-01-01

    We present a scheme for the amplification of Schrödinger cat states that collapses two smaller states onto their constructive interference via a homodyne projection. We analyze the performance of the amplification in terms of fidelity and success rate when the input consists of either exact coher...... coherent state superpositions or of photon-subtracted squeezed vacua. The impact of imprecise homodyne detection and of impure squeezing is quantified. We also assess the scalability of iterated amplifications....

  9. STUDY OF SOIL AMPLIFICATION BASED ON MICROTREMOR AND SEISMIC RECORDS IN LIMA PERU

    Science.gov (United States)

    Calderon, Diana; Sekiguchi, Toru; Nakai, Shoichi; Aguilar, Zenon; Lazares, Fernando

    The dynamic characteristics of the ground in Lima, capital of Peru, specifically the amplification are investigated. By using the small and large microtremor array measurements we estimated the soil velocity profiles with depths to the bedrock in many cases. These profiles were used to estimate the amplification factors. Important results are the large amplification factors at EMO, VSV, CAL and CMA (La Molina, Villa El Salvador, El Callao and Bellavista district, respectively).

  10. Amplification of stimulated Brillouin scattering of two collinear pulsed laser beams with orthogonal polarizations.

    Science.gov (United States)

    Shi, Jinwei; Chen, Xudong; Ouyang, Min; Liu, Juan; Liu, Dahe

    2009-06-10

    A polarization-controlling device was developed based on the fact that there can be a time delay between the seeder and the pumping beams during the amplification of a stimulated Brillouin scattering signal. The device causes two coaxially transmitted pulsed beams with orthogonal polarizations to have the same polarization in order to implement amplification by the pumping effect. An experiment showed that good pumping amplification can be achieved by using this technique. PMID:19516374

  11. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate.

    Science.gov (United States)

    Wang, Ping; Zhang, Tonghuan; Yang, Taoyi; Jin, Nan; Zhao, Yanjun; Fan, Aiping

    2014-08-01

    A highly sensitive and selective chemiluminescent (CL) biosensor for adenosine triphosphate (ATP) was developed by taking advantage of the ATP-dependent enzymatic reaction (ATP-DER), the powerful signal amplification capability of rolling circle amplification (RCA), and hydroxylamine-amplified gold nanoparticles (Au NPs). The strategy relies on the ability of ATP, a cofactor of T4 DNA ligase, to trigger the ligation-RCA reaction. In the presence of ATP, the T4 DNA ligase catalyzes the ligation reaction between the two ends of the padlock probe, producing a closed circular DNA template that initiates the RCA reaction with phi29 DNA polymerase and dNTP. Therein, many complementary copies of the circular template can be generated. The ATP-DER is eventually converted into a detectable CL signal after a series of processes, including gold probe hybridization, hydroxylamine amplification, and oxidative gold metal dissolution coupled with a simple and sensitive luminol CL reaction. The CL signal is directly proportional to the ATP level. The results showed that the detection limit of the assay is 100 pM of ATP, which compares favorably with those of other ATP detection techniques. In addition, by taking advantage of ATP-DER, the proposed CL sensing system exhibits extraordinary specificity towards ATP and could distinguish the target molecule ATP from its analogues. The proposed method provides a new and versatile platform for the design of novel DNA ligation reaction-based CL sensing systems for other cofactors. This novel ATP-DER based CL sensing system may find wide applications in clinical diagnosis as well as in environmental and biomedical fields.

  12. CDK4 amplification predicts recurrence of well-differentiated liposarcoma of the abdomen.

    Directory of Open Access Journals (Sweden)

    Sanghoon Lee

    Full Text Available The absence of CDK4 amplification in liposarcomas is associated with favorable prognosis. We aimed to identify the factors associated with tumor recurrence in patients with well-differentiated (WD and dedifferentiated (DD liposarcomas.From 2000 to 2010, surgical resections for 101 WD and DD liposarcomas were performed. Cases in which complete surgical resections with curative intent were carried out were selected. MDM2 and CDK4 gene amplification were analyzed by quantitative real-time polymerase chain reaction (Q-PCR.There were 31 WD and 17 DD liposarcomas. Locoregional recurrence was observed in 11 WD and 3 DD liposarcomas. WD liposarcomas showed better patient survival compared to DD liposarcomas (P<0.05. Q-PCR analysis of the liposarcomas revealed the presence of CDK4 amplification in 44 cases (91.7% and MDM2 amplification in 46 cases (95.8%. WD liposarcomas with recurrence after surgical resection had significantly higher levels of CDK4 amplification compared to those without recurrence (P = 0.041. High level of CDK4 amplification (cases with CDK4 amplification higher than the median 7.54 was associated with poor recurrence-free survival compared to low CDK4 amplification in both univariate (P = 0.012 and multivariate analyses (P = 0.020.Level of CDK4 amplification determined by Q-PCR was associated with the recurrence of WD liposarcomas after surgical resection.

  13. Social amplification of risk in the Internet environment.

    Science.gov (United States)

    Chung, Ik Jae

    2011-12-01

    This article analyzes the dynamic process of risk amplification in the Internet environment with special emphasis on public concern for environmental risks from a high-speed railway tunnel construction project in South Korea. Environmental organizations and activists serving as social stations collected information about the project and its ecological impact, and communicated this with the general public, social groups, and institutions. The Internet provides social stations and the public with an efficient means for interactive communication and an open space for active information sharing and public participation. For example, while the website of an organization such as an environmental activist group can initially trigger local interest, the Internet allows this information to be disseminated to a much wider audience in a manner unavailable to the traditional media. Interaction among social stations demonstrates an amplifying process of public attention to the risk. Analyses of the volume of readers' comments to online newspaper articles and public opinions posted on message board of public and nonprofit organizations show the ripple effects of the amplification process as measured along temporal, geographical, and sectoral dimensions. Public attention is also influenced by the symbolic connotations of risk information. Interpretations of risk in religious, political, or legal terms intensify public concern for the environmental risk. PMID:21539590

  14. Extended amplification of acoustic signals by amphibian burrows.

    Science.gov (United States)

    Muñoz, Matías I; Penna, Mario

    2016-07-01

    Animals relying on acoustic signals for communication must cope with the constraints imposed by the environment for sound propagation. A resource to improve signal broadcast is the use of structures that favor the emission or the reception of sounds. We conducted playback experiments to assess the effect of the burrows occupied by the frogs Eupsophus emiliopugini and E. calcaratus on the amplitude of outgoing vocalizations. In addition, we evaluated the influence of these cavities on the reception of externally generated sounds potentially interfering with conspecific communication, namely, the vocalizations emitted by four syntopic species of anurans (E. emiliopugini, E. calcaratus, Batrachyla antartandica, and Pleurodema thaul) and the nocturnal owls Strix rufipes and Glaucidium nanum. Eupsophus advertisement calls emitted from within the burrows experienced average amplitude gains of 3-6 dB at 100 cm from the burrow openings. Likewise, the incoming vocalizations of amphibians and birds were amplified on average above 6 dB inside the cavities. The amplification of internally broadcast Eupsophus vocalizations favors signal detection by nearby conspecifics. Reciprocally, the amplification of incoming conspecific and heterospecific signals facilitates the detection of neighboring males and the monitoring of the levels of potentially interfering biotic noise by resident frogs, respectively. PMID:27209276

  15. Radiopolymerization of β(-)pinene: A case of chiral amplification

    International Nuclear Information System (INIS)

    β(-)Pinene was treated with γ radiation at three dose levels: 150, 300 and 600 kGy. The expected effect of radiation at these high doses was the partial racemization of the substrate as already observed in the case of other terpene monomers. Unexpectedly β(-)pinene underwent a radiopolymerization reaction into a solid resin and into a dimer. The structure of the products was studied by FT-IR spectroscopy also in comparison to a reference β(-)pinene resin prepared by cationic polymerization. A highly ordered structure was found in the case of the radiopolymer in comparison to the resin from cationic polymerization. Polarimetric measurements have shown astonishing enhancement in the optical activity of the radiopolymer and radiodimer in comparison to the starting optical activity of the β(-)pinene monomer. The results have been discussed in terms of amplification of chirality caused by γ radiation and the implications of this fact on the mechanism of chiral amplification on prebiotic molecules

  16. The national protocol for paediatric amplification in Australia.

    Science.gov (United States)

    King, Alison M

    2010-01-01

    This document describes the national protocol for the selection, fitting, verification, and evaluation of amplification for hearing-impaired children in Australia. It also outlines the approach to management of children who have auditory neuropathy spectrum disorder, children who have mild and unilateral hearing loss, and children who require cochlear implantation. Audiological management of all Australian citizens and permanent residents under twenty-one years of age who have a hearing loss is carried out by the national hearing service provider, Australian Hearing. It is funded by the Australian Government's Hearing Services Program to provide fully subsidised hearing aids, frequency modulated (FM) systems and ongoing audiological management. All hearing aids for children are multi-channel devices that offer wide dynamic range compression, directional microphone technology and feedback cancellation as well as access to multiple listening programs, telecoil and audio-input facilities. Hearing aid gain, frequency response and maximum power output are derived according to the NAL-NL1 prescription procedure and verified using real ear measurements. Amplification benefit is evaluated using a range of speech perception tests and functional assessment questionnaires. PMID:19919326

  17. Radiopolymerization of {beta}(-)pinene: A case of chiral amplification

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, Franco [Soc. Lupi Chemical Research, Via Casilina 1626/A, 00133 Rome (Italy)]. E-mail: cdcata@flashnet.it; Keheyan, Yeghis [CNR, Istituto per lo studio dei Materiali Nanostrutturati, Department of Chemistry, University ' La Sapienza' , P.le Aldo Moro 1, Rome (Italy)

    2006-05-15

    {beta}(-)Pinene was treated with {gamma} radiation at three dose levels: 150, 300 and 600 kGy. The expected effect of radiation at these high doses was the partial racemization of the substrate as already observed in the case of other terpene monomers. Unexpectedly {beta}(-)pinene underwent a radiopolymerization reaction into a solid resin and into a dimer. The structure of the products was studied by FT-IR spectroscopy also in comparison to a reference {beta}(-)pinene resin prepared by cationic polymerization. A highly ordered structure was found in the case of the radiopolymer in comparison to the resin from cationic polymerization. Polarimetric measurements have shown astonishing enhancement in the optical activity of the radiopolymer and radiodimer in comparison to the starting optical activity of the {beta}(-)pinene monomer. The results have been discussed in terms of amplification of chirality caused by {gamma} radiation and the implications of this fact on the mechanism of chiral amplification on prebiotic molecules.

  18. Advanced unrepeatered systems using novel Raman amplification schemes

    Science.gov (United States)

    Chang, Do-il; Pelouch, Wayne; Burtsev, Sergey; Perrier, Philippe; Fevrier, Herve

    2015-01-01

    Unrepeatered transmission systems provide a cost-effective solution to transmit high capacity channels in submarine networks to communicate between coastal population centers or in terrestrial networks to connect remote areas where service access is difficult. The main goal of unrepeatered systems has traditionally been to achieve the longest reach, however, increasing traffic demands now require unrepeatered systems to support both longer reach and higher transport capacity. As a result, transmission rate of unrepeatered systems has quickly moved from 10 Gb/s to 40 Gb/s or 100 Gb/s. This paper reviews the key basic technologies, with a specific focus on Raman amplification, required for long-reach, high-capacity unrepeatered optical transmission systems. We will discuss novel Raman amplification schemes, enhanced remote optically pumped amplifiers (ROPA), ultra-low loss / large effective area fibers, and coherent transmission with advanced modulation format and high FEC coding gain. We will also report recent experimental demonstrations that show how these technologies have been combined to achieve industry's leading capacity and reach transmission.

  19. Loop-Mediated Amplification Accelerated by Stem Primers

    Directory of Open Access Journals (Sweden)

    Laurence Tisi

    2011-12-01

    Full Text Available Isothermal nucleic acid amplifications (iNAATs have become an important alternative to PCR for in vitro molecular diagnostics in all fields. Amongst iNAATs Loop-mediated amplification (LAMP has gained much attention over the last decade because of the simplicity of hardware requirements. LAMP demonstrates performance equivalent to that of PCR, but its application has been limited by the challenging primer design. The design of six primers in LAMP requires a selection of eight priming sites with significant restrictions imposed on their respective positioning and orientation. In order to relieve primer design constraints we propose an alternative approach which uses Stem primers instead of Loop primers and demonstrate the application of STEM-LAMP in assaying for Clostridium difficile, Listeria monocytogenes and HIV. Stem primers used in LAMP in combination with loop-generating and displacement primers gave significant benefits in speed and sensitivity, similar to those offered by Loop primers, while offering additional options of forward and reverse orientations, multiplexing, use in conjunction with Loop primers or even omission of one or two displacement primers, where necessary. Stem primers represent a valuable alternative to Loop primers and an additional tool for IVD assay development by offering more choices for primer design at the same time increasing assay speed, sensitivity, and reproducibility.

  20. Development and Application of Surface Plasmon Polaritons on Optical Amplification

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2014-01-01

    Full Text Available Propagation of surface plasmon polaritons (SPPs along the interface between a metal and a dielectric has attracted significant attention due to its unique optical properties, which has inspired a plethora of fascinating applications in photonics and optoelectronics. However, SPPs suffer from large attenuation because of the ohmic losses in the metal layer. It has become the main bottom-neck problem for the development of high performance plasmonic devices. This limitation can be overcome by providing the material adjacent to the metal with optical gain. In this paper, a review of gain compensation to SPPs is presented. We focus on the spontaneous radiation amplification and simulated radiation amplification. The ohmic loss of metal was greatly improved by introducing optical gain. Then we introduce several gain mediums of dye doped, quantum dots, erbium ion, and semiconductor to compensate optical loss of SPPs. Using gain medium mentioned above can compensate losses and achieve many potential applications, for example, laser, amplifier, and LRSPP discussed.

  1. Resonant Amplification of Turbulence by the Blast Waves

    Science.gov (United States)

    Zankovich, A. M.; Kovalenko, I. G.

    2015-02-01

    We discuss the idea of whether spherical blast waves can amplify by a nonlocal resonant hydrodynamic mechanism inhomogeneities formed by turbulence or phase segregation in the interstellar medium. We consider the problem of a blast-wave-turbulence interaction in the Linear Interaction Approximation. Mathematically, this is an eigenvalue problem for finding the structure and amplitude of eigenfunctions describing the response of the shock-wave flow to forced oscillations by external perturbations in the ambient interstellar medium. Linear analysis shows that the blast wave can amplify density and vorticity perturbations for a wide range of length scales with amplification coefficients of up to 20, with increasing amplification the larger the length. There also exist resonant harmonics for which the gain becomes formally infinite in the linear approximation. Their orbital wavenumbers are within the range of macro- (l ~ 1), meso- (l ~ 20), and microscopic (l > 200) scales. Since the resonance width is narrow (typically, Δl < 1), resonance should select and amplify discrete isolated harmonics. We speculate on a possible explanation of an observed regular filamentary structure of regularly shaped round supernova remnants such as SNR 1572, 1006, or 0509-67.5. Resonant mesoscales found (l ≈ 18) are surprisingly close to the observed scales (l ≈ 15) of ripples in the shell's surface of SNR 0509-67.5.

  2. RESONANT AMPLIFICATION OF TURBULENCE BY THE BLAST WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Zankovich, A. M.; Kovalenko, I. G., E-mail: ilya.g.kovalenko@gmail.com [Physicotechnical Institute, Volgograd State University, Volgograd 400062 (Russian Federation)

    2015-02-10

    We discuss the idea of whether spherical blast waves can amplify by a nonlocal resonant hydrodynamic mechanism inhomogeneities formed by turbulence or phase segregation in the interstellar medium. We consider the problem of a blast-wave-turbulence interaction in the Linear Interaction Approximation. Mathematically, this is an eigenvalue problem for finding the structure and amplitude of eigenfunctions describing the response of the shock-wave flow to forced oscillations by external perturbations in the ambient interstellar medium. Linear analysis shows that the blast wave can amplify density and vorticity perturbations for a wide range of length scales with amplification coefficients of up to 20, with increasing amplification the larger the length. There also exist resonant harmonics for which the gain becomes formally infinite in the linear approximation. Their orbital wavenumbers are within the range of macro- (l ∼ 1), meso- (l ∼ 20), and microscopic (l > 200) scales. Since the resonance width is narrow (typically, Δl < 1), resonance should select and amplify discrete isolated harmonics. We speculate on a possible explanation of an observed regular filamentary structure of regularly shaped round supernova remnants such as SNR 1572, 1006, or 0509-67.5. Resonant mesoscales found (l ≈ 18) are surprisingly close to the observed scales (l ≈ 15) of ripples in the shell's surface of SNR 0509-67.5.

  3. Method Of Signal Amplification In Multi-Chromophore Luminescence Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Levitsky, Igor A. (Fall River, MA); Krivoshlykov, Sergei G. (Shrewsbury, MA)

    2004-02-03

    A fluorescence-based method for highly sensitive and selective detection of analyte molecules is proposed. The method employs the energy transfer between two or more fluorescent chromophores in a carefully selected polymer matrix. In one preferred embodiment, signal amplification has been achieved in the fluorescent sensing of dimethyl methylphosphonate (DMMP) using two dyes, 3-aminofluoranthene (AM) and Nile Red (NR), in a hydrogen bond acidic polymer matrix. The selected polymer matrix quenches the fluorescence of both dyes and shifts dye emission and absorption spectra relative to more inert matrices. Upon DMMP sorption, the AM fluorescence shifts to the red at the same time the NR absorption shifts to the blue, resulting in better band overlap and increased energy transfer between chromophores. In another preferred embodiment, the sensitive material is incorporated into an optical fiber system enabling efficient excitation of the dye and collecting the fluorescent signal form the sensitive material on the remote end of the system. The proposed method can be applied to multichromophore luminescence sensor systems incorporating N-chromophores leading to N-fold signal amplification and improved selectivity. The method can be used in all applications where highly sensitive detection of basic gases, such as dimethyl methylphosphonate (DMMP), Sarin, Soman and other chemical warfare agents having basic properties, is required, including environmental monitoring, chemical industry and medicine.

  4. RESONANT AMPLIFICATION OF TURBULENCE BY THE BLAST WAVES

    International Nuclear Information System (INIS)

    We discuss the idea of whether spherical blast waves can amplify by a nonlocal resonant hydrodynamic mechanism inhomogeneities formed by turbulence or phase segregation in the interstellar medium. We consider the problem of a blast-wave-turbulence interaction in the Linear Interaction Approximation. Mathematically, this is an eigenvalue problem for finding the structure and amplitude of eigenfunctions describing the response of the shock-wave flow to forced oscillations by external perturbations in the ambient interstellar medium. Linear analysis shows that the blast wave can amplify density and vorticity perturbations for a wide range of length scales with amplification coefficients of up to 20, with increasing amplification the larger the length. There also exist resonant harmonics for which the gain becomes formally infinite in the linear approximation. Their orbital wavenumbers are within the range of macro- (l ∼ 1), meso- (l ∼ 20), and microscopic (l > 200) scales. Since the resonance width is narrow (typically, Δl < 1), resonance should select and amplify discrete isolated harmonics. We speculate on a possible explanation of an observed regular filamentary structure of regularly shaped round supernova remnants such as SNR 1572, 1006, or 0509-67.5. Resonant mesoscales found (l ≈ 18) are surprisingly close to the observed scales (l ≈ 15) of ripples in the shell's surface of SNR 0509-67.5

  5. DNA Extraction and Amplification from Contemporary Polynesian Bark-Cloth

    Science.gov (United States)

    Moncada, Ximena; Payacán, Claudia; Arriaza, Francisco; Lobos, Sergio; Seelenfreund, Daniela; Seelenfreund, Andrea

    2013-01-01

    Background Paper mulberry has been used for thousands of years in Asia and Oceania for making paper and bark-cloth, respectively. Museums around the world hold valuable collections of Polynesian bark-cloth. Genetic analysis of the plant fibers from which the textiles were made may answer a number of questions of interest related to provenance, authenticity or species used in the manufacture of these textiles. Recovery of nucleic acids from paper mulberry bark-cloth has not been reported before. Methodology We describe a simple method for the extraction of PCR-amplifiable DNA from small samples of contemporary Polynesian bark-cloth (tapa) using two types of nuclear markers. We report the amplification of about 300 bp sequences of the ITS1 region and of a microsatellite marker. Conclusions Sufficient DNA was retrieved from all bark-cloth samples to permit successful PCR amplification. This method shows a means of obtaining useful genetic information from modern bark-cloth samples and opens perspectives for the analyses of small fragments derived from ethnographic materials. PMID:23437166

  6. Efficient amplification of self-gelling polypod-like structured DNA by rolling circle amplification and enzymatic digestion.

    Science.gov (United States)

    Yata, Tomoya; Takahashi, Yuki; Tan, Mengmeng; Hidaka, Kumi; Sugiyama, Hiroshi; Endo, Masayuki; Takakura, Yoshinobu; Nishikawa, Makiya

    2015-01-01

    The application of DNA as a functional material such as DNA hydrogel has attracted much attention. Despite an increasing interest, the high cost of DNA synthesis is a limiting factor for its utilization. To reduce the cost, we report here a highly efficient amplification technique for polypod-like structured DNA (polypodna) with adhesive ends that spontaneously forms DNA hydrogel. Two types of polypodna with three (tripodna) and four (tetrapodna) pods were selected, and a template oligodeoxynucleotide, containing a tandem sequence of a looped tripodna or tetrapodna, respectively, along with restriction enzyme (TspRI) sites, was designed. The template was circularized using T4 DNA ligase, and amplified by rolling circle amplification (RCA). The RCA product was highly viscous and resistant to restriction digestion. Observation under an electron microscope revealed microflower-like structures. These structures were composed of long DNA and magnesium pyrophosphate, and their treatment with EDTA followed by restriction digestion with TspRI resulted in numerous copies of polypodna with adhesive ends, which formed a DNA hydrogel. Thus, we believe this technique provides a new approach to produce DNA nanostructures, and helps in expanding their practical applications. PMID:26462616

  7. Clinical characteristics and outcome of patients with neuroblastoma presenting genomic amplification of loci other than MYCN.

    Directory of Open Access Journals (Sweden)

    Anne Guimier

    Full Text Available BACKGROUND: Somatically acquired genomic alterations with MYCN amplification (MNA are key features of neuroblastoma (NB, the most common extra-cranial malignant tumour of childhood. Little is known about the frequency, clinical characteristics and outcome of NBs harbouring genomic amplification(s distinct from MYCN. METHODS: Genomic profiles of 1100 NBs from French centres studied by array-CGH were re-examined specifically to identify regional amplifications. Patients were included if amplifications distinct from the MYCN locus were seen. A subset of NBs treated at Institut Curie and harbouring MNA as determined by array-CGH without other amplification was also studied. Clinical and histology data were retrospectively collected. RESULTS: In total, 56 patients were included and categorised into 3 groups. Group 1 (n = 8 presented regional amplification(s without MNA. Locus 12q13-14 was a recurrent amplified region (4/8 cases. This group was heterogeneous in terms of INSS stages, primary localisations and histology, with atypical clinical features. Group 2 (n = 26 had MNA as well as other regional amplifications. These patients shared clinical features of those of a group of NBs MYCN amplified (Group 3, n = 22. Overall survival for group 1 was better than that of groups 2 and 3 (5 year OS: 87.5%±11% vs 34.9%±7%, log-rank p<0.05. CONCLUSION: NBs harbouring regional amplification(s without MNA are rare and seem to show atypical features in clinical presentation and genomic profile. Further high resolution genetic explorations are justified in this heterogeneous group, especially when considering these alterations as predictive markers for targeted therapy.

  8. Strand Invasion Based Amplification (SIBA®: a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    Directory of Open Access Journals (Sweden)

    Mark J Hoser

    Full Text Available Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA. SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.

  9. Induction and Amplification of Non-Newtonian Gravitational Fields

    CERN Document Server

    Tajmar, M

    2001-01-01

    One obtains a Maxwell-like structure of gravitation by applying the weak-field approximation to the well accepted theory of general relativity or by extending Newton's laws to time-dependent systems. This splits gravity in two parts, namely a gravitoelectric and gravitomagnetic (or cogravitational) one. Due to the obtained similar structure between gravitation and electromagnetism, one can express one field by the other one using a coupling constant depending on the mass to charge ratio of the field source. Calculations of induced gravitational fields using state-of-the-art fusion plasmas reach only accelerator threshold values for laboratory testing. Possible amplification mechanisms are mentioned in the literature and need to be explored. The possibility of using the principle of equivalence in the weak field approximation to induce non-Newtonian gravitational fields and the influence of electric charge on the free fall of bodies are also investigated, leading to some additional experimental recommendations...

  10. Self-Amplification of Solid Friction in Interleaved Assemblies

    Science.gov (United States)

    Alarcón, Héctor; Salez, Thomas; Poulard, Christophe; Bloch, Jean-Francis; Raphaël, Élie; Dalnoki-Veress, Kari; Restagno, Frédéric

    2016-01-01

    It is nearly impossible to separate two interleaved phone books when held by their spines. A full understanding of this astonishing demonstration of solid friction in complex assemblies remains elusive. In this Letter, we report on experiments with controlled booklets and show that the force required increases sharply with the number of sheets. A model captures the effect of the number of sheets, their thickness, and the overlapping distance. Furthermore, the data collapse onto a self-similar master curve with one dimensionless amplification parameter. In addition to solving a long-standing familiar enigma, this model system provides a framework with which one can accurately measure friction forces and coefficients at low loads, and that has relevance to complex assemblies from the macro- to the nanoscale.

  11. "Social Laser": Action Amplification by Stimulated Emission of Social Energy

    CERN Document Server

    Khrennikov, Andrei

    2015-01-01

    The problem of the "explanation" of recent social explosions, especially in the Middle East, but also in Southern Europe and the USA, have been debated actively in the social and political literature. We can mention the contributions of P. Mason, F. Fukuyama, E. Schmidt and J. Cohen, I. Krastev to this debate. We point out that the diversity of opinions and conclusions is really amazing. At the moment, there is no consistent and commonly acceptable theory of these phenomena. We present a model of social explosions based on a novel approach for the description of social processes, namely, the quantum-like approach. Here quantum theory is treated simply as an operational formalism - without any direct relation to physics. We explore the quantum-like laser model to describe the possibility of Action Amplification by Stimulated Emission of Social Energy (ASE).

  12. Multiplex amplification of large sets of human exons.

    Science.gov (United States)

    Porreca, Gregory J; Zhang, Kun; Li, Jin Billy; Xie, Bin; Austin, Derek; Vassallo, Sara L; LeProust, Emily M; Peck, Bill J; Emig, Christopher J; Dahl, Fredrik; Gao, Yuan; Church, George M; Shendure, Jay

    2007-11-01

    A new generation of technologies is poised to reduce DNA sequencing costs by several orders of magnitude. But our ability to fully leverage the power of these technologies is crippled by the absence of suitable 'front-end' methods for isolating complex subsets of a mammalian genome at a scale that matches the throughput at which these platforms will routinely operate. We show that targeting oligonucleotides released from programmable microarrays can be used to capture and amplify approximately 10,000 human exons in a single multiplex reaction. Additionally, we show integration of this protocol with ultra-high-throughput sequencing for targeted variation discovery. Although the multiplex capture reaction is highly specific, we found that nonuniform capture is a key issue that will need to be resolved by additional optimization. We anticipate that highly multiplexed methods for targeted amplification will enable the comprehensive resequencing of human exons at a fraction of the cost of whole-genome resequencing.

  13. Rapid PCR amplification of DNA utilizing Coriolis effects.

    Science.gov (United States)

    Mårtensson, Gustaf; Skote, Martin; Malmqvist, Mats; Falk, Mats; Asp, Allan; Svanvik, Nicke; Johansson, Arne

    2006-08-01

    A novel polymerase chain reaction (PCR) method is presented that utilizes Coriolis and centrifugal effects, produced by rotation of the sample disc, in order to increase internal circulatory rates, and with them temperature homogenization and mixing speeds. A proof of concept has been presented by testing a rapid 45-cycle PCR DNA amplification protocol. During the repeated heating and cooling that constitutes a PCR process, the 100 microL samples were rotated at a speed equivalent to an effective acceleration of gravity of 7,000 g. A cycle time of 20.5 s gave a total process time of 15 min to complete the 45 cycles. A theoretical and numerical analysis of the resulting flow, which describes the increased mixing and temperature homogenization, is presented. The device gives excellent reaction speed efficiency, which is beneficial for rapid PCR.

  14. Optimisation of geometrical ratchets for spin-current amplification

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Ranjdar M. [Department of Electronics, University of York, Heslington, York YO10 5DD (United Kingdom); Vick, Andrew J. [Department of Electronics, University of York, Heslington, York YO10 5DD (United Kingdom); Department of Physics, University of York, York YO10 5DD (United Kingdom); Murphy, Benedict A. [Department of Physics, University of York, York YO10 5DD (United Kingdom); Hirohata, Atsufumi, E-mail: atsufumi.hirohata@york.ac.uk [Department of Electronics, University of York, Heslington, York YO10 5DD (United Kingdom); PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012 (Japan)

    2015-05-07

    A two-dimensional model is used to study the geometrical effects of a nonmagnetic (NM) nanowire upon a spin-polarised electron current in a lateral spin-valve structure. We found that the implemented ratchet shapes at the centre of the NM have a crucial effect on the diffusive rate for up- and down-spin electrons along the wire, which leads to the amplification of non-local spin-current signals. By using our simple model, the geometries have been optimised. The calculated spin-current signals are in good qualitative agreement with our recent experimental results [Abdullah et al., J. Phys. D: Appl. Phys. 47, 482001(FTC) (2014)]. Our model may be very useful to evaluate such a geometrical effect on spin-polarised electron transport.

  15. Shock induced porous barrier flows, with underlying wall pressure amplification

    Science.gov (United States)

    Skews, B. W.; Bugarin, S.

    The flow field resulting from the impact of a shock wave on a variety of sheets of permeable material is studied. Earlier studies examined the flow through stationary sheets. It has, however, been found that if the sheet is placed a short distance in front of a surface, and can move under the shock loading, the pressure on the surface is amplified following shock impact, compared to the pressures that would be experienced with no covering. An important application to consider is the effect that textile clothing may have on a persons body when exposed to a blast environment. Single and multiple layers of a range of textiles have been tested. It was established that the heavier, more impermeable textiles such as Kevlar can amplify the shock wave pressure by as much as 400%. Experiments were also done with the textiles placed at an angle to the incoming shock wave and the mechanism for the amplification established through schlieren photography and pressure measurements.

  16. SERS Amplification from Self-Organized Arrays of Plasmonic Nanocrescents.

    Science.gov (United States)

    Giordano, Maria Caterina; Foti, Antonino; Messina, Elena; Gucciardi, Pietro Giuseppe; Comoretto, Davide; Buatier de Mongeot, Francesco

    2016-03-01

    We report on the surface-enhanced Raman scattering (SERS) efficiency of self-organized arrays of Au nanocrescents confined on monolayers of polystyrene nanospheres. A dichroic SERS emission in the visible spectrum is observed due to the selective excitation of a localized surface plasmon (LSP) resonance along the "short axis" of the Au nanocrescents. Under these conditions SERS signal amplifications in the range of 10(3) have been observed with respect to a flat reference Au film. The far field and near field plasmonic response of Au nanocrescent arrays have been investigated as a function of the metal dose deposited onto the polymeric spheres. In this way, we show the possibility of simply tailoring the SERS emission by engineering the morphology of the plasmonic nanocrescents. We highlight the SERS activity of chains of satellite nanoclusters that decorate the border of each connected crescent and sustain isotropic high energy LSP resonances in the visible spectrum. PMID:26824254

  17. Cascaded Parametric Amplification for Highly Efficient Terahertz Generation

    CERN Document Server

    Ravi, Koustuban; Cirmi, Giovanni; Reichert, Fabian; Schimpf, Damian N; Muecke, Oliver D; Kaertner, Franz X

    2016-01-01

    A highly efficient, practical approach to high-energy terahertz (THz) generation based on spectrally cascaded optical parametric amplification (THz-COPA) is introduced. The THz wave initially generated by difference frequency generation between a strong narrowband optical pump and optical seed (0.1-10% of pump energy) kick-starts a repeated or cascaded energy down-conversion of pump photons. This helps to greatly surpass the quantum-defect efficiency and results in exponential growth of THz energy over crystal length. In cryogenically cooled periodically poled lithium niobate, energy conversion efficiencies >8% for 100 ps pulses are predicted. The calculations account for cascading effects, absorption, dispersion and laser-induced damage. Due to the coupled nonlinear interaction of multiple triplets of waves, THz-COPA exhibits physics distinct from conventional three-wave mixing parametric amplifiers. This in turn governs optimal phase-matching conditions, evolution of optical spectra as well as limitations o...

  18. Copy number change: evolving views on gene amplification.

    Science.gov (United States)

    Elliott, Kathryn T; Cuff, Laura E; Neidle, Ellen L

    2013-07-01

    The rapid pace of genomic sequence analysis is increasing the awareness of intrinsically dynamic genetic landscapes. Gene duplication and amplification (GDA) contribute to adaptation and evolution by allowing DNA regions to expand and contract in an accordion-like fashion. This process affects diverse aspects of bacterial infection, including antibiotic resistance and host-pathogen interactions. In this review, microbial GDA is discussed, primarily using recent bacterial examples that demonstrate medical and evolutionary consequences. Interplay between GDA and horizontal gene transfer further impact evolutionary trajectories. Complementing the discovery of gene duplication in clinical and environmental settings, experimental evolution provides a powerful method to document genetic change over time. New methods for GDA detection highlight both its importance and its potential application for genetic engineering, synthetic biology and biotechnology.

  19. Vortical field amplification and particle acceleration at rippled shocks

    CERN Document Server

    Fraschetti, F

    2013-01-01

    Supernova Remnants (SNRs) shocks are believed to accelerate charged particles and to generate strong turbulence in the post-shock flow. From high-energy observations in the past decade, a magnetic field at SNR shocks largely exceeding the shock-compressed interstellar field has been inferred. We outline how such a field amplification results from a small-scale dynamo process downstream of the shock, providing an explicit expression for the turbulence back-reaction to the fluid whirling. The spatial scale of the $X-$ray rims and the short time-variability can be obtained by using reasonable parameters for the interstellar turbulence. We show that such a vortical field saturation is faster than the acceleration time of the synchrotron emitting energetic electrons.

  20. Diffusive shock acceleration with magnetic field amplification and Alfvenic drift

    CERN Document Server

    Kang, Hyesung

    2012-01-01

    We explore how wave-particle interactions affect diffusive shock acceleration (DSA) at astrophysical shocks by performing time-dependent kinetic simulations, in which phenomenological models for magnetic field amplification (MFA), Alfvenic drift, thermal leakage injection, Bohm-like diffusion, and a free escape boundary are implemented. If the injection fraction of cosmic-ray (CR) particles is greater than 2x10^{-4}, for the shock parameters relevant for young supernova remnants, DSA is efficient enough to develop a significant shock precursor due to CR feedback, and magnetic field can be amplified up to a factor of 20 via CR streaming instability in the upstream region. If scattering centers drift with Alfven speed in the amplified magnetic field, the CR energy spectrum can be steepened significantly and the acceleration efficiency is reduced. Nonlinear DSA with self-consistent MFA and Alfvenic drift predicts that the postshock CR pressure saturates roughly at 10 % of the shock ram pressure for strong shocks...

  1. Microchameleons: nonlinear chemical microsystems for amplification and sensing.

    Science.gov (United States)

    Bishop, K J M; Gray, T P; Fialkowski, M; Grzybowski, B A

    2006-09-01

    In biological systems, the coupling of nonlinear biochemical kinetics and molecular transport enables functional sensing and "signal" amplification across many length scales. Drawing on biological inspiration, we describe how artificial reaction-diffusion (RD) microsystems can provide a basis for sensing applications, capable of amplifying micro- and nanoscopic events into macroscopic visual readouts. The RD applications reviewed here are based on a novel experimental technique, WETS for Wet Stamping, which offers unprecedented control over RD processes in microscopic and complex geometries. It is discussed how RD can be used to sense subtle differences in the thickness and/or absorptivity of thin absorptive films, amplify macromolecular phase transitions, detect the presence and quality of self-assembled monolayers, and provide dynamic spatiotemporal readouts of chemical "metabolites." PMID:17014236

  2. Detection of Entamoeba histolytica by Recombinase Polymerase Amplification.

    Science.gov (United States)

    Nair, Gayatri; Rebolledo, Mauricio; White, A Clinton; Crannell, Zachary; Richards-Kortum, R Rebecca; Pinilla, A Elizabeth; Ramírez, Juan David; López, M Consuelo; Castellanos-Gonzalez, Alejandro

    2015-09-01

    Amebiasis is an important cause of diarrheal disease worldwide and has been associated with childhood malnutrition. Traditional microscopy approaches are neither sensitive nor specific for Entamoeba histolytica. Antigen assays are more specific, but many cases are missed unless tested by molecular methods. Although polymerase chain reaction (PCR) is effective, the need for sophisticated, expensive equipment, infrastructure, and trained personnel limits its usefulness, especially in the resource-limited, endemic areas. Here, we report development of a recombinase polymerase amplification (RPA) method to detect E. histolytica specifically. Using visual detection by lateral flow (LF), the test was highly sensitive and specific and could be performed without additional equipment. The availability of this inexpensive, sensitive, and field-applicable diagnostic test could facilitate rapid diagnosis and treatment of amebiasis in endemic regions.

  3. On Magnetic Field Amplification in Gamma-Ray Burst Sources

    CERN Document Server

    Blackman, E G

    2002-01-01

    Magnetic fields play a dual role in gamma-ray bursts (GRBs). First, GRB and afterglow spectra (the latter interpreted as emission from external shocks) imply synchrotron radiation in a magnetic field that is a significant fraction of equipartition with the particle energy density. Second, magnetized rotators with $\\sim 10^{15}$ Gauss field may power GRB by transporting Poynting flux to large distances where it dissipates and also drives an external shock. The field amplification at external shocks and in the engine involve separate processes. External shock fields are likely either seeded by a pre-GRB wind, or are amplified by two-stream plasma instabilities with MHD turbulence playing a subsequent role. In the engine, the large scale fields are likely produced by MHD helical dynamos, since flux accretion cannot easily compete with turbulent diffusion, and because structures must be large enough to rise to coronae before diffusing. Why helical dynamos are feasible, and their relation to the magnetorotational ...

  4. No fitness cost of glyphosate resistance endowed by massive EPSPS gene amplification in Amaranthus palmeri.

    Science.gov (United States)

    Vila-Aiub, Martin M; Goh, Sou S; Gaines, Todd A; Han, Heping; Busi, Roberto; Yu, Qin; Powles, Stephen B

    2014-04-01

    Amplification of the EPSPS gene has been previously identified as the glyphosate resistance mechanism in many populations of Amaranthus palmeri, a major weed pest in US agriculture. Here, we evaluate the effects of EPSPS gene amplification on both the level of glyphosate resistance and fitness cost of resistance. A. palmeri individuals resistant to glyphosate by expressing a wide range of EPSPS gene copy numbers were evaluated under competitive conditions in the presence or absence of glyphosate. Survival rates to glyphosate and fitness traits of plants under intra-specific competition were assessed. Plants with higher amplification of the EPSPS gene (53-fold) showed high levels of glyphosate resistance, whereas less amplification of the EPSPS gene (21-fold) endowed a lower level of glyphosate resistance. Without glyphosate but under competitive conditions, plants exhibiting up to 76-fold EPSPS gene amplification exhibited similar height, and biomass allocation to vegetative and reproductive organs, compared to glyphosate susceptible A. palmeri plants with no amplification of the EPSPS gene. Both the additive effects of EPSPS gene amplification on the level of glyphosate resistance and the lack of associated fitness costs are key factors contributing to EPSPS gene amplification as a widespread and important glyphosate resistance mechanism likely to become much more evident in weed plant species.

  5. Quantification of HER2 autoantibodies in the amplification phenomenon of HER2 in breast cancer

    DEFF Research Database (Denmark)

    Lauterlein, Jens-Jacob L; Petersen, Eva R B; Olsen, Dorte Aa;

    2011-01-01

    Gene amplification of HER2 (human epidermal growth factor receptor 2) is a well-known phenomenon in various cancers. However, little is known about the mechanism of the gene amplification phenomenon itself. Autoantibodies to cellular receptors have been described in several cancer types. We hypot...

  6. Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing

    DEFF Research Database (Denmark)

    Hou, Yong; Wu, Kui; Shi, Xulian;

    2015-01-01

    BACKGROUND: Single-cell resequencing (SCRS) provides many biomedical advances in variations detection at the single-cell level, but it currently relies on whole genome amplification (WGA). Three methods are commonly used for WGA: multiple displacement amplification (MDA), degenerate-oligonucleoti...

  7. Locked nucleic acid inhibits amplification of contaminating DNA in real-time PCR

    DEFF Research Database (Denmark)

    Hummelshoj, Lone; Ryder, Lars P; Madsen, Hans O;

    2005-01-01

    in intronic DNA, the aim was to inhibit the amplification of genomic DNA without affecting the amplification of reverse-transcribed spliced mRNA. LNA was designed to bind within intron 5 in the x-box binding protein 1 (XBP1) gene. An irrelevant LNA oligonucleotide served as a negative control. In both PCR...

  8. A robust method for the amplification of RNA in the sense orientation

    Directory of Open Access Journals (Sweden)

    Quackenbush John

    2005-03-01

    Full Text Available Abstract Background Small quantities of RNA (1–4 μg total RNA available from biological samples frequently require a single round of amplification prior to analysis, but current amplification strategies have limitations that may restrict their usefulness in downstream genomic applications. The Eberwine amplification method has been extensively validated but is limited by its ability to produce only antisense RNA. Alternatives lack extensive validation and are often confounded by problems with bias or yield attributable to their greater biological and technical complexity. Results To overcome these limitations, we have developed a straightforward and robust protocol for amplification of RNA in the sense orientation. This protocol is based upon Eberwine's method but incorporates elements of more recent amplification techniques while avoiding their complexities. Our technique yields greater than 100-fold amplification, generates long transcript, and produces mRNA that is well suited for use with microarray applications. Microarrays performed with RNA amplified using this protocol demonstrate minimal amplification bias and high reproducibility. Conclusion The protocol we describe here is readily adaptable for the production of sense or antisense, labeled or unlabeled RNA from intact or partially-degraded prokaryotic or eukaryotic total RNA. The method outperforms several commercial RNA amplification kits and can be used in conjunction with a variety of microarray platforms, such as cDNA arrays, oligonucleotide arrays, and Affymetrix GeneChip™ arrays.

  9. Dihydrofolate reductase amplification and sensitization to methotrexate of methotrexate-resistant colon cancer cells

    DEFF Research Database (Denmark)

    Morales Torres, Christina; García, Maria J; Ribas, Maria;

    2009-01-01

    have analyzed the structure and dynamics of dihydrofolate reductase (DHFR) gene amplification in HT29 cells treated with methotrexate (MTX). Analysis of the DHFR gene amplification process shows that the amplicon exhibits a complex structure that is consistently reproduced in independent treatments...

  10. Polymorphic microsatellites developed by cross-species amplifications in common pheasant breeds

    NARCIS (Netherlands)

    Baratti, M.; Alberti, A.; Groenen, M.A.M.; Veenendaal, T.; Fulgheri, F.D.

    2001-01-01

    Genetic variability was analysed in two common breeds of pheasant (Phasianus colchicus L. 1758) by means of cross-species amplifications of microsatellite loci: 154 chicken, Gallus gallus and 32 turkey, Meleagris gallopavo, primers were tested for amplification of pheasant DNA. Thirty-six primers (2

  11. Parametric amplification of matter waves in dipolar spinor Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Deuretzbacher, F.; Gebreyesus, G.; Topic, O.;

    2010-01-01

    Spin-changing collisions may lead under proper conditions to the parametric amplification of matter waves in spinor Bose-Einstein condensates. Magnetic dipole-dipole interactions, although typically very weak in alkali-metal atoms, are shown to play a very relevant role in the amplification process...

  12. [Amplification and cloning of dahlia mosaic virus and carnation etched ring virus promoters].

    Science.gov (United States)

    Kuluev, B R; Chemeris, A V

    2007-12-01

    Amplification and cloning of dahlia mosaic virus promoter were carried out for the first time. Sequence analysis showed homology between this promoter and the promoters of other caulimoviruses. In addition, amplification and cloning of the carnation etched ring virus promoter was performed. PMID:18592695

  13. Pulse train amplification and regeneration based on semiconductor quantum dots waveguide

    DEFF Research Database (Denmark)

    Chen, Yaohui; Öhman, Filip; Mørk, Jesper

    2008-01-01

    We numerical analyze pulse train amplification up to 200 Gbit/s in quantum dot amplifiers and present regeneration properties with saturable absorber based on semiconductor quantum dot waveguides.......We numerical analyze pulse train amplification up to 200 Gbit/s in quantum dot amplifiers and present regeneration properties with saturable absorber based on semiconductor quantum dot waveguides....

  14. Simulation of Redox-Cycling Phenomena at Interdigitated Array (IDA) Electrodes: Amplification and Selectivity

    NARCIS (Netherlands)

    Odijk, M.; Olthuis, W.; Dam, T.V.A.; Berg, van den A.

    2008-01-01

    We present Finite Element Method (FEM) simulations of interdigitated array (IDA) electrode geometries to study and verify redox selectivity and redox cycling amplification factor. The simulations provide an adequate explanation of an earlier found, but poorly understood, high amplification factor (6

  15. Plasma HER2 amplification in cell-free DNA during neoadjuvant chemotherapy in breast cancer

    DEFF Research Database (Denmark)

    Bechmann, Troels; Andersen, Rikke Fredslund; Pallisgaard, Niels;

    2013-01-01

    Measurement of human epidermal growth factor receptor 2 (HER2) gene amplification in cell-free DNA (cfDNA) is an evolving technique in breast cancer, enabling liquid biopsies and treatment monitoring. The present study investigated the dynamics of plasma HER2 gene copy number and amplification...... in cfDNA during neoadjuvant chemotherapy....

  16. MYEOV : A candidate gene for DNA amplification events occurring centromeric to CCNDI in breast cancer

    NARCIS (Netherlands)

    Janssen, JWG; Cuny, M; Orsetti, B; Rodriguez, C; Valles, H; Bartram, CR; Schuuring, E; Theillet, C

    2002-01-01

    Rearrangements of chromosome 11q13 are frequently observed in human cancer. The 11q13 region harbors several chromosomal breakpoint clusters found in hematologic malignancies and exhibits frequent DNA amplification in carcinomas. DNA amplification patterns in breast tumors are consistent with the ex

  17. The Media and Genetically Modified Foods : Evidence in Support of Social Amplification of Risk

    NARCIS (Netherlands)

    Frewer, L.J.; Miles, S.; Marsh, R.

    2002-01-01

    Empirical examinations of the "social amplification of risk" framework are rare, partly because of the difficulties in predicting when conditions likely to result in amplification effects will occur. This means that it is difficult to examine changes in risk perception that are contemporaneous with

  18. Amplification and Suppression of Round-Off Error in Runge-Kutta Methods

    Science.gov (United States)

    Prentice, J. S. C.

    2011-01-01

    A simple nonstiff linear initial-value problem is used to demonstrate the amplification of round-off error in the course of using a second-order Runge-Kutta method. This amplification is understood in terms of an appropriate expression for the global error. An implicit method is then used to show how the roundoff error may actually be suppressed.…

  19. Millijoule pulse energy picosecond fiber chirped-pulse amplification system

    Institute of Scientific and Technical Information of China (English)

    Zhi Yang; Xiaohong Hu; Yishan Wang; Wei Zhang; Wei Zhao

    2011-01-01

    @@ The efficient generation of a 1.17-mJ laser pul8e with 360 ps duration using an ytterbium (Yb)-doped fiber amplifier chain seeded by a homemade mode-locked fiber laser is demonstrated experimentally.A specially designed figure-of-eight fiber laser acts as the seed source of a chirped-pulse amplification (CPA) system and generates mode-locked pulse8 with hundreds of picosecond widths.Two kinds of large-mode-area (LMA) double-clad Yb-doped fibers are employed to construct the pre-amplifier and main amplifier, All of the adopted instruments help avoid severe nonlinearity in fibers to raise sub-nanosecond pulse energy with acceptable signal-to-noise ratio (SNR).The output spectrum of this fiber-based CPA system shows that amplified spontaneous emission (ASE) is suppressed to better than 30 dB, and the onset of stimulated Raman scattering is excluded.%The efficient generation of a 1.17-mJ laser pulse with 360 ps duration using an ytterbium (Yb)-doped fiber amplifier chain seeded by a homemade mode-locked fiber laser is demonstrated experimentally. A specially designed figure-of-eight fiber laser acts as the seed source of a chirped-pulse amplification (CPA) system and generates mode-locked pulses with hundreds of picosecond widths. Two kinds of large-mode-area (LMA) double-clad Yb-doped fibers are employed to construct the pre-amplifier and main amplifier. All of the adopted instruments help avoid severe nonlinearity in fibers to raise sub-nanosecond pulse energy with acceptable signal-to-noise ratio (SNR). The output spectrum of this fiber-based CPA system shows that amplified spontaneous emission (ASE) is suppressed to better than 30 dB, and the onset of stimulated Raman scattering is excluded.

  20. Recombinase Polymerase Amplification Assay for Rapid Diagnostics of Dengue Infection.

    Directory of Open Access Journals (Sweden)

    Ahmed Abd El Wahed

    Full Text Available Over 2.5 billion people are exposed to the risk of contracting dengue fever (DF. Early diagnosis of DF helps to diminish its burden on public health. Real-time reverse transcription polymerase amplification assays (RT-PCR are the standard method for molecular detection of the dengue virus (DENV. Real-time RT-PCR analysis is not suitable for on-site screening since mobile devices are large, expensive, and complex. In this study, two RT-recombinase polymerase amplification (RT-RPA assays were developed to detect DENV1-4.Using two quantitative RNA molecular standards, the analytical sensitivity of a RT-RPA targeting the 3´non-translated region of DENV1-4 was found to range from 14 (DENV4 to 241 (DENV1-3 RNA molecules detected. The assay was specific and did not cross detect other Flaviviruses. The RT-RPA assay was tested in a mobile laboratory combining magnetic-bead based total nucleic acid extraction and a portable detection device in Kedougou (Senegal and in Bangkok (Thailand. In Kedougou, the RT-RPA was operated at an ambient temperature of 38 °C with auxiliary electricity tapped from a motor vehicle and yielded a clinical sensitivity and specificity of 98% (n=31 and 100% (n=23, respectively. While in the field trial in Bangkok, the clinical sensitivity and specificity were 72% (n=90 and 100%(n=41, respectively.During the first 5 days of infection, the developed DENV1-4 RT-RPA assays constitute a suitable accurate and rapid assay for DENV diagnosis. Moreover, the use of a portable fluorescence-reading device broadens its application potential to the point-of-care for outbreak investigations.

  1. Integrated Microfluidic Nucleic Acid Isolation, Isothermal Amplification, and Amplicon Quantification

    Directory of Open Access Journals (Sweden)

    Michael G. Mauk

    2015-10-01

    Full Text Available Microfluidic components and systems for rapid (<60 min, low-cost, convenient, field-deployable sequence-specific nucleic acid-based amplification tests (NAATs are described. A microfluidic point-of-care (POC diagnostics test to quantify HIV viral load from blood samples serves as a representative and instructive example to discuss the technical issues and capabilities of “lab on a chip” NAAT devices. A portable, miniaturized POC NAAT with performance comparable to conventional PCR (polymerase-chain reaction-based tests in clinical laboratories can be realized with a disposable, palm-sized, plastic microfluidic chip in which: (1 nucleic acids (NAs are extracted from relatively large (~mL volume sample lysates using an embedded porous silica glass fiber or cellulose binding phase (“membrane” to capture sample NAs in a flow-through, filtration mode; (2 NAs captured on the membrane are isothermally (~65 °C amplified; (3 amplicon production is monitored by real-time fluorescence detection, such as with a smartphone CCD camera serving as a low-cost detector; and (4 paraffin-encapsulated, lyophilized reagents for temperature-activated release are pre-stored in the chip. Limits of Detection (LOD better than 103 virons/sample can be achieved. A modified chip with conduits hosting a diffusion-mode amplification process provides a simple visual indicator to readily quantify sample NA template. In addition, a companion microfluidic device for extracting plasma from whole blood without a centrifuge, generating cell-free plasma for chip-based molecular diagnostics, is described. Extensions to a myriad of related applications including, for example, food testing, cancer screening, and insect genotyping are briefly surveyed.

  2. Multiplexed Recombinase Polymerase Amplification Assay To Detect Intestinal Protozoa.

    Science.gov (United States)

    Crannell, Zachary; Castellanos-Gonzalez, Alejandro; Nair, Gayatri; Mejia, Rojelio; White, A Clinton; Richards-Kortum, Rebecca

    2016-02-01

    This work describes a proof-of-concept multiplex recombinase polymerase amplification (RPA) assay with lateral flow readout that is capable of simultaneously detecting and differentiating DNA from any of the diarrhea-causing protozoa Giardia, Cryptosporidium, and Entamoeba. Together, these parasites contribute significantly to the global burden of diarrheal illness. Differential diagnosis of these parasites is traditionally accomplished via stool microscopy. However, microscopy is insensitive and can miss up to half of all cases. DNA-based diagnostics such as polymerase chain reaction (PCR) are far more sensitive; however, they rely on expensive thermal cycling equipment, limiting their availability to centralized reference laboratories. Isothermal DNA amplification platforms, such as the RPA platform used in this study, alleviate the need for thermal cycling equipment and have the potential to broaden access to more sensitive diagnostics. Until now, multiplex RPA assays have not been developed that are capable of simultaneously detecting and differentiating infections caused by different pathogens. We developed a multiplex RPA assay to detect the presence of DNA from Giardia, Cryptosporidium, and Entamoeba. The multiplex assay was characterized using synthetic DNA, where the limits-of-detection were calculated to be 403, 425, and 368 gene copies per reaction of the synthetic Giardia, Cryptosporidium, and Entamoeba targets, respectively (roughly 1.5 orders of magnitude higher than for the same targets in a singleplex RPA assay). The multiplex assay was also characterized using DNA extracted from live parasites spiked into stool samples where the limits-of-detection were calculated to be 444, 6, and 9 parasites per reaction for Giardia, Cryptosporidium, and Entamoeba parasites, respectively. This proof-of-concept assay may be reconfigured to detect a wide variety of targets by re-designing the primer and probe sequences.

  3. Post-Fragmentation Whole Genome Amplification-Based Method

    Science.gov (United States)

    Benardini, James; LaDuc, Myron T.; Langmore, John

    2011-01-01

    This innovation is derived from a proprietary amplification scheme that is based upon random fragmentation of the genome into a series of short, overlapping templates. The resulting shorter DNA strands (genomic hybridization microarray, SNP analysis, and sequencing. The standard reaction can be performed with minimal hands-on time, and can produce amplified DNA in as little as three hours. Post-fragmentation whole genome amplification-based technology provides a robust and accurate method of amplifying femtogram levels of starting material into microgram yields with no detectable allele bias. The amplified DNA also facilitates the preservation of samples (spacecraft samples) by amplifying scarce amounts of template DNA into microgram concentrations in just a few hours. Based on further optimization of this technology, this could be a feasible technology to use in sample preservation for potential future sample return missions. The research and technology development described here can be pivotal in dealing with backward/forward biological contamination from planetary missions. Such efforts rely heavily on an increasing understanding of the burden and diversity of microorganisms present on spacecraft surfaces throughout assembly and testing. The development and implementation of these technologies could significantly improve the comprehensiveness and resolving power of spacecraft-associated microbial population censuses, and are important to the continued evolution and advancement of planetary protection capabilities. Current molecular procedures for assaying spacecraft-associated microbial burden and diversity have inherent sample loss issues at practically every step, particularly nucleic acid extraction. In engineering a molecular means of amplifying nucleic acids directly from single cells in their native state within the sample matrix, this innovation has circumvented entirely the need for DNA extraction regimes in the sample processing scheme.

  4. Isothermal amplification detection of nucleic acids by a double-nicked beacon.

    Science.gov (United States)

    Shi, Chao; Zhou, Meiling; Pan, Mei; Zhong, Guilin; Ma, Cuiping

    2016-03-01

    Isothermal and rapid amplification detection of nucleic acids is an important technology in environmental monitoring, foodborne pathogen detection, and point-of-care clinical diagnostics. Here we have developed a novel method of isothermal signal amplification for single-stranded DNA (ssDNA) detection. The ssDNA target could be used as an initiator, coupled with a double-nicked molecular beacon, to originate amplification cycles, achieving cascade signal amplification. In addition, the method showed good specificity and strong anti-jamming capability. Overall, it is a one-pot and isothermal strand displacement amplification method without the requirement of a stepwise procedure, which greatly simplifies the experimental procedure and decreases the probability of contamination of samples. With its advantages, the method would be very useful to detect nucleic acids in point-of-care or field use. PMID:26706801

  5. Isothermal amplification detection of nucleic acids by a double-nicked beacon.

    Science.gov (United States)

    Shi, Chao; Zhou, Meiling; Pan, Mei; Zhong, Guilin; Ma, Cuiping

    2016-03-01

    Isothermal and rapid amplification detection of nucleic acids is an important technology in environmental monitoring, foodborne pathogen detection, and point-of-care clinical diagnostics. Here we have developed a novel method of isothermal signal amplification for single-stranded DNA (ssDNA) detection. The ssDNA target could be used as an initiator, coupled with a double-nicked molecular beacon, to originate amplification cycles, achieving cascade signal amplification. In addition, the method showed good specificity and strong anti-jamming capability. Overall, it is a one-pot and isothermal strand displacement amplification method without the requirement of a stepwise procedure, which greatly simplifies the experimental procedure and decreases the probability of contamination of samples. With its advantages, the method would be very useful to detect nucleic acids in point-of-care or field use.

  6. PCR amplification of repetitive sequences as a possible approach in relative species quantification

    DEFF Research Database (Denmark)

    Ballin, Nicolai Zederkopff; Vogensen, Finn Kvist; Karlsson, Anders H

    2012-01-01

    Abstract Both relative and absolute quantifications are possible in species quantification when single copy genomic DNA is used. However, amplification of single copy genomic DNA does not allow a limit of detection as low as one obtained from amplification of repetitive sequences. Amplification...... of repetitive sequences is therefore frequently used in absolute quantification but problems occur in relative quantification as the number of repetitive sequences is unknown. A promising approach was developed where data from amplification of repetitive sequences were used in relative quantification of species...... in binary mixtures. PCR LUX primers were designed that amplify repetitive and single copy sequences to establish the species dependent number (constants) (SDC) of amplified repetitive sequences per genome. The SDCs and data from amplification of repetitive sequences were tested for their applicability...

  7. Ultrasensitive detection of nucleic acids by template enhanced hybridization followed by rolling circle amplification and catalytic hairpin assembly.

    Science.gov (United States)

    Song, Weiling; Zhang, Qiao; Sun, Wenbo

    2015-02-11

    An ultrasensitive protocol for fluorescent detection of DNA is designed by combining the template enhanced hybridization process (TEHP) with Rolling Circle Amplification (RCA) and Catalytic Hairpin Assembly (CHA), showing a remarkable amplification efficiency.

  8. Amplification and Compression of Ultrashort Fundamental Solitons in An Erbium-Doped Nonlinear Amplifying Fiber Loop Mirror

    Institute of Scientific and Technical Information of China (English)

    P.; K.; A.; Wai

    2003-01-01

    A nonlinear amplifying loop mirror constructed from erbium-doped fiber is proposed for simultaneous amplification and compression of ultrashort fundamental solitons. Numerical simulations show that, the proposed device performs efficient high-quality amplification and compression of solitons.

  9. HER2 protein expression and HER2 gene amplification are infrequent in small intestinal carcinomas.

    Science.gov (United States)

    Gu, Mi Jin; Hong, Seung-Mo; Jung, Soo Jin

    2013-06-01

    Human epidermal growth factor receptor 2 (HER2/neu) gene amplification and HER2 protein overexpression have been associated with clinicopathological parameters and clinical outcome in many carcinomas. The aim of this study was to evaluate the frequency and prognostic impact of HER2 protein overexpression and gene amplification in small intestinal carcinoma (SIC). We performed immunohistochemistry (IHC) for HER2 protein and silver in situ hybridization for the HER2 gene in a total of 194 SICs. A total of 184 cases (94.8 %) were IHC 0 and 6 cases (3.1 %) were IHC 1+ with no gene amplification. HER2 protein overexpression (IHC 3+) with concordant gene amplification was detected in four cases (2.1 %), using the American Society of Clinical Oncology-College of American Pathologists guidelines for breast cancer. HER2 gene amplification was observed in an equivocal (IHC 2+) metastatic tumor in lymph node. No significant correlation was observed between HER2 status and clinicopathological parameters. Although HER2 protein overexpression and amplification were rare and did not correlate with clinicopathological parameters, further studies will be necessary to answer the question as to whether adjuvant therapy targeting the HER2 receptor might improve outcome in patients with a SIC with HER2 gene amplification and protein overexpression. PMID:23703294

  10. Basin amplification of seismic waves in the city of Pahrump, Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Robert E.

    2005-07-01

    Sedimentary basins can increase the magnitude and extend the duration of seismic shaking. This potential for seismic amplification is investigated for Pahrump Valley, Nevada-California. The Pahrump Valley is located approximately 50 km northwest of Las Vegas and 75 km south of the Nevada Test Site. Gravity data suggest that the city of Pahrump sits atop a narrow, approximately 5 km deep sub-basin within the valley. The seismic amplification, or ''site effect'', was investigated using a combination of in situ velocity modeling and comparison of the waveforms and spectra of weak ground motion recorded in the city of Pahrump, Nevada, and those recorded in the nearby mountains. Resulting spectral ratios indicate seismic amplification factors of 3-6 over the deepest portion of Pahrump Valley. This amplification predominantly occurs at 2-2.5 Hz. Amplification over the deep sub-basin is lower than amplification at the sub-basin edge, location of the John Blume and Associates PAHA seismic station, which recorded many underground nuclear tests at the Nevada Test Site. A comprehensive analysis of basin amplification for the city of Pahrump should include 3-D basin modeling, due to the extreme basement topography of the Pahrump Valley.

  11. Digital Droplet Multiple Displacement Amplification (ddMDA for Whole Genome Sequencing of Limited DNA Samples.

    Directory of Open Access Journals (Sweden)

    Minsoung Rhee

    Full Text Available Multiple displacement amplification (MDA is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently, the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet, ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology.

  12. The Study on Gene Amplification of EGFR in Bronchioloalveolar Carcinoma and Conventional Adenocarcinoma of the Lung

    Directory of Open Access Journals (Sweden)

    Xin SONG

    2009-08-01

    Full Text Available Background and objective Patients with adenocarcinoma of the lung have disproportionately response to the epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI. The aim of this study is to analyze the difference of EGFR gene amplification in bronchioloalveolar carcinoma (BAC, adenocarcinma mixed subtype and conventional adenocarcinoma of the lung and provide some information to clinical therapies. Methods Lung cancer cases were collected and reviewed from the archives of the Department of Pathology, Chinese PLA General Hospital during the time period from 2004 to 2006. The definite diagnosis of BAC based on 2004 WHO classification of lung tumors was made by two pathologists. Fluorescence in situ hybridization (FISH was performed to detect EGFR gene amplification in pure BAC, adenocarcinma mixed subtype and conventional adenocarcinoma. Results Conventional adenocarcinoma had higher EGFR amplification compared with pure BAC and adenocarcinma mixed subtype (χ2=11.632, P<0.05. EGFR gene amplification was found in 45.45% of conventional adenocarcinoma, 14.81% in pure BACs, and 22.58% in adenocarcinma mixed subtype. EGFR gene amplification was observed as scattered signals in most cases. Conclusion EGFR gene amplification was seen more frequently in the invasive components than in BAC. EGFR gene amplification might be associated with the development of adenocarcinoma of the lung.

  13. An evaluation of multiple annealing and looping based genome amplification using a synthetic bacterial community

    Institute of Scientific and Technical Information of China (English)

    WANG Yong; GAO Zhaoming; XU Ying; LI Guangyu; HE Lisheng; QIAN Peiyuan

    2016-01-01

    The low biomass in environmental samples is a major challenge for microbial metagenomic studies. The amplification of a genomic DNA was frequently applied to meeting the minimum requirement of the DNA for a high-throughput next-generation-sequencing technology. Using a synthetic bacterial community, the amplification efficiency of the Multiple Annealing and Looping Based Amplification Cycles (MALBAC) kit that is originally developed to amplify the single-cell genomic DNA of mammalian organisms is examined. The DNA template of 10 pg in each reaction of the MALBAC amplification may generate enough DNA for Illumina sequencing. Using 10 pg and 100 pg templates for each reaction set, the MALBAC kit shows a stable and homogeneous amplification as indicated by the highly consistent coverage of the reads from the two amplified samples on the contigs assembled by the original unamplified sample. Although GenomePlex whole genome amplification kit allows one to generate enough DNA using 100 pg of template in each reaction, the minority of the mixed bacterial species is not linearly amplified. For both of the kits, the GC-rich regions of the genomic DNA are not efficiently amplified as suggested by the low coverage of the contigs with the high GC content. The high efficiency of the MALBAC kit is supported for the amplification of environmental microbial DNA samples, and the concerns on its application are also raised to bacterial species with the high GC content.

  14. Whole Transcriptome Amplification for Gene Expression Profiling and Development of Molecular Archives

    Directory of Open Access Journals (Sweden)

    Scott A. Tomlins

    2006-02-01

    Full Text Available Expression profiling of clinically obtainable tumor specimens has been hindered by the need for microgram quantities of RNA. In vitro transcription (IVT-based amplifications are most commonly used to amplify small quantities of RNA for microarray analysis. However, significant drawbacks exist with IVT-based amplification, and the need for alternative amplification methods remains. Herein, we validate whole transcriptome amplification (WTA, an exponential amplification technique that produces cDNA libraries and amplified target in 3 to 4 hours from nanogram quantities of total RNA using a combination of cDNA microarrays and quantitative polymerase chain reaction (PCR. We demonstrate that WTA material can serve as a “molecular archive” because a WTA cDNA library can be faithfully amplified through multiple rounds of PCR amplification, allowing it to serve as a bankable and distributable resource. To demonstrate applicability, WTA was combined with laser capture microdissection to profile frozen prostate tissues. Unlike most IVT-based and exponential amplification techniques, WTA does not depend on the presence of a poly-A tail. Thus, we demonstrate that WTA is compatible with artificially degraded RNA and RNA isolated from formalin-fixed paraffin-embedded tissues. Taken together, WTA represents a versatile approach to profile and archive cDNA from minute tumor samples and is compatible with partially degraded RNA.

  15. Vorticity amplification near the stagnation point of landing gear wheels

    Science.gov (United States)

    Feltham, G.; Ekmekci, A.

    2014-04-01

    The vicinity near the forward stagnation point of landing-gear wheels has been found to support a mechanism for oncoming streams of weak vorticity to collect, grow, and amplify into discrete large-scale vortical structures that then shed with a distinct periodicity. To the authors' knowledge, such a flow phenomenon has never been reported before for landing gear wheels, which are in essence finite (three-dimensional) cylinders. To gain further insight into this phenomenon, a detailed experimental study has been undertaken employing the hydrogen bubble visualization and Particle Image Velocimetry techniques. A very thin platinum wire, similar to those used in hydrogen bubble visualization applications, was placed upstream of the wheel model to produce two streams of weak vorticity (with opposite sign) that convected toward the model. As the vorticity streams enter the stagnation region of the wheels, significant flow deceleration and vorticity stretching act to collect, grow, and amplify the incoming vorticity streams into large-scale vortical structures. Experiments were performed at a fixed Reynolds number, with a value of 32 500 when defined based on the diameter of the wheel and a value of 21 based on the diameter of the vorticity-generating upstream wire. First, to establish a baseline, the natural flow field (without the presence of an upstream wire) was characterized, where experimentally determined values for the stagnation boundary-layer thickness and the velocity profile along the stagnation streamline were both found to agree with the values provided in the literature for two-dimensional cylinders. Subsequently, the dynamics of vorticity collection, growth, amplification, and shedding were studied. The size, stand-off distance and the shedding frequency of the vortical structures forming near the stagnation region were all found to strongly depend on the impingement location of the inbound vorticity on the wheel. A simple relationship between the non

  16. Amplified RNA degradation in T7-amplification methods results in biased microarray hybridizations

    Directory of Open Access Journals (Sweden)

    Ivell Richard

    2003-11-01

    Full Text Available Abstract Background The amplification of RNA with the T7-System is a widely used technique for obtaining increased amounts of RNA starting from limited material. The amplified RNA (aRNA can subsequently be used for microarray hybridizations, warranting sufficient signal for image analysis. We describe here an amplification-time dependent degradation of aRNA in prolonged standard T7 amplification protocols, that results in lower average size aRNA and decreased yields. Results A time-dependent degradation of amplified RNA (aRNA could be observed when using the classical "Eberwine" T7-Amplification method. When the amplification was conducted for more than 4 hours, the resulting aRNA showed a significantly smaller size distribution on gel electrophoresis and a concomitant reduction of aRNA yield. The degradation of aRNA could be correlated to the presence of the T7 RNA Polymerase in the amplification cocktail. The aRNA degradation resulted in a strong bias in microarray hybridizations with a high coefficient of variation and a significant reduction of signals of certain transcripts, that seem to be susceptible to this RNA degrading activity. The time-dependent degradation of these transcripts was verified by a real-time PCR approach. Conclusions It is important to perform amplifications not longer than 4 hours as there is a characteristic 'quality vs. yield' situation for longer amplification times. When conducting microarray hybridizations it is important not to compare results obtained with aRNA from different amplification times.

  17. Human mitochondrial DNA complete amplification and sequencing: a new validated primer set that prevents nuclear DNA sequences of mitochondrial origin co-amplification.

    Science.gov (United States)

    Ramos, Amanda; Santos, Cristina; Alvarez, Luis; Nogués, Ramon; Aluja, Maria Pilar

    2009-05-01

    To date, there are no published primers to amplify the entire mitochondrial DNA (mtDNA) that completely prevent the amplification of nuclear DNA (nDNA) sequences of mitochondrial origin. The main goal of this work was to design, validate and describe a set of primers, to specifically amplify and sequence the complete human mtDNA, allowing the correct interpretation of mtDNA heteroplasmy in healthy and pathological samples. Validation was performed using two different approaches: (i) Basic Local Alignment Search Tool and (ii) amplification using isolated nDNA obtained from sperm cells by differential lyses. During the validation process, two mtDNA regions, with high similarity with nDNA, represent the major problematic areas for primer design. One of these could represent a non-published nuclear DNA sequence of mitochondrial origin. For two of the initially designed fragments, the amplification results reveal PCR artifacts that can be attributed to the poor quality of the DNA. After the validation, nine overlapping primer pairs to perform mtDNA amplification and 22 additional internal primers for mtDNA sequencing were obtained. These primers could be a useful tool in future projects that deal with mtDNA complete sequencing and heteroplasmy detection, since they represent a set of primers that have been tested for the non-amplification of nDNA.

  18. Dynamic Characteristics of a Hydraulic Amplification Mechanism for Large Displacement Actuators Systems

    Directory of Open Access Journals (Sweden)

    Xavier Arouette

    2010-03-01

    Full Text Available We have developed a hydraulic displacement amplification mechanism (HDAM and studied its dynamic response when combined with a piezoelectric actuator. The HDAM consists of an incompressible fluid sealed in a microcavity by two largely deformable polydimethylsiloxane (PDMS membranes. The geometry with input and output surfaces having different cross-sectional areas creates amplification. By combining the HDAM with micro-actuators, we can amplify the input displacement generated by the actuators, which is useful for applications requiring large deformation, such as tactile displays. We achieved a mechanism offering up to 18-fold displacement amplification for static actuation and 12-fold for 55 Hz dynamic actuation.

  19. Amplification of surface acoustic waves by transverse electric current in piezoelectric semiconductors

    DEFF Research Database (Denmark)

    Gulyaev, Yuri V.

    1974-01-01

    It is shown that the principal characteristic feature of the surface acoustic waves in piezoelectrics—the presence of an alternating electric field transverse to the surface, which can be of the same order of magnitude as the longitudinal field—may not only give rise to the known transverse...... acoustoelectric effect but also lead to amplification of surface acoustic waves by electron drift perpendicular to the surface. For Love waves in a piezoelectric semiconductor film on a highly conducting substrate, the amplification coefficient is found and the conditions necessary for amplification...

  20. Dynamic characteristics of a hydraulic amplification mechanism for large displacement actuators systems.

    Science.gov (United States)

    Arouette, Xavier; Matsumoto, Yasuaki; Ninomiya, Takeshi; Okayama, Yoshiyuki; Miki, Norihisa

    2010-01-01

    We have developed a hydraulic displacement amplification mechanism (HDAM) and studied its dynamic response when combined with a piezoelectric actuator. The HDAM consists of an incompressible fluid sealed in a microcavity by two largely deformable polydimethylsiloxane (PDMS) membranes. The geometry with input and output surfaces having different cross-sectional areas creates amplification. By combining the HDAM with micro-actuators, we can amplify the input displacement generated by the actuators, which is useful for applications requiring large deformation, such as tactile displays. We achieved a mechanism offering up to 18-fold displacement amplification for static actuation and 12-fold for 55 Hz dynamic actuation. PMID:22319281

  1. On the amplification effect of dipping and parallel soil medium to seismic wave

    International Nuclear Information System (INIS)

    To obtain the amplification spectra due to seismic source for the parallel and dipping layered media, the authors simulate the seismic waves as those emitted from transient SH line source, which is located in the half space overlaid with a single dipping layered medium. Then, from the obtained Fourier spectra, it shows that both the fundamental frequency and Fourier amplification ratio are different for parallel and dipping layered media with smaller amplification for dipping medium, and this phenomenon may be referred to as the concentration of energy in the dipping one. Hence, the reactor erected above sloping foundation must consider this effect

  2. Copy Number Variation Analysis by Array Analysis of Single Cells Following Whole Genome Amplification.

    Science.gov (United States)

    Dimitriadou, Eftychia; Zamani Esteki, Masoud; Vermeesch, Joris Robert

    2015-01-01

    Whole genome amplification is required to ensure the availability of sufficient material for copy number variation analysis of a genome deriving from an individual cell. Here, we describe the protocols we use for copy number variation analysis of non-fixed single cells by array-based approaches following single-cell isolation and whole genome amplification. We are focusing on two alternative protocols, an isothermal and a PCR-based whole genome amplification method, followed by either comparative genome hybridization (aCGH) or SNP array analysis, respectively.

  3. DMSO对PCR扩增反应的影响%The Influence of PCR Amplification with DMSO

    Institute of Scientific and Technical Information of China (English)

    徐葵; 邱志明; 汪晓英

    2001-01-01

    In Order to resolve the failure of PCR to amplif y 8-receptor, the influence of PCR amplification the different concentration of DMSO was observed. The result show that the centain concertation of DMSO can greatly enhance the specificity and efficiency of PCR amplification%为解决扩增δ-受体基因屡次失败的问题,观察了在 PCR体系加入不同浓度DMSO时对DNA扩增反应的影响.结果表明:一定浓度的DMSO可显著提高 PCR扩增的特异性和扩增效率.

  4. SOLITONS AND OPTICAL FIBERS: On the problem of ideal amplification of optical solitons

    Science.gov (United States)

    Melo Melchor, G.; Agüero Granados, M.; Corro, G. H.

    2002-11-01

    The new possibilities of almost ideal amplification of optical solitons during the incoherent interaction of light pulses with a resonantly amplifying medium are considered. The mechanism of two-photon amplification of optical solitons with an optimal frequency-modulation law is proposed. It is shown that the entirely ideal amplification of solitons cannot be achieved because the law of phase modulation of radiation differs from a parabolic law. The possibility of using the phase cross modulation to produce the required initial phase of amplified solitons is studied.

  5. Features of Raman amplification in KGW and barium nitrate crystals at excitation by femtosecond pulses

    International Nuclear Information System (INIS)

    Measurements of Raman amplification in KGd(WO4)2 (KGW) and barium nitrate crystals at femtosecond excitation demonstrate spectral transformation of amplification band with change of pump parameters. The half-height amplification bandwidth of up to 45 nm (650 cm-1) what is 5 times larger than the pumping pulse spectral band 8.5 nm (130 cm-1) was observed for KGW crystal. Implementation of impulsive excitation for the low-frequency vibrations allows estimations of the dephasing times and linewidths for the 87 and 83 cm-1 Raman lines in KGW and barium nitrate

  6. Cascaded parametric amplification for highly efficient terahertz generation.

    Science.gov (United States)

    Ravi, Koustuban; Hemmer, Michael; Cirmi, Giovanni; Reichert, Fabian; Schimpf, Damian N; Mücke, Oliver D; Kärtner, Franz X

    2016-08-15

    A highly efficient, practical approach to high-energy multi-cycle terahertz (THz) generation based on spectrally cascaded optical parametric amplification (THz-COPA) is introduced. Feasible designs are presented that enable the THz wave, initially generated by difference frequency generation between a narrowband optical pump and optical seed (0.1-10% of pump energy), to self-start a cascaded (or repeated) energy downconversion of pump photons in a single pass through a single crystal. In cryogenically cooled, periodically poled lithium niobate, unprecedented energy conversion efficiencies >8% achievable with existing pump laser technology are predicted using realistic simulations. The calculations account for cascading effects, absorption, dispersion, and laser-induced damage. Due to the simultaneous, coupled nonlinear evolution of multiple phase-matched three-wave mixing processes, THz-COPA exhibits physics distinctly different from conventional three-wave mixing parametric amplifiers. This, in turn, governs optimal phase-matching conditions, evolution of optical spectra, and limitations of the nonlinear process. Circumventing these limitations is shown to yield conversion efficiencies ≫10%. PMID:27519094

  7. A new ultrasonic signal amplification method for detection of bacteria

    International Nuclear Information System (INIS)

    A new method is presented that increases the sensitivity of ultrasound-based techniques for detection of bacteria. The technique was developed for the detection of catalase-positive microorganisms. It uses a bubble trapping medium containing hydrogen peroxide that is mixed with the sample for microbiological evaluation. The enzyme catalase is present in catalase-positive bacteria, which induces a rapid hydrolysis of hydrogen peroxide, forming bubbles which remain in the medium. This reaction results in the amplification of the mechanical changes that the microorganisms produce in the medium. The effect can be detected by means of ultrasonic wave amplitude continuous measurement since the bubbles increase the ultrasonic attenuation significantly. It is shown that microorganism concentrations of the order of 105 cells ml−1 can be detected using this method. This allows an improvement of three orders of magnitude in the ultrasonic detection threshold of microorganisms in conventional culture media, and is competitive with modern rapid microbiological methods. It can also be used for the characterization of the enzymatic activity. (paper)

  8. Mismatch characteristics of optical parametric chirped pulse amplification

    International Nuclear Information System (INIS)

    The stability of an optical parametric chirped pulse amplifier (OPCPA) is influenced by time and the angular matching of the input beams. We derived the Gaussian dependence of the monochromatic signal gain on the small mismatch between the signal and pump beams. Gain characteristics were also calculated for polychromatic amplification and the impact of different beam mismatches and interaction geometries was explained. The asymmetry of the energy gain, and the square root dependence of the phase matched wavelength on beam angles were found. The predicted dependences were verified in a noncollinear OPCPA system with LBO and KDP crystal amplifying pulses of a Ti:sapphire laser around a central wavelength of 800 nm, pumped by the third harmonic frequency of an iodine gas laser at a wavelength of 438 nm. The widths of the gain curves in the dependence on both the pump–signal or the phase matching angles varied from several tenths to a few milliradians. The gain curve widths dependent on the pump–signal pulse delay were about two thirds of the pump pulse width for moderate pumping and about a half of the pump pulse width for pumping on the order of GW cm−2. A stable gain output is achieved if angular and temporal fluctuations are fractions of the measured gain curve widths, and when the signal direction is between the pump and the crystal principal axis (i.e. in the psz geometry). (letter)

  9. Using DNS amplification DDoS attack for hiding data

    Science.gov (United States)

    Mehić, M.; Voznak, M.; Safarik, J.; Partila, P.; Mikulec, M.

    2014-05-01

    This paper concerns available steganographic techniques that can be used for sending hidden data through public network. Typically, in steganographic communication it is advised to use popular/often used method for sending hidden data and amount of that data need to be high as much as possible. We confirmed this by choosing a Domain Name System (DNS) as a vital protocol of each network and choosing Distributed denial of service (DDoS) attacks that are most popular network attacks currently represented in the world. Apart from characterizing existing steganographic methods we provide new insights by presenting two new techniques. The first one is network steganography solution which exploits free/unused protocols fields and is known for IP, UDP or TCP protocols, but has never been applied to DNS (Domain Name Server) which are the fundamental part of network communications. The second explains the usage of DNS Amplification DDoS Attack to send seamlessly data through public network. The calculation that was performed to estimate the total amount of data that can be covertly transferred by using these technique, regardless of steganalysis, is included in this paper.

  10. Period doubling induced by thermal noise amplification in genetic circuits

    KAUST Repository

    Ruocco, G.

    2014-11-18

    Rhythms of life are dictated by oscillations, which take place in a wide rage of biological scales. In bacteria, for example, oscillations have been proven to control many fundamental processes, ranging from gene expression to cell divisions. In genetic circuits, oscillations originate from elemental block such as autorepressors and toggle switches, which produce robust and noise-free cycles with well defined frequency. In some circumstances, the oscillation period of biological functions may double, thus generating bistable behaviors whose ultimate origin is at the basis of intense investigations. Motivated by brain studies, we here study an “elemental” genetic circuit, where a simple nonlinear process interacts with a noisy environment. In the proposed system, nonlinearity naturally arises from the mechanism of cooperative stability, which regulates the concentration of a protein produced during a transcription process. In this elemental model, bistability results from the coherent amplification of environmental fluctuations due to a stochastic resonance of nonlinear origin. This suggests that the period doubling observed in many biological functions might result from the intrinsic interplay between nonlinearity and thermal noise.

  11. Optimization and characterization of dual-chirped optical parametric amplification

    International Nuclear Information System (INIS)

    We report optimization and characterization of a dual-chirped optical parametric amplification (DC-OPA) scheme (2011 Opt. Express 19 7190). By increasing a pump pulse energy to 100 mJ, a total (signal + idler) output energy exceeding 30 mJ was recorded with higher than 30% conversion efficiency. The feasibility of further increasing the output energy to a higher scale using the DC-OPA scheme was confirmed by a proof-of-principle experiment, in which 30%–40% conversion efficiency was observed. The signal pulse with the center wavelength of 1.4 μm was compressed to 27 fs (FWHM), which was very close to a transform-limited pulse duration of 25 fs. Since the DC-OPA scheme is efficient for generating high-energy infrared (IR) pulses with excellent scaling ability, the design parameters for obtaining hundred-mJ-level and even joule-level IR pulses are discussed and presented in detail. (invited article)

  12. Optical parametric amplification beyond the slowly varying amplitude approximation

    Indian Academy of Sciences (India)

    M Hosseini Farzad

    2007-09-01

    The coupled-wave equations describing optical parametric amplification (OPA) are usually solved in the slowly varying amplitude (SVA) approximation regime, in which the second-order derivatives of the signal and idler amplitudes are ignored and in fact the electromagnetic effects due to exit face of the medium is not involved. Here, an analytical plane-wave solution of these coupled-wave equations in a non-absorbing medium is presented. The solutions are derived beyond the SVA approximation up to order of = (coupling constant over the wave number). The intensity distributions of the signal and the idler waves show a periodic behavior about their corresponding distributions of SVA-adapted solution. This behavior can be explained by the interference of the forward propagating signal (idler) wave and the corresponding backward one resulted from the reflection by the end face of the medium. Furthermore, this interference pattern in the medium can in turn serve as a periodic source for the next generations of the signal and idler waves. Therefore, the superposition of the waves, generated from different points of this periodic source, at the exit face of the medium shows an oscillatory behavior of the transmitted signal (idler) wave in terms of normalized coupling constant, . This study also shows that this effect is more considerable for high intensity pump beam, high relative refractive index and short length of the nonlinear medium.

  13. Urban amplification of the global warming in Moscow megacity

    Science.gov (United States)

    Kislov, Alexander; Konstantinov, Pavel; Varentsov, Mikhail; Samsonov, Timofey; Gorlach, Irina; Trusilova, Kristina

    2015-04-01

    Climate changes in the large cities are very important and requires better understanding. The focus of this paper is climate change of the Moscow megacity. Its urban features strongly influence the atmospheric boundary layer above the Moscow agglomeration area and determine the microclimatic features of the local environment, such as urban heat island (UHI). Available meteorological observations within the Moscow urban area and surrounding territory allow us to assess the natural climate variations and human-induced climate warming separately. To obtain more precisely viewing on the UHI structure we have included into the analysis the satellite data (Meteosat-10), providing temperature and humidity profiles with high resolution. To investigate the mechanism of the urban amplification we realized the regional climate model COSMO-CLM+TEB. Apart from detailed climate research the model runs will be planned for climate projecting of Moscow agglomeration area. Climate change differences between urban and rural areas are determined by changes of the shape of the UHI and their relationships with changes of building height and density. Therefore, the urban module of COSMO-CLM+TEB model is fed by information from special GIS database contenting both geometric characteristics of the urban canyons and other characteristics of the urban surface. The sources of information were maps belonging to the OpenStreetMap, and digital elevation models SRTM90 and ASTER GDEM v.2 as well. The multiscale GIS database allows us to generate such kind of information with different spatial resolution (200, 500 and 1000 meters).

  14. Magnetic Field Amplification During the Common Envelope Phase

    CERN Document Server

    Ohlmann, Sebastian T; Pakmor, Ruediger; Springel, Volker; Mueller, Ewald

    2016-01-01

    During the common envelope (CE) phase, a giant star in a binary system overflows its Roche lobe and unstable mass transfer leads to a spiral-in of the companion, resulting in a close binary system or in a merger of the stellar cores. Dynamo processes during the CE phase have been proposed as a mechanism to generate magnetic fields that are important for forming magnetic white dwarfs (MWDs) and for shaping planetary nebulae. Here, we present the first magnetohydrodynamics simulations of the dynamical spiral-in during a CE phase. We find that magnetic fields are strongly amplified in the accretion stream around the $1M_\\odot$ companion as it spirals into the envelope of a $2M_\\odot$ RG. This leads to field strengths of 10 to 100 kG throughout the envelope after 120 d. The magnetic field amplification is consistent with being driven by the magnetorotational instability. The field strengths reached in our simulation make the magnetic field interesting for diagnostic purposes, but they are dynamically irrelevant. ...

  15. Stochastic Amplification of Fluctuations in Cortical Up-States

    Science.gov (United States)

    Hidalgo, Jorge; Seoane, Luís F.; Cortés, Jesús M.; Muñoz, Miguel A.

    2012-01-01

    Cortical neurons are bistable; as a consequence their local field potentials can fluctuate between quiescent and active states, generating slow Hz oscillations which are widely known as transitions between Up and Down States. Despite a large number of studies on Up-Down transitions, deciphering its nature, mechanisms and function are still today challenging tasks. In this paper we focus on recent experimental evidence, showing that a class of spontaneous oscillations can emerge within the Up states. In particular, a non-trivial peak around Hz appears in their associated power-spectra, what produces an enhancement of the activity power for higher frequencies (in the Hz band). Moreover, this rhythm within Ups seems to be an emergent or collective phenomenon given that individual neurons do not lock to it as they remain mostly unsynchronized. Remarkably, similar oscillations (and the concomitant peak in the spectrum) do not appear in the Down states. Here we shed light on these findings by using different computational models for the dynamics of cortical networks in presence of different levels of physiological complexity. Our conclusion, supported by both theory and simulations, is that the collective phenomenon of “stochastic amplification of fluctuations” – previously described in other contexts such as Ecology and Epidemiology – explains in an elegant and parsimonious manner, beyond model-dependent details, this extra-rhythm emerging only in the Up states but not in the Downs. PMID:22879879

  16. Current Developments in Prokaryotic Single Cell Whole Genome Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Goudeau, Danielle; Nath, Nandita; Ciobanu, Doina; Cheng, Jan-Fang; Malmstrom, Rex

    2014-03-14

    Our approach to prokaryotic single-cell Whole Genome Amplification at the JGI continues to evolve. To increase both the quality and number of single-cell genomes produced, we explore all aspects of the process from cell sorting to sequencing. For example, we now utilize specialized reagents, acoustic liquid handling, and reduced reaction volumes eliminate non-target DNA contamination in WGA reactions. More specifically, we use a cleaner commercial WGA kit from Qiagen that employs a UV decontamination procedure initially developed at the JGI, and we use the Labcyte Echo for tip-less liquid transfer to set up 2uL reactions. Acoustic liquid handling also dramatically reduces reagent costs. In addition, we are exploring new cell lysis methods including treatment with Proteinase K, lysozyme, and other detergents, in order to complement standard alkaline lysis and allow for more efficient disruption of a wider range of cells. Incomplete lysis represents a major hurdle for WGA on some environmental samples, especially rhizosphere, peatland, and other soils. Finding effective lysis strategies that are also compatible with WGA is challenging, and we are currently assessing the impact of various strategies on genome recovery.

  17. SBS mitigation with 'two-tone' amplification: a theoretical model

    Science.gov (United States)

    Bronder, T. J.; Shay, T. M.; Dajani, I.; Gavrielides, A.; Robin, C. A.; Lu, C. A.

    2008-02-01

    A new technique for mitigating stimulated Brillouin scattering (SBS) effects in narrow-linewidth Yb-doped fiber amplifiers is demonstrated with a model that reduces to solving an 8×8 system of coupled nonlinear equations with the gain, SBS, and four-wave mixing (FMW) incorporated into the model. This technique uses two seed signals, or 'two-tones', with each tone reaching its SBS threshold almost independently and thus increasing the overall threshold for SBS in the fiber amplifier. The wavelength separation of these signals is also selected to avoid FWM, which in this case possesses the next lowest nonlinear effects threshold. This model predicts an output power increase of 86% (at SBS threshold with no signs of FWM) for a 'two-tone' amplifier with seed signals at 1064nm and 1068nm, compared to a conventional fiber amplifier with a single 1064nm seed. The model is also used to simulate an SBS-suppressing fiber amplifier to test the regime where FWM is the limiting factor. In this case, an optimum wavelength separation of 3nm to 10nm prevents FWM from reaching threshold. The optimum ratio of the input power for the two seed signals in 'two-tone' amplification is also tested. Future experimental verification of this 'two-tone' technique is discussed.

  18. Magnetic Field Amplification and Flat Spectrum Radio Quasars

    CERN Document Server

    Chen, Xuhui; Zhang, Haocheng; Pohl, Martin; Fossati, Giovanni; Boettcher, Markus; Bailyn, Charles D; Bonning, Erin W; Buxton, Michelle; Coppi, Paolo; Isler, Jedidah; Maraschi, Laura; Urry, Meg

    2014-01-01

    We perform time-dependent, spatially-resolved simulations of blazar emission to evaluate several flaring scenarios related to magnetic-field amplification and enhanced particle acceleration. The code explicitly accounts for light-travel-time effects and is applied to flares observed in the flat spectrum radio quasar (FSRQ) PKS 0208-512, which show optical/{\\gamma}-ray correlation at some times, but orphan optical flares at other times. Changes in both the magnetic field and the particle acceleration efficiency are explored as causes of flares. Generally, external Compton emission appears to describe the available data better than a synchrotron self-Compton scenario, and in particular orphan optical flares are difficult to produce in the SSC framework. X-ray soft-excesses, {\\gamma}-ray spectral hardening, and the detections at very high energies of certain FSRQs during flares find natural explanations in the EC scenario with particle acceleration change. Likewise, optical flares with/without {\\gamma}-ray count...

  19. Thalamic amplification of sensory input in experimental diabetes.

    Science.gov (United States)

    Freeman, Oliver J; Evans, Mathew H; Cooper, Garth J S; Petersen, Rasmus S; Gardiner, Natalie J

    2016-07-01

    Diabetic neuropathy is a common, and often debilitating, secondary complication of diabetes mellitus. As pain, hypersensitivity and paraesthesias present in a distal-proximal distribution, symptoms are generally believed to originate from damaged afferents within the peripheral nervous system. Increasing evidence suggests altered processing within the central nervous system in diabetic neuropathy contributes towards somatosensory dysfunction, but whether the accurate coding and relay of peripherally encoded information through the central nervous system is altered in diabetes is not understood. Here, we applied the strengths of the rodent whisker-barrel system to study primary afferent-thalamic processing in diabetic neuropathy. We found that neurons in the thalamic ventral posteromedial nucleus from rats with experimental diabetic neuropathy showed increased firing to precisely graded, multidirectional whisker deflection compared to non-diabetic rats. This thalamic hyperactivity occurred without any overt primary afferent dysfunction, as recordings from the trigeminal ganglion showed these primary afferents to be unaffected by diabetes. These findings suggest that central amplification can substantially transform ascending sensory input in diabetes, even in the absence of a barrage of ectopic primary afferent activity. PMID:27152754

  20. Mismatch characteristics of optical parametric chirped pulse amplification

    Science.gov (United States)

    Novák, O.; Turčičová, H.; Divoký, M.; Huynh, J.; Straka, P.

    2014-02-01

    The stability of an optical parametric chirped pulse amplifier (OPCPA) is influenced by time and the angular matching of the input beams. We derived the Gaussian dependence of the monochromatic signal gain on the small mismatch between the signal and pump beams. Gain characteristics were also calculated for polychromatic amplification and the impact of different beam mismatches and interaction geometries was explained. The asymmetry of the energy gain, and the square root dependence of the phase matched wavelength on beam angles were found. The predicted dependences were verified in a noncollinear OPCPA system with LBO and KDP crystal amplifying pulses of a Ti:sapphire laser around a central wavelength of 800 nm, pumped by the third harmonic frequency of an iodine gas laser at a wavelength of 438 nm. The widths of the gain curves in the dependence on both the pump-signal or the phase matching angles varied from several tenths to a few milliradians. The gain curve widths dependent on the pump-signal pulse delay were about two thirds of the pump pulse width for moderate pumping and about a half of the pump pulse width for pumping on the order of GW cm-2. A stable gain output is achieved if angular and temporal fluctuations are fractions of the measured gain curve widths, and when the signal direction is between the pump and the crystal principal axis (i.e. in the psz geometry).

  1. Chirped pulse Raman amplification in warm plasma: towards controlling saturation.

    Science.gov (United States)

    Yang, X; Vieux, G; Brunetti, E; Ersfeld, B; Farmer, J P; Hur, M S; Issac, R C; Raj, G; Wiggins, S M; Welsh, G H; Yoffe, S R; Jaroszynski, D A

    2015-01-01

    Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to several percent. Here we investigate Raman amplification of short duration seed pulses with different chirp rates using a chirped pump pulse in a preformed plasma waveguide. We identify electron trapping and wavebreaking as the main saturation mechanisms, which lead to spectral broadening and gain saturation when the seed reaches several millijoules for durations of 10's - 100's fs for 250 ps, 800 nm chirped pump pulses. We show that this prevents access to the nonlinear regime and limits the efficiency, and interpret the experimental results using slowly-varying-amplitude, current-averaged particle-in-cell simulations. We also propose methods for achieving higher efficiencies. PMID:26290153

  2. Rashba coupling amplification by a staggered crystal field

    Science.gov (United States)

    Santos-Cottin, David; Casula, Michele; Lantz, Gabriel; Klein, Yannick; Petaccia, Luca; Le Fèvre, Patrick; Bertran, François; Papalazarou, Evangelos; Marsi, Marino; Gauzzi, Andrea

    2016-04-01

    There has been increasing interest in materials where relativistic effects induce non-trivial electronic states with promise for spintronics applications. One example is the splitting of bands with opposite spin chirality produced by the Rashba spin-orbit coupling in asymmetric potentials. Sizable splittings have been hitherto obtained using either heavy elements, where this coupling is intrinsically strong, or large surface electric fields. Here by means of angular resolved photoemission spectroscopy and first-principles calculations, we give evidence of a large Rashba coupling of 0.25 eV Å, leading to a remarkable band splitting up to 0.15 eV with hidden spin-chiral polarization in centrosymmetric BaNiS2. This is explained by a huge staggered crystal field of 1.4 V Å-1, produced by a gliding plane symmetry, that breaks inversion symmetry at the Ni site. This unexpected result in the absence of heavy elements demonstrates an effective mechanism of Rashba coupling amplification that may foster spin-orbit band engineering.

  3. Signal amplification in an agent-based herding model

    CERN Document Server

    Carro, Adrián; Miguel, Maxi San

    2013-01-01

    A growing part of the behavioral finance literature has addressed some of the stylized facts of financial time series as macroscopic patterns emerging from herding interactions among groups of agents with heterogeneous trading strategies and a limited rationality. We extend a stochastic herding formalism introduced for the modeling of decision making among financial agents, in order to take also into account an external influence. In particular, we study the amplification of an external signal imposed upon the agents by a mechanism of resonance. This signal can be interpreted as an advertising or a public perception in favor or against one of the two possible trading behaviors, thus periodically breaking the symmetry of the system and acting as a continuously varying exogenous shock. The conditions for the ensemble of agents to more accurately follow the periodicity of the signal are studied, finding a maximum in the response of the system for a given range of values of both the noise and the frequency of the...

  4. Magnetic field amplification during the common envelope phase

    Science.gov (United States)

    Ohlmann, Sebastian T.; Röpke, Friedrich K.; Pakmor, Rüdiger; Springel, Volker; Müller, Ewald

    2016-10-01

    During the common envelope (CE) phase, a giant star in a binary system overflows its Roche lobe and unstable mass transfer leads to a spiral-in of the companion, resulting in a close binary system or in a merger of the stellar cores. Dynamo processes during the CE phase have been proposed as a mechanism to generate magnetic fields that are important for forming magnetic white dwarfs (MWDs) and for shaping planetary nebulae. Here, we present the first magnetohydrodynamics simulations of the dynamical spiral-in during a CE phase. We find that magnetic fields are strongly amplified in the accretion stream around the 1 M⊙ companion as it spirals into the envelope of a 2 M⊙ RG. This leads to field strengths of 10-100 kG throughout the envelope after 120 d. The magnetic field amplification is consistent with being driven by the magnetorotational instability. The field strengths reached in our simulation make the magnetic field interesting for diagnostic purposes, but they are dynamically irrelevant. They are also too small to explain the formation of the highest fields found in MWDs, but may be relevant for luminous red novae, and detecting magnetic fields in these events would support the scenario as proposed here.

  5. Risks, media and the social amplification of soil contamination

    Energy Technology Data Exchange (ETDEWEB)

    Ouboter, S. [NOK, Networkorganisation for Environmental Quality, Gouda (Netherlands)

    2003-07-01

    Soil experts think of the risks of contaminated sites in terms of adverse effects of toxic substances on human health or environmental quality. In other words, the risk is attributed to the contamination. Social scientists define risk as a situation or event in which something of human value (including humans themselves) has been put at stake and where the outcome is uncertain. Since situations or events are constructions of the human mind, risks are also constructed. A relevant question for a psychologist is to learn how these constructions evolve in the mind of an individual and how this perceived risk influences the individuals' behaviour and well-being. A relevant question for a sociologist is how individuals with their own perceptions, feelings and behaviour interact. Many soil contamination experts experienced that one a site is seen as contaminated by a loathsome source, a chain of adverse reactions can easily put a stigma on that specific location and groups of people associated with that contaminated site. The case of Love Canal is worldwide known as an example of this phenomenon, but many countries have their own national symbol, like Lekkerkerk in the Netherlands. Modern media play an important role in this process. This process is often believed to be irrational and therefore uncontrollable. The question of this workshop is to what level technical soil experts can influence the psychological and social effects of soil contamination, using the social amplification metaphor. (orig.)

  6. Generation of recombinant pestiviruses using a full-genome amplification strategy

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Reimann, I.; Uttenthal, Åse;

    2010-01-01

    Complete genome amplification of viral RNA provides a new tool for the generation of modified viruses. We have recently reported a full-genome amplification strategy for recovery of pestiviruses (Rasmussen et al., 2008). A full-length cDNA amplicon corresponding to the Border disease virus......-Gifhorn genome was generated by long RTPCR and then RNA transcripts derived from this amplicon were used to rescue infectious virus. Here, we have now used this full-genome amplification strategy for efficient and robust amplification of three additional pestivirus strains: the vaccine strain C and the virulent...... Paderborn strain of Classical swine fever virus plus the CP7 strain of Bovine viral diarrhoea virus. The amplicons were cloned directly into a stable single-copy bacterial artificial chromosome generating full-length pestivirus DNAs from which infectious RNA transcripts could be also derived....

  7. Parasitic bipolar amplification in a single event transient and its temperature dependence

    Institute of Scientific and Technical Information of China (English)

    Liu Zheng; Chen Shu-Ming; Chen Jian-Jun; Qin Jun-Rui; Liu Rong-Rong

    2012-01-01

    Using three-dimensional technology computer-aided design (TCAD) simulation,parasitic bipolar amplification in a single event transient (SET) current of a single transistor and its temperature dependence are studied.We quantify the contributions of different current components in a SET current pulse,and it is found that the proportion of parasitic bipolar amplification in total collected charge is about 30% in both 130-nm and 90-nm technologies.The temperature dependence of parasitic bipolar amplification and the mechanism of the SET pulse are also investigated and quantified.The results show that the proportion of charge induced by parasitic bipolar increases with rising temperature,which illustrates that the parasitic bipolar amplification plays an important role in the charge collection of a single transistor.

  8. Double trouble: medical implications of genetic duplication and amplification in bacteria.

    Science.gov (United States)

    Craven, Sarah H; Neidle, Ellen L

    2007-06-01

    Gene amplification allows organisms to adapt to changing environmental conditions. This type of increased gene dosage confers selectable benefits, typically by augmenting protein production. Gene amplification is a reversible process that does not require permanent genetic change. Although transient, altered gene dosage has significant medical impact. Recent examples of amplification in bacteria, described here, affect human disease by modifying antibiotic resistance, the virulence of pathogens, vaccine efficacy and antibiotic biosynthesis. Amplification is usually a two-step process whereby genetic duplication (step one) promotes further increases in copy number (step two). Both steps have important evolutionary significance for the emergence of innovative gene functions. Recent genome sequence analyses illustrate how genome plasticity can affect the evolution and immunogenic properties of bacterial pathogens.

  9. Somatosensory amplification mediates sex differences in psychological distress among cardioverter-defibrillator patients

    DEFF Research Database (Denmark)

    Versteeg, Henneke; Baumert, Jens; Kolb, Christof;

    2010-01-01

    The present study examined whether female patients with an implantable cardioverter defibrillator (ICD) report more psychological distress than male patients, and whether somatosensory amplification mediates this relationship. Design: Consecutive ICD patients (N = 241; 33% women) participating in...

  10. Drastic disorded-induced reduction of signal amplification in scale-free networks

    CERN Document Server

    Chacón, Ricardo

    2014-01-01

    Understanding information transmission across a network is a fundamental task for controlling and manipulating both biological and man-made information processing systems. Here, we show how topological resonant-like amplification effects in scale-free networks of signaling devices are drastically reduced when phase disorder in the external signals is considered. This is demonstrated theoretically by means of a star-like network of overdamped bistable systems, and confirmed numerically by simulations of scale-free networks of such systems. The taming effect of the phase disorder is found to be sensitive to the amplification's strength, while the topology-induced amplification mechanism is robust against this kind of quenched disorder in the sense that it does not significantly change the values of the coupling strength where amplification is maximum in its absence.

  11. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer

    Science.gov (United States)

    Bardelli, Alberto; Corso, Simona; Bertotti, Andrea; Hobor, Sebastijan; Valtorta, Emanuele; Siravegna, Giulia; Sartore-Bianchi, Andrea; Scala, Elisa; Cassingena, Andrea; Zecchin, Davide; Apicella, Maria; Migliardi, Giorgia; Galimi, Francesco; Lauricella, Calogero; Zanon, Carlo; Perera, Timothy; Veronese, Silvio; Corti, Giorgio; Amatu, Alessio; Gambacorta, Marcello; Diaz, Luis A.; Sausen, Mark; Velculescu, Victor E.; Comoglio, Paolo; Trusolino, Livio; Di Nicolantonio, Federica; Giordano, Silvia; Siena, Salvatore

    2014-01-01

    EGFR targeted monoclonal antibodies are effective in a subset of metastatic colorectal tumors (mCRC). Inevitably, all patients develop resistance, which occurs through emergence of KRAS mutations in approximately 50% of the cases. We show that amplification of the MET proto-oncogene is associated with acquired resistance in patients who do not develop KRAS mutations during anti-EGFR therapy. Amplification of the MET locus was present in circulating tumor DNA before relapse was clinically evident. Functional studies demonstrate that MET activation confers resistance to anti-EGFR therapy both in vitro and in vivo. Notably, in patient-derived CRC xenografts, MET amplification correlated with resistance to EGFR blockade which could be overcome by MET kinase inhibitors. These results highlight the role of MET in mediating primary and secondary resistance to anti-EGFR therapies in CRC and encourage the use of MET inhibitors in patients displaying resistance as a result of MET amplification. PMID:23729478

  12. Patterning effects in multi-purpose amplification by a quantum dot amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Berg, Tommy Winther; Mørk, Jesper;

    2006-01-01

    The potential for ultrafast signal processing in a quantum dot amplifier is investigated by observing the gain dynamics during amplification of femtosecond pulses in rapid succession. Significant patterning is seen at picosecond pulse separation....

  13. Trends in ultrashort and ultrahigh power laser pulses based on optical parametric chirped pulse amplification

    International Nuclear Information System (INIS)

    Since the proof-of-principle demonstration of optical parametric amplification to efficiently amplify chirped laser pulses in 1992, optical parametric chirped pulse amplification (OPCPA) became the most promising method for the amplification of broadband optical pulses. In the meantime, we are witnessing an exciting progress in the development of powerful and ultrashort pulse laser systems that employ chirped pulse parametric amplifiers. The output power and pulse duration of these systems have ranged from a few gigawatts to hundreds of terawatts with a potential of tens of petawatts power level. Meanwhile, the output pulse duration based on optical parametric amplification has entered the range of few-optical-cycle field. In this paper, we overview the basic principles, trends in development, and current state of the ultrashort and laser systems based on OPCPA, respectively. (paper)

  14. Giant amplification of tunnel magnetoresistance in a molecular junction: Molecular spin-valve transistor

    Energy Technology Data Exchange (ETDEWEB)

    Dhungana, Kamal B.; Pati, Ranjit, E-mail: patir@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States)

    2014-04-21

    Amplification of tunnel magnetoresistance by gate field in a molecular junction is the most important requirement for the development of a molecular spin valve transistor. Herein, we predict a giant amplification of tunnel magnetoresistance in a single molecular spin valve junction, which consists of Ru-bis-terpyridine molecule as a spacer between two ferromagnetic nickel contacts. Based on the first-principles quantum transport approach, we show that a modest change in the gate field that is experimentally accessible can lead to a substantial amplification (320%) of tunnel magnetoresistance. The origin of such large amplification is attributed to the spin dependent modification of orbitals at the molecule-lead interface and the resultant Stark effect induced shift in channel position with respect to the Fermi energy.

  15. On the mechanism of gene amplification induced under stress in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    2006-04-01

    Full Text Available Gene amplification is a collection of processes whereby a DNA segment is reiterated to multiple copies per genome. It is important in carcinogenesis and resistance to chemotherapeutic agents, and can underlie adaptive evolution via increased expression of an amplified gene, evolution of new gene functions, and genome evolution. Though first described in the model organism Escherichia coli in the early 1960s, only scant information on the mechanism(s of amplification in this system has been obtained, and many models for mechanism(s were possible. More recently, some gene amplifications in E. coli were shown to be stress-inducible and to confer a selective advantage to cells under stress (adaptive amplifications, potentially accelerating evolution specifically when cells are poorly adapted to their environment. We focus on stress-induced amplification in E. coli and report several findings that indicate a novel molecular mechanism, and we suggest that most amplifications might be stress-induced, not spontaneous. First, as often hypothesized, but not shown previously, certain proteins used for DNA double-strand-break repair and homologous recombination are required for amplification. Second, in contrast with previous models in which homologous recombination between repeated sequences caused duplications that lead to amplification, the amplified DNAs are present in situ as tandem, direct repeats of 7-32 kilobases bordered by only 4 to 15 base pairs of G-rich homology, indicating an initial non-homologous recombination event. Sequences at the rearrangement junctions suggest nonhomologous recombination mechanisms that occur via template switching during DNA replication, but unlike previously described template switching events, these must occur over long distances. Third, we provide evidence that 3'-single-strand DNA ends are intermediates in the process, supporting a template-switching mechanism. Fourth, we provide evidence that lagging

  16. Introduction to Quantum-limited Parametric Amplification of Quantum Signals with Josephson Circuits

    CERN Document Server

    Devoret, Michel

    2016-01-01

    This short and opinionated review starts with a concept of quantum signals at microwave frequencies and focuses on the principle of linear parametric amplification. The amplification process arises from the dispersive nonlinearity of Josephson junctions driven with appropriate tones. We discuss two defining characteristics of these amplifiers: the number of modes receiving the signal, idler and pump waves and the number of independent ports through which these waves enter into the circuit.

  17. 10 Gb/s bidirectional single fibre long reach PON link with distributed Raman amplification

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Kjær, Rasmus; Jeppesen, Palle;

    2006-01-01

    We report operation of a single fibre bidirectional 80 km long reach PON link with symmetric up- and-downstream data rate of 10 Gb/s supported by distributed Raman fibre amplification only.......We report operation of a single fibre bidirectional 80 km long reach PON link with symmetric up- and-downstream data rate of 10 Gb/s supported by distributed Raman fibre amplification only....

  18. 90 mJ parametric chirped pulse amplification of 10 fs pulses.

    Science.gov (United States)

    Tavella, Franz; Marcinkevicius, Andrius; Krausz, Ferenc

    2006-12-25

    We demonstrate the amplification of broadband pulses from a Ti:Sapphire oscillator by non-collinear optical parametric chirped-pulse amplification technique in a type-I BBO crystal to energies of 90 mJ. Partial compression of the amplified pulses is demonstrated down to a 10 fs duration. These parameters come in combination with good spatial quality and focusability of the amplified beam.

  19. Fiber Optical Parametric Chirped Pulse Amplification of Sub-Picosecond Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Da Ros, Francesco;

    2013-01-01

    We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs.......We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs....

  20. Multiple displacement amplification of the DNA from single flow–sorted plant chromosome

    OpenAIRE

    Cápal, P. (Petr); Blavet, N; Vrána, J; Kubaláková, M; Doležel, J. (Jaroslav)

    2015-01-01

    A protocol is described for production of micrograms of DNA from single copies of flow-sorted plant chromosomes. Of 183 single copies of wheat chromosome 3B, 118 (64%) were successfully amplified. Sequencing DNA amplification products using an Illumina HiSeq 2000 system to 10× coverage and merging sequences from three separate amplifications resulted in 60% coverage of the chromosome 3B reference, entirely covering 30% of its genes. The merged sequences permitted de novo assembly of 19% of ch...

  1. PriSM: a primer selection and matching tool for amplification and sequencing of viral genomes

    OpenAIRE

    Yu, Qing; Ryan, Elizabeth M; Allen, Todd M.; Birren, Bruce W.; Henn, Matthew R.; Lennon, Niall J.

    2010-01-01

    Summary: PriSM is a set of algorithms designed to select and match degenerate primer pairs for the amplification of viral genomes. The design of panels of hundreds of primer pairs takes just hours using this program, compared with days using a manual approach. PriSM allows for rapid in silico optimization of primers for downstream applications such as sequencing. As a validation, PriSM was used to create an amplification primer panel for human immunodeficiency virus (HIV) Clade B.

  2. Detection of genetically modified organisms (GMOs) using isothermal amplification of target DNA sequences

    OpenAIRE

    La Mura Maurizio; Lee David; Allnutt Theo R; Powell Wayne

    2009-01-01

    Abstract Background The most common method of GMO detection is based upon the amplification of GMO-specific DNA amplicons using the polymerase chain reaction (PCR). Here we have applied the loop-mediated isothermal amplification (LAMP) method to amplify GMO-related DNA sequences, 'internal' commonly-used motifs for controlling transgene expression and event-specific (plant-transgene) junctions. Results We have tested the specificity and sensitivity of the technique for use in GMO studies. Res...

  3. Low Cost Extraction and Isothermal Amplification of DNA for Infectious Diarrhea Diagnosis

    OpenAIRE

    Huang, Shichu; Do, Jaephil; Mahalanabis, Madhumita; Fan, Andy; Zhao, Lei; Jepeal, Lisa; Singh, Satish K.; Klapperich, Catherine M.

    2013-01-01

    In order to counter the common perception that molecular diagnostics are too complicated to work in low resource settings, we have performed a difficult sample preparation and DNA amplification protocol using instrumentation designed to be operated without wall or battery power. In this work we have combined a nearly electricity-free nucleic acid extraction process with an electricity-free isothermal amplification assay to detect the presence of Clostridium difficile (C. difficile) DNA in the...

  4. Noiseless phase quadrature amplification via an electro-optic feed-forward technique

    CERN Document Server

    Buchler, B C; Ralph, T C; Buchler, Ben C.; Huntington, Elanor H.; Ralph, Timothy C.

    1999-01-01

    Theoretical results are presented which show that noiseless phase quadrature amplification is possible, and limited experimentally only by the efficiency of the phase detection system. Experimental results obtained using a Nd:YAG laser show a signal gain of 10dB and a signal transfer ratio of T_s=0.9. This result easily exceeds the standard quantum limit for signal transfer. The results also explicitly demonstrate the phase sensitive nature of the amplification process.

  5. Detection of Genetically Modified Organisms in Foods by DNA Amplification Techniques

    OpenAIRE

    García-Cañas, Virginia; Cifuentes, Alejandro; González, Ramón

    2004-01-01

    In this article, the different DNA amplification techniques that are being used for detecting genetically modified organisms (GMOs) in foods are examined. This study intends to provide an updated overview (including works published till June 2002) on the principal applications of such techniques together with their main advantages and drawbacks in GMO detection in foods. Some relevant facts on sampling, DNA isolation, and DNA amplification methods are discussed. Moreover, these analytical pro...

  6. Fast multidimensional model for the simulation of Raman amplification in plasma.

    Science.gov (United States)

    Farmer, J P; Pukhov, A

    2013-12-01

    We present Leap, a simulation model for Raman amplification in plasma, combining an envelope treatment of the laser fields with an electrostatic particle-in-cell solver. The code is fully two dimensional, with the model readily extendible to three dimensions, and includes dispersive and refractive effects. Simulations carried out for Raman amplification in a plasma channel show that guiding of both the pump and the probe contribute to the evolution of the probe, resulting in a shorter, more intense pulse. PMID:24483574

  7. Efficient chirped-pulse amplification of sub-20 fs laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Shinichi; Yamakawa, Koichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    We have developed a model for ultrabroadband and ultrashort pulse amplification including the effects of a pulse shaper for regenerative pulse shaping, gain narrowing and gain saturation in the amplifiers. Thin solid etalons are used to control both gain narrowing and gain saturation during amplification. This model has been used to design an optimized Ti:sapphire amplifier system for producing efficiently pulses of < 20-fs duration with approaching peak and average powers of 100 TW and 20 W. (author)

  8. Experimental determination of harmonic conditions amplification in a distribution network by capacitor bank switching

    DEFF Research Database (Denmark)

    Baloi, Alexandru; Kocewiak, Lukasz Hubert; Bak, Claus Leth;

    2012-01-01

    The paper presents a study comprising laboratory measurements for the evaluation of the harmonic amplification due to capacitor bank switching. The mathematical model of the amplification factors of the current flowing on the circuit elements is presented. Theoretical aspects, regarding the total...... is the harmonic impedance, “seen” in the bus of the capacitor bank switching. MatLab Simulink is used for the determination of the harmonic impedance....

  9. 90 mJ parametric chirped pulse amplification of 10 fs pulses.

    Science.gov (United States)

    Tavella, Franz; Marcinkevicius, Andrius; Krausz, Ferenc

    2006-12-25

    We demonstrate the amplification of broadband pulses from a Ti:Sapphire oscillator by non-collinear optical parametric chirped-pulse amplification technique in a type-I BBO crystal to energies of 90 mJ. Partial compression of the amplified pulses is demonstrated down to a 10 fs duration. These parameters come in combination with good spatial quality and focusability of the amplified beam. PMID:19532173

  10. Self-organization effects and light amplification of collective atomic recoil motion in a harmonic trap

    OpenAIRE

    Zhang, L.; Yang, G. J.; Xia, L. X.

    2005-01-01

    Self-organization effects related to light amplification in the collective atomic recoil laser system with the driven atoms confined in a harmonic trap are investigated further. In the dispersive parametric region, our study reveals that the spontaneously formed structures in the phase space contributes an important role to the light amplification of the probe field under the atomic motion being modified by the trap.

  11. Amplification and Damping of Environmental Signals in Intensively Managed Landscapes

    Science.gov (United States)

    Belmont, P.; Kumarasamy, K.; Kelly, S. A.; Vaughan, A. A.; Call, B.

    2015-12-01

    Landscapes transmit pulses of water, sediment and solutes through the terrestrial environment and network of stream channels. The timing, frequency and magnitude of these pulses depend on inputs of water, energy and rock/soil as well as a multitude of critical zone processes that may modulate the signal. Therefore, the potential for a landscape to generate and transmit these pulses changes over long timescales, primarily as a function of climate and local base level rise or fall. Humans have profoundly altered many critical zone processes that govern these environmental signals, often targeting rate-limiting processes for the purpose of enhancing economic productivity and/or reducing financial risk. These alterations are especially evident in the intensively managed landscapes of the Midwestern US, where vegetation change, soil tillage, and pervasive modifications of the surface and subsurface drainage system have substantially changed water, sediment and nutrient fluxes. Effects, in terms of amplification or damping of environmental signals, are strongly dependent on landscape setting, and often non-linear. Hysteresis and sensitivity may hinder the return to the initial state when perturbations have reached a certain threshold. We draw from multiple examples in the upper Midwestern US to illustrate, at a basic level, the mechanisms by which landscape evolution establishes the template for generation and transmission of environmental signals and furthermore how humans have altered critical zone processes to optimize specific landscape outputs, often at the expense of modifying the rate and/or magnitude of many other landscape outputs. We present a conceptual model and discuss implications for mathematical modeling of water, sediment and nutrient fluxes to guide watershed management and restoration.

  12. Initiation and amplification of the Ningaloo Niño

    Science.gov (United States)

    Marshall, Andrew G.; Hendon, Harry H.; Feng, Ming; Schiller, Andreas

    2015-11-01

    Marine heat waves along the Western Australian coast are potentially damaging to the marine environment especially coastal fisheries and the Ningaloo Reef. Initiation and amplification mechanisms for marine heat waves (referred to as `Ningaloo Niño' events) are explored using ocean and atmosphere reanalyses for the period 1960-2011. We find that the onset stage from October to November is promoted by wind-evaporation-SST feedback that operates to the northwest of the coast on the north-eastern flank of the Mascarene subtropical high: cyclonic anomalies act to reduce the surface wind speed and warm the ocean surface, thereby driving increased rainfall and stronger cyclonic anomalies. The growth and southward expansion of positive SST anomalies along the Australian west coast is further supplemented by anomalous poleward advection of heat by the Leeuwin Current, which is coupled with the cyclonic anomalies off the coast. The strongest Ningaloo Niño events, such as the record strong 2011 event, occur in conjunction with La Niña conditions in the Pacific, which drives westerly wind anomalies to the northwest of Australia that can promote the WES feedback and accelerate the Leeuwin Current via transmission of thermocline anomalies from the western Pacific onto the west Australian coast. However, many Ningaloo Niño events occur independent of La Niña and some Ningaloo Niño events even occur during certain El Niños. We explain this general independence from ENSO because the triggering of Ningaloo Niño events from the Pacific is most sensitive to antecedent SST anomalies in the far western Pacific, rather than in the central Pacific where ENSO typically has greatest magnitude.

  13. Warming Amplification of Minimum and Maximum Temperatures over High-Elevation Regions across the Globe.

    Directory of Open Access Journals (Sweden)

    Xiaohui Fan

    Full Text Available An analysis of the annual mean temperature (TMEAN (1961-2010 has revealed that warming amplification (altitudinal amplification and regional amplification is a common feature of major high-elevation regions across the globe against the background of global warming since the mid-20th century. In this study, the authors further examine whether this holds for annual mean minimum temperature (TMIN and annual mean maximum temperature (TMAX (1961-2010 on a global scale. The extraction method of warming component of altitude, and the paired region comparison method were used in this study. Results show that a significant altitudinal amplification trend in TMIN (TMAX is detected in all (four of the six high-elevation regions tested, and the average magnitude of altitudinal amplification trend for TMIN (TMAX [0.306±0.086 °C km-1(0.154±0.213 °C km-1] is substantially larger (smaller than TMEAN (0.230±0.073 °C km-1 during the period 1961-2010. For the five paired high- and low-elevation regions available, regional amplification is detected in the four high-elevation regions for TMIN and TMAX (respectively or as a whole. Qualitatively, highly (largely consistent results are observed for TMIN (TMAX compared with those for TMEAN.

  14. Master curves for gas amplification in low vacuum and environmental scanning electron microscopy.

    Science.gov (United States)

    Thiel, Bradley L

    2004-02-01

    The concept of universal amplification profiles for gas cascade amplification of signals in low vacuum and environmental scanning electron microscopes is demonstrated both experimentally and theoretically using water vapor. For a given gas, cascade amplification gain profiles can be plotted onto a single master curve where the independent reduced parameter is the ratio of pressure to amplification field strength. When plotted in this fashion, both desired secondary electron and spurious background signal components fall onto respective master curves, with the amplitude being a function of anode bias only. These master curves can be described by simple Townsend Gas Capacitor equations using only two gas-specific parameters. As long as single scattering conditions apply, this approach allows for simplified, direct comparison of the gain characteristics of different gases and allows more intelligent selection of imaging conditions. The utility of treating signal amplification in this manner is demonstrated through a series of images collected under a variety of conditions, but with the ratio of pressure to amplification field strength kept constant. In practice, the range of operational parameter space in which this description can be applied to imaging is limited, as images typically have a mixture of secondary and backscattered contributions.

  15. DAF optimization using Taguchi methods and the effect of thermal cycling parameters on DNA amplification.

    Science.gov (United States)

    Caetano-Anollés, G

    1998-09-01

    Taguchi methods, which are widely applied in industrial process design, were used to optimize DNA amplification finger-printing (DAF). Quadratic loss functions that penalize deviations from prediction values and L9 (3(4)) and L18 (3(8)) orthogonal arrays revealed effects and interactions of amplification reaction components and thermal cycling parameters. Analysis of variance (ANOVA) decomposed the contribution of individual factors to the experimental response (amplification yield and product number), while verification experiments established that optimum conditions were predictable, verifiable and reproducible. While several amplification components (primer, magnesium and enzyme) conditioned the amplification reaction, annealing temperature and time were the only important thermal cycling contributing factors. The Taguchi strategy defined a robust and transportable amplification protocol based on high annealing temperatures (typically 48 degrees C) and primer concentrations (typically 8 microM), which can be applied to the fingerprinting of a wide range of DNA templates of plant and fungal origin. The general strategy of robust experimental design holds potential as an optimization tool for other methods in molecular biology.

  16. Simple system for isothermal DNA amplification coupled to lateral flow detection.

    Directory of Open Access Journals (Sweden)

    Kristina Roskos

    Full Text Available Infectious disease diagnosis in point-of-care settings can be greatly improved through integrated, automated nucleic acid testing devices. We have developed an early prototype for a low-cost system which executes isothermal DNA amplification coupled to nucleic acid lateral flow (NALF detection in a mesofluidic cartridge attached to a portable instrument. Fluid handling inside the cartridge is facilitated through one-way passive valves, flexible pouches, and electrolysis-driven pumps, which promotes a compact and inexpensive instrument design. The closed-system disposable prevents workspace amplicon contamination. The cartridge design is based on standard scalable manufacturing techniques such as injection molding. Nucleic acid amplification occurs in a two-layer pouch that enables efficient heat transfer. We have demonstrated as proof of principle the amplification and detection of Mycobacterium tuberculosis (M.tb genomic DNA in the cartridge, using either Loop Mediated Amplification (LAMP or the Exponential Amplification Reaction (EXPAR, both coupled to NALF detection. We envision that a refined version of this cartridge, including upstream sample preparation coupled to amplification and detection, will enable fully-automated sample-in to answer-out infectious disease diagnosis in primary care settings of low-resource countries with high disease burden.

  17. Signal amplification strategies for DNA and protein detection based on polymeric nanocomposites and polymerization: A review

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shaohong; Yuan, Liang; Hua, Xin; Xu, Lingling; Liu, Songqin, E-mail: liusq@seu.edu.cn

    2015-06-02

    Highlights: • We review the innovative advances in polymer-based signal amplification. • Conceptual connectivity between different amplified methodologies is illustrated. • Examples explain the mechanisms of polymers/polymerizations-based amplification. • Several elegant applications are summarized that illustrate underlying concept. - Abstract: Demand is increasing for ultrasensitive bioassays for disease diagnosis, environmental monitoring and other research areas. This requires novel signal amplification strategies to maximize the signal output. In this review, we focus on a series of significant signal amplification strategies based on polymeric nanocomposites and polymerization. Some common polymers are used as carriers to increase the local concentration of signal probes and/or biomolecules on their surfaces or in their interiors. Some polymers with special fluorescence and optical properties can efficiently transfer the excitation energy from a single site to the whole polymer backbone. This results in superior fluorescence signal amplification due to the resulting collective effort (integration of signal). Recent polymerization-based signal amplification strategies that employ atom transfer radical polymerization (ATRP) and photo-initiated polymerization are also summarized. Several distinctive applications of polymers in ultrasensitive bioanalysis are highlighted.

  18. Cascade Signal Amplification Based on Copper Nanoparticle-Reported Rolling Circle Amplification for Ultrasensitive Electrochemical Detection of the Prostate Cancer Biomarker.

    Science.gov (United States)

    Zhu, Ye; Wang, Huijuan; Wang, Lin; Zhu, Jing; Jiang, Wei

    2016-02-01

    An ultrasensitive and highly selective electrochemical assay was first attempted by combining the rolling circle amplification (RCA) reaction with poly(thymine)-templated copper nanoparticles (CuNPs) for cascade signal amplification. As proof of concept, prostate specific antigen (PSA) was selected as a model target. Using a gold nanoparticle (AuNP) as a carrier, we synthesized the primer-AuNP-aptamer bioconjugate for signal amplification by increasing the primer/aptamer ratio. The specific construction of primer-AuNP-aptamer/PSA/anti-PSA sandwich structure triggered the effective RCA reaction, in which thousands of tandem poly(thymine) repeats were generated and directly served as the specific templates for the subsequent CuNP formation. The signal readout was easily achieved by dissolving the RCA product-templated CuNPs and detecting the released copper ions with differential pulse stripping voltammetry. Because of the designed cascade signal amplification strategy, the newly developed method achieved a linear range of 0.05-500 fg/mL, with a remarkable detection limit of 0.020 ± 0.001 fg/mL PSA. Finally, the feasibility of the developed method for practical application was investigated by analyzing PSA in the real clinical human serum samples. The ultrasensitivity, specificity, convenience, and capability for analyzing the clinical samples demonstrate that this method has great potential for practical disease diagnosis applications. PMID:26765624

  19. Label-free and highly sensitive electrochemical detection of E. coli based on rolling circle amplifications coupled peroxidase-mimicking DNAzyme amplification.

    Science.gov (United States)

    Guo, Yuna; Wang, Yu; Liu, Su; Yu, Jinghua; Wang, Hongzhi; Wang, Yalin; Huang, Jiadong

    2016-01-15

    In this work, a simple, label-free, low cost electrochemical biosensor for highly sensitive and selective detection of Escherichia coli has been developed on the basis of rolling circle amplification (RCA) coupled peroxidase-mimicking DNAzyme amplification. A aptamer-primer probe (APP) containing anti-E. coli aptamer and a primer sequence complementary to a circular probe, which includes two G-quadruplex units, is used for recognizing target and triggering RCA-based polymerase elongation. Due to RCA coupled DNAzyme amplification strategy, the presence of target E. coli leads to the formation of numerous G-quadruplex oligomers on electrode, which folds into G-quadruplex/hemin complexs with the help of K(+) and hemin, thus generating extremely strong catalytic activity toward H2O2 and giving a remarkably strong electrochemical response. As far as we know, this work is the first time that RCA coupled peroxidase-mimicking DNAzyme amplification technique have been integrated into electrochemical assay for detecting pathogenic bacteria. Under optimal conditions, the proposed biosensor exhibits ultrahigh sensitivity toward E. coli with detection limits of 8cfumL(-1) and a detection range of 5 orders of magnitude. Besides, our biosensor also shows high selectivity toward target E. coli and has the advantages in its rapidness, low cost, simplified operations without the need of electrochemical labeling steps and additional labile reagents. Hence, the RCA coupled peroxidase-mimicking DNAzyme amplification-based electrochemical method might create a useful and practical platform for detecting E. coli and related food safety analysis and clinical diagnosis.

  20. Increased centrosome amplification in aged stem cells of the Drosophila midgut

    International Nuclear Information System (INIS)

    Highlights: • Increased centrosome amplification in ISCs of aged Drosophila midguts. • Increased centrosome amplification in ISCs of oxidative stressed Drosophila midguts. • Increased centrosome amplification in ISCs by overexpression of PVR, EGFR, and AKT. • Supernumerary centrosomes can be responsible for abnormal ISC polyploid cells. • Supernumerary centrosomes can be a useful marker for aging stem cells. - Abstract: Age-related changes in long-lived tissue-resident stem cells may be tightly linked to aging and age-related diseases such as cancer. Centrosomes play key roles in cell proliferation, differentiation and migration. Supernumerary centrosomes are known to be an early event in tumorigenesis and senescence. However, the age-related changes of centrosome duplication in tissue-resident stem cells in vivo remain unknown. Here, using anti-γ-tubulin and anti-PH3, we analyzed mitotic intestinal stem cells with supernumerary centrosomes in the adult Drosophila midgut, which may be a versatile model system for stem cell biology. The results showed increased centrosome amplification in intestinal stem cells of aged and oxidatively stressed Drosophila midguts. Increased centrosome amplification was detected by overexpression of PVR, EGFR, and AKT in intestinal stem cells/enteroblasts, known to mimic age-related changes including hyperproliferation of intestinal stem cells and hyperplasia in the midgut. Our data show the first direct evidence for the age-related increase of centrosome amplification in intestinal stem cells and suggest that the Drosophila midgut is an excellent model for studying molecular mechanisms underlying centrosome amplification in aging adult stem cells in vivo

  1. Direct Y-STR amplification of body fluids deposited on commonly found crime scene substrates.

    Science.gov (United States)

    Dargay, Amanda; Roy, Reena

    2016-04-01

    Body fluids detected on commonly found crime scene substrates require extraction, purification and quantitation of DNA prior to amplification and generation of short tandem repeat (STR) DNA profiles. In this research Y-STR profiles were generated via direct amplification of blood and saliva deposited on 12 different substrates. These included cigarette butts, straws, grass, leaves, woodchips and seven different types of fabric. After depositing either 0.1 μL of blood or 0.5 μL of saliva, each substrate containing the dry body fluid stain was punched using a Harris 1.2 mm micro-punch. Each of these punched substrates, a total of 720 samples, containing minute amount of blood or saliva was either amplified directly without any pre-treatment, or was treated with one of the four washing reagents or buffer. In each of these five experimental groups the substrates containing the body fluid remained in the amplification reagent during the thermal cycling process. Each sample was amplified with the three direct Y-STR amplification kits; AmpFℓSTR(®) Yfiler(®) Direct, Yfiler(®) Plus Amplification Kits and the PowerPlex(®) Y23 System. Complete and concordant Y-STR profiles were successfully obtained from most of these 12 challenging crime scene objects when the stains were analyzed by at least one of the five experimental groups. The reagents and buffer were interchangeable among the three amplification kits, however, pre-treatment with these solutions did not appear to enhance the quality or the number of the full profiles generated with direct amplification. This study demonstrates that blood and saliva deposited on these simulated crime scene objects can be amplified directly.

  2. Increased centrosome amplification in aged stem cells of the Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joung-Sun; Pyo, Jung-Hoon; Na, Hyun-Jin; Jeon, Ho-Jun; Kim, Young-Shin [Department of Molecular Biology, Pusan National University, Busan 609-735 (Korea, Republic of); Arking, Robert, E-mail: aa2210@wayne.edu [Department of Biological Sciences, Wayne State University, Detroit, MI 48202 (United States); Yoo, Mi-Ae, E-mail: mayoo@pusan.ac.kr [Department of Molecular Biology, Pusan National University, Busan 609-735 (Korea, Republic of)

    2014-07-25

    Highlights: • Increased centrosome amplification in ISCs of aged Drosophila midguts. • Increased centrosome amplification in ISCs of oxidative stressed Drosophila midguts. • Increased centrosome amplification in ISCs by overexpression of PVR, EGFR, and AKT. • Supernumerary centrosomes can be responsible for abnormal ISC polyploid cells. • Supernumerary centrosomes can be a useful marker for aging stem cells. - Abstract: Age-related changes in long-lived tissue-resident stem cells may be tightly linked to aging and age-related diseases such as cancer. Centrosomes play key roles in cell proliferation, differentiation and migration. Supernumerary centrosomes are known to be an early event in tumorigenesis and senescence. However, the age-related changes of centrosome duplication in tissue-resident stem cells in vivo remain unknown. Here, using anti-γ-tubulin and anti-PH3, we analyzed mitotic intestinal stem cells with supernumerary centrosomes in the adult Drosophila midgut, which may be a versatile model system for stem cell biology. The results showed increased centrosome amplification in intestinal stem cells of aged and oxidatively stressed Drosophila midguts. Increased centrosome amplification was detected by overexpression of PVR, EGFR, and AKT in intestinal stem cells/enteroblasts, known to mimic age-related changes including hyperproliferation of intestinal stem cells and hyperplasia in the midgut. Our data show the first direct evidence for the age-related increase of centrosome amplification in intestinal stem cells and suggest that the Drosophila midgut is an excellent model for studying molecular mechanisms underlying centrosome amplification in aging adult stem cells in vivo.

  3. Concurrent AURKA and MYCN Gene Amplifications Are Harbingers of Lethal TreatmentRelated Neuroendocrine Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Juan Miguel Mosquera

    2013-01-01

    Full Text Available Neuroendocrine prostate cancer (NEPC, also referred to as anaplastic prostate cancer, is a lethal tumor that most commonly arises in late stages of prostate adenocarcinoma (PCA with predilection to metastasize to visceral organs. In the current study, we explore for evidence that Aurora kinase A (AURKA and N-myc (MYCN gene abnormalities are harbingers of treatment-related NEPC (t-NEPC. We studied primary prostate tissue from 15 hormone naïve PCAs, 51 castration-resistant prostate cancers, and 15 metastatic tumors from 72 patients at different stages of disease progression to t-NEPC, some with multiple specimens. Histologic evaluation, immunohistochemistry, and fluorescence in situ hybridization were performed and correlated with clinical variables. AURKA amplification was identified in overall 65% of PCAs (hormone naïve and treated from patients that developed t-NEPC and in 86% of metastases. Concurrent amplification of MYCN was present in 70% of primary PCAs, 69% of treated PCAs, and 83% of metastases. In contrast, in an unselected PCA cohort, AURKA and MYCN amplifications were identified in only 5% of 169 cases. When metastatic t-NEPC was compared to primary PCA from the same patients, there was 100% concordance of ERG rearrangement, 100% concordance of AURKA amplification, and 60% concordance of MYCN amplification. In tumors with mixed features, there was also 100% concordance of ERG rearrangement and 94% concordance of AURKA and MYCN co-amplification between areas of NEPC and adenocarcinoma. AURKA and MYCN amplifications may be prognostic and predictive biomarkers, as they are harbingers of tumors at risk of progressing to t-NEPC after hormonal therapy.

  4. Rendering of mycobacteria safe for molecular diagnostic studies and development of a lysis method for strand displacement amplification and PCR.

    OpenAIRE

    Zwadyk, P.; Down, J. A.; Myers, N; Dey, M. S.

    1994-01-01

    Two criteria must be met before mycobacterial specimens can be tested by DNA amplification methods: (i) the sample must be rendered noninfectious, and (ii) the organisms must be lysed to free the DNA. Previous publications reporting DNA amplification of mycobacteria have concentrated on lysis and amplification procedures and have not addressed the issue of sample safety. We have shown that heating of samples below 100 degrees C may not consistently kill mycobacteria; however, heating at 100 d...

  5. Rapid amplification system for recombinant protein production in Chinese Hamster Ovary (CHO) Cells.

    Science.gov (United States)

    Metta, M K; Kunaparaju, R K; Tantravahi, S

    2016-01-01

    Recombinant therapeutic proteins have changed the face of modern medicine in the present trend and they continue to provide innovative therapies for deadly diseases. This study describes the development of a novel stable expression system for rapid amplification of genes in Chinese Hamster Ovary (CHO) cells. The expression system consists of a host CHO cell line and an expression vector (pUB-PyOri-D-C) which encodes for Polyomavirus (Py) Origin of Replication (PyOri) for amplification of integrated genes in the presence of Py Large T Antigen (PyLT) and Dihydrofolate Reductase (DHFR) selectable marker gene for selection in the presence of Methotrexate (MTX). Use of both PyOri/PyLT and DHFR can reduce the number of rounds of selection and amplification required for isolation of high producing clones. The efficiency of pUB-PyOri-D-C was compared with that of pUB-D-C plasmid using Green fluorescent protein (GFP) and Erythropoietin (EPO) as reporter proteins. Our results showed that pUB-PyOri-D-C-EPO can help development of high expressing clone in one round of selection/amplification as compared to multiple rounds of selection/amplification with pUB-D-C-EPO plasmid. CHO-DG44/EPO clone generated using pUB-PyOri-D-C-EPO gave a productivity of 119 mg/L in shake flask. PMID:26950459

  6. Detection of North American eastern and western equine encephalitis viruses by nucleic acid amplification assays.

    Science.gov (United States)

    Lambert, Amy J; Martin, Denise A; Lanciotti, Robert S

    2003-01-01

    We have developed nucleic acid sequence-based amplification (NASBA), standard reverse transcription PCR (RT-PCR), and TaqMan nucleic acid amplification assays for the rapid detection of North American eastern equine encephalitis (EEE) and western equine encephalitis (WEE) viral RNAs from samples collected in the field and clinical samples. The sensitivities of these assays have been compared to that of virus isolation. While all three types of nucleic acid amplification assays provide rapid detection of viral RNAs comparable to the isolation of viruses in Vero cells, the TaqMan assays for North American EEE and WEE viral RNAs are the most sensitive. We have shown these assays to be specific for North American EEE and WEE viral RNAs by testing geographically and temporally distinct strains of EEE and WEE viruses along with a battery of related and unrelated arthropodborne viruses. In addition, all three types of nucleic acid amplification assays have been used to detect North American EEE and WEE viral RNAs from mosquito and vertebrate tissue samples. The sensitivity, specificity, and rapidity of nucleic acid amplification demonstrate the usefulness of NASBA, standard RT-PCR, and TaqMan assays, in both research and diagnostic settings, to detect North American EEE and WEE viral RNAs. PMID:12517876

  7. The Efficiency of B-Field Amplification at Shocks by Turbulence

    CERN Document Server

    Ji, Suoqing; Ruszkowski, Mateusz; Markevitch, Maxim

    2016-01-01

    Turbulent dynamo field amplification has often been invoked to explain the strong field strengths in thin rims in supernova shocks ($\\sim 100 \\, \\mu$G) and in radio relics in galaxy clusters ($\\sim \\mu$G). We present high resolution MHD simulations of the interaction between pre-shock turbulence, clumping and shocks, to quantify the conditions under which turbulent dynamo amplification can be significant. We demonstrate numerically converged field amplification which scales with Alfv\\'en Mach number, $B/B_0 \\propto {\\mathcal M}_{\\rm A}$, up to ${\\mathcal M}_{\\rm A} \\sim 150$. Amplification is dominated by compression at low ${\\mathcal M}_{\\rm A}$, and stretching (turbulent amplification) at high ${\\mathcal M}_{\\rm A}$. For the high Mach numbers characteristic of supernova shocks, the B-field grows exponentially and saturates at equipartition with turbulence, while the vorticity jumps sharply at the shock and subsequently decays; the resulting field is orientated predominately along the shock normal (an effect...

  8. Genetic Heterogeneity of HER2 Amplification and Telomere Shortening in Papillary Thyroid Carcinoma

    Directory of Open Access Journals (Sweden)

    Paola Caria

    2016-10-01

    Full Text Available Extensive research is dedicated to understanding if sporadic and familial papillary thyroid carcinoma are distinct biological entities. We have previously demonstrated that familial papillary thyroid cancer (fPTC cells exhibit short relative telomere length (RTL in both blood and tissues and that these features may be associated with chromosome instability. Here, we investigated the frequency of HER2 (Human Epidermal Growth Factor Receptor 2 amplification, and other recently reported genetic alterations in sporadic PTC (sPTC and fPTC, and assessed correlations with RTL and BRAF mutational status. We analyzed HER2 gene amplification and the integrity of ALK, ETV6, RET, and BRAF genes by fluorescence in situ hybridization in isolated nuclei and paraffin-embedded formalin-fixed sections of 13 fPTC and 18 sPTC patients. We analyzed BRAFV600E mutation and RTL by qRT-PCR. Significant HER2 amplification (p = 0.0076, which was restricted to scattered groups of cells, was found in fPTC samples. HER2 amplification in fPTCs was invariably associated with BRAFV600E mutation. RTL was shorter in fPTCs than sPTCs (p < 0.001. No rearrangements of other tested genes were observed. These findings suggest that the association of HER2 amplification with BRAFV600E mutation and telomere shortening may represent a marker of tumor aggressiveness, and, in refractory thyroid cancer, may warrant exploration as a site for targeted therapy.

  9. Metformin inhibits age-related centrosome amplification in Drosophila midgut stem cells through AKT/TOR pathway.

    Science.gov (United States)

    Na, Hyun-Jin; Park, Joung-Sun; Pyo, Jung-Hoon; Jeon, Ho-Jun; Kim, Young-Shin; Arking, Robert; Yoo, Mi-Ae

    2015-07-01

    We delineated the mechanism regulating the inhibition of centrosome amplification by metformin in Drosophila intestinal stem cells (ISCs). Age-related changes in tissue-resident stem cells may be closely associated with tissue aging and age-related diseases, such as cancer. Centrosome amplification is a hallmark of cancers. Our recent work showed that Drosophila ISCs are an excellent model for stem cell studies evaluating age-related increase in centrosome amplification. Here, we showed that metformin, a recognized anti-cancer drug, inhibits age- and oxidative stress-induced centrosome amplification in ISCs. Furthermore, we revealed that this effect is mediated via down-regulation of AKT/target of rapamycin (TOR) activity, suggesting that metformin prevents centrosome amplification by inhibiting the TOR signaling pathway. Additionally, AKT/TOR signaling hyperactivation and metformin treatment indicated a strong correlation between DNA damage accumulation and centrosome amplification in ISCs, suggesting that DNA damage might mediate centrosome amplification. Our study reveals the beneficial and protective effects of metformin on centrosome amplification via AKT/TOR signaling modulation. We identified a new target for the inhibition of age- and oxidative stress-induced centrosome amplification. We propose that the Drosophila ISCs may be an excellent model system for in vivo studies evaluating the effects of anti-cancer drugs on tissue-resident stem cell aging.

  10. Optical amplification and pulse interleaving for low noise photonic microwave generation

    CERN Document Server

    Quinlan, Franklyn; Fortier, Tara M; Zhou, Qiugui; Cross, Allen; Campbell, Joe C; Diddams, Scott A

    2013-01-01

    We investigate the impact of pulse interleaving and optical amplification on the spectral purity of microwave signals generated by photodetecting the pulsed output of an Er:fiber-based optical frequency comb. It is shown that the microwave phase noise floor can be extremely sensitive to delay length errors in the interleaver, and the contribution of the quantum noise from optical amplification to the phase noise can be reduced ~10 dB for short pulse detection. We exploit optical amplification, in conjunction with high power handling modified uni-traveling carrier photodetectors, to generate a phase noise floor on a 10 GHz carrier of -175 dBc/Hz, the lowest ever demonstrated in the photodetection of a mode-locked fiber laser. At all offset frequencies, the photodetected 10 GHz phase noise performance is comparable to or better than the lowest phase noise results yet demonstrated with stabilized Ti:sapphire frequency combs.

  11. Thermostable Mismatch-Recognizing Protein MutS Suppresses Nonspecific Amplification during Polymerase Chain Reaction (PCR

    Directory of Open Access Journals (Sweden)

    Seiki Kuramitsu

    2013-03-01

    Full Text Available Polymerase chain reaction (PCR-related technologies are hampered mainly by two types of error: nonspecific amplification and DNA polymerase-generated mutations. Here, we report that both errors can be suppressed by the addition of a DNA mismatch-recognizing protein, MutS, from a thermophilic bacterium. Although it had been expected that MutS has a potential to suppress polymerase-generated mutations, we unexpectedly found that it also reduced nonspecific amplification. On the basis of this finding, we propose that MutS binds a mismatched primer-template complex, thereby preventing the approach of DNA polymerase to the 3' end of the primer. Our simple methodology improves the efficiency and accuracy of DNA amplification and should therefore benefit various PCR-based applications, ranging from basic biological research to applied medical science.

  12. Ultrafast Capillary Electrophoresis Isolation of DNA Aptamer for the PCR Amplification-Based Small Analyte Sensing

    Directory of Open Access Journals (Sweden)

    Emmanuelle eFiore

    2015-08-01

    Full Text Available Here, we report a new homogeneous DNA amplification-based aptamer assay for small analyte sensing. The aptamer of adenosine chosen as the model analyte was split into two fragments able to assemble in the presence of target. Primers were introduced at extremities of one fragment in order to generate the amplifiable DNA component. The amount of amplifiable fragment was quantifiable by Real-Time Polymerase Chain Reaction (RT-PCR amplification and directly reliable on adenosine concentration. This approach combines the very high separation efficiency and the homogeneous format (without immobilization of capillary electrophoresis and the sensitivity of real time PCR amplification. An ultrafast isolation of target-bound split aptamer (60 s was developed by designing a capillary electrophoresis input/ouput scheme. Such method was successfully applied to the determination of adenosine with a LOD of 1 µM.

  13. High-density SNP arrays improve detection of HER2 amplification and polyploidy in breast tumors

    DEFF Research Database (Denmark)

    Hansen, Thomas V. O.; Vikesaa, Jonas; Buhl, Sine S;

    2015-01-01

    BACKGROUND: Human epidermal growth factor receptor-2 (HER2) overexpression and gene amplification are currently established by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH), respectively. This study investigates whether high-density single nucleotide polymorphism (SNP......) arrays can provide additional diagnostic power to assess HER2 gene status. METHODS: DNA from 65 breast tumor samples previously diagnosed by HER2 IHC and FISH analysis were blinded and examined for HER2 copy number variation employing SNP array analysis. RESULTS: SNP array analysis identified 24 (37......%) samples with selective amplification or imbalance of the HER2 region in the q-arm of chromosome 17. In contrast, only 15 (23%) tumors were found to have HER2 amplification by IHC and FISH analysis. In total, there was a discrepancy in 19 (29%) samples between SNP array and IHC/FISH analysis. In 12...

  14. A Simple, Low-Cost Platform for Real-Time Isothermal Nucleic Acid Amplification

    Directory of Open Access Journals (Sweden)

    Pascal Craw

    2015-09-01

    Full Text Available Advances in microfluidics and the introduction of isothermal nucleic acid amplification assays have resulted in a range of solutions for nucleic acid amplification tests suited for point of care and field use. However, miniaturisation of instrumentation for such assays has not seen such rapid advances and fluorescence based assays still depend on complex, bulky and expensive optics such as fluorescence microscopes, photomultiplier tubes and sensitive lens assemblies. In this work we demonstrate a robust, low cost platform for isothermal nucleic acid amplification on a microfluidic device. Using easily obtainable materials and commercial off-the-shelf components, we show real time fluorescence detection using a low cost photodiode and operational amplifier without need for lenses. Temperature regulation on the device is achieved using a heater fabricated with standard printed circuit board fabrication methods. These facile construction methods allow fabrications at a cost compatible with widespread deployment to resource poor settings.

  15. Use of RAPD and PCR double amplification in the study of ancient DNA

    Directory of Open Access Journals (Sweden)

    F. Balzano

    2011-01-01

    Full Text Available This project analysed the DNA extracted from bones of ancient sheep which have been brought to light in Sardinian different archaeological sites. In order to better analyse this highly fragmented DNA, a double amplification technique was chosen. The first approach consisted of RAPD-PCR abd the second one in classic PCR. The RAPD-PCR amplified random fragments and allowed the production of numerous amplicons. The products of RAPD amplification have been amplified, more specifically, by the second PCR using primers for a sequence of 176 bp of mitochondrial D-loop region. These DNA fragments have been sequenced and the sequence analysis has confirmed that it belonged to Ovis aries. Consequently, this provedure can be considered a valid tool to perform amplification of degraded DNA, such as ancient DNA.

  16. Thermodynamic and Kinetic Analysis of Sensitivity Amplification in Biological Signal Transduction

    CERN Document Server

    Qian, H

    2003-01-01

    Based on a thermodynamic analysis of the kinetic model for the protein phosphorylation-dephosphorylation cycle, we study the ATP (or GTP) energy utilization of this ubiquitous biological signal transduction process. It was shown that the free energy from hydrolysis inside cells, Delta G (phosphorylation potential), controls the amplification and sensitivity of the switch-like cellular module; the response coefficient of the sensitivity amplification approaches the optimal 1 and the Hill coefficeint increases with increasing Delta G. Futhermore, we show the high amplification in zero-order ultrasensitivity is mechanistically related to the proofreading kinetics for protein biosynthesis. Both utilize multiple kinetic cycles in time to gain temporal cooperativity, in contrast to allosteric cooperativity that utilizes multiple subunits in a protein.

  17. Numerical analysis of seismic wave amplification in Nice (France) and comparisons with experiments

    CERN Document Server

    Semblat, Jean-François; Dangla, Patrick; 10.1016/S0267-7261(00)00016-6

    2009-01-01

    The analysis of site effects is very important since the amplification of seismic motion in some specific areas can be very strong. In this paper, the site considered is located in the centre of Nice on the French Riviera. Site effects are investigated considering a numerical approach (Boundary Element Method) and are compared to experimental results (weak motion and microtremors). The investigation of seismic site effects through numerical approaches is interesting because it shows the dependency of the amplification level on such parameters as wave velocity in surface soil layers, velocity contrast with deep layers, seismic wave type, incidence and damping. In this specific area of Nice, a one-dimensional (1D) analytical analysis of amplification does not give a satisfactory estimation of the maximum reached levels. A boundary element model is then proposed considering different wave types (SH, P, SV) as the seismic loading. The alluvial basin is successively assumed as an isotropic linear elastic medium an...

  18. TECHNICAL DESIGN NOTE Multi-pass light amplification for tomographic particle image velocimetry applications

    Science.gov (United States)

    Ghaemi, Sina; Scarano, Fulvio

    2010-12-01

    The light source budget is a critical issue for tomographic particle image velocimetry (Tomo-PIV) systems due to its requirement for large illuminated volume and imaging at small apertures. In this work, a light amplification system based on the multi-pass concept is investigated for Tomo-PIV applications. The system design is performed on the basis of a theoretical model providing an estimation of the most important system parameters and above all the amplification gain. The multi-pass light amplification concept is verified experimentally by measuring the scattered light intensity across the illuminated volume. The results demonstrate a gain factor of 7 and 5 times in comparison with the single-pass and double-pass illumination approaches, respectively.

  19. Distributed Raman optical amplification in phase coherent transfer of optical frequencies

    CERN Document Server

    Clivati, Cecilia; Calonico, Davide; Faralli, Stefano; Levi, Filippo; Mura, Alberto; Poli, Nicola

    2012-01-01

    We describe the application of Raman Optical-fiber Amplification (ROA) for the phase coherent transfer of optical frequencies in an optical fiber link. ROA uses the transmission fiber itself as a gain medium for bi-directional coherent amplification. In a test setup we evaluated the ROA in terms of on-off gain, signal-to-noise ratio, and phase noise added to the carrier. We transferred a laser frequency in a 200 km optical fiber link with an additional 16 dB fixed attenuator (equivalent to 275 km of fiber on a single span), and evaluated both co-propagating and counter-propagating amplification pump schemes, demonstrating nonlinear effects limiting the co-propagating pump configuration. The frequency at the remote end has a fractional frequency instability of 3e-19 over 1000 s with the optical fiber link noise compensation.

  20. Four-Wave Optical Parametric Amplification in a Raman-Active Gas

    Directory of Open Access Journals (Sweden)

    Yuichiro Kida

    2015-08-01

    Full Text Available Four-wave optical parametric amplification (FWOPA in a Raman-active medium is experimentally investigated by use of an air-filled hollow fiber. A femtosecond pump pulse shorter than the period of molecular motion excites the coherent molecular motion of the Raman-active molecules during the parametric amplification of a signal pulse. The excited coherent motion modulates the frequency of the signal pulse during the parametric amplification, and shifts it to lower frequencies. The magnitude of the frequency redshift depends on the pump intensity, resulting in intensity-dependent spectral characteristics that are different from those in the FWOPA induced in a noble-gas-filled hollow fiber.

  1. Optical parametric amplification and oscillation assisted by low-frequency stimulated emission

    CERN Document Server

    Longhi, Stefano

    2016-01-01

    Optical parametric amplification/oscillation provide a powerful tool for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency {\\it down-conversion} process, and thus it can not be realized for signal waves at a frequency $\\omega_3$ {\\it higher} than the frequency of the pump wave $\\omega_1$. In this work we suggest a route toward the realization of {\\it up-conversion} optical parametric amplification and oscillation, i.e. amplification of the signal wave by a coherent pump wave of lower frequency, assisted by stimulated emission of the auxiliary idler wave. When the signal field is resonated in an optical cavity, parametric oscillation is obtained. Design parameters for the observation of up-conversion optical parametric oscillation at $\\lambda_3=465$ nm are given for a periodically-poled lithium-niobate (PPLN) crystal doped with Nd$^{3+}$ ions.

  2. Electron Heating, Magnetic Field Amplification, and Cosmic Ray Precursor Length at Supernova Remnant Shocks

    CERN Document Server

    Laming, J Martin; Ghavamian, Parviz; Rakowski, Cara

    2014-01-01

    We investigate the observability, by direct and indirect means, of a shock precursor arising from magnetic field amplification by cosmic rays. We estimate the depth of such a precursor under conditions of nonresonant amplification, which can provide magnetic field strengths comparable to those inferred for supernova remnants. Magnetic field generation occurs as the streaming cosmic rays induce a plasma return current, and may be quenched either by nonresonant or resonant channels. In the case of nonresonant saturation, the cosmic rays become magnetized and amplification saturates at higher magnetic fields. The precursor can extend out to $10^{17} - 10^{18}$ cm and is potentially detectable. If resonant saturation occurs, the cosmic rays are scattered by turbulence and the precursor length will likely be much smaller. The dependence of precursor length on shock velocity has implications for electron heating. In the case of resonant saturation, this dependence is similar to that in the more familiar resonantly ...

  3. High gain broadband amplification of ultraviolet pulses in optical parametric chirped pulse amplifier.

    Science.gov (United States)

    Wnuk, Paweł; Stepanenko, Yuriy; Radzewicz, Czesław

    2010-04-12

    We report on a high gain amplification of broadband ultraviolet femtosecond pulses in an optical parametric chirped pulse amplifier. Broadband ultraviolet seed pulses were obtained by an achromatic frequency doubling of the output from a femtosecond Ti:Sapphire oscillator. Stretched seed pulses were amplified in a multipass parametric amplifier with a single BBO crystal pumped by a ns frequency quadrupled Nd:YAG laser. A noncollinear configuration was used for a broadband amplification. The total (after compression) amplification of 2.510(5) was achieved, with compressed pulse energy of 30 microJ and pulse duration of 24 fs. We found that the measured gain was limited by thermal effects induced by the absorption of the pump laser by color centers created in the BBO crystal.

  4. Ultrafast Capillary Electrophoresis Isolation of DNA Aptamer for the PCR Amplification-Based Small Analyte Sensing

    Science.gov (United States)

    Fiore, Emmanuelle; Dausse, Eric; Dubouchaud, Hervé; Peyrin, Eric; Ravelet, Corinne

    2015-08-01

    Here, we report a new homogeneous DNA amplification-based aptamer assay for small analyte sensing. The aptamer of adenosine chosen as the model analyte was split into two fragments able to assemble in the presence of target. Primers were introduced at extremities of one fragment in order to generate the amplifiable DNA component. The amount of amplifiable fragment was quantifiable by Real-Time Polymerase Chain Reaction (RT-PCR) amplification and directly reliable on adenosine concentration. This approach combines the very high separation efficiency and the homogeneous format (without immobilization) of capillary electrophoresis and the sensitivity of real time PCR amplification. An ultrafast isolation of target-bound split aptamer (60 s) was developed by designing a capillary electrophoresis input/ouput scheme. Such method was successfully applied to the determination of adenosine with a LOD of 1 µM.

  5. Turbulent magnetic field amplification driven by cosmic-ray pressure gradients

    CERN Document Server

    Drury, Luke O'C

    2012-01-01

    Observations of non-thermal emission from several supernova remnants suggest that magnetic fields close to the blastwave are much stronger than would be naively expected from simple shock compression of the field permeating the interstellar medium (ISM). We present a simple model which is capable of achieving sufficient magnetic field amplification to explain the observations. We propose that the cosmic-ray pressure gradient acting on the inhomogeneous ISM upstream of the supernova blastwave induces strong turbulence upstream of the supernova blastwave. The turbulence is generated through the differential acceleration of the upstream ISM which occurs as a result of density inhomogeneities in the ISM. This turbulence then amplifies the pre-existing magnetic field. Numerical simulations are presented which demonstrate that amplification factors of 20 or more are easily achievable by this mechanism when reasonable parameters for the ISM and supernova blastwave are assumed. The length scale over which this amplif...

  6. Determination of DQB1 alleles using PCR amplification and allele-specific primers.

    Science.gov (United States)

    Lepage, V; Ivanova, R; Loste, M N; Mallet, C; Douay, C; Naoumova, E; Charron, D

    1995-10-01

    Molecular genotyping of HLA class II genes is commonly carried out using polymerase chain reaction (PCR) in combination with sequence-specific oligotyping (PCR-SSO) or a combination of the PCR and restriction fragment length polymorphism methods (PCR-RFLP). However, the identification of the DQB1 type by PCR-SSO and PCR-RFLP is very time-consuming which is disadvantageous for the typing of cadaveric organ donors. We have developed a DQB1 typing method using PCR in combination with allele-specific amplification (PCR-ASA), which allows the identification of the 17 most frequent alleles in one step using seven amplification mixtures. PCR allele-specific amplification HLA-DQB1 typing is easy to perform, and the results are easy to interpret in routine clinical practice. The PCR-ASA method is therefore better suited to DQB1 typing for organ transplantation than other methods.

  7. Theory of noiseless phase-mixing amplification in a cavity optomechanical system

    CERN Document Server

    Ockeloen-Korppi, C F; Sillanpää, M A; Massel, F

    2016-01-01

    The investigation of the ultimate limits imposed by quantum mechanics on amplification represents an important topic both on a fundamental level and from the perspective of potential applications. We propose here a novel setup for an optomechanical amplifier, constituted by a mechanical resonator dispersively coupled to an optomechanical cavity asymmetrically driven around both mechanical sidebands. We show that, on general grounds, the present amplifier operates in a novel regime-- which we here call phase-mixing amplification. At the same time, for a suitable choice of parameters, the amplifier proposed here operates as a phase-sensitive amplifier. Furthermore, we show that both configurations allow amplification below the standard quantum limit in a parameter range compatible with current experiments in microwave circuit optomechanics.

  8. Endonuclease-rolling circle amplification-based method for sensitive analysis of DNA-binding protein

    Institute of Scientific and Technical Information of China (English)

    Min Li Li; Dong Rui Zhou; Hong Zhao; Jin Ke Wang; Zu Hong Lu

    2009-01-01

    A sensitive approach for the qualitative detection of DNA-binding protein on the microarray was developed. DNA complexes in which a partial duplex region is formed from a biotin-primer and a circle single strand DNA (ssDNA) were spotted on a microarray. The endonuclease recognition site (ERS) and the DNA-binding sites (DBS) were arranged side by side within the duplex region. The working principle of the detection system is described as follows: when the DNA-binding protein capture the DBS, the endonuclease could not attach to the ERS, and the immobilized primer in the DNA complex could be extended along the circle ssDNA by rolling circle amplification (RCA). When no protein protects the DBS, the ERS could be attacked by the endonuclease and subsequently no rolling circle amplification occurs. Thereby we can detect the sequence specific DNA-binding activity with high-sensitivity due to the signal amplification of RCA.

  9. High gain broadband amplification of ultraviolet pulses in optical parametric chirped pulse amplifier.

    Science.gov (United States)

    Wnuk, Paweł; Stepanenko, Yuriy; Radzewicz, Czesław

    2010-04-12

    We report on a high gain amplification of broadband ultraviolet femtosecond pulses in an optical parametric chirped pulse amplifier. Broadband ultraviolet seed pulses were obtained by an achromatic frequency doubling of the output from a femtosecond Ti:Sapphire oscillator. Stretched seed pulses were amplified in a multipass parametric amplifier with a single BBO crystal pumped by a ns frequency quadrupled Nd:YAG laser. A noncollinear configuration was used for a broadband amplification. The total (after compression) amplification of 2.510(5) was achieved, with compressed pulse energy of 30 microJ and pulse duration of 24 fs. We found that the measured gain was limited by thermal effects induced by the absorption of the pump laser by color centers created in the BBO crystal. PMID:20588633

  10. Fast magnetic field amplification in the early Universe: growth of collisionless plasma instabilities in turbulent media

    CERN Document Server

    Falceta-Goncalves, D

    2015-01-01

    In this work we report a numerical study of the cosmic magnetic field amplification due to collisionless plasma instabilities. The collisionless magnetohydrodynamic equations derived account for the pressure anisotropy that leads, in specific conditions, to the firehose and mirror instabilities. We study the time evolution of seed fields in turbulence under the influence of such instabilities. An approximate analytical time evolution of magnetic field is provided. The numerical simulations and the analytical predictions are compared. We found that i) amplification of magnetic field was efficient in firehose unstable turbulent regimes, but not in the mirror unstable models, ii) the growth rate of the magnetic energy density is much faster than the turbulent dynamo, iii) the efficient amplification occurs at small scales. The analytical prediction for the correlation between the growth timescales with pressure anisotropy ratio is confirmed by the numerical simulations. These results reinforce the idea that pres...

  11. Wavelength-dependent femtosecond pulse amplification in wideband tapered-waveguide quantum well semiconductor optical amplifiers.

    Science.gov (United States)

    Xia, Mingjun; Ghafouri-Shiraz, H

    2015-12-10

    In this paper, we study the wavelength-dependent amplification in three different wideband quantum well semiconductor optical amplifiers (QWAs) having conventional, exponentially tapered, and linearly tapered active region waveguide structures. A new theoretical model for tapered-waveguide QWAs considering the effect of lateral carrier density distribution and the strain effect in the quantum well is established based on a quantum well transmission line modeling method. The temporal and spectral characteristics of amplified femtosecond pulse are analyzed for each structure. It was found that, for the amplification of a single femtosecond pulse, the tapered-waveguide QWA provides higher saturation gain, and the output spectra of the amplified pulse in all three structures exhibit an apparent redshift and bandwidth narrowing due to the reduction of carrier density; however, the output spectrum in the tapered-waveguide amplifier is less distorted and exhibits smaller bandwidth narrowing. For the simultaneous amplification of two femtosecond pulses with different central frequencies, in all the three structures, two peaks appear in the output spectra while the peak at the frequency closer to the peak frequency of the QWA gain spectrum receives higher amplification due to the frequency (wavelength) dependence of the QWA gain. At a low peak power level of the input pulse, the bandwidth of each window in the tapered structure is larger than that of the conventional waveguide structure, which aggravates the spectrum alias in the amplification of femtosecond pulses with different central frequencies. As the peak powers of the two pulses increase, the spectrum alias in the conventional waveguide becomes more serious while there are small changes in the tapered structures. Also, we have found that in the amplification of a femtosecond pulse train, the linear-tapered QWAs exhibit the fastest gain recovery as compared with the conventional and exponentially tapered QWAs.

  12. Biomass changes and trophic amplification of plankton in a warmer ocean

    KAUST Repository

    Chust, Guillem

    2014-05-07

    Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and

  13. Glo1 genetic amplification as a potential therapeutic target in hepatocellular carcinoma

    Science.gov (United States)

    Zhang, Shirong; Liang, Xiaodong; Zheng, Xiaoliang; Huang, Haixiu; Chen, Xufeng; Wu, Kan; Wang, Bing; Ma, Shenglin

    2014-01-01

    Glyoxalase 1 (Glo1) gene aberrations is associated with tumorigenesis and progression in numerous cancers. In this study, we explored the role of Glo1 genetic amplification and expression in Chinese patients with hepatocellular carcinoma (HCC), and Glo1 genetic amplification as potential therapeutic target for HCC. We used fluorescence in situ hybridization (FISH) analysis and qRT-PCR to examine Glo1 genetic aberrations and Glo1 mRNA expression in paired tumor samples obtained from HCC patients. Glo1 genetic amplification was identified in a subset of HCC patient (6%, 3/50), and up-regulation of Glo1 expression was found in 48% (24/50) of tumor tissues compared with adjacent non-tumorous tissues. Statistic analysis showed that Glo1-upregulation significantly correlated with high serum level of alpha-fetoprotein (AFP). Interfering Glo1 expression with shRNA knocking-down led to significant inhibition of cell growth and induced apoptosis in primarily cultured HCC cells carrying genetic amplified Glo1 gene, while no inhibitory effects on cell proliferation were observed in HCC cells with normal copies of Glo1 gene. Glo1 knockdown also inhibited tumor growth and induced apoptosis in xenograft tumors established from primarily cultured HCC cells with Glo1 gene amplification. In addition, Glo1 knocking-down with shRNA interfering caused cellular accumulation of methylglyoxal, a Glo1 cytotoxic substrate. Our data suggested Glo1 pathway activation is required for cell proliferation and cell survival of HCC cells carrying Glo1 genetic amplification. Intervention of Glo1 activation could be a potential therapeutic option for patients with HCC carrying Glo1 gene amplification. PMID:24966916

  14. All-optical WDM Regeneration of DPSK Signals using Optical Fourier Transformation and Phase Sensitive Amplification

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Kjøller, Niels-Kristian;

    2015-01-01

    We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time.......We propose a novel all-optical WDM regeneration scheme for DPSK signals based on optical Fourier transformation and phase sensitive amplification. Phase regeneration of a WDM signal consisting of 4x10-Gbit/s phase noise degraded DPSK channels is demonstrated for the first time....

  15. Regenerative amplification and bifurcations in a burst-mode Nd:YAG laser.

    Science.gov (United States)

    Mance, Jason G; Slipchenko, Mikhail N; Roy, Sukesh

    2015-11-01

    An Nd:YAG-based burst-mode regenerative amplifier laser was developed that offers high extraction efficiency at high repetition rates with low seed energies. The regenerative amplification technique, combined with the burst-mode laser technology, shows promise as an efficient method for amplification of femtojoule-nanojoule pulses up to millijoule energies at repetition rates exceeding 100 kHz. Output energies at repetition rates near the inverse upper state lifetime are limited by bifurcations in the pulse energies of the burst. A model is developed and advantages and limitations are discussed.

  16. Ultrasensitive Visual Detection of HIV DNA Biomarkers via a Multi-amplification Nanoplatform

    OpenAIRE

    Yuyin Long; Cuisong Zhou; Congmin Wang; Honglian Cai; Cuiyun Yin; Qiufang Yang; Dan Xiao

    2016-01-01

    Methodologies to detect disease biomarkers at ultralow concentrations can potentially improve the standard of living. A facile and label-free multi-amplification strategy is proposed for the ultrasensitive visual detection of HIV DNA biomarkers in real physiological media. This multi-amplification strategy not only exhibits a signficantly low detection limit down to 4.8 pM but also provides a label-free, cost-effective and facile technique for visualizing a few molecules of nucleic acid analy...

  17. Impacts of seed power on amplification performance in pulsed double-clad fiber amplifier

    Institute of Scientific and Technical Information of China (English)

    Fangpei Zhang; Jianqiang Zhu; Zhijiang Wang; Qihong Lou; Jun Zhou; Hongming Zhao; Songtao Du; Jingxing Dong; Yunrong Wei; Bing He; Jinyan Li

    2008-01-01

    A pulsed master-oscillator fiber power amplifier system with near diffraction-limited output by use of China-made large-mode-area fiber and a (2 + 1) × 1 multimode combiner is reported. The effect of the seed power on the amplification performance is found. For the seed power, there exists a range within which the pulsed fiber amplifier can operate safely and reliably at a certain pump power. With the seed average power of 70 mW, the amplification performances of the fiber amplifier are investigated.

  18. Dispersion Analysis and Compensation of Collinear Optical Parametric Chirped Pulse Amplification Systems

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng; LENG Yu-Xin; LIANG Xiao-Yan; ZHANG Chun-Mei; ZHAO Bao-Zhen; XU Zhi-Zhan

    2005-01-01

    @@ In an optical parametric chirped pulse amplification (OPCPA) laser system, residual phase dispersion should be compensated as much as possible to shorten the amplified pulses and improve the pulse contrast ratio. Expressions of orders of the induced phases in collinear optical parametric amplification (OPA) processes are presented at the central signal wavelength to depict a clear physics picture and to simplify the design of phase compensation. As examples, we simulate two OPCPA systems to compensate for the phases up to the partial fourth-order terms,and obtain flat phase spectra of 200-nm bandwidth at 1064 nm and 90-nm at 800nm.

  19. Two Methods of Whole-Genome Amplification Enable Accurate Genotyping Across a 2320-SNP Linkage Panel

    OpenAIRE

    Barker, David L.; Hansen, Mark S. T.; Faruqi, A. Fawad; Giannola, Diane; Irsula, Orlando R.; Lasken, Roger S; Latterich, Martin; Makarov, Vladimir; Oliphant, Arnold; Pinter, Jonathon H.; Shen, Richard; Sleptsova, Irina; Ziehler, William; Lai, Eric

    2004-01-01

    Comprehensive genome scans involving many thousands of SNP assays will require significant amounts of genomic DNA from each sample. We report two successful methods for amplifying whole-genomic DNA prior to SNP analysis, multiple displacement amplification, and OmniPlex technology. We determined the coverage of amplification by analyzing a SNP linkage marker set that contained 2320 SNP markers spread across the genome at an average distance of 2.5 cM. We observed a concordance of >99.8% in ge...

  20. FGFR-1 amplification in metastatic lymph-nodal and haematogenous lobular breast carcinoma

    Directory of Open Access Journals (Sweden)

    Brunello Eleonora

    2012-12-01

    Full Text Available Abstract Background Lobular breast carcinoma usually shows poor responsiveness to chemotherapies and often lacks targeted therapies. Since FGFR1 expression has been shown to play pivotal roles in primary breast cancer tumorigenesis, we sought to analyze the status of FGFR1 gene in a metastatic setting of lobular breast carcinoma, since promising FGFR1 inhibitors has been recently developed. Methods Fifteen tissue metastases from lobular breast carcinomas with matched primary infiltrative lobular breast carcinoma were recruited. Eleven cases showed loco-regional lymph-nodal and four haematogenous metastases. FGFR-1 gene (8p12 amplification was evaluated by chromogenic in situ hybridization (CISH analysis. Her-2/neu and topoisomerase-IIα gene status was assessed. E-cadherin and Hercept Test were also performed. We distinguished amplification (>6 or cluster of signals versus gains (3–6 signals of the locus specific FGFR-1 gene. Results Three (20% primary lobular breast carcinomas showed >6 or cluster of FGFR1 signals (amplification, six cases (40% had a mean of three (range 3–6 chromogenic signals (gains whereas in 6 (40% was not observed any abnormality. Three of 15 metastasis (20% were amplified, 2/15 (13,4% did not. The ten remaining cases (66,6% showed three chromogenic signals. The three cases with FGFR-1 amplification matched with those primary breast carcinomas showing FGFR-1 amplification. The six cases showing FGFR-1 gains in the primary tumour again showed FGFR-1 gains in the metastases. Four cases showed gains of FGFR-1 gene signals in the metastases and not in the primary tumours. Her-2/neu gene amplification was not observed in all cases but one (6% case. Topoisomerase-IIα was not amplified in all cases. Conclusions 1 a subset of metastatic lobular breast carcinoma harbors FGFR-1 gene amplification or gains of chromogenic signals; 2 a minor heterogeneity has been observed after matching primary and metastatic carcinomas; 3 in the

  1. Quantification of EGFR autoantibodies in the amplification phenomenon of HER2 in breast cancer

    DEFF Research Database (Denmark)

    Olsen, Dorte Aa; Jakobsen, Erik H; Brandslund, Ivan

    2013-01-01

    Abstract Background: Gene amplification or overexpression of human epidermal growth factor receptor HER2/ErB2 is seen in 25-30% of patients with breast cancer and is related to an aggressive disease. The mechanism behind the HER2 gene amplification is unknown, but it may be caused by continuous...... stimulation and activation. We hypothesised that autoantibodies against EGFR might have a stimulatory effect. To investigate this we developed a quantitative method to measure autoantibodies against EGFR in serum (S-EGFRAb). Methods: Serum samples from primary breast cancer patients were selected based...

  2. Improved sensitivity of nucleic acid amplification for rapid diagnosis of tuberculous meningitis

    DEFF Research Database (Denmark)

    Johansen, Isik Somuncu; Lundgren, Bettina; Tabak, Fehmi;

    2004-01-01

    Early diagnosis of tuberculous meningitis (TBM) is essential for a positive outcome; but present microbiological diagnostic techniques are insensitive, slow, or laborious. We evaluated the standard BDProbeTec ET strand displacement amplification method (the standard ProbeTec method) for the detec......Early diagnosis of tuberculous meningitis (TBM) is essential for a positive outcome; but present microbiological diagnostic techniques are insensitive, slow, or laborious. We evaluated the standard BDProbeTec ET strand displacement amplification method (the standard ProbeTec method...

  3. Slow light propagation in an atomic vapour under conditions of amplification without inversion

    International Nuclear Information System (INIS)

    We report experimental results on slowing a light pulse in a system for amplification without inversion (AWI). We were able to control a subluminal group velocity continuously from Vg = c/2850 to c/7260 by just changing an incoherent pumping beam power from 0 to 12 mW in the AWI system. And several advantages, such as the controllable delay time and the pulse amplification, for slowing of the light in the AWI system compared to in an electromagnetically induced transparency system were found

  4. Supporting inclusion of learners with attention deficithyperactivity disorder in sound-field-amplification-systems

    DEFF Research Database (Denmark)

    Voldborg, Hanne

    2015-01-01

    ICT is internationally recognised as a valuable tool for inclusion, particular for people with disabilities, where technology can improve their quality of life, reduce social exclusion, and increase participation in life and learning. This study examines the impact teachers and learners experience...... in proportion to classroom and on-task behaviour among children with developmental and attention deficits when using personal Sound-Field-AmplificationSystems in the classroom. The aim of increasing knowledge about ‘good practise’ when Sound-Field-Amplification-Systems are put into operation will uncover...

  5. Characterization of a thermostable UvrD helicase and its participation in helicase dependent amplification

    OpenAIRE

    AN, LIXIN; Tang, Wen; Ranalli, Tamara A.; Kim, Hyun-Jin; Wytiaz, Jamie; Kong, Huimin

    2005-01-01

    Helicase-Dependent Amplification (HDA) is an isothermal in vitro DNA amplification method based upon the coordinated actions of helicases to separate double-stranded DNA and DNA polymerases to synthesize DNA. Previously, a mesophilic form of HDA (mHDA) utilizing the E. coli UvrD helicase, DNA polymerase I Klenow Fragment, two accessory proteins, MutL and single stranded DNA binding protein (SSB), was developed (1). In an effort to improve the specificity and performance of HDA, we have cloned...

  6. Inverse bremsstrahlung stabilization of noise in the generation of ultrashort intense pulses by backward Raman amplification

    International Nuclear Information System (INIS)

    Inverse bremsstrahlung absorption of the pump laser beam in a backward Raman amplifier over the round-trip light transit time through the subcritical density plasma can more than double the electron temperature of the plasma and produce time-varying axial temperature gradients. The resulting increased Landau damping of the plasma wave and detuning of the resonance can act to stabilize the pump against unwanted amplification of Langmuir noise without disrupting nonlinear amplification of the femtosecond seed pulse. Because the heating rate increases with the charge state Z, only low-Z plasmas (hydrogen, helium, or helium-hydrogen mixtures) will maintain a low enough temperature for efficient operation

  7. Amplification of Frequency-Modulated Similariton Pulses in Length-Inhomogeneous Active Fibers

    Directory of Open Access Journals (Sweden)

    I. O. Zolotovskii

    2012-01-01

    Full Text Available The possibility of an effective gain of the self-similar frequency-modulated (FM wave packets is studied in the length-inhomogeneous active fibers. The dynamics of parabolic pulses with the constant chirp has been considered. The optimal profile for the change of the group-velocity dispersion corresponding to the optimal similariton pulse amplification has been obtained. It is shown that the use of FM pulses in the active (gain and length-inhomogeneous optical fibers with the normal group-velocity dispersion can provide subpicosecond optical pulse amplification up to the energies higher than 1 nJ.

  8. Demonstration of resonant backward Raman amplification in high-density gas-jet plasma

    Science.gov (United States)

    Wu, Z. H.; Zhou, K. N.; Zheng, X. M.; Wei, X. F.; Zhu, Q. H.; Su, J. Q.; Xie, N.; Jiao, Z. H.; Peng, H.; Wang, X. D.; Sun, L.; Li, Q.; Huang, Z.; Zuo, Y. L.

    2016-10-01

    Backward Raman amplification was observed in a 0.7 mm-long high-density gas jet plasma. The 800 nm 30 fs seed pulse was amplified by a factor  ∼28, with an output energy of 2.8 mJ. The output spectra showed that the waveband around 800 nm was significantly amplified. The experimental result demonstrated that the resonant Raman amplification can be realized in high-density plasma against strong plasma instability.

  9. Signal amplification in biological and electrical engineering systems: universal role of cascades.

    Science.gov (United States)

    Grubelnik, Vladimir; Dugonik, Bogdan; Osebik, Davorin; Marhl, Marko

    2009-08-01

    In this paper we compare the cascade mechanisms of signal amplification in biological and electrical engineering systems, and show that they share the capacity to considerably amplify signals, and respond to signal changes both quickly and completely, which effectively preserves the form of the input signal. For biological systems, these characteristics are crucial for efficient and reliable cellular signaling. We show that this highly-efficient biological mechanism of signal amplification that has naturally evolved is mathematically fully equivalent with some man-developed amplifiers, which indicates parallels between biological evolution and successful technology development.

  10. Theory of carrier depletion and light amplification in active slow light photonic crystal waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2013-01-01

    Using a perturbative approach, we perform a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguide. The impact of slow-light propagation on the carrier-depletion-induced nonlinear gain saturation of the dev......Using a perturbative approach, we perform a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguide. The impact of slow-light propagation on the carrier-depletion-induced nonlinear gain saturation...

  11. Low noise amplification of an optically carried microwave signal: application to atom interferometry

    Science.gov (United States)

    Lévèque, T.; Gauguet, A.; Chaibi, W.; Landragin, A.

    2010-12-01

    In this paper, we report a new scheme to amplify a microwave signal carried on a laser light at λ=852 nm. The amplification is done via a semiconductor tapered amplifier and this scheme is used to drive stimulated Raman transitions in an atom interferometer. Sideband generation in the amplifier, due to self-phase and amplitude modulation, is investigated and characterized. We also demonstrate that the amplifier does not induce any significant phase-noise on the beating signal. Finally, the degradation of the performances of the interferometer due to the amplification process is shown to be negligible.

  12. Precision charge amplification and digitization system for a scintillating and lead glass array

    Energy Technology Data Exchange (ETDEWEB)

    Delchamps, S.W.; Rameika, R.; Arenton, M.; Chen, T.Y.; Conetti, S.; Cox, B.; Etemadi, B.; Fortney, L.; Guffey, K.; Haire, M.

    1989-01-01

    A 544-channel low-noise, high-rate, precision charge amplification and ADC system was constructed for the Fermilab Experiment 705 electromagnetic calorimeter, which employs SCG1-C scintillating glass and SF5 lead glass instrumented with photo-multiplier tubes. A general discussion of the system is given, and the charge amplification, fast trigger pulse generation, and analog to digital conversion aspects of the system are presented in more detail. Performance is evaluated using data from Experiment 705 and from off-line tests. Short and long term pedestal stability, baseline recovery and rate capability, linearity of response, and crosstalk between channels are discussed. 8 refs., 2 tabs.

  13. The effect of whole genome amplification on samples originating from more than one donor

    DEFF Research Database (Denmark)

    Thacker, C.R.; Balogh, M.K.; Børsting, Claus;

    2006-01-01

    In this study, the GenomiPhi(TM) DNA Amplification Kit (Amersham Biosciences) was used to investigate the potential of whole genome amplification (WGA) when considering samples originating from more than one donor. DNA was extracted from blood samples, quantified and normalised before being mixed...... found to match the expected peak ratios regardless of the starting concentration of DNA. With samples mixed in the ratio of 1:7 and 1:15, and when the concentration of starting material was at the manufacturer's lower limit, too few minor component peaks were found to allow for statistical analysis...

  14. Induction cascade with electro-explosive commutation of current for amplification of electric pulse power

    CERN Document Server

    Grabovskij, E V; Kuznetsov, V V; Lototskij, A P; Khaustov, E V; Khalimullin, Y A; Kasyanov, N Y; Kormilitsyn, A I; Filatov, V A; Shkolnikov, E Y

    2002-01-01

    Paper describes a circuit of power amplification induction cascade based on a two-loop solenoid and electrically exploded conductors serving as current breakers. Due to retention of the general magnetic flow current breaking in the first loop of accumulator results in current amplification in the second loop and in accelerated actuation of the second electrically exploded conductor. Current switching to load occurs with 20-fold reduction of charging current front duration and increase of its amplitude. Time to charge coil is selected within 300-350 mu s limits

  15. HER2 immunohistochemistry significantly overestimates HER2 amplification in uterine papillary serous carcinomas.

    Science.gov (United States)

    Mentrikoski, Mark J; Stoler, Mark H

    2014-06-01

    Recently, there have been numerous reports showing that HER2 overexpression or amplification occurs in a variable number of uterine papillary serous carcinoma (UPSC) cases, leading to a current clinical trial targeting this pathway. Although approved algorithms exist for scoring HER2 overexpression/amplification in breast and gastroesophageal carcinomas, scoring criteria and the optimal methodology for assessing HER2 in UPSC are currently unknown. Most frequently, the American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) breast carcinoma algorithms have been utilized for UPSC, wherein cases are screened with immunohistochemistry (IHC), followed by fluorescence in situ hybridization for equivocal cases. However, interpreting HER2 IHC can be prone to significant subjectivity, often leading to false-positive results. To better correlate HER2 IHC results with underlying amplification in UPSC, we compared HER2 overexpression by IHC with HER2 amplification with chromogenic in situ hybridization (CISH). A total of 69 cases of UPSC-57 pure and 12 mixed-were identified over a 10-year period. All were included in a tissue microarray, and HER2 IHC and CISH were performed. Each case was scored according to the most recent 2013, as well as the 2007, ASCO/CAP scoring guidelines for breast carcinoma. Whole-tissue sections were also examined in cases with amplification by CISH on initial screening, as well as an equal number of negative cases, to account for intratumoral heterogeneity. Nine (13%) cases showed HER2 amplification by CISH, whereas 14 (20%) and 28 (40%) cases showed overexpression with IHC when the 2007 or 2013 ASCO/CAP criteria were utilized, respectively. The overall concordance rate between CISH and IHC was 64% (9/14) with the 2007 ASCO/CAP criteria and 32% (9/28) with the 2013 ASCO/CAP criteria. Intratumoral heterogeneity was seen in 3 (33%) amplified cases. No additional amplified cases were identified on subsequent whole

  16. Theory of Pulse Train Amplification Without Patterning Effects in Quantum Dot Semiconductor Optical Amplifiers

    DEFF Research Database (Denmark)

    Uskov, Alexander V.; Berg, Tommy Winther; Mørk, Jesper

    2004-01-01

    A theory for pulse amplification and saturation in quantum dot (QD) semiconductor optical amplifiers (SOAs) is developed. In particular, the maximum bit rate at which a data stream of pulses can be amplified without significant patterning effects is investigated. Simple expressions are derived...... that clearly show the dependence of the maximum bit rate on material and device parameters. A comparative analysis of QD, quantum well (QW), and bulk SOAs shows that QD SOAs may have superior properties; calculations predict patterning-free amplification up to bit rates of 150–200 Gb/s with pulse output...

  17. Distributed Raman optical amplification in phase coherent transfer of optical frequencies

    OpenAIRE

    Clivati, Cecilia; Bolognini, Gabriele; Calonico, Davide; Faralli, Stefano; Levi, Filippo; Mura, Alberto; Poli, Nicola

    2012-01-01

    We describe the application of Raman Optical-fiber Amplification (ROA) for the phase coherent transfer of optical frequencies in an optical fiber link. ROA uses the transmission fiber itself as a gain medium for bi-directional coherent amplification. In a test setup we evaluated the ROA in terms of on-off gain, signal-to-noise ratio, and phase noise added to the carrier. We transferred a laser frequency in a 200 km optical fiber link with an additional 16 dB fixed attenuator (equivalent to 27...

  18. External and semi-internal controls for PCR amplification of homologous sequences in mixed templates

    DEFF Research Database (Denmark)

    Kalle, Elena; Gulevich, Alexander; Rensing, Christopher Günther T

    2013-01-01

    . This study demonstrated the efficiency of a model mixed template as an adequate external amplification control for a particular PCR application. The conditions of multi-template PCR do not allow implementation of a classic internal control; therefore we developed a convenient semi-internal control...... practice in different PCR assays. We propose the inclusion of an analogous approach as a quality control system for multi-template PCR applications. The amplification controls must take into account the characteristics of multi-template PCR and be able to effectively monitor particular assay performance...

  19. Computational method and system for modeling, analyzing, and optimizing DNA amplification and synthesis

    Science.gov (United States)

    Vandersall, Jennifer A.; Gardner, Shea N.; Clague, David S.

    2010-05-04

    A computational method and computer-based system of modeling DNA synthesis for the design and interpretation of PCR amplification, parallel DNA synthesis, and microarray chip analysis. The method and system include modules that address the bioinformatics, kinetics, and thermodynamics of DNA amplification and synthesis. Specifically, the steps of DNA selection, as well as the kinetics and thermodynamics of DNA hybridization and extensions, are addressed, which enable the optimization of the processing and the prediction of the products as a function of DNA sequence, mixing protocol, time, temperature and concentration of species.

  20. Cross species amplification ability of novel microsatellites isolated from Jatropha curcas and genetic relationship with sister taxa : Cross species amplification and genetic relationship of Jatropha using novel microsatellites

    KAUST Repository

    Pamidimarri, D. V N N Sudheer

    2010-07-30

    The present investigation was undertaken with an aim to check the ability of cross species amplification of microsatellite markers isolated from Jatropha curcas-a renewable source of biodiesel to deduce the generic relationship with its six sister taxa (J. glandulifera, J. gossypifolia, J. integerrima, J. multifida, J. podagrica, and J. tanjorensis). Out of the 49 markers checked 31 markers showed cross species amplification in all the species studied. JCDS-30, JCDS-69, JCDS-26, JCMS-13 and JCMS-21 amplified in J. curcas. However, these markers did not show any cross species amplification. Overall percentage of polymorphism (PP) among the species studied was 38% and the mean genetic similarity (GS) was found to be 0.86. The highest PP (24) and least GS (0.76) was found between J. curcas/J. podagrica and J. curcas/J. multifida and least PP (4.44) and highest GS (0.96) was found between J. integerrima/J. tanjorensis. Dendrogram analysis showed good congruence to RAPD and AFLP than nrDNA ITS data reported earlier. The characterized microsatellites will pave way for intraspecies molecular characterization which can be further utilized in species differentiation, molecular identification, characterization of interspecific hybrids, exploitation of genetic resource management and genetic improvement of the species through marker assisted breeding for economically important traits. © 2010 Springer Science+Business Media B.V.

  1. A cascade signal amplification strategy for surface enhanced Raman spectroscopy detection of thrombin based on DNAzyme assistant DNA recycling and rolling circle amplification.

    Science.gov (United States)

    Gao, Fenglei; Du, Lili; Tang, Daoquan; Lu, Yao; Zhang, Yanzhuo; Zhang, Lixian

    2015-04-15

    A sensitive protocol for surface enhanced Raman spectroscopy (SERS) detection of thrombin is designed with R6G-Ag NPs as a signal tag by combining DNAzyme assistant DNA recycling and rolling circle amplification (RCA). Molecular beacon (MB) as recognition probe immobilizes on the glass slides and performs the amplification procedure. After thrombin-induced structure-switching DNA hairpins of probe 1, the DNAzyme is liberated from the caged structure, which hybridizes with the MB for cleavage of the MB in the presence of cofactor Zn(2+) and initiates the DNA recycling process, leading to the cleavage of a large number of MB and the generation of numerous primers for triggering RCA reaction. The long amplified RCA product which contained hundreds of tandem-repeat sequences, which can bind with oligonucleotide functionalized Ag NPs reporters. The attached signal tags can be easily read out by SERS. Because of the cascade signal amplification, these newly designed protocols provides a sensitive SERS detection of thrombin down to the femolar level (2.3fM) with a linear range of 5 orders of magnitude (from 10(-14) to 10(-9)M) and have high selectivity toward its target protein. The proposed method is expected to be a good clinical tool for the diagnosis of a thrombotic disease.

  2. Detection of Chromosomal Structural Alterations in Single Cells by SNP Arrays: A Systematic Survey of Amplification Bias and Optimized Workflow

    Science.gov (United States)

    Iwamoto, Kazuya; Bundo, Miki; Ueda, Junko; Nakano, Yoko; Ukai, Wataru; Hashimoto, Eri; Saito, Toshikazu; Kato, Tadafumi

    2007-01-01

    Background In single-cell human genome analysis using whole-genome amplified product, a strong amplification bias involving allele dropout and preferential amplification hampers the quality of results. Using an oligonucleotide single nucleotide polymorphism (SNP) array, we systematically examined the nature of this amplification bias, including frequency, degree, and preference for genomic location, and we assessed the effects of this amplification bias on subsequent genotype and chromosomal copy number analyses. Methodology/Principal Findings We found a large variability in amplification bias among the amplified products obtained by multiple displacement amplification (MDA), and this bias had a severe effect on the genotype and chromosomal copy number analyses. We established optimal experimental conditions for pre-screening for high-quality amplified products, processing array data, and analyzing chromosomal structural alterations. Using this optimized protocol, we successfully detected previously unidentified chromosomal structural alterations in single cells from a lymphoblastoid cell line. These alterations were subsequently confirmed by karyotype analysis. In addition, we successfully obtained reproducible chromosomal copy number profiles of single cells from the cell line with a complex karyotype, indicating the applicability and potential of our optimized workflow. Conclusions/Significance Our results suggest that the quality of amplification products should be critically assessed before using them for genomic analyses. The method of MDA-based whole-genome amplification followed by SNP array analysis described here will be useful for exploring chromosomal alterations in single cells. PMID:18074030

  3. The Effectiveness of Low-Frequency Amplification and Filtered-Speech Testing for Preschool Deaf Children. Final Report.

    Science.gov (United States)

    Asp, Carl W.

    During a 3-year period, 20 preschool deaf children were matched and given auditory training by the Verbo-tonal method using two different amplification systems (one which amplified from 200 to 5000 hertz and the other from 20 to 5000 hertz). There were three main goals: (1) to compare two different amplification systems to determine if the…

  4. BBO晶体光参量放大研究%A Theoretical Evaluation of Optical Parametric Amplification in BBO Crystal

    Institute of Scientific and Technical Information of China (English)

    SHAO Min; XUE Shao-lin; LIN Zun-qi

    2005-01-01

    The noncollinear optical parametric amplification in BBO crystal is theoretically investigated. The phase matching angle, gain bandwidth, optimal noncollinear angle and conversion efficiency for both type-Ⅰ and type-Ⅱ BBO are simulated. The numerical simulation results are important to the practical optical parametric amplification experiments with BBO crystal.

  5. High-power chirped-pulse all-fiber amplification system based on large-mode-area fiber gratings

    OpenAIRE

    Broderick, N.G.R.; Richardson, D.J.; Taverner, D.; Caplen, J.E.; Dong, L.; Ibsen, M.

    1999-01-01

    The fabrication of large mode-area single mode fibres are crucial to developing high power all-fibre lasers and amplifiers. We report the amplification of picosecond pulses to microjoule energy levels and pulse peak powers in excess of 500kW in an all fiber Chirped Pulse Amplification (CPA) system based on novel large mode area fiber components.

  6. Monodisperse Picoliter Droplets for Low-Bias and Contamination-Free Reactions in Single-Cell Whole Genome Amplification.

    Directory of Open Access Journals (Sweden)

    Yohei Nishikawa

    Full Text Available Whole genome amplification (WGA is essential for obtaining genome sequences from single bacterial cells because the quantity of template DNA contained in a single cell is very low. Multiple displacement amplification (MDA, using Phi29 DNA polymerase and random primers, is the most widely used method for single-cell WGA. However, single-cell MDA usually results in uneven genome coverage because of amplification bias, background amplification of contaminating DNA, and formation of chimeras by linking of non-contiguous chromosomal regions. Here, we present a novel MDA method, termed droplet MDA, that minimizes amplification bias and amplification of contaminants by using picoliter-sized droplets for compartmentalized WGA reactions. Extracted DNA fragments from a lysed cell in MDA mixture are divided into 105 droplets (67 pL within minutes via flow through simple microfluidic channels. Compartmentalized genome fragments can be individually amplified in these droplets without the risk of encounter with reagent-borne or environmental contaminants. Following quality assessment of WGA products from single Escherichia coli cells, we showed that droplet MDA minimized unexpected amplification and improved the percentage of genome recovery from 59% to 89%. Our results demonstrate that microfluidic-generated droplets show potential as an efficient tool for effective amplification of low-input DNA for single-cell genomics and greatly reduce the cost and labor investment required for determination of nearly complete genome sequences of uncultured bacteria from environmental samples.

  7. Resonant nonstationary amplification of polychromatic laser pulses and conical emission in an optically dense ensemble of neon metastable atoms

    CERN Document Server

    Bagayev, S N; Mekhov, I B; Moroshkin, P V; Chekhonin, I A; Davliatchine, E M; Kindel, E

    2003-01-01

    Experimental and numerical investigation of single beam and pump-probe interaction with a resonantly absorbing dense extended medium under strong and weak field-matter coupling is presented. Significant probe beam amplification and conical emission were observed. Under relatively weak pumping and high medium density, when the condition of strong coupling between field and resonant matter is fulfilled, the probe amplification spectrum has a form of spectral doublet. Stronger pumping leads to the appearance of a single peak of the probe beam amplification at the transition frequency. The greater probe intensity results in an asymmetrical transmission spectrum with amplification at the blue wing of the absorption line and attenuation at the red one. Under high medium density, a broad band of amplification appears. Theoretical model is based on the solution of the Maxwell-Bloch equations for a two-level system. Different types of probe transmission spectra obtained are attributed to complex dynamics of a coherent...

  8. Real-time DNA Amplification and Detection System Based on a CMOS Image Sensor.

    Science.gov (United States)

    Wang, Tiantian; Devadhasan, Jasmine Pramila; Lee, Do Young; Kim, Sanghyo

    2016-01-01

    In the present study, we developed a polypropylene well-integrated complementary metal oxide semiconductor (CMOS) platform to perform the loop mediated isothermal amplification (LAMP) technique for real-time DNA amplification and detection simultaneously. An amplification-coupled detection system directly measures the photon number changes based on the generation of magnesium pyrophosphate and color changes. The photon number decreases during the amplification process. The CMOS image sensor observes the photons and converts into digital units with the aid of an analog-to-digital converter (ADC). In addition, UV-spectral studies, optical color intensity detection, pH analysis, and electrophoresis detection were carried out to prove the efficiency of the CMOS sensor based the LAMP system. Moreover, Clostridium perfringens was utilized as proof-of-concept detection for the new system. We anticipate that this CMOS image sensor-based LAMP method will enable the creation of cost-effective, label-free, optical, real-time and portable molecular diagnostic devices. PMID:27302586

  9. Amplification of RNA by NASBA allows direct detection of viable cells of Ralstonia solanacearum in potato

    NARCIS (Netherlands)

    Bentsink, L.; Leone, G.O.M.; Beckhoven, van J.R.C.M.; Schijndel, van H.B.; Gemen, van B.; Wolf, van der J.M.

    2002-01-01

    Aims: The objective of this study was to develop a Nucleic Acid Sequence Based Amplification (NASBA) assay, targeting 16S rRNA sequences, for direct detection of viable cells of Ralstonia solanacearum, the causal organism of bacterial wilt. The presence of intact 16S rRNA is considered to be a usefu

  10. Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu-Hsin [Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0418 (United States); Yan, Lujiang; Zhang, Alex Ce; Hall, David; Niaz, Iftikhar Ahmad; Zhou, Yuchun [Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0409 (United States); Sham, L. J. [Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Lo, Yu-Hwa, E-mail: ylo@ucsd.edu [Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0418 (United States); Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0409 (United States)

    2015-08-03

    Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanism based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.

  11. Electrochemical genosensor for the rapid detection of GMO using loop-mediated isothermal amplification.

    Science.gov (United States)

    Ahmed, Minhaz Uddin; Saito, Masato; Hossain, M Mosharraf; Rao, S Ramachandara; Furui, Satoshi; Hino, Akihiro; Takamura, Yuzuru; Takagi, Masahiro; Tamiya, Eiichi

    2009-05-01

    In this study, we are reporting for the first time an efficient, accurate and inexpensive rapid detection system which employs the integration of isothermal amplification and subsequent analysis of unpurified amplicons by an electrochemical system. In our experiments, loop-mediated isothermal amplification (LAMP) with its higher efficiency than PCR was performed at a constant temperature (65 degrees C). Amplification products were combined with a redox active molecule Hoechst 33258 [H33258, 2'-(4-hydroxyphenyl)-5-(4-methyl-1-piperazinyl)-2,5'-bi(1H-benzimidazole)] and analyzed by a DNA stick (DS) which is integrated with a disposable electrochemical printed (DEP) chip using linear sweep voltammetry (LSV). The DNA minor groove binding of the H33258 molecule causes a significant drop in the peak current intensity of the H33258 oxidation. The phenomenon of DNA binding induced by H33258, in addition to changes in the anodic current peak, was used to detect maize CBH 351 variety (StarLink). Since laborious probe immobilization was not required, and amplification and detection were performed on a single device, our biosensor eliminates potential cross-contamination. We believe that this type of sensor will have an unprecedented impact for environmental protection.

  12. A Novel Extrinsic Fiber-Optic Fabry-Perot Strain Sensor System Based on Optical Amplification

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel extrinsic fiber-optic Fabry-Perot interferometric strain sensor system is demonstrated based on the simultaneous use of the amplified spontaneous emission and optical amplification. The improvement of 3~4 orders of magnitude in signal level can be achieved.

  13. Isothermal RNA Sequence Amplification Method for Rapid Antituberculosis Drug Susceptibility Testing of Mycobacterium tuberculosis

    OpenAIRE

    Takakura, Shunji; Tsuchiya, Shigeo; Fujihara, Naoko; Kudo, Toyoichiro; Iinuma, Yoshitsugu; Mitarai, Satoshi; Ichiyama, Satoshi; Yasukawa, Kiyoshi; Ishiguro, Takahiko

    2005-01-01

    RNA transcript quantification by an isothermal sequence amplification reaction was evaluated for susceptibility testing of 15 Mycobacterium tuberculosis strains. Agreement with the proportion method on Ogawa egg medium and the BACTEC MGIT 960 system was 100 and 87% for rifampin, 93 and 100% for isoniazid, 60 and 53% for ethambutol, and 80 and 80% for streptomycin, respectively.

  14. Chromosomal Localization of DNA Amplifications in Neuroblastoma Tumors Using cDNA Microarray Comparative Genomic Hybridization

    Directory of Open Access Journals (Sweden)

    Ben Beheshti

    2003-01-01

    Full Text Available Conventional comparative genomic hybridization (CGH profiling of neuroblastomas has identified many genomic aberrations, although the limited resolution has precluded a precise localization of sequences of interest within amplicons. To map high copy number genomic gains in clinically matched stage IV neuroblastomas, CGH analysis using a 19,200-feature cDNA microarray was used. A dedicated (freely available algorithm was developed for rapid in silico determination of chromosomal localizations of microarray cDNA targets, and for generation of an ideogram-type profile of copy number changes. Using these methodologies, novel gene amplifications undetectable by chromosome CGH were identified, and larger MYCN amplicon sizes (in one tumor up to 6 Mb than those previously reported in neuroblastoma were identified. The genes HPCAL1, LPIN1/KIAA0188, NAG, and NSE1/LOC151354 were found to be coamplified with MYCN. To determine whether stage IV primary tumors could be further subclassified based on their genomic copy number profiles, hierarchical clustering was performed. Cluster analysis of microarray CGH data identified three groups: 1 no amplifications evident, 2 a small MYCN amplicon as the only detectable imbalance, and 3 a large MYCN amplicon with additional gene amplifications. Application of CGH to cDNA microarray targets will help to determine both the variation of amplicon size and help better define amplification-dependent and independent pathways of progression in neuroblastoma.

  15. Identification of porcine Pneumocystis carinii as a genetically distinct organism by DNA amplification

    DEFF Research Database (Denmark)

    Wakefield, A. E.; Keely, S. P.; Stringer, J. R.;

    1997-01-01

    DNA was amplified from lung samples from three piglets infected with Pneumocystis carinii, using oligonucleotide primers designed to the P. carinii mitochondrial large subunit ribosomal RNA gene. The nucleotide sequence of the amplification product was determined and indicated lack of sequence...

  16. The role of DNA amplification and cultural growth in complicated acute appendicitis

    Directory of Open Access Journals (Sweden)

    Francesca Tocchioni

    2016-09-01

    Full Text Available Bacterial growth of peritoneal fluid specimens obtained during surgical procedures for acute appendicitis may be useful to optimize further antibiotic therapy in complicated cases. DNA amplification represents a fast technique to detect microbial sequences. We aimed to compare the potential of DNA amplification versus traditional bacterial growth culture highlighting advantages and drawbacks in a surgical setting. Peritoneal fluid specimens were collected during surgery from 36 children who underwent appendectomy between May and December 2012. Real-time polymerase chain reaction (RT-PCR and cultures were performed on each sample. RT-PCR showed an amplification of 16S in 18/36 samples, Escherichia coli (in 7 cases, Pseudomonas aeruginosa (3, Fusobacterium necrophorum (3, Adenovirus (2, E.coli (1, Klebsiella pneumoniae (1, Serratia marcescens/Enterobacter cloacae (1. Bacterial growth was instead observed only in four patients (3 E.coli and 1 P.aeruginosa and Bacteroides ovatus. Preoperative C-reactive protein and inflammation degree, the most reliable indicators of bacterial translocation, were elevated as expected. DNA amplification was a quick and useful method to detect pathogens and it was even more valuable in detecting aggressive pathogens such as anaerobes, difficult to preserve in biological cultures; its drawbacks were the lack of biological growths and of antibiograms. In our pilot study RT-PCR and cultures did not influence the way patients were treated.

  17. Sensitive SERS detection of miRNA via enzyme-free DNA machine signal amplification.

    Science.gov (United States)

    Li, Xiaoxiao; Ye, Sujuan; Luo, Xiliang

    2016-08-11

    In this work, an enzyme-free signal amplified detection platform is described for miRNA detection with a DNA fueled molecular machine. Coupling SERS technology with multiple amplification modes, this flexible biosensing system exhibits high sensitivity and specificity. PMID:27469084

  18. Sequencing of simple sequence repeat anchored polymerase chain reaction amplification products of Biomphalaria glabrata

    Directory of Open Access Journals (Sweden)

    Caldeira Roberta L

    2002-01-01

    Full Text Available Simple sequence repeat anchored polymerase chain reaction amplification (SSR-PCR is a genetic typing technique based on primers anchored at the 5' or 3' ends of microsatellites, at high primer annealing temperatures. This technique has already been used in studies of genetic variability of several organisms, using different primer designs. In order to conduct a detailed study of the SSR-PCR genomic targets, we cloned and sequenced 20 unique amplification products of two commonly used primers, CAA(CT6 and (CA8RY, using Biomphalaria glabrata genomic DNA as template. The sequences obtained were novel B. glabrata genomic sequences. It was observed that 15 clones contained microsatellites between priming sites. Out of 40 clones, seven contained complex sequence repetitions. One of the repeats that appeared in six of the amplified fragments generated a single band in Southern analysis, indicating that the sequence was not widespread in the genome. Most of the annealing sites for the CAA(CT6 primer contained only the six repeats found within the primer sequence. In conclusion, SSR-PCR is a useful genotyping technique. However, the premise of the SSR-PCR technique, verified with the CAA(CT6 primer, could not be supported since the amplification products did not result necessarily from microsatellite loci amplification.

  19. Masking Release in Children and Adults with Hearing Loss When Using Amplification

    Science.gov (United States)

    Brennan, Marc; McCreery, Ryan; Kopun, Judy; Lewis, Dawna; Alexander, Joshua; Stelmachowicz, Patricia

    2016-01-01

    Purpose: This study compared masking release for adults and children with normal hearing and hearing loss. For the participants with hearing loss, masking release using simulated hearing aid amplification with 2 different compression speeds (slow, fast) was compared. Method: Sentence recognition in unmodulated noise was compared with recognition…

  20. Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation.

    Directory of Open Access Journals (Sweden)

    Cary A Moody

    2009-10-01

    Full Text Available Human papillomaviruses (HPV are the causative agents of cervical cancers. The infectious HPV life cycle is closely linked to the differentiation state of the host epithelia, with viral genome amplification, late gene expression and virion production restricted to suprabasal cells. The E6 and E7 proteins provide an environment conducive to DNA synthesis upon differentiation, but little is known concerning the mechanisms that regulate productive viral genome amplification. Using keratinocytes that stably maintain HPV-31 episomes, and chemical inhibitors, we demonstrate that viral proteins activate the ATM DNA damage response in differentiating cells, as indicated by phosphorylation of CHK2, BRCA1 and NBS1. This activation is necessary for viral genome amplification, as well as for formation of viral replication foci. In contrast, inhibition of ATM kinase activity in undifferentiated keratinocytes had no effect on the stable maintenance of viral genomes. Previous studies have shown that HPVs induce low levels of caspase 3/7 activation upon differentiation and that this is important for cleavage of the E1 replication protein and genome amplification. Our studies demonstrate that caspase cleavage is induced upon differentiation of HPV positive cells through the action of the DNA damage protein kinase CHK2, which may be activated as a result of E7 binding to the ATM kinase. These findings identify a major regulatory mechanism responsible for productive HPV replication in differentiating cells. Our results have potential implications for the development of anti-viral therapies to treat HPV infections.

  1. Acceleration of maximum likelihood reconstruction, using frequency amplification and attenuation compensation

    International Nuclear Information System (INIS)

    Algorithms that calculate maximum likelihood (ML) and maximum a posteriori solutions using expectation-maximization have been successfully applied to SPECT and PET. These algorithms are appealing because of their solid theoretical basis and their guaranteed convergence. A major drawback is the slow convergence, which results in long processing times. This paper presents two new heuristic acceleration methods for maximum likelihood reconstruction of ECT images. The first method incorporates a frequency-dependent amplification in the calculations, to compensate for the low pass filtering of the back projection operation. In the second method, an amplification factor is incorporated that suppresses the effect of attenuation on the updating factors. Both methods are compared to the one-dimensional line search method proposed by Lewitt. All three methods accelerate the ML algorithm. On the test images, Lewitt's method produced the strongest acceleration of the three individual methods. However, the combination of the frequency amplification with the line search method results in a new algorithm with still better performance. Under certain conditions, an effective frequency amplification can be already achieved by skipping some of the calculations required for ML

  2. Thousand-fold fluorescent signal amplification for mHealth diagnostics

    Science.gov (United States)

    The low sensitivity of Mobile Health (mHealth) optical detectors, such as those found on mobile phones, is a limiting factor for many mHealth clinical applications. To improve sensitivity, we have combined two approaches for optical signal amplification: (1) a computational approach based on an imag...

  3. Low Prevalence of TP53 Mutations and MDM2 Amplifications in Pediatric Rhabdomyosarcoma

    Directory of Open Access Journals (Sweden)

    Simona Ognjanovic

    2012-01-01

    Full Text Available The tumor suppressor gene TP53 is the most commonly mutated gene in human cancer. The reported prevalence of mutations in rhabdomyosarcoma (RMS varies widely, with recent larger studies suggesting that TP53 mutations in pediatric RMS may be extremely rare. Overexpression of MDM2 also attenuates p53 function. We have performed TP53 mutation/MDM2 amplification analyses in the largest series analyzed thus far, including DNA isolated from 37 alveolar and 38 embryonal RMS tumor samples obtained from the Cooperative Human Tissue Network (CHTN. Available samples were frozen tumor tissues (N=48 and histopathology slides. TP53 mutations in exons 4–9 were analyzed by direct sequencing in all samples, and MDM2 amplification analysis was performed by differential PCR on a subset of 22 samples. We found only one sample (1/75, 1.3% carrying a TP53 mutation at codon 259 (p.D259Y and no MDM2 amplification. Two SNPs in the TP53 pathway, associated with accelerated tumor onset in germline TP53 mutation carriers, (TP53 SNP72 (rs no. 1042522 and MDM2 SNP309 (rs no. 2279744, were not found to confer earlier tumor onset. In conclusion, we confirm the extremely low prevalence of TP53 mutations/MDM2 amplifications in pediatric RMS (1.33% and 0%, respectively. The possible inactivation of p53 function by other mechanisms thus remains to be elucidated.

  4. Influence of topography on tide propagation and amplification in semi-enclosed basins

    NARCIS (Netherlands)

    Roos, P.C.; Schuttelaars, H.M.

    2010-01-01

    An idealized model for tide propagation and amplification in semi-enclosed rectangular basins is presented, accounting for depth differences by a combination of longitudinal and lateral topographic steps. The basin geometry is formed by several adjacent compartments of identical width, each having e

  5. Multi-pass light amplification for tomographic particle image velocimetry applications

    NARCIS (Netherlands)

    Ghaemi, S.; Scarano, F.

    2010-01-01

    The light source budget is a critical issue for tomographic particle image velocimetry (Tomo-PIV) systems due to its requirement for large illuminated volume and imaging at small apertures. In this work, a light amplification system based on the multi-pass concept is investigated for Tomo-PIV applic

  6. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification.

    Science.gov (United States)

    Ziesemer, Kirsten A; Mann, Allison E; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T; Brandt, Bernd W; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A; MacDonald, Sandy J; Thomas, Gavin H; Collins, Matthew J; Lewis, Cecil M; Hofman, Corinne; Warinner, Christina

    2015-11-13

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions.

  7. Increasing the sensitivity of reverse phase protein arrays by antibody-mediated signal amplification

    Directory of Open Access Journals (Sweden)

    Brase Jan C

    2010-06-01

    Full Text Available Abstract Background Reverse phase protein arrays (RPPA emerged as a useful experimental platform to analyze biological samples in a high-throughput format. Different signal detection methods have been described to generate a quantitative readout on RPPA including the use of fluorescently labeled antibodies. Increasing the sensitivity of RPPA approaches is important since many signaling proteins or posttranslational modifications are present at a low level. Results A new antibody-mediated signal amplification (AMSA strategy relying on sequential incubation steps with fluorescently-labeled secondary antibodies reactive against each other is introduced here. The signal quantification is performed in the near-infrared range. The RPPA-based analysis of 14 endogenous proteins in seven different cell lines demonstrated a strong correlation (r = 0.89 between AMSA and standard NIR detection. Probing serial dilutions of human cancer cell lines with different primary antibodies demonstrated that the new amplification approach improved the limit of detection especially for low abundant target proteins. Conclusions Antibody-mediated signal amplification is a convenient and cost-effective approach for the robust and specific quantification of low abundant proteins on RPPAs. Contrasting other amplification approaches it allows target protein detection over a large linear range.

  8. Series DNA Amplification Using the Continuous-Flow Polymerase Chain Reaction Chip

    Science.gov (United States)

    Joung, Seung-Ryong; Kang, Chi Jung; Kim, Yong-Sang

    2008-02-01

    We proposed a continuous-flow polymerase chain reaction (PCR) chip that can be used for series DNA amplification. The continuous-flow PCR chip has several advantages such as fast thermal cycling, series of amplifications, cost-effective fabrication, portability, and fluorescence detection. The continuous-flow PCR chip is composed of two parts namely poly(dimethylsiloxane) (PDMS) microchannel for sample injection and indium-tin-oxide (ITO) heater/glass chip for thermal cycling. The fabricated microchannel width and depth are 250 and 200 µm, respectively. Also, the total working length of the PDMS microchannel is 1340 mm which is equivalent for 20 cycles of amplification. A 2:2:3 microchannel length ratio for three different temperature zones namely denaturation, annealing, and extension was assigned, respectively. Upon the operation of the fabricated continuous-flow PCR chip, the amplification of plasmid DNA pKS-GFP with 720 base pairs and PG-noswsi with 300 base pairs were found successfully with a total reaction time of 15 min.

  9. Multi-Terabit Long-Haul Transmission System Utilizing Distributed Raman Amplification Technologies

    Institute of Scientific and Technical Information of China (English)

    Takao; Naito; Toshiki; Tanaka

    2003-01-01

    Here we summarize multi-terabit long-haul transmission experiment and distributed Raman amplification (DRA) technologies. As well, we investigate the configuration of dispersion-managed fibers for the DRA-based system from the viewpoint of the fiber non-linear effect and required pumping power.

  10. Magnetic fields in the first galaxies: Dynamo amplification and limits from reionization

    CERN Document Server

    Schleicher, Dominik R G; Federrath, Christoph; Miniati, Francesco; Banerjee, Robi; Klessen, Ralf S

    2011-01-01

    We discuss the amplification of magnetic fields by the small-scale dynamo, a process that could efficiently produce strong magnetic fields in the first galaxies. In addition, we derive constraints on the primordial field strength from the epoch of reionization.

  11. Impact of Gain Saturation on the Parametric Amplification of 16-QAM Signals

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Borkowski, Robert; Zibar, Darko;

    2012-01-01

    The effect of gain saturation on parametric amplification of 16-QAM signals is investigated in terms of signal distortion. The relative impact of gain saturation, nonlinear phase rotation and nonlinear phase noise is discussed. Experimental results at 14 GBd confirm the conclusions of the numerical...

  12. Impact of Gain Saturation on the Parametric Amplification of 16-QAM Signals

    OpenAIRE

    Da Ros, Francesco; Borkowski, Robert; Zibar, Darko; Peucheret, Christophe

    2012-01-01

    The effect of gain saturation on parametric amplification of 16-QAM signals is investigated in terms of signal distortion. The relative impact of gain saturation, nonlinear phase rotation and nonlinear phase noise is discussed. Experimental results at 14 GBd confirm the conclusions of the numerical analysis.

  13. A Novel Extrinsic Fiber-Optic Fabry-Perot Strain Sensor System Based on Optical Amplification

    Institute of Scientific and Technical Information of China (English)

    Yun-Jiang Rao; Jian Jiang; Zheng-Lin Ran

    2003-01-01

    A novel extrinsic fiber-optic Fabry-Perot interferometric strain sensor system is demonstrated based on the simultaneous use of the amplified spontaneous emission and optical amplification. The improvement of 3~4 orders of magnitude in signal level can be achieved.

  14. All Three Rows of Outer Hair Cells Are Required for Cochlear Amplification

    Directory of Open Access Journals (Sweden)

    Michio Murakoshi

    2015-01-01

    Full Text Available In the mammalian auditory system, the three rows of outer hair cells (OHCs located in the cochlea are thought to increase the displacement amplitude of the organ of Corti. This cochlear amplification is thought to contribute to the high sensitivity, wide dynamic range, and sharp frequency selectivity of the hearing system. Recent studies have shown that traumatic stimuli, such as noise exposure and ototoxic acid, cause functional loss of OHCs in one, two, or all three rows. However, the degree of decrease in cochlear amplification caused by such functional losses remains unclear. In the present study, a finite element model of a cross section of the gerbil cochlea was constructed. Then, to determine effects of the functional losses of OHCs on the cochlear amplification, changes in the displacement amplitude of the basilar membrane (BM due to the functional losses of OHCs were calculated. Results showed that the displacement amplitude of the BM decreases significantly when a single row of OHCs lost its function, suggesting that all three rows of OHCs are required for cochlear amplification.

  15. MOSFET-Only Mixer/IIR Filter with Gain using Parametric Amplification

    DEFF Research Database (Denmark)

    Custódio, José R.; Oliveira, J.; Oliveira, L. B.;

    2010-01-01

    This paper describes the design of a discrete-time passive Mixer/IIR filter. The use of an improved MOS Parametric Amplification leads to a moderate gain in the signal path and improved noise performance, instead of the conversion loss inherent to passive mixers. Simulation results demonstrate th...

  16. Development of an Automated Microfluidic System for DNA Collection, Amplification, and Detection of Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, Bethany S.; Bruckner-Lea, Cynthia J.

    2002-12-01

    This project was focused on developing and testing automated routines for a microfluidic Pathogen Detection System. The basic pathogen detection routine has three primary components; cell concentration, DNA amplification, and detection. In cell concentration, magnetic beads are held in a flow cell by an electromagnet. Sample liquid is passed through the flow cell and bacterial cells attach to the beads. These beads are then released into a small volume of fluid and delivered to the peltier device for cell lysis and DNA amplification. The cells are lysed during initial heating in the peltier device, and the released DNA is amplified using polymerase chain reaction (PCR) or strand displacement amplification (SDA). Once amplified, the DNA is then delivered to a laser induced fluorescence detection unit in which the sample is detected. These three components create a flexible platform that can be used for pathogen detection in liquid and sediment samples. Future developments of the system will include on-line DNA detection during DNA amplification and improved capture and release methods for the magnetic beads during cell concentration.

  17. Phase-matching loci and angular acceptance of non-collinear optical parametric amplification.

    Science.gov (United States)

    Trophème, Benoît; Boulanger, Benoit; Mennerat, Gabriel

    2012-11-19

    A general study of phase-matching loci and associated angular acceptances is performed in the case of non-collinear parametric amplification. Numerical and analytical calculations, as well as measurements, are described for the uniaxial BBO crystal and the biaxial LBO crystal.

  18. Distributed fiber Raman amplification in long reach PON bidirectional access links

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Kjær, Rasmus; Öhman, Filip;

    2008-01-01

    Distributed Raman fiber amplification is proposed and experimentally demonstrated to support long reach passive optical network (PON) links. An 80 km, bidirectional, single fiber link is demonstrated using both standard intensity optical modulators at 10 Gb/s and up to 7.5 Gb/s using novel...

  19. Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA

    NARCIS (Netherlands)

    Leone, G.; Schijndel, van H.; Gemen, van B.; Kramer, F.R.; Schoen, C.D.

    1998-01-01

    Molecular beacon probes can be employed in a NASBA amplicon detection system to generate a specific fluorescent signal concomitantly with amplification. A molecular beacon, designed to hybridize within the target sequence, was introduced into NASBA reactions that amplify the genomic RNA of potato le

  20. Localized damage caused by topographic amplification during the 2010 M7.0 Haiti earthquake

    Science.gov (United States)

    Hough, S.E.; Altidor, J.R.; Anglade, D.; Given, D.; Janvier, M.G.; Maharrey, J.Z.; Meremonte, M.; Mildor, B.S.-L.; Prepetit, C.; Yong, A.

    2010-01-01

    Local geological conditions, including both near-surface sedimentary layers and topographic features, are known to significantly influence ground motions caused by earthquakes. Microzonation maps use local geological conditions to characterize seismic hazard, but commonly incorporate the effect of only sedimentary layers. Microzonation does not take into account local topography, because significant topographic amplification is assumed to be rare. Here we show that, although the extent of structural damage in the 2010 Haiti earthquake was primarily due to poor construction, topographic amplification contributed significantly to damage in the district of Petionville, south of central Port-au-Prince. A large number of substantial, relatively well-built structures situated along a foothill ridge in this district sustained serious damage or collapse. Using recordings of aftershocks, we calculate the ground motion response at two seismic stations along the topographic ridge and at two stations in the adjacent valley. Ground motions on the ridge are amplified relative to both sites in the valley and a hard-rock reference site, and thus cannot be explained by sediment-induced amplification. Instead, the amplitude and predominant frequencies of ground motion indicate the amplification of seismic waves by a narrow, steep ridge. We suggest that microzonation maps can potentially be significantly improved by incorporation of topographic effects. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  1. By-Product Formation in Repetitive PCR Amplification of DNA Libraries during SELEX

    DEFF Research Database (Denmark)

    Tolle, Fabian; Wilke, Julian; Wengel, Jesper;

    2014-01-01

    -recognizing aptamers. Little is known about the formation of such by-products when employing nucleic acid libraries as templates. We report on the formation of two different forms of by-products, named ladder- and non-ladder-type observed during repetitive amplification in the course of in vitro selection experiments...

  2. Diverse Roles of Axonemal Dyneins in Drosophila Auditory Neuron Function and Mechanical Amplification in Hearing.

    Science.gov (United States)

    Karak, Somdatta; Jacobs, Julie S; Kittelmann, Maike; Spalthoff, Christian; Katana, Radoslaw; Sivan-Loukianova, Elena; Schon, Michael A; Kernan, Maurice J; Eberl, Daniel F; Göpfert, Martin C

    2015-11-26

    Much like vertebrate hair cells, the chordotonal sensory neurons that mediate hearing in Drosophila are motile and amplify the mechanical input of the ear. Because the neurons bear mechanosensory primary cilia whose microtubule axonemes display dynein arms, we hypothesized that their motility is powered by dyneins. Here, we describe two axonemal dynein proteins that are required for Drosophila auditory neuron function, localize to their primary cilia, and differently contribute to mechanical amplification in hearing. Promoter fusions revealed that the two axonemal dynein genes Dmdnah3 (=CG17150) and Dmdnai2 (=CG6053) are expressed in chordotonal neurons, including the auditory ones in the fly's ear. Null alleles of both dyneins equally abolished electrical auditory neuron responses, yet whereas mutations in Dmdnah3 facilitated mechanical amplification, amplification was abolished by mutations in Dmdnai2. Epistasis analysis revealed that Dmdnah3 acts downstream of Nan-Iav channels in controlling the amplificatory gain. Dmdnai2, in addition to being required for amplification, was essential for outer dynein arms in auditory neuron cilia. This establishes diverse roles of axonemal dyneins in Drosophila auditory neuron function and links auditory neuron motility to primary cilia and axonemal dyneins. Mutant defects in sperm competition suggest that both dyneins also function in sperm motility.

  3. Dynamic characterization and amplification of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard;

    2013-01-01

    We show a first-time demonstration of amplification of 400 fs pulses in a fiber optical parametric amplifier. The 400 fs signal is stretched in time, amplified by 26 dB and compressed back to 500 fs. A significant broadening of the pulses is experimentally shown due to dispersion and limited gain...

  4. Benefits of the Fiber Optic versus the Electret Microphone in Voice Amplification

    Science.gov (United States)

    Kyriakou, Kyriaki; Fisher, Helene R.

    2013-01-01

    Background: Voice disorders that result in reduced loudness may cause difficulty in communicating, socializing and participating in occupational activities. Amplification is often recommended in order to facilitate functional communication, reduce vocal load and avoid developing maladaptive compensatory behaviours. The most common microphone used…

  5. Er-doped concentric-cores optical fiber for simultaneous amplification and compensation of positive dispersion

    Institute of Scientific and Technical Information of China (English)

    Pramod R. Watekar; M. L. N. Goswami; H. N. Acharya; J. C. Biswas; B. P. Pal

    2004-01-01

    The Er-doped concentric-cores dispersion compensating fiber (EDDCF) has been demonstrated. The rare earth has been doped as a ring around the inner core. We have obtained 14-dB gain at 1550 nm (using the optical fiber network where amplification as well as negative dispersion are necessary.

  6. Ultrasensitive DNA detection based on two-step quantitative amplification on magnetic nanoparticles

    Science.gov (United States)

    Jin, Mingliang; Liu, Xia; van den Berg, Albert; Zhou, Guofu; Shui, Lingling

    2016-08-01

    Sensitive detection of a specific deoxyribo nucleic acid (DNA) sequence is important for biomedical applications. In this report, a two-step amplification strategy is developed based on magnetic nanoparticles (MNPs) to achieve ultrasensitive DNA fluorescence detection. The first level amplification is obtained from multiple binding sites on MNPs to achieve thousands of probe DNA molecules on one nanoparticle surface. The second level amplification is gained by enzymatic reaction to achieve fluorescence signal enhancement. MNPs functionalized by probe DNA (DNAp) are bound to target DNA (t-DNA) molecules with a ratio of 1:1 on a substrate with capture DNA (DNAc). After the MNPs with DNAp are released from the substrate, alkaline phosphatase (AP) is labelled to MNPs via hybridization reaction between DNAp on MNPs and detection DNAs (DNAd) with AP. The AP on MNPs catalyses non-fluorescent 4-methylumbelliferyl phosphate (4-MUP) to fluorescent 4-methylumbelliferone (4-MU) with high intensity. Finally, fluorescence intensity of the 4-MU is detected by a conventional fluorescence spectrophotometer. With this two-step amplification strategy, the limit of detection (LOD) of 2.8 × 10‑18 mol l‑1 for t-DNA has been achieved.

  7. Ultrasensitive Visual Detection of HIV DNA Biomarkers via a Multi-amplification Nanoplatform.

    Science.gov (United States)

    Long, Yuyin; Zhou, Cuisong; Wang, Congmin; Cai, Honglian; Yin, Cuiyun; Yang, Qiufang; Xiao, Dan

    2016-01-01

    Methodologies to detect disease biomarkers at ultralow concentrations can potentially improve the standard of living. A facile and label-free multi-amplification strategy is proposed for the ultrasensitive visual detection of HIV DNA biomarkers in real physiological media. This multi-amplification strategy not only exhibits a signficantly low detection limit down to 4.8 pM but also provides a label-free, cost-effective and facile technique for visualizing a few molecules of nucleic acid analyte with the naked eye. Importantly, the biosensor is capable of discriminating single-based mismatch lower than 5.0 nM in human serum samples. Moreover, the visual sensing platform exhibits excellent specificity, acceptable reusability and a long-term stability. All these advantages could be attributed to the nanofibrous sensing platform that 1) has a high surface-area-to-volume provided by electrospun nanofibrous membrane, and 2) combines glucose oxidase (GOx) biocatalysis, DNAzyme-catalyzed colorimetric reaction and catalytic hairpin assembly (CHA) recycling amplification together. This multi-amplification nanoplatform promises label-free and visual single-based mismatch DNA monitoring with high sensitivity and specificity, suggesting wide applications that range from virus detection to genetic disease diagnosis. PMID:27032385

  8. Resonant- and avalanche-ionization amplification of laser-induced plasma in air

    International Nuclear Information System (INIS)

    Amplification of laser-induced plasma in air is demonstrated utilizing resonant laser ionization and avalanche ionization. Molecular oxygen in air is ionized by a low-energy laser pulse employing (2 + 1) resonance-enhanced multi-photon ionization (REMPI) to generate seed electrons. Subsequent avalanche ionization of molecular oxygen and nitrogen significantly amplifies the laser-induced plasma. In this plasma-amplification effect, three-body attachments to molecular oxygen dominate the electron-generation and -loss processes, while either nitrogen or argon acts as the third body with low electron affinity. Contour maps of the electron density within the plasma obtained in O2/N2 and O2/Ar gas mixtures are provided to show relative degrees of plasma amplification with respect to gas pressure and to verify that the seed electrons generated by O2 2 + 1 REMPI are selectively amplified by avalanche ionization of molecular nitrogen in a relatively low-pressure condition (≤100 Torr). Such plasma amplification occurring in air could be useful in aerospace applications at high altitude.

  9. Investigation of near-collinear degenerated quasi-phase matching optical parametric amplification using PPKTP crystal

    Institute of Scientific and Technical Information of China (English)

    Baozhen Zhao; Xiaoyan Liang; Yuxin Leng; Cheng Wang; Juan Du; Zhengquan Zhang; Zhizhan Xu

    2005-01-01

    The gain properties of near-collinear degenerated phase-matched optical parametric amplification (OPA) using PPKTP crystal are investigated theoretically. The results indicate that the type-0 phase matching of PPKTP has larger accepted angle and better gain spectrum by tuning crystal temperature or rotating crystal angle.

  10. Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor

    International Nuclear Information System (INIS)

    Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanism based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics

  11. Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability

    Science.gov (United States)

    Screen, James A.; Francis, Jennifer A.

    2016-09-01

    The pace of Arctic warming is about double that at lower latitudes--a robust phenomenon known as Arctic amplification. Many diverse climate processes and feedbacks cause Arctic amplification, including positive feedbacks associated with diminished sea ice. However, the precise contribution of sea-ice loss to Arctic amplification remains uncertain. Through analyses of both observations and model simulations, we show that the contribution of sea-ice loss to wintertime Arctic amplification seems to be dependent on the phase of the Pacific Decadal Oscillation (PDO). Our results suggest that, for the same pattern and amount of sea-ice loss, consequent Arctic warming is larger during the negative PDO phase relative to the positive phase, leading to larger reductions in the poleward gradient of tropospheric thickness and to more pronounced reductions in the upper-level westerlies. Given the oscillatory nature of the PDO, this relationship has the potential to increase skill in decadal-scale predictability of the Arctic and sub-Arctic climate. Our results indicate that Arctic warming in response to the ongoing long-term sea-ice decline is greater (reduced) during periods of the negative (positive) PDO phase. We speculate that the observed recent shift to the positive PDO phase, if maintained and all other factors being equal, could act to temporarily reduce the pace of wintertime Arctic warming in the near future.

  12. Compensation of high-order phase distortions in chirped-pulse amplification system

    Science.gov (United States)

    Zhou, Bing; Jiang, Yong-Liang; Leng, Yu-xin; Chen, Xiao-Wei; Li, Ru-Xin; Xu, Zhi-Zhan

    2007-01-01

    Chirped-pulse amplification (CPA) technique has been widely used to generate ultra-intense femto-second pulses. In this scheme the seed pulses from an oscillator are stretched before amplification. The stretched pulses can support more energy extraction and effectively decrease the nonlinear effects in the gain media. The subsequent amplification in a CPA chain will result in a broadening of the output compressed pulses in temporal domain due to the gain narrowing and uncompensated phase distortions. In our experiment, using spectral modulation and phase pre-compensation system (Acoustic-Optics Programmable Dispersive Filter) between the oscillator and the stretcher, the effects of gain narrowing and high-order dispersions on the pulse duration in kHz chirped-pulse amplification system have been pre-compensated, and the spectral FWHM is expanded from 30nm to 50nm. The effects of GDD, TOD and FOD were investigated by scanning the four dispersion parameters respectively. By pre-compensating the high-order phase distortions with the phase measured by SPIDER, we successfully optimize the output duration from 51fs to 30fs, which is 1.07 times Fourier-transform-limitation.

  13. The Role of DNA Amplification and Cultural Growth in Complicated Acute Appendicitis

    Science.gov (United States)

    Tocchioni, Francesca; Tani, Chiara; Bartolini, Laura; Moriondo, Maria; Nieddu, Francesco; Pecile, Patrizia; Azzari, Chiara; Messineo, Antonio; Ghionzoli, Marco

    2016-01-01

    Bacterial growth of peritoneal fluid specimens obtained during surgical procedures for acute appendicitis may be useful to optimize further antibiotic therapy in complicated cases. DNA amplification represents a fast technique to detect microbial sequences. We aimed to compare the potential of DNA amplification versus traditional bacterial growth culture highlighting advantages and drawbacks in a surgical setting. Peritoneal fluid specimens were collected during surgery from 36 children who underwent appendectomy between May and December 2012. Real-time polymerase chain reaction (RT-PCR) and cultures were performed on each sample. RT-PCR showed an amplification of 16S in 18/36 samples, Escherichia coli (in 7 cases), Pseudomonas aeruginosa (3), Fusobacterium necrophorum (3), Adenovirus (2), E.coli (1), Klebsiella pneumoniae (1), Serratia marcescens/Enterobacter cloacae (1). Bacterial growth was instead observed only in four patients (3 E.coli and 1 P.aeruginosa and Bacteroides ovatus). Preoperative C-reactive protein and inflammation degree, the most reliable indicators of bacterial translocation, were elevated as expected. DNA amplification was a quick and useful method to detect pathogens and it was even more valuable in detecting aggressive pathogens such as anaerobes, difficult to preserve in biological cultures; its drawbacks were the lack of biological growths and of antibiograms. In our pilot study RT-PCR and cultures did not influence the way patients were treated. PMID:27777701

  14. Flashlamp pumped Ti-sapphire laser for ytterbium glass chirped pulse amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Akihiko; Ohzu, Akira; Sugiyama, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1998-03-01

    A flashlamp pumped Ti:sapphire laser is designed for ytterbium glass chirped pulse amplification. A high quality Ti:sapphire rod and a high energy long pulse discharging power supply are key components. The primary step is to produce the output power of 10 J per pulse at 920 nm. (author)

  15. Screening of congenital heart disease patients using multiplex ligation-dependent probe amplification

    DEFF Research Database (Denmark)

    Sørensen, Karina Meden; El-Segaier, Milad; Fernlund, Eva;

    2012-01-01

    with CHD for CNVs in specific genomic regions may lead to early diagnosis and awareness of extracardiac symptoms. We designed a multiplex ligation-dependent probe amplification (MLPA) assay specifically for screening of CHD patients. The MLPA assay allows for simultaneous analysis of CNVs in 25 genomic...

  16. Specific single-cell isolation and genomic amplification of uncultured microorganisms

    DEFF Research Database (Denmark)

    Kvist, Thomas; Ahring, Birgitte Kiær; Lasken, R.S.;

    2007-01-01

    of interest. Single cells with a bright fluorescent signal were isolated using a micromanipulator and the genome of the single isolated cells served as a template for multiple displacement amplification (MDA) using the Phi29 DNA polymerase. The generated MDA product was afterwards used for 16S rRNA gene...

  17. Single-tube linear DNA amplification (LinDA) for robust ChIP-seq

    NARCIS (Netherlands)

    Shankaranarayanan, P.; Mendoza-Parra, M.A.; Walia, M.; Wang, L.; Li, N.; Trindade, L.M.; Gronemeyer, H.

    2011-01-01

    Genome-wide profiling of transcription factors based on massive parallel sequencing of immunoprecipitated chromatin (ChIP-seq) requires nanogram amounts of DNA. Here we describe a high-fidelity, single-tube linear DNA amplification method (LinDA) for ChIP-seq and reChIP-seq with picogram DNA amounts

  18. Single-tube linear DNA amplification for genome-wide studies using a few thousand cells

    NARCIS (Netherlands)

    Shankaranarayanan, P.; Mendoza-Parra, M.A.; Gool, van W.; Trindade, L.M.; Gronemeyer, H.

    2012-01-01

    Linear amplification of DNA (LinDA) by T7 polymerase is a versatile and robust method for generating sufficient amounts of DNA for genome-wide studies with minute amounts of cells. LinDA can be coupled to a great number of global profiling technologies. Indeed, chromatin immunoprecipitation coupled

  19. Rapid on-site detection of Acidovorax citrulli by cross-priming amplification.

    Science.gov (United States)

    Zhang, Jing; Tian, Qian; Zhu, Shui-fang; Zhao, Wen-jun; Liu, Feng-quan

    2012-08-01

    Cross-priming amplification (CPA) for Acidovorax citrulli detection was evaluated in this study. The sensitivity of CPA assay for pure bacterial culture was 3.7 × 10(3) CFU/ml. Bacteria on naturally infected watermelon seeds were detected using CPA assay, suggesting this method is suitable for A. citrulli on-site detection from watermelon seeds. PMID:22507851

  20. OPTICAL SOLITONS: Fibreoptic communication lines with distributed Raman amplification: Numerical simulation

    Science.gov (United States)

    Nasieva, I. O.; Fedoruk, Mikhail P.

    2003-10-01

    The properties of optical solitons in variable-dispersion fibreoptic communication lines in which distributed Raman amplification of optical signals is used are studied by numerical simulation. It is shown that solitons can serve as carriers of information in communication systems with a data transmission rate exceeding 10 Gbit s-1.

  1. Nucleic acid sequence-based amplification with oligochromatography for detection of Trypanosoma brucei in clinical samples

    NARCIS (Netherlands)

    C.M. Mugasa; T. Laurent; G.J. Schoone; P.A. Kager; G.W. Lubega; H.D.F.H. Schallig

    2009-01-01

    Molecular tools, such as real-time nucleic acid sequence-based amplification (NASBA) and PCR, have been developed to detect Trypanosoma brucei parasites in blood for the diagnosis of human African trypanosomiasis (HAT). Despite good sensitivity, these techniques are not implemented in HAT control pr

  2. Phase-matching loci and angular acceptance of non-collinear optical parametric amplification.

    Science.gov (United States)

    Trophème, Benoît; Boulanger, Benoit; Mennerat, Gabriel

    2012-11-19

    A general study of phase-matching loci and associated angular acceptances is performed in the case of non-collinear parametric amplification. Numerical and analytical calculations, as well as measurements, are described for the uniaxial BBO crystal and the biaxial LBO crystal. PMID:23187473

  3. Label-free detection of real-time DNA amplification using a nanofluidic diffraction grating

    Science.gov (United States)

    Yasui, Takao; Ogawa, Kensuke; Kaji, Noritada; Nilsson, Mats; Ajiri, Taiga; Tokeshi, Manabu; Horiike, Yasuhiro; Baba, Yoshinobu

    2016-08-01

    Quantitative DNA amplification using fluorescence labeling has played an important role in the recent, rapid progress of basic medical and molecular biological research. Here we report a label-free detection of real-time DNA amplification using a nanofluidic diffraction grating. Our detection system observed intensity changes during DNA amplification of diffracted light derived from the passage of a laser beam through nanochannels embedded in a microchannel. Numerical simulations revealed that the diffracted light intensity change in the nanofluidic diffraction grating was attributed to the change of refractive index. We showed the first case reported to date for label-free detection of real-time DNA amplification, such as specific DNA sequences from tubercle bacilli (TB) and human papillomavirus (HPV). Since our developed system allows quantification of the initial concentration of amplified DNA molecules ranging from 1 fM to 1 pM, we expect that it will offer a new strategy for developing fundamental techniques of medical applications.

  4. Detection of Colorectal Cancer by a Quantitative Fluorescence Determination of DNA Amplification in Stool

    Directory of Open Access Journals (Sweden)

    Daniele Calistri

    2004-09-01

    Full Text Available DNA amplification of exfoliated cells in stool repre sents an inexpensive and rapid test, but has only 50% to 60% sensitivity. A new quantitative method, calle( fluorescence long DNA, was developed and validate( in our laboratory on stool obtained from 86 patient., with primary colorectal cancer and from 62 health individuals. It consists of the amplification of stoo DNA with fluorescence primers and the quantification of the amplification using a standard curve. Results are arbitrarily expressed in nanograms. The potential of thi new method compared to the conventional approact was analyzed in a subgroup of 94 individuals (51 patients and 38 healthy volunteers. In the presen series, DNA amplification analysis showed a specific ity of 97% and a sensitivity of only 50%. Conversely fluorescence DNA evaluation, using the best cutoff o 25 ng, showed a sensitivity of about 76% and a spec ificity of 93%. Similar sensitivity was observed regard less of Dukes stage, tumor location, and size, thu., also permitting the detection of early-stage tumors The present study seems to indicate that quantitative fluorescence DNA determination in stool successfully identifies colorectal cancer patients with a sensitivity comparable, if not superior, to that of multiple gene analysis but at a lower cost and in a shorter time.

  5. Selection and Amplification of Hosts From Dynamic Combinatorial Libraries of Macrocyclic Disulfides

    NARCIS (Netherlands)

    Otto, Sijbren; Furlan, Ricardo L.E.; Sanders, Jeremy K.M.

    2002-01-01

    We have discovered two receptors for two different guests from a single dynamic combinatorial library. Each of the two guests amplifies the formation of a tightly binding host at the expense of unfit library members. Small differences in host-guest binding translate into useful differences in amplif

  6. Analysis of numerical stability and amplification matrices: Fourth-order Runge-Kutta methods

    Science.gov (United States)

    Kennedy, E. W.

    1979-01-01

    Amplification matrices, numerical kernels, stable, and exponentially stable numerical solutions are examined. The various techniques involved in these concepts are applied to certain systems that have Jordan forms, which are nondiagonal, with particular interest in the case of imaginary or zero eigenvalues.

  7. Multiplex Ligation-Dependent Probe Amplification of Uveal Melanoma : Correlation with Metastatic Death

    NARCIS (Netherlands)

    Damato, Bertil; Dopierala, Justyna; Klaasen, Annelies; van Dijk, Marcory; Sibbring, Julie; Coupland, Sarah E.

    2009-01-01

    PURPOSE. To evaluate multiplex ligation-dependent probe amplification (MLPA) of uveal melanoma as a predictive tool for metastatic death. METHODS. Uveal melanoma specimens of 73 patients treated between 1998 and 2000 were included. DNA samples were analyzed with MLPA evaluating 31 loci on chromosome

  8. Single Cell Analysis of Dystrophin and SRY Gene by Using Whole Genome Amplification

    Institute of Scientific and Technical Information of China (English)

    徐晨明; 金帆; 黄荷凤; 陶冶; 叶英辉

    2001-01-01

    Objective To develop a reliable and sensitive method for detection of sex and multiloci of Duchenne muscular dystrophy (DMD) gene in single cell Materials & methods Whole genome of single cell were amplified by using 15-base random primers (primer extension preamplification, PEP), then a small aliquot of PEP product were analyzed by using locus-specific nest PCR amplification. The procedure was evaluated by detection dystrophin exons 8, 17, 19, 44, 45, 48 and human testis-determining gene (SRY)in single lymphocytes from known sources and single blastomeres from the couples with no family history of DMD.Results The amplification efficiency rate of six dystrophin exons from single lymphocytes and single blastomeres were 97. 2% (175/180) and 100% (60/60) respectively.Results of SRY showed that 100% (15/15) amplification in single male-derived lymphocytes and 0% (0/15) amplification in single female-derived lymphocytes. Conclusion The technique of single cell PEP-nest PCR for dystrophin exons 8, 17,19, 44, 45, 48 and SRY is highly specifc. PEP-nest PCR is suitable for Preimplantation genetic diagnosis (PGD) of DMD at single cell level.

  9. Cross-Amplification of Vicia sativa subsp. sativa Microsatellites across 22 Other Vicia Species

    Directory of Open Access Journals (Sweden)

    Sebastin Raveendar

    2015-01-01

    Full Text Available The temperate and herbaceous genus Vicia L. is a member of the legume tribe Fabeae of the subfamily Papilionoideae. The genus Vicia comprises 166 annual or perennial species distributed mainly in Europe, Asia, and North America, but also extending to the temperate regions of South America and tropical Africa. The use of simple sequence repeat (SSR markers for Vicia species has not been investigated as extensively as for other crop species. In this study, we assessed the potential for cross-species amplification of cDNA microsatellite markers developed from common vetch (Vicia sativa subsp. sativa. For cross-species amplification of the SSRs, amplification was carried out with genomic DNA isolated from two to eight accessions of 22 different Vicia species. For individual species or subspecies, the transferability rates ranged from 33% for V. ervilia to 82% for V. sativa subsp. nigra with an average rate of 52.0%. Because the rate of successful SSR marker amplification generally correlates with genetic distance, these SSR markers are potentially useful for analyzing genetic relationships between or within Vicia species.

  10. SHAPE EFFECT OF ANNULAR CONCENTRATOR IN ULTRASONIC SYSTEM ON AMPLIFICATION FACTOR OF VIBRATIONS AMPLITUDE

    Directory of Open Access Journals (Sweden)

    D. A. Stepanenko

    2016-01-01

    Full Text Available The paper contains a theoretical underpinning on creation of ultrasonic vibration concentrators based on annular elastic elements with non-circular (ellipse-like eccentric shape of internal contour. Shape of internal contour in polar coordinates is described by Fourier series relative to angular coordinate that consists of a constant term and first and second harmonics. An effect of geometric parameters of the concentrator on amplification factor and natural vibration frequencies has been investigated with the help of a finite element method. The paper reveals the possibility to control an amplification factor of annular concentrators while varying eccentricity of internal contour and mean value of cross-section thickness. The amplification factor satisfies a condition K < N, where N is thickness ratio of amplifier input and output sections, and it is decreasing with increase of vibration mode order. The similar condition has been satisfied for conical bar concentrator with the difference that in the case of bar concentrators an amplification is ensured due to variation of diameter and N will represent ratio of diameters. It has been proved that modification of internal contour shape makes it possible to carry out a wide-band tuning of natural frequencies of concentrator vibrations without alteration of its overall dimensions and substantial change of amplification factor, which is important for frequency matching of the concentrator and ultrasonic vibratory system. Advantages of the proposed concentrators include simplicity of design and manufacturing, small overall dimensions, possibility for natural frequency tuning by means of static load variation. The developed concentrators can find their application in ultrasonic devices and instruments for technological and medical purposes.

  11. Analysis of real time PCR amplification efficiencies from three genomic region of dengue virus.

    Science.gov (United States)

    Odreman-Macchioli, María; Vielma, Silvana; Atchley, Daniel; Comach, Guillermo; Ramirez, Alvaro; Pérez, Saberio; Téllez, Luis; Quintero, Beatriz; Hernández, Erick; Muñoz, Maritza; Mendoza, José

    2013-03-01

    Early diagnosis of dengue virus (DENV) infection represents a key factor in preventing clinical complications attributed to the disease. The aim of this study was to evaluate the amplification efficiencies of an in-house quantitative real time-PCR (qPCR) assay of DENV, using the non-structural conserved genomic region protein-5 (NS5) versus two genomic regions usually employed for virus detection, the capsid/pre-membrane region (C-prM) and the 3'-noncoding region (3'NC). One-hundred sixty seven acute phase serum samples from febrile patients were used for validation purposes. Results showed that the three genomic regions had similar amplification profiles and correlation coefficients (0.987-0.999). When isolated viruses were used, the NS5 region had the highest qPCR efficiencies for the four serotypes (98-100%). Amplification from acute serum samples showed that 41.1% (67/167) were positive for the universal assay by at least two of the selected genomic regions. The agreement rates between NS5/C-prM and NS5/3'NC regions were 56.7% and 97%, respectively. Amplification concordance values between C-prM/NS5 and NS5/3'NC regions showed a weak (kappa = 0.109; CI 95%) and a moderate (kappa = 0.489; CI 95%) efficiencies in amplification, respectively. Serotyping assay using a singleplex NS5-TaqMan format was much more sensitive than the C-prM/SYBR Green I protocol (76%). External evaluation showed a high sensitivity (100%), specificity (78%) and high agreement between the assays. According to the results, the NS5 genomic region provides the best genomic region for optimal detection and typification of DENV in clinical samples. PMID:23781709

  12. Environmental Whole-Genome Amplification to Access Microbial Diversity in Contaminated Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, C.B.; Wyborski, D.L.; Garcia, J.; Podar, M.; Chen, W.; Chang, S.H.; Chang, H.W.; Watson, D.; Brodie,E.I.; Hazen, T.C.; Keller, M.

    2005-12-10

    Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using ?29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2 percent genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9 percent of the sequences had significant similarities to known proteins, and ''clusters of orthologous groups'' (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible.

  13. Comparison of sensor structures for the signal amplification of surface plasmon resonance immunoassay using enzyme precipitation

    Science.gov (United States)

    Yang, Chih-Tsung; Thierry, Benjamin

    2015-12-01

    Surface plasmon resonance (SPR) biosensing has been successfully applied for the label-free detection of a broad range of bioanalytes ranging from bacteria, cell, exosome, protein and nucleic acids. When it comes to the detection of small molecules or analytes found at low concentration, amplification schemes are desirable to enhance binding signals and in turn increase sensitivity. A number of SPR signal amplification schemes have been developed and validated; however, little effort has been devoted to understanding the effect of the SPR sensor structures on the amplification of binding signals and therefore on the overall sensing performance. The physical phenomenon of long-range SPR (LRSPR) relies on the propagation of coupled surface plasmonic waves on the opposite sides of a nanoscale-thick noble metal film suspended between two dielectrics with similar refractive indices. Importantly, as compared with commonly used conventional SPR (cSPR), LRSPR is not only characterized by a longer penetration depth of the plasmonic waves in the analyzed medium but also by a greater sensitivity to bulk refractive index changes. In this work, an immunoassay signal amplification platform based on horseradish peroxidase (HRP) catalyzed precipitation was utilized to investigate the sensing performance with regards to cSPR and LRSPR. The enzymatic precipitation of 3, 3'-diaminobenzidine tetrahydrochloride (DAB)/H2O2 was used to amplify SPR signals. The structure-function relationship of cSPR and LRSPR sensors is presented for both standard refractometric measurements and the enzymatic precipitation scheme. Experimental data shows that despite its inherent higher sensitivity to bulk refractive index changes and higher figure of merit, LRSPR was characterized by a lower angular sensitivity in the model enzymatic amplification scheme used here.

  14. Allele-specific amplification in cancer revealed by SNP array analysis.

    Directory of Open Access Journals (Sweden)

    Thomas LaFramboise

    2005-11-01

    Full Text Available Amplification, deletion, and loss of heterozygosity of genomic DNA are hallmarks of cancer. In recent years a variety of studies have emerged measuring total chromosomal copy number at increasingly high resolution. Similarly, loss-of-heterozygosity events have been finely mapped using high-throughput genotyping technologies. We have developed a probe-level allele-specific quantitation procedure that extracts both copy number and allelotype information from single nucleotide polymorphism (SNP array data to arrive at allele-specific copy number across the genome. Our approach applies an expectation-maximization algorithm to a model derived from a novel classification of SNP array probes. This method is the first to our knowledge that is able to (a determine the generalized genotype of aberrant samples at each SNP site (e.g., CCCCT at an amplified site, and (b infer the copy number of each parental chromosome across the genome. With this method, we are able to determine not just where amplifications and deletions occur, but also the haplotype of the region being amplified or deleted. The merit of our model and general approach is demonstrated by very precise genotyping of normal samples, and our allele-specific copy number inferences are validated using PCR experiments. Applying our method to a collection of lung cancer samples, we are able to conclude that amplification is essentially monoallelic, as would be expected under the mechanisms currently believed responsible for gene amplification. This suggests that a specific parental chromosome may be targeted for amplification, whether because of germ line or somatic variation. An R software package containing the methods described in this paper is freely available at http://genome.dfci.harvard.edu/~tlaframb/PLASQ.

  15. Amplification of the 20q chromosomal arm occurs early in tumorigenic transformation and may initiate cancer.

    Directory of Open Access Journals (Sweden)

    Yuval Tabach

    Full Text Available Duplication of chromosomal arm 20q occurs in prostate, cervical, colon, gastric, bladder, melanoma, pancreas and breast cancer, suggesting that 20q amplification may play a causal role in tumorigenesis. According to an alternative view, chromosomal imbalance is mainly a common side effect of cancer progression. To test whether a specific genomic aberration might serve as a cancer initiating event, we established an in vitro system that models the evolutionary process of early stages of prostate tumor formation; normal prostate cells were immortalized by the over-expression of human telomerase catalytic subunit hTERT, and cultured for 650 days till several transformation hallmarks were observed. Gene expression patterns were measured and chromosomal aberrations were monitored by spectral karyotype analysis at different times. Several chromosomal aberrations, in particular duplication of chromosomal arm 20q, occurred early in the process and were fixed in the cell populations, while other aberrations became extinct shortly after their appearance. A wide range of bioinformatic tools, applied to our data and to data from several cancer databases, revealed that spontaneous 20q amplification can promote cancer initiation. Our computational model suggests that 20q amplification induced deregulation of several specific cancer-related pathways including the MAPK pathway, the p53 pathway and Polycomb group factors. In addition, activation of Myc, AML, B-Catenin and the ETS family transcription factors was identified as an important step in cancer development driven by 20q amplification. Finally we identified 13 "cancer initiating genes", located on 20q13, which were significantly over-expressed in many tumors, with expression levels correlated with tumor grade and outcome suggesting that these genes induce the malignant process upon 20q amplification.

  16. Surface air temperature variability and trends in the Arctic: new amplification assessment and regionalisation

    Directory of Open Access Journals (Sweden)

    Ola M. Johannessen

    2016-05-01

    Full Text Available Arctic amplification of temperature change is theorised to be an important feature of the Earth's climate system. For observational assessment and understanding of mechanisms of this amplification, which remain uncertain, thorough and detailed analyses of surface air temperature (SAT variability and trends in the Arctic are needed. Here we present an analysis of Arctic SAT variability in comparison with mid-latitudes and the Northern Hemisphere (NH, based on an advanced SAT dataset – NansenSAT. We define an index for the Arctic amplification as the ratio between absolute values of the Arctic (65–90°N and NH 30-yr running linear SAT trends. It is demonstrated that the temperature amplification in the Arctic is characteristic not only for the recent warming but also the early 20th century warming (ETCW and subsequent cooling. The amplification appears to be weaker during the recent warming than in the ETCW, simply because the index values reflect the more pervasive nature of the recent warming that reflects the background of anthropogenic global warming. We also produced a new Arctic regionalisation created from hierarchical cluster analysis, which identifies six major natural regions in the Arctic that reflect SAT variability. Statistical comparison with several climate indices shows that the Atlantic Multidecadal Oscillation (AMO is the mode of variability that is most significantly associated with the amplified warming–cooling in the Arctic, with a stronger correlation during the ETCW and recent warming than during the intermediate period. Regionally, differences are identified in terms of annual and seasonal rates of change and in their correlations with modes of variability.

  17. External and semi-internal controls for PCR amplification of homologous sequences in mixed templates.

    Science.gov (United States)

    Kalle, Elena; Gulevich, Alexander; Rensing, Christopher

    2013-11-01

    In a mixed template, the presence of homologous target DNA sequences creates environments that almost inevitably give rise to artifacts and biases during PCR. Heteroduplexes, chimeras, and skewed template-to-product ratios are the exclusive attributes of mixed template PCR and never occur in a single template assay. Yet, multi-template PCR has been used without appropriate attention to quality control and assay validation, in spite of the fact that such practice diminishes the reliability of results. External and internal amplification controls became obligatory elements of good laboratory practice in different PCR assays. We propose the inclusion of an analogous approach as a quality control system for multi-template PCR applications. The amplification controls must take into account the characteristics of multi-template PCR and be able to effectively monitor particular assay performance. This study demonstrated the efficiency of a model mixed template as an adequate external amplification control for a particular PCR application. The conditions of multi-template PCR do not allow implementation of a classic internal control; therefore we developed a convenient semi-internal control as an acceptable alternative. In order to evaluate the effects of inhibitors, a model multi-template mix was amplified in a mixture with DNAse-treated sample. Semi-internal control allowed establishment of intervals for robust PCR performance for different samples, thus enabling correct comparison of the samples. The complexity of the external and semi-internal amplification controls must be comparable with the assumed complexity of the samples. We also emphasize that amplification controls should be applied in multi-template PCR regardless of the post-assay method used to analyze products.

  18. LOMA: A fast method to generate efficient tagged-random primers despite amplification bias of random PCR on pathogens

    Directory of Open Access Journals (Sweden)

    Lee Wah

    2008-09-01

    Full Text Available Abstract Background Pathogen detection using DNA microarrays has the potential to become a fast and comprehensive diagnostics tool. However, since pathogen detection chips currently utilize random primers rather than specific primers for the RT-PCR step, bias inherent in random PCR amplification becomes a serious problem that causes large inaccuracies in hybridization signals. Results In this paper, we study how the efficiency of random PCR amplification affects hybridization signals. We describe a model that predicts the amplification efficiency of a given random primer on a target viral genome. The prediction allows us to filter false-negative probes of the genome that lie in regions of poor random PCR amplification and improves the accuracy of pathogen detection. Subsequently, we propose LOMA, an algorithm to generate random primers that have good amplification efficiency. Wet-lab validation showed that the generated random primers improve the amplification efficiency significantly. Conclusion The blind use of a random primer with attached universal tag (random-tagged primer in a PCR reaction on a pathogen sample may not lead to a successful amplification. Thus, the design of random-tagged primers is an important consideration when performing PCR.

  19. The origin of biased sequence depth in sequence-independent nucleic acid amplification and optimization for efficient massive parallel sequencing.

    Directory of Open Access Journals (Sweden)

    Toon Rosseel

    Full Text Available Sequence Independent Single Primer Amplification is one of the most widely used random amplification approaches in virology for sequencing template preparation. This technique relies on oligonucleotides consisting of a 3' random part used to prime complementary DNA synthesis and a 5' defined tag sequence for subsequent amplification. Recently, this amplification method was combined with next generation sequencing to obtain viral sequences. However, these studies showed a biased distribution of the resulting sequence reads over the analyzed genomes. The aim of this study was to elucidate the mechanisms that lead to biased sequence depth when using random amplification. Avian paramyxovirus type 8 was used as a model RNA virus to investigate these mechanisms. We showed, based on in silico analysis of the sequence depth in relation to GC-content, predicted RNA secondary structure and sequence complementarity to the 3' part of the tag sequence, that the tag sequence has the main contribution to the observed bias in sequence depth. We confirmed this finding experimentally using both fragmented and non-fragmented viral RNAs as well as primers differing in random oligomer length (6 or 12 nucleotides and in the sequence of the amplification tag. The observed oligonucleotide annealing bias can be reduced by extending the random oligomer sequence and by in silico combining sequence data from SISPA experiments using different 5' defined tag sequences. These findings contribute to the optimization of random nucleic acid amplification protocols that are currently required for downstream applications such as viral metagenomics and microarray analysis.

  20. Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing

    Directory of Open Access Journals (Sweden)

    Plant Ramona N

    2006-08-01

    Full Text Available Abstract Background Whole genome amplification is an increasingly common technique through which minute amounts of DNA can be multiplied to generate quantities suitable for genetic testing and analysis. Questions of amplification-induced error and template bias generated by these methods have previously been addressed through either small scale (SNPs or large scale (CGH array, FISH methodologies. Here we utilized whole genome sequencing to assess amplification-induced bias in both coding and non-coding regions of two bacterial genomes. Halobacterium species NRC-1 DNA and Campylobacter jejuni were amplified by several common, commercially available protocols: multiple displacement amplification, primer extension pre-amplification and degenerate oligonucleotide primed PCR. The amplification-induced bias of each method was assessed by sequencing both genomes in their entirety using the 454 Sequencing System technology and comparing the results with those obtained from unamplified controls. Results All amplification methodologies induced statistically significant bias relative to the unamplified control. For the Halobacterium species NRC-1 genome, assessed at 100 base resolution, the D-statistics from GenomiPhi-amplified material were 119 times greater than those from unamplified material, 164.0 times greater for Repli-G, 165.0 times greater for PEP-PCR and 252.0 times greater than the unamplified controls for DOP-PCR. For Campylobacter jejuni, also analyzed at 100 base resolution, the D-statistics from GenomiPhi-amplified material were 15 times greater than those from unamplified material, 19.8 times greater for Repli-G, 61.8 times greater for PEP-PCR and 220.5 times greater than the unamplified controls for DOP-PCR. Conclusion Of the amplification methodologies examined in this paper, the multiple displacement amplification products generated the least bias, and produced significantly higher yields of amplified DNA.

  1. Extension and validation of the GN model for non-linear interference to uncompensated links using Raman amplification.

    Science.gov (United States)

    Curri, Vittorio; Carena, Andrea; Poggiolini, Pierluigi; Bosco, Gabriella; Forghieri, Fabrizio

    2013-02-11

    We show the extension of the Gaussian Noise model, which describes non-linear propagation in uncompensated links of multilevel modulation formats, to systems using Raman amplification. We successfully validate the analytical results by comparison with numerical simulations of Nyquist-WDM PM-16QAM channels transmission over multi-span uncompensated links made of a single fiber type and using hybrid EDFA/Raman amplification with counter-propagating pumps. We analyze two typical high- and low-dispersion fiber types. We show that Raman amplification always induces a limited non-linear interference enhancement compared to the dominant ASE noise reduction.

  2. Exploration of the conditioning electrical stimulation frequencies for induction of long-term potentiation-like pain amplification in humans

    DEFF Research Database (Denmark)

    Xia, Weiwei; Mørch, Carsten Dahl; Andersen, Ole Kæseler

    2016-01-01

    Spinal nociceptive long-term potentiation (LTP) can be induced by high- or low-frequency conditioning electrical stimulation (CES) in rodent preparations in vitro. However, there is still sparse information on the effect of different conditioning frequencies inducing LTP-like pain amplification in...... humans. In this study, we tested two other paradigms aiming to explore the CES frequency effect inducing pain amplification in healthy humans. Cutaneous LTP-like pain amplification induced by three different paradigms (10, 100, and 200 Hz CES) was assessed in fifteen volunteers in a crossover design...

  3. Developmental validation of the GlobalFiler(®) Express PCR Amplification Kit: A 6-dye multiplex assay for the direct amplification of reference samples.

    Science.gov (United States)

    Wang, Dennis Y; Gopinath, Siddhita; Lagacé, Robert E; Norona, Wilma; Hennessy, Lori K; Short, Marc L; Mulero, Julio J

    2015-11-01

    In order to increase the power of discrimination, reduce the possibility of adventitious matches, and expand global data sharing, the CODIS Core Loci Working Group made a recommendation to expand the CODIS core loci from the "required" 13 loci to 20 plus three additional "highly recommended" loci. The GlobalFiler(®) Express Kit was designed to incorporate all 20 required and 3 highly recommended loci along with a novel male-specific Y insertion/deletion marker. The GlobalFiler(®) Express Kit allows simultaneous amplification of the following loci: D3S1358, vWA, D16S539, CSF1PO, TPOX, Yindel, AMEL, D8S1179, D21S11, D18S51, DYS391, D2S441, D19S433, TH01, FGA, D22S1045, D5S818, D13S317, D7S820, SE33, D10S1248, D1S1656, D12S391, and D2S1338. The kit enables direct amplification from blood and buccal samples stored on paper or swab and the chemistry features an optimized PCR protocol that yields time to results in less than an hour. Developmental validation testing followed SWGDAM guidelines and demonstrated the quality and robustness of the GlobalFiler(®) Express Kit over a number of variables. The validation results demonstrate that the 24-locus multiplex kit is a robust and reliable identification assay as required for forensic DNA typing and databasing.

  4. Increasing pumping efficiency in a micro throttle pump by enhancing displacement amplification in an elastomeric substrate

    International Nuclear Information System (INIS)

    Fluid transport is accomplished in a micro throttle pump (MTP) by alternating deformation of a micro channel cast into a polydimethylsiloxane (PDMS) elastomeric substrate. The active deformation is achieved using a bimorph PZT piezoelectric disc actuator bonded to a glass diaphragm. The bimorph PZT deflects the diaphragm as well as alternately pushing and pulling the elastomer layer providing displacement amplification in the PDMS directly surrounding the micro channel. In order to improve pumping rates we have embedded a polymethylmethacrylate (PMMA) ring into the PMDS substrate which increases the magnitude of the displacement amplification achieved. FEM simulation of the elastomeric substrate deformation predicts that the inclusion of the PMMA ring should increase the channel deformation. We experimentally demonstrate that inclusion of a PMMA ring, having a diameter equal to that of the circular node of the PZT/glass/PDMS composite, increases in the throttle resistance ratio by 40% and the maximum pumping rate by 90% compared to an MTP with no ring.

  5. A simple molecular beacon with duplex-specific nuclease amplification for detection of microRNA.

    Science.gov (United States)

    Li, Yingcun; Zhang, Jiangyan; Zhao, Jingjing; Zhao, Likun; Cheng, Yongqiang; Li, Zhengping

    2016-02-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene activity, promoting or inhibiting cell proliferation, migration and apoptosis. Abnormal expression of miRNAs is associated with many diseases. Therefore, it is essential to establish a simple, rapid and sensitive miRNA detection method. In this paper, based on a simple molecular beacon (MB) and duplex-specific nuclease (DSN), we developed a target recycling amplification method for miRNA detection. By controlling the number of stem bases to 5, the MB probe used in this method can be prevented from hydrolysis by DSN without special modification. This assay is direct and simple to quantitatively detect miRNA with high sensitivity and specificity. The MB probe design provides a new strategy for nuclease-based amplification reaction. PMID:26688865

  6. Numerical simulation of amplification of space charge waves in n-InP films

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Barrientos, Abel, E-mail: abel@upp.edu.mx [Department of Mechatronics, Polytechnic University of Pachuca (UPP), Km. 20 Carretera Pachuca-Cd.Sahagun, Ex-Hacienda de Santa Barbara, 43830 Pachuca, Hidalgo (Mexico); Advanced Materials and Device Analysis Group, Inst. for Microelectronics, TU Wien, Gusshausstr. 27-29, 1040 Vienna (Austria); Palankovski, Vassil, E-mail: palankovski@iue.tuwien.ac.at [Advanced Materials and Device Analysis Group, Inst. for Microelectronics, TU Wien, Gusshausstr. 27-29, 1040 Vienna (Austria)

    2011-10-25

    The non-linear interaction of space charge waves including the amplification in microwave and millimeter wave range in n-InP films, possessing the negative differential conductance phenomenon, is investigated theoretically. Both the amplified signal and the generation of harmonics of the input signal are demonstrated, which are due to non-linear effect of the negative differential resistance. It is possible to observe an amplification of the space charge waves in n-InP films of submicron thicknesses at essentially higher frequencies f <70 GHz, when compared with n-GaAs films f < 44 GHz. The increment observed in the gain is due to the larger dynamic range in n-InP than in n-GaAs films.

  7. Impulse-Induced Optimum Signal Amplification in Scale-Free Networks

    CERN Document Server

    Martínez, Pedro J

    2015-01-01

    Optimizing information transmission across a network is an essential task for controlling and manipulating generic information-processing systems. Here, we show how topological amplification effects in scale-free networks of signaling devices are optimally enhanced when the $\\it{impulse}$ transmitted by periodic external signals (time integral over two consecutive zeros) is maximum. This is demonstrated theoretically by means of a star-like network of overdamped bistable systems subjected to $\\it{generic}$ zero-mean periodic signals, and confirmed numerically by simulations of scale-free networks of such systems. Our results show that the enhancer effect of increasing values of the signal's impulse is due to a correlative increase of the energy transmitted by the periodic signals, while it is found to be resonant-like with respect to the topology-induced amplification mechanism.

  8. Comparison of Three Nucleic Acid Amplification Assays of Cerebrospinal Fluid for Diagnosis of Cytomegalovirus Encephalitis

    Science.gov (United States)

    Bestetti, Arabella; Pierotti, Chiara; Terreni, Mariarosa; Zappa, Alessandra; Vago, Luca; Lazzarin, Adriano; Cinque, Paola

    2001-01-01

    The diagnostic reliabilities of three cytomegalovirus (CMV) nucleic acid amplification assays of cerebrospinal fluid (CSF) were compared by using CSF samples from human immunodeficiency virus-infected patients with a postmortem histopathological diagnosis of CMV encephalitis (n = 15) or other central nervous system conditions (n = 16). By using a nested PCR assay, the quantitative COBAS AMPLICOR CMV MONITOR PCR, and the NucliSens CMV pp67 nucleic acid sequence-based amplification assay, sensitivities were 93.3, 86.6, and 93.3%, respectively, and specificities were 93.7, 93.7, and 87.5%, respectively. The COBAS AMPLICOR assay revealed significantly higher CMV DNA levels in patients with diffuse ventriculoencephalitis than in patients with focal periventricular lesions. PMID:11230445

  9. Ultrasensitive Detection of Low-Abundance Protein Biomarkers by Mass Spectrometry Signal Amplification Assay.

    Science.gov (United States)

    Du, Ruijun; Zhu, Lina; Gan, Jinrui; Wang, Yuning; Qiao, Liang; Liu, Baohong

    2016-07-01

    A mass spectrometry signal amplification method is developed for the ultrasensitive and selective detection of low-abundance protein biomarkers by utilizing tag molecules on gold nanoparticles (AuNPs). EpCAM and thrombin as model targets are captured by specific aptamers immobilized on the AuNPs. With laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS), the mass tag molecules are detected to represent the protein biomarkers. Benefiting from the MS signal amplification, the assay can achieve a limit of detection of 100 aM. The method is further applied to detect thrombin in fetal bovine serum and EpCAM in cell lysates to demonstrate its selectivity and feasibility in complex biological samples. With the high sensitivity and specificity, the protocol shows great promise for providing a new route to single-cell analysis and early disease diagnosis. PMID:27253396

  10. Amplification of hot electron flow by the surface plasmon effect on metal-insulator-metal nanodiodes

    Science.gov (United States)

    Lee, Changhwan; Nedrygailov, Ievgen I.; Lee, Young Keun; Ahn, Changui; Lee, Hyosun; Jeon, Seokwoo; Park, Jeong Young

    2015-11-01

    Au-TiO2-Ti nanodiodes with a metal-insulator-metal structure were used to probe hot electron flows generated upon photon absorption. Hot electrons, generated when light is absorbed in the Au electrode of the nanodiode, can travel across the TiO2, leading to a photocurrent. Here, we demonstrate amplification of the hot electron flow by (1) localized surface plasmon resonance on plasmonic nanostructures fabricated by annealing the Au-TiO2-Ti nanodiodes, and (2) reducing the thickness of the TiO2. We show a correlation between changes in the morphology of the Au electrodes caused by annealing and amplification of the photocurrent. Based on the exponential dependence of the photocurrent on TiO2 thickness, the transport mechanism for the hot electrons across the nanodiodes is proposed.

  11. Nonequilibrium laser plasma of noble gases: Prospects for amplification and guiding of the microwave radiation

    Science.gov (United States)

    Bogatskaya, A. V.; Bin, Hou; Popov, A. M.; Smetanin, I. V.

    2016-09-01

    We developed the analytical model of relaxation of a low-density plasma channel produced in noble gases (Xe, Ar) by a femtosecond KrF laser pulse and investigated the temporal evolution of its dielectric permittivity. It was demonstrated that the strong nonequilibrium of the photoelectron energy spectrum and the presence of Ramsauer minimum in transport scattering cross section make such a plasma channel an optically denser medium in comparison with non-ionized gas in the microwave frequency band and consequently such a channel appears to be a waveguide. In xenon this nonequilibrium state of a plasma leads to both transportation and amplification of the microwave signal during the relaxation of the photoelectron energy spectrum. It was also shown that a circular metal waveguide partially filled with such a nonequilibrium Xe plasma provides efficient amplification of the sub-THz microwave signal.

  12. Turbulent amplification of magnetic field driven by dynamo effect at rippled shocks

    CERN Document Server

    Fraschetti, Federico

    2013-01-01

    We derive analytically the vorticity generated downstream of a two-dimensional rippled hydromagnetic shock neglecting fluid viscosity and resistivity. The growth of the turbulent component of the downstream magnetic field is driven by the vortical eddies motion. We determine an analytic time-evolution of the magnetic field amplification at shocks, so far described only numerically, until saturation occurs due to seed-field reaction to field lines whirling. The explicit expression of the amplification growth rate and of the non-linear field back-reaction in terms of the parameters of shock and interstellar density fluctuations is derived from MHD jump conditions at rippled shocks. A magnetic field saturation up to the order of milligauss and a short-time variability in the $X$-ray observations of supernova remnants can be obtained by using reasonable parameters for the interstellar turbulence.

  13. Bioagent detection using miniaturized NMR and nanoparticle amplification : final LDRD report.

    Energy Technology Data Exchange (ETDEWEB)

    Clewett, C. F. M.; Adams, David Price; Fan, Hongyou; Williams, John D.; Sillerud, Laurel O.; Alam, Todd Michael; Aldophi, Natalie L. (New Mexico Resonance, Albuquerque, NM); McDowell, Andrew F. (New Mexico Resonance, Albuquerque, NM)

    2006-11-01

    This LDRD program was directed towards the development of a portable micro-nuclear magnetic resonance ({micro}-NMR) spectrometer for the detection of bioagents via induced amplification of solvent relaxation based on superparamagnetic nanoparticles. The first component of this research was the fabrication and testing of two different micro-coil ({micro}-coil) platforms: namely a planar spiral NMR {micro}-coil and a cylindrical solenoid NMR {micro}-coil. These fabrication techniques are described along with the testing of the NMR performance for the individual coils. The NMR relaxivity for a series of water soluble FeMn oxide nanoparticles was also determined to explore the influence of the nanoparticle size on the observed NMR relaxation properties. In addition, The use of commercially produced superparamagnetic iron oxide nanoparticles (SPIONs) for amplification via NMR based relaxation mechanisms was also demonstrated, with the lower detection limit in number of SPIONs per nanoliter (nL) being determined.

  14. Optofluidic analysis system for amplification-free, direct detection of Ebola infection

    Science.gov (United States)

    Cai, H.; Parks, J. W.; Wall, T. A.; Stott, M. A.; Stambaugh, A.; Alfson, K.; Griffiths, A.; Mathies, R. A.; Carrion, R.; Patterson, J. L.; Hawkins, A. R.; Schmidt, H.

    2015-09-01

    The massive outbreak of highly lethal Ebola hemorrhagic fever in West Africa illustrates the urgent need for diagnostic instruments that can identify and quantify infections rapidly, accurately, and with low complexity. Here, we report on-chip sample preparation, amplification-free detection and quantification of Ebola virus on clinical samples using hybrid optofluidic integration. Sample preparation and target preconcentration are implemented on a PDMS-based microfluidic chip (automaton), followed by single nucleic acid fluorescence detection in liquid-core optical waveguides on a silicon chip in under ten minutes. We demonstrate excellent specificity, a limit of detection of 0.2 pfu/mL and a dynamic range of thirteen orders of magnitude, far outperforming other amplification-free methods. This chip-scale approach and reduced complexity compared to gold standard RT-PCR methods is ideal for portable instruments that can provide immediate diagnosis and continued monitoring of infectious diseases at the point-of-care.

  15. On the maximum magnetic field amplification by the magnetorotational instability in core-collapse supernovae

    CERN Document Server

    Rembiasz, Tomasz; Obergaulinger, Martin; Cerdá-Durán, Pablo; Aloy, Miguel-Ángel; Müller, Ewald

    2016-01-01

    Whether the magnetorotational instability (MRI) can amplify initially weak magnetic fields to dynamically relevant strengths in core collapse supernovae is still a matter of active scientific debate. Recent numerical studies have shown that, in accordance with the parasitic model, given the core collapse supernova conditions, the MRI is terminated by parasitic instabilities of the Kelvin-Helmholtz type that disrupt MRI channel flows and quench further magnetic field growth. However, it remains to be properly assessed by what factor the initial magnetic field can be amplified and how it depends on the initial field strength and the amplitude of the perturbations. Different termination criteria which lead to different estimates of the amplification factor were proposed within the parasitic model. To determine the amplification factor and test which criterion is a better predictor of the MRI termination, we perform three-dimensional shearing-disc and shearing-box simulations of a region close to the surface of a...

  16. Initial amplification of the HPV18 genome proceeds via two distinct replication mechanisms

    Science.gov (United States)

    Orav, Marit; Geimanen, Jelizaveta; Sepp, Eva-Maria; Henno, Liisi; Ustav, Ene; Ustav, Mart

    2015-01-01

    Determining the mechanism of HPV18 replication is paramount for identifying possible drug targets against HPV infection. We used two-dimensional and three-dimensional gel electrophoresis techniques to identify replication intermediates arising during the initial amplification of HPV18 episomal genomes. We determined that the first rounds of HPV18 replication proceed via bidirectional theta structures; however, a notable accumulation of almost fully replicated HPV18 genomes indicates difficulties with the completion of theta replication. We also observed intermediates that were created by a second replication mechanism during the initial amplification of HPV18 genomes. The second replication mechanism does not utilize specific initiation or termination sequences and proceeds via a unidirectional replication fork. We suggest a significant role for the second replication mechanism during the initial replication of the HPV18 genome and propose that the second replication mechanism is recombination-dependent replication. PMID:26522968

  17. Initial amplification of the HPV18 genome proceeds via two distinct replication mechanisms.

    Science.gov (United States)

    Orav, Marit; Geimanen, Jelizaveta; Sepp, Eva-Maria; Henno, Liisi; Ustav, Ene; Ustav, Mart

    2015-01-01

    Determining the mechanism of HPV18 replication is paramount for identifying possible drug targets against HPV infection. We used two-dimensional and three-dimensional gel electrophoresis techniques to identify replication intermediates arising during the initial amplification of HPV18 episomal genomes. We determined that the first rounds of HPV18 replication proceed via bidirectional theta structures; however, a notable accumulation of almost fully replicated HPV18 genomes indicates difficulties with the completion of theta replication. We also observed intermediates that were created by a second replication mechanism during the initial amplification of HPV18 genomes. The second replication mechanism does not utilize specific initiation or termination sequences and proceeds via a unidirectional replication fork. We suggest a significant role for the second replication mechanism during the initial replication of the HPV18 genome and propose that the second replication mechanism is recombination-dependent replication. PMID:26522968

  18. The Resistive-WELL detector: a compact spark-protected single amplification-stage MPGD

    CERN Document Server

    Bencivenni, G; Morello, G; Lener, M Poli

    2015-01-01

    In this work we present a novel idea for a compact spark-protected single amplification stage Micro-Pattern Gas Detector (MPGD). The detector amplification stage, realized with a structure very similar to a GEM foil, is embedded through a resistive layer in the readout board. A cathode electrode, defining the gas conversion/drift gap, completes the detector mechanics. The new structure, that we call Resistive-WELL (R-WELL), has some characteristics in common with previous MPGDs, such as C.A.T. and WELL, developed more than ten years ago. The prototype object of the present study has been realized in the 2009 by TE-MPE-EM Workshop at CERN. The new architecture is a very compact MPGD, robust against discharges and exhibiting a large gain ($\\sim$6$\\times$10$^3$), simple to construct and easy for engineering and then suitable for large area tracking devices as well as huge calorimetric apparata.

  19. Isothermal cycling and cascade signal amplification strategy for ultrasensitive colorimetric detection of nucleic acids

    International Nuclear Information System (INIS)

    We have designed a novel isothermal cascade signal-amplification strategy for ultrasensitive colorimetric determination of nucleic acids. It is based on double-cycling amplification with formation of DNAzyme via a polymerase-induced strand-displacement reaction and nicking endonuclease-assisted recycling. The assay makes use of a hairpin DNA, a short primer, KF-polymerase, and nicking endonuclease. The presence of a target DNA triggers the strand-displacement and polymerization reaction with the formation of numerous DNAzyme molecules. Upon addition of H2O2 to the resulting mixture, the H2O2 reacts with 2,2′-azino-bis (3-ethylbenzothiozoline)-6-sulfonate to form a colored product in the aid of DNAzyme, which is quantified by photometry at 415 nm. Under optimal conditions, the assay allows target DNA to be determined at concentration as low as 0.6 aM. (author)

  20. High power pulse amplification of ytterbium-doped double-clad fiber amplifier

    Institute of Scientific and Technical Information of China (English)

    Liping Chang; Wei Fan; Jialin Chen; Li Wang; Bai Chen; Zunqi Lin

    2007-01-01

    By solving a set of time-dependent equations, the characteristics of the ytterbium-doped double-clad fiber amplifier are presented. Besides the steady state in the fiber of the upper-state population, pump power and amplified spontaneous emission without the input signal, the dynamic characteristics of the high power Gaussian pulse amplification like the evolution of pulse waveform distortion, upper-state population distribution and stored energy and pulse energy of the amplifier under the forward and backward pump,are simulated. The relations between the output pulse energy of the amplifier and the different input pulse peak power or pump power are also discussed. The models and results can provide important guide for the design and optimization of the high power pulse amplification.