WorldWideScience

Sample records for amphibian pathogen batrachochytrium

  1. Prevalence of the amphibian pathogen Batrachochytrium dendrobatidis in stream and wetland amphibians in Maryland, USA

    Science.gov (United States)

    Campbell Grant, Evan H.; Bailey, Larissa L.; Ware, Joy L.; Duncan, Karen L.

    2008-01-01

    The amphibian chytrid fungus Batrachochytrium dendrobatidis, responsible for the potentially fatal amphibian disease chytridiomycosis, is known to occur in a large and ever increasing number of amphibian populations around the world. However, sampling has been biased towards stream- and wetland-breeding anurans, with little attention paid to stream-associated salamanders. We sampled three frog and three salamander species in the Chesapeake and Ohio Canal National Historic Park, Maryland, by swabbing animals for PCR analysis to detect DNA of B. dendrobatidis. Using PCR, we detected B. dendrobatidis DNA in both stream and wetland amphibians, and report here the first occurrence of the pathogen in two species of stream-associated salamanders. Future research should focus on mechanisms within habitats that may affect persistence and dissemination of B. dendrobatidis among stream-associated salamanders

  2. Detection of the emerging amphibian pathogens Batrachochytrium dendrobatidis and ranavirus in Russia

    Science.gov (United States)

    Reshetnikov, Andrey N.; Chestnut, Tara E.; Brunner, Jesse L.; Charles, Kaylene M.; Nebergall, Emily E.; Olson, Deanna H.

    2014-01-01

    In a population of the European common toad Bufo bufo from a rural pond in the region of Lake Glubokoe Regional Reserve in Moscow province, Russia, unexplained mass mortality events involving larvae and metamorphs have been observed over a monitoring period of >20 yr. We tested toads from this and a nearby site for the emerging amphibian pathogens Batrachochytrium dendrobatidis (Bd) and ranavirus (Rv). Both pathogens were detected, and at the rural pond site, with the above-noted losses and decline in toad breeding success, 40% of B. bufo metamorphs were Bd positive, 46% were Rv positive and 20% were co-infected with both pathogens. Toad metamorphs from a neighbouring water body were also Bd and Rv positive (25 and 55%, respectively). This is the first confirmation of these pathogens in Russia. Questions remain as to the origins of these pathogens in Russia and their roles in documented mass mortality events.

  3. Reptiles as potential vectors and hosts of the amphibian pathogen Batrachochytrium dendrobatidis in Panama.

    Science.gov (United States)

    Kilburn, Vanessa L; Ibáñez, Roberto; Green, David M

    2011-12-06

    Chytridiomycosis, the disease caused by Batrachochytrium dendrobatidis, is considered to be a disease exclusively of amphibians. However, B. dendrobatidis may also be capable of persisting in the environment, and non-amphibian vectors or hosts may contribute to disease transmission. Reptiles living in close proximity to amphibians and sharing similar ecological traits could serve as vectors or reservoir hosts for B. dendrobatidis, harbouring the organism on their skin without succumbing to disease. We surveyed for the presence of B. dendrobatidis DNA among 211 lizards and 8 snakes at 8 sites at varying elevations in Panama where the syntopic amphibians were at pre-epizootic, epizootic or post-epizootic stages of chytridiomycosis. Detection of B. dendrobatidis DNA was done using qPCR analysis. Evidence of the amphibian pathogen was present at varying intensities in 29 of 79 examined Anolis humilis lizards (32%) and 9 of 101 A. lionotus lizards (9%), and in one individual each of the snakes Pliocercus euryzonus, Imantodes cenchoa, and Nothopsis rugosus. In general, B. dendrobatidis DNA prevalence among reptiles was positively correlated with the infection prevalence among co-occurring anuran amphibians at any particular site (r = 0.88, p = 0.004). These reptiles, therefore, may likely be vectors or reservoir hosts for B. dendrobatidis and could serve as disease transmission agents. Although there is no evidence of B. dendrobatidis disease-induced declines in reptiles, cases of coincidence of reptile and amphibian declines suggest this potentiality. Our study is the first to provide evidence of non-amphibian carriers for B. dendrobatidis in a natural Neotropical environment.

  4. Geographic distribution of the chytrid pathogen Batrachochytrium dendrobatidis among mountain amphibians along the Italian peninsula.

    Science.gov (United States)

    Zampiglia, Mauro; Canestrelli, Daniele; Chiocchio, Andrea; Nascetti, Giuseppe

    2013-11-25

    The amphibian chytrid pathogen Batrachochytrium dendrobatidis (Bd) is considered a major cause of amphibian population declines, particularly in montane areas. Here, we investigated the presence and distribution of Bd among populations of 3 mid- to high-altitude species spanning the entire Italian peninsula (486 individuals from 39 sites overall): the stream frog Rana italica, the fire salamander Salamandra salamandra gigliolii, and the alpine newt Mesotriton alpestris apuanus. We found Bd in all of the analyzed species. Despite the widespread distribution of the pathogen, its overall prevalence (6, 9 and 19%, respectively) was lower than previously reported for the endangered Apennine yellow-bellied toad Bombina pachypus (62.5%). Moreover, several populations of the species studied here were not infected, even at sites where Bd has been detected in other host species. When coupled with the lack of evidence for Bd-related mortalities in these species in peninsular Italy, these results suggest that mechanisms of resistance and/or tolerance are protecting populations of these species from the pathogenic activity of Bd. Nevertheless, in light of the dynamic pattern of Bd-host interactions reported in other studies, of Bd-related mortalities in at least 1 study species (S. s. salamandra) in other areas, and the ongoing climate changes in montane environments, we suggest that the occurrence of Bd should be considered a potential threat to the long-term persistence of these species, and urge the implementation of monitoring and conservation plans.

  5. Quantitative Proteomics of an Amphibian Pathogen, Batrachochytrium dendrobatidis, following Exposure to Thyroid Hormone.

    Directory of Open Access Journals (Sweden)

    Jose Thekkiniath

    Full Text Available Batrachochytrium dendrobatidis (Bd, a chytrid fungus, has increasingly been implicated as a major factor in the worldwide decline of amphibian populations. The fungus causes chytridiomycosis in susceptible species leading to massive die-offs of adult amphibians. Although Bd infects the keratinized mouthparts of tadpoles and negatively affects foraging behavior, these infections are non-lethal. An important morphogen controlling amphibian metamorphosis is thyroid hormone (T3. Tadpoles may be infected with Bd and the fungus may be exposed to T3 during metamorphosis. We hypothesize that exposure of Bd to T3 may induce the expression of factors associated with host colonization and pathogenicity. We utilized a proteomics approach to better understand the dynamics of the Bd-T3 interaction. Using liquid chromatography-mass spectrometry (LC-MS, we generated a data set of a large number of cytoplasmic and membrane proteins following exposure of Bd to T3. From these data, we identified a total of 263 proteins whose expression was significantly changed following T3 exposure. We provide evidence for expression of an array of proteins that may play key roles in both genomic and non-genomic actions of T3 in Bd. Additionally, our proteomics study shows an increase in several proteins including proteases and a class of uncommon crinkler and crinkler-like effector proteins suggesting their importance in Bd pathogenicity as well as those involved in metabolism and energy transfer, protein fate, transport and stress responses. This approach provides insights into the mechanistic basis of the Bd-amphibian interaction following T3 exposure.

  6. Substrate-specific gene expression in Batrachochytrium dendrobatidis, the chytrid pathogen of amphibians.

    Directory of Open Access Journals (Sweden)

    Erica Bree Rosenblum

    Full Text Available Determining the mechanisms of host-pathogen interaction is critical for understanding and mitigating infectious disease. Mechanisms of fungal pathogenicity are of particular interest given the recent outbreaks of fungal diseases in wildlife populations. Our study focuses on Batrachochytrium dendrobatidis (Bd, the chytrid pathogen responsible for amphibian declines around the world. Previous studies have hypothesized a role for several specific families of secreted proteases as pathogenicity factors in Bd, but the expression of these genes has only been evaluated in laboratory growth conditions. Here we conduct a genome-wide study of Bd gene expression under two different nutrient conditions. We compare Bd gene expression profiles in standard laboratory growth media and in pulverized host tissue (i.e., frog skin. A large proportion of genes in the Bd genome show increased expression when grown in host tissue, indicating the importance of studying pathogens on host substrate. A number of gene classes show particularly high levels of expression in host tissue, including three families of secreted proteases (metallo-, serine- and aspartyl-proteases, adhesion genes, lipase-3 encoding genes, and a group of phylogenetically unusual crinkler-like effectors. We discuss the roles of these different genes as putative pathogenicity factors and discuss what they can teach us about Bd's metabolic targets, host invasion, and pathogenesis.

  7. Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Cheng, Tina L; Rovito, Sean M; Wake, David B; Vredenburg, Vance T

    2011-06-01

    Amphibians highlight the global biodiversity crisis because ∼40% of all amphibian species are currently in decline. Species have disappeared even in protected habitats (e.g., the enigmatic extinction of the golden toad, Bufo periglenes, from Costa Rica). The emergence of a fungal pathogen, Batrachochytrium dendrobatidis (Bd), has been implicated in a number of declines that have occurred in the last decade, but few studies have been able to test retroactively whether Bd emergence was linked to earlier declines and extinctions. We describe a noninvasive PCR sampling technique that detects Bd in formalin-preserved museum specimens. We detected Bd by PCR in 83-90% (n = 38) of samples that were identified as positive by histology. We examined specimens collected before, during, and after major amphibian decline events at established study sites in southern Mexico, Guatemala, and Costa Rica. A pattern of Bd emergence coincident with decline at these localities is revealed-the absence of Bd over multiple years at all localities followed by the concurrent emergence of Bd in various species at each locality during a period of population decline. The geographical and chronological emergence of Bd at these localities also indicates a southbound spread from southern Mexico in the early 1970s to western Guatemala in the 1980s/1990s and to Monteverde, Costa Rica by 1987. We find evidence of a historical "Bd epidemic wave" that began in Mexico and subsequently spread to Central America. We describe a technique that can be used to screen museum specimens from other amphibian decline sites around the world.

  8. Infection and transmission heterogeneity of a multi-host pathogen (Batrachochytrium dendrobatidis) within an amphibian community.

    Science.gov (United States)

    Fernández-Beaskoetxea, S; Bosch, J; Bielby, J

    2016-02-11

    The majority of parasites infect multiple hosts. As the outcome of the infection is different in each of them, most studies of wildlife disease focus on the few species that suffer the most severe consequences. However, the role that each host plays in the persistence and transmission of infection can be crucial to understanding the spread of a parasite and the risk it poses to the community. Current theory predicts that certain host species can modulate the infection in other species by amplifying or diluting both infection prevalence and infection intensity, both of which have implications for disease risk within those communities. The fungus Batrachochytrium dendrobatidis (Bd), the causal agent of the disease chytridiomycosis, has caused global amphibian population declines and extinctions. However, not all infected species are affected equally, and thus Bd is a good example of a multi-host pathogen that must ultimately be studied with a community approach. To test whether the common midwife toad Alytes obstetricans is a reservoir and possible amplifier of infection of other species, we used experimental approaches in captive and wild populations to determine the effect of common midwife toad larvae on infection of other amphibian species found in the Peñalara Massif, Spain. We observed that the most widely and heavily infected species, the common midwife toad, may be amplifying the infection loads in other species, all of which have different degrees of susceptibility to Bd infection. Our results have important implications for performing mitigation actions focused on potential 'amplifier' hosts and for better understanding the mechanisms of Bd transmission.

  9. Distribution of the amphibian pathogen Batrachochytrium dendrobatidis in the Pacific Northwestern USA

    Science.gov (United States)

    Pearl, Christopher A.; Bull, E.L.; Green, D.E.; Bowerman, Jay; Adams, Michael J.; Hyatt, A.; Wente, W.

    2007-01-01

    Chytridiomycosis (infection by the fungus Batrachochytrium dendrobatidis) has been associated with amphibian declines in at least four continents. We report results of disease screens from 210 pond-breeding amphibians from 37 field sites in Oregon and Washington. We detected B. dendrobatidis on 28% of sampled amphibians, and we found a?Y 1 detection of B. dendrobatidis from 43% of sites. Four of seven species tested positive for B. dendrobatidis, including the Northern Red-Legged Frog (Rana aurora), Columbia Spotted Frog (Rana luteiventris), and Oregon Spotted Frog (Rana pretiosa). We also detected B. dendrobatidis in nonnative American Bullfrogs (Rana catesbeiana) from six sites in western and central Oregon. Our study and other recently published findings suggest that B. dendrobatidis has few geographic and host taxa limitations among North American anurans. Further research on virulence, transmissibility, persistence, and interactions with other stressors is needed to assess the potential impact of B. dendrobatidis on Pacific Northwestern amphibians.

  10. Differential efficiency among DNA extraction methods influences detection of the amphibian pathogen Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Bletz, M C; Rebollar, E A; Harris, R N

    2015-02-10

    Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is responsible for massive declines and extinctions of amphibians worldwide. The most common method for detecting Bd is quantitative polymerase chain reaction (qPCR). qPCR is a highly sensitive detection technique, but its ability to determine the presence and accurately quantify the amount of Bd is also contingent on the efficiency of the DNA extraction method used prior to PCR. Using qPCR, we compared the extraction efficiency of 3 different extraction methods commonly used for Bd detection across a range of zoospore quantities: PrepMan Ultra Reagent, Qiagen DNeasy Blood and Tissue Kit, and Mobio PowerSoil DNA Isolation Kit. We show that not all extraction methods led to successful detection of Bd for the low zoospore quantities and that there was variation in the estimated zoospore equivalents among the methods, which demonstrates that these methods have different extraction efficiencies. These results highlight the importance of considering the extraction method when comparing across studies. The Qiagen DNeasy kit had the highest efficiency. We also show that replicated estimates of less than 1 zoospore can result from known zoospore concentrations; therefore, such results should be considered when obtained from field data. Additionally, we discuss the implications of our findings for interpreting previous studies and for conducting future Bd surveys. It is imperative to use the most efficient DNA extraction method in tandem with the highly sensitive qPCR technique in order to accurately diagnose the presence of Bd as well as other pathogens.

  11. Occurrence of the amphibian pathogen Batrachochytrium dendrobatidis in the Pacific Northwest

    Science.gov (United States)

    Pearl, C.A.; Bull, E.L.; Green, D.E.; Bowerman, J.; Adams, M.J.; Hyatt, A.; Wente, W.H.

    2007-01-01

    Chytridiomycosis (infection by the fungus Batrachochytrium dendrobatidis) has been associated with amphibian declines in at least four continents. We report results of disease screens from 210 pond-breeding amphibians from 37 field sites in Oregon and Washington. We detected B. dendrobatidis on 28% of sampled amphibians, and we found ??? 1 detection of B. dendrobatidis from 43% of sites. Four of seven species tested positive for B. dendrobatidis, including the Northern Red-Legged Frog (Rana aurora), Columbia Spotted Frog (Rana luteiventris), and Oregon Spotted Frog (Rana pretiosa). We also detected B. dendrobatidis in nonnative American Bullfrogs (Rana catesbeiana) from six sites in western and central Oregon. Our study and other recently published findings suggest that B. dendrobatidis has few geographic and host taxa limitations among North American anurans. Further research on virulence, transmissibility, persistence, and interactions with other stressors is needed to assess the potential impact of B. dendrobatidis on Pacific Northwestern amphibians. Copyright 2007 Society for the Study of Amphibians and Reptiles.

  12. Widespread presence of the pathogenic fungus Batrachochytrium dendrobatidis in wild amphibian communities in Madagascar.

    Science.gov (United States)

    Bletz, Molly C; Rosa, Gonçalo M; Andreone, Franco; Courtois, Elodie A; Schmeller, Dirk S; Rabibisoa, Nirhy H C; Rabemananjara, Falitiana C E; Raharivololoniaina, Liliane; Vences, Miguel; Weldon, Ché; Edmonds, Devin; Raxworthy, Christopher J; Harris, Reid N; Fisher, Matthew C; Crottini, Angelica

    2015-02-26

    Amphibian chytridiomycosis, an emerging infectious disease caused by the fungus Batrachochytrium dendrobatidis (Bd), has been a significant driver of amphibian declines. While globally widespread, Bd had not yet been reported from within Madagascar. We document surveys conducted across the country between 2005 and 2014, showing Bd's first record in 2010. Subsequently, Bd was detected in multiple areas, with prevalence reaching up to 100%. Detection of Bd appears to be associated with mid to high elevation sites and to have a seasonal pattern, with greater detectability during the dry season. Lineage-based PCR was performed on a subset of samples. While some did not amplify with any lineage probe, when a positive signal was observed, samples were most similar to the Global Panzootic Lineage (BdGPL). These results may suggest that Bd arrived recently, but do not exclude the existence of a previously undetected endemic Bd genotype. Representatives of all native anuran families have tested Bd-positive, and exposure trials confirm infection by Bd is possible. Bd's presence could pose significant threats to Madagascar's unique "megadiverse" amphibians.

  13. In vitro sensitivity of the amphibian pathogen Batrachochytrium dendrobatidis to antifungal therapeutics.

    Science.gov (United States)

    Woodward, A; Berger, L; Skerratt, L F

    2014-10-01

    Chytridiomycosis, a skin disease caused by Batrachochytrium dendrobatidis, has caused amphibian declines worldwide. Amphibians can be treated by percutaneous application of antimicrobials, but knowledge of in vitro susceptibility is lacking. Using a modified broth microdilution method, we describe the in vitro sensitivity of two Australian isolates of B. dendrobatidis to six antimicrobial agents. Growth inhibition was observed, by measurement of optical density, with all agents. Minimum inhibitory concentrations (µg/ml; isolate 1/2) were - voriconazole 0.016/0.008; itraconazole 0.032/0.016; terbinafine 0.063/0.063; fluconazole 0.31/0.31; chloramphenicol 12.5/12.5; amphotericin B 12.5/6.25. Killing effects on zoospores were assessed by observing motility. Amphotericin B and terbinafine killed zoospores within 5 and 30 min depending on concentration, but other antimicrobials were not effective at the highest concentrations tested (100 µg/ml). This knowledge will help in drug selection and treatment optimization. As terbinafine was potent and has rapid effects, study of its pharmacokinetics, safety and efficacy is recommended.

  14. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures

    Science.gov (United States)

    Olson, Deanna H.; Blaustein, Andrew R.

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for

  15. A reservoir species for the emerging Amphibian pathogen Batrachochytrium dendrobatidis thrives in a landscape decimated by disease.

    Directory of Open Access Journals (Sweden)

    Natalie M M Reeder

    Full Text Available Chytridiomycosis, a disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd, is driving amphibian declines and extinctions in protected areas globally. The introduction of invasive reservoir species has been implicated in the spread of Bd but does not explain the appearance of the pathogen in remote protected areas. In the high elevation (>1500 m Sierra Nevada of California, the native Pacific chorus frog, Pseudacris regilla, appears unaffected by chytridiomycosis while sympatric species experience catastrophic declines. We investigated whether P. regilla is a reservoir of Bd by comparing habitat occupancy before and after a major Bd outbreak and measuring infection in P. regilla in the field, monitoring susceptibility of P. regilla to Bd in the laboratory, examining tissues with histology to determine patterns of infection, and using an innovative soak technique to determine individual output of Bd zoospores in water. Pseudacris regilla persists at 100% of sites where a sympatric species has been extirpated from 72% in synchrony with a wave of Bd. In the laboratory, P. regilla carried loads of Bd as much as an order of magnitude higher than loads found lethal to sympatric species. Histology shows heavy Bd infection in patchy areas next to normal skin, a possible mechanism for tolerance. The soak technique was 77.8% effective at detecting Bd in water and showed an average output of 68 zoospores per minute per individual. The results of this study suggest P. regilla should act as a Bd reservoir and provide evidence of a tolerance mechanism in a reservoir species.

  16. Host identity matters in the amphibian-Batrachochytrium dendrobatidis system: fine-scale patterns of variation in responses to a multi-host pathogen.

    Science.gov (United States)

    Gervasi, Stephanie; Gondhalekar, Carmen; Olson, Deanna H; Blaustein, Andrew R

    2013-01-01

    Species composition within ecological assemblages can drive disease dynamics including pathogen invasion, spread, and persistence. In multi-host pathogen systems, interspecific variation in responses to infection creates important context dependency when predicting the outcome of disease. Here, we examine the responses of three sympatric host species to a single fungal pathogen, Batrachochytrium dendrobatidis, which is associated with worldwide amphibian population declines and extinctions. Using an experimental approach, we show that amphibian species from three different genera display significant differences in patterns of pathgen-induced mortality as well as the magnitude and temporal dynamics of infection load. We exposed amphibians to one of four inoculation dose treatments at both larval and post- metamorphic stages and quantified infection load on day 8 and day 15 post-inoculation. Of the three species examined, only one (the Pacific treefrog; Pseudacris regilla) displayed "dose-dependent" responses; survival was reduced and infection load was elevated as inoculation dose was increased. We observed a reduction in survival but no differences in infection load across pathogen treatments in Cascades frogs (Rana cascadae). Western toads (Anaxyrus boreas) displayed differences in infection load but no differences in survival across pathogen treatments. Within species, responses to the pathogen varied with life history stage, and the most heavily infected species at the larval stage was different from the most heavily infected species at the post-metamorphic stage. Temporal changes in infection load were species and life history stage-specific. We show that variation in susceptibility to this multi-host pathogen is complex when viewed at a fine-scale and may be mediated through intrinsic host traits.

  17. Host identity matters in the amphibian-Batrachochytrium dendrobatidis system: fine-scale patterns of variation in responses to a multi-host pathogen.

    Directory of Open Access Journals (Sweden)

    Stephanie Gervasi

    Full Text Available Species composition within ecological assemblages can drive disease dynamics including pathogen invasion, spread, and persistence. In multi-host pathogen systems, interspecific variation in responses to infection creates important context dependency when predicting the outcome of disease. Here, we examine the responses of three sympatric host species to a single fungal pathogen, Batrachochytrium dendrobatidis, which is associated with worldwide amphibian population declines and extinctions. Using an experimental approach, we show that amphibian species from three different genera display significant differences in patterns of pathgen-induced mortality as well as the magnitude and temporal dynamics of infection load. We exposed amphibians to one of four inoculation dose treatments at both larval and post- metamorphic stages and quantified infection load on day 8 and day 15 post-inoculation. Of the three species examined, only one (the Pacific treefrog; Pseudacris regilla displayed "dose-dependent" responses; survival was reduced and infection load was elevated as inoculation dose was increased. We observed a reduction in survival but no differences in infection load across pathogen treatments in Cascades frogs (Rana cascadae. Western toads (Anaxyrus boreas displayed differences in infection load but no differences in survival across pathogen treatments. Within species, responses to the pathogen varied with life history stage, and the most heavily infected species at the larval stage was different from the most heavily infected species at the post-metamorphic stage. Temporal changes in infection load were species and life history stage-specific. We show that variation in susceptibility to this multi-host pathogen is complex when viewed at a fine-scale and may be mediated through intrinsic host traits.

  18. First evidence of amphibian chytrid fungus (Batrachochytrium dendrobatidis) and ranavirus in Hong Kong amphibian trade.

    Science.gov (United States)

    Kolby, Jonathan E; Smith, Kristine M; Berger, Lee; Karesh, William B; Preston, Asa; Pessier, Allan P; Skerratt, Lee F

    2014-01-01

    The emerging infectious amphibian diseases caused by amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) and ranaviruses are responsible for global amphibian population declines and extinctions. Although likely to have been spread by a variety of activities, transcontinental dispersal appears closely associated with the international trade in live amphibians. The territory of Hong Kong reports frequent, high volume trade in amphibians, and yet the presence of Bd and ranavirus have not previously been detected in either traded or free-ranging amphibians. In 2012, a prospective surveillance project was conducted to investigate the presence of these pathogens in commercial shipments of live amphibians exported from Hong Kong International Airport. Analysis of skin (Bd) and cloacal (ranavirus) swabs by quantitative PCR detected pathogen presence in 31/265 (11.7%) and in 105/185 (56.8%) of amphibians, respectively. In addition, the water in which animals were transported tested positive for Bd, demonstrating the risk of pathogen pollution by the disposal of untreated wastewater. It is uncertain whether Bd and ranavirus remain contained within Hong Kong's trade sector, or if native amphibians have already been exposed. Rapid response efforts are now urgently needed to determine current pathogen distribution in Hong Kong, evaluate potential trade-associated exposure to free-ranging amphibians, and identify opportunities to prevent disease establishment.

  19. First evidence of amphibian chytrid fungus (Batrachochytrium dendrobatidis and ranavirus in Hong Kong amphibian trade.

    Directory of Open Access Journals (Sweden)

    Jonathan E Kolby

    Full Text Available The emerging infectious amphibian diseases caused by amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd and ranaviruses are responsible for global amphibian population declines and extinctions. Although likely to have been spread by a variety of activities, transcontinental dispersal appears closely associated with the international trade in live amphibians. The territory of Hong Kong reports frequent, high volume trade in amphibians, and yet the presence of Bd and ranavirus have not previously been detected in either traded or free-ranging amphibians. In 2012, a prospective surveillance project was conducted to investigate the presence of these pathogens in commercial shipments of live amphibians exported from Hong Kong International Airport. Analysis of skin (Bd and cloacal (ranavirus swabs by quantitative PCR detected pathogen presence in 31/265 (11.7% and in 105/185 (56.8% of amphibians, respectively. In addition, the water in which animals were transported tested positive for Bd, demonstrating the risk of pathogen pollution by the disposal of untreated wastewater. It is uncertain whether Bd and ranavirus remain contained within Hong Kong's trade sector, or if native amphibians have already been exposed. Rapid response efforts are now urgently needed to determine current pathogen distribution in Hong Kong, evaluate potential trade-associated exposure to free-ranging amphibians, and identify opportunities to prevent disease establishment.

  20. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians.

    Science.gov (United States)

    Martel, An; Spitzen-van der Sluijs, Annemarieke; Blooi, Mark; Bert, Wim; Ducatelle, Richard; Fisher, Matthew C; Woeltjes, Antonius; Bosman, Wilbert; Chiers, Koen; Bossuyt, Franky; Pasmans, Frank

    2013-09-17

    The current biodiversity crisis encompasses a sixth mass extinction event affecting the entire class of amphibians. The infectious disease chytridiomycosis is considered one of the major drivers of global amphibian population decline and extinction and is thought to be caused by a single species of aquatic fungus, Batrachochytrium dendrobatidis. However, several amphibian population declines remain unexplained, among them a steep decrease in fire salamander populations (Salamandra salamandra) that has brought this species to the edge of local extinction. Here we isolated and characterized a unique chytrid fungus, Batrachochytrium salamandrivorans sp. nov., from this salamander population. This chytrid causes erosive skin disease and rapid mortality in experimentally infected fire salamanders and was present in skin lesions of salamanders found dead during the decline event. Together with the closely related B. dendrobatidis, this taxon forms a well-supported chytridiomycete clade, adapted to vertebrate hosts and highly pathogenic to amphibians. However, the lower thermal growth preference of B. salamandrivorans, compared with B. dendrobatidis, and resistance of midwife toads (Alytes obstetricans) to experimental infection with B. salamandrivorans suggest differential niche occupation of the two chytrid fungi.

  1. Early 1900 s detection of Batrachochytrium dendrobatidis in Korean amphibians.

    Science.gov (United States)

    Fong, Jonathan J; Cheng, Tina L; Bataille, Arnaud; Pessier, Allan P; Waldman, Bruce; Vredenburg, Vance T

    2015-01-01

    The pathogenic fungus Batrachochytrium dendrobatidis (Bd) is a major conservation concern because of its role in decimating amphibian populations worldwide. We used quantitative PCR to screen 244 museum specimens from the Korean Peninsula, collected between 1911 and 2004, for the presence of Bd to gain insight into its history in Asia. Three specimens of Rugosa emeljanovi (previously Rana or Glandirana rugosa), collected in 1911 from Wonsan, North Korea, tested positive for Bd. Histology of these positive specimens revealed mild hyperkeratosis - a non-specific host response commonly found in Bd-infected frogs - but no Bd zoospores or zoosporangia. Our results indicate that Bd was present in Korea more than 100 years ago, consistent with hypotheses suggesting that Korean amphibians may be infected by endemic Asian Bd strains.

  2. Duplex real-time PCR for rapid simultaneous detection of Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans in Amphibian samples.

    Science.gov (United States)

    Blooi, M; Pasmans, F; Longcore, J E; Spitzen-van der Sluijs, A; Vercammen, F; Martel, A

    2013-12-01

    Chytridiomycosis is a lethal fungal disease contributing to declines and extinctions of amphibian species worldwide. The currently used molecular screening tests for chytridiomycosis fail to detect the recently described species Batrachochytrium salamandrivorans. In this study, we present a duplex real-time PCR that allows the simultaneous detection of B. salamandrivorans and Batrachochytrium dendrobatidis. With B. dendrobatidis- and B. salamandrivorans-specific primers and probes, detection of the two pathogens in amphibian samples is possible, with a detection limit of 0.1 genomic equivalent of zoospores of both pathogens per PCR. The developed real-time PCR shows high degrees of specificity and sensitivity, high linear correlations (r(2) > 0.995), and high amplification efficiencies (>94%) for B. dendrobatidis and B. salamandrivorans. In conclusion, the described duplex real-time PCR can be used to detect DNA of B. dendrobatidis and B. salamandrivorans with highly reproducible and reliable results.

  3. Presence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in native amphibians exported from Madagascar.

    Directory of Open Access Journals (Sweden)

    Jonathan E Kolby

    Full Text Available The emerging infectious disease chytridiomycosis is driven by the spread of amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd, a highly virulent pathogen threatening global amphibian biodiversity. Although pandemic in distribution, previous intensive field surveys have failed to detect Bd in Madagascar, a biodiversity hotspot home to hundreds of endemic amphibian species. Due to the presence of Bd in nearby continental Africa and the ecological crisis that can be expected following establishment in Madagascar, enhanced surveillance is imperative. I sampled 565 amphibians commercially exported from Madagascar for the presence of Bd upon importation to the USA, both to assist early detection efforts and demonstrate the conservation potential of wildlife trade disease surveillance. Bd was detected in three animals via quantitative PCR: a single Heterixalus alboguttatus, Heterixalus betsileo, and Scaphiophryne spinosa. This is the first time Bd has been confirmed in amphibians from Madagascar and presents an urgent call to action. Our early identification of pathogen presence prior to widespread infection provides the necessary tools and encouragement to catalyze a swift, targeted response to isolate and eradicate Bd from Madagascar. If implemented before establishment occurs, an otherwise likely catastrophic decline in amphibian biodiversity may be prevented.

  4. Presence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in native amphibians exported from Madagascar.

    Science.gov (United States)

    Kolby, Jonathan E

    2014-01-01

    The emerging infectious disease chytridiomycosis is driven by the spread of amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd), a highly virulent pathogen threatening global amphibian biodiversity. Although pandemic in distribution, previous intensive field surveys have failed to detect Bd in Madagascar, a biodiversity hotspot home to hundreds of endemic amphibian species. Due to the presence of Bd in nearby continental Africa and the ecological crisis that can be expected following establishment in Madagascar, enhanced surveillance is imperative. I sampled 565 amphibians commercially exported from Madagascar for the presence of Bd upon importation to the USA, both to assist early detection efforts and demonstrate the conservation potential of wildlife trade disease surveillance. Bd was detected in three animals via quantitative PCR: a single Heterixalus alboguttatus, Heterixalus betsileo, and Scaphiophryne spinosa. This is the first time Bd has been confirmed in amphibians from Madagascar and presents an urgent call to action. Our early identification of pathogen presence prior to widespread infection provides the necessary tools and encouragement to catalyze a swift, targeted response to isolate and eradicate Bd from Madagascar. If implemented before establishment occurs, an otherwise likely catastrophic decline in amphibian biodiversity may be prevented.

  5. Survey for the amphibian chytrid Batrachochytrium dendrobatidis in Hong Kong in native amphibians and in the international amphibian trade.

    Science.gov (United States)

    Rowley, Jodi J L; Chan, Simon Kin Fung; Tang, Wing Sze; Speare, Richard; Skerratt, Lee F; Alford, Ross A; Cheung, Ka Shing; Ho, Ching Yee; Campbell, Ruth

    2007-12-13

    Chytridiomycosis, caused by the pathogen Batrachochytrium dendrobatidis, is responsible for many amphibian declines and has been identified in wild amphibian populations on all continents where they exist, except for Asia. In order to assess whether B. dendrobatidis is present on the native amphibians of Hong Kong, we sampled wild populations of Amolops hongkongensis, Paa exilispinosa, P. spinosa and Rana chloronota during 2005-2006. Amphibians infected with B. dendrobatidis have been found in the international trade, so we also examined the extent and nature of the amphibian trade in Hong Kong during 2005-2006, and assessed whether B. dendrobatidis was present in imported amphibians. All 274 individuals of 4 native amphibian species sampled tested negative for B. dendrobatidis, giving an upper 95% confidence limit for prevalence of 1.3%. Approximately 4.3 million amphibians of 45 species from 11 countries were imported into Hong Kong via air over 12 mo; we did not detect B. dendrobatidis on any of 137 imported amphibians sampled. As B. dendrobatidis generally occurs at greater than 5% prevalence in infected populations during favorable environmental conditions, native amphibians in Hong Kong appear free of B. dendrobatidis, and may be at severe risk of impact if it is introduced. Until it is established that the pathogen is present in Hong Kong, management strategies should focus on preventing it from being imported and decreasing the risk of it escaping into the wild amphibian populations if imported. Further research is needed to determine the status of B. dendrobatidis in Hong Kong with greater certainty.

  6. Expanding Distribution of Lethal Amphibian Fungus Batrachochytrium salamandrivorans in Europe.

    Science.gov (United States)

    Spitzen-van der Sluijs, Annemarieke; Martel, An; Asselberghs, Johan; Bales, Emma K; Beukema, Wouter; Bletz, Molly C; Dalbeck, Lutz; Goverse, Edo; Kerres, Alexander; Kinet, Thierry; Kirst, Kai; Laudelout, Arnaud; Marin da Fonte, Luis F; Nöllert, Andreas; Ohlhoff, Dagmar; Sabino-Pinto, Joana; Schmidt, Benedikt R; Speybroeck, Jeroen; Spikmans, Frank; Steinfartz, Sebastian; Veith, Michael; Vences, Miguel; Wagner, Norman; Pasmans, Frank; Lötters, Stefan

    2016-07-01

    Emerging fungal diseases can drive amphibian species to local extinction. During 2010-2016, we examined 1,921 urodeles in 3 European countries. Presence of the chytrid fungus Batrachochytrium salamandrivorans at new locations and in urodeles of different species expands the known geographic and host range of the fungus and underpins its imminent threat to biodiversity.

  7. Genetic evidence for a high diversity and wide distribution of endemic strains of the pathogenic chytrid fungus Batrachochytrium dendrobatidis in wild Asian amphibians.

    Science.gov (United States)

    Bataille, Arnaud; Fong, Jonathan J; Cha, Moonsuk; Wogan, Guinevere O U; Baek, Hae Jun; Lee, Hang; Min, Mi-Sook; Waldman, Bruce

    2013-08-01

    Population declines and extinctions of amphibians have been attributed to the chytrid fungus Batrachochytrium dendrobatidis (Bd), especially one globally emerging recombinant lineage ('Bd-GPL'). We used PCR assays that target the ribosomal internal transcribed spacer region (ITS) of Bd to determine the prevalence and genetic diversity of Bd in South Korea, where Bd is widely distributed but is not known to cause morbidity or mortality in wild populations. We isolated Korean Bd strains from native amphibians with low infection loads and compared them to known worldwide Bd strains using 19 polymorphic SNP and microsatellite loci. Bd prevalence ranged between 12.5 and 48.0%, in 11 of 17 native Korean species, and 24.7% in the introduced bullfrog Lithobates catesbeianus. Based on ITS sequence variation, 47 of the 50 identified Korean haplotypes formed a group closely associated with a native Brazilian Bd lineage, separated from the Bd-GPL lineage. However, multilocus genotyping of three Korean Bd isolates revealed strong divergence from both Bd-GPL and the native Brazilian Bd lineages. Thus, the ITS region resolves genotypes that diverge from Bd-GPL but otherwise generates ambiguous phylogenies. Our results point to the presence of highly diversified endemic strains of Bd across Asian amphibian species. The rarity of Bd-GPL-associated haplotypes suggests that either this lineage was introduced into Korea only recently or Bd-GPL has been outcompeted by native Bd strains. Our results highlight the need to consider possible complex interactions among native Bd lineages, Bd-GPL and their associated amphibian hosts when assessing the spread and impact of Bd-GPL on worldwide amphibian populations.

  8. Qualitative risk analysis of introducing Batrachochytrium dendrobatidis to the UK through the importation of live amphibians.

    Science.gov (United States)

    Peel, Alison J; Hartley, Matt; Cunningham, Andrew A

    2012-03-20

    The international amphibian trade is implicated in the emergence and spread of the amphibian fungal disease chytridiomycosis, which has resulted in amphibian declines and extinctions globally. The establishment of the causal pathogen, Batrachochytrium dendrobatidis (Bd), in the UK could negatively affect the survival of native amphibian populations. In recognition of the ongoing threat that it poses to amphibians, Bd was recently included in the World Organisation for Animal Health Aquatic Animal Health Code, and therefore is in the list of international notifiable diseases. Using standardised risk analysis guidelines, we investigated the likelihood that Bd would be introduced to and become established in wild amphibians in the UK through the importation of live amphibians. We obtained data on the volume and origin of the amphibian trade entering the UK and detected Bd infection in amphibians being imported for the pet and private collection trade and also in amphibians already held in captive pet, laboratory and zoological collections. We found that current systems for recording amphibian trade into the UK underestimate the volume of non-European Union trade by almost 10-fold. We identified high likelihoods of entry, establishment and spread of Bd in the UK and the resulting major overall impact. Despite uncertainties, we determined that the overall risk estimation for the introduction of Bd to the UK through the importation of live amphibians is high and that risk management measures are required, whilst ensuring that negative effects on legal trade are minimised.

  9. Amphibian chytrid fungus Batrachochytrium dendrobatidis in Cusuco National Park, Honduras.

    Science.gov (United States)

    Kolby, Jonathan E; Padgett-Flohr, Gretchen E; Field, Richard

    2010-11-01

    Amphibian population declines in Honduras have long been attributed to habitat degradation and pollution, but an increasing number of declines are now being observed from within the boundaries of national parks in pristine montane environments. The amphibian chytrid fungus Batrachochytrium dendrobatidis has been implicated in these declines and was recently documented in Honduras from samples collected in Pico Bonito National Park in 2003. This report now confirms Cusuco National Park, a protected cloud forest reserve with reported amphibian declines, to be the second known site of infection for Honduras. B. dendrobatidis infection was detected in 5 amphibian species: Craugastor rostralis, Duellmanohyla soralia, Lithobates maculata, Plectrohyla dasypus, and Ptychohyla hypomykter. D. soralia, P. dasypus, and P. hypomykter are listed as critically endangered in the IUCN Red List of Threatened Species and have severely fragmented or restricted distributions. Further investigations are necessary to determine whether observed infection levels indicate an active B. dendrobatidis epizootic with the potential to cause further population declines and extinction.

  10. Batrachochytrium dendrobatidis prevalence and haplotypes in domestic and imported pet amphibians in Japan.

    Science.gov (United States)

    Tamukai, Kenichi; Une, Yumi; Tominaga, Atsushi; Suzuki, Kazutaka; Goka, Koichi

    2014-05-13

    The international trade in amphibians is believed to have increased the spread of Batrachochytrium dendrobatidis (Bd), the fungal pathogen responsible for chytridiomycosis, which has caused a rapid decline in amphibian populations worldwide. We surveyed amphibians imported into Japan and those held in captivity for a long period or bred in Japan to clarify the Bd infection status. Samples were taken from 820 individuals of 109 amphibian species between 2008 and 2011 and were analyzed by a nested-PCR assay. Bd prevalence in imported amphibians was 10.3% (58/561), while it was 6.9% (18/259) in those in private collections and commercially bred amphibians in Japan. We identified the genotypes of this fungus using partial DNA sequences of the internal transcribed spacer (ITS) region. Sequencing of PCR products of all 76 Bd-positive samples revealed 11 haplotypes of the Bd ITS region. Haplotype A (DNA Data Bank of Japan accession number AB435211) was found in 90% (52/58) of imported amphibians. The results show that Bd is currently entering Japan via the international trade in exotic amphibians as pets, suggesting that the trade has indeed played a major role in the spread of Bd.

  11. Effects of an infectious fungus, Batrachochytrium dendrobatidis, on amphibian predator-prey interactions.

    Directory of Open Access Journals (Sweden)

    Barbara A Han

    Full Text Available The effects of parasites and pathogens on host behaviors may be particularly important in predator-prey contexts, since few animal behaviors are more crucial for ensuring immediate survival than the avoidance of lethal predators in nature. We examined the effects of an emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis, on anti-predator behaviors of tadpoles of four frog species. We also investigated whether amphibian predators consumed infected prey, and whether B. dendrobatidis caused differences in predation rates among prey in laboratory feeding trials. We found differences in anti-predator behaviors among larvae of four amphibian species, and show that infected tadpoles of one species (Anaxyrus boreas were more active and sought refuge more frequently when exposed to predator chemical cues. Salamander predators consumed infected and uninfected tadpoles of three other prey species at similar rates in feeding trials, and predation risk among prey was unaffected by B. dendrobatidis. Collectively, our results show that even sub-lethal exposure to B. dendrobatidis can alter fundamental anti-predator behaviors in some amphibian prey species, and suggest the unexplored possibility that indiscriminate predation between infected and uninfected prey (i.e., non-selective predation could increase the prevalence of this widely distributed pathogen in amphibian populations. Because one of the most prominent types of predators in many amphibian systems is salamanders, and because salamanders are susceptible to B. dendrobatidis, our work suggests the importance of considering host susceptibility and behavioral changes that could arise from infection in both predators and prey.

  12. Why does Amphibian Chytrid (Batrachochytrium dendrobatidis) not occur everywhere? An exploratory study in Missouri ponds.

    Science.gov (United States)

    Strauss, Alex; Smith, Kevin G

    2013-01-01

    The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), is a globally emerging pathogen that has caused widespread amphibian population declines, extirpations, and extinctions. However, Bd does not occur in all apparently suitable amphibian populations, even within regions where it is widespread, and it is often unclear why Bd occurs in some habitats but not others. In this study, we rigorously surveyed the amphibian and invertebrate biodiversity of 29 ponds in Missouri, screened resident amphibian larvae (Rana (Lithobates) sp.) for Bd infection, and characterized the aquatic physiochemical environment of each pond (temperature pH, conductivity, nitrogen, phosphorus, and chlorophyll-a). Our goal was to generate hypotheses toward answering the question, "Why does Bd not occur in all apparently suitable habitats?" Bd occurred in assayed amphibians in 11 of the 29 ponds in our study area (38% of ponds). We found no significant relationship between any single biotic or abiotic variable and presence of Bd. However, multivariate analyses (nonmetric multidimensional scaling and permutational tests of dispersion) revealed that ponds in which Bd occurred were a restricted subset of all ponds in terms of amphibian community structure, macroinvertebrate community structure, and pond physiochemistry. In other words, Bd ponds from 6 different conservation areas were more similar to each other than would be expected based on chance. The results of a structural equation model suggest that patterns in the occurrence of Bd among ponds are primarily attributable to variation in macroinvertebrate community structure. When combined with recent results showing that Bd can infect invertebrates as well as amphibians, we suggest that additional research should focus on the role played by non-amphibian biota in determining the presence, prevalence, and pathogenicity of Bd in amphibian populations.

  13. Why does Amphibian Chytrid (Batrachochytrium dendrobatidis not occur everywhere? An exploratory study in Missouri ponds.

    Directory of Open Access Journals (Sweden)

    Alex Strauss

    Full Text Available The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd, is a globally emerging pathogen that has caused widespread amphibian population declines, extirpations, and extinctions. However, Bd does not occur in all apparently suitable amphibian populations, even within regions where it is widespread, and it is often unclear why Bd occurs in some habitats but not others. In this study, we rigorously surveyed the amphibian and invertebrate biodiversity of 29 ponds in Missouri, screened resident amphibian larvae (Rana (Lithobates sp. for Bd infection, and characterized the aquatic physiochemical environment of each pond (temperature pH, conductivity, nitrogen, phosphorus, and chlorophyll-a. Our goal was to generate hypotheses toward answering the question, "Why does Bd not occur in all apparently suitable habitats?" Bd occurred in assayed amphibians in 11 of the 29 ponds in our study area (38% of ponds. We found no significant relationship between any single biotic or abiotic variable and presence of Bd. However, multivariate analyses (nonmetric multidimensional scaling and permutational tests of dispersion revealed that ponds in which Bd occurred were a restricted subset of all ponds in terms of amphibian community structure, macroinvertebrate community structure, and pond physiochemistry. In other words, Bd ponds from 6 different conservation areas were more similar to each other than would be expected based on chance. The results of a structural equation model suggest that patterns in the occurrence of Bd among ponds are primarily attributable to variation in macroinvertebrate community structure. When combined with recent results showing that Bd can infect invertebrates as well as amphibians, we suggest that additional research should focus on the role played by non-amphibian biota in determining the presence, prevalence, and pathogenicity of Bd in amphibian populations.

  14. Baseline Population Inventory of Amphibians on the Mountain Longleaf National Wildlife Refuge and Screening for the Amphibian Disease Batrachochytrium dendrobatidis

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — From July of 2012 to June of 2013, we conducted baseline inventories for amphibians and sampled for the disease Batrachochytrium dendrobatidis on the Mountain...

  15. Endemic and introduced haplotypes of Batrachochytrium dendrobatidis in Japanese amphibians: sink or source?

    Science.gov (United States)

    Fisher, Matthew C

    2009-12-01

    The global emergence of the amphibian chytrid pathogen Batrachochytrium dendrobatidis (Bd) is one of the most compelling, and troubling, examples of a panzootic. Only discovered in 1998, Bd is now recognized as a proximate driver of global declines in amphibian diversity and is now widely acknowledged as a key threatening process for this ancient class of vertebrates. Moreover, Bd has become a member of a small group of highly virulent multihost pathogens that are known to have had effects on entire vertebrate communities and the ecosystem-level effects of Bd-driven amphibian declines are starting to emerge as a consequence of regional decreases in amphibian diversity. Despite the speed at which this species of aquatic chytrid has become a focus of research efforts, major questions still exist about where Bd originated, how it spreads, where it occurs and what are Bd's effects on populations and species inhabiting different regions and biomes. In this issue, Goka et al. (2009) make an important contribution by publishing the first nationwide surveillance for Bd in Asia. Although previous data had suggested that amphibians in Asia are largely uninfected by Bd, these surveys were limited in their extent and few firm conclusions could be drawn about the true extent of infection. Goka et al. herein describe a systematic surveillance of Japan for both native and exotic species in the wild, as well as amphibians housed in captivity, using a Bd-specific nested PCR reaction on a sample of over 2600 amphibians. Their results show that Bd is widely prevalent in native species across Japan in at least three of the islands that make up the archipelago, proving for the first time that Asia harbours Bd.

  16. Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus.

    Science.gov (United States)

    Olson, Deanna H; Aanensen, David M; Ronnenberg, Kathryn L; Powell, Christopher I; Walker, Susan F; Bielby, Jon; Garner, Trenton W J; Weaver, George; Fisher, Matthew C

    2013-01-01

    The rapid worldwide emergence of the amphibian pathogen Batrachochytrium dendrobatidis (Bd) is having a profound negative impact on biodiversity. However, global research efforts are fragmented and an overarching synthesis of global infection data is lacking. Here, we provide results from a community tool for the compilation of worldwide Bd presence and report on the analyses of data collated over a four-year period. Using this online database, we analysed: 1) spatial and taxonomic patterns of infection, including amphibian families that appear over- and under-infected; 2) relationships between Bd occurrence and declining amphibian species, including associations among Bd occurrence, species richness, and enigmatic population declines; and 3) patterns of environmental correlates with Bd, including climate metrics for all species combined and three families (Hylidae, Bufonidae, Ranidae) separately, at both a global scale and regional (U.S.A.) scale. These associations provide new insights for downscaled hypothesis testing. The pathogen has been detected in 52 of 82 countries in which sampling was reported, and it has been detected in 516 of 1240 (42%) amphibian species. We show that detected Bd infections are related to amphibian biodiversity and locations experiencing rapid enigmatic declines, supporting the hypothesis that greater complexity of amphibian communities increases the likelihood of emergence of infection and transmission of Bd. Using a global model including all sampled species, the odds of Bd detection decreased with increasing temperature range at a site. Further consideration of temperature range, rather than maximum or minimum temperatures, may provide new insights into Bd-host ecology. Whereas caution is necessary when interpreting such a broad global dataset, the use of our pathogen database is helping to inform studies of the epidemiology of Bd, as well as enabling regional, national, and international prioritization of conservation efforts. We

  17. Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus.

    Directory of Open Access Journals (Sweden)

    Deanna H Olson

    Full Text Available The rapid worldwide emergence of the amphibian pathogen Batrachochytrium dendrobatidis (Bd is having a profound negative impact on biodiversity. However, global research efforts are fragmented and an overarching synthesis of global infection data is lacking. Here, we provide results from a community tool for the compilation of worldwide Bd presence and report on the analyses of data collated over a four-year period. Using this online database, we analysed: 1 spatial and taxonomic patterns of infection, including amphibian families that appear over- and under-infected; 2 relationships between Bd occurrence and declining amphibian species, including associations among Bd occurrence, species richness, and enigmatic population declines; and 3 patterns of environmental correlates with Bd, including climate metrics for all species combined and three families (Hylidae, Bufonidae, Ranidae separately, at both a global scale and regional (U.S.A. scale. These associations provide new insights for downscaled hypothesis testing. The pathogen has been detected in 52 of 82 countries in which sampling was reported, and it has been detected in 516 of 1240 (42% amphibian species. We show that detected Bd infections are related to amphibian biodiversity and locations experiencing rapid enigmatic declines, supporting the hypothesis that greater complexity of amphibian communities increases the likelihood of emergence of infection and transmission of Bd. Using a global model including all sampled species, the odds of Bd detection decreased with increasing temperature range at a site. Further consideration of temperature range, rather than maximum or minimum temperatures, may provide new insights into Bd-host ecology. Whereas caution is necessary when interpreting such a broad global dataset, the use of our pathogen database is helping to inform studies of the epidemiology of Bd, as well as enabling regional, national, and international prioritization of conservation

  18. Batrachochytrium dendrobatidis in amphibians of Cameroon, including first records for caecilians.

    Science.gov (United States)

    Doherty-Bone, T M; Gonwouo, N L; Hirschfeld, M; Ohst, T; Weldon, C; Perkins, M; Kouete, M T; Browne, R K; Loader, S P; Gower, D J; Wilkinson, M W; Rödel, M O; Penner, J; Barej, M F; Schmitz, A; Plötner, J; Cunningham, A A

    2013-02-28

    Amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has been hypothesised to be an indigenous parasite of African amphibians. In Cameroon, however, previous surveys in one region (in the northwest) failed to detect this pathogen, despite the earliest African Bd having been recorded from a frog in eastern Cameroon, plus one recent record in the far southeast. To reconcile these contrasting results, we present survey data from 12 localities across 6 regions of Cameroon from anurans (n = 1052) and caecilians (n = 85) of ca. 108 species. Bd was detected in 124 amphibian hosts at 7 localities, including Mt. Oku, Mt. Cameroon, Mt. Manengouba and lowland localities in the centre and west of the country. None of the hosts were observed dead or dying. Infected amphibian hosts were not detected in other localities in the south and eastern rainforest belt. Infection occurred in both anurans and caecilians, making this the first reported case of infection in the latter order (Gymnophiona) of amphibians. There was no significant difference between prevalence and infection intensity in frogs and caecilians. We highlight the importance of taking into account the inhibition of diagnostic qPCR in studies on Bd, based on all Bd-positive hosts being undetected when screened without bovine serum albumin in the qPCR mix. The status of Bd as an indigenous, cosmopolitan amphibian parasite in Africa, including Cameroon, is supported by this work. Isolating and sequencing strains of Bd from Cameroon should now be a priority. Longitudinal host population monitoring will be required to determine the effects, if any, of the infection on amphibians in Cameroon.

  19. Presence and significance of chytrid fungus Batrachochytrium dendrobatidis and other amphibian pathogens at warm-water fish hatcheries in southeastern North America

    Science.gov (United States)

    Green, D. Earl; Dodd, C. Kenneth

    2007-01-01

    Amphibian populations and species are declining or disappearing from many regions throughout the world (Stuart et al. 2004). No single cause has been demonstrated, although a number of emerging infectious diseases have been suggested as primary etiologic agents (Berger et al. 1998; Daszak et al. 2003; Lips et al. 2006). Several factors, including climate change, parasite infestation or compromised immune systems may interact locally or regionally to threaten species and populations (Carey and Bryant 1995; Parris and Beaudoin 2004; Pounds et al. 2006). Still, the disease model of amphibian decline may not be universally applicable (Daszak et al. 2005; McCallum 2005).

  20. Presence of amphibian chytrid fungus (Batrachochytrium dendrobatidis) in rainwater suggests aerial dispersal is possible

    Science.gov (United States)

    Kolby, Jonathan E.; Sara D. Ramirez,; Lee Berger,; Griffin, Dale W.; Merlijn Jocque,; Lee F. Skerratt,

    2015-01-01

    Abstract Global spread of the pathogenic amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) may involve dispersal mechanisms not previously explored. Weather systems accompanied by strong wind and rainfall have been known to assist the dispersal of microbes pathogenic to plants and animals, and we considered a similar phenomenon might occur with Bd. We investigated this concept by sampling rainwater from 20 precipitation events for the presence of Bd in Cusuco National Park, Honduras: a site where high Bd prevalence was previously detected in stream-associated amphibians. Quantitative PCR analysis confirmed the presence of Bd in rainwater in one (5 %) of the weather events sampled, although viability cannot be ascertained from molecular presence alone. The source of the Bd and distance that the contaminated rainwater traveled could not be determined; however, this collection site was located approximately 600 m from the nearest observed perennial river by straight-line aerial distance. Although our results suggest atmospheric Bd dispersal is uncommon and unpredictable, even occasional short-distance aerial transport could considerably expand the taxonomic diversity of amphibians vulnerable to exposure and at risk of decline, including terrestrial and arboreal species that are not associated with permanent water bodies.

  1. Pathogenic chytrid fungus Batrachochytrium dendrobatidis, but not B. salamandrivorans, detected on eastern hellbenders.

    Directory of Open Access Journals (Sweden)

    Emma K Bales

    Full Text Available Recent worldwide declines and extinctions of amphibian populations have been attributed to chytridiomycosis, a disease caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd. Until recently, Bd was thought to be the only Batrachochytrium species that infects amphibians; however a newly described species, Batrachochytrium salamandrivorans (Bs, is linked to die-offs in European fire salamanders (Salamandra salamandra. Little is known about the distribution, host range, or origin of Bs. In this study, we surveyed populations of an aquatic salamander that is declining in the United States, the eastern hellbender (Cryptobranchus alleganiensis alleganiensis, for the presence of Bs and Bd. Skin swabs were collected from a total of 91 individuals in New York, Pennsylvania, Ohio, and Virginia, and tested for both pathogens using duplex qPCR. Bs was not detected in any samples, suggesting it was not present in these hellbender populations (0% prevalence, 95% confidence intervals of 0.0-0.04. Bd was found on 22 hellbenders (24% prevalence, 95% confidence intervals of 0.16 ≤ 0.24 ≤ 0.34, representing all four states. All positive samples had low loads of Bd zoospores (12.7 ± 4.9 S.E.M. genome equivalents compared to other Bd susceptible species. More research is needed to determine the impact of Batrachochytrium infection on hellbender fitness and population viability. In particular, understanding how hellbenders limit Bd infection intensity in an aquatic environment may yield important insights for amphibian conservation. This study is among the first to evaluate the distribution of Bs in the United States, and is consistent with another, which failed to detect Bs in the U.S. Knowledge about the distribution, host-range, and origin of Bs may help control the spread of this pathogen, especially to regions of high salamander diversity, such as the eastern United States.

  2. Pathogenic chytrid fungus Batrachochytrium dendrobatidis, but not B. salamandrivorans, detected on eastern hellbenders.

    Science.gov (United States)

    Bales, Emma K; Hyman, Oliver J; Loudon, Andrew H; Harris, Reid N; Lipps, Gregory; Chapman, Eric; Roblee, Kenneth; Kleopfer, John D; Terrell, Kimberly A

    2015-01-01

    Recent worldwide declines and extinctions of amphibian populations have been attributed to chytridiomycosis, a disease caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). Until recently, Bd was thought to be the only Batrachochytrium species that infects amphibians; however a newly described species, Batrachochytrium salamandrivorans (Bs), is linked to die-offs in European fire salamanders (Salamandra salamandra). Little is known about the distribution, host range, or origin of Bs. In this study, we surveyed populations of an aquatic salamander that is declining in the United States, the eastern hellbender (Cryptobranchus alleganiensis alleganiensis), for the presence of Bs and Bd. Skin swabs were collected from a total of 91 individuals in New York, Pennsylvania, Ohio, and Virginia, and tested for both pathogens using duplex qPCR. Bs was not detected in any samples, suggesting it was not present in these hellbender populations (0% prevalence, 95% confidence intervals of 0.0-0.04). Bd was found on 22 hellbenders (24% prevalence, 95% confidence intervals of 0.16 ≤ 0.24 ≤ 0.34), representing all four states. All positive samples had low loads of Bd zoospores (12.7 ± 4.9 S.E.M. genome equivalents) compared to other Bd susceptible species. More research is needed to determine the impact of Batrachochytrium infection on hellbender fitness and population viability. In particular, understanding how hellbenders limit Bd infection intensity in an aquatic environment may yield important insights for amphibian conservation. This study is among the first to evaluate the distribution of Bs in the United States, and is consistent with another, which failed to detect Bs in the U.S. Knowledge about the distribution, host-range, and origin of Bs may help control the spread of this pathogen, especially to regions of high salamander diversity, such as the eastern United States.

  3. Batrachochytrium dendrobatidis infection of amphibians in the Doñana National Park, Spain.

    Science.gov (United States)

    Hidalgo-Vila, Judit; Díaz-Paniagua, Carmen; Marchand, Marc A; Cunningham, Andrew A

    2012-03-20

    Amphibian chytridiomycosis, caused by infection with the non-hyphal, zoosporic chytrid fungus Batrachochytrium dendrobatidis (Bd), is an emerging infectious disease recognised as a cause of recent amphibian population declines and extinctions worldwide. The Doñana National Park (DNP) is located in southwestern Spain, a country with widespread Bd infection. This protected area has a great diversity of aquatic habitats that constitute important breeding habitats for 11 native amphibian species. We sampled 625 amphibians in December 2007 and February to March 2008, months that correspond to the early and intermediate breeding seasons for amphibians, respectively. We found 7 of 9 sampled species to be infected with Bd and found differences in prevalence between sampling periods. Although some amphibians tested had higher intensities of infection than others, all animals sampled were apparently healthy and, so far, there has been no evidence of either unusually high rates of mortality or amphibian population declines in the DNP.

  4. First survey for the amphibian chytrid fungus Batrachochytrium dendrobatidis in Connecticut (USA) finds widespread prevalence.

    Science.gov (United States)

    Richards-Hrdlicka, Kathryn L; Richardson, Jonathan L; Mohabir, Leon

    2013-02-28

    The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) is an emerging infectious fungal pathogen of amphibians and is linked to global population declines. Until now, there has only been 1 survey for the fungus in the northeastern USA, which focused primarily on northern New England. We tested for Bd in a large number of samples (916 individuals from 116 sites) collected throughout the state of Connecticut, representing 18 native amphibian species. In addition, 239 preserved wood frog Lithobates sylvaticus tadpoles from throughout the state were screened for the fungus. Bd presence was assessed in both the fresh field swabs and the preserved samples using a sensitive quantitative PCR assay. Our contemporary survey found widespread Bd prevalence throughout Connecticut, occurring in 14 species and in 28% of all sampled animals. No preserved L. sylvaticus specimens tested positive for the fungus. Two common species, bullfrogs R. catesbeiana and green frogs R. clamitans had particularly high infection rates (0.21-0.39 and 0.33-0.42, respectively), and given their wide distribution throughout the state, we suggest they may serve as sentinels for Bd occurrence in this region. Further analyses found that several other factors increase the likelihood of infection, including life stage, host sex, and host family. Within sites, ponds with ranids, especially green frogs, increased the likelihood of Bd prevalence. By studying Bd in populations not facing mass declines, the results from this study are an important contribution to our understanding of how some amphibian species and populations remain infected yet exhibit no signs of chytridiomycosis even when Bd is widely distributed.

  5. Spatial assessment of amphibian chytrid fungus (Batrachochytrium dendrobatidis in South Africa confirms endemic and widespread infection.

    Directory of Open Access Journals (Sweden)

    Jeanne Tarrant

    Full Text Available Chytridiomycosis has been identified as a major cause of global amphibian declines. Despite widespread evidence of Batrachochytrium dendrobatidis infection in South African frogs, sampling for this disease has not focused on threatened species, or whether this pathogen poses a disease risk to these species. This study assessed the occurrence of Bd-infection in South African Red List species. In addition, all known records of infection from South Africa were used to model the ecological niche of Bd to provide a better understanding of spatial patterns and associated disease risk. Presence and prevalence of Bd was determined through quantitative real-time PCR of 360 skin swab samples from 17 threatened species from 38 sites across the country. Average prevalence was 14.8% for threatened species, with pathogen load varying considerably between species. MaxEnt was used to model the predicted distribution of Bd based on 683 positive records for South Africa. The resultant probability threshold map indicated that Bd is largely restricted to the wet eastern and coastal regions of South Africa. A lack of observed adverse impacts on wild threatened populations supports the endemic pathogen hypothesis for southern Africa. However, all threatened species occur within the limits of the predicted distribution for Bd, exposing them to potential Bd-associated risk factors. Predicting pathogen distribution patterns and potential impact is increasingly important for prioritising research and guiding management decisions.

  6. The amphibian chytrid fungus, Batrachochytrium dendrobatidis, in fully aquatic salamanders from Southeastern North America.

    Science.gov (United States)

    Chatfield, Matthew W H; Moler, Paul; Richards-Zawacki, Corinne L

    2012-01-01

    Little is known about the impact that the pathogenic amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), has on fully aquatic salamander species of the eastern United States. As a first step in determining the impacts of Bd on these species, we aimed to determine the prevalence of Bd in wild populations of fully aquatic salamanders in the genera Amphiuma, Necturus, Pseudobranchus, and Siren. We sampled a total of 98 salamanders, representing nine species from sites in Florida, Mississippi, and Louisiana. Overall, infection prevalence was found to be 0.34, with significant differences among genera but no clear geographic pattern. We also found evidence for seasonal variation, but additional sampling throughout the year is needed to clarify this pattern. The high rate of infection discovered in this study is consistent with studies of other amphibians from the southeastern United States. Coupled with previously published data on life histories and population densities, the results presented here suggest that fully aquatic salamanders may be serving as important vectors of Bd and the interaction between these species and Bd warrants additional research.

  7. Parallels in amphibian and bat declines from pathogenic fungi.

    Science.gov (United States)

    Eskew, Evan A; Todd, Brian D

    2013-03-01

    Pathogenic fungi have substantial effects on global biodiversity, and 2 emerging pathogenic species-the chytridiomycete Batrachochytrium dendrobatidis, which causes chytridiomycosis in amphibians, and the ascomycete Geomyces destructans, which causes white-nose syndrome in hibernating bats-are implicated in the widespread decline of their vertebrate hosts. We synthesized current knowledge for chytridiomycosis and white-nose syndrome regarding disease emergence, environmental reservoirs, life history characteristics of the host, and host-pathogen interactions. We found striking similarities between these aspects of chytridiomycosis and white-nose syndrome, and the research that we review and propose should help guide management of future emerging fungal diseases.

  8. Environmental determinants of recent endemism of Batrachochytrium dendrobatidis infections in amphibian assemblages in the absence of disease outbreaks.

    Science.gov (United States)

    Spitzen-Van Der Sluijs, Annemarieke; Martel, An; Hallmann, Caspar A; Bosman, Wilbert; Garner, Trenton W J; Van Rooij, Pascale; Jooris, Robert; Haesebrouck, Freddy; Pasmans, Frank

    2014-10-01

    The inconsistent distribution of large-scale infection mediated die-offs and the subsequent population declines of several animal species, urges us to understand how, when, and why species are affected by disease. It is often unclear when or under what conditions a pathogen constitutes a threat to a host. Often, variation of environmental conditions plays a role. Globally Batrachochytrium dendrobatidis (Bd) causes amphibian declines; however, host responses are inconsistent and this fungus appears equally capable of reaching a state of endemism and subsequent co-existence with native amphibian assemblages. We sought to identify environmental and temporal factors that facilitate host-pathogen coexistence in northern Europe. To do this, we used molecular diagnostics to examine archived and wild amphibians for infection and general linear mixed models to explore relationships between environmental variables and prevalence of infection in 5 well-sampled amphibian species. We first detected infection in archived animals collected in 1999, and infection was ubiquitous, but rare, throughout the study period (2008-2010). Prevalence of infection exhibited significant annual fluctuations. Despite extremely rare cases of lethal chytridiomycosis in A. obstetricans, Bd prevalence was uncorrelated with this species' population growth. Our results suggest context dependent and species-specific host susceptibility. Thus, we believe recent endemism of Bd coincides with environmentally driven Bd prevalence fluctuations that preclude the build-up of Bd infection beyond the critical threshold for large-scale mortality and host population crashes.

  9. Characterization of the first Batrachochytrium dendrobatidis isolate from the Colombian Andes, an amphibian biodiversity hotspot.

    Science.gov (United States)

    Flechas, S V; Medina, E M; Crawford, A J; Sarmiento, C; Cárdenas, M E; Amézquita, A; Restrepo, S

    2013-03-01

    The pathogenic chytrid fungus, Batrachochytrium dendrobatidis (Bd), constitutes a significant threat to more than 790 amphibian species occurring in Colombia. To date there is no molecular or morphological description of strains infecting Colombian populations. Here we report the genetic and morphological characterization of the first Colombian isolate of Bd (strain EV001). Our goals were threefold: (1) to characterize the morphology of EV001 using light and scanning electron microscopy, (2) to genotype this strain by direct sequencing of 17 polymorphic nuclear markers developed previously, and (3) to compare our findings with published reports on strains from other areas of the globe. We found that EV001 is morphologically consistent with previously described strains. Multi-locus genotyping suggested that EV001 is grouped genetically with Panamanian strains and is most similar to strain JEL203 isolated from a captive individual. This finding fills an important gap in our knowledge of Neotropical strains of Bd and provides a baseline for further evolutionary and functional analyses.

  10. Prevalence of the amphibian chytrid fungus (Batrachochytrium dendrobatidis) at Buenos Aires National Wildlife Refuge, Arizona, USA

    Science.gov (United States)

    Sigafus, Brent H.; Hossack, Blake R.; Muths, Erin L.; Schwalbe, Cecil R.

    2014-01-01

    Information on disease presence can be of use to natural resource managers, especially in areas supporting threatened and endangered species that occur coincidentally with species that are suspected vectors for disease. Ad hoc reports may be of limited utility (Muths et al. 2009), but a general sense of pathogen presence (or absence) can inform management directed at T&E species, especially in regions where disease is suspected to have caused population declines (Bradley et al. 2002). The Chiricahua Leopard Frog (Lithobates chiricahuensis), a species susceptible to infection by the amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) (Bradley et al. 2002), and the non-native, invasive American Bullfrog (L. catesbeianus), a suspected vector for chytridiomycosis (Schloegel et al. 2012, Gervasi et al. 2013), both occur at Buenos Aires National Wildlife Refuge (BANWR) and surrounding lands in southern Arizona. Efforts to eradicate the bullfrog from BANWR began in 1997 (Suhre, 2010). Eradication from the southern portion of BANWR was successful by 2008 but the bullfrog remains present at the Arivaca Cienega and in areas immediately adjacent to the refuge (Fig. 1). Curtailing the re-invasion of the bullfrog into BANWR will require vigilance as to ensure the health of Chiricahua Leopard Frog populations.

  11. Immune defenses against Batrachochytrium dendrobatidis, a fungus linked to global amphibian declines, in the South African clawed frog, Xenopus laevis.

    Science.gov (United States)

    Ramsey, Jeremy P; Reinert, Laura K; Harper, Laura K; Woodhams, Douglas C; Rollins-Smith, Louise A

    2010-09-01

    Batrachochytrium dendrobatidis is a chytrid fungus that causes the lethal skin disease chytridiomycosis in amphibians. It is regarded as an emerging infectious disease affecting diverse amphibian populations in many parts of the world. Because there are few model amphibian species for immunological studies, little is known about immune defenses against B. dendrobatidis. We show here that the South African clawed frog, Xenopus laevis, is a suitable model for investigating immunity to this pathogen. After an experimental exposure, a mild infection developed over 20 to 30 days and declined by 45 days postexposure. Either purified antimicrobial peptides or mixtures of peptides in the skin mucus inhibited B. dendrobatidis growth in vitro. Skin peptide secretion was maximally induced by injection of norepinephrine, and this treatment resulted in sustained skin peptide depletion and increased susceptibility to infection. Sublethal X-irradiation of frogs decreased leukocyte numbers in the spleen and resulted in greater susceptibility to infection. Immunization against B. dendrobatidis induced elevated pathogen-specific IgM and IgY serum antibodies. Mucus secretions from X. laevis previously exposed to B. dendrobatidis contained significant amounts of IgM, IgY, and IgX antibodies that bind to B. dendrobatidis. These data strongly suggest that both innate and adaptive immune defenses are involved in the resistance of X. laevis to lethal B. dendrobatidis infections.

  12. Filling a gap in the distribution of Batrachochytrium dendrobatidis: evidence in amphibians from northern China.

    Science.gov (United States)

    Zhu, Wei; Fan, Liqing; Soto-Azat, Claudio; Yan, Shaofei; Gao, Xu; Liu, Xuan; Wang, Supen; Liu, Conghui; Yang, Xuejiao; Li, Yiming

    2016-03-30

    Chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd) has been recognized as a major driver of amphibian declines worldwide. Central and northern Asia remain as the greatest gap in the knowledge of the global distribution of Bd. In China, Bd has recently been recorded from south and central regions, but areas in the north remain poorly surveyed. In addition, a recent increase in amphibian farming and trade has put this region at high risk for Bd introduction. To investigate this, we collected a total of 1284 non-invasive skin swabs from wild and captive anurans and caudates, including free-ranging, farmed, ornamental, and museum-preserved amphibians. Bd was detected at low prevalence (1.1%, 12 of 1073) in live wild amphibians, representing the first report of Bd infecting anurans from remote areas of northwestern China. We were unable to obtain evidence of the historical presence of Bd from museum amphibians (n = 72). Alarmingly, Bd was not detected in wild amphibians from the provinces of northeastern China (>700 individuals tested), but was widely present (15.1%, 21 of 139) in amphibians traded in this region. We suggest that urgent implementation of measures is required to reduce the possibility of further spread or inadvertent introduction of Bd to China. It is unknown whether Bd in northern China belongs to endemic and/or exotic genotypes, and this should be the focus of future research.

  13. Heterogeneous occupancy and density estimates of the pathogenic fungus Batrachochytrium dendrobatidis in waters of North America.

    Directory of Open Access Journals (Sweden)

    Tara Chestnut

    Full Text Available Biodiversity losses are occurring worldwide due to a combination of stressors. For example, by one estimate, 40% of amphibian species are vulnerable to extinction, and disease is one threat to amphibian populations. The emerging infectious disease chytridiomycosis, caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd, is a contributor to amphibian declines worldwide. Bd research has focused on the dynamics of the pathogen in its amphibian hosts, with little emphasis on investigating the dynamics of free-living Bd. Therefore, we investigated patterns of Bd occupancy and density in amphibian habitats using occupancy models, powerful tools for estimating site occupancy and detection probability. Occupancy models have been used to investigate diseases where the focus was on pathogen occurrence in the host. We applied occupancy models to investigate free-living Bd in North American surface waters to determine Bd seasonality, relationships between Bd site occupancy and habitat attributes, and probability of detection from water samples as a function of the number of samples, sample volume, and water quality. We also report on the temporal patterns of Bd density from a 4-year case study of a Bd-positive wetland. We provide evidence that Bd occurs in the environment year-round. Bd exhibited temporal and spatial heterogeneity in density, but did not exhibit seasonality in occupancy. Bd was detected in all months, typically at less than 100 zoospores L(-1. The highest density observed was ∼3 million zoospores L(-1. We detected Bd in 47% of sites sampled, but estimated that Bd occupied 61% of sites, highlighting the importance of accounting for imperfect detection. When Bd was present, there was a 95% chance of detecting it with four samples of 600 ml of water or five samples of 60 mL. Our findings provide important baseline information to advance the study of Bd disease ecology, and advance our understanding of amphibian exposure to free

  14. Heterogeneous occupancy and density estimates of the pathogenic fungus Batrachochytrium dendrobatidis in waters of North America

    Science.gov (United States)

    Chestnut, Tara E.; Anderson, Chauncey; Popa, Radu; Blaustein, Andrew R.; Voytek, Mary; Olson, Deanna H.; Kirshtein, Julie

    2014-01-01

    Biodiversity losses are occurring worldwide due to a combination of stressors. For example, by one estimate, 40% of amphibian species are vulnerable to extinction, and disease is one threat to amphibian populations. The emerging infectious disease chytridiomycosis, caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd), is a contributor to amphibian declines worldwide. Bd research has focused on the dynamics of the pathogen in its amphibian hosts, with little emphasis on investigating the dynamics of free-living Bd. Therefore, we investigated patterns of Bd occupancy and density in amphibian habitats using occupancy models, powerful tools for estimating site occupancy and detection probability. Occupancy models have been used to investigate diseases where the focus was on pathogen occurrence in the host. We applied occupancy models to investigate free-living Bd in North American surface waters to determine Bd seasonality, relationships between Bd site occupancy and habitat attributes, and probability of detection from water samples as a function of the number of samples, sample volume, and water quality. We also report on the temporal patterns of Bd density from a 4-year case study of a Bd-positive wetland. We provide evidence that Bd occurs in the environment year-round. Bd exhibited temporal and spatial heterogeneity in density, but did not exhibit seasonality in occupancy. Bd was detected in all months, typically at less than 100 zoospores L−1. The highest density observed was ∼3 million zoospores L−1. We detected Bd in 47% of sites sampled, but estimated that Bd occupied 61% of sites, highlighting the importance of accounting for imperfect detection. When Bd was present, there was a 95% chance of detecting it with four samples of 600 ml of water or five samples of 60 mL. Our findings provide important baseline information to advance the study of Bd disease ecology, and advance our understanding of amphibian exposure to free-living Bd in aquatic

  15. Variation in the Presence of Anti-Batrachochytrium dendrobatidis Bacteria of Amphibians Across Life Stages and Elevations in Ecuador.

    Science.gov (United States)

    Bresciano, J C; Salvador, C A; Paz-Y-Miño, C; Parody-Merino, A M; Bosch, J; Woodhams, D C

    2015-06-01

    Amphibian populations are decreasing worldwide due to a variety of factors. In South America, the chytrid fungus Batrachochytrium dendrobatidis (Bd) is linked to many population declines. The pathogenic effect of Bd on amphibians can be inhibited by specific bacteria present on host skin. This symbiotic association allows some amphibians to resist the development of the disease chytridiomycosis. Here, we aimed (1) to determine for the first time if specific anti-Bd bacteria are present on amphibians in the Andes of Ecuador, (2) to monitor anti-Bd bacteria across developmental stages in a focal amphibian, the Andean marsupial tree frog, Gastrotheca riobambae, that deposits larvae in aquatic habitats, and (3) to compare the Bd presence associated with host assemblages including 10 species at sites ranging in biogeography from Amazonian rainforest (450 masl) to Andes montane rainforest (3200 masl). We sampled and identified skin-associated bacteria of frogs in the field using swabs and a novel methodology of aerobic counting plates, and a combination of morphological, biochemical, and molecular identification techniques. The following anti-Bd bacteria were identified and found to be shared among several hosts at high-elevation sites where Bd was present at a prevalence of 32.5%: Janthinobacterium lividum, Pseudomonas fluorescens, and Serratia sp. Bd were detected in Gastrotheca spp. and not detected in the lowlands (sites below 1000 masl). In G. riobambae, recognized Bd-resistant bacteria start to be present at the metamorphic stage. Overall bacterial abundance was significantly higher post-metamorphosis and on species sampled at lower elevations. Further metagenomic studies are needed to evaluate the roles of host identity, life-history stage, and biogeography of the microbiota and their function in disease resistance.

  16. Unexpected Rarity of the Pathogen Batrachochytrium dendrobatidis in Appalachian Plethodon Salamanders: 1957–2011

    Science.gov (United States)

    Muletz, Carly; Caruso, Nicholas M.; Fleischer, Robert C.; McDiarmid, Roy W.; Lips, Karen R.

    2014-01-01

    Widespread population declines in terrestrial Plethodon salamanders occurred by the 1980s throughout the Appalachian Mountains, the center of global salamander diversity, with no evident recovery. We tested the hypothesis that the historic introduction and spread of the pathogenic fungus Batrachochytrium dendrobatidis (Bd) into the eastern US was followed by Plethodon population declines. We expected to detect elevated prevalence of Bd prior to population declines as observed for Central American plethodontids. We tested 1,498 Plethodon salamanders of 12 species (892 museum specimens, 606 wild individuals) for the presence of Bd, and tested 94 of those for Batrachochytrium salamandrivorans (Bs) and for ranavirus. Field samples were collected in 2011 from 48 field sites across a 767 km transect. Historic samples from museum specimens were collected at five sites with the greatest number and longest duration of collection (1957–987), four of which were sampled in the field in 2011. None of the museum specimens were positive for Bd, but four P. cinereus from field surveys were positive. The overall Bd prevalence from 1957–2011 for 12 Plethodon species sampled across a 757 km transect was 0.2% (95% CI 0.1–0.7%). All 94 samples were negative for Bs and ranavirus. We conclude that known amphibian pathogens are unlikely causes for declines in these Plethodon populations. Furthermore, these exceptionally low levels of Bd, in a region known to harbor Bd, may indicate that Plethodon specific traits limit Bd infection. PMID:25084159

  17. Unexpected rarity of the pathogen Batrachochytrium dendrobatidis in Appalachian Plethodon Salamanders: 1957-2011.

    Directory of Open Access Journals (Sweden)

    Carly Muletz

    Full Text Available Widespread population declines in terrestrial Plethodon salamanders occurred by the 1980s throughout the Appalachian Mountains, the center of global salamander diversity, with no evident recovery. We tested the hypothesis that the historic introduction and spread of the pathogenic fungus Batrachochytrium dendrobatidis (Bd into the eastern US was followed by Plethodon population declines. We expected to detect elevated prevalence of Bd prior to population declines as observed for Central American plethodontids. We tested 1,498 Plethodon salamanders of 12 species (892 museum specimens, 606 wild individuals for the presence of Bd, and tested 94 of those for Batrachochytrium salamandrivorans (Bs and for ranavirus. Field samples were collected in 2011 from 48 field sites across a 767 km transect. Historic samples from museum specimens were collected at five sites with the greatest number and longest duration of collection (1957-987, four of which were sampled in the field in 2011. None of the museum specimens were positive for Bd, but four P. cinereus from field surveys were positive. The overall Bd prevalence from 1957-2011 for 12 Plethodon species sampled across a 757 km transect was 0.2% (95% CI 0.1-0.7%. All 94 samples were negative for Bs and ranavirus. We conclude that known amphibian pathogens are unlikely causes for declines in these Plethodon populations. Furthermore, these exceptionally low levels of Bd, in a region known to harbor Bd, may indicate that Plethodon specific traits limit Bd infection.

  18. Unexpected rarity of the pathogen Batrachochytrium dendrobatidis in Appalachian Plethodon Salamanders: 1957-2011.

    Science.gov (United States)

    Muletz, Carly; Caruso, Nicholas M; Fleischer, Robert C; McDiarmid, Roy W; Lips, Karen R

    2014-01-01

    Widespread population declines in terrestrial Plethodon salamanders occurred by the 1980s throughout the Appalachian Mountains, the center of global salamander diversity, with no evident recovery. We tested the hypothesis that the historic introduction and spread of the pathogenic fungus Batrachochytrium dendrobatidis (Bd) into the eastern US was followed by Plethodon population declines. We expected to detect elevated prevalence of Bd prior to population declines as observed for Central American plethodontids. We tested 1,498 Plethodon salamanders of 12 species (892 museum specimens, 606 wild individuals) for the presence of Bd, and tested 94 of those for Batrachochytrium salamandrivorans (Bs) and for ranavirus. Field samples were collected in 2011 from 48 field sites across a 767 km transect. Historic samples from museum specimens were collected at five sites with the greatest number and longest duration of collection (1957-987), four of which were sampled in the field in 2011. None of the museum specimens were positive for Bd, but four P. cinereus from field surveys were positive. The overall Bd prevalence from 1957-2011 for 12 Plethodon species sampled across a 757 km transect was 0.2% (95% CI 0.1-0.7%). All 94 samples were negative for Bs and ranavirus. We conclude that known amphibian pathogens are unlikely causes for declines in these Plethodon populations. Furthermore, these exceptionally low levels of Bd, in a region known to harbor Bd, may indicate that Plethodon specific traits limit Bd infection.

  19. Low prevalence of chytrid fungus (Batrachochytrium dendrobatidis) in amphibians of U.S. headwater streams

    Science.gov (United States)

    Hossack, Blake R.; Adams, Michael J.; Campbell Grant, Evan H.; Pearl, Chistopher A.; Bettaso, James B.; Barichivich, William J.; Lowe, Winsor H.; True, Kimberly; Ware, Joy L.; Corn, Paul Stephen

    2010-01-01

    Many declines of amphibian populations have been associated with chytridiomycosis, a disease caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd). Despite the relatively high prevalence of chytridiomycosis in stream amphibians globally, most surveys in North America have focused primarily on wetland-associated species, which are frequently infected. To better understand the distribution and prevalence of Bd in headwater amphibian communities, we sampled 452 tailed frogs (Ascaphus truei and Ascaphus montanus) and 304 stream salamanders (seven species in the Dicamptodontidae and Plethodontidae) for Bd in 38, first- to third-order streams in five montane areas across the United States. We tested for presence of Bd by using PCR on skin swabs from salamanders and metamorphosed tailed frogs or the oral disc of frog larvae. We detected Bd on only seven individuals (0.93%) in four streams. Based on our study and results from five other studies that have sampled headwater- or seep-associated amphibians in the United States, Bd has been detected on only 3% of 1,322 individuals from 21 species. These results differ strongly from surveys in Central America and Australia, where Bd is more prevalent on stream-breeding species, as well as results from wetland-associated anurans in the same regions of the United States that we sampled. Differences in the prevalence of Bd between stream- and wetland-associated amphibians in the United States may be related to species-specific variation in susceptibility to chytridiomycosis or habitat differences.

  20. The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines.

    Science.gov (United States)

    Rollins-Smith, Louise A

    2009-08-01

    Amphibian species have experienced population declines and extinctions worldwide that are unprecedented in recent history. Many of these recent declines have been linked to a pathogenic skin fungus, Batrachochytrium dendrobatidis, or to iridoviruses of the genus Ranavirus. One of the first lines of defense against pathogens that enter by way of the skin are antimicrobial peptides synthesized and stored in dermal granular glands and secreted into the mucus following alarm or injury. Here, I review what is known about the capacity of amphibian antimicrobial peptides from diverse amphibians to inhibit B. dendrobatidis or ranavirus infections. When multiple species were compared for the effectiveness of their in vitro antimicrobial peptides defenses against B. dendrobatidis, non-declining species of rainforest amphibians had more effective antimicrobial peptides than species in the same habitat that had recently experienced population declines. Further, there was a significant correlation between the effectiveness of the antimicrobial peptides and resistance of the species to experimental infection. These studies support the hypothesis that antimicrobial peptides are an important component of innate defenses against B. dendrobatidis. Some amphibian antimicrobial peptides inhibit ranavirus infections and infection of human T lymphocytes by the human immunodeficiency virus (HIV). An effective antimicrobial peptide defense against skin pathogens appears to depend on a diverse array of genes expressing antimicrobial peptides. The production of antimicrobial peptides may be regulated by signals from the pathogens. However, this defense must also accommodate potentially beneficial microbes on the skin that compete or inhibit growth of the pathogens. How this delicate balancing act is accomplished is an important area of future research.

  1. Contribution of Multiple Inter-kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-killing Chytrid, Batrachochytrium dendrobatidis

    Directory of Open Access Journals (Sweden)

    Baofa Sun

    2016-08-01

    Full Text Available Amphibian populations are experiencing catastrophic declines driven by the fungal pathogen Batrachochytrium dendrobatidis (Bd. Although horizontal gene transfer (HGT facilitates the evolution and adaptation in many fungi by conferring novel function genes to the recipient fungi, inter-kingdom HGT in Bd remains largely unexplored. In this study, our investigation detects 19 bacterial genes transferred to Bd, including metallo-beta-lactamase and arsenate reductase that play important roles in the resistance to antibiotics and arsenates. Moreover, three probable HGT gene families in Bd are from plants and one gene family coding the ankyrin repeat-containing protein appears to come from oomycetes. The observed multi-copy gene families associated with HGT are probably due to the independent transfer events or gene duplications. Five HGT genes with extracellular locations may relate to infection, and some other genes may participate in a variety of metabolic pathways, and in doing so add important metabolic traits to the recipient. The evolutionary analysis indicates that all the transferred genes evolved under purifying selection, suggesting that their functions in Bd are similar to those of the donors. Collectively, our results indicate that HGT from diverse donors may be an important evolutionary driver of Bd, and improve its adaptations for infecting and colonizing host amphibians.

  2. Contribution of Multiple Inter-Kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-Killing Chytrid, Batrachochytrium dendrobatidis

    Science.gov (United States)

    Sun, Baofa; Li, Tong; Xiao, Jinhua; Liu, Li; Zhang, Peng; Murphy, Robert W.; He, Shunmin; Huang, Dawei

    2016-01-01

    Amphibian populations are experiencing catastrophic declines driven by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Although horizontal gene transfer (HGT) facilitates the evolution and adaptation in many fungi by conferring novel function genes to the recipient fungi, inter-kingdom HGT in Bd remains largely unexplored. In this study, our investigation detects 19 bacterial genes transferred to Bd, including metallo-beta-lactamase and arsenate reductase that play important roles in the resistance to antibiotics and arsenates. Moreover, three probable HGT gene families in Bd are from plants and one gene family coding the ankyrin repeat-containing protein appears to come from oomycetes. The observed multi-copy gene families associated with HGT are probably due to the independent transfer events or gene duplications. Five HGT genes with extracellular locations may relate to infection, and some other genes may participate in a variety of metabolic pathways, and in doing so add important metabolic traits to the recipient. The evolutionary analysis indicates that all the transferred genes evolved under purifying selection, suggesting that their functions in Bd are similar to those of the donors. Collectively, our results indicate that HGT from diverse donors may be an important evolutionary driver of Bd, and improve its adaptations for infecting and colonizing host amphibians. PMID:27630622

  3. Survival of the amphibian chytrid fungus Batrachochytrium dendrobatidis on bare hands and gloves: hygiene implications for amphibian handling.

    Science.gov (United States)

    Mendez, Diana; Webb, Rebecca; Berger, Lee; Speare, Rick

    2008-11-20

    Hygiene protocols for handling amphibians in the field and in laboratories have been proposed to decrease the transmission of chytridiomycosis caused by infection with the amphibian chytrid fungus Batrachochytrium dendrobatidis, which is responsible for global amphibian declines. However, these protocols are mainly based on theoretical principles. The aim of this study was to develop an evidence-based approach to amphibian handling hygiene protocols by testing the survival of B. dendrobatidis on human hands and various gloves. Bare or gloved human fingers were exposed to cultured zoospores and zoosporangia of B. dendrobatidis. Survival of B. dendrobatidis on hands and gloves was tested for up to 10 min post-exposure by inoculation onto tryptone/gelatin hydrolysate/lactose (TGhL) agar plates. The effects of repeated hand washings with water and with 70% ethanol and of washing gloves with water were also tested. Bare human skin demonstrated a fungicidal effect on B. dendrobatidis by 2 min and killed 100% of cells by 6 min, but this killing effect was reduced by repeated washing with water and ethanol. Nitrile gloves killed all B. dendrobatidis on contact, but washing in water decreased this effect. Latex and polyethylene gloves had no killing effect, and B. dendrobatidis survived for over 6 min. The killing effect of vinyl gloves varied with brands and batches. These results support the use of an unused pair of gloves for each new amphibian handled in either the field or the laboratory, and if this is not possible, bare hands are a preferable, although imperfect, alternative to continual use of the same pair of gloves.

  4. Germ tube mediated invasion of Batrachochytrium dendrobatidis in amphibian skin is host dependent.

    Directory of Open Access Journals (Sweden)

    Pascale Van Rooij

    Full Text Available Batrachochytrium dendrobatidis (Bd is the causative agent of chytridiomycosis, a fungal skin disease in amphibians and driver of worldwide amphibian declines.We focussed on the early stages of infection by Bd in 3 amphibian species with a differential susceptibility to chytridiomycosis. Skin explants of Alytes muletensis, Litoria caerulea and Xenopus leavis were exposed to Bd in an Ussing chamber for 3 to 5 days. Early interactions of Bd with amphibian skin were observed using light microscopy and transmission electron microscopy. To validate the observations in vitro, comparison was made with skin from experimentally infected frogs. Additional in vitro experiments were performed to elucidate the process of intracellular colonization in L. caerulea. Early interactions of Bd with amphibian skin are: attachment of zoospores to host skin, zoospore germination, germ tube development, penetration into skin cells, invasive growth in the host skin, resulting in the loss of host cell cytoplasm. Inoculation of A. muletensis and L. caerulea skin was followed within 24 h by endobiotic development, with sporangia located intracellularly in the skin. Evidence is provided of how intracellular colonization is established and how colonization by Bd proceeds to deeper skin layers. Older thalli develop rhizoid-like structures that spread to deeper skin layers, form a swelling inside the host cell to finally give rise to a new thallus. In X. laevis, interaction of Bd with skin was limited to an epibiotic state, with sporangia developing upon the skin. Only the superficial epidermis was affected. Epidermal cells seemed to be used as a nutrient source without development of intracellular thalli. The in vitro data agreed with the results obtained after experimental infection of the studied frog species. These data suggest that the colonization strategy of B. dendrobatidis is host dependent, with the extent of colonization most likely determined by inherent

  5. Germ tube mediated invasion of Batrachochytrium dendrobatidis in amphibian skin is host dependent.

    Science.gov (United States)

    Van Rooij, Pascale; Martel, An; D'Herde, Katharina; Brutyn, Melanie; Croubels, Siska; Ducatelle, Richard; Haesebrouck, Freddy; Pasmans, Frank

    2012-01-01

    Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis, a fungal skin disease in amphibians and driver of worldwide amphibian declines.We focussed on the early stages of infection by Bd in 3 amphibian species with a differential susceptibility to chytridiomycosis. Skin explants of Alytes muletensis, Litoria caerulea and Xenopus leavis were exposed to Bd in an Ussing chamber for 3 to 5 days. Early interactions of Bd with amphibian skin were observed using light microscopy and transmission electron microscopy. To validate the observations in vitro, comparison was made with skin from experimentally infected frogs. Additional in vitro experiments were performed to elucidate the process of intracellular colonization in L. caerulea. Early interactions of Bd with amphibian skin are: attachment of zoospores to host skin, zoospore germination, germ tube development, penetration into skin cells, invasive growth in the host skin, resulting in the loss of host cell cytoplasm. Inoculation of A. muletensis and L. caerulea skin was followed within 24 h by endobiotic development, with sporangia located intracellularly in the skin. Evidence is provided of how intracellular colonization is established and how colonization by Bd proceeds to deeper skin layers. Older thalli develop rhizoid-like structures that spread to deeper skin layers, form a swelling inside the host cell to finally give rise to a new thallus. In X. laevis, interaction of Bd with skin was limited to an epibiotic state, with sporangia developing upon the skin. Only the superficial epidermis was affected. Epidermal cells seemed to be used as a nutrient source without development of intracellular thalli. The in vitro data agreed with the results obtained after experimental infection of the studied frog species. These data suggest that the colonization strategy of B. dendrobatidis is host dependent, with the extent of colonization most likely determined by inherent characteristics of the host

  6. Presence and prevalence of Batrachochytrium dendrobatidis in commercial amphibians in Mexico City.

    Science.gov (United States)

    Galindo-Bustos, Miguel Angel; Hernandez-Jauregui, Dulce María Brousset; Cheng, Tina; Vredenburg, Vance; Parra-Olea, Gabriela

    2014-12-01

    In Mexico City, native and exotic amphibians are commonly sold through the pet trade. This study investigates the presence of Batrachochytrium dendrobatidis (Bd) in native amphibians being sold at two commercial markets and at a herpetarium in Mexico City. A total of 238 individuals (6 genera and 12 species) were tested for Bd using real-time polymerase chain reaction (PCR) analysis. There were 197 Bd-positive individuals (prevalence 82%) from five species of amphibians. Hyla eximia from the markets had very high Bd prevalence (100%; 76/76 and 99%; 88/89) but those from the herpetarium were Bd negative (0/12). Ambystoma mexicanum from the herpetarium also had a high Bd-positive prevalence (80%; 28/35). Though A. mexicanum is nearly extinct in the wild, a commercial market continues to flourish through the pet trade. Now that captive colonies of A. mexicanum are currently used for reintroduction programs, the authors recommend quarantine to reduce spread of Bd via movement of infected animals in the trade and between colonies and via disposal of wastewater from captive collections.

  7. Amphibian Symbiotic Bacteria Do Not Show a Universal Ability To Inhibit Growth of the Global Panzootic Lineage of Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Antwis, Rachael E; Preziosi, Richard F; Harrison, Xavier A; Garner, Trenton W J

    2015-06-01

    Microbiomes associated with multicellular organisms influence the disease susceptibility of hosts. The potential exists for such bacteria to protect wildlife from infectious diseases, particularly in the case of the globally distributed and highly virulent fungal pathogen Batrachochytrium dendrobatidis of the global panzootic lineage (B. dendrobatidis GPL), responsible for mass extinctions and population declines of amphibians. B. dendrobatidis GPL exhibits wide genotypic and virulence variation, and the ability of candidate probiotics to restrict growth across B. dendrobatidis isolates has not previously been considered. Here we show that only a small proportion of candidate probiotics exhibited broad-spectrum inhibition across B. dendrobatidis GPL isolates. Moreover, some bacterial genera showed significantly greater inhibition than others, but overall, genus and species were not particularly reliable predictors of inhibitory capabilities. These findings indicate that bacterial consortia are likely to offer a more stable and effective approach to probiotics, particularly if related bacteria are selected from genera with greater antimicrobial capabilities. Together these results highlight a complex interaction between pathogens and host-associated symbiotic bacteria that will require consideration in the development of bacterial probiotics for wildlife conservation. Future efforts to construct protective microbiomes should incorporate bacteria that exhibit broad-spectrum inhibition of B. dendrobatidis GPL isolates.

  8. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection.

    Science.gov (United States)

    Jani, Andrea J; Briggs, Cheryl J

    2014-11-25

    Symbiotic microbial communities may interact with infectious pathogens sharing a common host. The microbiome may limit pathogen infection or, conversely, an invading pathogen can disturb the microbiome. Documentation of such relationships during naturally occurring disease outbreaks is rare, and identifying causal links from field observations is difficult. This study documented the effects of an amphibian skin pathogen of global conservation concern [the chytrid fungus Batrachochytrium dendrobatidis (Bd)] on the skin-associated bacterial microbiome of the endangered frog, Rana sierrae, using a combination of population surveys and laboratory experiments. We examined covariation of pathogen infection and bacterial microbiome composition in wild frogs, demonstrating a strong and consistent correlation between Bd infection load and bacterial community composition in multiple R. sierrae populations. Despite the correlation between Bd infection load and bacterial community composition, we observed 100% mortality of postmetamorphic frogs during a Bd epizootic, suggesting that the relationship between Bd and bacterial communities was not linked to variation in resistance to mortal disease and that Bd infection altered bacterial communities. In a controlled experiment, Bd infection significantly altered the R. sierrae microbiome, demonstrating a causal relationship. The response of microbial communities to Bd infection was remarkably consistent: Several bacterial taxa showed the same response to Bd infection across multiple field populations and the laboratory experiment, indicating a somewhat predictable interaction between Bd and the microbiome. The laboratory experiment demonstrates that Bd infection causes changes to amphibian skin bacterial communities, whereas the laboratory and field results together strongly support Bd disturbance as a driver of bacterial community change during natural disease dynamics.

  9. Physiological responses of Brazilian amphibians to an enzootic infection of the chytrid fungus Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Bovo, Rafael P; Andrade, Denis V; Toledo, Luís Felipe; Longo, Ana V; Rodriguez, David; Haddad, Célio F B; Zamudio, Kelly R; Becker, C Guilherme

    2016-01-13

    Pathophysiological effects of clinical chytridiomycosis in amphibians include disorders of cutaneous osmoregulation and disruption of the ability to rehydrate, which can lead to decreased host fitness or mortality. Less attention has been given to physiological responses of hosts where enzootic infections of Batrachochytrium dendrobatidis (Bd) do not cause apparent population declines in the wild. Here, we experimentally tested whether an enzootic strain of Bd causes significant mortality and alters host water balance (evaporative water loss, EWL; skin resistance, R(s); and water uptake, WU) in individuals of 3 Brazilian amphibian species (Dendropsophus minutus, n = 19; Ischnocnema parva, n = 17; Brachycephalus pitanga, n = 15). Infections with enzootic Bd caused no significant mortality, but we found an increase in R(s) in 1 host species concomitant with a reduction in EWL. These results suggest that enzootic Bd infections can indeed cause sub-lethal effects that could lead to reduction of host fitness in Brazilian frogs and that these effects vary among species. Thus, our findings underscore the need for further assessment of physiological responses to Bd infections in different host species, even in cases of sub-clinical chytridiomycosis and long-term enzootic infections in natural populations.

  10. Amphibian commerce as a likely source of pathogen pollution.

    Science.gov (United States)

    Picco, Angela M; Collins, James P

    2008-12-01

    The commercial trade of wildlife occurs on a global scale. In addition to removing animals from their native populations, this trade may lead to the release and subsequent introduction of nonindigenous species and the pathogens they carry. Emerging infectious diseases, such as chytridiomycosis caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), and ranaviral disease have spread with global trade in amphibians and are linked to amphibian declines and die-offs worldwide, which suggests that the commercial trade in amphibians may be a source of pathogen pollution. We screened tiger salamanders involved in the bait trade in the western United States for both ranaviruses and Bd with polymerase chain reaction and used oral reports from bait shops and ranavirus DNA sequences from infected bait salamanders to determine how these animals and their pathogens are moved geographically by commerce. In addition, we conducted 2 surveys of anglers to determine how often tiger salamanders are used as bait and how often they are released into fishing waters by anglers, and organized bait-shop surveys to determine whether tiger salamanders are released back into the wild after being housed in bait shops. Ranaviruses were detected in the tiger salamander bait trade in Arizona, Colorado, and New Mexico, and Bd was detected in Arizona bait shops. Ranaviruses were spread geographically through the bait trade. All tiger salamanders in the bait trade were collected from the wild, and in general they moved east to west and north to south, bringing with them their multiple ranavirus strains. Finally, 26-73% of anglers used tiger salamanders as fishing bait, 26-67% of anglers released tiger salamanders bought as bait into fishing waters, and 4% of bait shops released tiger salamanders back into the wild after they were housed in shops with infected animals. The tiger salamander bait trade in the western United States is a useful model for understanding the consequences of the

  11. Populations of a susceptible amphibian species can grow despite the presence of a pathogenic chytrid fungus.

    Directory of Open Access Journals (Sweden)

    Ursina Tobler

    Full Text Available Disease can be an important driver of host population dynamics and epizootics can cause severe host population declines. Batrachochytrium dendrobatidis (Bd, the pathogen causing amphibian chytridiomycosis, may occur epizootically or enzootically and can harm amphibian populations in many ways. While effects of Bd epizootics are well documented, the effects of enzootic Bd have rarely been described. We used a state-space model that accounts for observation error to test whether population trends of a species highly susceptible to Bd, the midwife toad Alytes obstetricans, are negatively affected by the enzootic presence of the pathogen. Unexpectedly, Bd had no negative effect on population growth rates from 2002-2008. This suggests that negative effects of disease on individuals do not necessarily translate into negative effects at the population level. Populations of amphibian species that are susceptible to the emerging disease chytridiomycosis can persist despite the enzootic presence of the pathogen under current environmental conditions.

  12. Pathogen pollution and the emergence of a deadly amphibian pathogen.

    Science.gov (United States)

    McKenzie, Valerie J; Peterson, Anna C

    2012-11-01

    Imagine a single pathogen that is responsible for mass mortality of over a third of an entire vertebrate class. For example, if a single pathogen were causing the death, decline and extinction of 30% of mammal species (including humans), the entire world would be paying attention. This is what has been happening to the world's amphibians - the frogs, toads and salamanders that are affected by the chytrid fungal pathogen, Batrachochytrium dendrobatidis (referred to as Bd), which are consequently declining at an alarming rate. It has aptly been described as the worst pathogen in history in terms of its effects on biodiversity (Kilpatrick et al. 2010). The pathogen was only formally described about 13 years ago (Longcore et al. 1999), and scientists are still in the process of determining where it came from and investigating the question: why now? Healthy debate has ensued as to whether Bd is a globally endemic organism that only recently started causing high mortality due to shifting host responses and/or environmental change (e.g. Pounds et al. 2006) or whether a virulent strain of the pathogen has rapidly disseminated around the world in recent decades, affecting new regions with a vengeance (e.g. Morehouse et al. 2003; Weldon et al. 2004; Lips et al. 2008). We are finally beginning to shed more light on this question, due to significant discoveries that have emerged as a result of intensive DNA-sequencing methods comparing Bd isolates from different amphibian species across the globe. Evidence is mounting that there is indeed a global panzootic lineage of Bd (BdGPL) in addition to what appear to be more localized endemic strains (Fisher et al. 2009; James et al. 2009; Farrer et al. 2011). Additionally, BdGPL appears to be a hypervirulent strain that has resulted from the hybridization of different Bd strains that came into contact in recent decades, and is now potentially replacing the less-virulent endemic strains of the pathogen (Farrer et al. 2011

  13. Amphibian chytrid fungus (Batrachochytrium dendrobatidis) in coastal and montane California, USA Anurans

    Science.gov (United States)

    Fellers, Gary M.; Cole, Rebecca A.; Reinitz, David M.; Kleeman, Patrick M.

    2011-01-01

    We found amphibian chytrid fungus (Bd = Batrachochytrium dendrobatidis) to be widespread within a coastalwatershed at Point Reyes National Seashore, California and within two high elevation watersheds at Yosemite NationalPark, California. Bd was associated with all six species that we sampled (Bufo boreas, B. canorus, Pseudacris regilla, Ranadraytonii, R. sierrae, and Lithobates catesbeianus). For those species sampled at 10 or more sites within a watershed, thepercentage of Bd-positive sites varied from a low of 20.7% for P. regilla at one Yosemite watershed to a high of 79.6% forP. regilla at the Olema watershed at Point Reyes. At Olema, the percent of Bd-positive water bodies declined each year ofour study (2005-2007). Because P. regilla was the only species found in all watersheds, we used that species to evaluatehabitat variables related to the sites where P. regilla was Bd-positive. At Olema, significant variables were year, length ofshoreline (perimeter), percentage cover of rooted vegetation, and water depth. At the two Yosemite watersheds, waterdepth, water temperature, and silt/mud were the most important covariates, though the importance of these three factorsdiffered between the two watersheds. The presence of Bd in species that are not declining suggests that some of theamphibians in our study were innately resistant to Bd, or had developed resistance after Bd became established.

  14. Salamanders increase their feeding activity when infected with the pathogenic chytrid fungus Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Hess, Alexandra; McAllister, Caroline; DeMarchi, Joseph; Zidek, Makenzie; Murone, Julie; Venesky, Matthew D

    2015-10-27

    Immune function is a costly line of defense against parasitism. When infected with a parasite, hosts frequently lose mass due to these costs. However, some infected hosts (e.g. highly resistant individuals) can clear infections with seemingly little fitness losses, but few studies have tested how resistant hosts mitigate these costly immune defenses. We explored this topic using eastern red-backed salamanders Plethodon cinereus and the fungal pathogen Batrachochytrium dendrobatidis (Bd). Bd is generally lethal for amphibians, and stereotypical symptoms of infection include loss in mass and deficits in feeding. However, individuals of P. cinereus can clear their Bd infections with seemingly few fitness costs. We conducted an experiment in which we repeatedly observed the feeding activity of Bd-infected and non-infected salamanders. We found that Bd-infected salamanders generally increased their feeding activity compared to non-infected salamanders. The fact that we did not observe any differences in mass change between the treatments suggests that increased feeding might help Bd-infected salamanders minimize the costs of an effective immune response.

  15. Do pathogens become more virulent as they spread? Evidence from the amphibian declines in Central America.

    Science.gov (United States)

    Phillips, Ben L; Puschendorf, Robert

    2013-09-01

    The virulence of a pathogen can vary strongly through time. While cyclical variation in virulence is regularly observed, directional shifts in virulence are less commonly observed and are typically associated with decreasing virulence of biological control agents through coevolution. It is increasingly appreciated, however, that spatial effects can lead to evolutionary trajectories that differ from standard expectations. One such possibility is that, as a pathogen spreads through a naive host population, its virulence increases on the invasion front. In Central America, there is compelling evidence for the recent spread of pathogenic Batrachochytrium dendrobatidis (Bd) and for its strong impact on amphibian populations. Here, we re-examine data on Bd prevalence and amphibian population decline across 13 sites from southern Mexico through Central America, and show that, in the initial phases of the Bd invasion, amphibian population decline lagged approximately 9 years behind the arrival of the pathogen, but that this lag diminished markedly over time. In total, our analysis suggests an increase in Bd virulence as it spread southwards, a pattern consistent with rapid evolution of increased virulence on Bd's invading front. The impact of Bd on amphibians might therefore be driven by rapid evolution in addition to more proximate environmental drivers.

  16. Leaf Litter Inhibits Growth of an Amphibian Fungal Pathogen.

    Science.gov (United States)

    Stoler, Aaron B; Berven, Keith A; Raffel, Thomas R

    2016-06-01

    Past studies have found a heterogeneous distribution of the amphibian chytrid fungal pathogen, Batrachochytrium dendrobatidis (Bd). Recent studies have accounted for some of this heterogeneity through a positive association between canopy cover and Bd abundance, which is attributed to the cooling effect of canopy cover. We questioned whether leaf litter inputs that are also associated with canopy cover might also alter Bd growth. Leaf litter inputs exhibit tremendous interspecific chemical variation, and we hypothesized that Bd growth varies with leachate chemistry. We also hypothesized that Bd uses leaf litter as a growth substrate. To test these hypotheses, we conducted laboratory trials in which we exposed cultures of Bd to leachate of 12 temperate leaf litter species at varying dilutions. Using a subset of those 12 litter species, we also exposed Bd to pre-leached litter substrate. We found that exposure to litter leachate and substrate reduced Bd spore and sporangia densities, although there was substantial variation among treatments. In particular, Bd densities were inversely correlated with concentrations of phenolic acids. We conducted a field survey of phenolic concentrations in natural wetlands which verified that the leachate concentrations in our lab study are ecologically relevant. Our study reinforces prior indications that positive associations between canopy cover and Bd abundance are likely mediated by water temperature effects, but this phenomenon might be counteracted by changes in aquatic chemistry from leaf litter inputs.

  17. First detection of the amphibian chytrid fungus Batrachochytrium dendrobatidis in free-ranging populations of amphibians on mainland Asia: survey in South Korea.

    Science.gov (United States)

    Yang, HyoJin; Baek, HaeJun; Speare, Richard; Webb, Rebecca; Park, SunKyung; Kim, TaeHo; Lasater, Kelly C; Shin, SangPhil; Son, SangHo; Park, JaeHak; Min, MiSook; Kim, YoungJun; Na, Kijeong; Lee, Hang; Park, SeChang

    2009-09-01

    Chytridiomycosis, a disease that has caused amphibian population declines globally and elevated many species of anurans to endangered or threatened status, has recently been declared an internationally notifiable disease. Batrachochytrium dendrobatidis (Bd), the amphibian chytrid fungus causing this disease, has not been previously reported in Korea or on mainland Asia. Thirty-six frog specimens representing 7 species were collected from the wild in South Korea and examined for Bd using standard PCR. Bd was detected in 14 (38.8%) samples from 3 species (Bufo gargarizans, Hyla japonica, and Rana catesbiana). Skin sections from all 14 PCR-positive frogs were examined using 2 staining techniques: haematoxylin and eosin (H&E) and Bd immunoperoxidase (IPX). In histological sections, zoosporangia were found in 6 frogs, with lower sensitivity for H&E (21%) than for IPX (46%). Intensity of infection, based on histopathology, was low in all frogs. These results confirm that Bd is present in South Korea and, hence, on the Asian mainland. Studies are urgently required to determine the impact of chytridiomycosis on Korean amphibians, and to map the distribution of Bd in Korea and other Asian mainland countries.

  18. Prevalence and Seasonality of the Amphibian Chytrid Fungus Batrachochytrium dendrobatidis Along Widely Separated Longitudes Across the United States.

    Science.gov (United States)

    Petersen, Christopher E; Lovich, Robert E; Phillips, Christopher A; Dreslik, Michael J; Lannoo, Michael J

    2016-06-01

    The chytrid fungus Batrachochytrium dendrobatidis (Bd) has been implicated in amphibian declines on almost all continents. We report on prevalence and intensity of Bd in the United States amphibian populations across three longitudinally separated north-to-south transects conducted at 15 Department of Defense installations during two sampling periods (late-spring/early summer and mid to late summer). Such a standardized approach minimizes the effects of sampling and analytical bias, as well as human disturbance (by sampling restricted military bases), and therefore permits a cleaner interpretation of environmental variables known to affect chytrid dynamics such as season, temperature, rainfall, latitude, and longitude. Our prevalence of positive samples was 20.4% (137/670), and our mean intensity was 3.21 zoospore equivalents (SE = 1.03; range 0.001-103.59). Of the 28 amphibian species sampled, 15 tested positive. Three sites had no evidence of Bd infection; across the remaining 12 Bd-positive sites, neither infection prevalence nor intensity varied systematically. We found a more complicated pattern of Bd prevalence than anticipated. Early season samples showed no trend associated with increasing temperature and precipitation and decreasing (more southerly) latitudes; while in late season samples, the proportion of infected individuals decreased with increasing temperature and precipitation and decreasing latitudes. A similar pattern held for the east-west gradient, with the highest prevalence associated with more easterly/recently warmer sites in the early season then shifting to more westerly/recently cooler sites in the later season. Bd intensity across bases and sampling periods was comparatively low. Some of the trends in our data have been seen in previous studies, and our results offer further continental-level Bd sampling over which more concentrated local sampling efforts can be overlaid.

  19. Effects of Pesticide Mixtures on Host-Pathogen Dynamics of the Amphibian Chytrid Fungus.

    Science.gov (United States)

    Buck, Julia C; Hua, Jessica; Brogan, William R; Dang, Trang D; Urbina, Jenny; Bendis, Randall J; Stoler, Aaron B; Blaustein, Andrew R; Relyea, Rick A

    2015-01-01

    Anthropogenic and natural stressors often interact to affect organisms. Amphibian populations are undergoing unprecedented declines and extinctions with pesticides and emerging infectious diseases implicated as causal factors. Although these factors often co-occur, their effects on amphibians are usually examined in isolation. We hypothesized that exposure of larval and metamorphic amphibians to ecologically relevant concentrations of pesticide mixtures would increase their post-metamorphic susceptibility to the fungus Batrachochytrium dendrobatidis (Bd), a pathogen that has contributed to amphibian population declines worldwide. We exposed five anuran species (Pacific treefrog, Pseudacris regilla; spring peeper, Pseudacris crucifer; Cascades frog, Rana cascadae; northern leopard frog, Lithobates pipiens; and western toad, Anaxyrus boreas) from three families to mixtures of four common insecticides (chlorpyrifos, carbaryl, permethrin, and endosulfan) or herbicides (glyphosate, acetochlor, atrazine, and 2,4-D) or a control treatment, either as tadpoles or as newly metamorphic individuals (metamorphs). Subsequently, we exposed animals to Bd or a control inoculate after metamorphosis and compared survival and Bd load. Bd exposure significantly increased mortality in Pacific treefrogs, spring peepers, and western toads, but not in Cascades frogs or northern leopard frogs. However, the effects of pesticide exposure on mortality were negligible, regardless of the timing of exposure. Bd load varied considerably across species; Pacific treefrogs, spring peepers, and western toads had the highest loads, whereas Cascades frogs and northern leopard frogs had the lowest loads. The influence of pesticide exposure on Bd load depended on the amphibian species, timing of pesticide exposure, and the particular pesticide treatment. Our results suggest that exposure to realistic pesticide concentrations has minimal effects on Bd-induced mortality, but can alter Bd load. This result

  20. Effects of Pesticide Mixtures on Host-Pathogen Dynamics of the Amphibian Chytrid Fungus.

    Directory of Open Access Journals (Sweden)

    Julia C Buck

    Full Text Available Anthropogenic and natural stressors often interact to affect organisms. Amphibian populations are undergoing unprecedented declines and extinctions with pesticides and emerging infectious diseases implicated as causal factors. Although these factors often co-occur, their effects on amphibians are usually examined in isolation. We hypothesized that exposure of larval and metamorphic amphibians to ecologically relevant concentrations of pesticide mixtures would increase their post-metamorphic susceptibility to the fungus Batrachochytrium dendrobatidis (Bd, a pathogen that has contributed to amphibian population declines worldwide. We exposed five anuran species (Pacific treefrog, Pseudacris regilla; spring peeper, Pseudacris crucifer; Cascades frog, Rana cascadae; northern leopard frog, Lithobates pipiens; and western toad, Anaxyrus boreas from three families to mixtures of four common insecticides (chlorpyrifos, carbaryl, permethrin, and endosulfan or herbicides (glyphosate, acetochlor, atrazine, and 2,4-D or a control treatment, either as tadpoles or as newly metamorphic individuals (metamorphs. Subsequently, we exposed animals to Bd or a control inoculate after metamorphosis and compared survival and Bd load. Bd exposure significantly increased mortality in Pacific treefrogs, spring peepers, and western toads, but not in Cascades frogs or northern leopard frogs. However, the effects of pesticide exposure on mortality were negligible, regardless of the timing of exposure. Bd load varied considerably across species; Pacific treefrogs, spring peepers, and western toads had the highest loads, whereas Cascades frogs and northern leopard frogs had the lowest loads. The influence of pesticide exposure on Bd load depended on the amphibian species, timing of pesticide exposure, and the particular pesticide treatment. Our results suggest that exposure to realistic pesticide concentrations has minimal effects on Bd-induced mortality, but can alter Bd load

  1. First evidence of Batrachochytrium dendrobatidis in China: discovery of chytridiomycosis in introduced American bullfrogs and native amphibians in the Yunnan Province, China.

    Science.gov (United States)

    Bai, Changming; Garner, Trenton W J; Li, Yiming

    2010-08-01

    Although the chytrid fungus Batrachochytrium dendrobatidis (Bd), the etiological agent of amphibian chytridiomycosis, has been implicated in mass mortality and population declines on several continents around the world, there have been no reports on the presence of Bd infections in amphibians in China. We employed quantitative PCR and histological techniques to investigate the presence of Bd in introduced North American bullfrogs (Rana catesbeiana) (referred to hereafter as bullfrog) and native amphibians in bullfrog-invaded areas of the Yunnan Province, China. A total of 259 samples at five wild sites were collected between June and September in 2007 and 2008, including bullfrogs and four native amphibian species (Rana pleuraden, Rana chaochiaoensis, Odorrana andersonii, and Bombina maxima). In addition, 37 samples of adult bullfrogs were obtained from a food market. Bd infections were discovered in bullfrogs and three native amphibian species from all of the surveyed sites. Of the 39 Bd-positive samples, 35 were from wild-caught bullfrog tadpoles, postmetamorphic bullfrogs, R. pleuraden, R. chaochiaoensis, and O. andersonii, and four were from adult bullfrogs from the market. Our results provide the first evidence of the presence of Bd in Chinese amphibians, suggesting that native amphibian diversity in China is at risk from Bd. There is an urgent need to monitor the distribution of Bd in amphibians in China and understand the susceptibility of native amphibian species to chytridiomycosis. Strict regulations on the transportation of bullfrogs and the breeding of bullfrogs in markets and farms should be drafted in order to stop the spread of Bd by bullfrogs.

  2. Whether the weather drives patterns of endemic amphibian chytridiomycosis: a pathogen proliferation approach.

    Science.gov (United States)

    Murray, Kris A; Skerratt, Lee F; Garland, Stephen; Kriticos, Darren; McCallum, Hamish

    2013-01-01

    The pandemic amphibian disease chytridiomycosis often exhibits strong seasonality in both prevalence and disease-associated mortality once it becomes endemic. One hypothesis that could explain this temporal pattern is that simple weather-driven pathogen proliferation (population growth) is a major driver of chytridiomycosis disease dynamics. Despite various elaborations of this hypothesis in the literature for explaining amphibian declines (e.g., the chytrid thermal-optimum hypothesis) it has not been formally tested on infection patterns in the wild. In this study we developed a simple process-based model to simulate the growth of the pathogen Batrachochytrium dendrobatidis (Bd) under varying weather conditions to provide an a priori test of a weather-linked pathogen proliferation hypothesis for endemic chytridiomycosis. We found strong support for several predictions of the proliferation hypothesis when applied to our model species, Litoria pearsoniana, sampled across multiple sites and years: the weather-driven simulations of pathogen growth potential (represented as a growth index in the 30 days prior to sampling; GI30) were positively related to both the prevalence and intensity of Bd infections, which were themselves strongly and positively correlated. In addition, a machine-learning classifier achieved ~72% success in classifying positive qPCR results when utilising just three informative predictors 1) GI30, 2) frog body size and 3) rain on the day of sampling. Hence, while intrinsic traits of the individuals sampled (species, size, sex) and nuisance sampling variables (rainfall when sampling) influenced infection patterns obtained when sampling via qPCR, our results also strongly suggest that weather-linked pathogen proliferation plays a key role in the infection dynamics of endemic chytridiomycosis in our study system. Predictive applications of the model include surveillance design, outbreak preparedness and response, climate change scenario modelling and

  3. Whether the weather drives patterns of endemic amphibian chytridiomycosis: a pathogen proliferation approach.

    Directory of Open Access Journals (Sweden)

    Kris A Murray

    Full Text Available The pandemic amphibian disease chytridiomycosis often exhibits strong seasonality in both prevalence and disease-associated mortality once it becomes endemic. One hypothesis that could explain this temporal pattern is that simple weather-driven pathogen proliferation (population growth is a major driver of chytridiomycosis disease dynamics. Despite various elaborations of this hypothesis in the literature for explaining amphibian declines (e.g., the chytrid thermal-optimum hypothesis it has not been formally tested on infection patterns in the wild. In this study we developed a simple process-based model to simulate the growth of the pathogen Batrachochytrium dendrobatidis (Bd under varying weather conditions to provide an a priori test of a weather-linked pathogen proliferation hypothesis for endemic chytridiomycosis. We found strong support for several predictions of the proliferation hypothesis when applied to our model species, Litoria pearsoniana, sampled across multiple sites and years: the weather-driven simulations of pathogen growth potential (represented as a growth index in the 30 days prior to sampling; GI30 were positively related to both the prevalence and intensity of Bd infections, which were themselves strongly and positively correlated. In addition, a machine-learning classifier achieved ~72% success in classifying positive qPCR results when utilising just three informative predictors 1 GI30, 2 frog body size and 3 rain on the day of sampling. Hence, while intrinsic traits of the individuals sampled (species, size, sex and nuisance sampling variables (rainfall when sampling influenced infection patterns obtained when sampling via qPCR, our results also strongly suggest that weather-linked pathogen proliferation plays a key role in the infection dynamics of endemic chytridiomycosis in our study system. Predictive applications of the model include surveillance design, outbreak preparedness and response, climate change scenario

  4. Chytrid fungus acts as a generalist pathogen infecting species-rich amphibian families in Brazilian rainforests.

    Science.gov (United States)

    Valencia-Aguilar, Anyelet; Ruano-Fajardo, Gustavo; Lambertini, Carolina; da Silva Leite, Domingos; Toledo, Luís Felipe; Mott, Tamí

    2015-05-11

    The fungus Batrachochytrium dendrobatidis (Bd) is among the main causes of declines in amphibian populations. This fungus is considered a generalist pathogen because it infects several species and spreads rapidly in the wild. To date, Bd has been detected in more than 100 anuran species in Brazil, mostly in the southern portion of the Atlantic forest. Here, we report survey data from some poorly explored regions; these data considerably extend current information on the distribution of Bd in the northern Atlantic forest region. In addition, we tested the hypothesis that Bd is a generalist pathogen in this biome. We also report the first positive record for Bd in an anuran caught in the wild in Amazonia. In total, we screened 90 individuals (from 27 species), of which 39 individuals (from 22 species) were Bd-positive. All samples collected in Bahia (2 individuals), Pernambuco (3 individuals), Pará (1 individual), and Minas Gerais (1 individual) showed positive results for Bd. We found a positive correlation between anuran richness per family and the number of infected species in the Atlantic forest, supporting previous observations that Bd lacks strong host specificity; of 38% of the anuran species in the Atlantic forest that were tested for Bd infection, 25% showed positive results. The results of our study exemplify the pandemic and widespread nature of Bd infection in amphibians.

  5. Emerging Pathogen in Wild Amphibians and Frogs (Rana catesbeiana) Farmed for International Trade

    Science.gov (United States)

    Mazzoni, Rolando; Daszak, Peter; Apolo, Ada; Perdomo, Eugenio; Speranza, Gustavo

    2003-01-01

    Chytridiomycosis is an emerging disease responsible for global decline and extinction of amphibians. We report the causative agent, Batrachochytrium dendrobatidis, in North American bullfrogs (Rana catesbeiana) farmed for the international restaurant trade. Our findings suggest that international trade may play a key role in the global dissemination of this and other emerging infectious diseases in wildlife. PMID:12967500

  6. Diversity of Andean amphibians of the Tamá National Natural Park in Colombia: a survey for the presence of Batrachochytrium dendrobatidis

    Directory of Open Access Journals (Sweden)

    Acevedo, A. A.

    2016-01-01

    Full Text Available Changes in diversity and possible decreases in populations of amphibians have not yet been determined in many areas in the Andes. This study aimed to develop an inventory of the biodiversity of amphibians in the Andean areas of the Tamá National Natural Park (Tamá NNP and to evaluate the patterns of infection by Batrachochytrium dendrobatidis (Bd in preserved and degraded areas. We performed samplings focused on three habitats (forest, open areas and streams in four localities from 2,000 to 3,200 m in altitude. Fourteen species were recorded, 12 of which were positive for Bd. A total of 541 individuals were diagnosed and 100 were positive. Our analyses showed that preserved areas play an important role in keeping many individuals Bd–free as compared to those in degraded areas. This was the first study to evaluate diversity and infection by Bd in the northeast region of Colombia. Our findings may help improve our knowledge of the diversity of amphibian species in the area and facilitate the implementation of action plans to mitigate the causes associated with the decrease in amphibian populations.

  7. Distribution and environmental limitations of an amphibian pathogen in the Rocky Mountains, USA

    Science.gov (United States)

    Muths, E.; Pilliod, D.S.; Livo, L.J.

    2008-01-01

    Amphibian populations continue to be imperiled by the chytrid fungus (Batrachochytrium dendrobatidis). Understanding where B. dendrobatidis (Bd) occurs and how it may be limited by environmental factors is critical to our ability to effectively conserve the amphibians affected by Bd. We sampled 1247 amphibians (boreal toads and surrogates) at 261 boreal toad (Bufo boreas) breeding sites (97 clusters) along an 11?? latitudinal gradient in the Rocky Mountains to determine the distribution of B. dendrobatidis and examine environmental factors, such as temperature and elevation, that might affect its distribution. The fungus was detected at 64% of all clusters and occurred across a range of elevations (1030-3550 m) and latitudes (37.6-48.6??) but we detected it in only 42% of clusters in the south (site elevations higher), compared to 84% of clusters in the north (site elevations lower). Maximum ambient temperature (daily high) explained much of the variation in Bd occurrence in boreal toad populations and thus perhaps limits the occurrence of the pathogen in the Rocky Mountains to areas where climatic conditions facilitate optimal growth of the fungus. This information has implications in global climate change scenarios where warming temperatures may facilitate the spread of disease into previously un- or little-affected areas (i.e., higher elevations). This study provides the first regional-level, field-based effort to examine the relationship of environmental and geographic factors to the distribution of B. dendrobatidis in North America and will assist managers to focus on at-risk populations as determined by the local temperature regimes, latitude and elevation.

  8. Micro-Eukaryote Diversity in Freshwater Ponds That Harbor the Amphibian Pathogen "Batrachochytrium Dendrobatidis" ("Bd")

    Science.gov (United States)

    Lauer, Antje; McConnel, Lonnie; Singh, Navdeep

    2012-01-01

    We designed a microbiology project that fully engaged undergraduate biology students, high school students, and their teachers in a summer research program as part of the Research Education Vitalizing Science University Program conducted at California State University Bakersfield. Modern molecular biological methods and microscopy were used to…

  9. 蟾蜍壶菌病病原遗传分化研究%Genetic Differentiation of the Pathogen of Batrachochytrium dendrobatidis in Toads

    Institute of Scientific and Technical Information of China (English)

    曾朝辉; 白世卓; 朱蕴绮; 王晓龙

    2011-01-01

    壶菌病为近年发现的两栖类动物重要传染病,对野生和养殖种群危害极大,为确定药用经济动物蟾蜍历史上壶菌病感染情况,提高养殖蟾蜍疾病防治水平,选取某博物馆馆藏采集于四川的蟾蜍标本32只,利用Taqman—MGB荧光探针定量PCR技术进行壶菌检测,并对定量PCR产物克隆、测序,通过序列比对和系统发育分析判定其来源。最终得到定量PCR标准曲线:Y=-3.0X+32.39;相关系数R0=0.9996;检测结果为阳性样本12只,检出率37.5%。同时系统发育分析表明,我国的壶菌存在一定程度的分化,一类与北美洲、南美洲、欧洲菌株呈现高度的亲缘关系;另一类则表现出与世界其他地区分布的壶菌有明显的不同,显示其独特性。这提示我国蟾蜍壶菌病的防制应更具针对性,不可盲目照搬国外经验。%The chytridiomycosis is a significant emerging disease of amphibians in recent years which seriuosly does harm to the wild and breeding population. To ascertain the condition of the Batrachochytrium dendrobatidis infection history in the population of toad, the medicinal economic animal, and enhance the prevention for this disease, 32 toad specimen collected from Sichwan keeping in a museum were assayed by Taqman-MGB fluorescence probe quantitative polymerase chain reaction to detect Batrachochytrium dendrobatidis. Besides, the products of QPCR were cloned and sequenced to identify the origin of the pathogen by sequence alignment and phylogenetie analysis. Finally we got the standard curve: Y = - 3.0X + 32.39 and the related coefficient: R2 = 0.999 6. Total 12 positive samples reported the detec- tion rate as 37.5 %. Meanwhile the phylogenetic analysis indicated that a certain extent differentiation of the chytrid fungi in our country exists. One kind of the tested strain showed highly genetic relationship with the strains from the North America, South America

  10. Amphibians.

    Science.gov (United States)

    Naturescope, 1987

    1987-01-01

    Describes some of the characteristics of amphibians. Contains teaching activities ranging from a "frog sing-along" to lessons on amphibian adaptations, and night hikes to identify frog calls. Includes reproducible handouts to be used with the activities, and a quiz. (TW)

  11. Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: lessons from the first 15 years of amphibian chytridiomycosis research.

    Science.gov (United States)

    James, Timothy Y; Toledo, L Felipe; Rödder, Dennis; da Silva Leite, Domingos; Belasen, Anat M; Betancourt-Román, Clarisse M; Jenkinson, Thomas S; Soto-Azat, Claudio; Lambertini, Carolina; Longo, Ana V; Ruggeri, Joice; Collins, James P; Burrowes, Patricia A; Lips, Karen R; Zamudio, Kelly R; Longcore, Joyce E

    2015-09-01

    The amphibian fungal disease chytridiomycosis, which affects species across all continents, recently emerged as one of the greatest threats to biodiversity. Yet, many aspects of the basic biology and epidemiology of the pathogen, Batrachochytrium dendrobatidis (Bd), are still unknown, such as when and from where did Bd emerge and what is its true ecological niche? Here, we review the ecology and evolution of Bd in the Americas and highlight controversies that make this disease so enigmatic. We explore factors associated with variance in severity of epizootics focusing on the disease triangle of host susceptibility, pathogen virulence, and environment. Reevaluating the causes of the panzootic is timely given the wealth of data on Bd prevalence across hosts and communities and the recent discoveries suggesting co-evolutionary potential of hosts and Bd. We generate a new species distribution model for Bd in the Americas based on over 30,000 records and suggest a novel future research agenda. Instead of focusing on pathogen "hot spots," we need to identify pathogen "cold spots" so that we can better understand what limits the pathogen's distribution. Finally, we introduce the concept of "the Ghost of Epizootics Past" to discuss expected patterns in postepizootic host communities.

  12. A de novo Assembly of the Common Frog (Rana temporaria Transcriptome and Comparison of Transcription Following Exposure to Ranavirus and Batrachochytrium dendrobatidis.

    Directory of Open Access Journals (Sweden)

    Stephen J Price

    Full Text Available Amphibians are experiencing global declines and extinctions, with infectious diseases representing a major factor. In this study we examined the transcriptional response of metamorphic hosts (common frog, Rana temporaria to the two most important amphibian pathogens: Batrachochytrium dendrobatidis (Bd and Ranavirus. We found strong up-regulation of a gene involved in the adaptive immune response (AP4S1 at four days post-exposure to both pathogens. We detected a significant transcriptional response to Bd, covering the immune response (innate and adaptive immunity, complement activation, and general inflammatory responses, but relatively little transcriptional response to Ranavirus. This may reflect the higher mortality rates found in wild common frogs infected with Ranavirus as opposed to Bd. These data provide a valuable genomic resource for the amphibians, contribute insight into gene expression changes after pathogen exposure, and suggest potential candidate genes for future host-pathogen research.

  13. The invasive chytrid fungus of amphibians paralyzes lymphocyte responses.

    Science.gov (United States)

    Fites, J Scott; Ramsey, Jeremy P; Holden, Whitney M; Collier, Sarah P; Sutherland, Danica M; Reinert, Laura K; Gayek, A Sophia; Dermody, Terence S; Aune, Thomas M; Oswald-Richter, Kyra; Rollins-Smith, Louise A

    2013-10-18

    The chytrid fungus, Batrachochytrium dendrobatidis, causes chytridiomycosis and is a major contributor to global amphibian declines. Although amphibians have robust immune defenses, clearance of this pathogen is impaired. Because inhibition of host immunity is a common survival strategy of pathogenic fungi, we hypothesized that B. dendrobatidis evades clearance by inhibiting immune functions. We found that B. dendrobatidis cells and supernatants impaired lymphocyte proliferation and induced apoptosis; however, fungal recognition and phagocytosis by macrophages and neutrophils was not impaired. Fungal inhibitory factors were resistant to heat, acid, and protease. Their production was absent in zoospores and reduced by nikkomycin Z, suggesting that they may be components of the cell wall. Evasion of host immunity may explain why this pathogen has devastated amphibian populations worldwide.

  14. Batrachochytrium salamandrivorans is the predominant chytrid fungus in Vietnamese salamanders

    Science.gov (United States)

    Laking, Alexandra E.; Ngo, Hai Ngoc; Pasmans, Frank; Martel, An; Nguyen, Tao Thien

    2017-01-01

    The amphibian chytrid fungi, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), pose a major threat to amphibian biodiversity. Recent evidence suggests Southeast Asia as a potential cradle for both fungi, which likely resulted in widespread host-pathogen co-existence. We sampled 583 salamanders from 8 species across Vietnam in 55 locations for Bsal and Bd, determined scaled mass index as a proxy for fitness and collected environmental data. Bsal was found within 14 of the 55 habitats (2 of which it was detected in 2013), in 5 salamandrid species, with a prevalence of 2.92%. The globalized pandemic lineage of Bd was found within one pond on one species with a prevalence of 0.69%. Combined with a complete lack of correlation between infection and individual body condition and absence of indication of associated disease, this suggests low level pathogen endemism and Bsal and Bd co-existence with Vietnamese salamandrid populations. Bsal was more widespread than Bd, and occurs at temperatures higher than tolerated by the type strain, suggesting a wider thermal niche than currently known. Therefore, this study provides support for the hypothesis that these chytrid fungi may be endemic to Asia and that species within this region may act as a disease reservoir. PMID:28287614

  15. Additive threats from pathogens, climate and land-use change for global amphibian diversity.

    Science.gov (United States)

    Hof, Christian; Araújo, Miguel B; Jetz, Walter; Rahbek, Carsten

    2011-11-16

    Amphibian population declines far exceed those of other vertebrate groups, with 30% of all species listed as threatened by the International Union for Conservation of Nature. The causes of these declines are a matter of continued research, but probably include climate change, land-use change and spread of the pathogenic fungal disease chytridiomycosis. Here we assess the spatial distribution and interactions of these primary threats in relation to the global distribution of amphibian species. We show that the greatest proportions of species negatively affected by climate change are projected to be found in Africa, parts of northern South America and the Andes. Regions with the highest projected impact of land-use and climate change coincide, but there is little spatial overlap with regions highly threatened by the fungal disease. Overall, the areas harbouring the richest amphibian faunas are disproportionately more affected by one or multiple threat factors than areas with low richness. Amphibian declines are likely to accelerate in the twenty-first century, because multiple drivers of extinction could jeopardize their populations more than previous, mono-causal, assessments have suggested.

  16. Amphibian chytridiomycosis: a review with focus on fungus-host interactions.

    Science.gov (United States)

    Van Rooij, Pascale; Martel, An; Haesebrouck, Freddy; Pasmans, Frank

    2015-11-25

    Amphibian declines and extinctions are emblematic for the current sixth mass extinction event. Infectious drivers of these declines include the recently emerged fungal pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans (Chytridiomycota). The skin disease caused by these fungi is named chytridiomycosis and affects the vital function of amphibian skin. Not all amphibians respond equally to infection and host responses might range from resistant, over tolerant to susceptible. The clinical outcome of infection is highly dependent on the amphibian host, the fungal virulence and environmental determinants. B. dendrobatidis infects the skin of a large range of anurans, urodeles and caecilians, whereas to date the host range of B. salamandrivorans seems limited to urodeles. So far, the epidemic of B. dendrobatidis is mainly limited to Australian, neotropical, South European and West American amphibians, while for B. salamandrivorans it is limited to European salamanders. Other striking differences between both fungi include gross pathology and thermal preferences. With this review we aim to provide the reader with a state-of-the art of host-pathogen interactions for both fungi, in which new data pertaining to the interaction of B. dendrobatidis and B. salamandrivorans with the host's skin are integrated. Furthermore, we pinpoint areas in which more detailed studies are necessary or which have not received the attention they merit.

  17. Chytridiomycosis in endemic amphibians of the mountain tops of the Córdoba and San Luis ranges, Argentina.

    Science.gov (United States)

    Lescano, Julián N; Longo, Silvana; Robledo, Gerardo

    2013-02-28

    Chytridiomycosis is a major threat to amphibian conservation. In Argentina, the pathogenic fungus Batrachochytrium dendrobatidis has been recorded in several localities, and recently, it was registered in amphibians inhabiting low-elevation areas of mountain environments in Córdoba and San Luis provinces. In the present study, we searched for B. dendrobatidis in endemic and non-endemic amphibians on the mountain tops of Córdoba and San Luis provinces. We collected dead amphibians in the upper vegetation belt of the mountains of Córdoba and San Luis. Using standard histological techniques, the presence of fungal infection was confirmed in 5 species. Three of these species are endemic to the mountain tops of both provinces. Although there are no reported population declines in amphibians in these mountains, the presence of B. dendrobatidis in endemic species highlights the need for long-term monitoring plans in the area.

  18. Baseline cutaneous bacteria of free-living New Zealand native frogs (Leiopelma archeyi and Leiopelma hochstetteri) and implications for their role in defense against the amphibian chytrid (Batrachochytrium dendrobatidis).

    Science.gov (United States)

    Shaw, Stephanie D; Berger, Lee; Bell, Sara; Dodd, Sarah; James, Tim Y; Skerratt, Lee F; Bishop, Phillip J; Speare, Rick

    2014-10-01

    Abstract Knowledge of baseline cutaneous bacterial microbiota may be useful in interpreting diagnostic cultures from captive sick frogs and as part of quarantine or pretranslocation disease screening. Bacteria may also be an important part of innate immunity against chytridiomycosis, a fungal skin disease caused by Batrachochytrium dendrobatidis (Bd). In February 2009, 92 distinct bacterial isolates from the ventral skin of 64 apparently healthy Leiopelma archeyi and Leiopelma hochstetteri native frogs from the Coromandel and Whareorino regions in New Zealand were identified using molecular techniques. The most-common isolates identified in L. archeyi were Pseudomonas spp. and the most common in L. hochstetteri were Flavobacterium spp. To investigate the possible role of bacteria in innate immunity, a New Zealand strain of Bd (Kaikorai Valley-Lewingii-2008-SDS1) was isolated and used in an in vitro challenge assay to test for inhibition by bacteria. One bacterial isolate, a Flavobacterium sp., inhibited growth of Bd. These results imply that diverse cutaneous bacteria are present and may play a role in the innate defense in Leiopelma against pathogens, including Bd, and are a starting point for further investigation.

  19. Assessing host extinction risk following exposure to Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Louca, Stilianos; Lampo, Margarita; Doebeli, Michael

    2014-06-22

    Wildlife diseases are increasingly recognized as a major threat to biodiversity. Chytridiomycosis is an emerging infectious disease of amphibians caused by the fungus Batrachochytrium dendrobatidis (Bd). Using a mathematical model and simulations, we study its effects on a generic riparian host population with a tadpole and adult life stage. An analytical expression for the basic reproduction quotient, Qo, of the pathogen is derived. By sampling the entire relevant parameter space, we perform a statistical assessment of the importance of all considered parameters in determining the risk of host extinction, upon exposure to Bd. We find that Qo not only gives a condition for the initial invasion of the fungus, but is in fact the best predictor for host extinction. We also show that the role of tadpoles, which in some species tolerate infections, is ambivalent. While tolerant tadpoles may provide a reservoir for the fungus, thus facilitating its persistence or even amplifying its outbreaks, they can also act as a rescue buffer for a stressed host population. Our results have important implications for amphibian conservation efforts.

  20. Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression.

    Science.gov (United States)

    McMahon, Taegan A; Sears, Brittany F; Venesky, Matthew D; Bessler, Scott M; Brown, Jenise M; Deutsch, Kaitlin; Halstead, Neal T; Lentz, Garrett; Tenouri, Nadia; Young, Suzanne; Civitello, David J; Ortega, Nicole; Fites, J Scott; Reinert, Laura K; Rollins-Smith, Louise A; Raffel, Thomas R; Rohr, Jason R

    2014-07-10

    Emerging fungal pathogens pose a greater threat to biodiversity than any other parasitic group, causing declines of many taxa, including bats, corals, bees, snakes and amphibians. Currently, there is little evidence that wild animals can acquire resistance to these pathogens. Batrachochytrium dendrobatidis is a pathogenic fungus implicated in the recent global decline of amphibians. Here we demonstrate that three species of amphibians can acquire behavioural or immunological resistance to B. dendrobatidis. Frogs learned to avoid the fungus after just one B. dendrobatidis exposure and temperature-induced clearance. In subsequent experiments in which B. dendrobatidis avoidance was prevented, the number of previous exposures was a negative predictor of B. dendrobatidis burden on frogs and B. dendrobatidis-induced mortality, and was a positive predictor of lymphocyte abundance and proliferation. These results suggest that amphibians can acquire immunity to B. dendrobatidis that overcomes pathogen-induced immunosuppression and increases their survival. Importantly, exposure to dead fungus induced a similar magnitude of acquired resistance as exposure to live fungus. Exposure of frogs to B. dendrobatidis antigens might offer a practical way to protect pathogen-naive amphibians and facilitate the reintroduction of amphibians to locations in the wild where B. dendrobatidis persists. Moreover, given the conserved nature of vertebrate immune responses to fungi and the fact that many animals are capable of learning to avoid natural enemies, these results offer hope that other wild animal taxa threatened by invasive fungi might be rescued by management approaches based on herd immunity.

  1. Nothing a Hot Bath Won't Cure: Infection Rates of Amphibian Chytrid Fungus Correlate Negatively with Water Temperature under Natural Field Settings

    OpenAIRE

    2011-01-01

    Dramatic declines and extinctions of amphibian populations throughout the world have been associated with chytridiomycosis, an infectious disease caused by the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Previous studies indicated that Bd prevalence correlates with cooler temperatures in the field, and laboratory experiments have demonstrated that Bd ceases growth at temperatures above 28uC. Here we investigate how small-scale variations in water temperature correlate with ...

  2. Global amphibian declines: perspectives from the United States and beyond

    Science.gov (United States)

    Densmore, Christine L.; Cipriano, R.C.; Bruckner, A.W.; Shchelkunov, I.S.

    2011-01-01

    Over recent decades, amphibians have experienced population declines, extirpations and species-level extinctions at an alarming rate. Numerous potential etiologies for amphibian declines have been postulated including climate and habitat degradation. Other potential anthropogenic causes including overexploitation and the frequent introductions of invasive predatory species have also been blamed for amphibian declines. Still other underlying factors may include infectious diseases caused by the chytrid fungus Batrachochytrium dendrobatidis, pathogenic viruses (Ranavirus), and other agents. It is nearly certain that more than one etiology is to blame for the majority of the global amphibian declines, and that these causal factors include some combination of climatological or physical habitat destabilization and infectious disease, most notably chytridiomycosis. Scientific research efforts are aimed at elucidating these etiologies on local, regional, and global scales that we might better understand and counteract the driving forces behind amphibian declines. Conservation efforts as outlined in the Amphibian Conservation Action Plan of 2005 are also being made to curtail losses and prevent further extinctions wherever possible.

  3. The lethal fungus Batrachochytrium dendrobatidis is present in lowland tropical forests of far eastern Panama.

    Directory of Open Access Journals (Sweden)

    Eria A Rebollar

    Full Text Available The fungal disease chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd, is one of the main causes of amphibian population declines and extinctions all over the world. In the Neotropics, this fungal disease has caused catastrophic declines in the highlands as it has spread throughout Central America down to Panamá. In this study, we determined the prevalence and intensity of Bd infection in three species of frogs in one highland and four lowland tropical forests, including two lowland regions in eastern Panamá in which the pathogen had not been detected previously. Bd was present in all the sites sampled with a prevalence ranging from 15-34%, similar to other Neotropical lowland sites. The intensity of Bd infection on individual frogs was low, ranging from average values of 0.11-24 zoospore equivalents per site. Our work indicates that Bd is present in anuran communities in lowland Panamá, including the Darién province, and that the intensity of the infection may vary among species from different habitats and with different life histories. The population-level consequences of Bd infection in amphibian communities from the lowlands remain to be determined. Detailed studies of amphibian species from the lowlands will be essential to determine the reason why these species are persisting despite the presence of the pathogen.

  4. Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use.

    Science.gov (United States)

    Bletz, Molly C; Loudon, Andrew H; Becker, Matthew H; Bell, Sara C; Woodhams, Douglas C; Minbiole, Kevin P C; Harris, Reid N

    2013-06-01

    Probiotic therapy through bioaugmentation is a feasible disease mitigation strategy based on growing evidence that microbes contribute to host defences of plants and animals. Amphibians are currently threatened by the rapid global spread of the pathogen, Batrachochytrium dendrobatidis (Bd), which causes the disease chytridiomycosis. Bioaugmentation of locally occurring protective bacteria on amphibians has mitigated this disease effectively in laboratory trials and one recent field trial. Areas still naïve to Bd provide an opportunity for conservationists to proactively implement probiotic strategies to prevent further amphibian declines. In areas where Bd is endemic, bioaugmentation can facilitate repatriation of susceptible amphibians currently maintained in assurance colonies. Here, we synthesise the current research in amphibian microbial ecology and bioaugmentation to identify characteristics of effective probiotics in relation to their interactions with Bd, their host, other resident microbes and the environment. To target at-risk species and amphibian communities, we develop sampling strategies and filtering protocols that result in probiotics that inhibit Bd under ecologically relevant conditions and persist on susceptible amphibians. This filtering tool can be used proactively to guide amphibian disease mitigation and can be extended to other taxa threatened by emerging infectious diseases.

  5. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation.

    Science.gov (United States)

    Bataille, Arnaud; Cashins, Scott D; Grogan, Laura; Skerratt, Lee F; Hunter, David; McFadden, Michael; Scheele, Benjamin; Brannelly, Laura A; Macris, Amy; Harlow, Peter S; Bell, Sara; Berger, Lee; Waldman, Bruce

    2015-04-22

    The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal.

  6. Batrachochytrium dendrobatidis shows high genetic diversity and ecological niche specificity among haplotypes in the Maya Mountains of Belize.

    Directory of Open Access Journals (Sweden)

    Kristine Kaiser

    Full Text Available The amphibian pathogen Batrachochytrium dendrobatidis (Bd has been implicated in amphibian declines around the globe. Although it has been found in most countries in Central America, its presence has never been assessed in Belize. We set out to determine the range, prevalence, and diversity of Bd using quantitative PCR (qPCR and sequencing of a portion of the 5.8 s and ITS1-2 regions. Swabs were collected from 524 amphibians of at least 26 species in the protected areas of the Maya Mountains of Belize. We sequenced a subset of 72 samples that had tested positive for Bd by qPCR at least once; 30 samples were verified as Bd. Eight unique Bd haplotypes were identified in the Maya Mountains, five of which were previously undescribed. We identified unique ecological niches for the two most broadly distributed haplotypes. Combined with data showing differing virulence shown in different strains in other studies, the 5.8 s - ITS1-2 region diversity found in this study suggests that there may be substantial differences among populations or haplotypes. Future work should focus on whether specific haplotypes for other genomic regions and possibly pathogenicity can be associated with haplotypes at this locus, as well as the integration of molecular tools with other ecological tools to elucidate the ecology and pathogenicity of Bd.

  7. Widespread occurrence of Batrachochytrium dendrobatidis in contemporary and historical samples of the endangered Bombina pachypus along the Italian peninsula.

    Directory of Open Access Journals (Sweden)

    Daniele Canestrelli

    Full Text Available Batrachochytrium dendrobatidis is considered a main driver of the worldwide declines and extinctions of amphibian populations. Nonetheless, fundamental questions about its epidemiology, including whether it acts mainly as a "lone killer" or in conjunction with other factors, remain largely open. In this paper we analysed contemporary and historical samples of the endangered Apennine yellow-bellied toad (Bombina pachypus along the Italian peninsula, in order to assess the presence of the pathogen and its spreading dynamics. Once common throughout its range, B. pachypus started to decline after the mid-1990s in the northern and central regions, whereas no declines have been observed so far in the southern region. We show that Batrachochytrium dendrobatidis is currently widespread along the entire peninsula, and that this was already so at least as early as the late 1970s, that is, well before the beginning of the observed declines. This temporal mismatch between pathogen occurrence and host decline, as well as the spatial pattern of the declines, suggests that the pathogen has not acted as a "lone killer", but in conjunction with other factors. Among the potentially interacting factors, we identified two as the most probable, genetic diversity of host populations and recent climate changes. We discuss the plausibility of this scenario and its implications on the conservation of B. pachypus populations.

  8. RANAVIRUS CAUSES MASS DIE-OFFS OF ALPINE AMPHIBIANS IN THE SOUTHWESTERN ALPS, FRANCE.

    Science.gov (United States)

    Miaud, Claude; Pozet, Françoise; Gaudin, Nadine Curt Grand; Martel, An; Pasmans, Frank; Labrut, Sophie

    2016-04-28

    Pathogenic fungi and viruses cause mortality outbreaks in wild amphibians worldwide. In the summer of 2012, dead tadpoles and adults of the European common frog Rana temporaria were reported in alpine lakes in the southwestern Alps (Mercantour National Park, France). A preliminary investigation using molecular diagnostic techniques identified a Ranavirus as the potential pathogenic agent. Three mortality events were recorded in the park, and samples were collected. The amphibian chytrid fungus Batrachochytrium dendrobatidis was not detected in any of the dead adult and juvenile frogs sampled (n=16) whereas all specimens were positive for a Ranavirus. The genome sequence of this Ranavirus was identical to previously published sequences of the common midwife toad virus (CMTV), a Ranavirus that has been associated with amphibian mortalities throughout Europe. We cultured virus from the organs of the dead common frogs and infecting adult male common frogs collected in another alpine region where no frog mortality had been observed. The experimentally infected frogs suffered 100% mortality (n=10). The alpine die-off is the first CMTV outbreak associated with mass mortality in wild amphibians in France. We describe the lesions observed and summarize amphibian populations affected by Ranaviruses in Europe. In addition, we discuss the ecologic specificities of mountain amphibians that may contribute to increasing their risk of exposure to and transmission of Ranaviruses.

  9. Amphibian decline and extinction: what we know and what we need to learn.

    Science.gov (United States)

    Collins, James P

    2010-11-01

    For over 350 million yr, thousands of amphibian species have lived on Earth. Since the 1980s, amphibians have been disappearing at an alarming rate, in many cases quite suddenly. What is causing these declines and extinctions? In the modern era (post 1500) there are 6 leading causes of biodiversity loss in general, and all of these acting alone or together are responsible for modern amphibian declines: commercial use; introduced/exotic species that compete with, prey on, and parasitize native frogs and salamanders; land use change; contaminants; climate change; and infectious disease. The first 3 causes are historical in the sense that they have been operating for hundreds of years, although the rate of change due to each accelerated greatly after about the mid-20th century. Contaminants, climate change, and emerging infectious diseases are modern causes suspected of being responsible for the so-called 'enigmatic decline' of amphibians in protected areas. Introduced/exotic pathogens, land use change, and infectious disease are the 3 causes with a clear role in amphibian decline as well as extinction; thus far, the other 3 causes are only implicated in decline and not extinction. The present work is a review of the 6 causes with a focus on pathogens and suggested areas where new research is needed. Batrachochytrium dendrobatidis (Bd) is a chytrid fungus that is an emerging infectious disease causing amphibian population decline and species extinction. Historically, pathogens have not been seen as a major cause of extinction, but Bd is an exception, which is why it is such an interesting, important pathogen to understand. The late 20th and early 21st century global biodiversity loss is characterized as a sixth extinction event. Amphibians are a striking example of these losses as they disappear at a rate that greatly exceeds historical levels. Consequently, modern amphibian decline and extinction is a lens through which we can view the larger story of biodiversity

  10. Thermal physiology, disease, and amphibian declines on the eastern slopes of the Andes.

    Science.gov (United States)

    Catenazzi, Alessandro; Lehr, Edgar; Vredenburg, Vance T

    2014-04-01

    Rising temperatures, a widespread consequence of climate change, have been implicated in enigmatic amphibian declines from habitats with little apparent human impact. The pathogenic fungus Batrachochytrium dendrobatidis (Bd), now widespread in Neotropical mountains, may act in synergy with climate change causing collapse in thermally stressed hosts. We measured the thermal tolerance of frogs along a wide elevational gradient in the Tropical Andes, where frog populations have collapsed. We used the difference between critical thermal maximum and the temperature a frog experiences in nature as a measure of tolerance to high temperatures. Temperature tolerance increased as elevation increased, suggesting that frogs at higher elevations may be less sensitive to rising temperatures. We tested the alternative pathogen optimal growth hypothesis that prevalence of the pathogen should decrease as temperatures fall outside the optimal range of pathogen growth. Our infection-prevalence data supported the pathogen optimal growth hypothesis because we found that prevalence of Bd increased when host temperatures matched its optimal growth range. These findings suggest that rising temperatures may not be the driver of amphibian declines in the eastern slopes of the Andes. Zoonotic outbreaks of Bd are the most parsimonious hypothesis to explain the collapse of montane amphibian faunas; but our results also reveal that lowland tropical amphibians, despite being shielded from Bd by higher temperatures, are vulnerable to climate-warming stress.

  11. Prevalence of Batrachochytrium dendrobatidis in a Nicaraguan, micro-endemic Neotropical salamander, Bolitoglossa mombachoensis

    NARCIS (Netherlands)

    Stark, Tariq; Laurijssens, Carlijn; Weterings, Martijn; Martel, An; Köhler, Gunther; Pasmans, Frank

    2017-01-01

    Amphibians are the most threatened terrestrial vertebrates on the planet and are iconic in the global biodiversity crisis. Their global decline caused by the fungal agent Batrachochytrium dendrobatidis (Bd) is well known. Declines of Mesoamerican salamanders of the family Plethodontidae, mainly affe

  12. Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data.

    Science.gov (United States)

    Rosenblum, Erica Bree; James, Timothy Y; Zamudio, Kelly R; Poorten, Thomas J; Ilut, Dan; Rodriguez, David; Eastman, Jonathan M; Richards-Hrdlicka, Katy; Joneson, Suzanne; Jenkinson, Thomas S; Longcore, Joyce E; Parra Olea, Gabriela; Toledo, Luís Felipe; Arellano, Maria Luz; Medina, Edgar M; Restrepo, Silvia; Flechas, Sandra Victoria; Berger, Lee; Briggs, Cheryl J; Stajich, Jason E

    2013-06-01

    Understanding the evolutionary history of microbial pathogens is critical for mitigating the impacts of emerging infectious diseases on economically and ecologically important host species. We used a genome resequencing approach to resolve the evolutionary history of an important microbial pathogen, the chytrid Batrachochytrium dendrobatidis (Bd), which has been implicated in amphibian declines worldwide. We sequenced the genomes of 29 isolates of Bd from around the world, with an emphasis on North, Central, and South America because of the devastating effect that Bd has had on amphibian populations in the New World. We found a substantial amount of evolutionary complexity in Bd with deep phylogenetic diversity that predates observed global amphibian declines. By investigating the entire genome, we found that even the most recently evolved Bd clade (termed the global panzootic lineage) contained more genetic variation than previously reported. We also found dramatic differences among isolates and among genomic regions in chromosomal copy number and patterns of heterozygosity, suggesting complex and heterogeneous genome dynamics. Finally, we report evidence for selection acting on the Bd genome, supporting the hypothesis that protease genes are important in evolutionary transitions in this group. Bd is considered an emerging pathogen because of its recent effects on amphibians, but our data indicate that it has a complex evolutionary history that predates recent disease outbreaks. Therefore, it is important to consider the contemporary effects of Bd in a broader evolutionary context and identify specific mechanisms that may have led to shifts in virulence in this system.

  13. Enhanced call effort in Japanese tree frogs infected by amphibian chytrid fungus.

    Science.gov (United States)

    An, Deuknam; Waldman, Bruce

    2016-03-01

    Some amphibians have evolved resistance to the devastating disease chytridiomycosis, associated with global population declines, but immune defences can be costly. We recorded advertisement calls of male Japanese tree frogs (Hyla japonica) in the field. We then assessed whether individuals were infected by Batrachochytrium dendrobatidis (Bd), the causal agent of the disease. This allowed us to analyse call properties of males as a function of their infection status. Infected males called more rapidly and produced longer calls than uninfected males. This enhanced call effort may reflect pathogen manipulation of host behaviour to foster disease transmission. Alternatively, increased calling may have resulted from selection on infected males to reproduce earlier because of their shortened expected lifespan. Our results raise the possibility that sublethal effects of Bd alter amphibian life histories, which contributes to long-term population declines.

  14. Current extinction rates of reptiles and amphibians.

    Science.gov (United States)

    Alroy, John

    2015-10-20

    There is broad concern that a mass extinction of amphibians and reptiles is now underway. Here I apply an extremely conservative Bayesian method to estimate the number of recent amphibian and squamate extinctions in nine important tropical and subtropical regions. The data stem from a combination of museum collection databases and published site surveys. The method computes an extinction probability for each species by considering its sighting frequency and last sighting date. It infers hardly any extinction when collection dates are randomized and it provides underestimates when artificial extinction events are imposed. The method also appears to be insensitive to trends in sampling; therefore, the counts it provides are absolute minimums. Extinctions or severe population crashes have accumulated steadily since the 1970s and 1980s, and at least 3.1% of frog species have already disappeared. Based on these data and this conservative method, the best estimate of the global grand total is roughly 200 extinctions. Consistent with previous results, frog losses are heavy in Latin America, which has been greatly affected by the pathogenic chytrid fungus Batrachochytrium dendrobatidis. Extinction rates are now four orders-of-magnitude higher than background, and at least another 6.9% of all frog species may be lost within the next century, even if there is no acceleration in the growth of environmental threats.

  15. Additive threats from pathogens, climate and land-use change for global amphibian diversity

    DEFF Research Database (Denmark)

    Hof, Christian; Bastos Araujo, Miguel; Jetz, Walter

    2011-01-01

    are disproportionately more affected by one or multiple threat factors than areas with low richness. Amphibian declines are likely to accelerate in the twenty-first century, because multiple drivers of extinction could jeopardize their populations more than previous, mono-causal, assessments have suggested....

  16. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama.

    Science.gov (United States)

    Crawford, Andrew J; Lips, Karen R; Bermingham, Eldredge

    2010-08-01

    Amphibian populations around the world are experiencing unprecedented declines attributed to a chytrid fungal pathogen, Batrachochytrium dendrobatidis. Despite the severity of the crisis, quantitative analyses of the effects of the epidemic on amphibian abundance and diversity have been unavailable as a result of the lack of equivalent data collected before and following disease outbreak. We present a community-level assessment combining long-term field surveys and DNA barcode data describing changes in abundance and evolutionary diversity within the amphibian community of El Copé, Panama, following a disease epidemic and mass-mortality event. The epidemic reduced taxonomic, lineage, and phylogenetic diversity similarly. We discovered that 30 species were lost, including five undescribed species, representing 41% of total amphibian lineage diversity in El Copé. These extirpations represented 33% of the evolutionary history of amphibians within the community, and variation in the degree of population loss and decline among species was random with respect to the community phylogeny. Our approach provides a fast, economical, and informative analysis of loss in a community whether measured by species or phylogenetic diversity.

  17. Field and laboratory studies of the susceptibility of the green treefrog (Hyla cinerea to Batrachochytrium dendrobatidis infection.

    Directory of Open Access Journals (Sweden)

    Laura A Brannelly

    Full Text Available Amphibians worldwide are experiencing devastating declines, some of which are due to the amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd. Populations in the southeastern United States, however, have not been noticeably affected by the pathogen. The green treefrog (Hyla cinerea is abundant and widespread in the southeastern United States, but has not been documented to harbor Bd infection. This study examined the susceptibility of H. cinerea to two strains of Bd in the lab and the prevalence of infection in wild populations of this species in southeastern Louisiana. Although we were able to infect H. cinerea with Bd in the lab, we did not observe any clinical signs of chytridiomycosis. Furthermore, infection by Bd does not appear to negatively affect body condition or growth rate of post-metamorphic individuals. We found no evidence of infection in surveys of wild H. cinerea. Our results suggest that H. cinerea is not susceptible to chytridiomycosis post-metamorphosis and probably is not an important carrier of the fungal pathogen Bd in the southeastern United States, although susceptibility at the larval stage remains unknown.

  18. Chytridiomycosis: a global threat to amphibians.

    Science.gov (United States)

    Pereira, P L L; Torres, A M C; Soares, D F M; Hijosa-Valsero, M; Bécares, E

    2013-12-01

    Chytridiomycosis, which is caused by Batrachochytrium dendrobatidis, is an emerging infectious disease of amphibians. The disease is one of the main causes of the global decline in amphibians. The aetiological agent is ubiquitous, with worldwide distribution, and affects a large number of amphibian species in several biomes. In the last decade, scientific research has substantially increased knowledge of the aetiological agent and the associated infection. However, important epidemiological aspects of the environment-mediated interactions between the aetiological agent and the host are not yet clear. The objective of the present review is to describe chytridiomycosis with regard to the major features of the aetiological agent, the host and the environment.

  19. Controlling wildlife fungal disease spread: in vitro efficacy of disinfectants against Batrachochytrium dendrobatidis and Mucor amphibiorum.

    Science.gov (United States)

    Webb, Rebecca; Philips, Annie; Speare, Rick; Connolly, Joanne; Berger, Lee

    2012-06-13

    Chytridiomycosis in amphibians, and mucormycosis in the platypus Ornithorhynchus anatinus and amphibians, are serious fungal diseases affecting these aquatic taxa. In Tasmania, Australia, the fungi that cause these diseases overlap in range along with Phytophthora cinnamomi (Pc), an invasive fungal plant pathogen. To identify disinfectants that may be useful to reduce anthropogenic spread of these fungi to uninfected wilderness areas, for example by bush walkers and forestry or fire-fighting operations, we tested 3 disinfectants and a fire-fighting foam against Mucor amphibiorum (Ma) and tested 1 disinfectant and the foam against Batrachochytrium dendrobatidis (Bd). Combining the present study with previous work we found Bd was more susceptible to all 4 chemicals than Ma. Phytoclean, a disinfectant used at 2 to 10% for 30 s to control Pc, killed cultures of Bd at 0.075% and Ma at 5%, when also applied for 30 s. The disinfectant F10sc was not effective against Ma at standard exposures, but previous work shows Bd is killed at 0.03% with a 1 min exposure. Path-X is effective against Bd at 0.001% with a 30 s exposure and killed Ma at 1% with a 5 min exposure. Forexpan S, a foam added to water at 0.1 to 1% to control forest fires, killed Bd but not Ma when used at 1% for 2 min. Therefore, Phytoclean and Path-X have broader efficacy, although Path-X has not been trialled against Pc. Interestingly a positive mating strain of Ma (from a platypus) was more resistant to disinfectants than a negative strain (from a frog). Current protocols against Pc that involve high concentrations (10%) of Phytoclean are likely to reduce spread of pathogenic wildlife fungi, which is important for protecting biodiversity.

  20. Genomic transition to pathogenicity in chytrid fungi.

    Directory of Open Access Journals (Sweden)

    Suzanne Joneson

    2011-11-01

    Full Text Available Understanding the molecular mechanisms of pathogen emergence is central to mitigating the impacts of novel infectious disease agents. The chytrid fungus Batrachochytrium dendrobatidis (Bd is an emerging pathogen of amphibians that has been implicated in amphibian declines worldwide. Bd is the only member of its clade known to attack vertebrates. However, little is known about the molecular determinants of - or evolutionary transition to - pathogenicity in Bd. Here we sequence the genome of Bd's closest known relative - a non-pathogenic chytrid Homolaphlyctis polyrhiza (Hp. We first describe the genome of Hp, which is comparable to other chytrid genomes in size and number of predicted proteins. We then compare the genomes of Hp, Bd, and 19 additional fungal genomes to identify unique or recent evolutionary elements in the Bd genome. We identified 1,974 Bd-specific genes, a gene set that is enriched for protease, lipase, and microbial effector Gene Ontology terms. We describe significant lineage-specific expansions in three Bd protease families (metallo-, serine-type, and aspartyl proteases. We show that these protease gene family expansions occurred after the divergence of Bd and Hp from their common ancestor and thus are localized to the Bd branch. Finally, we demonstrate that the timing of the protease gene family expansions predates the emergence of Bd as a globally important amphibian pathogen.

  1. Assessing the Threat of Amphibian Chytrid Fungus in the Albertine Rift: Past, Present and Future.

    Directory of Open Access Journals (Sweden)

    Tracie A Seimon

    Full Text Available Batrachochytrium dendrobatidis (Bd, the cause of chytridiomycosis, is a pathogenic fungus that is found worldwide and is a major contributor to amphibian declines and extinctions. We report results of a comprehensive effort to assess the distribution and threat of Bd in one of the Earth's most important biodiversity hotspots, the Albertine Rift in central Africa. In herpetological surveys conducted between 2010 and 2014, 1018 skin swabs from 17 amphibian genera in 39 sites across the Albertine Rift were tested for Bd by PCR. Overall, 19.5% of amphibians tested positive from all sites combined. Skin tissue samples from 163 amphibians were examined histologically; of these two had superficial epidermal intracorneal fungal colonization and lesions consistent with the disease chytridiomycosis. One amphibian was found dead during the surveys, and all others encountered appeared healthy. We found no evidence for Bd-induced mortality events, a finding consistent with other studies. To gain a historical perspective about Bd in the Albertine Rift, skin swabs from 232 museum-archived amphibians collected as voucher specimens from 1925-1994 were tested for Bd. Of these, one sample was positive; an Itombwe River frog (Phrynobatrachus asper collected in 1950 in the Itombwe highlands. This finding represents the earliest record of Bd in the Democratic Republic of Congo. We modeled the distribution of Bd in the Albertine Rift using MaxEnt software, and trained our model for improved predictability. Our model predicts that Bd is currently widespread across the Albertine Rift, with moderate habitat suitability extending into the lowlands. Under climatic modeling scenarios our model predicts that optimal habitat suitability of Bd will decrease causing a major range contraction of the fungus by 2080. Our baseline data and modeling predictions are important for comparative studies, especially if significant changes in amphibian health status or climactic conditions

  2. Assessing the Threat of Amphibian Chytrid Fungus in the Albertine Rift: Past, Present and Future.

    Science.gov (United States)

    Seimon, Tracie A; Ayebare, Samuel; Sekisambu, Robert; Muhindo, Emmanuel; Mitamba, Guillain; Greenbaum, Eli; Menegon, Michele; Pupin, Fabio; McAloose, Denise; Ammazzalorso, Alyssa; Meirte, Danny; Lukwago, Wilbur; Behangana, Mathias; Seimon, Anton; Plumptre, Andrew J

    2015-01-01

    Batrachochytrium dendrobatidis (Bd), the cause of chytridiomycosis, is a pathogenic fungus that is found worldwide and is a major contributor to amphibian declines and extinctions. We report results of a comprehensive effort to assess the distribution and threat of Bd in one of the Earth's most important biodiversity hotspots, the Albertine Rift in central Africa. In herpetological surveys conducted between 2010 and 2014, 1018 skin swabs from 17 amphibian genera in 39 sites across the Albertine Rift were tested for Bd by PCR. Overall, 19.5% of amphibians tested positive from all sites combined. Skin tissue samples from 163 amphibians were examined histologically; of these two had superficial epidermal intracorneal fungal colonization and lesions consistent with the disease chytridiomycosis. One amphibian was found dead during the surveys, and all others encountered appeared healthy. We found no evidence for Bd-induced mortality events, a finding consistent with other studies. To gain a historical perspective about Bd in the Albertine Rift, skin swabs from 232 museum-archived amphibians collected as voucher specimens from 1925-1994 were tested for Bd. Of these, one sample was positive; an Itombwe River frog (Phrynobatrachus asper) collected in 1950 in the Itombwe highlands. This finding represents the earliest record of Bd in the Democratic Republic of Congo. We modeled the distribution of Bd in the Albertine Rift using MaxEnt software, and trained our model for improved predictability. Our model predicts that Bd is currently widespread across the Albertine Rift, with moderate habitat suitability extending into the lowlands. Under climatic modeling scenarios our model predicts that optimal habitat suitability of Bd will decrease causing a major range contraction of the fungus by 2080. Our baseline data and modeling predictions are important for comparative studies, especially if significant changes in amphibian health status or climactic conditions are encountered

  3. Absence of invasive Chytrid fungus (Batrachochytrium dendrobatidis in native Fijian ground frog (Platymantis vitiana populations on Viwa-Tailevu, Fiji Islands

    Directory of Open Access Journals (Sweden)

    Edward Narayan

    2011-12-01

    Full Text Available We report on the first survey of chytridiomycosis (Batrachochytrium dendrobatidis- Bd in the endangered Fijian ground frog (Platymantis vitiana population on Viwa-Tailevu, Fiji Islands. This fungal pathogen has been implicated as the primary cause of amphibian declines worldwide. Few cases have been reported from tropical Asia however it was recently documented in 4 species of frogs in Indonesia. Two hundred individual frogs were swabbed from 5 different sites on Viwa Island. Swabs were tested to quantify the number of Bd zoospore equivalents using real-time Polymerase Chain Reaction (qPCR technique. We found zero (% prevalence of Bd in ground frogs. The lack of Bd may be due to 1 hot weather all year round inhibiting the spread of Bd, 2 Bd may be absent from Viwa Island due to a lack of amphibian introductions (not introduced or importation of exotic frogs such as Rana catesbeia-na, or Xenopus spp or pet trade spp or 3 the lack of introduction by human vectors due to the geographic isolation, and low visitation of non-local people into the island. While it is difficult to test these hypotheses, a precautionary approach would suggest an effective quarantine is required to protect Fiji’s endemic frogs from future disease outbreak. Conservation effort and research is needed at international level to assist the Fiji government in monitoring and protecting their unique endemic amphibians from outbreaks of B. dendrobatidis.

  4. Two amphibian diseases, chytridiomycosis and ranaviral disease, are now globally notifiable to the World Organization for Animal Health (OIE): an assessment.

    Science.gov (United States)

    Schloegel, Lisa M; Daszak, Peter; Cunningham, Andrew A; Speare, Richard; Hill, Barry

    2010-11-01

    The global trade in amphibians entails the transport of tens of millions of live animals each year. In addition to the impact harvesting wild animals can have on amphibian populations, there is mounting evidence that the emerging pathogens Batrachochytrium dendrobatidis and ranaviruses, the aetiological agents of chytridiomycosis and ranaviral disease, respectively, are spread through this trade. The link between these pathogens and amphibian declines and extinctions suggests that the epidemiological impact of the trade is significant and may negatively affect conservation and trade economics. Here we present a brief assessment of the volume of the global trade in live amphibians, the risk of individuals harboring infection, and information on the recent listing by the World Organization for Animal Health (OIE) of chytridiomycosis and ranaviral disease in the OIE Aquatic Animal Health Code. This listing made chytridiomycosis and ranaviral disease internationally notifiable diseases and thus subject to OIE standards, which aim to assure the sanitary safety of international trade in live amphibians and their products.

  5. Widespread occurrence of the chytrid fungus batrachochytrium dendrobatidis on oregon spotted frogs (rana pretiosa)

    Science.gov (United States)

    Pearl, C.A.; Bowerman, J.; Adams, M.J.; Chelgren, N.D.

    2009-01-01

    The pathogen Batrachochytrium dendrobatidis (Bd) has been associated with amphibian declines in multiple continents, including western North America. We investigated Bd prevalence in Oregon spotted frog (Rana pretiosa), a species that has declined across its range in the Pacific Northwest. Polymerase chain reaction analysis of skin swabs indicated that Bd was prevalent within populations (420 of 617 juvenile and adults) and widespread among populations (36 of 36 sites) where we sampled R. pretiosa in Oregon and Washington. We rarely detected Bd in R. pretiosa larvae (2 of 72). Prevalence of Bd in postmetamorphic R. pretiosa was inversely related to frog size. We found support for an interactive effect of elevation and sampling date on Bd: prevalence of Bd generally increased with date, but this effect was more pronounced at lower elevations. We also found evidence that the body condition of juvenile R. pretiosa with Bd decreased after their first winter. Our data indicate that some Oregon spotted frog populations are currently persisting with relatively high Bd prevalence, but the risk posed by Bd is unknown. ?? 2010 International Association for Ecology and Health.

  6. A survey for Batrachochytrium dendrobatidis in endangered and highly susceptible Vietnamese salamanders (Tylototriton spp.).

    Science.gov (United States)

    Thien, Tao Nguyen; Martel, An; Brutyn, Melanie; Bogaerts, Sergé; Sparreboom, Max; Haesebrouck, Freddy; Fisher, Matthew C; Beukema, Wouter; Van, Tang Duong; Chiers, Koen; Pasmans, Frank

    2013-09-01

    Until now, Asian amphibians appear to have largely escaped declines driven by chytridiomycosis. Vietnamese salamanders that belong to the genus Tylototriton are rare and have a patchy distribution in mountainous areas, falling within the proposed environmental envelope of chytrid infections, surrounded by Batrachochytrium dendrobatidis infected regions. If these salamanders are susceptible to chytridiomycosis, then their populations could be highly vulnerable after the introduction of B. dendrobatidis. Examination for the presence of the chytrid fungus in skin swabs from 19 Tylototriton asperrimus and 104 Tylototriton vietnamensis by using quantitative polymerase chain reaction was performed. Susceptibility of T. asperrimus to experimental infection by using the global panzootic lineage (BdGPL) strain of B. dendrobatidis was examined. The fungus was absent in all samples from all wild salamanders examined. Inoculation with the BdGPL strain resulted in mortality of all five inoculated salamanders within 3 weeks after inoculation with infected animals that manifested severe orthokeratotic hyperkeratosis, epidermal hyperplasia, and spongiosis. Although infection by B. dendrobatidis currently appears absent in Vietnamese Tylototriton populations, the rarity of these animals, their pronounced susceptibility to chytridiomycosis, an apparently suitable environmental context and increasing likelihood of the pathogen being introduced, together suggest the need of urgent measures to avoid future scenarios of extinction as witnessed in Central America and Australia.

  7. Salamander chytrid fungus (Batrachochytrium salamandrivorans) in the United States—Developing research, monitoring, and management strategies

    Science.gov (United States)

    Grant, Evan H. Campbell; Muths, Erin L.; Katz, Rachel A.; Canessa, Stefano; Adams, Michael J.; Ballard, Jennifer R.; Berger, Lee; Briggs, Cheryl J.; Coleman, Jeremy; Gray, Matthew J.; Harris, M. Camille; Harris, Reid N.; Hossack, Blake R.; Huyvaert, Kathryn P.; Kolby, Jonathan E.; Lips, Karen R.; Lovich, Robert E.; McCallum, Hamish I.; Mendelson, Joseph R.; Nanjappa, Priya; Olson, Deanna H.; Powers, Jenny G.; Richgels, Katherine L.D.; Russell, Robin E.; Schmidt, Benedikt R.; Spitzen-van der Sluijs, Annemarieka; Watry, Mary Kay; Woodhams, Douglas C.; White, C. LeAnn

    2016-01-20

    The recently (2013) identified pathogenic chytrid fungus, Batrachochytrium salamandrivorans (Bsal), poses a severe threat to the distribution and abundance of salamanders within the United States and Europe. Development of a response strategy for the potential, and likely, invasion of Bsal into the United States is crucial to protect global salamander biodiversity. A formal working group, led by Amphibian Research and Monitoring Initiative (ARMI) scientists from the U.S. Geological Survey (USGS) Patuxent Wildlife Research Center, Fort Collins Science Center, and Forest and Rangeland Ecosystem Science Center, was held at the USGS Powell Center for Analysis and Synthesis in Fort Collins, Colorado, United States from June 23 to June 25, 2015, to identify crucial Bsal research and monitoring needs that could inform conservation and management strategies for salamanders in the United States. Key findings of the workshop included the following: (1) the introduction of Bsal into the United States is highly probable, if not inevitable, thus requiring development of immediate short-term and long-term intervention strategies to prevent Bsal establishment and biodiversity decline; (2) management actions targeted towards pathogen containment may be ineffective in reducing the long-term spread of Bsal throughout the United States; and (3) early detection of Bsal through surveillance at key amphibian import locations, among high-risk wild populations, and through analysis of archived samples is necessary for developing management responses. Top research priorities during the preinvasion stage included the following: (1) deployment of qualified diagnostic methods for Bsal and establishment of standardized laboratory practices, (2) assessment of susceptibility for amphibian hosts (including anurans), and (3) development and evaluation of short- and long-term pathogen intervention and management strategies. Several outcomes were achieved during the workshop, including development

  8. Itraconazole treatment reduces Batrachochytrium dendrobatidis prevalence and increases overwinter field survival in juvenile Cascades frogs.

    Science.gov (United States)

    Hardy, Bennett M; Pope, Karen L; Piovia-Scott, Jonah; Brown, Richard N; Foley, Janet E

    2015-01-15

    The global spread of the fungal pathogen Batrachochytrium dendrobatidis (Bd) has led to widespread extirpation of amphibian populations. During an intervention aimed at stabilizing at-risk populations, we treated wild-caught Cascades frogs Rana cascadae with the antifungal drug itraconazole. In fall 2012, we collected 60 recently metamorphosed R. cascadae from 1 of the 11 remnant populations in the Cascades Mountains (CA, USA). Of these, 30 randomly selected frogs were treated with itraconazole and the other 30 frogs served as experimental controls; all were released at the capture site. Bd prevalence was low at the time of treatment and did not differ between treated frogs and controls immediately following treatment. Following release, Bd prevalence gradually increased in controls but not in treated frogs, with noticeable (but still non-significant) differences 3 wk after treatment (27% [4/15] vs. 0% [0/13]) and strong differences 5 wk after treatment (67% [8/12] vs. 13% [1/8]). We did not detect any differences in Bd prevalence and load between experimental controls and untreated wild frogs during this time period. In spring 2013, we recaptured 7 treated frogs but none of the experimental control frogs, suggesting that over-winter survival was higher for treated frogs. The itraconazole treatment did appear to reduce growth rates: treated frogs weighed 22% less than control frogs 3 wk after treatment (0.7 vs. 0.9 g) and were 9% shorter than control frogs 5 wk after treatment (18.4 vs. 20.2 mm). However, for critically small populations, increased survival of the most at-risk life stage could prevent or delay extinction. Our results show that itraconazole treatment can be effective against Bd infection in wild amphibians, and therefore the beneficial effects on survivorship may outweigh the detrimental effects on growth.

  9. Chytridiomycosis and amphibian population declines continue to spread eastward in Panama.

    Science.gov (United States)

    Woodhams, Douglas C; Kilburn, Vanessa L; Reinert, Laura K; Voyles, Jamie; Medina, Daniel; Ibáñez, Roberto; Hyatt, Alex D; Boyle, Donna G; Pask, James D; Green, David M; Rollins-Smith, Louise A

    2008-09-01

    Chytridiomycosis is a globally emerging disease of amphibians and the leading cause of population declines and extirpations at species-diverse montane sites in Central America. We continued long-term monitoring efforts for the presence of the fungal pathogen Batrachochytrium dendrobatidis (Bd) and for amphibian populations at two sites in western Panama, and we began monitoring at three new sites to the east. Population declines associated with chytridiomycosis emergence were detected at Altos de Campana National Park. We also detected Bd in three species east of the Panama Canal at Soberanía National Park, and prevalence data suggests that Bd may be enzootic in the lowlands of the park. However, no infected frogs were found further east at Tortí (prevalence amphibian communities east of the canal are at risk. Precise predictions of future disease emergence events are not possible until factors underlying disease emergence, such as dispersal, are understood. However, if the fungal pathogen spreads in a pattern consistent with previous disease events in Panama, then detection of Bd at Tortí and other areas east of the Panama Canal is imminent. Therefore, development of new management strategies and increased precautions for tourism, recreation, and biology are urgently needed.

  10. Nikkomycin Z is an effective inhibitor of the chytrid fungus linked to global amphibian declines.

    Science.gov (United States)

    Holden, Whitney M; Fites, J Scott; Reinert, Laura K; Rollins-Smith, Louise A

    2014-01-01

    Fungal infections in humans, wildlife, and plants are a growing concern because of their devastating effects on human and ecosystem health. In recent years, populations of many amphibian species have declined, and some have become extinct due to chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis. For some endangered amphibian species, captive colonies are the best intermediate solution towards eventual reintroduction, and effective antifungal treatments are needed to cure chytridiomycosis and limit the spread of this pathogen in such survival assurance colonies. Currently, the best accepted treatment for infected amphibians is itraconazole, but its toxic side effects reduce its usefulness for many species. Safer antifungal treatments are needed for disease control. Here, we show that nikkomycin Z, a chitin synthase inhibitor, dramatically alters the cell wall stability of B. dendrobatidis cells and completely inhibits growth of B. dendrobatidis at 250 μM. Low doses of nikkomycin Z enhanced the effectiveness of natural antimicrobial skin peptide mixtures tested in vitro. These studies suggest that nikkomycin Z would be an effective treatment to significantly reduce the fungal burden in frogs infected by B. dendrobatidis.

  11. Riding the wave: reconciling the roles of disease and climate change in amphibian declines.

    Science.gov (United States)

    Lips, Karen R; Diffendorfer, Jay; Mendelson, Joseph R; Sears, Michael W

    2008-03-25

    We review the evidence for the role of climate change in triggering disease outbreaks of chytridiomycosis, an emerging infectious disease of amphibians. Both climatic anomalies and disease-related extirpations are recent phenomena, and effects of both are especially noticeable at high elevations in tropical areas, making it difficult to determine whether they are operating separately or synergistically. We compiled reports of amphibian declines from Lower Central America and Andean South America to create maps and statistical models to test our hypothesis of spatiotemporal spread of the pathogen Batrachochytrium dendrobatidis (Bd), and to update the elevational patterns of decline in frogs belonging to the genus Atelopus. We evaluated claims of climate change influencing the spread of Bd by including error into estimates of the relationship between air temperature and last year observed. Available data support the hypothesis of multiple introductions of this invasive pathogen into South America and subsequent spread along the primary Andean cordilleras. Additional analyses found no evidence to support the hypothesis that climate change has been driving outbreaks of amphibian chytridiomycosis, as has been posited in the climate-linked epidemic hypothesis. Future studies should increase retrospective surveys of museum specimens from throughout the Andes and should study the landscape genetics of Bd to map fine-scale patterns of geographic spread to identify transmission routes and processes.

  12. Riding the wave: reconciling the roles of disease and climate change in amphibian declines.

    Directory of Open Access Journals (Sweden)

    Karen R Lips

    2008-03-01

    Full Text Available We review the evidence for the role of climate change in triggering disease outbreaks of chytridiomycosis, an emerging infectious disease of amphibians. Both climatic anomalies and disease-related extirpations are recent phenomena, and effects of both are especially noticeable at high elevations in tropical areas, making it difficult to determine whether they are operating separately or synergistically. We compiled reports of amphibian declines from Lower Central America and Andean South America to create maps and statistical models to test our hypothesis of spatiotemporal spread of the pathogen Batrachochytrium dendrobatidis (Bd, and to update the elevational patterns of decline in frogs belonging to the genus Atelopus. We evaluated claims of climate change influencing the spread of Bd by including error into estimates of the relationship between air temperature and last year observed. Available data support the hypothesis of multiple introductions of this invasive pathogen into South America and subsequent spread along the primary Andean cordilleras. Additional analyses found no evidence to support the hypothesis that climate change has been driving outbreaks of amphibian chytridiomycosis, as has been posited in the climate-linked epidemic hypothesis. Future studies should increase retrospective surveys of museum specimens from throughout the Andes and should study the landscape genetics of Bd to map fine-scale patterns of geographic spread to identify transmission routes and processes.

  13. Tolerance of fungal infection in European water frogs exposed to Batrachochytrium dendrobatidis after experimental reduction of innate immune defenses

    Directory of Open Access Journals (Sweden)

    Woodhams Douglas C

    2012-10-01

    Full Text Available Abstract Background While emerging diseases are affecting many populations of amphibians, some populations are resistant. Determining the relative contributions of factors influencing disease resistance is critical for effective conservation management. Innate immune defenses in amphibian skin are vital host factors against a number of emerging pathogens such as ranaviruses and the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd. Adult water frogs from Switzerland (Pelophylax esculentus and P. lessonae collected in the field with their natural microbiota intact were exposed to Bd after experimental reduction of microbiota, skin peptides, both, or neither to determine the relative contributions of these defenses. Results Naturally-acquired Bd infections were detected in 10/51 P. lessonae and 4/19 P. esculentus, but no disease outbreaks or population declines have been detected at this site. Thus, this population was immunologically primed, and disease resistant. No mortality occurred during the 64 day experiment. Forty percent of initially uninfected frogs became sub-clinically infected upon experimental exposure to Bd. Reduction of both skin peptide and microbiota immune defenses caused frogs to gain less mass when exposed to Bd than frogs in other treatments. Microbiota-reduced frogs increased peptide production upon Bd infection. Ranavirus was undetectable in all but two frogs that appeared healthy in the field, but died within a week under laboratory conditions. Virus was detectable in both toe-clips and internal organs. Conclusion Intact skin microbiota reduced immune activation and can minimize subclinical costs of infection. Tolerance of Bd or ranavirus infection may differ with ecological conditions.

  14. Environmental refuge from disease-driven amphibian extinction.

    Science.gov (United States)

    Puschendorf, Robert; Hoskin, Conrad J; Cashins, Scott D; McDonald, Keith; Skerratt, Lee F; Vanderwal, Jeremy; Alford, Ross A

    2011-10-01

    Species that are tolerant of broad environmental gradients may be less vulnerable to epizootic outbreaks of disease. Chytridriomycosis, caused by the fungus Batrachochytrium dendrobatidis, has been linked to extirpations and extinctions of amphibian species in many regions. The pathogen thrives in cool, moist environments, and high amphibian mortality rates have commonly occurred during chytridiomycosis outbreaks in amphibian populations in high-elevation tropical rainforests. In Australia several high-elevation species, including the armored mist frog (Litoria lorica), which is designated as critically endangered by the International Union for the Conservation of Nature (IUCN), were believed to have gone extinct during chytridiomycosis outbreaks in the 1980s and early 1990s. Species with greater elevational ranges disappeared from higher elevations, but remained common in the lowlands. In June 2008, we surveyed a stream in a high-elevation dry sclerophyll forest and discovered a previously unknown population of L. lorica and a population of the waterfall frog (Litoria nannotis). We conducted 6 additional surveys in June 2008, September 2008, March 2009, and August 2009. Prevalences of B. dendrobatidis infection (number infected per total sampled) were consistently high in frogs (mean 82.5%, minimum 69%) of both species and in tadpoles (100%) during both winter (starting July) and summer (starting February). However, no individuals of either species showed clinical signs of disease, and they remained abundant (3.25 - 8.75 individuals of L. lorica and 6.5-12.5 individuals of L. nannotis found/person/100 m over 13 months). The high-elevation dry sclerophyll site had little canopy cover, low annual precipitation, and a more defined dry season than a nearby rainforest site, where L. nannotis was more negatively affected by chytridiomycosis. We hypothesize this lack of canopy cover allowed the rocks on which frogs perched to warm up, thereby slowing growth and

  15. Patterns of Batrachochytrium dendrobatidis transmission between tadpoles in a high-elevation rainforest stream in tropical Australia.

    Science.gov (United States)

    Hagman, Mattias; Alford, Ross A

    2015-08-20

    The highly virulent fungal pathogen Batrachochytrium dendrobatidis (Bd) poses a global threat to amphibian biodiversity. Streams and other water bodies are central habitats in the ecology of the disease, particularly in rainforests where they may transport and transmit the pathogen and harbor infected tadpoles that serve as reservoir hosts. We conducted an experiment using larval green-eyed tree frogs Litoria serrata in semi-natural streamside channels to test the hypotheses that (1) the fungus can be transmitted downstream in stream habitats and (2) infection affects tadpole growth and mouthpart loss. Our results showed that transmission can occur downstream in flowing water with no contact between individuals, that newly infected tadpoles suffered increased mouthpart loss in comparison with controls that were never infected and that infected tadpoles grew at reduced rates. Although recently infected tadpoles showed substantial loss of mouthparts, individuals with longstanding infections did not, suggesting that mouthparts may re-grow following initial loss. Our study suggests that any management efforts that can reduce the prevalence of infections in tadpoles may be particularly effective if applied in headwater areas, as their effects are likely to be felt downstream.

  16. There is no evidence for a temporal link between pathogen arrival and frog extinctions in north-eastern Australia.

    Directory of Open Access Journals (Sweden)

    Ben L Phillips

    Full Text Available Pathogen spread can cause population declines and even species extinctions. Nonetheless, in the absence of tailored monitoring schemes, documenting pathogen spread can be difficult. In the case of worldwide amphibian declines the best present understanding is that the chytrid fungus Batrachochytrium dendrobatidis (Bd has recently spread, causing amphibian declines and extinction in the process. However, good evidence demonstrating pathogen arrival followed by amphibian decline is rare, and analysis of putative evidence is often inadequate. Here we attempt to examine the relationship between Bd arrival and amphibian decline across north-eastern Australia, using sites where a wave-like pattern of amphibian decline was first noticed and at which intensive research has since been conducted. We develop an analytical framework that allows rigorous estimation of pathogen arrival date, which can then be used to test for a correlation between the time of pathogen arrival and amphibian decline across sites. Our results show that, with the current dataset, the earliest possible arrival date of Bd in north-eastern Australia is completely unresolved; Bd could have arrived immediately before sampling commenced or may have arrived thousands of years earlier, the present data simply cannot say. The currently available data are thus insufficient to assess the link between timing of pathogen arrival and population decline in this part of the world. This data insufficiency is surprising given that there have been decades of research on chytridiomycosis in Australia and that there is a general belief that the link between Bd arrival and population decline is well resolved in this region. The lack of data on Bd arrival currently acts as a major impediment to determining the role of environmental factors in driving the global amphibian declines, and should be a major focus of future research.

  17. Spread of Amphibian Chytrid Fungus across Lowland Populations of Túngara Frogs in Panamá

    Science.gov (United States)

    Rodríguez-Brenes, Sofía; Rodriguez, David; Ibáñez, Roberto; Ryan, Michael J.

    2016-01-01

    Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is an emergent infectious disease partially responsible for worldwide amphibian population declines. The spread of Bd along highland habitats (> 500 meters above sea level, m a.s.l.) of Costa Rica and Panamá is well documented and has been linked to amphibian population collapses. In contrast, data are scarce on the prevalence and dispersal of Bd in lowland habitats where amphibians may be infected but asymptomatic. Here we describe the spread (2009 to 2014) of Bd across lowland habitats east of the Panamá Canal (< 500 m a.s.l.) with a focus on the Túngara frog (Physalaemus [Engystomops] pustulosus), one of the most common and abundant frog species in this region. Highland populations in western Panamá were already infected with Bd at the start of the study, which was consistent with previous studies indicating that Bd is enzootic in this region. In central Panamá, we collected the first positive samples in 2010, and by 2014, we detected Bd from remote sites in eastern Panamá (Darién National Park). We discuss the importance of studying Bd in lowland species, which may serve as potential reservoirs and agents of dispersal of Bd to highland species that are more susceptible to chytridiomycosis. PMID:27176629

  18. Spread of Amphibian Chytrid Fungus across Lowland Populations of Tungara Frogs in Panama.

    Directory of Open Access Journals (Sweden)

    Sofía Rodríguez-Brenes

    Full Text Available Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd, is an emergent infectious disease partially responsible for worldwide amphibian population declines. The spread of Bd along highland habitats (> 500 meters above sea level, m a.s.l. of Costa Rica and Panamá is well documented and has been linked to amphibian population collapses. In contrast, data are scarce on the prevalence and dispersal of Bd in lowland habitats where amphibians may be infected but asymptomatic. Here we describe the spread (2009 to 2014 of Bd across lowland habitats east of the Panamá Canal (< 500 m a.s.l. with a focus on the Túngara frog (Physalaemus [Engystomops] pustulosus, one of the most common and abundant frog species in this region. Highland populations in western Panamá were already infected with Bd at the start of the study, which was consistent with previous studies indicating that Bd is enzootic in this region. In central Panamá, we collected the first positive samples in 2010, and by 2014, we detected Bd from remote sites in eastern Panamá (Darién National Park. We discuss the importance of studying Bd in lowland species, which may serve as potential reservoirs and agents of dispersal of Bd to highland species that are more susceptible to chytridiomycosis.

  19. Short term minimum water temperatures determine levels of infection by the amphibian chytrid fungus in Alytes obstetricans tadpoles.

    Directory of Open Access Journals (Sweden)

    Saioa Fernández-Beaskoetxea

    Full Text Available Amphibians are one of the groups of wildlife most seriously threatened by emerging infectious disease. In particular, chytridiomycosis, caused by the aquatic fungus Batrachochytrium dendrobatidis, is responsible for amphibian species declines on a worldwide scale. Population-level outcomes following the introduction of the pathogen are context dependent and mediated by a large suite of abiotic and biotic variables. In particular, studies have shown that temperature has a key role in determining infection dynamics owing to the ectothermic nature of the amphibian host and temperature-dependency of pathogen growth rates. To assess the temperature-dependent seasonality of infectious burdens in a susceptible host species, we monitored lowland populations of larval midwife toads, Alytes obstetricians, in Central Spain throughout the year. We found that infections were highly seasonal, and inversely correlated against water temperature, with the highest burdens of infection seen during the colder months. Short-term impacts of water-temperature were found, with the minimum temperatures occurring before sampling being more highly predictive of infectious burdens than were longer-term spans of temperature. Our results will be useful for selecting the optimal time for disease surveys and, more broadly, for determining the key periods to undertake disease mitigation.

  20. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease.

    Science.gov (United States)

    Rohr, Jason R; Raffel, Thomas R

    2010-05-01

    The role of global climate change in the decline of biodiversity and the emergence of infectious diseases remains controversial, and the effect of climatic variability, in particular, has largely been ignored. For instance, it was recently revealed that the proposed link between climate change and widespread amphibian declines, putatively caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), was tenuous because it was based on a temporally confounded correlation. Here we provide temporally unconfounded evidence that global El Niño climatic events drive widespread amphibian losses in genus Atelopus via increased regional temperature variability, which can reduce amphibian defenses against pathogens. Of 26 climate variables tested, only factors associated with temperature variability could account for the spatiotemporal patterns of declines thought to be associated with Bd. Climatic predictors of declines became significant only after controlling for a pattern consistent with epidemic spread (by temporally detrending the data). This presumed spread accounted for 59% of the temporal variation in amphibian losses, whereas El Niño accounted for 59% of the remaining variation. Hence, we could account for 83% of the variation in declines with these two variables alone. Given that global climate change seems to increase temperature variability, extreme climatic events, and the strength of Central Pacific El Niño episodes, climate change might exacerbate worldwide enigmatic declines of amphibians, presumably by increasing susceptibility to disease. These results suggest that changes to temperature variability associated with climate change might be as significant to biodiversity losses and disease emergence as changes to mean temperature.

  1. Sodium chloride inhibits the growth and infective capacity of the amphibian chytrid fungus and increases host survival rates.

    Directory of Open Access Journals (Sweden)

    Michelle Pirrie Stockwell

    Full Text Available The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently emerged pathogen that causes the infectious disease chytridiomycosis and has been implicated as a contributing factor in the global amphibian decline. Since its discovery, research has been focused on developing various methods of mitigating the impact of chytridiomycosis on amphibian hosts but little attention has been given to the role of antifungal agents that could be added to the host's environment. Sodium chloride is a known antifungal agent used routinely in the aquaculture industry and this study investigates its potential for use as a disease management tool in amphibian conservation. The effect of 0-5 ppt NaCl on the growth, motility and survival of the chytrid fungus when grown in culture media and its effect on the growth, infection load and survivorship of infected Peron's tree frogs (Litoria peronii in captivity, was investigated. The results reveal that these concentrations do not negatively affect the survival of the host or the pathogen. However, concentrations greater than 3 ppt significantly reduced the growth and motility of the chytrid fungus compared to 0 ppt. Concentrations of 1-4 ppt NaCl were also associated with significantly lower host infection loads while infected hosts exposed to 3 and 4 ppt NaCl were found to have significantly higher survival rates. These results support the potential for NaCl to be used as an environmentally distributed antifungal agent for the prevention of chytridiomycosis in susceptible amphibian hosts. However, further research is required to identify any negative effects of salt exposure on both target and non-target organisms prior to implementation.

  2. BIOTIC FACTORS IN AMPHIBIAN POPULATION DECLINES

    Science.gov (United States)

    Amphibians evolved in, and continue to exist in, habitats that are replete with many other organisms. Some of these organisms serve as prey for amphibians and others interact with amphibians as predators, competitors, pathogens, or symbionts. Still other organisms in their enviro...

  3. Antiviral immunity in amphibians.

    Science.gov (United States)

    Chen, Guangchun; Robert, Jacques

    2011-11-01

    Although a variety of virus species can infect amphibians, diseases caused by ranaviruses ([RVs]; Iridoviridae) have become prominent, and are a major concern for biodiversity, agriculture and international trade. The relatively recent and rapid increase in prevalence of RV infections, the wide range of host species infected by RVs, the variability in host resistance among population of the same species and among different developmental stages, all suggest an important involvement of the amphibian immune system. Nevertheless, the roles of the immune system in the etiology of viral diseases in amphibians are still poorly investigated. We review here the current knowledge of antiviral immunity in amphibians, focusing on model species such as the frog Xenopus and the salamander (Ambystoma tigrinum), and on recent progress in generating tools to better understand how host immune defenses control RV infections, pathogenicity, and transmission.

  4. Experimental infection of native north Carolina salamanders with Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Chinnadurai, Sathya K; Cooper, David; Dombrowski, Daniel S; Poore, Matthew F; Levy, Michael G

    2009-07-01

    Chytridiomycosis is an often fatal fungal disease of amphibians caused by Batrachochytrium dendrobatidis. This disease has been implicated in the worldwide decline of many anuran species, but studies of chytridiomycosis in wild salamanders are limited. Between August 2006 and December 2006, we tested wild amphibians in North Carolina, USA (n=212) by polymerase chain reaction (PCR). We identified three PCR-positive animals: one Rana clamitans and two Plethodontid salamanders. We experimentally infected two species of native North Carolina Plethodontid salamanders, the slimy salamander (Plethodon glutinosus) and the Blue Ridge Mountain dusky salamander (Desmognathus orestes) with 1,000,000 zoospores of B. dendrobatidis per animal. Susceptibility was species dependent; all slimy salamanders developed clinical signs of chytridiomycosis, and one died, whereas dusky salamanders remained unaffected. In a second experiment, we challenged naïve slimy salamanders with either 10,000 or 100,000 motile zoospores per animal. Clinical signs consistent with chytridiomycosis were not observed at either dose or in uninfected controls during the 45 days of this experiment. All animals inoculated with B. dendrobatidis in both experiments, regardless of dose, tested positive by PCR. Our study indicates that slimy salamanders are more susceptible to clinical chytridiomycosis than dusky salamanders, and in a laboratory setting, a dose greater than 100,000 zoospores per animal is required to induce clinical disease. This study also indicates that PCR is a very sensitive tool for detecting B. dendrobatidis infection, even in animals that are clinically unaffected, thus positive results should be interpreted with caution.

  5. Seasonal and ontogenetic variation of skin microbial communities and relationships to natural disease dynamics in declining amphibians

    Science.gov (United States)

    Longo, Ana V.; Savage, Anna E.; Hewson, Ian; Zamudio, Kelly R.

    2015-01-01

    Recently, microbiologists have focused on characterizing the probiotic role of skin bacteria for amphibians threatened by the fungal disease chytridiomycosis. However, the specific characteristics of microbial diversity required to maintain health or trigger disease are still not well understood in natural populations. We hypothesized that seasonal and developmental transitions affecting susceptibility to chytridiomycosis could also alter the stability of microbial assemblages. To test our hypothesis, we examined patterns of skin bacterial diversity in two species of declining amphibians (Lithobates yavapaiensis and Eleutherodactylus coqui) affected by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). We focused on two important transitions that affect Bd susceptibility: ontogenetic (from juvenile to adult) shifts in E. coqui and seasonal (from summer to winter) shifts in L. yavapaiensis. We used a combination of community-fingerprinting analyses and 16S rRNA amplicon sequencing to quantify changes in bacterial diversity and assemblage composition between seasons and developmental stages, and to investigate the relationship between bacterial diversity and pathogen load. We found that winter-sampled frogs and juveniles, two states associated with increased Bd susceptibility, exhibited higher diversity compared with summer-sampled frogs and adult individuals. Our findings also revealed that hosts harbouring higher bacterial diversity carried lower Bd infections, providing support for the protective role of bacterial communities. Ongoing work to understand skin microbiome resilience after pathogen disturbance has the potential to identify key taxa involved in disease resistance. PMID:26587253

  6. Larval Environment Alters Amphibian Immune Defenses Differentially across Life Stages and Populations.

    Directory of Open Access Journals (Sweden)

    Katherine L Krynak

    Full Text Available Recent global declines, extirpations and extinctions of wildlife caused by newly emergent diseases highlight the need to improve our knowledge of common environmental factors that affect the strength of immune defense traits. To achieve this goal, we examined the influence of acidification and shading of the larval environment on amphibian skin-associated innate immune defense traits, pre and post-metamorphosis, across two populations of American Bullfrogs (Rana catesbeiana, a species known for its wide-ranging environmental tolerance and introduced global distribution. We assessed treatment effects on 1 skin-associated microbial communities and 2 post-metamorphic antimicrobial peptide (AMP production and 3 AMP bioactivity against the fungal pathogen Batrachochytrium dendrobatidis (Bd. While habitat acidification did not affect survival, time to metamorphosis or juvenile mass, we found that a change in average pH from 7 to 6 caused a significant shift in the larval skin microbial community, an effect which disappeared after metamorphosis. Additionally, we found shifts in skin-associated microbial communities across life stages suggesting they are affected by the physiological or ecological changes associated with amphibian metamorphosis. Moreover, we found that post-metamorphic AMP production and bioactivity were significantly affected by the interactions between pH and shade treatments and interactive effects differed across populations. In contrast, there were no significant interactions between treatments on post-metamorphic microbial community structure suggesting that variation in AMPs did not affect microbial community structure within our study. Our findings indicate that commonly encountered variation in the larval environment (i.e. pond pH and degree of shading can have both immediate and long-term effects on the amphibian innate immune defense traits. Our work suggests that the susceptibility of amphibians to emerging diseases could be

  7. Effects of the amphibian chytrid fungus and four insecticides on Pacific treefrogs (Pseudacris regilla)

    Science.gov (United States)

    Kleinhez, Peter; Boone, Michelle D.; Fellers, Gary

    2012-01-01

    Chemical contamination may influence host-pathogen interactions, which has implications for amphibian population declines. We examined the effects of four insecticides alone or as a mixture on development and metamorphosis of Pacific Treefrogs (Pseudacris regilla) in the presence or absence of the amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Bd exposure had a negative impact on tadpole activity, survival to metamorphosis, time to metamorphosis, and time of tail absorption (with a marginally negative effect on mass at metamorphosis); however, no individuals tested positive for Bd at metamorphosis. The presence of sublethal concentrations of insecticides alone or in a mixture did not impact Pacific Treefrog activity as tadpoles, survival to metamorphosis, or time and size to metamorphosis. Insecticide exposure did not influence the effect of Bd exposure. Our study did not support our prediction that effects of Bd would be greater in the presence of expected environmental concentrations of insecticide(s), but it did show that Bd had negative effects on responses at metamorphosis that could reduce the quality of juveniles recruited into the population.

  8. Disease risk in temperate amphibian populations is higher at closed-canopy sites.

    Directory of Open Access Journals (Sweden)

    C Guilherme Becker

    Full Text Available Habitat loss and chytridiomycosis (a disease caused by the chytrid fungus Batrachochytrium dendrobatidis - Bd are major drivers of amphibian declines worldwide. Habitat loss regulates host-pathogen interactions by altering biotic and abiotic factors directly linked to both host and pathogen fitness. Therefore, studies investigating the links between natural vegetation and chytridiomycosis require integrative approaches to control for the multitude of possible interactions of biological and environmental variables in spatial epidemiology. In this study, we quantified Bd infection dynamics across a gradient of natural vegetation and microclimates, looking for causal associations between vegetation cover, multiple microclimatic variables, and pathogen prevalence and infection intensity. To minimize the effects of host diversity in our analyses, we sampled amphibian populations in the Adirondack Mountains of New York State, a region with relatively high single-host dominance. We sampled permanent ponds for anurans, focusing on populations of the habitat generalist frog Lithobates clamitans, and recorded various biotic and abiotic factors that potentially affect host-pathogen interactions: natural vegetation, canopy density, water temperature, and host population and community attributes. We screened for important explanatory variables of Bd infections and used path analyses to statistically test for the strength of cascading effects linking vegetation cover, microclimate, and Bd parameters. We found that canopy density, natural vegetation, and daily average water temperature were the best predictors of Bd. High canopy density resulted in lower water temperature, which in turn predicted higher Bd prevalence and infection intensity. Our results confirm that microclimatic shifts arising from changes in natural vegetation play an important role in Bd spatial epidemiology, with areas of closed canopy favoring Bd. Given increasing rates of anthropogenic

  9. Detection of spring viraemia of carp virus in imported amphibians reveals an unanticipated foreign animal disease threat.

    Science.gov (United States)

    Ip, Hon S; Lorch, Jeffrey M; Blehert, David S

    2016-09-07

    Global translocation of plants and animals is a well-recognized mechanism for introduction of pathogens into new regions. To mitigate this risk, various tools such as preshipment health certificates, quarantines, screening for specific disease agents and outright bans have been implemented. However, such measures only target known infectious agents and their hosts and may fail to prevent translocation of even well-recognized pathogens if they are carried by novel host species. In a recent example, we screened an imported shipment of Chinese firebelly newts (Cynops orientalis) for Batrachochytrium salamandrivorans, an emergent fungal pathogen of salamanders. All animals tested negative for the fungus. However, a virus was cultured from internal organs from 7 of the 11 individual dead salamanders and from two pools of tissues from four additional dead animals. Sequencing of a portion of the glycoprotein gene from all viral isolates indicated 100% identity and that they were most closely related to spring viraemia of carp virus (SVCV). Subsequently, SVCV-specific PCR testing indicated the presence of virus in internal organs from each of the four animals previously pooled, and whole-genome sequencing of one of the viral isolates confirmed genomic arrangement characteristic of SVCV. SVCV is a rhabdovirus pathogen of cyprinid fish that is listed as notifiable to the Office International des Epizooties. This discovery reveals a novel route for potential spillover of this economically important pathogen as rhabdovirus has not previously been documented in amphibians.

  10. Detection of spring viraemia of carp virus in imported amphibians reveals an unanticipated foreign animal disease threat

    Science.gov (United States)

    Ip, Hon S.; Lorch, Jeffrey M.; Blehert, David

    2016-01-01

    Global translocation of plants and animals is a well-recognized mechanism for introduction of pathogens into new regions. To mitigate this risk, various tools such as preshipment health certificates, quarantines, screening for specific disease agents and outright bans have been implemented. However, such measures only target known infectious agents and their hosts and may fail to prevent translocation of even well-recognized pathogens if they are carried by novel host species. In a recent example, we screened an imported shipment of Chinese firebelly newts (Cynops orientalis) for Batrachochytrium salamandrivorans, an emergent fungal pathogen of salamanders. All animals tested negative for the fungus. However, a virus was cultured from internal organs from 7 of the 11 individual dead salamanders and from two pools of tissues from four additional dead animals. Sequencing of a portion of the glycoprotein gene from all viral isolates indicated 100% identity and that they were most closely related to spring viraemia of carp virus (SVCV). Subsequently, SVCV-specific PCR testing indicated the presence of virus in internal organs from each of the four animals previously pooled, and whole-genome sequencing of one of the viral isolates confirmed genomic arrangement characteristic of SVCV. SVCV is a rhabdovirus pathogen of cyprinid fish that is listed as notifiable to the Office International des Epizooties. This discovery reveals a novel route for potential spillover of this economically important pathogen as rhabdovirus has not previously been documented in amphibians.

  11. Unlikely remedy: fungicide clears infection from pathogenic fungus in larval southern leopard frogs (Lithobates sphenocephalus.

    Directory of Open Access Journals (Sweden)

    Shane M Hanlon

    Full Text Available Amphibians are often exposed to a wide variety of perturbations. Two of these, pesticides and pathogens, are linked to declines in both amphibian health and population viability. Many studies have examined the separate effects of such perturbations; however, few have examined the effects of simultaneous exposure of both to amphibians. In this study, we exposed larval southern leopard frog tadpoles (Lithobates sphenocephalus to the chytrid fungus Batrachochytrium dendrobatidis and the fungicide thiophanate-methyl (TM at 0.6 mg/L under laboratory conditions. The experiment was continued until all larvae completed metamorphosis or died. Overall, TM facilitated increases in tadpole mass and length. Additionally, individuals exposed to both TM and Bd were heavier and larger, compared to all other treatments. TM also cleared Bd in infected larvae. We conclude that TM affects larval anurans to facilitate growth and development while clearing Bd infection. Our findings highlight the need for more research into multiple perturbations, specifically pesticides and disease, to further promote amphibian heath.

  12. Batrachochytrium dendrobatidis detected in Kihansi spray toads at a captive breeding facility (Kihansi, Tanzania).

    Science.gov (United States)

    Makange, Mariam; Kulaya, Neema; Biseko, Emiliana; Kalenga, Parson; Mutagwaba, Severinus; Misinzo, Gerald

    2014-09-30

    The chytrid fungus Batrachochytrium dendrobatidis (Bd) is the aetiological agent of amphibian chytridiomycosis, a disease associated with global amphibian population declines. In November 2012, mass mortalities of Kihansi spray toads Nectophrynoides asperginis were observed at the Kihansi captive breeding facility, located in the Udzungwa Mountains, Tanzania. Mortalities increased rapidly, and dead toads showed typical clinical signs of chytridiomycosis, including reddening of the skin that was especially evident on the toe pads. Treatment of toads with itraconazole rapidly reduced mortalities. Dead toads (n = 49) were collected and used to perform Bd-specific polymerase chain reaction and subsequent nucleotide sequencing. All toads collected at the facility were positive for Bd. The obtained Bd 5.8S rRNA gene and flanking internal transcribed spacer regions (ITS1 and ITS2) were not 100% identical to any other Bd sequences in GenBank, but closely resembled isolates from Ecuador, Japan, USA, Brazil, Korea, and South Africa. To our knowledge, this is the first study reporting molecular characteristics of Bd isolated from the Udzungwa Mountains. Strict biosecurity measures at the breeding facility and in Kihansi spray wetlands where toads have been reintroduced have been implemented. Further studies on Bd epidemiology in the Udzungwa Mountains are recommended in order to understand its origin, prevalence, and molecular characteristics in wild amphibian populations. This will be important for conservation of several endemic amphibian species in the Udzungwa Mountains, which are part of the Eastern Arc Mountains, a global biodiversity hotspot.

  13. Elevation, temperature, and aquatic connectivity all influence the infection dynamics of the amphibian chytrid fungus in adult frogs.

    Directory of Open Access Journals (Sweden)

    Sarah J Sapsford

    Full Text Available Infectious diseases can cause population declines and even extinctions. The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd, has caused population declines and extinctions in amphibians on most continents. In the tropics, research on the dynamics of this disease has focused on amphibian populations in mountainous areas. In most of these areas, high and low elevation sites are connected by an assemblage of streams that may transport the infectious stage of the pathogen from high to low elevations, and, also, this pathogen, which grows well at cool temperatures, may persist better in cooler water flowing from high elevations. Thus, the dynamics of disease at low elevation sites without aquatic connections to higher elevation sites, i.e., non-contiguous low elevation sites, may differ from dynamics at contiguous low elevation sites. We sampled adult common mistfrogs (Litoria rheocola at six sites of three types: two at high (> 400 m elevations, two at low elevations contiguous with high elevation streams, and two at low elevations non-contiguous with any high elevation site. Adults were swabbed for Bd diagnosis from June 2010 to June 2011 in each season, over a total of five sampling periods. The prevalence of Bd fluctuated seasonally and was highest in winter across all site types. Site type significantly affected seasonal patterns of prevalence of Bd. Prevalence remained well above zero throughout the year at the high elevation sites. Prevalence declined to lower levels in contiguous low sites, and reached near-zero at non-contiguous low sites. Patterns of air temperature fluctuation were very similar at both the low elevation site types, suggesting that differences in water connectivity to high sites may have affected the seasonal dynamics of Bd prevalence between contiguous and non-contiguous low elevation site types. Our results also suggest that reservoir hosts may be important in the persistence of disease at low elevations.

  14. Amphibian skin may select for rare environmental microbes.

    Science.gov (United States)

    Walke, Jenifer B; Becker, Matthew H; Loftus, Stephen C; House, Leanna L; Cormier, Guy; Jensen, Roderick V; Belden, Lisa K

    2014-11-01

    Host-microbe symbioses rely on the successful transmission or acquisition of symbionts in each new generation. Amphibians host a diverse cutaneous microbiota, and many of these symbionts appear to be mutualistic and may limit infection by the chytrid fungus, Batrachochytrium dendrobatidis, which has caused global amphibian population declines and extinctions in recent decades. Using bar-coded 454 pyrosequencing of the 16S rRNA gene, we addressed the question of symbiont transmission by examining variation in amphibian skin microbiota across species and sites and in direct relation to environmental microbes. Although acquisition of environmental microbes occurs in some host-symbiont systems, this has not been extensively examined in free-living vertebrate-microbe symbioses. Juvenile bullfrogs (Rana catesbeiana), adult red-spotted newts (Notophthalmus viridescens), pond water and pond substrate were sampled at a single pond to examine host-specificity and potential environmental transmission of microbiota. To assess population level variation in skin microbiota, adult newts from two additional sites were also sampled. Cohabiting bullfrogs and newts had distinct microbial communities, as did newts across the three sites. The microbial communities of amphibians and the environment were distinct; there was very little overlap in the amphibians' core microbes and the most abundant environmental microbes, and the relative abundances of OTUs that were shared by amphibians and the environment were inversely related. These results suggest that, in a host species-specific manner, amphibian skin may select for microbes that are generally in low abundance in the environment.

  15. Disease in a dynamic landscape: host behavior and wildfire reduce amphibian chytrid infection

    Science.gov (United States)

    Hossack, Blake R.; Lowe, Winsor H.; Ware, Joy L.; Corn, Paul Stephen

    2013-01-01

    Disturbances are often expected to magnify effects of disease, but these effects may depend on the ecology, behavior, and life history of both hosts and pathogens. In many ecosystems, wildfire is the dominant natural disturbance and thus could directly or indirectly affect dynamics of many diseases. To determine how probability of infection by the aquatic fungus Batrachochytrium dendrobatidis (Bd) varies relative to habitat use by individuals, wildfire, and host characteristics, we sampled 404 boreal toads (Anaxyrus boreas boreas) across Glacier National Park, Montana (USA). Bd causes chytridiomycosis, an emerging infectious disease linked with widespread amphibian declines, including the boreal toad. Probability of infection was similar for females and the combined group of males and juveniles. However, only 9% of terrestrial toads were infected compared to >30% of aquatic toads, and toads captured in recently burned areas were half as likely to be infected as toads in unburned areas. We suspect these large differences in infection reflect habitat choices by individuals that affect pathogen exposure and persistence, especially in burned forests where warm, arid conditions could limit Bd growth. Our results show that natural disturbances such as wildfire and the resulting diverse habitats can influence infection across large landscapes, potentially maintaining local refuges and host behaviors that facilitate evolution of disease resistance.

  16. Larval exposure to predator cues alters immune function and response to a fungal pathogen in post-metamorphic wood frogs.

    Science.gov (United States)

    Groner, Maya L; Buck, Julia C; Gervasi, Stephanie; Blaustein, Andrew R; Reinert, Laura K; Rollins-Smith, Louise A; Bier, Mark E; Hempel, John; Relyea, Rick A

    2013-09-01

    For the past several decades, amphibian populations have been decreasing around the globe at an unprecedented rate. Batrachochytrium dendrobatidis (Bd), the fungal pathogen that causes chytridiomycosis in amphibians, is contributing to amphibian declines. Natural and anthropogenic environmental factors are hypothesized to contribute to these declines by reducing the immunocompetence of amphibian hosts, making them more susceptible to infection. Antimicrobial peptides (AMPs) produced in the granular glands of a frog's skin are thought to be a key defense against Bd infection. These peptides may be a critical immune defense during metamorphosis because many acquired immune functions are suppressed during this time. To test if stressors alter AMP production and survival of frogs exposed to Bd, we exposed wood frog (Lithobates sylvaticus) tadpoles to the presence or absence of dragonfly predator cues crossed with a single exposure to three nominal concentrations of the insecticide malathion (0, 10, or 100 parts per billion [ppb]). We then exposed a subset of post-metamorphic frogs to the presence or absence of Bd zoospores and measured frog survival. Although predator cues and malathion had no effect on survival or size at metamorphosis, predator cues increased the time to metamorphosis by 1.5 days and caused a trend of a 20% decrease in hydrophobic skin peptides. Despite this decrease in peptides determined shortly after metamorphosis, previous exposure to predator cues increased survival in both Bd-exposed and unexposed frogs several weeks after metamorphosis. These results suggest that exposing tadpoles to predator cues confers fitness benefits later in life.

  17. The Effect of Human Impact on Batrachochytrium dendrobatidis prevalence in Taricha torosa

    Science.gov (United States)

    Deng, V.; Macario, E.; Tumey, C.

    2014-12-01

    Batrachochytrium dendrobatidis (Bd) is emerging as a major cause of the amphibian extinction. As amphibians serve an important role as indicator species in their ecosystem and play a vital role in the food chain, Bd will not only affect the amphibian population but also the health of the environment. Bd is an aquatic fungus that blocks the porous skin of amphibians which interrupts electrolyte, gas and water transfer. This imbalances the electrolyte system which causes cells and organs to malfunction, therefore killing the amphibian. While frogs are more common for Bd, it is not often found in newts. However, Dr. Vance Vredenburg recently found an outbreak of Bd in Taricha torosa in Marin Headlands, California. This location was used in the research as the sample site with most human impact and was expected to have the highest prevalence according to the proposed hypothesis that more human impact will correspond with a higher prevalence of Bd. Decreasing the level of human impact, Fairfield Osborn Preserve and Galbreath Preserve were picked as the other sample sites. After the samples went through qPCR, all of them came back negative for Bd. These results did not support the hypothesis, however, it contributed data to explaining the dynamics of Bd when combined with Dr. Vance Vredenburg's data from 2 months earlier. Within the two months, there was a huge difference in the prevalence of Bd as it dropped from 88% to 0%. This shows that Taricha torosa does in fact get Bd. However, it is rarely detected because Bd is fast-acting and has high mortality rates. Therefore, it is least likely for current nonspecific surveys to swab the newts during a short but lethal Bd outbreak.

  18. Treatment of urodelans based on temperature dependent infection dynamics of Batrachochytrium salamandrivorans.

    Science.gov (United States)

    Blooi, M; Martel, A; Haesebrouck, F; Vercammen, F; Bonte, D; Pasmans, F

    2015-01-27

    The recently emerged chytrid fungus Batrachochytrium salamandrivorans currently causes amphibian population declines. We hypothesized that temperature dictates infection dynamics of B. salamandrivorans, and that therefore heat treatment may be applied to clear animals from infection. We examined the impact of environmental temperature on B. salamandrivorans infection and disease dynamics in fire salamanders (Salamandra salamandra). Colonization of salamanders by B. salamandrivorans occurred at 15°C and 20°C but not at 25°C, with a significantly faster buildup of infection load and associated earlier mortality at 15°C. Exposing B. salamandrivorans infected salamanders to 25°C for 10 days resulted in complete clearance of infection and clinically cured all experimentally infected animals. This treatment protocol was validated in naturally infected wild fire salamanders. In conclusion, we show that B. salamandrivorans infection and disease dynamics are significantly dictated by environmental temperature, and that heat treatment is a viable option for clearing B. salamandrivorans infections.

  19. Tropical amphibian populations experience higher disease risk in natural habitats.

    Science.gov (United States)

    Becker, C Guilherme; Zamudio, Kelly R

    2011-06-14

    Habitat loss and disease are main drivers of global amphibian declines, yet the interaction between them remains largely unexplored. Here we show that paradoxically, habitat loss is negatively associated with occurrence, prevalence, and infection intensity of the chytrid fungus Batrachochytrium dendrobatidis (Bd) in amphibian populations in the tropics. At a large spatial scale, increased habitat loss predicted lower disease risk in amphibian populations across Costa Rica and eastern Australia, even after jointly considering the effect of potential biotic and abiotic correlates. Lower host-species richness and suboptimal microclimates for Bd in disturbed habitats are potential mechanisms underlying this pattern. Furthermore, we found that anthropogenic deforestation practices biased to lowlands and natural vegetation remaining in inaccessible highlands explain increased Bd occurrence at higher elevations. At a smaller spatial scale, holding constant elevation, latitude, and macroclimate, we also found a negative relationship between habitat loss, and both Bd prevalence and infection intensity in frog populations in two landscapes of the Brazilian Atlantic Forest. Our results indicate that amphibians will be disproportionately affected by emerging diseases in pristine environments, and that, paradoxically, disturbed habitats may act as shelters from disease, but only for the very few species that can tolerate deforestation. Thus, tropical amphibian faunas are threatened both by destruction of natural habitats as well as increased disease in pristine forests. To curb further extinctions and develop effective mitigation and restoration programs we must look to interactions between habitat loss and disease, the two main factors at the root of global amphibian declines.

  20. Spatial variation in risk and consequence of Batrachochytrium salamandrivorans introduction in the USA.

    Science.gov (United States)

    Richgels, Katherine L D; Russell, Robin E; Adams, Michael J; White, C LeAnn; Grant, Evan H Campbell

    2016-02-01

    A newly identified fungal pathogen, Batrachochytrium salamandrivorans(Bsal), is responsible for mass mortality events and severe population declines in European salamanders. The eastern USA has the highest diversity of salamanders in the world and the introduction of this pathogen is likely to be devastating. Although data are inevitably limited for new pathogens, disease-risk assessments use best available data to inform management decisions. Using characteristics of Bsalecology, spatial data on imports and pet trade establishments, and salamander species diversity, we identify high-risk areas with both a high likelihood of introduction and severe consequences for local salamanders. We predict that the Pacific coast, southern Appalachian Mountains and mid-Atlantic regions will have the highest relative risk from Bsal. Management of invasive pathogens becomes difficult once they are established in wildlife populations; therefore, import restrictions to limit pathogen introduction and early detection through surveillance of high-risk areas are priorities for preventing the next crisis for North American salamanders.

  1. Mitigating amphibian chytridiomycosis in nature

    Science.gov (United States)

    Garner, Trenton W. J.; Schmidt, Benedikt R.; Martel, An; Pasmans, Frank; Muths, Erin L.; Cunningham, Andrew A.; Weldon, Che; Fisher, Matthew C.; Bosch, Jaime

    2016-01-01

    Amphibians across the planet face the threat of population decline and extirpation caused by the disease chytridiomycosis. Despite consensus that the fungal pathogens responsible for the disease are conservation issues, strategies to mitigate their impacts in the natural world are, at best, nascent. Reducing risk associated with the movement of amphibians, non-amphibian vectors and other sources of infection remains the first line of defence and a primary objective when mitigating the threat of disease in wildlife. Amphibian-associated chytridiomycete fungi and chytridiomycosis are already widespread, though, and we therefore focus on discussing options for mitigating the threats once disease emergence has occurred in wild amphibian populations. All strategies have shortcomings that need to be overcome before implementation, including stronger efforts towards understanding and addressing ethical and legal considerations. Even if these issues can be dealt with, all currently available approaches, or those under discussion, are unlikely to yield the desired conservation outcome of disease mitigation. The decision process for establishing mitigation strategies requires integrated thinking that assesses disease mitigation options critically and embeds them within more comprehensive strategies for the conservation of amphibian populations, communities and ecosystems.

  2. Amphibians with infectious disease increase their reproductive effort: evidence for the terminal investment hypothesis

    Science.gov (United States)

    Brannelly, Laura A.; Webb, Rebecca; Skerratt, Lee F.; Berger, Lee

    2016-01-01

    Mounting an immune response to fight disease is costly for an organism and can reduce investment in another life-history trait, such as reproduction. The terminal investment hypothesis predicts that an organism will increase reproductive effort when threatened by disease. The reproductive fitness of amphibians infected with the deadly fungal pathogen Batrachochytrium dendrobatidis (Bd) is largely unknown. In this study, we explored gametogenesis in two endangered and susceptible frog species, Pseudophryne corroboree and Litoria verreauxii alpina. Gametogenesis, both oogenesis and spermatogenesis, increased when animals were experimentally infected with Bd. In P. corroboree, infected males have thicker germinal epithelium, and a larger proportion of spermatocytes. In L. v. alpina, infected males had more spermatic cell bundles in total, and a larger proportion of spermatozoa bundles. In female L. v. alpina, ovaries and oviducts were larger in infected animals, and there were more cells present within the ovaries. Terminal investment has consequences for the evolution of disease resistance in declining species. If infected animals are increasing reproductive efforts and producing more offspring before succumbing to disease, it is possible that population-level selection for disease resistance will be minimized. PMID:27358291

  3. Prior infection does not improve survival against the amphibian disease Chytridiomycosis.

    Directory of Open Access Journals (Sweden)

    Scott D Cashins

    Full Text Available Many amphibians have declined globally due to introduction of the pathogenic fungus Batrachochytrium dendrobatidis (Bd. Hundreds of species, many in well-protected habitats, remain as small populations at risk of extinction. Currently the only proven conservation strategy is to maintain species in captivity to be reintroduced at a later date. However, methods to abate the disease in the wild are urgently needed so that reintroduced and wild animals can survive in the presence of Bd. Vaccination has been widely suggested as a potential strategy to improve survival. We used captive-bred offspring of critically endangered booroolong frogs (Litoria booroolongensis to test if vaccination in the form of prior infection improves survival following re exposure. We infected frogs with a local Bd isolate, cleared infection after 30 days (d using itraconazole just prior to the onset of clinical signs, and then re-exposed animals to Bd at 110 d. We found prior exposure had no effect on survival or infection intensities, clearly showing that real infections do not stimulate a protective adaptive immune response in this species. This result supports recent studies suggesting Bd may evade or suppress host immune functions. Our results suggest vaccination is unlikely to be useful in mitigating chytridiomycosis. However, survival of some individuals from all experimental groups indicates existence of protective innate immunity. Understanding and promoting this innate resistance holds potential for enabling species recovery.

  4. CRN13 candidate effectors from plant and animal eukaryotic pathogens are DNA-binding proteins which trigger host DNA damage response.

    Science.gov (United States)

    Ramirez-Garcés, Diana; Camborde, Laurent; Pel, Michiel J C; Jauneau, Alain; Martinez, Yves; Néant, Isabelle; Leclerc, Catherine; Moreau, Marc; Dumas, Bernard; Gaulin, Elodie

    2016-04-01

    To successfully colonize their host, pathogens produce effectors that can interfere with host cellular processes. Here we investigated the function of CRN13 candidate effectors produced by plant pathogenic oomycetes and detected in the genome of the amphibian pathogenic chytrid fungus Batrachochytrium dendrobatidis (BdCRN13). When expressed in Nicotiana, AeCRN13, from the legume root pathogen Aphanomyces euteiches, increases the susceptibility of the leaves to the oomycete Phytophthora capsici. When transiently expressed in amphibians or plant cells, AeCRN13 and BdCRN13 localize to the cell nuclei, triggering aberrant cell development and eventually causing cell death. Using Förster resonance energy transfer experiments in plant cells, we showed that both CRN13s interact with nuclear DNA and trigger plant DNA damage response (DDR). Mutating key amino acid residues in a predicted HNH-like endonuclease motif abolished the interaction of AeCRN13 with DNA, the induction of DDR and the enhancement of Nicotiana susceptibility to P. capsici. Finally, H2AX phosphorylation, a marker of DNA damage, and enhanced expression of genes involved in the DDR were observed in A. euteiches-infected Medicago truncatula roots. These results show that CRN13 from plant and animal eukaryotic pathogens promotes host susceptibility by targeting nuclear DNA and inducing DDR.

  5. DNA Extraction Method Affects the Detection of a Fungal Pathogen in Formalin-Fixed Specimens Using qPCR.

    Directory of Open Access Journals (Sweden)

    Andrea J Adams

    Full Text Available Museum collections provide indispensable repositories for obtaining information about the historical presence of disease in wildlife populations. The pathogenic amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd has played a significant role in global amphibian declines, and examining preserved specimens for Bd can improve our understanding of its emergence and spread. Quantitative PCR (qPCR enables Bd detection with minimal disturbance to amphibian skin and is significantly more sensitive to detecting Bd than histology; therefore, developing effective qPCR methodologies for detecting Bd DNA in formalin-fixed specimens can provide an efficient and effective approach to examining historical Bd emergence and prevalence. Techniques for detecting Bd in museum specimens have not been evaluated for their effectiveness in control specimens that mimic the conditions of animals most likely to be encountered in museums, including those with low pathogen loads. We used American bullfrogs (Lithobates catesbeianus of known infection status to evaluate the success of qPCR to detect Bd in formalin-fixed specimens after three years of ethanol storage. Our objectives were to compare the most commonly used DNA extraction method for Bd (PrepMan, PM to Macherey-Nagel DNA FFPE (MN, test optimizations for Bd detection with PM, and provide recommendations for maximizing Bd detection. We found that successful detection is relatively high (80-90% when Bd loads before formalin fixation are high, regardless of the extraction method used; however, at lower infection levels, detection probabilities were significantly reduced. The MN DNA extraction method increased Bd detection by as much as 50% at moderate infection levels. Our results indicate that, for animals characterized by lower pathogen loads (i.e., those most commonly encountered in museum collections, current methods may underestimate the proportion of Bd-infected amphibians. Those extracting DNA from

  6. DNA Extraction Method Affects the Detection of a Fungal Pathogen in Formalin-Fixed Specimens Using qPCR.

    Science.gov (United States)

    Adams, Andrea J; LaBonte, John P; Ball, Morgan L; Richards-Hrdlicka, Kathryn L; Toothman, Mary H; Briggs, Cheryl J

    2015-01-01

    Museum collections provide indispensable repositories for obtaining information about the historical presence of disease in wildlife populations. The pathogenic amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has played a significant role in global amphibian declines, and examining preserved specimens for Bd can improve our understanding of its emergence and spread. Quantitative PCR (qPCR) enables Bd detection with minimal disturbance to amphibian skin and is significantly more sensitive to detecting Bd than histology; therefore, developing effective qPCR methodologies for detecting Bd DNA in formalin-fixed specimens can provide an efficient and effective approach to examining historical Bd emergence and prevalence. Techniques for detecting Bd in museum specimens have not been evaluated for their effectiveness in control specimens that mimic the conditions of animals most likely to be encountered in museums, including those with low pathogen loads. We used American bullfrogs (Lithobates catesbeianus) of known infection status to evaluate the success of qPCR to detect Bd in formalin-fixed specimens after three years of ethanol storage. Our objectives were to compare the most commonly used DNA extraction method for Bd (PrepMan, PM) to Macherey-Nagel DNA FFPE (MN), test optimizations for Bd detection with PM, and provide recommendations for maximizing Bd detection. We found that successful detection is relatively high (80-90%) when Bd loads before formalin fixation are high, regardless of the extraction method used; however, at lower infection levels, detection probabilities were significantly reduced. The MN DNA extraction method increased Bd detection by as much as 50% at moderate infection levels. Our results indicate that, for animals characterized by lower pathogen loads (i.e., those most commonly encountered in museum collections), current methods may underestimate the proportion of Bd-infected amphibians. Those extracting DNA from archived museum

  7. Ecopathology of ranaviruses infecting amphibians.

    Science.gov (United States)

    Miller, Debra; Gray, Matthew; Storfer, Andrew

    2011-11-01

    Ranaviruses are capable of infecting amphibians from at least 14 families and over 70 individual species. Ranaviruses infect multiple cell types, often culminating in organ necrosis and massive hemorrhaging. Subclinical infections have been documented, although their role in ranavirus persistence and emergence remains unclear. Water is an effective transmission medium for ranaviruses, and survival outside the host may be for significant duration. In aquatic communities, amphibians, reptiles and fish may serve as reservoirs. Controlled studies have shown that susceptibility to ranavirus infection and disease varies among amphibian species and developmental stages, and likely is impacted by host-pathogen coevolution, as well as, exogenous environmental factors. Field studies have demonstrated that the likelihood of epizootics is increased in areas of cattle grazing, where aquatic vegetation is sparse and water quality is poor. Translocation of infected amphibians through commercial trade (e.g., food, fish bait, pet industry) contributes to the spread of ranaviruses. Such introductions may be of particular concern, as several studies report that ranaviruses isolated from ranaculture, aquaculture, and bait facilities have greater virulence (i.e., ability to cause disease) than wild-type isolates. Future investigations should focus on the genetic basis for pathogen virulence and host susceptibility, ecological and anthropogenic mechanisms contributing to emergence, and vaccine development for use in captive populations and species reintroduction programs.

  8. Ecopathology of Ranaviruses Infecting Amphibians

    Directory of Open Access Journals (Sweden)

    Andrew Storfer

    2011-11-01

    Full Text Available Ranaviruses are capable of infecting amphibians from at least 14 families and over 70 individual species. Ranaviruses infect multiple cell types, often culminating in organ necrosis and massive hemorrhaging. Subclinical infections have been documented, although their role in ranavirus persistence and emergence remains unclear. Water is an effective transmission medium for ranaviruses, and survival outside the host may be for significant duration. In aquatic communities, amphibians, reptiles and fish may serve as reservoirs. Controlled studies have shown that susceptibility to ranavirus infection and disease varies among amphibian species and developmental stages, and likely is impacted by host-pathogen coevolution, as well as, exogenous environmental factors. Field studies have demonstrated that the likelihood of epizootics is increased in areas of cattle grazing, where aquatic vegetation is sparse and water quality is poor. Translocation of infected amphibians through commercial trade (e.g., food, fish bait, pet industry contributes to the spread of ranaviruses. Such introductions may be of particular concern, as several studies report that ranaviruses isolated from ranaculture, aquaculture, and bait facilities have greater virulence (i.e., ability to cause disease than wild-type isolates. Future investigations should focus on the genetic basis for pathogen virulence and host susceptibility, ecological and anthropogenic mechanisms contributing to emergence, and vaccine development for use in captive populations and species reintroduction programs.

  9. Nothing a hot bath won't cure: infection rates of amphibian chytrid fungus correlate negatively with water temperature under natural field settings.

    Science.gov (United States)

    Forrest, Matthew J; Schlaepfer, Martin A

    2011-01-01

    Dramatic declines and extinctions of amphibian populations throughout the world have been associated with chytridiomycosis, an infectious disease caused by the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Previous studies indicated that Bd prevalence correlates with cooler temperatures in the field, and laboratory experiments have demonstrated that Bd ceases growth at temperatures above 28°C. Here we investigate how small-scale variations in water temperature correlate with Bd prevalence in the wild. We sampled 221 amphibians, including 201 lowland leopard frogs (Rana [Lithobates] yavapaiensis), from 12 sites in Arizona, USA, and tested them for Bd. Amphibians were encountered in microhabitats that exhibited a wide range of water temperatures (10-50°C), including several geothermal water sources. There was a strong inverse correlation between the water temperature in which lowland leopard frogs were captured and Bd prevalence, even after taking into account the influence of year, season, and host size. In locations where Bd was known to be present, the prevalence of Bd infections dropped from 75-100% in water 30°C. A strong inverse correlation between Bd infection status and water temperature was also observed within sites. Our findings suggest that microhabitats where water temperatures exceed 30°C provide lowland leopard frogs with significant protection from Bd, which could have important implications for disease dynamics, as well as management applications.There must be quite a few things a hot bath won't cure, but I don't know many of them--Sylvia Plath, "The Bell Jar" (1963).

  10. Nothing a hot bath won't cure: infection rates of amphibian chytrid fungus correlate negatively with water temperature under natural field settings.

    Directory of Open Access Journals (Sweden)

    Matthew J Forrest

    Full Text Available Dramatic declines and extinctions of amphibian populations throughout the world have been associated with chytridiomycosis, an infectious disease caused by the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd. Previous studies indicated that Bd prevalence correlates with cooler temperatures in the field, and laboratory experiments have demonstrated that Bd ceases growth at temperatures above 28°C. Here we investigate how small-scale variations in water temperature correlate with Bd prevalence in the wild. We sampled 221 amphibians, including 201 lowland leopard frogs (Rana [Lithobates] yavapaiensis, from 12 sites in Arizona, USA, and tested them for Bd. Amphibians were encountered in microhabitats that exhibited a wide range of water temperatures (10-50°C, including several geothermal water sources. There was a strong inverse correlation between the water temperature in which lowland leopard frogs were captured and Bd prevalence, even after taking into account the influence of year, season, and host size. In locations where Bd was known to be present, the prevalence of Bd infections dropped from 75-100% in water 30°C. A strong inverse correlation between Bd infection status and water temperature was also observed within sites. Our findings suggest that microhabitats where water temperatures exceed 30°C provide lowland leopard frogs with significant protection from Bd, which could have important implications for disease dynamics, as well as management applications.There must be quite a few things a hot bath won't cure, but I don't know many of them--Sylvia Plath, "The Bell Jar" (1963.

  11. Ranavirus outbreaks in amphibian populations of northern Idaho

    Science.gov (United States)

    Russell, Danelle M.; Goldberg, Caren S.; Sprague, Laura; Waits, Lisette P.; Green, D. Earl; Schuler, Krysten L.; Rosenblum, Erica Bree

    2011-01-01

    Ranavirus outbreaks, caused by pathogens in the genus Ranavirus (Family Iridoviridae), were the largest single cause of reported amphibian mass mortality events in the United States from 1996–2001 (Green et al. 2002). Mortality events associated with ranaviruses have been documented on five continents and throughout the latitudes and elevations where amphibians occur (Gray et al. 2009). However, the threat of ranaviruses to amphibian and reptile populations in specific regions is still largely unknown (Chinchar 2002; Gray et al. 2009).

  12. Drought reduces chytrid fungus (Batrachochytrium dendrobatidis) infection intensity and mortality but not prevalence in adult crawfish frogs (Lithobates areolatus).

    Science.gov (United States)

    Terrell, Vanessa C K; Engbrecht, Nathan J; Pessier, Allan P; Lannoo, Michael J

    2014-01-01

    To fully understand the impacts of the chytrid fungus Batrachochytrium dendrobatidis (Bd) on amphibians it is necessary to examine the interactions between populations and their environment. Ecologic variables can exacerbate or ameliorate Bd prevalence and infection intensity, factors that are positively related when Bd is acting on naive amphibian populations as an epidemic disease. In crawfish frogs (Lithobates areolatus), a North American species with a complex life history, we have shown that Bd acts as an endemic disease with impacts that vary seasonally; the highest infection prevalences and intensities and highest frog mortality occurred during late spring in postbreeding individuals. In this study, conducted between 28 February and 23 August 2011 in southwestern Indiana on the same population, we report an uncoupling of the previously observed relationship between Bd prevalence and intensity following an extreme drought. Specifically, there was a postdrought reduction in Bd infection intensity and mortality, but not in infection prevalence. This result suggests that the relationship between prevalence and intensity observed in Bd epidemics can be uncoupled in populations harboring endemic infections. Further, constant prevalence rates suggest either that crawfish frogs are being exposed to Bd sources independent of ambient moisture or that low-level infections below detection thresholds persist from year to year. Drought has several ecologically beneficial effects for amphibians with complex life histories, including eliminating fish and invertebrate populations that feed on larvae. To these ecologic benefits we suggest another, that drought can reduce the incidence of the severe skin disease (chytridiomycosis) due to Bd infection.

  13. Chytrid blinders: what other disease risks to amphibians are we missing?

    Science.gov (United States)

    Duffus, Amanda L J

    2009-09-01

    Amphibian declines are occurring on a global scale, and infectious disease has been implicated as a factor in some species. Batrachochytrium dendrobatidis (Bd) has been associated with amphibian declines and/or extinctions in many locations, however, few of the studies have actually performed detailed pathological investigations to link the emergence of the disease with mortality rates large enough to cause the declines. Many studies are based solely on the presence of infection, not disease, because of the reliance on molecular tests for Bd. The emphasis of the importance of Bd combined with easy molecular tests has resulted in poor investigations into amphibian mortality and declines in many areas. The line between infection and disease has been blurred, and a step back to basic pathological and biological investigations is needed as other disease risks to amphibians, such as ranaviruses, are likely being missed. In this article, starting points for proper investigative techniques for amphibian mortalities and declines are identified and areas that need to be improved, especially communication between biologist and veterinarians involved in amphibian disease research, are suggested. It is hoped that this will start a much needed discussion in the area and lead to some consensus building about methodologies used in amphibian disease research.

  14. Examining the evidence for chytridiomycosis in threatened amphibian species.

    Directory of Open Access Journals (Sweden)

    Matthew Heard

    Full Text Available Extinction risks are increasing for amphibians due to rising threats and minimal conservation efforts. Nearly one quarter of all threatened/extinct amphibians in the IUCN Red List is purportedly at risk from the disease chytridiomycosis. However, a closer look at the data reveals that Batrachochytrium dendrobatidis (the causal agent has been identified and confirmed to cause clinical disease in only 14% of these species. Primary literature surveys confirm these findings; ruling out major discrepancies between Red List assessments and real-time science. Despite widespread interest in chytridiomycosis, little progress has been made between assessment years to acquire evidence for the role of chytridiomycosis in species-specific amphibian declines. Instead, assessment teams invoke the precautionary principle when listing chytridiomycosis as a threat. Precaution is valuable when dealing with the world's most threatened taxa, however scientific research is needed to distinguish between real and predicted threats in order to better prioritize conservation efforts. Fast paced, cost effective, in situ research to confirm or rule out chytridiomycosis in species currently hypothesized to be threatened by the disease would be a step in the right direction. Ultimately, determining the manner in which amphibian conservation resources are utilized is a conversation for the greater conservation community that we hope to stimulate here.

  15. Endoscopy in Amphibians.

    Science.gov (United States)

    Chai, Norin

    2015-09-01

    Despite advances in exotic animal endoscopy, descriptions involving amphibians are scarce. Amphibian endoscopy shares some similarities with reptiles, especially in lizards. Selected procedures are discussed, including stomatoscopy, gastroscopy, coelioscopy, and biopsy of coelomic organs and lesions. This short overview provides the practitioner with pragmatic advice on how to conduct safe and effective endoscopic examinations in amphibians.

  16. Direct and indirect effects of climate change on amphibian populations

    Science.gov (United States)

    Blaustein, Andrew R.; Walls, Susan C.; Bancroft, Betsy A.; Lawler, Joshua J.; Searle, Catherine L.; Gervasi, Stephanie S.

    2010-01-01

    As part of an overall decline in biodiversity, populations of many organisms are declining and species are being lost at unprecedented rates around the world. This includes many populations and species of amphibians. Although numerous factors are affecting amphibian populations, we show potential direct and indirect effects of climate change on amphibians at the individual, population and community level. Shifts in amphibian ranges are predicted. Changes in climate may affect survival, growth, reproduction and dispersal capabilities. Moreover, climate change can alter amphibian habitats including vegetation, soil, and hydrology. Climate change can influence food availability, predator-prey relationships and competitive interactions which can alter community structure. Climate change can also alter pathogen-host dynamics and greatly influence how diseases are manifested. Changes in climate can interact with other stressors such as UV-B radiation and contaminants. The interactions among all these factors are complex and are probably driving some amphibian population declines and extinctions.

  17. Over-wintering tadpoles of Mixophyes fasciolatus act as reservoir host for Batrachochytrium dendrobatidis.

    Directory of Open Access Journals (Sweden)

    Edward J Narayan

    Full Text Available Batrachochytrium dendrobatidis (Bd, a cutaneous amphibian fungus that causes the lethal disease chytridiomycosis, has been implicated as a cause of many amphibian declines. Bd can tolerate low temperatures with an optimum thermal range from 17-24°C. It has been shown that Bd infection may result in species extinction, avoiding the transmission threshold presented by density dependent transmission theory. Prevalence of Bd during autumn and winter has been shown to be as low as 0% in some species. It is currently unclear how Bd persists in field conditions and what processes result in carry-over between seasons. It has been hypothesised that overwintering tadpoles may host Bd between breeding seasons. The Great Barred Frog (Mixophyes fasciolatus is a common, stable and widespread species in Queensland, Australia, and is known to carry Bd. Investigation into Bd infection of different life stages of M. fasciolatus during seasonally low prevalence may potentially reveal persistence and carry-over methods between seasons. Metamorphs, juveniles, and adults were swabbed for Bd infection over three months (between March and May, 2011 at 5 sites of varying altitude (66 m-790 m. A total of 93 swabs were analysed using Polymerase Chain Reaction (PCR real-time analysis. PCR analysis showed 6 positive (1 excluded, 4 equivocal and 83 negative results for infection with Bd. Equivocal results were assumed to be negative using the precautionary principle. The 5 positive results consisted of 4 emerging (Gosner stage 43-45 metamorphs and 1 adult M. fasciolatus. Fisher's exact test on prevalence showed that the prevalence was significantly different between life stages. All positive results were sampled at high altitudes (790 m; however prevalence was not significantly different between altitudes. Infection of emerging metamorphs suggests that individuals were infected as tadpoles. We hypothesise that M. fasciolatus tadpoles carry Bd through seasons. Thus

  18. Spatial variation in risk and consequence of Batrachochytrium salamandrivorans introduction in the USA

    Science.gov (United States)

    Richgels, Katherine; Russell, Robin E.; Adams, Michael J.; White, C. LeAnn; Campbell Grant, Evan H.

    2016-01-01

    A newly identified fungal pathogen, Batrachochytrium salamandrivorans (Bsal), is responsible for mass mortality events and severe population declines in European salamanders. The eastern USA has the highest diversity of salamanders in the world and the introduction of this pathogen is likely to be devastating. Although data are inevitably limited for new pathogens, disease-risk assessments use best available data to inform management decisions. Using characteristics of Bsal ecology, spatial data on imports and pet trade establishments, and salamander species diversity, we identify high-risk areas with both a high likelihood of introduction and severe consequences for local salamanders. We predict that the Pacific coast, southern Appalachian Mountains and mid-Atlantic regions will have the highest relative risk from Bsal. Management of invasive pathogens becomes difficult once they are established in wildlife populations; therefore, import restrictions to limit pathogen introduction and early detection through surveillance of high-risk areas are priorities for preventing the next crisis for North American salamanders.

  19. The development of a spatially-explicit, individual-based, disease model for frogs and the chytrid fungus

    Science.gov (United States)

    Background / Question / Methods The fungal pathogen, Batrachochytrium dendrobatidis (BD), has been associated with amphibian population declines and even extinctions worldwide. Transmission of the fungus between amphibian hosts occurs via motile zoospores, which are produced on...

  20. Interventions for reducing extinction risk in chytridiomycosis-threatened amphibians.

    Science.gov (United States)

    Scheele, Ben C; Hunter, David A; Grogan, Laura F; Berger, Lee; Kolby, Jon E; McFadden, Michael S; Marantelli, Gerry; Skerratt, Lee F; Driscoll, Don A

    2014-10-01

    Wildlife diseases pose an increasing threat to biodiversity and are a major management challenge. A striking example of this threat is the emergence of chytridiomycosis. Despite diagnosis of chytridiomycosis as an important driver of global amphibian declines 15 years ago, researchers have yet to devise effective large-scale management responses other than biosecurity measures to mitigate disease spread and the establishment of disease-free captive assurance colonies prior to or during disease outbreaks. We examined the development of management actions that can be implemented after an epidemic in surviving populations. We developed a conceptual framework with clear interventions to guide experimental management and applied research so that further extinctions of amphibian species threatened by chytridiomycosis might be prevented. Within our framework, there are 2 management approaches: reducing Batrachochytrium dendrobatidis (the fungus that causes chytridiomycosis) in the environment or on amphibians and increasing the capacity of populations to persist despite increased mortality from disease. The latter approach emphasizes that mitigation does not necessarily need to focus on reducing disease-associated mortality. We propose promising management actions that can be implemented and tested based on current knowledge and that include habitat manipulation, antifungal treatments, animal translocation, bioaugmentation, head starting, and selection for resistance. Case studies where these strategies are being implemented will demonstrate their potential to save critically endangered species.

  1. A non-invasive stress assay shows that tadpole populations infected with Batrachochytrium dendrobatidis have elevated corticosterone levels.

    Directory of Open Access Journals (Sweden)

    Caitlin R Gabor

    Full Text Available Batrachochytrium dendrobatidis (Bd is a fungus that causes the disease chytridiomycosis and is associated with widespread amphibian declines. Populations vary in their susceptibility to Bd infections, and the virulence of the infecting lineage can also vary. Both of these factors may manifest as a differential physiological stress response. In addition, variation in disease susceptibility across amphibian populations may be influenced by immunosuppression caused by chronic stress imposed by environmental factors. Here, we use a non-invasive water-borne hormone technique to assess stress levels (corticosterone of free-living tadpole populations that are infected by Bd. We found that corticosterone release rates were higher in infected populations of two species of tadpoles (Alytes obstetricans and A. muletensis than in an uninfected population for both species. The relationship between corticosterone and the intensity of infection differed between species, with only the infected A. obstetricans population showing a significant positive correlation. The higher corticosterone release rates found in A. obstetricans may be an outcome of infection by a highly virulent lineage of Bd (BdGPL, whereas A. muletensis is infected with a less virulent lineage (BdCAPE. These results suggest that different lineages of Bd impose different levels of stress on the infected animals, and that this may influence survival. The next step is to determine whether higher corticosterone levels make individuals more susceptible to Bd or if Bd infections drive the higher corticosterone levels.

  2. Cell Density Effects of Frog Skin Bacteria on Their Capacity to Inhibit Growth of the Chytrid Fungus, Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Yasumiba, Kiyomi; Bell, Sara; Alford, Ross

    2016-01-01

    Bacterial symbionts on frog skin can reduce the growth of the chytrid fungus Batrachochytrium dendrobatidis (Bd) through production of inhibitory metabolites. Bacteria can be effective at increasing the resistance of amphibians to chytridiomycosis when added to amphibian skin, and isolates can be screened for production of metabolites that inhibit Bd growth in vitro. However, some bacteria use density-dependent mechanism such as quorum sensing to regulate metabolite production. It is therefore important to consider cell density effects when evaluating bacteria as possible candidates for bioaugmentation. The aim of our study was to evaluate how the density of cutaneous bacteria affects their inhibition of Bd growth in vitro. We sampled cutaneous bacteria isolated from three frog species in the tropical rainforests of northern Queensland, Australia, and selected ten isolates that were inhibitory to Bd in standardised pilot trials. We grew each isolate in liquid culture at a range of initial dilutions, sub-sampled each dilution at a series of times during the first 48 h of growth and measured spectrophotometric absorbance values, cell counts and Bd-inhibitory activity of cell-free supernatants at each time point. The challenge assay results clearly demonstrated that the inhibitory effects of most isolates were density dependent, with relatively low variation among isolates in the minimum cell density needed to inhibit Bd growth. We suggest the use of minimum cell densities and fast-growing candidate isolates to maximise bioaugmentation efforts.

  3. Surgery in Amphibians.

    Science.gov (United States)

    Chai, Norin

    2016-01-01

    Amphibian surgery has been especially described in research. Since the last decade, interest for captive amphibians has increased, so have the indications for surgical intervention. Clinicians should not hesitate to advocate such manipulations. Amphibian surgeries have no overwhelming obstacles. These patients heal well and tolerate blood loss more than higher vertebrates. Most procedures described in reptiles (mostly lizards) can be undertaken in most amphibians if equipment can be matched to the patients' size. In general, the most difficult aspect would be the provision of adequate anesthesia.

  4. Evaluating the links between climate, disease spread, and amphibian declines.

    Science.gov (United States)

    Rohr, Jason R; Raffel, Thomas R; Romansic, John M; McCallum, Hamish; Hudson, Peter J

    2008-11-11

    Human alteration of the environment has arguably propelled the Earth into its sixth mass extinction event and amphibians, the most threatened of all vertebrate taxa, are at the forefront. Many of the worldwide amphibian declines have been caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd), and two contrasting hypotheses have been proposed to explain these declines. Positive correlations between global warming and Bd-related declines sparked the chytrid-thermal-optimum hypothesis, which proposes that global warming increased cloud cover in warm years that drove the convergence of daytime and nighttime temperatures toward the thermal optimum for Bd growth. In contrast, the spatiotemporal-spread hypothesis states that Bd-related declines are caused by the introduction and spread of Bd, independent of climate change. We provide a rigorous test of these hypotheses by evaluating (i) whether cloud cover, temperature convergence, and predicted temperature-dependent Bd growth are significant positive predictors of amphibian extinctions in the genus Atelopus and (ii) whether spatial structure in the timing of these extinctions can be detected without making assumptions about the location, timing, or number of Bd emergences. We show that there is spatial structure to the timing of Atelopus spp. extinctions but that the cause of this structure remains equivocal, emphasizing the need for further molecular characterization of Bd. We also show that the reported positive multi-decade correlation between Atelopus spp. extinctions and mean tropical air temperature in the previous year is indeed robust, but the evidence that it is causal is weak because numerous other variables, including regional banana and beer production, were better predictors of these extinctions. Finally, almost all of our findings were opposite to the predictions of the chytrid-thermal-optimum hypothesis. Although climate change is likely to play an important role in worldwide amphibian declines

  5. Climate change and amphibians

    Directory of Open Access Journals (Sweden)

    Corn, P. S.

    2005-01-01

    Full Text Available Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  6. Zoonotic diseases associated with reptiles and amphibians: an update.

    Science.gov (United States)

    Mitchell, Mark A

    2011-09-01

    Reptiles and amphibians are popular as pets. There are increased concerns among public health officials because of the zoonotic potential associated with these animals. Encounters with reptiles and amphibians are also on the rise in the laboratory setting and with wild animals; in both of these practices, there is also an increased likelihood for exposure to zoonotic pathogens. It is important that veterinarians remain current with the literature as it relates to emerging and reemerging zoonotic diseases attributed to reptiles and amphibians so that they can protect themselves, their staff, and their clients from potential problems.

  7. Chromosomal copy number variation, selection and uneven rates of recombination reveal cryptic genome diversity linked to pathogenicity.

    Directory of Open Access Journals (Sweden)

    Rhys A Farrer

    Full Text Available Pathogenic fungi constitute a growing threat to both plant and animal species on a global scale. Despite a clonal mode of reproduction dominating the population genetic structure of many fungi, putatively asexual species are known to adapt rapidly when confronted by efforts to control their growth and transmission. However, the mechanisms by which adaptive diversity is generated across a clonal background are often poorly understood. We sequenced a global panel of the emergent amphibian pathogen, Batrachochytrium dendrobatidis (Bd, to high depth and characterized rapidly changing features of its genome that we believe hold the key to the worldwide success of this organism. Our analyses show three processes that contribute to the generation of de novo diversity. Firstly, we show that the majority of wild isolates manifest chromosomal copy number variation that changes over short timescales. Secondly, we show that cryptic recombination occurs within all lineages of Bd, leading to large regions of the genome being in linkage equilibrium, and is preferentially associated with classes of genes of known importance for virulence in other pathosystems. Finally, we show that these classes of genes are under directional selection, and that this has predominantly targeted the Global Panzootic Lineage (BdGPL. Our analyses show that Bd manifests an unusually dynamic genome that may have been shaped by its association with the amphibian host. The rates of variation that we document likely explain the high levels of phenotypic variability that have been reported for Bd, and suggests that the dynamic genome of this pathogen has contributed to its success across multiple biomes and host-species.

  8. The use of singleplex and nested PCR to detect Batrachochytrium dendrobatidis in free-living frogs

    Science.gov (United States)

    Coutinho, Selene Dall'Acqua; Burke, Julieta Catarina; de Paula, Catia Dejuste; Rodrigues, Miguel Trefaut; Catão-Dias, José Luiz

    2015-01-01

    Many microorganisms are able to cause diseases in amphibians, and in the past few years one of the most reported has been Batrachochytrium dendrobatidis. This fungus was first reported in Brazil in 2005; following this, other reports were made in specimens deposited in museum collections, captive and free-living frogs. The aim of this study was to compare singleplex and nested-PCR techniques to detect B. dendrobatidis in free-living and apparently healthy adult frogs from the Brazilian Atlantic Forest. The sample collection area was a protected government park, with no general entrance permitted and no management of the animals there. Swabs were taken from the skin of 107 animals without macroscopic lesions and they were maintained in ethanol p.a. Fungal DNA was extracted and identification of B. dendrobatidis was performed using singleplex and nested-PCR techniques, employing specific primers sequences. B. dendrobatidis was detected in 61/107 (57%) and 18/107 (17%) animals, respectively by nested and singleplex-PCR. Nested-PCR was statistically more sensible than the conventional for the detection of B. dendrobatidis (Chi-square = 37.1; α = 1%) and the agreement between both techniques was considered just fair (Kappa = 0.27). The high prevalence obtained confirms that these fungi occur in free-living frogs from the Brazilian Atlantic Forest with no macroscopic lesions, characterizing the state of asymptomatic carrier. We concluded that the nested-PCR technique, due to its ease of execution and reproducibility, can be recommended as one of the alternatives in epidemiological surveys to detect B. dendrobatidis in healthy free-living frog populations. PMID:26273273

  9. The use of singleplex and nested PCR to detect Batrachochytrium dendrobatidis in free-living frogs

    Directory of Open Access Journals (Sweden)

    Selene Dall'Acqua Coutinho

    2015-06-01

    Full Text Available Many microorganisms are able to cause diseases in amphibians, and in the past few years one of the most reported has been Batrachochytrium dendrobatidis. This fungus was first reported in Brazil in 2005; following this, other reports were made in specimens deposited in museum collections, captive and free-living frogs. The aim of this study was to compare singleplex and nested-PCR techniques to detect B. dendrobatidis in free-living and apparently healthy adult frogs from the Brazilian Atlantic Forest. The sample collection area was a protected government park, with no general entrance permitted and no management of the animals there. Swabs were taken from the skin of 107 animals without macroscopic lesions and they were maintained in ethanol p.a. Fungal DNA was extracted and identification of B. dendrobatidis was performed using singleplex and nested-PCR techniques, employing specific primers sequences. B. dendrobatidis was detected in 61/107 (57% and 18/107 (17% animals, respectively by nested and singleplex-PCR. Nested-PCR was statistically more sensible than the conventional for the detection of B. dendrobatidis (Chi-square = 37.1; α = 1% and the agreement between both techniques was considered just fair (Kappa = 0.27. The high prevalence obtained confirms that these fungi occur in free-living frogs from the Brazilian Atlantic Forest with no macroscopic lesions, characterizing the state of asymptomatic carrier. We concluded that the nested-PCR technique, due to its ease of execution and reproducibility, can be recommended as one of the alternatives in epidemiological surveys to detect B. dendrobatidis in healthy free-living frog populations.

  10. Prevalence of Batrachochytrium dendrobatidis in three species of wild frogs on Prince Edward Island, Canada.

    Science.gov (United States)

    Forzán, M J; Vanderstichel, R; Hogan, N S; Teather, K; Wood, J

    2010-09-02

    Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), has resulted in the decline or extinction of approximately 200 frog species worldwide. It has been reported throughout much of North America, but its presence on Prince Edward Island (PEI), on the eastern coast of Canada, was unknown. To determine the presence and prevalence of Bd on PEI, skin swabs were collected from 115 frogs from 18 separate sites across the province during the summer of 2009. The swabs were tested through single round end-point PCR for the presence of Bd DNA. Thirty-one frogs were positive, including 25/93 (27%) green frogs Lithobates (Rana) clamitans, 5/20 (25%) northern leopard frogs L. (R.) pipiens, and 1/2 (50%) wood frogs L. sylvaticus (formerly R. sylvatica); 12 of the 18 (67%) sites had at least 1 positive frog. The overall prevalence of Bd infection was estimated at 26.9% (7.2-46.7%, 95% CI). Prevalence amongst green frogs and leopard frogs was similar, but green frogs had a stronger PCR signal when compared to leopard frogs, regardless of age (p frogs, juveniles were more frequently positive than adults (p = 0.001). Green frogs may be the most reliable species to sample when looking for Bd in eastern North America. The 1 wood frog positive for Bd was found dead from chytridiomycosis; none of the other frogs that were positive for Bd by PCR showed any obvious signs of illness. Further monitoring will be required to determine what effect Bd infection has on amphibian population health on PEI.

  11. AMPHIBIAN POPULATION DYNAMICS

    Science.gov (United States)

    Agriculture has contributed to loss of vertebrate biodiversity in many regions, including the U.S. Corn Belt. Amphibian populations, in particular, have experienced widespread and often inexplicable declines, range reductions, and extinctions. However, few attempts have been made...

  12. Real-time PCR Detection and Phylogenetic Analysis for Batrachochytrium dendrobatidis in Rana limnocharises from Samples of a Museum%馆藏泽蛙标本壶菌病原实时PCR检测与系统发育分析

    Institute of Scientific and Technical Information of China (English)

    曾朝辉; 白世卓; 朱蕴绮; 王晓龙

    2012-01-01

    In order to research and prove the chytridiomycosis of amphibians in our country in the history, review the origin of the Batrachochytrium dendrobatidis from the aspects of time and systematic evolution, 39 Rana limnocharises which were collected from Guangdong province and held in museum in 1982 were screened by Taqman-MGB fluorescence probe quantitative polymerase chain reaction to detect the pathogens; and the products of QPCR were cloned and sequenced to identify the origin of the pathogens by sequence alignment and phylogenetic analysis. Finally we got the standard curve: Y = - 3.1 X + 32.65 and the related coefficient: R2 = 0.999 8. There were 12 positive samples were gotten to report the detection rate as 30.8 %. Meanwhile the phylogenetic analysis indicated that a certain extent differentia- tion of the Batrachochytrium dendrobatidis in our country existed. One type of the fungi had altitudinal genetic relationship with the strains from the North America, South America and Europe. Another one was obviously different from the strains in the other areas of the world with special characteristics. The research boosted the earliest record of the Batrachochytrium dendrobatidis in China to 1980s.%为研究、验证我国两栖类壶菌病的历史疫情,从时间和系统进化角度追溯壶菌的来源,该研究选取北京自然博物馆馆藏1982年采集于广东的泽蛙标本39只,利用Taqman-MGB荧光探针定量PCR技术进行壶菌检测,并对定量PCR产物克隆、测序,通过序列比对和系统发育分析判定其来源。最终得到定量PCR标准曲线:Y=-3.1X+32.65;相关系数R2=0.999 8;检测结果为阳性样本12只,检出率30.8%;同时系统发育分析表明,我国的壶菌存在一定程度的分化,一类与北美洲、南美洲、欧洲菌株呈现高度的亲缘关系;另一类则表现出与世界其他地区分布的壶菌有明显的不同,显示为独特类型。该研究把我国壶菌感染的最早记录推进到了20

  13. The cause of global amphibian declines: a developmental endocrinologist's perspective.

    Science.gov (United States)

    Hayes, T B; Falso, P; Gallipeau, S; Stice, M

    2010-03-15

    Greater than 70% of the world's amphibian species are in decline. We propose that there is probably not a single cause for global amphibian declines and present a three-tiered hierarchical approach that addresses interactions among and between ultimate and proximate factors that contribute to amphibian declines. There are two immediate (proximate) causes of amphibian declines: death and decreased recruitment (reproductive failure). Although much attention has focused on death, few studies have addressed factors that contribute to declines as a result of failed recruitment. Further, a great deal of attention has focused on the role of pathogens in inducing diseases that cause death, but we suggest that pathogen success is profoundly affected by four other ultimate factors: atmospheric change, environmental pollutants, habitat modification and invasive species. Environmental pollutants arise as likely important factors in amphibian declines because they have realized potential to affect recruitment. Further, many studies have documented immunosuppressive effects of pesticides, suggesting a role for environmental contaminants in increased pathogen virulence and disease rates. Increased attention to recruitment and ultimate factors that interact with pathogens is important in addressing this global crisis.

  14. West Africa - a safe haven for frogs? A sub-continental assessment of the chytrid fungus (Batrachochytrium dendrobatidis.

    Directory of Open Access Journals (Sweden)

    Johannes Penner

    Full Text Available A putative driver of global amphibian decline is the panzootic chytrid fungus Batrachochytrium dendrobatidis (Bd. While Bd has been documented across continental Africa, its distribution in West Africa remains ambiguous. We tested 793 West African amphibians (one caecilian and 61 anuran species for the presence of Bd. The samples originated from seven West African countries - Bénin, Burkina Faso, Côte d'Ivoire, Ghana, Guinea, Liberia, Sierra Leone - and were collected from a variety of habitats, ranging from lowland rainforests to montane forests, montane grasslands to humid and dry lowland savannahs. The species investigated comprised various life-history strategies, but we focused particularly on aquatic and riparian species. We used diagnostic PCR to screen 656 specimen swabs and histology to analyse 137 specimen toe tips. All samples tested negative for Bd, including a widespread habitat generalist Hoplobatrachus occipitalis which is intensively traded on the West African food market and thus could be a potential dispersal agent for Bd. Continental fine-grained (30 arc seconds environmental niche models suggest that Bd should have a broad distribution across West Africa that includes most of the regions and habitats that we surveyed. The surprising apparent absence of Bd in West Africa indicates that the Dahomey Gap may have acted as a natural barrier. Herein we highlight the importance of this Bd-free region of the African continent - especially for the long-term conservation of several threatened species depending on fast flowing forest streams (Conraua alleni ("Vulnerable" and Petropedetes natator ("Near Threatened" as well as the "Critically Endangered" viviparous toad endemic to the montane grasslands of Mount Nimba (Nimbaphrynoides occidentalis.

  15. Adaptive colouration in amphibians.

    Science.gov (United States)

    Rudh, Andreas; Qvarnström, Anna

    2013-01-01

    Amphibians, i.e. salamanders, frogs and caecilians show a wide range of bright colours in combination with contrasting patterns. There is variation among species, populations and also within species and populations. Furthermore, individuals often change colours during developmental stages or in response to environmental factors. This extraordinary variation means that there are excellent opportunities to test hypotheses of the adaptive significance of colours using amphibian species as models. We review the present view of functions of colouration in amphibians with the main focus on relatively unexplored topics. Variation in colouration has been found to play a role in thermoregulation, UV protection, predator avoidance and sexual signalling. However, many proposed cases of adaptive functions of colouration in amphibians remain virtually scientifically unexplored and surprisingly few genes influencing pigmentation or patterning have been detected. We would like to especially encourage more studies that take advantage of recent developments in measurement of visual properties of several possible signalling receivers (e.g. predators, competitors or mates). Future investigations on interactions between behaviour, ecology and vision have the potential to challenge our current view of the adaptive function of colouration in amphibians.

  16. Trouble in the aquatic world: How wildlife professionals are battling amphibian declines

    Science.gov (United States)

    Olson, Deanna H.; Chestnut, Tara E.

    2014-01-01

    A parasitic fungus, similar to the one that caused the extinction of numerous tropical frog and toad species, is killing salaman-ders in Europe. Scientists first identified the fungus, Batrachochytrium salamandrivorans, in 2013 as the culprit behind the death of fire salamanders (Salamandra salamandra) in the Netherlands (Martel et al. 2013) and are now exploring its potential impact to other species. Although the fungus, which kills the amphibians by infecting their skin, has not yet spread to the United States, researchers believe it's only a mat-ter of time before it does and, when that happens, the impact on salamander populations could be devastating (Martel et al. 2014). Reports of worldwide declines of amphibians began a quarter of a century ago (Blaustein & Wake 1990). Globally, some amphibian popula-tion declines occurred in the late 1950s and early 1960s, and declining trends continued in North America (Houlahan et al. 2000). In the earlier years, population declines were attributed primar-ily to overharvest due to unregulated supply of species such as the northern leopard frog (Litho-bates pipiens) for educational use (Dodd 2013). In later years, however, causes of declines were less evident. In 1989, herpetologists at the First World Congress of Herpetology traded alarming stories of losses across continents and in seemingly pro-tected landscapes, making it clear that amphibian population declines were a "global phenomenon." In response to these reports, in 1991, the Interna-tional Union for Conservation of Nature (IUCN) established the Declining Amphibian Populations Task Force to better understand the scale and scope of global amphibian declines. Unfortunate-ly, the absence of long-term monitoring data and targeted studies made it difficult for the task force to compile information.

  17. Temperature, hydric environment, and prior pathogen exposure alter the experimental severity of chytridiomycosis in boreal toads

    Science.gov (United States)

    Murphy, Peter J.; St-Hilaire, Sophie; Corn, Paul Stephen

    2011-01-01

    Prevalence of the pathogen Batrachochytrium dendrobatidis (Bd), implicated in amphibian population declines worldwide, is associated with habitat moisture and temperature, but few studies have varied these factors and measured the response to infection in amphibian hosts. We evaluated how varying humidity, contact with water, and temperature affected the manifestation of chytridiomycosis in boreal toads Anaxyrus (Bufo) boreas boreas and how prior exposure to Bd affects the likelihood of survival after re-exposure, such as may occur seasonally in long-lived species. Humidity did not affect survival or the degree of Bd infection, but a longer time in contact with water increased the likelihood of mortality. After exposure to ~106 Bd zoospores, all toads in continuous contact with water died within 30 d. Moreover, Bd-exposed toads that were disease-free after 64 d under dry conditions, developed lethal chytridiomycosis within 70 d of transfer to wet conditions. Toads in unheated aquaria (mean = 15°C) survived less than 48 d, while those in moderately heated aquaria (mean = 18°C) survived 115 d post-exposure and exhibited behavioral fever, selecting warmer sites across a temperature gradient. We also found benefits of prior Bd infection: previously exposed toads survived 3 times longer than Bd-naïve toads after re-exposure to 106 zoospores (89 vs. 30 d), but only when dry microenvironments were available. This study illustrates how the outcome of Bd infection in boreal toads is environmentally dependent: when continuously wet, high reinfection rates may overwhelm defenses, but periodic drying, moderate warming, and previous infection may allow infected toads to extend their survival.

  18. Parasites lost? An overlooked hypothesis for the evolution of alternative reproductive strategies in amphibians.

    Science.gov (United States)

    Todd, Brian D

    2007-11-01

    Amphibians exhibit the greatest diversity of reproductive strategies of all tetrapod vertebrates. While authors have traditionally attributed the evolution of these strategies to factors such as complex topography, unpredictable larval environments, and predation on larvae and eggs, support for any of these hypotheses has been limited. Importantly, most authors have ignored parasites, including unicellular pathogens and multicellular parasites, as selective agents capable of influencing amphibian evolution. Insights in disease transmission, amphibian immunity, and their interaction with various life histories require that we consider parasites to be selective pressures in our exploration of the evolution of amphibian reproductive strategies. I review recent findings and describe how these principles converge to form a novel conceptual hypothesis for the evolution of alternative reproductive strategies in amphibians. I offer some specific predictions and recommend that parasites be considered with other selective pressures when constructing formal, falsifiable hypotheses during evaluative studies of amphibian reproductive behavior.

  19. Rainforest: Reptiles and Amphibians

    Science.gov (United States)

    Olson, Susanna

    2006-01-01

    Rainforest reptiles and amphibians are a vibrantly colored, multimedia art experience. To complete the entire project one may need to dedicate many class periods to production, yet in each aspect of the project a new and important skill, concept, or element is being taught or reinforced. This project incorporates the study of warm and cool color…

  20. Responding to Amphibian Loss

    NARCIS (Netherlands)

    Mendelson III, J.R.; Lips, K.R.; Gagliardo, R.W.; Rabb, G.B.; Collins, J.P.; Diffendorfer, J.E.; Daszak, P.; Ibáñez D., R.; Zippel, K.C.; Lawson, D.P.; Wright, K.M.; Stuart, S.N.; Gascon, C.; da Silva, H.R.; Burrowes, P.A.; Joglar, R.L.; La Marca, E.; Lötters, S.; du Preez, L.H.; Weldon, C.; Hyatt, A.; Rodriguez-Mahecha, J.V.; Hunt, S.; Robertson, H.; Lock, B.; Raxworthy, C.J.; Frost, D.R.; Lacy, R.C.; Alford, R.A.; Campbell, J.A.; Parra-Olea, G.; Bolaños, F.; Calvo Domingo, J.J.; Halliday, T.; Murphy, J.B.; Wake, M.H.; Coloma, L.A.; Kuzmin, S.L.; Price, M.S.; Howell, K.M.; Lau, M.; Pethiyagoda, R.; Boone, M.; Lannoo, M.J.; Blaustein, A.R.; Dobson, A.; Griffiths, R.A.; Crump, M.L.; Wake, D.B.; Brodie Jr, E.D.

    2006-01-01

    In their Policy Forum "Confronting amphibian declines and extinctions" (7 July, p. 48), J. R. Mendelson III and colleagues offer a strategy for "stopping" the widespread losses of frogs, toads, and salamanders. Disease research and captive breeding figure prominently in their call for action.

  1. Expansion of amphibian intronless interferons revises the paradigm for interferon evolution and functional diversity.

    Science.gov (United States)

    Sang, Yongming; Liu, Qinfang; Lee, Jinhwa; Ma, Wenjun; McVey, D Scott; Blecha, Frank

    2016-06-30

    Interferons (IFNs) are key cytokines identified in vertebrates and evolutionary dominance of intronless IFN genes in amniotes is a signature event in IFN evolution. For the first time, we show that the emergence and expansion of intronless IFN genes is evident in amphibians, shown by 24-37 intronless IFN genes in each frog species. Amphibian IFNs represent a molecular complex more complicated than those in other vertebrate species, which revises the established model of IFN evolution to facilitate re-inspection of IFN molecular and functional diversity. We identified these intronless amphibian IFNs and their intron-containing progenitors, and functionally characterized constitutive and inductive expression and antimicrobial roles in infections caused by zoonotic pathogens, such as influenza viruses and Listeria monocytogenes. Amphibians, therefore, may serve as overlooked vectors/hosts for zoonotic pathogens, and the amphibian IFN system provides a model to study IFN evolution in molecular and functional diversity in coping with dramatic environmental changes during terrestrial adaption.

  2. Field Surveys of Amphibian Populations.

    Science.gov (United States)

    Brodman, Robert

    2000-01-01

    Describes a course on amphibian research for environmental science majors. Involves students in field studies and introduces them to investigative research. Evaluates the course. (Contains 19 references.) (YDS)

  3. Global Amphibian Extinction Risk Assessment for the Panzootic Chytrid Fungus

    Directory of Open Access Journals (Sweden)

    Matthew C. Fisher

    2009-09-01

    Full Text Available Species are being lost at increasing rates due to anthropogenic effects, leading to the recognition that we are witnessing the onset of a sixth mass extinction. Emerging infectious disease has been shown to increase species loss and any attempts to reduce extinction rates need to squarely confront this challenge. Here, we develop a procedure for identifying amphibian species that are most at risk from the effects of chytridiomycosis by combining spatial analyses of key host life-history variables with the pathogen's predicted distribution. We apply our rule set to the known global diversity of amphibians in order to prioritize pecies that are most at risk of loss from disease emergence. This risk assessment shows where limited conservation funds are best deployed in order to prevent further loss of species by enabling ex situ amphibian salvage operations and focusing any potential disease mitigation projects.

  4. A tale of two lineages: unexpected, long-term persistence of the amphibian-killing fungus in Brazil.

    Science.gov (United States)

    Lips, Karen

    2014-02-01

    For the past 17 years, scientists have been compiling a list of amphibian species susceptible to infection by the amphibian-killing chytrid fungus, Batrachochytrium dendrobatidis (Bd), all over the world, with >500 species infected on every continent except Antarctica (Olson et al.). Where Bd has been found, the impacts on amphibians has been one of two types: either Bd arrives into a naïve amphibian population followed by a mass die-off and population declines (e.g. Lips et al.), or Bd is present at some moderate prevalence, usually infecting many species but at apparently nonlethal intensities for a long time. In this issue of Molecular Ecology, Rodriguez et al. (2014) discover that the Atlantic Coastal Forest of Brazil is home to two Bd lineages: the Global Pandemic Lineage (Bd-GPL) - the strain responsible for mass die-offs and population declines - and a lineage endemic to Brazil (Bd-Bz). Even more surprising was that both lineages have been present in this area for the past 100 years, making these the oldest records of Bd infecting amphibians. The team also described a moderate but steady prevalence of ~20% across all sampled anuran families for over 100 years, indicating that Brazil has been in an enzootic disease state for over a century. Most amphibians were infected with Bd-GPL, suggesting this lineage may be a better competitor than Bd-Bz or may be replacing the Bd-Bz lineage. Rodriguez et al. (2014) also detected likely hybridization of the two Bd lineages, as originally described by Schloegel et al. (2012).

  5. Sex determination in amphibians.

    Science.gov (United States)

    Nakamura, Masahisa

    2009-05-01

    The heterogametic sex is male in all mammals, whereas it is female in almost all birds. By contrast, there are two heterogametic types (XX/XY and ZZ/ZW) for genetic sex determination in amphibians. Though the original heterogametic sex was female in amphibians, the two heterogametic types were probably interchangeable, suggesting that sex chromosomes evolved several times in this lineage. Indeed, the frog Rana rugosa has the XX/XY and ZZ/ZW sex-determining systems within a single species, depending on the local population in Japan. The XY and ZW geographic forms with differentiated sex chromosomes probably have a common origin as undifferentiated sex chromosomes resulted from the hybridization between the primary populations of West Japan and Kanto forms. It is clear that the sex chromosomes are still undergoing evolution in this species group. Regardless of the presence of a sex-determining gene in amphibians, the gonadal sex of some species can be changed by sex steroids. Namely, sex steroids can induce the sex reversal, with estrogens inducing the male-to-female sex reversal, whereas androgens have the opposite effect. In R. rugosa, gonadal activity of CYP19 (P450 aromatase) is correlated with the feminization of gonads. Of particular interest is that high levels of CYP19 expression are observed in indifferent gonads at time before sex determination. Increases in the expression of CYP19 in female gonads and CYP17 (P450 17alpha-hydroxylase/C17-20 lyase) in male gonads suggest that the former plays an important role in phenotypic female determination, whereas the latter is needed for male determination. Thus, steroids could be the key factor for sex determination in R. rugosa. In addition to the role of sex steroids in gonadal sex determination in this species, Foxl2 and Sox3 are capable of promoting CYP19 expression. Since both the genes are autosomal, another factor up-regulating CYP19 expression must be recruited. The factor, which may be located on the X or W

  6. First record of Saprolegnia sp. in an amphibian population in Colombia

    Directory of Open Access Journals (Sweden)

    Luis Daniel Prada-Salcedo

    2011-12-01

    Full Text Available Most research related to the decline of amphibians has been focused on the detection of the pathogenic fungus Batrachochytriumdendrobatidis. This fungus is the main pathogen detected around the world. However, research has shown the presence of another fungus,Saprolegnia ferax, as a cause of mortality in amphibians in North America. Our study suggests a possible interspecific transmissioncaused by the presence of rainbow trout; thus, amphibian declines may not be attributable only to the presence of a single pathogen, butto other organisms and factors. Materials and methods. Our study revealed the presence of Saprolegnia sp. in the Andean frog Atelopusmittermeieri using the imprinting technique with lactophenol blue staining, which allowed the typical structures of this fungus to beobserved. Results. The importance of this discovery is the presence of two pathogenic fungi, B. dendrobatidis and Saprolegnia, whichaffecting simultaneously a population of amphibians. This finding brings attention to the eventual presence of other microorganismsthat might be involved individually or collectively in the decline of amphibian species. Conclusions. This record suggests a possibletransmission between rainbow trout (Oncorhynchus mykiss, an introduced species in the highlands of Colombia, which shares thesame habitats with different species of amphibians in the Sanctuary of Flora and Fauna Guanentá in the upper river Fonce in the midCordillera Oriental of Colombia.

  7. DNA barcoding amphibians and reptiles.

    Science.gov (United States)

    Vences, Miguel; Nagy, Zoltán T; Sonet, Gontran; Verheyen, Erik

    2012-01-01

    Only a few major research programs are currently targeting COI barcoding of amphibians and reptiles (including chelonians and crocodiles), two major groups of tetrapods. Amphibian and reptile species are typically old, strongly divergent, and contain deep conspecific lineages which might lead to problems in species assignment with incomplete reference databases. As far as known, there is no single pair of COI primers that will guarantee a sufficient rate of success across all amphibian and reptile taxa, or within major subclades of amphibians and reptiles, which means that the PCR amplification strategy needs to be adjusted depending on the specific research question. In general, many more amphibian and reptile taxa have been sequenced for 16S rDNA, which for some purposes may be a suitable complementary marker, at least until a more comprehensive COI reference database becomes available. DNA barcoding has successfully been used to identify amphibian larval stages (tadpoles) in species-rich tropical assemblages. Tissue sampling, DNA extraction, and amplification of COI is straightforward in amphibians and reptiles. Single primer pairs are likely to have a failure rate between 5 and 50% if taxa of a wide taxonomic range are targeted; in such cases the use of primer cocktails or subsequent hierarchical usage of different primer pairs is necessary. If the target group is taxonomically limited, many studies have followed a strategy of designing specific primers which then allow an easy and reliable amplification of all samples.

  8. Detection of Rickettsia and Ehrlichia spp. in Ticks Associated with Exotic Reptiles and Amphibians Imported into Japan

    OpenAIRE

    Masako Andoh; Akiko Sakata; Ai Takano; Hiroki Kawabata; Hiromi Fujita; Yumi Une; Koichi Goka; Toshio Kishimoto; Shuji Ando

    2015-01-01

    One of the major routes of transmission of rickettsial and ehrlichial diseases is via ticks that infest numerous host species, including humans. Besides mammals, reptiles and amphibians also carry ticks that may harbor Rickettsia and Ehrlichia strains that are pathogenic to humans. Furthermore, reptiles and amphibians are exempt from quarantine in Japan, thus facilitating the entry of parasites and pathogens to the country through import. Accordingly, in the current study, we examined the pre...

  9. The Search for Violacein-Producing Microbes to Combat Batrachochytrium dendrobatidis: A Collaborative Research Project between Secondary School and College Research Students

    Directory of Open Access Journals (Sweden)

    Larra Agate

    2015-10-01

    Full Text Available In this citizen science–aided, college laboratory–based microbiology research project, secondary school students collaborate with college research students on an investigation centered around bacterial species in the local watershed. This study specifically investigated the prevalence of violacein-producing bacterial isolates, as violacein has been demonstrated as a potential bioremediation treatment for outbreaks of the worldwide invasive chytrid, Batrachochytrium dendrobatidis (Bd. The impact of this invasion has been linked to widespread amphibian decline, and tracking of the spread of Bd is currently ongoing. Secondary school students participated in this research project by sterilely collecting water samples from a local watershed, documenting the samples, and completing the initial sample plating in a BSL1 environment. In the second phase of this project, trained college students working in courses and as research assistants in the academic year and summer term in a BSL2 laboratory facility were able to use physiological, biochemical, and molecular techniques to further identify individual isolates as well as characterize their properties. Collaboration between these learning spaces provides an increased interest in the community for environmentally relevant research projects and allows for an expansion of the research team to increase study robustness.

  10. The Search for Violacein-Producing Microbes to Combat Batrachochytrium dendrobatidis: A Collaborative Research Project between Secondary School and College Research Students.

    Science.gov (United States)

    Agate, Larra; Beam, Deborah; Bucci, Collen; Dukashin, Yegor; Jo'Beh, Raneem; O'Brien, Kelsey; Jude, Brooke A

    2016-03-01

    In this citizen science-aided, college laboratory-based microbiology research project, secondary school students collaborate with college research students on an investigation centered around bacterial species in the local watershed. This study specifically investigated the prevalence of violacein-producing bacterial isolates, as violacein has been demonstrated as a potential bioremediation treatment for outbreaks of the worldwide invasive chytrid, Batrachochytrium dendrobatidis (Bd). The impact of this invasion has been linked to widespread amphibian decline, and tracking of the spread of Bd is currently ongoing. Secondary school students participated in this research project by sterilely collecting water samples from a local watershed, documenting the samples, and completing the initial sample plating in a BSL1 environment. In the second phase of this project, trained college students working in courses and as research assistants in the academic year and summer term in a BSL2 laboratory facility were able to use physiological, biochemical, and molecular techniques to further identify individual isolates as well as characterize their properties. Collaboration between these learning spaces provides an increased interest in the community for environmentally relevant research projects and allows for an expansion of the research team to increase study robustness. Journal of Microbiology & Biology Education.

  11. Cool temperatures reduce antifungal activity of symbiotic bacteria of threatened amphibians--implications for disease management and patterns of decline.

    Directory of Open Access Journals (Sweden)

    Joshua H Daskin

    Full Text Available Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd, is a widespread disease of amphibians responsible for population declines and extinctions. Some bacteria from amphibians' skins produce antimicrobial substances active against Bd. Supplementing populations of these cutaneous antifungal bacteria might help manage chytridiomycosis in wild amphibians. However, the activity of protective bacteria may depend upon environmental conditions. Biocontrol of Bd in nature thus requires knowledge of how environmental conditions affect their anti-Bd activity. For example, Bd-driven amphibian declines have often occurred at temperatures below Bd's optimum range. It is possible these declines occurred due to reduced anti-Bd activity of bacterial symbionts at cool temperatures. Better understanding of the effects of temperature on chytridiomycosis development could also improve risk evaluation for amphibian populations yet to encounter Bd. We characterized, at a range of temperatures approximating natural seasonal variation, the anti-Bd activity of bacterial symbionts from the skins of three species of rainforest tree frogs (Litoria nannotis, Litoria rheocola, and Litoria serrata. All three species declined during chytridiomycosis outbreaks in the late 1980s and early 1990s and have subsequently recovered to differing extents. We collected anti-Bd bacterial symbionts from frogs and cultured the bacteria at constant temperatures from 8 °C to 33 °C. Using a spectrophotometric assay, we monitored Bd growth in cell-free supernatants (CFSs from each temperature treatment. CFSs from 11 of 24 bacteria showed reduced anti-Bd activity in vitro when they were produced at cool temperatures similar to those encountered by the host species during population declines. Reduced anti-Bd activity of metabolites produced at low temperatures may, therefore, partially explain the association between Bd-driven declines and cool temperatures. We show that to

  12. Cool temperatures reduce antifungal activity of symbiotic bacteria of threatened amphibians--implications for disease management and patterns of decline.

    Science.gov (United States)

    Daskin, Joshua H; Bell, Sara C; Schwarzkopf, Lin; Alford, Ross A

    2014-01-01

    Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a widespread disease of amphibians responsible for population declines and extinctions. Some bacteria from amphibians' skins produce antimicrobial substances active against Bd. Supplementing populations of these cutaneous antifungal bacteria might help manage chytridiomycosis in wild amphibians. However, the activity of protective bacteria may depend upon environmental conditions. Biocontrol of Bd in nature thus requires knowledge of how environmental conditions affect their anti-Bd activity. For example, Bd-driven amphibian declines have often occurred at temperatures below Bd's optimum range. It is possible these declines occurred due to reduced anti-Bd activity of bacterial symbionts at cool temperatures. Better understanding of the effects of temperature on chytridiomycosis development could also improve risk evaluation for amphibian populations yet to encounter Bd. We characterized, at a range of temperatures approximating natural seasonal variation, the anti-Bd activity of bacterial symbionts from the skins of three species of rainforest tree frogs (Litoria nannotis, Litoria rheocola, and Litoria serrata). All three species declined during chytridiomycosis outbreaks in the late 1980s and early 1990s and have subsequently recovered to differing extents. We collected anti-Bd bacterial symbionts from frogs and cultured the bacteria at constant temperatures from 8 °C to 33 °C. Using a spectrophotometric assay, we monitored Bd growth in cell-free supernatants (CFSs) from each temperature treatment. CFSs from 11 of 24 bacteria showed reduced anti-Bd activity in vitro when they were produced at cool temperatures similar to those encountered by the host species during population declines. Reduced anti-Bd activity of metabolites produced at low temperatures may, therefore, partially explain the association between Bd-driven declines and cool temperatures. We show that to avoid

  13. A model for the interaction of frog population dynamics with Batrachochytrium dendrobaties, Janthinobacterium lividium and temperature and its implication for chytridiomycosis management

    Science.gov (United States)

    Ackleh, Azmy S.; Carter, Jacoby; Chellamuthu, Vinodh K.; Ma, Baoling

    2016-01-01

    Chytridiomycosis is an emerging disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) that poses a serious threat to frog populations worldwide. Several studies have shown that inoculation of bacterial species Janthinobacterium lividum (Jl) can mitigate the impact of the disease. However, there are many questions regarding this interaction. A mathematical model of a frog population infected with chytridiomycosis is developed to investigate how the inoculation of Jl could reduce the impact of Bd disease on frogs. The model also illustrates the important role of temperature in disease dynamics. The model simulation results suggest possible control strategies for Jl to limit the impact of Bd in various scenarios. However, a better knowledge of Jl life cycle is needed to fully understand the interaction of Jl, Bd, temperature and frogs.

  14. North American amphibians: distribution and diversity

    Science.gov (United States)

    : Green, David M.; Weir, Linda A.; Casper, Gary S.; Lannoo, Michael

    2014-01-01

    Some 300 species of amphibians inhabit North America. The past two decades have seen an enormous growth in interest about amphibians and an increased intensity of scientific research into their fascinating biology and continent-wide distribution. This atlas presents the spectacular diversity of North American amphibians in a geographic context. It covers all formally recognized amphibian species found in the United States and Canada, many of which are endangered or threatened with extinction. Illustrated with maps and photos, the species accounts provide current information about distribution, habitat, and conservation. Researchers, professional herpetologists, and anyone intrigued by amphibians will value North American Amphibians as a guide and reference.

  15. Climate forcing of an emerging pathogenic fungus across a montane multi-host community

    Science.gov (United States)

    Clare, Frances C.; Halder, Julia B.; Daniel, Olivia; Bielby, Jon; Semenov, Mikhail A.; Jombart, Thibaut; Loyau, Adeline; Schmeller, Dirk S.; Cunningham, Andrew A.; Rowcliffe, Marcus; Bosch, Jaime

    2016-01-01

    Changes in the timings of seasonality as a result of anthropogenic climate change are predicted to occur over the coming decades. While this is expected to have widespread impacts on the dynamics of infectious disease through environmental forcing, empirical data are lacking. Here, we investigated whether seasonality, specifically the timing of spring ice-thaw, affected susceptibility to infection by the emerging pathogenic fungus Batrachochytrium dendrobatidis (Bd) across a montane community of amphibians that are suffering declines and extirpations as a consequence of this infection. We found a robust temporal association between the timing of the spring thaw and Bd infection in two host species, where we show that an early onset of spring forced high prevalences of infection. A third highly susceptible species (the midwife toad, Alytes obstetricans) maintained a high prevalence of infection independent of time of spring thaw. Our data show that perennially overwintering midwife toad larvae may act as a year-round reservoir of infection with variation in time of spring thaw determining the extent to which infection spills over into sympatric species. We used future temperature projections based on global climate models to demonstrate that the timing of spring thaw in this region will advance markedly by the 2050s, indicating that climate change will further force the severity of infection. Our findings on the effect of annual variability on multi-host infection dynamics show that the community-level impact of fungal infectious disease on biodiversity will need to be re-evaluated in the face of climate change. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’. PMID:28080980

  16. Community Structure and Function of Amphibian Skin Microbes: An Experiment with Bullfrogs Exposed to a Chytrid Fungus.

    Directory of Open Access Journals (Sweden)

    Jenifer B Walke

    Full Text Available The vertebrate microbiome contributes to disease resistance, but few experiments have examined the link between microbiome community structure and disease resistance functions. Chytridiomycosis, a major cause of amphibian population declines, is a skin disease caused by the fungus, Batrachochytrium dendrobatidis (Bd. In a factorial experiment, bullfrog skin microbiota was reduced with antibiotics, augmented with an anti-Bd bacterial isolate (Janthinobacterium lividum, or unmanipulated, and individuals were then either exposed or not exposed to Bd. We found that the microbial community structure of individual frogs prior to Bd exposure influenced Bd infection intensity one week following exposure, which, in turn, was negatively correlated with proportional growth during the experiment. Microbial community structure and function differed among unmanipulated, antibiotic-treated, and augmented frogs only when frogs were exposed to Bd. Bd is a selective force on microbial community structure and function, and beneficial states of microbial community structure may serve to limit the impacts of infection.

  17. Chytridiomycosis, amphibian extinctions, and lessons for the prevention of future panzootics.

    Science.gov (United States)

    Kriger, Kerry M; Hero, Jean-Marc

    2009-03-01

    The human-mediated transport of infected amphibians is the most plausible driver for the intercontinental spread of chytridiomycosis, a recently emerged infectious disease responsible for amphibian population declines and extinctions on multiple continents. Chytridiomycosis is now globally ubiquitous, and it cannot be eradicated from affected sites. Its rapid spread both within and between continents provides a valuable lesson on preventing future panzootics and subsequent erosion of biodiversity, not only of amphibians, but of a wide array of taxa: the continued inter-continental trade and transport of animals will inevitably lead to the spread of novel pathogens, followed by numerous extinctions. Herein, we define and discuss three levels of amphibian disease management: (1) post-exposure prophylactic measures that are curative in nature and applicable only in a small number of situations; (2) pre-exposure prophylactic measures that reduce disease threat in the short-term; and (3) preventive measures that remove the threat altogether. Preventive measures include a virtually complete ban on all unnecessary long-distance trade and transport of amphibians, and are the only method of protecting amphibians from disease-induced declines and extinctions over the long-term. Legislation to prevent the emergence of new diseases is urgently required to protect global amphibian biodiversity.

  18. Effect of road deicing salt on the susceptibility of amphibian embryos to infection by water molds.

    Science.gov (United States)

    Karraker, Nancy E; Ruthig, Gregory R

    2009-01-01

    Some causative agents of amphibian declines act synergistically to impact individual amphibians and their populations. In particular, pathogenic water molds (aquatic oomycetes) interact with environmental stressors and increase mortality in amphibian embryos. We documented colonization of eggs of three amphibian species, the wood frog (Rana sylvatica), the green frog (Rana clamitans), and the spotted salamander (Ambystoma maculatum), by water molds in the field and examined the interactive effects of road deicing salt and water molds, two known sources of mortality for amphibian embryos, on two species, R. clamitans and A. maculatum in the laboratory. We found that exposure to water molds did not affect embryonic survivorship in either A. maculatum or R. clamitans, regardless of the concentration of road salt to which their eggs were exposed. Road salt decreased survivorship of A. maculatum, but not R. clamitans, and frequency of malformations increased significantly in both species at the highest salinity concentration. The lack of an effect of water molds on survival of embryos and no interaction between road salt and water molds indicates that observations of colonization of these eggs by water molds in the field probably represent a secondary invasion of unfertilized eggs or of embryos that had died of other causes. Given increasing salinization of freshwater habitats on several continents and the global distribution of water molds, our results suggest that some amphibian species may not be susceptible to the combined effects of these factors, permitting amphibian decline researchers to devote their attention to other potential causes.

  19. Understanding Amphibian Declines Through Geographic Approaches

    Science.gov (United States)

    Gallant, Alisa

    2006-01-01

    Growing concern over worldwide amphibian declines warrants serious examination. Amphibians are important to the proper functioning of ecosystems and provide many direct benefits to humans in the form of pest and disease control, pharmaceutical compounds, and even food. Amphibians have permeable skin and rely on both aquatic and terrestrial ecosystems during different seasons and stages of their lives. Their association with these ecosystems renders them likely to serve as sensitive indicators of environmental change. While much research on amphibian declines has centered on mysterious causes, or on causes that directly affect humans (global warming, chemical pollution, ultraviolet-B radiation), most declines are the result of habitat loss and habitat alteration. Improving our ability to characterize, model, and monitor the interactions between environmental variables and amphibian habitats is key to addressing amphibian conservation. In 2000, the U.S. Geological Survey (USGS) initiated the Amphibian Research and Monitoring Initiative (ARMI) to address issues surrounding amphibian declines.

  20. Louisiana ESI: REPTILES (Reptile and Amphibian Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for reptiles and amphibians in coastal Louisiana. Vector polygons represent reptile and amphibian habitats,...

  1. Antibacterial therapeutics for the treatment of chytrid infection in amphibians: Columbus’s egg?

    Directory of Open Access Journals (Sweden)

    Muijsers Mariska

    2012-09-01

    Full Text Available Abstract Background The establishment of safe and effective protocols to treat chytridiomycosis in amphibians is urgently required. In this study, the usefulness of antibacterial agents to clear chytridiomycosis from infected amphibians was evaluated. Results Florfenicol, sulfamethoxazole, sulfadiazine and the combination of trimethoprim and sulfonamides were active in vitro against cultures of five Batrachochytrium dendrobatidis strains containing sporangia and zoospores, with minimum inhibitory concentrations (MIC of 0.5-1.0 μg/ml for florfenicol and 8.0 μg/ml for the sulfonamides. Trimethoprim was not capable of inhibiting growth but, combined with sulfonamides, reduced the time to visible growth inhibition by the sulfonamides. Growth inhibition of B. dendrobatidis was not observed after exposure to clindamycin, doxycycline, enrofloxacin, paromomycin, polymyxin E and tylosin. Cultures of sporangia and zoospores of B. dendrobatidis strains JEL423 and IA042 were killed completely after 14 days of exposure to 100 μg/ml florfenicol or 16 μg/ml trimethoprim combined with 80 μg/ml sulfadiazine. These concentrations were, however, not capable of efficiently killing zoospores within 4 days after exposure as assessed using flow cytometry. Florfenicol concentrations remained stable in a bathing solution during a ten day period. Exposure of Discoglossus scovazzi tadpoles for ten days to 100 μg/ml but not to 10 μg florfenicol /ml water resulted in toxicity. In an in vivo trial, post metamorphic Alytes muletensis, experimentally inoculated with B. dendrobatidis, were treated topically with a solution containing 10 μg/ml of florfenicol during 14 days. Although a significant reduction of the B. dendrobatidis load was obtained, none of the treated animals cleared the infection. Conclusions We thus conclude that, despite marked anti B. dendrobatidis activity in vitro, the florfenicol treatment used is not capable of eliminating B

  2. Effects of amphibian chytrid fungus on individual survival probability in wild boreal toads

    Science.gov (United States)

    Pilliod, D.S.; Muths, E.; Scherer, R. D.; Bartelt, P.E.; Corn, P.S.; Hossack, B.R.; Lambert, B.A.; Mccaffery, R.; Gaughan, C.

    2010-01-01

    Chytridiomycosis is linked to the worldwide decline of amphibians, yet little is known about the demographic effects of the disease. We collected capture-recapture data on three populations of boreal toads (Bufo boreas [Bufo = Anaxyrus]) in the Rocky Mountains (U.S.A.). Two of the populations were infected with chytridiomycosis and one was not. We examined the effect of the presence of amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]; the agent of chytridiomycosis) on survival probability and population growth rate. Toads that were infected with Bd had lower average annual survival probability than uninfected individuals at sites where Bd was detected, which suggests chytridiomycosis may reduce survival by 31-42% in wild boreal toads. Toads that were negative for Bd at infected sites had survival probabilities comparable to toads at the uninfected site. Evidence that environmental covariates (particularly cold temperatures during the breeding season) influenced toad survival was weak. The number of individuals in diseased populations declined by 5-7%/year over the 6 years of the study, whereas the uninfected population had comparatively stable population growth. Our data suggest that the presence of Bd in these toad populations is not causing rapid population declines. Rather, chytridiomycosis appears to be functioning as a low-level, chronic disease whereby some infected individuals survive but the overall population effects are still negative. Our results show that some amphibian populations may be coexisting with Bd and highlight the importance of quantitative assessments of survival in diseased animal populations. Journal compilation. ?? 2010 Society for Conservation Biology. No claim to original US government works.

  3. Parasite (Ribeiroia ondatrae) infection linked to amphibian malformations in the western United States

    Science.gov (United States)

    Johnson, P.T.J.; Lunde, K.B.; Thurman, E.M.; Ritchie, E.G.; Wray, S.N.; Sutherland, D.R.; Kapfer, J.M.; Frest, T.J.; Bowerman, J.; Blaustein, A.R.

    2002-01-01

    Parasites and pathogens can influence the survivorship, behavior, and very structure of their host species. For example, experimental studies have shown that trematode parasites can cause high frequencies of severe limb malformations in amphibians. In a broad-scale field survey covering parts of California, Oregon, Washington, Idaho, and Montana, we examined relationships between the frequency and types of morphological abnormalities in amphibians and the abundance of trematode parasite infection, pH, concentrations of 61 pesticides, and levels of orthophosphate and total nitrate. We recorded severe malformations at frequencies ranging from 1% to 90% in nine amphibian species from 53 aquatic systems. Infection of larvae by the trematode Ribeiroia ondatrae was associated with, and functionally related to, higher frequencies of amphibian limb malformations than found in uninfected populations (≤5%). Parasites were concentrated around the basal tissue of hind limbs in infected anurans, and malformations associated with infection included skin webbings, supernumerary limbs and digits, and missing or malformed hind limbs. In the absence of Ribeiroia, amphibian populations exhibited low (0-5%) frequencies of abnormalities involving missing digits or distal portions of a hind limb. Species were affected differentially by the parasite, and Ambystoma macrodactylum, Hyla regilla, Rand aurora, R. luteiventris, and Taricha torosa typically exhibited the highest frequencies of abnormalities. None of the water-quality variables measured was associated with malformed amphibians, but aquatic snail hosts (Planorbella spp.) were significant predictors of the presence and abundance of Ribeiroia infection. Morphological comparisons of adult specimens of Ribeiroia collected from different sites and raised in experimental definitive hosts suggested that all samples represented the same species - R. ondatrae. These field results, coupled with experimental research on the effects of

  4. The metamorphosis of amphibian toxicogenomics

    Directory of Open Access Journals (Sweden)

    Caren eHelbing

    2012-03-01

    Full Text Available Amphibians are important vertebrates in toxicology often representing both aquatic and terrestrial forms within the life history of the same species. Of the thousands of species, only two have substantial genomics resources: the recently published genome of the Pipid, Xenopus (Silurana tropicalis, and transcript information (and ongoing genome sequencing project of Xenopus laevis. However, many more species representative of regional ecological niches and life strategies are used in toxicology worldwide. Since Xenopus species diverged from the most populous frog family, the Ranidae, ~200 million years ago, there are notable differences between them and the even more distant Caudates (salamanders and Caecilians. These differences include genome size, gene composition, and extent of polyploidization. Application of toxicogenomics to amphibians requires the mobilization of resources and expertise to develop de novo sequence assemblies and analysis strategies for a broader range of amphibian species. The present mini-review will present the advances in toxicogenomics as pertains to amphibians with particular emphasis upon the development and use of genomic techniques (inclusive of transcriptomics, proteomics, and metabolomics and the challenges inherent therein.

  5. Global Amphibian Declines, Loss of Genetic Diversity and Fitness: A Review

    Directory of Open Access Journals (Sweden)

    John O’Brien

    2010-01-01

    Full Text Available It is well established that a decrease in genetic variation can lead to reduced fitness and lack of adaptability to a changing environment. Amphibians are declining on a global scale, and we present a four-point argument as to why this taxonomic group seems especially prone to such genetic processes. We elaborate on the extent of recent fragmentation of amphibian gene pools and we propose the term dissociated populations to describe the residual population structure. To put their well-documented loss of genetic diversity into context, we provide an overview of 34 studies (covering 17 amphibian species that address a link between genetic variation and >20 different fitness traits in amphibians. Although not all results are unequivocal, clear genetic-fitness-correlations (GFCs are documented in the majority of the published investigations. In light of the threats faced by amphibians, it is of particular concern that the negative effects of various pollutants, pathogens and increased UV-B radiation are magnified in individuals with little genetic variability. Indeed, ongoing loss of genetic variation might be an important underlying factor in global amphibian declines.

  6. Amphibians as models for studying environmental change.

    Science.gov (United States)

    Hopkins, William A

    2007-01-01

    The use of amphibians as models in ecological research has a rich history. From an early foundation in studies of amphibian natural history sprang generations of scientists who used amphibians as models to address fundamental questions in population and community ecology. More recently, in the wake of an environment that human disturbances rapidly altered, ecologists have adopted amphibians as models for studying applied ecological issues such as habitat loss, pollution, disease, and global climate change. Some of the characteristics of amphibians that make them useful models for studying these environmental problems are highlighted, including their trophic importance, environmental sensitivity, research tractability, and impending extinction. The article provides specific examples from the recent literature to illustrate how studies on amphibians have been instrumental in guiding scientific thought on a broad scale. Included are examples of how amphibian research has transformed scientific disciplines, generated new theories about global health, called into question widely accepted scientific paradigms, and raised awareness in the general public that our daily actions may have widespread repercussions. In addition, studies on amphibian declines have provided insight into the complexity in which multiple independent factors may interact with one another to produce catastrophic and sometimes unpredictable effects. Because of the complexity of these problems, amphibian ecologists have been among the strongest advocates for interdisciplinary research. Future studies of amphibians will be important not only for their conservation but also for the conservation of other species, critical habitats, and entire ecosystems.

  7. Ecophysiology meets conservation: understanding the role of disease in amphibian population declines.

    Science.gov (United States)

    Blaustein, Andrew R; Gervasi, Stephanie S; Johnson, Pieter T J; Hoverman, Jason T; Belden, Lisa K; Bradley, Paul W; Xie, Gisselle Y

    2012-06-19

    Infectious diseases are intimately associated with the dynamics of biodiversity. However, the role that infectious disease plays within ecological communities is complex. The complex effects of infectious disease at the scale of communities and ecosystems are driven by the interaction between host and pathogen. Whether or not a given host-pathogen interaction results in progression from infection to disease is largely dependent on the physiological characteristics of the host within the context of the external environment. Here, we highlight the importance of understanding the outcome of infection and disease in the context of host ecophysiology using amphibians as a model system. Amphibians are ideal for such a discussion because many of their populations are experiencing declines and extinctions, with disease as an important factor implicated in many declines and extinctions. Exposure to pathogens and the host's responses to infection can be influenced by many factors related to physiology such as host life history, immunology, endocrinology, resource acquisition, behaviour and changing climates. In our review, we discuss the relationship between disease and biodiversity. We highlight the dynamics of three amphibian host-pathogen systems that induce different effects on hosts and life stages and illustrate the complexity of amphibian-host-parasite systems. We then review links between environmental stress, endocrine-immune interactions, disease and climate change.

  8. Endoparasites in some Swedish Amphibians

    DEFF Research Database (Denmark)

    Cedhagen, Tomas

    1988-01-01

    A study was made of the endoparasites in specimens of Rana arvalis and R. temporaria collected on two occasions from a locality of southern Sweden. Some frogs were investigated directly after capture while other frogs were kept hibernating and the composition of the parasites as well as the behav...... not previously been reported from Sweden. The late Prof. O. Nybelin's unpublished records of parasites found in Swedish amphibians are also given....

  9. Microevolution due to pollution in amphibians: A review on the genetic erosion hypothesis.

    Science.gov (United States)

    Fasola, E; Ribeiro, R; Lopes, I

    2015-09-01

    The loss of genetic diversity, due to exposure to chemical contamination (genetic erosion), is a major threat to population viability. Genetic erosion is the loss of genetic variation: the loss of alleles determining the value of a specific trait or set of traits. Almost a third of the known amphibian species is considered to be endangered and a decrease of genetic variability can push them to the verge of extinction. This review indicates that loss of genetic variation due to chemical contamination has effects on: 1) fitness, 2) environmental plasticity, 3) co-tolerance mechanisms, 4) trade-off mechanisms, and 5) tolerance to pathogens in amphibian populations.

  10. Amphibian haematology: Metamorphosis-related changes in blood cells

    DEFF Research Database (Denmark)

    Rosenkilde, Per; Sørensen, Inger; Ussing, Anne Phaff

    1995-01-01

    Zoofysiologi, Amphibian metamorphosis, Haematology, Immunosuppression, Immunological Tolerance, Protozoan Infection, metamorfose, springpadder, ontogenese, halepadder.......Zoofysiologi, Amphibian metamorphosis, Haematology, Immunosuppression, Immunological Tolerance, Protozoan Infection, metamorfose, springpadder, ontogenese, halepadder....

  11. Neuroendocrine-immune system interactions in amphibians: implications for understanding global amphibian declines.

    Science.gov (United States)

    Rollins-Smith, L A

    2001-01-01

    Amphibians are ancient creatures valued by biologists and naturalists around the world. They share with all other vertebrates a complex neuroendocrine system that enables them to flourish in a variety of aquatic and semiaquatic environments. Studies from a number of laboratories have demonstrated that the immune system of amphibian species is nearly as complex as that of mammals. Yet for reasons that are not well understood, amphibian species are facing greater survival challenges than in the recent past. This article will review our current understanding of the neuroendocrine immune system interactions in amphibians and address the question of whether environmental stressors may contribute to immunosuppression and amphibian declines.

  12. Amphibians at risk? Susceptibility of terrestrial amphibian life stages to pesticides.

    Science.gov (United States)

    Brühl, Carsten A; Pieper, Silvia; Weber, Brigitte

    2011-11-01

    Current pesticide risk assessment does not specifically consider amphibians. Amphibians in the aquatic environment (aquatic life stages or postmetamorphic aquatic amphibians) and terrestrial living juvenile or adult amphibians are assumed to be covered by the risk assessment for aquatic invertebrates and fish, or mammals and birds, respectively. This procedure has been evaluated as being sufficiently protective regarding the acute risk posed by a number of pesticides to aquatic amphibian life stages (eggs, larvae). However, it is unknown whether the exposure and sensitivity of terrestrial living amphibians are comparable to mammalian and avian exposure and sensitivity. We reviewed the literature on dermal pesticide absorption and toxicity studies for terrestrial life stages of amphibians, focusing on the dermal exposure pathway, that is, through treated soil or direct overspray. In vitro studies demonstrated that cutaneous absorption of chemicals is significant and that chemical percutaneous passage, P (cm/h), is higher in amphibians than in mammals. In vivo, the rapid and substantial uptake of the herbicide atrazine from treated soil by toads (Bufo americanus) has been described. Severe toxic effects on various amphibian species have been reported for field-relevant application rates of different pesticides. In general, exposure and toxicity studies for terrestrial amphibian life stages are scarce, and the reported data indicate the need for further research, especially in light of the global amphibian decline.

  13. The complexity of amphibian population declines: understanding the role of cofactors in driving amphibian losses.

    Science.gov (United States)

    Blaustein, Andrew R; Han, Barbara A; Relyea, Rick A; Johnson, Pieter T J; Buck, Julia C; Gervasi, Stephanie S; Kats, Lee B

    2011-03-01

    Population losses and extinctions of species are occurring at unprecedented rates, as exemplified by declines and extinctions of amphibians worldwide. However, studies of amphibian population declines generally do not address the complexity of the phenomenon or its implications for ecological communities, focusing instead on single factors affecting particular amphibian species. We argue that the causes for amphibian population declines are complex; may differ among species, populations, and life stages within a population; and are context dependent with multiple stressors interacting to drive declines. Because amphibians are key components of communities, we emphasize the importance of investigating amphibian declines at the community level. Selection pressures over evolutionary time have molded amphibian life history characteristics, such that they may remain static even in the face of strong, recent human-induced selection pressures.

  14. Toward immunogenetic studies of amphibian chytridiomycosis: Linking innate and acquired immunity

    Science.gov (United States)

    Richmond, J.Q.; Savage, Anna E.; Zamudio, Kelly R.; Rosenblum, E.B.

    2009-01-01

    Recent declines in amphibian diversity and abundance have contributed significantly to the global loss of biodiversity. The fungal disease chytridiomycosis is widely considered to be a primary cause of these declines, yet the critical question of why amphibian species differ in susceptibility remains unanswered. Considerable evidence links environmental conditions and interspecific variability of the innate immune system to differential infection responses, but other sources of individual, population, or species-typical variation may also be important. In this article we review the preliminary evidence supporting a role for acquired immune defenses against chytridiomycosis, and advocate for targeted investigation of genes controlling acquired responses, as well as those that functionally bridge the innate and acquired immune systems. Immunogenetic data promise to answer key questions about chytridiomycosis susceptibility and host-pathogen coevolution, and will draw much needed attention to the importance of considering evolutionary processes in amphibian conservation management and practice. ?? 2009 by American Institute of Biological Sciences.

  15. Successful treatment of Batrachochytrium salamandrivorans infections in salamanders requires synergy between voriconazole, polymyxin E and temperature.

    Science.gov (United States)

    Blooi, M; Pasmans, F; Rouffaer, L; Haesebrouck, F; Vercammen, F; Martel, A

    2015-06-30

    Chytridiomycosis caused by the chytrid fungus Batrachochytrium salamandrivorans (Bsal) poses a serious threat to urodelan diversity worldwide. Antimycotic treatment of this disease using protocols developed for the related fungus Batrachochytrium dendrobatidis (Bd), results in therapeutic failure. Here, we reveal that this therapeutic failure is partly due to different minimum inhibitory concentrations (MICs) of antimycotics against Bsal and Bd. In vitro growth inhibition of Bsal occurs after exposure to voriconazole, polymyxin E, itraconazole and terbinafine but not to florfenicol. Synergistic effects between polymyxin E and voriconazole or itraconazole significantly decreased the combined MICs necessary to inhibit Bsal growth. Topical treatment of infected fire salamanders (Salamandra salamandra), with voriconazole or itraconazole alone (12.5 μg/ml and 0.6 μg/ml respectively) or in combination with polymyxin E (2000 IU/ml) at an ambient temperature of 15 °C during 10 days decreased fungal loads but did not clear Bsal infections. However, topical treatment of Bsal infected animals with a combination of polymyxin E (2000 IU/ml) and voriconazole (12.5 μg/ml) at an ambient temperature of 20 °C resulted in clearance of Bsal infections. This treatment protocol was validated in 12 fire salamanders infected with Bsal during a field outbreak and resulted in clearance of infection in all animals.

  16. Fire and amphibians in North America

    Science.gov (United States)

    Pilliod, D.S.; Bury, R.B.; Hyde, E.J.; Pearl, C.A.; Corn, P.S.

    2003-01-01

    Information on amphibian responses to fire and fuel reduction practices is critically needed due to potential declines of species and the prevalence of new, more intensive fire management practices in North American forests. The goals of this review are to summarize the known and potential effects of fire and fuels management on amphibians and their aquatic habitats, and to identify information gaps to help direct future scientific research. Amphibians as a group are taxonomically and ecologically diverse; in turn, responses to fire and associated habitat alteration are expected to vary widely among species and among geographic regions. Available data suggest that amphibian responses to fire are spatially and temporally variable and incompletely understood. Much of the limited research has addressed short-term (1-3 years) effects of prescribed fire on terrestrial life stages of amphibians in the southeastern United States. Information on the long-term negative effects of fire on amphibians and the importance of fire for maintaining amphibian communities is sparse for the majority of taxa in North America. Given the size and severity of recent wildland fires and the national effort to reduce fuels on federal lands, future studies are needed to examine the effects of these landscape disturbances on amphibians. We encourage studies to address population-level responses of amphibians to fire by examining how different life stages are affected by changes in aquatic, riparian, and upland habitats. Research designs need to be credible and provide information that is relevant for fire managers and those responsible for assessing the potential effects of various fuel reduction alternatives on rare, sensitive, and endangered amphibian species. ?? 2003 Elsevier Science B.V. All rights reserved.

  17. Ossification sequence heterochrony among amphibians.

    Science.gov (United States)

    Harrington, Sean M; Harrison, Luke B; Sheil, Christopher A

    2013-01-01

    Heterochrony is an important mechanism in the evolution of amphibians. Although studies have centered on the relationship between size and shape and the rates of development, ossification sequence heterochrony also may have been important. Rigorous, phylogenetic methods for assessing sequence heterochrony are relatively new, and a comprehensive study of the relative timing of ossification of skeletal elements has not been used to identify instances of sequence heterochrony across Amphibia. In this study, a new version of the program Parsimov-based genetic inference (PGi) was used to identify shifts in ossification sequences across all extant orders of amphibians, for all major structural units of the skeleton. PGi identified a number of heterochronic sequence shifts in all analyses, the most interesting of which seem to be tied to differences in metamorphic patterns among major clades. Early ossification of the vomer, premaxilla, and dentary is retained by Apateon caducus and members of Gymnophiona and Urodela, which lack the strongly biphasic development seen in anurans. In contrast, bones associated with the jaws and face were identified as shifting late in the ancestor of Anura. The bones that do not shift late, and thereby occupy the earliest positions in the anuran cranial sequence, are those in regions of the skull that undergo the least restructuring throughout anuran metamorphosis. Additionally, within Anura, bones of the hind limb and pelvic girdle were also identified as shifting early in the sequence of ossification, which may be a result of functional constraints imposed by the drastic metamorphosis of most anurans.

  18. Sperm storage in caecilian amphibians

    Directory of Open Access Journals (Sweden)

    Kuehnel Susanne

    2012-06-01

    Full Text Available Abstract Background Female sperm storage has evolved independently multiple times among vertebrates to control reproduction in response to the environment. In internally fertilising amphibians, female salamanders store sperm in cloacal spermathecae, whereas among anurans sperm storage in oviducts is known only in tailed frogs. Facilitated through extensive field sampling following historical observations we tested for sperm storing structures in the female urogenital tract of fossorial, tropical caecilian amphibians. Findings In the oviparous Ichthyophis cf. kohtaoensis, aggregated sperm were present in a distinct region of the posterior oviduct but not in the cloaca in six out of seven vitellogenic females prior to oviposition. Spermatozoa were found most abundantly between the mucosal folds. In relation to the reproductive status decreased amounts of sperm were present in gravid females compared to pre-ovulatory females. Sperm were absent in females past oviposition. Conclusions Our findings indicate short-term oviductal sperm storage in the oviparous Ichthyophis cf. kohtaoensis. We assume that in female caecilians exhibiting high levels of parental investment sperm storage has evolved in order to optimally coordinate reproductive events and to increase fitness.

  19. [Perspective on gravitational biology of amphibians].

    Science.gov (United States)

    Yamashita, Masamichi; Naitoh, Tomio; Wassersug, Richard J

    2002-12-01

    We review here the scientific significance of the use of amphibians for research in gravitational biology. Since amphibian eggs are quite large, yet develop rapidly and externally, it is easy to observe their development. Consequently amphibians were the first vertebrates to have their early developmental processes investigated in space. Though several deviations from normal embryonic development occur when amphibians are raised in microgravity, their developmental program is robust enough to return the organisms to an ostensibly normal morphology by the time they hatch. Evolutionally, amphibians were the first vertebrate animal to come out of the water and onto land. Subsequently they diversified and have adaptively radiated to various habitats. They now inhabit aquatic, terrestrial, arboreal and fossorial niches. This diversity can be used to help study the biological effects of gravity at the organismal level, where macroscopic phenomena are associated with gravitational loading. By choosing different amphibian models and using a comparative approach one can effectively identify the action of gravity on biological systems, and the adaptation that vertebrates have made to this loading. Advances in cellular and molecular biology provide powerful tools for the study in many fields, including gravitational biology, and amphibians have proven to be good models for studies at those levels as well. The low metabolic rates of amphibians make them convenient organisms to work with (compared to birds and mammals) in the difficult and confined spaces on orbiting research platforms. We include here a review of what is known about and the potential for further behavioral and physiological researches in space using amphibians.

  20. Cardiovascular physiology and diseases of amphibians.

    Science.gov (United States)

    Heinz-Taheny, Kathleen M

    2009-01-01

    The class Amphibia includes three orders of amphibians: the anurans (frogs and toads), urodeles (salamanders, axolotls, and newts), and caecilians. The diversity of lifestyles across these three orders has accompanying differences in the cardiovascular anatomy and physiology allowing for adaptations to aquatic or terrestrial habitats, pulmonic or gill respiration, hibernation, and body elongation (in the caecilian). This article provides a review of amphibian cardiovascular anatomy and physiology with discussion of unique species adaptations. In addition, amphibians as cardiovascular animal models and commonly encountered natural diseases are covered.

  1. Report of Amphibian Development Group

    Science.gov (United States)

    Malacinski, G.

    1985-01-01

    Amphibian and fish embryos are extremely well suited for studies on pattern specification, whereas other systems (e.g., avian or mammalian) might be just as well suited for studies on differentiation or growth. Those distinctions are important for at least two reasons: (1) More precise focus regarding underlying mechanisms is called for when those distinctions are made. That facilitates the formulation of specific models or hypotheses; and (2) stress effects (i.e., the effects of weightlessness on structures (e.g., bones) which normally bear a load) are distinguished as being indirect, in contrast to direct effects of microgravity, which would be expected to act on pattern specification. That is, direct gravity effects are distinguished from indirect stress effects.

  2. Evolution of Life Cycles in Early Amphibians

    Science.gov (United States)

    Schoch, Rainer R.

    2009-05-01

    Many modern amphibians have biphasic life cycles with aquatic larvae and terrestrial adults. The central questions are how and when this complicated ontogeny was established, and what is known about the lives of amphibians in the Paleozoic. Fossil evidence has accumulated that sheds light on the life histories of early amphibians, the origin of metamorphosis, and the transition to a fully terrestrial existence. The majority of early amphibians were aquatic or amphibious and underwent only gradual ontogenetic changes. Developmental plasticity played a major role in some taxa but was restricted to minor modification of ontogeny. In the Permo-Carboniferous dissorophoids, a condensation of crucial ontogenetic steps into a short phase (metamorphosis) is observed. It is likely that the origin of both metamorphosis and neoteny falls within these taxa. Fossil evidence also reveals the sequence of evolutionary changes: apparently, the ontogenetic change in feeding, not the transition to a terrestrial existence per se, made a drastic metamorphosis necessary.

  3. Amphibians and Reptiles of Los Alamos County

    Energy Technology Data Exchange (ETDEWEB)

    Teralene S. Foxx; Timothy K. Haarmann; David C. Keller

    1999-10-01

    Recent studies have shown that amphibians and reptiles are good indicators of environmental health. They live in terrestrial and aquatic environments and are often the first animals to be affected by environmental change. This publication provides baseline information about amphibians and reptiles that are present on the Pajarito Plateau. Ten years of data collection and observations by researchers at Los Alamos National Laboratory, the University of New Mexico, the New Mexico Department of Game and Fish, and hobbyists are represented.

  4. Ranavirus could facilitate local extinction of rare amphibian species.

    Science.gov (United States)

    Earl, Julia E; Chaney, Jordan C; Sutton, William B; Lillard, Carson E; Kouba, Andrew J; Langhorne, Cecilia; Krebs, Jessi; Wilkes, Rebecca P; Hill, Rachel D; Miller, Debra L; Gray, Matthew J

    2016-10-01

    There is growing evidence that pathogens play a role in population declines and species extinctions. For small populations, disease-induced extinction may be especially probable. We estimated the susceptibility of two amphibian species of conservation concern (the dusky gopher frog [Lithobates sevosus] and boreal toad [Anaxyrus boreas boreas]) to an emerging pathogen (ranavirus) using laboratory challenge experiments, and combined these data with published demographic parameter estimates to simulate the potential effects of ranavirus exposure on extinction risk. We included effects of life stage during pathogen exposure, pathogen exposure interval, hydroperiod of breeding habitat, population carrying capacity, and immigration in simulations. We found that both species were highly susceptible to ranavirus when exposed to the pathogen in water at environmentally relevant concentrations. Dusky gopher frogs experienced 100 % mortality in four of six life stages tested. Boreal toads experienced 100 % mortality when exposed as tadpoles or metamorphs, which were the only life stages tested. Simulations showed population declines, greater extinction probability, and faster times to extinction with ranavirus exposure. These effects were more evident with more frequent pathogen exposure intervals and lower carrying capacity. Immigration at natural rates did little to mitigate effects of ranavirus exposure unless immigration occurred every 2 years. Our results demonstrate that disease-induced extinction by emerging pathogens, such as ranavirus, is possible, and that threat may be especially high for species with small population sizes. For the species in this study, conservation organizations should incorporate ranavirus surveillance into monitoring programs and devise intervention strategies in the event that disease outbreaks occur.

  5. Origin and functional diversification of an amphibian defense peptide arsenal.

    Directory of Open Access Journals (Sweden)

    Kim Roelants

    Full Text Available The skin secretion of many amphibians contains an arsenal of bioactive molecules, including hormone-like peptides (HLPs acting as defense toxins against predators, and antimicrobial peptides (AMPs providing protection against infectious microorganisms. Several amphibian taxa seem to have independently acquired the genes to produce skin-secreted peptide arsenals, but it remains unknown how these originated from a non-defensive ancestral gene and evolved diverse defense functions against predators and pathogens. We conducted transcriptome, genome, peptidome and phylogenetic analyses to chart the full gene repertoire underlying the defense peptide arsenal of the frog Silurana tropicalis and reconstruct its evolutionary history. Our study uncovers a cluster of 13 transcriptionally active genes, together encoding up to 19 peptides, including diverse HLP homologues and AMPs. This gene cluster arose from a duplicated gastrointestinal hormone gene that attained a HLP-like defense function after major remodeling of its promoter region. Instead, new defense functions, including antimicrobial activity, arose by mutation of the precursor proteins, resulting in the proteolytic processing of secondary peptides alongside the original ones. Although gene duplication did not trigger functional innovation, it may have subsequently facilitated the convergent loss of the original function in multiple gene lineages (subfunctionalization, completing their transformation from HLP gene to AMP gene. The processing of multiple peptides from a single precursor entails a mechanism through which peptide-encoding genes may establish new functions without the need for gene duplication to avoid adaptive conflicts with older ones.

  6. Origin and functional diversification of an amphibian defense peptide arsenal.

    Science.gov (United States)

    Roelants, Kim; Fry, Bryan G; Ye, Lumeng; Stijlemans, Benoit; Brys, Lea; Kok, Philippe; Clynen, Elke; Schoofs, Liliane; Cornelis, Pierre; Bossuyt, Franky

    2013-01-01

    The skin secretion of many amphibians contains an arsenal of bioactive molecules, including hormone-like peptides (HLPs) acting as defense toxins against predators, and antimicrobial peptides (AMPs) providing protection against infectious microorganisms. Several amphibian taxa seem to have independently acquired the genes to produce skin-secreted peptide arsenals, but it remains unknown how these originated from a non-defensive ancestral gene and evolved diverse defense functions against predators and pathogens. We conducted transcriptome, genome, peptidome and phylogenetic analyses to chart the full gene repertoire underlying the defense peptide arsenal of the frog Silurana tropicalis and reconstruct its evolutionary history. Our study uncovers a cluster of 13 transcriptionally active genes, together encoding up to 19 peptides, including diverse HLP homologues and AMPs. This gene cluster arose from a duplicated gastrointestinal hormone gene that attained a HLP-like defense function after major remodeling of its promoter region. Instead, new defense functions, including antimicrobial activity, arose by mutation of the precursor proteins, resulting in the proteolytic processing of secondary peptides alongside the original ones. Although gene duplication did not trigger functional innovation, it may have subsequently facilitated the convergent loss of the original function in multiple gene lineages (subfunctionalization), completing their transformation from HLP gene to AMP gene. The processing of multiple peptides from a single precursor entails a mechanism through which peptide-encoding genes may establish new functions without the need for gene duplication to avoid adaptive conflicts with older ones.

  7. An examination of amphibian sensitivity to environmental contaminants: are amphibians poor canaries?

    Science.gov (United States)

    Kerby, Jacob L; Richards-Hrdlicka, Kathryn L; Storfer, Andrew; Skelly, David K

    2010-01-01

    Nearly two decades ago, the global biodiversity crisis was catapulted to the front pages of newspapers with the recognition of worldwide amphibian declines. Amphibians earned their appellation, 'canaries in a coal mine', because of apparent high sensitivity to human-mediated environmental change. The most frequently cited causes for high susceptibility include permeable skin, a dual aquatic-terrestrial life cycle and a relatively rudimentary immune system. While some researchers have questioned the basis for the canary assertion, there has been no systematic evaluation of amphibian sensitivity to environmental challenges relative to other taxa. Here, we apply a database representing thousands of toxicity tests to compare the responses of amphibians relative to that of other taxonomic groups. The use of standardized methods combined with large numbers of identical challenges enables a particularly powerful test of relative effect size. Overall, we found that amphibians only exhibit moderate relative responses to water-borne toxins. Our findings imply that, as far as chemical contaminants are concerned, amphibians are not particularly sensitive and might more aptly be described as 'miners in a coal mine'. To the extent that amphibian declines have been mediated by chemical contaminants, our findings suggest that population losses and extinctions may have already occurred in a variety of taxa much more sensitive than amphibians.

  8. Countryside biogeography of Neotropical reptiles and amphibians.

    Science.gov (United States)

    Mendenhall, Chase D; Frishkoff, Luke O; Santos-Barrera, Georgina; Pacheco, Jesús; Mesfun, Eyobed; Mendoza Quijano, Fernando; Ehrlich, Paul R; Ceballos, Gerardo; Daily, Gretchen C; Pringle, Robert M

    2014-04-01

    The future of biodiversity and ecosystem services depends largely on the capacity of human-dominated ecosystems to support them, yet this capacity remains largely unknown. Using the framework of countryside biogeography, and working in the Las Cruces system of Coto Brus, Costa Rica, we assessed reptile and amphibian assemblages within four habitats that typify much of the Neotropics: sun coffee plantations (12 sites), pasture (12 sites), remnant forest elements (12 sites), and a larger, contiguous protected forest (3 sites in one forest). Through analysis of 1678 captures of 67 species, we draw four primary conclusions. First, we found that the majority of reptile (60%) and amphibian (70%) species in this study used an array of habitat types, including coffee plantations and actively grazed pastures. Second, we found that coffee plantations and pastures hosted rich, albeit different and less dense, reptile and amphibian biodiversity relative to the 326-ha Las Cruces Forest Reserve and neighboring forest elements. Third, we found that the small ribbons of "countryside forest elements" weaving through farmland collectively increased the effective size of a 326-ha local forest reserve 16-fold for reptiles and 14-fold for amphibians within our 236-km2 study area. Therefore, countryside forest elements, often too small for most remote sensing techniques to identify, are contributing -95% of the available habitat for forest-dependent reptiles and amphibians in our largely human-dominated study region. Fourth, we found large and pond-reproducing amphibians to prefer human-made habitats, whereas small, stream-reproducing, and directly developing species are more dependent on forest elements. Our investigation demonstrates that tropical farming landscapes can support substantial reptile and amphibian biodiversity. Our approach provides a framework for estimating the conservation value of the complex working landscapes that constitute roughly half of the global land surface

  9. Host stress response is important for the pathogenesis of the deadly amphibian disease, Chytridiomycosis, in Litoria caerulea.

    Directory of Open Access Journals (Sweden)

    John D Peterson

    Full Text Available Chytridiomycosis, a disease caused by Batrachochytrium dendrobatidis, has contributed to worldwide amphibian population declines; however, the pathogenesis of this disease is still somewhat unclear. Previous studies suggest that infection disrupts cutaneous sodium transport, which leads to hyponatremia and cardiac failure. However, infection is also correlated with unexplained effects on appetite, skin shedding, and white blood cell profiles. Glucocorticoid hormones may be the biochemical connection between these disparate effects, because they regulate ion homeostasis and can also influence appetite, skin shedding, and white blood cells. During a laboratory outbreak of B. dendrobatidis in Australian Green Tree Frogs, Litoria caerulea, we compared frogs showing clinical signs of chytridiomycosis to infected frogs showing no signs of disease and determined that diseased frogs had elevated baseline corticosterone, decreased plasma sodium and potassium, and altered WBC profiles. Diseased frogs also showed evidence of poorer body condition and elevated metabolic rates compared with frogs showing no signs of disease. Prior to displaying signs of disease, we also observed changes in appetite, body mass, and the presence of shed skin associated with infected but not yet diseased frogs. Collectively, these results suggest that elevated baseline corticosterone is associated with chytridiomycosis and correlates with some of the deleterious effects observed during disease development.

  10. Amphibians do not follow Bergmann's rule.

    Science.gov (United States)

    Adams, Dean C; Church, James O

    2008-02-01

    The tendency for organisms to be larger in cooler climates (Bergmann's rule) is widely observed in endotherms, and has been reputed to apply to some ectotherms including amphibians. However, recent reports provide conflicting support for the pattern, questioning whether Bergmann's clines are generally present in amphibians. In this study, we measured 96,996 adult Plethodon from 3974 populations to test for the presence of Bergmann's clines in these salamanders. Only three Plethodon species exhibited a significant negative correlation between body size and temperature consistent with Bergmann's rule, whereas 37 of 40 species did not display a pattern consistent with this prediction. Further, a phylogenetic comparative analysis found no relationship between body size and temperature among species. A meta-analysis combining our data with the available data for other amphibian species revealed no support for Bergmann's rule at the genus (Plethodon), order (Caudata), or class (Amphibia) levels. Our findings strongly suggest that negative thermal body size clines are not common in amphibians, and we conclude that Bergmann's rule is not generally applicable to these taxa. Thus, evolutionary explanations of Bergmann's clines in other tetrapods need not account for unique life-history attributes of amphibians.

  11. Amphibians used in research and teaching.

    Science.gov (United States)

    O'Rourke, Dorcas P

    2007-01-01

    Amphibians have long been utilized in scientific research and in education. Historically, investigators have accumulated a wealth of information on the natural history and biology of amphibians, and this body of information is continually expanding as researchers describe new species and study the behaviors of these animals. Amphibians evolved as models for a variety of developmental and physiological processes, largely due to their unique ability to undergo metamorphosis. Scientists have used amphibian embryos to evaluate the effects of toxins, mutagens, and teratogens. Likewise, the animals are invaluable in research due to the ability of some species to regenerate limbs. Certain species of amphibians have short generation times and genetic constructs that make them desirable for transgenic and knockout technology, and there is a current national focus on developing these species for genetic and genomic research. This group of vertebrates is also critically important in the investigation of the inter-relationship of humans and the environment based on their sensitivity to climatic and habitat changes and environmental contamination.

  12. Collapse of amphibian communities due to an introduced Ranavirus.

    Science.gov (United States)

    Price, Stephen J; Garner, Trenton W J; Nichols, Richard A; Balloux, François; Ayres, César; Mora-Cabello de Alba, Amparo; Bosch, Jaime

    2014-11-01

    The emergence of infectious diseases with a broad host range can have a dramatic impact on entire communities and has become one of the main threats to biodiversity. Here, we report the simultaneous exploitation of entire communities of potential hosts with associated severe declines following invasion by a novel viral pathogen. We found two phylogenetically related, highly virulent viruses (genus Ranavirus, family Iridoviridae) causing mass mortality in multiple, diverse amphibian hosts in northern Spain, as well as a third, relatively avirulent virus. We document host declines in multiple species at multiple sites in the region. Our work reveals a group of pathogens that seem to have preexisting capacity to infect and evade immunity in multiple diverse and novel hosts, and that are exerting massive impacts on host communities. This report provides an exceptional record of host population trends being tracked in real time following emergence of a wildlife disease and a striking example of a novel, generalist pathogen repeatedly crossing the species barrier with catastrophic consequences at the level of host communities.

  13. Distortion product otoacoustic emissions in the amphibian ear

    NARCIS (Netherlands)

    Van Dijk, Pim; Meenderink, Sebastiaan W. F.; Nuttal, AL

    2006-01-01

    By comparing the range of emission frequencies with that of neural characteristic frequencies of the amphibian and basilar papillae, the emission generation site may be inferred. Spontaneous otoacoustic emissions in the amphibian car seem to originate from the amphibian papilla. In contrast, distort

  14. Microbiota and mucosal immunity in amphibians

    Directory of Open Access Journals (Sweden)

    Bruno M Colombo

    2015-03-01

    Full Text Available We know that animals live in a world dominated by bacteria. In the last twenty years we have learned that microbes are essential regulators of mucosal immunity. Bacterias, archeas and viruses influence different aspects of mucosal development and function. Yet the literature mainly covers findings obtained in mammals. In this review, we focus on two major themes that emerge from the comparative analysis of mammals and amphibians. These themes concern: i the structure and functions of lymphoid organs and immune cells in amphibians, with a focus on the gut mucosal immune system; and ii the characteristics of the amphibian microbiota and its influence on mucosal immunity. Lastly, we propose to use Xenopus tadpoles as an alternative small animal model to improve the fundamental knowledge on immunological functions of gut microbiota.

  15. Diversity and distribution of amphibians in Romania

    Directory of Open Access Journals (Sweden)

    Dan Cogălniceanu

    2013-04-01

    Full Text Available Nineteen species of amphibians inhabit Romania, 9 of which reach their range limit on this territory. Based on published occurrence reports, museum collections and our own data we compiled a national database of amphibian occurrences. We georeferenced 26779 amphibian species occurrences, and performed an analysis of their spatial patterns, checking for hotspots and patterns of species richness. The results of spatial statistic analyses supported the idea of a biased sampling for Romania, with clear hotspots of increased sampling efforts. The sampling effort is biased towards species with high detectability, protected areas, and large cities. Future sampling efforts should be focused mostly on species with a high rarity score in order to accurately map their range. Our results are an important step in achieving the long-term goals of increasing the efficiency of conservation efforts and evaluating the species range shifts under climate change scenarios.

  16. Biological Scaling Problems and Solutions in Amphibians.

    Science.gov (United States)

    Levy, Daniel L; Heald, Rebecca

    2015-08-10

    Size is a primary feature of biological systems that varies at many levels, from the organism to its constituent cells and subcellular structures. Amphibians populate some of the extremes in biological size and have provided insight into scaling mechanisms, upper and lower size limits, and their physiological significance. Body size variation is a widespread evolutionary tactic among amphibians, with miniaturization frequently correlating with direct development that occurs without a tadpole stage. The large genomes of salamanders lead to large cell sizes that necessitate developmental modification and morphological simplification. Amphibian extremes at the cellular level have provided insight into mechanisms that accommodate cell-size differences. Finally, how organelles scale to cell size between species and during development has been investigated at the molecular level, because subcellular scaling can be recapitulated using Xenopus in vitro systems.

  17. Amphibian monitoring in the Atchafalaya Basin

    Science.gov (United States)

    Waddle, Hardin

    2011-01-01

    Amphibians are a diverse group of animals that includes frogs, toads, and salamanders. They are adapted to living in a variety of habitats, but most require water for at least one life stage. Amphibians have recently become a worldwide conservation concern because of declines and extinctions even in remote protected areas previously thought to be safe from the pressures of habitat loss and degradation. Amphibians are an important part of ecosystem dynamics because they can be quite abundant and serve both as a predator of smaller organisms and as prey to a suite of vertebrate predators. Their permeable skin and aquatic life history also make them useful as indicators of ecosystem health. Since 2002, the U.S. Geological Survey has been studying the frog and toad species inhabiting the Atchafalaya Basin to monitor for population declines and to better understand how the species are potentially affected by disease, environmental contaminants, and climate change.

  18. Microbiota and mucosal immunity in amphibians.

    Science.gov (United States)

    Colombo, Bruno M; Scalvenzi, Thibault; Benlamara, Sarah; Pollet, Nicolas

    2015-01-01

    We know that animals live in a world dominated by bacteria. In the last 20 years, we have learned that microbes are essential regulators of mucosal immunity. Bacteria, archeas, and viruses influence different aspects of mucosal development and function. Yet, the literature mainly covers findings obtained in mammals. In this review, we focus on two major themes that emerge from the comparative analysis of mammals and amphibians. These themes concern: (i) the structure and functions of lymphoid organs and immune cells in amphibians, with a focus on the gut mucosal immune system; and (ii) the characteristics of the amphibian microbiota and its influence on mucosal immunity. Lastly, we propose to use Xenopus tadpoles as an alternative small-animal model to improve the fundamental knowledge on immunological functions of gut microbiota.

  19. Effects of Roads on Amphibian Populations

    DEFF Research Database (Denmark)

    Hels, T.

    to have experienced the wonders of early summer sunrises in the field - and the joy of thawing out frozen fingers after hours of field work around freezing point. Amphibian populations are declining. This worrying fact is what has initiated this work. Some fifty years ago, the life history of frogs...... is the result of my three year PhD study at the National Environmental Research Institute, Kalø, and University of Copenhagen. Funded by NERI, the Danish Research Academy, and the Danish Road Directorate, it has dealt mainly with the effects of traffic and roads on amphibian populations. The Spadefoot toad...... of Spadefoot toads (Pelobates fuscus Laur.) II The effect of road kills on amphibian populations III Simulating viability of a Spadefoot toad (P. fuscus) metapopulation in a landscape fragmented by a road The manuscripts are preceded by a synopsis which sums up the work and puts it into a broader perspective...

  20. Where to look when identifying roadkilled amphibians?

    Directory of Open Access Journals (Sweden)

    Marc Franch

    2015-12-01

    Full Text Available Roads have multiple effects on wildlife; amphibians are one of the groups more intensely affected by roadkills. Monitoring roadkills is expensive and time consuming. Automated mapping systems for detecting roadkills, based on robotic computer vision techniques, are largely necessary. Amphibians can be recognised by a set of features as shape, size, colouration, habitat and location. This species identification by using multiple features at the same time is known as “jizz”. In a similar way to human vision, computer vision algorithms must incorporate a prioritisation process when analysing the objects in an image. Our main goal here was to give a numerical priority sequence of particular characteristics of roadkilled amphibians to improve the computing and learning process of algorithms. We asked hundred and five amateur and professional herpetologists to answer a simple test of five sets with ten images each of roadkilled amphibians, in order to determine which body parts or characteristics (body form, colour, and other patterns are used to identify correctly the species. Anura was the group most easily identified when it was roadkilled and Caudata was the most difficult. The lower the taxonomic level of amphibian, the higher the difficulty of identifying them, both in Anura and Caudata. Roadkilled amphibians in general and Anura group were mostly identified by the Form, by the combination of Form and Colour, and finally by Colour. Caudata was identified mainly on Form and Colour and on Colour. Computer vision algorithms must incorporate these combinations of features, avoiding to work exclusively in one specific feature.

  1. [Evolution of brain development in amphibians].

    Science.gov (United States)

    Savel'ev, S V

    2009-01-01

    Principal events in the early embryonic development of the nervous system, from neurulation to primary differentiation, are considered in different amphibian species. Attention is paid to numerous interspecific differences in the structure of neuroepithelium and the patterns of neurulation and embryonic brain segmentation. The data presented indicate that similarity in brain developmental patterns is apparently explained by universality of morphogenetic mechanisms rather than by the common origin of particular species. A hypothesis is proposed that similarity in the shape of the developing amphibian brain is determined by mechanisms of coding positional information necessary for histogenetic differentiation.

  2. Amphibians as model to study endocrine disrupters.

    Science.gov (United States)

    Kloas, Werner; Lutz, Ilka

    2006-10-13

    Environmental compounds can interfere with endocrine systems of wildlife and humans. These so-called endocrine disrupters (ED) are known to affect reproductive biology and thyroid system. The classical model species for these endocrine systems are amphibians and therefore they can serve as sentinels for detection of the modes of action (MOAs) of ED. Recently, amphibians are being reviewed as suitable models to assess (anti)estrogenic and (anti)androgenic MOAs influencing reproductive biology as well as (anti)thyroidal MOAs interfering with the thyroid system. The development of targeted bioassays in combination with adequate chemical analyses is the prerequisite for a concise risk assessment of ED.

  3. Colloquium paper: are we in the midst of the sixth mass extinction? A view from the world of amphibians.

    Science.gov (United States)

    Wake, David B; Vredenburg, Vance T

    2008-08-12

    Many scientists argue that we are either entering or in the midst of the sixth great mass extinction. Intense human pressure, both direct and indirect, is having profound effects on natural environments. The amphibians--frogs, salamanders, and caecilians--may be the only major group currently at risk globally. A detailed worldwide assessment and subsequent updates show that one-third or more of the 6,300 species are threatened with extinction. This trend is likely to accelerate because most amphibians occur in the tropics and have small geographic ranges that make them susceptible to extinction. The increasing pressure from habitat destruction and climate change is likely to have major impacts on narrowly adapted and distributed species. We show that salamanders on tropical mountains are particularly at risk. A new and significant threat to amphibians is a virulent, emerging infectious disease, chytridiomycosis, which appears to be globally distributed, and its effects may be exacerbated by global warming. This disease, which is caused by a fungal pathogen and implicated in serious declines and extinctions of >200 species of amphibians, poses the greatest threat to biodiversity of any known disease. Our data for frogs in the Sierra Nevada of California show that the fungus is having a devastating impact on native species, already weakened by the effects of pollution and introduced predators. A general message from amphibians is that we may have little time to stave off a potential mass extinction.

  4. The state of amphibians in the United States

    Science.gov (United States)

    Muths, E.; Adams, M.J.; Grant, E.H.C.; Miller, D.; Corn, P.S.; Ball, L.C.

    2012-01-01

    More than 25 years ago, scientists began to identify unexplained declines in amphibian populations around the world. Much has been learned since then, but amphibian declines have not abated and the interactions among the various threats to amphibians are not clear. Amphibian decline is a problem of local, national, and international scope that can affect ecosystem function, biodiversity, and commerce. This fact sheet provides a snapshot of the state of the amphibians and introduces examples to illustrate the range of issues in the United States.

  5. Pathogen host switching in commercial trade with management recommendations.

    Science.gov (United States)

    Picco, Angela M; Karam, Abraham P; Collins, James P

    2010-06-01

    Global wildlife trade exacerbates the spread of nonindigenous species. Pathogens also move with hosts through trade and often are released into naïve populations with unpredictable outcomes. Amphibians are moved commercially for pets, food, bait, and biomedicine, and are an excellent model for studying how wildlife trade relates to pathogen pollution. Ranaviruses are amphibian pathogens associated with annual population die-offs; multiple strains of tiger salamander ranaviruses move through the bait trade in the western United States. Ranaviruses infect amphibians, reptiles, and fish and are of additional concern because they can switch hosts. Tiger salamanders are used as live bait for freshwater fishing and are a potential source for ranaviruses switching hosts from amphibians to fish. We experimentally injected largemouth bass with a bait trade tiger salamander ranavirus. Largemouth bass became infected but exhibited no signs of disease or mortality. Amphibian bait ranaviruses have the potential to switch hosts to infect fish, but fish may act as dead-end hosts or nonsymptomatic carriers, potentially spreading infection as a result of trade.

  6. Early action to address an emerging wildlife disease

    Science.gov (United States)

    Adams, Michael J.; Harris, M. Camille; Grear, Daniel A.

    2017-02-23

    A deadly fungal pathogen, Batrachochytrium salamandrivorans (Bsal) that affects amphibian skin was discovered during a die-off of European fire salamanders (Salamandra salamandra) in 2014. This pathogen has the potential to worsen already severe worldwide amphibian declines. Bsal is a close relative to another fungal disease known as Batrachochytrium dendrobatidis (Bd). Many scientists consider Bd to be the greatest threat to amphibian biodiversity of any disease because it affects a large number of species and has the unusual ability to drive species and populations to extinction.Although not yet detected in the United States, the emergence of Bsal could threaten the salamander population, which is the most diverse in the world. The spread of Bsal likely will lead to more State and federally listed threatened or endangered amphibian species, and associated economic effects.Because of the concern expressed by resource management agencies, the U.S. Geological Survey (USGS) has made Bsal and similar pathogens a priority for research.

  7. Managing Amphibian Disease with Skin Microbiota.

    Science.gov (United States)

    Woodhams, Douglas C; Bletz, Molly; Kueneman, Jordan; McKenzie, Valerie

    2016-03-01

    The contribution of emerging amphibian diseases to the sixth mass extinction is driving innovative wildlife management strategies, including the use of probiotics. Bioaugmentation of the skin mucosome, a dynamic environment including host and microbial components, may not provide a generalized solution. Multi-omics technologies and ecological context underlie effective implementation.

  8. Culture of Cells from Amphibian Embryos.

    Science.gov (United States)

    Stanisstreet, Martin

    1983-01-01

    Describes a method for in vitro culturing of cells from amphibian early embryos. Such cells can be used to demonstrate such properties of eukaryote cells as cell motility, adhesion, differentiation, and cell sorting into tissues. The technique may be extended to investigate other factors. (Author/JN)

  9. Universal COI primers for DNA barcoding amphibians.

    Science.gov (United States)

    Che, Jing; Chen, Hong-Man; Yang, Jun-Xiao; Jin, Jie-Qiong; Jiang, Ke; Yuan, Zhi-Yong; Murphy, Robert W; Zhang, Ya-Ping

    2012-03-01

    DNA barcoding is a proven tool for the rapid and unambiguous identification of species, which is essential for many activities including the vouchering tissue samples in the genome 10K initiative, genealogical reconstructions, forensics and biodiversity surveys, among many other applications. A large-scale effort is underway to barcode all amphibian species using the universally sequenced DNA region, a partial fragment of mitochondrial cytochrome oxidase subunit I COI. This fragment is desirable because it appears to be superior to 16S for barcoding, at least for some groups of salamanders. The barcoding of amphibians is essential in part because many species are now endangered. Unfortunately, existing primers for COI often fail to achieve this goal. Herein, we report two new pairs of primers (➀, ➁) that in combination serve to universally amplify and sequence all three orders of Chinese amphibians as represented by 36 genera. This taxonomic diversity, which includes caecilians, salamanders and frogs, suggests that the new primer pairs will universally amplify COI for the vast majority species of amphibians.

  10. Phylogeny and differentiation of reptilian and amphibian ranaviruses detected in Europe.

    Directory of Open Access Journals (Sweden)

    Anke C Stöhr

    Full Text Available Ranaviruses in amphibians and fish are considered emerging pathogens and several isolates have been extensively characterized in different studies. Ranaviruses have also been detected in reptiles with increasing frequency, but the role of reptilian hosts is still unclear and only limited sequence data has been provided. In this study, we characterized a number of ranaviruses detected in wild and captive animals in Europe based on sequence data from six genomic regions (major capsid protein (MCP, DNA polymerase (DNApol, ribonucleoside diphosphate reductase alpha and beta subunit-like proteins (RNR-α and -β, viral homolog of the alpha subunit of eukaryotic initiation factor 2, eIF-2α (vIF-2α genes and microsatellite region. A total of ten different isolates from reptiles (tortoises, lizards, and a snake and four ranaviruses from amphibians (anurans, urodeles were included in the study. Furthermore, the complete genome sequences of three reptilian isolates were determined and a new PCR for rapid classification of the different variants of the genomic arrangement was developed. All ranaviruses showed slight variations on the partial nucleotide sequences from the different genomic regions (92.6-100%. Some very similar isolates could be distinguished by the size of the band from the microsatellite region. Three of the lizard isolates had a truncated vIF-2α gene; the other ranaviruses had full-length genes. In the phylogenetic analyses of concatenated sequences from different genes (3223 nt/10287 aa, the reptilian ranaviruses were often more closely related to amphibian ranaviruses than to each other, and most clustered together with previously detected ranaviruses from the same geographic region of origin. Comparative analyses show that among the closely related amphibian-like ranaviruses (ALRVs described to date, three recently split and independently evolving distinct genetic groups can be distinguished. These findings underline the wide host

  11. Amphibians as animal models for laboratory research in physiology.

    Science.gov (United States)

    Burggren, Warren W; Warburton, Stephen

    2007-01-01

    The concept of animal models is well honored, and amphibians have played a prominent part in the success of using key species to discover new information about all animals. As animal models, amphibians offer several advantages that include a well-understood basic physiology, a taxonomic diversity well suited to comparative studies, tolerance to temperature and oxygen variation, and a greater similarity to humans than many other currently popular animal models. Amphibians now account for approximately 1/4 to 1/3 of lower vertebrate and invertebrate research, and this proportion is especially true in physiological research, as evident from the high profile of amphibians as animal models in Nobel Prize research. Currently, amphibians play prominent roles in research in the physiology of musculoskeletal, cardiovascular, renal, respiratory, reproductive, and sensory systems. Amphibians are also used extensively in physiological studies aimed at generating new insights in evolutionary biology, especially in the investigation of the evolution of air breathing and terrestriality. Environmental physiology also utilizes amphibians, ranging from studies of cryoprotectants for tissue preservation to physiological reactions to hypergravity and space exploration. Amphibians are also playing a key role in studies of environmental endocrine disruptors that are having disproportionately large effects on amphibian populations and where specific species can serve as sentinel species for environmental pollution. Finally, amphibian genera such as Xenopus, a genus relatively well understood metabolically and physiologically, will continue to contribute increasingly in this new era of systems biology and "X-omics."

  12. Do Frogs Get Their Kicks on Route 66? Continental U.S. Transect Reveals Spatial and Temporal Patterns of Batrachochytrium dendrobatidis Infection

    Science.gov (United States)

    2011-07-21

    signs of disease)? Materials and Methods Ethics Statement This research was conducted under IACUC number 3-24-2008 issued by Indiana State University... Zoo , San Diego, California, USA. 65. Johnson ML, Speare R (2003) Survival of Batrachochytrium dendrobatidis in water: quarantine and disease control

  13. Global patterns of amphibian phylogenetic diversity

    DEFF Research Database (Denmark)

    Fritz, Susanne; Rahbek, Carsten

    2012-01-01

    phylogeny (2792 species). We combined each tree with global species distributions to map four indices of phylogenetic diversity. To investigate congruence between global spatial patterns of amphibian species richness and phylogenetic diversity, we selected Faith’s phylogenetic diversity (PD) index......Aim  Phylogenetic diversity can provide insight into how evolutionary processes may have shaped contemporary patterns of species richness. Here, we aim to test for the influence of phylogenetic history on global patterns of amphibian species richness, and to identify areas where macroevolutionary...... and the total taxonomic distinctness (TTD) index, because we found that the variance of the other two indices we examined (average taxonomic distinctness and mean root distance) strongly depended on species richness. We then identified regions with unusually high or low phylogenetic diversity given...

  14. Book review: Amphibians and reptiles in Minnesota

    Science.gov (United States)

    Mushet, David M.

    2014-01-01

    The photograph of a young boy poised to capture a wood frog (Lithobates sylvaticus) on page 3 of Amphibians and Reptiles in Minnesota captures perfectly the sense of awe and wonderment that one encounters throughout John Moriarty and Carol Hall’s new book. This is a spirit that most children possess naturally and that is so readily apparent when one of them comes face-to-face with one of the 53 species of frogs, toads, salamanders, turtles, lizards, or snakes that make Minnesota their home. This is a spirit that the authors have maintained in their hearts throughout almost 30 years of chasing, capturing, and studying amphibians and reptiles (a.k.a., herptiles or herps) in Minnesota. It is also the spirit that you will find reawakening in yourself as you turn from one page to the next and encounter the abundant color photos and descriptive text within this book.

  15. Neurosteroid biosynthesis in the brain of amphibians

    Directory of Open Access Journals (Sweden)

    Hubert eVaudry

    2011-11-01

    Full Text Available Amphibians have been widely used to investigate the synthesis of biologically active steroids in the brain and the regulation of neurosteroid production by neurotransmitters and neuropeptides. The aim of the present review is to summarize the current knowledge regarding the neuroanatomical distribution and biochemical activity of steroidogenic enzymes in the brain of anurans and urodeles. The data accumulated over the past two decades demonstrate that discrete populations of neurons and/or glial cells in the frog and newt brains express the major steroidogenic enzymes and are able to synthesize de novo a number of neurosteroids from cholesterol/pregnenolone. Since neurosteroidogenesis has been conserved during evolution from amphibians to mammals, it appears that neurosteroids must play important physiological functions in the central nervous system of vertebrates

  16. Endemic infection of the amphibian chytrid fungus in a frog community post-decline.

    Directory of Open Access Journals (Sweden)

    Richard W R Retallick

    2004-11-01

    Full Text Available The chytrid fungus Batrachochytrium dendrobatidis has been implicated in the decline and extinction of numerous frog species worldwide. In Queensland, Australia, it has been proposed as the cause of the decline or apparent extinction of at least 14 high-elevation rainforest frog species. One of these, Taudactylus eungellensis, disappeared from rainforest streams in Eungella National Park in 1985-1986, but a few remnant populations were subsequently discovered. Here, we report the analysis of B. dendrobatidis infections in toe tips of T. eungellensis and sympatric species collected in a mark-recapture study between 1994 and 1998. This longitudinal study of the fungus in individually marked frogs sheds new light on the effect of this threatening infectious process in field, as distinct from laboratory, conditions. We found a seasonal peak of infection in the cooler months, with no evidence of interannual variation. The overall prevalence of infection was 18% in T. eungellensis and 28% in Litoria wilcoxii/jungguy, a sympatric frog that appeared not to decline in 1985-1986. No infection was found in any of the other sympatric species. Most importantly, we found no consistent evidence of lower survival in T. eungellensis that were infected at the time of first capture, compared with uninfected individuals. These results refute the hypothesis that remnant populations of T. eungellensis recovered after a B. dendrobatidis epidemic because the pathogen had disappeared. They show that populations of T. eungellensis now persist with stable, endemic infections of B. dendrobatidis.

  17. Endemic infection of the amphibian chytrid fungus in a frog community post-decline.

    Science.gov (United States)

    Retallick, Richard W R; McCallum, Hamish; Speare, Rick

    2004-11-01

    The chytrid fungus Batrachochytrium dendrobatidis has been implicated in the decline and extinction of numerous frog species worldwide. In Queensland, Australia, it has been proposed as the cause of the decline or apparent extinction of at least 14 high-elevation rainforest frog species. One of these, Taudactylus eungellensis, disappeared from rainforest streams in Eungella National Park in 1985-1986, but a few remnant populations were subsequently discovered. Here, we report the analysis of B. dendrobatidis infections in toe tips of T. eungellensis and sympatric species collected in a mark-recapture study between 1994 and 1998. This longitudinal study of the fungus in individually marked frogs sheds new light on the effect of this threatening infectious process in field, as distinct from laboratory, conditions. We found a seasonal peak of infection in the cooler months, with no evidence of interannual variation. The overall prevalence of infection was 18% in T. eungellensis and 28% in Litoria wilcoxii/jungguy, a sympatric frog that appeared not to decline in 1985-1986. No infection was found in any of the other sympatric species. Most importantly, we found no consistent evidence of lower survival in T. eungellensis that were infected at the time of first capture, compared with uninfected individuals. These results refute the hypothesis that remnant populations of T. eungellensis recovered after a B. dendrobatidis epidemic because the pathogen had disappeared. They show that populations of T. eungellensis now persist with stable, endemic infections of B. dendrobatidis.

  18. Pesticide Uptake Across the Amphibian Dermis Through Soil and Overspray Exposures

    Science.gov (United States)

    For terrestrial amphibians, accumulation ofpesticides through dermal contact is a primary route ofexposure in agricultural landscapes and may be contributingto widespread amphibian declines. To show pesticidetransfer across the amphibian dermis at permitted labelapplication rates...

  19. Pesticide Detection in Rainwater, Stemflow, and Amphibians from Agricultural Spray Drift in Southern Georgia, USA

    Science.gov (United States)

    Amphibians are important sentinel environmental species since they integrate stressors from both aquatic and terrestrial ecosystems. Pesticides are well established as a significant stressor for amphibians. In order to study spray-drift contributions to amphibian habitats, pestic...

  20. Neurosteroid Biosynthesis in the Brain of Amphibians

    OpenAIRE

    2011-01-01

    Amphibians have been widely used to investigate the synthesis of biologically active steroids in the brain and the regulation of neurosteroid production by neurotransmitters and neuropeptides. The aim of the present review is to summarize the current knowledge regarding the neuroanatomical distribution and biochemical activity of steroidogenic enzymes in the brain of anurans and urodeles. The data accumulated over the past two decades demonstrate that discrete populations of neurons and/or gl...

  1. Occurrence of pesticides in water and sediment collected from amphibian habitats located throughout the United States, 2009-10

    Science.gov (United States)

    Smalling, Kelly L.; Orlando, James L.; Calhoun, Daniel; Battaglin, William A.; Kuivila, Kathryn M.

    2012-01-01

    Water and bed-sediment samples were collected by the U.S. Geological Survey (USGS) in 2009 and 2010 from 11 sites within California and 18 sites total in Colorado, Georgia, Idaho, Louisiana, Maine, and Oregon, and were analyzed for a suite of pesticides by the USGS. Water samples and bed-sediment samples were collected from perennial or seasonal ponds located in amphibian habitats in conjunction with research conducted by the USGS Amphibian Research and Monitoring Initiative and the USGS Toxic Substances Hydrology Program. Sites selected for this study in three of the states (California, Colorado, and Orgeon) have no direct pesticide application and are considered undeveloped and remote. Sites selected in Georgia, Idaho, Louisiana, and Maine were in close proximity to either agricultural or suburban areas. Water and sediment samples were collected once in 2009 during amphibian breeding seasons. In 2010, water samples were collected twice. The first sampling event coincided with the beginning of the frog breeding season for the species of interest, and the second event occurred 10-12 weeks later when pesticides were being applied to the surrounding areas. Additionally, water was collected during each sampling event to measure dissolved organic carbon, nutrients, and the fungus, Batrachochytrium dendrobatidis, which has been linked to amphibian declines worldwide. Bed-sediment samples were collected once during the beginning of the frog breeding season, when the amphibians are thought to be most at risk to pesticides. Results of this study are reported for the following two geographic scales: (1) for a national scale, by using data from the 29 sites that were sampled from seven states, and (2) for California, by using data from the 11 sampled sites in that state. Water samples were analyzed for 96 pesticides by using gas chromatography/mass spectrometry. A total of 24 pesticides were detected in one or more of the 54 water samples, including 7 fungicides, 10

  2. Monitoring amphibians in Great Smoky Mountains National Park

    Science.gov (United States)

    Dodd, C. Kenneth

    2003-01-01

    Amphibian species have inexplicably declined or disappeared in many regions of the world, and in some instances, serious malformations have been observed. In the United States, amphibian declines frequently have occurred even in protected areas. Causes for the declines and malformations probably are varied and may not even be related. The seemingly sudden declines in widely separated areas, however, suggests a need to monitor amphibian populations as well as identify the causes when declines or malformations are discovered.

  3. Amphibians of the Ausoni Mountains (Latium, Central Italy)

    OpenAIRE

    Luigi Corsetti; Antonio Romano

    2007-01-01

    In this study we searched for amphibians in 89 potential breeding sites within the Ausoni Mounts, which are among the less investigated areas of Latium. Sixtynine spawning sites, and eight amphibian species (57.1% of the 14 amphibian species living in Latium region) were found. Reproductive activity was recorded for Salamandrina perspicillata, Triturus carnifex, Lissotriton vulgaris, Lissotriton italicus, Bufo bufo, Hyla intermedia, Rana italica and Pelophylax synklepton hispanica.

  4. Amphibians of the Ausoni Mountains (Latium, Central Italy

    Directory of Open Access Journals (Sweden)

    Luigi Corsetti

    2007-11-01

    Full Text Available In this study we searched for amphibians in 89 potential breeding sites within the Ausoni Mounts, which are among the less investigated areas of Latium. Sixtynine spawning sites, and eight amphibian species (57.1% of the 14 amphibian species living in Latium region were found. Reproductive activity was recorded for Salamandrina perspicillata, Triturus carnifex, Lissotriton vulgaris, Lissotriton italicus, Bufo bufo, Hyla intermedia, Rana italica and Pelophylax synklepton hispanica.

  5. Detection of Rickettsia and Ehrlichia spp. in Ticks Associated with Exotic Reptiles and Amphibians Imported into Japan.

    Science.gov (United States)

    Andoh, Masako; Sakata, Akiko; Takano, Ai; Kawabata, Hiroki; Fujita, Hiromi; Une, Yumi; Goka, Koichi; Kishimoto, Toshio; Ando, Shuji

    2015-01-01

    One of the major routes of transmission of rickettsial and ehrlichial diseases is via ticks that infest numerous host species, including humans. Besides mammals, reptiles and amphibians also carry ticks that may harbor Rickettsia and Ehrlichia strains that are pathogenic to humans. Furthermore, reptiles and amphibians are exempt from quarantine in Japan, thus facilitating the entry of parasites and pathogens to the country through import. Accordingly, in the current study, we examined the presence of Rickettsia and Ehrlichia spp. genes in ticks associated with reptiles and amphibians originating from outside Japan. Ninety-three ticks representing nine tick species (genera Amblyomma and Hyalomma) were isolated from at least 28 animals spanning 10 species and originating from 12 countries (Ghana, Jordan, Madagascar, Panama, Russia, Sri Lanka, Sudan, Suriname, Tanzania, Togo, Uzbekistan, and Zambia). None of the nine tick species are indigenous in Japan. The genes encoding the common rickettsial 17-kDa antigen, citrate synthase (gltA), and outer membrane protein A (ompA) were positively detected in 45.2% (42/93), 40.9% (38/93), and 23.7% (22/93) of the ticks, respectively, by polymerase chain reaction (PCR). The genes encoding ehrlichial heat shock protein (groEL) and major outer membrane protein (omp-1) were PCR-positive in 7.5% (7/93) and 2.2% (2/93) of the ticks, respectively. The p44 gene, which encodes the Anaplasma outer membrane protein, was not detected. Phylogenetic analysis showed that several of the rickettsial and ehrlichial sequences isolated in this study were highly similar to human pathogen genes, including agents not previously detected in Japan. These data demonstrate the global transportation of pathogenic Rickettsia and Ehrlichia through reptile- and amphibian-associated ticks. These imported animals have potential to transfer pathogens into human life. These results highlight the need to control the international transportation of known and

  6. Detection of Rickettsia and Ehrlichia spp. in Ticks Associated with Exotic Reptiles and Amphibians Imported into Japan.

    Directory of Open Access Journals (Sweden)

    Masako Andoh

    Full Text Available One of the major routes of transmission of rickettsial and ehrlichial diseases is via ticks that infest numerous host species, including humans. Besides mammals, reptiles and amphibians also carry ticks that may harbor Rickettsia and Ehrlichia strains that are pathogenic to humans. Furthermore, reptiles and amphibians are exempt from quarantine in Japan, thus facilitating the entry of parasites and pathogens to the country through import. Accordingly, in the current study, we examined the presence of Rickettsia and Ehrlichia spp. genes in ticks associated with reptiles and amphibians originating from outside Japan. Ninety-three ticks representing nine tick species (genera Amblyomma and Hyalomma were isolated from at least 28 animals spanning 10 species and originating from 12 countries (Ghana, Jordan, Madagascar, Panama, Russia, Sri Lanka, Sudan, Suriname, Tanzania, Togo, Uzbekistan, and Zambia. None of the nine tick species are indigenous in Japan. The genes encoding the common rickettsial 17-kDa antigen, citrate synthase (gltA, and outer membrane protein A (ompA were positively detected in 45.2% (42/93, 40.9% (38/93, and 23.7% (22/93 of the ticks, respectively, by polymerase chain reaction (PCR. The genes encoding ehrlichial heat shock protein (groEL and major outer membrane protein (omp-1 were PCR-positive in 7.5% (7/93 and 2.2% (2/93 of the ticks, respectively. The p44 gene, which encodes the Anaplasma outer membrane protein, was not detected. Phylogenetic analysis showed that several of the rickettsial and ehrlichial sequences isolated in this study were highly similar to human pathogen genes, including agents not previously detected in Japan. These data demonstrate the global transportation of pathogenic Rickettsia and Ehrlichia through reptile- and amphibian-associated ticks. These imported animals have potential to transfer pathogens into human life. These results highlight the need to control the international transportation of known

  7. Status and trends of amphibian declines and extinctions worldwide.

    Science.gov (United States)

    Stuart, Simon N; Chanson, Janice S; Cox, Neil A; Young, Bruce E; Rodrigues, Ana S L; Fischman, Debra L; Waller, Robert W

    2004-12-01

    The first global assessment of amphibians provides new context for the well-publicized phenomenon of amphibian declines. Amphibians are more threatened and are declining more rapidly than either birds or mammals. Although many declines are due to habitat loss and overutilization, other, unidentified processes threaten 48% of rapidly declining species and are driving species most quickly to extinction. Declines are nonrandom in terms of species' ecological preferences, geographic ranges, and taxonomic associations and are most prevalent among Neotropical montane, stream-associated species. The lack of conservation remedies for these poorly understood declines means that hundreds of amphibian species now face extinction.

  8. Book review: The ecology and behavior of amphibians

    Science.gov (United States)

    Walls, Susan C.

    2008-01-01

    This state‐of‐the‐art book has made its timely emergence amid a crisis of global magnitude: that of population declines, range reductions, and extinctions of numerous species of amphibians. A clear understanding of the fundamental concepts in amphibian biology is crucial to the success of any conservation effort. This volume compiles the information necessary to acquire that basic understanding. It is a comprehensive synthesis of both traditional and contemporary facets of amphibian biology, spanning a breadth of topics ranging from phylogeny, physiology, behavior, population and community ecology, and conservation. As such, it undoubtedly takes its place among contemporary volumes as the single, authoritative source for basic topics relevant to amphibian life.

  9. Localized hotspots drive continental geography of abnormal amphibians on U.S. wildlife refuges.

    Directory of Open Access Journals (Sweden)

    Mari K Reeves

    Full Text Available Amphibians with missing, misshapen, and extra limbs have garnered public and scientific attention for two decades, yet the extent of the phenomenon remains poorly understood. Despite progress in identifying the causes of abnormalities in some regions, a lack of knowledge about their broader spatial distribution and temporal dynamics has hindered efforts to understand their implications for amphibian population declines and environmental quality. To address this data gap, we conducted a nationwide, 10-year assessment of 62,947 amphibians on U.S. National Wildlife Refuges. Analysis of a core dataset of 48,081 individuals revealed that consistent with expected background frequencies, an average of 2% were abnormal, but abnormalities exhibited marked spatial variation with a maximum prevalence of 40%. Variance partitioning analysis demonstrated that factors associated with space (rather than species or year sampled captured 97% of the variation in abnormalities, and the amount of partitioned variance decreased with increasing spatial scale (from site to refuge to region. Consistent with this, abnormalities occurred in local to regional hotspots, clustering at scales of tens to hundreds of kilometers. We detected such hotspot clusters of high-abnormality sites in the Mississippi River Valley, California, and Alaska. Abnormality frequency was more variable within than outside of hotspot clusters. This is consistent with dynamic phenomena such as disturbance or natural enemies (pathogens or predators, whereas similarity of abnormality frequencies at scales of tens to hundreds of kilometers suggests involvement of factors that are spatially consistent at a regional scale. Our characterization of the spatial and temporal variation inherent in continent-wide amphibian abnormalities demonstrates the disproportionate contribution of local factors in predicting hotspots, and the episodic nature of their occurrence.

  10. Localized hotspots drive continental geography of abnormal amphibians on U.S. wildlife refuges.

    Science.gov (United States)

    Reeves, Mari K; Medley, Kimberly A; Pinkney, Alfred E; Holyoak, Marcel; Johnson, Pieter T J; Lannoo, Michael J

    2013-01-01

    Amphibians with missing, misshapen, and extra limbs have garnered public and scientific attention for two decades, yet the extent of the phenomenon remains poorly understood. Despite progress in identifying the causes of abnormalities in some regions, a lack of knowledge about their broader spatial distribution and temporal dynamics has hindered efforts to understand their implications for amphibian population declines and environmental quality. To address this data gap, we conducted a nationwide, 10-year assessment of 62,947 amphibians on U.S. National Wildlife Refuges. Analysis of a core dataset of 48,081 individuals revealed that consistent with expected background frequencies, an average of 2% were abnormal, but abnormalities exhibited marked spatial variation with a maximum prevalence of 40%. Variance partitioning analysis demonstrated that factors associated with space (rather than species or year sampled) captured 97% of the variation in abnormalities, and the amount of partitioned variance decreased with increasing spatial scale (from site to refuge to region). Consistent with this, abnormalities occurred in local to regional hotspots, clustering at scales of tens to hundreds of kilometers. We detected such hotspot clusters of high-abnormality sites in the Mississippi River Valley, California, and Alaska. Abnormality frequency was more variable within than outside of hotspot clusters. This is consistent with dynamic phenomena such as disturbance or natural enemies (pathogens or predators), whereas similarity of abnormality frequencies at scales of tens to hundreds of kilometers suggests involvement of factors that are spatially consistent at a regional scale. Our characterization of the spatial and temporal variation inherent in continent-wide amphibian abnormalities demonstrates the disproportionate contribution of local factors in predicting hotspots, and the episodic nature of their occurrence.

  11. Conceptual Design for the Amphibian Research and Monitoring Initiative (ARMI)

    Science.gov (United States)

    Battaglin, W. A.; Langtimm, C. A.; Adams, M. J.; Gallant, A. L.; James, D. L.

    2001-12-01

    In 2000, the President of the United States (US) and Congress directed Department of Interior (DOI) agencies to develop a program for monitoring trends in amphibian populations on DOI lands and to conduct research into causes of declines. The U.S. Geological Survey (USGS) was given lead responsibility for planning and implementing the Amphibian Research and Monitoring Initiative (ARMI) in cooperation with the National Park Service (NPS), Fish and Wildlife Service, and Bureau of Land Management. The program objectives are to (1) establish a network for monitoring the status and distribution of amphibian species on DOI lands; (2) identify and monitor environmental conditions known to affect amphibian populations; (3) conduct research on causes of amphibian population change and malformations; and (4) provide information to resource managers, policy makers, and the public in support of amphibian conservation. The ARMI program will integrate research efforts of USGS, other Federal, and non-federal herpetologists, hydrologists, and geographers across the Nation. ARMI will conduct a small number (~20) of intensive research efforts (for example, studies linking amphibian population changes to hydrologic conditions) and a larger number (~50) of more generalized inventory and monitoring studies encompassing broader areas such as NPS units. ARMI will coordinate with and try to augment other amphibian inventory studies such as the National Amphibian Atlas and the North American Amphibian Monitoring Program. ARMI will develop and test protocols for the standardized collection of amphibian data and provide a centrally managed database designed to simplify data entry, retrieval, and analysis. ARMI pilot projects are underway at locations across the US.

  12. Global rates of habitat loss and implications for amphibian conservation

    Science.gov (United States)

    Gallant, A.L.; Klaver, R.W.; Casper, G.S.; Lannoo, M.J.

    2007-01-01

    A large number of factors are known to affect amphibian population viability, but most authors agree that the principal causes of amphibian declines are habitat loss, alteration, and fragmentation. We provide a global assessment of land use dynamics in the context of amphibian distributions. We accomplished this by compiling global maps of amphibian species richness and recent rates of change in land cover, land use, and human population growth. The amphibian map was developed using a combination of published literature and digital databases. We used an ecoregion framework to help interpret species distributions across environmental, rather than political, boundaries. We mapped rates of land cover and use change with statistics from the World Resources Institute, refined with a global digital dataset on land cover derived from satellite data. Temporal maps of human population were developed from the World Resources Institute database and other published sources. Our resultant map of amphibian species richness illustrates that amphibians are distributed in an uneven pattern around the globe, preferring terrestrial and freshwater habitats in ecoregions that are warm and moist. Spatiotemporal patterns of human population show that, prior to the 20th century, population growth and spread was slower, most extensive in the temperate ecoregions, and largely exclusive of major regions of high amphibian richness. Since the beginning of the 20th century, human population growth has been exponential and has occurred largely in the subtropical and tropical ecoregions favored by amphibians. Population growth has been accompanied by broad-scale changes in land cover and land use, typically in support of agriculture. We merged information on land cover, land use, and human population growth to generate a composite map showing the rates at which humans have been changing the world. When compared with the map of amphibian species richness, we found that many of the regions of the

  13. AMPHIBIAN DECLINES AND ENVIRONMENTAL CHANGE IN THE EASTERN "MOJAVE DESERT"

    Science.gov (United States)

    A number of amphibian species historically inhabited sparsely distributed wetlands in the Mojave Desert, USA, habitats that have been dramatically altered or eliminated as a result of human activities. The population status and distribution of amphibians were investigated in a 20...

  14. Amphibians and Reptiles from Paramakatoi and Kato, Guyana

    Science.gov (United States)

    MacCulloch, Ross D.; Reynolds, Robert P.

    2012-01-01

    We report the herpetofauna of two neighboring upland locations in west-central Guyana. Twenty amphibian and 24 reptile species were collected. Only 40% of amphibians and 12.5% of reptiles were collected in both locations. This is one of the few collections made at upland (750–800 m) locations in the Guiana Shield.

  15. All about Amphibians. Animal Life for Children. [Videotape].

    Science.gov (United States)

    2000

    This videotape teaches children about their favorite amphibious creatures, as well as amphibians' nearest cousins--toads, newts, and salamanders. Young students discover how these amazing creatures can live both in and out of water, learn about the amphibious life cycle, and compare the differences between amphibians and reptiles. This videotape…

  16. Climate change and amphibian diversity patterns in Mexico

    DEFF Research Database (Denmark)

    Ochoa-Ochoa, Leticia M.; Rodríguez, Pilar; Mora, Franz

    2012-01-01

    The aim of this article is to characterize at fine scale alpha and beta diversity patterns for Mexican amphibians and analyze how these patterns might change under a moderate climate-change scenario, highlighting the overall consequences for amphibian diversity at the country level. We used a geo...

  17. Estrogens can disrupt amphibian mating behavior.

    Directory of Open Access Journals (Sweden)

    Frauke Hoffmann

    Full Text Available The main component of classical contraceptives, 17α-ethinylestradiol (EE2, has high estrogenic activity even at environmentally relevant concentrations. Although estrogenic endocrine disrupting compounds are assumed to contribute to the worldwide decline of amphibian populations by adverse effects on sexual differentiation, evidence for EE2 affecting amphibian mating behaviour is lacking. In this study, we demonstrate that EE2 exposure at five different concentrations (0.296 ng/L, 2.96 ng/L, 29.64 ng/L, 2.96 µg/L and 296.4 µg/L can disrupt the mating behavior of adult male Xenopus laevis. EE2 exposure at all concentrations lowered male sexual arousal, indicated by decreased proportions of advertisement calls and increased proportions of the call type rasping, which characterizes a sexually unaroused state of a male. Additionally, EE2 at all tested concentrations affected temporal and spectral parameters of the advertisement calls, respectively. The classical and highly sensitive biomarker vitellogenin, on the other hand, was only induced at concentrations equal or higher than 2.96 µg/L. If kept under control conditions after a 96 h EE2 exposure (2.96 µg/L, alterations of male advertisement calls vanish gradually within 6 weeks and result in a lower sexual attractiveness of EE2 exposed males toward females as demonstrated by female choice experiments. These findings indicate that exposure to environmentally relevant EE2 concentrations can directly disrupt male mate calling behavior of X. laevis and can indirectly affect the mating behavior of females. The results suggest the possibility that EE2 exposure could reduce the reproductive success of EE2 exposed animals and these effects might contribute to the global problem of amphibian decline.

  18. Partners in amphibian and reptile conservation 2013 annual report

    Science.gov (United States)

    Conrad, Paulette M.; Weir, Linda A.; Nanjappa, Priya

    2014-01-01

    Partners in Amphibian and Reptile Conservation (PARC) was established in 1999 to address the widespread declines, extinctions, and range reductions of amphibians and reptiles, with a focus on conservation of taxa and habitats in North America. Amphibians and reptiles are affected by a broad range of human activities, both as incidental effects of habitat alteration and direct effect from overexploitation; these animals are also challenged by the perception that amphibians and reptiles are either dangerous or of little environmental or economic value. However, PARC members understand these taxa are important parts of our natural an cultural heritage and they serve important roles in ecosystems throughout the world. With many amphibians and reptiles classified as threatened with extinction, conservation of these animals has never been more important.

  19. Late Cretaceous vicariance in Gondwanan amphibians.

    Directory of Open Access Journals (Sweden)

    Ines Van Bocxlaer

    Full Text Available Overseas dispersals are often invoked when Southern Hemisphere terrestrial and freshwater organism phylogenies do not fit the sequence or timing of Gondwana fragmentation. We used dispersal-vicariance analyses and molecular timetrees to show that two species-rich frog groups, Microhylidae and Natatanura, display congruent patterns of spatial and temporal diversification among Gondwanan plates in the Late Cretaceous, long after the presumed major tectonic break-up events. Because amphibians are notoriously salt-intolerant, these analogies are best explained by simultaneous vicariance, rather than by oceanic dispersal. Hence our results imply Late Cretaceous connections between most adjacent Gondwanan landmasses, an essential concept for biogeographic and palaeomap reconstructions.

  20. Captive breeding, reintroduction, and the conservation of amphibians.

    Science.gov (United States)

    Griffiths, Richard A; Pavajeau, Lissette

    2008-08-01

    The global amphibian crisis has resulted in renewed interest in captive breeding as a conservation tool for amphibians. Although captive breeding and reintroduction are controversial management actions, amphibians possess a number of attributes that make them potentially good models for such programs. We reviewed the extent and effectiveness of captive breeding and reintroduction programs for amphibians through an analysis of data from the Global Amphibian Assessment and other sources. Most captive breeding and reintroduction programs for amphibians have focused on threatened species from industrialized countries with relatively low amphibian diversity. Out of 110 species in such programs, 52 were in programs with no plans for reintroduction that had conservation research or conservation education as their main purpose. A further 39 species were in programs that entailed captive breeding and reintroduction or combined captive breeding with relocations of wild animals. Nineteen species were in programs with relocations of wild animals only. Eighteen out of 58 reintroduced species have subsequently bred successfully in the wild, and 13 of these species have established self-sustaining populations. As with threatened amphibians generally, amphibians in captive breeding or reintroduction programs face multiple threats, with habitat loss being the most important. Nevertheless, only 18 out of 58 reintroduced species faced threats that are all potentially reversible. When selecting species for captive programs, dilemmas may emerge between choosing species that have a good chance of surviving after reintroduction because their threats are reversible and those that are doomed to extinction in the wild as a result of irreversible threats. Captive breeding and reintroduction programs for amphibians require long-term commitments to ensure success, and different management strategies may be needed for species earmarked for reintroduction and species used for conservation

  1. Occurrence of pesticides in water and sediment collected from amphibian habitats located throughout the United States, 2009-10

    Science.gov (United States)

    Smalling, Kelly L.; Orlando, James L.; Calhoun, Daniel; Battaglin, William A.; Kuivila, Kathryn M.

    2012-01-01

    Water and bed-sediment samples were collected by the U.S. Geological Survey (USGS) in 2009 and 2010 from 11 sites within California and 18 sites total in Colorado, Georgia, Idaho, Louisiana, Maine, and Oregon, and were analyzed for a suite of pesticides by the USGS. Water samples and bed-sediment samples were collected from perennial or seasonal ponds located in amphibian habitats in conjunction with research conducted by the USGS Amphibian Research and Monitoring Initiative and the USGS Toxic Substances Hydrology Program. Sites selected for this study in three of the states (California, Colorado, and Orgeon) have no direct pesticide application and are considered undeveloped and remote. Sites selected in Georgia, Idaho, Louisiana, and Maine were in close proximity to either agricultural or suburban areas. Water and sediment samples were collected once in 2009 during amphibian breeding seasons. In 2010, water samples were collected twice. The first sampling event coincided with the beginning of the frog breeding season for the species of interest, and the second event occurred 10-12 weeks later when pesticides were being applied to the surrounding areas. Additionally, water was collected during each sampling event to measure dissolved organic carbon, nutrients, and the fungus, Batrachochytrium dendrobatidis, which has been linked to amphibian declines worldwide. Bed-sediment samples were collected once during the beginning of the frog breeding season, when the amphibians are thought to be most at risk to pesticides. Results of this study are reported for the following two geographic scales: (1) for a national scale, by using data from the 29 sites that were sampled from seven states, and (2) for California, by using data from the 11 sampled sites in that state. Water samples were analyzed for 96 pesticides by using gas chromatography/mass spectrometry. A total of 24 pesticides were detected in one or more of the 54 water samples, including 7 fungicides, 10

  2. Fetal adaptations for viviparity in amphibians.

    Science.gov (United States)

    Wake, Marvalee H

    2015-08-01

    Live-bearing has evolved in all three orders of amphibians--frogs, salamanders, and caecilians. Developing young may be either yolk dependent, or maternal nutrients may be supplied after yolk is resorbed, depending on the species. Among frogs, embryos in two distantly related lineages develop in the skin of the maternal parents' backs; they are born either as advanced larvae or fully metamorphosed froglets, depending on the species. In other frogs, and in salamanders and caecilians, viviparity is intraoviductal; one lineage of salamanders includes species that are yolk dependent and born either as larvae or metamorphs, or that practice cannibalism and are born as metamorphs. Live-bearing caecilians all, so far as is known, exhaust yolk before hatching and mothers provide nutrients during the rest of the relatively long gestation period. The developing young that have maternal nutrition have a number of heterochronic changes, such as precocious development of the feeding apparatus and the gut. Furthermore, several of the fetal adaptations, such as a specialized dentition and a prolonged metamorphosis, are homoplasious and present in members of two or all three of the amphibian orders. At the same time, we know little about the developmental and functional bases for fetal adaptations, and less about the factors that drive their evolution and facilitate their maintenance.

  3. Modeling effects of conservation grassland losses on amphibian habitat

    Science.gov (United States)

    Mushet, David M.; Neau, Jordan L.; Euliss, Ned H.

    2014-01-01

    Amphibians provide many ecosystem services valued by society. However, populations have declined globally with most declines linked to habitat change. Wetlands and surrounding terrestrial grasslands form habitat for amphibians in the North American Prairie Pothole Region (PPR). Wetland drainage and grassland conversion have destroyed or degraded much amphibian habitat in the PPR. However, conservation grasslands can provide alternate habitat. In the United States, the Conservation Reserve Program (CRP) is the largest program maintaining grasslands on agricultural lands. We used an ecosystem services model (InVEST) parameterized for the PPR to quantify amphibian habitat over a six-year period (2007–2012). We then quantified changes in availability of amphibian habitat under various land-cover scenarios representing incremental losses (10%, 25%, 50%, 75%, and 100%) of CRP grasslands from 2012 levels. The area of optimal amphibian habitat in the four PPR ecoregions modeled (i.e., Northern Glaciated Plains, Northwestern Glaciated Plains, Lake Agassiz Plain, Des Moines Lobe) declined by approximately 22%, from 3.8 million ha in 2007 to 2.9 million ha in 2012. These losses were driven by the conversion of CRP grasslands to croplands, primarily for corn and soybean production. Our modeling identified an additional 0.8 million ha (26%) of optimal amphibian habitat that would be lost if remaining CRP lands are returned to crop production. An economic climate favoring commodity production over conservation has resulted in substantial losses of amphibian habitat across the PPR that will likely continue into the future. Other regions of the world face similar challenges to maintaining amphibian habitats.

  4. Facility design and associated services for the study of amphibians.

    Science.gov (United States)

    Browne, Robert K; Odum, R Andrew; Herman, Timothy; Zippel, Kevin

    2007-01-01

    The role of facilities and associated services for amphibians has recently undergone diversification. Amphibians traditionally used as research models adjust well to captivity and thrive with established husbandry techniques. However, it is now necessary to maintain hundreds of novel amphibian species in captive breeding, conservation research, and biomedical research programs. These diverse species have a very wide range of husbandry requirements, and in many cases the ultimate survival of threatened species will depend on captive populations. Two critical factors have emerged in the maintenance of amphibians, stringent quarantine and high-quality water. Because exotic diseases such as chytridiomycosis have devastated both natural and captive populations of amphibians, facilities must provide stringent quarantine. The provision of high-quality water is also essential to maintain amphibian health and condition due to the intimate physiological relationship of amphibians to their aquatic environment. Fortunately, novel technologies backed by recent advances in the scientific knowledge of amphibian biology and disease management are available to overcome these challenges. For example, automation can increase the reliability of quarantine and maintain water quality, with a corresponding decrease in handling and the associated disease-transfer risk. It is essential to build facilities with appropriate nontoxic waterproof materials and to provide quarantined amphibian rooms for each population. Other spaces and services include live feed rooms, quarantine stations, isolation rooms, laboratory space, technical support systems, reliable energy and water supplies, high-quality feed, and security. Good husbandry techniques must include reliable and species-specific management by trained staff members who receive support from the administration. It is possible to improve husbandry techniques for many species by sharing knowledge through common information systems. Overall

  5. Reptiles and Amphibians of Fairchild Air Force Base, WA

    Science.gov (United States)

    2013-05-10

    ER D C/ CE R L TR -1 3 -5 Reptiles and Amphibians of Fairchild Air Force Base, WA C on st ru ct io n E n gi n ee ri n g R es ea rc...online library at http://acwc.sdp.sirsi.net/client/default. ERDC/CERL TR-13-5 May 2013 Reptiles and Amphibians of Fairchild Air Force Base, WA...Washington, DC 20314-1000 ERDC/CERL TR-13-5 ii Abstract Many reptile and amphibian (collectively termed “herpetofauna”) populations are declining at a

  6. ASSESSMENT OF THE RISK OF SOLAR ULTRAVIOLET RADIATION TO AMPHIBIANS. II: IN SITU CHARACTERIZATION OF SOLAR ULTRAVIOLET RADIATION IN AMPHIBIAN HABITATS

    Science.gov (United States)

    Ultraviolet B (UVB) radiation has been hypothesized as a potential cause of amphibian population declines and increased incidences of malformations. Realistic studies documenting UV irradiance or dose have rarely been conducted in wetlands used by amphibians. We demonstrate that ...

  7. An alternative framework for responding to the amphibian crisis

    Science.gov (United States)

    Muths, Erin L.; Fisher, Robert N.

    2017-01-01

    Volumes of data illustrate the severity of the crisis affecting amphibians, where > 32% of amphibians worldwide are threatened with declining populations. Although there have been isolated victories, the current approach to the issue is unsuccessful. We suggest that a radically different approach, something akin to human emergency response management (i.e. the Incident Command System), is one alternative to addressing the inertia and lack of cohesion in responding to amphibian issues. We acknowledge existing efforts and the useful research that has been conducted, but we suggest that a change is warranted and that the identification of a new amphibian chytrid provides the impetus for such a change. Our goal is to recognize that without a centralized effort we (collectively) are likely to fail in responding to this challenge.

  8. Conservation needs of amphibians in China:A review

    Institute of Scientific and Technical Information of China (English)

    Michael; Wai; Neng; LAU; Simon; N; STUART; Janice; S; CHANSON; Neil; A; COX; Debra; L; FISCHMAN

    2007-01-01

    The conservation status of all the amphibians in China is analyzed,and the country is shown to be a global priority for conservation in comparison to many other countries of the world.Three Chinese regions are particularly rich in amphibian diversity:Hengduan,Nanling,and Wuyi mountains.Sala-manders are more threatened than frogs and toads.Several smaller families show a high propensity to become seriously threatened:Bombinatoridae,Cryptobranchidae,Hynobiidae and Salamandridae.Like other parts of the world,stream-breeding,high-elevation forest amphibians have a much higher likeli-hood of being seriously threatened.Habitat loss,pollution,and over-harvesting are the most serious threats to Chinese amphibians.Over-harvesting is a less pervasive threat than habitat loss,but it is more likely to drive a species into rapid decline.Five conservation challenges are mentioned with recommendations for the highest priority research and conservation actions.

  9. Scientists urge enforcement of an amphibian conservation plan

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ A group of CAS biologists recently lodged an appeal, calling for initiating a national action plan as soon as possible to protect the amphibian species now struggling for their survival throughout the country.

  10. Trends in amphibian occupancy in the United States.

    Directory of Open Access Journals (Sweden)

    Michael J Adams

    Full Text Available Though a third of amphibian species worldwide are thought to be imperiled, existing assessments simply categorize extinction risk, providing little information on the rate of population losses. We conducted the first analysis of the rate of change in the probability that amphibians occupy ponds and other comparable habitat features across the United States. We found that overall occupancy by amphibians declined 3.7% annually from 2002 to 2011. Species that are Red-listed by the International Union for Conservation of Nature (IUCN declined an average of 11.6% annually. All subsets of data examined had a declining trend including species in the IUCN Least Concern category. This analysis suggests that amphibian declines may be more widespread and severe than previously realized.

  11. FACTORS IMPLICATED IN AMPHIBIAN POPULATION DECLINES IN THE UNITED STATES

    Science.gov (United States)

    This study identified the factors responsible for the decline of native amphibians in the U.S. The type of land use, the introduction of exotic animal species, and chemical contamination were identified as the most likely causes of decline.

  12. Trends in amphibian occupancy in the United States.

    Science.gov (United States)

    Adams, Michael J; Miller, David A W; Muths, Erin; Corn, Paul Stephen; Grant, Evan H Campbell; Bailey, Larissa L; Fellers, Gary M; Fisher, Robert N; Sadinski, Walter J; Waddle, Hardin; Walls, Susan C

    2013-01-01

    Though a third of amphibian species worldwide are thought to be imperiled, existing assessments simply categorize extinction risk, providing little information on the rate of population losses. We conducted the first analysis of the rate of change in the probability that amphibians occupy ponds and other comparable habitat features across the United States. We found that overall occupancy by amphibians declined 3.7% annually from 2002 to 2011. Species that are Red-listed by the International Union for Conservation of Nature (IUCN) declined an average of 11.6% annually. All subsets of data examined had a declining trend including species in the IUCN Least Concern category. This analysis suggests that amphibian declines may be more widespread and severe than previously realized.

  13. Trends in amphibian occupancy in the United States

    Science.gov (United States)

    Adams, Michael J.; Miller, David A.W.; Muths, Erin; Corn, Paul Stephen; Grant, Evan H. Campbell; Bailey, Larissa L.; Fellers, Gary M.; Fisher, Robert N.; Sadinski, Walter J.; Waddle, Hardin; Walls, Susan C.

    2013-01-01

    Though a third of amphibian species worldwide are thought to be imperiled, existing assessments simply categorize extinction risk, providing little information on the rate of population losses. We conducted the first analysis of the rate of change in the probability that amphibians occupy ponds and other comparable habitat features across the United States. We found that overall occupancy by amphibians declined 3.7% annually from 2002 to 2011. Species that are Red-listed by the International Union for Conservation of Nature (IUCN) declined an average of 11.6% annually. All subsets of data examined had a declining trend including species in the IUCN Least Concern category. This analysis suggests that amphibian declines may be more widespread and severe than previously realized.

  14. Fish Springs NWR mammal, fish, amphibian, and reptile list

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The following is a species list for mammals, fishes, amphibians, and reptiles found on or adjacent to Fish Springs National Wildlife Refuge, as of October, 1996.

  15. Amphibian and reptile diversity of the Lahontan Valley

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is about a survey that was done to assess the amphibian and reptile diversity of the Lahontan Valley in Nevada. The work contained in this summary can be...

  16. Coastal Resources Atlas: Long Island: REPTILES (Reptile and Amphibian Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for sea turtles, estuarine turtles, and amphibians for Long Island, New York. Vector polygons in this data...

  17. Invasive and introduced reptiles and amphibians: Chapter 28

    Science.gov (United States)

    Reed, Robert N.; Krysko, Kenneth L.; Mader, Douglas R.; Divers, Stephen J.

    2014-01-01

    Why is there a section on introduced amphibians and reptiles in this volume, and why should veterinarians care about this issue? Globally, invasive species are a major threat to the stability of native ecosystems,1,2 and amphibians and reptiles are attracting increased attention as potential invaders. Some introduced amphibians and reptiles have had a major impact (e.g., Brown Tree Snakes [Boiga irregularis] wiping out the native birds of Guam3 or Cane Toads [Rhinella marina] poisoning native Australian predators).4 For the vast majority of species, however, the ecological, economic, and sociopolitical effects of introduced amphibians and reptiles are generally poorly quantified, largely because of a lack of focused research effort rather than because such effects are nonexistent. This trend is alarming given that rates of introduction have increased exponentially in recent decades.

  18. Nationwide Abnormal Amphibian Monitoring Project : Region 3 : Interim Report 2004

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 2000, the FWS's Environmental Contaminants Program (currently Environmental Quality Program) received funding as part of the Department of Interior's Amphibian...

  19. Nationwide Abnormal Amphibian Monitoring Project : Region 3 : Interim Report 2003

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 2000, the FWS's Environmental Contaminants Program (currently Environmental Quality Program) received funding as part of the Department of Interior's Amphibian...

  20. Nationwide Abnormal Amphibian Monitoring Project : Region 3: 2002

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 2000, the FWS's Environmental Contaminants Program (currently Environmental Quality Program) received funding as part of the Department of Interior's Amphibian...

  1. ALIEN SPECIES: THEIR ROLE IN AMPHIBIAN POPULATION DECLINES AND RESTORATION

    Science.gov (United States)

    Alien species (also referred to as exotic, invasive, introduced, or normative species) have been implicated as causal agents in population declines of many amphibian species. Herein, we evaluate the relative contributions of alien species and other factors in adversely affecting ...

  2. Declining amphibian populations: a global phenomenon in conservation biology

    Directory of Open Access Journals (Sweden)

    Gardner, T.

    2001-01-01

    Full Text Available The majority of the recent reductions in the Earth's biodiversity can be attributed to direct human impacts on the environment. An increasing number of studies over the last decade have reported declines in amphibian populations in areas of pristine habitat. Such reports suggest the role of indirect factors and a global effect of human activities on natural systems. Declines in amphibian populations bear significant implications for the functioning of many terrestrial ecosystems, and may signify important implications for human welfare. A wide range of candidates have been proposed to explain amphibian population declines. However, it seems likely that the relevance of each factor is dependent upon the habitat type and species in question, and that complex synergistic effects between a number of environmental factors is of critical importance. Monitoring of amphibian populations to assess the extent and cause of declines is confounded by a number of ecological and methodological limitations.

  3. Checklist of Helminth parasites of Amphibians from South America.

    Science.gov (United States)

    Campião, Karla Magalhães; Morais, Drausio Honorio; Dias, Olívia Tavares; Aguiar, Aline; Toledo, Gislayne De Melo; Tavares, Luiz Eduardo Roland; Da Silva, Reinaldo José

    2014-07-30

    Parasitological studies on helminths of amphibians in South America have increased in the past few years. Here, we present a list with summarized data published on helminths of South American amphibians from 1925 to 2012, including a list of helminth parasites, host species, and geographic records. We found 194 reports of helminths parasitizing 185 amphibian species from eleven countries: Argentina, Brazil, Chile, Colombia, Equador, French Guyana, Guyana, Paraguay, Peru, Uruguay and Venezuela. Helminth biodiversity includes 278 parasite species of the groups Acanthocephala, Nematoda, Cestoda, Monogenea and Trematoda. A list of helminth parasite species per host, and references are also presented. This contribution aims to document the biodiversity of helminth parasites in South American amphibians, as well as identify gaps in our knowledge, which in turn may guide subsequent studies. 

  4. Metabolism of pesticides after dermal exposure to amphibians

    Science.gov (United States)

    Understanding how pesticide exposure to non-target species influences toxicity is necessary to accurately assess the ecological risks these compounds pose. Aquatic, terrestrial, and arboreal amphibians are often exposed to pesticides during their agricultural application resultin...

  5. Update of reptile and amphibian lists Kern NWR complex

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document includes a list of reptiles and amphibians found at Kern NWR, and lists brief species accounts for rare sightings/species. Attached are updated lists...

  6. Conservation needs of amphibians in China: A review

    Institute of Scientific and Technical Information of China (English)

    XIE Feng; Michael Wai Neng LAU; Simon N STUART; Janice S CHANSON; Neil A COX; Debra L FISCHMAN

    2007-01-01

    The conservation status of all the amphibians in China is analyzed, and the country is shown to be a global priority for conservation in comparison to many other countries of the world. Three Chinese regions are particularly rich in amphibian diversity: Hengduan, Nanling, and Wuyi mountains. Salamanders are more threatened than frogs and toads. Several smaller families show a high propensity to become seriously threatened: Bombinatoridae, Cryptobranchidae, Hynobiidae and Salamandridae. Like other parts of the world, stream-breeding, high-elevation forest amphibians have a much higher likelihood of being seriously threatened. Habitat loss, pollution, and over-harvesting are the most serious threats to Chinese amphibians. Over-harvesting is a less pervasive threat than habitat loss, but it is more likely to drive a species into rapid decline. Five conservation challenges are mentioned with recommendations for the highest priority research and conservation actions.

  7. Abnormal amphibians on U.S. National Wildlife Refuges

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project contains a journal article, a news release, FAQs, a fact sheet, photos, and a dataset related to a 10-year study of amphibian abnormalities on U.S....

  8. Amphibian and Reptile Research on Coldwater National Wildlife Refuge, Mississippi

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The management actions in the wildlife ponds on Coldwater National Wildlife Refuge create a highly variable and dynamic environment for amphibians and reptiles. Some...

  9. Hot Spots of Mercury Bioaccumulation in Amphibian Populations From the Conterminous United States

    Science.gov (United States)

    Bank, M. S.

    2008-12-01

    Mercury (Hg) contamination in the United States (U.S.) is well-documented and continues to be a public- health issue of great concern. Fish consumption advisories have been issued throughout much of the U.S. due to elevated levels of methylmercury (MeHg). Methylmercury contamination in the developing fetus and in young children is a major public health issue for certain sectors of the global human population. Moreover, identifying MeHg hot spots and the effects of MeHg pollution on environmental health and biodiversity are also considered a high priority for land managers, risk assessors, and conservation scientists. Despite their overall biomass and importance to aquatic and terrestrial ecosystems, Hg and MeHg bioaccumulation dynamics and toxicity in amphibians are not well studied, especially when compared to other vertebrate taxa such as birds, mammals, and fish species. Population declines in amphibians are well documented and likely caused by synergistic and interacting, multiple stressors such as climate change, exposure to toxic pollutants, fungal pathogens, and habitat loss and ecosystem degradation. Protecting quality of terrestrial ecosystems in the U.S. has enormous ramifications for economic and public health of the nation's residents and is fundamental to maintaining the biotic integrity of surface waters, riparian zones, and environmental health of forested landscapes nationwide. Determining Hg concentration levels for terrestrial and surface water ecosystems also has important implications for protecting the nation's fauna. Here I present an overview of the National Amphibian Mercury Program and evaluate variation in MeHg hotspots, Hg bioaccumulation and distribution in freshwater and terrestrial habitats across a broad gradient of physical, climatic, biotic, and ecosystem settings to identify the environmental conditions and ecosystem types that are most sensitive to Hg pollution. The role of geography, disturbance mechanisms, and abiotic and biotic

  10. Initial diversification of living amphibians predated the breakup of Pangaea

    OpenAIRE

    2005-01-01

    The origin and divergence of the three living orders of amphibians (Anura, Caudata, Gymnophiona) and their main lineages are one of the most hotly debated topics in vertebrate evolution. Here, we present a robust molecular phylogeny based on the nuclear RAG1 gene as well as results from a variety of alternative independent molecular clock calibrations. Our analyses suggest that the origin and early divergence of the three living amphibian orders dates back to the Palaeozoic or early Mesozoic,...

  11. Resistance to cancer in amphibians: a role for apoptosis?

    Science.gov (United States)

    Ruben, Laurens N; Johnson, Rachel O; Clothier, Richard H; Balls, Michael

    2013-07-01

    The rarity of spontaneous cancer in amphibians, and the difficulty of inducing cancer in these lower vertebrates, suggest that they possess an effective system for resistance to the development of cancer. The first part of this narrative presents evidence for cancer resistance in amphibians, and then a variety of studies designed to help understand the physiological basis for this resistance are reviewed. Here, our emphasis is on evidence with regard to the role that apoptosis might play.

  12. The Amphibian Research and Monitoring Initiative (ARMI): 5-year report

    Science.gov (United States)

    Muths, Erin; Gallant, Alisa L.; Campbell Grant, Evan H.; Battaglin, William A.; Green, David E.; Staiger, Jennifer S.; Walls, Susan C.; Gunzburger, Margaret S.; Kearney, Rick F.

    2006-01-01

    The Amphibian Research and Monitoring Initiative (ARMI) is an innovative, multidisciplinary program that began in 2000 in response to a congressional directive for the Department of the Interior to address the issue of amphibian declines in the United States. ARMI’s formulation was cross-disciplinary, integrating U.S. Geological Survey scientists from Biology, Water, and Geography to develop a course of action (Corn and others, 2005a). The result has been an effective program with diverse, yet complementary, expertise.

  13. Why amphibians are more sensitive than mammals to xenobiotics.

    Directory of Open Access Journals (Sweden)

    Angelo Quaranta

    Full Text Available Dramatic declines in amphibian populations have been described all over the world since the 1980s. The evidence that the sensitivity to environmental threats is greater in amphibians than in mammals has been generally linked to the observation that amphibians are characterized by a rather permeable skin. Nevertheless, a numerical comparison of data of percutaneous (through the skin passage between amphibians and mammals is lacking. Therefore, in this investigation we have measured the percutaneous passage of two test molecules (mannitol and antipyrine and three heavily used herbicides (atrazine, paraquat and glyphosate in the skin of the frog Rana esculenta (amphibians and of the pig ear (mammals, by using the same experimental protocol and a simple apparatus which minimizes the edge effect, occurring when the tissue is clamped in the usually used experimental device.The percutaneous passage (P of each substance is much greater in frog than in pig. LogP is linearly related to logKow (logarithm of the octanol-water partition coefficient. The measured P value of atrazine was about 134 times larger than that of glyphosate in frog skin, but only 12 times in pig ear skin. The FoD value (Pfrog/Ppig was 302 for atrazine, 120 for antipyrine, 66 for mannitol, 29 for paraquat, and 26 for glyphosate.The differences in structure and composition of the skin between amphibians and mammals are discussed.

  14. Evolution of the amygdala: new insights from studies in amphibians.

    Science.gov (United States)

    Laberge, Frédéric; Mühlenbrock-Lenter, Sabine; Grunwald, Wolfgang; Roth, Gerhard

    2006-01-01

    The histology of amphibian brains gives an impression of relative simplicity when compared with that of reptiles or mammals. The amphibian telencephalon is small and contains comparatively few and large neurons, which in most parts constitute a dense periventricular cellular layer. However, the view emerging from the last decade is that the brains of all tetrapods, including amphibians, share a general bauplan resulting from common ancestry and the need to perform similar vital functions. To what extent this common organization also applies to higher brain functions is unknown due to a limited knowledge of the neurobiology of early vertebrates. The amygdala is widely recognized as a brain center critical for basic forms of emotional learning (e.g., fear conditioning) and its structure in amphibians could suggest how this capacity evolved. A functional systems approach is used here to synthesize the results of our anatomical investigations of the amphibian amygdala. It is proposed that the connectivity of the amphibian telencephalon portends a capacity for multi-modal association in a limbic system largely similar to that of amniote vertebrates. One remarkable exception is the presence of new sensory-associative regions of the amygdala in amniotes: the posterior dorsal ventricular ridge plus lateral nuclei in reptiles and the basolateral complex in mammals. These presumably homologous regions apparently are capable of modulating the phylogenetically older central amygdala and allow more complex forms of emotional learning.

  15. Why amphibians are more sensitive than mammals to xenobiotics.

    Science.gov (United States)

    Quaranta, Angelo; Bellantuono, Vito; Cassano, Giuseppe; Lippe, Claudio

    2009-11-04

    Dramatic declines in amphibian populations have been described all over the world since the 1980s. The evidence that the sensitivity to environmental threats is greater in amphibians than in mammals has been generally linked to the observation that amphibians are characterized by a rather permeable skin. Nevertheless, a numerical comparison of data of percutaneous (through the skin) passage between amphibians and mammals is lacking. Therefore, in this investigation we have measured the percutaneous passage of two test molecules (mannitol and antipyrine) and three heavily used herbicides (atrazine, paraquat and glyphosate) in the skin of the frog Rana esculenta (amphibians) and of the pig ear (mammals), by using the same experimental protocol and a simple apparatus which minimizes the edge effect, occurring when the tissue is clamped in the usually used experimental device.The percutaneous passage (P) of each substance is much greater in frog than in pig. LogP is linearly related to logKow (logarithm of the octanol-water partition coefficient). The measured P value of atrazine was about 134 times larger than that of glyphosate in frog skin, but only 12 times in pig ear skin. The FoD value (Pfrog/Ppig) was 302 for atrazine, 120 for antipyrine, 66 for mannitol, 29 for paraquat, and 26 for glyphosate.The differences in structure and composition of the skin between amphibians and mammals are discussed.

  16. Predation of Ladybird Beetles (Coleoptera: Coccinellidae by Amphibians

    Directory of Open Access Journals (Sweden)

    John J. Sloggett

    2012-07-01

    Full Text Available Studies of predation of ladybird beetles (Coccinellidae have focused on a limited number of predator taxa, such as birds and ants, while other potential predators have received limited attention. I here consider amphibians as predators of ladybirds. Published amphibian gut analyses show that ladybirds are quite often eaten by frogs and toads (Anura, with recorded frequencies reaching up to 15% of dietary items. Salamanders (Caudata eat ladybirds less frequently, probably as their habits less often bring them into contact with the beetles. Amphibians do not appear to be deleteriously affected by the potentially toxic alkaloids that ladybirds possess. Amphibians, especially frogs and toads, use primarily prey movement as a release cue to attack their food; it is thus likely that their ability to discriminate against ladybirds and other chemically defended prey is limited. Because of this poor discriminatory power, amphibians have apparently evolved non-specific resistance to prey defensive chemicals, including ladybird alkaloids. Although amphibian-related ladybird mortality is limited, in certain habitats it could outweigh mortality from more frequently studied predators, notably birds. The gut analyses from the herpetological literature used in this study, suggest that in studying predation of insects, entomologists should consider specialized literature on other animal groups.

  17. Plasticity of hatching in amphibians: evolution, trade-offs, cues and mechanisms.

    Science.gov (United States)

    Warkentin, Karen M

    2011-07-01

    Many species of frogs and salamanders, in at least 12 families, alter their timing of hatching in response to conditions affecting mortality of eggs or larvae. Some terrestrially laid or stranded embryos wait to hatch until they are submerged in water. Some embryos laid above water accelerate hatching if the eggs are dehydrating; others hatch early if flooded. Embryos can hatch early in response to predators and pathogens of eggs or delay hatching in response to predators of larvae; some species do both. The phylogenetic pattern of environmentally cued hatching suggests that similar responses have evolved convergently in multiple amphibian lineages. The use of similar cues, including hypoxia and physical disturbance, in multiple contexts suggests potential shared mechanisms underlying the capacity of embryos to respond to environmental conditions. Shifts in the timing of hatching often have clear benefits, but we know less about the trade-offs that favor plasticity, the mechanisms that enable it, and its evolutionary history. Some potentially important types of cued hatching, such as those involving embryo-parent interactions, are relatively unexplored. I discuss promising directions for research and the opportunities that the hatching of amphibians offers for integrative studies of the mechanisms, ecology and evolution of a critical transition between life-history stages.

  18. Variable breeding phenology affects the exposure of amphibian embryos to ultraviolet radiation

    Science.gov (United States)

    Corn, P.S.; Muths, E.

    2002-01-01

    Reduced water depth in dry years has been proposed to interact with ultraviolet-B (UV-B) radiation and pathogenic fungus to cause episodes of high mortality of amphibian embryos. Observations of breeding phenology of boreal chorus frogs (Pseudacris maculata) in Colorado from 1986-2001 show that dry years result in earlier breeding. The earliest and latest dates of maximum calling activity by males were 20 May and 16 June, and the date of maximum calling was strongly related to the amount of snow accumulation during the winter. Surface UV-B flux, estimated from satellite-based measurements, was positively related to date of maximum calling. In dry years, surface UV-B during calling was reduced by an amount similar to that attributed to reduced depth. Although there was a significant trend of increasing UV-B from 1978-2001 on the average date (2 June) of maximum calling activity, there was no relationship between year and surface UV-B at actual dates of maximum calling. Exposure to extreme temperatures is an alternative explanation for increased mortality of amphibian embryos in shallow water.

  19. Possible environmental factors underlying amphibian decline in eastern Puerto Rico: Analysis of U.S. government data archives

    Science.gov (United States)

    Stallard, R.F.

    2001-01-01

    The past three decades have seen major declines in populations of several species of amphibians at high elevations in eastern Puerto Rico, a region unique in the humid tropics because of the degree of environmental monitoring that has taken place through the efforts of U.S. government agencies. I examined changes in environmental conditions by examining time-series data sets that extend back at least into the 1980s, a period when frog populations were declining. The data include forest cover; annual mean, minimum, and maximum daily temperature; annual rainfall; rain and stream chemistry; and atmospheric-dust transport. I examined satellite imagery and air-chemistry samples from a single National Aeronautics and Space Administration aircraft flight across the Caribbean showing patches of pollutants, described as thin sheets or lenses, in the lower troposphere. The main source of these pollutants appeared to be fires from land clearing and deforestation, primarily in Africa. Some pollutant concentrations were high and, in the case of ozone, approached health limits set for urban air. Urban pollution impinging on Puerto Rico, dust generation from Africa (potential soil pathogens), and tropical forest burning (gaseous pollutants) have all increased during the last three decades, overlapping the timing of amphibian declines in eastern Puerto Rico. None of the data sets pointed directly to changes so extreme that they might be considered a direct lethal cause of amphibian declines in Puerto Rico. More experimental research is required to link any of these environmental factors to this problem.

  20. Multiple stressor effects in relation to declining amphibian populations

    Science.gov (United States)

    2003-01-01

    This book represents the work of several authors who participated in the symposium entitled 'Multiple Stressor Effects in Relation to Declining Amphibian Populations' convened 16-17 April, 2002, in Pittsburgh, Pennsylvania. Declines of amphibian populations of varying severity have been observed for many years, and in the last 8 to 10 years considerable progress has been made in documenting the status and distribution of a range of amphibian species. Habitat alteration and destruction are likely linked to many amphibian declines, but a variety of other factors, both anthropogenic and natural, have been observed or proposed to have caused declines or extinctions of amphibian populations. Unfortunately, determining the environmental causes for the decline of many species has proven difficult. The goals of this symposium were three-fold. First, highlight ASTM's historic role in providing a forum for the standardization of amphibian toxicity test methods and the characterization of adverse effects potentially associated with chemical stressors. Second, demonstrate through case studies the current state of technical 'tools' available to biologists, ecologists, environmental scientists and natural resource professionals for assessing amphibian populations exposed to various environmental stressors. And third, characterize a process that brings a range of interdisciplinary technical and management tools to the tasks of causal analysis, especially as those relate to a multiple stressor risk assessment 'mind-set.' As part of the symposium, scientists and resource management professionals from diverse fields including ecotoxicology and chemistry, ecology and field biology, conservation biology, and natural resource management and policy contributed oral presentations and posters that addressed topics related to declining amphibian populations and the role that various stressors have in those losses. The papers contained in this publication reflect the commitment of ASTM

  1. Evaluation of tadpole mouthpart depigmentation as a diagnostic test for infection by Batrachochytrium dendrobatidis for four California anurans.

    Science.gov (United States)

    Padgett-Flohr, Gretchen E; Goble, Molly E

    2007-10-01

    The objective of this study was to evaluate the utility of gross morphologic examination of larval mouthpart defects as a diagnostic screening test to detect Batrachochytrium dendrobatidis infection in four California, USA, anuran species. We examined mouthparts of 2,034 tadpoles of Bufo boreas, Pseudacris regilla, and Rana catesbeiana collected in 2003 and 2004 and Bufo canorus collected in 2004. Data were recorded for three morphologic features: upper toothrows, lower toothrows, and combined jaw sheaths. Mouthpart defects were observed in all four species (n=757), but only two species were infected with B. dendrobatidis (n=84). Sensitivity and specificity of the mouthparts test were 76% and 58%, respectively. Forty-two percent of B. dendrobatidis-negative animals would have been designated positive based on mouthpart defects. Observed prevalence was 43%, and true prevalence was 3.0%. Tests of the null hypothesis using logistic regression analysis showed that anuran larval mouthpart defects were not associated with B. dendrobatidis infection whether mouthparts scores were tested by individual morphologic feature or in combination (P=0.37). We conclude that B. dendrobatidis infection and anuran larval mouthpart defects are two separate processes that may occur concurrently and that evaluation of tadpole oral morphology is neither an accurate nor a reliable diagnostic test for B. dendrobatidis infection for the four species tested.

  2. Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica

    NARCIS (Netherlands)

    Jiang, R.H.Y.; Bruijn, de I.; Haas, B.J.; Belmonte, R.; Löbach, L.; Christie, J.; Ackerveken, van den G.; Bottin, A.; Bulone, V.; Díaz-Moreno, S.M.; Dumas, B.; Fan, L.; Gaulin, E.; Govers, F.; Grenville-Briggs, L.J.; Horner, N.R.; Levin, J.Z.; Mammella, M.; Meijer, H.J.G.; Morris, P.; Nusbaum, C.; Oome, S.; Phillips, A.J.; Rooyen, van D.; Rzeszutek, E.; Saraiva, M.; Secombes, C.J.; Seidl, M.F.; Snel, B.; Stassen, J.H.M.; Sykes, S.; Tripathy, S.; Berg, H.; Vega-Arreguin, J.C.; Wawra, S.; Young, S.K.; Zeng, Q.; Dieguez-Uribeondo, J.; Russ, C.; Tyler, B.M.; West, van P.

    2013-01-01

    Oomycetes in the class Saprolegniomycetidae of the Eukaryotic kingdom Stramenopila have evolved as severe pathogens of amphibians, crustaceans, fish and insects, resulting in major losses in aquaculture and damage to aquatic ecosystems. We have sequenced the 63 Mb genome of the fresh water fish path

  3. Developments in amphibian captive breeding and reintroduction programs.

    Science.gov (United States)

    Harding, Gemma; Griffiths, Richard A; Pavajeau, Lissette

    2016-04-01

    Captive breeding and reintroduction remain high profile but controversial conservation interventions. It is important to understand how such programs develop and respond to strategic conservation initiatives. We analyzed the contribution to conservation made by amphibian captive breeding and reintroduction since the launch of the International Union for Conservation of Nature (IUCN) Amphibian Conservation Action Plan (ACAP) in 2007. We assembled data on amphibian captive breeding and reintroduction from a variety of sources including the Amphibian Ark database and the IUCN Red List. We also carried out systematic searches of Web of Science, JSTOR, and Google Scholar for relevant literature. Relative to data collected from 1966 to 2006, the number of species involved in captive breeding and reintroduction projects increased by 57% in the 7 years since release of the ACAP. However, there have been relatively few new reintroductions over this period; most programs have focused on securing captive-assurance populations (i.e., species taken into captivity as a precaution against extinctions in the wild) and conservation-related research. There has been a shift to a broader representation of frogs, salamanders, and caecilians within programs and an increasing emphasis on threatened species. There has been a relative increase of species in programs from Central and South America and the Caribbean, where amphibian biodiversity is high. About half of the programs involve zoos and aquaria with a similar proportion represented in specialist facilities run by governmental or nongovernmental agencies. Despite successful reintroduction often being regarded as the ultimate milestone for such programs, the irreversibility of many current threats to amphibians may make this an impractical goal. Instead, research on captive assurance populations may be needed to develop imaginative solutions to enable amphibians to survive alongside current, emerging, and future threats.

  4. Translocations of amphibians: Proven management method or experimental technique

    Science.gov (United States)

    Seigel, Richard A.; Dodd, C. Kenneth

    2002-01-01

    In an otherwise excellent review of metapopulation dynamics in amphibians, Marsh and Trenham (2001) make the following provocative statements (emphasis added): If isolation effects occur primarily in highly disturbed habitats, species translocations may be necessary to promote local and regional population persistence. Because most amphibians lack parental care, they areprime candidates for egg and larval translocations. Indeed, translocations have already proven successful for several species of amphibians. Where populations are severely isolated, translocations into extinct subpopulations may be the best strategy to promote regional population persistence. We take issue with these statements for a number of reasons. First, the authors fail to cite much of the relevant literature on species translocations in general and for amphibians in particular. Second, to those unfamiliar with current research in amphibian conservation biology, these comments might suggest that translocations are a proven management method. This is not the case, at least in most instances where translocations have been evaluated for an appropriate period of time. Finally, the authors fail to point out some of the negative aspects of species translocation as a management method. We realize that Marsh and Trenham's paper was not concerned primarily with translocations. However, because Marsh and Trenham (2001) made specific recommendations for conservation planners and managers (many of whom are not herpetologists or may not be familiar with the pertinent literature on amphibians), we believe that it is essential to point out that not all amphibian biologists are as comfortable with translocations as these authors appear to be. We especially urge caution about advocating potentially unproven techniques without a thorough review of available options.

  5. Ion transport by the amphibian primary ureter

    DEFF Research Database (Denmark)

    Møbjerg, Nadja

    2008-01-01

    and it is furthermore a key player in the induction of these kidney generations. Whether the ureter participates in urine modification, remains to be elucidated. In amphibians the pronephros is a large organ, which is functional for a considerable time before it degenerates. The aim of this study was to investigate...... (Vm) was - 79 ± 11 mV (mean ± sd). Vm depolarized by 35 ± 8 mV (n = 21) upon a bath [K+] step from 3 to 20 mmol/l, demonstrating the presence of a large K+ conductance in the basolateral cell membrane. Luminal fluid exchange experiments in 4 cells revealed a depolarization of Vm in response to [K......+] steps from 3 to 20 mmol/l and a hyperpolarization of Vm upon lowering [Na+] from 102 to 2 mmol/l, indicating the presence of luminal K+ and Na+ conductances. This study provides the first functional data on the vertebrate primary ureter. The data show that the primary ureter of axolotl larvae...

  6. Neotropical Amphibian Declines Affect Stream Ecosystem Properties

    Science.gov (United States)

    Connelly, S.; Pringle, C. M.; Bixby, R. J.; Whiles, M. R.; Lips, K. R.; Brenes, R.; Colon-Gaud, J. C.; Kilham, S.; Hunte-Brown, M.

    2005-05-01

    Global declines of amphibians are well documented, yet effects of these dramatic losses on ecosystem structure and function are poorly understood. As part of a larger collaborative project, we compared two upland Panamanian streams. Both streams are biologically and geologically similar; however, one stream (Fortuna) has recently experienced almost complete extirpation of stream-dwelling frogs, while the other (Cope) still has intact populations. We experimentally excluded tadpoles from localized areas in each stream. We then compared chlorophyll a, algal community composition, ash-free dry mass (AFDM), inorganic matter, and insect assemblages in control and exclusion areas. Additionally, we sampled the natural substrate of both streams monthly for chlorophyll a, algal community composition, AFDM, and inorganic matter. At Cope, chlorophyll a, AFDM, and inorganic matter were greater in areas where tadpoles were excluded than in their presence. Numbers of dominant algal species (e.g., Nupela praecipua and Eunotia siolii) were greater in the exclusion versus control treatments. Monthly sampling of natural substrate indicated higher chlorophyll a and AFDM at Cope compared to Fortuna. Our data suggest that stream-dwelling anuran larvae have significant impacts on algal communities. These results also have implications for predicting the relevance of short-term experimental manipulations to long-term, whole-stream processes.

  7. Incentive or habit learning in amphibians?

    Directory of Open Access Journals (Sweden)

    Rubén N Muzio

    Full Text Available Toads (Rhinella arenarum received training with a novel incentive procedure involving access to solutions of different NaCl concentrations. In Experiment 1, instrumental behavior and weight variation data confirmed that such solutions yield incentive values ranging from appetitive (deionized water, DW, leading to weight gain, to neutral (300 mM slightly hypertonic solution, leading to no net weight gain or loss, and aversive (800 mM highly hypertonic solution leading to weight loss. In Experiment 2, a downshift from DW to a 300 mM solution or an upshift from a 300 mM solution to DW led to a gradual adjustment in instrumental behavior. In Experiment 3, extinction was similar after acquisition with access to only DW or with a random mixture of DW and 300 mM. In Experiment 4, a downshift from DW to 225, 212, or 200 mM solutions led again to gradual adjustments. These findings add to a growing body of comparative evidence suggesting that amphibians adjust to incentive shifts on the basis of habit formation and reorganization.

  8. Amphibian populations in the terrestrial environment: Is there evidence of declines of terrestrial forest amphibians in northwestern California?

    Science.gov (United States)

    Welsh, H.H.; Fellers, G.M.; Lind, A.J.

    2007-01-01

    Amphibian declines have been documented worldwide; however the vast majority are species associated with aquatic habitats. Information on the status and trends of terrestrial amphibians is almost entirely lacking. Here we use data collected across a 12-yr period (sampling from 1984-86 and from 1993-95) to address the question of whether evidence exists for declines among terrestrial amphibians in northwestern California forests. The majority of amphibians, both species and relative numbers, in these forests are direct-developing salamanders of the family Plethodontidae. We examined amphibian richness and evenness, and the relative abundances of the four most common species of plethodontid salamanders. We examined evidence of differences between years in two ecological provinces (coastal and interior) and across young, mature, and late seral forests and with reference to a moisture gradient from xeric to hydric within late seral forests. We found evidence of declines in species richness across years on late seral mesic stands and in the coastal ecological province, but these differences appeared to be caused by differences in the detection of rarer species, rather than evidence of an overall pattern. We also found differences among specific years in numbers of individuals of the most abundant species, Ensatina eschscholtzii, but these differences also failed to reflect a consistent pattern of declines between the two decadal sample periods. Results showing differences in richness, evenness, and relative abundances along both the seral and moisture continua were consistent with previous research. Overall, we found no compelling evidence of a downward trend in terrestrial plethodontid salamanders. We believe that continued monitoring of terrestrial salamander populations is important to understanding mechanisms of population declines in amphibian species. Copyright 2007 Society for the Study of Amphibians and Reptiles.

  9. Investigating the Influence of Environmental Factors on Pesticide Exposure in Amphibians

    Science.gov (United States)

    Environmental factors such as temporal weather patterns and soil characterization coupled with pesticide application rates are known to influence exposure and subsequent absorption of these compounds in amphibians. Amphibians are a unique class of vertebrates due to their varied ...

  10. Control of respiration in fish, amphibians and reptiles

    Directory of Open Access Journals (Sweden)

    E.W. Taylor

    2010-05-01

    Full Text Available Fish and amphibians utilise a suction/force pump to ventilate gills or lungs, with the respiratory muscles innervated by cranial nerves, while reptiles have a thoracic, aspiratory pump innervated by spinal nerves. However, fish can recruit a hypobranchial pump for active jaw occlusion during hypoxia, using feeding muscles innervated by anterior spinal nerves. This same pump is used to ventilate the air-breathing organ in air-breathing fishes. Some reptiles retain a buccal force pump for use during hypoxia or exercise. All vertebrates have respiratory rhythm generators (RRG located in the brainstem. In cyclostomes and possibly jawed fishes, this may comprise elements of the trigeminal nucleus, though in the latter group RRG neurons have been located in the reticular formation. In air-breathing fishes and amphibians, there may be separate RRG for gill and lung ventilation. There is some evidence for multiple RRG in reptiles. Both amphibians and reptiles show episodic breathing patterns that may be centrally generated, though they do respond to changes in oxygen supply. Fish and larval amphibians have chemoreceptors sensitive to oxygen partial pressure located on the gills. Hypoxia induces increased ventilation and a reflex bradycardia and may trigger aquatic surface respiration or air-breathing, though these latter activities also respond to behavioural cues. Adult amphibians and reptiles have peripheral chemoreceptors located on the carotid arteries and central chemoreceptors sensitive to blood carbon dioxide levels. Lung perfusion may be regulated by cardiac shunting and lung ventilation stimulates lung stretch receptors.

  11. Control of respiration in fish, amphibians and reptiles

    Directory of Open Access Journals (Sweden)

    E.W. Taylor

    Full Text Available Fish and amphibians utilise a suction/force pump to ventilate gills or lungs, with the respiratory muscles innervated by cranial nerves, while reptiles have a thoracic, aspiratory pump innervated by spinal nerves. However, fish can recruit a hypobranchial pump for active jaw occlusion during hypoxia, using feeding muscles innervated by anterior spinal nerves. This same pump is used to ventilate the air-breathing organ in air-breathing fishes. Some reptiles retain a buccal force pump for use during hypoxia or exercise. All vertebrates have respiratory rhythm generators (RRG located in the brainstem. In cyclostomes and possibly jawed fishes, this may comprise elements of the trigeminal nucleus, though in the latter group RRG neurons have been located in the reticular formation. In air-breathing fishes and amphibians, there may be separate RRG for gill and lung ventilation. There is some evidence for multiple RRG in reptiles. Both amphibians and reptiles show episodic breathing patterns that may be centrally generated, though they do respond to changes in oxygen supply. Fish and larval amphibians have chemoreceptors sensitive to oxygen partial pressure located on the gills. Hypoxia induces increased ventilation and a reflex bradycardia and may trigger aquatic surface respiration or air-breathing, though these latter activities also respond to behavioural cues. Adult amphibians and reptiles have peripheral chemoreceptors located on the carotid arteries and central chemoreceptors sensitive to blood carbon dioxide levels. Lung perfusion may be regulated by cardiac shunting and lung ventilation stimulates lung stretch receptors.

  12. Control of respiration in fish, amphibians and reptiles.

    Science.gov (United States)

    Taylor, E W; Leite, C A C; McKenzie, D J; Wang, T

    2010-05-01

    Fish and amphibians utilise a suction/force pump to ventilate gills or lungs, with the respiratory muscles innervated by cranial nerves, while reptiles have a thoracic, aspiratory pump innervated by spinal nerves. However, fish can recruit a hypobranchial pump for active jaw occlusion during hypoxia, using feeding muscles innervated by anterior spinal nerves. This same pump is used to ventilate the air-breathing organ in air-breathing fishes. Some reptiles retain a buccal force pump for use during hypoxia or exercise. All vertebrates have respiratory rhythm generators (RRG) located in the brainstem. In cyclostomes and possibly jawed fishes, this may comprise elements of the trigeminal nucleus, though in the latter group RRG neurons have been located in the reticular formation. In air-breathing fishes and amphibians, there may be separate RRG for gill and lung ventilation. There is some evidence for multiple RRG in reptiles. Both amphibians and reptiles show episodic breathing patterns that may be centrally generated, though they do respond to changes in oxygen supply. Fish and larval amphibians have chemoreceptors sensitive to oxygen partial pressure located on the gills. Hypoxia induces increased ventilation and a reflex bradycardia and may trigger aquatic surface respiration or air-breathing, though these latter activities also respond to behavioural cues. Adult amphibians and reptiles have peripheral chemoreceptors located on the carotid arteries and central chemoreceptors sensitive to blood carbon dioxide levels. Lung perfusion may be regulated by cardiac shunting and lung ventilation stimulates lung stretch receptors.

  13. The importance of cartilage to amphibian development and evolution.

    Science.gov (United States)

    Rose, Christopher S

    2014-01-01

    The duality of amphibians is epitomized by their pharyngeal arch skeletons, the larval and adult morphologies of which enable very different feeding and breathing behaviors in aquatic and terrestrial life. To accomplish this duality, amphibian pharyngeal arch skeletons undergo two periods of patterning: embryogenesis and metamorphosis, and two periods of growth: larval and postmetamorphic. Their extreme ontogenetic variation, however, is coupled with relatively limited phylogenetic variation. I propose that amphibians face an evolutionary tradeoff between their ontogenetic and phylogenetic diversification that stems from the need to grow and transform the pharyngeal arch skeleton in cartilage rather than bone. Cartilage differs fundamentally from bone in its histology, function, development and growth. Cartilage is also the first skeletal tissue to form embryonically and provides more cellular pathways for shape change than bone. This article combines morphological, histological and experimental perspectives to explore how pharyngeal arch cartilage shape is controlled in amphibian embryogenesis, growth and metamorphosis, and how amphibian skeletal ontogenies are impacted by using cartilage to evolve a complex life cycle and in evolving away from a complex life cycle.

  14. A multilocus timescale for the origin of extant amphibians.

    Science.gov (United States)

    San Mauro, Diego

    2010-08-01

    One of the most hotly debated topics in vertebrate evolution is the origin of extant amphibians (Lissamphibia). The recent contribution of molecular data is shedding new light on this debate, but many important questions still remain unresolved. I have assembled a large and comprehensive multilocus dataset (the largest to date in terms of number and heterogeneity of sequence characters) combining mitogenomic and nuclear information from 23 genes for a sufficiently dense taxon sampling with the key major lineages of extant amphibians. This dataset has been used to infer a robust phylogenetic framework and molecular timescale for the origin of extant amphibians employing the most recent phylogenetic and dating methods, as well as several alternative calibration schemes. The monophyly of each extant amphibian order and the sister group relationship between frogs and salamanders (Batrachia hypothesis) are all strongly supported. Dating analyses (all methods and calibration schemes used) suggest that the origin of extant amphibians (divergence between caecilian and batrachians) occurred in the Late Carboniferous, around 315 Mya, and the divergence between frogs and salamanders occurred in the Early Permian, around 290 Mya. These age estimates are more consistent with the fossil record than previous older estimates, and more in line with the Temnospondyli or the Lepospondyli hypotheses of lissamphibian ancestry (although the polyphyly hypothesis cannot be completely ruled out).

  15. Annual Report: 2014: Partners in Amphibian and Reptile Conservation (PARC)

    Science.gov (United States)

    Weir, Linda A.; Nanjappa, P.; Apodaca, J. J.; Williams, J.

    2015-01-01

    Partners in Amphibian and Reptile Conservation (PARC) was established in 1999 to address the widespread declines, extinctions, and range reductions of amphibians and reptiles, with a focus on conservation of taxa and habitats in North America. Amphibians and reptiles are affected by a broad range of human activities, both as incidental effects of habitat alteration and direct effects from overexploitation; these animals are also burdened by humans attitudes – that amphibians and reptiles are either dangerous or of little environmental or economic value. However, PARC members understand these taxa are important parts of our natural and cultural heritage and they serve important roles in ecosystems throughout the world. With many amphibians and reptiles classified as threatened with extinction, conservation to ensure healthy populations of these animals has never been more important. As you will see herein, PARC’s 15th anniversary has been marked with major accomplishments and an ever-increasing momentum. With your help, PARC can continue to build on its successes and protect these vital species.

  16. progress and prospects for studies on chinese amphibians

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    this work summarizes the history and progress of the studies on chinese amphibians since they first appeared in the chinese literature.a wide range of research has been carried out,including the history of the definition of amphibians,faunal surveys,systematic research,ecological research,biochemical research (isozyme and other proteins or peptides,chromosomes,dna),anatomical research,embryological research,phylogenetic and zoogeographical research,and many others such as ultrastructure of organs,crossbreeding test,regeneration of organs,abnormality survey,acoustics,fossils,sperm ultrastructure and parasites.in addition,the prospects for studies on chinese amphibians in future are proposed in this paper.

  17. Amphibians of the Simbruini Mountains (Latium, Central Italy

    Directory of Open Access Journals (Sweden)

    Pierangelo Crucitti

    2010-07-01

    Full Text Available Little attention has been paid to the herpetological fauna of the Simbruini Mountains Regional Park, Latium (Central Italy. In this study, we surveyed 50 sites in the course of about ten years of field research, especially during the period 2005-2008. Nine amphibian species, four Caudata and five Anura, 60.0% out of the 15 amphibian species so far observed in Latium, were discovered in the protected area: Salamandra salamandra, Salamandrina perspicillata, Lissotriton vulgaris, Triturus carnifex, Bombina pachypus, Bufo balearicus, Bufo bufo, Rana dalmatina, Rana italica. Physiography of sites has been detailed together with potential threatening patterns. For each species the following topics have been discussed; ecology of sites, altitudinal distribution, phenology, sintopy. Salamandra salamandra and Bombina pachypus are at higher risk. The importance of the maintenance of artificial/natural water bodies for the conservation management of amphibian population of this territory is discussed.

  18. Pathophysiology in mountain yellow-legged frogs (Rana muscosa during a chytridiomycosis outbreak.

    Directory of Open Access Journals (Sweden)

    Jamie Voyles

    Full Text Available The disease chytridiomycosis is responsible for declines and extirpations of amphibians worldwide. Chytridiomycosis is caused by a fungal pathogen (Batrachochytrium dendrobatidis that infects amphibian skin. Although we have a basic understanding of the pathophysiology from laboratory experiments, many mechanistic details remain unresolved and it is unknown if disease development is similar in wild amphibian populations. To gain a better understanding of chytridiomycosis pathophysiology in wild amphibian populations, we collected blood biochemistry measurements during an outbreak in mountain yellow-legged frogs (Rana muscosa in the Sierra Nevada Mountains of California. We found that pathogen load is associated with disruptions in fluid and electrolyte balance, yet is not associated with fluctuations acid-base balance. These findings enhance our knowledge of the pathophysiology of this disease and indicate that disease development is consistent across multiple species and in both laboratory and natural conditions. We recommend integrating an understanding of chytridiomycosis pathophysiology with mitigation practices to improve amphibian conservation.

  19. Muscle regeneration in amphibians and mammals: passing the torch.

    Science.gov (United States)

    Carlson, Bruce M

    2003-02-01

    Skeletal muscle in both amphibians and mammals possesses a high regenerative capacity. In amphibians, a muscle can regenerate in two distinct ways: as a tissue component of an entire regenerating limb (epimorphic regeneration) or as an isolated entity (tissue regeneration). In the absence of epimorphic regenerative ability, mammals can regenerate muscles only by the tissue mode. This review focuses principally on the regeneration of entire muscles and covers what is known and what remains to be elucidated about fundamental mechanisms underlying muscle regeneration at this level.

  20. Amphibian decline: An integrated analysis of multiple stressor effects

    Science.gov (United States)

    Linder, G.; Krest, S.K.; Sparling, D. W.; Linder, G.; Krest, S.K.; Sparling, D.W.

    2003-01-01

    Capturing the attention and imagination of the public and the scientific community alike, the mysterious decline in amphibian populations drew scientists and resource managers from ecotoxicology and chemistry, ecology and field biology, conservation biology, and natural resource policy to a SETAC–Johnson Foundation workshop. Facilitating environmental stewardship, increasing capacity of the sciences to explain complex stressors, and educating the public on relationships among communities of all types motivated these experts to address amphibian decline and the role of various stressors in these losses.

  1. The Amphibian Research and Monitoring Initiative in the Pacific Northwest

    Science.gov (United States)

    Adams, Michael J.

    2003-01-01

    Amphibians have been disappearing from many locations around the world with reports of declines increasing in recent decades. Some of the most dramatic declines have occurred in areas that were thought to be protected from human disturbance. For example, the once-common boreal toad has virtually disappeared from Rocky Mountain National Park in Colorado. Although there has been debate on whether these declines represent a short-term fluctuation in populations or major sustained losses, there is now general scientific consensus that something really is amiss with amphibian populations.

  2. Pathogen intelligence

    Science.gov (United States)

    Steinert, Michael

    2014-01-01

    Different species inhabit different sensory worlds and thus have evolved diverse means of processing information, learning and memory. In the escalated arms race with host defense, each pathogenic bacterium not only has evolved its individual cellular sensing and behavior, but also collective sensing, interbacterial communication, distributed information processing, joint decision making, dissociative behavior, and the phenotypic and genotypic heterogeneity necessary for epidemiologic success. Moreover, pathogenic populations take advantage of dormancy strategies and rapid evolutionary speed, which allow them to save co-generated intelligent traits in a collective genomic memory. This review discusses how these mechanisms add further levels of complexity to bacterial pathogenicity and transmission, and how mining for these mechanisms could help to develop new anti-infective strategies. PMID:24551600

  3. Factors contributing to amphibian road mortality in a wetland

    Institute of Scientific and Technical Information of China (English)

    Haijun GU; Qiang DAI; Qian WANG; Yuezhao WANG

    2011-01-01

    To understand road characteristics and landscape features associated with high road mortality of amphibians in Zoige Wetland National Nature Reserve,we surveyed road mortality along four major roads after rainfall in May and September 2007.Road mortality of three species,Rana kukunoris,Nanorana pleskei and Bufo minshanicus,was surveyed across 225 transects (115 in May and 110 in September).Transects were 100 m long and repeated every two kilometers along the four major roads.We used model averaging to assess factors that might determine amphibian road mortality.We recorded an average of 24.6 amphibian road mortalities per kilometer in May and 19.2 in September.Among road characteristics,road width was positively associated with road morality for R.kukunori and B.minshanicus.Traffic volume also increased the road mortality of B.minshanicus in September.Of the landscape features measured,area proportions of three types of grassland (wet,mesic and dry) within 1 km of the roads,particularly that of wet grassland,significantly increased road mortality for R.kukunori and total mortality across all three species.To most effectively reduce road mortality of amphibians in the Zoige wetlands,we suggest better road design such as avoiding wet grasslands,minimizing road width,underground passes and traffic control measures.The implementation of public transit in the area would reduce traffic volume,and hence mortality [Current Zoology 57 (6):768-774,2011].

  4. AMPHIBIAN DECLINE, ULTRAVIOLET RADIATION AND LOCAL POPULATION ADAPTATION

    Science.gov (United States)

    Amphibian population declines have been noted on both local and global scales. Causes for these declines are unknown although many hypotheses have been offered. In areas adjacent to human development, loss of habitat is a fairly well accepted cause. However in isolated, seemingl...

  5. Effects of terrestrial buffer zones on amphibians on golf courses.

    Directory of Open Access Journals (Sweden)

    Holly J Puglis

    Full Text Available A major cause of amphibian declines worldwide is habitat destruction or alteration. Public green spaces, such as golf courses and parks, could serve as safe havens to curb the effects of habitat loss if managed in ways to bolster local amphibian communities. We reared larval Blanchard's cricket frogs (Acris blanchardi and green frogs (Rana clamitans in golf course ponds with and without 1 m terrestrial buffer zones, and released marked cricket frog metamorphs at the golf course ponds they were reared in. Larval survival of both species was affected by the presence of a buffer zone, with increased survival for cricket frogs and decreased survival for green frogs when reared in ponds with buffer zones. No marked cricket frog juveniles were recovered at any golf course pond in the following year, suggesting that most animals died or migrated. In a separate study, we released cricket frogs in a terrestrial pen and allowed them to choose between mown and unmown grass. Cricket frogs had a greater probability of using unmown versus mown grass. Our results suggest that incorporating buffer zones around ponds can offer suitable habitat for some amphibian species and can improve the quality of the aquatic environment for some sensitive local amphibians.

  6. ESTIMATION OF UV-B EXPOSURE IN AMPHIBIAN AQUATIC ENVIRONMENTS

    Science.gov (United States)

    Estimation of ultraviolet radiation B (UV-B; 280 to 320 nm wavelenghts) dose is essential for determining whether UV-B contributes to amphibian population declines and malformations. UV-B dose in wetlands is effected by location, time of day and year, atmospheric levels of ozone,...

  7. Measuring the meltdown: drivers of global amphibian extinction and decline.

    Directory of Open Access Journals (Sweden)

    Navjot S Sodhi

    Full Text Available Habitat loss, climate change, over-exploitation, disease and other factors have been hypothesised in the global decline of amphibian biodiversity. However, the relative importance of and synergies among different drivers are still poorly understood. We present the largest global analysis of roughly 45% of known amphibians (2,583 species to quantify the influences of life history, climate, human density and habitat loss on declines and extinction risk. Multi-model Bayesian inference reveals that large amphibian species with small geographic range and pronounced seasonality in temperature and precipitation are most likely to be Red-Listed by IUCN. Elevated habitat loss and human densities are also correlated with high threat risk. Range size, habitat loss and more extreme seasonality in precipitation contributed to decline risk in the 2,454 species that declined between 1980 and 2004, compared to species that were stable (n = 1,545 or had increased (n = 28. These empirical results show that amphibian species with restricted ranges should be urgently targeted for conservation.

  8. Effects of terrestrial buffer zones on amphibians on golf courses.

    Science.gov (United States)

    Puglis, Holly J; Boone, Michelle D

    2012-01-01

    A major cause of amphibian declines worldwide is habitat destruction or alteration. Public green spaces, such as golf courses and parks, could serve as safe havens to curb the effects of habitat loss if managed in ways to bolster local amphibian communities. We reared larval Blanchard's cricket frogs (Acris blanchardi) and green frogs (Rana clamitans) in golf course ponds with and without 1 m terrestrial buffer zones, and released marked cricket frog metamorphs at the golf course ponds they were reared in. Larval survival of both species was affected by the presence of a buffer zone, with increased survival for cricket frogs and decreased survival for green frogs when reared in ponds with buffer zones. No marked cricket frog juveniles were recovered at any golf course pond in the following year, suggesting that most animals died or migrated. In a separate study, we released cricket frogs in a terrestrial pen and allowed them to choose between mown and unmown grass. Cricket frogs had a greater probability of using unmown versus mown grass. Our results suggest that incorporating buffer zones around ponds can offer suitable habitat for some amphibian species and can improve the quality of the aquatic environment for some sensitive local amphibians.

  9. Glyphosate applications on arable fields considerably coincide with migrating amphibians.

    Science.gov (United States)

    Berger, Gert; Graef, Frieder; Pfeffer, Holger

    2013-01-01

    Glyphosate usage is increasing worldwide and the application schemes of this herbicide are currently changing. Amphibians migrating through arable fields may be harmed by Glyphosate applied to field crops. We investigated the population-based temporal coincidence of four amphibian species with Glyphosate from 2006 to 2008. Depending on a) age- and species-specific main migration periods, b) crop species, c) Glyphosate application mode for crops, and d) the presumed DT50 value (12 days or 47 days) of Glyphosate, we calculated up to 100% coincidence with Glyphosate. The amphibians regularly co-occur with pre-sowing/pre-emerging Glyphosate applications to maize in spring and with stubble management prior to crop sowing in late summer and autumn. Siccation treatment in summer coincides only with early pond-leaving juveniles. We suggest in-depth investigations of both acute and long-term effects of Glyphosate applications on amphibian populations not only focussed on exposure during aquatic periods but also terrestrial life stages.

  10. Using Reptile and Amphibian Activities in the Classroom

    Science.gov (United States)

    Tomasek, Terry; Matthews, Catherine E.

    2008-01-01

    Reptiles and amphibians are a diverse and interesting group of organisms. The four activities described in this article take students' curiosity into the realm of scientific understanding. The activities involve the concepts of species identification; animal adaptations, communication, and habitat; and conservation. (Contains 1 table and 2…

  11. Preliminary checklist of amphibians and reptiles from Baramita, Guyana

    Science.gov (United States)

    Reynolds, R.P.; MacCulloch, R.D.

    2012-01-01

    We provide an initial checklist of the herpetofauna of Baramita, a lowland rainforest site in the Northwest Region of Guyana. Twenty-five amphibian and 28 reptile species were collected during two separate dry-season visits. New country records for two species of snakes are documented, contributing to the knowledge on the incompletely known herpetofauna of Guyana.

  12. Emerging contaminants and their potential effects on amphibians and reptiles

    Science.gov (United States)

    Serious threats to the health and sustainability of global amphibian populations have been well documented over the last few decades. Encroachment upon and destruction of primary habitat is the most critical threat, but some species have disappeared while their habitat remains. Additional stressor...

  13. On the worrying fate of Data Deficient amphibians.

    Science.gov (United States)

    Nori, Javier; Loyola, Rafael

    2015-01-01

    The 'Data Deficient' (DD) category of the IUCN Red List assembles species that cannot be placed in another category due to insufficient information. This process generates uncertainty about whether these species are safe or actually in danger. Here, we give a global overview on the current situation of DD amphibian species (almost a quarter of living amphibians) considering land-use change through habitat modification, the degree of protection of each species and the socio-political context of each country harboring DD species. We found that DD amphibians have, on average, 81% of their ranges totally outside protected areas. Worryingly, more than half of DD species have less than 1% of their distribution represented in protected areas. Furthermore, the percentage of overlap between species' range and human-modified landscapes is high, at approximately 58%. Many countries harboring a large number of DD species show a worrying socio-political trend illustrated by substantial, recent incremental increases in the Human Development Index and lower incremental increases in the establishment of protected areas. Most of these are African countries, which are located mainly in the central and southern regions of the continent. Other countries with similar socio-political trends are in southeastern Asia, Central America, and in the northern region of South America. This situation is concerning, but it also creates a huge opportunity for considering DD amphibians in future conservation assessments, planning, and policy at different levels of government administration.

  14. Preliminary amphibian surveys : Baca National Wildlife Refuge : July & August, 2015

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes an initial amphibian survey effort on the Baca National Wildlife Refuge, conducted on 7/17/15, 7/24/15, and 8/28/15. The main emphasis of this...

  15. Toxicity of road salt to Nova Scotia amphibians

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Sara J. [Department of Biology, Saint Mary' s University, 923 Robie Street, Halifax, NS, B3H 3C3 (Canada); Russell, Ronald W. [Department of Biology, Saint Mary' s University, 923 Robie Street, Halifax, NS, B3H 3C3 (Canada)], E-mail: ron.russell@smu.ca

    2009-01-15

    The deposition of chemical pollutants into roadside wetlands from runoff is a current environmental concern. In northern latitudes, a major pollutant in runoff water is salt (NaCl), used as de-icing agents. In this study, 26 roadside ponds were surveyed for amphibian species richness and chloride concentration. Acute toxicity tests (LC{sub 50}) were performed on five locally common amphibian species using a range of environmentally significant NaCl concentrations. Field surveys indicated that spotted salamanders (Ambystoma maculatum) and wood frogs (Rana sylvatica) did not occupy high chloride ponds. American toads (Bufo americanus) showed no pond preference based on chloride concentration. Acute toxicity tests showed spotted salamanders and wood frogs were most sensitive to chloride, and American toads were the least. Spring peepers (Pseudacris crucifer) and green frogs (Rana clamitans) showed intermediate sensitivities. We concluded that chloride concentrations in ponds due to application of de-icing salts, influenced community structure by excluding salt intolerant species. - Salt toxicity is presented as a mechanism affecting the distribution of amphibians and structure of amphibian communities in roadside wetlands.

  16. Can myxosporean parasites compromise fish and amphibian reproduction?

    Science.gov (United States)

    Sitjà-Bobadilla, Ariadna

    2009-08-22

    Research into fish and amphibian reproduction has increased exponentially in recent years owing to the expansion of the aquaculture industry, the need to recover fishery populations, the impact of endocrine disruptors on the aquatic environment and the global decline of amphibian populations. This review focuses on a group of parasites, the Myxozoa, that affect fish and amphibian reproduction. Lists of the myxosporeans that specifically infect gonads are provided. Most of these are parasitic of freshwater hosts, and most amphibian cases are reported from testes. Sex specificity and sex reversal are discussed in relation to gonadal parasitism. The immune response of the fish to the infection is described, and the contribution of the immunoprivilege of gonads to host invasion is emphasized. The pathological effect of these parasites can be significant, especially in aquacultured broodstocks, on some occasions, leading to parasitic castration. Although myxosporean parasites are currently not very frequent in gonads, their impact could increase in the future owing to the transactions in the global market. Their easy release into the aquatic environment with spawning could make their spreading even more feasible. In the absence of commercial drugs or vaccines to treat and prevent these infections, there is an urgent need to develop specific, rapid and reliable diagnostic tools to control and manage animal movements. In addition, much effort is still to be made on deciphering the life cycle of these organisms, their invasion strategies and their immune evasion mechanisms.

  17. Rayleigh instability of the inverted one-cell amphibian embryo

    NARCIS (Netherlands)

    Nouri, Comron; Luppes, Roel; Veldman, Arthur E.P.; Tuszynski, Jack A.; Gordon, Richard

    2008-01-01

    The one-cell amphibian embryo is modeled as a rigid spherical shell containing equal volumes of two immiscible fluids with different densities and viscosities and a surface tension between them. The fluids represent denser yolk in the bottom hemisphere and clearer cytoplasm and the germinal vesicle

  18. Salmonella Infections Caused by Reptiles and Amphibians in Childcare Centers

    Centers for Disease Control (CDC) Podcasts

    2013-02-07

    Dr. Neil Vora, an EIS Officer at CDC, discusses his article about Salmonella infections in childcare centers caused by reptiles and amphibians.  Created: 2/7/2013 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/7/2013.

  19. Spatial Biodiversity Patterns of Madagascar's Amphibians and Reptiles.

    Science.gov (United States)

    Brown, Jason L; Sillero, Neftali; Glaw, Frank; Bora, Parfait; Vieites, David R; Vences, Miguel

    2016-01-01

    Madagascar has become a model region for testing hypotheses of species diversification and biogeography, and many studies have focused on its diverse and highly endemic herpetofauna. Here we combine species distribution models of a near-complete set of species of reptiles and amphibians known from the island with body size data and a tabulation of herpetofaunal communities from field surveys, compiled up to 2008. Though taxonomic revisions and novel distributional records arose since compilation, we are confident that the data are appropriate for inferring and comparing biogeographic patterns among these groups of organisms. We observed species richness of both amphibians and reptiles was highest in the humid rainforest biome of eastern Madagascar, but reptiles also show areas of high richness in the dry and subarid western biomes. In several amphibian subclades, especially within the Mantellidae, species richness peaks in the central eastern geographic regions while in reptiles different subclades differ distinctly in their richness centers. A high proportion of clades and subclades of both amphibians and reptiles have a peak of local endemism in the topographically and bioclimatically diverse northern geographic regions. This northern area is roughly delimited by a diagonal spanning from 15.5°S on the east coast to ca. 15.0°S on the west coast. Amphibian diversity is highest at altitudes between 800-1200 m above sea-level whereas reptiles have their highest richness at low elevations, probably reflecting the comparatively large number of species specialized to the extended low-elevation areas in the dry and subarid biomes. We found that the range sizes of both amphibians and reptiles strongly correlated with body size, and differences between the two groups are explained by the larger body sizes of reptiles. However, snakes have larger range sizes than lizards which cannot be readily explained by their larger body sizes alone. Range filling, i.e., the amount of

  20. Spatial Biodiversity Patterns of Madagascar's Amphibians and Reptiles.

    Directory of Open Access Journals (Sweden)

    Jason L Brown

    Full Text Available Madagascar has become a model region for testing hypotheses of species diversification and biogeography, and many studies have focused on its diverse and highly endemic herpetofauna. Here we combine species distribution models of a near-complete set of species of reptiles and amphibians known from the island with body size data and a tabulation of herpetofaunal communities from field surveys, compiled up to 2008. Though taxonomic revisions and novel distributional records arose since compilation, we are confident that the data are appropriate for inferring and comparing biogeographic patterns among these groups of organisms. We observed species richness of both amphibians and reptiles was highest in the humid rainforest biome of eastern Madagascar, but reptiles also show areas of high richness in the dry and subarid western biomes. In several amphibian subclades, especially within the Mantellidae, species richness peaks in the central eastern geographic regions while in reptiles different subclades differ distinctly in their richness centers. A high proportion of clades and subclades of both amphibians and reptiles have a peak of local endemism in the topographically and bioclimatically diverse northern geographic regions. This northern area is roughly delimited by a diagonal spanning from 15.5°S on the east coast to ca. 15.0°S on the west coast. Amphibian diversity is highest at altitudes between 800-1200 m above sea-level whereas reptiles have their highest richness at low elevations, probably reflecting the comparatively large number of species specialized to the extended low-elevation areas in the dry and subarid biomes. We found that the range sizes of both amphibians and reptiles strongly correlated with body size, and differences between the two groups are explained by the larger body sizes of reptiles. However, snakes have larger range sizes than lizards which cannot be readily explained by their larger body sizes alone. Range filling

  1. Bioaccumulation and maternal transfer of mercury and selenium in amphibians.

    Science.gov (United States)

    Bergeron, Christine M; Bodinof, Catherine M; Unrine, Jason M; Hopkins, William A

    2010-04-01

    Amphibian population declines have been documented worldwide and environmental contaminants are believed to contribute to some declines. Maternal transfer of bioaccumulated contaminants to offspring may be an important and overlooked mechanism of impaired reproductive success that affects amphibian populations. Mercury (Hg) is of particular concern due to its ubiquity in the environment, known toxicity to other wildlife, and complex relationships with other elements, such as selenium (Se). The objectives of the present study were to describe the relationships between total Hg (THg), methlymercury (MMHg), and Se in three amphibian species (Plethodon cinereus, Eurycea bislineata cirrigera, and Bufo americanus) along a Hg-polluted river and floodplain, and to determine if B. americanus maternally transfers Hg and Se to its eggs in a tissue residue-dependent manner. Total Hg and MMHg concentrations in all species spanned two orders of magnitude between the reference and contaminated areas, while Se concentrations were generally low in all species at both sites. Strong positive relationships between THg and MMHg in tissues of all species were observed throughout. Both Hg and Se were maternally transferred from females to eggs in B. americanus, but the percentage of the females' Hg body burden transferred to eggs was low compared with Se. In addition, Hg concentrations appeared to positively influence the amount of Se transferred from female to eggs. The present study is the first to confirm a correlation between Hg concentrations in female carcass and eggs in amphibians and among the first to describe co-transference of Se and Hg in an anamniotic vertebrate. The results suggest future work is needed to determine whether maternal transfer of Hg has transgenerational implications for amphibian progeny.

  2. Projected climate impacts for the amphibians of the western hemisphere

    Science.gov (United States)

    Lawler, Joshua J.; Shafer, Sarah L.; Bancroft, Betsy A.; Blaustein, Andrew R.

    2010-01-01

    Given their physiological requirements, limited dispersal abilities, and hydrologically sensitive habitats, amphibians are likely to be highly sensitive to future climatic changes. We used three approaches to map areas in the western hemisphere where amphibians are particularly likely to be affected by climate change. First, we used bioclimatic models to project potential climate-driven shifts in the distribution of 413 amphibian species based on 20 climate simulations for 2071–2100. We summarized these projections to produce estimates of species turnover. Second, we mapped the distribution of 1099 species with restricted geographic ranges. Finally, using the 20 future climate-change simulations, we mapped areas that were consistently projected to receive less seasonal precipitation in the coming century and thus were likely to have altered microclimates and local hydrologies. Species turnover was projected to be highest in the Andes Mountains and parts of Central America and Mexico, where, on average, turnover rates exceeded 60% under the lower of two emissions scenarios. Many of the restricted-range species not included in our range-shift analyses were concentrated in parts of the Andes and Central America and in Brazil's Atlantic Forest. Much of Central America, southwestern North America, and parts of South America were consistently projected to experience decreased precipitation by the end of the century. Combining the results of the three analyses highlighted several areas in which amphibians are likely to be significantly affected by climate change for multiple reasons. Portions of southern Central America were simultaneously projected to experience high species turnover, have many additional restricted-range species, and were consistently projected to receive less precipitation. Together, our three analyses form one potential assessment of the geographic vulnerability of amphibians to climate change and as such provide broad-scale guidance for directing

  3. Pathogen Sensors

    Directory of Open Access Journals (Sweden)

    Joseph Irudayaraj

    2009-10-01

    Full Text Available The development of sensors for detecting foodborne pathogens has been motivated by the need to produce safe foods and to provide better healthcare. However, in the more recent times, these needs have been expanded to encompass issues relating to biosecurity, detection of plant and soil pathogens, microbial communities, and the environment. The range of technologies that currently flood the sensor market encompass PCR and microarray-based methods, an assortment of optical sensors (including bioluminescence and fluorescence, in addition to biosensor-based approaches that include piezoelectric, potentiometric, amperometric, and conductometric sensors to name a few. More recently, nanosensors have come into limelight, as a more sensitive and portable alternative, with some commercial success. However, key issues affecting the sensor community is the lack of standardization of the testing protocols and portability, among other desirable elements, which include timeliness, cost-effectiveness, user-friendliness, sensitivity and specificity. [...

  4. Review and synthesis of the effects of climate change on amphibians.

    Science.gov (United States)

    Li, Yiming; Cohen, Jeremy M; Rohr, Jason R

    2013-06-01

    Considerable progress has been made in understanding the responses of amphibians to climate change, with successful research carried out on climate change-associated shifts in amphibian phenology, elevational distributions and amphibian-parasite interactions. We review and synthesize the literature on this topic, emphasizing acutely lethal, sublethal, indirect and positive effects of climate change on amphibians, and major research gaps. For instance, evidence is lacking on poleward shifts in amphibian distributions and on changes in body sizes and morphologies of amphibians in response to climate change. We have limited information on amphibian thermal tolerances, thermal preferences, dehydration breaths, opportunity costs of water conserving behaviors and actual temperature and moisture ranges amphibians experience. Even when much of this information is available, there remains little evidence that climate change is acutely lethal to amphibians. This suggests that if climate change is contributing to declines, it might be through effects that are not acutely lethal, indirect, or both, but evidence in support of this suggestion is necessary. In fact, evidence that climate change is directly contributing to amphibian declines is weak, partly because researchers have not often ruled out alternative hypotheses, such as chytrid fungus or climate-fungus interactions. Consequently, we recommend that amphibian-climate research shift from primarily inductive, correlational approach as to studies that evaluate alternative hypotheses for declines. This additional rigor will require interdisciplinary collaborations, estimates of costs and benefits of climate change to amphibian fitness and populations, and the integration of correlative field studies, experiments on 'model' amphibian species, and mathematical and functional, physiological models.

  5. The Current and Historical Distribution of Special Status Amphibians at the Livermore Site and Site 300

    Energy Technology Data Exchange (ETDEWEB)

    Hattem, M V; Paterson, L; Woollett, J

    2008-08-20

    65 surveys were completed in 2002 to assess the current distribution of special status amphibians at the Lawrence Livermore National Laboratory's (LLNL) Livermore Site and Site 300. Combined with historical information from previous years, the information presented herein illustrates the dynamic and probable risk that amphibian populations face at both sites. The Livermore Site is developed and in stark contrast to the mostly undeveloped Site 300. Yet both sites have significant issues threatening the long-term sustainability of their respective amphibian populations. Livermore Site amphibians are presented with a suite of challenges inherent of urban interfaces, most predictably the bullfrog (Rana catesbeiana), while Site 300's erosion issues and periodic feral pig (Sus scrofa) infestations reduce and threaten populations. The long-term sustainability of LLNL's special status amphibians will require active management and resource commitment to maintain and restore amphibian habitat at both sites.

  6. Pharmacology of the GABAB receptor in amphibian retina.

    Science.gov (United States)

    Tian, N; Slaughter, M M

    1994-10-17

    Amacrine and ganglion cells in the amphibian retina contain GABAB, as well as GABAA, receptors. Baclofen, a GABAB agonist, hyperpolarizes the dark membrane potential of these third order neurons and makes their light responses more transient. GABAB receptors in the retina have a similar agonist profile to GABAB receptors described at other sites in the brain. Namely, preferential activation by the R-enantiomer of baclofen, and agonist sensitivity in the order 3-aminopropylphosphinic acid > baclofen > 3-aminopropylphosphonic acid. The GABAB receptor was not activated by 4-aminobutylphosphonic acid. Several antagonists, such as phaclofen, saclofen, and 2-hydroxysaclofen, were ineffective in the amphibian retina. However, CGP35348 blocked the action of applied baclofen and produced effects on the light response that were opposite to those of baclofen. Applied agonists and antagonists support the hypothesis that GABAB receptors serve to regulate the balance of sustained and transient signals to the inner retina.

  7. Reptiles and Amphibians of the Addo Elephant National Park

    Directory of Open Access Journals (Sweden)

    W.R. Branch

    1987-10-01

    Full Text Available The results of a survey of the reptiles and amphibians of the Addo Elephant National Park (AENP are presented. A total of 49 species, comprising 16 amphibians, 14 lizards, 15 snakes and 4 chelonians, occur in the AENP. Observations on the biology and distribution of these species in the AENP are given, and the relative composition and diversity is compared with the herpetofauna of the surrounding eastern Cape and the more distant Kruger National Park. The zoogeographic affinities of the AENP herpetofauna are similar to those of the surrounding eastern Cape (i.e. Cape Temperate 46,9, Temperate- Transitional 16,3, Eastern Tropical Transitional 10,2, Western Tropical Transitional 8,2, Tropical East Coast Littoral 2,0 and Temperate Wideranging 16,3. Resource partitioning among the AENP herpetofauna is discussed and the conservation status of the species summarised. A list of species that may still be collected within the AENP is included.

  8. Congenital malformations of the vertebral column in ancient amphibians.

    Science.gov (United States)

    Witzmann, F; Rothschild, B M; Hampe, O; Sobral, G; Gubin, Y M; Asbach, P

    2014-04-01

    Temnospondyls, the largest group of Palaeozoic and Mesozoic amphibians, primitively possess rhachitomous vertebrae with multipartite centra (consisting of one horse-shoe-shaped inter- and paired pleurocentra). In a group of temnospondyls, the stereospondyls, the intercentra became pronounced and disc-like, whereas the pleurocentra were reduced. We report the presence of congenital vertebral malformations (hemi, wedge and block vertebrae) in Permian and Triassic temnospondyls, showing that defects of formation and segmentation in the tetrapod vertebral column represent a fundamental failure of somitogenesis that can be followed throughout tetrapod evolution. This is irrespective of the type of affected vertebra, that is, rhachitomous or stereospondylous, and all components of the vertebra can be involved (intercentrum, pleurocentrum and neural arch), either together or independently on their own. This is the oldest known occurrence of wedge vertebra and congenital block vertebra described in fossil tetrapods. The frequency of vertebral congenital malformations in amphibians appears unchanged from the Holocene.

  9. Transitions between sex-determining systems in reptiles and amphibians.

    Science.gov (United States)

    Sarre, Stephen D; Ezaz, Tariq; Georges, Arthur

    2011-01-01

    Important technological advances in genomics are driving a new understanding of the evolution of sex determination in vertebrates. In particular, comparative chromosome mapping in reptiles has shown an intriguing distribution of homology in sex chromosomes across reptile groups. When this new understanding is combined with the widespread distribution of genetic and temperature-dependent sex-determination mechanisms among reptiles, it is apparent that transitions between modes have occurred many times, as they have for amphibians (particularly between male and female heterogamety). It is also likely that thermosensitivity in sex determination is a key factor in those transitions in reptiles, and possibly in amphibians too. New models of sex determination involving temperature thresholds are providing the framework for the investigation of transitions and making possible key predictions about the homologies and sex-determination patterns expected among taxa in these groups. Molecular cytogenetics and other genomic approaches are essential to providing the fundamental material necessary to make advances in this field.

  10. Special Issue: Viruses Infecting Fish, Amphibians, and Reptiles

    Directory of Open Access Journals (Sweden)

    V. Gregory Chinchar

    2011-09-01

    Full Text Available Although viruses infecting and affecting humans are the focus of considerable research effort, viruses that target other animal species, including cold-blooded vertebrates, are receiving increased attention. In part this reflects the interests of comparative virologists, but increasingly it is based on the impact that many viruses have on ecologically and commercially important animals. Frogs and other amphibians are sentinels of environmental health and their disappearance following viral or fungal (chytrid infection is a cause for alarm. Likewise, because aquaculture and mariculture are providing an increasingly large percentage of the “seafood” consumed by humans, viral agents that adversely impact the harvest of cultured fish and amphibians are of equal concern. [...

  11. Conservation genetics and genomics of amphibians and reptiles.

    Science.gov (United States)

    Shaffer, H Bradley; Gidiş, Müge; McCartney-Melstad, Evan; Neal, Kevin M; Oyamaguchi, Hilton M; Tellez, Marisa; Toffelmier, Erin M

    2015-01-01

    Amphibians and reptiles as a group are often secretive, reach their greatest diversity often in remote tropical regions, and contain some of the most endangered groups of organisms on earth. Particularly in the past decade, genetics and genomics have been instrumental in the conservation biology of these cryptic vertebrates, enabling work ranging from the identification of populations subject to trade and exploitation, to the identification of cryptic lineages harboring critical genetic variation, to the analysis of genes controlling key life history traits. In this review, we highlight some of the most important ways that genetic analyses have brought new insights to the conservation of amphibians and reptiles. Although genomics has only recently emerged as part of this conservation tool kit, several large-scale data sources, including full genomes, expressed sequence tags, and transcriptomes, are providing new opportunities to identify key genes, quantify landscape effects, and manage captive breeding stocks of at-risk species.

  12. Reptiles and amphibians of the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, J.W.; Patterson, K.K.

    1978-11-01

    Taxonomic, distributional, and ecological information on the reptiles and amphibians of the Savannah River Plant (SRP) is provided. The purpose of such a presentation is to give a professional biologist an initial familiarity with herpetology on the SRP, and to provide sufficient comprehensive information to an ecologist, regardless of his experience in herpetology, to permit him to undertake studies that in some manner incorporate the herpetofauna of the SRP. (ERB)

  13. Global Amphibian Extinction Risk Assessment for the Panzootic Chytrid Fungus

    OpenAIRE

    Fisher, Matthew C.; Michael Veith; Susan Walker; Garner, Trenton W. J.; Jaime Bosch; Sebastian Schmidtlein; Jon Bielby; Jos Kielgast; Dennis Rödder; Stefan Lötters

    2009-01-01

    Species are being lost at increasing rates due to anthropogenic effects, leading to the recognition that we are witnessing the onset of a sixth mass extinction. Emerging infectious disease has been shown to increase species loss and any attempts to reduce extinction rates need to squarely confront this challenge. Here, we develop a procedure for identifying amphibian species that are most at risk from the effects of chytridiomycosis by combining spatial analyses of key host life-history varia...

  14. Landscape-stream interactions and habitat conservation for amphibians.

    Science.gov (United States)

    Ficetola, Gentile Francesco; Marziali, Laura; Rossaro, Bruno; De Bernardi, Fiorenza; Padoa-Schioppa, Emilio

    2011-06-01

    Semiaquatic organisms depend on the features of both water bodies and landscapes; the interplay between terrestrial and aquatic systems might influence the semiaquatic communities, determining the scale at which management would be more effective. However, the consequences of such interplay are not frequently quantified, particularly at the community level. We analyzed the distribution of amphibians to evaluate whether the influence of landscape features on freshwater ecosystems can have indirect consequences at both the species and community level. We surveyed 74 streams in northern Italy to obtain data on breeding amphibians, water, and microhabitat features; we also measured features of surrounding landscapes. We used an information-theoretic approach and structural equation models to compare hypotheses on causal relationships between species distribution and variables measured at multiple levels. We also used a constrained redundancy analyses to evaluate causal relationships between multivariate descriptors of habitat features and community composition. Distribution of Salamandra salamandra was related to landscape, hydrological, and water characteristics: salamanders were more frequent in permanent streams with low phosphate concentration within natural landscapes. Water characteristics were dependent on landscape: streams in natural landscapes had less phosphates. Landscape influenced the salamander both directly and indirectly through its influence on phosphates. Community structure was determined by both landscape and water characteristics. Several species were associated with natural landscapes, and with particular water characteristics. Landscape explained a significant proportion of variability of water characteristics; therefore it probably had indirect effects on community. Upland environments play key roles for amphibians, for example, as the habitat of adults, but upland environments also have indirect effects on the aquatic life stages, mediated

  15. Sperm motility of externally fertilizing fish and amphibians.

    Science.gov (United States)

    Browne, R K; Kaurova, S A; Uteshev, V K; Shishova, N V; McGinnity, D; Figiel, C R; Mansour, N; Agney, D; Wu, M; Gakhova, E N; Dzyuba, B; Cosson, J

    2015-01-01

    We review the phylogeny, sperm competition, morphology, physiology, and fertilization environments of the sperm of externally fertilizing fish and amphibians. Increased sperm competition in both fish and anurans generally increases sperm numbers, sperm length, and energy reserves. The difference between the internal osmolarity and iconicity of sperm cells and those of the aquatic medium control the activation, longevity, and velocity of sperm motility. Hypo-osmolarity of the aquatic medium activates the motility of freshwater fish and amphibian sperm and hyperosmolarity activates the motility of marine fish sperm. The average longevity of the motility of marine fish sperm (~550 seconds) was significantly (P fish sperm (~150 seconds), with the longevities of both marine and freshwater fish being significantly (P fish (140 μm/s) or freshwater fish (135 μm/s) sperm. The longevity of the sperm of giant salamanders (Cryptobranchoidea) of approximately 600 seconds was greater than that of freshwater fish sperm but much lower than anuran sperm. Our research and information from the literature showed that higher osmolarities promote greater longevity in anuran sperm, and some freshwater fish sperm, and that anuran and cryptobranchid sperm maintained membrane integrity long after the cessation of motility, demonstrating a preferential sharing of energy reserves toward the maintenance of membrane integrity. The maintenance of the membrane integrity of anuran sperm in fresh water for up to 6 hours showed an extremely high osmotic tolerance relative to fish sperm. The very high longevity and osmotic tolerance of anuran sperm and high longevity of cryptobranchid sperm, relative to those of freshwater fish, may reflect the complex fertilization history of amphibian sperm in general and anurans reversion from internal to external fertilization. Our findings provide a greater understanding of the reproductive biology of externally fertilizing fish and amphibians, and a

  16. Pentastomiasis and other parasitic zoonoses from reptiles and amphibians.

    Science.gov (United States)

    Pantchev, Nikola; Tappe, Dennis

    2011-01-01

    Reptiles are growing in popularity as pets.The colonization of reptiles and amphibians by parasites and the resulting disease conditions are the most common problems seen in captive animals.This review focuses on pentastomiasis and sparganosis, important parasitic zoonoses of reptiles and amphibians, respectively, and free living-amoebae. Humans are suitable accidental hosts for some pentastomid species (particularly Armillifer and Porocephalus). In geographical areas with special ethnics, such as in West and Central Africa, and East Asia, 8-45% of the human population can be affected. Usually the larvae are coincidentally found during abdominal surgeries. However, fatalities have been described. Extreme caution is necessary when handling infected reptiles. Ocular or cerebral sparganosis is not uncommonly found in humans in East Asia. This disease is caused by spargana, tapeworm larvae (plerocercoids) of Spirometra sp. The infection occurs when uncooked meat from reptiles or amphibians is applied to wounds or eyes and the parasites migrate directly to human tissue, or by consumption of contaminated food or water. As a consequence of the reptile's predatory behaviour, the full spectrum of endo- and ectoparasites from potential prey animals can be found as transiting parasites in the intestinal tract, e. g. Hymenolepis nana, Cryptosporidium (C.) muris, C parvum or Capillaria hepatica. Occasionally, free-living amoebae are also found in reptile faeces (Acanthamoeba, Naegleria, Hartmanella, Vahlkampfia or Echinamoeba sp.).

  17. Evolution of posterior lateral line development in fish and amphibians.

    Science.gov (United States)

    Pichon, Fabien; Ghysen, Alain

    2004-01-01

    The lateral line is a sensory system present in fish and amphibians. It is composed of discrete sense organs, the neuromasts, arranged on the head and body in species-specific patterns. The neuromasts are deposited by migrating primordia that originate from pre- and postotic placodes and follow defined pathways on the head and body. Here we examine the formation of the posterior lateral line (PLL), which extends rostrocaudally on the trunk and tail. In amphibians, the PLL neuromasts are deposited as a single wave from the head to the tip of the tail. In the zebrafish, however, the first wave of neuromast deposition forms but a rudimentary PLL, and several additional waves are needed to form the adult pattern. We show that the amphibian mode is also present in the sturgeon and therefore probably represents the primitive mode, whereas the zebrafish mode is highly conserved in several teleost species. A third mode is found in a subgroup of teleosts, the protacanthopterygians, and may represent a synapomorphy of this group. Altogether, the mode of formation of the embryonic PLL appears to have undergone remarkably few changes during the long history of anamniote evolution, even though large differences can be observed in the lateral line morphology of adult fishes.

  18. Independent evolution of the sexes promotes amphibian diversification.

    Science.gov (United States)

    De Lisle, Stephen P; Rowe, Locke

    2015-03-22

    Classic ecological theory predicts that the evolution of sexual dimorphism constrains diversification by limiting morphospace available for speciation. Alternatively, sexual selection may lead to the evolution of reproductive isolation and increased diversification. We test contrasting predictions of these hypotheses by examining the relationship between sexual dimorphism and diversification in amphibians. Our analysis shows that the evolution of sexual size dimorphism (SSD) is associated with increased diversification and speciation, contrary to the ecological theory. Further, this result is unlikely to be explained by traditional sexual selection models because variation in amphibian SSD is unlikely to be driven entirely by sexual selection. We suggest that relaxing a central assumption of classic ecological models-that the sexes share a common adaptive landscape-leads to the alternative hypothesis that independent evolution of the sexes may promote diversification. Once the constraints of sexual conflict are relaxed, the sexes can explore morphospace that would otherwise be inaccessible. Consistent with this novel hypothesis, the evolution of SSD in amphibians is associated with reduced current extinction threat status, and an historical reduction in extinction rate. Our work reconciles conflicting predictions from ecological and evolutionary theory and illustrates that the ability of the sexes to evolve independently is associated with a spectacular vertebrate radiation.

  19. Optimizing protection efforts for amphibian conservation in Mediterranean landscapes

    Science.gov (United States)

    García-Muñoz, Enrique; Ceacero, Francisco; Carretero, Miguel A.; Pedrajas-Pulido, Luis; Parra, Gema; Guerrero, Francisco

    2013-05-01

    Amphibians epitomize the modern biodiversity crisis, and attract great attention from the scientific community since a complex puzzle of factors has influence on their disappearance. However, these factors are multiple and spatially variable, and declining in each locality is due to a particular combination of causes. This study shows a suitable statistical procedure to determine threats to amphibian species in medium size administrative areas. For our study case, ten biological and ecological variables feasible to affect the survival of 15 amphibian species were categorized and reduced through Principal Component Analysis. The principal components extracted were related to ecological plasticity, reproductive potential, and specificity of breeding habitats. Finally, the factor scores of species were joined in a presence-absence matrix that gives us information to identify where and why conservation management are requires. In summary, this methodology provides the necessary information to maximize benefits of conservation measures in small areas by identifying which ecological factors need management efforts and where should we focus them on.

  20. Cardiac performance correlates of relative heart ventricle mass in amphibians.

    Science.gov (United States)

    Kluthe, Gregory J; Hillman, Stanley S

    2013-08-01

    This study used an in situ heart preparation to analyze the power output and stroke work of spontaneously beating hearts of four anurans (Rhinella marina, Lithobates catesbeianus, Xenopus laevis, Pyxicephalus edulis) and three urodeles (Necturus maculosus, Ambystoma tigrinum, Amphiuma tridactylum) that span a representative range of relative ventricle mass (RVM) found in amphibians. Previous research has documented that RVM correlates with dehydration tolerance and maximal aerobic capacity in amphibians. The power output (mW g(-1) ventricle mass) and stroke work (mJ g(-1) ventricle muscle mass) were independent of RVM and were indistinguishable from previously published results for fish and reptiles. RVM was significantly correlated with maximum power output (P max, mW kg(-1) body mass), stroke volume, cardiac output, afterload pressure (P O) at P max, and preload pressure (P I) at P max. P I at P max and P O at P max also correlated very closely with each other. The increases in both P I and P O at maximal power outputs in large hearts suggest that concomitant increases in blood volume and/or increased modulation of vascular compliance either anatomically or via sympathetic tone on the venous vasculature would be necessary to achieve P max in vivo. Hypotheses for variation in RVM and its concomitant increased P max in amphibians are developed.

  1. Nomenclatural notes on living and fossil amphibians

    Directory of Open Access Journals (Sweden)

    Martín, C.

    2012-06-01

    Full Text Available A review of extinct and living amphibians known from fossils (Allocaudata, Anura and Caudata has revealed several cases that require nomenclatural changes in order to stabilize the taxonomy of the group. Nomenclatural changes include homonym replacements, corrections of spelling variants and authorships, name availabilities, and in particular, the proposal of new combinations. These changes will allow the incorporation of some palaeontological taxa to the current evolutionary models of relationship of modern forms based on molecular phylogenies. Rana cadurcorum for Rana plicata Filhol, 1877, Rana auscitana for Rana pygmaea Lartet, 1851, and Rana sendoa for Rana robusta Brunner, 1956. Anchylorana Taylor, 1942 is considered a new synonym of Lithobates Fitzinger, 1843. New combinations proposed are: Anaxyrus defensor for Bufo defensor Meylan, 2005; Anaxyrus hibbardi for Bufo hibbardi Taylor, 1937; Anaxyrus pliocompactilis for Bufo pliocompactilis Wilson, 1968; Anaxyrus repentinus for Bufo repentinus Tihen, 1962; Anaxyrus rexroadensis for Bufo rexroadensis Tihen, 1962; Anaxyrus spongifrons for Bufo spongifrons Tihen, 1962; Anaxyrus suspectus for Bufo suspectus Tihen, 1962; Anaxyrus tiheni for Bufo tiheni Auffenberg, 1957; Anaxyrus valentinensis for Bufo valentinensis Estes et Tihen, 1964; Ichthyosaura wintershofi for Triturus wintershofi Lunau, 1950; Incilius praevius for Bufo praevius Tihen, 1951; Lithobates bucella for Rana bucella Holman, 1965; Lithobates dubitus for Anchylorana dubita Taylor, 1942; Lithobates fayeae for Rana fayeae Taylor, 1942; Lithobates miocenicus for Rana miocenica Holman, 1965; Lithobates moorei for Anchylorana moorei Taylor, 1942; Lithobates parvissimus for Rana parvissima

  2. Amphibian and reptile declines over 35 years at La Selva, Costa Rica.

    Science.gov (United States)

    Whitfield, Steven M; Bell, Kristen E; Philippi, Thomas; Sasa, Mahmood; Bolaños, Federico; Chaves, Gerardo; Savage, Jay M; Donnelly, Maureen A

    2007-05-15

    Amphibians stand at the forefront of a global biodiversity crisis. More than one-third of amphibian species are globally threatened, and over 120 species have likely suffered global extinction since 1980. Most alarmingly, many rapid declines and extinctions are occurring in pristine sites lacking obvious adverse effects of human activities. The causes of these "enigmatic" declines remain highly contested. Still, lack of long-term data on amphibian populations severely limits our understanding of the distribution of amphibian declines, and therefore the ultimate causes of these declines. Here, we identify a systematic community-wide decline in populations of terrestrial amphibians at La Selva Biological Station, a protected old-growth lowland rainforest in lower Central America. We use data collected over 35 years to show that population density of all species of terrestrial amphibians has declined by approximately 75% since 1970, and we show identical trends for all species of common reptiles. The trends we identify are neither consistent with recent emergence of chytridiomycosis nor the climate-linked epidemic hypothesis, two leading putative causes of enigmatic amphibian declines. Instead, our data suggest that declines are due to climate-driven reductions in the quantity of standing leaf litter, a critical microhabitat for amphibians and reptiles in this assemblage. Our results raise further concerns about the global persistence of amphibian populations by identifying widespread declines in species and habitats that are not currently recognized as susceptible to such risks.

  3. Amphibians and disease: Implications for conservation in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Corn, P.S.

    2007-01-01

    The decline of amphibian populations is a world-wide phenomenon that has received increasing attention since about 1990. In 2004, the World Conservation Union’s global amphibian assessment concluded that 48% of the world’s 5,743 described amphibian species were in decline, with 32% considered threatened (Stuart et al. 2004). Amphibian declines are a significant issue in the western United States, where all native species of frogs in the genus Rana and many toads in the genus Bufo are at risk, particularly those that inhabit mountainous areas (Corn 2003a,b; Bradford 2005).

  4. Restored agricultural wetlands in Central Iowa: habitat quality and amphibian response

    Science.gov (United States)

    Pierce, Clay; Rebecca A. Reeves,; Smalling, Kelly; Klaver, Robert W.; Vandever, Mark; Battaglin, William A.; Muths, Erin L.

    2016-01-01

    Amphibians are declining throughout the United States and worldwide due, partly, to habitat loss. Conservation practices on the landscape restore wetlands to denitrify tile drainage effluent and restore ecosystem services. Understanding how water quality, hydroperiod, predation, and disease affect amphibians in restored wetlands is central to maintaining healthy amphibian populations in the region. We examined the quality of amphibian habitat in restored wetlands relative to reference wetlands by comparing species richness, developmental stress, and adult leopard frog (Lithobates pipiens) survival probabilities to a suite of environmental metrics. Although measured habitat variables differed between restored and reference wetlands, differences appeared to have sub-lethal rather than lethal effects on resident amphibian populations. There were few differences in amphibian species richness and no difference in estimated survival probabilities between wetland types. Restored wetlands had more nitrate and alkaline pH, longer hydroperiods, and were deeper, whereas reference wetlands had more amphibian chytrid fungus zoospores in water samples and resident amphibians exhibited increased developmental stress. Restored and reference wetlands are both important components of the landscape in central Iowa and maintaining a complex of fish-free wetlands with a variety of hydroperiods will likely contribute to the persistence of amphibians in this landscape.

  5. Endocannabinoids affect the reproductive functions in teleosts and amphibians.

    Science.gov (United States)

    Cottone, E; Guastalla, A; Mackie, K; Franzoni, M F

    2008-04-16

    Following the discovery in the brain of the bonyfish Fugu rubripes of two genes encoding for type 1 cannabinoid receptors (CB1A and CB1B), investigations on the phylogeny of these receptors have indicated that the cannabinergic system is highly conserved. Among the multiple functions modulated by cannabinoids/endocannabinoids through the CB1 receptors one of the more investigated is the mammalian reproduction. Therefore, since studies performed in animal models other than mammals might provide further insight into the biology of these signalling molecules, the major aim of the present paper was to review the comparative data pointing toward the endocannabinoid involvement in the reproductive control of non-mammalian vertebrates, namely bonyfish and amphibians. The expression and distribution of CB1 receptors were investigated in the CNS and gonads of two teleosts, Pelvicachromis pulcher and Carassius auratus as well as in the anuran amphibians Xenopus laevis and Rana esculenta. In general the large diffusion of neurons targeted by cannabinoids in both fish and amphibian forebrain indicate endocannabinoids as pivotal local messengers in several neural circuits involved in either sensory integrative activities, like the olfactory processes (in amphibians) and food response (in bonyfish), or neuroendocrine machinery (in both). By using immunohistochemistry for CB1 and GnRH-I, the codistribution of the two signalling molecules was found in the fish basal telencephalon and preoptic area, which are key centers for gonadotropic regulation in all vertebrates. A similar topographical codistribution was observed also in the septum of the telencephalon in Rana esculenta and Xenopus laevis. Interestingly, the double standard immunofluorescence on the same brain section, aided with a laser confocal microscope, showed that in anurans a subset of GnRH-I neurons exhibited also the CB1 immunostaining. The fact that CB1-LI-IR was found indeed in the FSH gonadotrophs of the Xenopus

  6. Acute oral toxicity of chemicals in terrestrial life stages of amphibians: Comparisons to birds and mammals.

    Science.gov (United States)

    Crane, Mark; Finnegan, Meaghean; Weltje, Lennart; Kosmala-Grzechnik, Sylwia; Gross, Melanie; Wheeler, James R

    2016-10-01

    Amphibians are currently the most threatened and rapidly declining group of vertebrates and this has raised concerns about their potential sensitivity and exposure to plant protection products and other chemicals. Current environmental risk assessment procedures rely on surrogate species (e.g. fish and birds) to cover the risk to aquatic and terrestrial life stages of amphibians, respectively. Whilst a recent meta-analysis has shown that in most cases amphibian aquatic life stages are less sensitive to chemicals than fish, little research has been conducted on the comparative sensitivity of terrestrial amphibian life stages. Therefore, in this paper we address the questions "What is the relative sensitivity of terrestrial amphibian life stages to acute chemical oral exposure when compared with mammals and birds?" and "Are there correlations between oral toxicity data for amphibians and data for mammals or birds?" Identifying a relationship between these data may help to avoid additional vertebrate testing. Acute oral amphibian toxicity data collected from the scientific literature and ecotoxicological databases were compared with toxicity data for mammals and birds. Toxicity data for terrestrial amphibian life stages are generally sparse, as noted in previous reviews. Single-dose oral toxicity data for terrestrial amphibian life stages were available for 26 chemicals and these were positively correlated with LD50 values for mammals, while no correlation was found for birds. Further, the data suggest that oral toxicity to terrestrial amphibian life stages is similar to or lower than that for mammals and birds, with a few exceptions. Thus, mammals or birds are considered adequate toxicity surrogates for use in the assessment of the oral exposure route in amphibians. However, there is a need for further data on a wider range of chemicals to explore the wider applicability of the current analyses and recommendations.

  7. Comparative acute and chronic sensitivity of fish and amphibians: a critical review of data.

    Science.gov (United States)

    Weltje, Lennart; Simpson, Peter; Gross, Melanie; Crane, Mark; Wheeler, James R

    2013-04-01

    The relative sensitivity of amphibians to chemicals in the environment, including plant protection product active substances, is the subject of ongoing scientific debate. The objective of this study was to compare systematically the relative sensitivity of amphibians and fish to chemicals. Acute and chronic toxicity data were obtained from the U.S. Environmental Protection Agency (U.S. EPA) ECOTOX database and were supplemented with data from the scientific and regulatory literature. The overall outcome is that fish and amphibian toxicity data are highly correlated and that fish are more sensitive (both acute and chronic) than amphibians. In terms of acute sensitivity, amphibians were between 10- and 100-fold more sensitive than fish for only four of 55 chemicals and more than 100-fold more sensitive for only two chemicals. However, a detailed inspection of these cases showed a similar acute sensitivity of fish and amphibians. Chronic toxicity data for fish were available for 52 chemicals. Amphibians were between 10- and 100-fold more sensitive than fish for only two substances (carbaryl and dexamethasone) and greater than 100-fold more sensitive for only a single chemical (sodium perchlorate). The comparison for carbaryl was subsequently determined to be unreliable and that for sodium perchlorate is a potential artifact of the exposure medium. Only a substance such as dexamethasone, which interferes with a specific aspect of amphibian metamorphosis, might not be detected using fish tests. However, several other compounds known to influence amphibian metamorphosis were included in the analysis, and these did not affect amphibians disproportionately. These analyses suggest that additional amphibian testing is not necessary during chemical risk assessment.

  8. North Cascades National Park Service Complex Natural Resource Preservation Program Amphibian Inventory Big Beaver Watershed 1996 - Progress Report

    Data.gov (United States)

    Oak Ridge National Laboratory — The 1996 amphibian inventory in North Cascades National Park Service Complex Big Beaver watershed is part of a four year program to inventory amphibians in Pacific...

  9. Morbidity and mortality of invertebrates, amphibians, reptiles, and mammals at a major exotic companion animal wholesaler.

    Science.gov (United States)

    Ashley, Shawn; Brown, Susan; Ledford, Joel; Martin, Janet; Nash, Ann-Elizabeth; Terry, Amanda; Tristan, Tim; Warwick, Clifford

    2014-01-01

    The authors formally investigated a major international wildlife wholesaler and subsequently confiscated more than 26,400 nonhuman animals of 171 species and types. Approximately 80% of the nonhuman animals were identified as grossly sick, injured, or dead, with the remaining in suspected suboptimal condition. Almost 3,500 deceased or moribund animals (12% of stock), mostly reptiles, were being discarded on a weekly basis. Mortality during the 6-week "stock turnover" period was determined to be 72%. During a 10-day period after confiscation, mortality rates (including euthanasia for humane reasons) for the various taxa were 18% for invertebrates, 44.5% for amphibians, 41.6% for reptiles, and 5.5% for mammals. Causes of morbidity and mortality included cannibalism, crushing, dehydration, emaciation, hypothermic stress, infection, parasite infestation, starvation, overcrowding, stress/injuries, euthanasia on compassionate grounds, and undetermined causes. Contributing factors for disease and injury included poor hygiene; inadequate, unreliable, or inappropriate provision of food, water, heat, and humidity; presumed high levels of stress due to inappropriate housing leading to intraspecific aggression; absent or minimal environmental enrichment; and crowding. Risks for introduction of invasive species through escapes and/or spread of pathogens to naive populations also were identified.

  10. RENO, NV, JANUARY 15, 2004: FACTORS IMPLICATED IN AMPHIBIAN POPULATION DECLINES IN THE UNITED STATES

    Science.gov (United States)

    Factors known or suspected to be adversely affecting native amphibian populations in the US were identified using information from 267 species accounts written in a standardized format by multiple authors in the forthcoming book, 'Status and Conservation of U.S. Amphibians'. Spec...

  11. Ultraviolet radiation and Vitamin D3 in amphibian health, behaviour, diet and conservation.

    Science.gov (United States)

    Antwis, R E; Browne, R K

    2009-10-01

    Amphibians are currently suffering a period of mass extinction with approximately 20% of species under severe threat and more than 120 species already extinct. In light of this crisis there is an urgency to establish viable ex situ populations and also find the causes of in situ declines. The role of ultraviolet radiation and Vitamin D(3) in amphibian health directly influences both ex situ and in situ populations. Vitamin D(3) can be photosynthesised endogenously via UV-B radiation (UV-B), or acquired through the diet, and then metabolised to calcitriol the biologically active hormonal form. Although, there is a lack of literature concerning Vitamin D(3) requirements and calcitriol synthesis in amphibians, amphibians are likely to have similar Vitamin D(3) requirements and metabolic processes as other vertebrates due to the phylogenetically conservative nature of calcitriol biosynthesis. Deficiencies in calcitriol in amphibians result in nutritional metabolic bone disease (NMBD) and could compromise reproduction and immunity. However, excess biologically active UV radiation has also proven detrimental across all three amphibian life stages and therefore could impact both in situ and ex situ populations. Here we review the role and necessity of UV-B and calcitriol in amphibians and the potential for negative impacts due to excessive exposure to UV radiation. We also identify priorities for research that could provide critical information for maintaining healthy in ex situ and in situ populations of amphibians.

  12. Amphibian and reptile records from around the Betsiboka Delta area in North-Western Madagascar

    NARCIS (Netherlands)

    Rakotoarison, Andolalao; Erens, Jesse; Ratsoavina, Fanomezana M.; Vences, Miguel

    2015-01-01

    This study summarises amphibian and reptile records from ad hoc surveys in a series of localities in the North-West of Madagascar, largely centred on the delta of the Betsiboka River. Eleven amphibian and approximately 32 reptile species were found, with taxonomic uncertainties remaining for some

  13. What's Slithering around on Your School Grounds? Transforming Student Awareness of Reptile & Amphibian Diversity

    Science.gov (United States)

    Tomasek, Terry M.; Matthews, Catherine E.; Hall, Jeff

    2005-01-01

    The protocols used in a research project on amphibian and reptile diversity at Cool Springs Environmental Education Center near New Bern, North Carolina is described. An increasing or stable number of amphibians and reptiles would indicate that the forest has a balance of invertebrates, leaf litter, moisture, pH, debris, burrows and habitat…

  14. Phase-II conjugation ability for PAH metabolism in amphibians: characteristics and inter-species differences.

    Science.gov (United States)

    Ueda, Haruki; Ikenaka, Yoshinori; Nakayama, Shouta M M; Tanaka-Ueno, Tomoko; Ishizuka, Mayumi

    2011-10-01

    The present study examines amphibian metabolic activity - particularly conjugation - by analysis of pyrene (a four ring, polycyclic aromatic hydrocarbon) metabolites using high-performance liquid chromatography (HPLC) with fluorescence detector (FD), a mass spectrometry detector (MS) system and kinetic analysis of conjugation enzymes. Six amphibian species were exposed to pyrene (dissolved in water): African claw frog (Xenopus laevis); Tago's brown frog (Rana tagoi); Montane brown frog (Rana ornativentris); Wrinkled frog (Rana rugosa); Japanese newt (Cynops pyrrhogaster); and Clouded salamander (Hynobius nebulosus); plus one fish species, medaka (Oryzias latipes); and a fresh water snail (Clithon retropictus), and the resultant metabolites were collected. Identification of pyrene metabolites by HPLC and ion-trap MS system indicated that medaka mainly excreted pyrene-1-glucuronide (PYOG), while pyrene-1-sulfate (PYOS) was the main metabolite in all amphibian species. Pyrene metabolites in amphibians were different from those in invertebrate fresh water snails. Inter-species differences were also observed in pyrene metabolism among amphibians. Metabolite analysis showed that frogs relied more strongly on sulfate conjugation than did Japanese newts and clouded salamanders. Furthermore, urodelan amphibians, newts and salamanders, excreted glucose conjugates of pyrene that were not detected in the anuran amphibians. Kinetic analysis of conjugation by hepatic microsomes and cytosols indicated that differences in excreted metabolites reflected differences in enzymatic activities. Furthermore, pyrenediol (PYDOH) glucoside sulfate was detected in the Japanese newt sample. This novel metabolite has not been reported previously to this report, in which we have identified unique characteristics of amphibians in phase II pyrene metabolism.

  15. 14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull type rotorcraft: Water-based and amphibian. 29.519 Section 29.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 29.519 Hull type rotorcraft: Water-based and amphibian. (a) General. For hull type rotorcraft,...

  16. A meta-analysis of the effects of pesticides and fertilizers on survival and growth of amphibians.

    Science.gov (United States)

    Baker, Nick J; Bancroft, Betsy A; Garcia, Tiffany S

    2013-04-01

    The input of agrochemicals has contributed to alteration of community composition in managed and associated natural systems, including amphibian biodiversity. Pesticides and fertilizers negatively affect many amphibian species and can cause mortality and sublethal effects, such as reduced growth and increased susceptibility to disease. However, the effect of pesticides and fertilizers varies among amphibian species. We used meta-analytic techniques to quantify the lethal and sublethal effects of pesticides and fertilizers on amphibians in an effort to review the published work to date and produce generalized conclusions. We found that pesticides and fertilizers had a negative effect on survival of -0.9027 and growth of -0.0737 across all reported amphibian species. We also observed differences between chemical classes in their impact on amphibians: inorganic fertilizers, organophosphates, chloropyridinyl, phosphonoglycines, carbamates, and triazines negatively affected amphibian survival, while organophosphates and phosphonoglycines negatively affected amphibian growth. Our results suggest that pesticides and fertilizers are an important stressor for amphibians in agriculturally dominated systems. Furthermore, certain chemical classes are more likely to harm amphibians. Best management practices in agroecosystems should incorporate amphibian species-specific response to agrochemicals as well as life stage dependent susceptibility to best conserve amphibian biodiversity in these landscapes.

  17. Pesticides in amphibian habitats of Central and Northern California, USA

    Science.gov (United States)

    Fellers, Gary M.; Sparling, W; McConnell, Laura; Kleeman, Patrick M.; Drakeford, Leticia

    2013-01-01

    Previous studies have indicated that toxicity from pesticide exposure may be contributing to amphibian declines in California and that atmospheric deposition could be a primary pathway for pesticides to enter amphibian habitats. We report on a survey of California wetlands sampled along transects associated with Lassen Volcanic National Park, Lake Tahoe, Yosemite National Park, and Sequoia National Park. Each transect ran from the Pacific coast to the Cascades or Sierra Nevada mountains. Pacific chorus frogs (Pseudacris regilla), water, and sediment were collected from wetlands in 2001 and 2002. Twenty-three pesticides were found in frog, water, or sediment samples. Six contaminants including trifluralin, α-endosulfan, chlordanes, and trans-nonachlor were found in adult P. regilla. Seventeen contaminants were found in sediments, including endosulfan sulfate, chlordanes, 1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethenyl]benzene (4,4′-DDE), and chlorpyrifos. The mean number of chemicals detected per pond in sediments was 2.4 (2.5, standard deviation). In water, 17 chemicals were detected, with β-endosulfan being present in almost all samples. Trifluralin, chlordanes, and chlorpyrifos were the next most common. The mean number of chemicals in water per pond was 7.8 (2.9). With the possible exception of chlorpyrifos oxon in sediments and total endosulfans, none of the contaminants exceeded known lethal or sublethal concentrations in P. regilla tissue. Endosulfans, chlorpyrifos, and trifluralin were associated with historic and present day population status of amphibians. Cholinesterase, an essential neurological enzyme that can be depressed by certain pesticides, was reduced in tadpoles from areas with the greatest population declines.

  18. Relationship Between Landscape Character, UV Exposure, and Amphibian Decline

    Science.gov (United States)

    O'Reilly, C. M.; Brooks, P. D.; Corn, P. S.; Muths, E.; Campbell, D. H.; Diamond, S.; Tonnessen, K.

    2001-12-01

    Widespread reports of amphibian declines have been considered a warning of large-scale environmental degradation, yet the reasons for these declines remain unclear. This study suggests that exposure to ultraviolet radiation may act as an environmental stressor that affects population breeding success or susceptibility to disease. Ultraviolet radiation is attenuated by dissolved and particulate compounds in water, which may be of either terrestrial or aquatic origin. UV attenuation by dissolved organic carbon (DOC) is primarily due to compounds in the fulvic acid fraction, which originate in soil environments. These terrestrially-derived fulvic acids are transported to during hydrologic flushing events such as snowmelt and episodic precipitation and play an important role in controlling UV exposure in surface waters. As part of a previously published project, amphibian surveys were conducted at seventeen sites in Rocky Mountain National Park both during, and subsequent to, a three-year drought (1988 - 1990). During this period, ten sites lost one amphibian species, while only one site gained a previously unreported species. One possible explanation for these localized species losses is increased exposure to UV radiation, mediated by reduced terrestrial DOC inputs during dry periods. Several subsequent years of water chemistry data showed that the sites with documented species losses were characterized by a range of DOC concentrations, but tended to have a greater proportion of terrestrial DOC than sites that did not undergo species loss. This suggests that terrestrial inputs exert a strong control on DOC concentrations that may influence species success. We used physical environmental factors to develop a classification scheme for these sites. There are many physical factors that can influence terrestrial DOC inputs, including landscape position, geomorphology, soil type, and watershed vegetation. In addition, we considered the possible effects on internal aquatic

  19. Experimental canopy removal enhances diversity of vernal pond amphibians.

    Science.gov (United States)

    Skelly, David K; Bolden, Susan R; Freidenburg, L Kealoha

    2014-03-01

    Vernal ponds are often treated as protected environments receiving special regulation and management. Within the landscapes where they are found, forest vegetation frequently dominates surrounding uplands and can grow to overtop and shade pond basins. Two bodies of research offer differing views of the role of forest canopy for vernal pond systems. Studies of landscape conversion suggest that removing forest overstory within uplands can cause local extinctions of amphibians by altering terrestrial habitat or hindering movement. Studies of canopy above pond basins imply an opposite relationship; encroachment of overstory vegetation can be associated with local extinctions potentially via changes in light, thermal, and food resource environments. Unresolved uncertainties about the role of forest canopy reveal significant gaps in our understanding of wetland species distributions and dynamics. Any misunderstanding of canopy influences is simultaneously important to managers because current practices emphasize promoting or conserving vegetation growth particularly within buffers immediately adjacent to ponds. We evaluated this apparent contradiction by conducting a landscape-scale, long-term experiment using 14 natural vernal ponds. Tree felling at six manipulated ponds was limited in spatial scope but was nevertheless effective in increasing water temperature. Compared with eight control ponds, manipulated ponds maintained more amphibian species during five years post-manipulation. There was little evidence that any species was negatively influenced, and the reproductive effort of species for which we estimated egg inputs maintained pretreatment population densities in manipulated compared with control ponds. Overall, our experiment shows that a carefully circumscribed reduction of overhead forest canopy can enhance the capacity of vernal ponds to support wildlife diversity and suggests a scale dependence of canopy influences on amphibians. These findings have

  20. [Amphibian skin as a source of therapeutic peptides].

    Science.gov (United States)

    Amiche, Mohamed

    2016-01-01

    The search for new bioactive molecules that could be used in therapeutics is a major public health issue, particularly in the treatment of certain diseases such as cancer. In this context the exploration of the venom of animals (snakes, amphibians, cones, scorpions, insects...) that produce molecules of various structures and biological activities, is a very promising direction. Research in this area led to the discovery of neuropeptides, hormones, toxins, antimicrobial peptides and other extremely potent mediators. These are now used in many areas both in fundamental research and in translational research, respectively, to understand biochemical and physiological mechanisms, or to use as medical diagnostic tools and for therapeutic purposes. Pr. V. Erspamer is the first researcher to have shown, in the 1930s, that in addition to biogenic amines and alkaloids, granular glands from the skin of amphibians also produced huge amounts of peptides with various structures and biological activities. He also showed that these peptides had their counterparts, most often in the form of identical or similar peptides, in the central nervous system and the gastrointestinal tract of mammals. These observations are summarized in the form of a triangle concept of "brain-gut-skin" that states that any peptide found in a compartment should be present in the other two. In addition, abundance, ease of extraction and identification of peptides from amphibian skin make this model a means to search for their counterparts in mammals where they are present in minute quantities. This approach has two advantages: (i) at the fundamental level, the large peptide diversity, ubiquity and multiplicity of functions to which they participate, constitute a true chemical library to understand the mechanisms of recognition and signal transduction and study the physicochemical basic of the specificity; and (ii) in terms of applications, the relative simplicity of these peptides and the rise of the

  1. Influence of Physiological Stress on Nutrient Stoichiometry in Larval Amphibians.

    Science.gov (United States)

    Kirschman, Lucas J; Haslett, Savhannah; Fritz, Kelley A; Whiles, Matt R; Warne, Robin W

    2016-01-01

    Exposure to environmental stressors alters animal phenotypes as well as nutrient metabolism, assimilation, and excretion. While stress-induced shifts in nutrient processes are known to alter organismal carbon (C) and nitrogen (N) stoichiometry, there has been little exploration of how environmental factors influence phosphorous (P). A better understanding of how P cycling varies with animal physiological state may provide insight into across-scale processes, because P is essential to animal function and ecological processes such as production and decomposition. We tested the effects of predator stress and exogenous glucocorticoids on C∶N∶P stoichiometry of larval amphibians. Glucocorticoids altered nutrient stoichiometry, apparently by modulating ossification and renal function. This reduced whole-body P and significantly increased N∶P. Additionally, elevated glucocorticoids caused a long-term reduction in P excretion. This reduction may reflect an initial unmeasured loss of P that glucocorticoids induce over acute timescales. In contrast, exposure to predator cues had no effect on larval C∶N∶P stoichiometry, which highlights that different stressors have varied effects on the endocrine stress response. Predation, in particular, is ubiquitous in the environment; thus, larvae responding to predators have conserved mechanisms that likely prevent or minimize physiological disruption. These results demonstrate the differing physiological roles of N and P, distinct nutrient demands associated with amphibian metamorphosis, and the contrasting effects that different environmental factors have on the physiological stress response. Our results also suggest that anthropogenic changes to the environment that induce chronic stress in amphibians could affect the biogeochemistry of nutrient-poor environments where they may act as keystone species.

  2. Amphibians and reptiles of the state of Coahuila, Mexico, with comparison with adjoining states.

    Science.gov (United States)

    Lemos-Espinal, Julio A; Smith, Geoffrey R

    2016-01-01

    We compiled a checklist of the amphibians and reptiles of the state of Coahuila, Mexico. The list comprises 133 species (24 amphibians, 109 reptiles), representing 27 families (9 amphibians, 18 reptiles) and 65 genera (16 amphibians, 49 reptiles). Coahuila has a high richness of lizards in the genus Sceloporus. Coahuila has relatively few state endemics, but has several regional endemics. Overlap in the herpetofauna of Coahuila and bordering states is fairly extensive. Of the 132 species of native amphibians and reptiles, eight are listed as Vulnerable, six as Near Threatened, and six as Endangered in the IUCN Red List. In the SEMARNAT listing, 19 species are Subject to Special Protection, 26 are Threatened, and three are in Danger of Extinction. Coahuila is home to several species of conservation concern, especially lizards and turtles. Coahuila is an important state for the conservation of the native regional fauna.

  3. Evolutionary landscape of amphibians emerging from ancient freshwater fish inferred from complete mitochondrial genomes.

    Science.gov (United States)

    Wang, Xiao-Tong; Zhang, Yan-Feng; Wu, Qian; Zhang, Hao

    2012-05-01

    It is very interesting that the only extant marine amphibian is the marine frog, Fejervarya cancrivora. This study investigated the reasons for this apparent rarity by conducting a phylogenetic tree analysis of the complete mitochondrial genomes from 14 amphibians, 67 freshwater fishes, four migratory fishes, 35 saltwater fishes, and one hemichordate. The results showed that amphibians, living fossil fishes, and the common ancestors of modern fishes are phylogenetically separated. In general, amphibians, living fossil fishes, saltwater fishes, and freshwater fishes are clustered in different clades. This suggests that the ancestor of living amphibians arose from a type of primordial freshwater fish, rather than the coelacanth, lungfish, or modern saltwater fish. Modern freshwater fish and modern saltwater fish were probably separated from a common ancestor by a single event, caused by crustal movement.

  4. Turtle isochore structure is intermediate between amphibians and other amniotes.

    Science.gov (United States)

    Chojnowski, Jena L; Braun, Edward L

    2008-10-01

    Vertebrate genomes are comprised of isochores that are relatively long (>100 kb) regions with a relatively homogenous (either GC-rich or AT-rich) base composition and with rather sharp boundaries with neighboring isochores. Mammals and living archosaurs (birds and crocodilians) have heterogeneous genomes that include very GC-rich isochores. In sharp contrast, the genomes of amphibians and fishes are more homogeneous and they have a lower overall GC content. Because DNA with higher GC content is more thermostable, the elevated GC content of mammalian and archosaurian DNA has been hypothesized to be an adaptation to higher body temperatures. This hypothesis can be tested by examining structure of isochores across the reptilian clade, which includes the archosaurs, testudines (turtles), and lepidosaurs (lizards and snakes), because reptiles exhibit diverse body sizes, metabolic rates, and patterns of thermoregulation. This study focuses on a comparative analysis of a new set of expressed genes of the red-eared slider turtle and orthologs of the turtle genes in mammalian (human, mouse, dog, and opossum), archosaurian (chicken and alligator), and amphibian (western clawed frog) genomes. EST (expressed sequence tag) data from a turtle cDNA library enriched for genes that have specialized functions (developmental genes) revealed using the GC content of the third-codon-position to examine isochore structure requires careful consideration of the types of genes examined. The more highly expressed genes (e.g., housekeeping genes) are more likely to be GC-rich than are genes with specialized functions. However, the set of highly expressed turtle genes demonstrated that the turtle genome has a GC content that is intermediate between the GC-poor amphibians and the GC-rich mammals and archosaurs. There was a strong correlation between the GC content of all turtle genes and the GC content of other vertebrate genes, with the slope of the line describing this relationship also

  5. Inhibition of Escherichia coli ATP synthase by amphibian antimicrobial peptides

    OpenAIRE

    2010-01-01

    Previously melittin, the α-helical basic honey bee venom peptide, was shown to inhibit F1-ATPase by binding at the β-subunit DELSEED motif of F1Fo ATP synthase. Herein, we present the inhibitory effects of the basic α-helical amphibian antimicrobial peptides, ascaphin-8, aurein 2.2, aurein 2.3, carein 1.8, carein 1.9, citropin 1.1, dermaseptin, maculatin 1.1, maganin II, MRP, or XT-7, on purified F1 and membrane bound F1Fo E. coli ATP synthase. We found that the extent of inhibition by amphib...

  6. Emerging Pathogens Initiative (EPI)

    Data.gov (United States)

    Department of Veterans Affairs — The Emerging Pathogens Initiative (EPI) database contains emerging pathogens information from the local Veterans Affairs Medical Centers (VAMCs). The EPI software...

  7. Synergistic effects of the invasive Chinese tallow (Triadica sebifera) and climate change on aquatic amphibian survival.

    Science.gov (United States)

    Saenz, Daniel; Fucik, Erin M; Kwiatkowski, Matthew A

    2013-11-01

    Changes in climate and the introduction of invasive species are two major stressors to amphibians, although little is known about the interaction between these two factors with regard to impacts on amphibians. We focused our study on an invasive tree species, the Chinese tallow (Triadica sebifera), that annually sheds its leaves and produces leaf litter that is known to negatively impact aquatic amphibian survival. The purpose of our research was to determine whether the timing of leaf fall from Chinese tallow and the timing of amphibian breeding (determined by weather) influence survival of amphibian larvae. We simulated a range of winter weather scenarios, ranging from cold to warm, by altering the relative timing of when leaf litter and amphibian larvae were introduced into aquatic mesocosms. Our results indicate that amphibian larvae survival was greatly affected by the length of time Chinese tallow leaf litter decomposes in water prior to the introduction of the larvae. Larvae in treatments simulating warm winters (early amphibian breeding) were introduced to the mesocosms early in the aquatic decomposition process of the leaf litter and had significantly lower survival compared with cold winters (late amphibian breeding), likely due to significantly lower dissolved oxygen levels. Shifts to earlier breeding phenology, linked to warming climate, have already been observed in many amphibian taxa, and with most climate models predicting a significant warming trend over the next century, the trend toward earlier breeding should continue if not increase. Our results strongly suggest that a warming climate can interact with the effects of invasive plant species, in ways we have not previously considered, to reduce the survival of an already declining group of organisms.

  8. An unprecedented role reversal: ground beetle larvae (Coleoptera: Carabidae lure amphibians and prey upon them.

    Directory of Open Access Journals (Sweden)

    Gil Wizen

    Full Text Available Amphibians often feed on beetle larvae, including those of ground beetles (Carabidae. Preliminary reports have detailed an unusual trophic interaction in which, in contrast, larvae of the ground beetle Epomis prey upon juvenile and adult amphibians. While it is known that these larvae feed exclusively on amphibians, how the predator-prey encounter occurs to the advantage of the beetle larvae had been unknown to date. Using laboratory observations and controlled experiments, we recorded the feeding behavior of Epomis larvae, as well as the behavior of their amphibian prey. Here we reveal that larvae of two species of Epomis (E. circumscriptus and E. dejeani lure their potential predator, taking advantage of the amphibian's predation behavior. The Epomis larva combines a sit-and-wait strategy with unique movements of its antennae and mandibles to draw the attention of the amphibian to the presence of a potential prey. The intensity of this enticement increases with decreasing distance between the larva and the amphibian. When the amphibian attacks, the larva almost always manages to avoid the predator's protracted tongue, exploiting the opportunity to attach itself to the amphibian's body and initiate feeding. Our findings suggest that the trophic interaction between Epomis larvae and amphibians is one of the only natural cases of obligatory predator-prey role reversal. Moreover, this interaction involves a small insect larva that successfully lures and preys on a larger vertebrate. Such role reversal is exceptional in the animal world, extending our perspective of co-evolution in the arms race between predator and prey, and suggesting that counterattack defense behavior has evolved into predator-prey role reversal.

  9. Wildlife disease. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders.

    Science.gov (United States)

    Martel, A; Blooi, M; Adriaensen, C; Van Rooij, P; Beukema, W; Fisher, M C; Farrer, R A; Schmidt, B R; Tobler, U; Goka, K; Lips, K R; Muletz, C; Zamudio, K R; Bosch, J; Lötters, S; Wombwell, E; Garner, T W J; Cunningham, A A; Spitzen-van der Sluijs, A; Salvidio, S; Ducatelle, R; Nishikawa, K; Nguyen, T T; Kolby, J E; Van Bocxlaer, I; Bossuyt, F; Pasmans, F

    2014-10-31

    Emerging infectious diseases are reducing biodiversity on a global scale. Recently, the emergence of the chytrid fungus Batrachochytrium salamandrivorans resulted in rapid declines in populations of European fire salamanders. Here, we screened more than 5000 amphibians from across four continents and combined experimental assessment of pathogenicity with phylogenetic methods to estimate the threat that this infection poses to amphibian diversity. Results show that B. salamandrivorans is restricted to, but highly pathogenic for, salamanders and newts (Urodela). The pathogen likely originated and remained in coexistence with a clade of salamander hosts for millions of years in Asia. As a result of globalization and lack of biosecurity, it has recently been introduced into naïve European amphibian populations, where it is currently causing biodiversity loss.

  10. Equilibrium of global amphibian species distributions with climate.

    Science.gov (United States)

    Munguía, Mariana; Rahbek, Carsten; Rangel, Thiago F; Diniz-Filho, Jose Alexandre F; Araújo, Miguel B

    2012-01-01

    A common assumption in bioclimatic envelope modeling is that species distributions are in equilibrium with contemporary climate. A number of studies have measured departures from equilibrium in species distributions in particular regions, but such investigations were never carried out for a complete lineage across its entire distribution. We measure departures of equilibrium with contemporary climate for the distributions of the world amphibian species. Specifically, we fitted bioclimatic envelopes for 5544 species using three presence-only models. We then measured the proportion of the modeled envelope that is currently occupied by the species, as a metric of equilibrium of species distributions with climate. The assumption was that the greater the difference between modeled bioclimatic envelope and the occupied distribution, the greater the likelihood that species distribution would not be at equilibrium with contemporary climate. On average, amphibians occupied 30% to 57% of their potential distributions. Although patterns differed across regions, there were no significant differences among lineages. Species in the Neotropic, Afrotropics, Indo-Malay, and Palaearctic occupied a smaller proportion of their potential distributions than species in the Nearctic, Madagascar, and Australasia. We acknowledge that our models underestimate non equilibrium, and discuss potential reasons for the observed patterns. From a modeling perspective our results support the view that at global scale bioclimatic envelope models might perform similarly across lineages but differently across regions.

  11. Radioautographic investigation of retinal growth in mature amphibians

    Energy Technology Data Exchange (ETDEWEB)

    Svistunov, S.A.; Mitashov, V.I.

    1986-07-01

    Growth of the retina was studied in mature intact amphibians, tritons, axolotls, ambystomas and clawed frogs, for six months using multiple injection of /sup 3/H-thymidine. It was established that the source of replenishment of the retina by new cells is its terminal zone in all animals investigated. This is attested to by the gradual migration of labeled cells from the growth zone into differentiated layers of the retina. The most intensely labeled cells occupy a distal position relative to other labeled cells, therefore marking the boundary between the initial part of the retina, not containing labeled nuclei, and the part being augmented. For each species studied, a level of proliferative activity is characteristic for cells of the terminal zone, which decreases in the order axolotl-clawed frog-triton -ambystoma. In the axolotl and additional growth zone is noted in the retina, in addition to the terminal, which is located in the area of the unclosed section of the embryonic fissure. Results obtained serve as a basis for the regenerative potentials of eye tissues revealed previously in these amphibian species.

  12. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians.

    Science.gov (United States)

    Bonetti, Maria Fernanda; Wiens, John J

    2014-11-22

    The evolution of climatic niche specialization has important implications for many topics in ecology, evolution and conservation. The climatic niche reflects the set of temperature and precipitation conditions where a species can occur. Thus, specialization to a limited set of climatic conditions can be important for understanding patterns of biogeography, species richness, community structure, allopatric speciation, spread of invasive species and responses to climate change. Nevertheless, the factors that determine climatic niche width (level of specialization) remain poorly explored. Here, we test whether species that occur in more extreme climates are more highly specialized for those conditions, and whether there are trade-offs between niche widths on different climatic niche axes (e.g. do species that tolerate a broad range of temperatures tolerate only a limited range of precipitation regimes?). We test these hypotheses in amphibians, using phylogenetic comparative methods and global-scale datasets, including 2712 species with both climatic and phylogenetic data. Our results do not support either hypothesis. Rather than finding narrower niches in more extreme environments, niches tend to be narrower on one end of a climatic gradient but wider on the other. We also find that temperature and precipitation niche breadths are positively related, rather than showing trade-offs. Finally, our results suggest that most amphibian species occur in relatively warm and dry environments and have relatively narrow climatic niche widths on both of these axes. Thus, they may be especially imperilled by anthropogenic climate change.

  13. Evolutionary causes and consequences of sequential polyandry in anuran amphibians.

    Science.gov (United States)

    Byrne, Phillip G; Roberts, J Dale

    2012-02-01

    Among anuran amphibians (frogs and toads), there are two types of polyandry: simultaneous polyandry, where sperm from multiple males compete to fertilize eggs, and sequential polyandry, where eggs from a single female are fertilized by multiple males in a series of temporally separate mating events, and sperm competition is absent. Here we review the occurrence of sequential polyandry in anuran amphibians, outline theoretical explanations for the evolution of this mating system and discuss potential evolutionary implications. Sequential polyandry has been reported in a limited number of anurans, but its widespread taxonomic and geographic distribution suggests it may be common. There have been no empirical studies that have explicitly investigated the evolutionary consequences of sequential polyandry in anurans, but species with this mating pattern share an array of behavioural, morphological and physiological characteristics, suggesting that there has been common sexual selection on their reproductive system. Sequential polyandry may have a number of adaptive benefits, including spreading the risk of brood failure in unpredictable environments, insuring against male infertility, or providing genetic benefits, either through good genes, intrinsic compatibility or genetic diversity effects. Anurans with sequential polyandry provide untapped opportunities for innovative research approaches that will contribute significantly to understanding anuran evolution and also, more broadly, to the development of sexual-selection and life-history theory.

  14. Evolution of erythrocyte morphology in amphibians (Amphibia: Anura

    Directory of Open Access Journals (Sweden)

    Jie Wei

    2015-10-01

    Full Text Available ABSTRACT We compared the morphology of the erythrocytes of five anurans, two toad species - Bufo gargarizans (Cantor, 1842 and Duttaphrynus melanostictus (Schneider, 1799 and three frog species - Fejervarya limnocharis (Gravenhorst, 1829, Microhyla ornata (Duméril & Bibron, 1841, and Rana zhenhaiensis (Ye, Fei & Matsui, 1995. We then reconstructed the ancestral state of erythrocyte size (ES and nuclear size (NS in amphibians based on a molecular tree. Nine morphological traits of erythrocytes were all significantly different among the five species. The results of principal component analysis showed that the first component (49.1% of variance explained had a high positive loading for erythrocyte length, nuclear length, NS and ratio of erythrocyte length/erythrocyte width; the second axis (28.5% of variance explained mainly represented erythrocyte width and ES. Phylogenetic generalized least squares analysis showed that the relationship between NS and ES was not affected by phylogenetic relationships although there was a significant linear relationship between these two variables. These results suggested that (1 the nine morphological traits of erythrocytes in the five anuran species were species-specific; (2 in amphibians, larger erythrocytes generally had larger nuclei.

  15. UV-B Radiation Contributes to Amphibian Population Declines

    Science.gov (United States)

    Blaustein, Andrew

    2007-05-01

    UV-B (280-315 nm) radiation is the most significant biologically damaging radiation at the terrestrial surface. At the organismal level, UV-B radiation can slow growth rates, cause immune dysfunction and result in sublethal damage. UV-B radiation can lead to mutations and cell death. Over evolutionary time, UV radiation has been an important stressor on living organisms. Natural events, including impacts from comets and asteroids, volcanic activity, supernova explosions and solar flares, can cause large-scale ozone depletion with accompanying increases in UV radiation. However, these natural events are transient. Moreover, the amount of ozone damage due to natural events depends upon a number of variables, including the magnitude of the event. This is different from modern-day human-induced production of chlorofluorocarbons (CFCs) and other chemicals that deplete stratospheric ozone continuously, resulting in long-term increases in UV-B radiation at the surface of the earth. We will briefly review the effects of UV-B exposure in one group of aquatic organisms_amphibians. UV-B has been implicated as a possible factor contributing to global declines and range reductions in amphibian populations.

  16. Effect of biogeographic history on population vulnerability in European amphibians.

    Science.gov (United States)

    Dufresnes, Christophe; Perrin, Nicolas

    2015-08-01

    The genetic diversity of populations, which contributes greatly to their adaptive potential, is negatively affected by anthropogenic habitat fragmentation and destruction. However, continental-scale losses of genetic diversity also resulted from the population expansions that followed the end of the last glaciation, an element that is rarely considered in a conservation context. We addressed this issue in a meta-analysis in which we compared the spatial patterns of vulnerability of 18 widespread European amphibians in light of phylogeographic histories (glacial refugia and postglacial routes) and anthropogenic disturbances. Conservation statuses significantly worsened with distances from refugia, particularly in the context of industrial agriculture; human population density also had a negative effect. These findings suggest that features associated with the loss of genetic diversity in post-glacial amphibian populations (such as enhanced fixation load or depressed adaptive potential) may increase their susceptibility to current threats (e.g., habitat fragmentation and pesticide use). We propose that the phylogeographic status of populations (i.e., refugial vs. post-glacial) should be considered in conservation assessments for regional and national red lists.

  17. Anthropogenic and ecological drivers of amphibian disease (ranavirosis.

    Directory of Open Access Journals (Sweden)

    Alexandra C North

    Full Text Available Ranaviruses are causing mass amphibian die-offs in North America, Europe and Asia, and have been implicated in the decline of common frog (Rana temporaria populations in the UK. Despite this, we have very little understanding of the environmental drivers of disease occurrence and prevalence. Using a long term (1992-2000 dataset of public reports of amphibian mortalities, we assess a set of potential predictors of the occurrence and prevalence of Ranavirus-consistent common frog mortality events in Britain. We reveal the influence of biotic and abiotic drivers of this disease, with many of these abiotic characteristics being anthropogenic. Whilst controlling for the geographic distribution of mortality events, disease prevalence increases with increasing frog population density, presence of fish and wild newts, increasing pond depth and the use of garden chemicals. The presence of an alternative host reduces prevalence, potentially indicating a dilution effect. Ranavirosis occurrence is associated with the presence of toads, an urban setting and the use of fish care products, providing insight into the causes of emergence of disease. Links between occurrence, prevalence, pond characteristics and garden management practices provides useful management implications for reducing the impacts of Ranavirus in the wild.

  18. Vitamin A (Retinoid) Metabolism and Actions: What We Know and What We Need to Know About Amphibians

    Science.gov (United States)

    Clugston, Robin D.; Blaner, William S.

    2015-01-01

    Vitamin A status is an important consideration in the health of both wild and captive amphibians. Data concerning whole body vitamin A homeostasis in amphibians are scarce, although these animals have been used as experimental models to study the actions of vitamin A in vision, limb regeneration and embryogenesis. The available data suggest that many aspects of vitamin A biology in amphibians are similar to the canonical characteristics of vitamin A metabolism and actions established in mammals. This is consistent with the evolutionary conservation of these important biological processes. Amphibians must obtain vitamin A in their diet, with captive animals being prone to vitamin A deficiency. There is still much to be learned about vitamin A biology in amphibians that can only be achieved through rigorous scientific research. Improved understanding of amphibian vitamin A biology will aid the conservation of endangered amphibians in the wild, as well as the successful maintenance of ex situ populations. PMID:24958673

  19. Vitamin A (retinoid) metabolism and actions: What we know and what we need to know about amphibians.

    Science.gov (United States)

    Clugston, Robin D; Blaner, William S

    2014-01-01

    Vitamin A status is an important consideration in the health of both wild and captive amphibians. Data concerning whole body vitamin A homeostasis in amphibians are scarce, although these animals have been used as experimental models to study the actions of vitamin A in vision, limb regeneration and embryogenesis. The available data suggest that many aspects of vitamin A biology in amphibians are similar to the canonical characteristics of vitamin A metabolism and actions established in mammals. This is consistent with the evolutionary conservation of these important biological processes. Amphibians must obtain vitamin A in their diet, with captive animals being prone to vitamin A deficiency. There is still much to be learned about vitamin A biology in amphibians that can only be achieved through rigorous scientific research. Improved understanding of amphibian vitamin A biology will aid the conservation of endangered amphibians in the wild, as well as the successful maintenance of ex situ populations.

  20. Drought, deluge and declines: the impact of precipitation extremes on amphibians in a changing climate

    Science.gov (United States)

    Walls, Susan C.; Barichivich, William J.; Brown, Mary E.

    2013-01-01

    The Class Amphibia is one of the most severely impacted taxa in an on-going global biodiversity crisis. Because amphibian reproduction is tightly associated with the presence of water, climatic changes that affect water availability pose a particularly menacing threat to both aquatic and terrestrial-breeding amphibians. We explore the impacts that one facet of climate change—that of extreme variation in precipitation—may have on amphibians. This variation is manifested principally as increases in the incidence and severity of both drought and major storm events. We stress the need to consider not only total precipitation amounts but also the pattern and timing of rainfall events. Such rainfall “pulses” are likely to become increasingly more influential on amphibians, especially in relation to seasonal reproduction. Changes in reproductive phenology can strongly influence the outcome of competitive and predatory interactions, thus potentially altering community dynamics in assemblages of co-existing species. We present a conceptual model to illustrate possible landscape and metapopulation consequences of alternative climate change scenarios for pond-breeding amphibians, using the Mole Salamander, Ambystoma talpoideum, as an example. Although amphibians have evolved a variety of life history strategies that enable them to cope with environmental uncertainty, it is unclear whether adaptations can keep pace with the escalating rate of climate change. Climate change, especially in combination with other stressors, is a daunting challenge for the persistence of amphibians and, thus, the conservation of global biodiversity.

  1. Citation rate and perceived subject bias in the amphibian-decline literature.

    Science.gov (United States)

    Ohmer, Michel E; Bishop, Phillip J

    2011-02-01

    As a result of global declines in amphibian populations, interest in the conservation of amphibians has grown. This growth has been fueled partially by the recent discovery of other potential causes of declines, including chytridiomycosis (the amphibian chytrid, an infectious disease) and climate change. It has been proposed that researchers have shifted their focus to these novel stressors and that other threats to amphibians, such as habitat loss, are not being studied in proportion to their potential effects. We tested the validity of this proposal by reviewing the literature on amphibian declines, categorizing the primary topic of articles within this literature (e.g., habitat loss or UV-B radiation) and comparing citation rates among articles on these topics and impact factors of journals in which the articles were published. From 1990 to 2009, the proportion of papers on habitat loss remained fairly constant, and although the number of papers on chytridiomycosis increased after the disease was described in 1998, the number of published papers on amphibian declines also increased. Nevertheless, papers on chytridiomycosis were more highly cited than papers not on chytridiomycosis and were published in journals with higher impact factors on average, which may indicate this research topic is more popular in the literature. Our results were not consistent with a shift in the research agenda on amphibians. We believe the perception of such a shift has been supported by the higher citation rates of papers on chytridiomycosis.

  2. Drought, Deluge and Declines: The Impact of Precipitation Extremes on Amphibians in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Susan C. Walls

    2013-03-01

    Full Text Available The Class Amphibia is one of the most severely impacted taxa in an on-going global biodiversity crisis. Because amphibian reproduction is tightly associated with the presence of water, climatic changes that affect water availability pose a particularly menacing threat to both aquatic and terrestrial-breeding amphibians. We explore the impacts that one facet of climate change—that of extreme variation in precipitation—may have on amphibians. This variation is manifested principally as increases in the incidence and severity of both drought and major storm events. We stress the need to consider not only total precipitation amounts but also the pattern and timing of rainfall events. Such rainfall “pulses” are likely to become increasingly more influential on amphibians, especially in relation to seasonal reproduction. Changes in reproductive phenology can strongly influence the outcome of competitive and predatory interactions, thus potentially altering community dynamics in assemblages of co-existing species. We present a conceptual model to illustrate possible landscape and metapopulation consequences of alternative climate change scenarios for pond-breeding amphibians, using the Mole Salamander, Ambystoma talpoideum, as an example. Although amphibians have evolved a variety of life history strategies that enable them to cope with environmental uncertainty, it is unclear whether adaptations can keep pace with the escalating rate of climate change. Climate change, especially in combination with other stressors, is a daunting challenge for the persistence of amphibians and, thus, the conservation of global biodiversity.

  3. Drought, deluge and declines: the impact of precipitation extremes on amphibians in a changing climate.

    Science.gov (United States)

    Walls, Susan C; Barichivich, William J; Brown, Mary E

    2013-03-11

    The Class Amphibia is one of the most severely impacted taxa in an on-going global biodiversity crisis. Because amphibian reproduction is tightly associated with the presence of water, climatic changes that affect water availability pose a particularly menacing threat to both aquatic and terrestrial-breeding amphibians. We explore the impacts that one facet of climate change-that of extreme variation in precipitation-may have on amphibians. This variation is manifested principally as increases in the incidence and severity of both drought and major storm events. We stress the need to consider not only total precipitation amounts but also the pattern and timing of rainfall events. Such rainfall "pulses" are likely to become increasingly more influential on amphibians, especially in relation to seasonal reproduction. Changes in reproductive phenology can strongly influence the outcome of competitive and predatory interactions, thus potentially altering community dynamics in assemblages of co-existing species. We present a conceptual model to illustrate possible landscape and metapopulation consequences of alternative climate change scenarios for pond-breeding amphibians, using the Mole Salamander, Ambystoma talpoideum, as an example. Although amphibians have evolved a variety of life history strategies that enable them to cope with environmental uncertainty, it is unclear whether adaptations can keep pace with the escalating rate of climate change. Climate change, especially in combination with other stressors, is a daunting challenge for the persistence of amphibians and, thus, the conservation of global biodiversity.

  4. Questions concerning the potential impact of glyphosate-based herbicides on amphibians.

    Science.gov (United States)

    Wagner, Norman; Reichenbecher, Wolfram; Teichmann, Hanka; Tappeser, Beatrix; Lötters, Stefan

    2013-08-01

    Use of glyphosate-based herbicides is increasing worldwide. The authors review the available data related to potential impacts of these herbicides on amphibians and conduct a qualitative meta-analysis. Because little is known about environmental concentrations of glyphosate in amphibian habitats and virtually nothing is known about environmental concentrations of the substances added to the herbicide formulations that mainly contribute to adverse effects, glyphosate levels can only be seen as approximations for contamination with glyphosate-based herbicides. The impact on amphibians depends on the herbicide formulation, with different sensitivity of taxa and life stages. Effects on development of larvae apparently are the most sensitive endpoints to study. As with other contaminants, costressors mainly increase adverse effects. If and how glyphosate-based herbicides and other pesticides contribute to amphibian decline is not answerable yet due to missing data on how natural populations are affected. Amphibian risk assessment can only be conducted case-specifically, with consideration of the particular herbicide formulation. The authors recommend better monitoring of both amphibian populations and contamination of habitats with glyphosate-based herbicides, not just glyphosate, and suggest including amphibians in standardized test batteries to study at least dermal administration.

  5. Stable Isotopes Reveal Trophic Partitioning and Trophic Plasticity of a Larval Amphibian Guild.

    Directory of Open Access Journals (Sweden)

    Rosa Arribas

    Full Text Available Temporary ponds are highly variable systems where resource availability and community structure change extensively over time, and consequently the food web is highly dynamic. Amphibians play a critical role both as consumers and prey in aquatic communities and yet there is still little information on the trophic status of most amphibians. More importantly, little is known about the extent to which they can alter their trophic ecology in response to changing conditions. We experimentally investigated the effects of increased amphibian density, presence of intraguild competitors, and presence of native and invasive predators (either free or caged on the trophic status of a Mediterranean amphibian guild, using stable isotopes. We observed variations in δ13C and δ15N isotopic values among amphibian species and treatments and differences in their food sources. Macrophytes were the most important food resource for spadefoot toad tadpoles (Pelobates cultripes and relatively important for all anurans within the guild. High density and presence of P. cultripes tadpoles markedly reduced macrophyte biomass, forcing tadpoles to increase their feeding on detritus, algae and zooplankton, resulting in lower δ13C values. Native dytiscid predators only changed the isotopic signature of newts whereas invasive red swamp crayfish had an enormous impact on environmental conditions and greatly affected the isotopic values of amphibians. Crayfish forced tadpoles to increase detritus ingestion or other resources depleted in δ13C. We found that the opportunistic amphibian feeding was greatly conditioned by intra- and interspecific competition whereas non-consumptive predator effects were negligible. Determining the trophic plasticity of amphibians can help us understand natural and anthropogenic changes in aquatic ecosystems and assess amphibians' ability to adjust to different environmental conditions.

  6. Impacts from PCB accumulation on amphibians inhabiting streams flowing from the Paducah Gaseous Diffusion Plant.

    Science.gov (United States)

    DeGarady, C J; Halbrook, R S

    2003-11-01

    Contamination at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky, has been under evaluation for many years. We studied amphibians in selected outfalls (drainage ditches) flowing from the PGDP to determine if PCBs were accumulating in their tissues and how this might affect local populations. We determined relative amphibian species richness and abundance among seven outfalls and three reference streams by listening to their calls during audio surveys. We also captured amphibians from each study site during the summers of 2000 and 2001 and analyzed their carcasses for PCBs (Aroclor 1260 and 34 congeners) and livers for ethoxyresorufin O-deethylase (EROD) activity, a biomarker of PCBs and other organic contamination. Ten species were heard across study sites, and abundance and richness at outfalls were similar to those observed at reference sites. However, there were significant differences in abundance (p = 0.001) and richness (p = 0.048) of amphibians between continuously flowing and intermittent outfalls. There were no significant differences in PCB concentrations (p = 0.113) in amphibians captured from study sites, although Aroclor 1260 concentrations tended to be higher in amphibians collected from one outfall (outfall 12) on the east side of the plant (x = 1260 microg/kg) compared with all other study sites (x = 489 microg/kg). EROD activity measured in the liver was not indicative of Aroclor 1260 concentrations in amphibians at the PGDP, and EROD did not differ by study site, species, age class, or gender. PCB concentrations measured in amphibians at the PGDP were similar to concentrations measured at reference sites and did not appear to negatively affect individual amphibians or abundance and richness.

  7. Acute toxicities of toxaphene and endrin to larvae of seven species of amphibians

    Science.gov (United States)

    Hall, R.J.; Swineford, D.M.

    1981-01-01

    Seven species of amphibian larvae were exposed to toxaphene and endrin in a continuous-flow dosing system to determine differences in sensitivity to the two compounds, EC50 and LC50 estimates varied from those for Rana sphenocephala by no more than one order of magnitude when calculated on the basis of intended concentrations. Removal of pesticides from water by the test animals was significant and it makes interpretation of results difficult. Continuous-flow toxicity tests conflict with the adaptations of amphibian larvae for static water; use of such tests for amphibians requires further evaluation.

  8. Mine spoil prairies expand critical habitat for endangered and threatened amphibian and reptile species

    Science.gov (United States)

    Lannoo, Michael J.; Kinney, Vanessa C.; Heemeyer, Jennifer L.; Engbrecht, Nathan J.; Gallant, Alisa L.; Klaver, Robert W.

    2009-01-01

    Coal extraction has been occurring in the Midwestern United States for over a century. Despite the pre-mining history of the landscape as woodlands, spent surface coalfields are often reclaimed to grasslands. We assessed amphibian and reptile species on a large tract of coal spoil prairie and found 13 species of amphibians (nine frog and four salamander species) and 19 species of reptiles (one lizard, five turtle, and 13 snake species). Two state-endangered and three state species of special concern were documented. The amphibian diversity at our study site was comparable to the diversity found at a large restored prairie situated 175 km north, within the historic prairie peninsula.

  9. AMPHIBIAN COMMUNITIES IN BIOGEOCOENOSIS WITH DIFFERENT STAGES OF ANTHROPOGENIC CLYMAX

    Directory of Open Access Journals (Sweden)

    Marchenkovskaya А. А.

    2013-04-01

    Full Text Available We examined the abundance of juvenile (fingerlings and yearlings and sexually mature (3-6 years of various anurans at various biotopes with different degrees of anthropogenic influence. Population analysis has revealed that the number of juveniles in all the habitats are depended on type and level of anthropogenic influence. In all the habitats the most numerous species was synanthropic bufo viridis. In biotopes with high contamination of pollutants, only one species of amphibians - the marsh frog has populations with juveniles migrating here in the early fall. The highest number of mature individuals registered for the population of Bombina bombina, pelobates fuscus and in one biotope for hyla arborea. The populations of pelophylax ridibundus could be considered as the most balanced by number of juvenile and mature individuals.

  10. FIRST AMPHIBIAN FIND IN EARLY PERMIAN FROM SARDINIA (ITALY

    Directory of Open Access Journals (Sweden)

    AUSONIO RONCHI

    1997-03-01

    Full Text Available An amphibian fauna from Permo-Carboniferous boundary beds is recorded for the first time in Italy. A thin fossiliferous level has been found in the Perdasdefogu Basin in southeastern Sardinia;it yields several speciments of Branchiosaurus cf."B." petrolei Gaudry 1875, often in mass mortality assemblages.Repeated mass mortality events testify to sudden changes in the environment of the basin, possibly due to seasonal variations. The finding of speciments very close to Branchiosaurus petrolei,which is a common species in the Central France basins,confirms that Sardinia at the time belonged to the same hydrographic basin of continental Europe, with no seaway in between.Furthermore, though not the primary focus of this note, we report the first discovery of the xenacanth teeth and acanthodian spines in Italy.  

  11. Amphibians and reptiles of the state of Chihuahua, Mexico, with comparisons with adjoining states

    Directory of Open Access Journals (Sweden)

    Julio A. Lemos-Espinal

    2017-02-01

    Full Text Available Chihuahua is Mexico’s largest state, and its physiographic complexity affects the distribution of its herpetofauna. We list amphibians and reptiles for the state of Chihuahua, with their conservation status. We also compare this list to those of six adjoining states in the United States and Mexico (New Mexico, Texas, Coahuila, Durango, Sinaloa, and Sonora. A total of 175 species of amphibians and reptiles is found in Chihuahua. Thirty-eight are amphibians, and 137 reptiles. Chihuahuan amphibians and reptiles represent just over 37% of such species from Chihuahua and neighboring states. Chihuahua shares the highest proportion of its herpetofauna with Sonora and Durango. Most of the herpetofauna of Chihuahua falls in IUCNs least concern category and is not listed by SEMARNAT. However, turtles in Chihuahua are a group of particular conservation concern.

  12. Rhode Island, Connecticut, New York, and New Jersey ESI: REPTILES (Reptile and Amphibian Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for threatened/endangered sea turtles, diamondback terrapins, and rare reptiles/amphibians in coastal Rhode...

  13. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: REPTILEL (Reptile and Amphibian Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for amphibians and reptiles in Central California. Vector lines in this data set represent general stream...

  14. Thyroid Histopathology Assessments for the Amphibian Metamorphosis Assay to Detect Thyroid-active Substances

    Science.gov (United States)

    In support of an Organization for Economic Cooperation and Development (OECD) Amphibian Metamorphosis Assay (AMA) Test Guideline for the detection of substances that interact with the hypothalamic-pituitary-thyroid axis, a document was developed that provides a standardized appro...

  15. The amphibians and reptiles of the Carolina Sandhills National Wildlife Refuge Chesterfield County, South Carolina

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This paper reports the results of a survey of the amphibians and reptiles occurring in the Carolina Sandhills National Wildlife Refuge, Chesterfield County, South...

  16. [Nested species subsets of amphibians and reptiles in Thousand Island Lake].

    Science.gov (United States)

    Wang, Xi; Wang, Yan-Ping; Ding, Ping

    2012-10-01

    Habitat fragmentation is a main cause for the loss of biological diversity. Combining line-transect methods to survey the amphibians and reptiles on 23 islands on Thousand Island Lake in Zhejiang province, along with survey data on nearby plant species and habitat variables collected by GIS, we used the"BINMATNEST (binary matrix nestedness temperature calculator)" software and the Spearman rank correlation to examine whether amphibians and reptiles followed nested subsets and their influencing factors. The results showed that amphibians and reptiles were significantly nested, and that the island area and habitat type were significantly associated with their nested ranks. Therefore, to effectively protect amphibians and reptiles in the Thousand Islands Lake area we should pay prior attention to islands with larger areas and more habitat types.

  17. Species List of Alaskan Birds, Mammals, Fish, Amphibians, Reptiles, and Invertebrates. Alaska Region Report Number 82.

    Science.gov (United States)

    Taylor, Tamra Faris

    This publication contains a detailed list of the birds, mammals, fish, amphibians, reptiles, and invertebrates found in Alaska. Part I lists the species by geographical regions. Part II lists the species by the ecological regions of the state. (CO)

  18. Preliminary Assessment for Abnormal Amphibians on National Wildlife Refuges in the Southeast Region FY 2008

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Preliminary screening assessments for abnormal amphibians were initiated on national wildlife refuges (NWRs) in the southeast region in 2000, with additional refuges...

  19. The ultrastructural histochemistry and stereoscanning electron microscopy of the rodent and amphibian surfactant systems.

    Science.gov (United States)

    Stratton, C J; Wetzstein, H Y; Hardy, T

    1980-05-01

    Ultrastructural histochemical precedures were employed to determine the carbohydrate components and their contributions to the rodent and amphibian surfactant systems. Zirconium stained the rodent (rat) cytoplasm surrounding the multilamellar bodies, the Golgi, and was associated with the membrane structures of the compact lamellae of alveolar multilamellar bodies. In the rodent and amphibian (Rana pipiens), ruthenium red stain was observed within all tubular myelin surfactant matricies. The "gutters," tubular myelin surfactant matrix, and intratubular myelin surfactant matrix materials all demonstrated a positive reaction product. The periodic acid-chromic acid-silver procedure revealed irregular channels extending from the multilamellar bodies to the surface of the rodent great alveolar pneumocyte. The extra-pulmonary and respiratory surfaces in both species were additionally studied by stereoscanning electron microscopy. The respiratory anatomy of the rodent was corroborated. The amphibian lung demonstrated three orders of septa, and in the expired state, tertiary septal pits. The amphibian primary septa were hollow, blind tubules containing respiratory surfaces.

  20. Amphibians of the Aurunci Mountains (Latium, Central Italy. Checklist and conservation guidelines

    Directory of Open Access Journals (Sweden)

    Antonio Romano

    2007-01-01

    Full Text Available The Aurunci Mounts are among the less investigated areas of Latium for herpetological researches. In this study we surveyed 72 potential breeding sites of amphibians within the Monti Aurunci Regional Park. Fifty-eight spawning sites, and nine amphibian species (64.3% out the 14 amphibian species living in Latium region have been found. Green toad and European tree frog were recorded for the first time for the Aurunci Mounts. Reproductive activity was recorded for Salamandrina perspicillata, Triturus carnifex, Lissotriton vulgaris, Lissotriton italicus, Bufo bufo, Pseudopidalea viridis, Hyla intermedia, Rana italica and Rana synklepton hispanica. Unexpectedly, no amphibian species has been recorded within the Monte Redentore (pSIC IT6040027, despite this site was included within the Natura 2000 network also basing on the presence of Triturus carnifex.

  1. Study on abnormal amphibians on National Wildlife Refuges: Questions and answers

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document answers questions related to a 10-year abnormal amphibian study conducted on U.S. National Wildlife Refuges. Topics include: why the study was...

  2. Amphibian Distribution and Habitat, test, Published in 2001, Not Applicable scale, Runskip, Inc..

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Amphibian Distribution and Habitat dataset, published at Not Applicable scale, was produced all or in part from Bathymetric Survey information as of 2001. It...

  3. Amphibians and agrochemicals: Dermal contact and pesticide uptake from irrigated croplands in SW Georgia

    Science.gov (United States)

    Background/Question/Methods Although isolated wetlands comprise a significant portion of amphibian breeding habitats throughout the United States, they are not protected under the Clean Water Act. In SW Georgia where agriculture is dominant within the landscape, many isolated ...

  4. DISTRIBUTIONAL CHANGES AND POPULATION STATUS FOR AMPHIBIANS IN THE EASTERN MOJAVE DESERT

    Science.gov (United States)

    A number of amphibian species historically inhabited sparsely distributed wetlands in the Mojave Desert of western North America, habitats that have been dramatically altered or eliminated as a result of human activities. The population status and distributional changes for amphi...

  5. Survey of reptiles and amphibians of North Platte National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This proposal is for surveying reptiles and amphibians of North Platte National Wildlife Refuge for the specific goals of generating a species list, species...

  6. Summary of amphibian and reptile surveys 2001 - North Mississippi Refuges Complex

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Report details surveys for amphibians and reptiles on Dahomey, Coldwater River, and Dahomey NWRs in 2001. Sampling methods and protocols are also included.

  7. Nationwide assessment of morphological abnormalities observed in amphibians collected from United States National Wildlife Refuges

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Previously, amphibian malformations had only been studied at the site, state and regional levels, limiting our understanding of the types of malformations most...

  8. Applications of geographic information systems and remote sensing techniques to conservation of amphibians in northwestern Ecuador

    OpenAIRE

    Mariela Palacios González; Elisa Bonaccorso; Monica Papeş

    2015-01-01

    The biodiversity of the Andean Chocó in western Ecuador and Colombia is threatened by anthropogenic changes in land cover. The main goal of this study was to contribute to conservation of 12 threatened species of amphibians at a cloud forest site in northwestern Ecuador, by identifying and proposing protection of critical areas. We used Geographic Information Systems (GIS) and remote sensing techniques to quantify land cover changes over 35 years and outline important areas for amphibian cons...

  9. Amphibian acoustic data from the Arizona 1, Pinenut, and Canyon breccia pipe uranium mines in Arizona

    Science.gov (United States)

    Hinck, Jo E.; Hossack, Blake R.; Honeycutt, Richard

    2017-01-01

    The data consists of a summary of amphibian acoustic recordings at Canyon, Arizona 1, and Pinenut mines near the Grand Canyon. USGS is currently conducting biological surveys associated with uranium mines on federal lands in Arizona. These surveys include determining the composition of the local amphibian community. Original raw acoustic recordings used to create this summary data table are archived at Columbia Environmental Research Center.

  10. Protected areas network and conservation efforts concerning threatened amphibians in the Brazilian Atlantic Forest

    OpenAIRE

    Campos,F.S.; Llorente, G. A.; L. Rincón; R. Lourenço-de-Moraes; Solé, M.

    2016-01-01

    One of the most common conservation strategies used to preserve threatened species is the establishment of protected areas (PAs), providing a maximum representation of biodiversity with the smallest possible cost. The Brazilian Atlantic Forest is one of the 35 global biodiversity hotspots for conservation priorities, having high rate of habitat loss, which is one of the main factors driving threatened amphibians to extinction. Considering that amphibians are the vertebrate g...

  11. Amphibian and benthic macroinvertebrate response to physical and chemical properties of Themi River, Arusha, Tanzania

    OpenAIRE

    Lyimo, Emmanuel

    2012-01-01

    I hypothesized that variation in physical and chemical properties and habitat destruction of the Themi River as a result of human activities would affect abundance and diversity of amphibian and benthic macroinvertebrates. Variation in habitat physical and chemical conditions, and amphibian and benthic macroinvertebrate diversity and abundance were assessed in the Themi River of Arusha municipality. These physical, chemical and biological conditions were assessed at forty sampling stations...

  12. [Helminth fauna of amphibians (Vertebrata: Amphibia) in the Republic of Belarus].

    Science.gov (United States)

    Shimalov, V V

    2009-01-01

    Historical review of the investigations of helminth fauna in amphibians from Belarus is presented. In 12 amphibian species examined by different authors 46 helminth species were found, including 29 Trematoda, 13 Nematoda, 1 Monogenea, 2 Cestoda, and 1 Acanthocephala. Original data on helminths parasitizing Amphibia in Byelorussian Polesie, by the results of long-term investigations in 1986-2004 are given. Distribution of 40 helminth species by hosts and respective infestation rates are reported.

  13. Amphibians biochemical indices from reservoirs of different levels of waste discharge

    Directory of Open Access Journals (Sweden)

    I. N. Zalipuha

    2009-04-01

    Full Text Available Influence of uranium mining and processing wastes on the metabolism of common amphibian species of the Dnieper region – the marsh frog (Pelophylax ridibundus – from differently contaminated reservoirs. The change of protein, lipids and carbohydrates in organs and tissues of frogs with ageing and under influence of the pollution. Considerable increase of energy consumption at the expense of lipids and carbohydrates is one of biochemical adaptations. It promotes partial resistance of amphibians to the influence of uranium mining wastes.

  14. Individual and Interactive Effects of Maternally- and Trophically-Derived Mercury on Early Amphibian Development

    OpenAIRE

    Bergeron, Christine Marie

    2011-01-01

    Mercury (Hg) is an important environmental contaminant due to its global distribution, tendency to bioaccumulate, and toxicity to wildlife. However, Hg has received little attention in amphibians compared to other vertebrates, despite the fact that amphibian population declines have been documented worldwide and environmental contaminants are believed to contribute to some declines. During my dissertation research, I used a pluralistic approach which combined field studies and manipulative ...

  15. What we know and don't know about amphibian declines in the West

    Science.gov (United States)

    Corn, Paul Stephen

    1994-01-01

    The problem of declining amphibian species is thought to be particularly acute in western North America, but there are many gaps in our knowledge. Although several declines have been well-documented, other declines are anecdotal or hypothesized. Most documented declines are of ranid frogs or toads (Bufo). Species from montane habitats and those occurring in California have been best studied. Status of many desert species is unknown. Habitat destruction and introduced predators are the most common threats to amphibian populations. Some declines may represent natural variation in population size. Causes have not been determined for several cases where common species have declined over large areas. There are important considerations for ecosystem management, whether changes in amphibian populations are natural or caused by human activities. Causes for declines must be known so that management can be prescribed (or proscribed) to eliminate or minimize these causes. The natural variability of amphibian population numbers and the complexity of metapopulation structure emphasize the necessity of considering multiple temporal and spatial scales in ecosystem management. The decline of amphibian species throughout the world has received considerable recent attention (e.g., Blaustein and Wake 1990, Griffiths and Beebee 1992, Yoffe 1992). Much of this attention derives from a workshop held in February, 1990 on declining amphibians sponsored by the National Research Council Board (NRC) on Biology in Irvine, California (Barinaga 1990, Borchelt 1990). Because of media attention in the aftermath of this conference, it is a popular perception that amphibian declines are a new phenomenon that herpetologists have been slow to recognize (Griffiths and Beebee 1992, Quammen 1993). However, concern about amphibian populations in the United States dates back over 20 years. Beginning in the 1960s, a large, well-documented decline of northern leopard frogs (Rana pipiens) occurred in the

  16. Biodiversity of trematodes associated with amphibians from a variety of habitats in Corrientes Province, Argentina.

    Science.gov (United States)

    Hamann, M I; Kehr, A I; González, C E

    2013-09-01

    The main goals of this study were to compare the richness of parasitic trematodes in amphibians with diverse habits (terrestrial, fossorial, semi-aquatic and arboreal), and to evaluate whether the composition of the trematode community is determined by ecological relationships. Specimens were collected between April 2001 and December 2006 from a common area (30 ha) in Corrientes Province, Argentina. Trematodes of amphibians in this area comprised a total of 19 species, and were dominated by common species. Larval trematodes presented highest species richness, with the metacercaria of Bursotrema tetracotyloides being dominant in the majority (7/9, 78%) of the parasite communities. Adults of the trematode Catadiscus inopinatus were dominant in the majority (6/9, 67%) of amphibians. The amphibians Leptodactylus latinasus, Leptodactylus bufonius and Scinax nasicus presented a high diversity of trematodes, whereas Leptodactylus chaquensis had the lowest diversity even though it presented with the highest species richness. The patterns of similarity among amphibian species showed groups linking with their habitats. Leptodactilid amphibians, with a generalist diet and an active foraging strategy showed highest infection rates with adult trematodes. The mean richness of trematode species related to host's habitat preferences was higher in semi-aquatic amphibians. Results suggest that semi-aquatic amphibians, present in both aquatic and terrestrial environments, present a greater diversity of parasites as they have a higher rate of exposure to a wider range of prey species and, hence, to diverse infective states. The trematode composition is related to the diets and mobility of the host, and habitat.

  17. Serosurveillance of Eastern Equine Encephalitis Virus in Amphibians and Reptiles from Alabama, USA

    OpenAIRE

    Graham, Sean P.; HASSAN, HASSAN K.; Chapman, Taryn; White, Gregory; Guyer, Craig; Unnasch, Thomas R.

    2012-01-01

    Eastern equine encephalitis virus (EEEV) is among the most medically important arboviruses in North America, and studies suggest a role for amphibians and reptiles in its transmission cycle. Serum samples collected from 351 amphibians and reptiles (27 species) from Alabama, USA, were tested for the presence of antibodies against EEEV. Frogs, turtles, and lizards showed little or no seropositivity, and snakes had high seropositivity rates. Most seropositive species were preferred or abundant h...

  18. Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance.

    Science.gov (United States)

    Ficetola, Gentile Francesco; Maiorano, Luigi

    2016-07-01

    Climate change is determining a generalized phenological advancement, and amphibians are among the taxa showing the strongest phenological responsiveness to warming temperatures. Amphibians are strongly influenced by climate change, but we do not have a clear picture of how climate influences important parameters of amphibian populations, such as abundance, survival, breeding success and morphology. Furthermore, the relative impact of temperature and precipitation change remains underappreciated. We used Bayesian meta-analysis and meta-regression to quantify the impact of temperature and precipitation change on amphibian phenology, abundance, individual features and performance. We obtained effect sizes from studies performed in five continents. Temperature increase was the major driver of phenological advancement, while the impact of precipitation on phenology was weak. Conversely, population dynamics was mostly determined by precipitation: negative trends were associated with drying regimes. The impact of precipitation on abundance was particularly strong in tropical areas, while the importance of temperature was feeble. Both temperature and precipitation influenced parameters representing breeding performance, morphology, developmental rate and survival, but the response was highly heterogeneous among species. For instance, warming temperature increased body size in some species, and decreased size in others. Similarly, rainy periods increased survival of some species and reduced the survival of others. Our study showed contrasting impacts of temperature and precipitation changes on amphibian populations. Both climatic parameters strongly influenced amphibian performance, but temperature was the major determinant of the phenological changes, while precipitation had the major role on population dynamics, with alarming declines associated with drying trends.

  19. Movement patterns and the conservation of amphibians breeding in small, temporary wetlands

    Science.gov (United States)

    Dodd, C.K.; Cade, B.S.

    1998-01-01

    Many amphibians breed in water but live most of their lives in terrestrial habitats. Little is known, however, about the spatial distribution of these habitats or of the distances and directions amphibians move to reach breeding sites. The amphibian community at a small, temporary pond in northcentral Florida was monitored for 5 years. Based on captures and recaptures of more than 2500 striped newts (Notophthalmus perstriatus) and 5700 eastern narrow-mouthed toads (Gastrophryne carolinensis), we tabulated the angles of orientation that these amphibians entered and exited the pond basin. Our results showed that movements of these species between the pond and terrestrial habitats were nonrandom in orientation, but that narrow corridors did not appear to be used. Differences between the species likely reflect differences in habitat preferences, whereas intraspecific differences among years and between the sexes likely reflect variation among individuals. For terrestrial buffer zones to be effective at conserving pond-breeding amphibian communities, they need both a distance and a directional component. The determination of a directional component may be obscured if studies are carried out over a short time span. Conservation efforts for wetland-breeding amphibians that concentrate solely on the wetland likely will fail without consideration of the adjacent terrestrial habitat.

  20. Habitat split as a cause of local population declines of amphibians with aquatic larvae.

    Science.gov (United States)

    Becker, C Guilherme; Fonseca, Carlos R; Haddad, Célio F B; Prado, Paulo I

    2010-02-01

    Most amphibian species have biphasic life histories and undergo an ontogenetic shift from aquatic to terrestrial habitats. In deforested landscapes, streams and forest fragments are frequently disjunct, jeopardizing the life cycle of forest-associated amphibians with aquatic larvae. We tested the impact of habitat split--defined as human-induced disconnection between habitats used by different life-history stages of a species--on four forest-associated amphibian species in a severely fragmented landscape of the Brazilian Atlantic Forest. We surveyed amphibians in forest fragments with and without streams (referred to as wet and dry fragments, respectively), including the adjacent grass-field matrix. Our comparison of capture rates in dry fragments and nearby streams in the matrix allowed us to evaluate the number of individuals that engaged in high-risk migrations through nonforested habitats. Adult amphibians moved from dry fragments to matrix streams at the beginning of the rainy season, reproduced, and returned at the end of the breeding period. Juveniles of the year moved to dry fragments along with adults. These risky reproductive migrations through nonforested habitats that expose individuals to dehydration, predation, and other hazards may cause population declines in dry fragments. Indeed, capture rates were significantly lower in dry fragments compared with wet fragments. Declining amphibians would strongly benefit from investments in the conservation and restoration of riparian vegetation and corridors linking breeding and nonbreeding areas.

  1. Amphibian mortality events and ranavirus outbreaks in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Patla, Debra A.; St-Hilaire, Sophia; Rayburn, Andrew P.; Hossack, Blake R.; Peterson, Charles R.

    2016-01-01

    Mortality events in wild amphibians go largely undocumented, and where events are detected, the numbers of dead amphibians observed are probably a small fraction of actual mortality (Green and Sherman 2001; Skerratt et al. 2007). Incidental observations from field surveys can, despite limitations, provide valuable information on the presence, host species, and spatial distribution of diseases. Here we summarize amphibian mortality events and diagnoses recorded from 2000 to 2014 in three management areas: Yellowstone National Park; Grand Teton National Park (including John D. Rockefeller, Jr. Memorial Parkway); and the National Elk Refuge, which together span a large portion of protected areas within the Greater Yellowstone Ecosystem (GYE; Noss et al. 2002). Our combined amphibian monitoring projects (e.g., Gould et al. 2012) surveyed an average of 240 wetlands per year over the 15 years. Field crews recorded amphibian mortalities during visual encounter and dip-netting surveys and collected moribund and dead specimens for diagnostic examinations. Amphibian and fish research projects during these years contributed additional mortality observations, specimens, and diagnoses.

  2. Physiological vagility: correlations with dispersal and population genetic structure of amphibians.

    Science.gov (United States)

    Hillman, Stanley S; Drewes, Robert C; Hedrick, Michael S; Hancock, Thomas V

    2014-01-01

    Physiological vagility represents the capacity to move sustainably and is central to fully explaining the processes involved in creating fine-scale genetic structure of amphibian populations, because movement (vagility) and the duration of movement determine the dispersal distance individuals can move to interbreed. The tendency for amphibians to maintain genetic differentiation over relatively short distances (isolation by distance) has been attributed to their limited dispersal capacity (low vagility) compared with other vertebrates. Earlier studies analyzing genetic isolation and population differentiation with distance treat all amphibians as equally vagile and attempt to explain genetic differentiation only in terms of physical environmental characteristics. We introduce a new quantitative metric for vagility that incorporates aerobic capacity, body size, body temperature, and the cost of transport and is independent of the physical characteristics of the environment. We test our metric for vagility with data for dispersal distance and body mass in amphibians and correlate vagility with data for genetic differentiation (F'(ST)). Both dispersal distance and vagility increase with body size. Differentiation (F'(ST)) of neutral microsatellite markers with distance was inversely and significantly (R2=0.61) related to ln vagility. Genetic differentiation with distance was not significantly related to body mass alone. Generalized observations are validated with several specific amphibian studies. These results suggest that interspecific differences in physiological capacity for movement (vagility) can contribute to genetic differentiation and metapopulation structure in amphibians.

  3. Herpetofaunal assemblage with special emphasis on community structure and spatiality in amphibians of Cauvery delta region, Tamil Nadu

    Directory of Open Access Journals (Sweden)

    Anukul Nath

    2012-12-01

    Full Text Available We studied the amphibian community structure, spatial overlap and herpetofaunal assemblage at Mannampandal, Tamil Nadu during October, 2010 to January, 2011. The survey methods involved careful visual estimation of amphibians in all the possible microhabitats present in the study area. Five different microhabitat categories were selected, viz., leaf litters, temporary water pools, tree holes, shrubs & grasses (ground vegetation, pathways, open floor & outer edges of buildings. We identified 26 species of reptiles and 14 species of amphibians. There was a significant difference found among the amphibian species occupying in different microhabitats. Species diversity was calculated, Shanon-Wiener H'= 1.55. The high niche overlap was found between Duttaphrynus scaber and Uperodon systoma followed by Fejervarya sp. and Sphaerotheca breviceps. The present study on amphibian community is just a representation to show the microhabitat occupancy and adjustment by the amphibians in human settlements and competition among them as, spatial resource partitioning.

  4. Diversity and abundance of amphibian species in the Guguftu highland and Chefa wetland, Amhara Regional State, Ethiopia

    Institute of Scientific and Technical Information of China (English)

    Abeje Kassie Teme; Mengistu Wale Mollaleign; Asersie MekonnenAregie

    2016-01-01

    Objective: To describe the population status, abundance and diversity of amphibians found in Guguftu highland and Chefa wetland. Methods: The present study dealed with amphibian diversity at Guguftu highland and Chefa wetland during the period of August 2015 to September 2015. Transect line and visual encounter survey methods were used in careful visual estimation and amphibians were recorded in all possible habitats of the study area. Results: The total of 251 individuals of amphibians within 12 species grouped into 5 families were recorded in the Guguftu highland and Chefa wetland. Chefa wetland had the highest species abundance as well as richness with a total of 231 individuals falling in 11 species. Conclusions: This study reveals that the Chefa wetland is rich in amphibian diversity and supports many more species. Further studies are needed on molecular basis, population structure, habitat use by amphibians for better understanding and also imposing several conservation strategies in Chefa wetland.

  5. Pathogen Phytosensing: Plants to Report Plant Pathogens

    Directory of Open Access Journals (Sweden)

    C. Neal Stewart

    2008-04-01

    Full Text Available Real-time systems that provide evidence of pathogen contamination in crops can be an important new line of early defense in agricultural centers. Plants possess defense mechanisms to protect against pathogen attack. Inducible plant defense is controlled by signal transduction pathways, inducible promoters and cis-regulatory elements corresponding to key genes involved in defense, and pathogen-specific responses. Identified inducible promoters and cis-acting elements could be utilized in plant sentinels, or ‘phytosensors’, by fusing these to reporter genes to produce plants with altered phenotypes in response to the presence of pathogens. Here, we have employed cis-acting elements from promoter regions of pathogen inducible genes as well as those responsive to the plant defense signal molecules salicylic acid, jasmonic acid, and ethylene. Synthetic promoters were constructed by combining various regulatory elements supplemented with the enhancer elements from the Cauliflower mosaic virus (CaMV 35S promoter to increase basal level of the GUS expression. The inducibility of each synthetic promoter was first assessed in transient expression assays using Arabidopsis thaliana protoplasts and then examined for efficacy in stably transgenic Arabidopsis and tobacco plants. Histochemical and fluorometric GUS expression analyses showed that both transgenic Arabidopsis and tobacco plants responded to elicitor and phytohormone treatments with increased GUS expression when compared to untreated plants. Pathogen-inducible phytosensor studies were initiated by analyzing the sensitivity of the synthetic promoters against virus infection. Transgenic tobacco plants infected with Alfalfa mosaic virus showed an increase in GUS expression when compared to mock-inoculated control plants, whereas Tobacco mosaic virus infection caused no changes in GUS expression. Further research, using these transgenic plants against a range of different

  6. Diversity and dynamics of amphibians in floodplain ecosystems of the Samara river

    Directory of Open Access Journals (Sweden)

    O. V. Zhukov

    2015-04-01

    Full Text Available High emphasis is placed on amphibian importance as a buffer system, which has inhibiting effect on technogenic transformation of biogeocoenoses. Issues of the animals’ use in biological restoration, ecological rehabilitation of technogenic landscapes and in bioindication of environmental conditions are covered. Сhange in any component of the ecosystem leads to changing of the whole ecosystem. Anuran amphibians are extremely vulnerable to harmful effects of many factors of natural and anthropogenic origin. That is why, the destruction of forests, draining of wetlands, global climate change, global and local environmental pollution lead to complete disappearance or drastic decrease in numbers of many species of amphibians, reduction and fragmentation of their habitats, increased diversity and overall proportion of morphological anomalies in the natural populations of this group of animals. Recent studies of morphological changes in amphibians are increasingly being used to assess the state of the natural state of their populations and quality of their environment. In the biogeocenoses which are in the conditions of transformation amphibians have a number of advantages relative to their activity, the rate of reproduction, and euribiont character. Practical recommendations on protection and enrichment of the regional herpetofauna are given. The impact of the number and species diversity of amphibians on forest ecosystems of the steppe Dnieperin various conditions is assessed. Parametric entropy factors, the coefficient of biodiversity helped to identify the dominant species of amphibians. Taking into account the influence of predictors, there is the possibility to determine the number and species diversity of amphibians in the conditions of floodplain lime-ash forest. As a result of recording, the following species were caught: Pelobates fuscus (Laurenti, 1768, Rana arvalis Nilsson, 1842, Bufo bufo (Linnaeus, 1758, Bombina bombina (Linnaeus, 1758

  7. Understanding of the impact of chemicals on amphibians: a meta-analytic review.

    Science.gov (United States)

    Egea-Serrano, Andrés; Relyea, Rick A; Tejedo, Miguel; Torralva, Mar

    2012-07-01

    Many studies have assessed the impact of different pollutants on amphibians across a variety of experimental venues (laboratory, mesocosm, and enclosure conditions). Past reviews, using vote-counting methods, have described pollution as one of the major threats faced by amphibians. However, vote-counting methods lack strong statistical power, do not permit one to determine the magnitudes of effec