WorldWideScience

Sample records for amphibian pathogen batrachochytrium

  1. A fungal pathogen of amphibians, Batrachochytrium dendrobatidis, attenuates in pathogenicity with in vitro passages.

    Directory of Open Access Journals (Sweden)

    Penny F Langhammer

    Full Text Available Laboratory investigations into the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd, have accelerated recently, given the pathogen's role in causing the global decline and extinction of amphibians. Studies in which host animals were exposed to Bd have largely assumed that lab-maintained pathogen cultures retained the infective and pathogenic properties of wild isolates. Attenuated pathogenicity is common in artificially maintained cultures of other pathogenic fungi, but to date, it is unknown whether, and to what degree, Bd might change in culture. We compared zoospore production over time in two samples of a single Bd isolate having different passage histories: one maintained in artificial media for more than six years (JEL427-P39, and one recently thawed from cryopreserved stock (JEL427-P9. In a common garden experiment, we then exposed two different amphibian species, Eleutherodactylus coqui and Atelopus zeteki, to both cultures to test whether Bd attenuates in pathogenicity with in vitro passages. The culture with the shorter passage history, JEL427-P9, had significantly greater zoospore densities over time compared to JEL427-P39. This difference in zoospore production was associated with a difference in pathogenicity for a susceptible amphibian species, indicating that fecundity may be an important virulence factor for Bd. In the 130-day experiment, Atelopus zeteki frogs exposed to the JEL427-P9 culture experienced higher average infection intensity and 100% mortality, compared with 60% mortality for frogs exposed to JEL427-P39. This effect was not observed with Eleutherodactylus coqui, which was able to clear infection. We hypothesize that the differences in phenotypic performance observed with Atelopus zeteki are rooted in changes of the Bd genome. Future investigations enabled by this study will focus on the underlying mechanisms of Bd pathogenicity.

  2. A fungal pathogen of amphibians, Batrachochytrium dendrobatidis, attenuates in pathogenicity with in vitro passages.

    Science.gov (United States)

    Langhammer, Penny F; Lips, Karen R; Burrowes, Patricia A; Tunstall, Tate; Palmer, Crystal M; Collins, James P

    2013-01-01

    Laboratory investigations into the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), have accelerated recently, given the pathogen's role in causing the global decline and extinction of amphibians. Studies in which host animals were exposed to Bd have largely assumed that lab-maintained pathogen cultures retained the infective and pathogenic properties of wild isolates. Attenuated pathogenicity is common in artificially maintained cultures of other pathogenic fungi, but to date, it is unknown whether, and to what degree, Bd might change in culture. We compared zoospore production over time in two samples of a single Bd isolate having different passage histories: one maintained in artificial media for more than six years (JEL427-P39), and one recently thawed from cryopreserved stock (JEL427-P9). In a common garden experiment, we then exposed two different amphibian species, Eleutherodactylus coqui and Atelopus zeteki, to both cultures to test whether Bd attenuates in pathogenicity with in vitro passages. The culture with the shorter passage history, JEL427-P9, had significantly greater zoospore densities over time compared to JEL427-P39. This difference in zoospore production was associated with a difference in pathogenicity for a susceptible amphibian species, indicating that fecundity may be an important virulence factor for Bd. In the 130-day experiment, Atelopus zeteki frogs exposed to the JEL427-P9 culture experienced higher average infection intensity and 100% mortality, compared with 60% mortality for frogs exposed to JEL427-P39. This effect was not observed with Eleutherodactylus coqui, which was able to clear infection. We hypothesize that the differences in phenotypic performance observed with Atelopus zeteki are rooted in changes of the Bd genome. Future investigations enabled by this study will focus on the underlying mechanisms of Bd pathogenicity. PMID:24130895

  3. Detection of the emerging amphibian pathogens Batrachochytrium dendrobatidis and ranavirus in Russia

    Science.gov (United States)

    Reshetnikov, Andrey N.; Chestnut, Tara E.; Brunner, Jesse L.; Charles, Kaylene M.; Nebergall, Emily E.; Olson, Deanna H.

    2014-01-01

    In a population of the European common toad Bufo bufo from a rural pond in the region of Lake Glubokoe Regional Reserve in Moscow province, Russia, unexplained mass mortality events involving larvae and metamorphs have been observed over a monitoring period of >20 yr. We tested toads from this and a nearby site for the emerging amphibian pathogens Batrachochytrium dendrobatidis (Bd) and ranavirus (Rv). Both pathogens were detected, and at the rural pond site, with the above-noted losses and decline in toad breeding success, 40% of B. bufo metamorphs were Bd positive, 46% were Rv positive and 20% were co-infected with both pathogens. Toad metamorphs from a neighbouring water body were also Bd and Rv positive (25 and 55%, respectively). This is the first confirmation of these pathogens in Russia. Questions remain as to the origins of these pathogens in Russia and their roles in documented mass mortality events.

  4. Reptiles as potential vectors and hosts of the amphibian pathogen Batrachochytrium dendrobatidis in Panama.

    Science.gov (United States)

    Kilburn, Vanessa L; Ibáñez, Roberto; Green, David M

    2011-12-01

    Chytridiomycosis, the disease caused by Batrachochytrium dendrobatidis, is considered to be a disease exclusively of amphibians. However, B. dendrobatidis may also be capable of persisting in the environment, and non-amphibian vectors or hosts may contribute to disease transmission. Reptiles living in close proximity to amphibians and sharing similar ecological traits could serve as vectors or reservoir hosts for B. dendrobatidis, harbouring the organism on their skin without succumbing to disease. We surveyed for the presence of B. dendrobatidis DNA among 211 lizards and 8 snakes at 8 sites at varying elevations in Panama where the syntopic amphibians were at pre-epizootic, epizootic or post-epizootic stages of chytridiomycosis. Detection of B. dendrobatidis DNA was done using qPCR analysis. Evidence of the amphibian pathogen was present at varying intensities in 29 of 79 examined Anolis humilis lizards (32%) and 9 of 101 A. lionotus lizards (9%), and in one individual each of the snakes Pliocercus euryzonus, Imantodes cenchoa, and Nothopsis rugosus. In general, B. dendrobatidis DNA prevalence among reptiles was positively correlated with the infection prevalence among co-occurring anuran amphibians at any particular site (r = 0.88, p = 0.004). These reptiles, therefore, may likely be vectors or reservoir hosts for B. dendrobatidis and could serve as disease transmission agents. Although there is no evidence of B. dendrobatidis disease-induced declines in reptiles, cases of coincidence of reptile and amphibian declines suggest this potentiality. Our study is the first to provide evidence of non-amphibian carriers for B. dendrobatidis in a natural Neotropical environment.

  5. Re-isolating Batrachochytrium dendrobatidis from an amphibian host increases pathogenicity in a subsequent exposure.

    Directory of Open Access Journals (Sweden)

    Forrest M R Brem

    Full Text Available Controlled exposure experiments can be very informative, however, they are based on the assumption that pathogens maintained on artificial media under long-term storage retain the infective and pathogenic properties of the reproducing pathogen as it occurs in a host. We observed that JEL284, an in vitro cultured and maintained isolate of Batrachochytrium dendrobatidis (Bd, was becoming less infectious with successive uses. We hypothesized that passing an isolate propagated on artificial media through an amphibian host would make the isolate more infectious and pathogenic in subsequent exposures. To test our hypothesis, we used two discreet steps, a reisolation step (step 1 and a comparative exposure step (step 2. In step 1, we exposed eastern spadefoot toads, Scaphiopus holbrooki, to JEL284 and JEL197, another isolate that had been maintained in vitro for over six years. We then re-isolated JEL284 only from a successful infection and named this new isolate JEL284(FMBa. JEL197 did not infect any amphibians and, thus, did not proceed to step 2. In step 2, we compared infectivity and pathogenicity (mortality and survival time of JEL284 and JEL284(FMBa by exposing 54 naïve S. holbrooki to three treatments (JEL284, JEL284(FMBa, and negative control with 18 individuals per group. We found that JEL284(FMBa caused higher mortality and decreased survival time in infected individuals when compared to JEL284 and negative controls. Thus, our data show that pathogenicity of Bd can decrease when cultured successively in media only and can be partially restored by passage through an amphibian host. Therefore, we have demonstrated that pathogenicity shifts can occur rapidly in this pathogen. Given the potential for shifts in pathogenicity demonstrated here, we suspect Bd to have similar potential in natural populations. We suggest that, when possible, the use of freshly isolated or cryopreserved Bd would improve the quality of controlled exposure experiments

  6. Geographic distribution of the chytrid pathogen Batrachochytrium dendrobatidis among mountain amphibians along the Italian peninsula.

    Science.gov (United States)

    Zampiglia, Mauro; Canestrelli, Daniele; Chiocchio, Andrea; Nascetti, Giuseppe

    2013-11-25

    The amphibian chytrid pathogen Batrachochytrium dendrobatidis (Bd) is considered a major cause of amphibian population declines, particularly in montane areas. Here, we investigated the presence and distribution of Bd among populations of 3 mid- to high-altitude species spanning the entire Italian peninsula (486 individuals from 39 sites overall): the stream frog Rana italica, the fire salamander Salamandra salamandra gigliolii, and the alpine newt Mesotriton alpestris apuanus. We found Bd in all of the analyzed species. Despite the widespread distribution of the pathogen, its overall prevalence (6, 9 and 19%, respectively) was lower than previously reported for the endangered Apennine yellow-bellied toad Bombina pachypus (62.5%). Moreover, several populations of the species studied here were not infected, even at sites where Bd has been detected in other host species. When coupled with the lack of evidence for Bd-related mortalities in these species in peninsular Italy, these results suggest that mechanisms of resistance and/or tolerance are protecting populations of these species from the pathogenic activity of Bd. Nevertheless, in light of the dynamic pattern of Bd-host interactions reported in other studies, of Bd-related mortalities in at least 1 study species (S. s. salamandra) in other areas, and the ongoing climate changes in montane environments, we suggest that the occurrence of Bd should be considered a potential threat to the long-term persistence of these species, and urge the implementation of monitoring and conservation plans.

  7. Substrate-specific gene expression in Batrachochytrium dendrobatidis, the chytrid pathogen of amphibians.

    Directory of Open Access Journals (Sweden)

    Erica Bree Rosenblum

    Full Text Available Determining the mechanisms of host-pathogen interaction is critical for understanding and mitigating infectious disease. Mechanisms of fungal pathogenicity are of particular interest given the recent outbreaks of fungal diseases in wildlife populations. Our study focuses on Batrachochytrium dendrobatidis (Bd, the chytrid pathogen responsible for amphibian declines around the world. Previous studies have hypothesized a role for several specific families of secreted proteases as pathogenicity factors in Bd, but the expression of these genes has only been evaluated in laboratory growth conditions. Here we conduct a genome-wide study of Bd gene expression under two different nutrient conditions. We compare Bd gene expression profiles in standard laboratory growth media and in pulverized host tissue (i.e., frog skin. A large proportion of genes in the Bd genome show increased expression when grown in host tissue, indicating the importance of studying pathogens on host substrate. A number of gene classes show particularly high levels of expression in host tissue, including three families of secreted proteases (metallo-, serine- and aspartyl-proteases, adhesion genes, lipase-3 encoding genes, and a group of phylogenetically unusual crinkler-like effectors. We discuss the roles of these different genes as putative pathogenicity factors and discuss what they can teach us about Bd's metabolic targets, host invasion, and pathogenesis.

  8. Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Cheng, Tina L; Rovito, Sean M; Wake, David B; Vredenburg, Vance T

    2011-06-01

    Amphibians highlight the global biodiversity crisis because ∼40% of all amphibian species are currently in decline. Species have disappeared even in protected habitats (e.g., the enigmatic extinction of the golden toad, Bufo periglenes, from Costa Rica). The emergence of a fungal pathogen, Batrachochytrium dendrobatidis (Bd), has been implicated in a number of declines that have occurred in the last decade, but few studies have been able to test retroactively whether Bd emergence was linked to earlier declines and extinctions. We describe a noninvasive PCR sampling technique that detects Bd in formalin-preserved museum specimens. We detected Bd by PCR in 83-90% (n = 38) of samples that were identified as positive by histology. We examined specimens collected before, during, and after major amphibian decline events at established study sites in southern Mexico, Guatemala, and Costa Rica. A pattern of Bd emergence coincident with decline at these localities is revealed-the absence of Bd over multiple years at all localities followed by the concurrent emergence of Bd in various species at each locality during a period of population decline. The geographical and chronological emergence of Bd at these localities also indicates a southbound spread from southern Mexico in the early 1970s to western Guatemala in the 1980s/1990s and to Monteverde, Costa Rica by 1987. We find evidence of a historical "Bd epidemic wave" that began in Mexico and subsequently spread to Central America. We describe a technique that can be used to screen museum specimens from other amphibian decline sites around the world.

  9. Infection and transmission heterogeneity of a multi-host pathogen (Batrachochytrium dendrobatidis) within an amphibian community.

    Science.gov (United States)

    Fernández-Beaskoetxea, S; Bosch, J; Bielby, J

    2016-02-11

    The majority of parasites infect multiple hosts. As the outcome of the infection is different in each of them, most studies of wildlife disease focus on the few species that suffer the most severe consequences. However, the role that each host plays in the persistence and transmission of infection can be crucial to understanding the spread of a parasite and the risk it poses to the community. Current theory predicts that certain host species can modulate the infection in other species by amplifying or diluting both infection prevalence and infection intensity, both of which have implications for disease risk within those communities. The fungus Batrachochytrium dendrobatidis (Bd), the causal agent of the disease chytridiomycosis, has caused global amphibian population declines and extinctions. However, not all infected species are affected equally, and thus Bd is a good example of a multi-host pathogen that must ultimately be studied with a community approach. To test whether the common midwife toad Alytes obstetricans is a reservoir and possible amplifier of infection of other species, we used experimental approaches in captive and wild populations to determine the effect of common midwife toad larvae on infection of other amphibian species found in the Peñalara Massif, Spain. We observed that the most widely and heavily infected species, the common midwife toad, may be amplifying the infection loads in other species, all of which have different degrees of susceptibility to Bd infection. Our results have important implications for performing mitigation actions focused on potential 'amplifier' hosts and for better understanding the mechanisms of Bd transmission. PMID:26865231

  10. Infection and transmission heterogeneity of a multi-host pathogen (Batrachochytrium dendrobatidis) within an amphibian community.

    Science.gov (United States)

    Fernández-Beaskoetxea, S; Bosch, J; Bielby, J

    2016-02-11

    The majority of parasites infect multiple hosts. As the outcome of the infection is different in each of them, most studies of wildlife disease focus on the few species that suffer the most severe consequences. However, the role that each host plays in the persistence and transmission of infection can be crucial to understanding the spread of a parasite and the risk it poses to the community. Current theory predicts that certain host species can modulate the infection in other species by amplifying or diluting both infection prevalence and infection intensity, both of which have implications for disease risk within those communities. The fungus Batrachochytrium dendrobatidis (Bd), the causal agent of the disease chytridiomycosis, has caused global amphibian population declines and extinctions. However, not all infected species are affected equally, and thus Bd is a good example of a multi-host pathogen that must ultimately be studied with a community approach. To test whether the common midwife toad Alytes obstetricans is a reservoir and possible amplifier of infection of other species, we used experimental approaches in captive and wild populations to determine the effect of common midwife toad larvae on infection of other amphibian species found in the Peñalara Massif, Spain. We observed that the most widely and heavily infected species, the common midwife toad, may be amplifying the infection loads in other species, all of which have different degrees of susceptibility to Bd infection. Our results have important implications for performing mitigation actions focused on potential 'amplifier' hosts and for better understanding the mechanisms of Bd transmission.

  11. Distribution of the amphibian pathogen Batrachochytrium dendrobatidis in the Pacific Northwestern USA

    Science.gov (United States)

    Pearl, Christopher A.; Bull, E.L.; Green, D.E.; Bowerman, Jay; Adams, Michael J.; Hyatt, A.; Wente, W.

    2007-01-01

    Chytridiomycosis (infection by the fungus Batrachochytrium dendrobatidis) has been associated with amphibian declines in at least four continents. We report results of disease screens from 210 pond-breeding amphibians from 37 field sites in Oregon and Washington. We detected B. dendrobatidis on 28% of sampled amphibians, and we found a?Y 1 detection of B. dendrobatidis from 43% of sites. Four of seven species tested positive for B. dendrobatidis, including the Northern Red-Legged Frog (Rana aurora), Columbia Spotted Frog (Rana luteiventris), and Oregon Spotted Frog (Rana pretiosa). We also detected B. dendrobatidis in nonnative American Bullfrogs (Rana catesbeiana) from six sites in western and central Oregon. Our study and other recently published findings suggest that B. dendrobatidis has few geographic and host taxa limitations among North American anurans. Further research on virulence, transmissibility, persistence, and interactions with other stressors is needed to assess the potential impact of B. dendrobatidis on Pacific Northwestern amphibians.

  12. Differential efficiency among DNA extraction methods influences detection of the amphibian pathogen Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Bletz, M C; Rebollar, E A; Harris, R N

    2015-02-10

    Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is responsible for massive declines and extinctions of amphibians worldwide. The most common method for detecting Bd is quantitative polymerase chain reaction (qPCR). qPCR is a highly sensitive detection technique, but its ability to determine the presence and accurately quantify the amount of Bd is also contingent on the efficiency of the DNA extraction method used prior to PCR. Using qPCR, we compared the extraction efficiency of 3 different extraction methods commonly used for Bd detection across a range of zoospore quantities: PrepMan Ultra Reagent, Qiagen DNeasy Blood and Tissue Kit, and Mobio PowerSoil DNA Isolation Kit. We show that not all extraction methods led to successful detection of Bd for the low zoospore quantities and that there was variation in the estimated zoospore equivalents among the methods, which demonstrates that these methods have different extraction efficiencies. These results highlight the importance of considering the extraction method when comparing across studies. The Qiagen DNeasy kit had the highest efficiency. We also show that replicated estimates of less than 1 zoospore can result from known zoospore concentrations; therefore, such results should be considered when obtained from field data. Additionally, we discuss the implications of our findings for interpreting previous studies and for conducting future Bd surveys. It is imperative to use the most efficient DNA extraction method in tandem with the highly sensitive qPCR technique in order to accurately diagnose the presence of Bd as well as other pathogens.

  13. Occurrence of the amphibian pathogen Batrachochytrium dendrobatidis in the Pacific Northwest

    Science.gov (United States)

    Pearl, C.A.; Bull, E.L.; Green, D.E.; Bowerman, J.; Adams, M.J.; Hyatt, A.; Wente, W.H.

    2007-01-01

    Chytridiomycosis (infection by the fungus Batrachochytrium dendrobatidis) has been associated with amphibian declines in at least four continents. We report results of disease screens from 210 pond-breeding amphibians from 37 field sites in Oregon and Washington. We detected B. dendrobatidis on 28% of sampled amphibians, and we found ??? 1 detection of B. dendrobatidis from 43% of sites. Four of seven species tested positive for B. dendrobatidis, including the Northern Red-Legged Frog (Rana aurora), Columbia Spotted Frog (Rana luteiventris), and Oregon Spotted Frog (Rana pretiosa). We also detected B. dendrobatidis in nonnative American Bullfrogs (Rana catesbeiana) from six sites in western and central Oregon. Our study and other recently published findings suggest that B. dendrobatidis has few geographic and host taxa limitations among North American anurans. Further research on virulence, transmissibility, persistence, and interactions with other stressors is needed to assess the potential impact of B. dendrobatidis on Pacific Northwestern amphibians. Copyright 2007 Society for the Study of Amphibians and Reptiles.

  14. Widespread presence of the pathogenic fungus Batrachochytrium dendrobatidis in wild amphibian communities in Madagascar.

    Science.gov (United States)

    Bletz, Molly C; Rosa, Gonçalo M; Andreone, Franco; Courtois, Elodie A; Schmeller, Dirk S; Rabibisoa, Nirhy H C; Rabemananjara, Falitiana C E; Raharivololoniaina, Liliane; Vences, Miguel; Weldon, Ché; Edmonds, Devin; Raxworthy, Christopher J; Harris, Reid N; Fisher, Matthew C; Crottini, Angelica

    2015-02-26

    Amphibian chytridiomycosis, an emerging infectious disease caused by the fungus Batrachochytrium dendrobatidis (Bd), has been a significant driver of amphibian declines. While globally widespread, Bd had not yet been reported from within Madagascar. We document surveys conducted across the country between 2005 and 2014, showing Bd's first record in 2010. Subsequently, Bd was detected in multiple areas, with prevalence reaching up to 100%. Detection of Bd appears to be associated with mid to high elevation sites and to have a seasonal pattern, with greater detectability during the dry season. Lineage-based PCR was performed on a subset of samples. While some did not amplify with any lineage probe, when a positive signal was observed, samples were most similar to the Global Panzootic Lineage (BdGPL). These results may suggest that Bd arrived recently, but do not exclude the existence of a previously undetected endemic Bd genotype. Representatives of all native anuran families have tested Bd-positive, and exposure trials confirm infection by Bd is possible. Bd's presence could pose significant threats to Madagascar's unique "megadiverse" amphibians.

  15. In vitro sensitivity of the amphibian pathogen Batrachochytrium dendrobatidis to antifungal therapeutics.

    Science.gov (United States)

    Woodward, A; Berger, L; Skerratt, L F

    2014-10-01

    Chytridiomycosis, a skin disease caused by Batrachochytrium dendrobatidis, has caused amphibian declines worldwide. Amphibians can be treated by percutaneous application of antimicrobials, but knowledge of in vitro susceptibility is lacking. Using a modified broth microdilution method, we describe the in vitro sensitivity of two Australian isolates of B. dendrobatidis to six antimicrobial agents. Growth inhibition was observed, by measurement of optical density, with all agents. Minimum inhibitory concentrations (µg/ml; isolate 1/2) were - voriconazole 0.016/0.008; itraconazole 0.032/0.016; terbinafine 0.063/0.063; fluconazole 0.31/0.31; chloramphenicol 12.5/12.5; amphotericin B 12.5/6.25. Killing effects on zoospores were assessed by observing motility. Amphotericin B and terbinafine killed zoospores within 5 and 30 min depending on concentration, but other antimicrobials were not effective at the highest concentrations tested (100 µg/ml). This knowledge will help in drug selection and treatment optimization. As terbinafine was potent and has rapid effects, study of its pharmacokinetics, safety and efficacy is recommended.

  16. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures

    Science.gov (United States)

    Olson, Deanna H.; Blaustein, Andrew R.

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for

  17. A reservoir species for the emerging Amphibian pathogen Batrachochytrium dendrobatidis thrives in a landscape decimated by disease.

    Directory of Open Access Journals (Sweden)

    Natalie M M Reeder

    Full Text Available Chytridiomycosis, a disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd, is driving amphibian declines and extinctions in protected areas globally. The introduction of invasive reservoir species has been implicated in the spread of Bd but does not explain the appearance of the pathogen in remote protected areas. In the high elevation (>1500 m Sierra Nevada of California, the native Pacific chorus frog, Pseudacris regilla, appears unaffected by chytridiomycosis while sympatric species experience catastrophic declines. We investigated whether P. regilla is a reservoir of Bd by comparing habitat occupancy before and after a major Bd outbreak and measuring infection in P. regilla in the field, monitoring susceptibility of P. regilla to Bd in the laboratory, examining tissues with histology to determine patterns of infection, and using an innovative soak technique to determine individual output of Bd zoospores in water. Pseudacris regilla persists at 100% of sites where a sympatric species has been extirpated from 72% in synchrony with a wave of Bd. In the laboratory, P. regilla carried loads of Bd as much as an order of magnitude higher than loads found lethal to sympatric species. Histology shows heavy Bd infection in patchy areas next to normal skin, a possible mechanism for tolerance. The soak technique was 77.8% effective at detecting Bd in water and showed an average output of 68 zoospores per minute per individual. The results of this study suggest P. regilla should act as a Bd reservoir and provide evidence of a tolerance mechanism in a reservoir species.

  18. Persistence of the emerging pathogen Batrachochytrium dendrobatidis outside the amphibian host greatly increases the probability of host extinction.

    Science.gov (United States)

    Mitchell, Kate M; Churcher, Thomas S; Garner, Trenton W J; Fisher, Matthew C

    2008-02-01

    Pathogens do not normally drive their hosts to extinction; however, Batrachochytrium dendrobatidis, which causes amphibian chytridiomycosis, has been able to do so. Theory predicts that extinction can be caused by long-lived or saprobic free-living stages. The hypothesis that such a stage occurs in B. dendrobatidis is supported by the recent discovery of an apparently encysted form of the pathogen. To investigate the effect of a free-living stage of B. dendrobatidis on host population dynamics, a mathematical model was developed to describe the introduction of chytridiomycosis into a breeding population of Bufo bufo, parametrized from laboratory infection and transmission experiments. The model predicted that the longer that B. dendrobatidis was able to persist in water, either due to an increased zoospore lifespan or saprobic reproduction, the more likely it was that it could cause local B. bufo extinction (defined as decrease below a threshold level). Establishment of endemic B. dendrobatidis infection in B. bufo, with severe host population depression, was also possible, in agreement with field observations. Although this model is able to predict clear trends, more precise predictions will only be possible when the life history of B. dendrobatidis, including free-living stages of the life cycle, is better understood. PMID:18048287

  19. Host identity matters in the amphibian-Batrachochytrium dendrobatidis system: fine-scale patterns of variation in responses to a multi-host pathogen.

    Science.gov (United States)

    Gervasi, Stephanie; Gondhalekar, Carmen; Olson, Deanna H; Blaustein, Andrew R

    2013-01-01

    Species composition within ecological assemblages can drive disease dynamics including pathogen invasion, spread, and persistence. In multi-host pathogen systems, interspecific variation in responses to infection creates important context dependency when predicting the outcome of disease. Here, we examine the responses of three sympatric host species to a single fungal pathogen, Batrachochytrium dendrobatidis, which is associated with worldwide amphibian population declines and extinctions. Using an experimental approach, we show that amphibian species from three different genera display significant differences in patterns of pathgen-induced mortality as well as the magnitude and temporal dynamics of infection load. We exposed amphibians to one of four inoculation dose treatments at both larval and post- metamorphic stages and quantified infection load on day 8 and day 15 post-inoculation. Of the three species examined, only one (the Pacific treefrog; Pseudacris regilla) displayed "dose-dependent" responses; survival was reduced and infection load was elevated as inoculation dose was increased. We observed a reduction in survival but no differences in infection load across pathogen treatments in Cascades frogs (Rana cascadae). Western toads (Anaxyrus boreas) displayed differences in infection load but no differences in survival across pathogen treatments. Within species, responses to the pathogen varied with life history stage, and the most heavily infected species at the larval stage was different from the most heavily infected species at the post-metamorphic stage. Temporal changes in infection load were species and life history stage-specific. We show that variation in susceptibility to this multi-host pathogen is complex when viewed at a fine-scale and may be mediated through intrinsic host traits.

  20. Host identity matters in the amphibian-Batrachochytrium dendrobatidis system: fine-scale patterns of variation in responses to a multi-host pathogen.

    Directory of Open Access Journals (Sweden)

    Stephanie Gervasi

    Full Text Available Species composition within ecological assemblages can drive disease dynamics including pathogen invasion, spread, and persistence. In multi-host pathogen systems, interspecific variation in responses to infection creates important context dependency when predicting the outcome of disease. Here, we examine the responses of three sympatric host species to a single fungal pathogen, Batrachochytrium dendrobatidis, which is associated with worldwide amphibian population declines and extinctions. Using an experimental approach, we show that amphibian species from three different genera display significant differences in patterns of pathgen-induced mortality as well as the magnitude and temporal dynamics of infection load. We exposed amphibians to one of four inoculation dose treatments at both larval and post- metamorphic stages and quantified infection load on day 8 and day 15 post-inoculation. Of the three species examined, only one (the Pacific treefrog; Pseudacris regilla displayed "dose-dependent" responses; survival was reduced and infection load was elevated as inoculation dose was increased. We observed a reduction in survival but no differences in infection load across pathogen treatments in Cascades frogs (Rana cascadae. Western toads (Anaxyrus boreas displayed differences in infection load but no differences in survival across pathogen treatments. Within species, responses to the pathogen varied with life history stage, and the most heavily infected species at the larval stage was different from the most heavily infected species at the post-metamorphic stage. Temporal changes in infection load were species and life history stage-specific. We show that variation in susceptibility to this multi-host pathogen is complex when viewed at a fine-scale and may be mediated through intrinsic host traits.

  1. Why Does Amphibian Chytrid (Batrachochytrium dendrobatidis) Not Occur Everywhere? An Exploratory Study in Missouri Ponds

    OpenAIRE

    Strauss, Alex; Smith, Kevin G.

    2013-01-01

    The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), is a globally emerging pathogen that has caused widespread amphibian population declines, extirpations, and extinctions. However, Bd does not occur in all apparently suitable amphibian populations, even within regions where it is widespread, and it is often unclear why Bd occurs in some habitats but not others. In this study, we rigorously surveyed the amphibian and invertebrate biodiversity of 29 ponds in Missouri, screened r...

  2. First evidence of amphibian chytrid fungus (Batrachochytrium dendrobatidis) and ranavirus in Hong Kong amphibian trade.

    Science.gov (United States)

    Kolby, Jonathan E; Smith, Kristine M; Berger, Lee; Karesh, William B; Preston, Asa; Pessier, Allan P; Skerratt, Lee F

    2014-01-01

    The emerging infectious amphibian diseases caused by amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) and ranaviruses are responsible for global amphibian population declines and extinctions. Although likely to have been spread by a variety of activities, transcontinental dispersal appears closely associated with the international trade in live amphibians. The territory of Hong Kong reports frequent, high volume trade in amphibians, and yet the presence of Bd and ranavirus have not previously been detected in either traded or free-ranging amphibians. In 2012, a prospective surveillance project was conducted to investigate the presence of these pathogens in commercial shipments of live amphibians exported from Hong Kong International Airport. Analysis of skin (Bd) and cloacal (ranavirus) swabs by quantitative PCR detected pathogen presence in 31/265 (11.7%) and in 105/185 (56.8%) of amphibians, respectively. In addition, the water in which animals were transported tested positive for Bd, demonstrating the risk of pathogen pollution by the disposal of untreated wastewater. It is uncertain whether Bd and ranavirus remain contained within Hong Kong's trade sector, or if native amphibians have already been exposed. Rapid response efforts are now urgently needed to determine current pathogen distribution in Hong Kong, evaluate potential trade-associated exposure to free-ranging amphibians, and identify opportunities to prevent disease establishment.

  3. First evidence of amphibian chytrid fungus (Batrachochytrium dendrobatidis and ranavirus in Hong Kong amphibian trade.

    Directory of Open Access Journals (Sweden)

    Jonathan E Kolby

    Full Text Available The emerging infectious amphibian diseases caused by amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd and ranaviruses are responsible for global amphibian population declines and extinctions. Although likely to have been spread by a variety of activities, transcontinental dispersal appears closely associated with the international trade in live amphibians. The territory of Hong Kong reports frequent, high volume trade in amphibians, and yet the presence of Bd and ranavirus have not previously been detected in either traded or free-ranging amphibians. In 2012, a prospective surveillance project was conducted to investigate the presence of these pathogens in commercial shipments of live amphibians exported from Hong Kong International Airport. Analysis of skin (Bd and cloacal (ranavirus swabs by quantitative PCR detected pathogen presence in 31/265 (11.7% and in 105/185 (56.8% of amphibians, respectively. In addition, the water in which animals were transported tested positive for Bd, demonstrating the risk of pathogen pollution by the disposal of untreated wastewater. It is uncertain whether Bd and ranavirus remain contained within Hong Kong's trade sector, or if native amphibians have already been exposed. Rapid response efforts are now urgently needed to determine current pathogen distribution in Hong Kong, evaluate potential trade-associated exposure to free-ranging amphibians, and identify opportunities to prevent disease establishment.

  4. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians.

    Science.gov (United States)

    Martel, An; Spitzen-van der Sluijs, Annemarieke; Blooi, Mark; Bert, Wim; Ducatelle, Richard; Fisher, Matthew C; Woeltjes, Antonius; Bosman, Wilbert; Chiers, Koen; Bossuyt, Franky; Pasmans, Frank

    2013-09-17

    The current biodiversity crisis encompasses a sixth mass extinction event affecting the entire class of amphibians. The infectious disease chytridiomycosis is considered one of the major drivers of global amphibian population decline and extinction and is thought to be caused by a single species of aquatic fungus, Batrachochytrium dendrobatidis. However, several amphibian population declines remain unexplained, among them a steep decrease in fire salamander populations (Salamandra salamandra) that has brought this species to the edge of local extinction. Here we isolated and characterized a unique chytrid fungus, Batrachochytrium salamandrivorans sp. nov., from this salamander population. This chytrid causes erosive skin disease and rapid mortality in experimentally infected fire salamanders and was present in skin lesions of salamanders found dead during the decline event. Together with the closely related B. dendrobatidis, this taxon forms a well-supported chytridiomycete clade, adapted to vertebrate hosts and highly pathogenic to amphibians. However, the lower thermal growth preference of B. salamandrivorans, compared with B. dendrobatidis, and resistance of midwife toads (Alytes obstetricans) to experimental infection with B. salamandrivorans suggest differential niche occupation of the two chytrid fungi.

  5. Early 1900 s detection of Batrachochytrium dendrobatidis in Korean amphibians.

    Science.gov (United States)

    Fong, Jonathan J; Cheng, Tina L; Bataille, Arnaud; Pessier, Allan P; Waldman, Bruce; Vredenburg, Vance T

    2015-01-01

    The pathogenic fungus Batrachochytrium dendrobatidis (Bd) is a major conservation concern because of its role in decimating amphibian populations worldwide. We used quantitative PCR to screen 244 museum specimens from the Korean Peninsula, collected between 1911 and 2004, for the presence of Bd to gain insight into its history in Asia. Three specimens of Rugosa emeljanovi (previously Rana or Glandirana rugosa), collected in 1911 from Wonsan, North Korea, tested positive for Bd. Histology of these positive specimens revealed mild hyperkeratosis - a non-specific host response commonly found in Bd-infected frogs - but no Bd zoospores or zoosporangia. Our results indicate that Bd was present in Korea more than 100 years ago, consistent with hypotheses suggesting that Korean amphibians may be infected by endemic Asian Bd strains.

  6. Duplex real-time PCR for rapid simultaneous detection of Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans in Amphibian samples.

    Science.gov (United States)

    Blooi, M; Pasmans, F; Longcore, J E; Spitzen-van der Sluijs, A; Vercammen, F; Martel, A

    2013-12-01

    Chytridiomycosis is a lethal fungal disease contributing to declines and extinctions of amphibian species worldwide. The currently used molecular screening tests for chytridiomycosis fail to detect the recently described species Batrachochytrium salamandrivorans. In this study, we present a duplex real-time PCR that allows the simultaneous detection of B. salamandrivorans and Batrachochytrium dendrobatidis. With B. dendrobatidis- and B. salamandrivorans-specific primers and probes, detection of the two pathogens in amphibian samples is possible, with a detection limit of 0.1 genomic equivalent of zoospores of both pathogens per PCR. The developed real-time PCR shows high degrees of specificity and sensitivity, high linear correlations (r(2) > 0.995), and high amplification efficiencies (>94%) for B. dendrobatidis and B. salamandrivorans. In conclusion, the described duplex real-time PCR can be used to detect DNA of B. dendrobatidis and B. salamandrivorans with highly reproducible and reliable results.

  7. Presence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in native amphibians exported from Madagascar.

    Science.gov (United States)

    Kolby, Jonathan E

    2014-01-01

    The emerging infectious disease chytridiomycosis is driven by the spread of amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd), a highly virulent pathogen threatening global amphibian biodiversity. Although pandemic in distribution, previous intensive field surveys have failed to detect Bd in Madagascar, a biodiversity hotspot home to hundreds of endemic amphibian species. Due to the presence of Bd in nearby continental Africa and the ecological crisis that can be expected following establishment in Madagascar, enhanced surveillance is imperative. I sampled 565 amphibians commercially exported from Madagascar for the presence of Bd upon importation to the USA, both to assist early detection efforts and demonstrate the conservation potential of wildlife trade disease surveillance. Bd was detected in three animals via quantitative PCR: a single Heterixalus alboguttatus, Heterixalus betsileo, and Scaphiophryne spinosa. This is the first time Bd has been confirmed in amphibians from Madagascar and presents an urgent call to action. Our early identification of pathogen presence prior to widespread infection provides the necessary tools and encouragement to catalyze a swift, targeted response to isolate and eradicate Bd from Madagascar. If implemented before establishment occurs, an otherwise likely catastrophic decline in amphibian biodiversity may be prevented.

  8. Survey for the amphibian chytrid Batrachochytrium dendrobatidis in Hong Kong in native amphibians and in the international amphibian trade.

    Science.gov (United States)

    Rowley, Jodi J L; Chan, Simon Kin Fung; Tang, Wing Sze; Speare, Richard; Skerratt, Lee F; Alford, Ross A; Cheung, Ka Shing; Ho, Ching Yee; Campbell, Ruth

    2007-12-13

    Chytridiomycosis, caused by the pathogen Batrachochytrium dendrobatidis, is responsible for many amphibian declines and has been identified in wild amphibian populations on all continents where they exist, except for Asia. In order to assess whether B. dendrobatidis is present on the native amphibians of Hong Kong, we sampled wild populations of Amolops hongkongensis, Paa exilispinosa, P. spinosa and Rana chloronota during 2005-2006. Amphibians infected with B. dendrobatidis have been found in the international trade, so we also examined the extent and nature of the amphibian trade in Hong Kong during 2005-2006, and assessed whether B. dendrobatidis was present in imported amphibians. All 274 individuals of 4 native amphibian species sampled tested negative for B. dendrobatidis, giving an upper 95% confidence limit for prevalence of 1.3%. Approximately 4.3 million amphibians of 45 species from 11 countries were imported into Hong Kong via air over 12 mo; we did not detect B. dendrobatidis on any of 137 imported amphibians sampled. As B. dendrobatidis generally occurs at greater than 5% prevalence in infected populations during favorable environmental conditions, native amphibians in Hong Kong appear free of B. dendrobatidis, and may be at severe risk of impact if it is introduced. Until it is established that the pathogen is present in Hong Kong, management strategies should focus on preventing it from being imported and decreasing the risk of it escaping into the wild amphibian populations if imported. Further research is needed to determine the status of B. dendrobatidis in Hong Kong with greater certainty.

  9. Genetic evidence for a high diversity and wide distribution of endemic strains of the pathogenic chytrid fungus Batrachochytrium dendrobatidis in wild Asian amphibians.

    Science.gov (United States)

    Bataille, Arnaud; Fong, Jonathan J; Cha, Moonsuk; Wogan, Guinevere O U; Baek, Hae Jun; Lee, Hang; Min, Mi-Sook; Waldman, Bruce

    2013-08-01

    Population declines and extinctions of amphibians have been attributed to the chytrid fungus Batrachochytrium dendrobatidis (Bd), especially one globally emerging recombinant lineage ('Bd-GPL'). We used PCR assays that target the ribosomal internal transcribed spacer region (ITS) of Bd to determine the prevalence and genetic diversity of Bd in South Korea, where Bd is widely distributed but is not known to cause morbidity or mortality in wild populations. We isolated Korean Bd strains from native amphibians with low infection loads and compared them to known worldwide Bd strains using 19 polymorphic SNP and microsatellite loci. Bd prevalence ranged between 12.5 and 48.0%, in 11 of 17 native Korean species, and 24.7% in the introduced bullfrog Lithobates catesbeianus. Based on ITS sequence variation, 47 of the 50 identified Korean haplotypes formed a group closely associated with a native Brazilian Bd lineage, separated from the Bd-GPL lineage. However, multilocus genotyping of three Korean Bd isolates revealed strong divergence from both Bd-GPL and the native Brazilian Bd lineages. Thus, the ITS region resolves genotypes that diverge from Bd-GPL but otherwise generates ambiguous phylogenies. Our results point to the presence of highly diversified endemic strains of Bd across Asian amphibian species. The rarity of Bd-GPL-associated haplotypes suggests that either this lineage was introduced into Korea only recently or Bd-GPL has been outcompeted by native Bd strains. Our results highlight the need to consider possible complex interactions among native Bd lineages, Bd-GPL and their associated amphibian hosts when assessing the spread and impact of Bd-GPL on worldwide amphibian populations.

  10. Expanding Distribution of Lethal Amphibian Fungus Batrachochytrium salamandrivorans in Europe.

    Science.gov (United States)

    Spitzen-van der Sluijs, Annemarieke; Martel, An; Asselberghs, Johan; Bales, Emma K; Beukema, Wouter; Bletz, Molly C; Dalbeck, Lutz; Goverse, Edo; Kerres, Alexander; Kinet, Thierry; Kirst, Kai; Laudelout, Arnaud; Marin da Fonte, Luis F; Nöllert, Andreas; Ohlhoff, Dagmar; Sabino-Pinto, Joana; Schmidt, Benedikt R; Speybroeck, Jeroen; Spikmans, Frank; Steinfartz, Sebastian; Veith, Michael; Vences, Miguel; Wagner, Norman; Pasmans, Frank; Lötters, Stefan

    2016-07-01

    Emerging fungal diseases can drive amphibian species to local extinction. During 2010-2016, we examined 1,921 urodeles in 3 European countries. Presence of the chytrid fungus Batrachochytrium salamandrivorans at new locations and in urodeles of different species expands the known geographic and host range of the fungus and underpins its imminent threat to biodiversity.

  11. Qualitative risk analysis of introducing Batrachochytrium dendrobatidis to the UK through the importation of live amphibians.

    Science.gov (United States)

    Peel, Alison J; Hartley, Matt; Cunningham, Andrew A

    2012-03-20

    The international amphibian trade is implicated in the emergence and spread of the amphibian fungal disease chytridiomycosis, which has resulted in amphibian declines and extinctions globally. The establishment of the causal pathogen, Batrachochytrium dendrobatidis (Bd), in the UK could negatively affect the survival of native amphibian populations. In recognition of the ongoing threat that it poses to amphibians, Bd was recently included in the World Organisation for Animal Health Aquatic Animal Health Code, and therefore is in the list of international notifiable diseases. Using standardised risk analysis guidelines, we investigated the likelihood that Bd would be introduced to and become established in wild amphibians in the UK through the importation of live amphibians. We obtained data on the volume and origin of the amphibian trade entering the UK and detected Bd infection in amphibians being imported for the pet and private collection trade and also in amphibians already held in captive pet, laboratory and zoological collections. We found that current systems for recording amphibian trade into the UK underestimate the volume of non-European Union trade by almost 10-fold. We identified high likelihoods of entry, establishment and spread of Bd in the UK and the resulting major overall impact. Despite uncertainties, we determined that the overall risk estimation for the introduction of Bd to the UK through the importation of live amphibians is high and that risk management measures are required, whilst ensuring that negative effects on legal trade are minimised.

  12. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection

    OpenAIRE

    Jani, Andrea J.; Cheryl J Briggs

    2014-01-01

    Animals are inhabited by communities of microbes (the microbiome) that potentially interact with pathogens. Detailed studies of microbiome–pathogen interactions in nature are rare, and even when correlations are observed, determining causal relationships is challenging. The microbiome–pathogen relationship is of particular interest in the case of Batrachochytrium dendrobatidis, a chytrid fungus that infects the skin of amphibians and is causing amphibian declines worldwide. We documented a st...

  13. Amphibian chytrid fungus Batrachochytrium dendrobatidis in Cusuco National Park, Honduras.

    Science.gov (United States)

    Kolby, Jonathan E; Padgett-Flohr, Gretchen E; Field, Richard

    2010-11-01

    Amphibian population declines in Honduras have long been attributed to habitat degradation and pollution, but an increasing number of declines are now being observed from within the boundaries of national parks in pristine montane environments. The amphibian chytrid fungus Batrachochytrium dendrobatidis has been implicated in these declines and was recently documented in Honduras from samples collected in Pico Bonito National Park in 2003. This report now confirms Cusuco National Park, a protected cloud forest reserve with reported amphibian declines, to be the second known site of infection for Honduras. B. dendrobatidis infection was detected in 5 amphibian species: Craugastor rostralis, Duellmanohyla soralia, Lithobates maculata, Plectrohyla dasypus, and Ptychohyla hypomykter. D. soralia, P. dasypus, and P. hypomykter are listed as critically endangered in the IUCN Red List of Threatened Species and have severely fragmented or restricted distributions. Further investigations are necessary to determine whether observed infection levels indicate an active B. dendrobatidis epizootic with the potential to cause further population declines and extinction.

  14. Batrachochytrium dendrobatidis prevalence and haplotypes in domestic and imported pet amphibians in Japan.

    Science.gov (United States)

    Tamukai, Kenichi; Une, Yumi; Tominaga, Atsushi; Suzuki, Kazutaka; Goka, Koichi

    2014-05-13

    The international trade in amphibians is believed to have increased the spread of Batrachochytrium dendrobatidis (Bd), the fungal pathogen responsible for chytridiomycosis, which has caused a rapid decline in amphibian populations worldwide. We surveyed amphibians imported into Japan and those held in captivity for a long period or bred in Japan to clarify the Bd infection status. Samples were taken from 820 individuals of 109 amphibian species between 2008 and 2011 and were analyzed by a nested-PCR assay. Bd prevalence in imported amphibians was 10.3% (58/561), while it was 6.9% (18/259) in those in private collections and commercially bred amphibians in Japan. We identified the genotypes of this fungus using partial DNA sequences of the internal transcribed spacer (ITS) region. Sequencing of PCR products of all 76 Bd-positive samples revealed 11 haplotypes of the Bd ITS region. Haplotype A (DNA Data Bank of Japan accession number AB435211) was found in 90% (52/58) of imported amphibians. The results show that Bd is currently entering Japan via the international trade in exotic amphibians as pets, suggesting that the trade has indeed played a major role in the spread of Bd.

  15. Why does Amphibian Chytrid (Batrachochytrium dendrobatidis) not occur everywhere? An exploratory study in Missouri ponds.

    Science.gov (United States)

    Strauss, Alex; Smith, Kevin G

    2013-01-01

    The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), is a globally emerging pathogen that has caused widespread amphibian population declines, extirpations, and extinctions. However, Bd does not occur in all apparently suitable amphibian populations, even within regions where it is widespread, and it is often unclear why Bd occurs in some habitats but not others. In this study, we rigorously surveyed the amphibian and invertebrate biodiversity of 29 ponds in Missouri, screened resident amphibian larvae (Rana (Lithobates) sp.) for Bd infection, and characterized the aquatic physiochemical environment of each pond (temperature pH, conductivity, nitrogen, phosphorus, and chlorophyll-a). Our goal was to generate hypotheses toward answering the question, "Why does Bd not occur in all apparently suitable habitats?" Bd occurred in assayed amphibians in 11 of the 29 ponds in our study area (38% of ponds). We found no significant relationship between any single biotic or abiotic variable and presence of Bd. However, multivariate analyses (nonmetric multidimensional scaling and permutational tests of dispersion) revealed that ponds in which Bd occurred were a restricted subset of all ponds in terms of amphibian community structure, macroinvertebrate community structure, and pond physiochemistry. In other words, Bd ponds from 6 different conservation areas were more similar to each other than would be expected based on chance. The results of a structural equation model suggest that patterns in the occurrence of Bd among ponds are primarily attributable to variation in macroinvertebrate community structure. When combined with recent results showing that Bd can infect invertebrates as well as amphibians, we suggest that additional research should focus on the role played by non-amphibian biota in determining the presence, prevalence, and pathogenicity of Bd in amphibian populations.

  16. Why does Amphibian Chytrid (Batrachochytrium dendrobatidis not occur everywhere? An exploratory study in Missouri ponds.

    Directory of Open Access Journals (Sweden)

    Alex Strauss

    Full Text Available The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd, is a globally emerging pathogen that has caused widespread amphibian population declines, extirpations, and extinctions. However, Bd does not occur in all apparently suitable amphibian populations, even within regions where it is widespread, and it is often unclear why Bd occurs in some habitats but not others. In this study, we rigorously surveyed the amphibian and invertebrate biodiversity of 29 ponds in Missouri, screened resident amphibian larvae (Rana (Lithobates sp. for Bd infection, and characterized the aquatic physiochemical environment of each pond (temperature pH, conductivity, nitrogen, phosphorus, and chlorophyll-a. Our goal was to generate hypotheses toward answering the question, "Why does Bd not occur in all apparently suitable habitats?" Bd occurred in assayed amphibians in 11 of the 29 ponds in our study area (38% of ponds. We found no significant relationship between any single biotic or abiotic variable and presence of Bd. However, multivariate analyses (nonmetric multidimensional scaling and permutational tests of dispersion revealed that ponds in which Bd occurred were a restricted subset of all ponds in terms of amphibian community structure, macroinvertebrate community structure, and pond physiochemistry. In other words, Bd ponds from 6 different conservation areas were more similar to each other than would be expected based on chance. The results of a structural equation model suggest that patterns in the occurrence of Bd among ponds are primarily attributable to variation in macroinvertebrate community structure. When combined with recent results showing that Bd can infect invertebrates as well as amphibians, we suggest that additional research should focus on the role played by non-amphibian biota in determining the presence, prevalence, and pathogenicity of Bd in amphibian populations.

  17. Terrestrial Dispersal and Potential Environmental Transmission of the Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis.

    Directory of Open Access Journals (Sweden)

    Jonathan E Kolby

    Full Text Available Dispersal and exposure to amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd is not confined to the aquatic habitat, but little is known about pathways that facilitate exposure to wild terrestrial amphibians that do not typically enter bodies of water. We explored the possible spread of Bd from an aquatic reservoir to terrestrial substrates by the emergence of recently metamorphosed infected amphibians and potential deposition of Bd-positive residue on riparian vegetation in Cusuco National Park, Honduras (CNP. Amphibians and their respective leaf perches were both sampled for Bd presence and the pathogen was detected on 76.1% (35/46 of leaves where a Bd-positive frog had rested. Although the viability of Bd detected on these leaves cannot be discerned from our quantitative PCR results, the cool air temperature, closed canopy, and high humidity of this cloud forest environment in CNP is expected to encourage pathogen persistence. High prevalence of infection (88.5% detected in the recently metamorphosed amphibians and frequent shedding of Bd-positive residue on foliage demonstrates a pathway of Bd dispersal between aquatic and terrestrial habitats. This pathway provides the opportunity for environmental transmission of Bd among and between amphibian species without direct physical contact or exposure to an aquatic habitat.

  18. Baseline Population Inventory of Amphibians on the Mountain Longleaf National Wildlife Refuge and Screening for the Amphibian Disease Batrachochytrium dendrobatidis

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — From July of 2012 to June of 2013, we conducted baseline inventories for amphibians and sampled for the disease Batrachochytrium dendrobatidis on the Mountain...

  19. Endemic and introduced haplotypes of Batrachochytrium dendrobatidis in Japanese amphibians: sink or source?

    Science.gov (United States)

    Fisher, Matthew C

    2009-12-01

    The global emergence of the amphibian chytrid pathogen Batrachochytrium dendrobatidis (Bd) is one of the most compelling, and troubling, examples of a panzootic. Only discovered in 1998, Bd is now recognized as a proximate driver of global declines in amphibian diversity and is now widely acknowledged as a key threatening process for this ancient class of vertebrates. Moreover, Bd has become a member of a small group of highly virulent multihost pathogens that are known to have had effects on entire vertebrate communities and the ecosystem-level effects of Bd-driven amphibian declines are starting to emerge as a consequence of regional decreases in amphibian diversity. Despite the speed at which this species of aquatic chytrid has become a focus of research efforts, major questions still exist about where Bd originated, how it spreads, where it occurs and what are Bd's effects on populations and species inhabiting different regions and biomes. In this issue, Goka et al. (2009) make an important contribution by publishing the first nationwide surveillance for Bd in Asia. Although previous data had suggested that amphibians in Asia are largely uninfected by Bd, these surveys were limited in their extent and few firm conclusions could be drawn about the true extent of infection. Goka et al. herein describe a systematic surveillance of Japan for both native and exotic species in the wild, as well as amphibians housed in captivity, using a Bd-specific nested PCR reaction on a sample of over 2600 amphibians. Their results show that Bd is widely prevalent in native species across Japan in at least three of the islands that make up the archipelago, proving for the first time that Asia harbours Bd.

  20. Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus.

    Science.gov (United States)

    Olson, Deanna H; Aanensen, David M; Ronnenberg, Kathryn L; Powell, Christopher I; Walker, Susan F; Bielby, Jon; Garner, Trenton W J; Weaver, George; Fisher, Matthew C

    2013-01-01

    The rapid worldwide emergence of the amphibian pathogen Batrachochytrium dendrobatidis (Bd) is having a profound negative impact on biodiversity. However, global research efforts are fragmented and an overarching synthesis of global infection data is lacking. Here, we provide results from a community tool for the compilation of worldwide Bd presence and report on the analyses of data collated over a four-year period. Using this online database, we analysed: 1) spatial and taxonomic patterns of infection, including amphibian families that appear over- and under-infected; 2) relationships between Bd occurrence and declining amphibian species, including associations among Bd occurrence, species richness, and enigmatic population declines; and 3) patterns of environmental correlates with Bd, including climate metrics for all species combined and three families (Hylidae, Bufonidae, Ranidae) separately, at both a global scale and regional (U.S.A.) scale. These associations provide new insights for downscaled hypothesis testing. The pathogen has been detected in 52 of 82 countries in which sampling was reported, and it has been detected in 516 of 1240 (42%) amphibian species. We show that detected Bd infections are related to amphibian biodiversity and locations experiencing rapid enigmatic declines, supporting the hypothesis that greater complexity of amphibian communities increases the likelihood of emergence of infection and transmission of Bd. Using a global model including all sampled species, the odds of Bd detection decreased with increasing temperature range at a site. Further consideration of temperature range, rather than maximum or minimum temperatures, may provide new insights into Bd-host ecology. Whereas caution is necessary when interpreting such a broad global dataset, the use of our pathogen database is helping to inform studies of the epidemiology of Bd, as well as enabling regional, national, and international prioritization of conservation efforts. We

  1. Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus.

    Directory of Open Access Journals (Sweden)

    Deanna H Olson

    Full Text Available The rapid worldwide emergence of the amphibian pathogen Batrachochytrium dendrobatidis (Bd is having a profound negative impact on biodiversity. However, global research efforts are fragmented and an overarching synthesis of global infection data is lacking. Here, we provide results from a community tool for the compilation of worldwide Bd presence and report on the analyses of data collated over a four-year period. Using this online database, we analysed: 1 spatial and taxonomic patterns of infection, including amphibian families that appear over- and under-infected; 2 relationships between Bd occurrence and declining amphibian species, including associations among Bd occurrence, species richness, and enigmatic population declines; and 3 patterns of environmental correlates with Bd, including climate metrics for all species combined and three families (Hylidae, Bufonidae, Ranidae separately, at both a global scale and regional (U.S.A. scale. These associations provide new insights for downscaled hypothesis testing. The pathogen has been detected in 52 of 82 countries in which sampling was reported, and it has been detected in 516 of 1240 (42% amphibian species. We show that detected Bd infections are related to amphibian biodiversity and locations experiencing rapid enigmatic declines, supporting the hypothesis that greater complexity of amphibian communities increases the likelihood of emergence of infection and transmission of Bd. Using a global model including all sampled species, the odds of Bd detection decreased with increasing temperature range at a site. Further consideration of temperature range, rather than maximum or minimum temperatures, may provide new insights into Bd-host ecology. Whereas caution is necessary when interpreting such a broad global dataset, the use of our pathogen database is helping to inform studies of the epidemiology of Bd, as well as enabling regional, national, and international prioritization of conservation

  2. Delayed metamorphosis of amphibian larvae facilitates Batrachochytrium dendrobatidis transmission and persistence.

    Science.gov (United States)

    Medina, Daniel; Garner, Trenton W J; Carrascal, Luis María; Bosch, Jaime

    2015-12-01

    Highly virulent pathogens that cause host population declines confront the risk of fade-out, but if pathogen transmission dynamics are age-structured, pathogens can persist. Among other features of amphibian biology, variable larval developmental rates generate age-structured larval populations, which in theory can facilitate pathogen persistence. We investigated this possibility empirically in a population of Salamandra salamandra in Spain affected by Batrachochytrium dendrobatidis (Bd) at breeding sites that lacked alternative amphibian hosts. None of the adults presented infection by Bd. However, for the larvae, while environmental heterogeneity was the most important predictor of infection, the effect on infection dynamics was mediated by transmission from overwintered larvae to new larval recruits, which occurred only in permanent larval habitats. We suggest that interannual Bd maintenance in a host population that experiences mass mortality associated with infection can occur without an environmental reservoir or direct involvement of an alternative host in our study system. However the 2 aquatic habitat types that support intraspecific reservoirs, permanent streams and ponds, are not ideal habitats for long-term Bd maintenance, either due to poor transmission probability or low host survival, respectively. While intraspecific pathogen maintenance due to larval plasticity might be possible at our study sites, this transmission pattern is not without significant risk to the pathogen. The availability of alternative hosts nearby does indicate that permanent Bd fade-out is unlikely. PMID:26648101

  3. Batrachochytrium dendrobatidis in amphibians of Cameroon, including first records for caecilians.

    Science.gov (United States)

    Doherty-Bone, T M; Gonwouo, N L; Hirschfeld, M; Ohst, T; Weldon, C; Perkins, M; Kouete, M T; Browne, R K; Loader, S P; Gower, D J; Wilkinson, M W; Rödel, M O; Penner, J; Barej, M F; Schmitz, A; Plötner, J; Cunningham, A A

    2013-02-28

    Amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has been hypothesised to be an indigenous parasite of African amphibians. In Cameroon, however, previous surveys in one region (in the northwest) failed to detect this pathogen, despite the earliest African Bd having been recorded from a frog in eastern Cameroon, plus one recent record in the far southeast. To reconcile these contrasting results, we present survey data from 12 localities across 6 regions of Cameroon from anurans (n = 1052) and caecilians (n = 85) of ca. 108 species. Bd was detected in 124 amphibian hosts at 7 localities, including Mt. Oku, Mt. Cameroon, Mt. Manengouba and lowland localities in the centre and west of the country. None of the hosts were observed dead or dying. Infected amphibian hosts were not detected in other localities in the south and eastern rainforest belt. Infection occurred in both anurans and caecilians, making this the first reported case of infection in the latter order (Gymnophiona) of amphibians. There was no significant difference between prevalence and infection intensity in frogs and caecilians. We highlight the importance of taking into account the inhibition of diagnostic qPCR in studies on Bd, based on all Bd-positive hosts being undetected when screened without bovine serum albumin in the qPCR mix. The status of Bd as an indigenous, cosmopolitan amphibian parasite in Africa, including Cameroon, is supported by this work. Isolating and sequencing strains of Bd from Cameroon should now be a priority. Longitudinal host population monitoring will be required to determine the effects, if any, of the infection on amphibians in Cameroon.

  4. Presence and significance of chytrid fungus Batrachochytrium dendrobatidis and other amphibian pathogens at warm-water fish hatcheries in southeastern North America

    Science.gov (United States)

    Green, D. Earl; Dodd, C. Kenneth

    2007-01-01

    Amphibian populations and species are declining or disappearing from many regions throughout the world (Stuart et al. 2004). No single cause has been demonstrated, although a number of emerging infectious diseases have been suggested as primary etiologic agents (Berger et al. 1998; Daszak et al. 2003; Lips et al. 2006). Several factors, including climate change, parasite infestation or compromised immune systems may interact locally or regionally to threaten species and populations (Carey and Bryant 1995; Parris and Beaudoin 2004; Pounds et al. 2006). Still, the disease model of amphibian decline may not be universally applicable (Daszak et al. 2005; McCallum 2005).

  5. Prevalence of the pathogenic chytrid fungus, Batrachochytrium dendrobatidis, in an endangered population of northern leopard frogs, Rana pipiens

    OpenAIRE

    Govindarajulu Purnima; Houston Barb; Adama Doug; Voordouw Maarten J; Robinson John

    2010-01-01

    Abstract Background Emerging infectious diseases threaten naïve host populations with extinction. Chytridiomycosis, an emerging infectious disease of amphibians, is caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd) and has been linked to global declines in amphibians. Results We monitored the prevalence of Bd for four years in the Northern leopard frog, Rana pipiens, which is critically imperiled in British Columbia (BC), Canada. The prevalence of Bd initially increased and ...

  6. Pathogenic chytrid fungus Batrachochytrium dendrobatidis, but not B. salamandrivorans, detected on eastern hellbenders.

    Science.gov (United States)

    Bales, Emma K; Hyman, Oliver J; Loudon, Andrew H; Harris, Reid N; Lipps, Gregory; Chapman, Eric; Roblee, Kenneth; Kleopfer, John D; Terrell, Kimberly A

    2015-01-01

    Recent worldwide declines and extinctions of amphibian populations have been attributed to chytridiomycosis, a disease caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). Until recently, Bd was thought to be the only Batrachochytrium species that infects amphibians; however a newly described species, Batrachochytrium salamandrivorans (Bs), is linked to die-offs in European fire salamanders (Salamandra salamandra). Little is known about the distribution, host range, or origin of Bs. In this study, we surveyed populations of an aquatic salamander that is declining in the United States, the eastern hellbender (Cryptobranchus alleganiensis alleganiensis), for the presence of Bs and Bd. Skin swabs were collected from a total of 91 individuals in New York, Pennsylvania, Ohio, and Virginia, and tested for both pathogens using duplex qPCR. Bs was not detected in any samples, suggesting it was not present in these hellbender populations (0% prevalence, 95% confidence intervals of 0.0-0.04). Bd was found on 22 hellbenders (24% prevalence, 95% confidence intervals of 0.16 ≤ 0.24 ≤ 0.34), representing all four states. All positive samples had low loads of Bd zoospores (12.7 ± 4.9 S.E.M. genome equivalents) compared to other Bd susceptible species. More research is needed to determine the impact of Batrachochytrium infection on hellbender fitness and population viability. In particular, understanding how hellbenders limit Bd infection intensity in an aquatic environment may yield important insights for amphibian conservation. This study is among the first to evaluate the distribution of Bs in the United States, and is consistent with another, which failed to detect Bs in the U.S. Knowledge about the distribution, host-range, and origin of Bs may help control the spread of this pathogen, especially to regions of high salamander diversity, such as the eastern United States.

  7. Pathogenic chytrid fungus Batrachochytrium dendrobatidis, but not B. salamandrivorans, detected on eastern hellbenders.

    Directory of Open Access Journals (Sweden)

    Emma K Bales

    Full Text Available Recent worldwide declines and extinctions of amphibian populations have been attributed to chytridiomycosis, a disease caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd. Until recently, Bd was thought to be the only Batrachochytrium species that infects amphibians; however a newly described species, Batrachochytrium salamandrivorans (Bs, is linked to die-offs in European fire salamanders (Salamandra salamandra. Little is known about the distribution, host range, or origin of Bs. In this study, we surveyed populations of an aquatic salamander that is declining in the United States, the eastern hellbender (Cryptobranchus alleganiensis alleganiensis, for the presence of Bs and Bd. Skin swabs were collected from a total of 91 individuals in New York, Pennsylvania, Ohio, and Virginia, and tested for both pathogens using duplex qPCR. Bs was not detected in any samples, suggesting it was not present in these hellbender populations (0% prevalence, 95% confidence intervals of 0.0-0.04. Bd was found on 22 hellbenders (24% prevalence, 95% confidence intervals of 0.16 ≤ 0.24 ≤ 0.34, representing all four states. All positive samples had low loads of Bd zoospores (12.7 ± 4.9 S.E.M. genome equivalents compared to other Bd susceptible species. More research is needed to determine the impact of Batrachochytrium infection on hellbender fitness and population viability. In particular, understanding how hellbenders limit Bd infection intensity in an aquatic environment may yield important insights for amphibian conservation. This study is among the first to evaluate the distribution of Bs in the United States, and is consistent with another, which failed to detect Bs in the U.S. Knowledge about the distribution, host-range, and origin of Bs may help control the spread of this pathogen, especially to regions of high salamander diversity, such as the eastern United States.

  8. First survey for the amphibian chytrid fungus Batrachochytrium dendrobatidis in Connecticut (USA) finds widespread prevalence.

    Science.gov (United States)

    Richards-Hrdlicka, Kathryn L; Richardson, Jonathan L; Mohabir, Leon

    2013-02-28

    The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) is an emerging infectious fungal pathogen of amphibians and is linked to global population declines. Until now, there has only been 1 survey for the fungus in the northeastern USA, which focused primarily on northern New England. We tested for Bd in a large number of samples (916 individuals from 116 sites) collected throughout the state of Connecticut, representing 18 native amphibian species. In addition, 239 preserved wood frog Lithobates sylvaticus tadpoles from throughout the state were screened for the fungus. Bd presence was assessed in both the fresh field swabs and the preserved samples using a sensitive quantitative PCR assay. Our contemporary survey found widespread Bd prevalence throughout Connecticut, occurring in 14 species and in 28% of all sampled animals. No preserved L. sylvaticus specimens tested positive for the fungus. Two common species, bullfrogs R. catesbeiana and green frogs R. clamitans had particularly high infection rates (0.21-0.39 and 0.33-0.42, respectively), and given their wide distribution throughout the state, we suggest they may serve as sentinels for Bd occurrence in this region. Further analyses found that several other factors increase the likelihood of infection, including life stage, host sex, and host family. Within sites, ponds with ranids, especially green frogs, increased the likelihood of Bd prevalence. By studying Bd in populations not facing mass declines, the results from this study are an important contribution to our understanding of how some amphibian species and populations remain infected yet exhibit no signs of chytridiomycosis even when Bd is widely distributed. PMID:23446966

  9. First survey for the amphibian chytrid fungus Batrachochytrium dendrobatidis in Connecticut (USA) finds widespread prevalence.

    Science.gov (United States)

    Richards-Hrdlicka, Kathryn L; Richardson, Jonathan L; Mohabir, Leon

    2013-02-28

    The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) is an emerging infectious fungal pathogen of amphibians and is linked to global population declines. Until now, there has only been 1 survey for the fungus in the northeastern USA, which focused primarily on northern New England. We tested for Bd in a large number of samples (916 individuals from 116 sites) collected throughout the state of Connecticut, representing 18 native amphibian species. In addition, 239 preserved wood frog Lithobates sylvaticus tadpoles from throughout the state were screened for the fungus. Bd presence was assessed in both the fresh field swabs and the preserved samples using a sensitive quantitative PCR assay. Our contemporary survey found widespread Bd prevalence throughout Connecticut, occurring in 14 species and in 28% of all sampled animals. No preserved L. sylvaticus specimens tested positive for the fungus. Two common species, bullfrogs R. catesbeiana and green frogs R. clamitans had particularly high infection rates (0.21-0.39 and 0.33-0.42, respectively), and given their wide distribution throughout the state, we suggest they may serve as sentinels for Bd occurrence in this region. Further analyses found that several other factors increase the likelihood of infection, including life stage, host sex, and host family. Within sites, ponds with ranids, especially green frogs, increased the likelihood of Bd prevalence. By studying Bd in populations not facing mass declines, the results from this study are an important contribution to our understanding of how some amphibian species and populations remain infected yet exhibit no signs of chytridiomycosis even when Bd is widely distributed.

  10. Batrachochytrium dendrobatidis infection of amphibians in the Doñana National Park, Spain.

    Science.gov (United States)

    Hidalgo-Vila, Judit; Díaz-Paniagua, Carmen; Marchand, Marc A; Cunningham, Andrew A

    2012-03-20

    Amphibian chytridiomycosis, caused by infection with the non-hyphal, zoosporic chytrid fungus Batrachochytrium dendrobatidis (Bd), is an emerging infectious disease recognised as a cause of recent amphibian population declines and extinctions worldwide. The Doñana National Park (DNP) is located in southwestern Spain, a country with widespread Bd infection. This protected area has a great diversity of aquatic habitats that constitute important breeding habitats for 11 native amphibian species. We sampled 625 amphibians in December 2007 and February to March 2008, months that correspond to the early and intermediate breeding seasons for amphibians, respectively. We found 7 of 9 sampled species to be infected with Bd and found differences in prevalence between sampling periods. Although some amphibians tested had higher intensities of infection than others, all animals sampled were apparently healthy and, so far, there has been no evidence of either unusually high rates of mortality or amphibian population declines in the DNP.

  11. Spatial assessment of amphibian chytrid fungus (Batrachochytrium dendrobatidis in South Africa confirms endemic and widespread infection.

    Directory of Open Access Journals (Sweden)

    Jeanne Tarrant

    Full Text Available Chytridiomycosis has been identified as a major cause of global amphibian declines. Despite widespread evidence of Batrachochytrium dendrobatidis infection in South African frogs, sampling for this disease has not focused on threatened species, or whether this pathogen poses a disease risk to these species. This study assessed the occurrence of Bd-infection in South African Red List species. In addition, all known records of infection from South Africa were used to model the ecological niche of Bd to provide a better understanding of spatial patterns and associated disease risk. Presence and prevalence of Bd was determined through quantitative real-time PCR of 360 skin swab samples from 17 threatened species from 38 sites across the country. Average prevalence was 14.8% for threatened species, with pathogen load varying considerably between species. MaxEnt was used to model the predicted distribution of Bd based on 683 positive records for South Africa. The resultant probability threshold map indicated that Bd is largely restricted to the wet eastern and coastal regions of South Africa. A lack of observed adverse impacts on wild threatened populations supports the endemic pathogen hypothesis for southern Africa. However, all threatened species occur within the limits of the predicted distribution for Bd, exposing them to potential Bd-associated risk factors. Predicting pathogen distribution patterns and potential impact is increasingly important for prioritising research and guiding management decisions.

  12. Parallels in amphibian and bat declines from pathogenic fungi.

    Science.gov (United States)

    Eskew, Evan A; Todd, Brian D

    2013-03-01

    Pathogenic fungi have substantial effects on global biodiversity, and 2 emerging pathogenic species-the chytridiomycete Batrachochytrium dendrobatidis, which causes chytridiomycosis in amphibians, and the ascomycete Geomyces destructans, which causes white-nose syndrome in hibernating bats-are implicated in the widespread decline of their vertebrate hosts. We synthesized current knowledge for chytridiomycosis and white-nose syndrome regarding disease emergence, environmental reservoirs, life history characteristics of the host, and host-pathogen interactions. We found striking similarities between these aspects of chytridiomycosis and white-nose syndrome, and the research that we review and propose should help guide management of future emerging fungal diseases.

  13. Environmental determinants of recent endemism of Batrachochytrium dendrobatidis infections in amphibian assemblages in the absence of disease outbreaks.

    Science.gov (United States)

    Spitzen-Van Der Sluijs, Annemarieke; Martel, An; Hallmann, Caspar A; Bosman, Wilbert; Garner, Trenton W J; Van Rooij, Pascale; Jooris, Robert; Haesebrouck, Freddy; Pasmans, Frank

    2014-10-01

    The inconsistent distribution of large-scale infection mediated die-offs and the subsequent population declines of several animal species, urges us to understand how, when, and why species are affected by disease. It is often unclear when or under what conditions a pathogen constitutes a threat to a host. Often, variation of environmental conditions plays a role. Globally Batrachochytrium dendrobatidis (Bd) causes amphibian declines; however, host responses are inconsistent and this fungus appears equally capable of reaching a state of endemism and subsequent co-existence with native amphibian assemblages. We sought to identify environmental and temporal factors that facilitate host-pathogen coexistence in northern Europe. To do this, we used molecular diagnostics to examine archived and wild amphibians for infection and general linear mixed models to explore relationships between environmental variables and prevalence of infection in 5 well-sampled amphibian species. We first detected infection in archived animals collected in 1999, and infection was ubiquitous, but rare, throughout the study period (2008-2010). Prevalence of infection exhibited significant annual fluctuations. Despite extremely rare cases of lethal chytridiomycosis in A. obstetricans, Bd prevalence was uncorrelated with this species' population growth. Our results suggest context dependent and species-specific host susceptibility. Thus, we believe recent endemism of Bd coincides with environmentally driven Bd prevalence fluctuations that preclude the build-up of Bd infection beyond the critical threshold for large-scale mortality and host population crashes.

  14. Prevalence of the amphibian chytrid fungus (Batrachochytrium dendrobatidis) at Buenos Aires National Wildlife Refuge, Arizona, USA

    Science.gov (United States)

    Sigafus, Brent H.; Hossack, Blake R.; Muths, Erin L.; Schwalbe, Cecil R.

    2014-01-01

    Information on disease presence can be of use to natural resource managers, especially in areas supporting threatened and endangered species that occur coincidentally with species that are suspected vectors for disease. Ad hoc reports may be of limited utility (Muths et al. 2009), but a general sense of pathogen presence (or absence) can inform management directed at T&E species, especially in regions where disease is suspected to have caused population declines (Bradley et al. 2002). The Chiricahua Leopard Frog (Lithobates chiricahuensis), a species susceptible to infection by the amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) (Bradley et al. 2002), and the non-native, invasive American Bullfrog (L. catesbeianus), a suspected vector for chytridiomycosis (Schloegel et al. 2012, Gervasi et al. 2013), both occur at Buenos Aires National Wildlife Refuge (BANWR) and surrounding lands in southern Arizona. Efforts to eradicate the bullfrog from BANWR began in 1997 (Suhre, 2010). Eradication from the southern portion of BANWR was successful by 2008 but the bullfrog remains present at the Arivaca Cienega and in areas immediately adjacent to the refuge (Fig. 1). Curtailing the re-invasion of the bullfrog into BANWR will require vigilance as to ensure the health of Chiricahua Leopard Frog populations.

  15. Characterization of the first Batrachochytrium dendrobatidis isolate from the Colombian Andes, an amphibian biodiversity hotspot.

    Science.gov (United States)

    Flechas, S V; Medina, E M; Crawford, A J; Sarmiento, C; Cárdenas, M E; Amézquita, A; Restrepo, S

    2013-03-01

    The pathogenic chytrid fungus, Batrachochytrium dendrobatidis (Bd), constitutes a significant threat to more than 790 amphibian species occurring in Colombia. To date there is no molecular or morphological description of strains infecting Colombian populations. Here we report the genetic and morphological characterization of the first Colombian isolate of Bd (strain EV001). Our goals were threefold: (1) to characterize the morphology of EV001 using light and scanning electron microscopy, (2) to genotype this strain by direct sequencing of 17 polymorphic nuclear markers developed previously, and (3) to compare our findings with published reports on strains from other areas of the globe. We found that EV001 is morphologically consistent with previously described strains. Multi-locus genotyping suggested that EV001 is grouped genetically with Panamanian strains and is most similar to strain JEL203 isolated from a captive individual. This finding fills an important gap in our knowledge of Neotropical strains of Bd and provides a baseline for further evolutionary and functional analyses.

  16. Prevalence of the pathogenic chytrid fungus, Batrachochytrium dendrobatidis, in an endangered population of northern leopard frogs, Rana pipiens

    OpenAIRE

    Voordouw, Maarten J.; Adama, Doug; Houston, Barb; Govindarajulu, Purnima; Robinson, John

    2011-01-01

    Background Emerging infectious diseases threaten naïve host populations with extinction. Chytridiomycosis, an emerging infectious disease of amphibians, is caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd) and has been linked to global declines in amphibians. Results We monitored the prevalence of Bd for four years in the Northern leopard frog, Rana pipiens, which is critically imperiled in British Columbia (BC), Canada. The prevalence of Bd initially increased and then r...

  17. Immune defenses against Batrachochytrium dendrobatidis, a fungus linked to global amphibian declines, in the South African clawed frog, Xenopus laevis.

    Science.gov (United States)

    Ramsey, Jeremy P; Reinert, Laura K; Harper, Laura K; Woodhams, Douglas C; Rollins-Smith, Louise A

    2010-09-01

    Batrachochytrium dendrobatidis is a chytrid fungus that causes the lethal skin disease chytridiomycosis in amphibians. It is regarded as an emerging infectious disease affecting diverse amphibian populations in many parts of the world. Because there are few model amphibian species for immunological studies, little is known about immune defenses against B. dendrobatidis. We show here that the South African clawed frog, Xenopus laevis, is a suitable model for investigating immunity to this pathogen. After an experimental exposure, a mild infection developed over 20 to 30 days and declined by 45 days postexposure. Either purified antimicrobial peptides or mixtures of peptides in the skin mucus inhibited B. dendrobatidis growth in vitro. Skin peptide secretion was maximally induced by injection of norepinephrine, and this treatment resulted in sustained skin peptide depletion and increased susceptibility to infection. Sublethal X-irradiation of frogs decreased leukocyte numbers in the spleen and resulted in greater susceptibility to infection. Immunization against B. dendrobatidis induced elevated pathogen-specific IgM and IgY serum antibodies. Mucus secretions from X. laevis previously exposed to B. dendrobatidis contained significant amounts of IgM, IgY, and IgX antibodies that bind to B. dendrobatidis. These data strongly suggest that both innate and adaptive immune defenses are involved in the resistance of X. laevis to lethal B. dendrobatidis infections.

  18. Filling a gap in the distribution of Batrachochytrium dendrobatidis: evidence in amphibians from northern China.

    Science.gov (United States)

    Zhu, Wei; Fan, Liqing; Soto-Azat, Claudio; Yan, Shaofei; Gao, Xu; Liu, Xuan; Wang, Supen; Liu, Conghui; Yang, Xuejiao; Li, Yiming

    2016-03-30

    Chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd) has been recognized as a major driver of amphibian declines worldwide. Central and northern Asia remain as the greatest gap in the knowledge of the global distribution of Bd. In China, Bd has recently been recorded from south and central regions, but areas in the north remain poorly surveyed. In addition, a recent increase in amphibian farming and trade has put this region at high risk for Bd introduction. To investigate this, we collected a total of 1284 non-invasive skin swabs from wild and captive anurans and caudates, including free-ranging, farmed, ornamental, and museum-preserved amphibians. Bd was detected at low prevalence (1.1%, 12 of 1073) in live wild amphibians, representing the first report of Bd infecting anurans from remote areas of northwestern China. We were unable to obtain evidence of the historical presence of Bd from museum amphibians (n = 72). Alarmingly, Bd was not detected in wild amphibians from the provinces of northeastern China (>700 individuals tested), but was widely present (15.1%, 21 of 139) in amphibians traded in this region. We suggest that urgent implementation of measures is required to reduce the possibility of further spread or inadvertent introduction of Bd to China. It is unknown whether Bd in northern China belongs to endemic and/or exotic genotypes, and this should be the focus of future research.

  19. Heterogeneous occupancy and density estimates of the pathogenic fungus Batrachochytrium dendrobatidis in waters of North America.

    Directory of Open Access Journals (Sweden)

    Tara Chestnut

    Full Text Available Biodiversity losses are occurring worldwide due to a combination of stressors. For example, by one estimate, 40% of amphibian species are vulnerable to extinction, and disease is one threat to amphibian populations. The emerging infectious disease chytridiomycosis, caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd, is a contributor to amphibian declines worldwide. Bd research has focused on the dynamics of the pathogen in its amphibian hosts, with little emphasis on investigating the dynamics of free-living Bd. Therefore, we investigated patterns of Bd occupancy and density in amphibian habitats using occupancy models, powerful tools for estimating site occupancy and detection probability. Occupancy models have been used to investigate diseases where the focus was on pathogen occurrence in the host. We applied occupancy models to investigate free-living Bd in North American surface waters to determine Bd seasonality, relationships between Bd site occupancy and habitat attributes, and probability of detection from water samples as a function of the number of samples, sample volume, and water quality. We also report on the temporal patterns of Bd density from a 4-year case study of a Bd-positive wetland. We provide evidence that Bd occurs in the environment year-round. Bd exhibited temporal and spatial heterogeneity in density, but did not exhibit seasonality in occupancy. Bd was detected in all months, typically at less than 100 zoospores L(-1. The highest density observed was ∼3 million zoospores L(-1. We detected Bd in 47% of sites sampled, but estimated that Bd occupied 61% of sites, highlighting the importance of accounting for imperfect detection. When Bd was present, there was a 95% chance of detecting it with four samples of 600 ml of water or five samples of 60 mL. Our findings provide important baseline information to advance the study of Bd disease ecology, and advance our understanding of amphibian exposure to free

  20. Heterogeneous occupancy and density estimates of the pathogenic fungus Batrachochytrium dendrobatidis in waters of North America

    Science.gov (United States)

    Chestnut, Tara E.; Anderson, Chauncey; Popa, Radu; Blaustein, Andrew R.; Voytek, Mary; Olson, Deanna H.; Kirshtein, Julie

    2014-01-01

    Biodiversity losses are occurring worldwide due to a combination of stressors. For example, by one estimate, 40% of amphibian species are vulnerable to extinction, and disease is one threat to amphibian populations. The emerging infectious disease chytridiomycosis, caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd), is a contributor to amphibian declines worldwide. Bd research has focused on the dynamics of the pathogen in its amphibian hosts, with little emphasis on investigating the dynamics of free-living Bd. Therefore, we investigated patterns of Bd occupancy and density in amphibian habitats using occupancy models, powerful tools for estimating site occupancy and detection probability. Occupancy models have been used to investigate diseases where the focus was on pathogen occurrence in the host. We applied occupancy models to investigate free-living Bd in North American surface waters to determine Bd seasonality, relationships between Bd site occupancy and habitat attributes, and probability of detection from water samples as a function of the number of samples, sample volume, and water quality. We also report on the temporal patterns of Bd density from a 4-year case study of a Bd-positive wetland. We provide evidence that Bd occurs in the environment year-round. Bd exhibited temporal and spatial heterogeneity in density, but did not exhibit seasonality in occupancy. Bd was detected in all months, typically at less than 100 zoospores L−1. The highest density observed was ∼3 million zoospores L−1. We detected Bd in 47% of sites sampled, but estimated that Bd occupied 61% of sites, highlighting the importance of accounting for imperfect detection. When Bd was present, there was a 95% chance of detecting it with four samples of 600 ml of water or five samples of 60 mL. Our findings provide important baseline information to advance the study of Bd disease ecology, and advance our understanding of amphibian exposure to free-living Bd in aquatic

  1. The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines.

    Science.gov (United States)

    Rollins-Smith, Louise A

    2009-08-01

    Amphibian species have experienced population declines and extinctions worldwide that are unprecedented in recent history. Many of these recent declines have been linked to a pathogenic skin fungus, Batrachochytrium dendrobatidis, or to iridoviruses of the genus Ranavirus. One of the first lines of defense against pathogens that enter by way of the skin are antimicrobial peptides synthesized and stored in dermal granular glands and secreted into the mucus following alarm or injury. Here, I review what is known about the capacity of amphibian antimicrobial peptides from diverse amphibians to inhibit B. dendrobatidis or ranavirus infections. When multiple species were compared for the effectiveness of their in vitro antimicrobial peptides defenses against B. dendrobatidis, non-declining species of rainforest amphibians had more effective antimicrobial peptides than species in the same habitat that had recently experienced population declines. Further, there was a significant correlation between the effectiveness of the antimicrobial peptides and resistance of the species to experimental infection. These studies support the hypothesis that antimicrobial peptides are an important component of innate defenses against B. dendrobatidis. Some amphibian antimicrobial peptides inhibit ranavirus infections and infection of human T lymphocytes by the human immunodeficiency virus (HIV). An effective antimicrobial peptide defense against skin pathogens appears to depend on a diverse array of genes expressing antimicrobial peptides. The production of antimicrobial peptides may be regulated by signals from the pathogens. However, this defense must also accommodate potentially beneficial microbes on the skin that compete or inhibit growth of the pathogens. How this delicate balancing act is accomplished is an important area of future research.

  2. Unexpected Rarity of the Pathogen Batrachochytrium dendrobatidis in Appalachian Plethodon Salamanders: 1957–2011

    Science.gov (United States)

    Muletz, Carly; Caruso, Nicholas M.; Fleischer, Robert C.; McDiarmid, Roy W.; Lips, Karen R.

    2014-01-01

    Widespread population declines in terrestrial Plethodon salamanders occurred by the 1980s throughout the Appalachian Mountains, the center of global salamander diversity, with no evident recovery. We tested the hypothesis that the historic introduction and spread of the pathogenic fungus Batrachochytrium dendrobatidis (Bd) into the eastern US was followed by Plethodon population declines. We expected to detect elevated prevalence of Bd prior to population declines as observed for Central American plethodontids. We tested 1,498 Plethodon salamanders of 12 species (892 museum specimens, 606 wild individuals) for the presence of Bd, and tested 94 of those for Batrachochytrium salamandrivorans (Bs) and for ranavirus. Field samples were collected in 2011 from 48 field sites across a 767 km transect. Historic samples from museum specimens were collected at five sites with the greatest number and longest duration of collection (1957–987), four of which were sampled in the field in 2011. None of the museum specimens were positive for Bd, but four P. cinereus from field surveys were positive. The overall Bd prevalence from 1957–2011 for 12 Plethodon species sampled across a 757 km transect was 0.2% (95% CI 0.1–0.7%). All 94 samples were negative for Bs and ranavirus. We conclude that known amphibian pathogens are unlikely causes for declines in these Plethodon populations. Furthermore, these exceptionally low levels of Bd, in a region known to harbor Bd, may indicate that Plethodon specific traits limit Bd infection. PMID:25084159

  3. Unexpected rarity of the pathogen Batrachochytrium dendrobatidis in Appalachian Plethodon Salamanders: 1957-2011.

    Science.gov (United States)

    Muletz, Carly; Caruso, Nicholas M; Fleischer, Robert C; McDiarmid, Roy W; Lips, Karen R

    2014-01-01

    Widespread population declines in terrestrial Plethodon salamanders occurred by the 1980s throughout the Appalachian Mountains, the center of global salamander diversity, with no evident recovery. We tested the hypothesis that the historic introduction and spread of the pathogenic fungus Batrachochytrium dendrobatidis (Bd) into the eastern US was followed by Plethodon population declines. We expected to detect elevated prevalence of Bd prior to population declines as observed for Central American plethodontids. We tested 1,498 Plethodon salamanders of 12 species (892 museum specimens, 606 wild individuals) for the presence of Bd, and tested 94 of those for Batrachochytrium salamandrivorans (Bs) and for ranavirus. Field samples were collected in 2011 from 48 field sites across a 767 km transect. Historic samples from museum specimens were collected at five sites with the greatest number and longest duration of collection (1957-987), four of which were sampled in the field in 2011. None of the museum specimens were positive for Bd, but four P. cinereus from field surveys were positive. The overall Bd prevalence from 1957-2011 for 12 Plethodon species sampled across a 757 km transect was 0.2% (95% CI 0.1-0.7%). All 94 samples were negative for Bs and ranavirus. We conclude that known amphibian pathogens are unlikely causes for declines in these Plethodon populations. Furthermore, these exceptionally low levels of Bd, in a region known to harbor Bd, may indicate that Plethodon specific traits limit Bd infection.

  4. Unexpected rarity of the pathogen Batrachochytrium dendrobatidis in Appalachian Plethodon Salamanders: 1957-2011.

    Directory of Open Access Journals (Sweden)

    Carly Muletz

    Full Text Available Widespread population declines in terrestrial Plethodon salamanders occurred by the 1980s throughout the Appalachian Mountains, the center of global salamander diversity, with no evident recovery. We tested the hypothesis that the historic introduction and spread of the pathogenic fungus Batrachochytrium dendrobatidis (Bd into the eastern US was followed by Plethodon population declines. We expected to detect elevated prevalence of Bd prior to population declines as observed for Central American plethodontids. We tested 1,498 Plethodon salamanders of 12 species (892 museum specimens, 606 wild individuals for the presence of Bd, and tested 94 of those for Batrachochytrium salamandrivorans (Bs and for ranavirus. Field samples were collected in 2011 from 48 field sites across a 767 km transect. Historic samples from museum specimens were collected at five sites with the greatest number and longest duration of collection (1957-987, four of which were sampled in the field in 2011. None of the museum specimens were positive for Bd, but four P. cinereus from field surveys were positive. The overall Bd prevalence from 1957-2011 for 12 Plethodon species sampled across a 757 km transect was 0.2% (95% CI 0.1-0.7%. All 94 samples were negative for Bs and ranavirus. We conclude that known amphibian pathogens are unlikely causes for declines in these Plethodon populations. Furthermore, these exceptionally low levels of Bd, in a region known to harbor Bd, may indicate that Plethodon specific traits limit Bd infection.

  5. Contribution of Multiple Inter-Kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-Killing Chytrid, Batrachochytrium dendrobatidis

    Science.gov (United States)

    Sun, Baofa; Li, Tong; Xiao, Jinhua; Liu, Li; Zhang, Peng; Murphy, Robert W.; He, Shunmin; Huang, Dawei

    2016-01-01

    Amphibian populations are experiencing catastrophic declines driven by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Although horizontal gene transfer (HGT) facilitates the evolution and adaptation in many fungi by conferring novel function genes to the recipient fungi, inter-kingdom HGT in Bd remains largely unexplored. In this study, our investigation detects 19 bacterial genes transferred to Bd, including metallo-beta-lactamase and arsenate reductase that play important roles in the resistance to antibiotics and arsenates. Moreover, three probable HGT gene families in Bd are from plants and one gene family coding the ankyrin repeat-containing protein appears to come from oomycetes. The observed multi-copy gene families associated with HGT are probably due to the independent transfer events or gene duplications. Five HGT genes with extracellular locations may relate to infection, and some other genes may participate in a variety of metabolic pathways, and in doing so add important metabolic traits to the recipient. The evolutionary analysis indicates that all the transferred genes evolved under purifying selection, suggesting that their functions in Bd are similar to those of the donors. Collectively, our results indicate that HGT from diverse donors may be an important evolutionary driver of Bd, and improve its adaptations for infecting and colonizing host amphibians.

  6. Contribution of Multiple Inter-kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-killing Chytrid, Batrachochytrium dendrobatidis

    Directory of Open Access Journals (Sweden)

    Baofa Sun

    2016-08-01

    Full Text Available Amphibian populations are experiencing catastrophic declines driven by the fungal pathogen Batrachochytrium dendrobatidis (Bd. Although horizontal gene transfer (HGT facilitates the evolution and adaptation in many fungi by conferring novel function genes to the recipient fungi, inter-kingdom HGT in Bd remains largely unexplored. In this study, our investigation detects 19 bacterial genes transferred to Bd, including metallo-beta-lactamase and arsenate reductase that play important roles in the resistance to antibiotics and arsenates. Moreover, three probable HGT gene families in Bd are from plants and one gene family coding the ankyrin repeat-containing protein appears to come from oomycetes. The observed multi-copy gene families associated with HGT are probably due to the independent transfer events or gene duplications. Five HGT genes with extracellular locations may relate to infection, and some other genes may participate in a variety of metabolic pathways, and in doing so add important metabolic traits to the recipient. The evolutionary analysis indicates that all the transferred genes evolved under purifying selection, suggesting that their functions in Bd are similar to those of the donors. Collectively, our results indicate that HGT from diverse donors may be an important evolutionary driver of Bd, and improve its adaptations for infecting and colonizing host amphibians.

  7. Contribution of Multiple Inter-Kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-Killing Chytrid, Batrachochytrium dendrobatidis

    Science.gov (United States)

    Sun, Baofa; Li, Tong; Xiao, Jinhua; Liu, Li; Zhang, Peng; Murphy, Robert W.; He, Shunmin; Huang, Dawei

    2016-01-01

    Amphibian populations are experiencing catastrophic declines driven by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Although horizontal gene transfer (HGT) facilitates the evolution and adaptation in many fungi by conferring novel function genes to the recipient fungi, inter-kingdom HGT in Bd remains largely unexplored. In this study, our investigation detects 19 bacterial genes transferred to Bd, including metallo-beta-lactamase and arsenate reductase that play important roles in the resistance to antibiotics and arsenates. Moreover, three probable HGT gene families in Bd are from plants and one gene family coding the ankyrin repeat-containing protein appears to come from oomycetes. The observed multi-copy gene families associated with HGT are probably due to the independent transfer events or gene duplications. Five HGT genes with extracellular locations may relate to infection, and some other genes may participate in a variety of metabolic pathways, and in doing so add important metabolic traits to the recipient. The evolutionary analysis indicates that all the transferred genes evolved under purifying selection, suggesting that their functions in Bd are similar to those of the donors. Collectively, our results indicate that HGT from diverse donors may be an important evolutionary driver of Bd, and improve its adaptations for infecting and colonizing host amphibians. PMID:27630622

  8. Survival of the amphibian chytrid fungus Batrachochytrium dendrobatidis on bare hands and gloves: hygiene implications for amphibian handling.

    Science.gov (United States)

    Mendez, Diana; Webb, Rebecca; Berger, Lee; Speare, Rick

    2008-11-20

    Hygiene protocols for handling amphibians in the field and in laboratories have been proposed to decrease the transmission of chytridiomycosis caused by infection with the amphibian chytrid fungus Batrachochytrium dendrobatidis, which is responsible for global amphibian declines. However, these protocols are mainly based on theoretical principles. The aim of this study was to develop an evidence-based approach to amphibian handling hygiene protocols by testing the survival of B. dendrobatidis on human hands and various gloves. Bare or gloved human fingers were exposed to cultured zoospores and zoosporangia of B. dendrobatidis. Survival of B. dendrobatidis on hands and gloves was tested for up to 10 min post-exposure by inoculation onto tryptone/gelatin hydrolysate/lactose (TGhL) agar plates. The effects of repeated hand washings with water and with 70% ethanol and of washing gloves with water were also tested. Bare human skin demonstrated a fungicidal effect on B. dendrobatidis by 2 min and killed 100% of cells by 6 min, but this killing effect was reduced by repeated washing with water and ethanol. Nitrile gloves killed all B. dendrobatidis on contact, but washing in water decreased this effect. Latex and polyethylene gloves had no killing effect, and B. dendrobatidis survived for over 6 min. The killing effect of vinyl gloves varied with brands and batches. These results support the use of an unused pair of gloves for each new amphibian handled in either the field or the laboratory, and if this is not possible, bare hands are a preferable, although imperfect, alternative to continual use of the same pair of gloves.

  9. Germ tube mediated invasion of Batrachochytrium dendrobatidis in amphibian skin is host dependent.

    Directory of Open Access Journals (Sweden)

    Pascale Van Rooij

    Full Text Available Batrachochytrium dendrobatidis (Bd is the causative agent of chytridiomycosis, a fungal skin disease in amphibians and driver of worldwide amphibian declines.We focussed on the early stages of infection by Bd in 3 amphibian species with a differential susceptibility to chytridiomycosis. Skin explants of Alytes muletensis, Litoria caerulea and Xenopus leavis were exposed to Bd in an Ussing chamber for 3 to 5 days. Early interactions of Bd with amphibian skin were observed using light microscopy and transmission electron microscopy. To validate the observations in vitro, comparison was made with skin from experimentally infected frogs. Additional in vitro experiments were performed to elucidate the process of intracellular colonization in L. caerulea. Early interactions of Bd with amphibian skin are: attachment of zoospores to host skin, zoospore germination, germ tube development, penetration into skin cells, invasive growth in the host skin, resulting in the loss of host cell cytoplasm. Inoculation of A. muletensis and L. caerulea skin was followed within 24 h by endobiotic development, with sporangia located intracellularly in the skin. Evidence is provided of how intracellular colonization is established and how colonization by Bd proceeds to deeper skin layers. Older thalli develop rhizoid-like structures that spread to deeper skin layers, form a swelling inside the host cell to finally give rise to a new thallus. In X. laevis, interaction of Bd with skin was limited to an epibiotic state, with sporangia developing upon the skin. Only the superficial epidermis was affected. Epidermal cells seemed to be used as a nutrient source without development of intracellular thalli. The in vitro data agreed with the results obtained after experimental infection of the studied frog species. These data suggest that the colonization strategy of B. dendrobatidis is host dependent, with the extent of colonization most likely determined by inherent

  10. Presence and prevalence of Batrachochytrium dendrobatidis in commercial amphibians in Mexico City.

    Science.gov (United States)

    Galindo-Bustos, Miguel Angel; Hernandez-Jauregui, Dulce María Brousset; Cheng, Tina; Vredenburg, Vance; Parra-Olea, Gabriela

    2014-12-01

    In Mexico City, native and exotic amphibians are commonly sold through the pet trade. This study investigates the presence of Batrachochytrium dendrobatidis (Bd) in native amphibians being sold at two commercial markets and at a herpetarium in Mexico City. A total of 238 individuals (6 genera and 12 species) were tested for Bd using real-time polymerase chain reaction (PCR) analysis. There were 197 Bd-positive individuals (prevalence 82%) from five species of amphibians. Hyla eximia from the markets had very high Bd prevalence (100%; 76/76 and 99%; 88/89) but those from the herpetarium were Bd negative (0/12). Ambystoma mexicanum from the herpetarium also had a high Bd-positive prevalence (80%; 28/35). Though A. mexicanum is nearly extinct in the wild, a commercial market continues to flourish through the pet trade. Now that captive colonies of A. mexicanum are currently used for reintroduction programs, the authors recommend quarantine to reduce spread of Bd via movement of infected animals in the trade and between colonies and via disposal of wastewater from captive collections. PMID:25632670

  11. Presence and prevalence of Batrachochytrium dendrobatidis in commercial amphibians in Mexico City.

    Science.gov (United States)

    Galindo-Bustos, Miguel Angel; Hernandez-Jauregui, Dulce María Brousset; Cheng, Tina; Vredenburg, Vance; Parra-Olea, Gabriela

    2014-12-01

    In Mexico City, native and exotic amphibians are commonly sold through the pet trade. This study investigates the presence of Batrachochytrium dendrobatidis (Bd) in native amphibians being sold at two commercial markets and at a herpetarium in Mexico City. A total of 238 individuals (6 genera and 12 species) were tested for Bd using real-time polymerase chain reaction (PCR) analysis. There were 197 Bd-positive individuals (prevalence 82%) from five species of amphibians. Hyla eximia from the markets had very high Bd prevalence (100%; 76/76 and 99%; 88/89) but those from the herpetarium were Bd negative (0/12). Ambystoma mexicanum from the herpetarium also had a high Bd-positive prevalence (80%; 28/35). Though A. mexicanum is nearly extinct in the wild, a commercial market continues to flourish through the pet trade. Now that captive colonies of A. mexicanum are currently used for reintroduction programs, the authors recommend quarantine to reduce spread of Bd via movement of infected animals in the trade and between colonies and via disposal of wastewater from captive collections.

  12. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection.

    Science.gov (United States)

    Jani, Andrea J; Briggs, Cheryl J

    2014-11-25

    Symbiotic microbial communities may interact with infectious pathogens sharing a common host. The microbiome may limit pathogen infection or, conversely, an invading pathogen can disturb the microbiome. Documentation of such relationships during naturally occurring disease outbreaks is rare, and identifying causal links from field observations is difficult. This study documented the effects of an amphibian skin pathogen of global conservation concern [the chytrid fungus Batrachochytrium dendrobatidis (Bd)] on the skin-associated bacterial microbiome of the endangered frog, Rana sierrae, using a combination of population surveys and laboratory experiments. We examined covariation of pathogen infection and bacterial microbiome composition in wild frogs, demonstrating a strong and consistent correlation between Bd infection load and bacterial community composition in multiple R. sierrae populations. Despite the correlation between Bd infection load and bacterial community composition, we observed 100% mortality of postmetamorphic frogs during a Bd epizootic, suggesting that the relationship between Bd and bacterial communities was not linked to variation in resistance to mortal disease and that Bd infection altered bacterial communities. In a controlled experiment, Bd infection significantly altered the R. sierrae microbiome, demonstrating a causal relationship. The response of microbial communities to Bd infection was remarkably consistent: Several bacterial taxa showed the same response to Bd infection across multiple field populations and the laboratory experiment, indicating a somewhat predictable interaction between Bd and the microbiome. The laboratory experiment demonstrates that Bd infection causes changes to amphibian skin bacterial communities, whereas the laboratory and field results together strongly support Bd disturbance as a driver of bacterial community change during natural disease dynamics.

  13. Amphibian Symbiotic Bacteria Do Not Show a Universal Ability To Inhibit Growth of the Global Panzootic Lineage of Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Antwis, Rachael E; Preziosi, Richard F; Harrison, Xavier A; Garner, Trenton W J

    2015-06-01

    Microbiomes associated with multicellular organisms influence the disease susceptibility of hosts. The potential exists for such bacteria to protect wildlife from infectious diseases, particularly in the case of the globally distributed and highly virulent fungal pathogen Batrachochytrium dendrobatidis of the global panzootic lineage (B. dendrobatidis GPL), responsible for mass extinctions and population declines of amphibians. B. dendrobatidis GPL exhibits wide genotypic and virulence variation, and the ability of candidate probiotics to restrict growth across B. dendrobatidis isolates has not previously been considered. Here we show that only a small proportion of candidate probiotics exhibited broad-spectrum inhibition across B. dendrobatidis GPL isolates. Moreover, some bacterial genera showed significantly greater inhibition than others, but overall, genus and species were not particularly reliable predictors of inhibitory capabilities. These findings indicate that bacterial consortia are likely to offer a more stable and effective approach to probiotics, particularly if related bacteria are selected from genera with greater antimicrobial capabilities. Together these results highlight a complex interaction between pathogens and host-associated symbiotic bacteria that will require consideration in the development of bacterial probiotics for wildlife conservation. Future efforts to construct protective microbiomes should incorporate bacteria that exhibit broad-spectrum inhibition of B. dendrobatidis GPL isolates.

  14. Prevalence of the pathogenic chytrid fungus, Batrachochytrium dendrobatidis, in an endangered population of northern leopard frogs, Rana pipiens

    Directory of Open Access Journals (Sweden)

    Govindarajulu Purnima

    2010-03-01

    Full Text Available Abstract Background Emerging infectious diseases threaten naïve host populations with extinction. Chytridiomycosis, an emerging infectious disease of amphibians, is caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd and has been linked to global declines in amphibians. Results We monitored the prevalence of Bd for four years in the Northern leopard frog, Rana pipiens, which is critically imperiled in British Columbia (BC, Canada. The prevalence of Bd initially increased and then remained constant over the last three years of the study. Young of the year emerging from breeding ponds in summer were rarely infected with Bd. Some individuals cleared their Bd infections and the return rate between infected and uninfected individuals was not significantly different. Conclusions The BC population of R. pipiens appears to have evolved a level of resistance that allows it to co-exist with Bd. However, this small population of R. pipiens remains vulnerable to extinction.

  15. Populations of a susceptible amphibian species can grow despite the presence of a pathogenic chytrid fungus.

    Directory of Open Access Journals (Sweden)

    Ursina Tobler

    Full Text Available Disease can be an important driver of host population dynamics and epizootics can cause severe host population declines. Batrachochytrium dendrobatidis (Bd, the pathogen causing amphibian chytridiomycosis, may occur epizootically or enzootically and can harm amphibian populations in many ways. While effects of Bd epizootics are well documented, the effects of enzootic Bd have rarely been described. We used a state-space model that accounts for observation error to test whether population trends of a species highly susceptible to Bd, the midwife toad Alytes obstetricans, are negatively affected by the enzootic presence of the pathogen. Unexpectedly, Bd had no negative effect on population growth rates from 2002-2008. This suggests that negative effects of disease on individuals do not necessarily translate into negative effects at the population level. Populations of amphibian species that are susceptible to the emerging disease chytridiomycosis can persist despite the enzootic presence of the pathogen under current environmental conditions.

  16. Physiological responses of Brazilian amphibians to an enzootic infection of the chytrid fungus Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Bovo, Rafael P; Andrade, Denis V; Toledo, Luís Felipe; Longo, Ana V; Rodriguez, David; Haddad, Célio F B; Zamudio, Kelly R; Becker, C Guilherme

    2016-01-13

    Pathophysiological effects of clinical chytridiomycosis in amphibians include disorders of cutaneous osmoregulation and disruption of the ability to rehydrate, which can lead to decreased host fitness or mortality. Less attention has been given to physiological responses of hosts where enzootic infections of Batrachochytrium dendrobatidis (Bd) do not cause apparent population declines in the wild. Here, we experimentally tested whether an enzootic strain of Bd causes significant mortality and alters host water balance (evaporative water loss, EWL; skin resistance, R(s); and water uptake, WU) in individuals of 3 Brazilian amphibian species (Dendropsophus minutus, n = 19; Ischnocnema parva, n = 17; Brachycephalus pitanga, n = 15). Infections with enzootic Bd caused no significant mortality, but we found an increase in R(s) in 1 host species concomitant with a reduction in EWL. These results suggest that enzootic Bd infections can indeed cause sub-lethal effects that could lead to reduction of host fitness in Brazilian frogs and that these effects vary among species. Thus, our findings underscore the need for further assessment of physiological responses to Bd infections in different host species, even in cases of sub-clinical chytridiomycosis and long-term enzootic infections in natural populations.

  17. Physiological responses of Brazilian amphibians to an enzootic infection of the chytrid fungus Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Bovo, Rafael P; Andrade, Denis V; Toledo, Luís Felipe; Longo, Ana V; Rodriguez, David; Haddad, Célio F B; Zamudio, Kelly R; Becker, C Guilherme

    2016-01-13

    Pathophysiological effects of clinical chytridiomycosis in amphibians include disorders of cutaneous osmoregulation and disruption of the ability to rehydrate, which can lead to decreased host fitness or mortality. Less attention has been given to physiological responses of hosts where enzootic infections of Batrachochytrium dendrobatidis (Bd) do not cause apparent population declines in the wild. Here, we experimentally tested whether an enzootic strain of Bd causes significant mortality and alters host water balance (evaporative water loss, EWL; skin resistance, R(s); and water uptake, WU) in individuals of 3 Brazilian amphibian species (Dendropsophus minutus, n = 19; Ischnocnema parva, n = 17; Brachycephalus pitanga, n = 15). Infections with enzootic Bd caused no significant mortality, but we found an increase in R(s) in 1 host species concomitant with a reduction in EWL. These results suggest that enzootic Bd infections can indeed cause sub-lethal effects that could lead to reduction of host fitness in Brazilian frogs and that these effects vary among species. Thus, our findings underscore the need for further assessment of physiological responses to Bd infections in different host species, even in cases of sub-clinical chytridiomycosis and long-term enzootic infections in natural populations. PMID:26758658

  18. Amphibian chytrid fungus (Batrachochytrium dendrobatidis) in coastal and montane California, USA Anurans

    Science.gov (United States)

    Fellers, Gary M.; Cole, Rebecca A.; Reinitz, David M.; Kleeman, Patrick M.

    2011-01-01

    We found amphibian chytrid fungus (Bd = Batrachochytrium dendrobatidis) to be widespread within a coastalwatershed at Point Reyes National Seashore, California and within two high elevation watersheds at Yosemite NationalPark, California. Bd was associated with all six species that we sampled (Bufo boreas, B. canorus, Pseudacris regilla, Ranadraytonii, R. sierrae, and Lithobates catesbeianus). For those species sampled at 10 or more sites within a watershed, thepercentage of Bd-positive sites varied from a low of 20.7% for P. regilla at one Yosemite watershed to a high of 79.6% forP. regilla at the Olema watershed at Point Reyes. At Olema, the percent of Bd-positive water bodies declined each year ofour study (2005-2007). Because P. regilla was the only species found in all watersheds, we used that species to evaluatehabitat variables related to the sites where P. regilla was Bd-positive. At Olema, significant variables were year, length ofshoreline (perimeter), percentage cover of rooted vegetation, and water depth. At the two Yosemite watersheds, waterdepth, water temperature, and silt/mud were the most important covariates, though the importance of these three factorsdiffered between the two watersheds. The presence of Bd in species that are not declining suggests that some of theamphibians in our study were innately resistant to Bd, or had developed resistance after Bd became established.

  19. Do pathogens become more virulent as they spread? Evidence from the amphibian declines in Central America.

    Science.gov (United States)

    Phillips, Ben L; Puschendorf, Robert

    2013-09-01

    The virulence of a pathogen can vary strongly through time. While cyclical variation in virulence is regularly observed, directional shifts in virulence are less commonly observed and are typically associated with decreasing virulence of biological control agents through coevolution. It is increasingly appreciated, however, that spatial effects can lead to evolutionary trajectories that differ from standard expectations. One such possibility is that, as a pathogen spreads through a naive host population, its virulence increases on the invasion front. In Central America, there is compelling evidence for the recent spread of pathogenic Batrachochytrium dendrobatidis (Bd) and for its strong impact on amphibian populations. Here, we re-examine data on Bd prevalence and amphibian population decline across 13 sites from southern Mexico through Central America, and show that, in the initial phases of the Bd invasion, amphibian population decline lagged approximately 9 years behind the arrival of the pathogen, but that this lag diminished markedly over time. In total, our analysis suggests an increase in Bd virulence as it spread southwards, a pattern consistent with rapid evolution of increased virulence on Bd's invading front. The impact of Bd on amphibians might therefore be driven by rapid evolution in addition to more proximate environmental drivers.

  20. First detection of the amphibian chytrid fungus Batrachochytrium dendrobatidis in free-ranging populations of amphibians on mainland Asia: survey in South Korea.

    Science.gov (United States)

    Yang, HyoJin; Baek, HaeJun; Speare, Richard; Webb, Rebecca; Park, SunKyung; Kim, TaeHo; Lasater, Kelly C; Shin, SangPhil; Son, SangHo; Park, JaeHak; Min, MiSook; Kim, YoungJun; Na, Kijeong; Lee, Hang; Park, SeChang

    2009-09-01

    Chytridiomycosis, a disease that has caused amphibian population declines globally and elevated many species of anurans to endangered or threatened status, has recently been declared an internationally notifiable disease. Batrachochytrium dendrobatidis (Bd), the amphibian chytrid fungus causing this disease, has not been previously reported in Korea or on mainland Asia. Thirty-six frog specimens representing 7 species were collected from the wild in South Korea and examined for Bd using standard PCR. Bd was detected in 14 (38.8%) samples from 3 species (Bufo gargarizans, Hyla japonica, and Rana catesbiana). Skin sections from all 14 PCR-positive frogs were examined using 2 staining techniques: haematoxylin and eosin (H&E) and Bd immunoperoxidase (IPX). In histological sections, zoosporangia were found in 6 frogs, with lower sensitivity for H&E (21%) than for IPX (46%). Intensity of infection, based on histopathology, was low in all frogs. These results confirm that Bd is present in South Korea and, hence, on the Asian mainland. Studies are urgently required to determine the impact of chytridiomycosis on Korean amphibians, and to map the distribution of Bd in Korea and other Asian mainland countries.

  1. Effects of Biotic and Abiotic Setting on a Host-Pathogen Relationship: How Environmental and Community Characteristics Influence Infection Prevalence and Intensity of Amphibian Chytrid on California's Central Coast

    OpenAIRE

    Hemingway, Valentine

    2015-01-01

    In the face of swift anthropogenic change, it is essential to examine the broad ecological context for species of concern using a variety of approaches in order to understand their interactions in a natural context. Host-pathogen relationships offer a close interaction to examine how each are acted upon by biotic and abiotic conditions. Batrachochytrium dendrobatidis, an emerging infectious disease of amphibians, has been implicated with wholesale loss and marked declines in amphibian speci...

  2. Effects of Pesticide Mixtures on Host-Pathogen Dynamics of the Amphibian Chytrid Fungus.

    Science.gov (United States)

    Buck, Julia C; Hua, Jessica; Brogan, William R; Dang, Trang D; Urbina, Jenny; Bendis, Randall J; Stoler, Aaron B; Blaustein, Andrew R; Relyea, Rick A

    2015-01-01

    Anthropogenic and natural stressors often interact to affect organisms. Amphibian populations are undergoing unprecedented declines and extinctions with pesticides and emerging infectious diseases implicated as causal factors. Although these factors often co-occur, their effects on amphibians are usually examined in isolation. We hypothesized that exposure of larval and metamorphic amphibians to ecologically relevant concentrations of pesticide mixtures would increase their post-metamorphic susceptibility to the fungus Batrachochytrium dendrobatidis (Bd), a pathogen that has contributed to amphibian population declines worldwide. We exposed five anuran species (Pacific treefrog, Pseudacris regilla; spring peeper, Pseudacris crucifer; Cascades frog, Rana cascadae; northern leopard frog, Lithobates pipiens; and western toad, Anaxyrus boreas) from three families to mixtures of four common insecticides (chlorpyrifos, carbaryl, permethrin, and endosulfan) or herbicides (glyphosate, acetochlor, atrazine, and 2,4-D) or a control treatment, either as tadpoles or as newly metamorphic individuals (metamorphs). Subsequently, we exposed animals to Bd or a control inoculate after metamorphosis and compared survival and Bd load. Bd exposure significantly increased mortality in Pacific treefrogs, spring peepers, and western toads, but not in Cascades frogs or northern leopard frogs. However, the effects of pesticide exposure on mortality were negligible, regardless of the timing of exposure. Bd load varied considerably across species; Pacific treefrogs, spring peepers, and western toads had the highest loads, whereas Cascades frogs and northern leopard frogs had the lowest loads. The influence of pesticide exposure on Bd load depended on the amphibian species, timing of pesticide exposure, and the particular pesticide treatment. Our results suggest that exposure to realistic pesticide concentrations has minimal effects on Bd-induced mortality, but can alter Bd load. This result

  3. Effects of Pesticide Mixtures on Host-Pathogen Dynamics of the Amphibian Chytrid Fungus.

    Directory of Open Access Journals (Sweden)

    Julia C Buck

    Full Text Available Anthropogenic and natural stressors often interact to affect organisms. Amphibian populations are undergoing unprecedented declines and extinctions with pesticides and emerging infectious diseases implicated as causal factors. Although these factors often co-occur, their effects on amphibians are usually examined in isolation. We hypothesized that exposure of larval and metamorphic amphibians to ecologically relevant concentrations of pesticide mixtures would increase their post-metamorphic susceptibility to the fungus Batrachochytrium dendrobatidis (Bd, a pathogen that has contributed to amphibian population declines worldwide. We exposed five anuran species (Pacific treefrog, Pseudacris regilla; spring peeper, Pseudacris crucifer; Cascades frog, Rana cascadae; northern leopard frog, Lithobates pipiens; and western toad, Anaxyrus boreas from three families to mixtures of four common insecticides (chlorpyrifos, carbaryl, permethrin, and endosulfan or herbicides (glyphosate, acetochlor, atrazine, and 2,4-D or a control treatment, either as tadpoles or as newly metamorphic individuals (metamorphs. Subsequently, we exposed animals to Bd or a control inoculate after metamorphosis and compared survival and Bd load. Bd exposure significantly increased mortality in Pacific treefrogs, spring peepers, and western toads, but not in Cascades frogs or northern leopard frogs. However, the effects of pesticide exposure on mortality were negligible, regardless of the timing of exposure. Bd load varied considerably across species; Pacific treefrogs, spring peepers, and western toads had the highest loads, whereas Cascades frogs and northern leopard frogs had the lowest loads. The influence of pesticide exposure on Bd load depended on the amphibian species, timing of pesticide exposure, and the particular pesticide treatment. Our results suggest that exposure to realistic pesticide concentrations has minimal effects on Bd-induced mortality, but can alter Bd load

  4. Whether the weather drives patterns of endemic amphibian chytridiomycosis: a pathogen proliferation approach.

    Science.gov (United States)

    Murray, Kris A; Skerratt, Lee F; Garland, Stephen; Kriticos, Darren; McCallum, Hamish

    2013-01-01

    The pandemic amphibian disease chytridiomycosis often exhibits strong seasonality in both prevalence and disease-associated mortality once it becomes endemic. One hypothesis that could explain this temporal pattern is that simple weather-driven pathogen proliferation (population growth) is a major driver of chytridiomycosis disease dynamics. Despite various elaborations of this hypothesis in the literature for explaining amphibian declines (e.g., the chytrid thermal-optimum hypothesis) it has not been formally tested on infection patterns in the wild. In this study we developed a simple process-based model to simulate the growth of the pathogen Batrachochytrium dendrobatidis (Bd) under varying weather conditions to provide an a priori test of a weather-linked pathogen proliferation hypothesis for endemic chytridiomycosis. We found strong support for several predictions of the proliferation hypothesis when applied to our model species, Litoria pearsoniana, sampled across multiple sites and years: the weather-driven simulations of pathogen growth potential (represented as a growth index in the 30 days prior to sampling; GI30) were positively related to both the prevalence and intensity of Bd infections, which were themselves strongly and positively correlated. In addition, a machine-learning classifier achieved ~72% success in classifying positive qPCR results when utilising just three informative predictors 1) GI30, 2) frog body size and 3) rain on the day of sampling. Hence, while intrinsic traits of the individuals sampled (species, size, sex) and nuisance sampling variables (rainfall when sampling) influenced infection patterns obtained when sampling via qPCR, our results also strongly suggest that weather-linked pathogen proliferation plays a key role in the infection dynamics of endemic chytridiomycosis in our study system. Predictive applications of the model include surveillance design, outbreak preparedness and response, climate change scenario modelling and

  5. Whether the weather drives patterns of endemic amphibian chytridiomycosis: a pathogen proliferation approach.

    Directory of Open Access Journals (Sweden)

    Kris A Murray

    Full Text Available The pandemic amphibian disease chytridiomycosis often exhibits strong seasonality in both prevalence and disease-associated mortality once it becomes endemic. One hypothesis that could explain this temporal pattern is that simple weather-driven pathogen proliferation (population growth is a major driver of chytridiomycosis disease dynamics. Despite various elaborations of this hypothesis in the literature for explaining amphibian declines (e.g., the chytrid thermal-optimum hypothesis it has not been formally tested on infection patterns in the wild. In this study we developed a simple process-based model to simulate the growth of the pathogen Batrachochytrium dendrobatidis (Bd under varying weather conditions to provide an a priori test of a weather-linked pathogen proliferation hypothesis for endemic chytridiomycosis. We found strong support for several predictions of the proliferation hypothesis when applied to our model species, Litoria pearsoniana, sampled across multiple sites and years: the weather-driven simulations of pathogen growth potential (represented as a growth index in the 30 days prior to sampling; GI30 were positively related to both the prevalence and intensity of Bd infections, which were themselves strongly and positively correlated. In addition, a machine-learning classifier achieved ~72% success in classifying positive qPCR results when utilising just three informative predictors 1 GI30, 2 frog body size and 3 rain on the day of sampling. Hence, while intrinsic traits of the individuals sampled (species, size, sex and nuisance sampling variables (rainfall when sampling influenced infection patterns obtained when sampling via qPCR, our results also strongly suggest that weather-linked pathogen proliferation plays a key role in the infection dynamics of endemic chytridiomycosis in our study system. Predictive applications of the model include surveillance design, outbreak preparedness and response, climate change scenario

  6. Chytrid fungus acts as a generalist pathogen infecting species-rich amphibian families in Brazilian rainforests.

    Science.gov (United States)

    Valencia-Aguilar, Anyelet; Ruano-Fajardo, Gustavo; Lambertini, Carolina; da Silva Leite, Domingos; Toledo, Luís Felipe; Mott, Tamí

    2015-05-11

    The fungus Batrachochytrium dendrobatidis (Bd) is among the main causes of declines in amphibian populations. This fungus is considered a generalist pathogen because it infects several species and spreads rapidly in the wild. To date, Bd has been detected in more than 100 anuran species in Brazil, mostly in the southern portion of the Atlantic forest. Here, we report survey data from some poorly explored regions; these data considerably extend current information on the distribution of Bd in the northern Atlantic forest region. In addition, we tested the hypothesis that Bd is a generalist pathogen in this biome. We also report the first positive record for Bd in an anuran caught in the wild in Amazonia. In total, we screened 90 individuals (from 27 species), of which 39 individuals (from 22 species) were Bd-positive. All samples collected in Bahia (2 individuals), Pernambuco (3 individuals), Pará (1 individual), and Minas Gerais (1 individual) showed positive results for Bd. We found a positive correlation between anuran richness per family and the number of infected species in the Atlantic forest, supporting previous observations that Bd lacks strong host specificity; of 38% of the anuran species in the Atlantic forest that were tested for Bd infection, 25% showed positive results. The results of our study exemplify the pandemic and widespread nature of Bd infection in amphibians.

  7. First evidence of Batrachochytrium dendrobatidis in China: discovery of chytridiomycosis in introduced American bullfrogs and native amphibians in the Yunnan Province, China.

    Science.gov (United States)

    Bai, Changming; Garner, Trenton W J; Li, Yiming

    2010-08-01

    Although the chytrid fungus Batrachochytrium dendrobatidis (Bd), the etiological agent of amphibian chytridiomycosis, has been implicated in mass mortality and population declines on several continents around the world, there have been no reports on the presence of Bd infections in amphibians in China. We employed quantitative PCR and histological techniques to investigate the presence of Bd in introduced North American bullfrogs (Rana catesbeiana) (referred to hereafter as bullfrog) and native amphibians in bullfrog-invaded areas of the Yunnan Province, China. A total of 259 samples at five wild sites were collected between June and September in 2007 and 2008, including bullfrogs and four native amphibian species (Rana pleuraden, Rana chaochiaoensis, Odorrana andersonii, and Bombina maxima). In addition, 37 samples of adult bullfrogs were obtained from a food market. Bd infections were discovered in bullfrogs and three native amphibian species from all of the surveyed sites. Of the 39 Bd-positive samples, 35 were from wild-caught bullfrog tadpoles, postmetamorphic bullfrogs, R. pleuraden, R. chaochiaoensis, and O. andersonii, and four were from adult bullfrogs from the market. Our results provide the first evidence of the presence of Bd in Chinese amphibians, suggesting that native amphibian diversity in China is at risk from Bd. There is an urgent need to monitor the distribution of Bd in amphibians in China and understand the susceptibility of native amphibian species to chytridiomycosis. Strict regulations on the transportation of bullfrogs and the breeding of bullfrogs in markets and farms should be drafted in order to stop the spread of Bd by bullfrogs.

  8. Distribution and environmental limitations of an amphibian pathogen in the Rocky Mountains, USA

    Science.gov (United States)

    Muths, E.; Pilliod, D.S.; Livo, L.J.

    2008-01-01

    Amphibian populations continue to be imperiled by the chytrid fungus (Batrachochytrium dendrobatidis). Understanding where B. dendrobatidis (Bd) occurs and how it may be limited by environmental factors is critical to our ability to effectively conserve the amphibians affected by Bd. We sampled 1247 amphibians (boreal toads and surrogates) at 261 boreal toad (Bufo boreas) breeding sites (97 clusters) along an 11?? latitudinal gradient in the Rocky Mountains to determine the distribution of B. dendrobatidis and examine environmental factors, such as temperature and elevation, that might affect its distribution. The fungus was detected at 64% of all clusters and occurred across a range of elevations (1030-3550 m) and latitudes (37.6-48.6??) but we detected it in only 42% of clusters in the south (site elevations higher), compared to 84% of clusters in the north (site elevations lower). Maximum ambient temperature (daily high) explained much of the variation in Bd occurrence in boreal toad populations and thus perhaps limits the occurrence of the pathogen in the Rocky Mountains to areas where climatic conditions facilitate optimal growth of the fungus. This information has implications in global climate change scenarios where warming temperatures may facilitate the spread of disease into previously un- or little-affected areas (i.e., higher elevations). This study provides the first regional-level, field-based effort to examine the relationship of environmental and geographic factors to the distribution of B. dendrobatidis in North America and will assist managers to focus on at-risk populations as determined by the local temperature regimes, latitude and elevation.

  9. Diversity of Andean amphibians of the Tamá National Natural Park in Colombia: a survey for the presence of Batrachochytrium dendrobatidis

    Directory of Open Access Journals (Sweden)

    Acevedo, A. A.

    2016-01-01

    Full Text Available Changes in diversity and possible decreases in populations of amphibians have not yet been determined in many areas in the Andes. This study aimed to develop an inventory of the biodiversity of amphibians in the Andean areas of the Tamá National Natural Park (Tamá NNP and to evaluate the patterns of infection by Batrachochytrium dendrobatidis (Bd in preserved and degraded areas. We performed samplings focused on three habitats (forest, open areas and streams in four localities from 2,000 to 3,200 m in altitude. Fourteen species were recorded, 12 of which were positive for Bd. A total of 541 individuals were diagnosed and 100 were positive. Our analyses showed that preserved areas play an important role in keeping many individuals Bd–free as compared to those in degraded areas. This was the first study to evaluate diversity and infection by Bd in the northeast region of Colombia. Our findings may help improve our knowledge of the diversity of amphibian species in the area and facilitate the implementation of action plans to mitigate the causes associated with the decrease in amphibian populations.

  10. Micro-Eukaryote Diversity in Freshwater Ponds That Harbor the Amphibian Pathogen "Batrachochytrium Dendrobatidis" ("Bd")

    Science.gov (United States)

    Lauer, Antje; McConnel, Lonnie; Singh, Navdeep

    2012-01-01

    We designed a microbiology project that fully engaged undergraduate biology students, high school students, and their teachers in a summer research program as part of the Research Education Vitalizing Science University Program conducted at California State University Bakersfield. Modern molecular biological methods and microscopy were used to…

  11. 蟾蜍壶菌病病原遗传分化研究%Genetic Differentiation of the Pathogen of Batrachochytrium dendrobatidis in Toads

    Institute of Scientific and Technical Information of China (English)

    曾朝辉; 白世卓; 朱蕴绮; 王晓龙

    2011-01-01

    壶菌病为近年发现的两栖类动物重要传染病,对野生和养殖种群危害极大,为确定药用经济动物蟾蜍历史上壶菌病感染情况,提高养殖蟾蜍疾病防治水平,选取某博物馆馆藏采集于四川的蟾蜍标本32只,利用Taqman—MGB荧光探针定量PCR技术进行壶菌检测,并对定量PCR产物克隆、测序,通过序列比对和系统发育分析判定其来源。最终得到定量PCR标准曲线:Y=-3.0X+32.39;相关系数R0=0.9996;检测结果为阳性样本12只,检出率37.5%。同时系统发育分析表明,我国的壶菌存在一定程度的分化,一类与北美洲、南美洲、欧洲菌株呈现高度的亲缘关系;另一类则表现出与世界其他地区分布的壶菌有明显的不同,显示其独特性。这提示我国蟾蜍壶菌病的防制应更具针对性,不可盲目照搬国外经验。%The chytridiomycosis is a significant emerging disease of amphibians in recent years which seriuosly does harm to the wild and breeding population. To ascertain the condition of the Batrachochytrium dendrobatidis infection history in the population of toad, the medicinal economic animal, and enhance the prevention for this disease, 32 toad specimen collected from Sichwan keeping in a museum were assayed by Taqman-MGB fluorescence probe quantitative polymerase chain reaction to detect Batrachochytrium dendrobatidis. Besides, the products of QPCR were cloned and sequenced to identify the origin of the pathogen by sequence alignment and phylogenetie analysis. Finally we got the standard curve: Y = - 3.0X + 32.39 and the related coefficient: R2 = 0.999 6. Total 12 positive samples reported the detec- tion rate as 37.5 %. Meanwhile the phylogenetic analysis indicated that a certain extent differentiation of the chytrid fungi in our country exists. One kind of the tested strain showed highly genetic relationship with the strains from the North America, South America

  12. Amphibians.

    Science.gov (United States)

    Naturescope, 1987

    1987-01-01

    Describes some of the characteristics of amphibians. Contains teaching activities ranging from a "frog sing-along" to lessons on amphibian adaptations, and night hikes to identify frog calls. Includes reproducible handouts to be used with the activities, and a quiz. (TW)

  13. The invasive chytrid fungus of amphibians paralyzes lymphocyte responses.

    Science.gov (United States)

    Fites, J Scott; Ramsey, Jeremy P; Holden, Whitney M; Collier, Sarah P; Sutherland, Danica M; Reinert, Laura K; Gayek, A Sophia; Dermody, Terence S; Aune, Thomas M; Oswald-Richter, Kyra; Rollins-Smith, Louise A

    2013-10-18

    The chytrid fungus, Batrachochytrium dendrobatidis, causes chytridiomycosis and is a major contributor to global amphibian declines. Although amphibians have robust immune defenses, clearance of this pathogen is impaired. Because inhibition of host immunity is a common survival strategy of pathogenic fungi, we hypothesized that B. dendrobatidis evades clearance by inhibiting immune functions. We found that B. dendrobatidis cells and supernatants impaired lymphocyte proliferation and induced apoptosis; however, fungal recognition and phagocytosis by macrophages and neutrophils was not impaired. Fungal inhibitory factors were resistant to heat, acid, and protease. Their production was absent in zoospores and reduced by nikkomycin Z, suggesting that they may be components of the cell wall. Evasion of host immunity may explain why this pathogen has devastated amphibian populations worldwide.

  14. Additive threats from pathogens, climate and land-use change for global amphibian diversity

    DEFF Research Database (Denmark)

    Hof, Christian; Bastos Araujo, Miguel; Jetz, Walter;

    2011-01-01

    Amphibian population declines far exceed those of other vertebrate groups, with 30% of all species listed as threatened by the International Union for Conservation of Nature. The causes of these declines are a matter of continued research, but probably include climate change, land-use change...... and spread of the pathogenic fungal disease chytridiomycosis. Here we assess the spatial distribution and interactions of these primary threats in relation to the global distribution of amphibian species. We show that the greatest proportions of species negatively affected by climate change are projected...... to be found in Africa, parts of northern South America and the Andes. Regions with the highest projected impact of land-use and climate change coincide, but there is little spatial overlap with regions highly threatened by the fungal disease. Overall, the areas harbouring the richest amphibian faunas...

  15. A de novo Assembly of the Common Frog (Rana temporaria Transcriptome and Comparison of Transcription Following Exposure to Ranavirus and Batrachochytrium dendrobatidis.

    Directory of Open Access Journals (Sweden)

    Stephen J Price

    Full Text Available Amphibians are experiencing global declines and extinctions, with infectious diseases representing a major factor. In this study we examined the transcriptional response of metamorphic hosts (common frog, Rana temporaria to the two most important amphibian pathogens: Batrachochytrium dendrobatidis (Bd and Ranavirus. We found strong up-regulation of a gene involved in the adaptive immune response (AP4S1 at four days post-exposure to both pathogens. We detected a significant transcriptional response to Bd, covering the immune response (innate and adaptive immunity, complement activation, and general inflammatory responses, but relatively little transcriptional response to Ranavirus. This may reflect the higher mortality rates found in wild common frogs infected with Ranavirus as opposed to Bd. These data provide a valuable genomic resource for the amphibians, contribute insight into gene expression changes after pathogen exposure, and suggest potential candidate genes for future host-pathogen research.

  16. Additive threats from pathogens, climate and land-use change for global amphibian diversity.

    Science.gov (United States)

    Hof, Christian; Araújo, Miguel B; Jetz, Walter; Rahbek, Carsten

    2011-11-16

    Amphibian population declines far exceed those of other vertebrate groups, with 30% of all species listed as threatened by the International Union for Conservation of Nature. The causes of these declines are a matter of continued research, but probably include climate change, land-use change and spread of the pathogenic fungal disease chytridiomycosis. Here we assess the spatial distribution and interactions of these primary threats in relation to the global distribution of amphibian species. We show that the greatest proportions of species negatively affected by climate change are projected to be found in Africa, parts of northern South America and the Andes. Regions with the highest projected impact of land-use and climate change coincide, but there is little spatial overlap with regions highly threatened by the fungal disease. Overall, the areas harbouring the richest amphibian faunas are disproportionately more affected by one or multiple threat factors than areas with low richness. Amphibian declines are likely to accelerate in the twenty-first century, because multiple drivers of extinction could jeopardize their populations more than previous, mono-causal, assessments have suggested.

  17. Distribution limits of Batrachochytrium dendrobatidis: a case study in the Rocky Mountains, USA.

    Science.gov (United States)

    Hossack, Blake R; Muths, Erin; Anderson, Chauncey W; Kirshtein, Julie D; Corn, Paul Stephen

    2009-10-01

    Knowledge of the environmental constraints on a pathogen is critical to predicting its dynamics and effects on populations. Batrachochytrium dendrobatidis (Bd), an aquatic fungus that has been linked with widespread amphibian declines, is ubiquitous in the Rocky Mountains. As part of assessing the distribution limits of Bd in our study area, we sampled the water column and sediments for Bd zoospores in 30 high-elevation water bodies that lacked amphibians. All water bodies were in areas where Bd has been documented from neighboring, lower-elevation areas. We targeted areas lacking amphibians because existence of Bd independent of amphibians would have both ecologic and management implications. We did not detect Bd, which supports the hypothesis that it does not live independently of amphibians. However, assuming a detection sensitivity of 59.5% (based on sampling of water where amphibians tested positive for Bd), we only had 95% confidence of detecting Bd if it was in > or =16% of our sites. Further investigation into potential abiotic reservoirs is needed, but our results provide a strategic step in determining the distributional and environmental limitations of Bd in our study region. PMID:19901397

  18. Chytridiomycosis in endemic amphibians of the mountain tops of the Córdoba and San Luis ranges, Argentina.

    Science.gov (United States)

    Lescano, Julián N; Longo, Silvana; Robledo, Gerardo

    2013-02-28

    Chytridiomycosis is a major threat to amphibian conservation. In Argentina, the pathogenic fungus Batrachochytrium dendrobatidis has been recorded in several localities, and recently, it was registered in amphibians inhabiting low-elevation areas of mountain environments in Córdoba and San Luis provinces. In the present study, we searched for B. dendrobatidis in endemic and non-endemic amphibians on the mountain tops of Córdoba and San Luis provinces. We collected dead amphibians in the upper vegetation belt of the mountains of Córdoba and San Luis. Using standard histological techniques, the presence of fungal infection was confirmed in 5 species. Three of these species are endemic to the mountain tops of both provinces. Although there are no reported population declines in amphibians in these mountains, the presence of B. dendrobatidis in endemic species highlights the need for long-term monitoring plans in the area.

  19. Amphibian chytridiomycosis: a review with focus on fungus-host interactions.

    Science.gov (United States)

    Van Rooij, Pascale; Martel, An; Haesebrouck, Freddy; Pasmans, Frank

    2015-11-25

    Amphibian declines and extinctions are emblematic for the current sixth mass extinction event. Infectious drivers of these declines include the recently emerged fungal pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans (Chytridiomycota). The skin disease caused by these fungi is named chytridiomycosis and affects the vital function of amphibian skin. Not all amphibians respond equally to infection and host responses might range from resistant, over tolerant to susceptible. The clinical outcome of infection is highly dependent on the amphibian host, the fungal virulence and environmental determinants. B. dendrobatidis infects the skin of a large range of anurans, urodeles and caecilians, whereas to date the host range of B. salamandrivorans seems limited to urodeles. So far, the epidemic of B. dendrobatidis is mainly limited to Australian, neotropical, South European and West American amphibians, while for B. salamandrivorans it is limited to European salamanders. Other striking differences between both fungi include gross pathology and thermal preferences. With this review we aim to provide the reader with a state-of-the art of host-pathogen interactions for both fungi, in which new data pertaining to the interaction of B. dendrobatidis and B. salamandrivorans with the host's skin are integrated. Furthermore, we pinpoint areas in which more detailed studies are necessary or which have not received the attention they merit.

  20. Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression.

    Science.gov (United States)

    McMahon, Taegan A; Sears, Brittany F; Venesky, Matthew D; Bessler, Scott M; Brown, Jenise M; Deutsch, Kaitlin; Halstead, Neal T; Lentz, Garrett; Tenouri, Nadia; Young, Suzanne; Civitello, David J; Ortega, Nicole; Fites, J Scott; Reinert, Laura K; Rollins-Smith, Louise A; Raffel, Thomas R; Rohr, Jason R

    2014-07-10

    Emerging fungal pathogens pose a greater threat to biodiversity than any other parasitic group, causing declines of many taxa, including bats, corals, bees, snakes and amphibians. Currently, there is little evidence that wild animals can acquire resistance to these pathogens. Batrachochytrium dendrobatidis is a pathogenic fungus implicated in the recent global decline of amphibians. Here we demonstrate that three species of amphibians can acquire behavioural or immunological resistance to B. dendrobatidis. Frogs learned to avoid the fungus after just one B. dendrobatidis exposure and temperature-induced clearance. In subsequent experiments in which B. dendrobatidis avoidance was prevented, the number of previous exposures was a negative predictor of B. dendrobatidis burden on frogs and B. dendrobatidis-induced mortality, and was a positive predictor of lymphocyte abundance and proliferation. These results suggest that amphibians can acquire immunity to B. dendrobatidis that overcomes pathogen-induced immunosuppression and increases their survival. Importantly, exposure to dead fungus induced a similar magnitude of acquired resistance as exposure to live fungus. Exposure of frogs to B. dendrobatidis antigens might offer a practical way to protect pathogen-naive amphibians and facilitate the reintroduction of amphibians to locations in the wild where B. dendrobatidis persists. Moreover, given the conserved nature of vertebrate immune responses to fungi and the fact that many animals are capable of learning to avoid natural enemies, these results offer hope that other wild animal taxa threatened by invasive fungi might be rescued by management approaches based on herd immunity.

  1. Assessing host extinction risk following exposure to Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Louca, Stilianos; Lampo, Margarita; Doebeli, Michael

    2014-06-22

    Wildlife diseases are increasingly recognized as a major threat to biodiversity. Chytridiomycosis is an emerging infectious disease of amphibians caused by the fungus Batrachochytrium dendrobatidis (Bd). Using a mathematical model and simulations, we study its effects on a generic riparian host population with a tadpole and adult life stage. An analytical expression for the basic reproduction quotient, Qo, of the pathogen is derived. By sampling the entire relevant parameter space, we perform a statistical assessment of the importance of all considered parameters in determining the risk of host extinction, upon exposure to Bd. We find that Qo not only gives a condition for the initial invasion of the fungus, but is in fact the best predictor for host extinction. We also show that the role of tadpoles, which in some species tolerate infections, is ambivalent. While tolerant tadpoles may provide a reservoir for the fungus, thus facilitating its persistence or even amplifying its outbreaks, they can also act as a rescue buffer for a stressed host population. Our results have important implications for amphibian conservation efforts.

  2. Global amphibian declines: perspectives from the United States and beyond

    Science.gov (United States)

    Densmore, Christine L.; Cipriano, R.C.; Bruckner, A.W.; Shchelkunov, I.S.

    2011-01-01

    Over recent decades, amphibians have experienced population declines, extirpations and species-level extinctions at an alarming rate. Numerous potential etiologies for amphibian declines have been postulated including climate and habitat degradation. Other potential anthropogenic causes including overexploitation and the frequent introductions of invasive predatory species have also been blamed for amphibian declines. Still other underlying factors may include infectious diseases caused by the chytrid fungus Batrachochytrium dendrobatidis, pathogenic viruses (Ranavirus), and other agents. It is nearly certain that more than one etiology is to blame for the majority of the global amphibian declines, and that these causal factors include some combination of climatological or physical habitat destabilization and infectious disease, most notably chytridiomycosis. Scientific research efforts are aimed at elucidating these etiologies on local, regional, and global scales that we might better understand and counteract the driving forces behind amphibian declines. Conservation efforts as outlined in the Amphibian Conservation Action Plan of 2005 are also being made to curtail losses and prevent further extinctions wherever possible.

  3. Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use.

    Science.gov (United States)

    Bletz, Molly C; Loudon, Andrew H; Becker, Matthew H; Bell, Sara C; Woodhams, Douglas C; Minbiole, Kevin P C; Harris, Reid N

    2013-06-01

    Probiotic therapy through bioaugmentation is a feasible disease mitigation strategy based on growing evidence that microbes contribute to host defences of plants and animals. Amphibians are currently threatened by the rapid global spread of the pathogen, Batrachochytrium dendrobatidis (Bd), which causes the disease chytridiomycosis. Bioaugmentation of locally occurring protective bacteria on amphibians has mitigated this disease effectively in laboratory trials and one recent field trial. Areas still naïve to Bd provide an opportunity for conservationists to proactively implement probiotic strategies to prevent further amphibian declines. In areas where Bd is endemic, bioaugmentation can facilitate repatriation of susceptible amphibians currently maintained in assurance colonies. Here, we synthesise the current research in amphibian microbial ecology and bioaugmentation to identify characteristics of effective probiotics in relation to their interactions with Bd, their host, other resident microbes and the environment. To target at-risk species and amphibian communities, we develop sampling strategies and filtering protocols that result in probiotics that inhibit Bd under ecologically relevant conditions and persist on susceptible amphibians. This filtering tool can be used proactively to guide amphibian disease mitigation and can be extended to other taxa threatened by emerging infectious diseases.

  4. The lethal fungus Batrachochytrium dendrobatidis is present in lowland tropical forests of far eastern Panama.

    Directory of Open Access Journals (Sweden)

    Eria A Rebollar

    Full Text Available The fungal disease chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd, is one of the main causes of amphibian population declines and extinctions all over the world. In the Neotropics, this fungal disease has caused catastrophic declines in the highlands as it has spread throughout Central America down to Panamá. In this study, we determined the prevalence and intensity of Bd infection in three species of frogs in one highland and four lowland tropical forests, including two lowland regions in eastern Panamá in which the pathogen had not been detected previously. Bd was present in all the sites sampled with a prevalence ranging from 15-34%, similar to other Neotropical lowland sites. The intensity of Bd infection on individual frogs was low, ranging from average values of 0.11-24 zoospore equivalents per site. Our work indicates that Bd is present in anuran communities in lowland Panamá, including the Darién province, and that the intensity of the infection may vary among species from different habitats and with different life histories. The population-level consequences of Bd infection in amphibian communities from the lowlands remain to be determined. Detailed studies of amphibian species from the lowlands will be essential to determine the reason why these species are persisting despite the presence of the pathogen.

  5. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation.

    Science.gov (United States)

    Bataille, Arnaud; Cashins, Scott D; Grogan, Laura; Skerratt, Lee F; Hunter, David; McFadden, Michael; Scheele, Benjamin; Brannelly, Laura A; Macris, Amy; Harlow, Peter S; Bell, Sara; Berger, Lee; Waldman, Bruce

    2015-04-22

    The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal.

  6. Bd on the beach: high prevalence of Batrachochytrium dendrobatidis in the lowland forests of Gorgona Island (Colombia, South America).

    Science.gov (United States)

    Flechas, Sandra Victoria; Sarmiento, Carolina; Amézquita, Adolfo

    2012-09-01

    The amphibian chytrid fungus, Batrachochytrium dendrobatidis, Bd, has been implicated in the decimation and extinction of many amphibian populations worldwide, especially at mid and high elevations. Recent studies have demonstrated the presence of the pathogen in the lowlands from Australia and Central America. We extend here its elevational range by demonstrating its presence at the sea level, in the lowland forests of Gorgona Island, off the Pacific coast of Colombia. We conducted two field surveys, separated by four years, and diagnosed Bd by performing polymerase chain reactions on swab samples from the skin of five amphibian species. All species, including the Critically Endangered Atelopus elegans, tested positive for the pathogen, with prevalences between 3.9 % in A. elegans (in 2010) and 52 % in Pristimantis achatinus. Clinical signs of chytridiomycosis were not detected in any species. To our knowledge, this is the first report of B. dendrobatidis in tropical lowlands at sea level, where temperatures may exceed optimal growth temperatures of this pathogen. This finding highlights the need to understand the mechanisms allowing the interaction between frogs and pathogen in lowland ecosystems. PMID:22669408

  7. RANAVIRUS CAUSES MASS DIE-OFFS OF ALPINE AMPHIBIANS IN THE SOUTHWESTERN ALPS, FRANCE.

    Science.gov (United States)

    Miaud, Claude; Pozet, Françoise; Gaudin, Nadine Curt Grand; Martel, An; Pasmans, Frank; Labrut, Sophie

    2016-04-28

    Pathogenic fungi and viruses cause mortality outbreaks in wild amphibians worldwide. In the summer of 2012, dead tadpoles and adults of the European common frog Rana temporaria were reported in alpine lakes in the southwestern Alps (Mercantour National Park, France). A preliminary investigation using molecular diagnostic techniques identified a Ranavirus as the potential pathogenic agent. Three mortality events were recorded in the park, and samples were collected. The amphibian chytrid fungus Batrachochytrium dendrobatidis was not detected in any of the dead adult and juvenile frogs sampled (n=16) whereas all specimens were positive for a Ranavirus. The genome sequence of this Ranavirus was identical to previously published sequences of the common midwife toad virus (CMTV), a Ranavirus that has been associated with amphibian mortalities throughout Europe. We cultured virus from the organs of the dead common frogs and infecting adult male common frogs collected in another alpine region where no frog mortality had been observed. The experimentally infected frogs suffered 100% mortality (n=10). The alpine die-off is the first CMTV outbreak associated with mass mortality in wild amphibians in France. We describe the lesions observed and summarize amphibian populations affected by Ranaviruses in Europe. In addition, we discuss the ecologic specificities of mountain amphibians that may contribute to increasing their risk of exposure to and transmission of Ranaviruses.

  8. Amphibian decline and extinction: what we know and what we need to learn.

    Science.gov (United States)

    Collins, James P

    2010-11-01

    For over 350 million yr, thousands of amphibian species have lived on Earth. Since the 1980s, amphibians have been disappearing at an alarming rate, in many cases quite suddenly. What is causing these declines and extinctions? In the modern era (post 1500) there are 6 leading causes of biodiversity loss in general, and all of these acting alone or together are responsible for modern amphibian declines: commercial use; introduced/exotic species that compete with, prey on, and parasitize native frogs and salamanders; land use change; contaminants; climate change; and infectious disease. The first 3 causes are historical in the sense that they have been operating for hundreds of years, although the rate of change due to each accelerated greatly after about the mid-20th century. Contaminants, climate change, and emerging infectious diseases are modern causes suspected of being responsible for the so-called 'enigmatic decline' of amphibians in protected areas. Introduced/exotic pathogens, land use change, and infectious disease are the 3 causes with a clear role in amphibian decline as well as extinction; thus far, the other 3 causes are only implicated in decline and not extinction. The present work is a review of the 6 causes with a focus on pathogens and suggested areas where new research is needed. Batrachochytrium dendrobatidis (Bd) is a chytrid fungus that is an emerging infectious disease causing amphibian population decline and species extinction. Historically, pathogens have not been seen as a major cause of extinction, but Bd is an exception, which is why it is such an interesting, important pathogen to understand. The late 20th and early 21st century global biodiversity loss is characterized as a sixth extinction event. Amphibians are a striking example of these losses as they disappear at a rate that greatly exceeds historical levels. Consequently, modern amphibian decline and extinction is a lens through which we can view the larger story of biodiversity

  9. Amphibian decline and extinction: what we know and what we need to learn.

    Science.gov (United States)

    Collins, James P

    2010-11-01

    For over 350 million yr, thousands of amphibian species have lived on Earth. Since the 1980s, amphibians have been disappearing at an alarming rate, in many cases quite suddenly. What is causing these declines and extinctions? In the modern era (post 1500) there are 6 leading causes of biodiversity loss in general, and all of these acting alone or together are responsible for modern amphibian declines: commercial use; introduced/exotic species that compete with, prey on, and parasitize native frogs and salamanders; land use change; contaminants; climate change; and infectious disease. The first 3 causes are historical in the sense that they have been operating for hundreds of years, although the rate of change due to each accelerated greatly after about the mid-20th century. Contaminants, climate change, and emerging infectious diseases are modern causes suspected of being responsible for the so-called 'enigmatic decline' of amphibians in protected areas. Introduced/exotic pathogens, land use change, and infectious disease are the 3 causes with a clear role in amphibian decline as well as extinction; thus far, the other 3 causes are only implicated in decline and not extinction. The present work is a review of the 6 causes with a focus on pathogens and suggested areas where new research is needed. Batrachochytrium dendrobatidis (Bd) is a chytrid fungus that is an emerging infectious disease causing amphibian population decline and species extinction. Historically, pathogens have not been seen as a major cause of extinction, but Bd is an exception, which is why it is such an interesting, important pathogen to understand. The late 20th and early 21st century global biodiversity loss is characterized as a sixth extinction event. Amphibians are a striking example of these losses as they disappear at a rate that greatly exceeds historical levels. Consequently, modern amphibian decline and extinction is a lens through which we can view the larger story of biodiversity

  10. Batrachochytrium dendrobatidis shows high genetic diversity and ecological niche specificity among haplotypes in the Maya Mountains of Belize.

    Directory of Open Access Journals (Sweden)

    Kristine Kaiser

    Full Text Available The amphibian pathogen Batrachochytrium dendrobatidis (Bd has been implicated in amphibian declines around the globe. Although it has been found in most countries in Central America, its presence has never been assessed in Belize. We set out to determine the range, prevalence, and diversity of Bd using quantitative PCR (qPCR and sequencing of a portion of the 5.8 s and ITS1-2 regions. Swabs were collected from 524 amphibians of at least 26 species in the protected areas of the Maya Mountains of Belize. We sequenced a subset of 72 samples that had tested positive for Bd by qPCR at least once; 30 samples were verified as Bd. Eight unique Bd haplotypes were identified in the Maya Mountains, five of which were previously undescribed. We identified unique ecological niches for the two most broadly distributed haplotypes. Combined with data showing differing virulence shown in different strains in other studies, the 5.8 s - ITS1-2 region diversity found in this study suggests that there may be substantial differences among populations or haplotypes. Future work should focus on whether specific haplotypes for other genomic regions and possibly pathogenicity can be associated with haplotypes at this locus, as well as the integration of molecular tools with other ecological tools to elucidate the ecology and pathogenicity of Bd.

  11. Quantitative PCR detection of Batrachochytrium dendrobatidis DNA from sediments and water

    Science.gov (United States)

    Kirshtein, J.D.; Anderson, C.W.; Wood, J.S.; Longcore, J.E.; Voytek, M.A.

    2007-01-01

    The fungal pathogen Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a disease implicated in amphibian declines on 5 continents. Polymerase chain reaction (PCR) primer sets exist with which amphibians can be tested for this disease, and advances in sampling techniques allow non-invasive testing of animals. We developed filtering and PCR based quantitative methods by modifying existing PCR assays to detect Bd DNA in water and sediments, without the need for testing amphibians; we tested the methods at 4 field sites. The SYBR based assay using Boyle primers (SYBR/Boyle assay) and the Taqman based assay using Wood primers performed similarly with samples generated in the laboratory (Bd spiked filters), but the SYBR/Boyle assay detected Bd DNA in more field samples. We detected Bd DNA in water from 3 of 4 sites tested, including one pond historically negative for chytridiomycosis. Zoospore equivalents in sampled water ranged from 19 to 454 l-1 (nominal detection limit is 10 DNA copies, or about 0.06 zoospore). We did not detect DNA of Bd from sediments collected at any sites. Our filtering and amplification methods provide a new tool to investigate critical aspects of Bd in the environment. ?? Inter-Research 2007.

  12. Widespread occurrence of Batrachochytrium dendrobatidis in contemporary and historical samples of the endangered Bombina pachypus along the Italian peninsula.

    Directory of Open Access Journals (Sweden)

    Daniele Canestrelli

    Full Text Available Batrachochytrium dendrobatidis is considered a main driver of the worldwide declines and extinctions of amphibian populations. Nonetheless, fundamental questions about its epidemiology, including whether it acts mainly as a "lone killer" or in conjunction with other factors, remain largely open. In this paper we analysed contemporary and historical samples of the endangered Apennine yellow-bellied toad (Bombina pachypus along the Italian peninsula, in order to assess the presence of the pathogen and its spreading dynamics. Once common throughout its range, B. pachypus started to decline after the mid-1990s in the northern and central regions, whereas no declines have been observed so far in the southern region. We show that Batrachochytrium dendrobatidis is currently widespread along the entire peninsula, and that this was already so at least as early as the late 1970s, that is, well before the beginning of the observed declines. This temporal mismatch between pathogen occurrence and host decline, as well as the spatial pattern of the declines, suggests that the pathogen has not acted as a "lone killer", but in conjunction with other factors. Among the potentially interacting factors, we identified two as the most probable, genetic diversity of host populations and recent climate changes. We discuss the plausibility of this scenario and its implications on the conservation of B. pachypus populations.

  13. Thermal physiology, disease, and amphibian declines on the eastern slopes of the Andes.

    Science.gov (United States)

    Catenazzi, Alessandro; Lehr, Edgar; Vredenburg, Vance T

    2014-04-01

    Rising temperatures, a widespread consequence of climate change, have been implicated in enigmatic amphibian declines from habitats with little apparent human impact. The pathogenic fungus Batrachochytrium dendrobatidis (Bd), now widespread in Neotropical mountains, may act in synergy with climate change causing collapse in thermally stressed hosts. We measured the thermal tolerance of frogs along a wide elevational gradient in the Tropical Andes, where frog populations have collapsed. We used the difference between critical thermal maximum and the temperature a frog experiences in nature as a measure of tolerance to high temperatures. Temperature tolerance increased as elevation increased, suggesting that frogs at higher elevations may be less sensitive to rising temperatures. We tested the alternative pathogen optimal growth hypothesis that prevalence of the pathogen should decrease as temperatures fall outside the optimal range of pathogen growth. Our infection-prevalence data supported the pathogen optimal growth hypothesis because we found that prevalence of Bd increased when host temperatures matched its optimal growth range. These findings suggest that rising temperatures may not be the driver of amphibian declines in the eastern slopes of the Andes. Zoonotic outbreaks of Bd are the most parsimonious hypothesis to explain the collapse of montane amphibian faunas; but our results also reveal that lowland tropical amphibians, despite being shielded from Bd by higher temperatures, are vulnerable to climate-warming stress.

  14. The lethal fungus Batrachochytrium dendrobatidis is present in lowland tropical forests of far eastern Panamá.

    Science.gov (United States)

    Rebollar, Eria A; Hughey, Myra C; Harris, Reid N; Domangue, Rickie J; Medina, Daniel; Ibáñez, Roberto; Belden, Lisa K

    2014-01-01

    The fungal disease chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), is one of the main causes of amphibian population declines and extinctions all over the world. In the Neotropics, this fungal disease has caused catastrophic declines in the highlands as it has spread throughout Central America down to Panamá. In this study, we determined the prevalence and intensity of Bd infection in three species of frogs in one highland and four lowland tropical forests, including two lowland regions in eastern Panamá in which the pathogen had not been detected previously. Bd was present in all the sites sampled with a prevalence ranging from 15-34%, similar to other Neotropical lowland sites. The intensity of Bd infection on individual frogs was low, ranging from average values of 0.11-24 zoospore equivalents per site. Our work indicates that Bd is present in anuran communities in lowland Panamá, including the Darién province, and that the intensity of the infection may vary among species from different habitats and with different life histories. The population-level consequences of Bd infection in amphibian communities from the lowlands remain to be determined. Detailed studies of amphibian species from the lowlands will be essential to determine the reason why these species are persisting despite the presence of the pathogen. PMID:24740162

  15. Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data.

    Science.gov (United States)

    Rosenblum, Erica Bree; James, Timothy Y; Zamudio, Kelly R; Poorten, Thomas J; Ilut, Dan; Rodriguez, David; Eastman, Jonathan M; Richards-Hrdlicka, Katy; Joneson, Suzanne; Jenkinson, Thomas S; Longcore, Joyce E; Parra Olea, Gabriela; Toledo, Luís Felipe; Arellano, Maria Luz; Medina, Edgar M; Restrepo, Silvia; Flechas, Sandra Victoria; Berger, Lee; Briggs, Cheryl J; Stajich, Jason E

    2013-06-01

    Understanding the evolutionary history of microbial pathogens is critical for mitigating the impacts of emerging infectious diseases on economically and ecologically important host species. We used a genome resequencing approach to resolve the evolutionary history of an important microbial pathogen, the chytrid Batrachochytrium dendrobatidis (Bd), which has been implicated in amphibian declines worldwide. We sequenced the genomes of 29 isolates of Bd from around the world, with an emphasis on North, Central, and South America because of the devastating effect that Bd has had on amphibian populations in the New World. We found a substantial amount of evolutionary complexity in Bd with deep phylogenetic diversity that predates observed global amphibian declines. By investigating the entire genome, we found that even the most recently evolved Bd clade (termed the global panzootic lineage) contained more genetic variation than previously reported. We also found dramatic differences among isolates and among genomic regions in chromosomal copy number and patterns of heterozygosity, suggesting complex and heterogeneous genome dynamics. Finally, we report evidence for selection acting on the Bd genome, supporting the hypothesis that protease genes are important in evolutionary transitions in this group. Bd is considered an emerging pathogen because of its recent effects on amphibians, but our data indicate that it has a complex evolutionary history that predates recent disease outbreaks. Therefore, it is important to consider the contemporary effects of Bd in a broader evolutionary context and identify specific mechanisms that may have led to shifts in virulence in this system.

  16. Probiotic treatment restores protection against lethal fungal infection lost during amphibian captivity.

    Science.gov (United States)

    Kueneman, Jordan G; Woodhams, Douglas C; Harris, Reid; Archer, Holly M; Knight, Rob; McKenzie, Valerie J

    2016-09-28

    Host-associated microbiomes perform many beneficial functions including resisting pathogens and training the immune system. Here, we show that amphibians developing in captivity lose substantial skin bacterial diversity, primarily due to reduced ongoing input from environmental sources. We combined studies of wild and captive amphibians with a database of over 1 000 strains that allows us to examine antifungal function of the skin microbiome. We tracked skin bacterial communities of 62 endangered boreal toads, Anaxyrus boreas, across 18 time points, four probiotic treatments, and two exposures to the lethal fungal pathogen Batrachochytrium dendrobatidis (Bd) in captivity, and compared these to 33 samples collected from wild populations at the same life stage. As the amphibians in captivity lost the Bd-inhibitory bacteria through time, the proportion of individuals exposed to Bd that became infected rose from 33% to 100% in subsequent exposures. Inoculations of the Bd-inhibitory probiotic Janthinobacterium lividum resulted in a 40% increase in survival during the second Bd challenge, indicating that the effect of microbiome depletion was reversible by restoring Bd-inhibitory bacteria. Taken together, this study highlights the functional role of ongoing environmental inputs of skin-associated bacteria in mitigating a devastating amphibian pathogen, and that long-term captivity decreases this defensive function. PMID:27655769

  17. Enhanced call effort in Japanese tree frogs infected by amphibian chytrid fungus.

    Science.gov (United States)

    An, Deuknam; Waldman, Bruce

    2016-03-01

    Some amphibians have evolved resistance to the devastating disease chytridiomycosis, associated with global population declines, but immune defences can be costly. We recorded advertisement calls of male Japanese tree frogs (Hyla japonica) in the field. We then assessed whether individuals were infected by Batrachochytrium dendrobatidis (Bd), the causal agent of the disease. This allowed us to analyse call properties of males as a function of their infection status. Infected males called more rapidly and produced longer calls than uninfected males. This enhanced call effort may reflect pathogen manipulation of host behaviour to foster disease transmission. Alternatively, increased calling may have resulted from selection on infected males to reproduce earlier because of their shortened expected lifespan. Our results raise the possibility that sublethal effects of Bd alter amphibian life histories, which contributes to long-term population declines. PMID:26932682

  18. Current extinction rates of reptiles and amphibians.

    Science.gov (United States)

    Alroy, John

    2015-10-20

    There is broad concern that a mass extinction of amphibians and reptiles is now underway. Here I apply an extremely conservative Bayesian method to estimate the number of recent amphibian and squamate extinctions in nine important tropical and subtropical regions. The data stem from a combination of museum collection databases and published site surveys. The method computes an extinction probability for each species by considering its sighting frequency and last sighting date. It infers hardly any extinction when collection dates are randomized and it provides underestimates when artificial extinction events are imposed. The method also appears to be insensitive to trends in sampling; therefore, the counts it provides are absolute minimums. Extinctions or severe population crashes have accumulated steadily since the 1970s and 1980s, and at least 3.1% of frog species have already disappeared. Based on these data and this conservative method, the best estimate of the global grand total is roughly 200 extinctions. Consistent with previous results, frog losses are heavy in Latin America, which has been greatly affected by the pathogenic chytrid fungus Batrachochytrium dendrobatidis. Extinction rates are now four orders-of-magnitude higher than background, and at least another 6.9% of all frog species may be lost within the next century, even if there is no acceleration in the growth of environmental threats.

  19. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama.

    Science.gov (United States)

    Crawford, Andrew J; Lips, Karen R; Bermingham, Eldredge

    2010-08-01

    Amphibian populations around the world are experiencing unprecedented declines attributed to a chytrid fungal pathogen, Batrachochytrium dendrobatidis. Despite the severity of the crisis, quantitative analyses of the effects of the epidemic on amphibian abundance and diversity have been unavailable as a result of the lack of equivalent data collected before and following disease outbreak. We present a community-level assessment combining long-term field surveys and DNA barcode data describing changes in abundance and evolutionary diversity within the amphibian community of El Copé, Panama, following a disease epidemic and mass-mortality event. The epidemic reduced taxonomic, lineage, and phylogenetic diversity similarly. We discovered that 30 species were lost, including five undescribed species, representing 41% of total amphibian lineage diversity in El Copé. These extirpations represented 33% of the evolutionary history of amphibians within the community, and variation in the degree of population loss and decline among species was random with respect to the community phylogeny. Our approach provides a fast, economical, and informative analysis of loss in a community whether measured by species or phylogenetic diversity.

  20. Batrachochytrium dendrobatidis and the collapse of anuran species richness and abundance in the Upper Manu National Park, Southeastern Peru.

    Science.gov (United States)

    Catenazzi, Alessandro; Lehr, Edgar; Rodriguez, Lily O; Vredenburg, Vance T

    2011-04-01

    Amphibians are declining worldwide, but these declines have been particularly dramatic in tropical mountains, where high endemism and vulnerability to an introduced fungal pathogen, Batrachochytrium dendrobatidis (Bd), is associated with amphibian extinctions. We surveyed frogs in the Peruvian Andes in montane forests along a steep elevational gradient (1200-3700 m). We used visual encounter surveys to sample stream-dwelling and arboreal species and leaf-litter plots to sample terrestrial-breeding species. We compared species richness and abundance among the wet seasons of 1999, 2008, and 2009. Despite similar sampling effort among years, the number of species (46 in 1999) declined by 47% between 1999 and 2008 and by 38% between 1999 and 2009. When we combined the number of species we found in 2008 and 2009, the decline from 1999 was 36%. Declines of stream-dwelling and arboreal species (a reduction in species richness of 55%) were much greater than declines of terrestrial-breeding species (reduction of 20% in 2008 and 24% in 2009). Similarly, abundances of stream-dwelling and arboreal frogs were lower in the combined 2008-2009 period than in 1999, whereas densities of frogs in leaf-litter plots did not differ among survey years. These declines may be associated with the infection of frogs with Bd. B. dendrobatidis prevalence correlated significantly with the proportion of species that were absent from the 2008 and 2009 surveys along the elevational gradient. Our results suggest Bd may have arrived at the site between 1999 and 2007, which is consistent with the hypothesis that this pathogen is spreading in epidemic waves along the Andean cordilleras. Our results also indicate a rapid decline of frog species richness and abundance in our study area, a national park that contains many endemic amphibian species and is high in amphibian species richness. PMID:21054530

  1. Chytridiomycosis: a global threat to amphibians.

    Science.gov (United States)

    Pereira, P L L; Torres, A M C; Soares, D F M; Hijosa-Valsero, M; Bécares, E

    2013-12-01

    Chytridiomycosis, which is caused by Batrachochytrium dendrobatidis, is an emerging infectious disease of amphibians. The disease is one of the main causes of the global decline in amphibians. The aetiological agent is ubiquitous, with worldwide distribution, and affects a large number of amphibian species in several biomes. In the last decade, scientific research has substantially increased knowledge of the aetiological agent and the associated infection. However, important epidemiological aspects of the environment-mediated interactions between the aetiological agent and the host are not yet clear. The objective of the present review is to describe chytridiomycosis with regard to the major features of the aetiological agent, the host and the environment.

  2. Genomic transition to pathogenicity in chytrid fungi.

    Directory of Open Access Journals (Sweden)

    Suzanne Joneson

    2011-11-01

    Full Text Available Understanding the molecular mechanisms of pathogen emergence is central to mitigating the impacts of novel infectious disease agents. The chytrid fungus Batrachochytrium dendrobatidis (Bd is an emerging pathogen of amphibians that has been implicated in amphibian declines worldwide. Bd is the only member of its clade known to attack vertebrates. However, little is known about the molecular determinants of - or evolutionary transition to - pathogenicity in Bd. Here we sequence the genome of Bd's closest known relative - a non-pathogenic chytrid Homolaphlyctis polyrhiza (Hp. We first describe the genome of Hp, which is comparable to other chytrid genomes in size and number of predicted proteins. We then compare the genomes of Hp, Bd, and 19 additional fungal genomes to identify unique or recent evolutionary elements in the Bd genome. We identified 1,974 Bd-specific genes, a gene set that is enriched for protease, lipase, and microbial effector Gene Ontology terms. We describe significant lineage-specific expansions in three Bd protease families (metallo-, serine-type, and aspartyl proteases. We show that these protease gene family expansions occurred after the divergence of Bd and Hp from their common ancestor and thus are localized to the Bd branch. Finally, we demonstrate that the timing of the protease gene family expansions predates the emergence of Bd as a globally important amphibian pathogen.

  3. Field and laboratory studies of the susceptibility of the green treefrog (Hyla cinerea to Batrachochytrium dendrobatidis infection.

    Directory of Open Access Journals (Sweden)

    Laura A Brannelly

    Full Text Available Amphibians worldwide are experiencing devastating declines, some of which are due to the amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd. Populations in the southeastern United States, however, have not been noticeably affected by the pathogen. The green treefrog (Hyla cinerea is abundant and widespread in the southeastern United States, but has not been documented to harbor Bd infection. This study examined the susceptibility of H. cinerea to two strains of Bd in the lab and the prevalence of infection in wild populations of this species in southeastern Louisiana. Although we were able to infect H. cinerea with Bd in the lab, we did not observe any clinical signs of chytridiomycosis. Furthermore, infection by Bd does not appear to negatively affect body condition or growth rate of post-metamorphic individuals. We found no evidence of infection in surveys of wild H. cinerea. Our results suggest that H. cinerea is not susceptible to chytridiomycosis post-metamorphosis and probably is not an important carrier of the fungal pathogen Bd in the southeastern United States, although susceptibility at the larval stage remains unknown.

  4. Assessing the Threat of Amphibian Chytrid Fungus in the Albertine Rift: Past, Present and Future.

    Directory of Open Access Journals (Sweden)

    Tracie A Seimon

    Full Text Available Batrachochytrium dendrobatidis (Bd, the cause of chytridiomycosis, is a pathogenic fungus that is found worldwide and is a major contributor to amphibian declines and extinctions. We report results of a comprehensive effort to assess the distribution and threat of Bd in one of the Earth's most important biodiversity hotspots, the Albertine Rift in central Africa. In herpetological surveys conducted between 2010 and 2014, 1018 skin swabs from 17 amphibian genera in 39 sites across the Albertine Rift were tested for Bd by PCR. Overall, 19.5% of amphibians tested positive from all sites combined. Skin tissue samples from 163 amphibians were examined histologically; of these two had superficial epidermal intracorneal fungal colonization and lesions consistent with the disease chytridiomycosis. One amphibian was found dead during the surveys, and all others encountered appeared healthy. We found no evidence for Bd-induced mortality events, a finding consistent with other studies. To gain a historical perspective about Bd in the Albertine Rift, skin swabs from 232 museum-archived amphibians collected as voucher specimens from 1925-1994 were tested for Bd. Of these, one sample was positive; an Itombwe River frog (Phrynobatrachus asper collected in 1950 in the Itombwe highlands. This finding represents the earliest record of Bd in the Democratic Republic of Congo. We modeled the distribution of Bd in the Albertine Rift using MaxEnt software, and trained our model for improved predictability. Our model predicts that Bd is currently widespread across the Albertine Rift, with moderate habitat suitability extending into the lowlands. Under climatic modeling scenarios our model predicts that optimal habitat suitability of Bd will decrease causing a major range contraction of the fungus by 2080. Our baseline data and modeling predictions are important for comparative studies, especially if significant changes in amphibian health status or climactic conditions

  5. Assessing the Threat of Amphibian Chytrid Fungus in the Albertine Rift: Past, Present and Future.

    Science.gov (United States)

    Seimon, Tracie A; Ayebare, Samuel; Sekisambu, Robert; Muhindo, Emmanuel; Mitamba, Guillain; Greenbaum, Eli; Menegon, Michele; Pupin, Fabio; McAloose, Denise; Ammazzalorso, Alyssa; Meirte, Danny; Lukwago, Wilbur; Behangana, Mathias; Seimon, Anton; Plumptre, Andrew J

    2015-01-01

    Batrachochytrium dendrobatidis (Bd), the cause of chytridiomycosis, is a pathogenic fungus that is found worldwide and is a major contributor to amphibian declines and extinctions. We report results of a comprehensive effort to assess the distribution and threat of Bd in one of the Earth's most important biodiversity hotspots, the Albertine Rift in central Africa. In herpetological surveys conducted between 2010 and 2014, 1018 skin swabs from 17 amphibian genera in 39 sites across the Albertine Rift were tested for Bd by PCR. Overall, 19.5% of amphibians tested positive from all sites combined. Skin tissue samples from 163 amphibians were examined histologically; of these two had superficial epidermal intracorneal fungal colonization and lesions consistent with the disease chytridiomycosis. One amphibian was found dead during the surveys, and all others encountered appeared healthy. We found no evidence for Bd-induced mortality events, a finding consistent with other studies. To gain a historical perspective about Bd in the Albertine Rift, skin swabs from 232 museum-archived amphibians collected as voucher specimens from 1925-1994 were tested for Bd. Of these, one sample was positive; an Itombwe River frog (Phrynobatrachus asper) collected in 1950 in the Itombwe highlands. This finding represents the earliest record of Bd in the Democratic Republic of Congo. We modeled the distribution of Bd in the Albertine Rift using MaxEnt software, and trained our model for improved predictability. Our model predicts that Bd is currently widespread across the Albertine Rift, with moderate habitat suitability extending into the lowlands. Under climatic modeling scenarios our model predicts that optimal habitat suitability of Bd will decrease causing a major range contraction of the fungus by 2080. Our baseline data and modeling predictions are important for comparative studies, especially if significant changes in amphibian health status or climactic conditions are encountered

  6. Two amphibian diseases, chytridiomycosis and ranaviral disease, are now globally notifiable to the World Organization for Animal Health (OIE): an assessment.

    Science.gov (United States)

    Schloegel, Lisa M; Daszak, Peter; Cunningham, Andrew A; Speare, Richard; Hill, Barry

    2010-11-01

    The global trade in amphibians entails the transport of tens of millions of live animals each year. In addition to the impact harvesting wild animals can have on amphibian populations, there is mounting evidence that the emerging pathogens Batrachochytrium dendrobatidis and ranaviruses, the aetiological agents of chytridiomycosis and ranaviral disease, respectively, are spread through this trade. The link between these pathogens and amphibian declines and extinctions suggests that the epidemiological impact of the trade is significant and may negatively affect conservation and trade economics. Here we present a brief assessment of the volume of the global trade in live amphibians, the risk of individuals harboring infection, and information on the recent listing by the World Organization for Animal Health (OIE) of chytridiomycosis and ranaviral disease in the OIE Aquatic Animal Health Code. This listing made chytridiomycosis and ranaviral disease internationally notifiable diseases and thus subject to OIE standards, which aim to assure the sanitary safety of international trade in live amphibians and their products.

  7. Antibacterial therapeutics for the treatment of chytrid infection in amphibians: Columbus's egg?

    OpenAIRE

    Muijsers Mariska; Martel An; Van Rooij Pascale; Baert Kris; Vercauteren Griet; Ducatelle Richard; De Backer Patrick; Vercammen Francis; Haesebrouck Freddy; Pasmans Frank

    2012-01-01

    Abstract Background The establishment of safe and effective protocols to treat chytridiomycosis in amphibians is urgently required. In this study, the usefulness of antibacterial agents to clear chytridiomycosis from infected amphibians was evaluated. Results Florfenicol, sulfamethoxazole, sulfadiazine and the combination of trimethoprim and sulfonamides were active in vitro against cultures of five Batrachochytrium dendrobatidis strains containing sporangia and zoospores, with minimum inhibi...

  8. Dr Jekyll and Mrs Hyde: Risky hybrid sex by amphibian-parasitizing chytrids in the Brazilian Atlantic Forests.

    Science.gov (United States)

    Ghosh, Pria; Fisher, Matthew C

    2016-07-01

    In their article in this issue of Molecular Ecology, Jenkinson et al. () and colleagues address a worrying question-how could arguably the most dangerous pathogen known to science, Batrachochytrium dendrobatidis (Bd), become even more virulent? The answer: start having sex. Jenkinson et al. present a case for how the introduction into Brazil of the globally invasive lineage of Bd, BdGPL, has disrupted the relationship between native amphibians and an endemic Bd lineage, BdBrazil. BdBrazil is hypothesized to be native to the Atlantic Forest and so have a long co-evolutionary history with biodiverse Atlantic Forest amphibian community. The authors suggest that this has resulted in a zone of hybrid Bd genotypes which are potentially more likely to cause fatal chytridiomycosis than either parent lineage. The endemic-nonendemic Bd hybrid genotypes described in this study, and the evidence for pathogen translocation via the global amphibian trade presented, highlights the danger of anthropogenic pathogen dispersal. This research emphasizes that biosecurity regulations may have to refocus on lineages within species if we are to mitigate against the danger of new, possibly hypervirulent genotypes of pathogens emerging as phylogeographic barriers are breached. PMID:27373706

  9. Absence of invasive Chytrid fungus (Batrachochytrium dendrobatidis in native Fijian ground frog (Platymantis vitiana populations on Viwa-Tailevu, Fiji Islands

    Directory of Open Access Journals (Sweden)

    Edward Narayan

    2011-12-01

    Full Text Available We report on the first survey of chytridiomycosis (Batrachochytrium dendrobatidis- Bd in the endangered Fijian ground frog (Platymantis vitiana population on Viwa-Tailevu, Fiji Islands. This fungal pathogen has been implicated as the primary cause of amphibian declines worldwide. Few cases have been reported from tropical Asia however it was recently documented in 4 species of frogs in Indonesia. Two hundred individual frogs were swabbed from 5 different sites on Viwa Island. Swabs were tested to quantify the number of Bd zoospore equivalents using real-time Polymerase Chain Reaction (qPCR technique. We found zero (% prevalence of Bd in ground frogs. The lack of Bd may be due to 1 hot weather all year round inhibiting the spread of Bd, 2 Bd may be absent from Viwa Island due to a lack of amphibian introductions (not introduced or importation of exotic frogs such as Rana catesbeia-na, or Xenopus spp or pet trade spp or 3 the lack of introduction by human vectors due to the geographic isolation, and low visitation of non-local people into the island. While it is difficult to test these hypotheses, a precautionary approach would suggest an effective quarantine is required to protect Fiji’s endemic frogs from future disease outbreak. Conservation effort and research is needed at international level to assist the Fiji government in monitoring and protecting their unique endemic amphibians from outbreaks of B. dendrobatidis.

  10. Chytridiomycosis and amphibian population declines continue to spread eastward in Panama.

    Science.gov (United States)

    Woodhams, Douglas C; Kilburn, Vanessa L; Reinert, Laura K; Voyles, Jamie; Medina, Daniel; Ibáñez, Roberto; Hyatt, Alex D; Boyle, Donna G; Pask, James D; Green, David M; Rollins-Smith, Louise A

    2008-09-01

    Chytridiomycosis is a globally emerging disease of amphibians and the leading cause of population declines and extirpations at species-diverse montane sites in Central America. We continued long-term monitoring efforts for the presence of the fungal pathogen Batrachochytrium dendrobatidis (Bd) and for amphibian populations at two sites in western Panama, and we began monitoring at three new sites to the east. Population declines associated with chytridiomycosis emergence were detected at Altos de Campana National Park. We also detected Bd in three species east of the Panama Canal at Soberanía National Park, and prevalence data suggests that Bd may be enzootic in the lowlands of the park. However, no infected frogs were found further east at Tortí (prevalence amphibian communities east of the canal are at risk. Precise predictions of future disease emergence events are not possible until factors underlying disease emergence, such as dispersal, are understood. However, if the fungal pathogen spreads in a pattern consistent with previous disease events in Panama, then detection of Bd at Tortí and other areas east of the Panama Canal is imminent. Therefore, development of new management strategies and increased precautions for tourism, recreation, and biology are urgently needed.

  11. Nikkomycin Z is an effective inhibitor of the chytrid fungus linked to global amphibian declines.

    Science.gov (United States)

    Holden, Whitney M; Fites, J Scott; Reinert, Laura K; Rollins-Smith, Louise A

    2014-01-01

    Fungal infections in humans, wildlife, and plants are a growing concern because of their devastating effects on human and ecosystem health. In recent years, populations of many amphibian species have declined, and some have become extinct due to chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis. For some endangered amphibian species, captive colonies are the best intermediate solution towards eventual reintroduction, and effective antifungal treatments are needed to cure chytridiomycosis and limit the spread of this pathogen in such survival assurance colonies. Currently, the best accepted treatment for infected amphibians is itraconazole, but its toxic side effects reduce its usefulness for many species. Safer antifungal treatments are needed for disease control. Here, we show that nikkomycin Z, a chitin synthase inhibitor, dramatically alters the cell wall stability of B. dendrobatidis cells and completely inhibits growth of B. dendrobatidis at 250 μM. Low doses of nikkomycin Z enhanced the effectiveness of natural antimicrobial skin peptide mixtures tested in vitro. These studies suggest that nikkomycin Z would be an effective treatment to significantly reduce the fungal burden in frogs infected by B. dendrobatidis.

  12. Riding the wave: reconciling the roles of disease and climate change in amphibian declines.

    Directory of Open Access Journals (Sweden)

    Karen R Lips

    2008-03-01

    Full Text Available We review the evidence for the role of climate change in triggering disease outbreaks of chytridiomycosis, an emerging infectious disease of amphibians. Both climatic anomalies and disease-related extirpations are recent phenomena, and effects of both are especially noticeable at high elevations in tropical areas, making it difficult to determine whether they are operating separately or synergistically. We compiled reports of amphibian declines from Lower Central America and Andean South America to create maps and statistical models to test our hypothesis of spatiotemporal spread of the pathogen Batrachochytrium dendrobatidis (Bd, and to update the elevational patterns of decline in frogs belonging to the genus Atelopus. We evaluated claims of climate change influencing the spread of Bd by including error into estimates of the relationship between air temperature and last year observed. Available data support the hypothesis of multiple introductions of this invasive pathogen into South America and subsequent spread along the primary Andean cordilleras. Additional analyses found no evidence to support the hypothesis that climate change has been driving outbreaks of amphibian chytridiomycosis, as has been posited in the climate-linked epidemic hypothesis. Future studies should increase retrospective surveys of museum specimens from throughout the Andes and should study the landscape genetics of Bd to map fine-scale patterns of geographic spread to identify transmission routes and processes.

  13. Riding the wave: reconciling the roles of disease and climate change in amphibian declines.

    Science.gov (United States)

    Lips, Karen R; Diffendorfer, Jay; Mendelson, Joseph R; Sears, Michael W

    2008-03-25

    We review the evidence for the role of climate change in triggering disease outbreaks of chytridiomycosis, an emerging infectious disease of amphibians. Both climatic anomalies and disease-related extirpations are recent phenomena, and effects of both are especially noticeable at high elevations in tropical areas, making it difficult to determine whether they are operating separately or synergistically. We compiled reports of amphibian declines from Lower Central America and Andean South America to create maps and statistical models to test our hypothesis of spatiotemporal spread of the pathogen Batrachochytrium dendrobatidis (Bd), and to update the elevational patterns of decline in frogs belonging to the genus Atelopus. We evaluated claims of climate change influencing the spread of Bd by including error into estimates of the relationship between air temperature and last year observed. Available data support the hypothesis of multiple introductions of this invasive pathogen into South America and subsequent spread along the primary Andean cordilleras. Additional analyses found no evidence to support the hypothesis that climate change has been driving outbreaks of amphibian chytridiomycosis, as has been posited in the climate-linked epidemic hypothesis. Future studies should increase retrospective surveys of museum specimens from throughout the Andes and should study the landscape genetics of Bd to map fine-scale patterns of geographic spread to identify transmission routes and processes.

  14. Riding the wave: reconciling the roles of disease and climate change in amphibian declines.

    Science.gov (United States)

    Lips, Karen R; Diffendorfer, Jay; Mendelson, Joseph R; Sears, Michael W

    2008-03-25

    We review the evidence for the role of climate change in triggering disease outbreaks of chytridiomycosis, an emerging infectious disease of amphibians. Both climatic anomalies and disease-related extirpations are recent phenomena, and effects of both are especially noticeable at high elevations in tropical areas, making it difficult to determine whether they are operating separately or synergistically. We compiled reports of amphibian declines from Lower Central America and Andean South America to create maps and statistical models to test our hypothesis of spatiotemporal spread of the pathogen Batrachochytrium dendrobatidis (Bd), and to update the elevational patterns of decline in frogs belonging to the genus Atelopus. We evaluated claims of climate change influencing the spread of Bd by including error into estimates of the relationship between air temperature and last year observed. Available data support the hypothesis of multiple introductions of this invasive pathogen into South America and subsequent spread along the primary Andean cordilleras. Additional analyses found no evidence to support the hypothesis that climate change has been driving outbreaks of amphibian chytridiomycosis, as has been posited in the climate-linked epidemic hypothesis. Future studies should increase retrospective surveys of museum specimens from throughout the Andes and should study the landscape genetics of Bd to map fine-scale patterns of geographic spread to identify transmission routes and processes. PMID:18366257

  15. Salamander chytrid fungus (Batrachochytrium salamandrivorans) in the United States—Developing research, monitoring, and management strategies

    Science.gov (United States)

    Grant, Evan H. Campbell; Muths, Erin L.; Katz, Rachel A.; Canessa, Stefano; Adams, Michael J.; Ballard, Jennifer R.; Berger, Lee; Briggs, Cheryl J.; Coleman, Jeremy; Gray, Matthew J.; Harris, M. Camille; Harris, Reid N.; Hossack, Blake R.; Huyvaert, Kathryn P.; Kolby, Jonathan E.; Lips, Karen R.; Lovich, Robert E.; McCallum, Hamish I.; Mendelson, Joseph R.; Nanjappa, Priya; Olson, Deanna H.; Powers, Jenny G.; Richgels, Katherine L.D.; Russell, Robin E.; Schmidt, Benedikt R.; Spitzen-van der Sluijs, Annemarieka; Watry, Mary Kay; Woodhams, Douglas C.; White, C. LeAnn

    2016-01-20

    The recently (2013) identified pathogenic chytrid fungus, Batrachochytrium salamandrivorans (Bsal), poses a severe threat to the distribution and abundance of salamanders within the United States and Europe. Development of a response strategy for the potential, and likely, invasion of Bsal into the United States is crucial to protect global salamander biodiversity. A formal working group, led by Amphibian Research and Monitoring Initiative (ARMI) scientists from the U.S. Geological Survey (USGS) Patuxent Wildlife Research Center, Fort Collins Science Center, and Forest and Rangeland Ecosystem Science Center, was held at the USGS Powell Center for Analysis and Synthesis in Fort Collins, Colorado, United States from June 23 to June 25, 2015, to identify crucial Bsal research and monitoring needs that could inform conservation and management strategies for salamanders in the United States. Key findings of the workshop included the following: (1) the introduction of Bsal into the United States is highly probable, if not inevitable, thus requiring development of immediate short-term and long-term intervention strategies to prevent Bsal establishment and biodiversity decline; (2) management actions targeted towards pathogen containment may be ineffective in reducing the long-term spread of Bsal throughout the United States; and (3) early detection of Bsal through surveillance at key amphibian import locations, among high-risk wild populations, and through analysis of archived samples is necessary for developing management responses. Top research priorities during the preinvasion stage included the following: (1) deployment of qualified diagnostic methods for Bsal and establishment of standardized laboratory practices, (2) assessment of susceptibility for amphibian hosts (including anurans), and (3) development and evaluation of short- and long-term pathogen intervention and management strategies. Several outcomes were achieved during the workshop, including development

  16. Effects of temperature and hydric environment on survival of the Panamanian Golden Frog infected with a pathogenic chytrid fungus.

    Science.gov (United States)

    Bustamante, Heidi M; Livo, Lauren J; Carey, Cynthia

    2010-06-01

    Considerable controversy exists concerning whether or not climate changes (particularly global warming) are causing outbreaks of a lethal amphibian pathogen, the chytrid fungus Batrachochytrium dendrobatidis (Longcore, Pessier & D.K. Nichols 1999). In the present study, groups of Panamanian golden frogs (Atelopus zeteki Dunn, 1993), a critically endangered amphibian thought to be nearly extinct in Panama, were exposed to varying dosages of zoospores of Batrachochytrium dendrobatidis, temperatures and hydric environments in order to learn whether this species is susceptible to this pathogen and, if so, how environmental factors affect survival. This pathogen proved to be highly lethal for A. zeteki. Frogs exposed to a dosage of 100 Bd zoospores survived significantly (P<0.0001) longer than those that had been exposed to 10(4) or 10(6) zoospores. Exposed frogs housed at 23 °C survived significantly (P<0.0001) longer than those that were housed at 17 °C. Exposed frogs held in dry conditions survived significantly longer than those in wet conditions (P<0.0001). As a laboratory study, these results do not directly test hypotheses about the relation between climate change and the decline of these frogs in the field, but they inform the discussion about how environmental conditions can have an impact on the interaction between a susceptible amphibian and this pathogen. These data do not support the contention that rising global temperatures are necessary to cause the death of amphibians infected with this pathogen because the pathogen was equally lethal at 17 as at 23 °C, and frogs at the warmer temperature lived significantly longer than those at the cooler one. PMID:21392332

  17. There is no evidence for a temporal link between pathogen arrival and frog extinctions in north-eastern Australia.

    Directory of Open Access Journals (Sweden)

    Ben L Phillips

    Full Text Available Pathogen spread can cause population declines and even species extinctions. Nonetheless, in the absence of tailored monitoring schemes, documenting pathogen spread can be difficult. In the case of worldwide amphibian declines the best present understanding is that the chytrid fungus Batrachochytrium dendrobatidis (Bd has recently spread, causing amphibian declines and extinction in the process. However, good evidence demonstrating pathogen arrival followed by amphibian decline is rare, and analysis of putative evidence is often inadequate. Here we attempt to examine the relationship between Bd arrival and amphibian decline across north-eastern Australia, using sites where a wave-like pattern of amphibian decline was first noticed and at which intensive research has since been conducted. We develop an analytical framework that allows rigorous estimation of pathogen arrival date, which can then be used to test for a correlation between the time of pathogen arrival and amphibian decline across sites. Our results show that, with the current dataset, the earliest possible arrival date of Bd in north-eastern Australia is completely unresolved; Bd could have arrived immediately before sampling commenced or may have arrived thousands of years earlier, the present data simply cannot say. The currently available data are thus insufficient to assess the link between timing of pathogen arrival and population decline in this part of the world. This data insufficiency is surprising given that there have been decades of research on chytridiomycosis in Australia and that there is a general belief that the link between Bd arrival and population decline is well resolved in this region. The lack of data on Bd arrival currently acts as a major impediment to determining the role of environmental factors in driving the global amphibian declines, and should be a major focus of future research.

  18. Tolerance of fungal infection in European water frogs exposed to Batrachochytrium dendrobatidis after experimental reduction of innate immune defenses

    Directory of Open Access Journals (Sweden)

    Woodhams Douglas C

    2012-10-01

    Full Text Available Abstract Background While emerging diseases are affecting many populations of amphibians, some populations are resistant. Determining the relative contributions of factors influencing disease resistance is critical for effective conservation management. Innate immune defenses in amphibian skin are vital host factors against a number of emerging pathogens such as ranaviruses and the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd. Adult water frogs from Switzerland (Pelophylax esculentus and P. lessonae collected in the field with their natural microbiota intact were exposed to Bd after experimental reduction of microbiota, skin peptides, both, or neither to determine the relative contributions of these defenses. Results Naturally-acquired Bd infections were detected in 10/51 P. lessonae and 4/19 P. esculentus, but no disease outbreaks or population declines have been detected at this site. Thus, this population was immunologically primed, and disease resistant. No mortality occurred during the 64 day experiment. Forty percent of initially uninfected frogs became sub-clinically infected upon experimental exposure to Bd. Reduction of both skin peptide and microbiota immune defenses caused frogs to gain less mass when exposed to Bd than frogs in other treatments. Microbiota-reduced frogs increased peptide production upon Bd infection. Ranavirus was undetectable in all but two frogs that appeared healthy in the field, but died within a week under laboratory conditions. Virus was detectable in both toe-clips and internal organs. Conclusion Intact skin microbiota reduced immune activation and can minimize subclinical costs of infection. Tolerance of Bd or ranavirus infection may differ with ecological conditions.

  19. Spread of Amphibian Chytrid Fungus across Lowland Populations of Túngara Frogs in Panamá

    Science.gov (United States)

    Rodríguez-Brenes, Sofía; Rodriguez, David; Ibáñez, Roberto; Ryan, Michael J.

    2016-01-01

    Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is an emergent infectious disease partially responsible for worldwide amphibian population declines. The spread of Bd along highland habitats (> 500 meters above sea level, m a.s.l.) of Costa Rica and Panamá is well documented and has been linked to amphibian population collapses. In contrast, data are scarce on the prevalence and dispersal of Bd in lowland habitats where amphibians may be infected but asymptomatic. Here we describe the spread (2009 to 2014) of Bd across lowland habitats east of the Panamá Canal (< 500 m a.s.l.) with a focus on the Túngara frog (Physalaemus [Engystomops] pustulosus), one of the most common and abundant frog species in this region. Highland populations in western Panamá were already infected with Bd at the start of the study, which was consistent with previous studies indicating that Bd is enzootic in this region. In central Panamá, we collected the first positive samples in 2010, and by 2014, we detected Bd from remote sites in eastern Panamá (Darién National Park). We discuss the importance of studying Bd in lowland species, which may serve as potential reservoirs and agents of dispersal of Bd to highland species that are more susceptible to chytridiomycosis. PMID:27176629

  20. Spread of Amphibian Chytrid Fungus across Lowland Populations of Tungara Frogs in Panama.

    Directory of Open Access Journals (Sweden)

    Sofía Rodríguez-Brenes

    Full Text Available Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd, is an emergent infectious disease partially responsible for worldwide amphibian population declines. The spread of Bd along highland habitats (> 500 meters above sea level, m a.s.l. of Costa Rica and Panamá is well documented and has been linked to amphibian population collapses. In contrast, data are scarce on the prevalence and dispersal of Bd in lowland habitats where amphibians may be infected but asymptomatic. Here we describe the spread (2009 to 2014 of Bd across lowland habitats east of the Panamá Canal (< 500 m a.s.l. with a focus on the Túngara frog (Physalaemus [Engystomops] pustulosus, one of the most common and abundant frog species in this region. Highland populations in western Panamá were already infected with Bd at the start of the study, which was consistent with previous studies indicating that Bd is enzootic in this region. In central Panamá, we collected the first positive samples in 2010, and by 2014, we detected Bd from remote sites in eastern Panamá (Darién National Park. We discuss the importance of studying Bd in lowland species, which may serve as potential reservoirs and agents of dispersal of Bd to highland species that are more susceptible to chytridiomycosis.

  1. Short term minimum water temperatures determine levels of infection by the amphibian chytrid fungus in Alytes obstetricans tadpoles.

    Directory of Open Access Journals (Sweden)

    Saioa Fernández-Beaskoetxea

    Full Text Available Amphibians are one of the groups of wildlife most seriously threatened by emerging infectious disease. In particular, chytridiomycosis, caused by the aquatic fungus Batrachochytrium dendrobatidis, is responsible for amphibian species declines on a worldwide scale. Population-level outcomes following the introduction of the pathogen are context dependent and mediated by a large suite of abiotic and biotic variables. In particular, studies have shown that temperature has a key role in determining infection dynamics owing to the ectothermic nature of the amphibian host and temperature-dependency of pathogen growth rates. To assess the temperature-dependent seasonality of infectious burdens in a susceptible host species, we monitored lowland populations of larval midwife toads, Alytes obstetricians, in Central Spain throughout the year. We found that infections were highly seasonal, and inversely correlated against water temperature, with the highest burdens of infection seen during the colder months. Short-term impacts of water-temperature were found, with the minimum temperatures occurring before sampling being more highly predictive of infectious burdens than were longer-term spans of temperature. Our results will be useful for selecting the optimal time for disease surveys and, more broadly, for determining the key periods to undertake disease mitigation.

  2. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease.

    Science.gov (United States)

    Rohr, Jason R; Raffel, Thomas R

    2010-05-01

    The role of global climate change in the decline of biodiversity and the emergence of infectious diseases remains controversial, and the effect of climatic variability, in particular, has largely been ignored. For instance, it was recently revealed that the proposed link between climate change and widespread amphibian declines, putatively caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), was tenuous because it was based on a temporally confounded correlation. Here we provide temporally unconfounded evidence that global El Niño climatic events drive widespread amphibian losses in genus Atelopus via increased regional temperature variability, which can reduce amphibian defenses against pathogens. Of 26 climate variables tested, only factors associated with temperature variability could account for the spatiotemporal patterns of declines thought to be associated with Bd. Climatic predictors of declines became significant only after controlling for a pattern consistent with epidemic spread (by temporally detrending the data). This presumed spread accounted for 59% of the temporal variation in amphibian losses, whereas El Niño accounted for 59% of the remaining variation. Hence, we could account for 83% of the variation in declines with these two variables alone. Given that global climate change seems to increase temperature variability, extreme climatic events, and the strength of Central Pacific El Niño episodes, climate change might exacerbate worldwide enigmatic declines of amphibians, presumably by increasing susceptibility to disease. These results suggest that changes to temperature variability associated with climate change might be as significant to biodiversity losses and disease emergence as changes to mean temperature.

  3. Most of the Dominant Members of Amphibian Skin Bacterial Communities Can Be Readily Cultured.

    Science.gov (United States)

    Walke, Jenifer B; Becker, Matthew H; Hughey, Myra C; Swartwout, Meredith C; Jensen, Roderick V; Belden, Lisa K

    2015-10-01

    Currently, it is estimated that only 0.001% to 15% of bacteria in any given system can be cultured by use of commonly used techniques and media, yet culturing is critically important for investigations of bacterial function. Despite this situation, few studies have attempted to link culture-dependent and culture-independent data for a single system to better understand which members of the microbial community are readily cultured. In amphibians, some cutaneous bacterial symbionts can inhibit establishment and growth of the fungal pathogen Batrachochytrium dendrobatidis, and thus there is great interest in using these symbionts as probiotics for the conservation of amphibians threatened by B. dendrobatidis. The present study examined the portion of the culture-independent bacterial community (based on Illumina amplicon sequencing of the 16S rRNA gene) that was cultured with R2A low-nutrient agar and whether the cultured bacteria represented rare or dominant members of the community in the following four amphibian species: bullfrogs (Lithobates catesbeianus), eastern newts (Notophthalmus viridescens), spring peepers (Pseudacris crucifer), and American toads (Anaxyrus americanus). To determine which percentage of the community was cultured, we clustered Illumina sequences at 97% similarity, using the culture sequences as a reference database. For each amphibian species, we cultured, on average, 0.59% to 1.12% of each individual's bacterial community. However, the average percentage of bacteria that were culturable for each amphibian species was higher, with averages ranging from 2.81% to 7.47%. Furthermore, most of the dominant operational taxonomic units (OTUs), families, and phyla were represented in our cultures. These results open up new research avenues for understanding the functional roles of these dominant bacteria in host health. PMID:26162880

  4. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease.

    Science.gov (United States)

    Rohr, Jason R; Raffel, Thomas R

    2010-05-01

    The role of global climate change in the decline of biodiversity and the emergence of infectious diseases remains controversial, and the effect of climatic variability, in particular, has largely been ignored. For instance, it was recently revealed that the proposed link between climate change and widespread amphibian declines, putatively caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), was tenuous because it was based on a temporally confounded correlation. Here we provide temporally unconfounded evidence that global El Niño climatic events drive widespread amphibian losses in genus Atelopus via increased regional temperature variability, which can reduce amphibian defenses against pathogens. Of 26 climate variables tested, only factors associated with temperature variability could account for the spatiotemporal patterns of declines thought to be associated with Bd. Climatic predictors of declines became significant only after controlling for a pattern consistent with epidemic spread (by temporally detrending the data). This presumed spread accounted for 59% of the temporal variation in amphibian losses, whereas El Niño accounted for 59% of the remaining variation. Hence, we could account for 83% of the variation in declines with these two variables alone. Given that global climate change seems to increase temperature variability, extreme climatic events, and the strength of Central Pacific El Niño episodes, climate change might exacerbate worldwide enigmatic declines of amphibians, presumably by increasing susceptibility to disease. These results suggest that changes to temperature variability associated with climate change might be as significant to biodiversity losses and disease emergence as changes to mean temperature. PMID:20404180

  5. BIOTIC FACTORS IN AMPHIBIAN POPULATION DECLINES

    Science.gov (United States)

    Amphibians evolved in, and continue to exist in, habitats that are replete with many other organisms. Some of these organisms serve as prey for amphibians and others interact with amphibians as predators, competitors, pathogens, or symbionts. Still other organisms in their enviro...

  6. Antiviral immunity in amphibians.

    Science.gov (United States)

    Chen, Guangchun; Robert, Jacques

    2011-11-01

    Although a variety of virus species can infect amphibians, diseases caused by ranaviruses ([RVs]; Iridoviridae) have become prominent, and are a major concern for biodiversity, agriculture and international trade. The relatively recent and rapid increase in prevalence of RV infections, the wide range of host species infected by RVs, the variability in host resistance among population of the same species and among different developmental stages, all suggest an important involvement of the amphibian immune system. Nevertheless, the roles of the immune system in the etiology of viral diseases in amphibians are still poorly investigated. We review here the current knowledge of antiviral immunity in amphibians, focusing on model species such as the frog Xenopus and the salamander (Ambystoma tigrinum), and on recent progress in generating tools to better understand how host immune defenses control RV infections, pathogenicity, and transmission.

  7. Sodium chloride inhibits the growth and infective capacity of the amphibian chytrid fungus and increases host survival rates.

    Directory of Open Access Journals (Sweden)

    Michelle Pirrie Stockwell

    Full Text Available The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently emerged pathogen that causes the infectious disease chytridiomycosis and has been implicated as a contributing factor in the global amphibian decline. Since its discovery, research has been focused on developing various methods of mitigating the impact of chytridiomycosis on amphibian hosts but little attention has been given to the role of antifungal agents that could be added to the host's environment. Sodium chloride is a known antifungal agent used routinely in the aquaculture industry and this study investigates its potential for use as a disease management tool in amphibian conservation. The effect of 0-5 ppt NaCl on the growth, motility and survival of the chytrid fungus when grown in culture media and its effect on the growth, infection load and survivorship of infected Peron's tree frogs (Litoria peronii in captivity, was investigated. The results reveal that these concentrations do not negatively affect the survival of the host or the pathogen. However, concentrations greater than 3 ppt significantly reduced the growth and motility of the chytrid fungus compared to 0 ppt. Concentrations of 1-4 ppt NaCl were also associated with significantly lower host infection loads while infected hosts exposed to 3 and 4 ppt NaCl were found to have significantly higher survival rates. These results support the potential for NaCl to be used as an environmentally distributed antifungal agent for the prevention of chytridiomycosis in susceptible amphibian hosts. However, further research is required to identify any negative effects of salt exposure on both target and non-target organisms prior to implementation.

  8. Dead or alive? Viability of chytrid zoospores shed from live amphibian hosts.

    Science.gov (United States)

    Maguire, Chelsea; DiRenzo, Graziella V; Tunstall, Tate S; Muletz, Carly R; Zamudio, Kelly R; Lips, Karen R

    2016-05-26

    Pathogens vary in virulence and rates of transmission because of many differences in the host, the pathogen, and their environment. The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), affects amphibian hosts differently, causing extinction and population declines in some species but having limited effects on others. Phenotypic differences in zoospore production rates among Bd lineages likely contribute to some of the variation observed among host responses, although no studies have quantified the viability of zoospores shed from live animals. We compared host survivorship, infection intensity, shedding rates, and zoospore viability between 2 species of endangered tropical frogs, Hylomantis lemur and Atelopus zeteki, when exposed to a highly virulent lineage of Bd (JEL 423). We applied a dye to zoospores 30 to 60 min following animal soaks, to estimate shedding rate and proportion of live zoospores shed by different species. The average infection intensity for A. zeteki was nearly 17 times higher (31,455 ± 10,103 zoospore genomic equivalents [ZGEs]) than that of H. lemur (1832 ± 1086 ZGEs), and A. zeteki died earlier than H. lemur. The proportion of viable zoospores was ~80% in both species throughout the experiment, although A. zeteki produced many more zoospores, suggesting it may play a disproportionate role in spreading disease in communities where it occurs, because the large number of viable zoospores they produce might increase infection in other species where they are reintroduced. PMID:27225201

  9. The Lethal Fungus Batrachochytrium dendrobatidis Is Present in Lowland Tropical Forests of Far Eastern Panamá

    OpenAIRE

    Eria A Rebollar; Myra C. Hughey; Harris, Reid N.; Domangue, Rickie J; Daniel Medina; Roberto Ibáñez; Lisa K Belden

    2014-01-01

    The fungal disease chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), is one of the main causes of amphibian population declines and extinctions all over the world. In the Neotropics, this fungal disease has caused catastrophic declines in the highlands as it has spread throughout Central America down to Panamá. In this study, we determined the prevalence and intensity of Bd infection in three species of frogs in one highland and four lowland tropical forests, including two lowl...

  10. Seasonal and ontogenetic variation of skin microbial communities and relationships to natural disease dynamics in declining amphibians.

    Science.gov (United States)

    Longo, Ana V; Savage, Anna E; Hewson, Ian; Zamudio, Kelly R

    2015-07-01

    Recently, microbiologists have focused on characterizing the probiotic role of skin bacteria for amphibians threatened by the fungal disease chytridiomycosis. However, the specific characteristics of microbial diversity required to maintain health or trigger disease are still not well understood in natural populations. We hypothesized that seasonal and developmental transitions affecting susceptibility to chytridiomycosis could also alter the stability of microbial assemblages. To test our hypothesis, we examined patterns of skin bacterial diversity in two species of declining amphibians (Lithobates yavapaiensis and Eleutherodactylus coqui) affected by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). We focused on two important transitions that affect Bd susceptibility: ontogenetic (from juvenile to adult) shifts in E. coqui and seasonal (from summer to winter) shifts in L. yavapaiensis. We used a combination of community-fingerprinting analyses and 16S rRNA amplicon sequencing to quantify changes in bacterial diversity and assemblage composition between seasons and developmental stages, and to investigate the relationship between bacterial diversity and pathogen load. We found that winter-sampled frogs and juveniles, two states associated with increased Bd susceptibility, exhibited higher diversity compared with summer-sampled frogs and adult individuals. Our findings also revealed that hosts harbouring higher bacterial diversity carried lower Bd infections, providing support for the protective role of bacterial communities. Ongoing work to understand skin microbiome resilience after pathogen disturbance has the potential to identify key taxa involved in disease resistance. PMID:26587253

  11. Seasonal and ontogenetic variation of skin microbial communities and relationships to natural disease dynamics in declining amphibians

    Science.gov (United States)

    Longo, Ana V.; Savage, Anna E.; Hewson, Ian; Zamudio, Kelly R.

    2015-01-01

    Recently, microbiologists have focused on characterizing the probiotic role of skin bacteria for amphibians threatened by the fungal disease chytridiomycosis. However, the specific characteristics of microbial diversity required to maintain health or trigger disease are still not well understood in natural populations. We hypothesized that seasonal and developmental transitions affecting susceptibility to chytridiomycosis could also alter the stability of microbial assemblages. To test our hypothesis, we examined patterns of skin bacterial diversity in two species of declining amphibians (Lithobates yavapaiensis and Eleutherodactylus coqui) affected by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). We focused on two important transitions that affect Bd susceptibility: ontogenetic (from juvenile to adult) shifts in E. coqui and seasonal (from summer to winter) shifts in L. yavapaiensis. We used a combination of community-fingerprinting analyses and 16S rRNA amplicon sequencing to quantify changes in bacterial diversity and assemblage composition between seasons and developmental stages, and to investigate the relationship between bacterial diversity and pathogen load. We found that winter-sampled frogs and juveniles, two states associated with increased Bd susceptibility, exhibited higher diversity compared with summer-sampled frogs and adult individuals. Our findings also revealed that hosts harbouring higher bacterial diversity carried lower Bd infections, providing support for the protective role of bacterial communities. Ongoing work to understand skin microbiome resilience after pathogen disturbance has the potential to identify key taxa involved in disease resistance. PMID:26587253

  12. Amphibian-killing chytrid in Brazil comprises both locally endemic and globally expanding populations.

    Science.gov (United States)

    Jenkinson, T S; Betancourt Román, C M; Lambertini, C; Valencia-Aguilar, A; Rodriguez, D; Nunes-de-Almeida, C H L; Ruggeri, J; Belasen, A M; da Silva Leite, D; Zamudio, K R; Longcore, J E; Toledo, F L; James, T Y

    2016-07-01

    Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is the emerging infectious disease implicated in recent population declines and extinctions of amphibian species worldwide. Bd strains from regions of disease-associated amphibian decline to date have all belonged to a single, hypervirulent clonal genotype (Bd-GPL). However, earlier studies in the Atlantic Forest of southeastern Brazil detected a novel, putatively enzootic lineage (Bd-Brazil), and indicated hybridization between Bd-GPL and Bd-Brazil. Here, we characterize the spatial distribution and population history of these sympatric lineages in the Brazilian Atlantic Forest. To investigate the genetic structure of Bd in this region, we collected and genotyped Bd strains along a 2400-km transect of the Atlantic Forest. Bd-Brazil genotypes were restricted to a narrow geographic range in the southern Atlantic Forest, while Bd-GPL strains were widespread and largely geographically unstructured. Bd population genetics in this region support the hypothesis that the recently discovered Brazilian lineage is enzootic in the Atlantic Forest of Brazil and that Bd-GPL is a more recently expanded invasive. We collected additional hybrid isolates that demonstrate the recurrence of hybridization between panzootic and enzootic lineages, thereby confirming the existence of a hybrid zone in the Serra da Graciosa mountain range of Paraná State. Our field observations suggest that Bd-GPL may be more infective towards native Brazilian amphibians, and potentially more effective at dispersing across a fragmented landscape. We also provide further evidence of pathogen translocations mediated by the Brazilian ranaculture industry with implications for regulations and policies on global amphibian trade. PMID:26939017

  13. Larval Environment Alters Amphibian Immune Defenses Differentially across Life Stages and Populations.

    Directory of Open Access Journals (Sweden)

    Katherine L Krynak

    Full Text Available Recent global declines, extirpations and extinctions of wildlife caused by newly emergent diseases highlight the need to improve our knowledge of common environmental factors that affect the strength of immune defense traits. To achieve this goal, we examined the influence of acidification and shading of the larval environment on amphibian skin-associated innate immune defense traits, pre and post-metamorphosis, across two populations of American Bullfrogs (Rana catesbeiana, a species known for its wide-ranging environmental tolerance and introduced global distribution. We assessed treatment effects on 1 skin-associated microbial communities and 2 post-metamorphic antimicrobial peptide (AMP production and 3 AMP bioactivity against the fungal pathogen Batrachochytrium dendrobatidis (Bd. While habitat acidification did not affect survival, time to metamorphosis or juvenile mass, we found that a change in average pH from 7 to 6 caused a significant shift in the larval skin microbial community, an effect which disappeared after metamorphosis. Additionally, we found shifts in skin-associated microbial communities across life stages suggesting they are affected by the physiological or ecological changes associated with amphibian metamorphosis. Moreover, we found that post-metamorphic AMP production and bioactivity were significantly affected by the interactions between pH and shade treatments and interactive effects differed across populations. In contrast, there were no significant interactions between treatments on post-metamorphic microbial community structure suggesting that variation in AMPs did not affect microbial community structure within our study. Our findings indicate that commonly encountered variation in the larval environment (i.e. pond pH and degree of shading can have both immediate and long-term effects on the amphibian innate immune defense traits. Our work suggests that the susceptibility of amphibians to emerging diseases could be

  14. The Emerging Amphibian Fungal Disease, Chytridiomycosis: A Key Example of the Global Phenomenon of Wildlife Emerging Infectious Diseases.

    Science.gov (United States)

    Kolby, Jonathan E; Daszak, Peter

    2016-06-01

    The spread of amphibian chytrid fungus, Batrachochytrium dendrobatidis, is associated with the emerging infectious wildlife disease chytridiomycosis. This fungus poses an overwhelming threat to global amphibian biodiversity and is contributing toward population declines and extinctions worldwide. Extremely low host-species specificity potentially threatens thousands of the 7,000+ amphibian species with infection, and hosts in additional classes of organisms have now also been identified, including crayfish and nematode worms.Soon after the discovery of B. dendrobatidis in 1999, it became apparent that this pathogen was already pandemic; dozens of countries and hundreds of amphibian species had already been exposed. The timeline of B. dendrobatidis's global emergence still remains a mystery, as does its point of origin. The reason why B. dendrobatidis seems to have only recently increased in virulence to catalyze this global disease event remains unknown, and despite 15 years of investigation, this wildlife pandemic continues primarily uncontrolled. Some disease treatments are effective on animals held in captivity, but there is currently no proven method to eradicate B. dendrobatidis from an affected habitat, nor have we been able to protect new regions from exposure despite knowledge of an approaching "wave" of B. dendrobatidis and ensuing disease.International spread of B. dendrobatidis is largely facilitated by the commercial trade in live amphibians. Chytridiomycosis was recently listed as a globally notifiable disease by the World Organization for Animal Health, but few countries, if any, have formally adopted recommended measures to control its spread. Wildlife diseases continue to emerge as a consequence of globalization, and greater effort is urgently needed to protect global health. PMID:27337484

  15. Effects of the amphibian chytrid fungus and four insecticides on Pacific treefrogs (Pseudacris regilla)

    Science.gov (United States)

    Kleinhez, Peter; Boone, Michelle D.; Fellers, Gary

    2012-01-01

    Chemical contamination may influence host-pathogen interactions, which has implications for amphibian population declines. We examined the effects of four insecticides alone or as a mixture on development and metamorphosis of Pacific Treefrogs (Pseudacris regilla) in the presence or absence of the amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Bd exposure had a negative impact on tadpole activity, survival to metamorphosis, time to metamorphosis, and time of tail absorption (with a marginally negative effect on mass at metamorphosis); however, no individuals tested positive for Bd at metamorphosis. The presence of sublethal concentrations of insecticides alone or in a mixture did not impact Pacific Treefrog activity as tadpoles, survival to metamorphosis, or time and size to metamorphosis. Insecticide exposure did not influence the effect of Bd exposure. Our study did not support our prediction that effects of Bd would be greater in the presence of expected environmental concentrations of insecticide(s), but it did show that Bd had negative effects on responses at metamorphosis that could reduce the quality of juveniles recruited into the population.

  16. Disease risk in temperate amphibian populations is higher at closed-canopy sites.

    Directory of Open Access Journals (Sweden)

    C Guilherme Becker

    Full Text Available Habitat loss and chytridiomycosis (a disease caused by the chytrid fungus Batrachochytrium dendrobatidis - Bd are major drivers of amphibian declines worldwide. Habitat loss regulates host-pathogen interactions by altering biotic and abiotic factors directly linked to both host and pathogen fitness. Therefore, studies investigating the links between natural vegetation and chytridiomycosis require integrative approaches to control for the multitude of possible interactions of biological and environmental variables in spatial epidemiology. In this study, we quantified Bd infection dynamics across a gradient of natural vegetation and microclimates, looking for causal associations between vegetation cover, multiple microclimatic variables, and pathogen prevalence and infection intensity. To minimize the effects of host diversity in our analyses, we sampled amphibian populations in the Adirondack Mountains of New York State, a region with relatively high single-host dominance. We sampled permanent ponds for anurans, focusing on populations of the habitat generalist frog Lithobates clamitans, and recorded various biotic and abiotic factors that potentially affect host-pathogen interactions: natural vegetation, canopy density, water temperature, and host population and community attributes. We screened for important explanatory variables of Bd infections and used path analyses to statistically test for the strength of cascading effects linking vegetation cover, microclimate, and Bd parameters. We found that canopy density, natural vegetation, and daily average water temperature were the best predictors of Bd. High canopy density resulted in lower water temperature, which in turn predicted higher Bd prevalence and infection intensity. Our results confirm that microclimatic shifts arising from changes in natural vegetation play an important role in Bd spatial epidemiology, with areas of closed canopy favoring Bd. Given increasing rates of anthropogenic

  17. Unlikely remedy: fungicide clears infection from pathogenic fungus in larval southern leopard frogs (Lithobates sphenocephalus.

    Directory of Open Access Journals (Sweden)

    Shane M Hanlon

    Full Text Available Amphibians are often exposed to a wide variety of perturbations. Two of these, pesticides and pathogens, are linked to declines in both amphibian health and population viability. Many studies have examined the separate effects of such perturbations; however, few have examined the effects of simultaneous exposure of both to amphibians. In this study, we exposed larval southern leopard frog tadpoles (Lithobates sphenocephalus to the chytrid fungus Batrachochytrium dendrobatidis and the fungicide thiophanate-methyl (TM at 0.6 mg/L under laboratory conditions. The experiment was continued until all larvae completed metamorphosis or died. Overall, TM facilitated increases in tadpole mass and length. Additionally, individuals exposed to both TM and Bd were heavier and larger, compared to all other treatments. TM also cleared Bd in infected larvae. We conclude that TM affects larval anurans to facilitate growth and development while clearing Bd infection. Our findings highlight the need for more research into multiple perturbations, specifically pesticides and disease, to further promote amphibian heath.

  18. Detection of spring viraemia of carp virus in imported amphibians reveals an unanticipated foreign animal disease threat.

    Science.gov (United States)

    Ip, Hon S; Lorch, Jeffrey M; Blehert, David S

    2016-01-01

    Global translocation of plants and animals is a well-recognized mechanism for introduction of pathogens into new regions. To mitigate this risk, various tools such as preshipment health certificates, quarantines, screening for specific disease agents and outright bans have been implemented. However, such measures only target known infectious agents and their hosts and may fail to prevent translocation of even well-recognized pathogens if they are carried by novel host species. In a recent example, we screened an imported shipment of Chinese firebelly newts (Cynops orientalis) for Batrachochytrium salamandrivorans, an emergent fungal pathogen of salamanders. All animals tested negative for the fungus. However, a virus was cultured from internal organs from 7 of the 11 individual dead salamanders and from two pools of tissues from four additional dead animals. Sequencing of a portion of the glycoprotein gene from all viral isolates indicated 100% identity and that they were most closely related to spring viraemia of carp virus (SVCV). Subsequently, SVCV-specific PCR testing indicated the presence of virus in internal organs from each of the four animals previously pooled, and whole-genome sequencing of one of the viral isolates confirmed genomic arrangement characteristic of SVCV. SVCV is a rhabdovirus pathogen of cyprinid fish that is listed as notifiable to the Office International des Epizooties. This discovery reveals a novel route for potential spillover of this economically important pathogen as rhabdovirus has not previously been documented in amphibians. PMID:27599472

  19. Detection of spring viraemia of carp virus in imported amphibians reveals an unanticipated foreign animal disease threat.

    Science.gov (United States)

    Ip, Hon S; Lorch, Jeffrey M; Blehert, David S

    2016-09-07

    Global translocation of plants and animals is a well-recognized mechanism for introduction of pathogens into new regions. To mitigate this risk, various tools such as preshipment health certificates, quarantines, screening for specific disease agents and outright bans have been implemented. However, such measures only target known infectious agents and their hosts and may fail to prevent translocation of even well-recognized pathogens if they are carried by novel host species. In a recent example, we screened an imported shipment of Chinese firebelly newts (Cynops orientalis) for Batrachochytrium salamandrivorans, an emergent fungal pathogen of salamanders. All animals tested negative for the fungus. However, a virus was cultured from internal organs from 7 of the 11 individual dead salamanders and from two pools of tissues from four additional dead animals. Sequencing of a portion of the glycoprotein gene from all viral isolates indicated 100% identity and that they were most closely related to spring viraemia of carp virus (SVCV). Subsequently, SVCV-specific PCR testing indicated the presence of virus in internal organs from each of the four animals previously pooled, and whole-genome sequencing of one of the viral isolates confirmed genomic arrangement characteristic of SVCV. SVCV is a rhabdovirus pathogen of cyprinid fish that is listed as notifiable to the Office International des Epizooties. This discovery reveals a novel route for potential spillover of this economically important pathogen as rhabdovirus has not previously been documented in amphibians.

  20. Detection of spring viraemia of carp virus in imported amphibians reveals an unanticipated foreign animal disease threat

    Science.gov (United States)

    Ip, Hon S.; Lorch, Jeffrey M.; Blehert, David

    2016-01-01

    Global translocation of plants and animals is a well-recognized mechanism for introduction of pathogens into new regions. To mitigate this risk, various tools such as preshipment health certificates, quarantines, screening for specific disease agents and outright bans have been implemented. However, such measures only target known infectious agents and their hosts and may fail to prevent translocation of even well-recognized pathogens if they are carried by novel host species. In a recent example, we screened an imported shipment of Chinese firebelly newts (Cynops orientalis) for Batrachochytrium salamandrivorans, an emergent fungal pathogen of salamanders. All animals tested negative for the fungus. However, a virus was cultured from internal organs from 7 of the 11 individual dead salamanders and from two pools of tissues from four additional dead animals. Sequencing of a portion of the glycoprotein gene from all viral isolates indicated 100% identity and that they were most closely related to spring viraemia of carp virus (SVCV). Subsequently, SVCV-specific PCR testing indicated the presence of virus in internal organs from each of the four animals previously pooled, and whole-genome sequencing of one of the viral isolates confirmed genomic arrangement characteristic of SVCV. SVCV is a rhabdovirus pathogen of cyprinid fish that is listed as notifiable to the Office International des Epizooties. This discovery reveals a novel route for potential spillover of this economically important pathogen as rhabdovirus has not previously been documented in amphibians.

  1. Chytrid fungus infections in laboratory and introduced Xenopus laevis populations:assessing the risks for U.K. native amphibians

    OpenAIRE

    Tinsley, Richard C.; Coxhead, Peter George; Stott, Lucy C; Tinsley, Matthew C.; Piccinni, Maya Z.; Guille, Matthew J.

    2015-01-01

    The chytrid fungus Batrachochytrium dendrobatidis (Bd) is notorious amongst current conservation biology challenges, responsible for mass mortality and extinction of amphibian species. World trade in amphibians is implicated in global dissemination. Exports of South African Xenopus laevis have led to establishment of this invasive species on four continents. Bd naturally infects this host in Africa and now occurs in several introduced populations. However, no previous studies have investigate...

  2. Seasonal variation and the influence of environmental gradients on Batrachochytrium dendrobatidis infections in frogs from the Drakensberg mountains / Leon Nicolaas Meyer

    OpenAIRE

    Meyer, Leon Nicolaas

    2009-01-01

    The Batrachochytrium dendrobatidis fungus has been implicated in the decline of many frog species as well as the extinction of some throughout the world. Apart from this, declines in some amphibian populations are also caused by variations in temperature. It has been proposed that the cause of the decline or apparent extinctions of at least 14 high elevation species of the Australian tropics were due to B. dendrobatidis. The main aim of this study was to determine the effect of seasonal varia...

  3. Elevation, temperature, and aquatic connectivity all influence the infection dynamics of the amphibian chytrid fungus in adult frogs.

    Directory of Open Access Journals (Sweden)

    Sarah J Sapsford

    Full Text Available Infectious diseases can cause population declines and even extinctions. The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd, has caused population declines and extinctions in amphibians on most continents. In the tropics, research on the dynamics of this disease has focused on amphibian populations in mountainous areas. In most of these areas, high and low elevation sites are connected by an assemblage of streams that may transport the infectious stage of the pathogen from high to low elevations, and, also, this pathogen, which grows well at cool temperatures, may persist better in cooler water flowing from high elevations. Thus, the dynamics of disease at low elevation sites without aquatic connections to higher elevation sites, i.e., non-contiguous low elevation sites, may differ from dynamics at contiguous low elevation sites. We sampled adult common mistfrogs (Litoria rheocola at six sites of three types: two at high (> 400 m elevations, two at low elevations contiguous with high elevation streams, and two at low elevations non-contiguous with any high elevation site. Adults were swabbed for Bd diagnosis from June 2010 to June 2011 in each season, over a total of five sampling periods. The prevalence of Bd fluctuated seasonally and was highest in winter across all site types. Site type significantly affected seasonal patterns of prevalence of Bd. Prevalence remained well above zero throughout the year at the high elevation sites. Prevalence declined to lower levels in contiguous low sites, and reached near-zero at non-contiguous low sites. Patterns of air temperature fluctuation were very similar at both the low elevation site types, suggesting that differences in water connectivity to high sites may have affected the seasonal dynamics of Bd prevalence between contiguous and non-contiguous low elevation site types. Our results also suggest that reservoir hosts may be important in the persistence of disease at low elevations.

  4. Amphibian skin may select for rare environmental microbes.

    Science.gov (United States)

    Walke, Jenifer B; Becker, Matthew H; Loftus, Stephen C; House, Leanna L; Cormier, Guy; Jensen, Roderick V; Belden, Lisa K

    2014-11-01

    Host-microbe symbioses rely on the successful transmission or acquisition of symbionts in each new generation. Amphibians host a diverse cutaneous microbiota, and many of these symbionts appear to be mutualistic and may limit infection by the chytrid fungus, Batrachochytrium dendrobatidis, which has caused global amphibian population declines and extinctions in recent decades. Using bar-coded 454 pyrosequencing of the 16S rRNA gene, we addressed the question of symbiont transmission by examining variation in amphibian skin microbiota across species and sites and in direct relation to environmental microbes. Although acquisition of environmental microbes occurs in some host-symbiont systems, this has not been extensively examined in free-living vertebrate-microbe symbioses. Juvenile bullfrogs (Rana catesbeiana), adult red-spotted newts (Notophthalmus viridescens), pond water and pond substrate were sampled at a single pond to examine host-specificity and potential environmental transmission of microbiota. To assess population level variation in skin microbiota, adult newts from two additional sites were also sampled. Cohabiting bullfrogs and newts had distinct microbial communities, as did newts across the three sites. The microbial communities of amphibians and the environment were distinct; there was very little overlap in the amphibians' core microbes and the most abundant environmental microbes, and the relative abundances of OTUs that were shared by amphibians and the environment were inversely related. These results suggest that, in a host species-specific manner, amphibian skin may select for microbes that are generally in low abundance in the environment.

  5. Disease in a dynamic landscape: host behavior and wildfire reduce amphibian chytrid infection

    Science.gov (United States)

    Hossack, Blake R.; Lowe, Winsor H.; Ware, Joy L.; Corn, Paul Stephen

    2013-01-01

    Disturbances are often expected to magnify effects of disease, but these effects may depend on the ecology, behavior, and life history of both hosts and pathogens. In many ecosystems, wildfire is the dominant natural disturbance and thus could directly or indirectly affect dynamics of many diseases. To determine how probability of infection by the aquatic fungus Batrachochytrium dendrobatidis (Bd) varies relative to habitat use by individuals, wildfire, and host characteristics, we sampled 404 boreal toads (Anaxyrus boreas boreas) across Glacier National Park, Montana (USA). Bd causes chytridiomycosis, an emerging infectious disease linked with widespread amphibian declines, including the boreal toad. Probability of infection was similar for females and the combined group of males and juveniles. However, only 9% of terrestrial toads were infected compared to >30% of aquatic toads, and toads captured in recently burned areas were half as likely to be infected as toads in unburned areas. We suspect these large differences in infection reflect habitat choices by individuals that affect pathogen exposure and persistence, especially in burned forests where warm, arid conditions could limit Bd growth. Our results show that natural disturbances such as wildfire and the resulting diverse habitats can influence infection across large landscapes, potentially maintaining local refuges and host behaviors that facilitate evolution of disease resistance.

  6. Mitigating amphibian chytridiomycosis in nature

    Science.gov (United States)

    Garner, Trenton W. J.; Schmidt, Benedikt R.; Martel, An; Pasmans, Frank; Muths, Erin L.; Cunningham, Andrew A.; Weldon, Che; Fisher, Matthew C.; Bosch, Jaime

    2016-01-01

    Amphibians across the planet face the threat of population decline and extirpation caused by the disease chytridiomycosis. Despite consensus that the fungal pathogens responsible for the disease are conservation issues, strategies to mitigate their impacts in the natural world are, at best, nascent. Reducing risk associated with the movement of amphibians, non-amphibian vectors and other sources of infection remains the first line of defence and a primary objective when mitigating the threat of disease in wildlife. Amphibian-associated chytridiomycete fungi and chytridiomycosis are already widespread, though, and we therefore focus on discussing options for mitigating the threats once disease emergence has occurred in wild amphibian populations. All strategies have shortcomings that need to be overcome before implementation, including stronger efforts towards understanding and addressing ethical and legal considerations. Even if these issues can be dealt with, all currently available approaches, or those under discussion, are unlikely to yield the desired conservation outcome of disease mitigation. The decision process for establishing mitigation strategies requires integrated thinking that assesses disease mitigation options critically and embeds them within more comprehensive strategies for the conservation of amphibian populations, communities and ecosystems.

  7. Major histocompatibility complex selection dynamics in pathogen-infected túngara frog (Physalaemus pustulosus) populations.

    Science.gov (United States)

    Kosch, Tiffany A; Bataille, Arnaud; Didinger, Chelsea; Eimes, John A; Rodríguez-Brenes, Sofia; Ryan, Michael J; Waldman, Bruce

    2016-08-01

    Pathogen-driven selection can favour major histocompatibility complex (MHC) alleles that confer immunological resistance to specific diseases. However, strong directional selection should deplete genetic variation necessary for robust immune function in the absence of balancing selection or challenges presented by other pathogens. We examined selection dynamics at one MHC class II (MHC-II) locus across Panamanian populations of the túngara frog, Physalaemus pustulosus, infected by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). We compared MHC-II diversity in highland túngara frog populations, where amphibian communities have experienced declines owing to Bd, with those in the lowland region that have shown no evidence of decline. Highland region frogs had MHC variants that confer resistance to Bd. Variant fixation appeared to occur by directional selection rather than inbreeding, as overall genetic variation persisted in populations. In Bd-infected lowland sites, however, selective advantage may accrue to individuals with only one Bd-resistance allele, which were more frequent. Environmental conditions in lowlands should be less favourable for Bd infection, which may reduce selection for specific Bd resistance in hosts. Our results suggest that MHC selection dynamics fluctuate in túngara frog populations as a function of the favourability of habitat to pathogen spread and the vulnerability of hosts to infection. PMID:27531158

  8. Tropical amphibian populations experience higher disease risk in natural habitats.

    Science.gov (United States)

    Becker, C Guilherme; Zamudio, Kelly R

    2011-06-14

    Habitat loss and disease are main drivers of global amphibian declines, yet the interaction between them remains largely unexplored. Here we show that paradoxically, habitat loss is negatively associated with occurrence, prevalence, and infection intensity of the chytrid fungus Batrachochytrium dendrobatidis (Bd) in amphibian populations in the tropics. At a large spatial scale, increased habitat loss predicted lower disease risk in amphibian populations across Costa Rica and eastern Australia, even after jointly considering the effect of potential biotic and abiotic correlates. Lower host-species richness and suboptimal microclimates for Bd in disturbed habitats are potential mechanisms underlying this pattern. Furthermore, we found that anthropogenic deforestation practices biased to lowlands and natural vegetation remaining in inaccessible highlands explain increased Bd occurrence at higher elevations. At a smaller spatial scale, holding constant elevation, latitude, and macroclimate, we also found a negative relationship between habitat loss, and both Bd prevalence and infection intensity in frog populations in two landscapes of the Brazilian Atlantic Forest. Our results indicate that amphibians will be disproportionately affected by emerging diseases in pristine environments, and that, paradoxically, disturbed habitats may act as shelters from disease, but only for the very few species that can tolerate deforestation. Thus, tropical amphibian faunas are threatened both by destruction of natural habitats as well as increased disease in pristine forests. To curb further extinctions and develop effective mitigation and restoration programs we must look to interactions between habitat loss and disease, the two main factors at the root of global amphibian declines.

  9. Reptiles, Amphibians, and Salmonella

    Science.gov (United States)

    ... What's this? Submit Button Past Emails CDC Features Reptiles, Amphibians, and Salmonella Language: English Español (Spanish) Recommend ... live. How do people get Salmonella infections from reptiles and amphibians? Reptiles and amphibians might have Salmonella ...

  10. The Effect of Human Impact on Batrachochytrium dendrobatidis prevalence in Taricha torosa

    Science.gov (United States)

    Deng, V.; Macario, E.; Tumey, C.

    2014-12-01

    Batrachochytrium dendrobatidis (Bd) is emerging as a major cause of the amphibian extinction. As amphibians serve an important role as indicator species in their ecosystem and play a vital role in the food chain, Bd will not only affect the amphibian population but also the health of the environment. Bd is an aquatic fungus that blocks the porous skin of amphibians which interrupts electrolyte, gas and water transfer. This imbalances the electrolyte system which causes cells and organs to malfunction, therefore killing the amphibian. While frogs are more common for Bd, it is not often found in newts. However, Dr. Vance Vredenburg recently found an outbreak of Bd in Taricha torosa in Marin Headlands, California. This location was used in the research as the sample site with most human impact and was expected to have the highest prevalence according to the proposed hypothesis that more human impact will correspond with a higher prevalence of Bd. Decreasing the level of human impact, Fairfield Osborn Preserve and Galbreath Preserve were picked as the other sample sites. After the samples went through qPCR, all of them came back negative for Bd. These results did not support the hypothesis, however, it contributed data to explaining the dynamics of Bd when combined with Dr. Vance Vredenburg's data from 2 months earlier. Within the two months, there was a huge difference in the prevalence of Bd as it dropped from 88% to 0%. This shows that Taricha torosa does in fact get Bd. However, it is rarely detected because Bd is fast-acting and has high mortality rates. Therefore, it is least likely for current nonspecific surveys to swab the newts during a short but lethal Bd outbreak.

  11. Prior infection does not improve survival against the amphibian disease Chytridiomycosis.

    Directory of Open Access Journals (Sweden)

    Scott D Cashins

    Full Text Available Many amphibians have declined globally due to introduction of the pathogenic fungus Batrachochytrium dendrobatidis (Bd. Hundreds of species, many in well-protected habitats, remain as small populations at risk of extinction. Currently the only proven conservation strategy is to maintain species in captivity to be reintroduced at a later date. However, methods to abate the disease in the wild are urgently needed so that reintroduced and wild animals can survive in the presence of Bd. Vaccination has been widely suggested as a potential strategy to improve survival. We used captive-bred offspring of critically endangered booroolong frogs (Litoria booroolongensis to test if vaccination in the form of prior infection improves survival following re exposure. We infected frogs with a local Bd isolate, cleared infection after 30 days (d using itraconazole just prior to the onset of clinical signs, and then re-exposed animals to Bd at 110 d. We found prior exposure had no effect on survival or infection intensities, clearly showing that real infections do not stimulate a protective adaptive immune response in this species. This result supports recent studies suggesting Bd may evade or suppress host immune functions. Our results suggest vaccination is unlikely to be useful in mitigating chytridiomycosis. However, survival of some individuals from all experimental groups indicates existence of protective innate immunity. Understanding and promoting this innate resistance holds potential for enabling species recovery.

  12. Prior infection does not improve survival against the amphibian disease Chytridiomycosis.

    Science.gov (United States)

    Cashins, Scott D; Grogan, Laura F; McFadden, Michael; Hunter, David; Harlow, Peter S; Berger, Lee; Skerratt, Lee F

    2013-01-01

    Many amphibians have declined globally due to introduction of the pathogenic fungus Batrachochytrium dendrobatidis (Bd). Hundreds of species, many in well-protected habitats, remain as small populations at risk of extinction. Currently the only proven conservation strategy is to maintain species in captivity to be reintroduced at a later date. However, methods to abate the disease in the wild are urgently needed so that reintroduced and wild animals can survive in the presence of Bd. Vaccination has been widely suggested as a potential strategy to improve survival. We used captive-bred offspring of critically endangered booroolong frogs (Litoria booroolongensis) to test if vaccination in the form of prior infection improves survival following re exposure. We infected frogs with a local Bd isolate, cleared infection after 30 days (d) using itraconazole just prior to the onset of clinical signs, and then re-exposed animals to Bd at 110 d. We found prior exposure had no effect on survival or infection intensities, clearly showing that real infections do not stimulate a protective adaptive immune response in this species. This result supports recent studies suggesting Bd may evade or suppress host immune functions. Our results suggest vaccination is unlikely to be useful in mitigating chytridiomycosis. However, survival of some individuals from all experimental groups indicates existence of protective innate immunity. Understanding and promoting this innate resistance holds potential for enabling species recovery. PMID:23451076

  13. Amphibians with infectious disease increase their reproductive effort: evidence for the terminal investment hypothesis

    Science.gov (United States)

    Brannelly, Laura A.; Webb, Rebecca; Skerratt, Lee F.; Berger, Lee

    2016-01-01

    Mounting an immune response to fight disease is costly for an organism and can reduce investment in another life-history trait, such as reproduction. The terminal investment hypothesis predicts that an organism will increase reproductive effort when threatened by disease. The reproductive fitness of amphibians infected with the deadly fungal pathogen Batrachochytrium dendrobatidis (Bd) is largely unknown. In this study, we explored gametogenesis in two endangered and susceptible frog species, Pseudophryne corroboree and Litoria verreauxii alpina. Gametogenesis, both oogenesis and spermatogenesis, increased when animals were experimentally infected with Bd. In P. corroboree, infected males have thicker germinal epithelium, and a larger proportion of spermatocytes. In L. v. alpina, infected males had more spermatic cell bundles in total, and a larger proportion of spermatozoa bundles. In female L. v. alpina, ovaries and oviducts were larger in infected animals, and there were more cells present within the ovaries. Terminal investment has consequences for the evolution of disease resistance in declining species. If infected animals are increasing reproductive efforts and producing more offspring before succumbing to disease, it is possible that population-level selection for disease resistance will be minimized. PMID:27358291

  14. Amphibians with infectious disease increase their reproductive effort: evidence for the terminal investment hypothesis.

    Science.gov (United States)

    Brannelly, Laura A; Webb, Rebecca; Skerratt, Lee F; Berger, Lee

    2016-06-01

    Mounting an immune response to fight disease is costly for an organism and can reduce investment in another life-history trait, such as reproduction. The terminal investment hypothesis predicts that an organism will increase reproductive effort when threatened by disease. The reproductive fitness of amphibians infected with the deadly fungal pathogen Batrachochytrium dendrobatidis (Bd) is largely unknown. In this study, we explored gametogenesis in two endangered and susceptible frog species, Pseudophryne corroboree and Litoria verreauxii alpina. Gametogenesis, both oogenesis and spermatogenesis, increased when animals were experimentally infected with Bd In P. corroboree, infected males have thicker germinal epithelium, and a larger proportion of spermatocytes. In L. v. alpina, infected males had more spermatic cell bundles in total, and a larger proportion of spermatozoa bundles. In female L. v. alpina, ovaries and oviducts were larger in infected animals, and there were more cells present within the ovaries. Terminal investment has consequences for the evolution of disease resistance in declining species. If infected animals are increasing reproductive efforts and producing more offspring before succumbing to disease, it is possible that population-level selection for disease resistance will be minimized. PMID:27358291

  15. DNA Extraction Method Affects the Detection of a Fungal Pathogen in Formalin-Fixed Specimens Using qPCR.

    Directory of Open Access Journals (Sweden)

    Andrea J Adams

    Full Text Available Museum collections provide indispensable repositories for obtaining information about the historical presence of disease in wildlife populations. The pathogenic amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd has played a significant role in global amphibian declines, and examining preserved specimens for Bd can improve our understanding of its emergence and spread. Quantitative PCR (qPCR enables Bd detection with minimal disturbance to amphibian skin and is significantly more sensitive to detecting Bd than histology; therefore, developing effective qPCR methodologies for detecting Bd DNA in formalin-fixed specimens can provide an efficient and effective approach to examining historical Bd emergence and prevalence. Techniques for detecting Bd in museum specimens have not been evaluated for their effectiveness in control specimens that mimic the conditions of animals most likely to be encountered in museums, including those with low pathogen loads. We used American bullfrogs (Lithobates catesbeianus of known infection status to evaluate the success of qPCR to detect Bd in formalin-fixed specimens after three years of ethanol storage. Our objectives were to compare the most commonly used DNA extraction method for Bd (PrepMan, PM to Macherey-Nagel DNA FFPE (MN, test optimizations for Bd detection with PM, and provide recommendations for maximizing Bd detection. We found that successful detection is relatively high (80-90% when Bd loads before formalin fixation are high, regardless of the extraction method used; however, at lower infection levels, detection probabilities were significantly reduced. The MN DNA extraction method increased Bd detection by as much as 50% at moderate infection levels. Our results indicate that, for animals characterized by lower pathogen loads (i.e., those most commonly encountered in museum collections, current methods may underestimate the proportion of Bd-infected amphibians. Those extracting DNA from

  16. DNA Extraction Method Affects the Detection of a Fungal Pathogen in Formalin-Fixed Specimens Using qPCR.

    Science.gov (United States)

    Adams, Andrea J; LaBonte, John P; Ball, Morgan L; Richards-Hrdlicka, Kathryn L; Toothman, Mary H; Briggs, Cheryl J

    2015-01-01

    Museum collections provide indispensable repositories for obtaining information about the historical presence of disease in wildlife populations. The pathogenic amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has played a significant role in global amphibian declines, and examining preserved specimens for Bd can improve our understanding of its emergence and spread. Quantitative PCR (qPCR) enables Bd detection with minimal disturbance to amphibian skin and is significantly more sensitive to detecting Bd than histology; therefore, developing effective qPCR methodologies for detecting Bd DNA in formalin-fixed specimens can provide an efficient and effective approach to examining historical Bd emergence and prevalence. Techniques for detecting Bd in museum specimens have not been evaluated for their effectiveness in control specimens that mimic the conditions of animals most likely to be encountered in museums, including those with low pathogen loads. We used American bullfrogs (Lithobates catesbeianus) of known infection status to evaluate the success of qPCR to detect Bd in formalin-fixed specimens after three years of ethanol storage. Our objectives were to compare the most commonly used DNA extraction method for Bd (PrepMan, PM) to Macherey-Nagel DNA FFPE (MN), test optimizations for Bd detection with PM, and provide recommendations for maximizing Bd detection. We found that successful detection is relatively high (80-90%) when Bd loads before formalin fixation are high, regardless of the extraction method used; however, at lower infection levels, detection probabilities were significantly reduced. The MN DNA extraction method increased Bd detection by as much as 50% at moderate infection levels. Our results indicate that, for animals characterized by lower pathogen loads (i.e., those most commonly encountered in museum collections), current methods may underestimate the proportion of Bd-infected amphibians. Those extracting DNA from archived museum

  17. Treatment of urodelans based on temperature dependent infection dynamics of Batrachochytrium salamandrivorans.

    Science.gov (United States)

    Blooi, M; Martel, A; Haesebrouck, F; Vercammen, F; Bonte, D; Pasmans, F

    2015-01-27

    The recently emerged chytrid fungus Batrachochytrium salamandrivorans currently causes amphibian population declines. We hypothesized that temperature dictates infection dynamics of B. salamandrivorans, and that therefore heat treatment may be applied to clear animals from infection. We examined the impact of environmental temperature on B. salamandrivorans infection and disease dynamics in fire salamanders (Salamandra salamandra). Colonization of salamanders by B. salamandrivorans occurred at 15°C and 20°C but not at 25°C, with a significantly faster buildup of infection load and associated earlier mortality at 15°C. Exposing B. salamandrivorans infected salamanders to 25°C for 10 days resulted in complete clearance of infection and clinically cured all experimentally infected animals. This treatment protocol was validated in naturally infected wild fire salamanders. In conclusion, we show that B. salamandrivorans infection and disease dynamics are significantly dictated by environmental temperature, and that heat treatment is a viable option for clearing B. salamandrivorans infections.

  18. Spatial variation in risk and consequence of Batrachochytrium salamandrivorans introduction in the USA.

    Science.gov (United States)

    Richgels, Katherine L D; Russell, Robin E; Adams, Michael J; White, C LeAnn; Grant, Evan H Campbell

    2016-02-01

    A newly identified fungal pathogen, Batrachochytrium salamandrivorans(Bsal), is responsible for mass mortality events and severe population declines in European salamanders. The eastern USA has the highest diversity of salamanders in the world and the introduction of this pathogen is likely to be devastating. Although data are inevitably limited for new pathogens, disease-risk assessments use best available data to inform management decisions. Using characteristics of Bsalecology, spatial data on imports and pet trade establishments, and salamander species diversity, we identify high-risk areas with both a high likelihood of introduction and severe consequences for local salamanders. We predict that the Pacific coast, southern Appalachian Mountains and mid-Atlantic regions will have the highest relative risk from Bsal. Management of invasive pathogens becomes difficult once they are established in wildlife populations; therefore, import restrictions to limit pathogen introduction and early detection through surveillance of high-risk areas are priorities for preventing the next crisis for North American salamanders.

  19. Ecopathology of ranaviruses infecting amphibians.

    Science.gov (United States)

    Miller, Debra; Gray, Matthew; Storfer, Andrew

    2011-11-01

    Ranaviruses are capable of infecting amphibians from at least 14 families and over 70 individual species. Ranaviruses infect multiple cell types, often culminating in organ necrosis and massive hemorrhaging. Subclinical infections have been documented, although their role in ranavirus persistence and emergence remains unclear. Water is an effective transmission medium for ranaviruses, and survival outside the host may be for significant duration. In aquatic communities, amphibians, reptiles and fish may serve as reservoirs. Controlled studies have shown that susceptibility to ranavirus infection and disease varies among amphibian species and developmental stages, and likely is impacted by host-pathogen coevolution, as well as, exogenous environmental factors. Field studies have demonstrated that the likelihood of epizootics is increased in areas of cattle grazing, where aquatic vegetation is sparse and water quality is poor. Translocation of infected amphibians through commercial trade (e.g., food, fish bait, pet industry) contributes to the spread of ranaviruses. Such introductions may be of particular concern, as several studies report that ranaviruses isolated from ranaculture, aquaculture, and bait facilities have greater virulence (i.e., ability to cause disease) than wild-type isolates. Future investigations should focus on the genetic basis for pathogen virulence and host susceptibility, ecological and anthropogenic mechanisms contributing to emergence, and vaccine development for use in captive populations and species reintroduction programs.

  20. Ecopathology of Ranaviruses Infecting Amphibians

    Directory of Open Access Journals (Sweden)

    Andrew Storfer

    2011-11-01

    Full Text Available Ranaviruses are capable of infecting amphibians from at least 14 families and over 70 individual species. Ranaviruses infect multiple cell types, often culminating in organ necrosis and massive hemorrhaging. Subclinical infections have been documented, although their role in ranavirus persistence and emergence remains unclear. Water is an effective transmission medium for ranaviruses, and survival outside the host may be for significant duration. In aquatic communities, amphibians, reptiles and fish may serve as reservoirs. Controlled studies have shown that susceptibility to ranavirus infection and disease varies among amphibian species and developmental stages, and likely is impacted by host-pathogen coevolution, as well as, exogenous environmental factors. Field studies have demonstrated that the likelihood of epizootics is increased in areas of cattle grazing, where aquatic vegetation is sparse and water quality is poor. Translocation of infected amphibians through commercial trade (e.g., food, fish bait, pet industry contributes to the spread of ranaviruses. Such introductions may be of particular concern, as several studies report that ranaviruses isolated from ranaculture, aquaculture, and bait facilities have greater virulence (i.e., ability to cause disease than wild-type isolates. Future investigations should focus on the genetic basis for pathogen virulence and host susceptibility, ecological and anthropogenic mechanisms contributing to emergence, and vaccine development for use in captive populations and species reintroduction programs.

  1. Ranavirus outbreaks in amphibian populations of northern Idaho

    Science.gov (United States)

    Russell, Danelle M.; Goldberg, Caren S.; Sprague, Laura; Waits, Lisette P.; Green, D. Earl; Schuler, Krysten L.; Rosenblum, Erica Bree

    2011-01-01

    Ranavirus outbreaks, caused by pathogens in the genus Ranavirus (Family Iridoviridae), were the largest single cause of reported amphibian mass mortality events in the United States from 1996–2001 (Green et al. 2002). Mortality events associated with ranaviruses have been documented on five continents and throughout the latitudes and elevations where amphibians occur (Gray et al. 2009). However, the threat of ranaviruses to amphibian and reptile populations in specific regions is still largely unknown (Chinchar 2002; Gray et al. 2009).

  2. Nothing a hot bath won't cure: infection rates of amphibian chytrid fungus correlate negatively with water temperature under natural field settings.

    Directory of Open Access Journals (Sweden)

    Matthew J Forrest

    Full Text Available Dramatic declines and extinctions of amphibian populations throughout the world have been associated with chytridiomycosis, an infectious disease caused by the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd. Previous studies indicated that Bd prevalence correlates with cooler temperatures in the field, and laboratory experiments have demonstrated that Bd ceases growth at temperatures above 28°C. Here we investigate how small-scale variations in water temperature correlate with Bd prevalence in the wild. We sampled 221 amphibians, including 201 lowland leopard frogs (Rana [Lithobates] yavapaiensis, from 12 sites in Arizona, USA, and tested them for Bd. Amphibians were encountered in microhabitats that exhibited a wide range of water temperatures (10-50°C, including several geothermal water sources. There was a strong inverse correlation between the water temperature in which lowland leopard frogs were captured and Bd prevalence, even after taking into account the influence of year, season, and host size. In locations where Bd was known to be present, the prevalence of Bd infections dropped from 75-100% in water 30°C. A strong inverse correlation between Bd infection status and water temperature was also observed within sites. Our findings suggest that microhabitats where water temperatures exceed 30°C provide lowland leopard frogs with significant protection from Bd, which could have important implications for disease dynamics, as well as management applications.There must be quite a few things a hot bath won't cure, but I don't know many of them--Sylvia Plath, "The Bell Jar" (1963.

  3. Nothing a hot bath won't cure: infection rates of amphibian chytrid fungus correlate negatively with water temperature under natural field settings.

    Science.gov (United States)

    Forrest, Matthew J; Schlaepfer, Martin A

    2011-01-01

    Dramatic declines and extinctions of amphibian populations throughout the world have been associated with chytridiomycosis, an infectious disease caused by the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Previous studies indicated that Bd prevalence correlates with cooler temperatures in the field, and laboratory experiments have demonstrated that Bd ceases growth at temperatures above 28°C. Here we investigate how small-scale variations in water temperature correlate with Bd prevalence in the wild. We sampled 221 amphibians, including 201 lowland leopard frogs (Rana [Lithobates] yavapaiensis), from 12 sites in Arizona, USA, and tested them for Bd. Amphibians were encountered in microhabitats that exhibited a wide range of water temperatures (10-50°C), including several geothermal water sources. There was a strong inverse correlation between the water temperature in which lowland leopard frogs were captured and Bd prevalence, even after taking into account the influence of year, season, and host size. In locations where Bd was known to be present, the prevalence of Bd infections dropped from 75-100% in water 30°C. A strong inverse correlation between Bd infection status and water temperature was also observed within sites. Our findings suggest that microhabitats where water temperatures exceed 30°C provide lowland leopard frogs with significant protection from Bd, which could have important implications for disease dynamics, as well as management applications.There must be quite a few things a hot bath won't cure, but I don't know many of them--Sylvia Plath, "The Bell Jar" (1963).

  4. Hydrological Regimes, Pond Morphology, and Habitat Use: Predicting the Impact of an Emerging Aquatic Pathogen

    OpenAIRE

    Cheryl J Briggs

    2006-01-01

    Declines in amphibian populations have been reported throughout the world in recent years. Chytridiomycosis, a disease of amphibians caused by the chytrid fungus, Batrachochytrium dendrobatidis, is one of a number of factors that have been shown to contribute to these population declines. B. dendrobatidis is associated with rapid population declines and local extinctions of populations of mountain yellow-legged frog, Rana muscosa, in some areas of the California Sierra Nevada mountains, howev...

  5. Chytrid blinders: what other disease risks to amphibians are we missing?

    Science.gov (United States)

    Duffus, Amanda L J

    2009-09-01

    Amphibian declines are occurring on a global scale, and infectious disease has been implicated as a factor in some species. Batrachochytrium dendrobatidis (Bd) has been associated with amphibian declines and/or extinctions in many locations, however, few of the studies have actually performed detailed pathological investigations to link the emergence of the disease with mortality rates large enough to cause the declines. Many studies are based solely on the presence of infection, not disease, because of the reliance on molecular tests for Bd. The emphasis of the importance of Bd combined with easy molecular tests has resulted in poor investigations into amphibian mortality and declines in many areas. The line between infection and disease has been blurred, and a step back to basic pathological and biological investigations is needed as other disease risks to amphibians, such as ranaviruses, are likely being missed. In this article, starting points for proper investigative techniques for amphibian mortalities and declines are identified and areas that need to be improved, especially communication between biologist and veterinarians involved in amphibian disease research, are suggested. It is hoped that this will start a much needed discussion in the area and lead to some consensus building about methodologies used in amphibian disease research.

  6. Endoscopy in Amphibians.

    Science.gov (United States)

    Chai, Norin

    2015-09-01

    Despite advances in exotic animal endoscopy, descriptions involving amphibians are scarce. Amphibian endoscopy shares some similarities with reptiles, especially in lizards. Selected procedures are discussed, including stomatoscopy, gastroscopy, coelioscopy, and biopsy of coelomic organs and lesions. This short overview provides the practitioner with pragmatic advice on how to conduct safe and effective endoscopic examinations in amphibians.

  7. Examining the evidence for chytridiomycosis in threatened amphibian species.

    Directory of Open Access Journals (Sweden)

    Matthew Heard

    Full Text Available Extinction risks are increasing for amphibians due to rising threats and minimal conservation efforts. Nearly one quarter of all threatened/extinct amphibians in the IUCN Red List is purportedly at risk from the disease chytridiomycosis. However, a closer look at the data reveals that Batrachochytrium dendrobatidis (the causal agent has been identified and confirmed to cause clinical disease in only 14% of these species. Primary literature surveys confirm these findings; ruling out major discrepancies between Red List assessments and real-time science. Despite widespread interest in chytridiomycosis, little progress has been made between assessment years to acquire evidence for the role of chytridiomycosis in species-specific amphibian declines. Instead, assessment teams invoke the precautionary principle when listing chytridiomycosis as a threat. Precaution is valuable when dealing with the world's most threatened taxa, however scientific research is needed to distinguish between real and predicted threats in order to better prioritize conservation efforts. Fast paced, cost effective, in situ research to confirm or rule out chytridiomycosis in species currently hypothesized to be threatened by the disease would be a step in the right direction. Ultimately, determining the manner in which amphibian conservation resources are utilized is a conversation for the greater conservation community that we hope to stimulate here.

  8. Direct and indirect effects of climate change on amphibian populations

    Science.gov (United States)

    Blaustein, Andrew R.; Walls, Susan C.; Bancroft, Betsy A.; Lawler, Joshua J.; Searle, Catherine L.; Gervasi, Stephanie S.

    2010-01-01

    As part of an overall decline in biodiversity, populations of many organisms are declining and species are being lost at unprecedented rates around the world. This includes many populations and species of amphibians. Although numerous factors are affecting amphibian populations, we show potential direct and indirect effects of climate change on amphibians at the individual, population and community level. Shifts in amphibian ranges are predicted. Changes in climate may affect survival, growth, reproduction and dispersal capabilities. Moreover, climate change can alter amphibian habitats including vegetation, soil, and hydrology. Climate change can influence food availability, predator-prey relationships and competitive interactions which can alter community structure. Climate change can also alter pathogen-host dynamics and greatly influence how diseases are manifested. Changes in climate can interact with other stressors such as UV-B radiation and contaminants. The interactions among all these factors are complex and are probably driving some amphibian population declines and extinctions.

  9. Surgery in Amphibians.

    Science.gov (United States)

    Chai, Norin

    2016-01-01

    Amphibian surgery has been especially described in research. Since the last decade, interest for captive amphibians has increased, so have the indications for surgical intervention. Clinicians should not hesitate to advocate such manipulations. Amphibian surgeries have no overwhelming obstacles. These patients heal well and tolerate blood loss more than higher vertebrates. Most procedures described in reptiles (mostly lizards) can be undertaken in most amphibians if equipment can be matched to the patients' size. In general, the most difficult aspect would be the provision of adequate anesthesia.

  10. Interventions for reducing extinction risk in chytridiomycosis-threatened amphibians.

    Science.gov (United States)

    Scheele, Ben C; Hunter, David A; Grogan, Laura F; Berger, Lee; Kolby, Jon E; McFadden, Michael S; Marantelli, Gerry; Skerratt, Lee F; Driscoll, Don A

    2014-10-01

    Wildlife diseases pose an increasing threat to biodiversity and are a major management challenge. A striking example of this threat is the emergence of chytridiomycosis. Despite diagnosis of chytridiomycosis as an important driver of global amphibian declines 15 years ago, researchers have yet to devise effective large-scale management responses other than biosecurity measures to mitigate disease spread and the establishment of disease-free captive assurance colonies prior to or during disease outbreaks. We examined the development of management actions that can be implemented after an epidemic in surviving populations. We developed a conceptual framework with clear interventions to guide experimental management and applied research so that further extinctions of amphibian species threatened by chytridiomycosis might be prevented. Within our framework, there are 2 management approaches: reducing Batrachochytrium dendrobatidis (the fungus that causes chytridiomycosis) in the environment or on amphibians and increasing the capacity of populations to persist despite increased mortality from disease. The latter approach emphasizes that mitigation does not necessarily need to focus on reducing disease-associated mortality. We propose promising management actions that can be implemented and tested based on current knowledge and that include habitat manipulation, antifungal treatments, animal translocation, bioaugmentation, head starting, and selection for resistance. Case studies where these strategies are being implemented will demonstrate their potential to save critically endangered species.

  11. The development of a spatially-explicit, individual-based, disease model for frogs and the chytrid fungus

    Science.gov (United States)

    Background / Question / Methods The fungal pathogen, Batrachochytrium dendrobatidis (BD), has been associated with amphibian population declines and even extinctions worldwide. Transmission of the fungus between amphibian hosts occurs via motile zoospores, which are produced on...

  12. Over-wintering tadpoles of Mixophyes fasciolatus act as reservoir host for Batrachochytrium dendrobatidis.

    Directory of Open Access Journals (Sweden)

    Edward J Narayan

    Full Text Available Batrachochytrium dendrobatidis (Bd, a cutaneous amphibian fungus that causes the lethal disease chytridiomycosis, has been implicated as a cause of many amphibian declines. Bd can tolerate low temperatures with an optimum thermal range from 17-24°C. It has been shown that Bd infection may result in species extinction, avoiding the transmission threshold presented by density dependent transmission theory. Prevalence of Bd during autumn and winter has been shown to be as low as 0% in some species. It is currently unclear how Bd persists in field conditions and what processes result in carry-over between seasons. It has been hypothesised that overwintering tadpoles may host Bd between breeding seasons. The Great Barred Frog (Mixophyes fasciolatus is a common, stable and widespread species in Queensland, Australia, and is known to carry Bd. Investigation into Bd infection of different life stages of M. fasciolatus during seasonally low prevalence may potentially reveal persistence and carry-over methods between seasons. Metamorphs, juveniles, and adults were swabbed for Bd infection over three months (between March and May, 2011 at 5 sites of varying altitude (66 m-790 m. A total of 93 swabs were analysed using Polymerase Chain Reaction (PCR real-time analysis. PCR analysis showed 6 positive (1 excluded, 4 equivocal and 83 negative results for infection with Bd. Equivocal results were assumed to be negative using the precautionary principle. The 5 positive results consisted of 4 emerging (Gosner stage 43-45 metamorphs and 1 adult M. fasciolatus. Fisher's exact test on prevalence showed that the prevalence was significantly different between life stages. All positive results were sampled at high altitudes (790 m; however prevalence was not significantly different between altitudes. Infection of emerging metamorphs suggests that individuals were infected as tadpoles. We hypothesise that M. fasciolatus tadpoles carry Bd through seasons. Thus

  13. Spatial variation in risk and consequence of Batrachochytrium salamandrivorans introduction in the USA

    Science.gov (United States)

    Richgels, Katherine; Russell, Robin E.; Adams, Michael J.; White, C. LeAnn; Campbell Grant, Evan H.

    2016-01-01

    A newly identified fungal pathogen, Batrachochytrium salamandrivorans (Bsal), is responsible for mass mortality events and severe population declines in European salamanders. The eastern USA has the highest diversity of salamanders in the world and the introduction of this pathogen is likely to be devastating. Although data are inevitably limited for new pathogens, disease-risk assessments use best available data to inform management decisions. Using characteristics of Bsal ecology, spatial data on imports and pet trade establishments, and salamander species diversity, we identify high-risk areas with both a high likelihood of introduction and severe consequences for local salamanders. We predict that the Pacific coast, southern Appalachian Mountains and mid-Atlantic regions will have the highest relative risk from Bsal. Management of invasive pathogens becomes difficult once they are established in wildlife populations; therefore, import restrictions to limit pathogen introduction and early detection through surveillance of high-risk areas are priorities for preventing the next crisis for North American salamanders.

  14. Zoonotic diseases associated with reptiles and amphibians: an update.

    Science.gov (United States)

    Mitchell, Mark A

    2011-09-01

    Reptiles and amphibians are popular as pets. There are increased concerns among public health officials because of the zoonotic potential associated with these animals. Encounters with reptiles and amphibians are also on the rise in the laboratory setting and with wild animals; in both of these practices, there is also an increased likelihood for exposure to zoonotic pathogens. It is important that veterinarians remain current with the literature as it relates to emerging and reemerging zoonotic diseases attributed to reptiles and amphibians so that they can protect themselves, their staff, and their clients from potential problems.

  15. Amphibian Chytrid Fungus in Madagascar neither Shows Widespread Presence nor Signs of Certain Establishment.

    Directory of Open Access Journals (Sweden)

    Jonathan E Kolby

    Full Text Available The global spread of amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd is associated with amphibian mass mortality, population decline, and extinction. Over the past decade, concern has been expressed for the potential introduction of Bd to Madagascar, a global hotspot of amphibian biodiversity. Following years without detection, widespread Bd presence in Madagascar has now been reported (Bletz et al. 2015a, raising international conservation concern. Before reacting to this finding with a significant management response, the accuracy and context of the data warrant cautious review. Re-examination of a 10-year dataset together with results from more recent surveillance (Kolby et al. 2015 does not yet demonstrate widespread Bd presence. Detection of Bd at "positive" locations in Madagascar has been inconsistent for unknown reasons. Whether Bd is established in Madagascar (i.e. populations are self-sustaining or instead requires continued introduction to persist also remains uncertain. The deployment of emergency conservation rescue initiatives is expected to target areas where the distribution of Bd and the risk of chytridiomycosis endangering amphibians is believed to overlap. Thus, erroneous description of Bd presence would misdirect limited conservation resources. Standardized surveillance and confirmatory surveys are now imperative to reliably characterize the distribution, potential spread, virulence and overall risk of Bd to amphibians in Madagascar.

  16. Climate change and amphibians

    Directory of Open Access Journals (Sweden)

    Corn, P. S.

    2005-01-01

    Full Text Available Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  17. A non-invasive stress assay shows that tadpole populations infected with Batrachochytrium dendrobatidis have elevated corticosterone levels.

    Directory of Open Access Journals (Sweden)

    Caitlin R Gabor

    Full Text Available Batrachochytrium dendrobatidis (Bd is a fungus that causes the disease chytridiomycosis and is associated with widespread amphibian declines. Populations vary in their susceptibility to Bd infections, and the virulence of the infecting lineage can also vary. Both of these factors may manifest as a differential physiological stress response. In addition, variation in disease susceptibility across amphibian populations may be influenced by immunosuppression caused by chronic stress imposed by environmental factors. Here, we use a non-invasive water-borne hormone technique to assess stress levels (corticosterone of free-living tadpole populations that are infected by Bd. We found that corticosterone release rates were higher in infected populations of two species of tadpoles (Alytes obstetricans and A. muletensis than in an uninfected population for both species. The relationship between corticosterone and the intensity of infection differed between species, with only the infected A. obstetricans population showing a significant positive correlation. The higher corticosterone release rates found in A. obstetricans may be an outcome of infection by a highly virulent lineage of Bd (BdGPL, whereas A. muletensis is infected with a less virulent lineage (BdCAPE. These results suggest that different lineages of Bd impose different levels of stress on the infected animals, and that this may influence survival. The next step is to determine whether higher corticosterone levels make individuals more susceptible to Bd or if Bd infections drive the higher corticosterone levels.

  18. Cell Density Effects of Frog Skin Bacteria on Their Capacity to Inhibit Growth of the Chytrid Fungus, Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Yasumiba, Kiyomi; Bell, Sara; Alford, Ross

    2016-01-01

    Bacterial symbionts on frog skin can reduce the growth of the chytrid fungus Batrachochytrium dendrobatidis (Bd) through production of inhibitory metabolites. Bacteria can be effective at increasing the resistance of amphibians to chytridiomycosis when added to amphibian skin, and isolates can be screened for production of metabolites that inhibit Bd growth in vitro. However, some bacteria use density-dependent mechanism such as quorum sensing to regulate metabolite production. It is therefore important to consider cell density effects when evaluating bacteria as possible candidates for bioaugmentation. The aim of our study was to evaluate how the density of cutaneous bacteria affects their inhibition of Bd growth in vitro. We sampled cutaneous bacteria isolated from three frog species in the tropical rainforests of northern Queensland, Australia, and selected ten isolates that were inhibitory to Bd in standardised pilot trials. We grew each isolate in liquid culture at a range of initial dilutions, sub-sampled each dilution at a series of times during the first 48 h of growth and measured spectrophotometric absorbance values, cell counts and Bd-inhibitory activity of cell-free supernatants at each time point. The challenge assay results clearly demonstrated that the inhibitory effects of most isolates were density dependent, with relatively low variation among isolates in the minimum cell density needed to inhibit Bd growth. We suggest the use of minimum cell densities and fast-growing candidate isolates to maximise bioaugmentation efforts.

  19. Evaluating the links between climate, disease spread, and amphibian declines.

    Science.gov (United States)

    Rohr, Jason R; Raffel, Thomas R; Romansic, John M; McCallum, Hamish; Hudson, Peter J

    2008-11-11

    Human alteration of the environment has arguably propelled the Earth into its sixth mass extinction event and amphibians, the most threatened of all vertebrate taxa, are at the forefront. Many of the worldwide amphibian declines have been caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd), and two contrasting hypotheses have been proposed to explain these declines. Positive correlations between global warming and Bd-related declines sparked the chytrid-thermal-optimum hypothesis, which proposes that global warming increased cloud cover in warm years that drove the convergence of daytime and nighttime temperatures toward the thermal optimum for Bd growth. In contrast, the spatiotemporal-spread hypothesis states that Bd-related declines are caused by the introduction and spread of Bd, independent of climate change. We provide a rigorous test of these hypotheses by evaluating (i) whether cloud cover, temperature convergence, and predicted temperature-dependent Bd growth are significant positive predictors of amphibian extinctions in the genus Atelopus and (ii) whether spatial structure in the timing of these extinctions can be detected without making assumptions about the location, timing, or number of Bd emergences. We show that there is spatial structure to the timing of Atelopus spp. extinctions but that the cause of this structure remains equivocal, emphasizing the need for further molecular characterization of Bd. We also show that the reported positive multi-decade correlation between Atelopus spp. extinctions and mean tropical air temperature in the previous year is indeed robust, but the evidence that it is causal is weak because numerous other variables, including regional banana and beer production, were better predictors of these extinctions. Finally, almost all of our findings were opposite to the predictions of the chytrid-thermal-optimum hypothesis. Although climate change is likely to play an important role in worldwide amphibian declines

  20. Evaluating the links between climate, disease spread, and amphibian declines.

    Science.gov (United States)

    Rohr, Jason R; Raffel, Thomas R; Romansic, John M; McCallum, Hamish; Hudson, Peter J

    2008-11-11

    Human alteration of the environment has arguably propelled the Earth into its sixth mass extinction event and amphibians, the most threatened of all vertebrate taxa, are at the forefront. Many of the worldwide amphibian declines have been caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd), and two contrasting hypotheses have been proposed to explain these declines. Positive correlations between global warming and Bd-related declines sparked the chytrid-thermal-optimum hypothesis, which proposes that global warming increased cloud cover in warm years that drove the convergence of daytime and nighttime temperatures toward the thermal optimum for Bd growth. In contrast, the spatiotemporal-spread hypothesis states that Bd-related declines are caused by the introduction and spread of Bd, independent of climate change. We provide a rigorous test of these hypotheses by evaluating (i) whether cloud cover, temperature convergence, and predicted temperature-dependent Bd growth are significant positive predictors of amphibian extinctions in the genus Atelopus and (ii) whether spatial structure in the timing of these extinctions can be detected without making assumptions about the location, timing, or number of Bd emergences. We show that there is spatial structure to the timing of Atelopus spp. extinctions but that the cause of this structure remains equivocal, emphasizing the need for further molecular characterization of Bd. We also show that the reported positive multi-decade correlation between Atelopus spp. extinctions and mean tropical air temperature in the previous year is indeed robust, but the evidence that it is causal is weak because numerous other variables, including regional banana and beer production, were better predictors of these extinctions. Finally, almost all of our findings were opposite to the predictions of the chytrid-thermal-optimum hypothesis. Although climate change is likely to play an important role in worldwide amphibian declines

  1. AMPHIBIAN POPULATION DYNAMICS

    Science.gov (United States)

    Agriculture has contributed to loss of vertebrate biodiversity in many regions, including the U.S. Corn Belt. Amphibian populations, in particular, have experienced widespread and often inexplicable declines, range reductions, and extinctions. However, few attempts have been made...

  2. The cause of global amphibian declines: a developmental endocrinologist's perspective.

    Science.gov (United States)

    Hayes, T B; Falso, P; Gallipeau, S; Stice, M

    2010-03-15

    Greater than 70% of the world's amphibian species are in decline. We propose that there is probably not a single cause for global amphibian declines and present a three-tiered hierarchical approach that addresses interactions among and between ultimate and proximate factors that contribute to amphibian declines. There are two immediate (proximate) causes of amphibian declines: death and decreased recruitment (reproductive failure). Although much attention has focused on death, few studies have addressed factors that contribute to declines as a result of failed recruitment. Further, a great deal of attention has focused on the role of pathogens in inducing diseases that cause death, but we suggest that pathogen success is profoundly affected by four other ultimate factors: atmospheric change, environmental pollutants, habitat modification and invasive species. Environmental pollutants arise as likely important factors in amphibian declines because they have realized potential to affect recruitment. Further, many studies have documented immunosuppressive effects of pesticides, suggesting a role for environmental contaminants in increased pathogen virulence and disease rates. Increased attention to recruitment and ultimate factors that interact with pathogens is important in addressing this global crisis.

  3. The cause of global amphibian declines: a developmental endocrinologist's perspective.

    Science.gov (United States)

    Hayes, T B; Falso, P; Gallipeau, S; Stice, M

    2010-03-15

    Greater than 70% of the world's amphibian species are in decline. We propose that there is probably not a single cause for global amphibian declines and present a three-tiered hierarchical approach that addresses interactions among and between ultimate and proximate factors that contribute to amphibian declines. There are two immediate (proximate) causes of amphibian declines: death and decreased recruitment (reproductive failure). Although much attention has focused on death, few studies have addressed factors that contribute to declines as a result of failed recruitment. Further, a great deal of attention has focused on the role of pathogens in inducing diseases that cause death, but we suggest that pathogen success is profoundly affected by four other ultimate factors: atmospheric change, environmental pollutants, habitat modification and invasive species. Environmental pollutants arise as likely important factors in amphibian declines because they have realized potential to affect recruitment. Further, many studies have documented immunosuppressive effects of pesticides, suggesting a role for environmental contaminants in increased pathogen virulence and disease rates. Increased attention to recruitment and ultimate factors that interact with pathogens is important in addressing this global crisis. PMID:20190117

  4. Adaptive colouration in amphibians.

    Science.gov (United States)

    Rudh, Andreas; Qvarnström, Anna

    2013-01-01

    Amphibians, i.e. salamanders, frogs and caecilians show a wide range of bright colours in combination with contrasting patterns. There is variation among species, populations and also within species and populations. Furthermore, individuals often change colours during developmental stages or in response to environmental factors. This extraordinary variation means that there are excellent opportunities to test hypotheses of the adaptive significance of colours using amphibian species as models. We review the present view of functions of colouration in amphibians with the main focus on relatively unexplored topics. Variation in colouration has been found to play a role in thermoregulation, UV protection, predator avoidance and sexual signalling. However, many proposed cases of adaptive functions of colouration in amphibians remain virtually scientifically unexplored and surprisingly few genes influencing pigmentation or patterning have been detected. We would like to especially encourage more studies that take advantage of recent developments in measurement of visual properties of several possible signalling receivers (e.g. predators, competitors or mates). Future investigations on interactions between behaviour, ecology and vision have the potential to challenge our current view of the adaptive function of colouration in amphibians.

  5. The use of singleplex and nested PCR to detect Batrachochytrium dendrobatidis in free-living frogs

    Directory of Open Access Journals (Sweden)

    Selene Dall'Acqua Coutinho

    2015-06-01

    Full Text Available Many microorganisms are able to cause diseases in amphibians, and in the past few years one of the most reported has been Batrachochytrium dendrobatidis. This fungus was first reported in Brazil in 2005; following this, other reports were made in specimens deposited in museum collections, captive and free-living frogs. The aim of this study was to compare singleplex and nested-PCR techniques to detect B. dendrobatidis in free-living and apparently healthy adult frogs from the Brazilian Atlantic Forest. The sample collection area was a protected government park, with no general entrance permitted and no management of the animals there. Swabs were taken from the skin of 107 animals without macroscopic lesions and they were maintained in ethanol p.a. Fungal DNA was extracted and identification of B. dendrobatidis was performed using singleplex and nested-PCR techniques, employing specific primers sequences. B. dendrobatidis was detected in 61/107 (57% and 18/107 (17% animals, respectively by nested and singleplex-PCR. Nested-PCR was statistically more sensible than the conventional for the detection of B. dendrobatidis (Chi-square = 37.1; α = 1% and the agreement between both techniques was considered just fair (Kappa = 0.27. The high prevalence obtained confirms that these fungi occur in free-living frogs from the Brazilian Atlantic Forest with no macroscopic lesions, characterizing the state of asymptomatic carrier. We concluded that the nested-PCR technique, due to its ease of execution and reproducibility, can be recommended as one of the alternatives in epidemiological surveys to detect B. dendrobatidis in healthy free-living frog populations.

  6. Temperature, hydric environment, and prior pathogen exposure alter the experimental severity of chytridiomycosis in boreal toads

    Science.gov (United States)

    Murphy, Peter J.; St-Hilaire, Sophie; Corn, Paul Stephen

    2011-01-01

    Prevalence of the pathogen Batrachochytrium dendrobatidis (Bd), implicated in amphibian population declines worldwide, is associated with habitat moisture and temperature, but few studies have varied these factors and measured the response to infection in amphibian hosts. We evaluated how varying humidity, contact with water, and temperature affected the manifestation of chytridiomycosis in boreal toads Anaxyrus (Bufo) boreas boreas and how prior exposure to Bd affects the likelihood of survival after re-exposure, such as may occur seasonally in long-lived species. Humidity did not affect survival or the degree of Bd infection, but a longer time in contact with water increased the likelihood of mortality. After exposure to ~106 Bd zoospores, all toads in continuous contact with water died within 30 d. Moreover, Bd-exposed toads that were disease-free after 64 d under dry conditions, developed lethal chytridiomycosis within 70 d of transfer to wet conditions. Toads in unheated aquaria (mean = 15°C) survived less than 48 d, while those in moderately heated aquaria (mean = 18°C) survived 115 d post-exposure and exhibited behavioral fever, selecting warmer sites across a temperature gradient. We also found benefits of prior Bd infection: previously exposed toads survived 3 times longer than Bd-naïve toads after re-exposure to 106 zoospores (89 vs. 30 d), but only when dry microenvironments were available. This study illustrates how the outcome of Bd infection in boreal toads is environmentally dependent: when continuously wet, high reinfection rates may overwhelm defenses, but periodic drying, moderate warming, and previous infection may allow infected toads to extend their survival.

  7. Widespread amphibian extinctions from epidemic disease driven by global warming.

    Science.gov (United States)

    Pounds, J Alan; Bustamante, Martín R; Coloma, Luis A; Consuegra, Jamie A; Fogden, Michael P L; Foster, Pru N; La Marca, Enrique; Masters, Karen L; Merino-Viteri, Andrés; Puschendorf, Robert; Ron, Santiago R; Sánchez-Azofeifa, G Arturo; Still, Christopher J; Young, Bruce E

    2006-01-12

    As the Earth warms, many species are likely to disappear, often because of changing disease dynamics. Here we show that a recent mass extinction associated with pathogen outbreaks is tied to global warming. Seventeen years ago, in the mountains of Costa Rica, the Monteverde harlequin frog (Atelopus sp.) vanished along with the golden toad (Bufo periglenes). An estimated 67% of the 110 or so species of Atelopus, which are endemic to the American tropics, have met the same fate, and a pathogenic chytrid fungus (Batrachochytrium dendrobatidis) is implicated. Analysing the timing of losses in relation to changes in sea surface and air temperatures, we conclude with 'very high confidence' (> 99%, following the Intergovernmental Panel on Climate Change, IPCC) that large-scale warming is a key factor in the disappearances. We propose that temperatures at many highland localities are shifting towards the growth optimum of Batrachochytrium, thus encouraging outbreaks. With climate change promoting infectious disease and eroding biodiversity, the urgency of reducing greenhouse-gas concentrations is now undeniable. PMID:16407945

  8. Trouble in the aquatic world: How wildlife professionals are battling amphibian declines

    Science.gov (United States)

    Olson, Deanna H.; Chestnut, Tara E.

    2014-01-01

    A parasitic fungus, similar to the one that caused the extinction of numerous tropical frog and toad species, is killing salaman-ders in Europe. Scientists first identified the fungus, Batrachochytrium salamandrivorans, in 2013 as the culprit behind the death of fire salamanders (Salamandra salamandra) in the Netherlands (Martel et al. 2013) and are now exploring its potential impact to other species. Although the fungus, which kills the amphibians by infecting their skin, has not yet spread to the United States, researchers believe it's only a mat-ter of time before it does and, when that happens, the impact on salamander populations could be devastating (Martel et al. 2014). Reports of worldwide declines of amphibians began a quarter of a century ago (Blaustein & Wake 1990). Globally, some amphibian popula-tion declines occurred in the late 1950s and early 1960s, and declining trends continued in North America (Houlahan et al. 2000). In the earlier years, population declines were attributed primar-ily to overharvest due to unregulated supply of species such as the northern leopard frog (Litho-bates pipiens) for educational use (Dodd 2013). In later years, however, causes of declines were less evident. In 1989, herpetologists at the First World Congress of Herpetology traded alarming stories of losses across continents and in seemingly pro-tected landscapes, making it clear that amphibian population declines were a "global phenomenon." In response to these reports, in 1991, the Interna-tional Union for Conservation of Nature (IUCN) established the Declining Amphibian Populations Task Force to better understand the scale and scope of global amphibian declines. Unfortunate-ly, the absence of long-term monitoring data and targeted studies made it difficult for the task force to compile information.

  9. Expansion of amphibian intronless interferons revises the paradigm for interferon evolution and functional diversity.

    Science.gov (United States)

    Sang, Yongming; Liu, Qinfang; Lee, Jinhwa; Ma, Wenjun; McVey, D Scott; Blecha, Frank

    2016-01-01

    Interferons (IFNs) are key cytokines identified in vertebrates and evolutionary dominance of intronless IFN genes in amniotes is a signature event in IFN evolution. For the first time, we show that the emergence and expansion of intronless IFN genes is evident in amphibians, shown by 24-37 intronless IFN genes in each frog species. Amphibian IFNs represent a molecular complex more complicated than those in other vertebrate species, which revises the established model of IFN evolution to facilitate re-inspection of IFN molecular and functional diversity. We identified these intronless amphibian IFNs and their intron-containing progenitors, and functionally characterized constitutive and inductive expression and antimicrobial roles in infections caused by zoonotic pathogens, such as influenza viruses and Listeria monocytogenes. Amphibians, therefore, may serve as overlooked vectors/hosts for zoonotic pathogens, and the amphibian IFN system provides a model to study IFN evolution in molecular and functional diversity in coping with dramatic environmental changes during terrestrial adaption. PMID:27356970

  10. Expansion of amphibian intronless interferons revises the paradigm for interferon evolution and functional diversity.

    Science.gov (United States)

    Sang, Yongming; Liu, Qinfang; Lee, Jinhwa; Ma, Wenjun; McVey, D Scott; Blecha, Frank

    2016-01-01

    Interferons (IFNs) are key cytokines identified in vertebrates and evolutionary dominance of intronless IFN genes in amniotes is a signature event in IFN evolution. For the first time, we show that the emergence and expansion of intronless IFN genes is evident in amphibians, shown by 24-37 intronless IFN genes in each frog species. Amphibian IFNs represent a molecular complex more complicated than those in other vertebrate species, which revises the established model of IFN evolution to facilitate re-inspection of IFN molecular and functional diversity. We identified these intronless amphibian IFNs and their intron-containing progenitors, and functionally characterized constitutive and inductive expression and antimicrobial roles in infections caused by zoonotic pathogens, such as influenza viruses and Listeria monocytogenes. Amphibians, therefore, may serve as overlooked vectors/hosts for zoonotic pathogens, and the amphibian IFN system provides a model to study IFN evolution in molecular and functional diversity in coping with dramatic environmental changes during terrestrial adaption.

  11. Real-time PCR Detection and Phylogenetic Analysis for Batrachochytrium dendrobatidis in Rana limnocharises from Samples of a Museum%馆藏泽蛙标本壶菌病原实时PCR检测与系统发育分析

    Institute of Scientific and Technical Information of China (English)

    曾朝辉; 白世卓; 朱蕴绮; 王晓龙

    2012-01-01

    In order to research and prove the chytridiomycosis of amphibians in our country in the history, review the origin of the Batrachochytrium dendrobatidis from the aspects of time and systematic evolution, 39 Rana limnocharises which were collected from Guangdong province and held in museum in 1982 were screened by Taqman-MGB fluorescence probe quantitative polymerase chain reaction to detect the pathogens; and the products of QPCR were cloned and sequenced to identify the origin of the pathogens by sequence alignment and phylogenetic analysis. Finally we got the standard curve: Y = - 3.1 X + 32.65 and the related coefficient: R2 = 0.999 8. There were 12 positive samples were gotten to report the detection rate as 30.8 %. Meanwhile the phylogenetic analysis indicated that a certain extent differentia- tion of the Batrachochytrium dendrobatidis in our country existed. One type of the fungi had altitudinal genetic relationship with the strains from the North America, South America and Europe. Another one was obviously different from the strains in the other areas of the world with special characteristics. The research boosted the earliest record of the Batrachochytrium dendrobatidis in China to 1980s.%为研究、验证我国两栖类壶菌病的历史疫情,从时间和系统进化角度追溯壶菌的来源,该研究选取北京自然博物馆馆藏1982年采集于广东的泽蛙标本39只,利用Taqman-MGB荧光探针定量PCR技术进行壶菌检测,并对定量PCR产物克隆、测序,通过序列比对和系统发育分析判定其来源。最终得到定量PCR标准曲线:Y=-3.1X+32.65;相关系数R2=0.999 8;检测结果为阳性样本12只,检出率30.8%;同时系统发育分析表明,我国的壶菌存在一定程度的分化,一类与北美洲、南美洲、欧洲菌株呈现高度的亲缘关系;另一类则表现出与世界其他地区分布的壶菌有明显的不同,显示为独特类型。该研究把我国壶菌感染的最早记录推进到了20

  12. Rainforest: Reptiles and Amphibians

    Science.gov (United States)

    Olson, Susanna

    2006-01-01

    Rainforest reptiles and amphibians are a vibrantly colored, multimedia art experience. To complete the entire project one may need to dedicate many class periods to production, yet in each aspect of the project a new and important skill, concept, or element is being taught or reinforced. This project incorporates the study of warm and cool color…

  13. Responding to Amphibian Loss

    NARCIS (Netherlands)

    J.R. Mendelson III; K.R. Lips; R.W. Gagliardo; G.B. Rabb; J.P. Collins; J.E. Diffendorfer; P. Daszak; R. Ibáñez D.; K.C. Zippel; D.P. Lawson; K.M. Wright; S.N. Stuart; C. Gascon; H.R. da Silva; P.A. Burrowes; R.L. Joglar; E. La Marca; S. Lötters; L.H. du Preez; C. Weldon; A. Hyatt; J.V. Rodriguez-Mahecha; S. Hunt; H. Robertson; B. Lock; C.J. Raxworthy; D.R. Frost; R.C. Lacy; R.A. Alford; J.A. Campbell; G. Parra-Olea; F. Bolaños; J.J. Calvo Domingo; T. Halliday; J.B. Murphy; M.H. Wake; L.A. Coloma; S.L. Kuzmin; M.S. Price; K.M. Howell; M. Lau; R. Pethiyagoda; M. Boone; M.J. Lannoo; A.R. Blaustein; A. Dobson; R.A. Griffiths; M.L. Crump; D.B. Wake; E.D. Brodie Jr

    2006-01-01

    In their Policy Forum "Confronting amphibian declines and extinctions" (7 July, p. 48), J. R. Mendelson III and colleagues offer a strategy for "stopping" the widespread losses of frogs, toads, and salamanders. Disease research and captive breeding figure prominently in their call for action.

  14. West Africa - a safe haven for frogs? A sub-continental assessment of the chytrid fungus (Batrachochytrium dendrobatidis.

    Directory of Open Access Journals (Sweden)

    Johannes Penner

    Full Text Available A putative driver of global amphibian decline is the panzootic chytrid fungus Batrachochytrium dendrobatidis (Bd. While Bd has been documented across continental Africa, its distribution in West Africa remains ambiguous. We tested 793 West African amphibians (one caecilian and 61 anuran species for the presence of Bd. The samples originated from seven West African countries - Bénin, Burkina Faso, Côte d'Ivoire, Ghana, Guinea, Liberia, Sierra Leone - and were collected from a variety of habitats, ranging from lowland rainforests to montane forests, montane grasslands to humid and dry lowland savannahs. The species investigated comprised various life-history strategies, but we focused particularly on aquatic and riparian species. We used diagnostic PCR to screen 656 specimen swabs and histology to analyse 137 specimen toe tips. All samples tested negative for Bd, including a widespread habitat generalist Hoplobatrachus occipitalis which is intensively traded on the West African food market and thus could be a potential dispersal agent for Bd. Continental fine-grained (30 arc seconds environmental niche models suggest that Bd should have a broad distribution across West Africa that includes most of the regions and habitats that we surveyed. The surprising apparent absence of Bd in West Africa indicates that the Dahomey Gap may have acted as a natural barrier. Herein we highlight the importance of this Bd-free region of the African continent - especially for the long-term conservation of several threatened species depending on fast flowing forest streams (Conraua alleni ("Vulnerable" and Petropedetes natator ("Near Threatened" as well as the "Critically Endangered" viviparous toad endemic to the montane grasslands of Mount Nimba (Nimbaphrynoides occidentalis.

  15. Amphibians of Peninsular India

    OpenAIRE

    Gururaja, KV

    2005-01-01

    Frogs and toads have always fascinated man through the ages, dating back to Mandukya Upanishad of the Vedic ages to the cent discoveries in the Western Ghats. More technically known as ‘amphibians’ (Greek equivalent for their biphasic life stages as tadpoles and adults), these include caecilians, salamanders, newts, and sirens. Amphibians are in serious scientific contention over the last decade for at least two main reasons. One being far more crucial, pertaining to their viable existence as...

  16. Field Surveys of Amphibian Populations.

    Science.gov (United States)

    Brodman, Robert

    2000-01-01

    Describes a course on amphibian research for environmental science majors. Involves students in field studies and introduces them to investigative research. Evaluates the course. (Contains 19 references.) (YDS)

  17. Global Amphibian Extinction Risk Assessment for the Panzootic Chytrid Fungus

    Directory of Open Access Journals (Sweden)

    Matthew C. Fisher

    2009-09-01

    Full Text Available Species are being lost at increasing rates due to anthropogenic effects, leading to the recognition that we are witnessing the onset of a sixth mass extinction. Emerging infectious disease has been shown to increase species loss and any attempts to reduce extinction rates need to squarely confront this challenge. Here, we develop a procedure for identifying amphibian species that are most at risk from the effects of chytridiomycosis by combining spatial analyses of key host life-history variables with the pathogen's predicted distribution. We apply our rule set to the known global diversity of amphibians in order to prioritize pecies that are most at risk of loss from disease emergence. This risk assessment shows where limited conservation funds are best deployed in order to prevent further loss of species by enabling ex situ amphibian salvage operations and focusing any potential disease mitigation projects.

  18. First record of Saprolegnia sp. in an amphibian population in Colombia

    Directory of Open Access Journals (Sweden)

    Luis Daniel Prada-Salcedo

    2011-12-01

    Full Text Available Most research related to the decline of amphibians has been focused on the detection of the pathogenic fungus Batrachochytriumdendrobatidis. This fungus is the main pathogen detected around the world. However, research has shown the presence of another fungus,Saprolegnia ferax, as a cause of mortality in amphibians in North America. Our study suggests a possible interspecific transmissioncaused by the presence of rainbow trout; thus, amphibian declines may not be attributable only to the presence of a single pathogen, butto other organisms and factors. Materials and methods. Our study revealed the presence of Saprolegnia sp. in the Andean frog Atelopusmittermeieri using the imprinting technique with lactophenol blue staining, which allowed the typical structures of this fungus to beobserved. Results. The importance of this discovery is the presence of two pathogenic fungi, B. dendrobatidis and Saprolegnia, whichaffecting simultaneously a population of amphibians. This finding brings attention to the eventual presence of other microorganismsthat might be involved individually or collectively in the decline of amphibian species. Conclusions. This record suggests a possibletransmission between rainbow trout (Oncorhynchus mykiss, an introduced species in the highlands of Colombia, which shares thesame habitats with different species of amphibians in the Sanctuary of Flora and Fauna Guanentá in the upper river Fonce in the midCordillera Oriental of Colombia.

  19. Sex determination in amphibians.

    Science.gov (United States)

    Nakamura, Masahisa

    2009-05-01

    The heterogametic sex is male in all mammals, whereas it is female in almost all birds. By contrast, there are two heterogametic types (XX/XY and ZZ/ZW) for genetic sex determination in amphibians. Though the original heterogametic sex was female in amphibians, the two heterogametic types were probably interchangeable, suggesting that sex chromosomes evolved several times in this lineage. Indeed, the frog Rana rugosa has the XX/XY and ZZ/ZW sex-determining systems within a single species, depending on the local population in Japan. The XY and ZW geographic forms with differentiated sex chromosomes probably have a common origin as undifferentiated sex chromosomes resulted from the hybridization between the primary populations of West Japan and Kanto forms. It is clear that the sex chromosomes are still undergoing evolution in this species group. Regardless of the presence of a sex-determining gene in amphibians, the gonadal sex of some species can be changed by sex steroids. Namely, sex steroids can induce the sex reversal, with estrogens inducing the male-to-female sex reversal, whereas androgens have the opposite effect. In R. rugosa, gonadal activity of CYP19 (P450 aromatase) is correlated with the feminization of gonads. Of particular interest is that high levels of CYP19 expression are observed in indifferent gonads at time before sex determination. Increases in the expression of CYP19 in female gonads and CYP17 (P450 17alpha-hydroxylase/C17-20 lyase) in male gonads suggest that the former plays an important role in phenotypic female determination, whereas the latter is needed for male determination. Thus, steroids could be the key factor for sex determination in R. rugosa. In addition to the role of sex steroids in gonadal sex determination in this species, Foxl2 and Sox3 are capable of promoting CYP19 expression. Since both the genes are autosomal, another factor up-regulating CYP19 expression must be recruited. The factor, which may be located on the X or W

  20. A tale of two lineages: unexpected, long-term persistence of the amphibian-killing fungus in Brazil.

    Science.gov (United States)

    Lips, Karen

    2014-02-01

    For the past 17 years, scientists have been compiling a list of amphibian species susceptible to infection by the amphibian-killing chytrid fungus, Batrachochytrium dendrobatidis (Bd), all over the world, with >500 species infected on every continent except Antarctica (Olson et al.). Where Bd has been found, the impacts on amphibians has been one of two types: either Bd arrives into a naïve amphibian population followed by a mass die-off and population declines (e.g. Lips et al.), or Bd is present at some moderate prevalence, usually infecting many species but at apparently nonlethal intensities for a long time. In this issue of Molecular Ecology, Rodriguez et al. (2014) discover that the Atlantic Coastal Forest of Brazil is home to two Bd lineages: the Global Pandemic Lineage (Bd-GPL) - the strain responsible for mass die-offs and population declines - and a lineage endemic to Brazil (Bd-Bz). Even more surprising was that both lineages have been present in this area for the past 100 years, making these the oldest records of Bd infecting amphibians. The team also described a moderate but steady prevalence of ~20% across all sampled anuran families for over 100 years, indicating that Brazil has been in an enzootic disease state for over a century. Most amphibians were infected with Bd-GPL, suggesting this lineage may be a better competitor than Bd-Bz or may be replacing the Bd-Bz lineage. Rodriguez et al. (2014) also detected likely hybridization of the two Bd lineages, as originally described by Schloegel et al. (2012).

  1. DNA barcoding amphibians and reptiles.

    Science.gov (United States)

    Vences, Miguel; Nagy, Zoltán T; Sonet, Gontran; Verheyen, Erik

    2012-01-01

    Only a few major research programs are currently targeting COI barcoding of amphibians and reptiles (including chelonians and crocodiles), two major groups of tetrapods. Amphibian and reptile species are typically old, strongly divergent, and contain deep conspecific lineages which might lead to problems in species assignment with incomplete reference databases. As far as known, there is no single pair of COI primers that will guarantee a sufficient rate of success across all amphibian and reptile taxa, or within major subclades of amphibians and reptiles, which means that the PCR amplification strategy needs to be adjusted depending on the specific research question. In general, many more amphibian and reptile taxa have been sequenced for 16S rDNA, which for some purposes may be a suitable complementary marker, at least until a more comprehensive COI reference database becomes available. DNA barcoding has successfully been used to identify amphibian larval stages (tadpoles) in species-rich tropical assemblages. Tissue sampling, DNA extraction, and amplification of COI is straightforward in amphibians and reptiles. Single primer pairs are likely to have a failure rate between 5 and 50% if taxa of a wide taxonomic range are targeted; in such cases the use of primer cocktails or subsequent hierarchical usage of different primer pairs is necessary. If the target group is taxonomically limited, many studies have followed a strategy of designing specific primers which then allow an easy and reliable amplification of all samples.

  2. Surviving chytridiomycosis: differential anti-Batrachochytrium dendrobatidis activity in bacterial isolates from three lowland species of Atelopus.

    Directory of Open Access Journals (Sweden)

    Sandra V Flechas

    Full Text Available In the Neotropics, almost every species of the stream-dwelling harlequin toads (genus Atelopus have experienced catastrophic declines. The persistence of lowland species of Atelopus could be explained by the lower growth rate of Batrachochytrium dendrobatidis (Bd at temperatures above 25 °C. We tested the complementary hypothesis that the toads' skin bacterial microbiota acts as a protective barrier against the pathogen, perhaps delaying or impeding the symptomatic phase of chytridiomycosis. We isolated 148 cultivable bacterial strains from three lowland Atelopus species and quantified the anti-Bd activity through antagonism assays. Twenty-six percent (38 strains representing 12 species of the bacteria inhibited Bd growth and just two of them were shared among the toad species sampled in different localities. Interestingly, the strongest anti-Bd activity was measured in bacteria isolated from A. elegans, the only species that tested positive for the pathogen. The cutaneous bacterial microbiota is thus likely a fitness-enhancing trait that may (adaptation or not (exaptation have appeared because of natural selection mediated by chytridiomycosis. Our findings reveal bacterial strains for development of local probiotic treatments against chytridiomycosis and also shed light on the mechanisms behind the frog-bacteria-pathogen interaction.

  3. Surviving chytridiomycosis: differential anti-Batrachochytrium dendrobatidis activity in bacterial isolates from three lowland species of Atelopus.

    Science.gov (United States)

    Flechas, Sandra V; Sarmiento, Carolina; Cárdenas, Martha E; Medina, Edgar M; Restrepo, Silvia; Amézquita, Adolfo

    2012-01-01

    In the Neotropics, almost every species of the stream-dwelling harlequin toads (genus Atelopus) have experienced catastrophic declines. The persistence of lowland species of Atelopus could be explained by the lower growth rate of Batrachochytrium dendrobatidis (Bd) at temperatures above 25 °C. We tested the complementary hypothesis that the toads' skin bacterial microbiota acts as a protective barrier against the pathogen, perhaps delaying or impeding the symptomatic phase of chytridiomycosis. We isolated 148 cultivable bacterial strains from three lowland Atelopus species and quantified the anti-Bd activity through antagonism assays. Twenty-six percent (38 strains representing 12 species) of the bacteria inhibited Bd growth and just two of them were shared among the toad species sampled in different localities. Interestingly, the strongest anti-Bd activity was measured in bacteria isolated from A. elegans, the only species that tested positive for the pathogen. The cutaneous bacterial microbiota is thus likely a fitness-enhancing trait that may (adaptation) or not (exaptation) have appeared because of natural selection mediated by chytridiomycosis. Our findings reveal bacterial strains for development of local probiotic treatments against chytridiomycosis and also shed light on the mechanisms behind the frog-bacteria-pathogen interaction. PMID:22970314

  4. CITIZEN SCIENTISTS MONITOR A DEADLY FUNGUS THREATENING AMPHIBIAN COMMUNITIES IN NORTHERN COASTAL CALIFORNIA, USA.

    Science.gov (United States)

    Group, Ecoclub Amphibian; Pope, Karen L; Wengert, Greta M; Foley, Janet E; Ashton, Donald T; Botzler, Richard G

    2016-07-01

    Ecoclub youth and supervising family members conducted citizen science to assess regional prevalence and distribution of Batrachochytrium dendrobatidis (Bd) among amphibians at Humboldt Bay National Wildlife Refuge (Refuge) and Redwood National and State Parks (Parks), Humboldt County, California, US, May 2013 through December 2014. Using quantitative real-time PCR, 26 (17%) of 155 samples were positive for Bd. Positive samples occurred in four frog and toad species: foothill yellow-legged frog ( Rana boylii ), northern red-legged frog ( Rana aurora ), Pacific chorus frog ( Pseudacris regilla ), and western toad (Anaxyrus [Bufo] boreas); no salamanders or anuran larvae were positive. Except for R. aurora , all infected anurans were first-time species reports for coastal northern California. At the Refuge, significantly fewer (6/71) postmetamorphic amphibians were positive compared to the Parks (20/69; P=0.0018). We assessed the association of being PCR-positive for Bd, season of sampling, and age of sampler (child, teen, or adult). The full model with season, species, and sampler age had the greatest support. Frogs tested in winter or spring were more likely to be positive than those tested in summer or fall; foothill yellow-legged frogs, northern red-legged frogs, and western toads were more likely to be positive than were Pacific chorus frogs; and the probability of being positive nearly doubled when a child (≤12 yr old) collected the sample compared to a teen or adult. Our results support other chytrid studies that found amphibians are more susceptible to Bd when temperatures are cool and that species differ in their susceptibility. The Ecoclub's findings provide new information important to conservation of northern California's coastal amphibians and demonstrate the value of involving children in citizen science. PMID:27195681

  5. North American amphibians: distribution and diversity

    Science.gov (United States)

    : Green, David M.; Weir, Linda A.; Casper, Gary S.; Lannoo, Michael

    2014-01-01

    Some 300 species of amphibians inhabit North America. The past two decades have seen an enormous growth in interest about amphibians and an increased intensity of scientific research into their fascinating biology and continent-wide distribution. This atlas presents the spectacular diversity of North American amphibians in a geographic context. It covers all formally recognized amphibian species found in the United States and Canada, many of which are endangered or threatened with extinction. Illustrated with maps and photos, the species accounts provide current information about distribution, habitat, and conservation. Researchers, professional herpetologists, and anyone intrigued by amphibians will value North American Amphibians as a guide and reference.

  6. Chytridiomycosis, amphibian extinctions, and lessons for the prevention of future panzootics.

    Science.gov (United States)

    Kriger, Kerry M; Hero, Jean-Marc

    2009-03-01

    The human-mediated transport of infected amphibians is the most plausible driver for the intercontinental spread of chytridiomycosis, a recently emerged infectious disease responsible for amphibian population declines and extinctions on multiple continents. Chytridiomycosis is now globally ubiquitous, and it cannot be eradicated from affected sites. Its rapid spread both within and between continents provides a valuable lesson on preventing future panzootics and subsequent erosion of biodiversity, not only of amphibians, but of a wide array of taxa: the continued inter-continental trade and transport of animals will inevitably lead to the spread of novel pathogens, followed by numerous extinctions. Herein, we define and discuss three levels of amphibian disease management: (1) post-exposure prophylactic measures that are curative in nature and applicable only in a small number of situations; (2) pre-exposure prophylactic measures that reduce disease threat in the short-term; and (3) preventive measures that remove the threat altogether. Preventive measures include a virtually complete ban on all unnecessary long-distance trade and transport of amphibians, and are the only method of protecting amphibians from disease-induced declines and extinctions over the long-term. Legislation to prevent the emergence of new diseases is urgently required to protect global amphibian biodiversity.

  7. The amphibian skin-associated microbiome across species, space and life history stages.

    Science.gov (United States)

    Kueneman, Jordan G; Parfrey, Laura Wegener; Woodhams, Douglas C; Archer, Holly M; Knight, Rob; McKenzie, Valerie J

    2014-03-01

    Skin-associated bacteria of amphibians are increasingly recognized for their role in defence against pathogens, yet we have little understanding of their basic ecology. Here, we use high-throughput 16S rRNA gene sequencing to examine the host and environmental influences on the skin microbiota of the cohabiting amphibian species Anaxyrus boreas, Pseudacris regilla, Taricha torosa and Lithobates catesbeianus from the Central Valley in California. We also studied populations of Rana cascadae over a large geographic range in the Klamath Mountain range of Northern California, and across developmental stages within a single site. Dominant bacterial phylotypes on amphibian skin included taxa from Bacteroidetes, Gammaproteobacteria, Alphaproteobacteria, Firmicutes, Sphingobacteria and Actinobacteria. Amphibian species identity was the strongest predictor of microbial community composition. Secondarily, within a given amphibian species, wetland site explained significant variation. Amphibian-associated microbiota differed systematically from microbial assemblages in their environments. Rana cascadae tadpoles have skin bacterial communities distinct from postmetamorphic conspecifics, indicating a strong developmental shift in the skin microbes following metamorphosis. Establishing patterns observed in the skin microbiota of wild amphibians and environmental factors that underlie them is necessary to understand skin symbiont community assembly, and ultimately, the role skin microbiota play in the extended host phenotype including disease resistance. PMID:24171949

  8. Potential interactions among disease, pesticides, water quality and adjacent land cover in amphibian habitats in the United States.

    Science.gov (United States)

    Battaglin, W A; Smalling, K L; Anderson, C; Calhoun, D; Chestnut, T; Muths, E

    2016-10-01

    To investigate interactions among disease, pesticides, water quality, and adjacent land cover, we collected samples of water, sediment, and frog tissue from 21 sites in 7 States in the United States (US) representing a variety of amphibian habitats. All samples were analyzed for >90 pesticides and pesticide degradates, and water and frogs were screened for the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) using molecular methods. Pesticides and pesticide degradates were detected frequently in frog breeding habitats (water and sediment) as well as in frog tissue. Fungicides occurred more frequently in water, sediment, and tissue than was expected based upon their limited use relative to herbicides or insecticides. Pesticide occurrence in water or sediment was not a strong predictor of occurrence in tissue, but pesticide concentrations in tissue were correlated positively to agricultural and urban land, and negatively to forested land in 2-km buffers around the sites. Bd was detected in water at 45% of sites, and on 34% of swabbed frogs. Bd detections in water were not associated with differences in land use around sites, but sites with detections had colder water. Frogs that tested positive for Bd were associated with sites that had higher total fungicide concentrations in water and sediment, but lower insecticide concentrations in sediments relative to frogs that were Bd negative. Bd concentrations on frog swabs were positively correlated to dissolved organic carbon, and total nitrogen and phosphorus, and negatively correlated to pH and water temperature. Data were collected from a range of locations and amphibian habitats and represent some of the first field-collected information aimed at understanding the interactions between pesticides, land use, and amphibian disease. These interactions are of particular interest to conservation efforts as many amphibians live in altered habitats and may depend on wetlands embedded in these landscapes to survive

  9. Cool temperatures reduce antifungal activity of symbiotic bacteria of threatened amphibians--implications for disease management and patterns of decline.

    Directory of Open Access Journals (Sweden)

    Joshua H Daskin

    Full Text Available Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd, is a widespread disease of amphibians responsible for population declines and extinctions. Some bacteria from amphibians' skins produce antimicrobial substances active against Bd. Supplementing populations of these cutaneous antifungal bacteria might help manage chytridiomycosis in wild amphibians. However, the activity of protective bacteria may depend upon environmental conditions. Biocontrol of Bd in nature thus requires knowledge of how environmental conditions affect their anti-Bd activity. For example, Bd-driven amphibian declines have often occurred at temperatures below Bd's optimum range. It is possible these declines occurred due to reduced anti-Bd activity of bacterial symbionts at cool temperatures. Better understanding of the effects of temperature on chytridiomycosis development could also improve risk evaluation for amphibian populations yet to encounter Bd. We characterized, at a range of temperatures approximating natural seasonal variation, the anti-Bd activity of bacterial symbionts from the skins of three species of rainforest tree frogs (Litoria nannotis, Litoria rheocola, and Litoria serrata. All three species declined during chytridiomycosis outbreaks in the late 1980s and early 1990s and have subsequently recovered to differing extents. We collected anti-Bd bacterial symbionts from frogs and cultured the bacteria at constant temperatures from 8 °C to 33 °C. Using a spectrophotometric assay, we monitored Bd growth in cell-free supernatants (CFSs from each temperature treatment. CFSs from 11 of 24 bacteria showed reduced anti-Bd activity in vitro when they were produced at cool temperatures similar to those encountered by the host species during population declines. Reduced anti-Bd activity of metabolites produced at low temperatures may, therefore, partially explain the association between Bd-driven declines and cool temperatures. We show that to

  10. Cool temperatures reduce antifungal activity of symbiotic bacteria of threatened amphibians--implications for disease management and patterns of decline.

    Science.gov (United States)

    Daskin, Joshua H; Bell, Sara C; Schwarzkopf, Lin; Alford, Ross A

    2014-01-01

    Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a widespread disease of amphibians responsible for population declines and extinctions. Some bacteria from amphibians' skins produce antimicrobial substances active against Bd. Supplementing populations of these cutaneous antifungal bacteria might help manage chytridiomycosis in wild amphibians. However, the activity of protective bacteria may depend upon environmental conditions. Biocontrol of Bd in nature thus requires knowledge of how environmental conditions affect their anti-Bd activity. For example, Bd-driven amphibian declines have often occurred at temperatures below Bd's optimum range. It is possible these declines occurred due to reduced anti-Bd activity of bacterial symbionts at cool temperatures. Better understanding of the effects of temperature on chytridiomycosis development could also improve risk evaluation for amphibian populations yet to encounter Bd. We characterized, at a range of temperatures approximating natural seasonal variation, the anti-Bd activity of bacterial symbionts from the skins of three species of rainforest tree frogs (Litoria nannotis, Litoria rheocola, and Litoria serrata). All three species declined during chytridiomycosis outbreaks in the late 1980s and early 1990s and have subsequently recovered to differing extents. We collected anti-Bd bacterial symbionts from frogs and cultured the bacteria at constant temperatures from 8 °C to 33 °C. Using a spectrophotometric assay, we monitored Bd growth in cell-free supernatants (CFSs) from each temperature treatment. CFSs from 11 of 24 bacteria showed reduced anti-Bd activity in vitro when they were produced at cool temperatures similar to those encountered by the host species during population declines. Reduced anti-Bd activity of metabolites produced at low temperatures may, therefore, partially explain the association between Bd-driven declines and cool temperatures. We show that to avoid

  11. Understanding Amphibian Declines Through Geographic Approaches

    Science.gov (United States)

    Gallant, Alisa

    2006-01-01

    Growing concern over worldwide amphibian declines warrants serious examination. Amphibians are important to the proper functioning of ecosystems and provide many direct benefits to humans in the form of pest and disease control, pharmaceutical compounds, and even food. Amphibians have permeable skin and rely on both aquatic and terrestrial ecosystems during different seasons and stages of their lives. Their association with these ecosystems renders them likely to serve as sensitive indicators of environmental change. While much research on amphibian declines has centered on mysterious causes, or on causes that directly affect humans (global warming, chemical pollution, ultraviolet-B radiation), most declines are the result of habitat loss and habitat alteration. Improving our ability to characterize, model, and monitor the interactions between environmental variables and amphibian habitats is key to addressing amphibian conservation. In 2000, the U.S. Geological Survey (USGS) initiated the Amphibian Research and Monitoring Initiative (ARMI) to address issues surrounding amphibian declines.

  12. Louisiana ESI: REPTILES (Reptile and Amphibian Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for reptiles and amphibians in coastal Louisiana. Vector polygons represent reptile and amphibian...

  13. Agricultural ponds support amphibian populations

    Science.gov (United States)

    Knutson, M.G.; Richardson, W.B.; Reineke, D.M.; Gray, B.R.; Parmelee, J.R.; Weick, S.E.

    2004-01-01

    In some agricultural regions, natural wetlands are scarce, and constructed agricultural ponds may represent important alternative breeding habitats for amphibians. Properly managed, these agricultural ponds may effectively increase the total amount of breeding habitat and help to sustain populations. We studied small, constructed agricultural ponds in southeastern Minnesota to assess their value as amphibian breeding sites. Our study examined habitat factors associated with amphibian reproduction at two spatial scales: the pond and the landscape surrounding the pond. We found that small agricultural ponds in southeastern Minnesota provided breeding habitat for at least 10 species of amphibians. Species richness and multispecies reproductive success were more closely associated with characteristics of the pond (water quality, vegetation, and predators) compared with characteristics of the surrounding landscape, but individual species were associated with both pond and landscape variables. Ponds surrounded by row crops had similar species richness and reproductive success compared with natural wetlands and ponds surrounded by nongrazed pasture. Ponds used for watering livestock had elevated concentrations of phosphorus, higher turbidity, and a trend toward reduced amphibian reproductive success. Species richness was highest in small ponds, ponds with lower total nitrogen concentrations, tiger salamanders (Ambystoma tigrinum) present, and lacking fish. Multispecies reproductive success was best in ponds with lower total nitrogen concentrations, less emergent vegetation, and lacking fish. Habitat factors associated with higher reproductive success varied among individual species. We conclude that small, constructed farm ponds, properly managed, may help sustain amphibian populations in landscapes where natural wetland habitat is rare. We recommend management actions such as limiting livestock access to the pond to improve water quality, reducing nitrogen input, and

  14. Community Structure and Function of Amphibian Skin Microbes: An Experiment with Bullfrogs Exposed to a Chytrid Fungus.

    Directory of Open Access Journals (Sweden)

    Jenifer B Walke

    Full Text Available The vertebrate microbiome contributes to disease resistance, but few experiments have examined the link between microbiome community structure and disease resistance functions. Chytridiomycosis, a major cause of amphibian population declines, is a skin disease caused by the fungus, Batrachochytrium dendrobatidis (Bd. In a factorial experiment, bullfrog skin microbiota was reduced with antibiotics, augmented with an anti-Bd bacterial isolate (Janthinobacterium lividum, or unmanipulated, and individuals were then either exposed or not exposed to Bd. We found that the microbial community structure of individual frogs prior to Bd exposure influenced Bd infection intensity one week following exposure, which, in turn, was negatively correlated with proportional growth during the experiment. Microbial community structure and function differed among unmanipulated, antibiotic-treated, and augmented frogs only when frogs were exposed to Bd. Bd is a selective force on microbial community structure and function, and beneficial states of microbial community structure may serve to limit the impacts of infection.

  15. Effects of amphibian chytrid fungus on individual survival probability in wild boreal toads

    Science.gov (United States)

    Pilliod, D.S.; Muths, E.; Scherer, R. D.; Bartelt, P.E.; Corn, P.S.; Hossack, B.R.; Lambert, B.A.; Mccaffery, R.; Gaughan, C.

    2010-01-01

    Chytridiomycosis is linked to the worldwide decline of amphibians, yet little is known about the demographic effects of the disease. We collected capture-recapture data on three populations of boreal toads (Bufo boreas [Bufo = Anaxyrus]) in the Rocky Mountains (U.S.A.). Two of the populations were infected with chytridiomycosis and one was not. We examined the effect of the presence of amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]; the agent of chytridiomycosis) on survival probability and population growth rate. Toads that were infected with Bd had lower average annual survival probability than uninfected individuals at sites where Bd was detected, which suggests chytridiomycosis may reduce survival by 31-42% in wild boreal toads. Toads that were negative for Bd at infected sites had survival probabilities comparable to toads at the uninfected site. Evidence that environmental covariates (particularly cold temperatures during the breeding season) influenced toad survival was weak. The number of individuals in diseased populations declined by 5-7%/year over the 6 years of the study, whereas the uninfected population had comparatively stable population growth. Our data suggest that the presence of Bd in these toad populations is not causing rapid population declines. Rather, chytridiomycosis appears to be functioning as a low-level, chronic disease whereby some infected individuals survive but the overall population effects are still negative. Our results show that some amphibian populations may be coexisting with Bd and highlight the importance of quantitative assessments of survival in diseased animal populations. Journal compilation. ?? 2010 Society for Conservation Biology. No claim to original US government works.

  16. Antibacterial therapeutics for the treatment of chytrid infection in amphibians: Columbus’s egg?

    Directory of Open Access Journals (Sweden)

    Muijsers Mariska

    2012-09-01

    Full Text Available Abstract Background The establishment of safe and effective protocols to treat chytridiomycosis in amphibians is urgently required. In this study, the usefulness of antibacterial agents to clear chytridiomycosis from infected amphibians was evaluated. Results Florfenicol, sulfamethoxazole, sulfadiazine and the combination of trimethoprim and sulfonamides were active in vitro against cultures of five Batrachochytrium dendrobatidis strains containing sporangia and zoospores, with minimum inhibitory concentrations (MIC of 0.5-1.0 μg/ml for florfenicol and 8.0 μg/ml for the sulfonamides. Trimethoprim was not capable of inhibiting growth but, combined with sulfonamides, reduced the time to visible growth inhibition by the sulfonamides. Growth inhibition of B. dendrobatidis was not observed after exposure to clindamycin, doxycycline, enrofloxacin, paromomycin, polymyxin E and tylosin. Cultures of sporangia and zoospores of B. dendrobatidis strains JEL423 and IA042 were killed completely after 14 days of exposure to 100 μg/ml florfenicol or 16 μg/ml trimethoprim combined with 80 μg/ml sulfadiazine. These concentrations were, however, not capable of efficiently killing zoospores within 4 days after exposure as assessed using flow cytometry. Florfenicol concentrations remained stable in a bathing solution during a ten day period. Exposure of Discoglossus scovazzi tadpoles for ten days to 100 μg/ml but not to 10 μg florfenicol /ml water resulted in toxicity. In an in vivo trial, post metamorphic Alytes muletensis, experimentally inoculated with B. dendrobatidis, were treated topically with a solution containing 10 μg/ml of florfenicol during 14 days. Although a significant reduction of the B. dendrobatidis load was obtained, none of the treated animals cleared the infection. Conclusions We thus conclude that, despite marked anti B. dendrobatidis activity in vitro, the florfenicol treatment used is not capable of eliminating B

  17. A model for the interaction of frog population dynamics with Batrachochytrium dendrobaties, Janthinobacterium lividium and temperature and its implication for chytridiomycosis management

    Science.gov (United States)

    Ackleh, Azmy S.; Carter, Jacoby; Chellamuthu, Vinodh K.; Ma, Baoling

    2016-01-01

    Chytridiomycosis is an emerging disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) that poses a serious threat to frog populations worldwide. Several studies have shown that inoculation of bacterial species Janthinobacterium lividum (Jl) can mitigate the impact of the disease. However, there are many questions regarding this interaction. A mathematical model of a frog population infected with chytridiomycosis is developed to investigate how the inoculation of Jl could reduce the impact of Bd disease on frogs. The model also illustrates the important role of temperature in disease dynamics. The model simulation results suggest possible control strategies for Jl to limit the impact of Bd in various scenarios. However, a better knowledge of Jl life cycle is needed to fully understand the interaction of Jl, Bd, temperature and frogs.

  18. Ecotoxicology of Amphibians and Reptiles

    Science.gov (United States)

    2000-01-01

    For many years, ecological research on amphibians and reptiles has lagged behind that of other vertebrates such as fishes, birds, and mammals, despite the known importance of these animals in their environments. The lack of study has been particularly acute in the he area of ecotoxicology where the number of published scientific papers is a fraction of that found for the other vertebrate classes. Recently, scientists have become aware of severe crises among amphibian populations, including unexplained and sudden extinctions, worldwide declines, and hideous malformations. In many of these instances, contaminants have been listed as probable contributors. Data on the effects of contaminants on reptiles are so depauperate that even the most elementary interpretations are difficult. This state-of-the-science review and synthesis of amphibian and reptile ecotoxicology demonstrates the inter-relationships among distribution, ecology, physiology, and contaminant exposure, and interprets these topics as they pertain to comparative toxicity, population declines, malformations, and risk assessment . In this way, the book identifies and serves as a basis for the most pressing research needs in the coming years. The editors have invited 27 other internationally respected experts to examine the state of existing data in specific areas, interpret it in light of current problems, and identify research gaps and needs. Through its emphasis on recent research, extensive reviews and synthesis, Ecotoxicology of Amphibians and Reptiles will remain a definitive reference work well into the new century.

  19. The metamorphosis of amphibian toxicogenomics

    Directory of Open Access Journals (Sweden)

    Caren eHelbing

    2012-03-01

    Full Text Available Amphibians are important vertebrates in toxicology often representing both aquatic and terrestrial forms within the life history of the same species. Of the thousands of species, only two have substantial genomics resources: the recently published genome of the Pipid, Xenopus (Silurana tropicalis, and transcript information (and ongoing genome sequencing project of Xenopus laevis. However, many more species representative of regional ecological niches and life strategies are used in toxicology worldwide. Since Xenopus species diverged from the most populous frog family, the Ranidae, ~200 million years ago, there are notable differences between them and the even more distant Caudates (salamanders and Caecilians. These differences include genome size, gene composition, and extent of polyploidization. Application of toxicogenomics to amphibians requires the mobilization of resources and expertise to develop de novo sequence assemblies and analysis strategies for a broader range of amphibian species. The present mini-review will present the advances in toxicogenomics as pertains to amphibians with particular emphasis upon the development and use of genomic techniques (inclusive of transcriptomics, proteomics, and metabolomics and the challenges inherent therein.

  20. METAPOPULATION DYNAMICS AND AMPHIBIAN CONSERVATION

    Science.gov (United States)

    In many respects, amphibian spatial dynamics resemble classical metapopulation models, where subpopulations in breeding ponds blink in and out of existance and where extinction and colonization rates are functions of pond spatial arrangement. This "ponds-as-patches" view of amphi...

  1. Global Amphibian Declines, Loss of Genetic Diversity and Fitness: A Review

    Directory of Open Access Journals (Sweden)

    John O’Brien

    2010-01-01

    Full Text Available It is well established that a decrease in genetic variation can lead to reduced fitness and lack of adaptability to a changing environment. Amphibians are declining on a global scale, and we present a four-point argument as to why this taxonomic group seems especially prone to such genetic processes. We elaborate on the extent of recent fragmentation of amphibian gene pools and we propose the term dissociated populations to describe the residual population structure. To put their well-documented loss of genetic diversity into context, we provide an overview of 34 studies (covering 17 amphibian species that address a link between genetic variation and >20 different fitness traits in amphibians. Although not all results are unequivocal, clear genetic-fitness-correlations (GFCs are documented in the majority of the published investigations. In light of the threats faced by amphibians, it is of particular concern that the negative effects of various pollutants, pathogens and increased UV-B radiation are magnified in individuals with little genetic variability. Indeed, ongoing loss of genetic variation might be an important underlying factor in global amphibian declines.

  2. Ecophysiology meets conservation: understanding the role of disease in amphibian population declines.

    Science.gov (United States)

    Blaustein, Andrew R; Gervasi, Stephanie S; Johnson, Pieter T J; Hoverman, Jason T; Belden, Lisa K; Bradley, Paul W; Xie, Gisselle Y

    2012-06-19

    Infectious diseases are intimately associated with the dynamics of biodiversity. However, the role that infectious disease plays within ecological communities is complex. The complex effects of infectious disease at the scale of communities and ecosystems are driven by the interaction between host and pathogen. Whether or not a given host-pathogen interaction results in progression from infection to disease is largely dependent on the physiological characteristics of the host within the context of the external environment. Here, we highlight the importance of understanding the outcome of infection and disease in the context of host ecophysiology using amphibians as a model system. Amphibians are ideal for such a discussion because many of their populations are experiencing declines and extinctions, with disease as an important factor implicated in many declines and extinctions. Exposure to pathogens and the host's responses to infection can be influenced by many factors related to physiology such as host life history, immunology, endocrinology, resource acquisition, behaviour and changing climates. In our review, we discuss the relationship between disease and biodiversity. We highlight the dynamics of three amphibian host-pathogen systems that induce different effects on hosts and life stages and illustrate the complexity of amphibian-host-parasite systems. We then review links between environmental stress, endocrine-immune interactions, disease and climate change.

  3. Amphibians as models for studying environmental change.

    Science.gov (United States)

    Hopkins, William A

    2007-01-01

    The use of amphibians as models in ecological research has a rich history. From an early foundation in studies of amphibian natural history sprang generations of scientists who used amphibians as models to address fundamental questions in population and community ecology. More recently, in the wake of an environment that human disturbances rapidly altered, ecologists have adopted amphibians as models for studying applied ecological issues such as habitat loss, pollution, disease, and global climate change. Some of the characteristics of amphibians that make them useful models for studying these environmental problems are highlighted, including their trophic importance, environmental sensitivity, research tractability, and impending extinction. The article provides specific examples from the recent literature to illustrate how studies on amphibians have been instrumental in guiding scientific thought on a broad scale. Included are examples of how amphibian research has transformed scientific disciplines, generated new theories about global health, called into question widely accepted scientific paradigms, and raised awareness in the general public that our daily actions may have widespread repercussions. In addition, studies on amphibian declines have provided insight into the complexity in which multiple independent factors may interact with one another to produce catastrophic and sometimes unpredictable effects. Because of the complexity of these problems, amphibian ecologists have been among the strongest advocates for interdisciplinary research. Future studies of amphibians will be important not only for their conservation but also for the conservation of other species, critical habitats, and entire ecosystems.

  4. Endoparasites in some Swedish Amphibians

    DEFF Research Database (Denmark)

    Cedhagen, Tomas

    1988-01-01

    A study was made of the endoparasites in specimens of Rana arvalis and R. temporaria collected on two occasions from a locality of southern Sweden. Some frogs were investigated directly after capture while other frogs were kept hibernating and the composition of the parasites as well as the behav...... not previously been reported from Sweden. The late Prof. O. Nybelin's unpublished records of parasites found in Swedish amphibians are also given....

  5. Microevolution due to pollution in amphibians: A review on the genetic erosion hypothesis.

    Science.gov (United States)

    Fasola, E; Ribeiro, R; Lopes, I

    2015-09-01

    The loss of genetic diversity, due to exposure to chemical contamination (genetic erosion), is a major threat to population viability. Genetic erosion is the loss of genetic variation: the loss of alleles determining the value of a specific trait or set of traits. Almost a third of the known amphibian species is considered to be endangered and a decrease of genetic variability can push them to the verge of extinction. This review indicates that loss of genetic variation due to chemical contamination has effects on: 1) fitness, 2) environmental plasticity, 3) co-tolerance mechanisms, 4) trade-off mechanisms, and 5) tolerance to pathogens in amphibian populations.

  6. Amphibian haematology: Metamorphosis-related changes in blood cells

    DEFF Research Database (Denmark)

    Rosenkilde, Per; Sørensen, Inger; Ussing, Anne Phaff

    1995-01-01

    Zoofysiologi, Amphibian metamorphosis, Haematology, Immunosuppression, Immunological Tolerance, Protozoan Infection, metamorfose, springpadder, ontogenese, halepadder.......Zoofysiologi, Amphibian metamorphosis, Haematology, Immunosuppression, Immunological Tolerance, Protozoan Infection, metamorfose, springpadder, ontogenese, halepadder....

  7. Neuroendocrine-immune system interactions in amphibians: implications for understanding global amphibian declines.

    Science.gov (United States)

    Rollins-Smith, L A

    2001-01-01

    Amphibians are ancient creatures valued by biologists and naturalists around the world. They share with all other vertebrates a complex neuroendocrine system that enables them to flourish in a variety of aquatic and semiaquatic environments. Studies from a number of laboratories have demonstrated that the immune system of amphibian species is nearly as complex as that of mammals. Yet for reasons that are not well understood, amphibian species are facing greater survival challenges than in the recent past. This article will review our current understanding of the neuroendocrine immune system interactions in amphibians and address the question of whether environmental stressors may contribute to immunosuppression and amphibian declines.

  8. Toward immunogenetic studies of amphibian chytridiomycosis: Linking innate and acquired immunity

    Science.gov (United States)

    Richmond, J.Q.; Savage, Anna E.; Zamudio, Kelly R.; Rosenblum, E.B.

    2009-01-01

    Recent declines in amphibian diversity and abundance have contributed significantly to the global loss of biodiversity. The fungal disease chytridiomycosis is widely considered to be a primary cause of these declines, yet the critical question of why amphibian species differ in susceptibility remains unanswered. Considerable evidence links environmental conditions and interspecific variability of the innate immune system to differential infection responses, but other sources of individual, population, or species-typical variation may also be important. In this article we review the preliminary evidence supporting a role for acquired immune defenses against chytridiomycosis, and advocate for targeted investigation of genes controlling acquired responses, as well as those that functionally bridge the innate and acquired immune systems. Immunogenetic data promise to answer key questions about chytridiomycosis susceptibility and host-pathogen coevolution, and will draw much needed attention to the importance of considering evolutionary processes in amphibian conservation management and practice. ?? 2009 by American Institute of Biological Sciences.

  9. Amphibians at risk? Susceptibility of terrestrial amphibian life stages to pesticides.

    Science.gov (United States)

    Brühl, Carsten A; Pieper, Silvia; Weber, Brigitte

    2011-11-01

    Current pesticide risk assessment does not specifically consider amphibians. Amphibians in the aquatic environment (aquatic life stages or postmetamorphic aquatic amphibians) and terrestrial living juvenile or adult amphibians are assumed to be covered by the risk assessment for aquatic invertebrates and fish, or mammals and birds, respectively. This procedure has been evaluated as being sufficiently protective regarding the acute risk posed by a number of pesticides to aquatic amphibian life stages (eggs, larvae). However, it is unknown whether the exposure and sensitivity of terrestrial living amphibians are comparable to mammalian and avian exposure and sensitivity. We reviewed the literature on dermal pesticide absorption and toxicity studies for terrestrial life stages of amphibians, focusing on the dermal exposure pathway, that is, through treated soil or direct overspray. In vitro studies demonstrated that cutaneous absorption of chemicals is significant and that chemical percutaneous passage, P (cm/h), is higher in amphibians than in mammals. In vivo, the rapid and substantial uptake of the herbicide atrazine from treated soil by toads (Bufo americanus) has been described. Severe toxic effects on various amphibian species have been reported for field-relevant application rates of different pesticides. In general, exposure and toxicity studies for terrestrial amphibian life stages are scarce, and the reported data indicate the need for further research, especially in light of the global amphibian decline.

  10. The complexity of amphibian population declines: understanding the role of cofactors in driving amphibian losses.

    Science.gov (United States)

    Blaustein, Andrew R; Han, Barbara A; Relyea, Rick A; Johnson, Pieter T J; Buck, Julia C; Gervasi, Stephanie S; Kats, Lee B

    2011-03-01

    Population losses and extinctions of species are occurring at unprecedented rates, as exemplified by declines and extinctions of amphibians worldwide. However, studies of amphibian population declines generally do not address the complexity of the phenomenon or its implications for ecological communities, focusing instead on single factors affecting particular amphibian species. We argue that the causes for amphibian population declines are complex; may differ among species, populations, and life stages within a population; and are context dependent with multiple stressors interacting to drive declines. Because amphibians are key components of communities, we emphasize the importance of investigating amphibian declines at the community level. Selection pressures over evolutionary time have molded amphibian life history characteristics, such that they may remain static even in the face of strong, recent human-induced selection pressures.

  11. Microevolution due to pollution in amphibians: A review on the genetic erosion hypothesis

    International Nuclear Information System (INIS)

    The loss of genetic diversity, due to exposure to chemical contamination (genetic erosion), is a major threat to population viability. Genetic erosion is the loss of genetic variation: the loss of alleles determining the value of a specific trait or set of traits. Almost a third of the known amphibian species is considered to be endangered and a decrease of genetic variability can push them to the verge of extinction. This review indicates that loss of genetic variation due to chemical contamination has effects on: 1) fitness, 2) environmental plasticity, 3) co-tolerance mechanisms, 4) trade-off mechanisms, and 5) tolerance to pathogens in amphibian populations. - Highlights: • Effects of environmental stressors on the genetic diversity of natural populations of amphibians have usually been underestimated. • Environmental pollution may reduce the genetic diversity of exposed amphibian populations. • Genetic erosion can lead to reduced fitness and lack of adaptability to a changing environment. - Contaminant-driven genetic erosion is a major threat to population viability in amphibians

  12. Effects of pond salinization on survival rate of amphibian hosts infected with the chytrid fungus.

    Science.gov (United States)

    Stockwell, Michelle Pirrie; Storrie, Lachlan James; Pollard, Carla Jean; Clulow, John; Mahony, Michael Joseph

    2015-04-01

    The chytrid fungus Batrachochytrium dendrobatidis has been implicated in the decline and extinction of amphibian populations worldwide, but management options are limited. Recent studies show that sodium chloride (NaCl) has fungicidal properties that reduce the mortality rates of infected hosts in captivity. We investigated whether similar results can be obtained by adding salt to water bodies in the field. We increased the salinity of 8 water bodies to 2 or 4 ppt and left an additional 4 water bodies with close to 0 ppt and monitored salinity for 18 months. Captively bred tadpoles of green and golden bell frog (Litoria aurea) were released into each water body and their development, levels of B. dendrobatidis infection, and survival were monitored at 1, 4, and 12 months. The effect of salt on the abundance of nontarget organisms was also investigated in before and after style analyses. Salinities remained constant over time with little intervention. Hosts in water bodies with 4 ppt salt had a significantly lower prevalence of chytrid infection and higher survival, following metamorphosis, than hosts in 0 ppt salt. Tadpoles in the 4 ppt group were smaller in length after 1 month in the release site than those in the 0 and 2 ppt groups, but after metamorphosis body size in all water bodies was similar . In water bodies with 4 ppt salt, the abundance of dwarf tree frogs (Litoria fallax), dragonfly larvae, and damselfly larvae was lower than in water bodies with 0 and 2 ppt salt, which could have knock-on effects for community structure. Based on our results, salt may be an effective field-based B. dendrobatidis mitigation tool for lentic amphibians that could contribute to the conservation of numerous susceptible species. However, as in all conservation efforts, these benefits need to be weighed against negative effects on both target and nontarget organisms. PMID:25354647

  13. Joint effects of habitat, zooplankton, host stage structure and diversity on amphibian chytrid.

    Science.gov (United States)

    Hite, Jessica L; Bosch, Jaime; Fernández-Beaskoetxea, Saioa; Medina, Daniel; Hall, Spencer R

    2016-07-27

    Why does the severity of parasite infection differ dramatically across habitats? This question remains challenging to answer because multiple correlated pathways drive disease. Here, we examined habitat-disease links through direct effects on parasites and indirect effects on parasite predators (zooplankton), host diversity and key life stages of hosts. We used a case study of amphibian hosts and the chytrid fungus, Batrachochytrium dendrobatidis, in a set of permanent and ephemeral alpine ponds. A field experiment showed that ultraviolet radiation (UVR) killed the free-living infectious stage of the parasite. Yet, permanent ponds with more UVR exposure had higher infection prevalence. Two habitat-related indirect effects worked together to counteract parasite losses from UVR: (i) UVR reduced the density of parasite predators and (ii) permanent sites fostered multi-season host larvae that fuelled parasite production. Host diversity was unlinked to hydroperiod or UVR but counteracted parasite gains; sites with higher diversity of host species had lower prevalence of infection. Thus, while habitat structure explained considerable variation in infection prevalence through two indirect pathways, it could not account for everything. This study demonstrates the importance of creating mechanistic, food web-based links between multiple habitat dimensions and disease. PMID:27466456

  14. Marginal Bayesian nonparametric model for time to disease arrival of threatened amphibian populations.

    Science.gov (United States)

    Zhou, Haiming; Hanson, Timothy; Knapp, Roland

    2015-12-01

    The global emergence of Batrachochytrium dendrobatidis (Bd) has caused the extinction of hundreds of amphibian species worldwide. It has become increasingly important to be able to precisely predict time to Bd arrival in a population. The data analyzed herein present a unique challenge in terms of modeling because there is a strong spatial component to Bd arrival time and the traditional proportional hazards assumption is grossly violated. To address these concerns, we develop a novel marginal Bayesian nonparametric survival model for spatially correlated right-censored data. This class of models assumes that the logarithm of survival times marginally follow a mixture of normal densities with a linear-dependent Dirichlet process prior as the random mixing measure, and their joint distribution is induced by a Gaussian copula model with a spatial correlation structure. To invert high-dimensional spatial correlation matrices, we adopt a full-scale approximation that can capture both large- and small-scale spatial dependence. An efficient Markov chain Monte Carlo algorithm with delayed rejection is proposed for posterior computation, and an R package spBayesSurv is provided to fit the model. This approach is first evaluated through simulations, then applied to threatened frog populations in Sequoia-Kings Canyon National Park. PMID:26148536

  15. Sperm storage in caecilian amphibians

    Directory of Open Access Journals (Sweden)

    Kuehnel Susanne

    2012-06-01

    Full Text Available Abstract Background Female sperm storage has evolved independently multiple times among vertebrates to control reproduction in response to the environment. In internally fertilising amphibians, female salamanders store sperm in cloacal spermathecae, whereas among anurans sperm storage in oviducts is known only in tailed frogs. Facilitated through extensive field sampling following historical observations we tested for sperm storing structures in the female urogenital tract of fossorial, tropical caecilian amphibians. Findings In the oviparous Ichthyophis cf. kohtaoensis, aggregated sperm were present in a distinct region of the posterior oviduct but not in the cloaca in six out of seven vitellogenic females prior to oviposition. Spermatozoa were found most abundantly between the mucosal folds. In relation to the reproductive status decreased amounts of sperm were present in gravid females compared to pre-ovulatory females. Sperm were absent in females past oviposition. Conclusions Our findings indicate short-term oviductal sperm storage in the oviparous Ichthyophis cf. kohtaoensis. We assume that in female caecilians exhibiting high levels of parental investment sperm storage has evolved in order to optimally coordinate reproductive events and to increase fitness.

  16. Ossification sequence heterochrony among amphibians.

    Science.gov (United States)

    Harrington, Sean M; Harrison, Luke B; Sheil, Christopher A

    2013-01-01

    Heterochrony is an important mechanism in the evolution of amphibians. Although studies have centered on the relationship between size and shape and the rates of development, ossification sequence heterochrony also may have been important. Rigorous, phylogenetic methods for assessing sequence heterochrony are relatively new, and a comprehensive study of the relative timing of ossification of skeletal elements has not been used to identify instances of sequence heterochrony across Amphibia. In this study, a new version of the program Parsimov-based genetic inference (PGi) was used to identify shifts in ossification sequences across all extant orders of amphibians, for all major structural units of the skeleton. PGi identified a number of heterochronic sequence shifts in all analyses, the most interesting of which seem to be tied to differences in metamorphic patterns among major clades. Early ossification of the vomer, premaxilla, and dentary is retained by Apateon caducus and members of Gymnophiona and Urodela, which lack the strongly biphasic development seen in anurans. In contrast, bones associated with the jaws and face were identified as shifting late in the ancestor of Anura. The bones that do not shift late, and thereby occupy the earliest positions in the anuran cranial sequence, are those in regions of the skull that undergo the least restructuring throughout anuran metamorphosis. Additionally, within Anura, bones of the hind limb and pelvic girdle were also identified as shifting early in the sequence of ossification, which may be a result of functional constraints imposed by the drastic metamorphosis of most anurans.

  17. Suitability of amphibians and reptiles for translocation.

    Science.gov (United States)

    Germano, Jennifer M; Bishop, Phillip J

    2009-02-01

    Translocations are important tools in the field of conservation. Despite increased use over the last few decades, the appropriateness of translocations for amphibians and reptiles has been debated widely over the past 20 years. To provide a comprehensive evaluation of the suitability of amphibians and reptiles for translocation, we reviewed the results of amphibian and reptile translocation projects published between 1991 and 2006. The success rate of amphibian and reptile translocations reported over this period was twice that reported in an earlier review in 1991. Success and failure rates were independent of the taxonomic class (Amphibia or Reptilia) released. Reptile translocations driven by human-wildlife conflict mitigation had a higher failure rate than those motivated by conservation, and more recent projects of reptile translocations had unknown outcomes. The outcomes of amphibian translocations were significantly related to the number of animals released, with projects releasing over 1000 individuals being most successful. The most common reported causes of translocation failure were homing and migration of introduced individuals out of release sites and poor habitat. The increased success of amphibian and reptile translocations reviewed in this study compared with the 1991 review is encouraging for future conservation projects. Nevertheless, more preparation, monitoring, reporting of results, and experimental testing of techniques and reintroduction questions need to occur to improve translocations of amphibians and reptiles as a whole. PMID:19143783

  18. [Perspective on gravitational biology of amphibians].

    Science.gov (United States)

    Yamashita, Masamichi; Naitoh, Tomio; Wassersug, Richard J

    2002-12-01

    We review here the scientific significance of the use of amphibians for research in gravitational biology. Since amphibian eggs are quite large, yet develop rapidly and externally, it is easy to observe their development. Consequently amphibians were the first vertebrates to have their early developmental processes investigated in space. Though several deviations from normal embryonic development occur when amphibians are raised in microgravity, their developmental program is robust enough to return the organisms to an ostensibly normal morphology by the time they hatch. Evolutionally, amphibians were the first vertebrate animal to come out of the water and onto land. Subsequently they diversified and have adaptively radiated to various habitats. They now inhabit aquatic, terrestrial, arboreal and fossorial niches. This diversity can be used to help study the biological effects of gravity at the organismal level, where macroscopic phenomena are associated with gravitational loading. By choosing different amphibian models and using a comparative approach one can effectively identify the action of gravity on biological systems, and the adaptation that vertebrates have made to this loading. Advances in cellular and molecular biology provide powerful tools for the study in many fields, including gravitational biology, and amphibians have proven to be good models for studies at those levels as well. The low metabolic rates of amphibians make them convenient organisms to work with (compared to birds and mammals) in the difficult and confined spaces on orbiting research platforms. We include here a review of what is known about and the potential for further behavioral and physiological researches in space using amphibians.

  19. Cardiovascular physiology and diseases of amphibians.

    Science.gov (United States)

    Heinz-Taheny, Kathleen M

    2009-01-01

    The class Amphibia includes three orders of amphibians: the anurans (frogs and toads), urodeles (salamanders, axolotls, and newts), and caecilians. The diversity of lifestyles across these three orders has accompanying differences in the cardiovascular anatomy and physiology allowing for adaptations to aquatic or terrestrial habitats, pulmonic or gill respiration, hibernation, and body elongation (in the caecilian). This article provides a review of amphibian cardiovascular anatomy and physiology with discussion of unique species adaptations. In addition, amphibians as cardiovascular animal models and commonly encountered natural diseases are covered.

  20. Amphibian antimicrobial peptide fallaxin analogue FL9 affects virulence gene expression and DNA replication in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Gottschalk, Sanne; Gottlieb, Caroline Trebbien; Vestergaard, Martin;

    2015-01-01

    antimicrobials. In the present study, the analogue FL9, based on the amphibian AMP fallaxin, was studied to elucidate its mode of action and antibacterial activity against the human pathogen Staphylococcus aureus. Our data showed that FL9 may have a dual mode of action against S. aureus. At concentrations around...

  1. Ranavirus could facilitate local extinction of rare amphibian species.

    Science.gov (United States)

    Earl, Julia E; Chaney, Jordan C; Sutton, William B; Lillard, Carson E; Kouba, Andrew J; Langhorne, Cecilia; Krebs, Jessi; Wilkes, Rebecca P; Hill, Rachel D; Miller, Debra L; Gray, Matthew J

    2016-10-01

    There is growing evidence that pathogens play a role in population declines and species extinctions. For small populations, disease-induced extinction may be especially probable. We estimated the susceptibility of two amphibian species of conservation concern (the dusky gopher frog [Lithobates sevosus] and boreal toad [Anaxyrus boreas boreas]) to an emerging pathogen (ranavirus) using laboratory challenge experiments, and combined these data with published demographic parameter estimates to simulate the potential effects of ranavirus exposure on extinction risk. We included effects of life stage during pathogen exposure, pathogen exposure interval, hydroperiod of breeding habitat, population carrying capacity, and immigration in simulations. We found that both species were highly susceptible to ranavirus when exposed to the pathogen in water at environmentally relevant concentrations. Dusky gopher frogs experienced 100 % mortality in four of six life stages tested. Boreal toads experienced 100 % mortality when exposed as tadpoles or metamorphs, which were the only life stages tested. Simulations showed population declines, greater extinction probability, and faster times to extinction with ranavirus exposure. These effects were more evident with more frequent pathogen exposure intervals and lower carrying capacity. Immigration at natural rates did little to mitigate effects of ranavirus exposure unless immigration occurred every 2 years. Our results demonstrate that disease-induced extinction by emerging pathogens, such as ranavirus, is possible, and that threat may be especially high for species with small population sizes. For the species in this study, conservation organizations should incorporate ranavirus surveillance into monitoring programs and devise intervention strategies in the event that disease outbreaks occur.

  2. Ranavirus could facilitate local extinction of rare amphibian species.

    Science.gov (United States)

    Earl, Julia E; Chaney, Jordan C; Sutton, William B; Lillard, Carson E; Kouba, Andrew J; Langhorne, Cecilia; Krebs, Jessi; Wilkes, Rebecca P; Hill, Rachel D; Miller, Debra L; Gray, Matthew J

    2016-10-01

    There is growing evidence that pathogens play a role in population declines and species extinctions. For small populations, disease-induced extinction may be especially probable. We estimated the susceptibility of two amphibian species of conservation concern (the dusky gopher frog [Lithobates sevosus] and boreal toad [Anaxyrus boreas boreas]) to an emerging pathogen (ranavirus) using laboratory challenge experiments, and combined these data with published demographic parameter estimates to simulate the potential effects of ranavirus exposure on extinction risk. We included effects of life stage during pathogen exposure, pathogen exposure interval, hydroperiod of breeding habitat, population carrying capacity, and immigration in simulations. We found that both species were highly susceptible to ranavirus when exposed to the pathogen in water at environmentally relevant concentrations. Dusky gopher frogs experienced 100 % mortality in four of six life stages tested. Boreal toads experienced 100 % mortality when exposed as tadpoles or metamorphs, which were the only life stages tested. Simulations showed population declines, greater extinction probability, and faster times to extinction with ranavirus exposure. These effects were more evident with more frequent pathogen exposure intervals and lower carrying capacity. Immigration at natural rates did little to mitigate effects of ranavirus exposure unless immigration occurred every 2 years. Our results demonstrate that disease-induced extinction by emerging pathogens, such as ranavirus, is possible, and that threat may be especially high for species with small population sizes. For the species in this study, conservation organizations should incorporate ranavirus surveillance into monitoring programs and devise intervention strategies in the event that disease outbreaks occur. PMID:27344151

  3. Estudio de quitridiomicosis por Batrachochytrium dendrobatidis en anfibios anuros del Litoral, Cuyo y Patagonia Argentina

    OpenAIRE

    Ghirardi, Romina

    2012-01-01

    La quitridiomicosis es una enfermedad emergente que en los últimos años ha sido vinculada a la muerte masiva de los anfibios. Esta enfermedad es causada por el hongo acuático zoospórico Batrachochytrium dendrobatidis -Bd- (Orden Rhyzophydiales). La infección de los anfibios comienza cuando las zoosporas móviles contactan un animal susceptible y penetran en su piel. Las alteraciones producidas por esta infección interfieren con varias funciones epiteliales de los anfibios como la circulación y...

  4. Maryland ESI: REPTILES (Reptile and Amphibian Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for sea turtles, estuarine turtles, and rare reptiles and amphibians in Maryland. Vector polygons in this...

  5. Phylogeny and Differentiation of Reptilian and Amphibian Ranaviruses Detected in Europe

    OpenAIRE

    Anke C Stöhr; Alberto López-Bueno; Silvia Blahak; Caeiro, Maria F.; Rosa, Gonçalo M.; António Pedro Alves de Matos; An Martel; Alí Alejo; Marschang, Rachel E.

    2015-01-01

    Ranaviruses in amphibians and fish are considered emerging pathogens and several isolates have been extensively characterized in different studies. Ranaviruses have also been detected in reptiles with increasing frequency, but the role of reptilian hosts is still unclear and only limited sequence data has been provided. In this study, we characterized a number of ranaviruses detected in wild and captive animals in Europe based on sequence data from six genomic regions (major capsid protein (M...

  6. Amphibians and Reptiles of Los Alamos County

    Energy Technology Data Exchange (ETDEWEB)

    Teralene S. Foxx; Timothy K. Haarmann; David C. Keller

    1999-10-01

    Recent studies have shown that amphibians and reptiles are good indicators of environmental health. They live in terrestrial and aquatic environments and are often the first animals to be affected by environmental change. This publication provides baseline information about amphibians and reptiles that are present on the Pajarito Plateau. Ten years of data collection and observations by researchers at Los Alamos National Laboratory, the University of New Mexico, the New Mexico Department of Game and Fish, and hobbyists are represented.

  7. Origin and functional diversification of an amphibian defense peptide arsenal.

    Directory of Open Access Journals (Sweden)

    Kim Roelants

    Full Text Available The skin secretion of many amphibians contains an arsenal of bioactive molecules, including hormone-like peptides (HLPs acting as defense toxins against predators, and antimicrobial peptides (AMPs providing protection against infectious microorganisms. Several amphibian taxa seem to have independently acquired the genes to produce skin-secreted peptide arsenals, but it remains unknown how these originated from a non-defensive ancestral gene and evolved diverse defense functions against predators and pathogens. We conducted transcriptome, genome, peptidome and phylogenetic analyses to chart the full gene repertoire underlying the defense peptide arsenal of the frog Silurana tropicalis and reconstruct its evolutionary history. Our study uncovers a cluster of 13 transcriptionally active genes, together encoding up to 19 peptides, including diverse HLP homologues and AMPs. This gene cluster arose from a duplicated gastrointestinal hormone gene that attained a HLP-like defense function after major remodeling of its promoter region. Instead, new defense functions, including antimicrobial activity, arose by mutation of the precursor proteins, resulting in the proteolytic processing of secondary peptides alongside the original ones. Although gene duplication did not trigger functional innovation, it may have subsequently facilitated the convergent loss of the original function in multiple gene lineages (subfunctionalization, completing their transformation from HLP gene to AMP gene. The processing of multiple peptides from a single precursor entails a mechanism through which peptide-encoding genes may establish new functions without the need for gene duplication to avoid adaptive conflicts with older ones.

  8. An examination of amphibian sensitivity to environmental contaminants: are amphibians poor canaries?

    Science.gov (United States)

    Kerby, Jacob L; Richards-Hrdlicka, Kathryn L; Storfer, Andrew; Skelly, David K

    2010-01-01

    Nearly two decades ago, the global biodiversity crisis was catapulted to the front pages of newspapers with the recognition of worldwide amphibian declines. Amphibians earned their appellation, 'canaries in a coal mine', because of apparent high sensitivity to human-mediated environmental change. The most frequently cited causes for high susceptibility include permeable skin, a dual aquatic-terrestrial life cycle and a relatively rudimentary immune system. While some researchers have questioned the basis for the canary assertion, there has been no systematic evaluation of amphibian sensitivity to environmental challenges relative to other taxa. Here, we apply a database representing thousands of toxicity tests to compare the responses of amphibians relative to that of other taxonomic groups. The use of standardized methods combined with large numbers of identical challenges enables a particularly powerful test of relative effect size. Overall, we found that amphibians only exhibit moderate relative responses to water-borne toxins. Our findings imply that, as far as chemical contaminants are concerned, amphibians are not particularly sensitive and might more aptly be described as 'miners in a coal mine'. To the extent that amphibian declines have been mediated by chemical contaminants, our findings suggest that population losses and extinctions may have already occurred in a variety of taxa much more sensitive than amphibians.

  9. Successful treatment of Batrachochytrium salamandrivorans infections in salamanders requires synergy between voriconazole, polymyxin E and temperature.

    Science.gov (United States)

    Blooi, M; Pasmans, F; Rouffaer, L; Haesebrouck, F; Vercammen, F; Martel, A

    2015-06-30

    Chytridiomycosis caused by the chytrid fungus Batrachochytrium salamandrivorans (Bsal) poses a serious threat to urodelan diversity worldwide. Antimycotic treatment of this disease using protocols developed for the related fungus Batrachochytrium dendrobatidis (Bd), results in therapeutic failure. Here, we reveal that this therapeutic failure is partly due to different minimum inhibitory concentrations (MICs) of antimycotics against Bsal and Bd. In vitro growth inhibition of Bsal occurs after exposure to voriconazole, polymyxin E, itraconazole and terbinafine but not to florfenicol. Synergistic effects between polymyxin E and voriconazole or itraconazole significantly decreased the combined MICs necessary to inhibit Bsal growth. Topical treatment of infected fire salamanders (Salamandra salamandra), with voriconazole or itraconazole alone (12.5 μg/ml and 0.6 μg/ml respectively) or in combination with polymyxin E (2000 IU/ml) at an ambient temperature of 15 °C during 10 days decreased fungal loads but did not clear Bsal infections. However, topical treatment of Bsal infected animals with a combination of polymyxin E (2000 IU/ml) and voriconazole (12.5 μg/ml) at an ambient temperature of 20 °C resulted in clearance of Bsal infections. This treatment protocol was validated in 12 fire salamanders infected with Bsal during a field outbreak and resulted in clearance of infection in all animals.

  10. Countryside biogeography of Neotropical reptiles and amphibians.

    Science.gov (United States)

    Mendenhall, Chase D; Frishkoff, Luke O; Santos-Barrera, Georgina; Pacheco, Jesús; Mesfun, Eyobed; Mendoza Quijano, Fernando; Ehrlich, Paul R; Ceballos, Gerardo; Daily, Gretchen C; Pringle, Robert M

    2014-04-01

    The future of biodiversity and ecosystem services depends largely on the capacity of human-dominated ecosystems to support them, yet this capacity remains largely unknown. Using the framework of countryside biogeography, and working in the Las Cruces system of Coto Brus, Costa Rica, we assessed reptile and amphibian assemblages within four habitats that typify much of the Neotropics: sun coffee plantations (12 sites), pasture (12 sites), remnant forest elements (12 sites), and a larger, contiguous protected forest (3 sites in one forest). Through analysis of 1678 captures of 67 species, we draw four primary conclusions. First, we found that the majority of reptile (60%) and amphibian (70%) species in this study used an array of habitat types, including coffee plantations and actively grazed pastures. Second, we found that coffee plantations and pastures hosted rich, albeit different and less dense, reptile and amphibian biodiversity relative to the 326-ha Las Cruces Forest Reserve and neighboring forest elements. Third, we found that the small ribbons of "countryside forest elements" weaving through farmland collectively increased the effective size of a 326-ha local forest reserve 16-fold for reptiles and 14-fold for amphibians within our 236-km2 study area. Therefore, countryside forest elements, often too small for most remote sensing techniques to identify, are contributing -95% of the available habitat for forest-dependent reptiles and amphibians in our largely human-dominated study region. Fourth, we found large and pond-reproducing amphibians to prefer human-made habitats, whereas small, stream-reproducing, and directly developing species are more dependent on forest elements. Our investigation demonstrates that tropical farming landscapes can support substantial reptile and amphibian biodiversity. Our approach provides a framework for estimating the conservation value of the complex working landscapes that constitute roughly half of the global land surface

  11. Collapse of amphibian communities due to an introduced Ranavirus.

    Science.gov (United States)

    Price, Stephen J; Garner, Trenton W J; Nichols, Richard A; Balloux, François; Ayres, César; Mora-Cabello de Alba, Amparo; Bosch, Jaime

    2014-11-01

    The emergence of infectious diseases with a broad host range can have a dramatic impact on entire communities and has become one of the main threats to biodiversity. Here, we report the simultaneous exploitation of entire communities of potential hosts with associated severe declines following invasion by a novel viral pathogen. We found two phylogenetically related, highly virulent viruses (genus Ranavirus, family Iridoviridae) causing mass mortality in multiple, diverse amphibian hosts in northern Spain, as well as a third, relatively avirulent virus. We document host declines in multiple species at multiple sites in the region. Our work reveals a group of pathogens that seem to have preexisting capacity to infect and evade immunity in multiple diverse and novel hosts, and that are exerting massive impacts on host communities. This report provides an exceptional record of host population trends being tracked in real time following emergence of a wildlife disease and a striking example of a novel, generalist pathogen repeatedly crossing the species barrier with catastrophic consequences at the level of host communities.

  12. Amphibians used in research and teaching.

    Science.gov (United States)

    O'Rourke, Dorcas P

    2007-01-01

    Amphibians have long been utilized in scientific research and in education. Historically, investigators have accumulated a wealth of information on the natural history and biology of amphibians, and this body of information is continually expanding as researchers describe new species and study the behaviors of these animals. Amphibians evolved as models for a variety of developmental and physiological processes, largely due to their unique ability to undergo metamorphosis. Scientists have used amphibian embryos to evaluate the effects of toxins, mutagens, and teratogens. Likewise, the animals are invaluable in research due to the ability of some species to regenerate limbs. Certain species of amphibians have short generation times and genetic constructs that make them desirable for transgenic and knockout technology, and there is a current national focus on developing these species for genetic and genomic research. This group of vertebrates is also critically important in the investigation of the inter-relationship of humans and the environment based on their sensitivity to climatic and habitat changes and environmental contamination.

  13. The cause of global amphibian declines: a developmental endocrinologist's perspective

    OpenAIRE

    Hayes, T. B.; Falso, P.; Gallipeau, S.; Stice, M.

    2010-01-01

    Greater than 70% of the world's amphibian species are in decline. We propose that there is probably not a single cause for global amphibian declines and present a three-tiered hierarchical approach that addresses interactions among and between ultimate and proximate factors that contribute to amphibian declines. There are two immediate (proximate) causes of amphibian declines: death and decreased recruitment (reproductive failure). Although much attention has focused on death, few studies hav...

  14. Microbiota and mucosal immunity in amphibians

    Directory of Open Access Journals (Sweden)

    Bruno M Colombo

    2015-03-01

    Full Text Available We know that animals live in a world dominated by bacteria. In the last twenty years we have learned that microbes are essential regulators of mucosal immunity. Bacterias, archeas and viruses influence different aspects of mucosal development and function. Yet the literature mainly covers findings obtained in mammals. In this review, we focus on two major themes that emerge from the comparative analysis of mammals and amphibians. These themes concern: i the structure and functions of lymphoid organs and immune cells in amphibians, with a focus on the gut mucosal immune system; and ii the characteristics of the amphibian microbiota and its influence on mucosal immunity. Lastly, we propose to use Xenopus tadpoles as an alternative small animal model to improve the fundamental knowledge on immunological functions of gut microbiota.

  15. Biological Scaling Problems and Solutions in Amphibians.

    Science.gov (United States)

    Levy, Daniel L; Heald, Rebecca

    2015-08-10

    Size is a primary feature of biological systems that varies at many levels, from the organism to its constituent cells and subcellular structures. Amphibians populate some of the extremes in biological size and have provided insight into scaling mechanisms, upper and lower size limits, and their physiological significance. Body size variation is a widespread evolutionary tactic among amphibians, with miniaturization frequently correlating with direct development that occurs without a tadpole stage. The large genomes of salamanders lead to large cell sizes that necessitate developmental modification and morphological simplification. Amphibian extremes at the cellular level have provided insight into mechanisms that accommodate cell-size differences. Finally, how organelles scale to cell size between species and during development has been investigated at the molecular level, because subcellular scaling can be recapitulated using Xenopus in vitro systems.

  16. Global patterns of amphibian phylogenetic diversity

    DEFF Research Database (Denmark)

    Fritz, Susanne; Rahbek, Carsten

    2012-01-01

    Aim  Phylogenetic diversity can provide insight into how evolutionary processes may have shaped contemporary patterns of species richness. Here, we aim to test for the influence of phylogenetic history on global patterns of amphibian species richness, and to identify areas where macroevolutionary...... processes such as diversification and dispersal have left strong signatures on contemporary species richness. Location  Global; equal-area grid cells of approximately 10,000 km2. Methods  We generated an amphibian global supertree (6111 species) and repeated analyses with the largest available molecular...... phylogeny (2792 species). We combined each tree with global species distributions to map four indices of phylogenetic diversity. To investigate congruence between global spatial patterns of amphibian species richness and phylogenetic diversity, we selected Faith’s phylogenetic diversity (PD) index...

  17. Effects of Roads on Amphibian Populations

    DEFF Research Database (Denmark)

    Hels, T.

    to have experienced the wonders of early summer sunrises in the field - and the joy of thawing out frozen fingers after hours of field work around freezing point. Amphibian populations are declining. This worrying fact is what has initiated this work. Some fifty years ago, the life history of frogs...... and toads was common knowledge to everybody due to personal experience: amphibians were abundant. Noisy and innumerable in spring when reproducing, silent and even more abundant in late summer with both adults and metamorphs leaving the breeding ponds. Today, experiencing frogs and toads is an event......, something to talk about. Fortunately, amphibians are still numerous in certain places and hopefully, we will get to a point when we know enough about the declines and their backgrounds to bring the decline to an end. It is my hope that results of this work will add a piece to the puzzle. This work...

  18. Amphibian monitoring in the Atchafalaya Basin

    Science.gov (United States)

    Waddle, Hardin

    2011-01-01

    Amphibians are a diverse group of animals that includes frogs, toads, and salamanders. They are adapted to living in a variety of habitats, but most require water for at least one life stage. Amphibians have recently become a worldwide conservation concern because of declines and extinctions even in remote protected areas previously thought to be safe from the pressures of habitat loss and degradation. Amphibians are an important part of ecosystem dynamics because they can be quite abundant and serve both as a predator of smaller organisms and as prey to a suite of vertebrate predators. Their permeable skin and aquatic life history also make them useful as indicators of ecosystem health. Since 2002, the U.S. Geological Survey has been studying the frog and toad species inhabiting the Atchafalaya Basin to monitor for population declines and to better understand how the species are potentially affected by disease, environmental contaminants, and climate change.

  19. Where to look when identifying roadkilled amphibians?

    Directory of Open Access Journals (Sweden)

    Marc Franch

    2015-12-01

    Full Text Available Roads have multiple effects on wildlife; amphibians are one of the groups more intensely affected by roadkills. Monitoring roadkills is expensive and time consuming. Automated mapping systems for detecting roadkills, based on robotic computer vision techniques, are largely necessary. Amphibians can be recognised by a set of features as shape, size, colouration, habitat and location. This species identification by using multiple features at the same time is known as “jizz”. In a similar way to human vision, computer vision algorithms must incorporate a prioritisation process when analysing the objects in an image. Our main goal here was to give a numerical priority sequence of particular characteristics of roadkilled amphibians to improve the computing and learning process of algorithms. We asked hundred and five amateur and professional herpetologists to answer a simple test of five sets with ten images each of roadkilled amphibians, in order to determine which body parts or characteristics (body form, colour, and other patterns are used to identify correctly the species. Anura was the group most easily identified when it was roadkilled and Caudata was the most difficult. The lower the taxonomic level of amphibian, the higher the difficulty of identifying them, both in Anura and Caudata. Roadkilled amphibians in general and Anura group were mostly identified by the Form, by the combination of Form and Colour, and finally by Colour. Caudata was identified mainly on Form and Colour and on Colour. Computer vision algorithms must incorporate these combinations of features, avoiding to work exclusively in one specific feature.

  20. Ion transport by the amphibian primary ureter

    DEFF Research Database (Denmark)

    Møbjerg, Nadja

    2008-01-01

    and it is furthermore a key player in the induction of these kidney generations. Whether the ureter participates in urine modification, remains to be elucidated. In amphibians the pronephros is a large organ, which is functional for a considerable time before it degenerates. The aim of this study was to investigate...... putative ion transport mechanisms in the primary ureter of the freshwater amphibian Ambystoma mexicanum (axolotl). Primary ureters isolated from axolotl larvae were perfused in vitro and single cells were impaled across the basal cell membrane with glass microelectrodes. In 42 cells the membrane potential...

  1. Amphibians as model to study endocrine disrupters.

    Science.gov (United States)

    Kloas, Werner; Lutz, Ilka

    2006-10-13

    Environmental compounds can interfere with endocrine systems of wildlife and humans. These so-called endocrine disrupters (ED) are known to affect reproductive biology and thyroid system. The classical model species for these endocrine systems are amphibians and therefore they can serve as sentinels for detection of the modes of action (MOAs) of ED. Recently, amphibians are being reviewed as suitable models to assess (anti)estrogenic and (anti)androgenic MOAs influencing reproductive biology as well as (anti)thyroidal MOAs interfering with the thyroid system. The development of targeted bioassays in combination with adequate chemical analyses is the prerequisite for a concise risk assessment of ED.

  2. Host stress response is important for the pathogenesis of the deadly amphibian disease, Chytridiomycosis, in Litoria caerulea.

    Directory of Open Access Journals (Sweden)

    John D Peterson

    Full Text Available Chytridiomycosis, a disease caused by Batrachochytrium dendrobatidis, has contributed to worldwide amphibian population declines; however, the pathogenesis of this disease is still somewhat unclear. Previous studies suggest that infection disrupts cutaneous sodium transport, which leads to hyponatremia and cardiac failure. However, infection is also correlated with unexplained effects on appetite, skin shedding, and white blood cell profiles. Glucocorticoid hormones may be the biochemical connection between these disparate effects, because they regulate ion homeostasis and can also influence appetite, skin shedding, and white blood cells. During a laboratory outbreak of B. dendrobatidis in Australian Green Tree Frogs, Litoria caerulea, we compared frogs showing clinical signs of chytridiomycosis to infected frogs showing no signs of disease and determined that diseased frogs had elevated baseline corticosterone, decreased plasma sodium and potassium, and altered WBC profiles. Diseased frogs also showed evidence of poorer body condition and elevated metabolic rates compared with frogs showing no signs of disease. Prior to displaying signs of disease, we also observed changes in appetite, body mass, and the presence of shed skin associated with infected but not yet diseased frogs. Collectively, these results suggest that elevated baseline corticosterone is associated with chytridiomycosis and correlates with some of the deleterious effects observed during disease development.

  3. The state of amphibians in the United States

    Science.gov (United States)

    Muths, E.; Adams, M.J.; Grant, E.H.C.; Miller, D.; Corn, P.S.; Ball, L.C.

    2012-01-01

    More than 25 years ago, scientists began to identify unexplained declines in amphibian populations around the world. Much has been learned since then, but amphibian declines have not abated and the interactions among the various threats to amphibians are not clear. Amphibian decline is a problem of local, national, and international scope that can affect ecosystem function, biodiversity, and commerce. This fact sheet provides a snapshot of the state of the amphibians and introduces examples to illustrate the range of issues in the United States.

  4. What makes pathogens pathogenic

    OpenAIRE

    Ehrlich, Garth D.; Hiller, N.Luisa; Hu, Fen Ze

    2008-01-01

    Metazoans contain multiple complex microbial ecosystems in which the balance between host and microbe can be tipped from commensalism to pathogenicity. This transition is likely to depend both on the prevailing environmental conditions and on specific gene-gene interactions placed within the context of the entire ecosystem.

  5. Phylogeny and differentiation of reptilian and amphibian ranaviruses detected in Europe.

    Directory of Open Access Journals (Sweden)

    Anke C Stöhr

    Full Text Available Ranaviruses in amphibians and fish are considered emerging pathogens and several isolates have been extensively characterized in different studies. Ranaviruses have also been detected in reptiles with increasing frequency, but the role of reptilian hosts is still unclear and only limited sequence data has been provided. In this study, we characterized a number of ranaviruses detected in wild and captive animals in Europe based on sequence data from six genomic regions (major capsid protein (MCP, DNA polymerase (DNApol, ribonucleoside diphosphate reductase alpha and beta subunit-like proteins (RNR-α and -β, viral homolog of the alpha subunit of eukaryotic initiation factor 2, eIF-2α (vIF-2α genes and microsatellite region. A total of ten different isolates from reptiles (tortoises, lizards, and a snake and four ranaviruses from amphibians (anurans, urodeles were included in the study. Furthermore, the complete genome sequences of three reptilian isolates were determined and a new PCR for rapid classification of the different variants of the genomic arrangement was developed. All ranaviruses showed slight variations on the partial nucleotide sequences from the different genomic regions (92.6-100%. Some very similar isolates could be distinguished by the size of the band from the microsatellite region. Three of the lizard isolates had a truncated vIF-2α gene; the other ranaviruses had full-length genes. In the phylogenetic analyses of concatenated sequences from different genes (3223 nt/10287 aa, the reptilian ranaviruses were often more closely related to amphibian ranaviruses than to each other, and most clustered together with previously detected ranaviruses from the same geographic region of origin. Comparative analyses show that among the closely related amphibian-like ranaviruses (ALRVs described to date, three recently split and independently evolving distinct genetic groups can be distinguished. These findings underline the wide host

  6. Culture of Cells from Amphibian Embryos.

    Science.gov (United States)

    Stanisstreet, Martin

    1983-01-01

    Describes a method for in vitro culturing of cells from amphibian early embryos. Such cells can be used to demonstrate such properties of eukaryote cells as cell motility, adhesion, differentiation, and cell sorting into tissues. The technique may be extended to investigate other factors. (Author/JN)

  7. Universal COI primers for DNA barcoding amphibians.

    Science.gov (United States)

    Che, Jing; Chen, Hong-Man; Yang, Jun-Xiao; Jin, Jie-Qiong; Jiang, Ke; Yuan, Zhi-Yong; Murphy, Robert W; Zhang, Ya-Ping

    2012-03-01

    DNA barcoding is a proven tool for the rapid and unambiguous identification of species, which is essential for many activities including the vouchering tissue samples in the genome 10K initiative, genealogical reconstructions, forensics and biodiversity surveys, among many other applications. A large-scale effort is underway to barcode all amphibian species using the universally sequenced DNA region, a partial fragment of mitochondrial cytochrome oxidase subunit I COI. This fragment is desirable because it appears to be superior to 16S for barcoding, at least for some groups of salamanders. The barcoding of amphibians is essential in part because many species are now endangered. Unfortunately, existing primers for COI often fail to achieve this goal. Herein, we report two new pairs of primers (➀, ➁) that in combination serve to universally amplify and sequence all three orders of Chinese amphibians as represented by 36 genera. This taxonomic diversity, which includes caecilians, salamanders and frogs, suggests that the new primer pairs will universally amplify COI for the vast majority species of amphibians.

  8. Amphibians as animal models for laboratory research in physiology.

    Science.gov (United States)

    Burggren, Warren W; Warburton, Stephen

    2007-01-01

    The concept of animal models is well honored, and amphibians have played a prominent part in the success of using key species to discover new information about all animals. As animal models, amphibians offer several advantages that include a well-understood basic physiology, a taxonomic diversity well suited to comparative studies, tolerance to temperature and oxygen variation, and a greater similarity to humans than many other currently popular animal models. Amphibians now account for approximately 1/4 to 1/3 of lower vertebrate and invertebrate research, and this proportion is especially true in physiological research, as evident from the high profile of amphibians as animal models in Nobel Prize research. Currently, amphibians play prominent roles in research in the physiology of musculoskeletal, cardiovascular, renal, respiratory, reproductive, and sensory systems. Amphibians are also used extensively in physiological studies aimed at generating new insights in evolutionary biology, especially in the investigation of the evolution of air breathing and terrestriality. Environmental physiology also utilizes amphibians, ranging from studies of cryoprotectants for tissue preservation to physiological reactions to hypergravity and space exploration. Amphibians are also playing a key role in studies of environmental endocrine disruptors that are having disproportionately large effects on amphibian populations and where specific species can serve as sentinel species for environmental pollution. Finally, amphibian genera such as Xenopus, a genus relatively well understood metabolically and physiologically, will continue to contribute increasingly in this new era of systems biology and "X-omics."

  9. Helping Your Local Amphibians (HYLA): An Internet-Based Amphibian Course for Educators

    Science.gov (United States)

    Murphy, Tony P.

    2001-12-01

    A pilot on-line course on amphibians was offered free to 20 educators around the United States in 1999. This course, called Helping Your Local Amphibians (HYLA), was the first of its kind on-line course for educators dealing with amphibian issues. It also used these animals as a focus to teach about the environment. The course lasted 9 weeks with some additional time for continued discussions and used various aspects of Internet technology (including a virtual conference center), media, and traditional paper-based products to complete the learning process. Five teachers were selected to attend a national amphibian summit hosted by the Center for Global Environmental Education, Hamline University, St. Paul, MN. The course was aimed primarily at upper elementary and middle school teachers, but participants included formal and nonformal educators. For the most part, educators expressed satisfaction with the course and the content, as well as the structure of the web site. For 80% of the group, this was their first Internet-based course. In addition, as part of the course, the educators were expected to take some action with their primary audiences to help local amphibian populations. This mainly took the form of surveys or habitat clean-ups. The development of the course was underwritten by grants from the National Fish and Wildlife Foundation, U.S. Fish and Wildlife Service, the Best Buy Children's Foundation, and Hamline University.

  10. Detection of Rickettsia and Ehrlichia spp. in Ticks Associated with Exotic Reptiles and Amphibians Imported into Japan.

    Science.gov (United States)

    Andoh, Masako; Sakata, Akiko; Takano, Ai; Kawabata, Hiroki; Fujita, Hiromi; Une, Yumi; Goka, Koichi; Kishimoto, Toshio; Ando, Shuji

    2015-01-01

    One of the major routes of transmission of rickettsial and ehrlichial diseases is via ticks that infest numerous host species, including humans. Besides mammals, reptiles and amphibians also carry ticks that may harbor Rickettsia and Ehrlichia strains that are pathogenic to humans. Furthermore, reptiles and amphibians are exempt from quarantine in Japan, thus facilitating the entry of parasites and pathogens to the country through import. Accordingly, in the current study, we examined the presence of Rickettsia and Ehrlichia spp. genes in ticks associated with reptiles and amphibians originating from outside Japan. Ninety-three ticks representing nine tick species (genera Amblyomma and Hyalomma) were isolated from at least 28 animals spanning 10 species and originating from 12 countries (Ghana, Jordan, Madagascar, Panama, Russia, Sri Lanka, Sudan, Suriname, Tanzania, Togo, Uzbekistan, and Zambia). None of the nine tick species are indigenous in Japan. The genes encoding the common rickettsial 17-kDa antigen, citrate synthase (gltA), and outer membrane protein A (ompA) were positively detected in 45.2% (42/93), 40.9% (38/93), and 23.7% (22/93) of the ticks, respectively, by polymerase chain reaction (PCR). The genes encoding ehrlichial heat shock protein (groEL) and major outer membrane protein (omp-1) were PCR-positive in 7.5% (7/93) and 2.2% (2/93) of the ticks, respectively. The p44 gene, which encodes the Anaplasma outer membrane protein, was not detected. Phylogenetic analysis showed that several of the rickettsial and ehrlichial sequences isolated in this study were highly similar to human pathogen genes, including agents not previously detected in Japan. These data demonstrate the global transportation of pathogenic Rickettsia and Ehrlichia through reptile- and amphibian-associated ticks. These imported animals have potential to transfer pathogens into human life. These results highlight the need to control the international transportation of known and

  11. Pesticide Detection in Rainwater, Stemflow, and Amphibians from Agricultural Spray Drift in Southern Georgia, USA

    Science.gov (United States)

    Amphibians are important sentinel environmental species since they integrate stressors from both aquatic and terrestrial ecosystems. Pesticides are well established as a significant stressor for amphibians. In order to study spray-drift contributions to amphibian habitats, pestic...

  12. Pesticide Uptake Across the Amphibian Dermis Through Soil and Overspray Exposures

    Science.gov (United States)

    For terrestrial amphibians, accumulation ofpesticides through dermal contact is a primary route ofexposure in agricultural landscapes and may be contributingto widespread amphibian declines. To show pesticidetransfer across the amphibian dermis at permitted labelapplication rates...

  13. Book review: Amphibians and reptiles in Minnesota

    Science.gov (United States)

    Mushet, David M.

    2014-01-01

    The photograph of a young boy poised to capture a wood frog (Lithobates sylvaticus) on page 3 of Amphibians and Reptiles in Minnesota captures perfectly the sense of awe and wonderment that one encounters throughout John Moriarty and Carol Hall’s new book. This is a spirit that most children possess naturally and that is so readily apparent when one of them comes face-to-face with one of the 53 species of frogs, toads, salamanders, turtles, lizards, or snakes that make Minnesota their home. This is a spirit that the authors have maintained in their hearts throughout almost 30 years of chasing, capturing, and studying amphibians and reptiles (a.k.a., herptiles or herps) in Minnesota. It is also the spirit that you will find reawakening in yourself as you turn from one page to the next and encounter the abundant color photos and descriptive text within this book.

  14. Neurosteroid biosynthesis in the brain of amphibians

    Directory of Open Access Journals (Sweden)

    Hubert eVaudry

    2011-11-01

    Full Text Available Amphibians have been widely used to investigate the synthesis of biologically active steroids in the brain and the regulation of neurosteroid production by neurotransmitters and neuropeptides. The aim of the present review is to summarize the current knowledge regarding the neuroanatomical distribution and biochemical activity of steroidogenic enzymes in the brain of anurans and urodeles. The data accumulated over the past two decades demonstrate that discrete populations of neurons and/or glial cells in the frog and newt brains express the major steroidogenic enzymes and are able to synthesize de novo a number of neurosteroids from cholesterol/pregnenolone. Since neurosteroidogenesis has been conserved during evolution from amphibians to mammals, it appears that neurosteroids must play important physiological functions in the central nervous system of vertebrates

  15. The effect of road kills on amphibian populations

    OpenAIRE

    Hels, Tove; Buchwald,, Erik

    2001-01-01

    The diurnal movement patterns of Triturus vulgaris, T. cristatus, Pelobates fuscus, Bufo bufo, Rana temporaria, and R. arvalis were investigated during five breeding seasons (1994-1998). Two main questions were addressed: 1) What is the probability of an individual amphibian getting killed when crossing the road? and 2) What fraction of the amphibian populations gets killed by traffic? The rate of movement of 203 adult amphibians was recorded. Information on traffic loads was provided, and mo...

  16. Trends in Amphibian Occupancy in the United States

    OpenAIRE

    Adams, Michael J.; David A. W. Miller; Muths, Erin; Corn, Paul Stephen; Grant, Evan H. Campbell; Larissa L. Bailey; Gary M. Fellers; Robert N Fisher; Walter J Sadinski; Waddle, Hardin; Susan C Walls

    2013-01-01

    Though a third of amphibian species worldwide are thought to be imperiled, existing assessments simply categorize extinction risk, providing little information on the rate of population losses. We conducted the first analysis of the rate of change in the probability that amphibians occupy ponds and other comparable habitat features across the United States. We found that overall occupancy by amphibians declined 3.7% annually from 2002 to 2011. Species that are Red-listed by the International ...

  17. Bent's Old Fort: Amphibians and Reptiles

    Science.gov (United States)

    Muths, E.

    2008-01-01

    Bent's Old Fort National Historic Site sits along the Arkansas River in the semi-desert prairie of southeastern Colorado. The USGS provided assistance in designing surveys to assess the variety of herpetofauna (amphibians and reptiles) resident at this site. This brochure is the results of those efforts and provides visitors with information on what frogs, toads, snakes and salamanders might be seen and heard at Bent's Old Fort.

  18. Amphibian road kills: a global perspective

    OpenAIRE

    Puky, Miklós

    2005-01-01

    Transportation infrastructure is a major factor determining land use forms. As global changes in this factor are the most important for biodiversity, roads fundamentally influence wildlife. The effect of roads on wildlife has been categorized in several ways resulting in six to ten categories with road kill as an obvious and important component, and amphibians are greatly affected by this factor. As this animal group has been documented to decline from multiple threats worldwide, the study an...

  19. Book review: The ecology and behavior of amphibians

    Science.gov (United States)

    Walls, Susan C.

    2008-01-01

    This state‐of‐the‐art book has made its timely emergence amid a crisis of global magnitude: that of population declines, range reductions, and extinctions of numerous species of amphibians. A clear understanding of the fundamental concepts in amphibian biology is crucial to the success of any conservation effort. This volume compiles the information necessary to acquire that basic understanding. It is a comprehensive synthesis of both traditional and contemporary facets of amphibian biology, spanning a breadth of topics ranging from phylogeny, physiology, behavior, population and community ecology, and conservation. As such, it undoubtedly takes its place among contemporary volumes as the single, authoritative source for basic topics relevant to amphibian life.

  20. Status and trends of amphibian declines and extinctions worldwide.

    Science.gov (United States)

    Stuart, Simon N; Chanson, Janice S; Cox, Neil A; Young, Bruce E; Rodrigues, Ana S L; Fischman, Debra L; Waller, Robert W

    2004-12-01

    The first global assessment of amphibians provides new context for the well-publicized phenomenon of amphibian declines. Amphibians are more threatened and are declining more rapidly than either birds or mammals. Although many declines are due to habitat loss and overutilization, other, unidentified processes threaten 48% of rapidly declining species and are driving species most quickly to extinction. Declines are nonrandom in terms of species' ecological preferences, geographic ranges, and taxonomic associations and are most prevalent among Neotropical montane, stream-associated species. The lack of conservation remedies for these poorly understood declines means that hundreds of amphibian species now face extinction.

  1. Localized hotspots drive continental geography of abnormal amphibians on U.S. wildlife refuges.

    Science.gov (United States)

    Reeves, Mari K; Medley, Kimberly A; Pinkney, Alfred E; Holyoak, Marcel; Johnson, Pieter T J; Lannoo, Michael J

    2013-01-01

    Amphibians with missing, misshapen, and extra limbs have garnered public and scientific attention for two decades, yet the extent of the phenomenon remains poorly understood. Despite progress in identifying the causes of abnormalities in some regions, a lack of knowledge about their broader spatial distribution and temporal dynamics has hindered efforts to understand their implications for amphibian population declines and environmental quality. To address this data gap, we conducted a nationwide, 10-year assessment of 62,947 amphibians on U.S. National Wildlife Refuges. Analysis of a core dataset of 48,081 individuals revealed that consistent with expected background frequencies, an average of 2% were abnormal, but abnormalities exhibited marked spatial variation with a maximum prevalence of 40%. Variance partitioning analysis demonstrated that factors associated with space (rather than species or year sampled) captured 97% of the variation in abnormalities, and the amount of partitioned variance decreased with increasing spatial scale (from site to refuge to region). Consistent with this, abnormalities occurred in local to regional hotspots, clustering at scales of tens to hundreds of kilometers. We detected such hotspot clusters of high-abnormality sites in the Mississippi River Valley, California, and Alaska. Abnormality frequency was more variable within than outside of hotspot clusters. This is consistent with dynamic phenomena such as disturbance or natural enemies (pathogens or predators), whereas similarity of abnormality frequencies at scales of tens to hundreds of kilometers suggests involvement of factors that are spatially consistent at a regional scale. Our characterization of the spatial and temporal variation inherent in continent-wide amphibian abnormalities demonstrates the disproportionate contribution of local factors in predicting hotspots, and the episodic nature of their occurrence.

  2. Localized hotspots drive continental geography of abnormal amphibians on U.S. wildlife refuges.

    Directory of Open Access Journals (Sweden)

    Mari K Reeves

    Full Text Available Amphibians with missing, misshapen, and extra limbs have garnered public and scientific attention for two decades, yet the extent of the phenomenon remains poorly understood. Despite progress in identifying the causes of abnormalities in some regions, a lack of knowledge about their broader spatial distribution and temporal dynamics has hindered efforts to understand their implications for amphibian population declines and environmental quality. To address this data gap, we conducted a nationwide, 10-year assessment of 62,947 amphibians on U.S. National Wildlife Refuges. Analysis of a core dataset of 48,081 individuals revealed that consistent with expected background frequencies, an average of 2% were abnormal, but abnormalities exhibited marked spatial variation with a maximum prevalence of 40%. Variance partitioning analysis demonstrated that factors associated with space (rather than species or year sampled captured 97% of the variation in abnormalities, and the amount of partitioned variance decreased with increasing spatial scale (from site to refuge to region. Consistent with this, abnormalities occurred in local to regional hotspots, clustering at scales of tens to hundreds of kilometers. We detected such hotspot clusters of high-abnormality sites in the Mississippi River Valley, California, and Alaska. Abnormality frequency was more variable within than outside of hotspot clusters. This is consistent with dynamic phenomena such as disturbance or natural enemies (pathogens or predators, whereas similarity of abnormality frequencies at scales of tens to hundreds of kilometers suggests involvement of factors that are spatially consistent at a regional scale. Our characterization of the spatial and temporal variation inherent in continent-wide amphibian abnormalities demonstrates the disproportionate contribution of local factors in predicting hotspots, and the episodic nature of their occurrence.

  3. Occurrence of pesticides in water and sediment collected from amphibian habitats located throughout the United States, 2009-10

    Science.gov (United States)

    Smalling, Kelly L.; Orlando, James L.; Calhoun, Daniel; Battaglin, William A.; Kuivila, Kathryn M.

    2012-01-01

    Water and bed-sediment samples were collected by the U.S. Geological Survey (USGS) in 2009 and 2010 from 11 sites within California and 18 sites total in Colorado, Georgia, Idaho, Louisiana, Maine, and Oregon, and were analyzed for a suite of pesticides by the USGS. Water samples and bed-sediment samples were collected from perennial or seasonal ponds located in amphibian habitats in conjunction with research conducted by the USGS Amphibian Research and Monitoring Initiative and the USGS Toxic Substances Hydrology Program. Sites selected for this study in three of the states (California, Colorado, and Orgeon) have no direct pesticide application and are considered undeveloped and remote. Sites selected in Georgia, Idaho, Louisiana, and Maine were in close proximity to either agricultural or suburban areas. Water and sediment samples were collected once in 2009 during amphibian breeding seasons. In 2010, water samples were collected twice. The first sampling event coincided with the beginning of the frog breeding season for the species of interest, and the second event occurred 10-12 weeks later when pesticides were being applied to the surrounding areas. Additionally, water was collected during each sampling event to measure dissolved organic carbon, nutrients, and the fungus, Batrachochytrium dendrobatidis, which has been linked to amphibian declines worldwide. Bed-sediment samples were collected once during the beginning of the frog breeding season, when the amphibians are thought to be most at risk to pesticides. Results of this study are reported for the following two geographic scales: (1) for a national scale, by using data from the 29 sites that were sampled from seven states, and (2) for California, by using data from the 11 sampled sites in that state. Water samples were analyzed for 96 pesticides by using gas chromatography/mass spectrometry. A total of 24 pesticides were detected in one or more of the 54 water samples, including 7 fungicides, 10

  4. Conceptual Design for the Amphibian Research and Monitoring Initiative (ARMI)

    Science.gov (United States)

    Battaglin, W. A.; Langtimm, C. A.; Adams, M. J.; Gallant, A. L.; James, D. L.

    2001-12-01

    In 2000, the President of the United States (US) and Congress directed Department of Interior (DOI) agencies to develop a program for monitoring trends in amphibian populations on DOI lands and to conduct research into causes of declines. The U.S. Geological Survey (USGS) was given lead responsibility for planning and implementing the Amphibian Research and Monitoring Initiative (ARMI) in cooperation with the National Park Service (NPS), Fish and Wildlife Service, and Bureau of Land Management. The program objectives are to (1) establish a network for monitoring the status and distribution of amphibian species on DOI lands; (2) identify and monitor environmental conditions known to affect amphibian populations; (3) conduct research on causes of amphibian population change and malformations; and (4) provide information to resource managers, policy makers, and the public in support of amphibian conservation. The ARMI program will integrate research efforts of USGS, other Federal, and non-federal herpetologists, hydrologists, and geographers across the Nation. ARMI will conduct a small number (~20) of intensive research efforts (for example, studies linking amphibian population changes to hydrologic conditions) and a larger number (~50) of more generalized inventory and monitoring studies encompassing broader areas such as NPS units. ARMI will coordinate with and try to augment other amphibian inventory studies such as the National Amphibian Atlas and the North American Amphibian Monitoring Program. ARMI will develop and test protocols for the standardized collection of amphibian data and provide a centrally managed database designed to simplify data entry, retrieval, and analysis. ARMI pilot projects are underway at locations across the US.

  5. Global rates of habitat loss and implications for amphibian conservation

    Science.gov (United States)

    Gallant, A.L.; Klaver, R.W.; Casper, G.S.; Lannoo, M.J.

    2007-01-01

    A large number of factors are known to affect amphibian population viability, but most authors agree that the principal causes of amphibian declines are habitat loss, alteration, and fragmentation. We provide a global assessment of land use dynamics in the context of amphibian distributions. We accomplished this by compiling global maps of amphibian species richness and recent rates of change in land cover, land use, and human population growth. The amphibian map was developed using a combination of published literature and digital databases. We used an ecoregion framework to help interpret species distributions across environmental, rather than political, boundaries. We mapped rates of land cover and use change with statistics from the World Resources Institute, refined with a global digital dataset on land cover derived from satellite data. Temporal maps of human population were developed from the World Resources Institute database and other published sources. Our resultant map of amphibian species richness illustrates that amphibians are distributed in an uneven pattern around the globe, preferring terrestrial and freshwater habitats in ecoregions that are warm and moist. Spatiotemporal patterns of human population show that, prior to the 20th century, population growth and spread was slower, most extensive in the temperate ecoregions, and largely exclusive of major regions of high amphibian richness. Since the beginning of the 20th century, human population growth has been exponential and has occurred largely in the subtropical and tropical ecoregions favored by amphibians. Population growth has been accompanied by broad-scale changes in land cover and land use, typically in support of agriculture. We merged information on land cover, land use, and human population growth to generate a composite map showing the rates at which humans have been changing the world. When compared with the map of amphibian species richness, we found that many of the regions of the

  6. Cryptosporidium parvum is not transmissible to fish, amphibians, or reptiles.

    Science.gov (United States)

    Graczyk, T K; Fayer, R; Cranfield, M R

    1996-10-01

    A recent report suggested that an isolate of Cryptosporidium parvum had established infections in fish, amphibians, and reptiles and raises concern that animals other than mammals might be a potential source of waterborne Cryptosporidium oocysts. To test this possibility, viable C. parvum oocysts, infectious for neonatal BALB/c mice, were delivered by gastric intubation to bluegill sunfish, poison-dart frogs, African clawed frogs, bearded dragon lizards, and corn snakes. Histological sections of the stomach, jejunum, ileum, and cloaca prepared from tissues collected on days 7 and 14 postinoculation (PI) were negative for Cryptosporidium developmental stages. However, inoculum-derived oocysts were detectable by fluorescein-labeled monoclonal antibody in feces of inoculated animals from day 1 to day 12 PI in fish and frogs, and up to day 14 PI in lizards. Snakes did not defecate for 14 days PI. Impression smears taken at necropsy on days 7 and 14 PI revealed C. parvum oocysts in the lumen of the cloaca of 2 fish and 1 lizard on day 7 PI only. Because tissue stages of the pathogen were not found, it appears that C. parvum was not heterologously transmitted to lower vertebrates. Under certain circumstances, however, such as after the ingestion of C. parvum-infected prey, lower vertebrates may disseminate C. parvum oocysts in the environment. PMID:8885883

  7. Ranavirus in wild edible frogs Pelophylax kl. esculentus in Denmark

    DEFF Research Database (Denmark)

    Ariel, Ellen; Kielgast, Jos; Svart, Hans Erik;

    2009-01-01

    A survey for the amphibian pathogens ranavirus and Batrachochytrium dendrobatidis (Bd) was conducted in Denmark during August and September 2008. The public was encouraged via the media to register unusual mortalities in a web-based survey. All members of the public that registered cases were...

  8. 50 CFR 17.43 - Special rules-amphibians.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 2 2010-10-01 2010-10-01 false Special rules-amphibians. 17.43 Section 17.43 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Special rules—amphibians. (a) San Marcos salamander (Eurycea nana). (1) All provisions of § 17.31 apply...

  9. All about Amphibians. Animal Life for Children. [Videotape].

    Science.gov (United States)

    2000

    This videotape teaches children about their favorite amphibious creatures, as well as amphibians' nearest cousins--toads, newts, and salamanders. Young students discover how these amazing creatures can live both in and out of water, learn about the amphibious life cycle, and compare the differences between amphibians and reptiles. This videotape…

  10. AMPHIBIAN DECLINES AND ENVIRONMENTAL CHANGE IN THE EASTERN "MOJAVE DESERT"

    Science.gov (United States)

    A number of amphibian species historically inhabited sparsely distributed wetlands in the Mojave Desert, USA, habitats that have been dramatically altered or eliminated as a result of human activities. The population status and distribution of amphibians were investigated in a 20...

  11. Amphibian Oasis: Designing and Building a Schoolyard Pond.

    Science.gov (United States)

    Gosselin, Heather; Johnson, Bob

    1996-01-01

    Building a pond in a schoolyard is a rewarding way to help boost local populations of amphibians, to increase the natural value of school grounds, and to serve as a locale for observing the life cycles of plants, invertebrates, and amphibians. This article outlines important considerations in designing and building a pond from siting through…

  12. Amphibians and Reptiles from Paramakatoi and Kato, Guyana

    Science.gov (United States)

    MacCulloch, Ross D.; Reynolds, Robert P.

    2012-01-01

    We report the herpetofauna of two neighboring upland locations in west-central Guyana. Twenty amphibian and 24 reptile species were collected. Only 40% of amphibians and 12.5% of reptiles were collected in both locations. This is one of the few collections made at upland (750–800 m) locations in the Guiana Shield.

  13. Partners in amphibian and reptile conservation 2013 annual report

    Science.gov (United States)

    Conrad, Paulette M.; Weir, Linda A.; Nanjappa, Priya

    2014-01-01

    Partners in Amphibian and Reptile Conservation (PARC) was established in 1999 to address the widespread declines, extinctions, and range reductions of amphibians and reptiles, with a focus on conservation of taxa and habitats in North America. Amphibians and reptiles are affected by a broad range of human activities, both as incidental effects of habitat alteration and direct effect from overexploitation; these animals are also challenged by the perception that amphibians and reptiles are either dangerous or of little environmental or economic value. However, PARC members understand these taxa are important parts of our natural an cultural heritage and they serve important roles in ecosystems throughout the world. With many amphibians and reptiles classified as threatened with extinction, conservation of these animals has never been more important.

  14. Captive breeding, reintroduction, and the conservation of amphibians.

    Science.gov (United States)

    Griffiths, Richard A; Pavajeau, Lissette

    2008-08-01

    The global amphibian crisis has resulted in renewed interest in captive breeding as a conservation tool for amphibians. Although captive breeding and reintroduction are controversial management actions, amphibians possess a number of attributes that make them potentially good models for such programs. We reviewed the extent and effectiveness of captive breeding and reintroduction programs for amphibians through an analysis of data from the Global Amphibian Assessment and other sources. Most captive breeding and reintroduction programs for amphibians have focused on threatened species from industrialized countries with relatively low amphibian diversity. Out of 110 species in such programs, 52 were in programs with no plans for reintroduction that had conservation research or conservation education as their main purpose. A further 39 species were in programs that entailed captive breeding and reintroduction or combined captive breeding with relocations of wild animals. Nineteen species were in programs with relocations of wild animals only. Eighteen out of 58 reintroduced species have subsequently bred successfully in the wild, and 13 of these species have established self-sustaining populations. As with threatened amphibians generally, amphibians in captive breeding or reintroduction programs face multiple threats, with habitat loss being the most important. Nevertheless, only 18 out of 58 reintroduced species faced threats that are all potentially reversible. When selecting species for captive programs, dilemmas may emerge between choosing species that have a good chance of surviving after reintroduction because their threats are reversible and those that are doomed to extinction in the wild as a result of irreversible threats. Captive breeding and reintroduction programs for amphibians require long-term commitments to ensure success, and different management strategies may be needed for species earmarked for reintroduction and species used for conservation

  15. Fetal adaptations for viviparity in amphibians.

    Science.gov (United States)

    Wake, Marvalee H

    2015-08-01

    Live-bearing has evolved in all three orders of amphibians--frogs, salamanders, and caecilians. Developing young may be either yolk dependent, or maternal nutrients may be supplied after yolk is resorbed, depending on the species. Among frogs, embryos in two distantly related lineages develop in the skin of the maternal parents' backs; they are born either as advanced larvae or fully metamorphosed froglets, depending on the species. In other frogs, and in salamanders and caecilians, viviparity is intraoviductal; one lineage of salamanders includes species that are yolk dependent and born either as larvae or metamorphs, or that practice cannibalism and are born as metamorphs. Live-bearing caecilians all, so far as is known, exhaust yolk before hatching and mothers provide nutrients during the rest of the relatively long gestation period. The developing young that have maternal nutrition have a number of heterochronic changes, such as precocious development of the feeding apparatus and the gut. Furthermore, several of the fetal adaptations, such as a specialized dentition and a prolonged metamorphosis, are homoplasious and present in members of two or all three of the amphibian orders. At the same time, we know little about the developmental and functional bases for fetal adaptations, and less about the factors that drive their evolution and facilitate their maintenance.

  16. Dietary antioxidants enhance immunocompetence in larval amphibians.

    Science.gov (United States)

    Szuroczki, Dorina; Koprivnikar, Janet; Baker, Robert L

    2016-11-01

    Dietary antioxidants have been shown to confer a variety of benefits through their ability to counter oxidative stress, including increased immunocompetence and reduced susceptibility to both infectious and non-infectious diseases. However, little is known about the effects of dietary antioxidants on immune function in larval amphibians, a group experiencing worldwide declines driven by factors that likely involve altered immunocompetence. We investigated the effects of dietary antioxidants (quercetin, vitamin E, and β-carotene) on two components of the immune system, as well as development and growth. Lithobates pipiens tadpoles fed diets with supplemental β-carotene or vitamin E exhibited an enhanced swelling response as measured with a phytohemagglutinin assay (PHA), but there was no induced antibody response. Effects were often dose-dependent, with higher antioxidant levels generally conferring stronger swelling that possibly corresponds to the innate immune response. Our results indicate that the antioxidant content of the larval amphibian diets not only had a detectable effect on their immune response capability, but also promoted tadpole growth (mass gain), although developmental stage was not affected. Given that many environmental perturbations may cause oxidative stress or reduce immunocompetence, it is critical to understand how nutrition may counter these effects. PMID:27475300

  17. Occurrence of pesticides in water and sediment collected from amphibian habitats located throughout the United States, 2009-10

    Science.gov (United States)

    Smalling, Kelly L.; Orlando, James L.; Calhoun, Daniel; Battaglin, William A.; Kuivila, Kathryn M.

    2012-01-01

    Water and bed-sediment samples were collected by the U.S. Geological Survey (USGS) in 2009 and 2010 from 11 sites within California and 18 sites total in Colorado, Georgia, Idaho, Louisiana, Maine, and Oregon, and were analyzed for a suite of pesticides by the USGS. Water samples and bed-sediment samples were collected from perennial or seasonal ponds located in amphibian habitats in conjunction with research conducted by the USGS Amphibian Research and Monitoring Initiative and the USGS Toxic Substances Hydrology Program. Sites selected for this study in three of the states (California, Colorado, and Orgeon) have no direct pesticide application and are considered undeveloped and remote. Sites selected in Georgia, Idaho, Louisiana, and Maine were in close proximity to either agricultural or suburban areas. Water and sediment samples were collected once in 2009 during amphibian breeding seasons. In 2010, water samples were collected twice. The first sampling event coincided with the beginning of the frog breeding season for the species of interest, and the second event occurred 10-12 weeks later when pesticides were being applied to the surrounding areas. Additionally, water was collected during each sampling event to measure dissolved organic carbon, nutrients, and the fungus, Batrachochytrium dendrobatidis, which has been linked to amphibian declines worldwide. Bed-sediment samples were collected once during the beginning of the frog breeding season, when the amphibians are thought to be most at risk to pesticides. Results of this study are reported for the following two geographic scales: (1) for a national scale, by using data from the 29 sites that were sampled from seven states, and (2) for California, by using data from the 11 sampled sites in that state. Water samples were analyzed for 96 pesticides by using gas chromatography/mass spectrometry. A total of 24 pesticides were detected in one or more of the 54 water samples, including 7 fungicides, 10

  18. Modeling effects of conservation grassland losses on amphibian habitat

    Science.gov (United States)

    Mushet, David M.; Neau, Jordan L.; Euliss, Ned H.

    2014-01-01

    Amphibians provide many ecosystem services valued by society. However, populations have declined globally with most declines linked to habitat change. Wetlands and surrounding terrestrial grasslands form habitat for amphibians in the North American Prairie Pothole Region (PPR). Wetland drainage and grassland conversion have destroyed or degraded much amphibian habitat in the PPR. However, conservation grasslands can provide alternate habitat. In the United States, the Conservation Reserve Program (CRP) is the largest program maintaining grasslands on agricultural lands. We used an ecosystem services model (InVEST) parameterized for the PPR to quantify amphibian habitat over a six-year period (2007–2012). We then quantified changes in availability of amphibian habitat under various land-cover scenarios representing incremental losses (10%, 25%, 50%, 75%, and 100%) of CRP grasslands from 2012 levels. The area of optimal amphibian habitat in the four PPR ecoregions modeled (i.e., Northern Glaciated Plains, Northwestern Glaciated Plains, Lake Agassiz Plain, Des Moines Lobe) declined by approximately 22%, from 3.8 million ha in 2007 to 2.9 million ha in 2012. These losses were driven by the conversion of CRP grasslands to croplands, primarily for corn and soybean production. Our modeling identified an additional 0.8 million ha (26%) of optimal amphibian habitat that would be lost if remaining CRP lands are returned to crop production. An economic climate favoring commodity production over conservation has resulted in substantial losses of amphibian habitat across the PPR that will likely continue into the future. Other regions of the world face similar challenges to maintaining amphibian habitats.

  19. Facility design and associated services for the study of amphibians.

    Science.gov (United States)

    Browne, Robert K; Odum, R Andrew; Herman, Timothy; Zippel, Kevin

    2007-01-01

    The role of facilities and associated services for amphibians has recently undergone diversification. Amphibians traditionally used as research models adjust well to captivity and thrive with established husbandry techniques. However, it is now necessary to maintain hundreds of novel amphibian species in captive breeding, conservation research, and biomedical research programs. These diverse species have a very wide range of husbandry requirements, and in many cases the ultimate survival of threatened species will depend on captive populations. Two critical factors have emerged in the maintenance of amphibians, stringent quarantine and high-quality water. Because exotic diseases such as chytridiomycosis have devastated both natural and captive populations of amphibians, facilities must provide stringent quarantine. The provision of high-quality water is also essential to maintain amphibian health and condition due to the intimate physiological relationship of amphibians to their aquatic environment. Fortunately, novel technologies backed by recent advances in the scientific knowledge of amphibian biology and disease management are available to overcome these challenges. For example, automation can increase the reliability of quarantine and maintain water quality, with a corresponding decrease in handling and the associated disease-transfer risk. It is essential to build facilities with appropriate nontoxic waterproof materials and to provide quarantined amphibian rooms for each population. Other spaces and services include live feed rooms, quarantine stations, isolation rooms, laboratory space, technical support systems, reliable energy and water supplies, high-quality feed, and security. Good husbandry techniques must include reliable and species-specific management by trained staff members who receive support from the administration. It is possible to improve husbandry techniques for many species by sharing knowledge through common information systems. Overall

  20. ASSESSMENT OF THE RISK OF SOLAR ULTRAVIOLET RADIATION TO AMPHIBIANS. II: IN SITU CHARACTERIZATION OF SOLAR ULTRAVIOLET RADIATION IN AMPHIBIAN HABITATS

    Science.gov (United States)

    Ultraviolet B (UVB) radiation has been hypothesized as a potential cause of amphibian population declines and increased incidences of malformations. Realistic studies documenting UV irradiance or dose have rarely been conducted in wetlands used by amphibians. We demonstrate that ...

  1. Hot Spots of Mercury Bioaccumulation in Amphibian Populations From the Conterminous United States

    Science.gov (United States)

    Bank, M. S.

    2008-12-01

    Mercury (Hg) contamination in the United States (U.S.) is well-documented and continues to be a public- health issue of great concern. Fish consumption advisories have been issued throughout much of the U.S. due to elevated levels of methylmercury (MeHg). Methylmercury contamination in the developing fetus and in young children is a major public health issue for certain sectors of the global human population. Moreover, identifying MeHg hot spots and the effects of MeHg pollution on environmental health and biodiversity are also considered a high priority for land managers, risk assessors, and conservation scientists. Despite their overall biomass and importance to aquatic and terrestrial ecosystems, Hg and MeHg bioaccumulation dynamics and toxicity in amphibians are not well studied, especially when compared to other vertebrate taxa such as birds, mammals, and fish species. Population declines in amphibians are well documented and likely caused by synergistic and interacting, multiple stressors such as climate change, exposure to toxic pollutants, fungal pathogens, and habitat loss and ecosystem degradation. Protecting quality of terrestrial ecosystems in the U.S. has enormous ramifications for economic and public health of the nation's residents and is fundamental to maintaining the biotic integrity of surface waters, riparian zones, and environmental health of forested landscapes nationwide. Determining Hg concentration levels for terrestrial and surface water ecosystems also has important implications for protecting the nation's fauna. Here I present an overview of the National Amphibian Mercury Program and evaluate variation in MeHg hotspots, Hg bioaccumulation and distribution in freshwater and terrestrial habitats across a broad gradient of physical, climatic, biotic, and ecosystem settings to identify the environmental conditions and ecosystem types that are most sensitive to Hg pollution. The role of geography, disturbance mechanisms, and abiotic and biotic

  2. Non-invasive reproductive and stress endocrinology in amphibian conservation physiology.

    Science.gov (United States)

    Narayan, E J

    2013-01-01

    Non-invasive endocrinology utilizes non-invasive biological samples (such as faeces, urine, hair, aquatic media, and saliva) for the quantification of hormones in wildlife. Urinary-based enzyme immunoassay (EIA) and radio-immunoassay have enabled the rapid quantification of reproductive and stress hormones in amphibians (Anura: Amphibia). With minimal disturbance, these methods can be used to assess the ovarian and testicular endocrine functions as well as physiological stress in captive and free-living populations. Non-invasive endocrine monitoring has therefore greatly advanced our knowledge of the functioning of the stress endocrine system (the hypothalamo-pituitary-interrenal axis) and the reproductive endocrine system (the hypothalamo-pituitary-gonadal axis) in the amphibian physiological stress response, reproductive ecology, health and welfare, and survival. Biological (physiological) validation is necessary for obtaining the excretory lag time of hormone metabolites. Urinary-based EIA for the major reproductive hormones, estradiol and progesterone in females and testosterone in males, can be used to track the reproductive hormone profiles in relationship to reproductive behaviour and environmental data in free-living anurans. Urinary-based corticosterone metabolite EIA can be used to assess the sublethal impacts of biological stressors (such as invasive species and pathogenic diseases) as well as anthropogenic induced environmental stressors (e.g. extreme temperatures) on free-living populations. Non-invasive endocrine methods can also assist in the diagnosis of success or failure of captive breeding programmes by measuring the longitudinal patterns of changes in reproductive hormones and corticosterone within captive anurans and comparing the endocrine profiles with health records and reproductive behaviour. This review paper focuses on the reproductive and the stress endocrinology of anurans and demonstrates the uses of non-invasive endocrinology for

  3. Fish Springs NWR mammal, fish, amphibian, and reptile list

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The following is a species list for mammals, fishes, amphibians, and reptiles found on or adjacent to Fish Springs National Wildlife Refuge, as of October, 1996.

  4. Amphibian and reptile diversity of the Lahontan Valley

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is about a survey that was done to assess the amphibian and reptile diversity of the Lahontan Valley in Nevada. The work contained in this summary can...

  5. Amphibian and Reptile Research on Coldwater National Wildlife Refuge, Mississippi

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The management actions in the wildlife ponds on Coldwater National Wildlife Refuge create a highly variable and dynamic environment for amphibians and reptiles....

  6. Trends in amphibian occupancy in the United States

    Science.gov (United States)

    Adams, Michael J.; Miller, David A.W.; Muths, Erin; Corn, Paul Stephen; Grant, Evan H. Campbell; Bailey, Larissa L.; Fellers, Gary M.; Fisher, Robert N.; Sadinski, Walter J.; Waddle, Hardin; Walls, Susan C.

    2013-01-01

    Though a third of amphibian species worldwide are thought to be imperiled, existing assessments simply categorize extinction risk, providing little information on the rate of population losses. We conducted the first analysis of the rate of change in the probability that amphibians occupy ponds and other comparable habitat features across the United States. We found that overall occupancy by amphibians declined 3.7% annually from 2002 to 2011. Species that are Red-listed by the International Union for Conservation of Nature (IUCN) declined an average of 11.6% annually. All subsets of data examined had a declining trend including species in the IUCN Least Concern category. This analysis suggests that amphibian declines may be more widespread and severe than previously realized.

  7. Climate change and amphibian diversity patterns in Mexico

    DEFF Research Database (Denmark)

    Ochoa-Ochoa, Leticia M.; Rodríguez, Pilar; Mora, Franz;

    2012-01-01

    The aim of this article is to characterize at fine scale alpha and beta diversity patterns for Mexican amphibians and analyze how these patterns might change under a moderate climate-change scenario, highlighting the overall consequences for amphibian diversity at the country level. We used a geo...... of presence and dispersal capability) in the modelling processes. We simulated the base line (2000) and future scenarios for Mexican amphibian diversity (2020, 2050, 2080), using climate data layers constructed for Mexico. Using moving-window analyses of different sizes (9, 25, 100, 225 and 400 km2) we...... country boundaries) were particularly intense during the period 2020–2050. The results implied that heterogeneous zones associated with mountain ranges will remain particularly important for amphibian diversity and thus constitute areas for continued conservation prioritization in the face of climate...

  8. Sperm motility of externally fertilizing fish and amphibians.

    Science.gov (United States)

    Browne, R K; Kaurova, S A; Uteshev, V K; Shishova, N V; McGinnity, D; Figiel, C R; Mansour, N; Agney, D; Wu, M; Gakhova, E N; Dzyuba, B; Cosson, J

    2015-01-01

    We review the phylogeny, sperm competition, morphology, physiology, and fertilization environments of the sperm of externally fertilizing fish and amphibians. Increased sperm competition in both fish and anurans generally increases sperm numbers, sperm length, and energy reserves. The difference between the internal osmolarity and iconicity of sperm cells and those of the aquatic medium control the activation, longevity, and velocity of sperm motility. Hypo-osmolarity of the aquatic medium activates the motility of freshwater fish and amphibian sperm and hyperosmolarity activates the motility of marine fish sperm. The average longevity of the motility of marine fish sperm (~550 seconds) was significantly (P amphibian sperm in general and anurans reversion from internal to external fertilization. Our findings provide a greater understanding of the reproductive biology of externally fertilizing fish and amphibians, and a biological foundation for the further development of reproduction technologies for their sustainable management.

  9. Declining amphibian populations: a global phenomenon in conservation biology

    Directory of Open Access Journals (Sweden)

    Gardner, T.

    2001-01-01

    Full Text Available The majority of the recent reductions in the Earth's biodiversity can be attributed to direct human impacts on the environment. An increasing number of studies over the last decade have reported declines in amphibian populations in areas of pristine habitat. Such reports suggest the role of indirect factors and a global effect of human activities on natural systems. Declines in amphibian populations bear significant implications for the functioning of many terrestrial ecosystems, and may signify important implications for human welfare. A wide range of candidates have been proposed to explain amphibian population declines. However, it seems likely that the relevance of each factor is dependent upon the habitat type and species in question, and that complex synergistic effects between a number of environmental factors is of critical importance. Monitoring of amphibian populations to assess the extent and cause of declines is confounded by a number of ecological and methodological limitations.

  10. Abnormal amphibians on U.S. National Wildlife Refuges

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project contains a journal article, a news release, FAQs, a fact sheet, photos, and a dataset related to a 10-year study of amphibian abnormalities on U.S....

  11. Nationwide Abnormal Amphibian Monitoring Project : Region 3: 2002

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 2000, the FWS's Environmental Contaminants Program (currently Environmental Quality Program) received funding as part of the Department of Interior's Amphibian...

  12. Conservation needs of amphibians in China: A review

    Institute of Scientific and Technical Information of China (English)

    XIE Feng; Michael Wai Neng LAU; Simon N STUART; Janice S CHANSON; Neil A COX; Debra L FISCHMAN

    2007-01-01

    The conservation status of all the amphibians in China is analyzed, and the country is shown to be a global priority for conservation in comparison to many other countries of the world. Three Chinese regions are particularly rich in amphibian diversity: Hengduan, Nanling, and Wuyi mountains. Salamanders are more threatened than frogs and toads. Several smaller families show a high propensity to become seriously threatened: Bombinatoridae, Cryptobranchidae, Hynobiidae and Salamandridae. Like other parts of the world, stream-breeding, high-elevation forest amphibians have a much higher likelihood of being seriously threatened. Habitat loss, pollution, and over-harvesting are the most serious threats to Chinese amphibians. Over-harvesting is a less pervasive threat than habitat loss, but it is more likely to drive a species into rapid decline. Five conservation challenges are mentioned with recommendations for the highest priority research and conservation actions.

  13. Scientists urge enforcement of an amphibian conservation plan

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ A group of CAS biologists recently lodged an appeal, calling for initiating a national action plan as soon as possible to protect the amphibian species now struggling for their survival throughout the country.

  14. Conservation needs of amphibians in China:A review

    Institute of Scientific and Technical Information of China (English)

    Michael; Wai; Neng; LAU; Simon; N; STUART; Janice; S; CHANSON; Neil; A; COX; Debra; L; FISCHMAN

    2007-01-01

    The conservation status of all the amphibians in China is analyzed,and the country is shown to be a global priority for conservation in comparison to many other countries of the world.Three Chinese regions are particularly rich in amphibian diversity:Hengduan,Nanling,and Wuyi mountains.Sala-manders are more threatened than frogs and toads.Several smaller families show a high propensity to become seriously threatened:Bombinatoridae,Cryptobranchidae,Hynobiidae and Salamandridae.Like other parts of the world,stream-breeding,high-elevation forest amphibians have a much higher likeli-hood of being seriously threatened.Habitat loss,pollution,and over-harvesting are the most serious threats to Chinese amphibians.Over-harvesting is a less pervasive threat than habitat loss,but it is more likely to drive a species into rapid decline.Five conservation challenges are mentioned with recommendations for the highest priority research and conservation actions.

  15. Checklist of Helminth parasites of Amphibians from South America.

    Science.gov (United States)

    Campião, Karla Magalhães; Morais, Drausio Honorio; Dias, Olívia Tavares; Aguiar, Aline; Toledo, Gislayne De Melo; Tavares, Luiz Eduardo Roland; Da Silva, Reinaldo José

    2014-07-30

    Parasitological studies on helminths of amphibians in South America have increased in the past few years. Here, we present a list with summarized data published on helminths of South American amphibians from 1925 to 2012, including a list of helminth parasites, host species, and geographic records. We found 194 reports of helminths parasitizing 185 amphibian species from eleven countries: Argentina, Brazil, Chile, Colombia, Equador, French Guyana, Guyana, Paraguay, Peru, Uruguay and Venezuela. Helminth biodiversity includes 278 parasite species of the groups Acanthocephala, Nematoda, Cestoda, Monogenea and Trematoda. A list of helminth parasite species per host, and references are also presented. This contribution aims to document the biodiversity of helminth parasites in South American amphibians, as well as identify gaps in our knowledge, which in turn may guide subsequent studies. 

  16. Metabolism of pesticides after dermal exposure to amphibians

    Science.gov (United States)

    Understanding how pesticide exposure to non-target species influences toxicity is necessary to accurately assess the ecological risks these compounds pose. Aquatic, terrestrial, and arboreal amphibians are often exposed to pesticides during their agricultural application resultin...

  17. Invasive and introduced reptiles and amphibians: Chapter 28

    Science.gov (United States)

    Reed, Robert N.; Krysko, Kenneth L.; Mader, Douglas R.; Divers, Stephen J.

    2014-01-01

    Why is there a section on introduced amphibians and reptiles in this volume, and why should veterinarians care about this issue? Globally, invasive species are a major threat to the stability of native ecosystems,1,2 and amphibians and reptiles are attracting increased attention as potential invaders. Some introduced amphibians and reptiles have had a major impact (e.g., Brown Tree Snakes [Boiga irregularis] wiping out the native birds of Guam3 or Cane Toads [Rhinella marina] poisoning native Australian predators).4 For the vast majority of species, however, the ecological, economic, and sociopolitical effects of introduced amphibians and reptiles are generally poorly quantified, largely because of a lack of focused research effort rather than because such effects are nonexistent. This trend is alarming given that rates of introduction have increased exponentially in recent decades.

  18. ALIEN SPECIES: THEIR ROLE IN AMPHIBIAN POPULATION DECLINES AND RESTORATION

    Science.gov (United States)

    Alien species (also referred to as exotic, invasive, introduced, or normative species) have been implicated as causal agents in population declines of many amphibian species. Herein, we evaluate the relative contributions of alien species and other factors in adversely affecting ...

  19. FACTORS IMPLICATED IN AMPHIBIAN POPULATION DECLINES IN THE UNITED STATES

    Science.gov (United States)

    This study identified the factors responsible for the decline of native amphibians in the U.S. The type of land use, the introduction of exotic animal species, and chemical contamination were identified as the most likely causes of decline.

  20. Trends in amphibian occupancy in the United States.

    Science.gov (United States)

    Adams, Michael J; Miller, David A W; Muths, Erin; Corn, Paul Stephen; Grant, Evan H Campbell; Bailey, Larissa L; Fellers, Gary M; Fisher, Robert N; Sadinski, Walter J; Waddle, Hardin; Walls, Susan C

    2013-01-01

    Though a third of amphibian species worldwide are thought to be imperiled, existing assessments simply categorize extinction risk, providing little information on the rate of population losses. We conducted the first analysis of the rate of change in the probability that amphibians occupy ponds and other comparable habitat features across the United States. We found that overall occupancy by amphibians declined 3.7% annually from 2002 to 2011. Species that are Red-listed by the International Union for Conservation of Nature (IUCN) declined an average of 11.6% annually. All subsets of data examined had a declining trend including species in the IUCN Least Concern category. This analysis suggests that amphibian declines may be more widespread and severe than previously realized.

  1. Update of reptile and amphibian lists Kern NWR complex

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document includes a list of reptiles and amphibians found at Kern NWR, and lists brief species accounts for rare sightings/species. Attached are updated lists...

  2. Trends in amphibian occupancy in the United States.

    Science.gov (United States)

    Adams, Michael J; Miller, David A W; Muths, Erin; Corn, Paul Stephen; Grant, Evan H Campbell; Bailey, Larissa L; Fellers, Gary M; Fisher, Robert N; Sadinski, Walter J; Waddle, Hardin; Walls, Susan C

    2013-01-01

    Though a third of amphibian species worldwide are thought to be imperiled, existing assessments simply categorize extinction risk, providing little information on the rate of population losses. We conducted the first analysis of the rate of change in the probability that amphibians occupy ponds and other comparable habitat features across the United States. We found that overall occupancy by amphibians declined 3.7% annually from 2002 to 2011. Species that are Red-listed by the International Union for Conservation of Nature (IUCN) declined an average of 11.6% annually. All subsets of data examined had a declining trend including species in the IUCN Least Concern category. This analysis suggests that amphibian declines may be more widespread and severe than previously realized. PMID:23717602

  3. Trends in amphibian occupancy in the United States.

    Directory of Open Access Journals (Sweden)

    Michael J Adams

    Full Text Available Though a third of amphibian species worldwide are thought to be imperiled, existing assessments simply categorize extinction risk, providing little information on the rate of population losses. We conducted the first analysis of the rate of change in the probability that amphibians occupy ponds and other comparable habitat features across the United States. We found that overall occupancy by amphibians declined 3.7% annually from 2002 to 2011. Species that are Red-listed by the International Union for Conservation of Nature (IUCN declined an average of 11.6% annually. All subsets of data examined had a declining trend including species in the IUCN Least Concern category. This analysis suggests that amphibian declines may be more widespread and severe than previously realized.

  4. Nationwide Abnormal Amphibian Monitoring Project : Region 3 : Interim Report 2003

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 2000, the FWS's Environmental Contaminants Program (currently Environmental Quality Program) received funding as part of the Department of Interior's Amphibian...

  5. Nationwide Abnormal Amphibian Monitoring Project : Region 3 : Interim Report 2004

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 2000, the FWS's Environmental Contaminants Program (currently Environmental Quality Program) received funding as part of the Department of Interior's Amphibian...

  6. Twenty years of ISAREN: an amphibian biologist in Wonderland.

    Science.gov (United States)

    Kikuyama, Sakae

    2010-09-01

    The 6th International Symposium on Amphibian and Reptilian Endocrinology and Neurobiology (ISAREN), the former International Symposium on Amphibian Endocrinology (ISAE), was recently held in Berlin. ISAREN developed from two symposia on amphibian biology held in European countries in 1988-1990. In this article, the history of ISAREN was briefly stated. In addition, some of the topics of our researches carried out in collaboration with several groups, using various amphibian species during the past 20 years and/or presented in the past symposia were reviewed. The topics included the discovery of pancreatic chitinase, involvement of growth hormone in vitellogenin synthesis, changes of ANF-like immunoreactivity in the frogs sent into the space, discovery of a peptide sex-pheromone, origin of the epithelial pituitary, and hypothalamic regulation of thyroid-stimulating hormone. PMID:20138045

  7. The Amphibian Research and Monitoring Initiative (ARMI): 5-year report

    Science.gov (United States)

    Muths, Erin; Gallant, Alisa L.; Campbell Grant, Evan H.; Battaglin, William A.; Green, David E.; Staiger, Jennifer S.; Walls, Susan C.; Gunzburger, Margaret S.; Kearney, Rick F.

    2006-01-01

    The Amphibian Research and Monitoring Initiative (ARMI) is an innovative, multidisciplinary program that began in 2000 in response to a congressional directive for the Department of the Interior to address the issue of amphibian declines in the United States. ARMI’s formulation was cross-disciplinary, integrating U.S. Geological Survey scientists from Biology, Water, and Geography to develop a course of action (Corn and others, 2005a). The result has been an effective program with diverse, yet complementary, expertise.

  8. Resistance to cancer in amphibians: a role for apoptosis?

    Science.gov (United States)

    Ruben, Laurens N; Johnson, Rachel O; Clothier, Richard H; Balls, Michael

    2013-07-01

    The rarity of spontaneous cancer in amphibians, and the difficulty of inducing cancer in these lower vertebrates, suggest that they possess an effective system for resistance to the development of cancer. The first part of this narrative presents evidence for cancer resistance in amphibians, and then a variety of studies designed to help understand the physiological basis for this resistance are reviewed. Here, our emphasis is on evidence with regard to the role that apoptosis might play.

  9. Amphibian and reptile distribution in forests adjacent to watercourses

    OpenAIRE

    Olsson, Cecilia

    2008-01-01

    Worldwide amphibians and reptiles are declining with habitat fragmentation and destruction as the primary cause. Riparian areas are important for the herpetofauna, but as land is converted to agriculture or harvested for timber the areas are diminishing. The aim of this study was to examine amphibian and reptile abundance in relation to distance from water and in relation to habitat characteristics, foremost per cent deciduous trees. The survey was conducted during spring at six different loc...

  10. Effects of Terrestrial Buffer Zones on Amphibians on Golf Courses

    OpenAIRE

    Puglis, Holly J.; Boone, Michelle D.

    2012-01-01

    A major cause of amphibian declines worldwide is habitat destruction or alteration. Public green spaces, such as golf courses and parks, could serve as safe havens to curb the effects of habitat loss if managed in ways to bolster local amphibian communities. We reared larval Blanchard's cricket frogs (Acris blanchardi) and green frogs (Rana clamitans) in golf course ponds with and without 1 m terrestrial buffer zones, and released marked cricket frog metamorphs at the golf course ponds they w...

  11. A preliminary report of amphibian mortality patterns on railways

    Directory of Open Access Journals (Sweden)

    Karolina A. Budzik

    2014-06-01

    Full Text Available In contrast to road mortality, little is known about amphibian railroad mortality. The aim of this study was to quantify amphibian mortality along a railway line as well as to investigate the relationship between the availability of breeding sites in the surrounding habitats and the monthly variation of amphibian railway mortality. The study was conducted from April to July 2011 along 45 km of the railway line Kraków - Tarnów (Poland, Małopolska province. Three species were affected by railway mortality: Bufo bufo, Rana temporaria and Pelophylax kl. esculentus. Most dead individuals (77% were adult common toads. The largest number (14 of amphibian breeding sites was located in the most heterogeneous habitats (woodland and rural areas, which coincides with the sectors of highest amphibian mortality (42% of all accidents. As in the case of roads, spring migration is the period of highest amphibian mortality (87% of all accidents on railroads. Our findings suggest that railroad mortality depends on the agility of the species, associated primarily with the ability to overcome the rails.

  12. Why amphibians are more sensitive than mammals to xenobiotics.

    Science.gov (United States)

    Quaranta, Angelo; Bellantuono, Vito; Cassano, Giuseppe; Lippe, Claudio

    2009-11-04

    Dramatic declines in amphibian populations have been described all over the world since the 1980s. The evidence that the sensitivity to environmental threats is greater in amphibians than in mammals has been generally linked to the observation that amphibians are characterized by a rather permeable skin. Nevertheless, a numerical comparison of data of percutaneous (through the skin) passage between amphibians and mammals is lacking. Therefore, in this investigation we have measured the percutaneous passage of two test molecules (mannitol and antipyrine) and three heavily used herbicides (atrazine, paraquat and glyphosate) in the skin of the frog Rana esculenta (amphibians) and of the pig ear (mammals), by using the same experimental protocol and a simple apparatus which minimizes the edge effect, occurring when the tissue is clamped in the usually used experimental device.The percutaneous passage (P) of each substance is much greater in frog than in pig. LogP is linearly related to logKow (logarithm of the octanol-water partition coefficient). The measured P value of atrazine was about 134 times larger than that of glyphosate in frog skin, but only 12 times in pig ear skin. The FoD value (Pfrog/Ppig) was 302 for atrazine, 120 for antipyrine, 66 for mannitol, 29 for paraquat, and 26 for glyphosate.The differences in structure and composition of the skin between amphibians and mammals are discussed.

  13. Why amphibians are more sensitive than mammals to xenobiotics.

    Directory of Open Access Journals (Sweden)

    Angelo Quaranta

    Full Text Available Dramatic declines in amphibian populations have been described all over the world since the 1980s. The evidence that the sensitivity to environmental threats is greater in amphibians than in mammals has been generally linked to the observation that amphibians are characterized by a rather permeable skin. Nevertheless, a numerical comparison of data of percutaneous (through the skin passage between amphibians and mammals is lacking. Therefore, in this investigation we have measured the percutaneous passage of two test molecules (mannitol and antipyrine and three heavily used herbicides (atrazine, paraquat and glyphosate in the skin of the frog Rana esculenta (amphibians and of the pig ear (mammals, by using the same experimental protocol and a simple apparatus which minimizes the edge effect, occurring when the tissue is clamped in the usually used experimental device.The percutaneous passage (P of each substance is much greater in frog than in pig. LogP is linearly related to logKow (logarithm of the octanol-water partition coefficient. The measured P value of atrazine was about 134 times larger than that of glyphosate in frog skin, but only 12 times in pig ear skin. The FoD value (Pfrog/Ppig was 302 for atrazine, 120 for antipyrine, 66 for mannitol, 29 for paraquat, and 26 for glyphosate.The differences in structure and composition of the skin between amphibians and mammals are discussed.

  14. Plasticity of hatching in amphibians: evolution, trade-offs, cues and mechanisms.

    Science.gov (United States)

    Warkentin, Karen M

    2011-07-01

    Many species of frogs and salamanders, in at least 12 families, alter their timing of hatching in response to conditions affecting mortality of eggs or larvae. Some terrestrially laid or stranded embryos wait to hatch until they are submerged in water. Some embryos laid above water accelerate hatching if the eggs are dehydrating; others hatch early if flooded. Embryos can hatch early in response to predators and pathogens of eggs or delay hatching in response to predators of larvae; some species do both. The phylogenetic pattern of environmentally cued hatching suggests that similar responses have evolved convergently in multiple amphibian lineages. The use of similar cues, including hypoxia and physical disturbance, in multiple contexts suggests potential shared mechanisms underlying the capacity of embryos to respond to environmental conditions. Shifts in the timing of hatching often have clear benefits, but we know less about the trade-offs that favor plasticity, the mechanisms that enable it, and its evolutionary history. Some potentially important types of cued hatching, such as those involving embryo-parent interactions, are relatively unexplored. I discuss promising directions for research and the opportunities that the hatching of amphibians offers for integrative studies of the mechanisms, ecology and evolution of a critical transition between life-history stages.

  15. Possible environmental factors underlying amphibian decline in eastern Puerto Rico: Analysis of U.S. government data archives

    Science.gov (United States)

    Stallard, R.F.

    2001-01-01

    The past three decades have seen major declines in populations of several species of amphibians at high elevations in eastern Puerto Rico, a region unique in the humid tropics because of the degree of environmental monitoring that has taken place through the efforts of U.S. government agencies. I examined changes in environmental conditions by examining time-series data sets that extend back at least into the 1980s, a period when frog populations were declining. The data include forest cover; annual mean, minimum, and maximum daily temperature; annual rainfall; rain and stream chemistry; and atmospheric-dust transport. I examined satellite imagery and air-chemistry samples from a single National Aeronautics and Space Administration aircraft flight across the Caribbean showing patches of pollutants, described as thin sheets or lenses, in the lower troposphere. The main source of these pollutants appeared to be fires from land clearing and deforestation, primarily in Africa. Some pollutant concentrations were high and, in the case of ozone, approached health limits set for urban air. Urban pollution impinging on Puerto Rico, dust generation from Africa (potential soil pathogens), and tropical forest burning (gaseous pollutants) have all increased during the last three decades, overlapping the timing of amphibian declines in eastern Puerto Rico. None of the data sets pointed directly to changes so extreme that they might be considered a direct lethal cause of amphibian declines in Puerto Rico. More experimental research is required to link any of these environmental factors to this problem.

  16. The Amphibian Extinction Crisis - what will it take to put the action into the Amphibian Conservation Action Plan?

    OpenAIRE

    Bishop, P J; Angulo, A; Lewis, J P; Moore, R D; Rabb, G. B.; Moreno, J. Garcia

    2012-01-01

    The current mass extinction episode is most apparent in the amphibians. With approximately 7,000 species, amphibians are dependent on clean fresh water and damp habitats and are considered vulnerable to habitat loss (deforestation), changes in water or soil quality and the potential impacts of climate change, and in addition many species are suffering from an epidemic caused by a chytrid fungus. Because of their sensitivity and general dependence on both terrestrial and aquatic habitats they ...

  17. Pathogen intelligence

    Science.gov (United States)

    Steinert, Michael

    2014-01-01

    Different species inhabit different sensory worlds and thus have evolved diverse means of processing information, learning and memory. In the escalated arms race with host defense, each pathogenic bacterium not only has evolved its individual cellular sensing and behavior, but also collective sensing, interbacterial communication, distributed information processing, joint decision making, dissociative behavior, and the phenotypic and genotypic heterogeneity necessary for epidemiologic success. Moreover, pathogenic populations take advantage of dormancy strategies and rapid evolutionary speed, which allow them to save co-generated intelligent traits in a collective genomic memory. This review discusses how these mechanisms add further levels of complexity to bacterial pathogenicity and transmission, and how mining for these mechanisms could help to develop new anti-infective strategies. PMID:24551600

  18. Multiple stressor effects in relation to declining amphibian populations

    Science.gov (United States)

    2003-01-01

    This book represents the work of several authors who participated in the symposium entitled 'Multiple Stressor Effects in Relation to Declining Amphibian Populations' convened 16-17 April, 2002, in Pittsburgh, Pennsylvania. Declines of amphibian populations of varying severity have been observed for many years, and in the last 8 to 10 years considerable progress has been made in documenting the status and distribution of a range of amphibian species. Habitat alteration and destruction are likely linked to many amphibian declines, but a variety of other factors, both anthropogenic and natural, have been observed or proposed to have caused declines or extinctions of amphibian populations. Unfortunately, determining the environmental causes for the decline of many species has proven difficult. The goals of this symposium were three-fold. First, highlight ASTM's historic role in providing a forum for the standardization of amphibian toxicity test methods and the characterization of adverse effects potentially associated with chemical stressors. Second, demonstrate through case studies the current state of technical 'tools' available to biologists, ecologists, environmental scientists and natural resource professionals for assessing amphibian populations exposed to various environmental stressors. And third, characterize a process that brings a range of interdisciplinary technical and management tools to the tasks of causal analysis, especially as those relate to a multiple stressor risk assessment 'mind-set.' As part of the symposium, scientists and resource management professionals from diverse fields including ecotoxicology and chemistry, ecology and field biology, conservation biology, and natural resource management and policy contributed oral presentations and posters that addressed topics related to declining amphibian populations and the role that various stressors have in those losses. The papers contained in this publication reflect the commitment of ASTM

  19. Translocations of amphibians: Proven management method or experimental technique

    Science.gov (United States)

    Seigel, Richard A.; Dodd, C. Kenneth

    2002-01-01

    In an otherwise excellent review of metapopulation dynamics in amphibians, Marsh and Trenham (2001) make the following provocative statements (emphasis added): If isolation effects occur primarily in highly disturbed habitats, species translocations may be necessary to promote local and regional population persistence. Because most amphibians lack parental care, they areprime candidates for egg and larval translocations. Indeed, translocations have already proven successful for several species of amphibians. Where populations are severely isolated, translocations into extinct subpopulations may be the best strategy to promote regional population persistence. We take issue with these statements for a number of reasons. First, the authors fail to cite much of the relevant literature on species translocations in general and for amphibians in particular. Second, to those unfamiliar with current research in amphibian conservation biology, these comments might suggest that translocations are a proven management method. This is not the case, at least in most instances where translocations have been evaluated for an appropriate period of time. Finally, the authors fail to point out some of the negative aspects of species translocation as a management method. We realize that Marsh and Trenham's paper was not concerned primarily with translocations. However, because Marsh and Trenham (2001) made specific recommendations for conservation planners and managers (many of whom are not herpetologists or may not be familiar with the pertinent literature on amphibians), we believe that it is essential to point out that not all amphibian biologists are as comfortable with translocations as these authors appear to be. We especially urge caution about advocating potentially unproven techniques without a thorough review of available options.

  20. Developments in amphibian captive breeding and reintroduction programs.

    Science.gov (United States)

    Harding, Gemma; Griffiths, Richard A; Pavajeau, Lissette

    2016-04-01

    Captive breeding and reintroduction remain high profile but controversial conservation interventions. It is important to understand how such programs develop and respond to strategic conservation initiatives. We analyzed the contribution to conservation made by amphibian captive breeding and reintroduction since the launch of the International Union for Conservation of Nature (IUCN) Amphibian Conservation Action Plan (ACAP) in 2007. We assembled data on amphibian captive breeding and reintroduction from a variety of sources including the Amphibian Ark database and the IUCN Red List. We also carried out systematic searches of Web of Science, JSTOR, and Google Scholar for relevant literature. Relative to data collected from 1966 to 2006, the number of species involved in captive breeding and reintroduction projects increased by 57% in the 7 years since release of the ACAP. However, there have been relatively few new reintroductions over this period; most programs have focused on securing captive-assurance populations (i.e., species taken into captivity as a precaution against extinctions in the wild) and conservation-related research. There has been a shift to a broader representation of frogs, salamanders, and caecilians within programs and an increasing emphasis on threatened species. There has been a relative increase of species in programs from Central and South America and the Caribbean, where amphibian biodiversity is high. About half of the programs involve zoos and aquaria with a similar proportion represented in specialist facilities run by governmental or nongovernmental agencies. Despite successful reintroduction often being regarded as the ultimate milestone for such programs, the irreversibility of many current threats to amphibians may make this an impractical goal. Instead, research on captive assurance populations may be needed to develop imaginative solutions to enable amphibians to survive alongside current, emerging, and future threats.

  1. Incentive or Habit Learning in Amphibians?

    Science.gov (United States)

    Muzio, Rubén N.; Pistone Creydt, Virginia; Iurman, Mariana; Rinaldi, Mauro A.; Sirani, Bruno; Papini, Mauricio R.

    2011-01-01

    Toads (Rhinella arenarum) received training with a novel incentive procedure involving access to solutions of different NaCl concentrations. In Experiment 1, instrumental behavior and weight variation data confirmed that such solutions yield incentive values ranging from appetitive (deionized water, DW, leading to weight gain), to neutral (300 mM slightly hypertonic solution, leading to no net weight gain or loss), and aversive (800 mM highly hypertonic solution leading to weight loss). In Experiment 2, a downshift from DW to a 300 mM solution or an upshift from a 300 mM solution to DW led to a gradual adjustment in instrumental behavior. In Experiment 3, extinction was similar after acquisition with access to only DW or with a random mixture of DW and 300 mM. In Experiment 4, a downshift from DW to 225, 212, or 200 mM solutions led again to gradual adjustments. These findings add to a growing body of comparative evidence suggesting that amphibians adjust to incentive shifts on the basis of habit formation and reorganization. PMID:22087217

  2. Incentive or habit learning in amphibians?

    Directory of Open Access Journals (Sweden)

    Rubén N Muzio

    Full Text Available Toads (Rhinella arenarum received training with a novel incentive procedure involving access to solutions of different NaCl concentrations. In Experiment 1, instrumental behavior and weight variation data confirmed that such solutions yield incentive values ranging from appetitive (deionized water, DW, leading to weight gain, to neutral (300 mM slightly hypertonic solution, leading to no net weight gain or loss, and aversive (800 mM highly hypertonic solution leading to weight loss. In Experiment 2, a downshift from DW to a 300 mM solution or an upshift from a 300 mM solution to DW led to a gradual adjustment in instrumental behavior. In Experiment 3, extinction was similar after acquisition with access to only DW or with a random mixture of DW and 300 mM. In Experiment 4, a downshift from DW to 225, 212, or 200 mM solutions led again to gradual adjustments. These findings add to a growing body of comparative evidence suggesting that amphibians adjust to incentive shifts on the basis of habit formation and reorganization.

  3. Neotropical Amphibian Declines Affect Stream Ecosystem Properties

    Science.gov (United States)

    Connelly, S.; Pringle, C. M.; Bixby, R. J.; Whiles, M. R.; Lips, K. R.; Brenes, R.; Colon-Gaud, J. C.; Kilham, S.; Hunte-Brown, M.

    2005-05-01

    Global declines of amphibians are well documented, yet effects of these dramatic losses on ecosystem structure and function are poorly understood. As part of a larger collaborative project, we compared two upland Panamanian streams. Both streams are biologically and geologically similar; however, one stream (Fortuna) has recently experienced almost complete extirpation of stream-dwelling frogs, while the other (Cope) still has intact populations. We experimentally excluded tadpoles from localized areas in each stream. We then compared chlorophyll a, algal community composition, ash-free dry mass (AFDM), inorganic matter, and insect assemblages in control and exclusion areas. Additionally, we sampled the natural substrate of both streams monthly for chlorophyll a, algal community composition, AFDM, and inorganic matter. At Cope, chlorophyll a, AFDM, and inorganic matter were greater in areas where tadpoles were excluded than in their presence. Numbers of dominant algal species (e.g., Nupela praecipua and Eunotia siolii) were greater in the exclusion versus control treatments. Monthly sampling of natural substrate indicated higher chlorophyll a and AFDM at Cope compared to Fortuna. Our data suggest that stream-dwelling anuran larvae have significant impacts on algal communities. These results also have implications for predicting the relevance of short-term experimental manipulations to long-term, whole-stream processes.

  4. Investigating the Influence of Environmental Factors on Pesticide Exposure in Amphibians

    Science.gov (United States)

    Environmental factors such as temporal weather patterns and soil characterization coupled with pesticide application rates are known to influence exposure and subsequent absorption of these compounds in amphibians. Amphibians are a unique class of vertebrates due to their varied ...

  5. Amphibian populations in the terrestrial environment: Is there evidence of declines of terrestrial forest amphibians in northwestern California?

    Science.gov (United States)

    Welsh, H.H.; Fellers, G.M.; Lind, A.J.

    2007-01-01

    Amphibian declines have been documented worldwide; however the vast majority are species associated with aquatic habitats. Information on the status and trends of terrestrial amphibians is almost entirely lacking. Here we use data collected across a 12-yr period (sampling from 1984-86 and from 1993-95) to address the question of whether evidence exists for declines among terrestrial amphibians in northwestern California forests. The majority of amphibians, both species and relative numbers, in these forests are direct-developing salamanders of the family Plethodontidae. We examined amphibian richness and evenness, and the relative abundances of the four most common species of plethodontid salamanders. We examined evidence of differences between years in two ecological provinces (coastal and interior) and across young, mature, and late seral forests and with reference to a moisture gradient from xeric to hydric within late seral forests. We found evidence of declines in species richness across years on late seral mesic stands and in the coastal ecological province, but these differences appeared to be caused by differences in the detection of rarer species, rather than evidence of an overall pattern. We also found differences among specific years in numbers of individuals of the most abundant species, Ensatina eschscholtzii, but these differences also failed to reflect a consistent pattern of declines between the two decadal sample periods. Results showing differences in richness, evenness, and relative abundances along both the seral and moisture continua were consistent with previous research. Overall, we found no compelling evidence of a downward trend in terrestrial plethodontid salamanders. We believe that continued monitoring of terrestrial salamander populations is important to understanding mechanisms of population declines in amphibian species. Copyright 2007 Society for the Study of Amphibians and Reptiles.

  6. Control of respiration in fish, amphibians and reptiles.

    Science.gov (United States)

    Taylor, E W; Leite, C A C; McKenzie, D J; Wang, T

    2010-05-01

    Fish and amphibians utilise a suction/force pump to ventilate gills or lungs, with the respiratory muscles innervated by cranial nerves, while reptiles have a thoracic, aspiratory pump innervated by spinal nerves. However, fish can recruit a hypobranchial pump for active jaw occlusion during hypoxia, using feeding muscles innervated by anterior spinal nerves. This same pump is used to ventilate the air-breathing organ in air-breathing fishes. Some reptiles retain a buccal force pump for use during hypoxia or exercise. All vertebrates have respiratory rhythm generators (RRG) located in the brainstem. In cyclostomes and possibly jawed fishes, this may comprise elements of the trigeminal nucleus, though in the latter group RRG neurons have been located in the reticular formation. In air-breathing fishes and amphibians, there may be separate RRG for gill and lung ventilation. There is some evidence for multiple RRG in reptiles. Both amphibians and reptiles show episodic breathing patterns that may be centrally generated, though they do respond to changes in oxygen supply. Fish and larval amphibians have chemoreceptors sensitive to oxygen partial pressure located on the gills. Hypoxia induces increased ventilation and a reflex bradycardia and may trigger aquatic surface respiration or air-breathing, though these latter activities also respond to behavioural cues. Adult amphibians and reptiles have peripheral chemoreceptors located on the carotid arteries and central chemoreceptors sensitive to blood carbon dioxide levels. Lung perfusion may be regulated by cardiac shunting and lung ventilation stimulates lung stretch receptors.

  7. A multilocus timescale for the origin of extant amphibians.

    Science.gov (United States)

    San Mauro, Diego

    2010-08-01

    One of the most hotly debated topics in vertebrate evolution is the origin of extant amphibians (Lissamphibia). The recent contribution of molecular data is shedding new light on this debate, but many important questions still remain unresolved. I have assembled a large and comprehensive multilocus dataset (the largest to date in terms of number and heterogeneity of sequence characters) combining mitogenomic and nuclear information from 23 genes for a sufficiently dense taxon sampling with the key major lineages of extant amphibians. This dataset has been used to infer a robust phylogenetic framework and molecular timescale for the origin of extant amphibians employing the most recent phylogenetic and dating methods, as well as several alternative calibration schemes. The monophyly of each extant amphibian order and the sister group relationship between frogs and salamanders (Batrachia hypothesis) are all strongly supported. Dating analyses (all methods and calibration schemes used) suggest that the origin of extant amphibians (divergence between caecilian and batrachians) occurred in the Late Carboniferous, around 315 Mya, and the divergence between frogs and salamanders occurred in the Early Permian, around 290 Mya. These age estimates are more consistent with the fossil record than previous older estimates, and more in line with the Temnospondyli or the Lepospondyli hypotheses of lissamphibian ancestry (although the polyphyly hypothesis cannot be completely ruled out).

  8. Control of respiration in fish, amphibians and reptiles

    Directory of Open Access Journals (Sweden)

    E.W. Taylor

    2010-05-01

    Full Text Available Fish and amphibians utilise a suction/force pump to ventilate gills or lungs, with the respiratory muscles innervated by cranial nerves, while reptiles have a thoracic, aspiratory pump innervated by spinal nerves. However, fish can recruit a hypobranchial pump for active jaw occlusion during hypoxia, using feeding muscles innervated by anterior spinal nerves. This same pump is used to ventilate the air-breathing organ in air-breathing fishes. Some reptiles retain a buccal force pump for use during hypoxia or exercise. All vertebrates have respiratory rhythm generators (RRG located in the brainstem. In cyclostomes and possibly jawed fishes, this may comprise elements of the trigeminal nucleus, though in the latter group RRG neurons have been located in the reticular formation. In air-breathing fishes and amphibians, there may be separate RRG for gill and lung ventilation. There is some evidence for multiple RRG in reptiles. Both amphibians and reptiles show episodic breathing patterns that may be centrally generated, though they do respond to changes in oxygen supply. Fish and larval amphibians have chemoreceptors sensitive to oxygen partial pressure located on the gills. Hypoxia induces increased ventilation and a reflex bradycardia and may trigger aquatic surface respiration or air-breathing, though these latter activities also respond to behavioural cues. Adult amphibians and reptiles have peripheral chemoreceptors located on the carotid arteries and central chemoreceptors sensitive to blood carbon dioxide levels. Lung perfusion may be regulated by cardiac shunting and lung ventilation stimulates lung stretch receptors.

  9. Pathogen Sensors

    Directory of Open Access Journals (Sweden)

    Joseph Irudayaraj

    2009-10-01

    Full Text Available The development of sensors for detecting foodborne pathogens has been motivated by the need to produce safe foods and to provide better healthcare. However, in the more recent times, these needs have been expanded to encompass issues relating to biosecurity, detection of plant and soil pathogens, microbial communities, and the environment. The range of technologies that currently flood the sensor market encompass PCR and microarray-based methods, an assortment of optical sensors (including bioluminescence and fluorescence, in addition to biosensor-based approaches that include piezoelectric, potentiometric, amperometric, and conductometric sensors to name a few. More recently, nanosensors have come into limelight, as a more sensitive and portable alternative, with some commercial success. However, key issues affecting the sensor community is the lack of standardization of the testing protocols and portability, among other desirable elements, which include timeliness, cost-effectiveness, user-friendliness, sensitivity and specificity. [...

  10. 50 CFR 16.14 - Importation of live amphibians or their eggs.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 1 2010-10-01 2010-10-01 false Importation of live amphibians or their... Importation of live amphibians or their eggs. Upon the filing of a written declaration with the District Director of Customs at the port of entry as required under § 14.61, all species of live amphibians or...

  11. progress and prospects for studies on chinese amphibians

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    this work summarizes the history and progress of the studies on chinese amphibians since they first appeared in the chinese literature.a wide range of research has been carried out,including the history of the definition of amphibians,faunal surveys,systematic research,ecological research,biochemical research (isozyme and other proteins or peptides,chromosomes,dna),anatomical research,embryological research,phylogenetic and zoogeographical research,and many others such as ultrastructure of organs,crossbreeding test,regeneration of organs,abnormality survey,acoustics,fossils,sperm ultrastructure and parasites.in addition,the prospects for studies on chinese amphibians in future are proposed in this paper.

  12. Amphibians of the Simbruini Mountains (Latium, Central Italy

    Directory of Open Access Journals (Sweden)

    Pierangelo Crucitti

    2010-07-01

    Full Text Available Little attention has been paid to the herpetological fauna of the Simbruini Mountains Regional Park, Latium (Central Italy. In this study, we surveyed 50 sites in the course of about ten years of field research, especially during the period 2005-2008. Nine amphibian species, four Caudata and five Anura, 60.0% out of the 15 amphibian species so far observed in Latium, were discovered in the protected area: Salamandra salamandra, Salamandrina perspicillata, Lissotriton vulgaris, Triturus carnifex, Bombina pachypus, Bufo balearicus, Bufo bufo, Rana dalmatina, Rana italica. Physiography of sites has been detailed together with potential threatening patterns. For each species the following topics have been discussed; ecology of sites, altitudinal distribution, phenology, sintopy. Salamandra salamandra and Bombina pachypus are at higher risk. The importance of the maintenance of artificial/natural water bodies for the conservation management of amphibian population of this territory is discussed.

  13. The Amphibian Research and Monitoring Initiative in the Pacific Northwest

    Science.gov (United States)

    Adams, Michael J.

    2003-01-01

    Amphibians have been disappearing from many locations around the world with reports of declines increasing in recent decades. Some of the most dramatic declines have occurred in areas that were thought to be protected from human disturbance. For example, the once-common boreal toad has virtually disappeared from Rocky Mountain National Park in Colorado. Although there has been debate on whether these declines represent a short-term fluctuation in populations or major sustained losses, there is now general scientific consensus that something really is amiss with amphibian populations.

  14. Amphibian decline: An integrated analysis of multiple stressor effects

    Science.gov (United States)

    Linder, G.; Krest, S.K.; Sparling, D. W.; Linder, G.; Krest, S.K.; Sparling, D.W.

    2003-01-01

    Capturing the attention and imagination of the public and the scientific community alike, the mysterious decline in amphibian populations drew scientists and resource managers from ecotoxicology and chemistry, ecology and field biology, conservation biology, and natural resource policy to a SETAC–Johnson Foundation workshop. Facilitating environmental stewardship, increasing capacity of the sciences to explain complex stressors, and educating the public on relationships among communities of all types motivated these experts to address amphibian decline and the role of various stressors in these losses.

  15. Phylogenetic signals in the climatic niches of the world's amphibians

    DEFF Research Database (Denmark)

    Hof, Christian; Rahbek, Carsten; Araújo, Miguel B.

    2010-01-01

    are also ecologically similar has often been made, although the prevalence of such a phylogenetic signal in ecological niches remains heavily debated. Here, we provide a global analysis of phylogenetic niche relatedness for the world's amphibians. In particular, we assess which proportion of the variance...... amphibian orders and across biogeographical regions. To our knowledge, this is the first study providing a comprehensive analysis of the phylogenetic signal in species climatic niches for an entire clade across the world. Even though our results do not provide a strong test of the niche conservatism...

  16. Equilibrium of global amphibian species distributions with climate

    DEFF Research Database (Denmark)

    Munguí­a, Mariana; Rahbek, Carsten; Rangel, Thiago F.;

    2012-01-01

    for a complete lineage across its entire distribution. We measure departures of equilibrium with contemporary climate for the distributions of the world amphibian species. Specifically, we fitted bioclimatic envelopes for 5544 species using three presence-only models. We then measured the proportion...... not be at equilibrium with contemporary climate. On average, amphibians occupied 30% to 57% of their potential distributions. Although patterns differed across regions, there were no significant differences among lineages. Species in the Neotropic, Afrotropics, Indo-Malay, and Palaearctic occupied a smaller proportion...

  17. Can a Single Amphibian Species Be a Good Biodiversity Indicator?

    Directory of Open Access Journals (Sweden)

    David Sewell

    2009-11-01

    Full Text Available Although amphibians have been widely promoted as indicators of biodiversity and environmental change, rigorous tests are lacking. Here key indicator criteria are distilled from published papers, and a species that has been promoted as a bioindicator, the great crested newt, is tested against them. Although a link was established between the presence of great crested newts and aquatic plant diversity, this was not repeated with the diversity of macroinvertebrates. Equally, amphibians do not meet many of the published criteria of bioindicators. Our research suggests that a suite of indicators, rather than a single species, will usually be required.

  18. Pathophysiology in mountain yellow-legged frogs (Rana muscosa during a chytridiomycosis outbreak.

    Directory of Open Access Journals (Sweden)

    Jamie Voyles

    Full Text Available The disease chytridiomycosis is responsible for declines and extirpations of amphibians worldwide. Chytridiomycosis is caused by a fungal pathogen (Batrachochytrium dendrobatidis that infects amphibian skin. Although we have a basic understanding of the pathophysiology from laboratory experiments, many mechanistic details remain unresolved and it is unknown if disease development is similar in wild amphibian populations. To gain a better understanding of chytridiomycosis pathophysiology in wild amphibian populations, we collected blood biochemistry measurements during an outbreak in mountain yellow-legged frogs (Rana muscosa in the Sierra Nevada Mountains of California. We found that pathogen load is associated with disruptions in fluid and electrolyte balance, yet is not associated with fluctuations acid-base balance. These findings enhance our knowledge of the pathophysiology of this disease and indicate that disease development is consistent across multiple species and in both laboratory and natural conditions. We recommend integrating an understanding of chytridiomycosis pathophysiology with mitigation practices to improve amphibian conservation.

  19. Comparative Genomics of an Emerging Amphibian Virus.

    Science.gov (United States)

    Epstein, Brendan; Storfer, Andrew

    2016-01-01

    Ranaviruses, a genus of the Iridoviridae, are large double-stranded DNA viruses that infect cold-blooded vertebrates worldwide. Ranaviruses have caused severe epizootics in commercial frog and fish populations, and are currently classified as notifiable pathogens in international trade. Previous work shows that a ranavirus that infects tiger salamanders throughout Western North America (Ambystoma tigrinum virus, or ATV) is in high prevalence among salamanders in the fishing bait trade. Bait ATV strains have elevated virulence and are transported long distances by humans, providing widespread opportunities for pathogen pollution. We sequenced the genomes of 15 strains of ATV collected from tiger salamanders across western North America and performed phylogenetic and population genomic analyses and tests for recombination. We find that ATV forms a monophyletic clade within the rest of the Ranaviruses and that it likely emerged within the last several thousand years, before human activities influenced its spread. We also identify several genes under strong positive selection, some of which appear to be involved in viral virulence and/or host immune evasion. In addition, we provide support for the pathogen pollution hypothesis with evidence of recombination among ATV strains, and potential bait-endemic strain recombination. PMID:26530419

  20. Slow dynamics of the amphibian tympanic membrane

    Science.gov (United States)

    Bergevin, Christopher; Meenderink, Sebastiaan W. F.; van der Heijden, Marcel; Narins, Peter M.

    2015-12-01

    Several studies have demonstrated that delays associated with evoked otoacoustic emissions (OAEs) largely originate from filter delays of resonant elements in the inner ear. However, one vertebrate group is an exception: Anuran (frogs and toads) amphibian OAEs exhibit relatively long delays (several milliseconds), yet relatively broad tuning. These delays, also apparent in auditory nerve fiber (ANF) responses, have been partially attributed to the middle ear (ME), with a total forward delay of ˜0.7 ms (˜30 times longer than in gerbil). However, ME forward delays only partially account for the longer delays of OAEs and ANF responses. We used scanning laser Doppler vibrometery to map surface velocity over the tympanic membrane (TyM) of anesthetized bullfrogs (Rana catesbeiana). Our main finding is a circularly-symmetric wave on the TyM surface, starting at the outer edges of the TyM and propagating inward towards the center (the site of the ossicular attachment). This wave exists for frequencies ˜0.75-3 kHz, overlapping the range of bullfrog hearing (˜0.05-1.7 kHz). Group delays associated with this wave varied from 0.4 to 1.2 ms and correlated with with TyM diameter, which ranged from ˜6-16 mm. These delays correspond well to those from previous ME measurements. Presumably the TyM waves stem from biomechanical constraints of semi-aquatic species with a relatively large tympanum. We investigated some of these constraints by measuring the pressure ratio across the TyM (˜10-30 dB drop, delay of ˜0.35 ms), the effects of ossicular interruption, the changes due to physiological state of TyM (`dry-out'), and by calculating the middle-ear input impedance. In summary, we found a slow, inward-traveling wave on the TyM surface that accounts for a substantial fraction of the relatively long otoacoustic and neurophysiological delays previously observed in the anuran inner ear.

  1. Rayleigh instability of the inverted one-cell amphibian embryo

    NARCIS (Netherlands)

    Nouri, Comron; Luppes, Roel; Veldman, Arthur E.P.; Tuszynski, Jack A.; Gordon, Richard

    2008-01-01

    The one-cell amphibian embryo is modeled as a rigid spherical shell containing equal volumes of two immiscible fluids with different densities and viscosities and a surface tension between them. The fluids represent denser yolk in the bottom hemisphere and clearer cytoplasm and the germinal vesicle

  2. Glyphosate applications on arable fields considerably coincide with migrating amphibians.

    Science.gov (United States)

    Berger, Gert; Graef, Frieder; Pfeffer, Holger

    2013-01-01

    Glyphosate usage is increasing worldwide and the application schemes of this herbicide are currently changing. Amphibians migrating through arable fields may be harmed by Glyphosate applied to field crops. We investigated the population-based temporal coincidence of four amphibian species with Glyphosate from 2006 to 2008. Depending on a) age- and species-specific main migration periods, b) crop species, c) Glyphosate application mode for crops, and d) the presumed DT50 value (12 days or 47 days) of Glyphosate, we calculated up to 100% coincidence with Glyphosate. The amphibians regularly co-occur with pre-sowing/pre-emerging Glyphosate applications to maize in spring and with stubble management prior to crop sowing in late summer and autumn. Siccation treatment in summer coincides only with early pond-leaving juveniles. We suggest in-depth investigations of both acute and long-term effects of Glyphosate applications on amphibian populations not only focussed on exposure during aquatic periods but also terrestrial life stages.

  3. Using Reptile and Amphibian Activities in the Classroom

    Science.gov (United States)

    Tomasek, Terry; Matthews, Catherine E.

    2008-01-01

    Reptiles and amphibians are a diverse and interesting group of organisms. The four activities described in this article take students' curiosity into the realm of scientific understanding. The activities involve the concepts of species identification; animal adaptations, communication, and habitat; and conservation. (Contains 1 table and 2…

  4. Preliminary checklist of amphibians and reptiles from Baramita, Guyana

    Science.gov (United States)

    Reynolds, R.P.; MacCulloch, R.D.

    2012-01-01

    We provide an initial checklist of the herpetofauna of Baramita, a lowland rainforest site in the Northwest Region of Guyana. Twenty-five amphibian and 28 reptile species were collected during two separate dry-season visits. New country records for two species of snakes are documented, contributing to the knowledge on the incompletely known herpetofauna of Guyana.

  5. Quaternary climate changes explain diversity among reptiles and amphibians

    DEFF Research Database (Denmark)

    Bastos Araujo, Miguel; Nogués-Bravo, David; Diniz-Filho, Alexandre F.;

    2008-01-01

    debated without reaching consensus. Here, we test the proposition that European species richness of reptiles and amphibians is driven by climate changes in the Quaternary. We find that climate stability between the Last Glacial Maximum (LGM) and the present day is a better predictor of species richness...

  6. Factors contributing to amphibian road mortality in a wetland

    Institute of Scientific and Technical Information of China (English)

    Haijun GU; Qiang DAI; Qian WANG; Yuezhao WANG

    2011-01-01

    To understand road characteristics and landscape features associated with high road mortality of amphibians in Zoige Wetland National Nature Reserve,we surveyed road mortality along four major roads after rainfall in May and September 2007.Road mortality of three species,Rana kukunoris,Nanorana pleskei and Bufo minshanicus,was surveyed across 225 transects (115 in May and 110 in September).Transects were 100 m long and repeated every two kilometers along the four major roads.We used model averaging to assess factors that might determine amphibian road mortality.We recorded an average of 24.6 amphibian road mortalities per kilometer in May and 19.2 in September.Among road characteristics,road width was positively associated with road morality for R.kukunori and B.minshanicus.Traffic volume also increased the road mortality of B.minshanicus in September.Of the landscape features measured,area proportions of three types of grassland (wet,mesic and dry) within 1 km of the roads,particularly that of wet grassland,significantly increased road mortality for R.kukunori and total mortality across all three species.To most effectively reduce road mortality of amphibians in the Zoige wetlands,we suggest better road design such as avoiding wet grasslands,minimizing road width,underground passes and traffic control measures.The implementation of public transit in the area would reduce traffic volume,and hence mortality [Current Zoology 57 (6):768-774,2011].

  7. Salmonella Infections Caused by Reptiles and Amphibians in Childcare Centers

    Centers for Disease Control (CDC) Podcasts

    2013-02-07

    Dr. Neil Vora, an EIS Officer at CDC, discusses his article about Salmonella infections in childcare centers caused by reptiles and amphibians.  Created: 2/7/2013 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/7/2013.

  8. On the worrying fate of Data Deficient amphibians.

    Science.gov (United States)

    Nori, Javier; Loyola, Rafael

    2015-01-01

    The 'Data Deficient' (DD) category of the IUCN Red List assembles species that cannot be placed in another category due to insufficient information. This process generates uncertainty about whether these species are safe or actually in danger. Here, we give a global overview on the current situation of DD amphibian species (almost a quarter of living amphibians) considering land-use change through habitat modification, the degree of protection of each species and the socio-political context of each country harboring DD species. We found that DD amphibians have, on average, 81% of their ranges totally outside protected areas. Worryingly, more than half of DD species have less than 1% of their distribution represented in protected areas. Furthermore, the percentage of overlap between species' range and human-modified landscapes is high, at approximately 58%. Many countries harboring a large number of DD species show a worrying socio-political trend illustrated by substantial, recent incremental increases in the Human Development Index and lower incremental increases in the establishment of protected areas. Most of these are African countries, which are located mainly in the central and southern regions of the continent. Other countries with similar socio-political trends are in southeastern Asia, Central America, and in the northern region of South America. This situation is concerning, but it also creates a huge opportunity for considering DD amphibians in future conservation assessments, planning, and policy at different levels of government administration.

  9. Emerging contaminants and their potential effects on amphibians and reptiles

    Science.gov (United States)

    Serious threats to the health and sustainability of global amphibian populations have been well documented over the last few decades. Encroachment upon and destruction of primary habitat is the most critical threat, but some species have disappeared while their habitat remains. Additional stressor...

  10. AMPHIBIAN DECLINE, ULTRAVIOLET RADIATION AND LOCAL POPULATION ADAPTATION

    Science.gov (United States)

    Amphibian population declines have been noted on both local and global scales. Causes for these declines are unknown although many hypotheses have been offered. In areas adjacent to human development, loss of habitat is a fairly well accepted cause. However in isolated, seemingl...

  11. Effects of terrestrial buffer zones on amphibians on golf courses.

    Directory of Open Access Journals (Sweden)

    Holly J Puglis

    Full Text Available A major cause of amphibian declines worldwide is habitat destruction or alteration. Public green spaces, such as golf courses and parks, could serve as safe havens to curb the effects of habitat loss if managed in ways to bolster local amphibian communities. We reared larval Blanchard's cricket frogs (Acris blanchardi and green frogs (Rana clamitans in golf course ponds with and without 1 m terrestrial buffer zones, and released marked cricket frog metamorphs at the golf course ponds they were reared in. Larval survival of both species was affected by the presence of a buffer zone, with increased survival for cricket frogs and decreased survival for green frogs when reared in ponds with buffer zones. No marked cricket frog juveniles were recovered at any golf course pond in the following year, suggesting that most animals died or migrated. In a separate study, we released cricket frogs in a terrestrial pen and allowed them to choose between mown and unmown grass. Cricket frogs had a greater probability of using unmown versus mown grass. Our results suggest that incorporating buffer zones around ponds can offer suitable habitat for some amphibian species and can improve the quality of the aquatic environment for some sensitive local amphibians.

  12. ESTIMATION OF UV-B EXPOSURE IN AMPHIBIAN AQUATIC ENVIRONMENTS

    Science.gov (United States)

    Estimation of ultraviolet radiation B (UV-B; 280 to 320 nm wavelenghts) dose is essential for determining whether UV-B contributes to amphibian population declines and malformations. UV-B dose in wetlands is effected by location, time of day and year, atmospheric levels of ozone,...

  13. Measuring the meltdown: drivers of global amphibian extinction and decline.

    Directory of Open Access Journals (Sweden)

    Navjot S Sodhi

    Full Text Available Habitat loss, climate change, over-exploitation, disease and other factors have been hypothesised in the global decline of amphibian biodiversity. However, the relative importance of and synergies among different drivers are still poorly understood. We present the largest global analysis of roughly 45% of known amphibians (2,583 species to quantify the influences of life history, climate, human density and habitat loss on declines and extinction risk. Multi-model Bayesian inference reveals that large amphibian species with small geographic range and pronounced seasonality in temperature and precipitation are most likely to be Red-Listed by IUCN. Elevated habitat loss and human densities are also correlated with high threat risk. Range size, habitat loss and more extreme seasonality in precipitation contributed to decline risk in the 2,454 species that declined between 1980 and 2004, compared to species that were stable (n = 1,545 or had increased (n = 28. These empirical results show that amphibian species with restricted ranges should be urgently targeted for conservation.

  14. Effects of terrestrial buffer zones on amphibians on golf courses.

    Science.gov (United States)

    Puglis, Holly J; Boone, Michelle D

    2012-01-01

    A major cause of amphibian declines worldwide is habitat destruction or alteration. Public green spaces, such as golf courses and parks, could serve as safe havens to curb the effects of habitat loss if managed in ways to bolster local amphibian communities. We reared larval Blanchard's cricket frogs (Acris blanchardi) and green frogs (Rana clamitans) in golf course ponds with and without 1 m terrestrial buffer zones, and released marked cricket frog metamorphs at the golf course ponds they were reared in. Larval survival of both species was affected by the presence of a buffer zone, with increased survival for cricket frogs and decreased survival for green frogs when reared in ponds with buffer zones. No marked cricket frog juveniles were recovered at any golf course pond in the following year, suggesting that most animals died or migrated. In a separate study, we released cricket frogs in a terrestrial pen and allowed them to choose between mown and unmown grass. Cricket frogs had a greater probability of using unmown versus mown grass. Our results suggest that incorporating buffer zones around ponds can offer suitable habitat for some amphibian species and can improve the quality of the aquatic environment for some sensitive local amphibians.

  15. Toxicity of road salt to Nova Scotia amphibians

    International Nuclear Information System (INIS)

    The deposition of chemical pollutants into roadside wetlands from runoff is a current environmental concern. In northern latitudes, a major pollutant in runoff water is salt (NaCl), used as de-icing agents. In this study, 26 roadside ponds were surveyed for amphibian species richness and chloride concentration. Acute toxicity tests (LC50) were performed on five locally common amphibian species using a range of environmentally significant NaCl concentrations. Field surveys indicated that spotted salamanders (Ambystoma maculatum) and wood frogs (Rana sylvatica) did not occupy high chloride ponds. American toads (Bufo americanus) showed no pond preference based on chloride concentration. Acute toxicity tests showed spotted salamanders and wood frogs were most sensitive to chloride, and American toads were the least. Spring peepers (Pseudacris crucifer) and green frogs (Rana clamitans) showed intermediate sensitivities. We concluded that chloride concentrations in ponds due to application of de-icing salts, influenced community structure by excluding salt intolerant species. - Salt toxicity is presented as a mechanism affecting the distribution of amphibians and structure of amphibian communities in roadside wetlands

  16. Preliminary amphibian surveys : Baca National Wildlife Refuge : July & August, 2015

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes an initial amphibian survey effort on the Baca National Wildlife Refuge, conducted on 7/17/15, 7/24/15, and 8/28/15. The main emphasis of...

  17. Spatial Biodiversity Patterns of Madagascar's Amphibians and Reptiles.

    Science.gov (United States)

    Brown, Jason L; Sillero, Neftali; Glaw, Frank; Bora, Parfait; Vieites, David R; Vences, Miguel

    2016-01-01

    Madagascar has become a model region for testing hypotheses of species diversification and biogeography, and many studies have focused on its diverse and highly endemic herpetofauna. Here we combine species distribution models of a near-complete set of species of reptiles and amphibians known from the island with body size data and a tabulation of herpetofaunal communities from field surveys, compiled up to 2008. Though taxonomic revisions and novel distributional records arose since compilation, we are confident that the data are appropriate for inferring and comparing biogeographic patterns among these groups of organisms. We observed species richness of both amphibians and reptiles was highest in the humid rainforest biome of eastern Madagascar, but reptiles also show areas of high richness in the dry and subarid western biomes. In several amphibian subclades, especially within the Mantellidae, species richness peaks in the central eastern geographic regions while in reptiles different subclades differ distinctly in their richness centers. A high proportion of clades and subclades of both amphibians and reptiles have a peak of local endemism in the topographically and bioclimatically diverse northern geographic regions. This northern area is roughly delimited by a diagonal spanning from 15.5°S on the east coast to ca. 15.0°S on the west coast. Amphibian diversity is highest at altitudes between 800-1200 m above sea-level whereas reptiles have their highest richness at low elevations, probably reflecting the comparatively large number of species specialized to the extended low-elevation areas in the dry and subarid biomes. We found that the range sizes of both amphibians and reptiles strongly correlated with body size, and differences between the two groups are explained by the larger body sizes of reptiles. However, snakes have larger range sizes than lizards which cannot be readily explained by their larger body sizes alone. Range filling, i.e., the amount of

  18. Spatial Biodiversity Patterns of Madagascar's Amphibians and Reptiles.

    Directory of Open Access Journals (Sweden)

    Jason L Brown

    Full Text Available Madagascar has become a model region for testing hypotheses of species diversification and biogeography, and many studies have focused on its diverse and highly endemic herpetofauna. Here we combine species distribution models of a near-complete set of species of reptiles and amphibians known from the island with body size data and a tabulation of herpetofaunal communities from field surveys, compiled up to 2008. Though taxonomic revisions and novel distributional records arose since compilation, we are confident that the data are appropriate for inferring and comparing biogeographic patterns among these groups of organisms. We observed species richness of both amphibians and reptiles was highest in the humid rainforest biome of eastern Madagascar, but reptiles also show areas of high richness in the dry and subarid western biomes. In several amphibian subclades, especially within the Mantellidae, species richness peaks in the central eastern geographic regions while in reptiles different subclades differ distinctly in their richness centers. A high proportion of clades and subclades of both amphibians and reptiles have a peak of local endemism in the topographically and bioclimatically diverse northern geographic regions. This northern area is roughly delimited by a diagonal spanning from 15.5°S on the east coast to ca. 15.0°S on the west coast. Amphibian diversity is highest at altitudes between 800-1200 m above sea-level whereas reptiles have their highest richness at low elevations, probably reflecting the comparatively large number of species specialized to the extended low-elevation areas in the dry and subarid biomes. We found that the range sizes of both amphibians and reptiles strongly correlated with body size, and differences between the two groups are explained by the larger body sizes of reptiles. However, snakes have larger range sizes than lizards which cannot be readily explained by their larger body sizes alone. Range filling

  19. Inventory of amphibians and reptiles at Death Valley National Park

    Science.gov (United States)

    Persons, Trevor B.; Nowak, Erika M.

    2006-01-01

    As part of the National Park Service Inventory and Monitoring Program in the Mojave Network, we conducted an inventory of amphibians and reptiles at Death Valley National Park in 2002-04. Objectives for this inventory were to: 1) Inventory and document the occurrence of reptile and amphibian species occurring at DEVA, primarily within priority sampling areas, with the goal of documenting at least 90% of the species present; 2) document (through collection or museum specimen and literature review) one voucher specimen for each species identified; 3) provide a GIS-referenced list of sensitive species that are federally or state listed, rare, or worthy of special consideration that occur within priority sampling locations; 4) describe park-wide distribution of federally- or state-listed, rare, or special concern species; 5) enter all species data into the National Park Service NPSpecies database; and 6) provide all deliverables as outlined in the Mojave Network Biological Inventory Study Plan. Methods included daytime and nighttime visual encounter surveys, road driving, and pitfall trapping. Survey effort was concentrated in predetermined priority sampling areas, as well as in areas with a high potential for detecting undocumented species. We recorded 37 species during our surveys, including two species new to the park. During literature review and museum specimen database searches, we recorded three additional species from DEVA, elevating the documented species list to 40 (four amphibians and 36 reptiles). Based on our surveys, as well as literature and museum specimen review, we estimate an overall inventory completeness of 92% for Death Valley and an inventory completeness of 73% for amphibians and 95% for reptiles. Key Words: Amphibians, reptiles, Death Valley National Park, Inyo County, San Bernardino County, Esmeralda County, Nye County, California, Nevada, Mojave Desert, Great Basin Desert, inventory, NPSpecies.

  20. Projected climate impacts for the amphibians of the western hemisphere

    Science.gov (United States)

    Lawler, Joshua J.; Shafer, Sarah L.; Bancroft, Betsy A.; Blaustein, Andrew R.

    2010-01-01

    Given their physiological requirements, limited dispersal abilities, and hydrologically sensitive habitats, amphibians are likely to be highly sensitive to future climatic changes. We used three approaches to map areas in the western hemisphere where amphibians are particularly likely to be affected by climate change. First, we used bioclimatic models to project potential climate-driven shifts in the distribution of 413 amphibian species based on 20 climate simulations for 2071–2100. We summarized these projections to produce estimates of species turnover. Second, we mapped the distribution of 1099 species with restricted geographic ranges. Finally, using the 20 future climate-change simulations, we mapped areas that were consistently projected to receive less seasonal precipitation in the coming century and thus were likely to have altered microclimates and local hydrologies. Species turnover was projected to be highest in the Andes Mountains and parts of Central America and Mexico, where, on average, turnover rates exceeded 60% under the lower of two emissions scenarios. Many of the restricted-range species not included in our range-shift analyses were concentrated in parts of the Andes and Central America and in Brazil's Atlantic Forest. Much of Central America, southwestern North America, and parts of South America were consistently projected to experience decreased precipitation by the end of the century. Combining the results of the three analyses highlighted several areas in which amphibians are likely to be significantly affected by climate change for multiple reasons. Portions of southern Central America were simultaneously projected to experience high species turnover, have many additional restricted-range species, and were consistently projected to receive less precipitation. Together, our three analyses form one potential assessment of the geographic vulnerability of amphibians to climate change and as such provide broad-scale guidance for directing

  1. Bioaccumulation and maternal transfer of mercury and selenium in amphibians.

    Science.gov (United States)

    Bergeron, Christine M; Bodinof, Catherine M; Unrine, Jason M; Hopkins, William A

    2010-04-01

    Amphibian population declines have been documented worldwide and environmental contaminants are believed to contribute to some declines. Maternal transfer of bioaccumulated contaminants to offspring may be an important and overlooked mechanism of impaired reproductive success that affects amphibian populations. Mercury (Hg) is of particular concern due to its ubiquity in the environment, known toxicity to other wildlife, and complex relationships with other elements, such as selenium (Se). The objectives of the present study were to describe the relationships between total Hg (THg), methlymercury (MMHg), and Se in three amphibian species (Plethodon cinereus, Eurycea bislineata cirrigera, and Bufo americanus) along a Hg-polluted river and floodplain, and to determine if B. americanus maternally transfers Hg and Se to its eggs in a tissue residue-dependent manner. Total Hg and MMHg concentrations in all species spanned two orders of magnitude between the reference and contaminated areas, while Se concentrations were generally low in all species at both sites. Strong positive relationships between THg and MMHg in tissues of all species were observed throughout. Both Hg and Se were maternally transferred from females to eggs in B. americanus, but the percentage of the females' Hg body burden transferred to eggs was low compared with Se. In addition, Hg concentrations appeared to positively influence the amount of Se transferred from female to eggs. The present study is the first to confirm a correlation between Hg concentrations in female carcass and eggs in amphibians and among the first to describe co-transference of Se and Hg in an anamniotic vertebrate. The results suggest future work is needed to determine whether maternal transfer of Hg has transgenerational implications for amphibian progeny.

  2. Development of a mobile application for amphibian species recognition

    International Nuclear Information System (INIS)

    The smartphones mobility and its pervasiveness are beginning to transform practices in biodiversity conservation. The integrated functionalities of a smartphone have created for the public and biodiversity specialists means to identify, gather and record biodiversity data while simultaneously creating knowledge portability in the digital forms of mobile guides. Smartphones enable beginners to recreate the delight of species identification usually reserved for specialist with years of experience. Currently, the advent of Android platform has enabled stakeholders in biodiversity to harness the ubiquity of this platform and create various types of mobile application or ''apps'' for use in biodiversity research and conservation. However, there is an apparent lack of application devoted to the identification in herpetofauna or amphibian science. Amphibians are a large class of animals with many different species still unidentified under this category. Here we describe the development of an app called Amphibian Recognition Android Application (ARAA) to identify frog amphibian species as well as an accompanying field guide. The app has the amphibian taxonomic key which assists the users in easy and rapid species identification, thus facilitating the process of identification and recording of species occurrences in conservation work. We will also present an overview of the application work flow and how it is designed to meet the needs a conservationist. As this application is still in its beta phase, further research is required to improve the application to include tools such automatic geolocation and geotagging, participative sensing via crowdsourcing and automated identification via image capture. We believe that the introduction of this app will create an impetus to the awareness of nature via species identification

  3. Development of a mobile application for amphibian species recognition

    Science.gov (United States)

    Parveen, B.; H, Chew T.; Shamsir, M. S.; Ahmad, N.

    2014-02-01

    The smartphones mobility and its pervasiveness are beginning to transform practices in biodiversity conservation. The integrated functionalities of a smartphone have created for the public and biodiversity specialists means to identify, gather and record biodiversity data while simultaneously creating knowledge portability in the digital forms of mobile guides. Smartphones enable beginners to recreate the delight of species identification usually reserved for specialist with years of experience. Currently, the advent of Android platform has enabled stakeholders in biodiversity to harness the ubiquity of this platform and create various types of mobile application or "apps" for use in biodiversity research and conservation. However, there is an apparent lack of application devoted to the identification in herpetofauna or amphibian science. Amphibians are a large class of animals with many different species still unidentified under this category. Here we describe the development of an app called Amphibian Recognition Android Application (ARAA) to identify frog amphibian species as well as an accompanying field guide. The app has the amphibian taxonomic key which assists the users in easy and rapid species identification, thus facilitating the process of identification and recording of species occurrences in conservation work. We will also present an overview of the application work flow and how it is designed to meet the needs a conservationist. As this application is still in its beta phase, further research is required to improve the application to include tools such automatic geolocation and geotagging, participative sensing via crowdsourcing and automated identification via image capture. We believe that the introduction of this app will create an impetus to the awareness of nature via species identification.

  4. Review and synthesis of the effects of climate change on amphibians.

    Science.gov (United States)

    Li, Yiming; Cohen, Jeremy M; Rohr, Jason R

    2013-06-01

    Considerable progress has been made in understanding the responses of amphibians to climate change, with successful research carried out on climate change-associated shifts in amphibian phenology, elevational distributions and amphibian-parasite interactions. We review and synthesize the literature on this topic, emphasizing acutely lethal, sublethal, indirect and positive effects of climate change on amphibians, and major research gaps. For instance, evidence is lacking on poleward shifts in amphibian distributions and on changes in body sizes and morphologies of amphibians in response to climate change. We have limited information on amphibian thermal tolerances, thermal preferences, dehydration breaths, opportunity costs of water conserving behaviors and actual temperature and moisture ranges amphibians experience. Even when much of this information is available, there remains little evidence that climate change is acutely lethal to amphibians. This suggests that if climate change is contributing to declines, it might be through effects that are not acutely lethal, indirect, or both, but evidence in support of this suggestion is necessary. In fact, evidence that climate change is directly contributing to amphibian declines is weak, partly because researchers have not often ruled out alternative hypotheses, such as chytrid fungus or climate-fungus interactions. Consequently, we recommend that amphibian-climate research shift from primarily inductive, correlational approach as to studies that evaluate alternative hypotheses for declines. This additional rigor will require interdisciplinary collaborations, estimates of costs and benefits of climate change to amphibian fitness and populations, and the integration of correlative field studies, experiments on 'model' amphibian species, and mathematical and functional, physiological models.

  5. Immune Evasion Strategies of Ranaviruses and Innate Immune Responses to These Emerging Pathogens

    OpenAIRE

    Leon Grayfer; Francisco De Jesús Andino; Guangchun Chen; Chinchar, Gregory V.; Jacques Robert

    2012-01-01

    Ranaviruses (RV, Iridoviridae) are large double-stranded DNA viruses that infect fish, amphibians and reptiles. For ecological and commercial reasons, considerable attention has been drawn to the increasing prevalence of ranaviral infections of wild populations and in aquacultural settings. Importantly, RVs appear to be capable of crossing species barriers of numerous poikilotherms, suggesting that these pathogens possess a broad host range and potent immune evasion mecha...

  6. Diversity of aquatic Pseudomonas species and their activity against the fish pathogenic oomycete Saprolegnia

    OpenAIRE

    Yiying Liu; Elzbieta Rzeszutek; Menno van der Voort; Cheng-Hsuan Wu; Even Thoen; Ida Skaar; Vincent Bulone; Dorrestein, Pieter C.; Raaijmakers, Jos M.; Irene de Bruijn

    2015-01-01

    Emerging fungal and oomycete pathogens are increasingly threatening animals and plants globally. Amongst oomycetes, Saprolegnia species adversely affect wild and cultivated populations of amphibians and fish, leading to substantial reductions in biodiversity and food productivity. With the ban of several chemical control measures, new sustainable methods are needed to mitigate Saprolegnia infections in aquaculture. Here, PhyloChip-based community analyses showed that the Pseudomonadales, part...

  7. The Current and Historical Distribution of Special Status Amphibians at the Livermore Site and Site 300

    Energy Technology Data Exchange (ETDEWEB)

    Hattem, M V; Paterson, L; Woollett, J

    2008-08-20

    65 surveys were completed in 2002 to assess the current distribution of special status amphibians at the Lawrence Livermore National Laboratory's (LLNL) Livermore Site and Site 300. Combined with historical information from previous years, the information presented herein illustrates the dynamic and probable risk that amphibian populations face at both sites. The Livermore Site is developed and in stark contrast to the mostly undeveloped Site 300. Yet both sites have significant issues threatening the long-term sustainability of their respective amphibian populations. Livermore Site amphibians are presented with a suite of challenges inherent of urban interfaces, most predictably the bullfrog (Rana catesbeiana), while Site 300's erosion issues and periodic feral pig (Sus scrofa) infestations reduce and threaten populations. The long-term sustainability of LLNL's special status amphibians will require active management and resource commitment to maintain and restore amphibian habitat at both sites.

  8. Conservation genetics and genomics of amphibians and reptiles.

    Science.gov (United States)

    Shaffer, H Bradley; Gidiş, Müge; McCartney-Melstad, Evan; Neal, Kevin M; Oyamaguchi, Hilton M; Tellez, Marisa; Toffelmier, Erin M

    2015-01-01

    Amphibians and reptiles as a group are often secretive, reach their greatest diversity often in remote tropical regions, and contain some of the most endangered groups of organisms on earth. Particularly in the past decade, genetics and genomics have been instrumental in the conservation biology of these cryptic vertebrates, enabling work ranging from the identification of populations subject to trade and exploitation, to the identification of cryptic lineages harboring critical genetic variation, to the analysis of genes controlling key life history traits. In this review, we highlight some of the most important ways that genetic analyses have brought new insights to the conservation of amphibians and reptiles. Although genomics has only recently emerged as part of this conservation tool kit, several large-scale data sources, including full genomes, expressed sequence tags, and transcriptomes, are providing new opportunities to identify key genes, quantify landscape effects, and manage captive breeding stocks of at-risk species.

  9. Special Issue: Viruses Infecting Fish, Amphibians, and Reptiles

    Directory of Open Access Journals (Sweden)

    V. Gregory Chinchar

    2011-09-01

    Full Text Available Although viruses infecting and affecting humans are the focus of considerable research effort, viruses that target other animal species, including cold-blooded vertebrates, are receiving increased attention. In part this reflects the interests of comparative virologists, but increasingly it is based on the impact that many viruses have on ecologically and commercially important animals. Frogs and other amphibians are sentinels of environmental health and their disappearance following viral or fungal (chytrid infection is a cause for alarm. Likewise, because aquaculture and mariculture are providing an increasingly large percentage of the “seafood” consumed by humans, viral agents that adversely impact the harvest of cultured fish and amphibians are of equal concern. [...

  10. Congenital malformations of the vertebral column in ancient amphibians.

    Science.gov (United States)

    Witzmann, F; Rothschild, B M; Hampe, O; Sobral, G; Gubin, Y M; Asbach, P

    2014-04-01

    Temnospondyls, the largest group of Palaeozoic and Mesozoic amphibians, primitively possess rhachitomous vertebrae with multipartite centra (consisting of one horse-shoe-shaped inter- and paired pleurocentra). In a group of temnospondyls, the stereospondyls, the intercentra became pronounced and disc-like, whereas the pleurocentra were reduced. We report the presence of congenital vertebral malformations (hemi, wedge and block vertebrae) in Permian and Triassic temnospondyls, showing that defects of formation and segmentation in the tetrapod vertebral column represent a fundamental failure of somitogenesis that can be followed throughout tetrapod evolution. This is irrespective of the type of affected vertebra, that is, rhachitomous or stereospondylous, and all components of the vertebra can be involved (intercentrum, pleurocentrum and neural arch), either together or independently on their own. This is the oldest known occurrence of wedge vertebra and congenital block vertebra described in fossil tetrapods. The frequency of vertebral congenital malformations in amphibians appears unchanged from the Holocene.

  11. Thermal Tolerance and Sensitivity of Amphibian Larvae from Paleartic and Neotropical Communities

    OpenAIRE

    Katzenberger, Marco

    2013-01-01

    Amphibians across the world are threatened by climate change. This work deals with the analysis of thermal tolerance and sensitivity and their latitudinal variation at the community level, with the intent of examining the prediction that tropical amphibians are at higher risk of extinction due to global warming than temperate species since their environmental temperatures are closer to their upper thermal limits. To test this prediction, two larval amphibian communities were sele...

  12. Dynamic stability of communities of amphibians in short-term-flooded forest ecosystems

    OpenAIRE

    O. V. Zhukov; N. L. Gubanova

    2015-01-01

    The estimation of stability of amphibian populations on the basis of data of population dynamics is given. The paper shows an attempt to estimate the direction of dynamic changes of amphibian populations, and defines the rate of the system deviation from the stationary state due to possible influence of the environmental factors by using concepts such as reactivity, degree of reactivity and flexibility of the system when using their indexes. It is found that populations of amphibians are quit...

  13. Reptiles and amphibians of the Savannah River Plant

    International Nuclear Information System (INIS)

    Taxonomic, distributional, and ecological information on the reptiles and amphibians of the Savannah River Plant (SRP) is provided. The purpose of such a presentation is to give a professional biologist an initial familiarity with herpetology on the SRP, and to provide sufficient comprehensive information to an ecologist, regardless of his experience in herpetology, to permit him to undertake studies that in some manner incorporate the herpetofauna of the SRP

  14. Landscape-stream interactions and habitat conservation for amphibians.

    Science.gov (United States)

    Ficetola, Gentile Francesco; Marziali, Laura; Rossaro, Bruno; De Bernardi, Fiorenza; Padoa-Schioppa, Emilio

    2011-06-01

    Semiaquatic organisms depend on the features of both water bodies and landscapes; the interplay between terrestrial and aquatic systems might influence the semiaquatic communities, determining the scale at which management would be more effective. However, the consequences of such interplay are not frequently quantified, particularly at the community level. We analyzed the distribution of amphibians to evaluate whether the influence of landscape features on freshwater ecosystems can have indirect consequences at both the species and community level. We surveyed 74 streams in northern Italy to obtain data on breeding amphibians, water, and microhabitat features; we also measured features of surrounding landscapes. We used an information-theoretic approach and structural equation models to compare hypotheses on causal relationships between species distribution and variables measured at multiple levels. We also used a constrained redundancy analyses to evaluate causal relationships between multivariate descriptors of habitat features and community composition. Distribution of Salamandra salamandra was related to landscape, hydrological, and water characteristics: salamanders were more frequent in permanent streams with low phosphate concentration within natural landscapes. Water characteristics were dependent on landscape: streams in natural landscapes had less phosphates. Landscape influenced the salamander both directly and indirectly through its influence on phosphates. Community structure was determined by both landscape and water characteristics. Several species were associated with natural landscapes, and with particular water characteristics. Landscape explained a significant proportion of variability of water characteristics; therefore it probably had indirect effects on community. Upland environments play key roles for amphibians, for example, as the habitat of adults, but upland environments also have indirect effects on the aquatic life stages, mediated

  15. Local adaptation of an anuran amphibian to osmotically stressful environments

    OpenAIRE

    Gómez-Mestre, Iván; Tejedo, Miguel

    2003-01-01

    Water salinity is an intense physiological stress for amphibians. However, some species, such as Bufo calamita, breed in both brackish and freshwater environments. Because selection under environmentally stressful conditions can promote local adaptation of populations, we examined the existence of geographic variation in water salinity tolerance among B. calamita populations from either fresh or brackish water ponds in Southern Spain. Comparisons were made throughout various ontogenetic stage...

  16. Spatial network structure and amphibian persistence in stochastic environments

    OpenAIRE

    Fortuna, Miguel A.; Gómez-Rodríguez, Carola; Bascompte, Jordi

    2006-01-01

    In the past few years, the framework of complex networks has provided new insight into the organization and function of biological systems. However, in spite of its potential, spatial ecology has not yet fully incorporated tools and concepts from network theory. In the present study, we identify a large spatial network of temporary ponds, which are used as breeding sites by several amphibian species. We investigate how the structural properties of the spatial network...

  17. Negative Binomial GAM and GAMM to Analyse Amphibian Roadkills

    OpenAIRE

    Zuur, Alain; Mira, António; Carvalho, Filipe; Ieno, Elena; Saveliev, A.A.; Smith, G.M.; Walker, N. J.

    2009-01-01

    This chapter analyses amphibian fatalities along a road in Portugal. The data are counts of kills making a Gaussian distribution unlikely; restricting our choice of techniques. We began with generalised linear models (GLM) and generalised addi- tive models (GAM) with a Poisson distribution, but these models were overdis- persed. To solve this, you can either apply a quasi-Poisson GLM or GAM, or use the negative binomial distribution (Chapter 9). In this particular example, eith...

  18. Evolution of erythrocyte morphology in amphibians (Amphibia: Anura)

    OpenAIRE

    Jie Wei; Yan-Yan Li; Li Wei; Guo-Hua Ding; Xiao-Li Fan; Zhi-Hua Lin

    2015-01-01

    ABSTRACT We compared the morphology of the erythrocytes of five anurans, two toad species - Bufo gargarizans (Cantor, 1842) and Duttaphrynus melanostictus (Schneider, 1799) and three frog species - Fejervarya limnocharis (Gravenhorst, 1829), Microhyla ornata (Duméril & Bibron, 1841), and Rana zhenhaiensis (Ye, Fei & Matsui, 1995). We then reconstructed the ancestral state of erythrocyte size (ES) and nuclear size (NS) in amphibians based on a molecular tree. Nine morphological traits of eryth...

  19. Reptiles and amphibians of the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, J.W.; Patterson, K.K.

    1978-11-01

    Taxonomic, distributional, and ecological information on the reptiles and amphibians of the Savannah River Plant (SRP) is provided. The purpose of such a presentation is to give a professional biologist an initial familiarity with herpetology on the SRP, and to provide sufficient comprehensive information to an ecologist, regardless of his experience in herpetology, to permit him to undertake studies that in some manner incorporate the herpetofauna of the SRP. (ERB)

  20. Emerging Pathogens Initiative (EPI)

    Data.gov (United States)

    Department of Veterans Affairs — The Emerging Pathogens Initiative (EPI) database contains emerging pathogens information from the local Veterans Affairs Medical Centers (VAMCs). The EPI software...

  1. Optimizing protection efforts for amphibian conservation in Mediterranean landscapes

    Science.gov (United States)

    García-Muñoz, Enrique; Ceacero, Francisco; Carretero, Miguel A.; Pedrajas-Pulido, Luis; Parra, Gema; Guerrero, Francisco

    2013-05-01

    Amphibians epitomize the modern biodiversity crisis, and attract great attention from the scientific community since a complex puzzle of factors has influence on their disappearance. However, these factors are multiple and spatially variable, and declining in each locality is due to a particular combination of causes. This study shows a suitable statistical procedure to determine threats to amphibian species in medium size administrative areas. For our study case, ten biological and ecological variables feasible to affect the survival of 15 amphibian species were categorized and reduced through Principal Component Analysis. The principal components extracted were related to ecological plasticity, reproductive potential, and specificity of breeding habitats. Finally, the factor scores of species were joined in a presence-absence matrix that gives us information to identify where and why conservation management are requires. In summary, this methodology provides the necessary information to maximize benefits of conservation measures in small areas by identifying which ecological factors need management efforts and where should we focus them on.

  2. Cardiac performance correlates of relative heart ventricle mass in amphibians.

    Science.gov (United States)

    Kluthe, Gregory J; Hillman, Stanley S

    2013-08-01

    This study used an in situ heart preparation to analyze the power output and stroke work of spontaneously beating hearts of four anurans (Rhinella marina, Lithobates catesbeianus, Xenopus laevis, Pyxicephalus edulis) and three urodeles (Necturus maculosus, Ambystoma tigrinum, Amphiuma tridactylum) that span a representative range of relative ventricle mass (RVM) found in amphibians. Previous research has documented that RVM correlates with dehydration tolerance and maximal aerobic capacity in amphibians. The power output (mW g(-1) ventricle mass) and stroke work (mJ g(-1) ventricle muscle mass) were independent of RVM and were indistinguishable from previously published results for fish and reptiles. RVM was significantly correlated with maximum power output (P max, mW kg(-1) body mass), stroke volume, cardiac output, afterload pressure (P O) at P max, and preload pressure (P I) at P max. P I at P max and P O at P max also correlated very closely with each other. The increases in both P I and P O at maximal power outputs in large hearts suggest that concomitant increases in blood volume and/or increased modulation of vascular compliance either anatomically or via sympathetic tone on the venous vasculature would be necessary to achieve P max in vivo. Hypotheses for variation in RVM and its concomitant increased P max in amphibians are developed.

  3. Independent evolution of the sexes promotes amphibian diversification.

    Science.gov (United States)

    De Lisle, Stephen P; Rowe, Locke

    2015-03-22

    Classic ecological theory predicts that the evolution of sexual dimorphism constrains diversification by limiting morphospace available for speciation. Alternatively, sexual selection may lead to the evolution of reproductive isolation and increased diversification. We test contrasting predictions of these hypotheses by examining the relationship between sexual dimorphism and diversification in amphibians. Our analysis shows that the evolution of sexual size dimorphism (SSD) is associated with increased diversification and speciation, contrary to the ecological theory. Further, this result is unlikely to be explained by traditional sexual selection models because variation in amphibian SSD is unlikely to be driven entirely by sexual selection. We suggest that relaxing a central assumption of classic ecological models-that the sexes share a common adaptive landscape-leads to the alternative hypothesis that independent evolution of the sexes may promote diversification. Once the constraints of sexual conflict are relaxed, the sexes can explore morphospace that would otherwise be inaccessible. Consistent with this novel hypothesis, the evolution of SSD in amphibians is associated with reduced current extinction threat status, and an historical reduction in extinction rate. Our work reconciles conflicting predictions from ecological and evolutionary theory and illustrates that the ability of the sexes to evolve independently is associated with a spectacular vertebrate radiation.

  4. Pronephric duct extension in amphibian embryos: migration and other mechanisms.

    Science.gov (United States)

    Drawbridge, Julie; Meighan, Christopher M; Lumpkins, Rebecca; Kite, Mary E

    2003-01-01

    Initiation of excretory system development in all vertebrates requires (1) delamination of the pronephric and pronephric duct rudiments from intermediate mesoderm at the ventral border of anterior somites, and (2) extension of the pronephric duct to the cloaca. Pronephric duct extension is the central event in nephric system development; the pronephric duct differentiates into the tubule that carries nephric filtrate out of the body and induces terminal differentiation of adult kidneys. Early studies concluded that pronephric ducts formed by means of in situ segregation of pronephric duct tissue from lateral mesoderm ventral to the forming somites; more recent studies highlight caudal migration of the pronephric duct as the major morphogenetic mechanism. The purpose of this review is to provide the historical background on studies of the mechanisms of amphibian pronephric duct extension, to review evidence showing that different amphibians perform pronephric duct morphogenesis in different ways, and to suggest future studies that may help illuminate the molecular basis of the mechanisms that have evolved in amphibians to extend the pronephric duct to the cloaca. PMID:12508219

  5. Restored agricultural wetlands in Central Iowa: habitat quality and amphibian response

    Science.gov (United States)

    Pierce, Clay; Rebecca A. Reeves,; Smalling, Kelly; Klaver, Robert W.; Vandever, Mark; Battaglin, William A.; Muths, Erin L.

    2016-01-01

    Amphibians are declining throughout the United States and worldwide due, partly, to habitat loss. Conservation practices on the landscape restore wetlands to denitrify tile drainage effluent and restore ecosystem services. Understanding how water quality, hydroperiod, predation, and disease affect amphibians in restored wetlands is central to maintaining healthy amphibian populations in the region. We examined the quality of amphibian habitat in restored wetlands relative to reference wetlands by comparing species richness, developmental stress, and adult leopard frog (Lithobates pipiens) survival probabilities to a suite of environmental metrics. Although measured habitat variables differed between restored and reference wetlands, differences appeared to have sub-lethal rather than lethal effects on resident amphibian populations. There were few differences in amphibian species richness and no difference in estimated survival probabilities between wetland types. Restored wetlands had more nitrate and alkaline pH, longer hydroperiods, and were deeper, whereas reference wetlands had more amphibian chytrid fungus zoospores in water samples and resident amphibians exhibited increased developmental stress. Restored and reference wetlands are both important components of the landscape in central Iowa and maintaining a complex of fish-free wetlands with a variety of hydroperiods will likely contribute to the persistence of amphibians in this landscape.

  6. Amphibians and disease: Implications for conservation in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Corn, P.S.

    2007-01-01

    The decline of amphibian populations is a world-wide phenomenon that has received increasing attention since about 1990. In 2004, the World Conservation Union’s global amphibian assessment concluded that 48% of the world’s 5,743 described amphibian species were in decline, with 32% considered threatened (Stuart et al. 2004). Amphibian declines are a significant issue in the western United States, where all native species of frogs in the genus Rana and many toads in the genus Bufo are at risk, particularly those that inhabit mountainous areas (Corn 2003a,b; Bradford 2005).

  7. Amphibian and reptile declines over 35 years at La Selva, Costa Rica.

    Science.gov (United States)

    Whitfield, Steven M; Bell, Kristen E; Philippi, Thomas; Sasa, Mahmood; Bolaños, Federico; Chaves, Gerardo; Savage, Jay M; Donnelly, Maureen A

    2007-05-15

    Amphibians stand at the forefront of a global biodiversity crisis. More than one-third of amphibian species are globally threatened, and over 120 species have likely suffered global extinction since 1980. Most alarmingly, many rapid declines and extinctions are occurring in pristine sites lacking obvious adverse effects of human activities. The causes of these "enigmatic" declines remain highly contested. Still, lack of long-term data on amphibian populations severely limits our understanding of the distribution of amphibian declines, and therefore the ultimate causes of these declines. Here, we identify a systematic community-wide decline in populations of terrestrial amphibians at La Selva Biological Station, a protected old-growth lowland rainforest in lower Central America. We use data collected over 35 years to show that population density of all species of terrestrial amphibians has declined by approximately 75% since 1970, and we show identical trends for all species of common reptiles. The trends we identify are neither consistent with recent emergence of chytridiomycosis nor the climate-linked epidemic hypothesis, two leading putative causes of enigmatic amphibian declines. Instead, our data suggest that declines are due to climate-driven reductions in the quantity of standing leaf litter, a critical microhabitat for amphibians and reptiles in this assemblage. Our results raise further concerns about the global persistence of amphibian populations by identifying widespread declines in species and habitats that are not currently recognized as susceptible to such risks.

  8. Nomenclatural notes on living and fossil amphibians

    Directory of Open Access Journals (Sweden)

    Martín, C.

    2012-06-01

    Full Text Available A review of extinct and living amphibians known from fossils (Allocaudata, Anura and Caudata has revealed several cases that require nomenclatural changes in order to stabilize the taxonomy of the group. Nomenclatural changes include homonym replacements, corrections of spelling variants and authorships, name availabilities, and in particular, the proposal of new combinations. These changes will allow the incorporation of some palaeontological taxa to the current evolutionary models of relationship of modern forms based on molecular phylogenies. Rana cadurcorum for Rana plicata Filhol, 1877, Rana auscitana for Rana pygmaea Lartet, 1851, and Rana sendoa for Rana robusta Brunner, 1956. Anchylorana Taylor, 1942 is considered a new synonym of Lithobates Fitzinger, 1843. New combinations proposed are: Anaxyrus defensor for Bufo defensor Meylan, 2005; Anaxyrus hibbardi for Bufo hibbardi Taylor, 1937; Anaxyrus pliocompactilis for Bufo pliocompactilis Wilson, 1968; Anaxyrus repentinus for Bufo repentinus Tihen, 1962; Anaxyrus rexroadensis for Bufo rexroadensis Tihen, 1962; Anaxyrus spongifrons for Bufo spongifrons Tihen, 1962; Anaxyrus suspectus for Bufo suspectus Tihen, 1962; Anaxyrus tiheni for Bufo tiheni Auffenberg, 1957; Anaxyrus valentinensis for Bufo valentinensis Estes et Tihen, 1964; Ichthyosaura wintershofi for Triturus wintershofi Lunau, 1950; Incilius praevius for Bufo praevius Tihen, 1951; Lithobates bucella for Rana bucella Holman, 1965; Lithobates dubitus for Anchylorana dubita Taylor, 1942; Lithobates fayeae for Rana fayeae Taylor, 1942; Lithobates miocenicus for Rana miocenica Holman, 1965; Lithobates moorei for Anchylorana moorei Taylor, 1942; Lithobates parvissimus for Rana parvissima

  9. Endocannabinoids affect the reproductive functions in teleosts and amphibians.

    Science.gov (United States)

    Cottone, E; Guastalla, A; Mackie, K; Franzoni, M F

    2008-04-16

    Following the discovery in the brain of the bonyfish Fugu rubripes of two genes encoding for type 1 cannabinoid receptors (CB1A and CB1B), investigations on the phylogeny of these receptors have indicated that the cannabinergic system is highly conserved. Among the multiple functions modulated by cannabinoids/endocannabinoids through the CB1 receptors one of the more investigated is the mammalian reproduction. Therefore, since studies performed in animal models other than mammals might provide further insight into the biology of these signalling molecules, the major aim of the present paper was to review the comparative data pointing toward the endocannabinoid involvement in the reproductive control of non-mammalian vertebrates, namely bonyfish and amphibians. The expression and distribution of CB1 receptors were investigated in the CNS and gonads of two teleosts, Pelvicachromis pulcher and Carassius auratus as well as in the anuran amphibians Xenopus laevis and Rana esculenta. In general the large diffusion of neurons targeted by cannabinoids in both fish and amphibian forebrain indicate endocannabinoids as pivotal local messengers in several neural circuits involved in either sensory integrative activities, like the olfactory processes (in amphibians) and food response (in bonyfish), or neuroendocrine machinery (in both). By using immunohistochemistry for CB1 and GnRH-I, the codistribution of the two signalling molecules was found in the fish basal telencephalon and preoptic area, which are key centers for gonadotropic regulation in all vertebrates. A similar topographical codistribution was observed also in the septum of the telencephalon in Rana esculenta and Xenopus laevis. Interestingly, the double standard immunofluorescence on the same brain section, aided with a laser confocal microscope, showed that in anurans a subset of GnRH-I neurons exhibited also the CB1 immunostaining. The fact that CB1-LI-IR was found indeed in the FSH gonadotrophs of the Xenopus

  10. Acute oral toxicity of chemicals in terrestrial life stages of amphibians: Comparisons to birds and mammals.

    Science.gov (United States)

    Crane, Mark; Finnegan, Meaghean; Weltje, Lennart; Kosmala-Grzechnik, Sylwia; Gross, Melanie; Wheeler, James R

    2016-10-01

    Amphibians are currently the most threatened and rapidly declining group of vertebrates and this has raised concerns about their potential sensitivity and exposure to plant protection products and other chemicals. Current environmental risk assessment procedures rely on surrogate species (e.g. fish and birds) to cover the risk to aquatic and terrestrial life stages of amphibians, respectively. Whilst a recent meta-analysis has shown that in most cases amphibian aquatic life stages are less sensitive to chemicals than fish, little research has been conducted on the comparative sensitivity of terrestrial amphibian life stages. Therefore, in this paper we address the questions "What is the relative sensitivity of terrestrial amphibian life stages to acute chemical oral exposure when compared with mammals and birds?" and "Are there correlations between oral toxicity data for amphibians and data for mammals or birds?" Identifying a relationship between these data may help to avoid additional vertebrate testing. Acute oral amphibian toxicity data collected from the scientific literature and ecotoxicological databases were compared with toxicity data for mammals and birds. Toxicity data for terrestrial amphibian life stages are generally sparse, as noted in previous reviews. Single-dose oral toxicity data for terrestrial amphibian life stages were available for 26 chemicals and these were positively correlated with LD50 values for mammals, while no correlation was found for birds. Further, the data suggest that oral toxicity to terrestrial amphibian life stages is similar to or lower than that for mammals and birds, with a few exceptions. Thus, mammals or birds are considered adequate toxicity surrogates for use in the assessment of the oral exposure route in amphibians. However, there is a need for further data on a wider range of chemicals to explore the wider applicability of the current analyses and recommendations.

  11. Comparative acute and chronic sensitivity of fish and amphibians: a critical review of data.

    Science.gov (United States)

    Weltje, Lennart; Simpson, Peter; Gross, Melanie; Crane, Mark; Wheeler, James R

    2013-04-01

    The relative sensitivity of amphibians to chemicals in the environment, including plant protection product active substances, is the subject of ongoing scientific debate. The objective of this study was to compare systematically the relative sensitivity of amphibians and fish to chemicals. Acute and chronic toxicity data were obtained from the U.S. Environmental Protection Agency (U.S. EPA) ECOTOX database and were supplemented with data from the scientific and regulatory literature. The overall outcome is that fish and amphibian toxicity data are highly correlated and that fish are more sensitive (both acute and chronic) than amphibians. In terms of acute sensitivity, amphibians were between 10- and 100-fold more sensitive than fish for only four of 55 chemicals and more than 100-fold more sensitive for only two chemicals. However, a detailed inspection of these cases showed a similar acute sensitivity of fish and amphibians. Chronic toxicity data for fish were available for 52 chemicals. Amphibians were between 10- and 100-fold more sensitive than fish for only two substances (carbaryl and dexamethasone) and greater than 100-fold more sensitive for only a single chemical (sodium perchlorate). The comparison for carbaryl was subsequently determined to be unreliable and that for sodium perchlorate is a potential artifact of the exposure medium. Only a substance such as dexamethasone, which interferes with a specific aspect of amphibian metamorphosis, might not be detected using fish tests. However, several other compounds known to influence amphibian metamorphosis were included in the analysis, and these did not affect amphibians disproportionately. These analyses suggest that additional amphibian testing is not necessary during chemical risk assessment.

  12. North Cascades National Park Service Complex Natural Resource Preservation Program Amphibian Inventory Big Beaver Watershed 1996 - Progress Report

    Data.gov (United States)

    Oak Ridge National Laboratory — The 1996 amphibian inventory in North Cascades National Park Service Complex Big Beaver watershed is part of a four year program to inventory amphibians in Pacific...

  13. Exotic Fish in Exotic Plantations: A Multi-Scale Approach to Understand Amphibian Occurrence in the Mediterranean Region

    OpenAIRE

    Cruz, Joana; Sarmento, Pedro; Carretero, Miguel A.; White, Piran C. L.

    2015-01-01

    Globally, amphibian populations are threatened by a diverse range of factors including habitat destruction and alteration. Forestry practices have been linked with low diversity and abundance of amphibians. The effect of exotic Eucalyptus spp. plantations on amphibian communities has been studied in a number of biodiversity hotspots, but little is known of its impact in the Mediterranean region. Here, we identify the environmental factors influencing the presence of six species of amphibians ...

  14. Pond preference by amphibians (Amphibia) on the Karst Plateau and in Slovenian Istria:

    OpenAIRE

    Francé, Janja

    2002-01-01

    Some habitat determinants and related presence of amphibians in 7 karst ponds in Slovenian Istria and 10 ponds on the Karst Plateau were surveyed from Marchto August 1999. The presence of different species of amphibians was established by sampling according to standard methods for amphibiand...

  15. What's Slithering around on Your School Grounds? Transforming Student Awareness of Reptile & Amphibian Diversity

    Science.gov (United States)

    Tomasek, Terry M.; Matthews, Catherine E.; Hall, Jeff

    2005-01-01

    The protocols used in a research project on amphibian and reptile diversity at Cool Springs Environmental Education Center near New Bern, North Carolina is described. An increasing or stable number of amphibians and reptiles would indicate that the forest has a balance of invertebrates, leaf litter, moisture, pH, debris, burrows and habitat…

  16. Phase-II conjugation ability for PAH metabolism in amphibians: characteristics and inter-species differences.

    Science.gov (United States)

    Ueda, Haruki; Ikenaka, Yoshinori; Nakayama, Shouta M M; Tanaka-Ueno, Tomoko; Ishizuka, Mayumi

    2011-10-01

    The present study examines amphibian metabolic activity - particularly conjugation - by analysis of pyrene (a four ring, polycyclic aromatic hydrocarbon) metabolites using high-performance liquid chromatography (HPLC) with fluorescence detector (FD), a mass spectrometry detector (MS) system and kinetic analysis of conjugation enzymes. Six amphibian species were exposed to pyrene (dissolved in water): African claw frog (Xenopus laevis); Tago's brown frog (Rana tagoi); Montane brown frog (Rana ornativentris); Wrinkled frog (Rana rugosa); Japanese newt (Cynops pyrrhogaster); and Clouded salamander (Hynobius nebulosus); plus one fish species, medaka (Oryzias latipes); and a fresh water snail (Clithon retropictus), and the resultant metabolites were collected. Identification of pyrene metabolites by HPLC and ion-trap MS system indicated that medaka mainly excreted pyrene-1-glucuronide (PYOG), while pyrene-1-sulfate (PYOS) was the main metabolite in all amphibian species. Pyrene metabolites in amphibians were different from those in invertebrate fresh water snails. Inter-species differences were also observed in pyrene metabolism among amphibians. Metabolite analysis showed that frogs relied more strongly on sulfate conjugation than did Japanese newts and clouded salamanders. Furthermore, urodelan amphibians, newts and salamanders, excreted glucose conjugates of pyrene that were not detected in the anuran amphibians. Kinetic analysis of conjugation by hepatic microsomes and cytosols indicated that differences in excreted metabolites reflected differences in enzymatic activities. Furthermore, pyrenediol (PYDOH) glucoside sulfate was detected in the Japanese newt sample. This novel metabolite has not been reported previously to this report, in which we have identified unique characteristics of amphibians in phase II pyrene metabolism.

  17. 14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull type rotorcraft: Water-based and amphibian. 29.519 Section 29.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 29.519 Hull type rotorcraft: Water-based and amphibian. (a) General. For hull type rotorcraft,...

  18. RENO, NV, JANUARY 15, 2004: FACTORS IMPLICATED IN AMPHIBIAN POPULATION DECLINES IN THE UNITED STATES

    Science.gov (United States)

    Factors known or suspected to be adversely affecting native amphibian populations in the US were identified using information from 267 species accounts written in a standardized format by multiple authors in the forthcoming book, 'Status and Conservation of U.S. Amphibians'. Spec...

  19. Ultraviolet radiation and Vitamin D3 in amphibian health, behaviour, diet and conservation.

    Science.gov (United States)

    Antwis, R E; Browne, R K

    2009-10-01

    Amphibians are currently suffering a period of mass extinction with approximately 20% of species under severe threat and more than 120 species already extinct. In light of this crisis there is an urgency to establish viable ex situ populations and also find the causes of in situ declines. The role of ultraviolet radiation and Vitamin D(3) in amphibian health directly influences both ex situ and in situ populations. Vitamin D(3) can be photosynthesised endogenously via UV-B radiation (UV-B), or acquired through the diet, and then metabolised to calcitriol the biologically active hormonal form. Although, there is a lack of literature concerning Vitamin D(3) requirements and calcitriol synthesis in amphibians, amphibians are likely to have similar Vitamin D(3) requirements and metabolic processes as other vertebrates due to the phylogenetically conservative nature of calcitriol biosynthesis. Deficiencies in calcitriol in amphibians result in nutritional metabolic bone disease (NMBD) and could compromise reproduction and immunity. However, excess biologically active UV radiation has also proven detrimental across all three amphibian life stages and therefore could impact both in situ and ex situ populations. Here we review the role and necessity of UV-B and calcitriol in amphibians and the potential for negative impacts due to excessive exposure to UV radiation. We also identify priorities for research that could provide critical information for maintaining healthy in ex situ and in situ populations of amphibians.

  20. The distribution of Reptiles and amphibians in the Annapurna-Dhaulagiri region (Nepal)

    OpenAIRE

    Nanhoe, L.M.R.; Ouboter, P.E.

    1987-01-01

    The reptiles and amphibians of the Annapurna-Dhaulagiri region in Nepal are keyed and described. Their distribution is recorded, based on both personal observations and literature data. The ecology of the species is discussed. The zoogeography and the altitudinal distribution are analysed. All in all 32 species-group taxa of reptiles and 21 species-group taxa of amphibians are treated.

  1. Detecting the effects of environmentally relevant concentrations of thyroid hormone disrupting compounds on amphibian development

    NARCIS (Netherlands)

    Gutleb, A.C.

    2006-01-01

    Persistent organic pollutants such as PCBs have been hypothesized to contribute to the observed global decline of amphibian populations. Thyroid hormone (TH) disruption is one of the possible mechanisms for effects of xenobiotics on amphibian development. In addition to the important functions share

  2. A meta-analysis of the effects of pesticides and fertilizers on survival and growth of amphibians.

    Science.gov (United States)

    Baker, Nick J; Bancroft, Betsy A; Garcia, Tiffany S

    2013-04-01

    The input of agrochemicals has contributed to alteration of community composition in managed and associated natural systems, including amphibian biodiversity. Pesticides and fertilizers negatively affect many amphibian species and can cause mortality and sublethal effects, such as reduced growth and increased susceptibility to disease. However, the effect of pesticides and fertilizers varies among amphibian species. We used meta-analytic techniques to quantify the lethal and sublethal effects of pesticides and fertilizers on amphibians in an effort to review the published work to date and produce generalized conclusions. We found that pesticides and fertilizers had a negative effect on survival of -0.9027 and growth of -0.0737 across all reported amphibian species. We also observed differences between chemical classes in their impact on amphibians: inorganic fertilizers, organophosphates, chloropyridinyl, phosphonoglycines, carbamates, and triazines negatively affected amphibian survival, while organophosphates and phosphonoglycines negatively affected amphibian growth. Our results suggest that pesticides and fertilizers are an important stressor for amphibians in agriculturally dominated systems. Furthermore, certain chemical classes are more likely to harm amphibians. Best management practices in agroecosystems should incorporate amphibian species-specific response to agrochemicals as well as life stage dependent susceptibility to best conserve amphibian biodiversity in these landscapes.

  3. Amphibians and agricultural chemicals: Review of the risks in a complex environment

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Reinier M., E-mail: reinier.mann@uts.edu.a [Centre for Ecotoxicology, Department of Environmental Sciences, University of Technology - Sydney, Sydney, NSW 2006 (Australia); Ecotoxicology and Environmental Contaminants Section, Department of Environment and Climate Change, New South Wales, PO Box 29, Lidcombe, NSW 1825 (Australia); Hyne, Ross V., E-mail: Ross.Hyne@environment.nsw.gov.a [Ecotoxicology and Environmental Contaminants Section, Department of Environment and Climate Change, New South Wales, PO Box 29, Lidcombe, NSW 1825 (Australia); Choung, Catherine B., E-mail: catherine.choung@environment.nsw.gov.a [Department of Biological Sciences and Physical Geography, Macquarie University, NSW 2109 (Australia); Wilson, Scott P., E-mail: s.wilson@cqu.edu.a [Centre for Environmental Management, Central Queensland University, PO Box 1319, Gladstone, QLD 4680 (Australia)

    2009-11-15

    Agricultural landscapes, although often highly altered in nature, provide habitat for many species of amphibian. However, the persistence and health of amphibian populations are likely to be compromised by the escalating use of pesticides and other agricultural chemicals. This review examines some of the issues relating to exposure of amphibian populations to these chemicals and places emphasis on mechanisms of toxicity. Several mechanisms are highlighted, including those that may disrupt thyroid activity, retinoid pathways, and sexual differentiation. Special emphasis is also placed on the various interactions that may occur between different agro-chemicals and between chemicals and other environmental factors. We also examine the indirect effects on amphibian populations that occur when their surrounding pond communities are altered by chemicals. - The literature on the various mechanisms by which amphibians may be affected by agricultural chemicals is reviewed.

  4. Amphibians and agricultural chemicals: Review of the risks in a complex environment

    International Nuclear Information System (INIS)

    Agricultural landscapes, although often highly altered in nature, provide habitat for many species of amphibian. However, the persistence and health of amphibian populations are likely to be compromised by the escalating use of pesticides and other agricultural chemicals. This review examines some of the issues relating to exposure of amphibian populations to these chemicals and places emphasis on mechanisms of toxicity. Several mechanisms are highlighted, including those that may disrupt thyroid activity, retinoid pathways, and sexual differentiation. Special emphasis is also placed on the various interactions that may occur between different agro-chemicals and between chemicals and other environmental factors. We also examine the indirect effects on amphibian populations that occur when their surrounding pond communities are altered by chemicals. - The literature on the various mechanisms by which amphibians may be affected by agricultural chemicals is reviewed.

  5. Amphibians and reptiles of the state of Coahuila, Mexico, with comparison with adjoining states

    Science.gov (United States)

    Lemos-Espinal, Julio A.; Smith, Geoffrey R.

    2016-01-01

    Abstract We compiled a checklist of the amphibians and reptiles of the state of Coahuila, Mexico. The list comprises 133 species (24 amphibians, 109 reptiles), representing 27 families (9 amphibians, 18 reptiles) and 65 genera (16 amphibians, 49 reptiles). Coahuila has a high richness of lizards in the genus Sceloporus. Coahuila has relatively few state endemics, but has several regional endemics. Overlap in the herpetofauna of Coahuila and bordering states is fairly extensive. Of the 132 species of native amphibians and reptiles, eight are listed as Vulnerable, six as Near Threatened, and six as Endangered in the IUCN Red List. In the SEMARNAT listing, 19 species are Subject to Special Protection, 26 are Threatened, and three are in Danger of Extinction. Coahuila is home to several species of conservation concern, especially lizards and turtles. Coahuila is an important state for the conservation of the native regional fauna. PMID:27408554

  6. Evolutionary landscape of amphibians emerging from ancient freshwater fish inferred from complete mitochondrial genomes.

    Science.gov (United States)

    Wang, Xiao-Tong; Zhang, Yan-Feng; Wu, Qian; Zhang, Hao

    2012-05-01

    It is very interesting that the only extant marine amphibian is the marine frog, Fejervarya cancrivora. This study investigated the reasons for this apparent rarity by conducting a phylogenetic tree analysis of the complete mitochondrial genomes from 14 amphibians, 67 freshwater fishes, four migratory fishes, 35 saltwater fishes, and one hemichordate. The results showed that amphibians, living fossil fishes, and the common ancestors of modern fishes are phylogenetically separated. In general, amphibians, living fossil fishes, saltwater fishes, and freshwater fishes are clustered in different clades. This suggests that the ancestor of living amphibians arose from a type of primordial freshwater fish, rather than the coelacanth, lungfish, or modern saltwater fish. Modern freshwater fish and modern saltwater fish were probably separated from a common ancestor by a single event, caused by crustal movement.

  7. Experimental canopy removal enhances diversity of vernal pond amphibians.

    Science.gov (United States)

    Skelly, David K; Bolden, Susan R; Freidenburg, L Kealoha

    2014-03-01

    Vernal ponds are often treated as protected environments receiving special regulation and management. Within the landscapes where they are found, forest vegetation frequently dominates surrounding uplands and can grow to overtop and shade pond basins. Two bodies of research offer differing views of the role of forest canopy for vernal pond systems. Studies of landscape conversion suggest that removing forest overstory within uplands can cause local extinctions of amphibians by altering terrestrial habitat or hindering movement. Studies of canopy above pond basins imply an opposite relationship; encroachment of overstory vegetation can be associated with local extinctions potentially via changes in light, thermal, and food resource environments. Unresolved uncertainties about the role of forest canopy reveal significant gaps in our understanding of wetland species distributions and dynamics. Any misunderstanding of canopy influences is simultaneously important to managers because current practices emphasize promoting or conserving vegetation growth particularly within buffers immediately adjacent to ponds. We evaluated this apparent contradiction by conducting a landscape-scale, long-term experiment using 14 natural vernal ponds. Tree felling at six manipulated ponds was limited in spatial scope but was nevertheless effective in increasing water temperature. Compared with eight control ponds, manipulated ponds maintained more amphibian species during five years post-manipulation. There was little evidence that any species was negatively influenced, and the reproductive effort of species for which we estimated egg inputs maintained pretreatment population densities in manipulated compared with control ponds. Overall, our experiment shows that a carefully circumscribed reduction of overhead forest canopy can enhance the capacity of vernal ponds to support wildlife diversity and suggests a scale dependence of canopy influences on amphibians. These findings have

  8. Pesticides in amphibian habitats of Central and Northern California, USA

    Science.gov (United States)

    Fellers, Gary M.; Sparling, W; McConnell, Laura; Kleeman, Patrick M.; Drakeford, Leticia

    2013-01-01

    Previous studies have indicated that toxicity from pesticide exposure may be contributing to amphibian declines in California and that atmospheric deposition could be a primary pathway for pesticides to enter amphibian habitats. We report on a survey of California wetlands sampled along transects associated with Lassen Volcanic National Park, Lake Tahoe, Yosemite National Park, and Sequoia National Park. Each transect ran from the Pacific coast to the Cascades or Sierra Nevada mountains. Pacific chorus frogs (Pseudacris regilla), water, and sediment were collected from wetlands in 2001 and 2002. Twenty-three pesticides were found in frog, water, or sediment samples. Six contaminants including trifluralin, α-endosulfan, chlordanes, and trans-nonachlor were found in adult P. regilla. Seventeen contaminants were found in sediments, including endosulfan sulfate, chlordanes, 1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethenyl]benzene (4,4′-DDE), and chlorpyrifos. The mean number of chemicals detected per pond in sediments was 2.4 (2.5, standard deviation). In water, 17 chemicals were detected, with β-endosulfan being present in almost all samples. Trifluralin, chlordanes, and chlorpyrifos were the next most common. The mean number of chemicals in water per pond was 7.8 (2.9). With the possible exception of chlorpyrifos oxon in sediments and total endosulfans, none of the contaminants exceeded known lethal or sublethal concentrations in P. regilla tissue. Endosulfans, chlorpyrifos, and trifluralin were associated with historic and present day population status of amphibians. Cholinesterase, an essential neurological enzyme that can be depressed by certain pesticides, was reduced in tadpoles from areas with the greatest population declines.

  9. Relationship Between Landscape Character, UV Exposure, and Amphibian Decline

    Science.gov (United States)

    O'Reilly, C. M.; Brooks, P. D.; Corn, P. S.; Muths, E.; Campbell, D. H.; Diamond, S.; Tonnessen, K.

    2001-12-01

    Widespread reports of amphibian declines have been considered a warning of large-scale environmental degradation, yet the reasons for these declines remain unclear. This study suggests that exposure to ultraviolet radiation may act as an environmental stressor that affects population breeding success or susceptibility to disease. Ultraviolet radiation is attenuated by dissolved and particulate compounds in water, which may be of either terrestrial or aquatic origin. UV attenuation by dissolved organic carbon (DOC) is primarily due to compounds in the fulvic acid fraction, which originate in soil environments. These terrestrially-derived fulvic acids are transported to during hydrologic flushing events such as snowmelt and episodic precipitation and play an important role in controlling UV exposure in surface waters. As part of a previously published project, amphibian surveys were conducted at seventeen sites in Rocky Mountain National Park both during, and subsequent to, a three-year drought (1988 - 1990). During this period, ten sites lost one amphibian species, while only one site gained a previously unreported species. One possible explanation for these localized species losses is increased exposure to UV radiation, mediated by reduced terrestrial DOC inputs during dry periods. Several subsequent years of water chemistry data showed that the sites with documented species losses were characterized by a range of DOC concentrations, but tended to have a greater proportion of terrestrial DOC than sites that did not undergo species loss. This suggests that terrestrial inputs exert a strong control on DOC concentrations that may influence species success. We used physical environmental factors to develop a classification scheme for these sites. There are many physical factors that can influence terrestrial DOC inputs, including landscape position, geomorphology, soil type, and watershed vegetation. In addition, we considered the possible effects on internal aquatic

  10. Experimental canopy removal enhances diversity of vernal pond amphibians.

    Science.gov (United States)

    Skelly, David K; Bolden, Susan R; Freidenburg, L Kealoha

    2014-03-01

    Vernal ponds are often treated as protected environments receiving special regulation and management. Within the landscapes where they are found, forest vegetation frequently dominates surrounding uplands and can grow to overtop and shade pond basins. Two bodies of research offer differing views of the role of forest canopy for vernal pond systems. Studies of landscape conversion suggest that removing forest overstory within uplands can cause local extinctions of amphibians by altering terrestrial habitat or hindering movement. Studies of canopy above pond basins imply an opposite relationship; encroachment of overstory vegetation can be associated with local extinctions potentially via changes in light, thermal, and food resource environments. Unresolved uncertainties about the role of forest canopy reveal significant gaps in our understanding of wetland species distributions and dynamics. Any misunderstanding of canopy influences is simultaneously important to managers because current practices emphasize promoting or conserving vegetation growth particularly within buffers immediately adjacent to ponds. We evaluated this apparent contradiction by conducting a landscape-scale, long-term experiment using 14 natural vernal ponds. Tree felling at six manipulated ponds was limited in spatial scope but was nevertheless effective in increasing water temperature. Compared with eight control ponds, manipulated ponds maintained more amphibian species during five years post-manipulation. There was little evidence that any species was negatively influenced, and the reproductive effort of species for which we estimated egg inputs maintained pretreatment population densities in manipulated compared with control ponds. Overall, our experiment shows that a carefully circumscribed reduction of overhead forest canopy can enhance the capacity of vernal ponds to support wildlife diversity and suggests a scale dependence of canopy influences on amphibians. These findings have

  11. Influence of Physiological Stress on Nutrient Stoichiometry in Larval Amphibians.

    Science.gov (United States)

    Kirschman, Lucas J; Haslett, Savhannah; Fritz, Kelley A; Whiles, Matt R; Warne, Robin W

    2016-01-01

    Exposure to environmental stressors alters animal phenotypes as well as nutrient metabolism, assimilation, and excretion. While stress-induced shifts in nutrient processes are known to alter organismal carbon (C) and nitrogen (N) stoichiometry, there has been little exploration of how environmental factors influence phosphorous (P). A better understanding of how P cycling varies with animal physiological state may provide insight into across-scale processes, because P is essential to animal function and ecological processes such as production and decomposition. We tested the effects of predator stress and exogenous glucocorticoids on C∶N∶P stoichiometry of larval amphibians. Glucocorticoids altered nutrient stoichiometry, apparently by modulating ossification and renal function. This reduced whole-body P and significantly increased N∶P. Additionally, elevated glucocorticoids caused a long-term reduction in P excretion. This reduction may reflect an initial unmeasured loss of P that glucocorticoids induce over acute timescales. In contrast, exposure to predator cues had no effect on larval C∶N∶P stoichiometry, which highlights that different stressors have varied effects on the endocrine stress response. Predation, in particular, is ubiquitous in the environment; thus, larvae responding to predators have conserved mechanisms that likely prevent or minimize physiological disruption. These results demonstrate the differing physiological roles of N and P, distinct nutrient demands associated with amphibian metamorphosis, and the contrasting effects that different environmental factors have on the physiological stress response. Our results also suggest that anthropogenic changes to the environment that induce chronic stress in amphibians could affect the biogeochemistry of nutrient-poor environments where they may act as keystone species. PMID:27327181

  12. Lowland amphibians - recalculation of data on effects of diluted thyroxine

    Directory of Open Access Journals (Sweden)

    Peter Christian Endler

    2012-04-01

    Full Text Available Our previous paper described methodological problems and a generally acceptable pooling method for metamorphosis experiments and application of that method to the results of multicentre experiments performed over the course of two decades (1990 - 2010 on highland amphibians (Rana temporaria treated with a homeopathically prepared high dilution of thyroxine (“30x”. Differences between treatment groups thus calculated were in line with those obtained with other pooling methods: Thyroxine 30x does slow down metamorphosis in highland amphibians. This follow up paper provides a broader background on metamorphosis physiology and describes application of the pooling method to experiments with Rana temporaria from lowland biotopes both with a moderate dilution of thyroxine (“8x” and with 30x. Analogously prepared water was used for control (water 8x or 30x. Development was, again as above, monitored by documenting the number of animals that had entered the 4-legged stage. Experiments were carried out between 1990 and 2000 by different researchers independently and in blind. As it is well known, metamorphosis can be speeded up by thyroxine 10-8 mol/l; interestingly, thyroxine 8x may produce a reverse, i.e. inhibiting effect (p 0.05. However, an inhibiting effect on lowland larvae was found when animals were treated from the spawn stage on (p < 0.01.

  13. Exon capture optimization in amphibians with large genomes.

    Science.gov (United States)

    McCartney-Melstad, Evan; Mount, Genevieve G; Shaffer, H Bradley

    2016-09-01

    Gathering genomic-scale data efficiently is challenging for nonmodel species with large, complex genomes. Transcriptome sequencing is accessible for organisms with large genomes, and sequence capture probes can be designed from such mRNA sequences to enrich and sequence exonic regions. Maximizing enrichment efficiency is important to reduce sequencing costs, but relatively few data exist for exon capture experiments in nonmodel organisms with large genomes. Here, we conducted a replicated factorial experiment to explore the effects of several modifications to standard protocols that might increase sequence capture efficiency for amphibians and other taxa with large, complex genomes. Increasing the amounts of c0 t-1 repetitive sequence blocker and individual input DNA used in target enrichment reactions reduced the rates of PCR duplication. This reduction led to an increase in the percentage of unique reads mapping to target sequences, essentially doubling overall efficiency of the target capture from 10.4% to nearly 19.9% and rendering target capture experiments more efficient and affordable. Our results indicate that target capture protocols can be modified to efficiently screen vertebrates with large genomes, including amphibians. PMID:27223337

  14. [On the classification of the cleavage patterns in amphibian embryos].

    Science.gov (United States)

    Desnitskiĭ, A G

    2014-01-01

    This paper presents a brief survey and preliminary classification of embryonic cleavage patterns in the class Amphibia. We use published data on 41 anuran and 22 urodele species concerning the character of the third cleavage furrow (latitudinal or longitudinal) and the stage of transition from synchronous to asynchronous blastomere divisions in the animal hemisphere (4-8-celled stage, 8-16-celled stage or later). Based on this, four patterns of amphibian embryonic cleavage are recognized, and an attempt to elucidate the evolutionary relationships among these patterns is undertaken. The so-called "standard" cleavage pattern (the extensive series of synchronous blastomere divisions including latitudinal furrows of the third cleavage) with the typical model species Ambystoma mexicanum and Xenopus laevis seems to be derived and probably originated independently in the orders Anura and Caudata. The ancestral amphibian cleavage pattern seems to be represented by species with longitudinal furrows of the third cleavage and the loss ofsynchrony as early as the 8-celled stage (such as in primitive urodele species from the family Cryptobranchidae). PMID:25720261

  15. Proximity to pollution sources and risk of amphibian limb malformation.

    Science.gov (United States)

    Taylor, Brynn; Skelly, David; Demarchis, Livia K; Slade, Martin D; Galusha, Deron; Rabinowitz, Peter M

    2005-11-01

    The cause of limb deformities in wild amphibian populations remains unclear, even though the apparent increase in prevalence of this condition may have implications for human health. Few studies have simultaneously assessed the effect of multiple exposures on the risk of limb deformities. In a cross-sectional survey of 5,264 hylid and ranid metamorphs in 42 Vermont wetlands, we assessed independent risk factors for nontraumatic limb malformation. The rate of nontraumatic limb malformation varied by location from 0 to 10.2%. Analysis of a subsample did not demonstrate any evidence of infection with the parasite Ribeiroia. We used geographic information system (GIS) land-use/land-cover data to validate field observations of land use in the proximity of study wetlands. In a multiple logistic regression model that included land use as well as developmental stage, genus, and water-quality measures, proximity to agricultural land use was associated with an increased risk of limb malformation (odds ratio = 2.26; 95% confidence interval, 1.42-3.58; p < 0.001). The overall discriminant power of the statistical model was high (C = 0.79). These findings from one of the largest systematic surveys to date provide support for the role of chemical toxicants in the development of amphibian limb malformation and demonstrate the value of an epidemiologic approach to this problem. PMID:16263502

  16. UV-B Radiation Contributes to Amphibian Population Declines

    Science.gov (United States)

    Blaustein, Andrew

    2007-05-01

    UV-B (280-315 nm) radiation is the most significant biologically damaging radiation at the terrestrial surface. At the organismal level, UV-B radiation can slow growth rates, cause immune dysfunction and result in sublethal damage. UV-B radiation can lead to mutations and cell death. Over evolutionary time, UV radiation has been an important stressor on living organisms. Natural events, including impacts from comets and asteroids, volcanic activity, supernova explosions and solar flares, can cause large-scale ozone depletion with accompanying increases in UV radiation. However, these natural events are transient. Moreover, the amount of ozone damage due to natural events depends upon a number of variables, including the magnitude of the event. This is different from modern-day human-induced production of chlorofluorocarbons (CFCs) and other chemicals that deplete stratospheric ozone continuously, resulting in long-term increases in UV-B radiation at the surface of the earth. We will briefly review the effects of UV-B exposure in one group of aquatic organisms_amphibians. UV-B has been implicated as a possible factor contributing to global declines and range reductions in amphibian populations.

  17. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians.

    Science.gov (United States)

    Bonetti, Maria Fernanda; Wiens, John J

    2014-11-22

    The evolution of climatic niche specialization has important implications for many topics in ecology, evolution and conservation. The climatic niche reflects the set of temperature and precipitation conditions where a species can occur. Thus, specialization to a limited set of climatic conditions can be important for understanding patterns of biogeography, species richness, community structure, allopatric speciation, spread of invasive species and responses to climate change. Nevertheless, the factors that determine climatic niche width (level of specialization) remain poorly explored. Here, we test whether species that occur in more extreme climates are more highly specialized for those conditions, and whether there are trade-offs between niche widths on different climatic niche axes (e.g. do species that tolerate a broad range of temperatures tolerate only a limited range of precipitation regimes?). We test these hypotheses in amphibians, using phylogenetic comparative methods and global-scale datasets, including 2712 species with both climatic and phylogenetic data. Our results do not support either hypothesis. Rather than finding narrower niches in more extreme environments, niches tend to be narrower on one end of a climatic gradient but wider on the other. We also find that temperature and precipitation niche breadths are positively related, rather than showing trade-offs. Finally, our results suggest that most amphibian species occur in relatively warm and dry environments and have relatively narrow climatic niche widths on both of these axes. Thus, they may be especially imperilled by anthropogenic climate change.

  18. Effect of biogeographic history on population vulnerability in European amphibians.

    Science.gov (United States)

    Dufresnes, Christophe; Perrin, Nicolas

    2015-08-01

    The genetic diversity of populations, which contributes greatly to their adaptive potential, is negatively affected by anthropogenic habitat fragmentation and destruction. However, continental-scale losses of genetic diversity also resulted from the population expansions that followed the end of the last glaciation, an element that is rarely considered in a conservation context. We addressed this issue in a meta-analysis in which we compared the spatial patterns of vulnerability of 18 widespread European amphibians in light of phylogeographic histories (glacial refugia and postglacial routes) and anthropogenic disturbances. Conservation statuses significantly worsened with distances from refugia, particularly in the context of industrial agriculture; human population density also had a negative effect. These findings suggest that features associated with the loss of genetic diversity in post-glacial amphibian populations (such as enhanced fixation load or depressed adaptive potential) may increase their susceptibility to current threats (e.g., habitat fragmentation and pesticide use). We propose that the phylogeographic status of populations (i.e., refugial vs. post-glacial) should be considered in conservation assessments for regional and national red lists.

  19. Detrimental Effects of Zinc Oxide Nanoparticles on Amphibian Life Stages.

    Science.gov (United States)

    Spence, Austin Reid; Hopkins, Gareth Rowland; Neuman-Lee, Lorin Anne; Smith, Geoffrey David Stuart; Brodie, Edmund Darrell; French, Susannah Smith

    2016-08-01

    While the use of nanoparticles has dramatically increased in recent years, the ecological consequences are not well known. In particular, little research has been done to investigate the potentially detrimental effects of nanoparticles on amphibians, especially across all life-history stages of salamanders and newts (caudates). To address this dearth in knowledge, we examined the effects of zinc oxide (ZnO) nanoparticles on egg, larval, and adult Rough-skinned Newts (Taricha granulosa). Chronic toxicity was tested on eggs and larvae, and acute toxicity was tested on eggs, larvae, and adults. For eggs, chronic exposure to ZnO nanoparticles caused higher mortality at 10.0 and 100.0 mg L(-1) compared to 0.0, 0.1, and 1.0 mg L(-1) . When given an acute exposure (24 hr) to 10.0 mg L(-1) nanoparticles at a late developmental stage, larvae hatched 5 days early, at a decreased developmental stage, and smaller size compared to the control. Chronic and acute exposure of larvae increased mortality up to 75% at both 10.0 and 100.0 mg L(-1) and exhibited sublethal effects, most dramatically, severe gill degradation. These results suggest nanoparticles can have lethal and sublethal effects on all life stages of amphibians. PMID:27453487

  20. Suburbanization, estrogen contamination, and sex ratio in wild amphibian populations.

    Science.gov (United States)

    Lambert, Max R; Giller, Geoffrey S J; Barber, Larry B; Fitzgerald, Kevin C; Skelly, David K

    2015-09-22

    Research on endocrine disruption in frog populations, such as shifts in sex ratios and feminization of males, has predominantly focused on agricultural pesticides. Recent evidence suggests that suburban landscapes harbor amphibian populations exhibiting similar levels of endocrine disruption; however the endocrine disrupting chemical (EDC) sources are unknown. Here, we show that sex ratios of metamorphosing frogs become increasingly female-dominated along a suburbanization gradient. We further show that suburban ponds are frequently contaminated by the classical estrogen estrone and a variety of EDCs produced by plants (phytoestrogens), and that the diversity of organic EDCs is correlated with the extent of developed land use and cultivated lawn and gardens around a pond. Our work also raises the possibility that trace-element contamination associated with human land use around suburban ponds may be contributing to the estrogenic load within suburban freshwaters and constitutes another source of estrogenic exposure for wildlife. These data suggest novel, unexplored pathways of EDC contamination in human-altered environments. In particular, we propose that vegetation changes associated with suburban neighborhoods (e.g., from forests to lawns and ornamental plants) increase the distribution of phytoestrogens in surface waters. The result of frog sex ratios varying as a function of human land use implicates a role for environmental modulation of sexual differentiation in amphibians, which are assumed to only have genetic sex determination. Overall, we show that endocrine disruption is widespread in suburban frog populations and that the causes are likely diverse. PMID:26372955

  1. Anthropogenic and ecological drivers of amphibian disease (ranavirosis.

    Directory of Open Access Journals (Sweden)

    Alexandra C North

    Full Text Available Ranaviruses are causing mass amphibian die-offs in North America, Europe and Asia, and have been implicated in the decline of common frog (Rana temporaria populations in the UK. Despite this, we have very little understanding of the environmental drivers of disease occurrence and prevalence. Using a long term (1992-2000 dataset of public reports of amphibian mortalities, we assess a set of potential predictors of the occurrence and prevalence of Ranavirus-consistent common frog mortality events in Britain. We reveal the influence of biotic and abiotic drivers of this disease, with many of these abiotic characteristics being anthropogenic. Whilst controlling for the geographic distribution of mortality events, disease prevalence increases with increasing frog population density, presence of fish and wild newts, increasing pond depth and the use of garden chemicals. The presence of an alternative host reduces prevalence, potentially indicating a dilution effect. Ranavirosis occurrence is associated with the presence of toads, an urban setting and the use of fish care products, providing insight into the causes of emergence of disease. Links between occurrence, prevalence, pond characteristics and garden management practices provides useful management implications for reducing the impacts of Ranavirus in the wild.

  2. Evolution of erythrocyte morphology in amphibians (Amphibia: Anura

    Directory of Open Access Journals (Sweden)

    Jie Wei

    2015-10-01

    Full Text Available ABSTRACT We compared the morphology of the erythrocytes of five anurans, two toad species - Bufo gargarizans (Cantor, 1842 and Duttaphrynus melanostictus (Schneider, 1799 and three frog species - Fejervarya limnocharis (Gravenhorst, 1829, Microhyla ornata (Duméril & Bibron, 1841, and Rana zhenhaiensis (Ye, Fei & Matsui, 1995. We then reconstructed the ancestral state of erythrocyte size (ES and nuclear size (NS in amphibians based on a molecular tree. Nine morphological traits of erythrocytes were all significantly different among the five species. The results of principal component analysis showed that the first component (49.1% of variance explained had a high positive loading for erythrocyte length, nuclear length, NS and ratio of erythrocyte length/erythrocyte width; the second axis (28.5% of variance explained mainly represented erythrocyte width and ES. Phylogenetic generalized least squares analysis showed that the relationship between NS and ES was not affected by phylogenetic relationships although there was a significant linear relationship between these two variables. These results suggested that (1 the nine morphological traits of erythrocytes in the five anuran species were species-specific; (2 in amphibians, larger erythrocytes generally had larger nuclei.

  3. Radioautographic investigation of retinal growth in mature amphibians

    Energy Technology Data Exchange (ETDEWEB)

    Svistunov, S.A.; Mitashov, V.I.

    1986-07-01

    Growth of the retina was studied in mature intact amphibians, tritons, axolotls, ambystomas and clawed frogs, for six months using multiple injection of /sup 3/H-thymidine. It was established that the source of replenishment of the retina by new cells is its terminal zone in all animals investigated. This is attested to by the gradual migration of labeled cells from the growth zone into differentiated layers of the retina. The most intensely labeled cells occupy a distal position relative to other labeled cells, therefore marking the boundary between the initial part of the retina, not containing labeled nuclei, and the part being augmented. For each species studied, a level of proliferative activity is characteristic for cells of the terminal zone, which decreases in the order axolotl-clawed frog-triton -ambystoma. In the axolotl and additional growth zone is noted in the retina, in addition to the terminal, which is located in the area of the unclosed section of the embryonic fissure. Results obtained serve as a basis for the regenerative potentials of eye tissues revealed previously in these amphibian species.

  4. Vitamin A (retinoid) metabolism and actions: What we know and what we need to know about amphibians.

    Science.gov (United States)

    Clugston, Robin D; Blaner, William S

    2014-01-01

    Vitamin A status is an important consideration in the health of both wild and captive amphibians. Data concerning whole body vitamin A homeostasis in amphibians are scarce, although these animals have been used as experimental models to study the actions of vitamin A in vision, limb regeneration and embryogenesis. The available data suggest that many aspects of vitamin A biology in amphibians are similar to the canonical characteristics of vitamin A metabolism and actions established in mammals. This is consistent with the evolutionary conservation of these important biological processes. Amphibians must obtain vitamin A in their diet, with captive animals being prone to vitamin A deficiency. There is still much to be learned about vitamin A biology in amphibians that can only be achieved through rigorous scientific research. Improved understanding of amphibian vitamin A biology will aid the conservation of endangered amphibians in the wild, as well as the successful maintenance of ex situ populations.

  5. Wildlife disease. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders.

    Science.gov (United States)

    Martel, A; Blooi, M; Adriaensen, C; Van Rooij, P; Beukema, W; Fisher, M C; Farrer, R A; Schmidt, B R; Tobler, U; Goka, K; Lips, K R; Muletz, C; Zamudio, K R; Bosch, J; Lötters, S; Wombwell, E; Garner, T W J; Cunningham, A A; Spitzen-van der Sluijs, A; Salvidio, S; Ducatelle, R; Nishikawa, K; Nguyen, T T; Kolby, J E; Van Bocxlaer, I; Bossuyt, F; Pasmans, F

    2014-10-31

    Emerging infectious diseases are reducing biodiversity on a global scale. Recently, the emergence of the chytrid fungus Batrachochytrium salamandrivorans resulted in rapid declines in populations of European fire salamanders. Here, we screened more than 5000 amphibians from across four continents and combined experimental assessment of pathogenicity with phylogenetic methods to estimate the threat that this infection poses to amphibian diversity. Results show that B. salamandrivorans is restricted to, but highly pathogenic for, salamanders and newts (Urodela). The pathogen likely originated and remained in coexistence with a clade of salamander hosts for millions of years in Asia. As a result of globalization and lack of biosecurity, it has recently been introduced into naïve European amphibian populations, where it is currently causing biodiversity loss.

  6. Drought, deluge and declines: the impact of precipitation extremes on amphibians in a changing climate.

    Science.gov (United States)

    Walls, Susan C; Barichivich, William J; Brown, Mary E

    2013-03-11

    The Class Amphibia is one of the most severely impacted taxa in an on-going global biodiversity crisis. Because amphibian reproduction is tightly associated with the presence of water, climatic changes that affect water availability pose a particularly menacing threat to both aquatic and terrestrial-breeding amphibians. We explore the impacts that one facet of climate change-that of extreme variation in precipitation-may have on amphibians. This variation is manifested principally as increases in the incidence and severity of both drought and major storm events. We stress the need to consider not only total precipitation amounts but also the pattern and timing of rainfall events. Such rainfall "pulses" are likely to become increasingly more influential on amphibians, especially in relation to seasonal reproduction. Changes in reproductive phenology can strongly influence the outcome of competitive and predatory interactions, thus potentially altering community dynamics in assemblages of co-existing species. We present a conceptual model to illustrate possible landscape and metapopulation consequences of alternative climate change scenarios for pond-breeding amphibians, using the Mole Salamander, Ambystoma talpoideum, as an example. Although amphibians have evolved a variety of life history strategies that enable them to cope with environmental uncertainty, it is unclear whether adaptations can keep pace with the escalating rate of climate change. Climate change, especially in combination with other stressors, is a daunting challenge for the persistence of amphibians and, thus, the conservation of global biodiversity.

  7. Questions concerning the potential impact of glyphosate-based herbicides on amphibians.

    Science.gov (United States)

    Wagner, Norman; Reichenbecher, Wolfram; Teichmann, Hanka; Tappeser, Beatrix; Lötters, Stefan

    2013-08-01

    Use of glyphosate-based herbicides is increasing worldwide. The authors review the available data related to potential impacts of these herbicides on amphibians and conduct a qualitative meta-analysis. Because little is known about environmental concentrations of glyphosate in amphibian habitats and virtually nothing is known about environmental concentrations of the substances added to the herbicide formulations that mainly contribute to adverse effects, glyphosate levels can only be seen as approximations for contamination with glyphosate-based herbicides. The impact on amphibians depends on the herbicide formulation, with different sensitivity of taxa and life stages. Effects on development of larvae apparently are the most sensitive endpoints to study. As with other contaminants, costressors mainly increase adverse effects. If and how glyphosate-based herbicides and other pesticides contribute to amphibian decline is not answerable yet due to missing data on how natural populations are affected. Amphibian risk assessment can only be conducted case-specifically, with consideration of the particular herbicide formulation. The authors recommend better monitoring of both amphibian populations and contamination of habitats with glyphosate-based herbicides, not just glyphosate, and suggest including amphibians in standardized test batteries to study at least dermal administration.

  8. Citation rate and perceived subject bias in the amphibian-decline literature.

    Science.gov (United States)

    Ohmer, Michel E; Bishop, Phillip J

    2011-02-01

    As a result of global declines in amphibian populations, interest in the conservation of amphibians has grown. This growth has been fueled partially by the recent discovery of other potential causes of declines, including chytridiomycosis (the amphibian chytrid, an infectious disease) and climate change. It has been proposed that researchers have shifted their focus to these novel stressors and that other threats to amphibians, such as habitat loss, are not being studied in proportion to their potential effects. We tested the validity of this proposal by reviewing the literature on amphibian declines, categorizing the primary topic of articles within this literature (e.g., habitat loss or UV-B radiation) and comparing citation rates among articles on these topics and impact factors of journals in which the articles were published. From 1990 to 2009, the proportion of papers on habitat loss remained fairly constant, and although the number of papers on chytridiomycosis increased after the disease was described in 1998, the number of published papers on amphibian declines also increased. Nevertheless, papers on chytridiomycosis were more highly cited than papers not on chytridiomycosis and were published in journals with higher impact factors on average, which may indicate this research topic is more popular in the literature. Our results were not consistent with a shift in the research agenda on amphibians. We believe the perception of such a shift has been supported by the higher citation rates of papers on chytridiomycosis.

  9. Drought, Deluge and Declines: The Impact of Precipitation Extremes on Amphibians in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Susan C. Walls

    2013-03-01

    Full Text Available The Class Amphibia is one of the most severely impacted taxa in an on-going global biodiversity crisis. Because amphibian reproduction is tightly associated with the presence of water, climatic changes that affect water availability pose a particularly menacing threat to both aquatic and terrestrial-breeding amphibians. We explore the impacts that one facet of climate change—that of extreme variation in precipitation—may have on amphibians. This variation is manifested principally as increases in the incidence and severity of both drought and major storm events. We stress the need to consider not only total precipitation amounts but also the pattern and timing of rainfall events. Such rainfall “pulses” are likely to become increasingly more influential on amphibians, especially in relation to seasonal reproduction. Changes in reproductive phenology can strongly influence the outcome of competitive and predatory interactions, thus potentially altering community dynamics in assemblages of co-existing species. We present a conceptual model to illustrate possible landscape and metapopulation consequences of alternative climate change scenarios for pond-breeding amphibians, using the Mole Salamander, Ambystoma talpoideum, as an example. Although amphibians have evolved a variety of life history strategies that enable them to cope with environmental uncertainty, it is unclear whether adaptations can keep pace with the escalating rate of climate change. Climate change, especially in combination with other stressors, is a daunting challenge for the persistence of amphibians and, thus, the conservation of global biodiversity.

  10. Atrazine Contamination in Water and the Impact on Amphibian Populations: A Bioassay That Measures Water Quality

    Science.gov (United States)

    Hayes, T. B.

    2001-12-01

    In recent laboratory studies, we showed that atrazine, a common herbicide, can inhibit metamorphosis, produce hermaphrodites, and inhibit male development in amphibians. In part, these effects are due to a decrease in androgen levels. These effects occur at ecologically relevant low doses (0.1 ppb), and the effective levels are below the current drinking level standard and below contaminant levels found even in rainfall in some areas. Thus, the impact of this widespread compound on free-ranging amphibians is a concern. We undertook a large-scale study to examine atrazine levels in a variety of habitats (temporary pools, rivers, lakes and ponds, and field runoff) across the US where atrazine is used and areas that report no atrazine use. Also, we collected amphibians at each site to examine them for developmental abnormalities. These ongoing studies will help determine the extent of atrazine contamination and its potential impact on amphibian populations. The concern for atrazine's impact is increased, because the mechanism through which the compound produces this effect (inhibition of androgen production) is commonly observed in fish, reptiles and mammals in addition to amphibians, although amphibians appear to sensitive at much lower doses. Thus, effects on amphibians may indicate a much broader impact.

  11. Drought, deluge and declines: the impact of precipitation extremes on amphibians in a changing climate

    Science.gov (United States)

    Walls, Susan C.; Barichivich, William J.; Brown, Mary E.

    2013-01-01

    The Class Amphibia is one of the most severely impacted taxa in an on-going global biodiversity crisis. Because amphibian reproduction is tightly associated with the presence of water, climatic changes that affect water availability pose a particularly menacing threat to both aquatic and terrestrial-breeding amphibians. We explore the impacts that one facet of climate change—that of extreme variation in precipitation—may have on amphibians. This variation is manifested principally as increases in the incidence and severity of both drought and major storm events. We stress the need to consider not only total precipitation amounts but also the pattern and timing of rainfall events. Such rainfall “pulses” are likely to become increasingly more influential on amphibians, especially in relation to seasonal reproduction. Changes in reproductive phenology can strongly influence the outcome of competitive and predatory interactions, thus potentially altering community dynamics in assemblages of co-existing species. We present a conceptual model to illustrate possible landscape and metapopulation consequences of alternative climate change scenarios for pond-breeding amphibians, using the Mole Salamander, Ambystoma talpoideum, as an example. Although amphibians have evolved a variety of life history strategies that enable them to cope with environmental uncertainty, it is unclear whether adaptations can keep pace with the escalating rate of climate change. Climate change, especially in combination with other stressors, is a daunting challenge for the persistence of amphibians and, thus, the conservation of global biodiversity.

  12. Assessing effects of pesticides on amphibians and reptiles: status and needs

    Science.gov (United States)

    Hall, R.J.; Henry, P.F.P.

    1992-01-01

    Growing concern about the decline of certain amphibian populations and for conservation of amphibians and reptiles has led to renewed awareness of problems from pesticides. Testing amphibians and reptiles as a requirement for chemical registration has been proposed but is difficult because of the phylogenetic diversity of these groups. Information from the literature and research may determine whether amphibians and reptiles are adequately protected by current tests for mammals, birds, and fish. Existing information indicates that amphibians are unpredictably more resistant to certain cholinesterase inhibitors, and more sensitive to two chemicals used in fishery applications than could have been predicted. A single study on one species of lizard suggests that reptiles may be close in sensitivity to mammals and birds. Research on effects of pesticides on amphibians and reptiles should compare responses to currently tested groups and should seek to delineate those taxa and chemicals for which cross-group prediction is not possible. New tests for amphibians and reptiles should rely to the greatest extent possible on existing data bases, and should be designed for maximum economy and minimum harm to test animals. A strategy for developing the needed information is proposed. Good field testing and surveillance of chemicals in use may compensate for failures of predictive evaluations and may ultimately lead to improved tests.

  13. Stable Isotopes Reveal Trophic Partitioning and Trophic Plasticity of a Larval Amphibian Guild.

    Directory of Open Access Journals (Sweden)

    Rosa Arribas

    Full Text Available Temporary ponds are highly variable systems where resource availability and community structure change extensively over time, and consequently the food web is highly dynamic. Amphibians play a critical role both as consumers and prey in aquatic communities and yet there is still little information on the trophic status of most amphibians. More importantly, little is known about the extent to which they can alter their trophic ecology in response to changing conditions. We experimentally investigated the effects of increased amphibian density, presence of intraguild competitors, and presence of native and invasive predators (either free or caged on the trophic status of a Mediterranean amphibian guild, using stable isotopes. We observed variations in δ13C and δ15N isotopic values among amphibian species and treatments and differences in their food sources. Macrophytes were the most important food resource for spadefoot toad tadpoles (Pelobates cultripes and relatively important for all anurans within the guild. High density and presence of P. cultripes tadpoles markedly reduced macrophyte biomass, forcing tadpoles to increase their feeding on detritus, algae and zooplankton, resulting in lower δ13C values. Native dytiscid predators only changed the isotopic signature of newts whereas invasive red swamp crayfish had an enormous impact on environmental conditions and greatly affected the isotopic values of amphibians. Crayfish forced tadpoles to increase detritus ingestion or other resources depleted in δ13C. We found that the opportunistic amphibian feeding was greatly conditioned by intra- and interspecific competition whereas non-consumptive predator effects were negligible. Determining the trophic plasticity of amphibians can help us understand natural and anthropogenic changes in aquatic ecosystems and assess amphibians' ability to adjust to different environmental conditions.

  14. Stable Isotopes Reveal Trophic Partitioning and Trophic Plasticity of a Larval Amphibian Guild.

    Science.gov (United States)

    Arribas, Rosa; Díaz-Paniagua, Carmen; Caut, Stephane; Gomez-Mestre, Ivan

    2015-01-01

    Temporary ponds are highly variable systems where resource availability and community structure change extensively over time, and consequently the food web is highly dynamic. Amphibians play a critical role both as consumers and prey in aquatic communities and yet there is still little information on the trophic status of most amphibians. More importantly, little is known about the extent to which they can alter their trophic ecology in response to changing conditions. We experimentally investigated the effects of increased amphibian density, presence of intraguild competitors, and presence of native and invasive predators (either free or caged) on the trophic status of a Mediterranean amphibian guild, using stable isotopes. We observed variations in δ13C and δ15N isotopic values among amphibian species and treatments and differences in their food sources. Macrophytes were the most important food resource for spadefoot toad tadpoles (Pelobates cultripes) and relatively important for all anurans within the guild. High density and presence of P. cultripes tadpoles markedly reduced macrophyte biomass, forcing tadpoles to increase their feeding on detritus, algae and zooplankton, resulting in lower δ13C values. Native dytiscid predators only changed the isotopic signature of newts whereas invasive red swamp crayfish had an enormous impact on environmental conditions and greatly affected the isotopic values of amphibians. Crayfish forced tadpoles to increase detritus ingestion or other resources depleted in δ13C. We found that the opportunistic amphibian feeding was greatly conditioned by intra- and interspecific competition whereas non-consumptive predator effects were negligible. Determining the trophic plasticity of amphibians can help us understand natural and anthropogenic changes in aquatic ecosystems and assess amphibians' ability to adjust to different environmental conditions. PMID:26091281

  15. Pathogen Phytosensing: Plants to Report Plant Pathogens

    Directory of Open Access Journals (Sweden)

    C. Neal Stewart

    2008-04-01

    Full Text Available Real-time systems that provide evidence of pathogen contamination in crops can be an important new line of early defense in agricultural centers. Plants possess defense mechanisms to protect against pathogen attack. Inducible plant defense is controlled by signal transduction pathways, inducible promoters and cis-regulatory elements corresponding to key genes involved in defense, and pathogen-specific responses. Identified inducible promoters and cis-acting elements could be utilized in plant sentinels, or ‘phytosensors’, by fusing these to reporter genes to produce plants with altered phenotypes in response to the presence of pathogens. Here, we have employed cis-acting elements from promoter regions of pathogen inducible genes as well as those responsive to the plant defense signal molecules salicylic acid, jasmonic acid, and ethylene. Synthetic promoters were constructed by combining various regulatory elements supplemented with the enhancer elements from the Cauliflower mosaic virus (CaMV 35S promoter to increase basal level of the GUS expression. The inducibility of each synthetic promoter was first assessed in transient expression assays using Arabidopsis thaliana protoplasts and then examined for efficacy in stably transgenic Arabidopsis and tobacco plants. Histochemical and fluorometric GUS expression analyses showed that both transgenic Arabidopsis and tobacco plants responded to elicitor and phytohormone treatments with increased GUS expression when compared to untreated plants. Pathogen-inducible phytosensor studies were initiated by analyzing the sensitivity of the synthetic promoters against virus infection. Transgenic tobacco plants infected with Alfalfa mosaic virus showed an increase in GUS expression when compared to mock-inoculated control plants, whereas Tobacco mosaic virus infection caused no changes in GUS expression. Further research, using these transgenic plants against a range of different

  16. Dynamics of radionuclide accumulation at amphibians and reptiles in the Poles'e state radioecological reserve

    International Nuclear Information System (INIS)

    It was studied the peculiarity of the radionuclide intake to organism of amphibians and reptiles in the Poles'e radioecological reserve in 1997. The radioactive contamination level of investigated area was from 15 to 40 Ci/km2. It was measured 38 samples (26 for amphibians and 12 for reptiles) from points with background gamma-irradiation from 35 to 800 micro R/h. For the last eleven years of investigation it was revealed the total tendency to reduction of level of gamma-radioactive accumulation in 18,8-42,6 times for amphibians and in 2,8-52,5 times for reptiles

  17. Amphibians and Reptiles of the state of Nuevo León, Mexico

    OpenAIRE

    Lemos-Espinal,Julio; Smith, Geoffrey; Cruz, Alexander

    2016-01-01

    We compiled a check list of the herpetofauna of Nuevo León. We documented 132 species (23 amphibians, 109 reptiles), representing 30 families (11 amphibians, 19 reptiles) and 73 genera (17 amphibians, 56 reptiles). Only two species are endemic to Nuevo León. Nuevo León contains a relatively high richness of lizards in the genus Sceloporus. Overlap in the herpetofauna of Nuevo León and states it borders is fairly extensive. Of 130 native species, 102 are considered ...

  18. Fighting a losing battle: vigorous immune response countered by pathogen suppression of host defenses in the chytridiomycosis-susceptible frog Atelopus zeteki.

    Science.gov (United States)

    Ellison, Amy R; Savage, Anna E; DiRenzo, Grace V; Langhammer, Penny; Lips, Karen R; Zamudio, Kelly R

    2014-07-01

    The emergence of the disease chytridiomycosis caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd) has been implicated in dramatic global amphibian declines. Although many species have undergone catastrophic declines and/or extinctions, others appear to be unaffected or persist at reduced frequencies after Bd outbreaks. The reasons behind this variance in disease outcomes are poorly understood: differences in host immune responses have been proposed, yet previous studies suggest a lack of robust immune responses to Bd in susceptible species. Here, we sequenced transcriptomes from clutch-mates of a highly susceptible amphibian, Atelopus zeteki, with different infection histories. We found significant changes in expression of numerous genes involved in innate and inflammatory responses in infected frogs despite high susceptibility to chytridiomycosis. We show evidence of acquired immune responses generated against Bd, including increased expression of immunoglobulins and major histocompatibility complex genes. In addition, fungal-killing genes had significantly greater expression in frogs previously exposed to Bd compared with Bd-naïve frogs, including chitinase and serine-type proteases. However, our results appear to confirm recent in vitro evidence of immune suppression by Bd, demonstrated by decreased expression of lymphocyte genes in the spleen of infected compared with control frogs. We propose susceptibility to chytridiomycosis is not due to lack of Bd-specific immune responses but instead is caused by failure of those responses to be effective. Ineffective immune pathway activation and timing of antibody production are discussed as potential mechanisms. However, in light of our findings, suppression of key immune responses by Bd is likely an important factor in the lethality of this fungus. PMID:24841130

  19. Adult amphibian epidermal proteins: biochemical characterization and developmental appearance.

    Science.gov (United States)

    Reeves, O R

    1975-08-01

    The keratin-like proteins (KLPs) from the epidermis of adult frogs of the species Xenopus laevis have been isolated and biochemically characterized by means of polyacrylamide gel electrophoresis, amino acid analysis, tryptic peptide mapping, amino-terminal end-group analysis and isoelectric focusing. One particular protein fraction of rather unusual amino acid composition found only in epidermal tissue was isolated in quantity by preparative gel electrophoresis and monospecific antibodies prepared against it. Using this anti-KLP antibody preparation it was possible to show that at least one kine of keratin-like protein characteristic of the adult epidermis first appears within the larval epidermis during metamorphosis. This is the first reported biochemical characterization of a tissue-specific protien from adult amphibian skin.

  20. Visual implant elastomer mark retention through metamorphosis in amphibian larvae

    Science.gov (United States)

    Grant, E.H.C.

    2008-01-01

    Questions in population ecology require the study of marked animals, and marks are assumed to be permanent and not overlooked by observers. I evaluated retention through metamorphosis of visual implant elastomer marks in larval salamanders and frogs and assessed error in observer identification of these marks. I found 1) individual marks were not retained in larval wood frogs (Rana sylvatica), whereas only small marks were likely to be retained in larval salamanders (Eurycea bislineata), and 2) observers did not always correctly identify marked animals. Evaluating the assumptions of marking protocols is important in the design phase of a study so that correct inference can be made about the population processes of interest. This guidance should be generally useful to the design of mark?recapture studies, with particular application to studies of larval amphibians.

  1. AMPHIBIAN COMMUNITIES IN BIOGEOCOENOSIS WITH DIFFERENT STAGES OF ANTHROPOGENIC CLYMAX

    Directory of Open Access Journals (Sweden)

    Marchenkovskaya А. А.

    2013-04-01

    Full Text Available We examined the abundance of juvenile (fingerlings and yearlings and sexually mature (3-6 years of various anurans at various biotopes with different degrees of anthropogenic influence. Population analysis has revealed that the number of juveniles in all the habitats are depended on type and level of anthropogenic influence. In all the habitats the most numerous species was synanthropic bufo viridis. In biotopes with high contamination of pollutants, only one species of amphibians - the marsh frog has populations with juveniles migrating here in the early fall. The highest number of mature individuals registered for the population of Bombina bombina, pelobates fuscus and in one biotope for hyla arborea. The populations of pelophylax ridibundus could be considered as the most balanced by number of juvenile and mature individuals.

  2. Correlates of species richness in the largest Neotropical amphibian radiation.

    Science.gov (United States)

    Gonzalez-Voyer, A; Padial, J M; Castroviejo-Fisher, S; de la Riva, I; Vilà, C

    2011-05-01

    Although tropical environments are often considered biodiversity hotspots, it is precisely in such environments where least is known about the factors that drive species richness. Here, we use phylogenetic comparative analyses to study correlates of species richness for the largest Neotropical amphibian radiation: New World direct-developing frogs. Clade-age and species richness were nonsignificantly, negatively correlated, suggesting that clade age alone does not explain among-clade variation in species richness. A combination of ecological and morphological traits explained 65% of the variance in species richness. A more vascularized ventral skin, the ability to colonize high-altitude ranges, encompassing a large variety of vegetation types, correlated significantly with species richness, whereas larger body size was marginally correlated with species richness. Hence, whereas high-altitude ranges play a role in shaping clade diversity in the Neotropics, intrinsic factors, such as skin structures and possibly body size, might ultimately determine which clades are more speciose than others. PMID:21401771

  3. FIRST AMPHIBIAN FIND IN EARLY PERMIAN FROM SARDINIA (ITALY

    Directory of Open Access Journals (Sweden)

    AUSONIO RONCHI

    1997-03-01

    Full Text Available An amphibian fauna from Permo-Carboniferous boundary beds is recorded for the first time in Italy. A thin fossiliferous level has been found in the Perdasdefogu Basin in southeastern Sardinia;it yields several speciments of Branchiosaurus cf."B." petrolei Gaudry 1875, often in mass mortality assemblages.Repeated mass mortality events testify to sudden changes in the environment of the basin, possibly due to seasonal variations. The finding of speciments very close to Branchiosaurus petrolei,which is a common species in the Central France basins,confirms that Sardinia at the time belonged to the same hydrographic basin of continental Europe, with no seaway in between.Furthermore, though not the primary focus of this note, we report the first discovery of the xenacanth teeth and acanthodian spines in Italy.  

  4. Nationwide assessment of morphological abnormalities observed in amphibians collected from United States National Wildlife Refuges

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Previously, amphibian malformations had only been studied at the site, state and regional levels, limiting our understanding of the types of malformations most...

  5. Rhode Island, Connecticut, New York, and New Jersey ESI: REPTILES (Reptile and Amphibian Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for threatened/endangered sea turtles, diamondback terrapins, and rare reptiles/amphibians in coastal...

  6. Thyroid Histopathology Assessments for the Amphibian Metamorphosis Assay to Detect Thyroid-active Substances

    Science.gov (United States)

    In support of an Organization for Economic Cooperation and Development (OECD) Amphibian Metamorphosis Assay (AMA) Test Guideline for the detection of substances that interact with the hypothalamic-pituitary-thyroid axis, a document was developed that provides a standardized appro...

  7. Survey of reptiles and amphibians of North Platte National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This proposal is for surveying reptiles and amphibians of North Platte National Wildlife Refuge for the specific goals of generating a species list, species...

  8. Summary of amphibian and reptile surveys 2001 - North Mississippi Refuges Complex

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Report details surveys for amphibians and reptiles on Dahomey, Coldwater River, and Dahomey NWRs in 2001. Sampling methods and protocols are also included.

  9. Preliminary Assessment for Abnormal Amphibians on National Wildlife Refuges in the Southeast Region FY 2008

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Preliminary screening assessments for abnormal amphibians were initiated on national wildlife refuges (NWRs) in the southeast region in 2000, with additional...

  10. Study on abnormal amphibians on National Wildlife Refuges: Questions and answers

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document answers questions related to a 10-year abnormal amphibian study conducted on U.S. National Wildlife Refuges. Topics include: why the study was...

  11. Amphibian Distribution and Habitat, test, Published in 2001, Not Applicable scale, Runskip, Inc..

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Amphibian Distribution and Habitat dataset, published at Not Applicable scale, was produced all or in part from Bathymetric Survey information as of 2001. It...

  12. Species List of Alaskan Birds, Mammals, Fish, Amphibians, Reptiles, and Invertebrates. Alaska Region Report Number 82.

    Science.gov (United States)

    Taylor, Tamra Faris

    This publication contains a detailed list of the birds, mammals, fish, amphibians, reptiles, and invertebrates found in Alaska. Part I lists the species by geographical regions. Part II lists the species by the ecological regions of the state. (CO)

  13. Amphibians and agrochemicals: Dermal contact and pesticide uptake from irrigated croplands in SW Georgia

    Science.gov (United States)

    Background/Question/Methods Although isolated wetlands comprise a significant portion of amphibian breeding habitats throughout the United States, they are not protected under the Clean Water Act. In SW Georgia where agriculture is dominant within the landscape, many isolated ...

  14. [Nested species subsets of amphibians and reptiles in Thousand Island Lake].

    Science.gov (United States)

    Wang, Xi; Wang, Yan-Ping; Ding, Ping

    2012-10-01

    Habitat fragmentation is a main cause for the loss of biological diversity. Combining line-transect methods to survey the amphibians and reptiles on 23 islands on Thousand Island Lake in Zhejiang province, along with survey data on nearby plant species and habitat variables collected by GIS, we used the"BINMATNEST (binary matrix nestedness temperature calculator)" software and the Spearman rank correlation to examine whether amphibians and reptiles followed nested subsets and their influencing factors. The results showed that amphibians and reptiles were significantly nested, and that the island area and habitat type were significantly associated with their nested ranks. Therefore, to effectively protect amphibians and reptiles in the Thousand Islands Lake area we should pay prior attention to islands with larger areas and more habitat types.

  15. DISTRIBUTIONAL CHANGES AND POPULATION STATUS FOR AMPHIBIANS IN THE EASTERN MOJAVE DESERT

    Science.gov (United States)

    A number of amphibian species historically inhabited sparsely distributed wetlands in the Mojave Desert of western North America, habitats that have been dramatically altered or eliminated as a result of human activities. The population status and distributional changes for amphi...

  16. The amphibians and reptiles of the Carolina Sandhills National Wildlife Refuge Chesterfield County, South Carolina

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This paper reports the results of a survey of the amphibians and reptiles occurring in the Carolina Sandhills National Wildlife Refuge, Chesterfield County, South...

  17. Quantifying Amphibian Pesticide Body Burdens for Active Ingredients Versus Formulations Through Dermal Exposure

    Science.gov (United States)

    Widespread pesticide applications throughout agricultural landscapes pose a risk to post-metamorphic amphibians leaving or moving between breeding ponds in terrestrial habitats. Recent studies indicate that the inactive ingredients in pesticide formulations may be equally or more...

  18. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: REPTILEL (Reptile and Amphibian Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for amphibians and reptiles in Central California. Vector lines in this data set represent general stream...

  19. Forests as promoters of terrestrial life-history strategies in East African amphibians

    OpenAIRE

    Müller, Hendrik; Liedtke, Hans Christoph; Menegon, Michele; Beck, Jan; Ballesteros-Mejia, Liliana; Nagel, Peter; Loader, Simon Paul

    2013-01-01

    Many amphibian lineages show terrestrialization of their reproductive strategy and breeding is partially or completely independent of water. A number of causal factors have been proposed for the evolution of terrestrialized breeding. While predation has received repeated attention as a potential factor, the influence of other factors such as habitat has never been tested using appropriate data or methods. Using a dataset that comprises 180 amphibian species from various East African habitats,...

  20. Amphibian and benthic macroinvertebrate response to physical and chemical properties of Themi River, Arusha, Tanzania

    OpenAIRE

    Lyimo, Emmanuel

    2012-01-01

    I hypothesized that variation in physical and chemical properties and habitat destruction of the Themi River as a result of human activities would affect abundance and diversity of amphibian and benthic macroinvertebrates. Variation in habitat physical and chemical conditions, and amphibian and benthic macroinvertebrate diversity and abundance were assessed in the Themi River of Arusha municipality. These physical, chemical and biological conditions were assessed at forty sampling stations...