WorldWideScience

Sample records for amperometric immunosensor based

  1. An amperometric chloramphenicol immunosensor based on cadmium sulfide nanoparticles modified-dendrimer bonded conducting polymer.

    Science.gov (United States)

    Kim, Dong-Min; Rahman, Md Aminur; Do, Minh Hien; Ban, Changill; Shim, Yoon-Bo

    2010-03-15

    An amperometric chloramphenicol (CAP) immunosensor was fabricated by covalently immobilizing anti-chloramphenicol acetyl transferase (anti-CAT) antibody on cadmium sulfide nanoparticles (CdS) modified-dendrimer that was bonded to the conducting polymer (poly 5, 2': 5', 2''-terthiophene-3'-carboxyl acid (poly-TTCA)) layer. The AuNPs, dendrimers, and CdS nanoparticles were deposited onto the polymer layer in order to enhance the sensitivity of the sensor probes. The particle sizes were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The immobilization of dendrimers, CdS, and anti-CAT were confirmed using energy disruptive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and quartz crystal microbalance (QCM) techniques. The detection of CAP was based on the competitive immuno-interaction between the free- and labeled-CAP for active sites of the anti-CAT. Hydrazine was used as the label for CAP, and it electrochemically catalyzed the reduction of H(2)O(2) at -0.35 V vs. Ag/AgCl. Under optimized conditions, the proposed immunosensor exhibited a linear range of CAP detection between 50 pg/mL and 950 pg/mL, and the detection limit was 45 pg/mL. The immunosensor was examined in real meat samples for the analysis of CAP.

  2. Modeling of Amperometric Immunosensor for CMOS Integration

    Institute of Scientific and Technical Information of China (English)

    Ce Li; Haigang Yang; Shanhong Xia; Chao Bian

    2006-01-01

    A circuit model of the Amperometric immunosensor for use in the biosensor system-on-chip simulation is proposed in this paper. The model parameters are extracted with several methods and verified by MATLAB and SPICE simulation. A CMOS potentiostat circuit required for conditioning the Amperometric immunosensor is also included in the circuit model. The mean square error norm of the simulated curve against the measured one is 8.65 × 10-17. The whole circuit has been fabricated in a 0.35am CMOS process.

  3. Amperometric Immunosensor Based on a Protein A/Deposited Gold Nanocrystals Modified Electrode for Carbofuran Detection

    Directory of Open Access Journals (Sweden)

    Xia Sun

    2011-12-01

    Full Text Available In this paper, an amperometric immunosensor modified with protein A/deposited gold nanocrystals (DpAu was developed for the ultrasensitive detection of carbofuran residues. First, DpAu were electrodeposited onto the Au electrode surface to absorb protein A (PA and improve the electrode conductivity. Then PA was dropped onto the surface of DpAu film, used for binding antibody Fc fragments. Next, anti-carbofuran monoclonal antibody was immobilized on the PA modified electrode. Finally, bovine serum albumin (BSA was employed to block the possible remaining active sites avoiding any nonspecific adsorption. The fabrication procedure of the immunosensor was characterized by electrochemical impedance spectroscopy (EIS and cyclic voltammetry (CV, respectively. With the excellent electroconductivity of DpAu and the PA’s oriented immobilization of antibodies, a highly efficient immuno-reaction and detection sensitivity could be achieved. The influences of the electrodeposition time of DpAu, pH of the detection solution and incubation time on the current response of the fabricated immunosensor were investigated. Under optimized conditions, the current response was proportional to the concentration of carbofuran which ranged from 1 to 100 ng/mL and 100 ng/mL to 100 μg/mL. The detection limit was 0.1924 ng/mL. The proposed carbofuran immnuosensor exhibited high specificity, reproducibility, stability and regeneration performance, which may open a new door for ultrasensitive detection of carbofuran residues in vegetables and fruits.

  4. Amperometric immunosensor based on a protein A/deposited gold nanocrystals modified electrode for carbofuran detection.

    Science.gov (United States)

    Sun, Xia; Zhu, Ying; Wang, Xiangyou

    2011-01-01

    In this paper, an amperometric immunosensor modified with protein A/deposited gold nanocrystals (DpAu) was developed for the ultrasensitive detection of carbofuran residues. First, DpAu were electrodeposited onto the Au electrode surface to absorb protein A (PA) and improve the electrode conductivity. Then PA was dropped onto the surface of DpAu film, used for binding antibody Fc fragments. Next, anti-carbofuran monoclonal antibody was immobilized on the PA modified electrode. Finally, bovine serum albumin (BSA) was employed to block the possible remaining active sites avoiding any nonspecific adsorption. The fabrication procedure of the immunosensor was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), respectively. With the excellent electroconductivity of DpAu and the PA's oriented immobilization of antibodies, a highly efficient immuno-reaction and detection sensitivity could be achieved. The influences of the electrodeposition time of DpAu, pH of the detection solution and incubation time on the current response of the fabricated immunosensor were investigated. Under optimized conditions, the current response was proportional to the concentration of carbofuran which ranged from 1 to 100 ng/mL and 100 ng/mL to 100 μg/mL. The detection limit was 0.1924 ng/mL. The proposed carbofuran immnuosensor exhibited high specificity, reproducibility, stability and regeneration performance, which may open a new door for ultrasensitive detection of carbofuran residues in vegetables and fruits.

  5. A separation-free amperometric immunosensor for vitellogenin based on screen-printed carbon arrays modified with a conductive polymer.

    Science.gov (United States)

    Darain, Farzana; Park, Doeg Su; Park, Jang-Su; Chang, Seung-Cheol; Shim, Yoon-Bo

    2005-03-15

    A disposable amperometric immunosensor was studied for the rapid detection of carp (Carassius auratus) Vitellogenin (Vtg). The sensor was fabricated based on screen-printed carbon arrays (SPCAs) containing eight carbon working and an integrated carbon counter electrodes. To construct the sensor, a conducting polymer (poly-terthiophene carboxylic acid) was electropolymerized on the surface of working electrodes and the polymer-coated SPCAs was characterized by SEM. Horseradish peroxidase (HRP) and a monoclonal antibody (anti-Vtg) specific to carp Vtg were covalently attached onto the polymer modified SPCAs. The immobilization of HRP and anti-Vtg onto the polymer-coated SPCAs was examined using cyclic voltammetry and quartz crystal microbalance studies. In order to detect the amount of Vtg, glucose oxidase (GOx)-labelled Vtg bound to the sensor surface under competition with the Vtg analyte was quantified amperometrically using glucose as a substrate. The performance of the eight sensors in arrays was evaluated by obtaining the calibration plots for Vtg. The sensor arrays exhibit a linear range of the Vtg concentration from 0.25 to 7.8 ng/ml and the detection limit was determined to be 0.09 ng/ml. Furthermore, the performance of the immunosensor for the determination of Vtg was evaluated by a standard addition method performed in fish serum samples. PMID:15681194

  6. A highly sensitive flow-through amperometric immunosensor based on the Peroxidase chip and enzyme-channeling principle.

    Science.gov (United States)

    Zeravik, J; Ruzgas, T; Fránek, M

    2003-10-01

    A concept based on the Peroxidase-chip (P-chip), antibody co-immobilization, competitive and enzyme-channeling principle was exploited to develop an integrated flow-through amperometric biosensor for detection of environmental pollutants such as s-triazine herbicides. In this concept, recombinant peroxidase is immobilized on the gold electrode (P-chip) in such a way that direct electron transfer is achieved. The recognition and quantitation the target analyte is realized through the competition between the simazine-glucose oxidase (GOD) conjugate and free simazine for the binding sites of the monoclonal antibody co-immobilized with peroxidase on the gold electrode. The arrangement allows to generate a specific signal in the presence of glucose through the channeling of H2O2 produced by GOD conjugate bound to the antibody. The immunosensor exhibited 50% signal decrease (IC50 value) at approximately 0.02 microg l(-1). A concentration of 0.1 ng l(-1) gave a signal clearly distinguishable from the blank whereas the ELISA using the same antibody had a typical detection limit of about 1 microg l(-1), which is four orders of magnitude higher compared to the presented biosensor system. The results demonstrated that gene engineering biomolecules, in this case recombinant peroxidase, might be attractive reagents for the development of electrochemical immunosensors. PMID:12896832

  7. Amperometric Immunosensor for Carbofuran Detection Based on MWCNTs/GS-PEI-Au and AuNPs-Antibody Conjugate

    Directory of Open Access Journals (Sweden)

    Xiangyou Wang

    2013-04-01

    Full Text Available In this paper, an amperometric immunosensor for the detection of carbofuran was developed. Firstly, multiwall carbon nanotubes (MWCNTs and graphene sheets-ethyleneimine polymer-Au (GS-PEI-Au nanocomposites were modified onto the surface of a glass carbon electrode (GCE via self-assembly. The nanocomposites can increase the surface area of the GCE to capture a large amount of antibody, as well as produce a synergistic effect in the electrochemical performance. Then the modified electrode was coated with gold nanoparticles-antibody conjugate (AuNPs-Ab and blocked with BSA. The monoclonal antibody against carbofuran was covalently immobilized on the AuNPs with glutathione as a spacer arm. The morphologies of the GS-PEI-Au nanocomposites and the fabrication process of the immunosensor were characterized by X-ray diffraction (XRD, ultraviolet and visible absorption spectroscopy (UV-vis and scanning electron microscopy (SEM, respectively. Under optimal conditions, the immunosensor showed a wide linear range, from 0.5 to 500 ng/mL, with a detection limit of 0.03 ng/mL (S/N = 3. The as-constructed immunosensor exhibited notable performance features such as high specificity, good reproducibility, acceptable stability and regeneration performance. The results are mainly due to the excellent properties of MWCNTs, GS-PEI-Au nanocomposites and the covalent immobilization of Ab with free hapten binding sites for further immunoreaction. It provides a new avenue for amperometric immunosensor fabrication.

  8. Amperometric immunosensor for carbofuran detection based on MWCNTs/GS-PEI-Au and AuNPs-antibody conjugate.

    Science.gov (United States)

    Zhu, Ying; Cao, Yaoyao; Sun, Xia; Wang, Xiangyou

    2013-04-19

    In this paper, an amperometric immunosensor for the detection of carbofuran was developed. Firstly, multiwall carbon nanotubes (MWCNTs) and graphene sheets-ethyleneimine polymer-Au (GS-PEI-Au) nanocomposites were modified onto the surface of a glass carbon electrode (GCE) via self-assembly. The nanocomposites can increase the surface area of the GCE to capture a large amount of antibody, as well as produce a synergistic effect in the electrochemical performance. Then the modified electrode was coated with gold nanoparticles-antibody conjugate (AuNPs-Ab) and blocked with BSA. The monoclonal antibody against carbofuran was covalently immobilized on the AuNPs with glutathione as a spacer arm. The morphologies of the GS-PEI-Au nanocomposites and the fabrication process of the immunosensor were characterized by X-ray diffraction (XRD), ultraviolet and visible absorption spectroscopy (UV-vis) and scanning electron microscopy (SEM), respectively. Under optimal conditions, the immunosensor showed a wide linear range, from 0.5 to 500 ng/mL, with a detection limit of 0.03 ng/mL (S/N = 3). The as-constructed immunosensor exhibited notable performance features such as high specificity, good reproducibility, acceptable stability and regeneration performance. The results are mainly due to the excellent properties of MWCNTs, GS-PEI-Au nanocomposites and the covalent immobilization of Ab with free hapten binding sites for further immunoreaction. It provides a new avenue for amperometric immunosensor fabrication.

  9. A micro amperometric immunosensor for detection of human immunoglobulin

    Institute of Scientific and Technical Information of China (English)

    XU Yuanyuan; XIA Shanhong; BIAN Chao; CHEN Shaofeng

    2006-01-01

    A novel amperometric immunosensor based on the micro electromechanical systems (MEMS) technology, using protein A and self-assembled monolayers (SAMs) for the orientation-controlled immobilization of antibodies, has been developed. Using MEMS technology, an "Au, Pt, Pt" three-microelectrode system enclosed in a SU-8 micro pool was fabricated. Employing SAMs, a monolayer of protein A was immobilized on the cysteamine modified Au electrode to achieve the orientation-controlled immobilization of the human immunoglobulin (HIgG) antibody. The immunosensor aimed at low unit cost, small dimension, high level of integration and the prospect of a biosensor system-on-a-chip. Cyclic voltammetry and chronoamperometry were conducted to characterize the immunosensor. Compared with the traditional immunosensor using bulky gold electrode or screen-printed electrode and the procedure directly binding protein A to electrode for immobilization of antibodies, it had attractive advantages, such as miniaturization, compatibility with CMOS technology, fast response (30 s), broad linear range (50-400μg/L) and low detection limit (10μg/L) for HIgG. In addition, this immunosensor was easy to be designed into micro array and to realize the simultaneously multi-parameter detection.

  10. A sensitive label-free amperometric CEA immunosensor based on graphene-nafion nanocomposite film as an enhanced sensing platform.

    Science.gov (United States)

    Li, Yan; Yang, Wei-Kang; Fan, Man-Qi; Liu, Ao

    2011-01-01

    A novel approach to fabricate a label-free amperometric immunosensor for the detection of carcinoembryonic antigen (CEA) was described. Herein, methylene blue (MB), gold nanoparticles (AuNPs) and carcinoembryonic antibody (anti-CEA) were layer-by-layer assembled on the graphene-Nafion nanocomposite film-modified electrode by means of a self-assembling technique and the opposite-charged adsorption. Subsequently, the stepwise self-assembling procedure of the immunosensor was further characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The factors influencing the performance of the resulting immunosensor were studied in detail. The developed procedure showed improved features, including larger amount and higher immunoactivity of the immobilized antibody and repeatable regeneration of the sensor, as well as direct, rapid and simple determination for the antigen without multiple separation and labeling steps. The immunosensor could detect the target protein in a range of 0.5 to 120 ng/mL with a limit of 0.17 ng/mL (at 3σ). Finally, the immunosensing system was evaluated on several clinical samples. Analytical results were found to be in satisfactory agreement with those detected by the enzyme-linked immunosorbent assay (ELISA) method, indicating that this new method was a promising alternative tool for clinical diagnosis.

  11. Imunossensor amperométrico Amperometric immunosensor

    Directory of Open Access Journals (Sweden)

    Carla dos Santos Riccardi

    2002-05-01

    Full Text Available The reaction between antigen and antibody has been widely used in many strategies for the development of analytical methodology, due to its high specificity. The immuno-reaction has been successfully employed for the biosensor development. A focus on biosensor based on immunoassay coupled to amperometric transducer is presented.

  12. A label-free amperometric immunosensor for detection of zearalenone based on trimetallic Au-core/AgPt-shell nanorattles and mesoporous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lei; Chao, Yingjun; Cao, Wei, E-mail: chm_caow@ujn.edu.cn; Wang, Yulan; Luo, Chuannan; Pang, Xuehui; Fan, Dawei; Wei, Qin, E-mail: sdjndxwq@163.com

    2014-10-17

    Highlights: • Au@AgPt nanorattles have special structure of Au-core and imperfect AgPt-shell. • Au@AgPt are proposed for the first time applied in electrochemical immunosensor. • Substrate materials MC/Au@AgPt possess excellent conductivity and high surface area. • The proposed immunosensor exhibits a low detection limit of 1.7 pg mL{sup −1}. - Abstract: A novel label-free amperometric immunosensor is proposed for the ultrasensitive detection of zearalenone (ZEN) based on mesoporous carbon (MC) and trimetallic nanorattles (core/shell particles with movable cores encapsulated in the shells). The nanorattles are composed of special Au-core and imperfect AgPt-shell structure (Au@AgPt). The Au@AgPt nanorattles are loaded onto the MC by physical adsorption. The structure of the Au@AgPt nanorattles was characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Energy dispersive X-ray spectroscopy (EDS) confirmed the composition of the synthesized nanorattles. Compared with monometallic and bimetallic nanoparticles (NPs), Au@AgPt nanorattles show a higher electron transfer rate due to the synergistic effect of the Au, Ag and Pt NPs. MC further improves the sensitivity of the immunosensor because of its extraordinarily large specific surface area, suitable pore arrangement and outstanding conductivity. The large specific surface area of MC and MC@Au@AgPt were characterized by the BET method. ZEN antibodies are immobilized onto the nanorattles via Ag–NH{sub 2} bonds and Pt–NH{sub 2} bonds. Cyclic voltammetry and square wave voltammetry were used to characterize the recognizability of ZEN. Under optimum experimental conditions, the proposed immunosensor exhibited a low detection limit (1.7 pg mL{sup −1}), a wide linear range (from 0.005 to 15 ng mL{sup −1}) as well as good stability, reproducibility and selectivity. The sensor can be used in clinical analysis.

  13. Amperometric immunosensor for {alpha}-fetoprotein antigen in human serum based on co-immobilizing dinuclear copper complex and gold nanoparticle doped chitosan film

    Energy Technology Data Exchange (ETDEWEB)

    Gan Ning; Meng Linghua; Wang Feng [State Key Laboratory Base of Novel Functional Materials and Preparation science, Faculty of Material Science and Chemical Engineering of Ninbo University, Ningbo, 315211 (China)], E-mail: ganning@nbu.edu.cn

    2009-09-01

    A sensitive amperometric immunosensor for {alpha}-fetoprotein (AFP), a tumor marker for the diagnosis of hepatocellular carcinoma (HCC), was constructed, The immunosensor is prepared by co-immobilizing [Cu{sub 2}(phen){sub 2}Cl{sub 2}] ({mu}-Cl){sub 2} (CuL), nano-Au/Chitosan(Chit) composite, horseradish peroxidase (HRP) and AFP antibody(anti-AFP) on a glassy carbon electrode (GCE). Firstly, CuL was irreversibly absorb on GCE electrode through {pi}-{pi} stacking interaction; then nano-Au/Chit composite was immobilized onto the electrode because of its excellent membrane-forming ability, finally HRP and anti-AFP was adsorbed onto the surface of the gold nanoparticles to construct GCE | CuL/nanoAu-chit/HRP/anti-AFP immunosensor. The preparation procedure of the electrode was characterized by electrochemical and spectroscopy method. The results showed that this immunosensor exhibited an excellent electrocatalytic response to the reduction of hydrogen peroxide (H{sub 2}O{sub 2}) without the aid of an electron mediator, offers a high-sensitivity (1710 nA {center_dot} ng{sup -1} {center_dot} ml{sup -1}) for the detection of AFP and has good correlation for detection of AFP in the range of 0.2 to 120.0 ng/ml with a detection limit of 0.05 ng/ml. The biosensor showed high selectivity as well as good stability and reproductivity.

  14. Disposable amperometric immunosensor based on layer-by-layer electro-depositing of the nanogold particles, prussian blue-modified indium tin oxide for determination of -fetoprotein

    Indian Academy of Sciences (India)

    Yan Li; Wen-Bin Liang; Li-Chao Fang; Hui Huang; Jun Deng; Jun-Song Zheng

    2009-11-01

    In this paper, a novel disposable immunosensor for the detection of -fetoprotein (AFP) based on the Indium tin oxide (ITO) modified by the sequential electro-deposition of the nanogold particles (nano-Au) and prussian blue (PB) is described. The ITO is employed to reduce the cost, instead of expensive gold electrode, glassy carbon electrode or platinum electrode. The layer-by-layer (LBL) electro-deposition of the nano-Au, PB is used for blocking the possible leakage from the substrate electrode surface and to prevent shedding of composite membrane. Under optimal conditions, the proposed immunosensor displays a broad linear response to AFP, the working range being 0.25 to 300.0 ng mL-1 with a detection limit of 0.04 ng mL-1. The studied immunosensor exhibits high sensitivity, fast analytical time and good stability. The proposed methodology is potentially attractive for clinical immunoassays.

  15. Study of the Amperometric Immunosensor Based on Gold Nanoparticles and Magnetic Nanocomposite%纳米金与磁性纳米复合物构建电流型免疫传感器的研究

    Institute of Scientific and Technical Information of China (English)

    朱宇萍; 袁若; 柴雅琴; 覃松; 苏会岚

    2012-01-01

    A new reagentless amperometric immunosensor for the detection of α-fetoprotein antibody (anti -AFP) molecule based on Nafion, Fe3O4@ thionine and gold nanoparticles was fabricated. Firstly, Fe3O4 @ thionine nanoparticles were prepared by magnetic separation method. Nafion., Fe3O4@ thionine nanoparticles were modified on glassy carbon electrode layer by layer through electrostatic adsorption, then the NH2 of thionine molecules was used to adsorbed the gold nanoparticles. Finally, with function of gold nanoparticles adsorbing AFP antibody, a reagentless amperometric AFP immunosensor with high stability and sensitivity was prepared successfully. Transmission electron microscopy and cyclic voltammetry were used to characterize the composite nanoparticles and the property of the immunosensor. Under the optimal conditions, the immunosensor had a good current response to AFP with a detection range of 0. 05 - 20 μg/L and a detection limit of 0. 03 μg/L.%制备了易于磁性分离、硫堇(Thi)包覆的四氧化三铁(Fe3O4)纳米复合物.通过静电吸附作用,将萘酚(Nafion)、Thi包覆的Fe3O4复合纳米粒子层层修饰到玻碳电极表面,再利用Thi分子中的氨基吸附纳米金,最后固载甲胎蛋白抗体,从而制得灵敏度高、稳定性好的无试剂电流型甲胎蛋白免疫传感器.实验通过透射电子显微镜(TEM)对该复合纳米粒子进行表征,并用循环伏安法考察了电极的电化学特性.结果表明,Fe3O4/Thi复合纳米粒子修饰的电极在实验过程中呈现出良好的氧化还原活性,其检测范围为0.05~20 μg/L,检出限为0.03 μg/L.

  16. Amperometric carbohydrate antigen 19-9 immunosensor based on three dimensional ordered macroporous magnetic Au film coupling direct electrochemistry of horseradish peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi [College of Sciences, Nanjing Tech University, Nanjing 211816 (China); Chen, Xiaojun, E-mail: chenxj_njut@126.com [College of Sciences, Nanjing Tech University, Nanjing 211816 (China); State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009 (China); Tang, Yin [Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang 215600 (China); Ge, Lingna; Guo, Buhua [College of Sciences, Nanjing Tech University, Nanjing 211816 (China); Yao, Cheng, E-mail: yaochengnjut@163.com [College of Sciences, Nanjing Tech University, Nanjing 211816 (China)

    2014-03-01

    Highlights: • Three dimensional ordered macroporous magnetic electrode was newly used in electrochemical immunosensor. • The large surface area of macroporous magnetic electrode could improve the immobilized amount of antibody. • Au nanoparticles functionalized SBA-15 was used to immobilize enzyme labeled Ab₂ and enzyme. • Macroporous magnetic electrode and Au nanoparticles composite facilitated the direct electron transfer of enzyme. • The immunoassay avoided adding electron transfer mediator, simplifying the procedure. Abstract: A sandwich-type electrochemical immunosensor for the detection of carbohydrate antigen 19-9 (CA 19-9) antigen based on the immobilization of primary antibody (Ab₁) on three dimensional ordered macroporous magnetic (3DOMM) electrode, and the direct electrochemistry of horseradish peroxidase (HRP) that was used as both the label of secondary antibody (Ab₂) and the blocking reagent. The 3DOMM electrode was fabricated by introducing core–shell Au–SiO₂@Fe₃O₄ nanospheres onto the surface of three dimensional ordered macroporous (3DOM) Au electrode via the application of an external magnet. Au nanoparticles functionalized SBA-15 (Au@SBA-15) was conjugated to the HRP labeled secondary antibody (HRP-Ab₂) through the Au–SH or Au–NH₃⁺ interaction, and HRP was also used as the block reagent. The formation of antigen–antibody complex made the combination of Au@SBA-15 and 3DOMM exhibit remarkable synergistic effects for accelerating direct electron transfer (DET) between HRP and the electrode. Under the optimal conditions, the DET current signal increased proportionally to CA 19-9 concentration in the range of 0.05 to 15.65 U mL⁻¹ with a detection limit of 0.01 U mL⁻¹. Moreover, the immunosensor showed high selectivity, good stability, satisfactory reproducibility and regeneration. Importantly, the developed method was used to assay clinical serum specimens, achieving a good relation with those obtained from

  17. A Renewable Amperometric Immunosensor for CRP Based on Magnetic Nano Particles Modified Screen Printed Electrode%可再生使用的磁性纳米修饰C反应蛋白电流型免疫传感器

    Institute of Scientific and Technical Information of China (English)

    侯建国; 曹玉廷; 周汉坤; 孟令花; 胡富陶; 干宁

    2011-01-01

    A renewable amperometric immunosensor for C reactive protein(CRP) based on a novel magnetic nano probes modified on screen printed electrode ( SPCE) was fabricated. The probes was prepared by horseradish peroxidase( HRP) labeled CRP antibody ( HRP-anti-CRP) assembled on nano Fe3O4( core)/Au( shell) (GMPs) particles. The immunosensor was prepared by following steps. Firstly, multi-walled carbon nanotubes ( MCNTs) -Thionine(Thi)-Nafion composite was prepared and dropped on the surface of SPCE to prepare the basic electrode (SPCE/MCNTs-Thi-Nafion). Secondly, the nanoprobes were introduced on the surface of the basic electrode by permanent magnet,then to prepare the immunosensor(SPCE/MCNTs-Thi-Nafion/HRP-anti-CRP/GMPs). Through one-step immunoassay format,the immunosensor was incubated with CRP solution. Under optimized conditions,the decreased current was proportional to the CRP concentration from 0.1 to 110ng/mL with a detection limit of 0.04 ng/mL at signal/noise ratio of 3 ,This method reduced the cost and simplified the preparation process of the immunosensor. The immunosensor can simultaneously realize separation, enrichment and determination, with high sensitivity and good stability,which would be valuable for clinical immunoassay for CRP in human serum.%利用Fe3O4(核)/Au(壳)(简称GMPs)标记C反应蛋白酶标抗体(HRP-anti CRP),构建了一类新型的磁性纳米探针(HRP-anti CRP/GMPs),将其修饰在丝网印刷电极(SPCE)表面构建了可再生使用的CRP安培型酶联免疫传感器.首先将多壁碳纳米管(MCNTs) -硫堇(Thi) -Nafion复合物固定于SPCE表面制备了基底电极SPCE/MCNTs-Thi-Nafion;进而外加磁场在SPCE背面,将HRP-anti CRP/GMPs探针吸附固定在基底电极表面.获得了免疫电极(SPCE/MCNTs-Thi-Nafion/HRP-antiCRP/GMPs)在含CRP溶液中温育后,对CRP检测线性浓度范围为0.1 ng/mL~110 ng/mL,检测下限为0.04 ng/mL(3σ).上述磁性探针表面具有较高的抗体和酶标记容量,故对待测

  18. Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis

    OpenAIRE

    Hiraiwa, Morgan; Kim, Jong-Hoon; Lee, Hyun-Boo; Inoue, Shinnosuke; Annie L Becker; Weigel, Kris M.; Cangelosi, Gerard A.; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2014-01-01

    Tuberculosis (TB) has been a major public health problem, which can be better controlled by using accurate and rapid diagnosis in low-resource settings. A simple, portable, and sensitive detection method is required for point-of-care (POC) settings. This paper studies an amperometric biosensor using a microtip immunoassay for a rapid and low cost detection of Mycobacterium Tuberculosis (MTB) in sputum. MTB in sputum is specifically captured on the functionalized microtip surface and detected ...

  19. Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis

    Science.gov (United States)

    Hiraiwa, Morgan; Kim, Jong-Hoon; Lee, Hyun-Boo; Inoue, Shinnosuke; Becker, Annie L.; Weigel, Kris M.; Cangelosi, Gerard A.; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2015-05-01

    Tuberculosis (TB) has been a major public health problem, which can be better controlled by using accurate and rapid diagnosis in low-resource settings. A simple, portable, and sensitive detection method is required for point-of-care (POC) settings. This paper studies an amperometric biosensor using a microtip immunoassay for a rapid and low-cost detection of Mycobacterium tuberculosis (MTB) in sputum. MTB in sputum is specifically captured on the functionalized microtip surface and detected by electric current. According to the numerical study, the current signal on the microtip surface is linearly changed with increasing immersion depth. Using a reference microtip, the immersion depth is compensated for a sensing microtip. On the microtip surface, target bacteria are concentrated and organized by a coffee-ring effect, which amplifies the electric current. To enhance the signal-to-noise ratio, both the sample processing and rinsing steps are presented with the use of deionized water as a medium for the amperometric measurement. When applied to cultured MTB cells spiked into human sputum, the detection limit was 100 CFU mL-1, comparable to a more labor-intensive fluorescence detection method reported previously.

  20. Nanostructured progesterone immunosensor using a tyrosinase-colloidal gold-graphite-Teflon biosensor as amperometric transducer

    Energy Technology Data Exchange (ETDEWEB)

    Carralero, Veronica [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain); Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain); Yanez-Sedeno, Paloma [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)]. E-mail: yseo@quim.ucm.es; Pingarron, Jose M. [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)

    2007-07-16

    A novel progesterone immunosensor using a colloidal gold-graphite-Teflon-tyrosinase composite biosensor as amperometric transducer is reported. A sequential competitive configuration between the analyte and progesterone labelled with alkaline phosphatase (AP) was used. Phenyl phosphate was employed as the AP-substrate and the enzyme reaction product, phenol, was oxidized by tyrosinase to o-quinone, which is subsequently reduced at -0.1 V at the biocomposite electrode. Variables such as the concentration of phenyl phosphate, the amount of antibody attached to the electrode surface, immersion time in a 2% BSA solution, working pH and incubation times in progesterone and AP conjugate were optimized. A linear calibration graph for progesterone was obtained between 0 and 40 ng mL{sup -1} with a slope value of -82.3 nA ng{sup -1} mL, and a detection limit of 0.43 ng mL{sup -1}. The time needed to reach the steady-state current from the addition of phenyl phosphate was 30-40 s. These analytical characteristics improve substantially those reported for other progesterone immunosensors. A lifetime of 14 days with no need to apply any regeneration procedure was also achieved. The usefulness of the immunosensor was evaluated by determining progesterone in milk samples spiked with the analyte at 5.0 and 1.5 ng mL{sup -1} concentration levels. Following a very simple procedure, involving only sample dilution, mean recoveries (n = 7) of 98 {+-} 3% and 99 {+-} 3%, respectively, were obtained.

  1. Disposable amperometric immunosensor system for rabbit IgG using a conducting polymer modified screen-printed electrode.

    Science.gov (United States)

    Darain, Farzana; Park, Sang-Un; Shim, Yoon-Bo

    2003-05-01

    A disposable and mediatorless immunosensor based on a conducting polymer (5,2':5'2"-terthiophene-3'-carboxylic acid) coated screen-printed carbon electrode has been developed using a separation-free homogeneous technique for the detection of rabbit IgG as a model analyte. Horseradish peroxidase (HRP) and streptavidin were covalently bonded with the polymer on the electrode and biotinylated antibody was immobilized on the electrode surface using avidin-biotin coupling. This sensor was based on the competitive assay between free and labeled antigen for the available binding sites of antibody. Glucose oxidase was used as a label and in the presence of glucose, H(2)O(2) formed by the analyte-enzyme conjugate was reduced by the enzyme channeling via HRP bonded on the electrode. The catalytic current was monitored amperometrically at -0.35 V vs. Ag/AgCl and this method showed a linear range of RIgG concentrations from 0.5 to 2 microg/ml with standard deviation +/-0.0145 (n=4). Detection limit was determined to be 0.33 microg/ml. PMID:12706591

  2. A study of a non-enzyme amperometric immunosensor for rapid detection of AFP based on carbon nanotubes modified glass carbon electrode%基于碳纳米管修饰的无酶型新型甲胎蛋白安培免疫传感器研究

    Institute of Scientific and Technical Information of China (English)

    贾立永; 郑磊; 干宁; Wen Wang; 王前

    2011-01-01

    目的 构建新型甲胎蛋白安培免疫传感器.方法 首先在玻碳电极(GCE)表面修饰一层羧基化碳纳米管(CNTs).然后利用带负电荷的DNA分子和带正电荷的硫堇之间的静电作用,层层自组装修饰硫堇以增强检测信号,然后利用硫堇的氨基固定纳米金,以便固定抗体,最后利用牛血清白蛋白封闭未结合位点.结果 修饰的碳纳米管能够显著地提高电极的导电性,利用层层组装技术修饰了5层硫堇.在优化的条件下(pH 7.0,温浴时间25 min),制作的甲胎蛋白免疫传感器线性范围在0.5~25 ng/ml内,检测限0.02 ng/ml.结论 成功利用层层自组装技术构建新型基于碳纳米管修饰的无酶型甲胎蛋白安培免疫传感器,该传感器灵敏度高,特异性好,有望成为原发性肝癌早期诊断的新方法.%Objective To construct a novel amperometric immunosensor for the detection of alpha-fetoprotein (AFP).Methods First,glass carbon electrode(GCE) was modified with multi-wall carbon nanotubes (CNTs) ,and then the positively charged thionine, as the mediator, was immobilized by the negatively charged DNA through the layer-by-layer method.nanoAu was used to immobilized anti-AFP,and BSA was used to block any remaining active sites.Results Carbon nanotubes can significantly enhanced the electric conductivity of the electrode and was modified with 5 layers of thionine.With the optimized experimental parameters (pH 7.0,incubation time is 25 min), the proposed immunosensor could detect AFP in a linear range from 0.5 to 25 ng/ml with a detection limit of 0.02 ng/ml at a signal-to-noise ratio of 3 (S/D = 3).Conclusion A non-enzyme amperometric immunosensor for Rapid Determination of AFP based on carbon nanotubes modified glass carbon electrode was successfully constructed through layer-by layer method and shows a good performance for determination of AFP.It provides a potential alternative tool for early diagnosis of primary liver cancer in clinical

  3. Polymer based amperometric hydrogen sensor

    International Nuclear Information System (INIS)

    A polymer based amperometric hydrogen sensor has been developed for measuring hydrogen in argon. Polyvinyl alcohol-phosphoric acid serves as the solid electrolyte for proton conduction. The electrolyte is sandwiched between two palladium films. Short circuit current between the film at room temperature is measured and is found to be linearly dependant on hydrogen concentration in argon to which one side of the film is exposed. The other side is exposed to air. The response time of the sensor is found to be improved on application of a D.C. potential of 200 mV in series. The sensitivity of the sensor is in ppm range. This may be sufficient for monitoring cover gas hydrogen in FBTR. Work is underway to improve the long-term stability of the sensor. (author)

  4. Sensitive electrochemical immunosensor based on three-dimensional nanostructure gold electrode

    Directory of Open Access Journals (Sweden)

    Zhong G

    2015-03-01

    Full Text Available Guangxian Zhong,1,2,* Ruilong Lan,3,* Wenxin Zhang,1,4 Feihuan Fu,5 Yiming Sun,1,4 Huaping Peng,1,4 Tianbin Chen,3 Yishan Cai,6 Ailin Liu,1,4 Jianhua Lin,2 Xinhua Lin1,4 1Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, 2Department of Orthopaedics, 3The Centralab, First Affiliated Hospital of Fujian Medical University, 4Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, 5Department of Endocrinology, The County Hospital of Anxi, Anxi, 6Fujian International Travel Healthcare Center, Fujian Entry-Exit Inspection and Quarantine Bureau, Fuzhou, People’s Republic of China *These authors contributed equally to this work Abstract: A sensitive electrochemical immunosensor was developed for detection of alpha-fetoprotein (AFP based on a three-dimensional nanostructure gold electrode using a facile, rapid, “green” square-wave oxidation-reduction cycle technique. The resulting three-dimensional gold nanocomposites were characterized by scanning electron microscopy and cyclic voltammetry. A “sandwich-type” detection strategy using an electrochemical immunosensor was employed. Under optimal conditions, a good linear relationship between the current response signal and the AFP concentrations was observed in the range of 10–50 ng/mL with a detection limit of 3 pg/mL. This new immunosensor showed a fast amperometric response and high sensitivity and selectivity. It was successfully used to determine AFP in a human serum sample with a relative standard deviation of <5% (n=5. The proposed immunosensor represents a significant step toward practical application in clinical diagnosis and monitoring of prognosis. Keywords: electrochemical immunosensors, three-dimensional nanostructure gold electrode, square-wave oxidation-reduction cycle, alpha-fetoprotein 

  5. Nanostructured conducting polymer based reagentless capacitive immunosensor.

    Science.gov (United States)

    Bandodkar, Amay Jairaj; Dhand, Chetna; Arya, Sunil K; Pandey, M K; Malhotra, Bansi D

    2010-02-01

    Nanostructured polyaniline (PANI) film electrophoretically fabricated onto indium-tin-oxide (ITO) coated glass plate has been utilized for development of an immunosensor based on capacitance change of a parallel plate capacitor (PPC) by covalently immobilizing anti-human IgG (Anti-HIgG) using N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide chemistry. These fabricated PANI/ITO and Anti-HIgG/PANI/ITO plates have been characterized using scanning electron microscopy, cyclic voltammetry, differential pulse voltammetry and Fourier transform infra-red studies. The capacitance measurements indicate that dielectric medium of this biologically modified PPC (Anti-HIgG/PANI/ITO) is sensitive to HIgG in 5 - 5 x 10(5) ng mL(-1) range and has lower detection limit of 1.87 ng mL(-1). The observed results reveal that this Anti-HIgG modified PPC can be used as a robust, easy-to-use, reagentless, sensitive and selective immunosensor for estimation of human IgG.

  6. Recent Trends in Field-Effect Transistors-Based Immunosensors

    Directory of Open Access Journals (Sweden)

    Ana Carolina Mazarin de Moraes

    2016-10-01

    Full Text Available Immunosensors are analytical platforms that detect specific antigen-antibody interactions and play an important role in a wide range of applications in biomedical clinical diagnosis, food safety, and monitoring contaminants in the environment. Field-effect transistors (FET immunosensors have been developed as promising alternatives to conventional immunoassays, which require complicated processes and long-time data acquisition. The electrical signal of FET-based immunosensors is generated as a result of the antigen-antibody conjugation. FET biosensors present real-time and rapid response, require small sample volume, and exhibit higher sensitivity and selectivity. This review brings an overview on the recent literature of FET-based immunosensors, highlighting a diversity of nanomaterials modified with specific receptors as immunosensing platforms for the ultrasensitive detection of various biomolecules.

  7. Amperometric biosensors based on conducting nanotubes

    OpenAIRE

    Kros, Alexander

    2000-01-01

    This thesis describes a multidisciplinary study towards the development of a glucose biosensor that in the future can be used for in vivo implantations. The research focuses on three major topics, viz. the construction of the glucose sensor, the development of a biocompatible coating and a study of the factors influencing the in vivo behaviour of implanted biosensors. The first part of this thesis describes the construction of an amperometric glucose sensor based on the enzyme glucose oxidase...

  8. EIS immunosensor based on magnetic nanoparticles for ochratoxim A determination

    International Nuclear Information System (INIS)

    Full text: Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium fungi. It occurs in a variety of foodstuff, including cereals, coffee, wine, grape juice and fruits juice. Maximum permitted levels have been established by the EU and several countries. Currently, there are several methods available for OTA monitoring in real samples, e.g. TLC, HPLC, ELISA immunosensors. Liquid chromatography with fluorescence detection (HPLC-FLD), coupled with immunoaffinity column or solid phase extraction as pretreatment method, has been validated and adopted as official standard for OTA determination. Also, an immunosensor based on electrochemical detection has been reported for rapid analysis of OTA in food and beverages. Our work proposes the development of a new sensitive immunosensor combining the use of magnetic nanoparticles and EIS (electrochemical impedance spectroscopy) detection principle. Anti-OTA antibody immobilised on magnetic nanoparticles were deposited on the EIS electrode surface by applying a magnetic field. Then, OTA sample solutions were added in the detection cell. Quantitative determination of OTA content was performed based on EIS detection. Experimental parameters of the immunosensor were set-up at the optimum values. Based on those values, the immunosensor allows to detect OTA in the range 1-10 ng/mL. The future perspective is to validate this immunochemical method using HPLC-FLD. (authors)

  9. Amperometric biosensors based on carbon composite transducers

    Science.gov (United States)

    Lu, Fang

    1998-12-01

    Much current work in analytical chemistry is devoted to design of biosensors. One particular area in this field is the development of enzyme-based amperometric biosensors for the quantitative determination of a series of substrates in clinical, environmental, industrial and agricultural significance. This dissertation focuses on the design of improved amperometric biosensors based on carbon composite transducers. The use of metallized carbons as transducer materials results in remarkably selective amperometric biosensors. Such enzyme-based transducers eliminate major electroactive interferences, and hence circumvent the need for mediators or membrane barriers. The remarkable selectivity of metal-dispersed carbons is attributed to their strong, preferential, electrocatalytic capacity towards the reductive detection of biologically-generated hydrogen peroxide. Such electrocatalytic activity allows metal-dispersed biosensors to be operated at the optimal potential region between +0.1 and -0.2 V, where the unwanted reactions are neglected resulting in the lowest noise level. Several new materials (e.g., ruthenium on carbon, rhodium on carbon, etc.) and constructions (e.g., carbon fiber, electrochemical co-deposition transducer, etc.) were applied in the development of novel enzyme-based transducers in order to improve the selectivity and applicability of amperometric biosensors. The susceptibility of first-generation oxidase amperometric biosensing to oxygen fluctuations can be improved by using oxygen-rich fluorocarbons as the pasting binders in carbon paste enzyme transducers. Such binders provide an internal supply of oxygen resulting in efficient detection in oxygen-deficit conditions. In particular, the use of poly-chlorotrifluorethylene (Kel-F) oil as carbon paste binder results in a well-defined response and an identical signal up to 40 mM glucose in both the presence and absence of oxygen. Comparing with mediated or wired enzyme-based transducers, such internal

  10. Current Trends in Nanomaterial-Based Amperometric Biosensors

    Directory of Open Access Journals (Sweden)

    Akhtar Hayat

    2014-12-01

    Full Text Available The last decade has witnessed an intensive research effort in the field of electrochemical sensors, with a particular focus on the design of amperometric biosensors for diverse analytical applications. In this context, nanomaterial integration in the construction of amperometric biosensors may constitute one of the most exciting approaches. The attractive properties of nanomaterials have paved the way for the design of a wide variety of biosensors based on various electrochemical detection methods to enhance the analytical characteristics. However, most of these nanostructured materials are not explored in the design of amperometric biosensors. This review aims to provide insight into the diverse properties of nanomaterials that can be possibly explored in the construction of amperometric biosensors.

  11. Nanomaterial-Based Electrochemical Immunosensors for Clinically Significant Biomarkers

    Directory of Open Access Journals (Sweden)

    Niina J. Ronkainen

    2014-06-01

    Full Text Available Nanotechnology has played a crucial role in the development of biosensors over the past decade. The development, testing, optimization, and validation of new biosensors has become a highly interdisciplinary effort involving experts in chemistry, biology, physics, engineering, and medicine. The sensitivity, the specificity and the reproducibility of biosensors have improved tremendously as a result of incorporating nanomaterials in their design. In general, nanomaterials-based electrochemical immunosensors amplify the sensitivity by facilitating greater loading of the larger sensing surface with biorecognition molecules as well as improving the electrochemical properties of the transducer. The most common types of nanomaterials and their properties will be described. In addition, the utilization of nanomaterials in immunosensors for biomarker detection will be discussed since these biosensors have enormous potential for a myriad of clinical uses. Electrochemical immunosensors provide a specific and simple analytical alternative as evidenced by their brief analysis times, inexpensive instrumentation, lower assay cost as well as good portability and amenability to miniaturization. The role nanomaterials play in biosensors, their ability to improve detection capabilities in low concentration analytes yielding clinically useful data and their impact on other biosensor performance properties will be discussed. Finally, the most common types of electroanalytical detection methods will be briefly touched upon.

  12. The Development of a New, Rapid, Amperometric Immunosensor for the Detection of Low Concentrations of Bacteria Part II: Optimization of the System for Escherichia coli

    Directory of Open Access Journals (Sweden)

    Eric Carnes

    2005-01-01

    Full Text Available The optimization of a flow-through immunoassay system was conducted to achieve rapid detection of low concentrations of E. coli bacteria. The system includes a new immunosensor that uses newly developed, disposable immunofiltration membranes to yield a system that is sensitive as well as simple. Comparison of the performance of this system with conventional immunoassays demonstrated a significantly shorter time for the assay. Optimization of the parameters of the system, including specific flow rates and concentrations, was conducted, resulting in an overall assay time of 17 min when a flow of 200 µL min-1 was used. The first stage of immunoreaction of immobilized antibodies with the analyte was found to saturate in 2 min. The second stage of immunoreaction with the enzyme-labeled conjugate exhibited a more complex behavior but became saturated in 6 min. The amperometric detection using the substrate gave a steady output signal after 3 min. All stages are separated by 2 min of washing by a rinsing buffer solution and the whole analysis is preceded by a 2-minute pre-washing stage in order to eliminate impurities which can lead to non-specific binding of immunoagents and substantial background noise. The linear working range for the immunoassay was found to be 50-1000 cells mL-1. The disposable immunofiltration membranes were found to retain 75% of their activity over a period of 7 days when refrigerated at 4°C. The short assay time, in combination with the ability to detect small concentrations of bacteria, permits the application of the developed system to near-real time detection of a wide range of analytes in many different applications, such as medical diagnostics, environmental applications and food quality control.

  13. 基于酶-抗体共固定二氧化锆纳米信号探针的瘦肉精安培免疫传感器研究%Amperometric Immunosensor for Clenbuterol Based on Enzyme-Antibody Coimmobilized ZrO2 Nano Probes as Signal Tag

    Institute of Scientific and Technical Information of China (English)

    詹盼; 杜晓雯; 干宁; 林赛钗; 李天华; 曹玉廷; 桑卫国

    2013-01-01

    A novel amperometic immunosensor for clenbuterol (CLB) detection based on enzyme-antibody co-immobilized zirconium dioxide (ZrO2) nanoprobes for signal amplification was developed.First,ZrO2 nanoparticles (ZNPs) were used to adsorb glucose oxidase (GOD) enzyme and CLB antibody (anti-CLB) to prepare the signal tag (ZNPs/GOD-anti CLB).Poly (diallyldimethylammonium chloride) (PDDA),hemin and Au nanoparticles (AuNPs) were assembled layer by layer on the surface of multi-walled carbon nanotubes (MWCNTs),which was modified by screen-printed electrodes (SPCE).By this means,the sensor (SPCE|WCNTs/PDDA/hemin/AuNPs),which could catalyze H2O2 into generate reduction current,was obtained.When CLB was detected,samples and ZNPG were embedded to the bottom of the 96-well plate in advance.Based on the reaction mechanism of competitive enzyme-linked immunoassay,CLB in samples would compete with slab CLB for the combination with the nanoprobe ZNPG.Mter reaction,glucose (Glu) was added to the 96-well plate,then the GOD catalyzed Glu to generate H2O2,which could be detected by the immunosensor for quantification.Current decline in value (△I) was inversely proportional to a certain concentration range of CLB and under the optimal conditions (pH 7.0,incubation at 37 ℃ for 30 min),the immunosensor provided an excellent response for CLB ranging from 0.003 μg/L to 100 μg/L with a detection limit of 1 ng/L (3σ).The sensitivity of this method was 2 orders of magnitude higher than that of the ELISA method due to the high density of GOD on the signal tag,which greatly amplify the detection signal.The average recovery of the standard addition was 93.6% and the relative standard deviation was less than 2.5%,which confirmed that prepared had a high precision.The results showed that the amperometic immunosensor was reusable,sensitive and rapid for on-the site determination of ultra trace amounts of CLB in food samples.%制备了基于酶-抗体共固定二氧化锆(ZrO2)纳米探针

  14. Amplification strategy based on gold nanoparticle-decorated carbon nanotubes for neomycin immunosensors.

    Science.gov (United States)

    Zhu, Ye; Son, Jung Ik; Shim, Yoon-Bo

    2010-11-15

    A novel amperometric immunosensor with an enhanced sensitivity for the detection of neomycin (Neo) was prepared by covalently immobilizing a monoclonal Neo antibody onto a new conducting polymer, poly-[2,5-di-(2-thienyl)-1H-pyrrole-1-(p-benzoic acid)] (pDPB), as a sensor probe. The probe was used to detect Neo in a sandwich-type approach, where the secondary antibody was attached to gold nanoparticle-decorated multi-wall carbon nanotubes labeled with hydrazine (Hyd-MWCNT(AuNP)-Ab(2)). Hydrazine on the conjugate served as a catalyst for the reduction of hydrogen peroxide, and the catalytic current was monitored at -0.45 V vs. Ag/AgCl. The performance of the immunosensor with and without AuNPs on the probe and the conjugate was compared. The parameters affecting the immunosensor response in terms of antibody dilution ratio, incubation time, pH, applied potential, and temperature were optimized. A linear dynamic range for Neo analysis was obtained between 10 ng/mL and 250 ng/mL with a detection limit of 6.76 ± 0.17 ng/mL. The proposed immunosensor was successfully applied to detect Neo content in real meat samples.

  15. Design and Development of a Microfluidic Amperometric Immunosensor for the Quantitative Detection of 2,6-dichlorobenzamide (BAM) Herbicide Residue in Ground Water

    DEFF Research Database (Denmark)

    Uthuppu, Basil

    Access to clean and safe-drinking water is essential to health and it is a basic human right. These days, nearly a billion people of the world‘s population do not have access to this precious commodity. Along with many other causes, pollution of water sources by pesticides poses a real threat...... to the availability of clean water. Thus, the need of rapid, reliable and on-site early warning systems to monitor the quality of water becomes as important as its preservation. This work describes the design and development of an automated microfluidic biosensor based on immunological methods (immunosensor......) to determine quantitatively the presence of pesticides in ground water. A herbicide residue, 2,6- dichlorobenzamide (BAM) is chosen as a model system in this research. The thesis describes how an existing, highly selective and sensitive BAM immunoassay is optimized to transfer it from a lab-based end...

  16. Single-walled carbon nanotube based transparent immunosensor for detection of a prostate cancer biomarker osteopontin

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Abhinav; Hong, Seongkyeol; Singh, Renu [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Jang, Jaesung, E-mail: jjang@unist.ac.kr [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)

    2015-04-15

    Highlights: • A transparent CNT immunosensor is presented for detection of a prostate cancer biomarker osteopontin. • This immunosensor showed a highly linear and reproducible behavior from 1 pg mL{sup −1} to 1 μg mL{sup −1}. • The limit of detection of the immunosensor was 0.3 pg mL{sup −1}. • This immunosensor demonstrated high selectivity against bovine serum albumin and human serum. - Abstract: Osteopontin (OPN) is involved in almost all steps of cancer development, and it is being investigated as a potential biomarker for a diagnosis and prognosis of prostate cancer. Here, we report a label-free, highly sensitive and transparent immunosensor based on single-walled carbon nanotubes (SWCNTs) for detection of OPN. A high density of −COOH functionalized SWCNTs was deposited between two gold/indium tin oxide electrodes on a glass substrate by dielectrophoresis. Monoclonal antibodies specific to OPN were covalently immobilized on the SWCNTs. Relative resistance change of the immunosensors was measured as the concentration of OPN in phosphate buffer saline (PBS) and human serum was varied from 1 pg mL{sup −1} to 1 μg mL{sup −1} for different channel lengths of 2, 5, and 10 μm, showing a highly linear and reproducible behavior (R{sup 2} > 97%). These immunosensors were also specific to OPN against another test protein, bovine serum albumin, PBS and human serum, showing that a limit of detection for OPN was 0.3 pg mL{sup −1}. This highly sensitive and transparent immunosensor has a great potential as a simple point-of-care test kit for various protein biomarkers.

  17. 检测牛奶中结合珠蛋白的电流型免疫传感器的研制%Development of an amperometric immunosensor for detection of haptoglobin in cow milk

    Institute of Scientific and Technical Information of China (English)

    丁守强; 刘彬; 谭勋; 潘韬

    2011-01-01

    Increased haptoglobin( Hp) concentration in milk is one of the indictors of subclinical mastitis in dairy cows. The present study was conducted to develop an amperometric immunosensor for quantitative detection of Hp in cow milk using three-electrode-system as basic apparatus. The gold electrode of the electrochemical system was defined to be the working electrode of immunosensor. L-cysteine,gold nanoparticles(GNP)and anti-bovine Hp antibody were fabricated in sequence onto the surface of the working electrode by layer-by-layer self-assembly technique. The immunosensor was of good reproducibility and stability, with detectable linear range between 15 and 100 mg·L-1 and a limit of detection( LOD)by 0. 63 mg·L-1. The concentration of Hp in milk from cows with subclinical mastitis was detected using immunosensor and commercial ELISA kit,respectively,and agreement between the results obtained by the two methods was satisfactory (f>0.05). The immunosensor can be used to quantitatively detect the Hp in milk,thereby providing a promising method for diagnosis of subclinical mastitis in dairy cows.%为构建可定量检测牛奶中结合珠蛋白(Hp)含量的电流型免疫传感器,以三电极系统中的金电极为工作电极,采用层层自组装技术将L-半胱氨酸、纳米金颗粒和抗牛Hp抗体依次组装在工作电极上,制成免疫传感器.制成的免疫传感器对Hp的线性检测范围为15~100 mg·L-1,最低检测限为0.63 mg· L-1,并具有较好的重现性和稳定性.分别采用该传感器和ELISA检测试剂盒对隐性乳房炎患牛乳样中的Hp含量进行检测的结果表明,两种检测结果间无显著差异(P>0.05).结论:制备的免疫传感器可定量检测牛奶中的结合珠蛋白(Hp).

  18. Development of an Immunosensor Based on Layered Double Hydroxides for MMR Cancer Biomarker Detection.

    Science.gov (United States)

    Hammami, M; Soussou, A; Idoudi, F; Cohen-Bouhacina, T; Bouhaouala-Zahar, B; Baccar, Z M

    2015-10-01

    As a potential biomarker for the investigation of cancer inflammatory profiles, macrophage mannose receptor (MMR, CD206) is herein selected to develop an immunosensor based on layered double hydroxide (LDH). Like an endocyte C-type lectin receptor, MMR plays an important role in immune homeostasis by scavenging unwanted mannose glycoproteins. It attracts a progressive attention thanks to its particularly high expression within the tumor microenvironment. There is a great of interest to develop an immunosensor based on an antibody specific to MMR for detection of stroma versus tumor cells. In this work, we studied the feasibility of high sensitive MMR cancer Screen Printed Electrode (SPE) immunosensor. Working electrode of commercialized SPE was modified by immobilization of specific antibody (anti-MMR) into thin layer of LDH nanomaterials. Structural, morphological, and surface properties of LDHs were studied by X-Ray diffraction, atomic force microscopy and Infrared spectroscopy in ATR. Cyclic Voltammetry technique was used to study interaction between the human recombinant MMR protein (rHu-MMR, NSO derived) and an immobilized antibody into developed immunosensor. High specific response of -11.72 μA/ng.mL(-1) (with a correlation coefficient of R(2)=0.994 ) were obtained in linear range of 0.05 ng/mL to 10.0 ng/mL of specific recombinant antigen. The limit of detection (LOD) was less than 15.0 pg/mL. From these attractive results, the feasibility of an electrochemical immunosensor for cancer was proved. Additional experiments to study stability and reproducibility the immunosensor should be completed in perspective to use these anti-MMR based immunosensors for sensing human MMR in patient biopsies and sera. PMID:26316191

  19. Immunosensor Based on Surface Plasmon Resonance for Antigen Recognition

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel immunosensor based on surface plasmon resonance(SPR)has been developed for the recognition of antigen.The sensor was designed on the basis of the fixed angle of incidence and measuring the reflected intensities in a wavelength range of 430-750 nm in real-time. An ultra-bright white light-emitting diode(LED)was used as the light source. Molecular self-assembling in solution was used to form the sensing membrane on gold substrate. It has been seen that the sensitivity of the SPR sensor with 3-mercaptopropionic acid(MPA)/protein A(SPA) sensing membrane is considerably higher than that with MPA or SPA modified Sensing membrane. The kinetic processes on the sensing membrane were studied. The human B factor(Bf), an activator of complement 3(C3), was recognized among the other antigens. This sensor can also be used for other antigen/antibody or adaptor/receptor recognition. Under optimized experimental conditions, the sensor has good selectivity, repeatability, and reversibility.

  20. An Effective Amperometric Biosensor Based on Gold Nanoelectrode Arrays

    OpenAIRE

    Zhu Yingchun; Zeng Yi; Xu Fangfang; Liu Yanyan

    2008-01-01

    Abstract A sensitive amperometric biosensor based on gold nanoelectrode array (NEA) was investigated. The gold nanoelectrode array was fabricated by template-assisted electrodeposition on general electrodes, which shows an ordered well-defined 3D structure of nanowires. The sensitivity of the gold NEA to hydrogen peroxide is 37 times higher than that of the conventional electrode. The linear range of the platinum NEA toward H2O2is from 1 × 10−6to 1 × 10−2 M, covering fou...

  1. Single-domain antibody based thermally stable electrochemical immunosensor.

    Science.gov (United States)

    Singh, Aparajita; Pasha, Syed Khalid; Manickam, Pandiaraj; Bhansali, Shekhar

    2016-09-15

    Conventional monoclonal and polyclonal antibodies are sensitive to changes in environmental factors such as temperature, pH, humidity, etc. This limits the current cost-effective and portable electrochemical immunosensors in harsh environments. Using Ricin Chain-A, a naturally occurring toxin, as a model analyte we report fabrication of a thermally stable electrochemical immunosensor. Single-domain antibodies (sdAb) or nanobodies have been employed as recognition elements for direct detection of Ricin at temperatures great than 4°C. Immunosensor fabricated using the conventional Ricin monoclonal and polyclonal antibodies have also been demonstrated for comparison. In the case of sdAb immunosensor, Ricin was detected in a linear range of 1log(fg/mL)-1log(μg/mL) with a sensitivity of 0.07μA/log(g/mL)/cm(2) using cyclic voltammetry. The fabricated miniaturized sensors have demonstrated higher shelf life and stability at temperatures up to 40°C. Therefore these electrochemical sensors can be integrated as a part of a portable device for point-of-care immunosensing. PMID:27125838

  2. An Effective Amperometric Biosensor Based on Gold Nanoelectrode Arrays

    Science.gov (United States)

    Liu, Yanyan; Zhu, Yingchun; Zeng, Yi; Xu, Fangfang

    2009-03-01

    A sensitive amperometric biosensor based on gold nanoelectrode array (NEA) was investigated. The gold nanoelectrode array was fabricated by template-assisted electrodeposition on general electrodes, which shows an ordered well-defined 3D structure of nanowires. The sensitivity of the gold NEA to hydrogen peroxide is 37 times higher than that of the conventional electrode. The linear range of the platinum NEA toward H2O2 is from 1 × 10-6 to 1 × 10-2 M, covering four orders of magnitudes with detection limit of 1 × 10-7 M and a single noise ratio (S/N) of four. The enzyme electrode exhibits an excellent response performance to glucose with linear range from 1 × 10-5 to 1 × 10-2 M and a fast response time within 8 s. The Michaelis-Menten constant km and the maximum current density i max of the enzyme electrode were 4.97 mM and 84.60 μA cm-2, respectively. This special nanoelectrode may find potential application in other biosensors based on amperometric signals.

  3. An Effective Amperometric Biosensor Based on Gold Nanoelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Zhu Yingchun

    2008-01-01

    Full Text Available Abstract A sensitive amperometric biosensor based on gold nanoelectrode array (NEA was investigated. The gold nanoelectrode array was fabricated by template-assisted electrodeposition on general electrodes, which shows an ordered well-defined 3D structure of nanowires. The sensitivity of the gold NEA to hydrogen peroxide is 37 times higher than that of the conventional electrode. The linear range of the platinum NEA toward H2O2is from 1 × 10−6to 1 × 10−2 M, covering four orders of magnitudes with detection limit of 1 × 10−7 M and a single noise ratio (S/N of four. The enzyme electrode exhibits an excellent response performance to glucose with linear range from 1 × 10−5to 1 × 10−2 M and a fast response time within 8 s. The Michaelis–Menten constantkm and the maximum current densityi maxof the enzyme electrode were 4.97 mM and 84.60 μA cm−2, respectively. This special nanoelectrode may find potential application in other biosensors based on amperometric signals.

  4. ZnO-Based Amperometric Enzyme Biosensors

    Directory of Open Access Journals (Sweden)

    Helong Jiang

    2010-02-01

    Full Text Available Nanostructured ZnO with its unique properties could provide a suitable microenvironment for immobilization of enzymes while retaining their biological activity, and thus lead to an expanded use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance. ZnO-based enzyme electrochemical biosensors are summarized in several tables for an easy overview according to the target biosensing analyte (glucose, hydrogen peroxide, phenol and cholesterol, respectively. Moreover, recent developments in enzyme electrochemical biosensors based on ZnO nanomaterials are reviewed with an emphasis on the fabrications and features of ZnO, approaches for biosensor construction (e.g., modified electrodes and enzyme immobilization and biosensor performances.

  5. ZnO-Based Amperometric Enzyme Biosensors

    OpenAIRE

    Helong Jiang; Baoping Wang; Xiaobing Zhang; Zhiwei Zhao; Wei Lei

    2010-01-01

    Nanostructured ZnO with its unique properties could provide a suitable microenvironment for immobilization of enzymes while retaining their biological activity, and thus lead to an expanded use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance. ZnO-based enzyme electrochemical biosensors are summarized in several tables for an easy overview according to the target biosensing analyte (glucose, hydrogen peroxide, phenol and cholesterol)...

  6. Modelling Amperometric Biosensors Based on Chemically Modified Electrodes

    Science.gov (United States)

    Baronas, Romas; Kulys, Juozas

    2008-01-01

    The response of an amperometric biosensor based on a chemically modified electrode was modelled numerically. A mathematical model of the biosensor is based on a system of non-linear reaction-diffusion equations. The modelling biosensor comprises two compartments: an enzyme layer and an outer diffusion layer. In order to define the main governing parameters the corresponding dimensionless mathematical model was derived. The digital simulation was carried out using the finite difference technique. The adequacy of the model was evaluated using analytical solutions known for very specific cases of the model parameters. By changing model parameters the output results were numerically analyzed at transition and steady state conditions. The influence of the substrate and mediator concentrations as well as of the thicknesses of the enzyme and diffusion layers on the biosensor response was investigated. Calculations showed complex kinetics of the biosensor response, especially when the biosensor acts under a mixed limitation of the diffusion and the enzyme interaction with the substrate.

  7. 3D label-free prostate specific antigen (PSA) immunosensor based on graphene-gold composites.

    Science.gov (United States)

    Jang, Hee Dong; Kim, Sun Kyung; Chang, Hankwon; Choi, Jeong-Woo

    2015-01-15

    Highly sensitive and label-free detection of the prostate specific antigen (PSA) remains a challenge in the diagnosis of prostate cancer. Here, a novel three-dimensional (3D) electrochemical immunosensor capable of sensitive and label-free detection of PSA is reported. This unique immunosensor is equipped with a highly conductive graphene (GR)-based gold (Au) composite modified electrode. The GR-based Au composite is prepared using aerosol spray pyrolysis and the morphology of the composite is the shape of a crumpled GR ball decorated with Au nanoparticles. Unlike the previous research, this novel 3D immunosensor functions very well over a broad linear range of 0-10 ng/mL with a low detection limit of 0.59 ng/mL; furthermore, it exhibits a significantly increased electron transfer and high sensitivity toward PSA. The highest rate of current change with respect to the PSA concentration is 5 μA/(ng/mL). Satisfactory selectivity, reproducibility, and stability of the 3D immunosensor are also exhibited. PMID:25150936

  8. Screen-printed carbon electrode-based electrochemical immunosensor for rapid detection of microalbuminuria.

    Science.gov (United States)

    Tsai, Jang-Zern; Chen, Ching-Jung; Settu, Kalpana; Lin, Yu-Feng; Chen, Chien-Lung; Liu, Jen-Tsai

    2016-03-15

    A urinary microalbumin test is used to detect early signs of kidney damage in people who have a risk of chronic kidney disease, such as those with diabetes or hypertension. In this study, we developed a screen-printed carbon electrode-based immunosensor for the detection of microalbumin in urine. Anti-human albumin antibodies were immobilized on the screen-printed sensor surface by the covalent immobilization method. Cyclic voltammetry (CV) and scanning electron microscopy with an energy dispersive spectroscopical (SEM-EDS) analysis demonstrated that the modification process was well performed. Chronoamperometric (CA) electrochemical measurement technique was employed for the quantitative detection of albumin. The electrochemical measurements performed with some possible interfering compounds normally present in urine (ascorbic acid, uric acid, glucose and creatinine samples) demonstrated a high specificity and selectivity of this immunosensor in albumin detection. Under optimum conditions, the immunosensor can detect urinary albumin in a wide linear range from 10 µg/ml to 300 µg/ml with a detection limit of 9.7 µg/ml. The excellent performance of this immunosensor was confirmed by analyzing microalbumin in urine samples; the results were in good agreement with those obtained by the standard immunoturbidimetric method. The biosensor proposed herein is easy to prepare and can be used for low-cost, rapid, and sensitive screening of microalbuminuria. This approach provides a promising platform for developing clinical point-of-care diagnostic applications. PMID:26579935

  9. A novel nanoparticle-based disposable electrochemical immunosensor for diagnosis of exposure to toxic organophosphorus agents

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Donglai; Wang, Jun; Wang, Limin; Du, Dan; Timchalk, Charles; Barry, Richard C.; Lin, Yuehe

    2011-11-15

    We present a novel disposable electrochemical immunosensor for highly selective and sensitive detection of organophosphorylated butyrylcholinesterase (OP-BChE), a specific biomarker for exposure to toxic organophosphorus agents. In our new approach, the zirconia nanoparticles (ZrO-2) were employed to selectively capture the OP moiety of OP-BChE adducts, and followed by quantum dot (QD)-tagged anti-BChE antibodies for amplified quantification. The captured CdSe-QD tags can be sensitively detected by stripping voltammetry using in situ bismuth-plating method. The OP agent, diisopropylfluorophosphate (DFP), was selected to prepare OP-BChE adducts in various matrices. The formation of OP-BChE adducts in plasma sample was confirmed using mass spectroscopy. The developed electrochemical immunosensor demonstrates a highly linear voltammetric response over the range of 0.1 to 30 nM OP-BChE. Moreover, the immunosensor has been successfully applied for the detection of OP-BChE adducts in the plasma samples. This novel nanoparticle-based electrochemical immunosensor thus provides an alternative way for designing simple, fast, sensitive, and cost-effective sensing platform for on-site screening/evaluating exposure to a variety of OP agents.

  10. Flow-injection amperometric glucose biosensors based on graphene/Nafion hybrid electrodes

    International Nuclear Information System (INIS)

    Graphical abstract: Amperometric biosensors based on graphene hybrids showed the fast, sensitive, and stable amperometric responses in the flow injection system for automatically monitoring glucose. Display Omitted Highlights: → Flow-injection amperometric glucose biosensors were fabricated using reduced graphene oxide/Nafion hybrids. → The electrochemical kinetics of biosensors were comprehensively investigated by analysing electron transfer rate, charge transfer resistance, and ion diffusion coefficient, respectively. → The biosensors exhibited the fast, sensitive, and stable amperometric responses in the flow injection system for detecting glucose. - Abstract: In this research, we demonstrated the fabrication of flow-injection amperometric glucose biosensors based on RGO/Nafion hybrids. The nanohybridization of the reduced graphene oxide (RGO) by Nafion provided the fast electron transfer (ET) for the sensitive amperometric biosensor platforms. The ET rate (ks) and the charge transfer resistance (RCT) of GOx-RGO/Nafion hybrids were evaluated to verify the accelerated ET. Moreover, hybrid biosensors revealed a quasi-reversible and surface controlled process, as confirmed by the low peak-to-peak (ΔEp) and linear relations between Ip and scan rate (ν). Hybrid biosensors showed the fast response time of ∼3 s, the sensitivity of 3.8 μA mM-1 cm-2, the limit of detection of 170 μM, and the linear detection range of 2-20 mM for the flow-injection amperometric detection of glucose. Furthermore, interference effect of oxidizable species such as ascorbic acid (AA) and uric acid (UA) on the performance of hybrid biosensors was prevented at the operating potential of -0.20 V even under the flow injection mode. Therefore, the fast, sensitive, and stable amperometric responses of hybrid biosensors in the flow injection system make it highly suitable for automatically monitoring glucose.

  11. Flow-injection amperometric glucose biosensors based on graphene/Nafion hybrid electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Bong Gill, E-mail: k1811@kaist.ac.kr [Department of Chemical and Biomolecular Engineering (BK21 Program), KAIST, Daejeon 305-701 (Korea, Republic of); Im, Jinkyu, E-mail: JINQ@paran.com [Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 1 Hoegidong, Dongdamoongu, Seoul (Korea, Republic of); Kim, Hoon Sik, E-mail: khs2004@khu.ac.kr [Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 1 Hoegidong, Dongdamoongu, Seoul (Korea, Republic of); Park, HoSeok, E-mail: phs0727@khu.ac.kr [Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1 Seochon-dong, Giheung-gu, Youngin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2011-11-30

    Graphical abstract: Amperometric biosensors based on graphene hybrids showed the fast, sensitive, and stable amperometric responses in the flow injection system for automatically monitoring glucose. Display Omitted Highlights: > Flow-injection amperometric glucose biosensors were fabricated using reduced graphene oxide/Nafion hybrids. > The electrochemical kinetics of biosensors were comprehensively investigated by analysing electron transfer rate, charge transfer resistance, and ion diffusion coefficient, respectively. > The biosensors exhibited the fast, sensitive, and stable amperometric responses in the flow injection system for detecting glucose. - Abstract: In this research, we demonstrated the fabrication of flow-injection amperometric glucose biosensors based on RGO/Nafion hybrids. The nanohybridization of the reduced graphene oxide (RGO) by Nafion provided the fast electron transfer (ET) for the sensitive amperometric biosensor platforms. The ET rate (k{sub s}) and the charge transfer resistance (R{sub CT}) of GOx-RGO/Nafion hybrids were evaluated to verify the accelerated ET. Moreover, hybrid biosensors revealed a quasi-reversible and surface controlled process, as confirmed by the low peak-to-peak ({Delta}E{sub p}) and linear relations between I{sub p} and scan rate ({nu}). Hybrid biosensors showed the fast response time of {approx}3 s, the sensitivity of 3.8 {mu}A mM{sup -1} cm{sup -2}, the limit of detection of 170 {mu}M, and the linear detection range of 2-20 mM for the flow-injection amperometric detection of glucose. Furthermore, interference effect of oxidizable species such as ascorbic acid (AA) and uric acid (UA) on the performance of hybrid biosensors was prevented at the operating potential of -0.20 V even under the flow injection mode. Therefore, the fast, sensitive, and stable amperometric responses of hybrid biosensors in the flow injection system make it highly suitable for automatically monitoring glucose.

  12. Modelling Amperometric Biosensors Based on Chemically Modified Electrodes

    Directory of Open Access Journals (Sweden)

    Juozas Kulys

    2008-08-01

    Full Text Available The response of an amperometric biosensor based on a chemically modified electrode was modelled numerically. A mathematical model of the biosensor is based on a system of non-linear reaction-diffusion equations. The modelling biosensor comprises two compartments: an enzyme layer and an outer diffusion layer. In order to define the main governing parameters the corresponding dimensionless mathematical model was derived. The digital simulation was carried out using the finite difference technique. The adequacy of the model was evaluated using analytical solutions known for very specific cases of the model parameters. By changing model parameters the output results were numerically analyzed at transition and steady state conditions. The influence of the substrate and mediator concentrations as well as of the thicknesses of the enzyme and diffusion layers on the biosensor response was investigated. Calculations showed complex kinetics of the biosensor response, especially when the biosensor acts under a mixed limitation of the diffusion and the enzyme interaction with the substrate.

  13. Microfabricated, amperometric, enzyme-based biosensors for in vivo applications.

    Science.gov (United States)

    Weltin, Andreas; Kieninger, Jochen; Urban, Gerald A

    2016-07-01

    Miniaturized electrochemical in vivo biosensors allow the measurement of fast extracellular dynamics of neurotransmitter and energy metabolism directly in the tissue. Enzyme-based amperometric biosensing is characterized by high specificity and precision as well as high spatial and temporal resolution. Aside from glucose monitoring, many systems have been introduced mainly for application in the central nervous system in animal models. We compare the microsensor principle with other methods applied in biomedical research to show advantages and drawbacks. Electrochemical sensor systems are easily miniaturized and fabricated by microtechnology processes. We review different microfabrication approaches for in vivo sensor platforms, ranging from simple modified wires and fibres to fully microfabricated systems on silicon, ceramic or polymer substrates. The various immobilization methods for the enzyme such as chemical cross-linking and entrapment in polymer membranes are discussed. The resulting sensor performance is compared in detail. We also examine different concepts to reject interfering substances by additional membranes, aspects of instrumentation and biocompatibility. Practical considerations are elaborated, and conclusions for future developments are presented. Graphical Abstract ᅟ. PMID:26935934

  14. Quantum dots based electrochemiluminescent immunosensor by coupling enzymatic amplification for ultrasensitive detection of clenbuterol

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •An ultrasensitive ECL immunosensor of CdSe QDs for clenbuterol determination is developed. •The CdSe QDs showed great biocompatibility and could be easier to make direct use of such QDs in the region of biological system. •Enzymatic amplification strategy was proposed by combining the coreactant and pAb/GaRIgG-HRP. •Enzymatic amplification increased ECL emission and extended the analyte in presence of substrate. •It provided a method for detecting clenbuterol and enlarged the usage of QDs in ECL biosensing. -- Abstract: An ultrasensitive electrochemiluminescence (ECL) immunosensor based on CdSe quantum dots (QDs) has been designed for the detection of clenbuterol. The immunosensor was fabricated by layer by layer and characterized with atomic force microscopic images (AFM) and electrochemical impedance spectra (EIS). In oxygen-saturated pH = 9.0 Tris-HCl buffer, a strong ECL emission of QDs could be observed during the cathodic process due to the H2O2 product from electrochemical reduction of dissolved oxygen. Upon the formation of immunocomplex, the second antibody labeled with horseradish peroxidase was simply immobilized on the electrode surface. The ECL emission decreased since steric hindrance of the immunocomplex slowed down the electron-transfer speed of dissolved oxygen, and also could be greatly amplified by an enzymatic cycle to consume the self-produced coreactant. Using clenbuterol as model analyte, the ECL intensity was determined by the concentration of competitive immunoassay of clenbuterol with a wide calibration in the range of 0.05 ng mL−1 to 1000 ng mL−1, and a low detection limit was 0.02 ng mL−1. The immunosensor shows good stability and fabrication reproducibility. It was applied to detecting practical samples with the satisfactory results. This immunosensing strategy opens a new avenue for detection of residue and application of QDs in ECL biosensing

  15. Nanoparticle-based immunosensor with apoferritin templated metallic phosphate label for quantification of phosphorylated acetylcholinesterase

    Energy Technology Data Exchange (ETDEWEB)

    Du, Dan; Chen, Aiqiong; Xie, Yunying; Zhang, Aidong; Lin, Yuehe

    2011-05-15

    A new sandwich-like electrochemical immunosensor has been developed for quantification of organophosphorylated acetylcholinesterase (OP-AChE), an exposure biomarker of organophosphate pesticides and nerve agents. Zirconia nanoparticles (ZrO2 NPs) were anchored on a screen printed electrode (SPE) to preferably capture OP-AChE adducts by metal chelation with phospho-moieties, which was selectively recognized by lead phosphate-apoferritin labeled anti-AChE antibody (LPA-anti-AChE). The sandwich-like immunoreactions were performed among ZrO2 NPs, OP-AChE and LPA-anti-AChE to form ZrO2/OP-AChE/LPA-anti-AChE complex and the released lead ions were detected on a disposable SPE. The binding affinity was investigated by both square wave voltammetry (SWV) and quartz crystal microbalance (QCM) measurements. The proposed immunosensor yielded a linear response current over a broad OP-AChE concentrations range from 0.05 nM to 10 nM, with detection limit of 0.02 nM, which has enough sensitivity for monitoring of low-dose exposure to OPs. This method avoids the drawback of unavailability of commercial OP-specific antibody as well as amplifies detection signal by using apoferritin encoded metallic phosphate nanoparticle tags. This nanoparticle-based immunosensor offers a new method for rapid, sensitive, selective and inexpensive quantification of phosphorylated adducts for monitoring of OP pesticides and nerve agents exposures.

  16. Side-polished fiber immunosensor based on surface plasmon resonance for detection of Legionella pneumophila

    Science.gov (United States)

    Tsao, Yu-Chia; Yang, Yi-Wen; Tsai, Woo-Hu; Yan, Tsong-Rong

    2008-02-01

    Side-polished fiber immunosensor based on surface plasmon resonance (SPR) onto self-assembled protein A layer was proposed for the detection of Legionella pneumophila. A self-assembled protein A layer on gold (Au) surface was fabricated by adsorbing a mixture of 11-mercaptoundecanoic acid (MUA) and activated by N-Ethyl-N'-(3-dimethylaminopropyl) carbodiimide/ N-Hydroxysuccinimide (EDC/NHS). The formation of self-assembled protein A and gold layer on side-polished surface and the binding of antibody and antigen in series were confirmed by SPR response on spectrum. The binding protein A layer can improve the sensitivity, which indirectly supports the configurations that antibody layer is immobilized on the binding protein A layer with a well-ordered orientation. The surface morphology analyses of self-assembled protein A layer on Au substrate and monoclonal antibody against L. pneumophila immobilized on protein A were demonstrated by SPR dip shifts on optical spectrum analyzer. The SPR fiber immunosensor for detection of L. pneumophila was developed and the detection limit was 10 CFU/ml with the SPR dip shift in wavelength from 1070 to 1105nm. The current fabrication technique of a SPR immunosensor using optical fiber for the detection of Legionella pneumophila could be applied to construct other biosensor.

  17. Quantum dots based electrochemiluminescent immunosensor by coupling enzymatic amplification for ultrasensitive detection of clenbuterol.

    Science.gov (United States)

    Yao, Xun; Yan, Panpan; Tang, Qinghui; Deng, Anping; Li, Jianguo

    2013-10-10

    An ultrasensitive electrochemiluminescence (ECL) immunosensor based on CdSe quantum dots (QDs) has been designed for the detection of clenbuterol. The immunosensor was fabricated by layer by layer and characterized with atomic force microscopic images (AFM) and electrochemical impedance spectra (EIS). In oxygen-saturated pH=9.0 Tris-HCl buffer, a strong ECL emission of QDs could be observed during the cathodic process due to the H2O2 product from electrochemical reduction of dissolved oxygen. Upon the formation of immunocomplex, the second antibody labeled with horseradish peroxidase was simply immobilized on the electrode surface. The ECL emission decreased since steric hindrance of the immunocomplex slowed down the electron-transfer speed of dissolved oxygen, and also could be greatly amplified by an enzymatic cycle to consume the self-produced coreactant. Using clenbuterol as model analyte, the ECL intensity was determined by the concentration of competitive immunoassay of clenbuterol with a wide calibration in the range of 0.05 ng mL(-1) to 1000 ng mL(-1), and a low detection limit was 0.02 ng mL(-1). The immunosensor shows good stability and fabrication reproducibility. It was applied to detecting practical samples with the satisfactory results. This immunosensing strategy opens a new avenue for detection of residue and application of QDs in ECL biosensing.

  18. The phenomenon of fluorescence in immunosensors.

    Science.gov (United States)

    Kłos-Witkowska, Aleksandra

    2016-01-01

    The phenomenon of fluorescence in immunosensors is described in this paper. Both structure and characteristics of biosensors and immunosensors are presented. Types of immunosensors and the response of bioreceptor layers to the reaction with analytes as well as measurements of electrochemical, piezoelectric and optical parameters in immunosensors are also presented. In addition, detection techniques used in studies of optical immunosensors based on light-matter interactions (absorbance, reflectance, dispersion, emission) such as: UV/VIS spectroscopy, reflectometric interference spectroscopy (RIfs), surface plasmon resonance (SPR), optical waveguide light-mode spectroscopy (OWLS), fluorescence spectroscopy. The phenomenon of fluorescence in immunosensors and standard configurations of immunoreactions between an antigen and an antibody (direct, competitive, sandwich, displacement) is described. Fluorescence parameters taken into account in analyses and fluorescence detection techniques used in research of immunosensors are presented. Examples of immunosensor applications are given. PMID:27192088

  19. A Label-Free Electrochemical Immunosensor for Carbofuran Detection Based on a Sol-Gel Entrapped Antibody

    Directory of Open Access Journals (Sweden)

    Qingqing Li

    2011-10-01

    Full Text Available In this study, an anti-carbofuran monoclonal antibody (Ab was immobilized on the surface of a glassy carbon electrode (GCE using silica sol-gel (SiSG technology. Thus, a sensitive, label-free electrochemical immunosensor for the direct determination of carbofuran was developed. The electrochemical performance of immunoreaction of antigen with the anti-carbofuran monoclonal antibody was investigated by cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS, in which phosphate buffer solution containing [Fe(CN6]3−/4− was used as the base solution for test. Because the complex formed by the immunoreaction hindered the diffusion of [Fe(CN6]3−/4− on the electrode surface, the redox peak current of the immunosensor in the CV obviously decreased with the increase of the carbofuran concentration. The pH of working solution, the concentration of Ab and the incubation time of carbofuran were studied to ensure the sensitivity and conductivity of the immunosensor. Under the optimal conditions, the linear range of the proposed immunosensor for the determination of carbofuran was from 1 ng/mL to 100 μg/mL and from 50 μg/mL to 200 μg/mL with a detection limit of 0.33 ng/mL (S/N = 3. The proposed immunosensor exhibited good high sensitivity and stability, and it was thus suitable for trace detection of carbofuran pesticide residues.

  20. A label-free electrochemical immunosensor for carbofuran detection based on a sol-gel entrapped antibody.

    Science.gov (United States)

    Sun, Xia; Du, Shuyuan; Wang, Xiangyou; Zhao, Wenping; Li, Qingqing

    2011-01-01

    In this study, an anti-carbofuran monoclonal antibody (Ab) was immobilized on the surface of a glassy carbon electrode (GCE) using silica sol-gel (SiSG) technology. Thus, a sensitive, label-free electrochemical immunosensor for the direct determination of carbofuran was developed. The electrochemical performance of immunoreaction of antigen with the anti-carbofuran monoclonal antibody was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), in which phosphate buffer solution containing [Fe(CN)(6)](3-/4-) was used as the base solution for test. Because the complex formed by the immunoreaction hindered the diffusion of [Fe(CN)(6)](3-/4-) on the electrode surface, the redox peak current of the immunosensor in the CV obviously decreased with the increase of the carbofuran concentration. The pH of working solution, the concentration of Ab and the incubation time of carbofuran were studied to ensure the sensitivity and conductivity of the immunosensor. Under the optimal conditions, the linear range of the proposed immunosensor for the determination of carbofuran was from 1 ng/mL to 100 μg/mL and from 50 μg/mL to 200 μg/mL with a detection limit of 0.33 ng/mL (S/N = 3). The proposed immunosensor exhibited good high sensitivity and stability, and it was thus suitable for trace detection of carbofuran pesticide residues.

  1. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers

    Science.gov (United States)

    Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh; Zhang, Yu Shrike; Shin, Su Ryon; Aleman, Julio; Massa, Solange; Kim, Duckjin; Dokmeci, Mehmet Remzi; Khademhosseini, Ali

    2016-04-01

    There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips.

  2. Solid-state voltammetry-based electrochemical immunosensor for Escherichia coli using graphene oxide-Ag nanoparticle composites as labels.

    Science.gov (United States)

    Jiang, Xiaochun; Chen, Kun; Wang, Jing; Shao, Kang; Fu, Tao; Shao, Feng; Lu, Donglian; Liang, Jiangong; Foda, M Frahat; Han, Heyou

    2013-06-21

    A new electrochemical immunosensor based on solid-state voltammetry was fabricated for the detection of Escherichia coli (E. coli) by using graphene oxide-Ag nanoparticle composites (P-GO-Ag) as labels. To construct the platform, Au nanoparticles (AuNPs) were first self-assembled on an Au electrode surface through cysteamine and served as an effective matrix for antibody (Ab) attachment. Under a sandwich-type immunoassay format, the analyte and the probe (P-GO-Ag-Ab) were successively captured onto the immunosensor. Finally, the bonded AgNPs were detected through a solid-state redox process in 0.2 M of KCl solution. Combining the advantages of the high-loading capability of graphene oxide with promoted electron-transfer rate of AuNPs, this immunosensor produced a 26.92-fold signal enhancement compared with the unamplified protocol. Under the optimal conditions, the immunosensor exhibited a wide linear dependence on the logarithm of the concentration of E. coli ranging from 50 to 1.0 × 10(6) cfu mL(-1) with a detection limit of 10 cfu mL(-1). Moreover, as a practical application, the proposed immunosensor was used to monitor E. coli in lake water with satisfactory results. PMID:23662298

  3. Ceria Doped Zinc Oxide Nanoflowers Enhanced Luminol-Based Electrochemiluminescence Immunosensor for Amyloid-β Detection.

    Science.gov (United States)

    Wang, Jing-Xi; Zhuo, Ying; Zhou, Ying; Wang, Hai-Jun; Yuan, Ruo; Chai, Ya-Qin

    2016-05-25

    In this work, ceria doped ZnO nanomaterials with flower-structure (Ce:ZONFs) were prepared to construct a luminol-based electrochemiluminescence (ECL) immunosensor for amyloid-β protein (Aβ) detection. Herein, carboxyl groups (-COOH) covered Ce:ZONFs were synthesized by a green method with lysine as reductant. After that, Ce:ZONFs-based ECL nanocomposite was prepared by combining the luminophore of luminol and Ce:ZONFs via amidation and physical absorption. Luminol modified on Ce:ZONFs surface could generate a strong ECL signal under the assistance of reactive oxygen species (ROSs) (such as OH(•) and O2(•-)), which were produced by a catalytic reaction between Ce:ZONFs and H2O2. It was worth noticing that a quick Ce(4+) ↔ Ce(3+) reaction in this doped material could increase the rate of electron transfer to realize the signal amplification. Subsequently, the luminol functionalized Ce:ZONFs (Ce:ZONFs-Lum) were covered by secondary antibody (Ab2) and glucose oxidase (GOD), respectively, to construct a novel Ab2 bioconjugate (Ab2-GOD@Ce:ZONFs-Lum). The wire-structured silver-cysteine complex (AgCys NWs) with a large number of -COOH, which was synthesized by AgNO3 and l-cysteine, was used as substrate of the immunosensor to capture the primary antibody (Ab1). Under the optimal conditions, this proposed ECL immunosensor had exhibited high sensitivity for Aβ detection with a wide linear range from 80 fg/mL to 100 ng/mL and an ultralow detection limit of 52 fg/mL. Meanwhile, this biosensor had good specificity for Aβ, indicating that the provided strategy had a promising potential in the detection of Aβ. PMID:27145690

  4. Label-free alpha fetoprotein immunosensor established by the facile synthesis of a palladium-graphene nanocomposite.

    Science.gov (United States)

    Qi, TingTing; Liao, JinFeng; Li, YiSong; Peng, JinRong; Li, WenTing; Chu, BingYang; Li, He; Wei, YuQuan; Qian, ZhiYong

    2014-11-15

    In this study, we established a sensitive label-free immunosensor by palladium-reduced graphene oxide (Pd-rGO), which was prepared by one-pot synthesis under the reduction of extra-injected CO gas. The Pd-rGO nanocomposite structure has been confirmed by TEM, SEM, X-ray diffraction, and UV-vis spectroscopy. The Pd-rGO nanocomposite exhibited excellent stability in aqueous dispersion. The Pd-rGO-based label-free electrochemical immunosensor was used for detection of the hepatocellular carcinoma (HCC) biomarker alpha fetoprotein (AFP). The immunosensor determination was based on the fact that due to the formation of antigen-antibody immunocomplex, the decreased response amperometric currents of H2O2 were directly proportional to the concentrations of AFP. The limit of detection of this immunosensor for AFP detection is 5 pg/mL, and is linear from 0.01 to 12 ng/mL. The proposed immunosensor has been used to determine AFP in clinical serum samples with satisfactory results. This suggests the sensor may have great potential utility in the clinic. PMID:24906081

  5. Quantum dots based electrochemiluminescent immunosensor by coupling enzymatic amplification for ultrasensitive detection of clenbuterol

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xun; Yan, Panpan; Tang, Qinghui [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Suzhou 215123 (China); Deng, Anping, E-mail: denganping@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Suzhou 215123 (China); Li, Jianguo, E-mail: lijgsd@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Suzhou 215123 (China)

    2013-10-10

    Graphical abstract: -- Highlights: •An ultrasensitive ECL immunosensor of CdSe QDs for clenbuterol determination is developed. •The CdSe QDs showed great biocompatibility and could be easier to make direct use of such QDs in the region of biological system. •Enzymatic amplification strategy was proposed by combining the coreactant and pAb/GaRIgG-HRP. •Enzymatic amplification increased ECL emission and extended the analyte in presence of substrate. •It provided a method for detecting clenbuterol and enlarged the usage of QDs in ECL biosensing. -- Abstract: An ultrasensitive electrochemiluminescence (ECL) immunosensor based on CdSe quantum dots (QDs) has been designed for the detection of clenbuterol. The immunosensor was fabricated by layer by layer and characterized with atomic force microscopic images (AFM) and electrochemical impedance spectra (EIS). In oxygen-saturated pH = 9.0 Tris-HCl buffer, a strong ECL emission of QDs could be observed during the cathodic process due to the H{sub 2}O{sub 2} product from electrochemical reduction of dissolved oxygen. Upon the formation of immunocomplex, the second antibody labeled with horseradish peroxidase was simply immobilized on the electrode surface. The ECL emission decreased since steric hindrance of the immunocomplex slowed down the electron-transfer speed of dissolved oxygen, and also could be greatly amplified by an enzymatic cycle to consume the self-produced coreactant. Using clenbuterol as model analyte, the ECL intensity was determined by the concentration of competitive immunoassay of clenbuterol with a wide calibration in the range of 0.05 ng mL{sup −1} to 1000 ng mL{sup −1}, and a low detection limit was 0.02 ng mL{sup −1}. The immunosensor shows good stability and fabrication reproducibility. It was applied to detecting practical samples with the satisfactory results. This immunosensing strategy opens a new avenue for detection of residue and application of QDs in ECL biosensing.

  6. Amplified impedimetric immunosensor based on instant catalyst for sensitive determination of ochratoxin A.

    Science.gov (United States)

    Tang, Juan; Huang, Yapei; Zhang, Cengceng; Liu, Huiqiong; Tang, Dianping

    2016-12-15

    A new impedimetric immunosensor for the fast determination of ochratoxin A (OTA) in food samples was developed based on the instant catalyst as enhancer. Initially, the signal tags were prepared via co-immobilization of anti-OTA antibody and amine-terminated dendrimer (PAMAM) on the graphene oxide nanosheets through the covalent interaction, which were utilized as a good platform for combining manganese ion (anti-OTA-GO-PAMAM-Mn(2+)). Upon target OTA introduction, a competitive-type immunoreaction was implemented between the analyte and the immobilized OTA-BSA on the electrode for the anti-OTA antibody on the graphene oxide nanosheets labels. After a competitive immunoassay format, the anti-OTA-GO-PAMAM-Mn(2+) were captured onto the electrode surface, which could induce the in situ formation of MnO2via classical redox reaction between Mn(2+) and KMnO4 on the immunesensing platform. Moreover, the generated MnO2 nanoparticles act as efficient catalyst could catalyze the 4-chloro-1-naphthol (4-CN) oxidation without H2O2 to generate an insoluble precipitation on the platform. Under the optimal conditions, the instant catalyst based impedimetric immunosensor displayed a wide dynamic working range between 0.1pgmL(-1) and 30ngmL(-1). The detection limit (LOD) of the assay was 0.055pgmL(-1). The developed method exhibited high selectivity and can be used for the determination of OTA in real red wine samples.

  7. An ultrasensitive electrochemical immunosensor for apolipoprotein E4 based on fractal nanostructures and enzyme amplification.

    Science.gov (United States)

    Liu, Yibiao; Xu, Li-Ping; Wang, Shuqi; Yang, Weizhao; Wen, Yongqiang; Zhang, Xueji

    2015-09-15

    Human apolipoprotein E4 (APOE4) is a major risk factor for Alzheimer's disease (AD) and can greatly increase the morbidity. In this work, an ultrasensitive sandwich-type electrochemical immunosensor for the quantitative detection of APOE4 was designed based on fractal gold (FracAu) nanostructures and enzyme amplification. The FracAu nanostructures were directly electrodeposited by hydrogen tetrachloroaurate (HAuCl4) on polyelectrolytes modified indium tin oxide (ITO) electrode. The sensing performances of the modified interface were investigated by cyclic voltammetry (CV). After functionalization with HRP-labeled APOE4 antibody, the human APOE4 could be detected quantitatively by current response. The current response has a linear relationship with the logarithm of human APOE4 concentrations in a range from 1.0 to 10,000.0 ng/mL, with a detection limit of 0.3 ng/mL. The fabricated APOE4 electrochemical immunosensor exhibits strong specificity, high sensitivity, low detection limit and wide linear range. The detection of human APOE4 provides a strong support for the prevention of AD and early-stage warning for those susceptible populations.

  8. [Determination of a Candida albicans antigen using an amperometric immunoenzyme sensor].

    Science.gov (United States)

    Kutyreva, M P; Mediantseva, E P; Khaldeeva, E V; Glushko, N I; Budnikov, G K

    1998-01-01

    Determination new variant enzyme immunoassay with amperometric enzyme immunosensor, including the immobilizing enzyme-choline esterase and antibodies against Candida albicans (CA) in biosensitivity part of sensor, for diagnose disease of CA. The method for determination of CA based on combination immunochemical reactions and voltammetric indication of analytical signal was developed. Amperometric enzyme immunosensor developed has been used as detector. Differences dilutions of antibody (Ab) against antigen (Ag) of CA immobilizing in common with choline esterase (CE). The method of immobilization developed allows to receive the sensor with including the immobilized CE and Ab in common. The method of determination of CA based on combination the reaction of forming immune complex tAb-AgI with enzyme immunosensor for its detection. The dynamic range of concentrations determined of Ag depends on degree of dilution of Ab used for manufactory biosensitivity part of sensor. The data indicate that the [Ab-Ag] immune complexes are stable. This is also confirmed by the values of [Ab-Ag] binding constants, obtained in Scatchard coordinates. This method of determination doesn't require special preparation of a sample. Selectivity, sensitivity, simplicity and quickness are characterize of this method which could be used for manufacturing test-sistem for determination CA in blood.

  9. [Determination of a Candida albicans antigen using an amperometric immunoenzyme sensor].

    Science.gov (United States)

    Kutyreva, M P; Mediantseva, E P; Khaldeeva, E V; Glushko, N I; Budnikov, G K

    1998-01-01

    Determination new variant enzyme immunoassay with amperometric enzyme immunosensor, including the immobilizing enzyme-choline esterase and antibodies against Candida albicans (CA) in biosensitivity part of sensor, for diagnose disease of CA. The method for determination of CA based on combination immunochemical reactions and voltammetric indication of analytical signal was developed. Amperometric enzyme immunosensor developed has been used as detector. Differences dilutions of antibody (Ab) against antigen (Ag) of CA immobilizing in common with choline esterase (CE). The method of immobilization developed allows to receive the sensor with including the immobilized CE and Ab in common. The method of determination of CA based on combination the reaction of forming immune complex tAb-AgI with enzyme immunosensor for its detection. The dynamic range of concentrations determined of Ag depends on degree of dilution of Ab used for manufactory biosensitivity part of sensor. The data indicate that the [Ab-Ag] immune complexes are stable. This is also confirmed by the values of [Ab-Ag] binding constants, obtained in Scatchard coordinates. This method of determination doesn't require special preparation of a sample. Selectivity, sensitivity, simplicity and quickness are characterize of this method which could be used for manufacturing test-sistem for determination CA in blood. PMID:9634720

  10. Preparation of Amperometric Glucose Biosensor Based on 4-Mercaptobenzoic Acid

    Science.gov (United States)

    Wang, Huihui; Ohnuki, Hitoshi; Endo, Hideaki; Izumi, Mitsuru

    A novel glucose biosensor was fabricated by a combination of a self-assembled monolayer (SAM) of 4-mercaptobenzoic acid and the Langmuir-Blodgett (LB) technique. Because of the catalysis of Prussian Blue contained in the LB film layers, the prepared amperometric biosensor worked at a very low potential range around 0.0 V vs. Ag/AgCl. The optimum operating conditions for glucose biosensor were investigated by varying the glucose oxidase immobilization time, the applied potential and the pH of buffer solution. The steady-state current responses of the glucose biosensor showed a good linear relationship to glucose concentrations from 0.1 mM to 154 mM.

  11. A droplet-based microfluidic immunosensor for high efficiency melamine analysis.

    Science.gov (United States)

    Choi, Jae-Won; Min, Kyong-Mi; Hengoju, Sundar; Kim, Gil-Jung; Chang, Soo-Ik; deMello, Andrew J; Choo, Jaebum; Kim, Hak Yong

    2016-06-15

    We report a droplet-based microfluidic immunosensor for the rapid and accurate detection of melamine, an organic base that has been implicated in widescale adulteration of food products such as milk. Our melamine assay is based on the competitive reaction between native melamine and a melamine-fluorescein isothiocyanate (FITC) conjugate against an anti-hapten antibody. The adoption of fluorescence polarization, allows the quantification of melamine in a more direct and rapid manner than established heterogeneous methods based on liquid chromatography, mass spectrometry, and enzyme-linked immunosorbent assay (ELISA). The detection protocol provides a limit of detection of 300 ppb, which is below the maximum allowable melamine levels (2.5 ppm) defined by the U.S. Food and Drug Administration and the European Commission to a significant extent. PMID:26829578

  12. Ultrasensitive non-enzymatic immunosensor for carcino-embryonic antigen based on palladium hybrid vanadium pentoxide/multiwalled carbon nanotubes.

    Science.gov (United States)

    Han, Jian; Jiang, Liping; Li, Faying; Wang, Ping; Liu, Qing; Dong, Yunhui; Li, Yueyun; Wei, Qin

    2016-03-15

    A novel and sensitive sandwich-type non-enzymatic electrochemical immunosensor was fabricated for quantitative monitoring of carcino-embryonic antigen (CEA). Nanocomposite of stannic oxide/reduced graphene oxide was used as substrate material to increase the specific surface area and enhance the conductivity of the glassy carbon electrode. Gold nanoparticles (Au NPs) were introduced to link substrate materials and primary antibodies (Ab1) and accelerate the electron transfer in this system. At the same time, the palladium nanoparticles (Pd NPs)-vanadium pentoxide (V2O5)/multiwalled carbon nanotubes (MWCNTs) were used as the label of secondary antibodies (Ab2). This composite label has shown excellent catalytic activity towards the reduction of H2O2. The nanomaterial-based signal amplification can improve the sensitivity and lower the limit of detection. The proposed immunosensor showed wide linear range from 0.5 pgmL(-1) to 25 ngmL(-1) with limit of detection of 0.17 pgmL(-1). This novel immunosensor was used to analyze serum sample. The results indicated that this immunosensor may find huge potential application for quantitative detection of CEA in the clinical diagnosis. PMID:26562331

  13. Development of electrochemical immunosensors based on different serum antibody immobilization methods for detection of Japanese encephalitis virus

    Science.gov (United States)

    Tran, Quang Huy; Hanh Nguyen, Thi Hong; Mai, Anh Tuan; Thuy Nguyen, Thi; Khue Vu, Quang; Nga Phan, Thi

    2012-03-01

    This paper describes the development of electrochemical immunosensors based on human serum antibodies with different immobilization methods for detection of Japanese encephalitis virus (JEV). Human serum containing anti-JEV antibodies was used to immobilize onto the surface of silanized interdigitated electrodes by four methods: direct adsorption (APTES-serum), covalent binding with a cross linker of glutaraldehyde (APTES-GA-serum), covalent binding with a cross linker of glutaraldehyde combined with anti-human IgG (APTES-GA-anti-HIgG-serum) and covalent binding with a cross linker of glutaraldehyde combined with a bioaffinity of protein A (APTES-GA-PrA-serum). Atomic force microscopy was used to verify surface characteristics of the interdigitated electrodes before and after treatment with serum antibodies. The output signal of the immunosensors was measured by the change of conductivity resulting from the specific binding of JEV antigens and serum antibodies immobilized on the electrodes, with the help of horseradish peroxidase (HRP)-labeled secondary antibody against JEV. The results showed that the APTES-GA-PrA-serum method provided the highest signal of the electrochemical immunosensor for detection of JEV antigens, with the linear range from 25 ng ml‑1 to 1 μg ml‑1, and the limit of detection was about 10 ng ml‑1. This study shows a potential development of novel electrochemical immunosensors applied for virus detection in clinical samples in case of possible outbreaks.

  14. Amperometric quantification based on serial dilution microfluidic systems.

    Science.gov (United States)

    Stephan, Khaled; Pittet, Patrick; Sigaud, Monique; Renaud, Louis; Vittori, Olivier; Morin, Pierre; Ouaini, Naim; Ferrigno, Rosaria

    2009-03-01

    This paper describes a microfluidic device fabricated in poly(dimethylsiloxane) that was employed to perform amperometric quantifications using on-chip calibration curves and on-chip standard addition methods. This device integrated a network of Au electrodes within a microfluidic structure designed for automatic preparation of a series of solutions containing an electroactive molecule at a concentration linearly decreasing. This device was first characterized by fluorescence microscopy and then evaluated with a model electroactive molecule such as Fe(CN(6))(4-). Operating a quantification in this microfluidic parallel approach rather than in batch mode allows a reduced analysis time to be achieved. Moreover, the microfluidic approach is compatible with the on-chip calibration of sensors simultaneously to the analysis, therefore preventing problems due to sensor response deviation with time. When using the on-chip calibration and on-chip standard addition method, we reached concentration estimation better than 5%. We also demonstrated that compared to the calibration curve approach, the standard addition mode is less complex to operate. Indeed, in this case, it is not necessary to take into account flow rate discrepancies as in the calibration approach. PMID:19238282

  15. Development of Amperometric Glucose Biosensor Based on Prussian Blue Functionlized TiO2 Nanotube Arrays

    OpenAIRE

    Gao, Zhi-Da; Qu, Yongfang; Li, Tongtong; Shrestha, Nabeen K.; Song, Yan-Yan

    2014-01-01

    Amperometric biosensors consisting of oxidase and peroxidase have attracted great attention because of their wide application. The current work demonstrates a novel approach to construct an enzymatic biosensor based on TiO2 nanotube arrays (TiNTs) as a supporting electrode on which Prussian Blue (PB)-an “artificial enzyme peroxidase” and enzyme glucose oxidase (GOx) have been immobilized. For this, PB nanocrystals are deposited onto the nanotube wall photocatalytically using the intrinsic pho...

  16. Nanoparticle-based immunosensors and immunoassays for aflatoxins.

    Science.gov (United States)

    Wang, Xu; Niessner, Reinhard; Tang, Dianping; Knopp, Dietmar

    2016-03-17

    Aflatoxins are naturally existing mycotoxins produced mainly by Aspergillus flavus and Aspergillus parasiticus, present in a wide range of food and feed products. Because of their extremely high toxicity and carcinogenicity, strict control of maximum residue levels of aflatoxins in foodstuff is set by many countries. In daily routine, different chromatographic methods are used almost exclusively. As supplement, in several companies enzyme immunoassay-based sample testing as primary screening is performed. Recently, nanomaterials such as noble metal nanoparticles, magnetic particles, carbon nanomaterials, quantum dots, and silica nanomaterials are increasingly utilized for aflatoxin determination to improve the sensitivity and simplify the detection. They are employed either as supports for the immobilization of biomolecules or as electroactive or optical labels for signal transduction and amplification. Several nanoparticle-based electrochemical, piezoelectric, optical, and immunodipstick assays for aflatoxins have been developed. In this review, we summarize these recent advances and illustrate novel concepts and promising applications in the field of food safety.

  17. Plastic and paper platforms for nanoparticle based immunosensors

    OpenAIRE

    Parolo, Claudio

    2013-01-01

    La tesis titulada “Plastic and paper platforms for nanoparticle based immunosensors” presentada como compendio de publicaciones, muestra avances significativos en el campo de los biosensores ópticos y electroquímicos. En la introducción (Capítulo 1) se presenta la importancia que tienen tanto los sensores inmunológicos basados en nanopartículas como los biosensores basados en plataformas de papel y nanomateriales para aplicaciones en diagnóstico. Ambas plataformas destacan por la versa...

  18. SPR based immunosensor for detection of Legionella pneumophila in water samples

    Science.gov (United States)

    Enrico, De Lorenzis; Manera, Maria G.; Montagna, Giovanni; Cimaglia, Fabio; Chiesa, Maurizio; Poltronieri, Palmiro; Santino, Angelo; Rella, Roberto

    2013-05-01

    Detection of legionellae by water sampling is an important factor in epidemiological investigations of Legionnaires' disease and its prevention. To avoid labor-intensive problems with conventional methods, an alternative, highly sensitive and simple method is proposed for detecting L. pneumophila in aqueous samples. A compact Surface Plasmon Resonance (SPR) instrumentation prototype, provided with proper microfluidics tools, is built. The developed immunosensor is capable of dynamically following the binding between antigens and the corresponding antibody molecules immobilized on the SPR sensor surface. A proper immobilization strategy is used in this work that makes use of an important efficient step aimed at the orientation of antibodies onto the sensor surface. The feasibility of the integration of SPR-based biosensing setups with microfluidic technologies, resulting in a low-cost and portable biosensor is demonstrated.

  19. Rapid and Highly Sensitive Detection of Lead Ions in Drinking Water Based on a Strip Immunosensor

    Directory of Open Access Journals (Sweden)

    Chuanlai Xu

    2013-03-01

    Full Text Available In this study, we have first developed a rapid and sensitive strip immunosensor based on two heterogeneously-sized gold nanoparticles (Au NPs probes for the detection of trace lead ions in drinking water. The sensitivity was 4-fold higher than that of the conventional LFA under the optimized conditions. The visual limit of detection (LOD of the amplified method for qualitative detection lead ions was 2 ng/mL and the LOD for semi-quantitative detection could go down to 0.19 ng/mL using a scanning reader. The method suffered from no interference from other metal ions and could be used to detect trace lead ions in drinking water without sample enrichment. The recovery of the test samples ranged from 96% to 103%. As the detection method could be accomplished within 15 min, this method could be used as a potential tool for preliminary monitoring of lead contamination in drinking water.

  20. Rapid and highly sensitive detection of lead ions in drinking water based on a strip immunosensor.

    Science.gov (United States)

    Kuang, Hua; Xing, Changrui; Hao, Changlong; Liu, Liqiang; Wang, Libing; Xu, Chuanlai

    2013-03-28

    In this study, we have first developed a rapid and sensitive strip immunosensor based on two heterogeneously-sized gold nanoparticles (Au NPs) probes for the detection of trace lead ions in drinking water. The sensitivity was 4-fold higher than that of the conventional LFA under the optimized conditions. The visual limit of detection (LOD) of the amplified method for qualitative detection lead ions was 2 ng/mL and the LOD for semi-quantitative detection could go down to 0.19 ng/mL using a scanning reader. The method suffered from no interference from other metal ions and could be used to detect trace lead ions in drinking water without sample enrichment. The recovery of the test samples ranged from 96% to 103%. As the detection method could be accomplished within 15 min, this method could be used as a potential tool for preliminary monitoring of lead contamination in drinking water.

  1. Amperometric biosensor based on glassy carbon electrode modified with long-length carbon nanotube and enzyme

    Science.gov (United States)

    Furutaka, Hajime; Nemoto, Kentaro; Inoue, Yuki; Hidaka, Hiroki; Muguruma, Hitoshi; Inoue, Hitoshi; Ohsawa, Tatsuya

    2016-05-01

    An amperometric biosensor based on a glassy carbon electrode modified with long-length multiwalled carbon nanotubes (MWCNTs) and enzyme nicotinamide-adenine-dinucleotide-dependent glucose dehydrogenase (GDH) is presented. We demonstrate the effect of the MWCNT length on the amperometric response of the enzyme biosensor. The long length of MWCNT is 200 µm (average), whereas the normal length of MWCNT is 1 µm (average). The response of the long MWCNT–GDH electrode is 2 times more sensitive than that of the normal-length MWCNT–GDH electrode in the concentration range from 0.25–35 mM. The result of electrochemical impedance spectroscopy measurements suggest that the long-length MWCNT–GDH electrode formed a better electron transfer network than the normal-length one.

  2. Critical Evaluation of Acetylthiocholine Iodide and Acetylthiocholine Chloride as Substrates for Amperometric Biosensors Based on Acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    Gabriel-Lucian Radu

    2013-01-01

    Full Text Available Numerous amperometric biosensors have been developed for the fast analysis of neurotoxic insecticides based on inhibition of cholinesterase (AChE. The analytical signal is quantified by the oxidation of the thiocholine that is produced enzymatically by the hydrolysis of the acetylthiocholine pseudosubstrate. The pseudosubstrate is a cation and it is associated with chloride or iodide as corresponding anion to form a salt. The iodide salt is cheaper, but it is electrochemically active and consequently more difficult to use in electrochemical analytical devices. We investigate the possibility of using acetylthiocholine iodide as pseudosubstrate for amperometric detection. Our investigation demonstrates that operational conditions for any amperometric biosensor that use acetylthiocholine iodide must be thoroughly optimized to avoid false analytical signals or a reduced sensitivity. The working overpotential determined for different screen-printed electrodes was: carbon-nanotubes (360 mV, platinum (560 mV, gold (370 mV, based on a catalytic effect of iodide or cobalt phthalocyanine (110 mV, but with a significant reduced sensitivity in the presence of iodide anions.

  3. Electrochemical immunosensors for Salmonella detection in food.

    Science.gov (United States)

    Melo, Airis Maria Araújo; Alexandre, Dalila L; Furtado, Roselayne F; Borges, Maria F; Figueiredo, Evânia Altina T; Biswas, Atanu; Cheng, Huai N; Alves, Carlúcio R

    2016-06-01

    Pathogen detection is a critical point for the identification and the prevention of problems related to food safety. Failures at detecting contaminations in food may cause outbreaks with drastic consequences to public health. In spite of the real need for obtaining analytical results in the shortest time possible, conventional methods may take several days to produce a diagnosis. Salmonella spp. is the major cause of foodborne diseases worldwide and its absence is a requirement of the health authorities. Biosensors are bioelectronic devices, comprising bioreceptor molecules and transducer elements, able to detect analytes (chemical and/or biological species) rapidly and quantitatively. Electrochemical immunosensors use antibody molecules as bioreceptors and an electrochemical transducer. These devices have been widely used for pathogen detection at low cost. There are four main techniques for electrochemical immunosensors: amperometric, impedimetric, conductometric, and potentiometric. Almost all types of immunosensors are applicable to Salmonella detection. This article reviews the developments and the applications of electrochemical immunosensors for Salmonella detection, particularly the advantages of each specific technique. Immunosensors serve as exciting alternatives to conventional methods, allowing "real-time" and multiple analyses that are essential characteristics for pathogen detection and much desired in health and safety control in the food industry. PMID:27138197

  4. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements.

    Science.gov (United States)

    Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E

    2015-01-01

    Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that

  5. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements.

    Directory of Open Access Journals (Sweden)

    Daungruthai Jarukanont

    Full Text Available Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We

  6. A highly sensitive quartz crystal microbalance immunosensor based on magnetic bead-supported bienzymes catalyzed mass enhancement strategy.

    Science.gov (United States)

    Akter, Rashida; Rhee, Choong Kyun; Rahman, Md Aminur

    2015-04-15

    A highly sensitive quartz crystal microbalance (QCM) immunosensor based on magnetic bead-supported bienzyme catalyzed mass enhanced strategy was developed for the detection of human immunoglobulin G (hIgG) protein. The high sensitive detection was achieved by increasing the deposited mass on the QCM crystal through the enhanced precipitation of 4-chloro-1-naphthol (CN) using higher amounts of horseradish peroxidase (HRP) and glucose oxidase (GOx) bienzymes attached on the magnetic beads (MB). The protein A (PA) and capture antibody (monoclonal anti-human IgG antibody produced in mouse, Ab1)-based QCM probe and the detection antibody (anti-human IgG antibody produced in goat, Ab2)-based MB/HRP/GOx bienzymatic bioconjugates were characterized using scanning electron microscope, transmission electron microscope, cyclic voltammetry, and electrochemical impedance spectroscopy techniques. Under the optimized experimental condition, the linear range and the detection limit of hIgG immunosensor were determined to be 5.0pg/mL-20.0ng/mL and 5.0±0.18pg/mL, respectively. The applicability of the present hIgG immunosensor was examined in hIgG spiked human serum samples and excellent recoveries of hIgG were obtained. PMID:25506902

  7. Facile preparation of disposable immunosensor for Shigella flexneri based on multi-wall carbon nanotubes/chitosan composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Guangying, E-mail: zhaogy-user@163.co [Food Safety Key Lab of Zhejiang Province, Department of Food Quality and Safety, Zhejiang Gongshang University, 149, Jiaogong Road, Hangzhou 310035, Zhejiang Province (China); Zhan Xuejia [Food Safety Key Lab of Zhejiang Province, Department of Food Quality and Safety, Zhejiang Gongshang University, 149, Jiaogong Road, Hangzhou 310035, Zhejiang Province (China)

    2010-02-28

    Based on multi-wall carbon nanotubes (MWCNT)/chitosan/horseradish peroxidase labeled antibodies to Shigella flexneri (HRP-anti-S. flexneri) biocomposite film on a screen-printed electrode (SPE) surface, a disposable immunosensor has been developed for the rapid detection of S. flexneri. The HRP-anti-S. flexneri can be entrapped into MWCNT/chitosan composite matrix without other cross-linking agent. Thionine and H{sub 2}O{sub 2} were used as the mediator and substrate, respectively. The surface morphologies of modified films were characterized by atomic force microscope (AFM). Cyclic voltammery (CV) was carried out to characterize the electrochemical properties of the immobilization of materials on the electrode surface and quantified S. flexneri. Due to the strong electrocatalytic properties of MWCNT and HRP toward H{sub 2}O{sub 2}, the response signal was significantly amplified. S. flexneri could be detected by the decrease of the reduction peak current before and after immunoreaction. Under optimal conditions, S. flexneri could be detected in the range of 10{sup 4} to 10{sup 10} cfu mL{sup -1}, with a detection limit of 2.3 x 10{sup 3} cfu mL{sup -1} (S/N = 3). Furthermore, the proposed immunosensor exhibited a satisfactory specificity, reproducibility, stability and accuracy, indicating that the proposed immunosensor has potential application for a facile, rapid and harmless immunoassay.

  8. Detection of vibrio cholerae O1 by using cerium oxide nanowires - based immunosensor with different antibody immobilization methods

    Science.gov (United States)

    Tam, Phuong Dinh; Hoang, Nguyen Luong; Lan, Hoang; Vuong, Pham Hung; Anh, Ta Thi Nhat; Huy, Tran Quang; Thuy, Nguyen Thanh

    2016-05-01

    In this work, we evaluated the effects of different antibody immobilization strategies on the response of a CeO2-nanowires (NWs)-based immunosensor for Vibrio cholerae O1 detection. Accordingly, the changes in the electron-transfer resistance ( R et ) from before to after cells bind to an antibody-modified electrode prepared by using three different methods of antibody immobilization were determined. The values were 16.2%, 8.3%, and 6.65% for the method that utilized protein A, antibodies activated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS), and absorption, respectively. Cyclic voltammetry confirmed that the change in the current was highest for the immunosensors prepared using protein A (11%), followed by those prepared with EDC/NHS-activated antibodies (9%), and finally, those prepared through absorption (7.5%). The order of the antibody immobilization strategies in terms of resulting immunosensor detection limit and sensitivity was as follows order: absorption (3.2 × 103 CFU/mL; 45.1 Ω/CFU·mL-1) < EDC/NHS-activated antibody (1.0 × 103 CFU/mL; 50.6 Ω/CFU·mL-1) < protein A (1.0 × 102 CFU/mL; 65.8 Ω/CFU·mL-1). Thus, we confirmed that the protein A - mediated method showed significantly high cell binding efficiencies compared to the random immobilization method.

  9. Electrochemical immunosensor for rapid and sensitive determination of estradiol

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, I.; Lopez-Montero, J.; Moreno-Guzman, M. [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain); Janegitz, B.C. [Departamento de Quimica, Centro de Ciencias Exatas e de Tecnologia, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Gonzalez-Cortes, A. [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain); Yanez-Sedeno, P., E-mail: yseo@quim.ucm.es [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain); Pingarron, J.M. [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)

    2012-09-19

    Highlights: Black-Right-Pointing-Pointer An electrochemical immunosensor for estradiol based on grafted SPCEs was developed. Black-Right-Pointing-Pointer Grafting of p-aminobenzoic acid on SPCEs and streptavidin covalent binding was used. Black-Right-Pointing-Pointer A low LOD, 0.77 pg mL{sup -1}, and a wide linear range, 1.0-250 pg mL{sup -1}, were obtained. Black-Right-Pointing-Pointer Validation was made by analyzing human serum and urine. - Abstract: This work describes the preparation of an electrochemical immunosensor for estradiol based on the surface modification of a screen printed carbon electrode with grafted p-aminobenzoic acid followed by covalent binding of streptavidin (Strept) and immobilization of biotinylated anti-estradiol (anti-estradiol-Biotin). The hormone determination was performed by applying a competitive immunoassay with peroxidase-labelled estradiol (HRP-estradiol) and measurement of the amperometric response at -200 mV using hydroquinone (HQ) as redox mediator. The calibration curve for estradiol exhibited a linear range between 1 and 250 pg mL{sup -1} (r = 0.990) and a detection limit of 0.77 pg mL{sup -1} was achieved. Cross-reactivity studies with other hormones related with estradiol at physiological concentration levels revealed the practical specificity of the developed method for estradiol. A good reproducibility, with RSD = 5.9% (n = 8) was also observed. The operating stability of a single bioelectrode modified with anti-estradiol-Biotin-Strept was nine days when it was stored at 8 Degree-Sign C under humid conditions between measurements. The developed immunosensor was applied to the analysis of certified serum and spiked urine samples with good results.

  10. Fabrication of a label-free plasmon immunosensor based on triangular silver nanoplates

    Science.gov (United States)

    Dong, Peipei; Lin, Yuanyuan; Di, Junwei

    2013-08-01

    In this work, we have firstly electrodeposited small gold seeds (average diameter of ~40 nm) onto transparent indium tin oxide (ITO) thin film coated glass. Then silver triangular nanoplates with edge lengths of ~200 nm were fabricated using seed-mediated growth method. The localized surface plasmon resonance (LSPR) peak was located at ~700 nm. Finally, a label-free plasmon immunosensor was prepared by directly immobilizing goat anti-mouse IgG onto silver surface. The performance of the LSPR immunosensor was investigated. The red-shift of the biosensor was linearly proportional to mouse IgG concentration ranged from 5 ng/mL to 500 ng/mL, with a detection limit of 2 ng/mL. The label-free immunosensor was simple, sensitive and selective.

  11. A polyaniline based ultrasensitive potentiometric immunosensor for cardiac troponin complex detection.

    Science.gov (United States)

    Zhang, Qi; Prabhu, Alok; San, Avdar; Al-Sharab, Jafar F; Levon, Kalle

    2015-10-15

    An ultrasensitive immunosensor based on potentiometric ELISA for the detection of a cardiac biomarker, troponin I-T-C (Tn I-T-C) complex, was developed. The sensor fabrication involves typical sandwich ELISA procedures, while the final signal readout was achieved using open circuit potentiometry (OCP). Glassy carbon (GC) working electrodes were first coated with emulsion-polymerized polyaniline/dinonylnaphthalenesulfonic acid (PANI/DNNSA) and the coated surface was utilized as a transducer layer on which sandwich ELISA incubation steps were performed. An enzymatic reaction between o-phenylenediamine (OPD) and hydrogen peroxide (H2O2) was catalyzed by horseradish peroxidase (HRP) labeled on the secondary antibodies. The polymer transducer charged state was mediated through electron (e(-)) and charge transfers between the transducer and charged species generated by the same enzymatic reaction. Such a change in the polymer transducer led to potential variations against an Ag/AgCl reference electrode as a function of Tn I-T-C complex concentration during incubations. The sequence of OPD and H2O2 additions, electrochemical properties of the PANI/DNNSA layer and non-specific binding prevention were all crucial factors for the assay performance. Under optimized conditions, the assay has a low limit of detection (LOD) ( 6 orders of magnitude), high repeatability (coefficient of variance < 8% for all concentrations higher than 5 pg/mL) and a short detection time (< 10 min).

  12. Amperometric biosensors for glucose, lactate, and glycolate based on oxidases and redox-modified siloxane polymers

    Science.gov (United States)

    Hale, Paul D.; Inagaki, Toru; Lee, Hung Sui; Skotheim, Terje A.; Karan, Hiroko I.; Okamoto, Yoshi

    1989-06-01

    Amperometric biosensors based on flavin-containing oxidases undergo several steps which produce a measurable current that is related to the concentration of substrate. In the initial step, the substrate converts the oxidized flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN) into the reduced form FADH sub 2 or FMNH sub 2. Because these cofactors are located well within the enzyme molecule, direct electron transfer to the surface of a conventional electrode does not occur to a measurable degree. A common method of facilitating this electron transfer is to introduce oxygen into the system because it is the natural acceptor for the oxidases; the oxygen is reduced by the FADH sub 2 or FMNH sub 2 to hydrogen peroxide, which can then be detected electrochemically. The major drawback to this approach is the fact that oxidation of hydrogen peroxide requires a large overpotential, thus making these sensors susceptible to interference from electroactive species. To lower the necessary applied potential, several non-physiological redox couples have been employed to shuttle electrons between the flavin moieties and the electrode. The present paper describes the development of amperometric biosensors based on flavin-containing enzymes and a family of polymeric mediators.

  13. Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode.

    Science.gov (United States)

    Can, Faruk; Korkut Ozoner, Seyda; Ergenekon, Pinar; Erhan, Elif

    2012-01-01

    This study describes the construction and characterization of an amperometric nitrate biosensor based on the Polypyrrole (PPy)/Carbon nanotubes (CNTs) film. Nitrate reductase (NR) was both entrapped into the growing PPy film and chemically immobilized via the carboxyl groups of CNTs to the CNT/PPy film electrode. The optimum amperometric response for nitrate was obtained in 0.1 M phosphate buffer solution (PBS), pH 7.5 including 0.1 M lithium chloride and 7 mM potassium ferricyanide with an applied potential of 0.13 V (vs. Ag/AgCl, 3 M NaCl). Sensitivity was found to be 300 nA/mM in a linear range of 0.44-1.45 mM with a regression coefficient of 0.97. The biosensor response showed a higher linear range in comparison to standard nitrate analysis methods which were tested in this study and NADH based nitrate biosensors. A minimum detectable concentration of 0.17 mM (S/N=3) with a relative standard deviation (RSD) of 5.4% (n=7) was obtained for the biosensor. Phenol and glucose inhibit the electrochemical reaction strictly at a concentration of 1 μg/L and 20 mg/L, respectively. The biosensor response retained 70% of its initial response over 10 day usage period when used everyday. PMID:23177766

  14. An electrochemical immunosensor for efficient detection of uropathogenic E. coli based on thionine dye immobilized chitosan/functionalized-MWCNT modified electrode.

    Science.gov (United States)

    Gayathri, Chandran Hema; Mayuri, Pinapeddavari; Sankaran, Krishnan; Kumar, Annamalai Senthil

    2016-08-15

    Uropathogenic Escherichia coli (UPEC) is the major cause of 150 million Urinary Tract Infections (UTI) reported annually world-wide. High prevalence of multi-drug-resistance makes it dangerous and difficult to cure. Therefore simple, quick and early diagnostic tools are essential for effective treatment and control. We report an electrochemical immunosensor based on thionine dye (Th) immobilized on functionalized-multiwalled carbon nanotube+chitosan composite coated on glassy carbon electrode (GCE/f-MWCNT-Chit@Th) for quick and sensitive detection of UPEC in aqueous solution. This immunosensor was constructed by sequential immobilization of UPEC, bovine serum albumin, primary antibody and Horse Radish Peroxidase (HRP) tagged secondary antibody on the surface of GCE/f-MWCNT-Chit@Th. When analyzed using 2.5mM of hydrogen peroxide reduction reaction using cyclic voltammetry in phosphate buffer, pH 7.0, the immunosensor showed excellent linearity in a range of 10(2)-10(9)cfu of UPEC mL(-1) with a current sensitivity of 7.162μA {log(cfumL(-1))}(-1). The specificity of this immunosensor was tested using other UTI and non-UTI bacteria, Staphylococcus, Klebsiella, Proteus and Shigella. The clinical applicability of the immunosensor was also successfully tested directly in UPEC spiked urine samples (simulated sample). PMID:27040944

  15. Amperometric Glucose Biosensor Based on Self-Assembling Glucose Oxidase on Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong; Lin, Yuehe

    2006-01-01

    A flow injection amperometric glucose biosensor based on electrostatic self-assembling glucose oxidase (GOx) on a carbon nanotube (CNT)-modified glassy carbon transducer is described. GOx is immobilized on the negatively charged CNT surface by alternatively assembling a cationic polydiallyldimethylammonium chloride (PDDA) layer and a GOx layer. The unique sandwich-like layer structure (PDDA/GOx/PDDA/CNT) formed by self-assembling provides a favorable microenvironment to keep the bioactivity of GOx and to prevent enzyme molecule leakage. The direct electrochemistry behavior of GOx and electrocatalysis of H2O2 on the fabricated PDDA/GOx/PDDA/CNT electrode demonstrated that such a biosensor fabrication method preserves the activity of enzyme molecules and the mechanical and electrocatalytic properties of carbon nanotubes, enabling sensitive determination of glucose. Flow injection amperometric detection of glucose is carried out at -100 mV (vs Ag/AgCl) in 0.05 M phosphate buffer solution (pH 7.4) with wide linear response range of 15 uM- 6 mM and a detection limit of 7 uM. The PDDA/GOx/PDDA/CNT/GC biosensor showed excellent properties for the sensitive determination of glucose with good reproducibility, remarkable stability, and free of interference from other co-existing electroactive species. The present methods can be applied to assemble other enzyme molecules and biological molecules, such as antibody, antigen, and DNA, to the CNT surface for wide biosensor and bioassay applications.

  16. Fabrication of amperometric xanthine biosensors based on direct chemistry of xanthine oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Gao Yansheng; Shen Chunping [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Di Junwei, E-mail: djw@suda.edu.cn [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Tu Yifeng [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China)

    2009-08-31

    The construction of amperometric xanthine biosensor by immobilization of xanthine oxidase (XOD) on the multi-wall carbon nanotubes (CNTs) modified glassy carbon (GC) electrode surface was investigated. The direct chemistry of XOD was accomplished and the formal potential was about - 0.465 V (vs SCE). The heterogeneous electron transfer rate constant was evaluated to be 2.0 {+-} 0.3 s{sup -1}. The xanthine biosensor based on XOD entrapped in silica sol-gel (SG) thin film on CNTs-modified GC electrode surface was also investigated. The XOD still maintains its activity to xanthine. The amperometric response to xanthine showed a linear relation in the range from 0.2 {mu}M to 10 {mu}M and a detection limit of 0.1 {mu}M (S/N = 3). The enzyme electrode retained 95% of its initial activity after 90 days of storage. The sensor exhibited high sensitivity, rapid response and good long-term stability.

  17. Amperometric Enzyme-Based Biosensors for Application in Food and Beverage Industry

    Science.gov (United States)

    Csöoregi, Elisabeth; Gáspñr, Szilveszter; Niculescu, Mihaela; Mattiasson, Bo; Schuhmann, Wolfgang

    Continuous, sensitive, selective, and reliable monitoring of a large variety of different compounds in various food and beverage samples is of increasing importance to assure a high-quality and tracing of any possible source of contamination of food and beverages. Most of the presently used classical analytical methods are often requiring expensive instrumentation, long analysis times and well-trained staff. Amperometric enzyme-based biosensors on the other hand have emerged in the last decade from basic science to useful tools with very promising application possibilities in food and beverage industry. Amperometric biosensors are in general highly selective, sensitive, relatively cheap, and easy to integrate into continuous analysis systems. A successful application of such sensors for industrial purposes, however, requires a sensor design, which satisfies the specific needs of monitoring the targeted analyte in the particular application, Since each individual application needs different operational conditions and sensor characteristics, it is obvious that biosensors have to be tailored for the particular case. The characteristics of the biosensors are depending on the used biorecognition element (enzyme), nature of signal transducer (electrode material) and the communication between these two elements (electron-transfer pathway).

  18. Development of amperometric L-tyrosine sensor based on Fe-doped hydroxyapatite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kanchana, P.; Lavanya, N.; Sekar, C., E-mail: Sekar2025@gmail.com

    2014-02-01

    A novel biosensor based on Fe-doped hydroxyapatite (Fe-HA) nanoparticles and tyrosinase has been developed for the detection of L-tyrosine. Nanostructured Fe-HA was synthesized by a simple microwave irradiation method, and its phase formation, morphology and magnetic property were examined by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). Electrochemical performance of the nano Fe-HA/tyrosinase modified glassy carbon electrode (GCE) for detection of L-tyrosine was investigated by cyclic voltammetry (CV) and amperometric methods. The fabricated biosensor exhibited a linear response to L-tyrosine over a wide concentration range of 1.0 × 10{sup −7} to 1.0 × 10{sup −5} M with a detection limit of 245 nM at pH 7.0. In addition, the fabricated sensor showed an excellent selectivity, good reproducibility, long-term stability and anti-interference towards the determination of L-tyrosine. - Highlights: • A novel amperometric L-tyrosine biosensor has been fabricated using nanostructured Fe-HA. • The fabricated sensor exhibits a wide linear range, good stability and high reproducibility. • Fe-HA assists microenvironment and direct electron transfer between enzyme and electrode surface. • The nano Fe-HA and electrode fabrication procedure are simple and less expensive.

  19. Amperometric Biosensor for Hydrogen Peroxide Based on Electrodeposited Sub-micrometer Gold Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG,Shu-Qing(王树青); CHEN,Jun(陈峻); LIN,Xiang-Qin(林祥钦)

    2004-01-01

    A new type of hydrogen peroxide amperometric biosensor was fabricated based on electrochemically deposited sub-micrometer Au particles(sm-Au)on a glassy carbon electrode(GCE).Electrochemical deposition condition was optimized for obtaining uniformly distributed sub-micrometer sized Au array on the electrode surface.The hydrogen peroxide sensor was fabricated by adsorbing phenothiazine methylene blue(MB)molecules on the surface of sm-Au and covering a cross-linked horseradish peroxidase(HRP)layer,labeled as HRP/MB/sm-Au/GCE.The characteristics of this biosensor were evaluated with respect to applied potential and pH.The amperometric response of the sensor was linear to the H2O2 concentration over a wide range of 9.9×10-6-1.11×10-2 mol/L.A detection limit(s/n=3)of 3.0×10-6 mol/L H2O2 was estimated for a sampled chronoamperometric detection at 1.5 min after potential step of 200 to-400 mV vs.SCE.The immobilized MB molecules shuttled electrons at(=0.77 and an apparent electron transfer rate constant of =0.053 s-1.Interference of ascorbic acid,dopamine and uric acid was investigated.This sensor has very good stability and reproducibility for long-term use.

  20. Field-based detection and monitoring of uranium in contaminated groundwater using two immunosensors

    Energy Technology Data Exchange (ETDEWEB)

    Melton, S.J.; Yu, H.; Williams, K.H.; Morris, S.A.; Long, P.E.; Blake, D.A.

    2009-05-01

    Field-based monitoring of environmental contaminants has long been a need for environmental scientists. Described herein are two kinetic exclusion-based immunosensors, a field portable sensor (FPS) and an inline senor, that were deployed at the Integrated Field Research Challenge Site of the U.S. Department of Energy in Rifle, CO. Both sensors utilized a monoclonal antibody that binds to a U(VI)-dicarboxyphenanthroline complex (DCP) in a kinetic exclusion immunoassay format. These sensors were able to monitor changes of uranium in groundwater samples from {approx} 1 {micro}M to below the regulated drinking water limit of 126 nM (30 ppb). The FPS is a battery-operated sensor platform that can determine the uranium level in a single sample in 5-10 min, if the instrument has been previously calibrated with standards. The average minimum detection level (MDL) in this assay was 0.33 nM (79 ppt), and the MDL in the sample (based on a 1:200?1:400 dilution) was 66?132 nM (15.7?31.4 ppb). The inline sensor, while requiring a grounded power source, has the ability to autonomously analyze multiple samples in a single experiment. The average MDL in this assay was 0.12 nM (29 ppt), and the MDL in the samples (based on 1:200 or 1:400 dilutions) was 24?48 nM (5.7?11.4 ppb). Both sensor platforms showed an acceptable level of agreement (r{sup 2} = 0.94 and 0.76, for the inline and FPS, respectively) with conventional methods for uranium quantification.

  1. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    Directory of Open Access Journals (Sweden)

    Das G

    2015-08-01

    Full Text Available Gautam Das, Hyon Hee Yoon Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do, South Korea Abstract: An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 µA·cm-2·mM-1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. Keywords: electrochemical deposition, sulfonated graphene oxide, urease

  2. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    Science.gov (United States)

    Das, Gautam; Yoon, Hyon Hee

    2015-01-01

    An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 (μA · cm−2·mM−1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM) with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity) after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. PMID:26346240

  3. An Electrochemiluminescence Immunosensor Based on Gold-Magnetic Nanoparticles and Phage Displayed Antibodies

    Science.gov (United States)

    Mu, Xihui; Tong, Zhaoyang; Huang, Qibin; Liu, Bing; Liu, Zhiwei; Hao, Lanqun; Dong, Hua; Zhang, Jinping; Gao, Chuan

    2016-01-01

    Using the multiple advantages of the ultra-highly sensitive electrochemiluminescence (ECL) technique, Staphylococcus protein A (SPA) functionalized gold-magnetic nanoparticles and phage displayed antibodies, and using gold-magnetic nanoparticles coated with SPA and coupled with a polyclonal antibody (pcAb) as magnetic capturing probes, and Ru(bpy)32+-labeled phage displayed antibody as a specific luminescence probe, this study reports a new way to detect ricin with a highly sensitive and specific ECL immunosensor and amplify specific detection signals. The linear detection range of the sensor was 0.0001~200 µg/L, and the limit of detection (LOD) was 0.0001 µg/L, which is 2500-fold lower than that of the conventional ELISA technique. The gold-magnetic nanoparticles, SPA and Ru(bpy)32+-labeled phage displayed antibody displayed different amplifying effects in the ECL immunosensor and can decrease LOD 3-fold, 3-fold and 20-fold, respectively, compared with the ECL immunosensors without one of the three effects. The integrated amplifying effect can decrease the LOD 180-fold. The immunosensor integrates the unique advantages of SPA-coated gold-magnetic nanoparticles that improve the activity of the functionalized capturing probe, and the amplifying effect of the Ru(bpy)32+-labeled phage displayed antibodies, so it increases specificity, interference-resistance and decreases LOD. It is proven to be well suited for the analysis of trace amounts of ricin in various environmental samples with high recovery ratios and reproducibility. PMID:26927130

  4. Electrochemical immunosensor based on nanoporpus gold loading thionine for carcinoembryonic antigen.

    Science.gov (United States)

    Sun, Xiaobin; Ma, Zhanfang

    2013-05-30

    Nanoporous gold (NPG) has recently received considerable attention in analytical electrochemistry because of its good conductivity and large specific surface area. A facile layer-by-layer assembly technique fabricated NPG was used to construct an electrochemical immunosensor for carcinoembryonic antigen (CEA). NPG was fabricated on glassy carbon (GC) electrode by alternatively assembling gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) using 1,4-benzenedimethanethiol as a cross-linker, and then AgNPs were dissolved with HNO3. The thionine was absorbed into the NPG and then gold nanostructure was electrodeposited on the surface through the electrochemical reduction of gold chloride tetrahydrate (HAuCl4). The anti-CEA was directly adsorbed on gold nanostructure fixed on the GC electrode. The linear range of the immunosensor was from 10 pg mL(-1) to 100 ng mL(-1) with a detection limit of 3 pg mL(-1) (S/N=3). The proposed immunosensor has high sensitivity, wide linear range, low detection limit, and good selectivity. The present method could be widely applied to construct other immunosensors.

  5. Conducting polymer film-based immunosensors using carbon nanotube/antibodies doped polypyrrole

    Science.gov (United States)

    Tam, Phuong Dinh; Hieu, Nguyen Van

    2011-09-01

    Carbon nanotube/polypyrrole/antibodies polymer films were synthesized successfully on microelectrodes by electrochemical deposition. Electropolymerization was performed at optimal range between -0.8 and +0.8 V at a scan rate of 50 mV s-1 in an electrochemical mini-cell containing monomer pyrroles, carbon nanotubes, and goat IgGs. The conducting polymer films were characterized by Fourier transform infrared spectrometry, Raman spectra, and Field emission scanning electron microscopy. And then, it was prepared for immunosensor application to determine anti-goat IgGs. The results show that a linear range between 0.05 and 0.7 μg ml-1 for anti-goat IgGs detection was observed for immunosensor, a detection limit as low as 0.05 μg ml-1 and a response time of 1 min. The effect parameters of electropolymerization process on immunosensor response are also studied. It found that the immunosensor well active in 1.5 mg ml-1 CNT concentration, 2.5 mM pyrrole, 10 μg ml-1 goat IgGs.

  6. Conducting polymer film-based immunosensors using carbon nanotube/antibodies doped polypyrrole

    International Nuclear Information System (INIS)

    Carbon nanotube/polypyrrole/antibodies polymer films were synthesized successfully on microelectrodes by electrochemical deposition. Electropolymerization was performed at optimal range between -0.8 and +0.8 V at a scan rate of 50 mV s-1 in an electrochemical mini-cell containing monomer pyrroles, carbon nanotubes, and goat IgGs. The conducting polymer films were characterized by Fourier transform infrared spectrometry, Raman spectra, and Field emission scanning electron microscopy. And then, it was prepared for immunosensor application to determine anti-goat IgGs. The results show that a linear range between 0.05 and 0.7 μg ml-1 for anti-goat IgGs detection was observed for immunosensor, a detection limit as low as 0.05 μg ml-1 and a response time of 1 min. The effect parameters of electropolymerization process on immunosensor response are also studied. It found that the immunosensor well active in 1.5 mg ml-1 CNT concentration, 2.5 mM pyrrole, 10 μg ml-1 goat IgGs.

  7. Disposable amperometric biosensor based on nanostructured bacteriophages for glucose detection

    Science.gov (United States)

    Kang, Yu Ri; Hwang, Kyung Hoon; Kim, Ju Hwan; Nam, Chang Hoon; Kim, Soo Won

    2010-10-01

    The selection of electrode material profoundly influences biosensor science and engineering, as it heavily influences biosensor sensitivity. Here we propose a novel electrochemical detection method using a working electrode consisting of bio-nanowires from genetically modified filamentous phages and nanoparticles. fd-tet p8MMM filamentous phages displaying a three-methionine (MMM) peptide on the major coat protein pVIII (designated p8MMM phages) were immobilized on the active area of an electrochemical sensor through physical adsorption and chemical bonding. Bio-nanowires composed of p8MMM phages and silver nanoparticles facilitated sensitive, rapid and selective detection of particular molecules. We explored whether the composite electrode with bio-nanowires was an effective platform to detect the glucose oxidase. The current response of the bio-nanowire sensor was high at various glucose concentrations (0.1 µm-0.1 mM). This method provides a considerable advantage to demonstrate analyte detection over low concentration ranges. Especially, phage-enabled bio-nanowires can serve as receptors with high affinity and specificity for the detection of particular biomolecules and provide a convenient platform for designing site-directed multifunctional scaffolds based on bacteriophages and may serve as a simple method for label-free detection.

  8. In vivo continuous and simultaneous monitoring of brain energy substrates with a multiplex amperometric enzyme-based biosensor device

    NARCIS (Netherlands)

    De Lima Braga Lopes Cordeiro, Carlos; de Vries, M.G.; Ngabi, W; Oomen, P.E.; Cremers, T.I.F.H.; Westerink, B.H.C.

    2015-01-01

    Enzyme-based amperometric biosensors are widely used for monitoring key biomarkers. In experimental neuroscience there is a growing interest in in vivo continuous and simultaneous monitoring of metabolism-related biomarkers, like glucose, lactate and pyruvate. The use of multiplex biosensors will pr

  9. Label-free immunosensor based on one-step electrodeposition of chitosan-gold nanoparticles biocompatible film on Au microelectrode for determination of aflatoxin B1 in maize.

    Science.gov (United States)

    Ma, Haihua; Sun, Jizhou; Zhang, Yuan; Bian, Chao; Xia, Shanhong; Zhen, Tong

    2016-06-15

    Gold nanoparticles (AuNPs) embedded in chitosan (CHI) film, well-dispersed and smaller in size (about 10 nm), were fabricated by one-step electrodeposion on Au microelectrode in solution containing chitosan and chloride trihydrate. The nano-structure CHI-AuNPs composite film offers abundant amine groups, good conductivity, excellent biocompatibility and stability for antibody immobilization. The combination of aflatoxin B1 (AFB1) with immobilized antibody introduces a barrier to electron transfer, resulting in current decreasement. The morphologies and characterizations of modified microelectrodes were investigated by scanning electron microscope (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FT-IR). The proposed non-enzyme and label-free immunosensor exhibited high sensitive amperometric response to AFB1 concentration in two linear ranges of 0.1 to 1 ng mL(-1) and 1 to 30 ng mL(-1), with the detection limit of 0.06 ng mL(-1) (S/N=3). The immunoassay was also applied for analysis of maize samples spiked with AFB1. Considering the sample extraction procedure, the linear range and limit of detection were assessed to be 1.6-16 ng mL(-1) and 0.19 ng mL(-1) respectively. The simple method showed good fabrication controllability and reproducibility for immunosensor design. PMID:26851579

  10. A novel sandwich electrochemiluminescence immunosensor for ultrasensitive detection of carbohydrate antigen 19-9 based on immobilizing luminol on Ag@BSA core/shell microspheres.

    Science.gov (United States)

    Zhang, Amin; Xiang, Hongkun; Zhang, Xin; Guo, Weiwei; Yuan, Enhui; Huang, Chusen; Jia, Nengqin

    2016-01-15

    A novel sandwich-type electrochemiluminescence immunosensor based on immobilizing luminol on Ag@BSA core/shell microspheres (Ag@BSA-luminol) for ultrasensitive detection of tumor marker carbohydrate antigen 19-9 (CA19-9) has been developed. Herein, magnetic carbon nanotubes (MAGCNTs) decorated with polyethylenimine (PEI) was used to construct the base of the immunosensor. MAGCNTs with prominent electrical conductivity and high surface area could be beneficial for promoting the electron transfer and loading plenty of primary antibodies (Ab1) via glutaraldehyde (GA). Meanwhile, the magnetic property of MAGCNTs makes it easy to be attached to the surface of magnetic glass carbon electrode (MGCE) through magnetism interaction, which provides an outstanding platform for this immunosensor. Moreover, Ag@BSA microspheres with large surface area, good stability, and excellent biocompatibility were desirable candidates for effective cross-link of CA19-9 detection antibodies (Ab2). A more interesting thing was that ELISA color reaction was used as an ultrasensitive strategy for identifying Ab2 was successfully coated on Ag@BSA with the naked eye. Additionally, we immobilized the luminol on the surface of Ag@BSA to prepare the target immunosensor. Immobilization of luminol on the surface of Ag@BSA could decrease the distance between luminophores and the electrode surface, leading to great enhancement of the ECL intensity of luminol in the present of hydrogen peroxide (H2O2). Under the optimal conditions, the intensity of the ECL immunosensor increased linearly with the logarithm of CA19-9 concentration in a wide linear range from 0.0005 to 150UmL(-1) with a detection limit of 0.0002UmL(-1) (S/N=3). All the results suggested the prepared CA19-9 immunosensor displayed high sensitivity, excellent stability and good specificity. The developed method opened a new avenue to clinical bioassay.

  11. Amperometric hydrogen peroxide and glucose biosensor based on NiFe2/ordered mesoporous carbon nanocomposites.

    Science.gov (United States)

    Xiang, Dong; Yin, Longwei; Ma, Jingyun; Guo, Enyan; Li, Qun; Li, Zhaoqiang; Liu, Kegao

    2015-01-21

    Nanocomposites of NiFex embedded in ordered mesoporous carbon (OMC) (x = 0, 1, 2) were prepared by a wet impregnation and hydrogen reduction process and were used to construct electrochemical biosensors for the amperometric detection of hydrogen peroxide (H2O2) or glucose. The NiFe2/OMC nanocomposites were demonstrated to have a large surface area, suitable mesoporous channels, many edge-plane-like defective sites, and a good distribution of alloyed nanoparticles. The NiFe2/OMC and Nafion modified glass carbon electrode (GCE) exhibited excellent electrocatalytic activities toward the reduction of H2O2 as well. By utilizing it as a bioplatform, GOx (glucose oxidase) cross-linked with Nafion was immobilized on the surface of the electrode for the construction of an amperometric glucose biosensor. Our results indicated that the amperometric hydrogen peroxide biosensor (NiFe2/OMC + Nafion + GCE) showed good analytical performances in term of a high sensitivity of 4.29 μA mM(-1) cm(-2), wide linearity from 6.2 to 42,710 μM and a low detection limit of 0.24 μM at a signal-to-noise ratio of 3 (S/N = 3). This biosensor exhibited excellent selectivity, high stability and negligible interference for the detection of H2O2. In addition, the immobilized enzyme on NiFe2/OMC + Nafion + GCE, retaining its bioactivity, exhibited a reversible two-proton and two-electron transfer reaction, a fast heterogeneous electron transfer rate and an effective Michaelis-Menten constant (K) (3.18 mM). The GOx + NiFe2/OMC + Nafion + GCE could be used to detect glucose based on the oxidation of glucose catalyzed by GOx and exhibited a wide detection range of 48.6-12,500 μM with a high sensitivity of 6.9 μA mM(-1) cm(-2) and a low detection limit of 2.7 μM (S/N = 3). The enzymic biosensor maintained a high selectivity and stability features, and shows great promise for application in the detection of glucose. PMID:25429370

  12. Self-powered competitive immunosensor driven by biofuel cell based on hollow-channel paper analytical devices.

    Science.gov (United States)

    Li, Shuai; Wang, Yanhu; Ge, Shenguang; Yu, Jinghua; Yan, Mei

    2015-09-15

    A mediator-less and compartment-less glucose/O2 enzymatic biofuel cell (BFC) was introduced into microfluidic paper-based analytical devices (μ-PADs) that relies on flow in hollow channels with silver nanoparticles/graphene modified paper electrode as the anodic and cathodic substrate, to implement self-powered sensitive carcinoembryonic antigen (CEA) detection. Glucose dehydrogenase (GDH)-gold nanoparticles bioconjugate modified with CEA acted as a biocatalyst for enhancing glucose oxidation in the bioanode, as well as the transducing enzyme for signaling magnification. Similarly, nanoporous PtNi/bilirubin oxidase (BOD) acted as a biocatalyst for enhancing O2 reduction in the biocathode. With an increase in the concentration of CEA, the amount of CEA-Au-GDH bioconjugate on bioanode decreases, thus leading to the lower output of the as-prepared BFC. This proposed BFC-based self-powered immunosensor for CEA possessed largely increased linear detection range from 1 pg mL(-1) to 0.5 μg mL(-)(1) with a detection limit of 0.7 pg mL(-)(1). The proposed BFC-based self-powered immunosensor shows high sensitivity, stability, and reproducibility and can become a promising platform for other protein detection.

  13. Amperometric Low-Potential Detection of Malic Acid Using Single-Wall Carbon Nanotubes Based Electrodes

    Directory of Open Access Journals (Sweden)

    Camelia Bala

    2008-03-01

    Full Text Available The electrocatalytical property of single-wall carbon nanotube (SWNTmodified electrode toward NADH detection was explored by cyclic voltammetry andamperometry techniques. The experimental results show that SWNT decrease theovervoltage required for oxidation of NADH (to 300 mV vs. Ag/AgCl and this propertymake them suitable for dehydrogenases based biosensors. The behavior of the SWNTmodified biosensor for L-malic acid was studied as an example for dehydrogenasesbiosensor. The amperometric measurements indicate that malate dehydrogenase (MDHcan be strongly adsorbed on the surface of the SWNT-modified electrode to form anapproximate monolayer film. Enzyme immobilization in Nafion membrane can increasethe biosensor stability. A linear calibration curve was obtained for L-malic acidconcentrations between 0.2 and 1mM.

  14. Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode

    Energy Technology Data Exchange (ETDEWEB)

    Can, Faruk; Korkut Ozoner, Seyda; Ergenekon, Pinar; Erhan, Elif, E-mail: e.erhan@gyte.edu.tr

    2012-01-01

    This study describes the construction and characterization of an amperometric nitrate biosensor based on the Polypyrrole (PPy)/Carbon nanotubes (CNTs) film. Nitrate reductase (NR) was both entrapped into the growing PPy film and chemically immobilized via the carboxyl groups of CNTs to the CNT/PPy film electrode. The optimum amperometric response for nitrate was obtained in 0.1 M phosphate buffer solution (PBS), pH 7.5 including 0.1 M lithium chloride and 7 mM potassium ferricyanide with an applied potential of 0.13 V (vs. Ag/AgCl, 3 M NaCl). Sensitivity was found to be 300 nA/mM in a linear range of 0.44-1.45 mM with a regression coefficient of 0.97. The biosensor response showed a higher linear range in comparison to standard nitrate analysis methods which were tested in this study and NADH based nitrate biosensors. A minimum detectable concentration of 0.17 mM (S/N = 3) with a relative standard deviation (RSD) of 5.4% (n = 7) was obtained for the biosensor. Phenol and glucose inhibit the electrochemical reaction strictly at a concentration of 1 {mu}g/L and 20 mg/L, respectively. The biosensor response retained 70% of its initial response over 10 day usage period when used everyday. - Highlights: Black-Right-Pointing-Pointer K{sub 3}Fe(CN){sub 6} has been used for the first time as mediator for nitrate reductase. Black-Right-Pointing-Pointer Better performance was obtained in comparison to other nitrate biosensor studies operated with various mediators. Black-Right-Pointing-Pointer Analytical parameters were better than standard nitrate analysis methods.

  15. Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode

    International Nuclear Information System (INIS)

    This study describes the construction and characterization of an amperometric nitrate biosensor based on the Polypyrrole (PPy)/Carbon nanotubes (CNTs) film. Nitrate reductase (NR) was both entrapped into the growing PPy film and chemically immobilized via the carboxyl groups of CNTs to the CNT/PPy film electrode. The optimum amperometric response for nitrate was obtained in 0.1 M phosphate buffer solution (PBS), pH 7.5 including 0.1 M lithium chloride and 7 mM potassium ferricyanide with an applied potential of 0.13 V (vs. Ag/AgCl, 3 M NaCl). Sensitivity was found to be 300 nA/mM in a linear range of 0.44–1.45 mM with a regression coefficient of 0.97. The biosensor response showed a higher linear range in comparison to standard nitrate analysis methods which were tested in this study and NADH based nitrate biosensors. A minimum detectable concentration of 0.17 mM (S/N = 3) with a relative standard deviation (RSD) of 5.4% (n = 7) was obtained for the biosensor. Phenol and glucose inhibit the electrochemical reaction strictly at a concentration of 1 μg/L and 20 mg/L, respectively. The biosensor response retained 70% of its initial response over 10 day usage period when used everyday. - Highlights: ► K3Fe(CN)6 has been used for the first time as mediator for nitrate reductase. ► Better performance was obtained in comparison to other nitrate biosensor studies operated with various mediators. ► Analytical parameters were better than standard nitrate analysis methods.

  16. Screen Printed Carbon Electrode Based Electrochemical Immunosensor for the Detection of Dengue NS1 Antigen

    Directory of Open Access Journals (Sweden)

    Om Parkash

    2014-11-01

    Full Text Available An electrochemical immunosensor modified with the streptavidin/biotin system on screen printed carbon electrodes (SPCEs for the detection of the dengue NS1 antigen was developed in this study. Monoclonal anti-NS1 capture antibody was immobilized on streptavidin-modified SPCEs to increase the sensitivity of the assay. Subsequently, a direct sandwich enzyme linked immunosorbent assay (ELISA format was developed and optimized. An anti-NS1 detection antibody conjugated with horseradish peroxidase enzyme (HRP and 3,3,5,5'-tetramethybezidine dihydrochloride (TMB/H2O2 was used as an enzyme mediator. Electrochemical detection was conducted using the chronoamperometric technique, and electrochemical responses were generated at −200 mV reduction potential. The calibration curve of the immunosensor showed a linear response between 0.5 µg/mL and 2 µg/mL and a detection limit of 0.03 µg/mL. Incorporation of a streptavidin/biotin system resulted in a well-oriented antibody immobilization of the capture antibody and consequently enhanced the sensitivity of the assay. In conclusion, this immunosensor is a promising technology for the rapid and convenient detection of acute dengue infection in real serum samples.

  17. A competitive photoelectrochemical immunosensor based on a CdS-induced signal amplification strategy for the ultrasensitive detection of dexamethasone.

    Science.gov (United States)

    Wang, Xueping; Yan, Tao; Li, Yan; Liu, Yixin; Du, Bin; Ma, Hongmin; Wei, Qin

    2015-12-09

    A novel photoelectrochemical immunosensor based on the competitive strategy is proposed for the specific detection of dexamethasone (DXM). Graphitic carbon nitride coupled with bismuth sulfide are used as the sensing matrix for the immobilization of BSA-DXM on the electrode surface, while cadmium sulfide functionalized titanium dioxide (TiO2@CdS) is used as the photoelectric active labels of anti-DXM. Due to the perfect matching of energy levels between TiO2 and CdS, the in situ prepared composite labels show excellent photocurrent response under visible lights. The competitive binding of DXM in sample solutions and BSA-DXM on the electrode surface reduces the specific attachment of labels to the electrode, resulting in a decrease of the photocurrent intensity. Greatly enhanced sensitivity is achieved after the optimization of the detection conditions. Under the optimal detection condition, the well-designed immunosensor for DXM exhibits a low detection limit of 2 pg ∙ mL(-1). Additionally, the proposed immunoassay system shows high specificity, good reproducibility and acceptable stability, which is also expected to become a promising platform for the detection of other small molecules.

  18. Dual immunosensor based on methylene blue-electroadsorbed graphene oxide for rapid detection of the influenza A virus antigen.

    Science.gov (United States)

    Veerapandian, Murugan; Hunter, Robert; Neethirajan, Suresh

    2016-08-01

    Rapid detection of influenza viral infections in poultry facilities is advantageous in several aspects such as environmental/personal safety, food-security, and socio-economy. Herein, we report the development of an electrochemical-based dual-sensor platform composed of methylene blue-electroadsorbed graphene oxide nanostructures modified with monoclonal antibodies against the HA proteins of H5N1 and H1N1. Bio-functional layers comprised of chitosan and protein-A molecules were implemented at the interface of the sensor element and antibodies, which synergistically enriched the bio-activity of immobilized antibodies for the immune complex formation. The differential pulse voltammetric signals resulted from the developed immunosensor platform exhibited a good correlation (R(2)=0.9978 for H1N1 and R(2)=0.9997 for H5N1) for the wide range of target concentrations 25-500pM). Chronoamperometric study also revealed the amplified current sensitivity of the immunoelectrodes even at the picomolar level. The proposed immunosensor design not only provides rapid analytical response time (<1min) but simplicity in fabrication and instrumentation, which paves an attractive platform for on-farm monitoring of viral infections. PMID:27216681

  19. Sandwich-type electrochemical immunosensor for the detection of AFP based on Pd octahedral and APTES-M-CeO₂-GS as signal labels.

    Science.gov (United States)

    Wei, Yicheng; Li, Yan; Li, Na; Zhang, Yong; Yan, Tao; Ma, Hongmin; Wei, Qin

    2016-05-15

    In the present work, an ultrasensitive sandwich-type electrochemical immunosensor based on a novel signal amplification strategy was designed for quantitative detection of alpha fetoprotein (AFP). Au nanoparticles with biocompatibility were electrodeposited on the surface of glassy carbon electrode (GCE) which can effectively capture and immobilize primary anti-AFP (Ab1) to significantly amplify the electrochemical signal. Graphene Oxide and CeO2 mesoporous nanocomposite functionalized by the 3-aminopropyltriethoxysilane supported Pd octahedral nanoparticles (Pd/APTES-M-CeO2-GS) were utilized as labels of detection anti-AFP (Ab2). Pd octahedral nanoparticles presented good catalytic activity towards the reduction of H2O2. Due to the large specific surface area and good adsorption properties of APTES-CeO2-GS nanocomposite, large amount of Pd octahedral nanoparticles could be immobilized, which could amplify the electrochemical signal and improve the sensitivity of the immunosensor. Under optimal conditions, the immunosensor exhibited wide linear range from 0.1 pg/mL to 50 ng/mL with a low detection limit of 0.033 pg/mL (S/N=3) for AFP detection. In addition, high sensitivity, excellent selectivity, good reproducibility and stability were obtained for the immunosensor, which has a promising application for quantitative detection of other tumor markers in clinical diagnosis. PMID:26745795

  20. Disposable integrated bismuth citrate-modified screen-printed immunosensor for ultrasensitive quantum dot-based electrochemical assay of C-reactive protein in human serum

    Energy Technology Data Exchange (ETDEWEB)

    Kokkinos, Christos, E-mail: xkokkinos@gmail.com [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Prodromidis, Mamas [Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Economou, Anastasios [Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, 157 71 Athens (Greece); Petrou, Panagiota; Kakabakos, Sotirios [Immunoassay/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, Aghia Paraskevi, 153 10 Athens (Greece)

    2015-07-30

    A novel immunosensor based on graphite screen-printed electrodes (SPEs) modified with bismuth citrate was developed for the voltammetric determination of C-reactive protein (CRP) in human serum using quantum dots (QDs) labels. The sandwich-type immunoassay involved physisorption of CRP capture antibody on the surface of the sensor, sequential immunoreactions with CRP and biotinylated CRP reporter antibody and finally reaction with streptavidin-conjugated PbS QDs. The quantification of the target protein was performed with acidic dissolution of the PbS QDs and anodic stripping voltammetric detection of the Pb(II) released. Detection was performed at bismuth nanodomains formed on the sensor surface during the electrolytic preconcentration step, as bismuth citrate was reduced to metallic bismuth simultaneously with the deposition of Pb on the surface of the immunosensor. Under optimal conditions, the response was linear over the range 0.2–100 ng mL{sup −1} CRP and the limit of detection was 0.05 ng mL{sup −1} CRP. Since the modified SPE serves as both the biorecognition element and the QDs reader, the analytical procedure is simplified, the drawbacks of existing electroplated immunosensors are minimized while the proposed disposable sensing platform provides convenient, low-cost and ultrasensitive detection of proteins and wider scope for mass-production. - Highlights: • A bismuth citrate-modified screen-printed immunosensor was developed. • PbS quantum dots labels were used in the sandwich immunoassay for CRP determination. • A Bi film was formed at the sensor surface during the preconcentration step of Pb. • The immunosensor minimizes the limitations of electroplated metal film electrodes.

  1. Label-free C-reactive protein electronic detection with an electrolyte-gated organic field-effect transistor-based immunosensor.

    Science.gov (United States)

    Magliulo, Maria; De Tullio, Donato; Vikholm-Lundin, Inger; Albers, Willem M; Munter, Tony; Manoli, Kyriaki; Palazzo, Gerardo; Torsi, Luisa

    2016-06-01

    In this contribution, we propose a label-free immunosensor, based on a novel type of electrolyte-gated field-effect transistor (EGOFET), for ultrasensitive detection of the C-reactive protein (CRP). The recognition layer of the biosensor is fabricated by physical adsorption of the anti-CRP monoclonal antibody onto a poly-3-hexyl thiophene (P3HT) organic semiconductor surface. A supplementary nonionic hydrophilic polymer is used as a blocking agent preventing nonspecific interactions and allowing a better orientation of the antibodies immobilized onto the P3HT surface. The whole biomolecule immobilization procedure does not require any pretreatment of the organic semiconductor surface, and the whole functionalization process is completed in less than 30 min. Surface plasmon resonance (SPR) measurements were performed to assess the amount of biomolecules physisorbed onto the P3HT and to evaluate the CRP binding proprieties of the deposited anti-CRP layer. A partial surface coverage of about 23 % of adsorbed antibody molecules was found to most efficiently sense the CRP. The electrical performance of the EGOFET immunosensor was comparable to that of a bare P3HT EGOFET device, and the obtained CRP calibration curve was linear over six orders of magnitude (from 4 pM to 2 μM). The relative standard deviation of the individual calibration points, measured on immunosensors fabricated on different chips, ranged between 1 and 14 %, and a detection limit of 2 pM (220 ng/L) was established. The novel electronic immunosensor is compatible with low-cost fabrication procedures and was successfully employed for the detection of the CRP biomarker in the clinically relevant matrix serum. Graphical abstract Schematic of the EGOFET immunosensor for CRP detection. The anti-CRP monoclonal antibody layer is physisorbed on the P3HT organic semiconductor and the CRP is directly measured by a label-free electronic EGOFET transducer. PMID:27032409

  2. Disposable integrated bismuth citrate-modified screen-printed immunosensor for ultrasensitive quantum dot-based electrochemical assay of C-reactive protein in human serum

    International Nuclear Information System (INIS)

    A novel immunosensor based on graphite screen-printed electrodes (SPEs) modified with bismuth citrate was developed for the voltammetric determination of C-reactive protein (CRP) in human serum using quantum dots (QDs) labels. The sandwich-type immunoassay involved physisorption of CRP capture antibody on the surface of the sensor, sequential immunoreactions with CRP and biotinylated CRP reporter antibody and finally reaction with streptavidin-conjugated PbS QDs. The quantification of the target protein was performed with acidic dissolution of the PbS QDs and anodic stripping voltammetric detection of the Pb(II) released. Detection was performed at bismuth nanodomains formed on the sensor surface during the electrolytic preconcentration step, as bismuth citrate was reduced to metallic bismuth simultaneously with the deposition of Pb on the surface of the immunosensor. Under optimal conditions, the response was linear over the range 0.2–100 ng mL−1 CRP and the limit of detection was 0.05 ng mL−1 CRP. Since the modified SPE serves as both the biorecognition element and the QDs reader, the analytical procedure is simplified, the drawbacks of existing electroplated immunosensors are minimized while the proposed disposable sensing platform provides convenient, low-cost and ultrasensitive detection of proteins and wider scope for mass-production. - Highlights: • A bismuth citrate-modified screen-printed immunosensor was developed. • PbS quantum dots labels were used in the sandwich immunoassay for CRP determination. • A Bi film was formed at the sensor surface during the preconcentration step of Pb. • The immunosensor minimizes the limitations of electroplated metal film electrodes

  3. Amperometric hydrogen peroxide biosensor based on cobalt ferrite–chitosan nanocomposite

    International Nuclear Information System (INIS)

    A novel H2O2 biosensor based on horseradish peroxidase (HRP) immobilized into CoFe2O4–chitosan nanocomposite has been developed for the detection of hydrogen peroxide. The nanocomposite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). HRP has been entrapped into CoFe2O4–chitosan nanocomposite film and the immobilized enzyme could retain its bioactivity. This biosensor exhibited a fast amperometric response to hydrogen peroxide. The linear range for H2O2 determination was from 3 × 10−2 to 8 mM, with a detection limit of 2 × 10−3 mM based on S/N = 3. The response time of the biosensor was 4 s. The effects of the pH and the temperature of the immobilized HRP electrode were also studied. - Highlights: ► HRP biosensor based on CoFe2O4–chitosan nanocomposite has been developed for H2O2 detection. ► The biosensor seems to be simple to prepare, fast to respond, inexpensive and sensitive. ► The biosensor had high sensitivity, good repeatability, reusability and long term stability.

  4. Amperometric hydrogen peroxide biosensor based on cobalt ferrite-chitosan nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Yard Latin-Small-Letter-Dotless-I mc Latin-Small-Letter-Dotless-I , Feyza S.; Senel, Mehmet, E-mail: msenel@fatih.edu.tr; Baykal, Abduelhadi

    2012-02-01

    A novel H{sub 2}O{sub 2} biosensor based on horseradish peroxidase (HRP) immobilized into CoFe{sub 2}O{sub 4}-chitosan nanocomposite has been developed for the detection of hydrogen peroxide. The nanocomposite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). HRP has been entrapped into CoFe{sub 2}O{sub 4}-chitosan nanocomposite film and the immobilized enzyme could retain its bioactivity. This biosensor exhibited a fast amperometric response to hydrogen peroxide. The linear range for H{sub 2}O{sub 2} determination was from 3 Multiplication-Sign 10{sup -2} to 8 mM, with a detection limit of 2 Multiplication-Sign 10{sup -3} mM based on S/N = 3. The response time of the biosensor was 4 s. The effects of the pH and the temperature of the immobilized HRP electrode were also studied. - Highlights: Black-Right-Pointing-Pointer HRP biosensor based on CoFe{sub 2}O{sub 4}-chitosan nanocomposite has been developed for H{sub 2}O{sub 2} detection. Black-Right-Pointing-Pointer The biosensor seems to be simple to prepare, fast to respond, inexpensive and sensitive. Black-Right-Pointing-Pointer The biosensor had high sensitivity, good repeatability, reusability and long term stability.

  5. A Label-Free Immunosensor for Ultrasensitive Detection of Ketamine Based on Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Ya Yang

    2015-04-01

    Full Text Available In this study, we have developed a label-free immunosensor with the variation of resonance frequency (Δf of a quartz crystal microbalance (QCM as readout signal for ultrasensitive detection of Ketamine (KT. An optimized strategy for immobilization of KT antibody on the surface of the QCM chip was implemented via the self-assembly modification of 3-mercaptopropionic acid, and then activated with 1-ethyl-3- (3-dimethylaminoprophl carbodiimide and n-hydroxysuccinimide. The specific affinity between the antibody and the antigen ensured a selective response toward KT. The Δf linearly related to the concentration of KT in the range of 1 to 40 pg/mL, with a detection limit of 0.86 pg/mL (S/N = 3. The obtained immunosensor was applied to detect the KT in spiked human urine without any pretreatment but dilution with recoveries from 91.8% to 108%. The developed sensor is promising to perform the portable or on-spot KT detection in clinic or forensic cases.

  6. An electrochemical immunosensor based on covalent immobilization of okadaic acid onto screen printed carbon electrode via diazotization-coupling reaction.

    Science.gov (United States)

    Hayat, Akhtar; Barthelmebs, Lise; Sassolas, Audrey; Marty, Jean-Louis

    2011-07-15

    In this work, an electrochemical method based on the diazonium-coupling reaction mechanism for the immobilization of okadaic acid (OA) on screen printed carbon electrode was developed. At first, 4-carboxyphenyl film was grafted by electrochemical reduction of 4-carboxyphenyl diazonium salt, followed by terminal carboxylic group activation by N-hydroxysuccinimide (NHS), N-(3-dimethylaminopropyle)-N'-ethyle-carbodiimide hydrochloride (EDC). Hexamethyldiamine was then covalently bound by one of its terminal amine group to the activated carboxylic group. The carboxyl group of okadaic acid was activated by EDC/NHS and then conjugated to the second terminal amine group on other side of the hexamethyldiamine through amide bond formation. After immobilization of OA, an indirect competitive immunoassay format was employed to detect OA. The immunosensor obtained using this novel approach allowed detection limit of 1.44 ng/L of OA, and was also validated with certified reference mussel samples. PMID:21645734

  7. Amperometric inhibitive biosensor based on horseradish peroxidase-nanoporous gold for sulfide determination

    Science.gov (United States)

    Sun, Huihui; Liu, Zhuang; Wu, Chao; Xu, Ping; Wang, Xia

    2016-08-01

    As a well-known toxic pollutant, sulfide is harmful to human health. In this study, a simple and sensitive amperometric inhibitive biosensor was developed for the determination of sulfide in the environment. By immobilizing nanoporous gold (NPG) on glassy carbon electrode (GCE), and encapsulating horseradish peroxidase (HRP) onto NPG, a HRP/NPG/GCE bioelectrode for sulfide detection was successfully constructed based on the inhibition of sulfide on HRP activity with o-Phenylenediamine (OPD) as a substrate. The resulted HRP/NPG/GCE bioelectrode achieved a wide linear range of 0.1–40 μM in sulfide detection with a high sensitivity of 1720 μA mM‑1 cm‑2 and a low detection limit of 0.027 μM. Additionally, the inhibition of sulfide on HRP is competitive inhibition with OPD as a substrate by Michaelis-Menten analysis. Notably, the recovery of HRP activity was quickly achieved by washing the HRP/NPG/GCE bioelectrode using differential pulse voltammetry (DPV) technique in deaerated PBS (50 mM, pH 7.0) for only 60 s. Furthermore, the real sample analysis of sulfide by the HRP/NPG/GCE bioelectrode was achieved. Based on above results, the HRP/NPG/GCE bioelectrode could be a better choice for the real determination of sulfide compared to inhibitive biosensors previously reported.

  8. Amperometric Biosensor Based on Carbon Nanotube Functionalized by Redox Plasma-Polymerized Film

    Science.gov (United States)

    Hoshino, Tatsuya; Muguruma, Hitoshi

    2011-08-01

    A novel fabrication approach for the amperometric biosensor based on multilayer films containing carbon nanotubes (CNT), a plasma-polymerized film (PPF), and enzyme glucose oxidase (GOD) is reported. The configuration of the electrochemical electrode is sequentially composed of sputtered gold, lower acetonitrile PPF, CNT, redox PPF, GOD, and upper acetonitrile PPF (denoted as PPF/GOD/Redox-PPF/CNT/PPF/Au). The lower acetonitrile PPF deposited on Au acts as a permselective membrane, and as a scaffold for CNT layer formation. The upper acetonirile PPF directly deposited on GOD acts as a matrix for enzyme immobilization. The redox PPF polymerized by a monomer of dimethlyaminomethlyferrocene (DAF) is directly deposited onto CNTs. The surface of the functionalized CNT has redox sites of ferrocene groups that shuttle electrons from CNTs to the sensing surface of the Au electrode. The synergy between the redox PPF and CNT provides benefits in terms of lowering the operational potential and enhancing the sensitivity (current). The optimized glucose biosensor revealed a sensitivity of 2.0 µA mM-1 cm-2 at +0.4 V vs Ag/AgCl, a linear dynamic range of 4.9-27 mM, and a response time of 5 s.

  9. Functional layer-by-layer design of xerogel-based first-generation amperometric glucose biosensors.

    Science.gov (United States)

    Poulos, Nicholas G; Hall, Jackson R; Leopold, Michael C

    2015-02-01

    Xerogel-based first-generation amperometric glucose biosensors, constructed through specific layer-by-layer assembly of films featuring glucose oxidase doped xerogel, a diffusion-limiting xerogel layer, and capped with both electropolymerized polyphenol and blended polyurethane semipermeable membranes, are presented. The specific combination of xerogels formed from specific silane precursors, including propyl-trimethoxysilane, isobutyl-trimethoxysilane, octyl-trimethoxysilane, and hydroxymethyl-triethoxysilane, exhibit impressive dynamic and linear ranges of detection (e.g., ≥24-28 mM glucose) and low response times, as well as significant discrimination against common interferent species such as acetaminophen, ascorbic acid, sodium nitrite, oxalic acid, and uric acid as determined by selectivity coefficients. Additionally, systematic electrochemical and contact angle studies of different xerogel silane precursors, varying in structure, chain length, and/or functional group, reveal that sensor performance is more dependent on the tunable porosity/permeability of the layered interfaces rather than the hydrophobic character or functional groups within the films. While the sensing performance largely exceeds that of existing electrochemical glucose sensing schemes in the literature, the presented layered approach establishes the specific functionality of each layer working in concert with each other and suggests that the strategy may be readily adaptable to other clinically relevant targets and is amenable to miniaturization for eventual in situ or in vivo sensing. PMID:25562760

  10. Amperometric Enzyme-based Gas Sensor for Formaldehyde: Impact of Possible Interferences

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2007-02-01

    Full Text Available In this work, cross-sensitivities and environmental influences on the sensitivityand the functionality of an enzyme-based amperometric sensor system for the directdetection of formaldehyde from the gas phase are studied. The sensor shows a linearresponse curve for formaldehyde in the tested range (0 - 15 vppm with a sensitivity of1.9 μA/ppm and a detection limit of about 130 ppb. Cross-sensitivities by environmentalgases like CO2, CO, NO, H2, and vapors of organic solvents like methanol and ethanol areevaluated as well as temperature and humidity influences on the sensor system. The sensorshowed neither significant signal to CO, H2, methanol or ethanol nor to variations in thehumidity of the test gas. As expected, temperature variations had the biggest influence onthe sensor sensitivity with variations in the sensor signal of up to 10 % of the signal for 5vppm CH2O in the range of 25 - 30 °C.

  11. Development of Amperometric Glucose Biosensor Based on Prussian Blue Functionlized TiO2 Nanotube Arrays

    Science.gov (United States)

    Gao, Zhi-Da; Qu, Yongfang; Li, Tongtong; Shrestha, Nabeen K.; Song, Yan-Yan

    2014-11-01

    Amperometric biosensors consisting of oxidase and peroxidase have attracted great attention because of their wide application. The current work demonstrates a novel approach to construct an enzymatic biosensor based on TiO2 nanotube arrays (TiNTs) as a supporting electrode on which Prussian Blue (PB)-an ``artificial enzyme peroxidase'' and enzyme glucose oxidase (GOx) have been immobilized. For this, PB nanocrystals are deposited onto the nanotube wall photocatalytically using the intrinsic photocatalytical property of TiO2, and the GOx/AuNPs nanobiocomposites are subsequently immobilized into the nanotubes via the electrodeposition of polymer. The resulting electrode exhibits a fast response, wide linear range, and good stability for glucose sensing. The sensitivity of the sensor is as high as 248 mA M-1 cm-2, and the detection limit is about 3.2 μM. These findings demonstrate a promising strategy to integrate enzymes and TiNTs, which could provide an analytical access to a large group of enzymes for bioelectrochemical applications including biosensors and biofuel cells.

  12. Electrochemical immunosensor for alpha-fetoprotein determination based on ZnSe quantum dots/Azure I/gold nanoparticles/poly (3,4-ethylenedioxythiophene) modified Pt electrode

    International Nuclear Information System (INIS)

    A novel amperometric enzyme immunosensor with amplified sensitivity for the determination of alpha-fetoprotein (AFP) was constructed with layer-by-layer assembly of ZnSe quantum dots (ZnSe QDs)/Azure I/gold nanoparticles (nanoAu)/poly (3,4-ethylenedioxythiophene) (PEDOT) on Pt electrode. Firstly, citrate coated nanoAu was immobilized on the PEDOT polymer film, which was electrochemically synthesized in ionic liquid electrolyte of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]). Then, Azure I was immobilized on nanoAu/PEDOT composite matrix as a redox probe and was used to immobilize ZnSe QDs. Subsequently, AFP antibody (anti-AFP) was adsorbed onto the surface of ZnSe layer. Finally, horseradish peroxidase (HRP) was employed to block sites against nonspecific binding and amplify the current signal of the antigen–antibody reaction. The modification processes were characterized by cyclic voltammetry, scanning electron microscopy. The factors influenced the performances of the proposed immunosensors were studied in detail. Because of the synergism between Azure I and nanoAu/PEDOT to facilitate electron-transfer process, and the small diameter of ZnSe QDs favorable for stabilization of biological activity to a large extent, the immunosensor displayed a high sensitivity, fast analytical time, a relatively low detection limit of 1.1 fg/mL at 3 times of signal-to-noise ratio (S/N = 3), and a especially broad linear response to AFP in a ranges from 5 × 10−5 to 250 ng/mL. Moreover, the selectivity, repeatability, and stability of the proposed immunosensor were acceptable

  13. An amperometric uric acid biosensor based on chitosan-carbon nanotubes electrospun nanofiber on silver nanoparticles.

    Science.gov (United States)

    Numnuam, Apon; Thavarungkul, Panote; Kanatharana, Proespichaya

    2014-06-01

    A novel amperometric uric acid biosensor was fabricated by immobilizing uricase on an electrospun nanocomposite of chitosan-carbon nanotubes nanofiber (Chi-CNTsNF) covering an electrodeposited layer of silver nanoparticles (AgNPs) on a gold electrode (uricase/Chi-CNTsNF/AgNPs/Au). The uric acid response was determined at an optimum applied potential of -0.35 V vs Ag/AgCl in a flow-injection system based on the change of the reduction current for dissolved oxygen during oxidation of uric acid by the immobilized uricase. The response was directly proportional to the uric acid concentration. Under the optimum conditions, the fabricated uric acid biosensor had a very wide linear range, 1.0-400 μmol L(-1), with a very low limit of detection of 1.0 μmol L(-1) (s/n = 3). The operational stability of the uricase/Chi-CNTsNF/AgNPs/Au biosensor (up to 205 injections) was excellent and the storage life was more than six weeks. A low Michaelis-Menten constant of 0.21 mmol L(-1) indicated that the immobilized uricase had high affinity for uric acid. The presence of potential common interfering substances, for example ascorbic acid, glucose, and lactic acid, had negligible effects on the performance of the biosensor. When used for analysis of uric acid in serum samples, the results agreed well with those obtained by use of the standard enzymatic colorimetric method (P > 0.05). PMID:24718436

  14. Amperometric Metronidazole Sensor Based on the Supermolecular Recognition by Metalloporphyrin Incorporated In Carbon Paste Electrode

    Directory of Open Access Journals (Sweden)

    Ru-Qin Yu

    2003-03-01

    Full Text Available An amperometric metronidazole (MTZ sensor using a glycosylated metalloporphyrin as a recognition element, which was incorporated in a carbon paste electrode, is reported. For the preparation of a MTZ-sensitive active material, 5, 10, 15, 20-tetrakis [2-(2, 3, 4, 6-tetraacetyl-β-D-glucopyranosyl-1-O-phenyl]porphyrin (T(oglu PPH2 and its Mn(III complex MnT(o-gluPPCl were synthesized from the reaction of pyrrole with ortho-acetylglycosylated benzaldehyde by Lindsay’s method. The MnT(oglu PPCl-modified electrode showed excellent selectivity toward MTZ with respect to a number of interferents and exhibited stable response. The calibration graph obtained with the proposed sensor was linear over the range of 2.9×10-3-5.8×10-8 M/L, with a detection limit of 5.8×10-8 M/L for MTZ. Cyclic voltammetric measurements indicated that MnT(oglu PPCl included in graphite-epoxy resin matrices could efficiently mediate electron transfer from the base electrode to MTZ causing a decrease of reduction potential for MTZ detection. The sensor could be regenerated by simply polishing with an alumina paper, with an excellent reproducibility (RSD=1.6%. The experimental conditions such as pH and applied working potential were optimized. The prepared sensor is applied for the determination of MTZ in pharmaceutical preparations and the results agreed with the values obtained by the pharmacopoeia method.

  15. Rapid detection of Escherichia coli O157:H7 and Salmonella Typhimurium in foods using an electrochemical immunosensor based on screen-printed interdigitated microelectrode and immunomagnetic separation.

    Science.gov (United States)

    Xu, Meng; Wang, Ronghui; Li, Yanbin

    2016-02-01

    Foodborne pathogens have continuously been a serious food safety issue and there is a growing demand for a rapid and sensitive method to screen the pathogens for on-line or in-field applications. Therefore, an impedimetric immunosensor based on the use of magnetic beads (MBs) for separation and a screen-printed interdigitated microelectrode (SP-IDME) for measurement was studied for the rapid detection of Escherichia coli O157:H7 and Salmonella Typhimurium in foods. Streptavidin coated MBs were functionalized with corresponding biotinylated antibodies (Ab) to capture the target bacteria. The glucose oxidase (GOx)-Ab conjugates were employed to label the MBs-Ab-cell complexes. The yielded MBs-Ab-cell-Ab-GOx biomass was mixed with the glucose solution to trigger an enzymatic reaction which produced gluconic acid. This increased the ion strength of the solution, thus decreasing the impedance of the solution measured on the SP-IDME. Our results showed that the immunosensor was capable of specifically detecting E. coli O157:H7 and S. Typhimurium within the range of 10(2)-10(6) cfu ml(-1) in the pure culture samples. E. coli O157:H7 in ground beef and S. Typhimurium in chicken rinse water were also examined. The limits of detection (LODs) for the two bacteria in foods were 2.05×10(3) cfu g(-1) and 1.04×10(3) cfu ml(-1), respectively. This immunosensor required only a bare electrode to measure the impedance changes, and no surficial modification on the electrode was needed. It was low-cost, reproducible, easy-to-operate, and easy-to-preserve. All these merits demonstrated this immunosensor has great potential for the rapid and on-site detection of pathogenic bacteria in foods. PMID:26653441

  16. Surface plasmon resonance immunosensor for human cardiac troponin T based on self-assembled monolayer.

    Science.gov (United States)

    Dutra, Rosa Fireman; Mendes, Renata Kelly; Lins da Silva, Valdinete; Kubota, Lauro Tatsuo

    2007-04-11

    The cardiac troponin T (cTnT) is specific biomarker important for trials of acute myocardial infarctions (AMI). In this paper, a SPR sensor in real time to detect the biomarker was developed on a commercially available surface plasmon resonance AUTOLAB SPIRIT. The cTnT receptor molecule was covalently immobilized on a gold substrate via a self-assembled monolayer (SAM) of thiols by using cysteamine-coupling chemistry. This biosensor presented a linear response range for cTnT between 0.05 and 4.5 ng/mL (r=0.997, p<0.01) with a good reproducibility (CV=4.4%). The effect of the cysteamine (CYS) concentrations on the SAM coated gold sensor was studied as a function of the amount of the immobilized cTnT monoclonal antibodies. Analysis using serum samples undiluted was carried out at room temperature showing a well agreement with the ECLIA methods and the sensor surface could be regenerated by using a solution of 1% (w/v) sodium dodecyl sulphate (SDS) without losing the sensor immunoreactivity. These studies open new perspectives of using SAM to develop regenerable immunosensor with a good reproducibility allowing its use in the clinical applications. PMID:17254730

  17. Electrochemical immunosensor for simultaneous detection of multiplex cancer biomarkers based on graphene nanocomposites.

    Science.gov (United States)

    Chen, Xia; Jia, Xinle; Han, Jingman; Ma, Jie; Ma, Zhanfang

    2013-12-15

    In this work, a sandwich-format electrochemical immunosensor for simultaneous determination of carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) was fabricated using biofunctional carboxyl graphene nanosheets (CGS) as immunosensing probes, which were fabricated by means of immobilization of toluidine blue (TB) and labeled anti-CEA (Ab2,1), Prussian blue (PB) and anti-AFP (Ab2,2) successively on CGS. The capture anti-CEA (Ab1,1) and anti-AFP (Ab1,2) were immobilized onto the chitosan-Au nanoparticles (CHIT-AuNPs) modified electrode through 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and N-hydroxy succinimide (EDC/NHS). Experimental results revealed that this sandwich-type immunoassay enabled simultaneous detection of CEA and AFP with linear range of 0.5-60 ng mL(-1) for both analytes. The detection limit was 0.1 ng mL(-1) for CEA and 0.05 ng mL(-1) for AFP (S/N=3). The assay results of serum samples with the proposed method were in a good agreement with the reference values from the standard ELISA method. And the negligible cross-reactivity between the two analytes allows it to possess potential promise in clinical diagnosis. PMID:23891798

  18. Single-Multiplex Detection of Organ Injury Biomarkers using SPRi based Nano-Immunosensor

    Science.gov (United States)

    Zeidan, Effat; Li, Siqi; Zhou, Zhiguo; Miller, Jennifer; Sandros, Marinella G.

    2016-01-01

    The clinical assessment of multiple organ dysfunctions at early stages is recognized to be an important factor in prompting definitive treatment decisions that prevent irreversible organ damage. In this article, we propose a real-time, label-free, and multiplex nanoenhanced SPRi platform to quantitatively assess two biomarkers, kidney injury molecule (KIM-1) and high mobility group box-1 (HMGB-1) simultaneously in buffer. Our work involves three major contributions in the design of the immunosensor: (1) we applied site-specific immobilization of antibodies to the solid surface that avoids loss of biological activity caused by covalent attachment; (2) we constructed a well-blocked sensor surface that exhibits minimal non-specific adsorption for singleplex measurements of each biomarker in buffer; and (3) we adopted a sandwich assay that implements functionalized quantum dots (NanoEnhancers) as signal amplifiers to achieve a sensitivity level of 5 pg/mL for KIM-1 and HMGB-1 in buffer. We foresee great potential and success in extending this multiplex and ultra-sensitive platform to assess a variety of other emerging clinical biomarkers at low concentrations and in complex matrices. PMID:27796342

  19. Amperometric Biosensors Based on Carbon Paste Electrodes Modified with Nanostructured Mixed-valence Manganese Oxides and Glucose Oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaoli; Liu, Guodong; Lin, Yuehe

    2005-06-01

    Nanostructured multivalent manganese oxides octahedral molecular sieve (OMS), including cryptomelane-type manganese oxides and todorokite-type manganese oxides, were synthesized and evaluated for chemical sensing and biosensing at low operating potential. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides are nanofibrous crystals with sub-nanometer open tunnels that provide a unique property for sensing applications. The electrochemical and electrocatalytic performance of OMS for the oxidation of H2O2 have been compared. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides can be used to fabricate sensitive H2O2 sensors. Amperometric glucose biosensors are constructed by bulk modification of carbon paste electrodes (CPEs) with glucose oxidase as a biocomponent and nanostructured OMS as a mediator. A Nafion thin film was applied as an immobilization/encapsulation and protective layer. The biosensors were evaluated as an amperometric glucose detector at phosphate buffer solution with a pH 7.4 at an operating potential of 0.3 V (vs. Ag/AgCl). The biosensor is characterized by a well-reproducible amperometric response, linear signal-to-glucose concentration range up to 3.5 mM and 1.75 mM, and detection limits (S/N = 3) of 0.1 mM and 0.05 mM for todorokite-type manganese oxide and cryptomelane-type manganese oxide modified electrodes, respectively. The biosensors based on OMS exhibit considerable good reproducibility and stability, and the construction and renewal are simple and inexpensive.

  20. Amperometric biosensors based on carbon paste electrodes modified with nanostructured mixed-valence manganese oxides and glucose oxidase.

    Science.gov (United States)

    Cui, Xiaoli; Liu, Guodong; Lin, Yuehe

    2005-06-01

    Nanostructured, multivalent, manganese-oxide octahedral molecular sieves (OMS), including cryptomelane-type manganese oxides and todorokite-type manganese oxides, were synthesized and evaluated for chemical sensing and biosensing at low operating potential. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides are nanofibrous crystals with subnanometer open tunnels that provide a unique property for sensing applications. The electrochemical and electrocatalytic performance of OMS for the oxidation of H2O2 have been compared. Both cryptomelane-type manganese oxides and todorokite-type manganese oxides can be used to fabricate sensitive H2O2 sensors. With glucose oxidase (GOx) as an enzyme model, amperometric glucose biosensors are constructed by bulk modification of carbon paste electrodes with GOx as a biocomponent and nanostructured OMS as a mediator. A Nafion thin film was applied as an immobilization/encapsulation and protective layer. The biosensors were evaluated as an amperometric glucose detector at phosphate buffer solution with a pH 7.4 at an operating potential of 0.3 V (vs Ag/AgCl). The biosensor is characterized by a well-reproducible amperometric response, linear signal-to-glucose concentration range up to 3.5 mmol/L and 1.75 mmol/L, and detection limits (S/N = 3) of 0.1 mmol/L and 0.05 mmol/L for todorokite-type manganese oxide and cryptomelane-type manganese oxide-modified electrodes, respectively. The biosensors based on OMS exhibit considerable good reproducibility and stability, and the construction and renewal are simple and inexpensive.

  1. Chip-based amperometric enzyme sensor system for monitoring of bioprocesses by flow-injection analysis

    OpenAIRE

    Baecker, M.; Rakowski, D.; Poghossian, A.; Biselli, M; Wagner, P.; Schoening, M. J.

    2013-01-01

    A microfluidic chip integrating amperometric enzyme sensors for the detection of glucose, glutamate and glutamine in cell-culture fermentation processes has been developed. The enzymes glucose oxidase, glutamate oxidase and glutaminase were immobilized by means of cross-linking with glutaraldehyde on platinum thin-film electrodes integrated within a microfluidic channel. The biosensor chip was coupled to a flow-injection analysis system for electrochemical characterization of the sensors. The...

  2. Development of an Amperometric-Based Glucose Biosensor to Measure the Glucose Content of Fruit

    OpenAIRE

    Lee Fung Ang; Lip Yee Por; Mun Fei Yam

    2015-01-01

    An amperometric enzyme-electrode was introduced where glucose oxidase (GOD) was immobilized on chitosan membrane via crosslinking, and then fastened on a platinum working electrode. The immobilized enzyme showed relatively high retention activity. The activity of the immobilized enzyme was influenced by its loading, being suppressed when more than 0.6 mg enzyme was used in the immobilization. The biosensor showing the highest response to glucose utilized 0.21 ml/cm2 thick chitosan membrane. T...

  3. An electrochemical immunosensor for quantitative detection of ficolin-3

    Science.gov (United States)

    San, Lili; Zeng, Dongdong; Song, Shiping; Zuo, Xiaolei; Zhang, Huan; Wang, Chenguang; Wu, Jiarui; Mi, Xianqiang

    2016-06-01

    Diabetes mellitus (DM) is one of the most common metabolic disorders in the world, of which more than 90% is type-2 diabetes mellitus (T2DM). There is a rather urgent need for reliable, sensitive and quick detection techniques in clinical application of T2DM. Ficolin-3 is a potential biomarker of T2DM, because serum ficolin-3 levels are associated with insulin resistance and predict the incidence of T2DM. Herein, a sandwich-type electrochemical immunosensor was developed for the detection of ficolin-3 in human serum. Cyclic voltammetry and the amperometric current versus time were used to characterize the performance of the immunosensor. Under optimal conditions, the detection limitation of ficolin-3 was 100 ng ml–1 and the linear dynamic range was between 2 and 50 μg ml–1. The method has ideal accuracy, excellent stability and selectivity and has wide application prospects in clinical research.

  4. Label-free microcantilever-based immunosensors for highly sensitive determination of avian influenza virus H9

    International Nuclear Information System (INIS)

    We report on label-free immunosensors for the highly sensitive detection of avian influenza virus. The method makes use of the microcantilevers of an atomic force microscope onto which monoclonal antibodies against avian influenza virus were covalently immobilized. The factors influencing the performance of the resulting immunosensors were optimized by measuring the deflections of the cantilever via optical reflection, and this resulted in low detection limits and a wide analytical range. The differential deflection signals revealed specific antigen binding and their intensity is proportional to the logarithm of the concentrations of the virus in solution. Under optimal conditions, the immunosensors exhibit a linear response in the 7.6 ng mL−1 to 76 μg mL−1 concentration range of avian influenza virus, and the detection limit is 1.9 ng mL−1. (author)

  5. Optical waveguide lightmode spectroscopy technique-based immunosensor development for aflatoxin B1 determination in spice paprika samples.

    Science.gov (United States)

    Majer-Baranyi, Krisztina; Zalán, Zsolt; Mörtl, Mária; Juracsek, Judit; Szendrő, István; Székács, András; Adányi, Nóra

    2016-11-15

    Optical waveguide lightmode spectroscopy (OWLS) technique has been applied to label-free detection of aflatoxin B1 in a competitive immunoassay format, with the aim to compare the analytical goodness of the developed OWLS immunosenor with HPLC and enzyme-linked immunosorbent assay (ELISA) methods for the detection of aflatoxin in spice paprika matrix. We have also assessed applicability of the QuEChERS method prior to ELISA measurements, and the results were compared to those obtained by traditional solvent extraction followed by immunoaffinity clean-up. The AFB1 content of sixty commercial spice paprika samples from different countries were measured with the developed and optimized OWLS immunosensor. Comparing the results from the indirect immunosensor to that obtained by HPLC or ELISA provided excellent correlation (with regression coefficients above 0.94) indicating that the competitive OWLS immunosensor has a potential for quick determination of aflatoxin B1 in paprika samples. PMID:27283719

  6. A novel, disposable, screen-printed amperometric biosensor for glucose in serum fabricated using a water-based carbon ink.

    Science.gov (United States)

    Crouch, Eric; Cowell, David C; Hoskins, Stephen; Pittson, Robin W; Hart, John P

    2005-11-15

    Screen-printed amperometric glucose biosensors have been fabricated using a water-based carbon ink. The enzyme glucose oxidase (GOD) and the electro-catalyst cobalt phthalocyanine were mixed with the carbon ink prior to the screen-printing process; therefore, biosensors are prepared in a one-step fabrication procedure. Optimisation of the biosensor performance was achieved by studying the effects of pH, buffer strength, and applied potential on the analytical response. Calibration studies were performed under optimum conditions, using amperometry in stirred solution, with an operating potential of +500 mV versus SCE. The sensitivity was found to be 1170 nA mM(-1), with a linear range of 0.025-2 mM; the former represents the detection limit. The disposable amperometric biosensor was evaluated by carrying out replicate determinations on a sample of bovine serum. This was achieved by the method of multiple standard additions and included a correction for background currents arising from oxidizable serum components. The mean serum concentration was calculated to be 8.63 mM and compared well with the supplier's value of 8.3 mM; the coefficient of variation was calculated to be 3.3% (n=6). PMID:16242609

  7. An Amperometric Biosensor Based on Alanine Dehydrogenase for the Determination of Low Level of Ammonium Ion in Water

    Directory of Open Access Journals (Sweden)

    Tan Ling Ling

    2011-01-01

    Full Text Available An amperometric electrochemical biosensor has been developed for ammonium (NH4+ ion detection by immobilising alanine dehydrogenase (AlaDH enzyme in a photocurable methacrylic membrane made up of poly(2-hydroxyethyl methacrylate (pHEMA on a screen-printed carbon paste electrode (SPE. The current detected was based on the electrocatalytic oxidation of nicotinamide adenine dinucleotide reduced (NADH that is proportional to the consumption of NH4+ ion whilst enzymatic amination of AlaDH and pyruvate is taking place. The biosensor was operated amperometrically at a potential of +0.6 V and optimum pH 7. The NH4+ biosensor demonstrated linear response to NH4+ ion concentration in the range of 0.03–1.02 mg/L with a limit of detection (LOD of 8.52 μg/L. The proposed method has been successfully applied to the determination of NH4+ ion in river water samples without any pretreatment. The levels of possible interferents in the waters were negligible to cause any interference on the proposed method. The analytical performance of the biosensor was comparable to the colorimetric method using Nesslerisation but with much lower detection limit and linear response range at ppb level.

  8. Methylamine-Sensitive Amperometric Biosensor Based on (His6-Tagged Hansenula polymorpha Methylamine Oxidase Immobilized on the Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Nataliya Ye. Stasyuk

    2014-01-01

    Full Text Available A novel methylamine-selective amperometric bienzyme biosensor based on recombinant primary amine oxidase isolated from the recombinant yeast strain Saccharomyces cerevisiae and commercial horseradish peroxidase is described. Two amine oxidase preparations were used: free enzyme (AMO and covalently immobilized on the surface of gold nanoparticles (AMO-nAu. Some bioanalytical parameters (sensitivity, selectivity, and storage stability of the developed biosensors were investigated. The sensitivity for both sensors is high: 1450 ± 113 and 700 ± 30 A−1·M−1·m−2 for AMO-nAu biosensor, respectively. The biosensors exhibit the linear range from 15 μM to 150 μM (AMO-nAu and from 15 μM to 60 μM (AMO. The developed biosensor demonstrated a good selectivity toward methylamine (MA (signal for dimethylamine and trimethylamine is less than 5% and for ethylamine 15% compared to MA output and reveals a satisfactory storage stability. The constructed amperometric biosensor was used for MA assay in real samples of fish products in comparison with chemical method. The values obtained with both approaches different methods demonstrated a high correlation.

  9. Rapid amperometric detection of trace metals by inhibition of an ultrathin polypyrrole-based glucose biosensor.

    Science.gov (United States)

    Ayenimo, Joseph G; Adeloju, Samuel B

    2016-02-01

    A sensitive and reliable inhibitive amperometric glucose biosensor is described for rapid trace metal determination. The biosensor utilises a conductive ultrathin (55 nm thick) polypyrrole (PPy) film for entrapment of glucose oxidase (GOx) to permit rapid inhibition of GOx activity in the ultrathin film upon exposure to trace metals, resulting in reduced glucose amperometric response. The biosensor demonstrates a relatively fast response time of 20s and does not require incubation. Furthermore, a complete recovery of GOx activity in the ultrathin PPy-GOx biosensor is quickly achieved by washing in 2mM EDTA for only 10s. The minimum detectable concentrations achieved with the biosensor for Hg(2+), Cu(2+), Pb(2+) and Cd(2+) by inhibitive amperometric detection are 0.48, 1.5, 1.6 and 4.0 µM, respectively. Also, suitable linear concentration ranges were achieved from 0.48-3.3 µM for Hg(2+), 1.5-10 µM for Cu(2+), 1.6-7.7 µM for Pb(2+) and 4-26 µM for Cd(2+). The use of Dixon and Cornish-Bowden plots revealed that the suppressive effects observed with Hg(2+) and Cu(2+) were via non-competitive inhibition, while those of Pb(2+) and Cd(2+) were due to mixed and competitive inhibition. The stronger inhibition exhibited by the trace metals on GOx activity in the ultrathin PPy-GOx film was also confirmed by the low inhibition constant obtained from this analysis. The biosensor was successfully applied to the determination of trace metals in tap water samples. PMID:26653478

  10. Study on Rhizoma Chuanxiong based on capillary electrophoresis with amperometric detection

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A high-performance capillary electrophoresis with amperometric detection(CE-AD) method has been developed for the analysis of seven bioactive ingredients,namely ferulic acid(FA),vanillin,vanillic acid,p-hydroxybenzoic acid,caffeic acid,gallic acid and protocatechuic acid,in Rhizoma Chuanxiong.The effects of several factors such as the acidity and concentration of running buffer,the separation voltage,the applied potential to working electrode and the injection time were investigated.Under the optimum con...

  11. A Novel Amperometric Nitric Oxide Sensor Based on Polythionine /Nation Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel amperometric sensor for the determination of nitric oxide was developed by coating polythionine / nafion on a glassy carbon electrode. This sensor exhibited a great enhancement to the oxidation of nitric oxide. The oxidation peak currents were linear to the concentration of nitric oxide over the wide range from 3.6×10-7 to 6.8×10-5 mol. L-1, and the detection limit was 7.2×10-8 mol. L-1. Experimental results showed that this nitric oxide sensor possessed excellent selectivity and longer stability. NO releasing from rat kidney was monitored by this sensor.

  12. A new method for non-labeling attomolar detection of diseases based on an individual gold nanorod immunosensor

    DEFF Research Database (Denmark)

    Phuoc Long, Truong; Cao, Cuong; Park, Sungho;

    2011-01-01

    the cetyltrimethylammonium bromide (CTAB), a tightly packed self-assembled monolayer of HS (CH2)11(OCH2CH2)6OCH2COOH(OEG6) has been successfully formed on the gold nanorod surface prior to the LSPR sensing, leading to the successful fabrication of individual gold nanorod immunosensors. Using prostate specific antigen (PSA...

  13. A novel electrochemiluminescent immunosensor based on the quenching effect of aminated graphene on nitrogen-doped carbon quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jing; Han, Tongqian; Ma, Hongmin; Yan, Tao; Pang, Xuehui [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Li, Yueyun [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China); Wei, Qin, E-mail: sdjndxwq@163.com [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2015-08-19

    Nitrogen-doped carbon quantum dots (N-CQDs) with an average diameter of 2 nm were synthesized by carbonization of diethylene triamine pentacetate acid (DTPA). The simple prepared N-CQDs showed excellent electrochemiluminescence (ECL) property and were used as luminophors to fabricate a sandwich-type ECL immunosensor. Aminated graphene (NH{sub 2}-G) was also synthesized and used as a label of secondary antibody. The labeled NH{sub 2}-G could effectively quench the ECL of N-CQDs modified on electrodes due to ECL resonance energy transfer (ERET). Immunological recognition which induced ECL quenching enabled the quantitative determination of biomarkers. Alpha fetoprotein (AFP) was selected as a model analyte to investigate the analytical performance of the proposed immunosensor. Under optimal conditions, a good linear relationship between ECL intensity and the logarithm of AFP concentration was obtained in the range of 0.01–100 ng mL{sup −1} with the detection limit of 3.3 pg mL{sup −1}. The proposed ECL immunosensor showed good stability, acceptable selectivity and reproducibility. - Highlights: • ECL behavior of N-CQDs was investigated. • NH{sub 2}-G for quenching N-CQDs emission was investigated. • The linearly range of the immunosensor for AFP was 0.01 ng/mL–100 ng/mL.

  14. Development of Amperometric Biosensors Based on Nanostructured Tyrosinase-Conducting Polymer Composite Electrodes

    Directory of Open Access Journals (Sweden)

    Francisco Javier del Campo

    2013-05-01

    Full Text Available Bio-composite coatings consisting of poly(3,4-ethylenedioxythiophene (PEDOT and tyrosinase (Ty were successfully electrodeposited on conventional size gold (Au disk electrodes and microelectrode arrays using sinusoidal voltages. Electrochemical polymerization of the corresponding monomer was carried out in the presence of various Ty amounts in aqueous buffered solutions. The bio-composite coatings prepared using sinusoidal voltages and potentiostatic electrodeposition methods were compared in terms of morphology, electrochemical properties, and biocatalytic activity towards various analytes. The amperometric biosensors were tested in dopamine (DA and catechol (CT electroanalysis in aqueous buffered solutions. The analytical performance of the developed biosensors was investigated in terms of linear response range, detection limit, sensitivity, and repeatability. A semi-quantitative multi-analyte procedure for simultaneous determination of DA and CT was developed. The amperometric biosensor prepared using sinusoidal voltages showed much better analytical performance. The Au disk biosensor obtained by 50 mV alternating voltage amplitude displayed a linear response for DA concentrations ranging from 10 to 300 μM, with a detection limit of 4.18 μM.

  15. Non-invasive determination of glucose directly in raw fruits using a continuous flow system based on microdialysis sampling and amperometric detection at an integrated enzymatic biosensor.

    Science.gov (United States)

    Vargas, E; Ruiz, M A; Campuzano, S; Reviejo, A J; Pingarrón, J M

    2016-03-31

    A non-destructive, rapid and simple to use sensing method for direct determination of glucose in non-processed fruits is described. The strategy involved on-line microdialysis sampling coupled with a continuous flow system with amperometric detection at an enzymatic biosensor. Apart from direct determination of glucose in fruit juices and blended fruits, this work describes for the first time the successful application of an enzymatic biosensor-based electrochemical approach to the non-invasive determination of glucose in raw fruits. The methodology correlates, through previous calibration set-up, the amperometric signal generated from glucose in non-processed fruits with its content in % (w/w). The comparison of the obtained results using the proposed approach in different fruits with those provided by other method involving the same commercial biosensor as amperometric detector in stirred solutions pointed out that there were no significant differences. Moreover, in comparison with other available methodologies, this microdialysis-coupled continuous flow system amperometric biosensor-based procedure features straightforward sample preparation, low cost, reduced assay time (sampling rate of 7 h(-1)) and ease of automation. PMID:26965327

  16. A sensitive amperometric bromate sensor based on multi-walled carbon nanotubes/phosphomolybdic acid composite film

    International Nuclear Information System (INIS)

    An amperometric sensor for bromate was developed based on multi-walled carbon nanotubes (MWNTs)/phosphomolybdic acid (PMo12) composite film coated on a pyrolytic graphite (PG) electrode. MWNTs are dispersed in PMo12 aqueous solution through spontaneous and strong chemisorption between carbon and polyoxometalate, which results in a homogeneous MWNTs/PMo12 composite. Due to the unique electronic and electrocatalytic properties of MWNTs and PMo12, the combination of MWNTs and PMo12 results in a remarkable synergistic augmentation on the response current. The bromate sensor based on the PG/MWNTs/PMo12 electrode has excellent characteristics, such as a detection limit of 0.5 μM, a sensitivity of 760.9 μA mM-1 cm-2, a response time less than 2 s and a linear range from 5 μM to 15 mM

  17. Ultrasensitive electrochemical immunosensor based on dual signal amplification process for p16(INK4a) cervical cancer detection in clinical samples.

    Science.gov (United States)

    Duangkaew, Pattasuda; Tapaneeyakorn, Satita; Apiwat, Chayachon; Dharakul, Tararaj; Laiwejpithaya, Somsak; Kanatharana, Proespichaya; Laocharoensuk, Rawiwan

    2015-12-15

    The p16(INK4a) (p16) is a cyclin-dependent kinase inhibitor, which has been evaluated in several studies as a diagnostic marker of cervical cancer. Immunostaining using p16 specific antibody has confirmed an over-expression of p16 protein in cervical cancer cells and its association with disease progression. This article reports an ultrasensitive electrochemical immunosensor for specific detection of p16 and demonstrates its performance for detection of solubilized p16 protein in cell lysates obtained from patients. Sandwich-based immunoreaction couple with double signal amplification strategy based on catalytic enlargement of particle tag was used for high sensitivity and specificity. The conditions were optimized to create an immunoassay protocol. Disposable screen-printed electrode modified with capture antibodies (Ab1) was selected for further implementation towards point-of-care diagnostics. Small gold nanoparticles (15 nm diameter) conjugated with detection antibodies (Ab2) were found to better serve as a detection label due to limited interference with antigen-antibody interaction. Double signal enhancement was performed by sequential depositions of gold and silver layers. This gave the sensitivity of 1.78 μA mL(ng GST-p16)(-1) cm(-2) and detection limit of 1.3 ng mL(-1) for GST-p16 protein which is equivalent to 0.49 ng mL(-1) for p16 protein and 28 cells for HeLa cervical cancer cells. In addition to purified protein, the proposed immunosensor effectively detected elevated p16 level in cervical swab samples obtained from 10 patients with positive result from standard Pap smear test, indicating that an electrochemical immunosensors hold an excellent promise for detection of cervical cancer in clinical setting. PMID:26201985

  18. Development of a fluorescent based immunosensor for the serodiagnosis of canine leishmaniasis combining immunomagnetic separation and flow cytometry.

    Directory of Open Access Journals (Sweden)

    Susana Sousa

    Full Text Available BACKGROUND: An accurate diagnosis is essential for the control of infectious diseases. In the search for effective and efficient tests, biosensors have increasingly been exploited for the development of new and highly sensitive diagnostic methods. Here, we describe a new fluorescent based immunosensor comprising magnetic polymer microspheres coated with recombinant antigens to improve the detection of specific antibodies generated during an infectious disease. As a challenging model, we used canine leishmaniasis due to the unsatisfactory sensitivity associated with the detection of infection in asymptomatic animals where the levels of pathogen-specific antibodies are scarce. METHODOLOGY: Ni-NTA magnetic microspheres with 1,7 µm and 8,07 µm were coated with the Leishmania recombinant proteins LicTXNPx and rK39, respectively. A mixture of equal proportions of both recombinant protein-coated microspheres was used to recognize and specifically bind anti-rK39 and anti-LicTNXPx antibodies present in serum samples of infected dogs. The microspheres were recovered by magnetic separation and the percentage of fluorescent positive microspheres was quantified by flow cytometry. PRINCIPAL FINDINGS: A clinical evaluation carried out with 129 dog serum samples using the antigen combination demonstrated a sensitivity of 98,8% with a specificity of 94,4%. rK39 antigen alone demonstrated a higher sensitivity for symptomatic dogs (96,9%, while LicTXNPx antigen showed a higher sensitivity for asymptomatic (94,4%. CONCLUSIONS: Overall, our results demonstrated the potential of a magnetic microsphere associated flow cytometry methodology as a viable tool for highly sensitive laboratorial serodiagnosis of both clinical and subclinical forms of canine leishmaniasis.

  19. Electrochemical immunosensor based on bismuth nanocomposite film and cadmium ions functionalized titanium phosphates for the detection of anthrax protective antigen toxin.

    Science.gov (United States)

    Sharma, Mukesh K; Narayanan, J; Upadhyay, Sanjay; Goel, Ajay K

    2015-12-15

    Bacillus anthracis is a bioterrorism agent classified by the Centers for Disease Control and Prevention (CDC). Herein, a novel electrochemical immunosensor for the sensitive, specific and easy detection of anthrax protective antigen (PA) toxin in picogram concentration was developed. The immunosensor consists of (i) a Nafion-multiwall carbon nanotubes-bismuth nanocomposite film modified glassy carbon electrodes (BiNPs/Nafion-MWCNTs/GCE) as a sensing platform and (ii) titanium phosphate nanoparticles-cadmium ion-mouse anti-PA antibodies (TiP-Cd(2+)-MαPA antibodies) as signal amplification tags. Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), thermogravimmetric analysis (TGA), Fourier transform-infra red spectroscopy (FT-IR), zeta-potential analysis, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were employed to characterize the synthesized TiP nanoparticles and modified electrode surfaces. The immunosensing performance of BiNPs/Nafion-MWCNTs/GCE was evaluated based on sandwich immunoassay protocol. A square wave voltammetry (SWV) scan from -1.2 to -0.3 V in HAc-NaAc buffer solution (pH 4.6) without stripping process was performed to record the electrochemical responses at -0.75 V corresponding to high content of Cd(2+) ions loaded in TiP nanoparticles for the measurement of PA toxin. Under optimal conditions, the currents increased with increasing PA toxin concentrations in spiked human serum samples and showed a linear range from 0.1 ng/ml to 100 ng/ml. The limit of detection of developed immunosensor was found to be 50 pg/ml at S/N=3. The total time of analysis was 35 min. PMID:26148674

  20. A quantum dot based electrochemiluminescent immunosensor for the detection of pg level phenylethanolamine A using gold nanoparticles as substrates and electron transfer accelerators.

    Science.gov (United States)

    Yan, Panpan; Zhang, Jing; Tang, Qinghui; Deng, Anping; Li, Jianguo

    2014-09-01

    This study reports the development of an electrochemiluminescent (ECL) immunosensor for ultrasensitive detection of phenylethanolamine A (PA) based on CdSe quantum dots (QDs) and gold nanoparticles (GNPs). The GNPs/ovalbumin-PA/anti-PA-QD immunosensor was fabricated layer by layer using GNPs as substrates and electron transport accelerators. The use of GNPs greatly enhanced the sensitivity for detecting PA due to the excellent electron transportation ability and the large surface area of GNP carriers allowing several binding events of ovalbumin-PA on each nanosphere. Transmission electron microscopy images (TEM), photoluminescence spectra, ultraviolet-visible absorption spectra and dynamic light scattering (DLS) were used to characterize the QDs and GNPs. The sensor was characterized with electrochemical impedance spectra (EIS), and a strong ECL emission of the modified electrode could be observed during the cathodic process of S2O8(2-) and QDs in air-saturated PBS buffer containing 0.1 M K2S2O8 and 0.1 M KCl (pH 7.4). With a competitive immunoassay format, the ECL signal depended linearly on the logarithm of the phenylethanolamine A concentration within a range of 0.02 ng mL(-1) to 50 ng mL(-1), and the detection limit was 0.0047 ng mL(-1), much lower than those reported in the literature. This ECL immunosensor is rapid, simple and sensitive with acceptable precision, and it will extend the application of QD ECL in immunoassays of β-agonists and open new avenues for the detection of food additive residues in the future. PMID:25011489

  1. Amperometric biosensor based on carbon nanotubes coated with polyaniline/dendrimer-encapsulated Pt nanoparticles for glucose detection

    Energy Technology Data Exchange (ETDEWEB)

    Xu Lihuan [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhu Yihua, E-mail: yhzhu@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Yang Xiaoling; Li Chunzhong [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2009-05-05

    A novel amperometric glucose biosensor based on the nanocomposites of multi-wall carbon nanotubes (CNT) coated with polyaniline (PANI) and dendrimer-encapsulated Pt nanoparticles (Pt-DENs) is prepared. CNT coated with protonated PANI is in situ synthesized and Pt-DENs is absorbed on PANI/CNT composite surface by self-assembly method. Then Glucose oxidase (GOx) is crosslink-immobilizated onto Pt-DENs/PANI/CNT composite film. The results show that the fabricated GOx/Pt-DENs/PANI/CNT electrode exhibits excellent response performance to glucose, such as low detection limit (0.5 {mu}M), wide linear range (1 {mu}M-12 mM), short response time (about 5 s), high sensitivity (42.0 {mu}A mM{sup -1} cm{sup -2}) and stability (83% remains after 3 weeks).

  2. Spinach Root-Tissue Based Amperometric Biosensor for the Determination of Hydrogen Peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.G. [Chosun University, Kwangju (Korea); Yoon, K.J. [Chongju University, Chongju (Korea); Kwon, H.S. [Chungbuk National University, Chongju (Korea)

    2000-06-01

    The response characteristics of the bioelectrode developed by the co-immobilization of spinach root tissue and ferrocene in a carbon paste matrix for the amperometric determination of hydrogen peroxide were evaluated. In the range of electrode potential examined (-0.3{approx}0.0 V vs. Ag/AgCl), the response time was relatively short (t{sub 95%}=11.8 sec) and it responded in the wide range of pH. Also, its detection limit was 2.25*10{sup -6}M (S/N=3) and a relative standard deviation of the measurements which were repeated 15 times using 1.0*10{sup -3}M hydrogen peroxide was 1.87%. The bioelectrode sensitivity decreased to 40% of the original value in 19 days of continuous use. (author). 35 refs., 8 figs.

  3. In vivo continuous and simultaneous monitoring of brain energy substrates with a multiplex amperometric enzyme-based biosensor device.

    Science.gov (United States)

    Cordeiro, C A; de Vries, M G; Ngabi, W; Oomen, P E; Cremers, T I F H; Westerink, B H C

    2015-05-15

    Enzyme-based amperometric biosensors are widely used for monitoring key biomarkers. In experimental neuroscience there is a growing interest in in vivo continuous and simultaneous monitoring of metabolism-related biomarkers, like glucose, lactate and pyruvate. The use of multiplex biosensors will provide better understanding of brain energy metabolism and its role in neuropathologies such as diabetes, ischemia, and epilepsy. We have developed and characterized an implantable multiplex microbiosensor device (MBD) for simultaneous and continuous in vivo monitoring of glucose, lactate, and pyruvate. First, we developed and characterized amperometric microbiosensors for monitoring lactate and pyruvate. In vitro evaluation allowed us to choose the most suitable biosensors for incorporation into the MBD, along with glucose and background biosensors. Fully assembled MBDs were characterized in vitro. The calculated performance parameters (LOD, LR, LRS, IMAX and appKM) showed that the multiplex MBD was highly selective and sensitive (LRS≥100 nA/mM) for each analyte and within an adequate range for in vivo application. Finally, MBDs were implanted in the mPFC of anesthetized adult male Wistar rats for in vivo evaluation. Following an equilibration period, baseline brain levels of glucose (1.3±0.2 mM), lactate (1.5±0.4 mM) and pyruvate (0.3±0.1 mM) were established. Subsequently, the MBDs recorded the responses of the animals when submitted to hyperglycemic (40% glucose i.v.) and hypoglycemic (5 U/kg insulin i.v.) challenges. Afterwards, MBDs were recalibrated to convert electrochemical readings into accurate substrate concentrations and to assess biofouling. The presented MBD can monitor simultaneously multiple biomarkers in vivo. PMID:25459054

  4. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite

    International Nuclear Information System (INIS)

    An amperometric glucose biosensor based on enhanced and fast direct electron transfer (DET) of glucose oxidase (GOx) at enzyme dispersed multiwalled carbon nanotubes/graphene oxide (MWCNT/GO) hybrid biocomposite was developed. The fabricated hybrid biocomposite was characterized by transmission electron microscopy (TEM), Raman and infrared spectroscopy (IR). The TEM image of hybrid biocomposite reveals that a thin layer of GOx was covered on the surface of MWCNT/GO hybrid composite. IR results validate that the hybrid biocomposite was formed through the electrostatic interactions between GOx and MWCNT/GO hybrid composite. Further, MWCNT/GO hybrid composite has also been characterized by TEM and UV–visible spectroscopy. A pair of well-defined redox peak was observed for GOx immobilized at the hybrid biocomposite electrode than that immobilized at the MWCNT modified electrode. The electron transfer rate constant (Ks) of GOx at the hybrid biocomposite was calculated to be 11.22 s−1. The higher Ks value revealed that fast DET of GOx occurred at the electrode surface. Moreover, fabricated biosensor showed a good sensitivity towards glucose oxidation over a linear range 0.05–23.2 mM. The limit of detection (LOD) was estimated to be 28 μM. The good features of the proposed biosensor could be used for the accurate detection of glucose in the biological samples. - Highlights: • An amperometric glucose biosensor has been developed at MWCNT/GO hybrid biocomposite. • Enhanced and fast direct electron transfer kinetics of glucose oxidase has been achieved at hybrid biocomposite. • Hybrid biocomposite has been characterized by TEM, IR and Raman spectroscopy. • Highly sensitive and selective for glucose determination

  5. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Palanisamy, Selvakumar; Cheemalapati, Srikanth; Chen, Shen-Ming, E-mail: smchen78@ms15.hinet.net

    2014-01-01

    An amperometric glucose biosensor based on enhanced and fast direct electron transfer (DET) of glucose oxidase (GOx) at enzyme dispersed multiwalled carbon nanotubes/graphene oxide (MWCNT/GO) hybrid biocomposite was developed. The fabricated hybrid biocomposite was characterized by transmission electron microscopy (TEM), Raman and infrared spectroscopy (IR). The TEM image of hybrid biocomposite reveals that a thin layer of GOx was covered on the surface of MWCNT/GO hybrid composite. IR results validate that the hybrid biocomposite was formed through the electrostatic interactions between GOx and MWCNT/GO hybrid composite. Further, MWCNT/GO hybrid composite has also been characterized by TEM and UV–visible spectroscopy. A pair of well-defined redox peak was observed for GOx immobilized at the hybrid biocomposite electrode than that immobilized at the MWCNT modified electrode. The electron transfer rate constant (K{sub s}) of GOx at the hybrid biocomposite was calculated to be 11.22 s{sup −1}. The higher K{sub s} value revealed that fast DET of GOx occurred at the electrode surface. Moreover, fabricated biosensor showed a good sensitivity towards glucose oxidation over a linear range 0.05–23.2 mM. The limit of detection (LOD) was estimated to be 28 μM. The good features of the proposed biosensor could be used for the accurate detection of glucose in the biological samples. - Highlights: • An amperometric glucose biosensor has been developed at MWCNT/GO hybrid biocomposite. • Enhanced and fast direct electron transfer kinetics of glucose oxidase has been achieved at hybrid biocomposite. • Hybrid biocomposite has been characterized by TEM, IR and Raman spectroscopy. • Highly sensitive and selective for glucose determination.

  6. Ultrasensitive sandwich-type electrochemical immunosensor based on trimetallic nanocomposite signal amplification strategy for the ultrasensitive detection of CEA.

    Science.gov (United States)

    Tian, Lihui; Liu, Li; Li, Yueyuan; Wei, Qin; Cao, Wei

    2016-01-01

    A novel and ultrasensitive sandwich-type electrochemical immunosensor was designed for the quantitative detection of carcino-embryonic antigen (CEA). This immunosensor was developed by using the trimetallic NiAuPt nanoparticles on graphene nanosheets (NGs) nanosheets (NiAuPt-NGs) as excellent labels and β-cyclodextrin functionalized reduced graphene oxide nanosheets (CD-NGs) as the platform. The CD-NGs with high specific surface area good biocompatibility and the ideal dispersibility was used to capture the primary antibodies (Ab1) efficiently. The trimetallic NiAuPt-NGs nanocomposites were used as the labels for signal amplification, showing better electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2), which is much better than that the monometallic Pt-NGs, bimetallic NiPt-NGs and AuPt-NGs due to the synergetic effect presented in NiAuPt-NGs. The NiAuPt-NGs nanocomposites consist of tightly coupled nanostructures of Au, Ni and Pt, which have neither an alloy nor a core-shell structure. Under the optimal conditions, a linear range from 0.001-100 ng/mL and a low detection limit of 0.27 pg/mL were obtained for CEA. The proposed electrochemical sandwich-type immunosensor may have a promising application in bioassay and it enriches the electrochemical immunoassays. PMID:27488806

  7. Ultrasensitive sandwich-type electrochemical immunosensor based on trimetallic nanocomposite signal amplification strategy for the ultrasensitive detection of CEA

    Science.gov (United States)

    Tian, Lihui; Liu, Li; Li, Yueyuan; Wei, Qin; Cao, Wei

    2016-01-01

    A novel and ultrasensitive sandwich-type electrochemical immunosensor was designed for the quantitative detection of carcino-embryonic antigen (CEA). This immunosensor was developed by using the trimetallic NiAuPt nanoparticles on graphene nanosheets (NGs) nanosheets (NiAuPt-NGs) as excellent labels and β-cyclodextrin functionalized reduced graphene oxide nanosheets (CD-NGs) as the platform. The CD-NGs with high specific surface area good biocompatibility and the ideal dispersibility was used to capture the primary antibodies (Ab1) efficiently. The trimetallic NiAuPt-NGs nanocomposites were used as the labels for signal amplification, showing better electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2), which is much better than that the monometallic Pt-NGs, bimetallic NiPt-NGs and AuPt-NGs due to the synergetic effect presented in NiAuPt-NGs. The NiAuPt-NGs nanocomposites consist of tightly coupled nanostructures of Au, Ni and Pt, which have neither an alloy nor a core-shell structure. Under the optimal conditions, a linear range from 0.001–100 ng/mL and a low detection limit of 0.27 pg/mL were obtained for CEA. The proposed electrochemical sandwich-type immunosensor may have a promising application in bioassay and it enriches the electrochemical immunoassays. PMID:27488806

  8. A sandwich electrochemical immunosensor for Salmonella pullorum and Salmonella gallinarum based on a screen-printed carbon electrode modified with an ionic liquid and electrodeposited gold nanoparticles

    International Nuclear Information System (INIS)

    This article describes an electrochemical immunosensor for rapid determination of Salmonella pullorum and Salmonella gallinarum. The first step in the preparation of the immunosensor involves the electrodeposition of gold nanoparticles used for capturing antibody and enhancing signals. In order to generate a benign microenvironment for the antibody, the ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate was used to modify the surface of a screen-printed carbon electrode (SPCE). The single steps of modification were monitored via cyclic voltammetry and electrochemical impedance spectroscopy. Based on these findings, a sandwich immunoassay was worked out for the two Salmonella species by immobilizing the respective unlabeled antibodies on the SPCE. Following exposure to the analytes, secondary antibody (labeled with HRP) is added to form the sandwich. After adding hydrogen peroxide and thionine, the latter is oxidized and its signal measured via CV. A linear response to the Salmonella species is obtained in the 104 to 109 cfu · mL−1 concentration range, and the detection limits are 3.0 × 103 cfu · mL−1 for both species (at an SNR of 3). This assay is sensitive, highly specific, acceptably accurate and reproducible. Given its low detection limit, it represents a promising tool for the detection of S. pullorum, S. gallinarum, and - conceivably - of other food-borne pathogens by exchanging the antibody. (author)

  9. Impedimetric and amperometric bifunctional glucose biosensor based on hybrid organic-inorganic thin films.

    Science.gov (United States)

    Wang, Huihui; Ohnuki, Hitoshi; Endo, Hideaki; Izumi, Mitsuru

    2015-02-01

    A novel glucose biosensor with an immobilized mediator was studied using electrochemical impedance spectroscopy (EIS) and amperometry measurements. The biosensor has a characteristic ultrathin form and is composed of a self-assembled monolayer anchoring glucose oxidase (GOx) covered with Langmuir-Blodgett (LB) films of Prussian blue (PB). The immobilized PB in the LB films acts as a mediator and enables the biosensor to work under a low potential (0.0V vs. Ag/AgCl). In the EIS measurements, a dramatic decrease in charge transfer resistance (Rct) was observed with sequential addition of glucose, which can be attributed to enzymatic activity. The linearity of the biosensor response was observed by the variation of the sensor response (1/Rct) as a function of glucose concentration in the range 0 to 25mM. The sensor also showed linear amperometric response below 130mM glucose. The organic-inorganic system of GOx and PB nanoclusters demonstrated bifunctional sensing action, both amperometry and EIS modes, as well as long sensing stability for 4 days. PMID:25014167

  10. Development of an amperometric-based glucose biosensor to measure the glucose content of fruit.

    Science.gov (United States)

    Ang, Lee Fung; Por, Lip Yee; Yam, Mun Fei

    2015-01-01

    An amperometric enzyme-electrode was introduced where glucose oxidase (GOD) was immobilized on chitosan membrane via crosslinking, and then fastened on a platinum working electrode. The immobilized enzyme showed relatively high retention activity. The activity of the immobilized enzyme was influenced by its loading, being suppressed when more than 0.6 mg enzyme was used in the immobilization. The biosensor showing the highest response to glucose utilized 0.21 ml/cm2 thick chitosan membrane. The optimum experimental conditions for the biosensors in analysing glucose dissolved in 0.1 M phosphate buffer (pH 6.0) were found to be 35°C and 0.6 V applied potential. The introduced biosensor reached a steady-state current at 60 s. The apparent Michaelis-Menten constant ([Formula: see text]) of the biosensor was 14.2350 mM, and its detection limit was 0.05 mM at s/n > 3, determined experimentally. The RSD of repeatability and reproducibility of the biosensor were 2.30% and 3.70%, respectively. The biosensor was showed good stability; it retained ~36% of initial activity after two months of investigation. The performance of the biosensors was evaluated by determining the glucose content in fruit homogenates. Their accuracy was compared to that of a commercial glucose assay kit. There was no significance different between two methods, indicating the introduced biosensor is reliable. PMID:25789757

  11. Development of an amperometric-based glucose biosensor to measure the glucose content of fruit.

    Directory of Open Access Journals (Sweden)

    Lee Fung Ang

    Full Text Available An amperometric enzyme-electrode was introduced where glucose oxidase (GOD was immobilized on chitosan membrane via crosslinking, and then fastened on a platinum working electrode. The immobilized enzyme showed relatively high retention activity. The activity of the immobilized enzyme was influenced by its loading, being suppressed when more than 0.6 mg enzyme was used in the immobilization. The biosensor showing the highest response to glucose utilized 0.21 ml/cm2 thick chitosan membrane. The optimum experimental conditions for the biosensors in analysing glucose dissolved in 0.1 M phosphate buffer (pH 6.0 were found to be 35°C and 0.6 V applied potential. The introduced biosensor reached a steady-state current at 60 s. The apparent Michaelis-Menten constant ([Formula: see text] of the biosensor was 14.2350 mM, and its detection limit was 0.05 mM at s/n > 3, determined experimentally. The RSD of repeatability and reproducibility of the biosensor were 2.30% and 3.70%, respectively. The biosensor was showed good stability; it retained ~36% of initial activity after two months of investigation. The performance of the biosensors was evaluated by determining the glucose content in fruit homogenates. Their accuracy was compared to that of a commercial glucose assay kit. There was no significance different between two methods, indicating the introduced biosensor is reliable.

  12. Amperometric oxygen sensor based on a platinum nanoparticle-modified polycrystalline boron doped diamond disk electrode.

    Science.gov (United States)

    Hutton, Laura; Newton, Mark E; Unwin, Patrick R; Macpherson, Julie V

    2009-02-01

    Pt nanoparticle (NP)-modified polycrystalline boron-doped diamond (pBDD) disk electrodes have been fabricated and employed as amperometric sensors for the determination of dissolved oxygen concentration in aqueous solution. pBDD columns were cut using laser micromachining techniques and sealed in glass, in order to make disk electrodes which were then characterized electrochemically. Electrodeposition of Pt onto the diamond electrodes was optimized so as to give the maximum oxygen reduction peak current with the lowest background signal. Pt NPs, >0-10 nm diameter, were found to deposit randomly across the pBDD electrode, with no preference for grain boundaries. The more conductive grains were found to promote the formation of smaller nanoparticles at higher density. With the use of potential step chronoamperometry, in which the potential was stepped to a diffusion-limited value, a four electron oxygen reduction process was found to occur at the Pt NP-modified pBDD electrode. Furthermore the chronoamperometric response scaled linearly with dissolved oxygen concentration, varied by changing the oxygen/nitrogen ratio of gas flowed into solution. The sensor was used to detect dissolved oxygen concentrations with high precision over the pH range 4-10. PMID:19117391

  13. Advancements and application of immunosensors in the analysis of food contaminants

    Directory of Open Access Journals (Sweden)

    MD. SHOFIUL AZAM

    2014-11-01

    Full Text Available Azam MS, Rahman MRT, Lou Z, Tang Y, Raqib SM, Jothi JS. 2014. Advancements and application of immunosensors in the analysis of food contaminants. Nusantara Bioscience 6: 186-195. Immunosensors are affinity ligand-based biosensor solid-state devices in which the immunochemical reaction is coupled to a transducer. The fundamental basis of all immunosensors is the specificity of the molecular recognition of antigens by antibodies to form a stable complex. This is similar to the immunoassay methodology. Immunosensors can be categorized based on the detection principle applied. The main developments are electrochemical, optical, and microgravimetric immunosensors. In contrast to immunoassay, modern transducer technology enables the label-free detection and quantification of the immune complex. The analysis of trace substances in environmental science, pharmaceutical and food industries is a challenge since many of these applications demand a continuous monitoring mode. The use of immunosensors in these applications is most appropriate. Food chemists should take advantage of immunosensors in food and clinical diagnostics. There are many recent developments in the immunosensor field which have potential impacts. The future role of this technique in intra-laboratory, as well as bedside testing, will become even more important as the food laboratory is faced with increasing pressure to contain costs. Objective of this paper is to give a general overview of the possible application of immunosensors to the food analysis field.

  14. The use of different glucose oxidases for the development of an amperometric reagentless glucose biosensor based on gold nanoparticles covered by polypyrrole

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted -- ABSTRACT: The amperometric glucose biosensors based on adsorbed electron transfer mediator (ETM) tetrathiafulvalene (TTF) or 1,10-phenanthroline-5,6-dione (PD) and glucose oxidase (GOx) from Aspergillus niger (GOxA.niger), Penicillium adametzii (GOxP.adametzii) or Penicillium funiculosum (GOxP.funiculosum) cross-linked with glutaraldehyde were investigated. ETM and enzyme were immobilized layer by layer on bare graphite rod electrode (GR) premodified with gold nanoparticles (AuNP) of (i) 3.5 nm (GOx/ETM/AuNP3.5/GR), (ii) 6.0 nm (GOx/ETM/AuNP6.0/GR) and (iii) 13.0 nm (GOx/ETM/AuNP13.0/GR) size. The amperometric signals for all the developed biosensors were higher using PD in comparison with TTF. The biosensor based on GOxP.funiculosum showed higher analytical signal to glucose in a comparison to biosensors based on GOxA.niger and GOxP.adametzii. The registered current to glucose using GOxP.funiculosum/PD/AuNP3.5/GR electrode was linear in the glucose range from 0.1 to 10.0 mmol L−1 and the limit of detection was 0.024 mmol L−1. Enzymatical synthesis of polypyrrole (Ppy) layer on the electrode was applied in order to expand the linear glucose detection range. After 22 h of polymerization the amperometric signal was linear in the glucose concentration range from 0.1 to 25.0 mmol L−1, while after 69 h this rage was increased up to 50.0 mmol L−1. Additionally Ppy layer on the electrode surface reduced the influence of interfering species on the amperometric signal. The performance of developed biosensor was investigated in human serum samples

  15. Detection of Waterborne and Airborne Formaldehyde: From Amperometric Chemosensing to a Visual Biosensor Based on Alcohol Oxidase

    Directory of Open Access Journals (Sweden)

    Sasi Sigawi

    2014-02-01

    Full Text Available A laboratory prototype of a microcomputer-based analyzer was developed for quantitative determination of formaldehyde in liquid samples, based on catalytic chemosensing elements. It was shown that selectivity for the target analyte could be increased by modulating the working electrode potential. Analytical parameters of three variants of the amperometric analyzer that differed in the chemical structure/configuration of the working electrode were studied. The constructed analyzer was tested on wastewater solutions that contained formaldehyde. A simple low-cost biosensor was developed for semi-quantitative detection of airborne formaldehyde in concentrations exceeding the threshold level. This biosensor is based on a change in the color of a solution that contains a mixture of alcohol oxidase from the yeast Hansenula polymorpha, horseradish peroxidase and a chromogen, following exposure to airborne formaldehyde. The solution is enclosed within a membrane device, which is permeable to formaldehyde vapors. The most efficient and sensitive biosensor for detecting formaldehyde was the one that contained alcohol oxidase with an activity of 1.2 U·mL−1. The biosensor requires no special instrumentation and enables rapid visual detection of airborne formaldehyde at concentrations, which are hazardous to human health.

  16. Amperometric L-glutamate biosensor based on bacterial cell-surface displayed glutamate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Bo [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049 (China); Zhang, Shu [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, Ocean University of China, 238 Songling Road, Qingdao 266100 (China); Lang, Qiaolin [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Song, Jianxia; Han, Lihui [Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, Ocean University of China, 238 Songling Road, Qingdao 266100 (China); Liu, Aihua, E-mail: liuah@qibebt.ac.cn [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049 (China)

    2015-07-16

    Highlights: • E. coli surface-dispalyed Gldh exhibiting excellent enzyme activity and stability. • Sensitive amperometric biosensor for glutamate using Gldh-bacteria and MWNTs. • The glutamate biosensor exhibited high specificity and stability. - Abstract: A novel L-glutamate biosensor was fabricated using bacteria surface-displayed glutamate dehydrogenase (Gldh-bacteria). Here the cofactor NADP{sup +}-specific dependent Gldh was expressed on the surface of Escherichia coli using N-terminal region of ice nucleation protein (INP) as the anchoring motif. The cell fractionation assay and SDS-PAGE analysis indicated that the majority of INP-Gldh fusion proteins were located on the surface of cells. The biosensor was fabricated by successively casting polyethyleneimine (PEI)-dispersed multi-walled carbon nanotubes (MWNTs), Gldh-bacteria and Nafion onto the glassy carbon electrode (Nafion/Gldh-bacteria/PEI-MWNTs/GCE). The MWNTs could not only significantly lower the oxidation overpotential towards NAPDH, which was the product of NADP{sup +} involving in the oxidation of glutamate by Gldh, but also enhanced the current response. Under the optimized experimental conditions, the current–time curve of the Nafion/Gldh-bacteria/PEI-MWNTs/GCE was performed at +0.52 V (vs. SCE) by amperometry varying glutamate concentration. The current response was linear with glutamate concentration in two ranges (10 μM–1 mM and 2–10 mM). The low limit of detection was estimated to be 2 μM glutamate (S/N = 3). Moreover, the proposed biosensor is stable, specific, reproducible and simple, which can be applied to real samples detection.

  17. Nonenzymatic amperometric sensor for ascorbic acid based on hollow gold/ruthenium nanoshells

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Ara; Kang, Minkyung; Cha, Areum; Jang, Hye Su [Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Shim, Jun Ho [Department of Chemistry, Daegu University, Gyeongsan 712-714 (Korea, Republic of); Lee, Nam-Suk [National Center for Nanomaterials Technology (NCNT), Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Kim, Myung Hwa [Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Lee, Youngmi, E-mail: youngmilee@ewha.ac.kr [Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Lee, Chongmok, E-mail: cmlee@ewha.ac.kr [Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea, Republic of)

    2014-03-01

    Highlights: • We synthesized hollow gold/ruthenium (hAu–Ru) nanoshells for ascorbic acid sensing. • The hAu–Ru nanoshells showed sensitivity of 426 μA mM⁻¹ cm⁻² for ascorbic acid. • Good selectivity against glucose, uric acid, dopamine, 4-acetamidophenol, and NADH. • The linear dynamic range appeared from zero to 2.0 mM (R = 0.9995). • Response time (1.6 s) and low detection limit (2.2 μM) were obtained at pH 7.40. Abstract: We report a new nonenzymatic amperometric detection of ascorbic acid (AA) using a glassy carbon (GC) disk electrode modified with hollow gold/ruthenium (hAu–Ru) nanoshells, which exhibited decent sensing characteristics. The hAu–Ru nanoshells were prepared by the incorporation of Ru on hollow gold (hAu) nanoshells from Co nanoparticle templates, which enabled AA selectivity against glucose without aid of enzyme or membrane. The structure and electrocatalytic activities of the hAu–Ru catalysts were characterized by spectroscopic and electrochemical techniques. The hAu–Ru loaded on GC electrode (hAu–Ru/GC) showed sensitivity of 426 μA mM⁻¹ cm⁻² (normalized to the GC disk area) for the linear dynamic range of <5 μM to 2 mM AA at physiological pH. The response time and detection limit were 1.6 s and 2.2 μM, respectively. Furthermore, the hAu–Ru/GC electrode displayed remarkable selectivity for ascorbic acid over all potential biological interferents, including glucose, uric acid (UA), dopamine (DA), 4-acetamidophenol (AP), and nicotinamide adenine dinucleotide (NADH), which could be especially good for biological sensing.

  18. Amperometric L-glutamate biosensor based on bacterial cell-surface displayed glutamate dehydrogenase

    International Nuclear Information System (INIS)

    Highlights: • E. coli surface-dispalyed Gldh exhibiting excellent enzyme activity and stability. • Sensitive amperometric biosensor for glutamate using Gldh-bacteria and MWNTs. • The glutamate biosensor exhibited high specificity and stability. - Abstract: A novel L-glutamate biosensor was fabricated using bacteria surface-displayed glutamate dehydrogenase (Gldh-bacteria). Here the cofactor NADP+-specific dependent Gldh was expressed on the surface of Escherichia coli using N-terminal region of ice nucleation protein (INP) as the anchoring motif. The cell fractionation assay and SDS-PAGE analysis indicated that the majority of INP-Gldh fusion proteins were located on the surface of cells. The biosensor was fabricated by successively casting polyethyleneimine (PEI)-dispersed multi-walled carbon nanotubes (MWNTs), Gldh-bacteria and Nafion onto the glassy carbon electrode (Nafion/Gldh-bacteria/PEI-MWNTs/GCE). The MWNTs could not only significantly lower the oxidation overpotential towards NAPDH, which was the product of NADP+ involving in the oxidation of glutamate by Gldh, but also enhanced the current response. Under the optimized experimental conditions, the current–time curve of the Nafion/Gldh-bacteria/PEI-MWNTs/GCE was performed at +0.52 V (vs. SCE) by amperometry varying glutamate concentration. The current response was linear with glutamate concentration in two ranges (10 μM–1 mM and 2–10 mM). The low limit of detection was estimated to be 2 μM glutamate (S/N = 3). Moreover, the proposed biosensor is stable, specific, reproducible and simple, which can be applied to real samples detection

  19. Amperometric biosensor for hydrogen peroxide based on Hemoglobin/DNA/Poly-2,6-pyridinediamine modified gold electrode

    Energy Technology Data Exchange (ETDEWEB)

    Tong Zhongqiang [Chongqing Key Laboratory of Analytical Chemistry, College of Chemistry and Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo [Chongqing Key Laboratory of Analytical Chemistry, College of Chemistry and Engineering, Southwest University, Chongqing 400715 (China)], E-mail: yuanruo@swu.edu.cn; Chai Yaqin; Chen Shihong; Xie Yi [Chongqing Key Laboratory of Analytical Chemistry, College of Chemistry and Engineering, Southwest University, Chongqing 400715 (China)

    2007-07-31

    An amperometric biosensor for hydrogen peroxide (H{sub 2}O{sub 2}) was fabricated based on immobilization of hemoglobin (Hb) on DNA/Poly-2,6-pyridinediamine (PPD) modified Au electrode. PPD thin films were firstly electro-deposited on Au electrode surface which provide a template to attach negatively charged DNA molecules by electrostatic attraction. The adsorbed DNA network provides a good microenvironment for the immobilization of biomolecules and promotes electron transfer between the immobilized Hb and the electrode surface. The fabrication process of the biosensor was characterized by electrochemical impedance spectroscopy. Experimental conditions influencing the biosensor performance such as pH, potential and temperature were assessed and optimized. The proposed biosensor displayed a good electrocatalytic response to the reduction of H{sub 2}O{sub 2}, its linear range is 1.7 {mu}M to 3 mM with a detection limit of 1.0 {mu}M based on the signal-to-noise ratio of 3 (S/N = 3) under the optimized conditions. The Michaelis-Menten constant K{sub m}{sup app} of Hb immobilized on the electrode surface was found to be 0.8 mM. The biosensor shows high sensitivity and stability. Importantly, this deposition methodology could be further developed for the immobilization of other proteins and biocompounds.

  20. An Amperometric Immunosensor Based on a Polyelectrolyte/ Gold Magnetic Nanoparticle Supramolecular Assembly—Modified Electrode for the Determination of HIV p24 in Serum

    Directory of Open Access Journals (Sweden)

    Minjun Ni

    2010-07-01

    Full Text Available Unmanaged sudden withdrawal from the excessive consumption of alcohol (ethanol adversely alters neuronal integrity in vulnerable brain regions such as the cerebellum, hippocampus, or cortex. In addition to well known hyperexcitatory neurotransmissions, ethanol withdrawal (EW provokes the intense generation of reactive oxygen species (ROS and the activation of stress-responding protein kinases, which are the focus of this review article. EW also inflicts mitochondrial membranes/membrane potential, perturbs redox balance, and suppresses mitochondrial enzymes, all of which impair a fundamental function of mitochondria. Moreover, EW acts as an age-provoking stressor. The vulnerable age to EW stress is not necessarily the oldest age and varies depending upon the target molecule of EW. A major female sex steroid, 17β-estradiol (E2, interferes with the EW-induced alteration of oxidative signaling pathways and thereby protects neurons, mitochondria, and behaviors. The current review attempts to provide integrated information at the levels of oxidative signaling mechanisms by which EW provokes brain injuries and E2 protects against it.

  1. Nano-Magnetic Immunosensor Based on Staphylococcus Protein A and the Amplification Effect of HRP-Conjugated Phage Antibody

    Directory of Open Access Journals (Sweden)

    Xihui Mu

    2015-02-01

    Full Text Available In this research, super-paramagnetic Fe3O4 nanoparticles (magnetic particles were coated with Staphylococcus protein A (SPA and coupled with polyclonal antibody (pcAb to construct magnetic capturing probes, and HRP-conjugated phage antibody was then used as specific detecting probe to design a labeled immunosensor for trace detection of Staphylococcus aureus enterotoxin B (SEB. The linear detection range of the sensor was 0.008~125 µg/L, the regression equation was Y = 0.487X + 1.2 (R = 0.996, N = 15, p < 0.0001, the limit of detection (LOD was 0.008 µg/L, and the limit of quantification (LOQ was 0.008 µg/L. HRP-conjugated phage antibody, SPA and magnetic particles can enhance the sensitivity 4-fold, 3-fold and 2.6-fold higher, respectively. Compared with conventional double-antibody sandwich ELISA, the detection sensitivity of the sensor was 31-fold higher resulting from the integrated amplifying effect. The immunosensor integrates the unique advantages of SPA-oriented antibody as magnetic capturing probe, HRP-conjugated phage antibody as detecting probe, magnetic separation immunoassay technique, and several other advanced techniques, so it achieves high sensitivity, specificity and interference-resistance. It is proven to be well suited for analysis of trace SEB in various environmental samples with high recovery rate and reproducibility.

  2. A Surface Plasmon Resonance-Based Immunosensors for Sensitive Detection of Heroin

    Science.gov (United States)

    Wu, Zhong-cheng; Chen, Wen-ge; Wang, Lian-chao; Ge, Yu; Yu, Cheng-duan; Fang, Ting-jian

    2000-12-01

    A simple technique for sensitive detection of heroin based on surface-plasmon-resonance has been theoretically and experimentally investigated. The experiment was realized by using an anti-MO monoclonal antibody and a morphine (MO)-bovine serum albumin (MO-BSA) conjugate (antigen). The reason for using MO-BSA in the detection of heroine was also discussed. MO-BSA was immobilized on a gold thin film of SPR sensor chip by physical adsorption. The configuration of the device is allowed to be further miniaturized, which is required for the construction of a portable SPR device in the application of in-situ analysis.

  3. Amperometric catechol biosensor based on laccase immobilized on nitrogen-doped ordered mesoporous carbon (N-OMC)/PVA matrix

    International Nuclear Information System (INIS)

    A functionalized nitrogen-containing ordered mesoporous carbon (N-OMC), which shows good electrical properties, was synthesized by the carbonization of polyaniline inside a SBA-15 mesoporous silica template. Based on this, through entrapping laccase onto the N-OMC/polyvinyl alcohol (PVA) film a facilely fabricated amperometric biosensor was developed. Laccase from Trametes versicolor was assembled on a composite film of a N-OMC/PVA modified Au electrode and the electrochemical behavior was investigated. The results indicated that the N-OMC modified electrode exhibits electrical properties towards catechol. The optimum experimental conditions of a biosensor for the detection of catechol were studied in detail. Under the optimal conditions, the sensitivity of the biosensor was 0.29 A*M−1 with a detection limit of 0.31 μM and a linear detection range from 0.39 μM to 8.98 μM for catechol. The calibration curve followed the Michaelis–Menten kinetics and the apparent Michaelis–Menten (KMapp) was 6.28 μM. This work demonstrated that the N-OMC/PVA composite provides a suitable support for laccase immobilization and the construction of a biosensor. (papers)

  4. Simultaneous Determination of the Main Peanut Allergens in Foods Using Disposable Amperometric Magnetic Beads-Based Immunosensing Platforms

    Directory of Open Access Journals (Sweden)

    Víctor Ruiz-Valdepeñas Montiel

    2016-06-01

    Full Text Available In this work, a novel magnetic beads (MBs-based immunosensing approach for the rapid and simultaneous determination of the main peanut allergenic proteins (Ara h 1 and Ara h 2 is reported. It involves the use of sandwich-type immunoassays using selective capture and detector antibodies and carboxylic acid-modified magnetic beads (HOOC-MBs. Amperometric detection at −0.20 V was performed using dual screen-printed carbon electrodes (SPdCEs and the H2O2/hydroquinone (HQ system. This methodology exhibits high sensitivity and selectivity for the target proteins providing detection limits of 18.0 and 0.07 ng/mL for Ara h 1 and Ara h 2, respectively, with an assay time of only 2 h. The usefulness of the approach was evaluated by detecting the endogenous content of both allergenic proteins in different food extracts as well as trace amounts of peanut allergen (0.0001% or 1.0 mg/kg in wheat flour spiked samples. The developed platform provides better Low detection limits (LODs in shorter assay times than those claimed for the allergen specific commercial ELISA kits using the same immunoreagents and quantitative information on individual food allergen levels. Moreover, the flexibility of the methodology makes it readily translate to the detection of other food-allergens.

  5. Non-enzymatic amperometric sensor for hydrogen peroxide based on a biocomposite made from chitosan, hemoglobin, and silver nanoparticles

    International Nuclear Information System (INIS)

    We report on a novel non-enzymatic sensor for hydrogen peroxide (HP) that is based on a biocomposite made up from chitosan (CS), hemoglobin (Hb), and silver nanoparticles (AgNPs). The AgNPs were prepared in the presence of CS and glucose in an ultrasonic bath, and CS is found to act as a stabilizing agent. They were then combined with Hb and CS to construct a carbon paste biosensor. The resulting electrode gave a well-defined redox couple for Hb, with a formal potential of about -0.17 V (vs. SCE) at pH 6. 86 and exhibited a remarkable electrocatalytic activity for the reduction of HP. The sensor was used to detect HP by flow injection analysis, and a linear response is obtained in the 0. 08 to 250 μM concentration range. The detection limit is 0.05 μM (at S/N = 3). These characteristics, along with its long-term stability make the sensor highly promising for the amperometric determination of HP. (author)

  6. Gold nanoparticles doped conducting polymer nanorod electrodes: ferrocene catalyzed aptamer-based thrombin immunosensor.

    Science.gov (United States)

    Rahman, Md Aminur; Son, Jung Ik; Won, Mi-Sook; Shim, Yoon-Bo

    2009-08-15

    Au nanoparticles-doped conducting polymer nanorods electrodes (AuNPs/CPNEs) were prepared by coating Au nanorods (AuNRs) with a conducting polymer layer. The AuNRs were prepared through an electroless deposition method using the polycarbonate membrane (pore diameter, 50 nm, pore density, 6 x 10(8) pores/cm(2)) as a template. The AuNPs/CPNEs combining catalytic activity of ferrocene to ascorbic acid were used for the fabrication of an ultrasensitive aptamer sensor for thrombin detection. The AuNPs/3D-CPNEs were characterized employing cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Sandwiched immunoassay for alpha-human thrombin with NH(2)-functionalized-thrombin binding aptamer (Apt) immobilized on AuNPs/3D-CPNEs was studied through the electrocatalytic oxidation of ascorbic acid by the ferrocene moiety that was bound with an antithrombin antibody and attached with the Apt/3D-CPNEs probe through target binding. Various experimental parameters affecting thrombin detection were optimized, and the performance of the thrombin aptamer sensor was examined. The Apt/AuNPs/3D-CPNEs based thrombin sensor exhibited a wide dynamic range of 5-2000 ng L(-1) and a low detection limit of 5 ng L(-1) (0.14 pM). The selectivity and the stability of the proposed thrombin aptamer sensor were excellent, and it was tested in a real human serum sample for the detection of spiked concentrations of thrombin. PMID:20337374

  7. Versatile Flow-Injection Amperometric Ion Detector Based on an Interface between Two Immiscible Electrolyte Solutions: Numerical and Experimental Characterization

    DEFF Research Database (Denmark)

    Deryabina, Maria; Hansen, Steen H.; Jensen, Henrik

    2011-01-01

    The present paper describes a flexible thin layer electrochemical flow cell for ultrasensitive amperometric detection at a supported interface between immiscible electrolyte solutions. Nanomolar detection limits were demonstrated using the cell design, and 3D finite element simulations allowed a ...... electrochemical flow cell detector with a large surface to volume ratio....

  8. Sensitive determination of L-lysine with a new amperometric microbial biosensor based on Saccharomyces cerevisiae yeast cells.

    Science.gov (United States)

    Akyilmaz, Erol; Erdoğan, Ali; Oztürk, Ramazan; Yaşa, Ihsan

    2007-01-15

    A new amperometric microbial biosensor based on Saccharomyces cerevisiae NRRL-12632 cells, which had been induced for lysine oxidase enzyme and immobilized in gelatin by a cross-linking agent was developed for the sensitive determination of L-lysine amino acid. To construct the microbial biosensor S. cerevisiae cells were activated and cultured in a suitable culture medium. By using gelatine (8.43 mg cm(-2)) and glutaraldehyde (0.25%), cells obtained in the logarithmic phase of the growth curve at the end of a 14 h period were immobilized and fixed on a pretreated oxygen sensitive Teflon membrane of a dissolved oxygen probe. The assay procedure of the microbial biosensor is based on the determination of the differences of the respiration activity of the cells on the oxygenmeter in the absence and the presence of L-lysine. According to the end point measurement technique used in the experiments it was determined that the microbial biosensor response depended linearly on L-lysine concentrations between 1.0 and 10.0 microM with a 1 min response time. In optimization studies of the microbial biosensor, the most suitable microorganism quantities were found to be 0.97x10(5)CFU cm(-2). In addition phosphate buffer (pH 7.5; 50 mM) and 30 degrees C were obtained as the optimum working conditions. In characterization studies of the microbial biosensor some parameters such as substrate specificity, interference effects of some substances on the microbial biosensor responses, reproducibility of the biosensor and operational and storage stability were investigated. PMID:16759846

  9. Love Wave Immunosensor for the Detection of Carbaryl Pesticide

    Directory of Open Access Journals (Sweden)

    María-Isabel Rocha-Gaso

    2014-09-01

    Full Text Available A Love Wave (LW immunosensor was developed for the detection of carbaryl pesticide. The experimental setup consisted on: a compact electronic characterization circuit based on phase and amplitude detection at constant frequency; an automated flow injection system; a thermal control unit; a custom-made flow-through cell; and Quartz /SiO2 LW sensors with a 40 μm wavelength and 120 MHz center frequency. The carbaryl detection was based on a competitive immunoassay format using LIB-CNH45 monoclonal antibody (MAb. Bovine Serum Albumin-CNH (BSA-CNH carbaryl hapten-conjugate was covalently immobilized, via mercaptohexadecanoic acid self-assembled monolayer (SAM, onto the gold sensing area of the LW sensors. This immobilization allowed the reusability of the sensor for at least 70 assays without significant signal losses. The LW immunosensor showed a limit of detection (LOD of 0.09 μg/L, a sensitivity of 0.31 μg/L and a linear working range of 0.14–1.63 μg/L. In comparison to other carbaryl immunosensors, the LW immunosensor achieved a high sensitivity and a low LOD. These features turn the LW immunosensor into a promising tool for applications that demand a high resolution, such as for the detection of pesticides in drinking water at European regulatory levels.

  10. An immunosensor based on magnetic relaxation switch and polystyrene microparticle-induced immune multivalency enrichment system for the detection of Pantoea stewartii subsp. Stewartii.

    Science.gov (United States)

    Chen, Yi ping; Zou, Ming qiang; Wang, Da ning; Li, Yong liang; Xue, Qiang; Xie, Meng xia; Qi, Cai

    2013-05-15

    A rapid, sensitive, and simple immunosensor has been developed for the detection of Pantoea stewartii subsp. Stewartii (Pss). This immunosensor combines magnetic relaxation switch (MRS) assay with polystyrene microparticle-induced immune multivalency enrichment system. Comparing to conventional enzyme-linked immunosorbent assay (ELISA), the immunosensor developed in this study provides higher sensitivity and requires less analysis time. The detection limit of Pss obtained by immunosensor was determined to be 10(3)cfu/mL, 50 times lower than that by ELISA (5×10(4)cfu/mL), while the analysis time required by immunosensor is 30min much shorter than that by ELISA. The average recoveries studied with Pss at various spiking levels ranged from 85.5% to 93.4% with a relative standard deviation (RSD) below 6.0%. No cross-reaction with the other five strains was found, demonstrating a good specificity of Pss detection. The results showed that the MRS immunosensor combined with PS-induced immune multivalency enhancement system is a promising platform for the determination of large biological molecules due to its high sensitivity, specificity, homogeneity, and speed. PMID:23274190

  11. Determination of total creatine kinase activity in blood serum using an amperometric biosensor based on glucose oxidase and hexokinase.

    Science.gov (United States)

    Kucherenko, I S; Soldatkin, O O; Lagarde, F; Jaffrezic-Renault, N; Dzyadevych, S V; Soldatkin, A P

    2015-11-01

    Creatine kinase (CK: adenosine-5-triphosphate-creatine phosphotransferase) is an important enzyme of muscle cells; the presence of a large amount of the enzyme in blood serum is a biomarker of muscular injuries, such as acute myocardial infarction. This work describes a bi-enzyme (glucose oxidase and hexokinase based) biosensor for rapid and convenient determination of CK activity by measuring the rate of ATP production by this enzyme. Simultaneously the biosensor determines glucose concentration in the sample. Platinum disk electrodes were used as amperometric transducers. Glucose oxidase and hexokinase were co-immobilized via cross-linking with BSA by glutaraldehyde and served as a biorecognition element of the biosensor. The biosensor work at different concentrations of CK substrates (ADP and creatine phosphate) was investigated; optimal concentration of ADP was 1mM, and creatine phosphate - 10 mM. The reproducibility of the biosensor responses to glucose, ATP and CK during a day was tested (relative standard deviation of 15 responses to glucose was 2%, to ATP - 6%, to CK - 7-18% depending on concentration of the CK). Total time of CK analysis was 10 min. The measurements of creatine kinase in blood serum samples were carried out (at 20-fold sample dilution). Twentyfold dilution of serum samples was chosen as optimal for CK determination. The biosensor could distinguish healthy and ill people and evaluate the level of CK increase. Thus, the biosensor can be used as a test-system for CK analysis in blood serum or serve as a component of multibiosensors for determination of important blood substances. Determination of activity of other kinases by the developed biosensor is also possible for research purposes. PMID:26452867

  12. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Highlights: • Hydrogen peroxide biosensor was constructed by combining the advantageous properties of MWCNTs and Co3O4. • Incorporating Co3O4 nanoparticles into MWCNTs/gelatin film increased the electron transfer. • Co3O4/MWCNTs/gelatin/HRP/Nafion/GCE showed strong anti-interference ability. • Hydrogen peroxide was successfully determined in disinfector with an average recovery of 100.78 ± 0.89. - Abstract: In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co3O4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co3O4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at −0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10−7–1.9 × 10−5 M with a detection limit of 7.4 × 10−7. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89

  13. A novel antibody–antigen based impedimetric immunosensor for low level detection of HER2 in serum samples of breast cancer patients via modification of a gold nanoparticles decorated multiwall carbon nanotube-ionic liquid electrode

    Energy Technology Data Exchange (ETDEWEB)

    Arkan, Elham [Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Saber, Reza [Department of Medical Nanotechnology, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Research Center for Science and Technology in Medicine, Imam Khomeini Hospital, Tehran (Iran, Islamic Republic of); Karimi, Ziba [Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran (Iran, Islamic Republic of); Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of)

    2015-05-18

    Highlights: • Design of a novel impedimetric immunosensor for detection of HER2 in serum samples. • Use of a multiwall carbon nanotube-ionic liquid electrode modified with AuNPs as a base. • Immobilization of monoclonal HER2 antibody on AuNPs/MWCILE using 1,6-hexanedithiol as a cross linker. • Achieving linear dynamic range and limit of detection of 10–110 ng mL{sup −1} and 7.4 ng mL{sup −1}, respectively. • Method development and validation and application to assay of HER2 in biological fluids. - Abstract: A highly sensitive impedimetric immunosensor based on a gold nanoparticles/multiwall carbon nanotube-ionic liquid electrode (AuNPs/MW-CILE) was developed for the determination of human epidermal growth factor receptor 2 (HER2). Gold nanoparticles were used to enhance the extent of immobilization and to retain the immunoactivity of the antibody Herceptin on the electrode. Cyclic voltammetry and electrochemical impedance spectroscopy were employed for characterization of various layers coated onto the AuNPs/MW-CILE. The impedance measurements at different steps were based on the charge transfer kinetics of the [Fe(CN){sub 6}]{sup 3−/4−} redox pair. The immobilization of antibody and the corresponding antigen–antibody interaction at the electrode surface altered the interfacial electron transfer. The interactions of antibody with various concentrations of antigen were also monitored via the change of impedance response. The results showed that the charge transfer resistance increases linearly with increasing concentrations of HER2 antigen. The linear range and limit of detection were found as 10–110 ng mL{sup −1} and 7.4 ng mL{sup −1}, respectively. The sensitivity and specificity of the immunosensor were validated. The results showed that the prepared immunosensor is a useful tool for screening of trace amounts of HER2 in serum samples of breast cancer patients.

  14. 基于丝网印刷碳电极的微囊藻毒素-(亮氨酸-精氨酸)的电流型免疫传感器%An Amperometric lmmunosensor for Microcystin-( Leucine-Arginine) Based on Screen-Printed Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    陈向强; 何苗; 施汉昌; 蔡强

    2011-01-01

    An amperometric immunosensor for the detection of microcystin-(leucine-arginine)(MCLR) was prepared by immobilizing an MCLR-ovalbumin (MCLR-OVA) conjugate to an osmium bipyridyl complex-attached poly(4-vinylpyridine) membrane modified onto a screen-printed carbon electrode. The immunosensor was based on the indirect competitive immunoassay format with the labeled agent of horseradish peroxidase-conjugated goat anti-mouse immunoglobulin-G antibody. The current response decreased proportionally with the concentration of MCLR in the range of 0. 43-10.72 μg/L with a detection limit of 0.17 μg/L. The mean recoveries of standard additions in three real water samples were in the range of 83% to 121%, and the RSD were in the range of 3.6% to 7.6%. Thus, the proposed method is a promising technique for the detection of MCLR in environmental monitoring.%将微囊藻毒素-(亮氨酸-精氨酸)-鸡卵白蛋白 (Microcystin-(leucinc-arginine)-ovalbumin,MCLR-OVA)固定在锇联吡啶聚(4-乙烯基吡啶)聚合物修饰的丝网印刷碳电极表面,制备了一种检测 MCLR的电流型免疫传感器.该传感器基于间接竞争免疫分析模式,以辣根过氧化物酶偶联的羊抗鼠免疫球蛋白抗体为标记物.其电流信号响应与MCLR的浓度在0.43~10.72 μg/L 范围内呈负线性相关,检出限为0.17 μg/L.3种实际水样的平均添加回收率为 83%~121%,相对标准偏差为 3.6%~7.6%.本方法为MCLR 的环境监测提供了科学依据.

  15. A reagentless electrochemiluminescent immunosensor for apurinic/apyrimidinic endonuclease 1 detection based on the new Ru(bpy){sub 3}{sup 2+}/bi-arginine system

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Min; Chai, Xi Deng Ya-Qin; Han, Jing; Gui, Guo-Feng; Yuan, Ruo, E-mail: yuanruo@swu.edu.cn; Zhuo, Ying, E-mail: yingzhuo@swu.edu.cn

    2014-10-10

    Highlights: • A reagentless ECL biosensor based on the new Ru(bpy){sub 3}{sup 2+}/bi-arginine system. • The successful preparation of bi-Arg/Au@Fe3O4–rGO as enhancer. • Using the APE-1 as target by the sandwich-type immunoassay format. - Abstract: Apurinic/apyrimidinic endonuclease 1 (APE-1), a kind of multifunctional protein widely-distributed in the body, plays an essential role in the DNA base excision repair and serves as multiple possible roles in the response of human cancer to radiotherapy and chemotherapy. In this work, an ultrasensitive solid-state electrochemiluminescence (ECL) immunosensor is designed to determine APE-1 based on the new Ru(bpy){sub 3}{sup 2+}/bi-arginine system. The bi-arginine (bi-Arg) is decorated on the Au nanoparticles functionalized magnetic Fe{sub 3}O{sub 4}/reduced graphene oxide (bi-Arg/Au@Fe{sub 3}O{sub 4}–rGO) according to the self-assembling and covalent cross-linking interaction to obtain the functionalized nanocomposite of bi-Arg/Au@Fe{sub 3}O{sub 4}–rGO. Herein, the bi-Arg/Au@Fe{sub 3}O{sub 4}–rGO plays not only an amplification label to enhance the ECL signal of Ru(bpy){sub 3}{sup 2+} due to the coreactant of bi-Arg but also an ideal nanocarrier to load numerous secondary antibody. Based on sandwich-type immunoassay format, this proposed method offers a linear range of 1.0 fg mL{sup −1}–5.0 pg mL{sup −1} and an estimated detection limit of 0.3 fg mL{sup −1} for the APE-1. Moreover, the reagentless ECL immunosensor also exhibits high sensitivity, excellent selectivity and good stability, which has greatly potential development and application in clinical diagnostics, immunology and biomedical research.

  16. A new amperometric glucose biosensor based on one-step electrospun poly(vinyl alcohol)/chitosan nanofibers.

    Science.gov (United States)

    Su, Xiaofang; Wei, Jianfei; Ren, Xiangling; Li, Linlin; Meng, Xianwei; Ren, Jun; Tang, Fangqiong

    2013-10-01

    In this work, a new glucose amperometric biosensor was developed by directly electrospinning poly(vinyl alcohol)/chitostan nanofibers on the surface of the platinum electrode, in which glucose oxidase (GOD) was effectively immobilized in nanofibers by encapsulation. After been cross-linked in glutaraldehyde vapor and modified with a thin nafion film, the nanofibers (PVA/chitosan/GOD)/nafion electrode was used for glucose amperometric measurements. The electrospun nanofibrous enzyme membrane served as a better sensing element than the casing one due to the unique properties of nanofibers such as the special three-dimensional network structure, large pores, high porosity, and large surface to volume ratios. The as-prepared biosensor showed a wide linear calibration range, low detection limit, and low apparent Michaelis-Menten constant in the glucose determination. The stability, reproducibility and anti-interference capability of biosensor were also presented. Furthermore, the new biosensor was successfully applied to detect glucose in human serum samples. PMID:24015507

  17. A Nafion®-based co-planar electrode amperometric sensor for methanol determination in the gas phase

    Indian Academy of Sciences (India)

    K Wallgren; S Sotiropoulos

    2009-09-01

    A co-planar electrode device, fabricated with all electrodes (working, counter and reference) on the same face of a Nafion® polymer electrolyte membrane, is proposed for the amperometric detection of gaseous methanol using Pt as the working electrode. Clear voltammetry is obtained for methanol oxidation from its vapours in equilibrium with methanol aqueous solutions, both in the absence and presence of oxygen in the gas stream. Using an appropriate pulse sequence to keep the indicator electrode active, methanol vapours in the 1-13 Torr partial pressure range (in equilibrium with methanol aqueous solutions in the 1-10% w/w concentration range) could be determined, in a constant potential, amperometric mode. The methanol detector could be operated both in a nitrogen stream and (in what is essential for practical applications) in an air atmosphere too, with estimated detection limits of 1.2 and 1.4 Torr respectively.

  18. Amperometric urea biosensor based on urease and electropolymerized toluidine blue dye as a pH-sensitive redox probe.

    Science.gov (United States)

    Vostiar, Igor; Tkac, Jan; Sturdik, Ernest; Gemeiner, Peter

    2002-05-15

    The electropolymerized toluidine blue film deposited on the glassy carbon electrode show amperometrically detectable pH sensitivity. This feature of polytoluidine blue (PTOB) film was used for a construction of an amperometric urea biosensor. We have observed a linear shift of the formal redox potential with increasing pH value between 4 and 8 giving the slope of 81 mV(Delta) pH(-1). Polytoluidine blue film has had a significantly increased stability and higher electrochemical activity compared to the adsorbed monomeric dye. The polytoluidine blue urea biosensor has been operating at a working potential of -200 mV vs. SCE. The sensitivity of the biosensor was 980 nA mM(-1) cm(-2). The biosensor showed linearity in concentration range up to 0.8 mM with the detection limit of 0.02 mM (S/N=3).

  19. Enhanced sensitivity of self-assembled-monolayer-based SPR immunosensor for detection of benzaldehyde using a single-step multi-sandwich immunoassay.

    Science.gov (United States)

    Gobi, K Vengatajalabathy; Matsumoto, Kiyoshi; Toko, Kiyoshi; Ikezaki, Hidekazu; Miura, Norio

    2007-04-01

    This paper describes the fabrication and sensing characteristics of a self-assembled monolayer (SAM)-based surface plasmon resonance (SPR) immunosensor for detection of benzaldehyde (BZ). The functional sensing surface was fabricated by the immobilization of a benzaldehyde-ovalbumin conjugate (BZ-OVA) on Au-thiolate SAMs containing carboxyl end groups. Covalent binding of BZ-OVA on SAM was found to be dependent on the composition of the base SAM, and it is improved very much with the use of a mixed monolayer strategy. Based on SPR angle measurements, the functional sensor surface is established as a compact monolayer of BZ-OVA bound on the mixed SAM. The BZ-OVA-bound sensor surface undergoes immunoaffinity binding with anti-benzaldehyde antibody (BZ-Ab) selectively. An indirect inhibition immunoassay principle has been applied, in which analyte benzaldehyde solution was incubated with an optimal concentration of BZ-Ab for 5 min and injected over the sensor chip. Analyte benzaldehyde undergoes immunoreaction with BZ-Ab and makes it inactive for binding to BZ-OVA on the sensor chip. As a result, the SPR angle response decreases with an increase in the concentration of benzaldehyde. The fabricated immunosensor demonstrates a low detection limit (LDL) of 50 ppt (pg mL(-1)) with a response time of 5 min. Antibodies bound to the sensor chip during an immunoassay could be detached by a brief exposure to acidic pepsin. With this surface regeneration, reusability of the same sensor chip for as many as 30 determination cycles has been established. Sensitivity has been enhanced further with the application of an additional single-step multi-sandwich immunoassay step, in which the BZ-Ab bound to the sensor chip was treated with a mixture of biotin-labeled secondary antibody, streptavidin and biotin-bovine serum albumin (Bio-BSA) conjugate. With this approach, the SPR sensor signal increased by ca. 12 times and the low detection limit improved to 5 ppt with a total response

  20. A sandwich-type immunosensor using Pd–Pt nanocrystals as labels for sensitive detection of human tissue polypeptide antigen

    International Nuclear Information System (INIS)

    A sandwich-type immunosensor was developed for the detection of human tissue polypeptide antigen (hTPA). In this work, a graphene sheet (GS) was synthesized to modify the surface of a glassy carbon electrode (GCE), and Pd–Pt bimetallic nanocrystals were used as secondary-antibody (Ab2) labels for the fabrication of the immunosensor. The amperometric response of the immunosensor for catalyzing hydrogen peroxide (H2O2) was recorded. And electrochemical impedance spectroscopy was used to characterize the fabrication process of the immunosensor. The anti-human tissue polypeptide antigen primary antibody (Ab1) was immobilized onto the GS modified GCE via cross-linking with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinimide (EDC/NHS). With Ab1 immobilized onto the GS modified GCE and Ab2 linked on Pd–Pt bimetallic nanocrystals, the immunosensor demonstrated a wide linear range (0.0050–15 ng ml−1), a low detection limit (1.2 pg ml−1), good reproducibility, good selectivity and acceptable stability. This design strategy may provide many potential applications in the detection of other cancer biomarkers. (paper)

  1. Introduction to Biosensors From Electric Circuits to Immunosensors

    CERN Document Server

    Yoon, Jeong-Yeol

    2013-01-01

    Introduction to Biosensors: From Electric Circuits to Immunosensors discusses underlying circuitry of sensors for biomedical and biological engineers as well as biomedical sensing modalities for electrical engineers while providing an applications-based approach to the study of biosensors with over 13 extensive, hands-on labs. The material is presented using a building-block approach, beginning with the fundamentals of sensor design and temperature sensors and ending with more complicated biosensors. This book also: Provides electrical engineers with the specific knowledge they need to understand biological sensing modalities Provides biomedical engineers with a solid background in circuits and systems Includes complete coverage of temperature sensors, electrochemical sensors, DNA and immunosensors, piezoelectric sensors and immunosensing in a micofluidic device Introduction to Biosensors: From Electric Circuits to Immunosensors aims to provide an interdisciplinary approach to biosensors that will be apprecia...

  2. Graphene oxide based electrochemical label free immunosensor for rapid and highly sensitive determination of tumor marker HSP70.

    Science.gov (United States)

    Özcan, Burcu; Sezgintürk, Mustafa Kemal

    2016-11-01

    In this study, it is aimed to design a label free immunosensor for determination of HSP70 (heat shock protein 70). Glassy carbon electrode was used as a working electrode. Graphene oxide was covered on the working electrode surface. AntiHSP70 as a biorecognition element of the biosensor was covalently immobilized onto the graphene oxide layer by using EDC/NHS chemistry. The immobilization of antiHSP70 and binding of HSP70 protein onto the electrode surface were monitored by cyclic voltammetry and electrochemical impedance spectroscopy. Single frequency technique was also utilized to monitor binding characterization of HSP70 and antiHSP70. Surface morphology was defined by using scanning electron microscopy. All important fabrication steps of the biosensor were optimized to prepare an ultrasensitive biosensor. Under optimum conditions, analytical studies such as linearity, repeatability, and reproducibility were also experienced. A linear detection range of HSP70 was determined between 12 and 144fg/mL. Moreover, Kramer's Kronig transform was applied on impedance data. Finally, the biosensor was applied with real human blood serum samples and hopeful results were obtained. PMID:27591626

  3. Sensing Escherichia coli O157:H7 via frequency shift through a self-assembled monolayer based QCM immunosensor

    Institute of Scientific and Technical Information of China (English)

    Li-jiang WANG; Chun-sheng WU; Zhao-ying HU; Yuan-fan ZHANG; Rong LI; Ping WANG

    2008-01-01

    By means of the specific immuno-recognition and ultra-sensitive mass detection, a quartz crystal microbalance (QCM) biosensor for Escherichia coli O157:H7 detection was developed in this work. As a suitable surfactant, 16-mercaptohexadecanoic acid (MHDA) was introduced onto the Au surface of QCM, and then self-assembled with N-hydroxysuccinimide (NHS) raster as a reactive intermediate to provide an active interface for the specific antibody immobilization. The binding of target bacteria with the immobilized antibodies decreased the sensor's resonant frequency, and the frequency shift was correlated to the bacterial concentration. The stepwise assembly of the immunosensor was characterized by means of the electrochemical techniques. Using the immersion-dry-immersion procedure, this QCM biosensor could detect 2.0×102 colony forming units (CFU)/ml E. coli O157:H7. In order to reduce the fabrication time, a polyelectrolyte layer-by-layer self-assembly (LBL-SA) method was adopted for fast construction. Finally, the reproducibility of this biosensor was discussed.

  4. An impedance immunosensor based on low-cost microelectrodes and specific monoclonal antibodies for rapid detection of avian influenza virus H5N1 in chicken swabs.

    Science.gov (United States)

    Lin, Jianhan; Wang, Ronghui; Jiao, Peirong; Li, Yuntao; Li, Yanbin; Liao, Min; Yu, Yude; Wang, Maohua

    2015-05-15

    Early screening of suspected cases is the key to control the spread of avian influenza (AI) H5N1. In our previous studies, an impedance biosensor with an interdigitated array microelectrode based biochip was developed and validated with pure AI H5 virus, but had limitations in cost and reliability of the biochip, specificity of the antibody against Asian in-field H5N1 virus and detection of H5N1 virus in real samples. The purpose of this study is to develop a low-cost impedance immunosensor for rapid detection of Asian in-field AI H5N1 virus in chicken swabs within 1h and validate it with the H5N1 virus. Specific monoclonal antibodies against AI H5N1 virus were developed by fusion of mouse myeloma cells with spleen cells isolated from an H5N1-virus-immunized mouse. Dot-ELISA analysis demonstrated that the developed antibodies had good affinity and specificity with the H5N1 virus. The microelectrodes were redesigned with compact size, fabricated using an improved wet-etching micro-fabrication process with a higher qualified production rate of 70-80%, and modified with the antibodies by the Protein A method. Equivalent circuit analysis indicated that electron transfer resistor was effective with the increase in impedance after capturing of the H5N1 viruses. Linear relationship between impedance change and logarithmic value of H5N1 virus at the concentrations from 2(-1) to 2(4) HAU/50 μl was found and the lower limit of detection was 2(-1) HAU/50 μl. No obvious interferences from non-target viruses such as H6N2, H9N2, Newcastle disease virus, and infectious bronchitis virus were found. Chicken swab tests showed that the impedance immunosensor had a comparable accuracy with real-time RT-PCR compared to viral isolation. PMID:25263315

  5. An amperometric penicillin biosensor with enhanced sensitivity based on co-immobilization of carbon nanotubes, hematein, and {beta}-lactamase on glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Chen Bi; Ma Ming [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Su Xiaoli, E-mail: xsu@hunnu.edu.cn [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China)

    2010-07-26

    An amperometric penicillin biosensor with enhanced sensitivity was successfully developed by co-immobilization of multi-walled carbon nanotubes (MWCNTs), hematein, and {beta}-lactamase on glassy carbon electrode using a layer-by-layer assembly technique. Under catalysis of the immobilized enzyme, penicillin was hydrolyzed, decreasing the local pH. The pH change was monitored amperometrically with hematein as a pH-sensitive redox probe. MWCNTs were used as an electron transfer enhancer as well as an efficient immobilization matrix for the sensitivity enhancement. The effects of immobilization procedure, working potential, enzyme quantity, buffer concentration, and sample matrix were investigated. The biosensor offered a minimum detection limit of 50 nM (19 {mu}g L{sup -1}) for penicillin V, lower than those of the conventional pH change-based biosensors by more than two orders of magnitude. The electrode-to-electrode variation of the response sensitivity was 7.0% RSD.

  6. Amperometric biosensor based on 3D ordered freestanding porous Pt nanowire array electrode.

    Science.gov (United States)

    Wang, Yunli; Zhu, Yingchun; Chen, Jingjing; Zeng, Yi

    2012-09-28

    A three-dimensionally (3D) ordered freestanding porous platinum (Pt) nanowire array electrode (PPNWAE) with pores of several nanometers in size and a Pt nanowire array electrode (PNWAE) without pores were facilely fabricated by metal electrodeposition and direct integration with a Pt disk electrode. The unusual PPNWAE with high active area showed excellent sensitivity (0.36 mA cm(-2) mM(-1)) and a wide detection range (4.5 μM-27.1 mM) to hydrogen peroxide (H(2)O(2)). A glucose oxidase (GOD)-based biosensor (PPNWAE/GOD) with a considerably wide detection range (4.5 μM-189.5 mM) to glucose was demonstrated. Furthermore, a lower detection limit, higher sensitivity and smaller value of Michaelis-Menten constant k(m) were recorded for PPNWAE-based biosensors compared with PNWAE-based biosensors. Particularly, the response current to glucose of PPNWAE/GOD was ca. 100% higher than that of PNWAE/GOD and the response current to H(2)O(2) of PPNWAE was ca. 50% higher than that of PNWAE, owing to the granular and rougher porous nanowire surface enabling greater bioactivity for GOD. The selectivity of PPNWAE/GOD glucose biosensor was also estimated. PMID:22898987

  7. A novel amperometric biosensor based on gold nanoparticles-mesoporous silica composite for biosensing glucose

    Institute of Scientific and Technical Information of China (English)

    ZHANG JingJing; ZHU JunJie

    2009-01-01

    We report a novel bienzyme bioseneor based on the assembly of the glucose oxidase (GOD) and horseradish peroxidase (HRP) onto the gold nanoparticles encapsulated mesoporous silica SBA-15 composite (AuNPs-SBA-15). Electrochemical behavior of the bienzyme bioconjugatse biosensor is studied by cyclic voltammetry and electrochemical impedance spectroscopy. The results indicate that the presence of mesoporous AuNPs-SBA-15 greatly enhanced the protein Ioadings, accelerated inter-facial electron transfer of HRP and the electroconducting surface, resulting in the realization of direct electrochemistry of HRP. Owing to the electrocatalytic effect of AuNPs-SBA-15 composite, the biosen-sor exhibits a sensitive response to H2O2 generated from enzymatic reactions. Thus the bienzyme biosensor could be used for the detection of glucose without the addition of any mediator. The detec-tion limit of glucose was 0.5 μM with a linear range from 1 to 48 μM.

  8. A novel amperometric biosensor based on gold nanoparticles-mesoporous silica composite for biosensing glucose

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We report a novel bienzyme biosensor based on the assembly of the glucose oxidase (GOD) and horseradish peroxidase (HRP) onto the gold nanoparticles encapsulated mesoporous silica SBA-15 composite (AuNPs-SBA-15). Electrochemical behavior of the bienzyme bioconjugates biosensor is studied by cyclic voltammetry and electrochemical impedance spectroscopy. The results indicate that the presence of mesoporous AuNPs-SBA-15 greatly enhanced the protein loadings, accelerated interfacial electron transfer of HRP and the electroconducting surface, resulting in the realization of direct electrochemistry of HRP. Owing to the electrocatalytic effect of AuNPs-SBA-15 composite, the biosensor exhibits a sensitive response to H2O2 generated from enzymatic reactions. Thus the bienzyme biosensor could be used for the detection of glucose without the addition of any mediator. The detection limit of glucose was 0.5 μM with a linear range from 1 to 48 μM.

  9. Electrophoretically deposited multiwalled carbon nanotube based amperometric genosensor for E.coli detection

    Science.gov (United States)

    Bhardwaj, Hema; Solanki, Shipra; Sumana, Gajjala

    2016-04-01

    This work reports on a sensitive and selective genosensor fabrication method for Escherichia coli (E.coli) detection. The functionalized multiwalled carbon nanotubes (MWCNT) synthesized via chemical vapour deposition have been deposited electrophoretically onto indium tin oxide coated glass surface and have been utilized as matrices for the covalent immobilization of E.coli specific probe oligonucleotide that was identified from the 16s rRNA coding region of the E.coli genome. This fabricated functionalized MWCNT based platform sought to provide improved fundamental characteristics to electrode interface in terms of electro-active surface area and diffusion coefficient. Electrochemical cyclic voltammetry revealed that this genosensor exhibits a linear response to complementary DNA in the concentration range of 10-7 to 10-12 M with a detection limit of 1×10-12 M.

  10. Determination of L- and D-fucose using amperometric electrodes based on diamond paste.

    Science.gov (United States)

    Stefan-van Staden, Raluca-Ioana; Nejem, R'afat Mahmoud; van Staden, Jacobus Frederick; Aboul-Enein, Hassan Y

    2012-02-21

    Monocrystalline diamond (natural diamond, synthetic-1 and synthetic-2) based electrochemical electrodes were designed for the analysis of L- and D-fucose. Response characteristics of the electrochemical electrodes were determined using cyclic voltammetry and differential pulse voltammetry (DPV). L-fucose was determined using DPV with electrodes based on natural diamond, synthetic-1 and synthetic-2, respectively, at 240 mV using NaCl as the electrolyte (pH 3.0); at 160 mV using KNO(3) (pH 10.0) and at 80 mV using KCl as the electrolyte (pH 10.0) while D-fucose was analyzed at 120 mV using KCl as the electrolyte (pH 1.0); at 140 mV using KNO(3) as the electrolyte (pH 1.0) and at 160 mV using NaNO(3) as the electrolyte (pH 3.0). The linear concentration ranges for L-fucose were between 10(-13) and 10(-9) mol L(-1) (natural diamond), 10(-11) and 10(-8) mol L(-1) (synthetic-1) and 10(-6) and 10(-3) mol L(-1) (synthetic-2) with detection limits of 10(-14), 10(-12) and 10(-8) mol L(-1) magnitude order, respectively. For D-fucose, the linear concentration ranges were 10(-6) to 10(-3) mol L(-1) (natural diamond), 10(-5) to 10(-3) mol L(-1) (synthetic-1) and 10(-9) to 10(-3) mol L(-1) (synthetic-2) with detection limits of 10(-7), 10(-7) and 10(-10) mol L(-1) magnitude order, respectively. The sensors were used for the assay of L-fucose in serum and urine samples.

  11. Amperometric Non-Enzymatic Hydrogen Peroxide Sensor Based on Aligned Zinc Oxide Nanorods

    Science.gov (United States)

    Al-Hardan, Naif H.; Abdul Hamid, Muhammad Azmi; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim

    2016-01-01

    Zinc oxide (ZnO) nanorods (NRs) have been synthesized via the hydrothermal process. The NRs were grown over a conductive glass substrate. A non-enzymatic electrochemical sensor for hydrogen peroxide (H2O2), based on the prepared ZnO NRs, was examined through the use of current-voltage measurements. The measured currents, as a function of H2O2 concentrations ranging from 10 μM to 700 μM, revealed two distinct behaviours and good performance, with a lower detection limit (LOD) of 42 μM for the low range of H2O2 concentrations (first region), and a LOD of 143.5 μM for the higher range of H2O2 concentrations (second region). The prepared ZnO NRs show excellent electrocatalytic activity. This enables a measurable and stable output current. The results were correlated with the oxidation process of the H2O2 and revealed a good performance for the ZnO NR non-enzymatic H2O2 sensor. PMID:27367693

  12. A novel amperometric sensor for peracetic acid based on a polybenzimidazole-modified gold electrode

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Mu-Yi, E-mail: huamy@mail.cgu.edu.t [Green Research Center, Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China); Biosensor Group, Biomedical Engineering Research Center, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China); Chen, Hsiao-Chien [Green Research Center, Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China); Biosensor Group, Biomedical Engineering Research Center, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China); Tsai, Rung-Ywan [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, 195, Sec. 4, Chung Hsing Rd., Hsinchu 31040, Taiwan (China); Lin, Yu-Chen [Green Research Center, Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China); Biosensor Group, Biomedical Engineering Research Center, Chang Gung University, 259 Wen-Hwa 1st Rd., Kuei-Shan, Tao-Yuan 33302, Taiwan (China)

    2011-04-30

    We have developed a peracetic acid (PAA) sensor based on a polybenzimidazole-modified gold (PBI/Au) electrode. Fourier transform infrared and X-ray photoelectron spectroscopy indicated that PAA oxidized 69.4% of the imine in PBI to form PBI N-oxide, increasing the electrochemical reduction current during cyclic voltammetry. The chemical oxidation of the PBI/Au electrode by PAA, followed by its electrochemical reduction, allowed PAA to be detected directly and consecutively by assessing its reduction current. The PAA sensor had a broad linear detection range (3.1 {mu}M-1.5 mM) and a rapid response time (3.9 s) at an applied potential of -0.3 V. Potentially interfering substances, such as hydrogen peroxide, acetic acid, and oxygen, had no effect on the ability of the probe to detect PAA, indicating high selectivity of the probe. Furthermore, the detection range, response time, and sensitivity of the sensor could all be improved by modification of the smooth planar electrode surface to a porous three-dimensional configuration. When compared to the analytical characteristics of other PAA sensors operating under optimal conditions, the three-dimensional PBI/Au electrode offers a rapid detection time, a usable linear range, and a relatively low detection limit.

  13. Amperometric Non-Enzymatic Hydrogen Peroxide Sensor Based on Aligned Zinc Oxide Nanorods

    Directory of Open Access Journals (Sweden)

    Naif H. Al-Hardan

    2016-06-01

    Full Text Available Zinc oxide (ZnO nanorods (NRs have been synthesized via the hydrothermal process. The NRs were grown over a conductive glass substrate. A non-enzymatic electrochemical sensor for hydrogen peroxide (H2O2, based on the prepared ZnO NRs, was examined through the use of current-voltage measurements. The measured currents, as a function of H2O2 concentrations ranging from 10 μM to 700 μM, revealed two distinct behaviours and good performance, with a lower detection limit (LOD of 42 μM for the low range of H2O2 concentrations (first region, and a LOD of 143.5 μM for the higher range of H2O2 concentrations (second region. The prepared ZnO NRs show excellent electrocatalytic activity. This enables a measurable and stable output current. The results were correlated with the oxidation process of the H2O2 and revealed a good performance for the ZnO NR non-enzymatic H2O2 sensor.

  14. A disposable amperometric ethanol biosensor based on screen-printed carbon electrodes mediated with ferricyanide-magnetic nanoparticle mixture

    Energy Technology Data Exchange (ETDEWEB)

    Liao, M.-H. [Department of Cosmetology Styling, Applied Science Technology Research Center, Transworld Institute of Technology, Douliou, Yunlin 64063, Taiwan (China); Guo, J.-C. [Department of Chemical Engineering, National Yunlin University of Science and Technology, 123, University Rd., Sec 3, Douliou, Yunlin 64002, Taiwan (China); Chen, W.-C. [Department of Chemical Engineering, National Yunlin University of Science and Technology, 123, University Rd., Sec 3, Douliou, Yunlin 64002, Taiwan (China)]. E-mail: chenwc@yuntech.edu.tw

    2006-09-15

    Magnetic Fe{sub 3}O{sub 4} nanoparticles were prepared by co-precipitation method and used to develop a reagentless disposable amperometric ethanol (EtOH) biosensor. The electrochemical characteristics of modified processes were analyzed by cyclic voltammetry (CV) and chronoamperometry (CA). Results showed that the presence of Fe{sub 3}O{sub 4} nanoparticles could enhance the peak currents of redox species. Moreover, the alcohol biosensor exhibited an excellent sensitivity and fast response time for EtOH with a wide linear response range from 1.0 to 9.0 mM.

  15. A new amperometric glucose biosensor based on screen printed carbon electrodes with rhenium(IV) - oxide as a mediator

    OpenAIRE

    ALBANA VESELI; AHMET HAJRIZI; TAHIR ARBNESHI; KURT KALCHER

    2012-01-01

    Rhenium(IV)-oxide, ReO2, was used as a mediator for carbon paste (CPE) and screen printed carbon (SPCE) electrodes for the catalytic amperometric determination of hydro-gen peroxide, whose overpotential for the reduction could be lowered to -0.1 V vs. Ag/AgCl in flow injection analysis (FIA) using phosphate buffer (0.1 M, pH=7.5) as a carrier. For hydrogen peroxide a detection limit (3σ) of 0.8 mg L-1 could be obtained. ReO2-modified SPCEs were used to design biosensors with a template enzyme...

  16. Light-addressable amperometric electrodes for enzyme sensors based on direct quantum dot-electrode contacts

    Science.gov (United States)

    Riedel, M.; Göbel, G.; Parak, W. J.; Lisdat, F.

    2014-03-01

    Quantum dots allow the generation of charge carriers upon illumination. When these particles are attached to an electrode a photocurrent can be generated. This allows their use as a light-switchable layer on the surface. The QDs can not only exchange electronics with the electrode, but can also interact with donor or acceptor compounds in solution providing access to the construction of signal chains starting from an analytic molecule. The magnitude and the direction of the photocurrent depend on several factors such as electrode polarization, solution pH and composition. These defined dependencies have been evaluated with respect to the combination of QD-electrodes with enzyme reactions for sensorial purpose. CdSe/ZnS-QD-modified electrodes can be used to follow enzymatic reactions in solution based on the oxygen sensitivity. In order to develop a photoelectrochemical biosensor, e.g. glucose oxidase is immobilized on the CdSe/ZnS-electrode. One immobilization strategy applies the layer-by-layer-technique of GOD and a polyelectrolyte. Photocurrent measurements of such a sensor show a clear concentration dependent behavior. The principle of combing QD oxidase. The sensitivity of quantum dot electrodes can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be influenced by additional nanoparticles, but also by multiple layers of the QDs. In another direction of research it can be demonstrated that direct electron transfer from excited quantum dots can be achieved with the redox protein cytochrome c. This allows the detection of the protein, but also interaction partners such as a enzymes or superoxide.

  17. Amperometric bienzyme glucose biosensor based on carbon nanotube modified electrode with electropolymerized poly(toluidine blue O) film

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wenju [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Wang Fang [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong)] [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Yao Yanli [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Hu Shengshui [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Shiu, Kwok-Keung, E-mail: kkshiu@hkbu.edu.h [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2010-09-30

    The amperometric bienzyme glucose biosensor utilizing horseradish peroxidase (HRP) and glucose oxidase (GOx) immobilized in poly(toluidine blue O) (PTBO) film was constructed on multi-walled carbon nanotube (MWNT) modified glassy carbon electrode. The HRP layer could be used to analyze hydrogen peroxide with toluidine blue O (TBO) mediators, while the bienzyme system (HRP + GOx) could be utilized for glucose determination. Glucose underwent biocatalytic oxidation by GOx in the presence of oxygen to yield H{sub 2}O{sub 2} which was further reduced by HRP at the MWNT-modified electrode with TBO mediators. In the absence of oxygen, glucose oxidation proceeded with electron transfer between GOx and the electrode mediated by TBO moieties without H{sub 2}O{sub 2} production. The bienzyme electrode offered high sensitivity for amperometric determination of glucose at low potential, displaying Michaelis-Menten kinetics. The bienzyme glucose biosensor displayed linear response from 0.1 to 1.2 mM with a sensitivity of 113 mA M{sup -1} cm{sup -2} at an applied potential of -0.10 V in air-saturated electrolytes.

  18. Amperometric sulfide detection using Coprinus cinereus peroxidase immobilized on screen printed electrode in an enzyme inhibition based biosensor.

    Science.gov (United States)

    Savizi, Iman Shahidi Pour; Kariminia, Hamid-Reza; Ghadiri, Mohammad; Roosta-Azad, Reza

    2012-05-15

    In the present work, an amperometric inhibition biosensor for the determination of sulfide has been fabricated by immobilizing Coprinus cinereus peroxidase (CIP) on the surface of screen printed electrode (SPE). Chitosan/acrylamide was applied for immobilization of peroxidase on the working electrode. The amperometric measurement was performed at an applied potential of -150 mV versus Ag/AgCl with a scan rate of 100 mV in the presence of hydroquinone as electron mediator and 0.1M phosphate buffer solution of pH 6.5. The variables influencing the performance of sensor including the amount of substrate, mediator concentration and electrolyte pH were optimized. The determination of sulfide can be achieved in a linear range of 1.09-16.3 μM with a detection limit of 0.3 μM. Developed sensor showed quicker response to sulfide compared to the previous developed sulfide biosensors. Common anions and cations in environmental water did not interfere with sulfide detection by the developed biosensor. Cyanide interference on the enzyme inhibition caused 43.25% error in the calibration assay which is less than the amounts reported by previous studies. Because of high sensitivity and the low-cost of SPE, this inhibition biosensor can be successfully used for analysis of environmental water samples.

  19. Urea biosensor based on amperometric pH-sensing with hematein as a pH-sensitive redox mediator.

    Science.gov (United States)

    Pizzariello, A; Stredanský, M; Stredanská, S; Miertus, S

    2001-05-30

    The natural dye hematein in water solution was used as a pH-sensitive redox-active mediator for amperometric pH-sensing. The electrochemical characteristics were studied using cyclic voltammetry and chronoamperometry. Several types of urea biosensors were constructed with urease on the surface of platinum and graphite composite electrodes or in the bulk of the graphite composite. They were used for the amperometric urea determination at a working potential of 0 mV (versus SCE) using 0.5 mM hematein. Detection limits and response linearity was in the micromolar range depending on the biosensor type, concentration and pH of buffers used. An interference study of various cations, anions, and substances, which may be present in real samples demonstrated good selectivity for the determination of urea. The biosensors showed good operational (>3 h) and storage (>3 months) stability. The results of urea determination in blood and urine obtained by biosensor correlated well with those obtained by a spectrophotometric reference method.

  20. Label-Free Electrochemiluminescent Immunosensor for Detection of Carcinoembryonic Antigen Based on Nanocomposites of GO/MWCNTs-COOH/Au@CeO₂.

    Science.gov (United States)

    Pang, Xuehui; Li, Jianxiu; Zhao, Yongbei; Wu, Dan; Zhang, Yong; Du, Bin; Ma, Hongmin; Wei, Qin

    2015-09-01

    A high-sensitivity electrochemiluminescence (ECL) sensor was conducted to detect carcinoembryonic antigen (CEA). Nanocomposites of graphene oxide/carboxylated multiwall carbon nanotubes/gold/cerium oxide nanoparticles (GO/MWCNTs-COOH/Au@CeO2) were used as antibody carriers and sensing platforms to modify on glassy carbon electrodes (GCE). CeO2 nanoparticles were first exploited as an ECL luminescent material and the possible ECL mechanism was proposed in this work. GO/MWCNTs-COOH was used as a loading matrix for CeO2 nanoparticles because of the superior conductivity and large specific surface area. Au nanoparticles were further deposited on this matrix to attach anti-CEA and enhance the sensitivity of immunosensor. The proposed sensing platform showed excellent cathodic ECL performance and sensitive response to CEA. The effects of experimental conditions on the ECL performance were investigated. The proposed immunosensor showed the broad linear range (0.05-100 ng/mL) and the low detection limit (LOD, 0.02 ng/mL, signal-to-noise ratio = 3) according to the selected experimental conditions. The excellent analysis performance for determination of CEA in the human serum samples simplied this immunosensor displayed high sensitivity and excellent repeatability. More importantly, this conducted immunosensor broadens the use scope of CeO2 nanoparticles.

  1. Label-Free Electrochemiluminescent Immunosensor for Detection of Carcinoembryonic Antigen Based on Nanocomposites of GO/MWCNTs-COOH/Au@CeO₂.

    Science.gov (United States)

    Pang, Xuehui; Li, Jianxiu; Zhao, Yongbei; Wu, Dan; Zhang, Yong; Du, Bin; Ma, Hongmin; Wei, Qin

    2015-09-01

    A high-sensitivity electrochemiluminescence (ECL) sensor was conducted to detect carcinoembryonic antigen (CEA). Nanocomposites of graphene oxide/carboxylated multiwall carbon nanotubes/gold/cerium oxide nanoparticles (GO/MWCNTs-COOH/Au@CeO2) were used as antibody carriers and sensing platforms to modify on glassy carbon electrodes (GCE). CeO2 nanoparticles were first exploited as an ECL luminescent material and the possible ECL mechanism was proposed in this work. GO/MWCNTs-COOH was used as a loading matrix for CeO2 nanoparticles because of the superior conductivity and large specific surface area. Au nanoparticles were further deposited on this matrix to attach anti-CEA and enhance the sensitivity of immunosensor. The proposed sensing platform showed excellent cathodic ECL performance and sensitive response to CEA. The effects of experimental conditions on the ECL performance were investigated. The proposed immunosensor showed the broad linear range (0.05-100 ng/mL) and the low detection limit (LOD, 0.02 ng/mL, signal-to-noise ratio = 3) according to the selected experimental conditions. The excellent analysis performance for determination of CEA in the human serum samples simplied this immunosensor displayed high sensitivity and excellent repeatability. More importantly, this conducted immunosensor broadens the use scope of CeO2 nanoparticles. PMID:26271682

  2. Development of an amperometric glucose biosensor based on the immobilization of glucose oxidase in an ormosil-PVA matrix onto a Prussian Blue modified electrode

    Institute of Scientific and Technical Information of China (English)

    CHEN HaiLing; ZHAO Li; CHEN Xi; ZHUANG ZhiXia; WANG XiaoRu

    2009-01-01

    An amperometric glucose biosensor was developed based on the Immobilization of glucose oxidase in the organically modified silicate(ormosil)-polyvinyl acetate(PVA)matrix onto a Prussian Blue(PB)-modified glassy carbon electrode.A higher stability PB-modified electrode was prepared by the electrochemical deposition of FeCl3,K3[Fe(CN)6]and ethylenediamine tetrsacetic acid(EDTA)under cyclic voltammetric(CV)conditions.The effects of the potential range of CV conditions,electrolyte cations,applied potential,pH,temperature and co-existing substances were investigated.The detection limit of the glucose biosensor was 8.1 μmol·L-1(S/N=3)with a linear range from 20 μmol·L-1 to 2 mmol·L-1(R=0.9965).The biosensor presented a fast response and good selectivity.Additionally,excellent reproducibility and stability of the biosensor were observed.

  3. An Amperometric Biosensor of Determination H/sub 2/ O/sub 2/ Based on horseradish peroxidase in carbon nanotubes/ionic liquid

    International Nuclear Information System (INIS)

    A novel amperometric biosensor for the determination of H/sub 2/ O/sub 2/ based on horseradish peroxidase (HRP) in nanocomposite material of muti-walled carbon nanotubes/ionic liquid was explored. Cyclic voltammetry (CV) was used to characterize the performance of the biosensor. Under the optimized experimental conditions, H/sub 2/ O/sub 2/ could be detected in a linear calibration range of 0.5 x 10/sup -6/ M Approximately 6.0 x 10/sup -6/ M with a correlation coefficient of 0.9902 (n = 7), a detection limit of 1.5 x 10/sup -7/ M at 3 sigma and the recovery ratio was of 96.2% ∼ 110.8%, which indicated that the accuracy of this method is also satisfied. The modified electrodes display more excellent electrochemical performance, high sensitivity, good reproducibility, and long-term stability. (author)

  4. Amperometric Sensor Based on Neutral Red-Doped Silica Nanoparticles Coupled with Microdialysis for the Measurement of Glutamate in the Rat Striatum

    Institute of Scientific and Technical Information of China (English)

    LI, Xiao-Hua; XIAN, Yue-Zhong; XIE, Zong-Hong; MIN, Hong; LI, Chen-Xin; JIN, Li-Tong

    2007-01-01

    Amperometric sensor based on neutral red-doped silica (NRSiO2) nanoparticles (NPs) was fabricated and coupled with a microdialysis sampling system for the detection of glutamate (Glu) in the rat striatum. The NRSiO2 NPs [about (45±3) nm] were prepared with water-in-oil (W/O) microemulsion method, and characterized by transmission electron microscope (TEM) technique. The neutral red (NR) doped in silica network could maintain its high electroactivity and behave as an excellent electron mediator for electrocatalysis of hydrogen dioxide. Furthermore,the silica surface could prevent the leakage of NR, hence, the stability of biosensor was improved. The novel Glu biosensor showed a linear range from 5.0×10-7 to 1.5×10-4 mol/L, with a detection limit of 2.0×10-7 mol/L(S/N=3).

  5. Application on Gold Nanoparticles-Dotted 4-Nitrophenylazo Graphene in a Label-Free Impedimetric Deoxynivalenol Immunosensor

    Directory of Open Access Journals (Sweden)

    Christopher Edozie Sunday

    2015-02-01

    Full Text Available In this paper, we report a new concept to construct a label-free electrochemical inhibition-based immunosensor for the detection of the mycotoxin deoxynivalenol (DON in cereal samples. The electrochemical impedance spectroscopy of tris(bipyridine ruthenium (II chloride was used as a marker enhanced with gold nanoparticles-dotted 4-nitrophenylazo functionalized graphene (AuNp/G/PhNO2 nanocatalyst mediated in Nafion on a glassy carbon electrode. Under the optimized conditions, the formation of immunocomplexes inhibited electron flow and increased the charge transfer resistance of the sensing interface linearly. The change in impedance was proportional to DON concentrations in the range of 6–30 ng/mL with a sensitivity and detection limit of 32.14 ΩL/ng and 0.3 µg/mL, respectively, which compares favorably with the ELISA result. The proposed sensor had a stability of 80.3%, good precision and selectivity in DON standard solution containing different interfering agents, indicating promising application prospect for this strategy in designing impedimetric, electrochemiluminescent, voltammetric or amperometric sensors.

  6. Effects of Sr Addition to La-Based Perovskite Sensing-Electrode on YSZ-Based Amperometric-Type NOx Sensor

    International Nuclear Information System (INIS)

    Sensing characteristics of amperometric NOx sensor using yttria-stabilized zirconia (YSZ) and La-based perovskite-type oxide sensing-electrode (SE) was examined. La0.8Sr0.2MO3(M = Co, Mn, Fe) and LaMnO3 was synthesized by means of spray pyrolysis method. The sensor attached with La0.8Sr0.2MnO3 as a SE showed the highest occupancy rate of NO2 response in total current as well as low current response to CO, C3H6, NH3 at 600deg. C in O2 (21%). The response was increased with increasing NO2 concentration in the examined range between 50 to 800 ppm. The comparison of sensing property between LaMnO3-SE and La0.8Sr0.2MnO3-SE showed the substitution Sr for La improved the NO2 response for the sensors.

  7. Electrochemical Detection of Fluoroquinolone Antibiotics in Milk Using a Magneto Immunosensor

    Directory of Open Access Journals (Sweden)

    Daniel G. Pinacho

    2014-08-01

    Full Text Available An amperometric magneto-immunosensor (AMIS for the detection of residues of fluoroquinolone antibiotics in milk samples is described for the first time. The immunosensor presented combines magnetic beads biomodified with an antibody with a broad recognition profile of fluoroquinolones, a haptenized enzyme and a magnetic graphite–epoxy composite (m-GEC electrode. After the immunochemical reaction with specific enzyme tracer, the antibody biomodified magnetic beads are easily captured by an electrode made of graphite-epoxy composite containing a magnet, which also acts as transducer for the electrochemical detection. In spite of the complexity of milk, the use of magnetic beads allows elimination of potential interferences caused by the matrix components; hence the AMIS could perform quantitative measurements, directly in these samples, without any additional sample cleanup or extraction step. The immunosensor is able to detect up to seven different fluoroquinolones far below the MRLs defined by the UE for milk; for example ciprofloxacin is detected directly in milk with an IC50 of 0.74 µg/L and a LOD of 0.009 µg/L. This strategy offers great promise for rapid, simple, cost-effective, and on-site analysis fluoroquinolones in complex samples.

  8. Flow-injection amperometric determination of glucose using a biosensor based on immobilization of glucose oxidase onto Au seeds decorated on core Fe₃O₄ nanoparticles.

    Science.gov (United States)

    Samphao, Anchalee; Butmee, Preeyanut; Jitcharoen, Juthamas; Švorc, Ľubomír; Raber, Georg; Kalcher, Kurt

    2015-09-01

    An amperometric biosensor based on chemisorption of glucose oxidase (GOx) on Au seeds decorated on magnetic core Fe3O4 nanoparticles (Fe3O4@Au) and their immobilization on screen-printed carbon electrode bulk-modified with manganese oxide (SPCE{MnO2}) was designed for the determination of glucose. The Fe3O4@Au/GOx modified SPCE{MnO2} was used in a flow-injection analysis (FIA) arrangement. The experimental conditions were investigated in amperometric mode with the following optimized parameters: flow rate 1.7 mL min(-1), applied potential +0.38 V, phosphate buffer solution (PBS; 0.1 mol L(-1), pH 7.0) as carrier and 3.89 unit mm(-2) enzyme glucose oxidase loading on the active surface of the SPCE. The designed biosensor in FIA arrangement yielded a linear dynamic range for glucose from 0.2 to 9.0 mmol L(-1) with a sensitivity of 2.52 µA mM(-1) cm(-2), a detection limit of 0.1 mmol L(-1) and a quantification limit of 0.3 mmol L(-1). Moreover, a good repeatability of 2.8% (number of measurements n=10) and a sufficient reproducibility of 4.0% (number of sensors n=3) were achieved. It was found that the studied system Fe3O4@Au facilitated not only a simpler enzyme immobilization but also provided wider linear range. The practical application of the proposed biosensor for FIA quantification of glucose was tested in glucose sirup samples, honeys and energy drinks with the results in good accordance with those obtained by an optical glucose meter and with the contents declared by the producers. PMID:26003689

  9. A double signal electrochemical human immunoglobulin G immunosensor based on gold nanoparticles-polydopamine functionalized reduced graphene oxide as a sensor platform and AgNPs/carbon nanocomposite as signal probe and catalytic substrate.

    Science.gov (United States)

    Zhang, Si; Huang, Na; Lu, Qiujun; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2016-03-15

    In this paper, a double signal electrochemical Human immunoglobulin G (HIgG) immunosensor based on AgNPs/carbon nanocomposite (Ag/C NC) as the signal probe and catalytic substrate was developed for fast and sensitive detection of HIgG. The as-prepared AuNPs-PDA-rGO nanocomposite and Ag/C NC were confirmed by UV-vis, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. Electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical properties of the proposed immunosensor. The AuNPs-PDA-rGO nanocomposite can improve the electron transfer rate and capture more Ab1. In the sandwich-type immunoassay process, the Ag/C NC functionalized bioconjugates were captured on HIgG/Ab1/AuNPs-PDA-rGO surface and the electrochemical double-signal strategy was employed. These double electrochemical detection signals were directly monitored the oxidation current originated from Ag/C NC and indirectly detected the reduction current of benzoquinone which was produced from the reaction of H2O2 and HQ by catalysis of Ag/C NC in electrochemical detection of HIgG. Under the optimized conditions, the current responses were changed with the concentrations of HIgG for the proposed immunosensor with wide linear ranges of 0.1 to 100 ngmL(-1) and 0.01-100 ngmL(-1) with the lowest detection concentration of 0.001 ng mL(-1) in the absence and presence of H2O2 and HQ. The double-signal strategy is used for detection of HIgG, and the results came from the two signals were well consistent with each other. The proposed immunosensor was successfully applied in analysis of human IgG in real samples and this strategy may provide a relative simple and effective method for construction of other immunsensors in detection of other biomarkers in clinical medicine. PMID:26556185

  10. A double signal electrochemical human immunoglobulin G immunosensor based on gold nanoparticles-polydopamine functionalized reduced graphene oxide as a sensor platform and AgNPs/carbon nanocomposite as signal probe and catalytic substrate.

    Science.gov (United States)

    Zhang, Si; Huang, Na; Lu, Qiujun; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2016-03-15

    In this paper, a double signal electrochemical Human immunoglobulin G (HIgG) immunosensor based on AgNPs/carbon nanocomposite (Ag/C NC) as the signal probe and catalytic substrate was developed for fast and sensitive detection of HIgG. The as-prepared AuNPs-PDA-rGO nanocomposite and Ag/C NC were confirmed by UV-vis, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. Electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical properties of the proposed immunosensor. The AuNPs-PDA-rGO nanocomposite can improve the electron transfer rate and capture more Ab1. In the sandwich-type immunoassay process, the Ag/C NC functionalized bioconjugates were captured on HIgG/Ab1/AuNPs-PDA-rGO surface and the electrochemical double-signal strategy was employed. These double electrochemical detection signals were directly monitored the oxidation current originated from Ag/C NC and indirectly detected the reduction current of benzoquinone which was produced from the reaction of H2O2 and HQ by catalysis of Ag/C NC in electrochemical detection of HIgG. Under the optimized conditions, the current responses were changed with the concentrations of HIgG for the proposed immunosensor with wide linear ranges of 0.1 to 100 ngmL(-1) and 0.01-100 ngmL(-1) with the lowest detection concentration of 0.001 ng mL(-1) in the absence and presence of H2O2 and HQ. The double-signal strategy is used for detection of HIgG, and the results came from the two signals were well consistent with each other. The proposed immunosensor was successfully applied in analysis of human IgG in real samples and this strategy may provide a relative simple and effective method for construction of other immunsensors in detection of other biomarkers in clinical medicine.

  11. Ultrasensitive electrochemical immunosensor for quantitative detection of tumor specific growth factor by using Ag@CeO2 nanocomposite as labels.

    Science.gov (United States)

    Yu, Siqi; Zou, Guizheng; Wei, Qin

    2016-08-15

    In this paper, an ultrasensitive electrochemical immunosensor was developed for the detection of tumor specific growth factor (TSGF). Reduced graphene oxide-tetraethylene pentamine (rGO-TEPA) was used to modify the surface of glassy carbon electrode (GCE). Meanwhile, Ag@CeO2 nanocomposite was synthesized and applied as secondary-antibody (Ab2) labels for the fabrication of the immunosensor. The amperometric response of the immunosensor for the reduction of H2O2 was recorded. Simultaneously, electrochemical impedance spectroscopy (EIS) and Cyclic voltammetry (CV) were used to characterize the fabrication process of the immunosensor. The anti-TSGF primary antibody (Ab1) was immobilized onto the rGO-TEPA modified GCE via cross-linking with glutaraldehyde (GA). And then the TSGF antigen and Ab2-Ag@CeO2 were modified onto the electrode surface in sequence. Under the optimal conditions, the immunosensor exhibited a wide linear range (0.500-100pg/mL), a low detection limit (0.2pg/mL), good reproducibility, acceptable selectivity and excellent stability. The proposed sensing strategy may provide a potential application in the detection of other cancer biomarkers. PMID:27260429

  12. Highly sensitive electrochemical immunosensor for the detection of alpha fetoprotein based on PdNi nanoparticles and N-doped graphene nanoribbons.

    Science.gov (United States)

    Li, Na; Ma, Hongmin; Cao, Wei; Wu, Dan; Yan, Tao; Du, Bin; Wei, Qin

    2015-12-15

    An ultrasensitive sandwich-type electrochemical immunosensor was designed for the quantitative detection of alpha fetoprotein (AFP). The β-cyclodextrins functionalized graphene sheets (CD-GS) were used as the sensing matrix for immobilizing adamantine-1-carboxylic acid functionalized primary anti-AFP (ADA-Ab1) and enhanced the electron transfer. PdNi alloy nanoparticles decorated N-doped graphene nanoribbons (PdNi/N-GNRs) were used as labels of secondary anti-AFP (Ab2), and PdNi alloy nanoparticles (PdNi NPs) exhibited high catalytic performance towards the reduction of H2O2. Meanwhile, with good dispersion, large specific surface area and good catalytic performance, N-doped graphene nanoribbons (N-GNRs) significantly amplified the electrochemical signal. Under the optimal conditions, the electrochemical immunosensor exhibited a wide linear range of 0.0001-16 ng/mL with a low detection limit of 0.03 pg/mL. Additionally, the proposed immunosensor showed high specificity, good reproducibility and long-term stability, which have promising application in bioassay analysis.

  13. A regenerating ultrasensitive electrochemical impedance immunosensor for the detection of adenovirus.

    Science.gov (United States)

    Lin, Donghai; Tang, Thompson; Harrison, D Jed; Lee, William E; Jemere, Abebaw B

    2015-06-15

    We report on the development of a regenerable sensitive immunosensor based on electrochemical impedance spectroscopy for the detection of type 5 adenovirus. The multi-layered immunosensor fabrication involved successive modification steps on gold electrodes: (i) modification with self-assembled layer of 1,6-hexanedithiol to which gold nanoparticles were attached via the distal thiol groups, (ii) formation of self-assembled monolayer of 11-mercaptoundecanoic acid onto the gold nanoparticles, (iii) covalent immobilization of monoclonal anti-adenovirus 5 antibody, with EDC/NHS coupling reaction on the nanoparticles, completing the immunosensor. The immunosensor displayed a very good detection limit of 30 virus particles/ml and a wide linear dynamic range of 10(5). An electrochemical reductive desorption technique was employed to completely desorb the components of the immunosensor surface, then re-assemble the sensing layer and reuse the sensor. On a single electrode, the multi-layered immunosensor could be assembled and disassembled at least 30 times with 87% of the original signal intact. The changes of electrode behavior after each assembly and desorption processes were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy techniques. PMID:25562739

  14. Carbon Nanotube Amperometric Chips with Pneumatic Micropumps

    Science.gov (United States)

    Tsujita, Yuichi; Maehashi, Kenzo; Matsumoto, Kazuhiko; Chikae, Miyuki; Torai, Soichiro; Takamura, Yuzuru; Tamiya, Eiichi

    2008-04-01

    We fabricated carbon nanotube (CNT) amperometric chips with pneumatic micropumps by the combination of amperometric biosensors based on CNT-arrayed electrodes and microchannels with pneumatic micropumps made of poly(dimethylsiloxane). On the chip, phosphate buffer solution and potassium ferricyanide, K3[Fe(CN)6], were introduced into the CNT electrodes using each pneumatic micropump and electrochemically measured by differential pulse voltammetry. The results indicate that our chip can automatically exchange reagents on the CNT electrodes and clearly detect molecules. Moreover, by modifying the CNT electrodes with enzyme glucose oxidase, glucose molecules could be detected using our chips by cyclic voltammetry and chronoamperometry. We conclude that microfluidic chips with CNT-arrayed electrodes are a promising candidate for the development of hand-held electrochemical biosensors.

  15. New competitive dendrimer-based and highly selective immunosensor for determination of atrazine in environmental, feed and food samples: the importance of antibody selectivity for discrimination among related triazinic metabolites.

    Science.gov (United States)

    Giannetto, Marco; Umiltà, Eleonora; Careri, Maria

    2014-01-01

    A new voltammetric competitive immunosensor selective for atrazine, based on the immobilization of a conjugate atrazine-bovine serum albumine on a nanostructured gold substrate previously functionalized with poliamidoaminic dendrimers, was realized, characterized, and validated in different real samples of environmental and food concern. Response of the sensor was reliable, highly selective and suitable for the detection and quantification of atrazine at trace levels in complex matrices such as territorial waters, corn-cultivated soils, corn-containing poultry and bovine feeds and corn flakes for human use. Selectivity studies were focused on desethylatrazine, the principal metabolite generated by long-term microbiological degradation of atrazine, terbutylazine-2-hydroxy and simazine as potential interferents. The response of the developed immunosensor for atrazine was explored over the 10(-2)-10(3) ng mL(-1) range. Good sensitivity was proved, as limit of detection and limit of quantitation of 1.2 and 5 ng mL(-1), respectively, were estimated for atrazine. RSD values <5% over the entire explored range attested a good precision of the device.

  16. Amperometric glucose biosensor based on layer-by-layer films of microperoxidase-11 and liposome-encapsulated glucose oxidase.

    Science.gov (United States)

    Graça, J S; de Oliveira, R F; de Moraes, M L; Ferreira, M

    2014-04-01

    An important step in several bioanalytical applications is the immobilization of biomolecules. Accordingly, this procedure must be carefully chosen to preserve their biological structure and fully explore their properties. For this purpose, we combined the versatility of the layer-by-layer (LbL) method for the immobilization of biomolecules with the protective behavior of liposome-encapsulated systems to fabricate a novel amperometric glucose biosensor. To obtain the biosensing unit, an LbL film of the H2O2 catalyst polypeptide microperoxidase-11 (MP-11) was assembled onto an indium-tin oxide (ITO) electrode followed by the deposition of a liposome-encapsulated glucose oxidase (GOx) layer. The biosensor response toward glucose detection showed a sensitivity of 0.91±0.09 (μA/cm2)/mM and a limit of detection (LOD) of 8.6±1.1 μM, demonstrating an improved performance compared to similar biosensors with a single phospholipid-liposome or even containing a non-encapsulated GOx layer. Finally, glucose detection was also performed in a zero-lactose milk sample to demonstrate the potential of the biosensor for food analysis. PMID:24491835

  17. Amperometric detection of carbohydrates based on the glassy carbon electrode modified with gold nano-flake layer

    Directory of Open Access Journals (Sweden)

    Huy Du Nguyen

    2015-09-01

    Full Text Available An electro-deposition approach was established to incorporate the gold nano-flakes onto the glassy carbon electrode in electrochemical cells (nano-Au/GC/ECCs. Using pulsed amperometric detection (PAD without any gold oxidation for cleaning (non-oxidative PAD, the nano-Au/GC/ECCs were able to maintain their activity for oxidizing of carbohydrates in a normal alkaline medium. The reproducibility of peak area was about 2 relative standard deviation (RSD,% for 6 consecutive injections. A dynamic range of carbohydrates was obtained over a concentration range of 5–80 mg L−1 and the limits of detection (LOD were of 2 mg L−1 for fructose and lactose and 1 mg L−1 for glucose and galactose. Moreover, the nano-Au/GC/ECC using the non-oxidative PAD was able to combine with the internal standard method for determination of lactose in fresh cow milk sample.

  18. Fast Determination of Clenbuterol and Salbutamol in Feed and Meat Products Based on Miniaturized Capillary Electrophoresis with Amperometric Detection

    Institute of Scientific and Technical Information of China (English)

    CHU Qing-Cui; GENG Cheng-Huai; ZHOU Hui; YE Jian-Nong

    2007-01-01

    The fast separation capability of a novel miniaturized capillary electrophoresis with an amperometric detection (μCE-AD) system was demonstrated by determining clenbuterol and salbutamol in real samples.The effects of several factors such as the acidity and concentration of the running buffer,the separation voltage,the applied potential and the injection time on CE-AD were examined and optimized.Under the optimum conditions,the two β-agonists could be baseline separated within 60 s at a separation voltage of 2 kV in a 90 mmol/L H3BO3-Na2B4O7 running buffer (pH 7.4),which was not interfered by ascorbic acid and uric acid.Highly linear response was obtained for above compounds over three orders of magnitude with detection limits ranging from 1.20 × 10-7 to 6.50× 10-8 mol/L (S/N=3).This method was successfully used in the analysis of feed and meat products with relatively simple extraction procedures.

  19. An amperometric uric acid biosensor based on Bis[sulfosuccinimidyl] suberate crosslinker/3-aminopropyltriethoxysilane surface modified ITO glass electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ahuja, Tarushee [Department of Applied Chemistry, Delhi College of Engineering, University of Delhi, Bawana Road, Delhi-110042 (India); National Physical Laboratory (Council of Scientific and Industrial Research), Dr. K.S. Krishnan Road, New Delhi-110012 (India); Rajesh, E-mail: rajesh_csir@yahoo.co [National Physical Laboratory (Council of Scientific and Industrial Research), Dr. K.S. Krishnan Road, New Delhi-110012 (India); Kumar, Devendra [Department of Applied Chemistry, Delhi College of Engineering, University of Delhi, Bawana Road, Delhi-110042 (India); Tanwar, Vinod Kumar; Sharma, Vikash; Singh, Nahar; Biradar, Ashok M. [National Physical Laboratory (Council of Scientific and Industrial Research), Dr. K.S. Krishnan Road, New Delhi-110012 (India)

    2010-11-30

    A label free, amperometric uric acid biosensor is described by immobilizing enzyme uricase through a self assembled monolayer (SAM) of 3-aminopropyltriethoxysilane (APTES) using a crosslinker, Bis[sulfosuccinimidyl]suberate (BS{sup 3}) on an indium-tin-oxide (ITO) coated glass plate. The biosensor (uricase/BS{sup 3}/APTES/ITO) was characterized by, scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemical techniques. Chronoamperometric response was measured as a function of uric acid concentration in aqueous solution (pH 7.4). The biosensor shows a linear response over a concentration range of 0.05 to 0.58 mM with a sensitivity of 39.35 {mu}A mM{sup -1}. The response time is 50 s reaching to a 95% steady state current value and about 90% of enzyme activity is retained for about 7 weeks. These results indicate an efficient binding of enzyme with the crosslinker over the surface of APTES modified ITO glass plates, which leads to an improved sensitivity and shelf life of the biosensor.

  20. Disposable amperometric biosensors based on xanthine oxidase immobilized in the Prussian blue modified screen-printed three-electrode system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The screen-printed three-electrode system was applied to fabricate a new type of disposable amperometric xanthine oxidase biosensor.Carbon-working,carbon-counter and Ag/AgCl reference electrodes were all manually printed on the polyethylene terephthalate substrate forming the screen-printed three-electrode system by the conventional screen-printing process.As a mediator,Prussian blue could not only catalyze the electrochemical reduction of hydrogen peroxide produced from the enzyme reaction,but also keep the favorable potential around 0 V.The optimum operational conditions,including pH,potential and temperature,were investigated.The sensitivities of xanthine and hypoxanthine detections were 13.83 mA/M and 25.56 mA/M,respectively.A linear relationship was obtained in the concentration range between 0.10μM and 4.98μM for xanthine and between 0.50μM and 3.98μM for hypoxanthine.The small Michaelis-menten constant value of the xanthine oxidase biosensor was calculated to be 3.90 μM.The results indicate that the fabricated xanthine oxidase biosensor is effective and sensitive for the detection of xanthine and hypoxanthine.

  1. A new amperometric glucose biosensor based on screen printed carbon electrodes with rhenium(IV - oxide as a mediator

    Directory of Open Access Journals (Sweden)

    ALBANA VESELI

    2012-11-01

    Full Text Available Rhenium(IV-oxide, ReO2, was used as a mediator for carbon paste (CPE and screen printed carbon (SPCE electrodes for the catalytic amperometric determination of hydro-gen peroxide, whose overpotential for the reduction could be lowered to -0.1 V vs. Ag/AgCl in flow injection analysis (FIA using phosphate buffer (0.1 M, pH=7.5 as a carrier. For hydrogen peroxide a detection limit (3σ of 0.8 mg L-1 could be obtained.ReO2-modified SPCEs were used to design biosensors with a template enzyme, i.e. glucose oxidase, entrapped in a Nafion membrane. The resulting glucose sensor showed a linear dynamic range up to 200 mg L-1 glucose with a detection limit (3σ of 0.6 mg L-1. The repeatability was 2.1 % RSD (n = 5 measurements, the reproducibility 5.4 % (n = 5 sensors. The sensor could be applied for the determination of glucose in blood serum in good agreement with a reference method.

  2. Carbon Nanotube-Plasma Polymer-Based Amperometric Biosensors: Enzyme-Friendly Platform for Ultrasensitive Glucose Detection

    Science.gov (United States)

    Muguruma, Hitoshi; Matsui, Yasunori; Shibayama, Yu

    2007-09-01

    An amperometric enzyme biosensor fabricated with carbon nanotubes (CNTs) and plasma-polymerized thin films (PPFs) is reported. A mixture of the enzyme glucose oxidase (GOD) and a CNT film is sandwiched with 10-nm-thick acetonitrile PPFs. Under PPF layer was deposited onto a sputtered gold electrode. To facilitate the electrochemical communication between the CNT layer and GOD, CNT was treated with oxygen plasma. The device with single-walled CNTs showed a sensitivity higher than that of multiwalled CNTs. The glucose biosensor showed ultrasensitivity (a sensitivity of 40 μA mM-1 cm-2, a correlation coefficient of 0.992, a linear response range of 0.025-1.9 mM, a detection limit of 6.2 μM at S/N = 3, +0.8 V vs Ag/AgCl), and a rapid response (< 4 s in reaching 95% of maximum response). This high performance is attributed to the fact that CNTs have excellent electrocatalytic activity and enhance electron transfer, and that PPFs and/or the plasma process for CNTs are the enzyme-friendly platform, i.e., a suitable design of the interface between GOD and CNTs.

  3. An amperometric uric acid biosensor based on Bis[sulfosuccinimidyl] suberate crosslinker/3-aminopropyltriethoxysilane surface modified ITO glass electrode

    International Nuclear Information System (INIS)

    A label free, amperometric uric acid biosensor is described by immobilizing enzyme uricase through a self assembled monolayer (SAM) of 3-aminopropyltriethoxysilane (APTES) using a crosslinker, Bis[sulfosuccinimidyl]suberate (BS3) on an indium-tin-oxide (ITO) coated glass plate. The biosensor (uricase/BS3/APTES/ITO) was characterized by, scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemical techniques. Chronoamperometric response was measured as a function of uric acid concentration in aqueous solution (pH 7.4). The biosensor shows a linear response over a concentration range of 0.05 to 0.58 mM with a sensitivity of 39.35 μA mM-1. The response time is 50 s reaching to a 95% steady state current value and about 90% of enzyme activity is retained for about 7 weeks. These results indicate an efficient binding of enzyme with the crosslinker over the surface of APTES modified ITO glass plates, which leads to an improved sensitivity and shelf life of the biosensor.

  4. 基于纳米材料电化学免疫传感器检测禽呼肠孤病毒研究%Nano-Materials-Based Electrochemical Immunosensor for the Detection of Avian Reovirus

    Institute of Scientific and Technical Information of China (English)

    黄娇玲; 范晴; 罗思思; 谢芝勋; 谢丽基; 滕丽琼; 黄莉; 刘加波; 庞耀珊; 邓显文; 谢志勤

    2014-01-01

    [Objective]A novel assay of nano-materials-based electrochemical immunosensor for the detection of avian reovirus (ARV) was established. [Method] Graphene sheet-chitosan homogeneous composite was firstly dispersed in acetic acid solution and then the gold nanoparticles (AuNPs) were in situ synthesized at the composite. A graphene sheet-chitosan-gold nano-particles (G-Chi-AuNPs) modified gold electrode was used as the sensor platform to detect ARV target in samples. Similar method was used to synthesize graphene sheet-chitosan-silver nanoparticles composite (G-Chi-AgNPs), and then avian reovirus monoclonal antibodies(ARV-MAb) was immobilized on the G-Chi-AgNPs composite as the signal amplification materials to construct the immunosensor. This electrochemical immunosensor was used to test avian influenza viruses H5N1, H3N6 and H9N2 subtypes, Newcastle disease virus (NDV), laryngotracheitis virus (LTV), infectious bronchitis virus (IBV) and infectious bursal disease virus (IBDV) to ensure the electrochemical immunosensor’s specificity. The electrochemical immunosensor was used to detect 106.5-100.5 TCID50/mL ARV to ensure the electrochemical immunosensor’s sensitivity. Then this electrochemical immunosensor was used to detect the clinical samples to evaluate the practical use of electrochemical immunosensor.[Result]The optimization of the G-Chi-AgNPs-ARV-MAb composite incubation time was studied in detail, and the optimal condition was 40 min. When the sample is tested positive, ARV and ARV-MAb specific combination, G-Chi-AgNPs-ARV-MAb composite are fixed onto the electrode surface, so it’s linear sweep voltammetry curve shows an AgNPs oxidation peak. When the sample is tested negative, it’s linear sweep voltammetry curve dose not show an AgNPs oxidation peak. The developed immunosensor is specific to ARV and does not react with non-target avian viruses when a test sample consists of avian influenza viruses H5N1, H3N6 and H9N2 subtypes, Newcastle disease

  5. Amperometric glucose sensor based on enhanced catalytic reduction of oxygen using glucose oxidase adsorbed onto core-shell Fe3O4-silica-Au magnetic nanoparticles

    International Nuclear Information System (INIS)

    Monodisperse Fe3O4 magnetic nanoparticles (NPs) were prepared under facile solvothermal conditions and successively functionalized with silica and Au to form core/shell Fe3O4-silica-Au NPs. Furthermore, the samples were used as matrix to construct a glucose sensor based on glucose oxidase (GOD). The immobilized GOD retained its bioactivity with high protein load of 3.92 × 10−9 mol·cm−2, and exhibited a surface-controlled quasi-reversible redox reaction, with a fast heterogeneous electron transfer rate of 7.98 ± 0.6 s−1. The glucose biosensor showed a broad linear range up to 3.97 mM with high sensitivity of 62.45 μA·mM−1 cm−2 and fast response (less than 5 s). - Graphical abstract: Core-shell structured Fe3O4-silica-Au nanoparticles were prepared and used as matrix to construct an amperometric glucose sensor based on glucose oxidase, which showed broad linear range, high sensitivity, and fast response. Highlights: ► Synthesis of monodispersed Fe3O4 nanoparticles. ► Fabrication of core/shell Fe3O4-silica-Au nanoparticles. ► Construction of a novel glucose sensor with wide linear range, high sensitivity and fast response.

  6. AN AMPEROMETRIC BIOSENSOR BASED ON COVALENT IMMOBILIZATION OF ASCORBATE OXIDASE ON BIOCOMPATIABLE AND LOW-TOXIC POLY(THIOPHENE-3-ACETIC ACID) MATRIX

    Institute of Scientific and Technical Information of China (English)

    Dong Li; Yang-ping Wen; Jing-kun Xu; Hao-hua He; Ming Liu

    2012-01-01

    The biocompatiable and low-toxic poly(thiophene-3-acetic acid) (PTAA) matrix was successfully electrosynthesized in ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6) in comparison with the electrosynthesis of PTAA matrix in acetonitrile (ACN).Ascorbate oxidase (AO) was used as a model for the development and application of biosensor.Vitamin C (VC) biosensors were facilely fabricated by the covalent immobilization of AO molecules on PTAA matrices electrosynthesized in ACN containing tetrabutylammonium tetrafluoroborate and BmimPF6,respectively.Electrochemical impedance spectroscopy,scanning electron microscopy and FTIR spectroscopy indicated that AO molecules were covalently immobilized on PTAA matrices.Parameters of the as-obtained biosensors such as working potential,pH and temperature have been optimized.The amperometric biosensor based on PTAA matrix electrosynthesized in BmimPF6 exhibited wider linear range,lower detection limit,higher sensitivity and bioaffinity,and better operational and storage stability than that electrosynthesized in ACN under optimal conditions.The as-obtained biosensor based on PTAA matrix electrosynthesized in BmimPF6 was employed for the detection of VC content in commercial juices,and the result was close to the data given by manufacturers.Excellent results indicate that the PTAA matrix electrosynthesized in ionic liquid is a promising platform for the covalent immobilization of biologically-active species and the development of biosensors.

  7. Amperometric Glucose Biosensor Based on Effective Self-Assembly Technology for Preparation of Poly(allylamine hydrochloride)/Au Nanoparticles Multilayers.

    Science.gov (United States)

    Ye, Yuhang; Xie, Hangqing; Shao, Xiaobao; Wei, Yuan; Liu, Yuhong; Zhao, Wenbo; Xia, Xinyi

    2016-03-01

    Novel nanomaterials and nanotechnology for use in bioassay applications represent a rapidly advancing field. This study developed a novel method to fabricate the glucose biosensor with good gold nanoparticles (AuNPs) fixed efficiency based on effective self-assembly technology for preparation of multilayers composed of poly(allylamine hydrochloride) (PAH) and AuNPs. The electrochemical properties of the biosensor based on (AuNPs/PAH)n/AuNPs/glucose oxide (GOD) with different multilayers were systematically investigated. Among the resulting glucose biosensors, electrochemical properties of the biosensor with three times self-assembly processes ((AuNPs/PAH)3/AuNPs/GOD) is best. The GOD biosensor exhibited a fast amperometric response (5 s) to glucose, a good linear current-time relation over a wide range of glucose concentrations from 0.05 to 162 mM, and a low detection limit of 0.029 mM. The GOD biosensor modified with (AuNPs/PAH)n layers will have essential significance and practical application in future owing to the simple method of fabrication and good performance. PMID:27455628

  8. Development of an amperometric glucose biosensor based on the immobilization of glucose oxidase in an ormosil-PVA matrix onto a Prussian Blue modified electrode

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    An amperometric glucose biosensor was developed based on the immobilization of glucose oxidase in the organically modified silicate(ormosil)-polyvinyl acetate(PVA) matrix onto a Prussian Blue(PB)-modified glassy carbon electrode.A higher stability PB-modified electrode was prepared by the electrochemical deposition of FeCl3,K3[Fe(CN)6] and ethylenediamine tetraacetic acid(EDTA) under cyclic voltammetric(CV) conditions.The effects of the potential range of CV conditions,electrolyte cations,applied potential,pH,temperature and co-existing substances were investigated.The detection limit of the glucose biosensor was 8.1 μmol·L-1(S/N = 3) with a linear range from 20 μmol·L-1 to 2 mmol·L-1(R = 0.9965).The biosensor presented a fast response and good selectivity.Additionally,excellent reproducibility and stability of the biosensor were observed.

  9. Comparison of biosensors based on entrapment of cholesterol oxidase and cholesterol esterase in electropolymerized films of polypyrrole and diaminonaphthalene derivatives for amperometric determination of cholesterol.

    Science.gov (United States)

    Vidal, J C; Garcia-Ruiz, E; Espuelas, J; Aramendia, T; Castillo, J R

    2003-09-01

    Cholesterol amperometric biosensors constructed with enzymes entrapped in electropolymerized layers of polypyrrole and poly-naphthalene derivative polymers are compared. The biosensors are based on entrapment of cholesterol oxidase and/or cholesterol esterase in monolayer or multilayer films electrochemically synthesised from pyrrole, 1,8-diaminonaphthalene (1,8-DAN), and 1,5-diaminonaphthalene (1,5-DAN) monomers. Seven configurations were assayed and compared, and different analytical properties were obtained depending on the kind of polymer and the arrangement of the layers. The selectivity properties were evaluated for the different monolayer and bilayer configurations proposed as a function of the film permeation factor. All the steps involved in the preparation of the biosensors and determination of cholesterol were carried out in a flow system. Sensitivity and selectivity depend greatly on hydrophobicity, permeability, compactness, thickness, and the kind of the polymer used. In some cases a protective outer layer of non-conducting poly( o-phenylenediamine) polymer improves the analytical characteristics of the biosensor. A comparative study was made of the analytical performance of each of the configurations developed. The biosensors were also applied to the flow-injection determination of cholesterol in a synthetic serum. PMID:12923606

  10. A new amperometric method for rapid detection of Escherichia coli density using a self-assembled monolayer-based bienzyme biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Tang Hui [Department of Chemistry, East China Normal University, Shanghai 200062 (China); Zhang Wen [Department of Chemistry, East China Normal University, Shanghai 200062 (China)]. E-mail: wenzhang26@163.com; Geng Ping [Department of Chemistry, East China Normal University, Shanghai 200062 (China); Wang Qingjiang [Department of Chemistry, East China Normal University, Shanghai 200062 (China); Jin Litong [Department of Chemistry, East China Normal University, Shanghai 200062 (China)]. E-mail: ltjin@chem.ecnu.edu.cn; Wu Zirong [School of Life Sciences, East China Normal University, Shanghai 200062 (China); Lou Min [School of Life Sciences, East China Normal University, Shanghai 200062 (China)

    2006-03-15

    A new amperometric method was developed for rapid detection of Escherichia coli (E. coli) density using a bienzyme biosensor. The bienzyme biosensor was fabricated based on the covalent immobilization of laccase and horseradish peroxidase (HRP) at indium tin oxide (ITO) electrode by (3-aminopropyl) triethoxysilane (APTES) monolayer. The bienzyme biosensor showed a high sensitivity in determination of the polyphenolic compounds, which was microbially generated from the salicylic acid (SA) added into the culture medium during the course of E. coli metabolism. Since the amount of polyphenolic compounds depends on E. coli density, the bienzyme biosensor was applied for the rapid and high sensitive detection of E. coli density after the E. coli solution was incubated in culture medium with salicylic acid for 2.5 h at 37 deg. C. By chronoamperometry, the amplified response current was obtained at the bienzyme biosensor, due to the substrate recycling of the polyphenolic compounds driven by bienzyme-catalyzed oxidation and electrochemical reduction. The amplified response current at the biosensor was linear with the E. coli density ranging from 1.6 x 10{sup 3} to 1.0 x 10{sup 7} cells/mL. The bienzyme biosensor could detect the E. coli density with a detection limit of 9.7 x 10{sup 2} cells/mL within 3 h.

  11. A Biosensor Based on Immobilization of Horseradish Peroxidase in Chitosan Matrix Cross-linked with Glyoxal for Amperometric Determination of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Gui-Xiang Wang

    2005-05-01

    Full Text Available An amperometric biosensor for hydrogen peroxide (H2O2 was developed viaan easy and effective enzyme immobilization method with the “sandwich” configuration:ferrocene-chitosan: HRP: chitosan-glyoxal using a glassy carbon electrode as the basicelectrode. In order to prevent the loss of immobilized HRP under optimized conditions,the biosensor surface was cross-linked with glyoxal. Ferrocene was selected andimmobilized on the glassy carbon electrode surface as a mediator. The fabricationprocedure was systematically optimized to improve the biosensor performance. Thebiosensor had a fast response of less than 10 s to H2O2, with a linear range of 3.5×10-5 to1.1×10-3 M, and a detection limit of 8.0×10-6 M based on S/N = 3.

  12. A novel biosensor based on photoelectro-synergistic catalysis for flow-injection analysis system/amperometric detection of organophosphorous pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Wei Yinyin; Li Ying; Qu Yunhe; Xiao Fei; Shi Guoyue [Department of Chemistry, East China Normal University, 3663 Zhong Shan Road North, Shanghai 200062 (China); Jin Litong, E-mail: ltjin@chem.ecnu.edu.cn [Department of Chemistry, East China Normal University, 3663 Zhong Shan Road North, Shanghai 200062 (China)

    2009-06-08

    In this study, a highly sensitive amperometric biosensor based on photoelectro-synergistic catalysis for detecting organophosphorus pesticides (OPs) in flow-injection analysis (FIA) system has been developed. The acetylcholinesterase enzyme (AChE) was immobilized by adsorption into the nanostructured PbO{sub 2}/TiO{sub 2}/Ti, which also acted as the working electrode. This strategy was found to catalyze the oxidative reaction of thiocholine effectively, make the AChE/PbO{sub 2}/TiO{sub 2}/Ti biosensor detect the substrate at 0.30 V (vs. SCE), hundreds milli-volts lower than others reported. PbO{sub 2}/TiO{sub 2}/Ti and TiO{sub 2}/Ti electrodes were prepared and investigated with atomic force microscope (AFM). Factors influencing the performance were optimized. The resulting flow system offered a fast, sensitive, and stable response. A value of 1.34 mM for the apparent Michaelis-Menten constant (K{sub M}{sup app}) was obtained. A wide linear inhibition response for trichlorfon was observed in the range of 0.01-20 {mu}M with the detection limit of 0.1 nM. The results using this biosensor agreed very well with chromatographic method and we also examined the real samples successfully in this work.

  13. Supported protein G on gold electrode: characterization and immunosensor application.

    Science.gov (United States)

    Hafaiedh, Imen; Chammem, Hanen; Abdelghani, Adnane; Ait, Eric; Feldman, Laurent; Meilhac, Olivier; Mora, Laurence

    2013-11-15

    In this work, we study the electrochemical properties of protein layer grafted on gold electrode for C-reactive protein detection. Two CRP-antibody immobilization methods were used: the first method is based on direct physisorption of CRP-antibody onto the gold surface and the second method is based on oriented CRP-antibody with protein G intermediate layer. The two developed immunosensors were tested against CRP antigen in phosphate buffer saline solution and in human plasma. The electrochemical characterization of each immobilized layers was achieved by cyclic voltammetry and impedance spectroscopy. The morphology of the deposited biomolecules was observed by Atomic Force Microscopy and the roughness was measured. Moreover, contact angle measurement was used for wettability studies. The response of the developed immunosensors was reproducible, rapid, and highly stable and a detection limit of 100 fg/mL and 10 pg/mL antigen was observed with and without protein G respectively. The developed immunosensors was used for CRP detection in human plasma. PMID:24148377

  14. Label-Free and Multiplex Detection of Antibiotic Residues in Milk Using Imaging surface Plasmon Resonance-Based immunosensor

    NARCIS (Netherlands)

    Rebe, S.; Bremer, M.G.E.G.; Haasnoot, W.; Norde, W.

    2009-01-01

    Monitoring of antimicrobial drug residues in foods relies greatly on the availability of adequate analytical techniques. Currently, there is a need for a high-throughput screening method with a broad-spectrum detection range. This paper describes the development of a microarray biosensor, based on a

  15. Label-Free and Multiplex Detection of Antibiotic Residues in Milk Using Imaging Surface Plasmon Resonance-Based Immunosensor

    NARCIS (Netherlands)

    Raz, Sabina Rebe; Bremer, Maria G. E. G.; Haasnoot, Willem; Norde, Willem

    2009-01-01

    Monitoring of antimicrobial drug residues in foods relies greatly on the availability of adequate analytical techniques. Currently, there is a need for a high-throughput screening method with a broad-spectrum detection range. This paper describes the development of a microarray biosensor, based on a

  16. An Immunosensor Based on Antibody Binding Fragments Attached to Gold Nanoparticles for the Detection of Peptides Derived from Avian Influenza Hemagglutinin H5

    Directory of Open Access Journals (Sweden)

    Urszula Jarocka

    2014-08-01

    Full Text Available This paper concerns the development of an immunosensor for detection of peptides derived from avian influenza hemagglutinin H5. Its preparation consists of successive gold electrode modification steps: (i modification with 1,6-hexanedithiol and gold colloidal nanoparticles; (ii immobilization of antibody-binding fragments (Fab’ of anti-hemagglutinin H5 monoclonal antibodies Mab 6-9-1 via S-Au covalent bonds; and (iii covering the remaining free space on the electrode surfaces with bovine serum albumin. The interactions between Fab’ fragments and hemagglutinin (HA variants have been explored with electrochemical impedance spectroscopy (EIS in the presence of [Fe(CN6]3−/4− as an electroactive marker. The immunosensor was able to recognize three different His-tagged variants of recombinant hemagglutinin from H5N1 viruses: H1 subunit (17–340 residues of A/swan/Poland/305-135V08/2006, the long HA (17–530 residues A/Bar-headed Goose/Qinghai/12/2005 and H1 subunit (1–345 residues of A/Vietnam/1194/2004. The strongest response has been observed for the long variant with detection limit of 2.2 pg/mL and dynamic range from 4.0 to 20.0 pg/mL.

  17. Rapid Quantitative Detection of Brucella melitensis by a Label-Free Impedance Immunosensor Based on a Gold Nanoparticle-Modified Screen-Printed Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Xiaowen Wang

    2013-07-01

    Full Text Available A rapid and simple method for quantitative monitoring of Brucella melitensis using electrochemical impedance spectroscopy (EIS is reported for the first time. The label-free immunosensors were fabricated by immobilizing Brucella melitensis antibody on the surface of gold nanoparticle-modified screen-printed carbon electrodes (GNP-SPCEs. Cyclic voltammetry (CV and EIS were used to characterize the Brucella melitensis antigen interaction on the surface of GNP-SPCEs with antibody. A general electronic equivalent model of an electrochemical cell was introduced for interpretation of the impedance components of the system. The results showed that the change in electron-transfer resistance (Rct was significantly different due to the binding of Brucella melitensis cells. A linear relationship between the Rct variation and logarithmic value of the cell concentration was found from 4 × 104 to 4 × 106 CFU/mL in pure culture. The label-free impedance biosensor was able to detect as low as 1 × 104 and 4 × 105 CFU/mL of Brucella melitensis in pure culture and milk samples, respectively, in less than 1.5 h. Moreover, a good selectivity versus Escherichia coli O157:H7 and Staphylococcus aureus cells was obtained for our developed immunosensor demonstrating its specificity towards only Brucella melitensis.

  18. Gold–silver nanocomposite-functionalized graphene based electrochemiluminescence immunosensor using graphene quantum dots coated porous PtPd nanochains as labels

    International Nuclear Information System (INIS)

    In this paper, the electrochemiluminescence (ECL) detection of a tumor marker by using gold–silver nanocomposite-functionalized graphene as a sensing platform, which increased the surface area to capture a large number of primary antibodies as well as improving the electronic transmission rate. The graphene quantum dots (GQDs) were high quantum yield and high biocompatible which obtained by one-pot simple synthetic strategy. With property of good conductivity and large surface area, porous PtPd nanochains can conjugate more GQDs and second antibody to improve the sensitivity of the immunoassay. As a proof-of-concept, carbohydrate antigen 199 was used as a model analyte. Under optimal conditions, the ECL immunosensors exhibited a wide detection range (0.002–70 U·mL−1) and a low detection limit (0.96 mU·mL−1). Such immunosensor showed good precision, acceptable stability and reproducibility. In addition, the proposed method provided a new promising platform of clinical immunoassay for other biomolecules

  19. Thermoresponsive amperometric glucose biosensor.

    Science.gov (United States)

    Pinyou, Piyanut; Ruff, Adrian; Pöller, Sascha; Barwe, Stefan; Nebel, Michaela; Alburquerque, Natalia Guerrero; Wischerhoff, Erik; Laschewsky, André; Schmaderer, Sebastian; Szeponik, Jan; Plumeré, Nicolas; Schuhmann, Wolfgang

    2016-03-01

    The authors report on the fabrication of a thermoresponsive biosensor for the amperometric detection of glucose. Screen printed electrodes with heatable gold working electrodes were modified by a thermoresponsive statistical copolymer [polymer I: poly(ω-ethoxytriethylenglycol methacrylate-co-3-(N,N-dimethyl-N-2-methacryloyloxyethyl ammonio) propanesulfonate-co-ω-butoxydiethylenglycol methacrylate-co-2-(4-benzoyl-phenoxy)ethyl methacrylate)] with a lower critical solution temperature of around 28 °C in aqueous solution via electrochemically induced codeposition with a pH-responsive redox-polymer [polymer II: poly(glycidyl methacrylate-co-allyl methacrylate-co-poly(ethylene glycol)methacrylate-co-butyl acrylate-co-2-(dimethylamino)ethyl methacrylate)-[Os(bpy)2(4-(((2-(2-(2-aminoethoxy)ethoxy)ethyl)amino)methyl)-N,N-dimethylpicolinamide)](2+)] and pyrroloquinoline quinone-soluble glucose dehydrogenase acting as biological recognition element. Polymer II bears covalently bound Os-complexes that act as redox mediators for shuttling electrons between the enzyme and the electrode surface. Polymer I acts as a temperature triggered immobilization matrix. Probing the catalytic current as a function of the working electrode temperature shows that the activity of the biosensor is dramatically reduced above the phase transition temperature of polymer I. Thus, the local modulation of the temperature at the interphase between the electrode and the bioactive layer allows switching the biosensor from an on- to an off-state without heating of the surrounding analyte solution. PMID:26702635

  20. A Label-Free Immunosensor for IgG Based on an Extended-Gate Type Organic Field Effect Transistor

    Directory of Open Access Journals (Sweden)

    Tsukuru Minamiki

    2014-09-01

    Full Text Available A novel biosensor for immunoglobulin G (IgG detection based on an extended-gate type organic field effect transistor (OFET has been developed that possesses an anti-IgG antibody on its extended-gate electrode and can be operated below 3 V. The titration results from the target IgG in the presence of a bovine serum albumin interferent, clearly exhibiting a negative shift in the OFET transfer curve with increasing IgG concentration. This is presumed to be due an interaction between target IgG and the immobilized anti-IgG antibody on the extended-gate electrode. As a result, a linear range from 0 to 10 µg/mL was achieved with a relatively low detection limit of 0.62 µg/mL (=4 nM. We believe that these results open up opportunities for applying extended-gate-type OFETs to immunosensing.

  1. A novel amperometric biosensor for superoxide anion based on superoxide dismutase immobilized on gold nanoparticle-chitosan-ionic liquid biocomposite film

    International Nuclear Information System (INIS)

    Graphical abstract: Schematic representation of the assembly process of SOD/GNPs-CS-IL/GCE. Highlights: ► SOD was immobilized in gold nanoparticles-chitosan-ionic liquid (GNPs-CS-IL) film. ► The biosensor was constructed by one-step ultrasonic electrodeposition of GNPs-CS-IL onto GCE. ► The biosensor showed excellent analytical performance for O2·− real-time analysis. - Abstract: A novel superoxide anion (O2·−) biosensor is proposed based on the immobilization of copper-zinc superoxide dismutase (SOD) in a gold nanoparticle-chitosan-ionic liquid (GNPs-CS-IL) biocomposite film. The SOD-based biosensor was constructed by one-step ultrasonic electrodeposition of GNP-CS-IL composite onto glassy carbon electrode (GCE), followed by immobilization of SOD on the modified electrode. Surface morphologies of a set of representative films were characterized by scanning electron microscopy. The electrochemical performance of the biosensor was evaluated by cyclic voltammetry and chronoamperometry. A pair of quasi-reversible redox peaks of SOD with a formal potential of 0.257 V was observed at SOD/GNPs-CS-IL/GCE in phosphate buffer solution (PBS, 0.1 M, pH 7.0). The effects of varying test conditions on the electrochemical behavior of the biosensor were investigated. Furthermore, several electrochemical parameters were calculated in detail. Based on the biomolecule recognition of the specific reactivity of SOD toward O2·−, the developed biosensor exhibited a fast amperometric response (3 nM), low detection limit (1.7 nM), and excellent selectivity for the real-time measurement of O2·−. The proposed method is promising for estimating quantitatively the dynamic changes of O2·− in biological systems.

  2. Electrochemical impedance immunosensor for the detection of cardiac biomarker Myogobin (Mb) in aqueous solution

    International Nuclear Information System (INIS)

    A label-free, electrochemical impedance immunosensor based on surface modified thin flat gold wire electrode is reported for the quantitative detection of cardiac biomarker Myoglobin in aqueous solution. The protein antibody, ab-Mb, was covalently immobilized through a self assembled monolayer of 11-mercaptoundecanoic acid (MUA) and 3-mercapto propionic acid (MPA) via carbodiimide coupling reaction using N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-Hydroxy Succinamide (NHS). The immunosensor (ab-Mb/MUA-MPA/Au) was characterized by electrochemical techniques. The electrochemical performance of the immunosensor was studied by electrochemical impedance spectroscopy. The immunosensor showed an increased electrontransfer resistance on coupling with biomarker protein antigen, ag-Mb, in the presence of a redox probe [Fe (CN)6]3-/4-. The modified Au electrode immunosensor exhibits an electrochemical impedance response to antigen, ag-Mb concentrations in a linear range from 10 ng to 650 ng mL-1 with a lowest detection limit of 5.2 ng mL-1.

  3. A novel and label-free immunosensor for bisphenol A using rutin as the redox probe.

    Science.gov (United States)

    Huang, Ying; Li, Xiaofeng; Zheng, Sining

    2016-11-01

    In this work, a new and label-free electrochemical immunosensor for sensitive detection of bisphenol A was reported. MWCNTs and gold nanoparticles (AuNPs) were modified on glassy carbon electrode surface to enhance current response. The Anti-BPA was immobilized on the modified electrode through AuNPs. Rutin was used for the first time as the redox probe to construct electrochemical immunosensor of bisphenol A. The peak current change due to the specific immuno-interaction between anti-BPA and BPA on the modified electrode surface was utilized to detect bisphenol A. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) were employed to trace the assembly process of the electrochemical immunosensor. Experimental factors affecting the sensitivity of the immunosensor were examined in terms of incubation time and pH of phosphate buffer solution (PBS). Under optimized conditions, the linear range of calibration curve based on the relationship between current response and BPA concentration was from 1.0×10(-8)-1.0×10(-6)M with detection limit of 8.7×10(-9)M (S/N=3). The proposed immunosensor showed good reproducibility, selectivity, stability and was successfully applied to the determination of BPA in real sample. PMID:27591610

  4. A streptavidin functionalized graphene oxide/Au nanoparticles composite for the construction of sensitive chemiluminescent immunosensor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhanjun, E-mail: zjyang@yzu.edu.cn [Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Luo, Shufen; Li, Juan; Shen, Juan; Yu, Suhua; Hu, Xiaoya [Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Dionysiou, Dionysios D. [Environmental Engineering and Science Program, School of Energy Environmental, Biological and Medical Engineering, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2014-08-11

    Highlights: • A novel streptavidin/GO/AuNPs composite is prepared for immobilizing antibody. • A highly sensitive chemiluminescent immunosensor is constructed for tumor marker. • The immunoassay system shows extremely low detection limit down to picogram level. • This work provides a promising approach for ultrasensitive biosensing applications. - Abstract: In this work, a novel streptavidin functionalized graphene oxide/Au nanoparticles (streptavidin/GO/AuNPs) composite is prepared and for the first time used to construct sensitive chemiluminescent immunosensor for the detection of tumor marker. The streptavidin/GO/AuNPs composite and the immunosensor are characterized using scanning electron microscopy, static water contact angle measurement and electrochemical impedance spectroscopy. The biofunctionalized composite has large reactive surface area and excellent biocompatibility, thus the capture antibody can be efficiently immobilized on its surface based on the highly selective recognition of streptavidin to biotinylated antibody. Using α-fetoprotein (AFP) as a model, the proposed chemiluminescent immunosensor shows a wide linear range from 0.001 to 0.1 ng mL{sup −1} with an extremely low detection limit down to 0.61 pg mL{sup −1}. The resulting AFP immunosensor shows high detection sensitivity, fast assay speed, acceptable detection and fabrication reproducibility, good specificity and stability. The assay results of serum samples with the proposed method are in an acceptable agreement with the reference values. This work provides a promising biofunctionalized nanostructure for sensitive biosensing applications.

  5. Electrochemical impedance immunosensor for the detection of cardiac biomarker Myogobin (Mb) in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Rajesh, E-mail: rajesh_csir@yahoo.com; Sharma, V.; Tanwar, V.K.; Mishra, S.K.; Biradar, A.M.

    2010-11-30

    A label-free, electrochemical impedance immunosensor based on surface modified thin flat gold wire electrode is reported for the quantitative detection of cardiac biomarker Myoglobin in aqueous solution. The protein antibody, ab-Mb, was covalently immobilized through a self assembled monolayer of 11-mercaptoundecanoic acid (MUA) and 3-mercapto propionic acid (MPA) via carbodiimide coupling reaction using N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-Hydroxy Succinamide (NHS). The immunosensor (ab-Mb/MUA-MPA/Au) was characterized by electrochemical techniques. The electrochemical performance of the immunosensor was studied by electrochemical impedance spectroscopy. The immunosensor showed an increased electrontransfer resistance on coupling with biomarker protein antigen, ag-Mb, in the presence of a redox probe [Fe (CN){sub 6}]{sup 3-/4-}. The modified Au electrode immunosensor exhibits an electrochemical impedance response to antigen, ag-Mb concentrations in a linear range from 10 ng to 650 ng mL{sup -1} with a lowest detection limit of 5.2 ng mL{sup -1}.

  6. Immunoglobulin G Determination in Human Serum and Milk Using an Immunosensor of New Conception Fitted with an Enzyme Probe as Transducer

    Directory of Open Access Journals (Sweden)

    Mauro Tomassetti

    2008-10-01

    Full Text Available To completely overcome the problem of the presence of urea in the serum, which can be the cause (especially at low immunoglobulin G concentrations of a small but non negligible interference in the enzyme reaction of the enzymatic marker, when the measurement was performed by a potentiometric immunosensor that we constructed and characterized in previous work, and which used urease as marker, we have now constructed an entirely different and highly innovative immunosensor. This new device uses the enzyme alkaline phosphatase as marker, sodium phenylphosphate as substrate but above all, a tyrosinase biosensor obtained by coupling a Clark type gas diffusion amperometric electrode and the tyrosinase enzyme, immobilized in a cellulose triacetate membrane, as transducer. After optimizing the ‘competitive’ measurement procedures, the new immunosensor was used to determine both HIgG and the anti-HIgG, with a limit of detection (LOD of the order of 3x10-11 M. Clearly this highly innovative construction geometry makes the immunosensor extremely selective. This makes it possible to determine immunoglobulin G both in human serum and milk without the slightest interference by any urea present in these biological matrixes.

  7. Assembling Amperometric Biosensors for Clinical Diagnostics

    Directory of Open Access Journals (Sweden)

    Claudia Marina Lagier

    2007-02-01

    Full Text Available Clinical diagnosis and disease prevention routinely require the assessment ofspecies determined by chemical analysis. Biosensor technology offers several benefits overconventional diagnostic analysis. They include simplicity of use, specificity for the targetanalyte, speed to arise to a result, capability for continuous monitoring and multiplexing,together with the potentiality of coupling to low-cost, portable instrumentation. This workfocuses on the basic lines of decisions when designing electron-transfer-based biosensorsfor clinical analysis, with emphasis on the strategies currently used to improve the deviceperformance, the present status of amperometric electrodes for biomedicine, and the trendsand challenges envisaged for the near future.

  8. Photoelectrochemical Immunosensor for Detection of Carcinoembryonic Antigen Based on 2D TiO2 Nanosheets and Carboxylated Graphitic Carbon Nitride.

    Science.gov (United States)

    Wang, Huan; Wang, Yaoguang; Zhang, Yong; Wang, Qi; Ren, Xiang; Wu, Dan; Wei, Qin

    2016-06-06

    Carcinoembryonic antigen (CEA) was used as the model, an ultrasensitive label-free photoelectrochemical immunosensor was developed using 2D TiO2 nanosheets and carboxylated graphitic carbon nitride (g-C3N4) as photoactive materials and ascorbic acid as an efficient electron donor. 2D TiO2 nanosheets was sythsized by surfactant self-assembly method and proved to have higher photoelectrochemical signals than TiO2 nanoparticles. Firstly, carboxylated g-C3N4 could be attached to 2D TiO2 nanosheets through the bond formed between carboxyl group of carboxylated g-C3N4 and TiO2. And the photocurrent of g-C3N4/TiO2 drastically enhances compared to carboxylated g-C3N4 and TiO2. Then, antibody of CEA was bonded to TiO2 through the dentate bond formed between carboxyl group of anti-CEA and TiO2, leading to the decrease of the photocurrents. As proven by PEC experiments and electrochemical impedance spectroscopy (EIS) analysis, the fabrication process of the immunosensor is successful. Under the optimal conditions, the intensity decreased linearly with CEA concentration in the range of 0.01~10 ng/mL. The detection limit is 2.1 pg/mL. The work provides an effective method for the detection of tumor markers and can be extended for the application in food safety and environmental monitoring analysis.

  9. Amperometric, screen-printed, glucose biosensor for analysis of human plasma samples using a biocomposite water-based carbon ink incorporating glucose oxidase.

    Science.gov (United States)

    Crouch, Eric; Cowell, David C; Hoskins, Stephen; Pittson, Robin W; Hart, John P

    2005-12-01

    This paper describes the optimisation of a screen-printing water-based carbon ink containing cobalt phthalocyanine (CoPC) and glucose oxidase (GOD) for the fabrication of a glucose biosensor. To optimise the performance of the biosensor, the loadings of the electrocatalyst (CoPC) and enzyme (GOD) were varied. It was found that the maximum linear range was achieved with a CoPC loading of 20% (m/m, relative to the mass of carbon) and a GOD loading of 628 U per gram of carbon. In our studies we chose to employ chronoamperometry, as this technique is commonly used for commercial devices. The optimum operating applied potential was found to be +0.5 V, following an incubation period of 60 s. The optimum supporting electrolyte was found to be 0.05 M phosphate buffer at pH 8.0, which resulted in a linear range of 0.2-5 mM, the former represents the detection limit. The sensitivity was 1.12 microA mM(-1). The effect of temperature was also investigated, and it was found that 40 degrees C gave optimal performance. The resulting amperometric biosensors were evaluated by measuring the glucose concentrations for 10 different human plasma samples containing endogenous glucose and also added glucose. The same samples were analysed by a standard spectrophotometric method, and the results obtained by the two different methods were compared. A good correlation coefficient (R(2) = 0.95) and slope (0.98) were calculated from the experimental data, indicating that the new devices hold promise for biomedical studies. PMID:16266677

  10. An amperometric hydrogen peroxide biosensor based on Co{sub 3}O{sub 4} nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra, E-mail: erdenpe@gmail.com; Kiliç, Esma

    2014-08-30

    Highlights: • Hydrogen peroxide biosensor was constructed by combining the advantageous properties of MWCNTs and Co{sub 3}O{sub 4}. • Incorporating Co{sub 3}O{sub 4} nanoparticles into MWCNTs/gelatin film increased the electron transfer. • Co{sub 3}O{sub 4}/MWCNTs/gelatin/HRP/Nafion/GCE showed strong anti-interference ability. • Hydrogen peroxide was successfully determined in disinfector with an average recovery of 100.78 ± 0.89. - Abstract: In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co{sub 3}O{sub 4} nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co{sub 3}O{sub 4} nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at −0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10{sup −7}–1.9 × 10{sup −5} M with a detection limit of 7.4 × 10{sup −7}. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89.

  11. Flow-amperometric biosensor for respiratory toxins using myoglobin-adsorbed carbon-felt, based on an inhibitory effect on bioelectrocatalytic reduction of oxygen

    International Nuclear Information System (INIS)

    Novel, simple and highly sensitive reagentless amperometric flow-biosensor for respiratory toxins (i.e. azide and cyanide) has been developed by using myoglobin (Mb)-adsorbed carbon-felt (CF), based on the inhibitory event of azide and cyanide on the Mb-catalyzed O2 reduction. The Mb-adsorbed CF (Mb–CF) showed a sufficient bioelectrocatalytic activity for O2 reduction in the potential region from 0 to −0.4 V vs. Ag/AgCl at pH 5.0, due to the direct electron transfer (DET) between Mb-heme and the CF electrode. The heterogeneous electron transfer rate constant (ks) of the electrochemical redox reaction of Mb-heme–Fe(II)/(III) was estimated to be 15.5 s−1. This Mb–CF-catalyzed O2 reduction was reversibly inhibited by azide and cyanide, which bind to sixth coordination position of heme-iron center of Mb. When air-saturated 0.1 M phosphate/citrate buffer (pH 5.0) was used as a carrier under the applied potential of −0.2 V vs. Ag/AgCl, the steady-state current due to the Mb-catalyzed O2 reduction was reversibly inhibited by the injection (200 μl) of azide and cyanide, resulting in peak-shape current responses. The magnitude of the inhibition peak currents linearly increased with increasing concentrations of azide (up to 3 μM) and cyanide (up to 5 μM), and the detection limit of azide and cyanide were found to be 0.12 and 0.23 μM, respectively (S/N = 2). The apparent inhibition constant, K′i, of azide and cyanide were estimated to be 5.71 and 8.95 μM, respectively.

  12. Amperometric Carbon Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    Science.gov (United States)

    A highly selective needle type solid state amperometric nitrite microsensor based on direct nitrite oxidation on carbon fiber was developed using a simplified fabrication method. The microsensor’s tip diameter was approximately 7 µm, providing a high spatial resolution of at lea...

  13. A novel amperometric biosensor for superoxide anion based on superoxide dismutase immobilized on gold nanoparticle-chitosan-ionic liquid biocomposite film

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lu; Wen Wei; Xiong Huayu; Zhang Xiuhua; Gu Haoshuang [Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062 (China); Wang Shengfu, E-mail: wangsf@hubu.edu.cn [Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062 (China)

    2013-01-03

    Graphical abstract: Schematic representation of the assembly process of SOD/GNPs-CS-IL/GCE. Highlights: Black-Right-Pointing-Pointer SOD was immobilized in gold nanoparticles-chitosan-ionic liquid (GNPs-CS-IL) film. Black-Right-Pointing-Pointer The biosensor was constructed by one-step ultrasonic electrodeposition of GNPs-CS-IL onto GCE. Black-Right-Pointing-Pointer The biosensor showed excellent analytical performance for O{sub 2}{center_dot}{sup -} real-time analysis. - Abstract: A novel superoxide anion (O{sub 2}{center_dot}{sup -}) biosensor is proposed based on the immobilization of copper-zinc superoxide dismutase (SOD) in a gold nanoparticle-chitosan-ionic liquid (GNPs-CS-IL) biocomposite film. The SOD-based biosensor was constructed by one-step ultrasonic electrodeposition of GNP-CS-IL composite onto glassy carbon electrode (GCE), followed by immobilization of SOD on the modified electrode. Surface morphologies of a set of representative films were characterized by scanning electron microscopy. The electrochemical performance of the biosensor was evaluated by cyclic voltammetry and chronoamperometry. A pair of quasi-reversible redox peaks of SOD with a formal potential of 0.257 V was observed at SOD/GNPs-CS-IL/GCE in phosphate buffer solution (PBS, 0.1 M, pH 7.0). The effects of varying test conditions on the electrochemical behavior of the biosensor were investigated. Furthermore, several electrochemical parameters were calculated in detail. Based on the biomolecule recognition of the specific reactivity of SOD toward O{sub 2}{center_dot}{sup -}, the developed biosensor exhibited a fast amperometric response (<5 s), wide linear range (5.6-2.7 Multiplication-Sign 10{sup 3} nM), low detection limit (1.7 nM), and excellent selectivity for the real-time measurement of O{sub 2}{center_dot}{sup -}. The proposed method is promising for estimating quantitatively the dynamic changes of O{sub 2}{center_dot}{sup -} in biological systems.

  14. Band-type microelectrodes for amperometric immunoassays.

    Science.gov (United States)

    Lee, Ga-Yeon; Chang, Young Wook; Ko, Hyuk; Kang, Min-Jung; Pyun, Jae-Chul

    2016-07-20

    A band-type microelectrode was made using a parylene-N film as a passivation layer. A circular-type, mm-scale electrode with the same diameter as the band-type microelectrode was also made with an electrode area that was 5000 times larger than the band-type microelectrode. By comparing the amperometric signals of 3,5,3',5'-tetramethylbenzidine (TMB) samples at different optical density (OD) values, the band-type microelectrode was determined to be 9 times more sensitive than the circular-type electrode. The properties of the circular-type and the band-type electrodes (e.g., the shape of their cyclic voltammograms, the type of diffusion layer used, and the diffusion layer thickness per unit electrode area) were characterized according to their electrode area using the COMSOL Multiphysics software. From these simulations, the band-type electrode was estimated to have the conventional microelectrode properties, even when the electrode area was 100 times larger than a conventional circular-type electrode. These results show that both the geometry and the area of an electrode can influence the properties of the electrode. Finally, amperometric analysis based on a band-type electrode was applied to commercial ELISA kits to analyze human hepatitis B surface antigen (hHBsAg) and human immunodeficiency virus (HIV) antibodies. PMID:27251855

  15. Electrochemical Impedance Immunosensor Based on Self-Assembled Monolayers for Rapid Detection of Escherichia coli O157:H7 with Signal Amplification Using Lectin

    Directory of Open Access Journals (Sweden)

    Zhanming Li

    2015-08-01

    Full Text Available Escherichia coli O157:H7 is a predominant foodborne pathogen with severe pathogenicity, leading to increasing attention given to rapid and sensitive detection. Herein, we propose an impedance biosensor using new kinds of screen-printed interdigitated microelectrodes (SPIMs and wheat germ agglutinin (WGA for signal amplification to detect E. coli O157:H7 with high sensitivity and time-efficiency. The SPIMs integrate the high sensitivity and short response time of the interdigitated electrodes and the low cost of the screen-printed electrodes. Self-assembling of bi-functional 3-dithiobis-(sulfosuccinimidyl-propionate (DTSP on the SPIMs was investigated and was proved to be able to improve adsorption quantity and stability of biomaterials. WGA was further adopted to enhance the signal taking advantage of the abundant lectin-binding sites on the bacteria surface. The immunosensor exhibited a detection limit of 102 cfu·mL−1, with a linear detection range from 102 to 107 cfu·mL−1 (r2 = 0.98. The total detection time was less than 1 h, showing its comparable sensitivity and rapid response. Furthermore, the low cost of one SPIM significantly reduced the detection cost of the biosensor. The biosensor may have great promise in food safety analysis and lead to a portable biosensing system for routine monitoring of foodborne pathogens.

  16. Electrochemical Impedance Immunosensor Based on Self-Assembled Monolayers for Rapid Detection of Escherichia coli O157:H7 with Signal Amplification Using Lectin

    Science.gov (United States)

    Li, Zhanming; Fu, Yingchun; Fang, Weihuan; Li, Yanbin

    2015-01-01

    Escherichia coli O157:H7 is a predominant foodborne pathogen with severe pathogenicity, leading to increasing attention given to rapid and sensitive detection. Herein, we propose an impedance biosensor using new kinds of screen-printed interdigitated microelectrodes (SPIMs) and wheat germ agglutinin (WGA) for signal amplification to detect E. coli O157:H7 with high sensitivity and time-efficiency. The SPIMs integrate the high sensitivity and short response time of the interdigitated electrodes and the low cost of the screen-printed electrodes. Self-assembling of bi-functional 3-dithiobis-(sulfosuccinimidyl-propionate) (DTSP) on the SPIMs was investigated and was proved to be able to improve adsorption quantity and stability of biomaterials. WGA was further adopted to enhance the signal taking advantage of the abundant lectin-binding sites on the bacteria surface. The immunosensor exhibited a detection limit of 102 cfu·mL−1, with a linear detection range from 102 to 107 cfu·mL−1 (r2 = 0.98). The total detection time was less than 1 h, showing its comparable sensitivity and rapid response. Furthermore, the low cost of one SPIM significantly reduced the detection cost of the biosensor. The biosensor may have great promise in food safety analysis and lead to a portable biosensing system for routine monitoring of foodborne pathogens. PMID:26251911

  17. An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides

    International Nuclear Information System (INIS)

    Graphical abstract: The stepwise amperometric biosensor fabrication process and immobilized acetylcholinesterase inhibition in pesticide solution. Highlights: · Constructed a novel composite material using Fe3O4NP and c-MWCNT at Au electrode for electrocatalysis. · The properties of nanoparticles modified electrodes were studied by SEM, FTIR, CVs and EIS. · The biosensor exhibited good sensitivity (0.475 mA μM-1) · The half life of electrode was 2 months. · The sensor was suitable for trace detection of OP pesticide residues in milk and water. - Abstract: An acetylcholinesterase (AChE) purified from maize seedlings was immobilized covalently onto iron oxide nanoparticles (Fe3O4NP) and carboxylated multi walled carbon nanotubes (c-MWCNT) modified Au electrode. An organophosphorus (OP) biosensor was fabricated using this AChE/Fe3O4/c-MWCNT/Au electrode as a working electrode, Ag/AgCl as standard and Pt wire as an auxiliary electrode connected through a potentiostat. The biosensor was based on inhibition of AChE by OP compounds/insecticides. The properties of nanoparticles modified electrodes were studied by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), cyclic voltammograms (CVs) and electrochemical impedance spectroscopy (EIS). The synergistic action of Fe3O4NP and c-MWCNT showed excellent electrocatalytic activity at low potential (+0.4 V). The optimum working conditions for the sensor were pH 7.5, 35 deg. C, 600 μM substrate concentration and 10 min for inhibition by pesticide. Under optimum conditions, the inhibition rates of OP pesticides were proportional to their concentrations in the range of 0.1-40 nM, 0.1-50 nM, 1-50 nM and 10-100 nM for malathion, chlorpyrifos, monocrotophos and endosulfan respectively. The detection limits were 0.1 nM for malathion and chlorpyrifos, 1 nM for monocrotophos and 10 nM for endosulfan. The biosensor exhibited good sensitivity (0.475 mA μM-1), reusability (more than 50 times) and stability (2

  18. An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Nidhi [Department of Biochemistry, M.D. University, Rohtak 124001, Haryana (India); Pundir, Chandra Shekhar, E-mail: pundircs@rediffmail.com [Department of Biochemistry, M.D. University, Rohtak 124001, Haryana (India)

    2011-09-02

    Graphical abstract: The stepwise amperometric biosensor fabrication process and immobilized acetylcholinesterase inhibition in pesticide solution. Highlights: {center_dot} Constructed a novel composite material using Fe{sub 3}O{sub 4}NP and c-MWCNT at Au electrode for electrocatalysis. {center_dot} The properties of nanoparticles modified electrodes were studied by SEM, FTIR, CVs and EIS. {center_dot} The biosensor exhibited good sensitivity (0.475 mA {mu}M{sup -1}) {center_dot} The half life of electrode was 2 months. {center_dot} The sensor was suitable for trace detection of OP pesticide residues in milk and water. - Abstract: An acetylcholinesterase (AChE) purified from maize seedlings was immobilized covalently onto iron oxide nanoparticles (Fe{sub 3}O{sub 4}NP) and carboxylated multi walled carbon nanotubes (c-MWCNT) modified Au electrode. An organophosphorus (OP) biosensor was fabricated using this AChE/Fe{sub 3}O{sub 4}/c-MWCNT/Au electrode as a working electrode, Ag/AgCl as standard and Pt wire as an auxiliary electrode connected through a potentiostat. The biosensor was based on inhibition of AChE by OP compounds/insecticides. The properties of nanoparticles modified electrodes were studied by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), cyclic voltammograms (CVs) and electrochemical impedance spectroscopy (EIS). The synergistic action of Fe{sub 3}O{sub 4}NP and c-MWCNT showed excellent electrocatalytic activity at low potential (+0.4 V). The optimum working conditions for the sensor were pH 7.5, 35 deg. C, 600 {mu}M substrate concentration and 10 min for inhibition by pesticide. Under optimum conditions, the inhibition rates of OP pesticides were proportional to their concentrations in the range of 0.1-40 nM, 0.1-50 nM, 1-50 nM and 10-100 nM for malathion, chlorpyrifos, monocrotophos and endosulfan respectively. The detection limits were 0.1 nM for malathion and chlorpyrifos, 1 nM for monocrotophos and 10 nM for endosulfan. The

  19. An enzymatic microreactor based on chaotic micromixing for enhanced amperometric detection in a continuous glucose monitoring application

    NARCIS (Netherlands)

    Moon, B.-U.; Koster, S.; Wientjes, K.J.C.; Kwapiszewski, R.M.; Schoonen, A.J.M.; Westerink, B.H.C.; Verpoorte, E.

    2010-01-01

    The development of continuous glucose monitoring systems is a major trend in diabetes-related research. Small, easy-to-wear systems which are robust enough to function over many days without maintenance are the goal. We present a new sensing system for continuous glucose monitoring based on a micror

  20. An Enzymatic Microreactor Based on Chaotic Micromixing for Enhanced Amperometric Detection in a Continuous Glucose Monitoring Application

    NARCIS (Netherlands)

    Moon, Byeong-Ui; Koster, Sander; Wientjes, Klaas J. C.; Kwapiszewski, Radoslaw M.; Schoonen, Adelbert J. M.; Westerink, Ben H. C.; Verpoorte, Elisabeth

    2010-01-01

    The development of continuous glucose monitoring systems is a major trend in diabetes-related research. Small, easy-to-wear systems which are robust enough to function over many days without maintenance are the goal. We present a new sensing system for continuous glucose monitoring based on a micror

  1. Determination of total creatine kinase activity in blood serum using an amperometric biosensor based on glucose oxidase and hexokinase

    OpenAIRE

    Kucherenko, Ivan S; Soldatkin, Oleksandr O; Lagarde, Florence; Jaffrezic-Renault, Nicole; Dzyadevych, S.V.; Soldatkin, A.P.

    2015-01-01

    International audience Creatine kinase (CK: adenosine-5-triphosphate-creatine phosphotransferase) is an important enzyme of muscle cells; the presence of a large amount of the enzyme in blood serum is a biomarker of muscular injuries, such as acute myocardial infarction. This work describes a bi-enzyme (glucose oxidase and hexokinase based) biosensor for rapid and convenient determination of CK activity by measuring the rate of ATP production by this enzyme. Simultaneously the biosensor de...

  2. Fabrication of an Amperometric Flow-Injection Microfluidic Biosensor Based on Laccase for In Situ Determination of Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Juan C. Gonzalez-Rivera

    2015-01-01

    Full Text Available We aim to develop an in situ microfluidic biosensor based on laccase from Trametes pubescens with flow-injection and amperometry as the transducer method. The enzyme was directly immobilized by potential step chronoamperometry, and the immobilization was studied using cyclic voltammetry and electrochemical impedance spectroscopy. The electrode response by amperometry was probed using ABTS and syringaldazine. A shift of interfacial electron transfer resistance and the electron transfer rate constant from 18.1 kΩ to 3.9 MΩ and 4.6 × 10−2 cm s−1 to 2.1 × 10−4 cm s−1, respectively, evidenced that laccase was immobilized on the electrode by the proposed method. We established the optimum operating conditions of temperature (55°C, pH (4.5, injection flow rate (200 µL min−1, and applied potential (0.4 V. Finally, the microfluidic biosensor showed better lower limit of detection (0.149 µM and sensitivity (0.2341 nA µM−1 for ABTS than previous laccase-based biosensors and the in situ operation capacity.

  3. Analytical Problems in Exposing Amperometric Enzyme Biosensors to Biological Fluids

    Directory of Open Access Journals (Sweden)

    Gaia Rocchitta

    2016-05-01

    Full Text Available Enzyme-based chemical biosensors are based on biological recognition. In order to operate, the enzymes must be available to catalyze a specific biochemical reaction and be stable under the normal operating conditions of the biosensor. Design of biosensors is based on knowledge about the target analyte, as well as the complexity of the matrix in which the analyte has to be quantified. This article reviews the problems resulting from the interaction of enzyme-based amperometric biosensors with complex biological matrices containing the target analyte(s. One of the most challenging disadvantages of amperometric enzyme-based biosensor detection is signal reduction from fouling agents and interference from chemicals present in the sample matrix. This article, therefore, investigates the principles of functioning of enzymatic biosensors, their analytical performance over time and the strategies used to optimize their performance. Moreover, the composition of biological fluids as a function of their interaction with biosensing will be presented.

  4. Amperometric biosensor based on Laccase immobilized onto a screen-printed electrode by Matrix Assisted Pulsed Laser Evaporation.

    Science.gov (United States)

    Verrastro, Maria; Cicco, Nunzia; Crispo, Fabiana; Morone, Antonio; Dinescu, Maria; Dumitru, Marius; Favati, Fabio; Centonze, Diego

    2016-07-01

    A Laccase-based biosensor for the determination of phenolic compounds was developed by using Matrix Assisted Pulsed Laser Evaporation as an innovative enzyme immobilization technique. and the deriving biosensor was characterized and applied for the first time. Laccase was immobilized onto different substrates including screen printed carbon electrodes and spectroscopic, morphologic and electrochemical characterizations were carried out. A linear range from 1 to 60μM was achieved working at 5.5pH and -0.2V detection potential vs Ag pseudoreference. The limits of detection and quantification were found to be 1 and 5μM, respectively. A good fabrication reproducibility, stability of response and selectivity toward interferents were also found The potential of the developed biosensor was tested in the determination of total polyphenol content in real matrices (tea infusion, ethanolic extract from Muscari comosum bulbs and aqueous solution of a food supplement from black radish root and artichoke leaves) and the results were compared with those obtained by using the Folin-Ciocalteu method.

  5. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Nor Monica Ahmad

    2016-06-01

    Full Text Available A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB, polyethylene glycol (PEG, and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE. Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM, Electrochemical Impedance Spectroscopy (EIS, and Cyclic voltamogram (CV. The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  6. Amperometric glucose biosensor based on Prussian blue-multiwall carbon nanotubes composite and hollow PtCo nanochains

    Energy Technology Data Exchange (ETDEWEB)

    Che Xin [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo, E-mail: yuanruo@swu.edu.c [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chai Yaqin; Li Jingjing; Song Zhongju; Li Wenjuan [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2010-07-30

    In this paper, a novel glucose biosensor was developed based on immobilizing glucose oxidase (GOD) on Prussian blue-multiwall carbon nanotubes (PB-MWNTs) composite and hollow PtCo (H-PtCo) nanochains modified electrode. The PB-MWNTs/H-PtCo membrane showed good biocompatibility, large surface-to-volume ratio and excellent electron-conductive ability. The successful fabrication of the PB-MWNTs composite synthesized with MWNTs as a template and Fe(III)-reducer were characterized by UV-vis absorption spectroscopy, Fourier transform infrared (FTIR) spectrometry and transmission electron microscopy (TEM). The hollow PtCo nanochains were also characterized by TEM and X-ray photoelectron spectroscopy (XPS). The response of the biosensor towards glucose under the optimized conditions, as investigated by chronoamperometry, is linear from 3.0 {mu}M to 3.6 mM, with a low detection limit of 0.85 {mu}M (S/N = 3) and a high sensitivity 21 mA M{sup -1} cm{sup -2}. Moreover, the biosensor exhibits strong anti-interferent ability, good reproducibility and excellent stability.

  7. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds

    Science.gov (United States)

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md. Rakibul

    2016-01-01

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days. PMID:27367738

  8. Immunosensor for the ultrasensitive and quantitative detection of bladder cancer in point of care testing.

    Science.gov (United States)

    Chuang, Cheng-Hsin; Du, Yi-Chun; Wu, Ting-Feng; Chen, Cheng-Ho; Lee, Da-Huei; Chen, Shih-Min; Huang, Ting-Chi; Wu, Hsun-Pei; Shaikh, Muhammad Omar

    2016-10-15

    An ultrasensitive and real-time impedance based immunosensor has been fabricated for the quantitative detection of Galectin-1 (Gal-1) protein, a biomarker for the onset of multiple oncological conditions, especially bladder cancer. The chip consists of a gold annular interdigitated microelectrode array (3×3 format with a sensing area of 200µm) patterned using standard microfabrication processes, with the ability to electrically address each electrode individually. To improve sensitivity and immobilization efficiency, we have utilized nanoprobes (Gal-1 antibodies conjugated to alumina nanoparticles through silane modification) that are trapped on the microelectrode surface using programmable dielectrophoretic manipulations. The limit of detection of the immunosensor for Gal-1 protein is 0.0078mg/ml of T24 (Grade III) cell lysate in phosphate buffered saline, artificial urine and human urine samples. The normalized impedance variations show a linear dependence on the concentration of cell lysate present while specificity is demonstrated by comparing the immunosensor response for two different grades of bladder cancer cell lysates. We have also designed a portable impedance analyzing device to connect the immunosensor for regular checkup in point of care testing with the ability to transfer data over the internet using a personal computer. We believe that this diagnostic system would allow for improved public health monitoring and aid in early cancer diagnosis. PMID:26777732

  9. Automated-immunosensor with centrifugal fluid valves for salivary cortisol measurement

    Directory of Open Access Journals (Sweden)

    Masaki Yamaguchi

    2014-08-01

    Full Text Available Point-of-care measurement of the stress hormone cortisol will greatly facilitate the timely diagnosis and management of stress-related disorders. We describe an automated salivary cortisol immunosensor, incorporating centrifugal fluid valves and a disposable disc-chip that allows for truncated reporting of cortisol levels (<15 min. The performance characteristics of the immunosensor are optimized through select blocking agents to prevent the non-specific adsorption of proteins; immunoglobulin G (IgG polymer for the pad and milk protein for the reservoirs and the flow channels. Incorporated centrifugal fluid valves allow for rapid and repeat washings to remove impurities from the saliva samples. An optical reader and laptop computer automate the immunoassay processes and provide easily accessible digital readouts of salivary cortisol measurements. Linear regression analysis of the calibration curve for the cortisol immunosensor showed 0.92 of coefficient of multiple determination, R2, and 38.7% of coefficient of variation, CV, for a range of salivary cortisol concentrations between 0.4 and 11.3 ng/mL. The receiver operating characteristic (ROC curve analysis of human saliva samples indicate potential utility for discriminating stress disorders and underscore potential application of the biosensor in stress disorders. The performance of our salivary cortisol immunosensor approaches laboratory based tests and allows noninvasive, quantitative, and automated analysis of human salivary cortisol levels with reporting times compatible with point-of-care applications.

  10. Electrochemical impedance immunosensor for rapid detection of stressed pathogenic Staphylococcus aureus bacteria.

    Science.gov (United States)

    Bekir, Karima; Barhoumi, Houcine; Braiek, Mohamed; Chrouda, Amani; Zine, Nadia; Abid, Nabil; Maaref, Abdelrazek; Bakhrouf, Amina; Ouada, Hafedh Ben; Jaffrezic-Renault, Nicole; Mansour, Hedi Ben

    2015-10-01

    In this work, we report the adaptation of bacteria to stress conditions that induce instability of their cultural, morphological, and enzymatic characters, on which the identification of pathogenic bacteria is based. These can raise serious issues during the characterization of bacteria. The timely detection of pathogens is also a subject of great importance. For this reason, our objective is oriented towards developing an immunosensing system for rapid detection and quantification of Staphylococcus aureus. Polyclonal anti-S. aureus are immobilized onto modified gold electrode by self-assembled molecular monolayer (SAM) method. The electrochemical performances of the developed immunosensor were evaluated by impedance spectroscopy through the monitoring of the charge transfer resistance at the modified solid/liquid interface using ferri-/ferrocyanide as redox probe. The developed immunosensor was applied to detect stressed and resuscitate bacteria. As a result, a stable and reproducible immunosensor with sensitivity of 15 kΩ/decade and a detection limit of 10 CFU/mL was obtained for the S. aureus concentrations ranging from 10(1) to 10(7) CFU/mL. A low deviation in the immunosensor response (±10 %) was signed when it is exposed to stressed and not stressed bacteria.

  11. Amperometric biosensor based on prussian blue and nafion modified screen-printed electrode for screening of potential xanthine oxidase inhibitors from medicinal plants.

    Science.gov (United States)

    El Harrad, Loubna; Amine, Aziz

    2016-04-01

    A simple and sensitive amperometric biosensor was developed for the screening of potential xanthine oxidase inhibitors from medicinal plants. This biosensor was prepared by immobilization of xanthine oxidase on the surface of prussian blue modified screen-printed electrodes using nafion and glutaraldehyde. The developed biosensor showed a linear amperometric response at an applied potential of +0.05 V toward the detection of hypoxanthine from 5 μM to 45 μM with a detection limit of 0.4 μM (S/N=3) and its sensitivity was found to be 600 mA M(-1) cm(-2). In addition, the biosensor exhibited a good storage stability. The inhibition of xanthine oxidase by allopurinol was studied under the optimized conditions. The linear range of allopurinol concentration is obtained up to 2.5 μM with an estimated 50% of inhibitionI50=1.8 μM. The developed biosensor was successfully applied to the screening of xanthine oxidase inhibitors from 13 medicinal plants belonging to different families. Indeed, Moroccan people traditionally use these plants as infusion for the treatment of gout and its related symptoms. For this purpose, water extracts obtained from the infusion of these plants were used for the experiments. In this work, 13 extracts were assayed and several of them demonstrated xanthine oxidase inhibitory effect, with an inhibition greater than 50% compared to spectrophotometry measurements that only few extracts showed an inhibition greater than 50%. PMID:26920482

  12. Simultaneous detection of two breast cancer-related miRNAs in tumor tissues using p19-based disposable amperometric magnetobiosensing platforms.

    Science.gov (United States)

    Torrente-Rodríguez, R M; Campuzano, S; López-Hernández, E; Montiel, V Ruiz-Valdepeñas; Barderas, R; Granados, R; Sánchez-Puelles, J M; Pingarrón, J M

    2015-04-15

    A novel magnetobiosensing approach for the rapid and simultaneous detection of two breast cancer-related miRs (miR-21 and miR-205) is reported. It involves the use of antimiR-21 and antimiR-205 specific probes, chitin-modified magnetic beads (Chitin-MBs), the p19 viral protein as capture bioreceptor and amperometric detection with the H2O2/hydroquinone (HQ) system at dual screen-printed carbon electrodes (SPdCEs). The use of SPdCEs allows the simultaneous independent amperometric readout for each target miR to be measured. The magnetosensor exhibited sensitive and selective detection with dynamic ranges from 2.0 to 10.0nM and detection limits of 0.6nM (6fmol) for both target miRs without any amplification step in less than 2h. The usefulness of the approach was evaluated by detecting the endogenous levels of both target miRs in total RNA (RNAt) extracted from metastatic breast cancer cell lines and human tissues.

  13. Label-free disposable immunosensor for detection of atrazine.

    Science.gov (United States)

    Belkhamssa, Najet; Justino, Celine I L; Santos, Patrícia S M; Cardoso, Susana; Lopes, Isabel; Duarte, Armando C; Rocha-Santos, Teresa; Ksibi, Mohamed

    2016-01-01

    This work reports the construction of a fast, disposable, and label-free immunosensor for the determination of atrazine. The immunosensor is based on a field effect transistor (FET) where a network of single-walled carbon nanotubes (SWCNTs) acts as the conductor channel, constituting carbon nanotubes field effect transistors (CNTFETs). Anti-atrazine antibodies were adsorbed onto the SWCNTs and subsequently the SWCNTs were protected with Tween 20 to prevent the non-specific binding of bacteria or proteins. The principle of the immunoreaction consists in the direct adsorption of atrazine specific antibodies (anti-atrazine) to SWCNTs networks. After exposed to increasing concentrations of atrazine, the CNTFETs could be used as useful label-free platforms to detect atrazine. Under the optimal conditions, a limit of detection as low as 0.001 ng mL(-1) was obtained, which is lower than that of other methods for the atrazine detection, and in a working range between 0.001 and 10 ng mL(-1). The average recoveries obtained for real water samples spiked with atrazine varied from 87.3% to 108.0%. The results show that the constructed sensors display a high sensitivity and could be useful tools for detecting pesticides like atrazine at low concentrations. They could be also applied to the determination of atrazine in environmental aqueous samples, such as seawater and riverine water. PMID:26695286

  14. Label-free disposable immunosensor for detection of atrazine.

    Science.gov (United States)

    Belkhamssa, Najet; Justino, Celine I L; Santos, Patrícia S M; Cardoso, Susana; Lopes, Isabel; Duarte, Armando C; Rocha-Santos, Teresa; Ksibi, Mohamed

    2016-01-01

    This work reports the construction of a fast, disposable, and label-free immunosensor for the determination of atrazine. The immunosensor is based on a field effect transistor (FET) where a network of single-walled carbon nanotubes (SWCNTs) acts as the conductor channel, constituting carbon nanotubes field effect transistors (CNTFETs). Anti-atrazine antibodies were adsorbed onto the SWCNTs and subsequently the SWCNTs were protected with Tween 20 to prevent the non-specific binding of bacteria or proteins. The principle of the immunoreaction consists in the direct adsorption of atrazine specific antibodies (anti-atrazine) to SWCNTs networks. After exposed to increasing concentrations of atrazine, the CNTFETs could be used as useful label-free platforms to detect atrazine. Under the optimal conditions, a limit of detection as low as 0.001 ng mL(-1) was obtained, which is lower than that of other methods for the atrazine detection, and in a working range between 0.001 and 10 ng mL(-1). The average recoveries obtained for real water samples spiked with atrazine varied from 87.3% to 108.0%. The results show that the constructed sensors display a high sensitivity and could be useful tools for detecting pesticides like atrazine at low concentrations. They could be also applied to the determination of atrazine in environmental aqueous samples, such as seawater and riverine water.

  15. Non-enzymatic hydrogen peroxide amperometric sensor based on a glassy carbon electrode modified with an MWCNT/polyaniline composite film and platinum nanoparticles

    International Nuclear Information System (INIS)

    We report on a non-enzymatic amperometric sensor for hydrogen peroxide (H2O2). It was fabricated by electrodeposition of multi-wall carbon nanotubes and polyaniline along with platinum nanoparticles on the surface of a glassy carbon electrode. The modification was probed by scanning electron microscopy and cyclic voltammetry. The resulting sensor exhibits a high sensitivity (748.4 μA.mM-1.cm-2), a wide linear range (7.0 μM-2.5 mM), a low detection limit (2.0 μM) (S/N = 3), a short response time (>5 s), and long-term stability, and is not interfered by common species. It was successfully applied to determine H2O2 in disinfectants. (author)

  16. Introduction to biosensors from electric circuits to immunosensors

    CERN Document Server

    Yoon, Jeong-Yeol

    2016-01-01

    This book equips students with a thorough understanding of various types of sensors and biosensors that can be used for chemical, biological, and biomedical applications, including but not limited to temperature sensors, strain sensor, light sensors, spectrophotometric sensors, pulse oximeter, optical fiber probes, fluorescence sensors, pH sensor, ion-selective electrodes, piezoelectric sensors, glucose sensors, DNA and immunosensors, lab-on-a-chip biosensors, paper-based lab-on-a-chip biosensors, and microcontroller-based sensors. The author treats the study of biosensors with an applications-based approach, including over 15 extensive, hands-on labs given at the end of each chapter. The material is presented using a building-block approach, beginning with the fundamentals of sensor design and temperature sensors, and ending with more complicated biosensors. New to this second edition are sections on op-amp filters, pulse oximetry, meat quality monitoring, advanced fluorescent dyes, autofluorescence, various...

  17. Electrochemical immunosensor for the determination of β-casein

    Directory of Open Access Journals (Sweden)

    Judith Molinari

    2015-03-01

    Full Text Available An amperometric biosensor for the quantification of food allergens based on an inhibitory immunoassay is presented. As a proof of concept, the experimental conditions were optimized for the detection of β-casein in the 0-10 ppm range. Eight electro­che­mi­cal cells were integrated into a small-sized portable potentiostat controlled by a smart­phone via Bluetooth communication. The determination of β-casein in eight different samples can be measured with the electrochemical biosensor, which has the potential to be modified for the detection of multiple allergens.

  18. Determination of carcinoembryonic antigen using a novel amperometric enzyme-electrode based on layer-by-layer assembly of gold nanoparticles and thionine

    Institute of Scientific and Technical Information of China (English)

    YUAN Ruo; ZHUO Ying; CHAI YaQin; ZHANG Ying; SUN AiLi

    2007-01-01

    Electrochemical sensing of carcinoembryonic antigen (CEA) on a gold electrode modified by the sequential incorporation of the mediator, thionine (Thi), and gold nanoparticles (nano-Au), through covalent linkage and electrostatic interactions onto a self-assembled monolayer configuration is described in this paper. The enzyme, horseradish peroxidase (HRP), was employed to block the possible remaining active sites of the nano-Au monolayer, avoid the non-specific adsorption, instead of bovine serum albumin (BSA), and amplify the response of the antigen-antibody reaction. Electrochemical experiments indicated highly efficient electron transfer by the imbedded Thi mediator and adsorbed nano-Au. The HRP kept its activity after immobilization, and the studied electrode showed sensitive response to CEA and high stability during a long period of storage. The working range for the system was 2.5 to 80.0 ng/mL with a detection limit of 0.90 ng/mL. The model membrane system in this work is a potential biosensor for mimicking the other immunosensor and enzyme sensor.

  19. Determination of carcinoembryonic antigen using a novel amperometric enzyme-electrode based on layer-by-layer assembly of gold nanoparticles and thionine

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Electrochemical sensing of carcinoembryonic antigen(CEA)on a gold electrode modified by the se- quential incorporation of the mediator,thionine(Thi),and gold nanoparticles(nano-Au),through co- valent linkage and electrostatic interactions onto a self-assembled monolayer configuration is de- scribed in this paper.The enzyme,horseradish peroxidase(HRP),was employed to block the possible remaining active sites of the nano-Au monolayer,avoid the non-specific adsorption,instead of bovine serum albumin(BSA),and amplify the response of the antigen-antibody reaction.Electrochemical ex- periments indicated highly efficient electron transfer by the imbedded Thi mediator and adsorbed nano-Au.The HRP kept its activity after immobilization,and the studied electrode showed sensitive response to CEA and high stability during a long period of storage.The working range for the system was 2.5 to 80.0 ng/mL with a detection limit of 0.90 ng/mL.The model membrane system in this work is a potential biosensor for mimicking the other immunosensor and enzyme sensor.

  20. Capacitive immunosensor for C-reactive protein quantification

    KAUST Repository

    Sapsanis, Christos

    2015-08-02

    We report an agglutination-based immunosensor for the quantification of C-reactive protein (CRP). The developed immunoassay sensor requires approximately 15 minutes of assay time per sample and provides a sensitivity of 0.5 mg/L. We have measured the capacitance of interdigitated electrodes (IDEs) and quantified the concentration of added analyte. The proposed method is a label free detection method and hence provides rapid measurement preferable in diagnostics. We have so far been able to quantify the concentration to as low as 0.5 mg/L and as high as 10 mg/L. By quantifying CRP in serum, we can assess whether patients are prone to cardiac diseases and monitor the risk associated with such diseases. The sensor is a simple low cost structure and it can be a promising device for rapid and sensitive detection of disease markers at the point-of-care stage.

  1. Elaboration of new method of enzyme adsorption on silicalite and nano beta zeolite for amperometric biosensor creation

    Directory of Open Access Journals (Sweden)

    Soldatkin O. O.

    2014-07-01

    Full Text Available Aim. Optimization of a new method of enzyme immobilization for amperometric biosensor creation. Methods. The amperometric biosensor with glucose oxidase immobilized on zeolites as bioselective elements and platinum disk electrode as transducers of biochemical signal into the electric one was used in the work. Results. The biosensors based on glucose oxidase adsorbed on zeolites were characterized by a higher sensitivity to glucose and a better inter-reproducibility. The best analytical characteristics were obtained for the biosensors based on nano beta zeolite. It has been found that an increase in the amount of zeolite on the surface of amperometric transducer may change such biosensor parameters as sensitivity to the substrate and duration of the analysis. Conclusions. The proposed method of enzyme immobilization by adsorption on zeolites is shown to be quite promising in the development of amperometric biosensors and therefore should be further investigated.

  2. Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A

    Energy Technology Data Exchange (ETDEWEB)

    Yin Huanshun [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong (China); Zhou Yunlei; Xu Jing [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Ai Shiyun, E-mail: ashy@sdau.edu.cn [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Cui Lin [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Zhu Lusheng, E-mail: lushzhu@sdau.edu.cn [College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong (China)

    2010-02-05

    An amperometric bisphenol A (BPA) biosensor was fabricated by immobilizing tyrosinase on multiwalled carbon nanotubes (MWNTs)-cobalt phthalocyanine (CoPc)-silk fibroin (SF) composite modified glassy carbon electrode (GCE). In MWNTs-CoPc-SF composite film, SF provided a biocompatible microenvironment for the tyrosinase to retain its bioactivity, MWNTs possessed excellent inherent conductivity to enhance the electron transfer rate and CoPc showed good electrocatalytic activity to electrooxidation of BPA. The cyclic voltammogram of BPA at this biosensor exhibited a well defined anodic peak at 0.625 V. Compared with bare GCE, the oxidation signal of BPA significantly increased; therefore, this oxidation signal was used to determine BPA. The effect factors were optimized and the electrochemical parameters were calculated. The possible oxidation mechanism was also discussed. Under optimum conditions, the oxidation current was proportional to BPA concentration in the range from 5.0 x 10{sup -8} to 3.0 x 10{sup -6} M with correlation coefficient of 0.9979 and detection limit of 3.0 x 10{sup -8} M (S/N = 3). The proposed method was successfully applied to determine BPA in plastic products and the recovery was in the range from 95.36% to 104.39%.

  3. Elaboration of new method of enzyme adsorption on silicalite and nano beta zeolite for amperometric biosensor creation

    OpenAIRE

    Soldatkin O. O.; Ozansoy Kasap B.; Akata Kurc B.; Soldatkin A. P.; Dzyadevych S. V.; El’skaya A. V.

    2014-01-01

    Aim. Optimization of a new method of enzyme immobilization for amperometric biosensor creation. Methods. The amperometric biosensor with glucose oxidase immobilized on zeolites as bioselective elements and platinum disk electrode as transducers of biochemical signal into the electric one was used in the work. Results. The biosensors based on glucose oxidase adsorbed on zeolites were characterized by a higher sensitivity to glucose and a better inter-reproducibility. The best analytical charac...

  4. Liver Cancer Detection by a Simple, Inexpensive and Effective Immunosensor with Zinc Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Congo Tak-Shing Ching

    2015-11-01

    Full Text Available Regular monitoring of blood α-fetoprotein (AFP and/or carcino-embryonic antigen (CEA levels is important for the routine screening of liver cancer. However, AFP and CEA have a much lower specificity than des-γ-carboxyprothrombin (DCP to detect liver cancer. Therefore, the study reported here was designed, to develop a screen-printed DCP immunosensor incorporating zinc oxide nanoparticles, for accurate determination of DCP. The designed immunosensor shows low detection limits for the detection of DCP: 0.440 ng/mL (based on impedance measurement, 0.081 ng/mL (based on real part of impedance measurement and 0.078 ng/mL (based on imaginary part of impedance measurement, within the range of 3.125 ng/mL to 2000 ng/mL. In addition, there was little interference to DCP determination by molecules such as Na+, K+, Ca2+, Cl−, glucose, urea, and uric acid. It is therefore concluded that the DCP immunosensor developed and reported here is simple, inexpensive and effective, and shows promise in the rapid screening of early-stage liver cancer at home with a point-of-care approach.

  5. Advances in ovarian cancer diagnosis: A journey from immunoassays to immunosensors.

    Science.gov (United States)

    Sharma, Shikha; Raghav, Ragini; O'Kennedy, Richard; Srivastava, Sudha

    2016-07-01

    This review focuses on the technological advancements, challenges and trends in immunoassay technologies for ovarian cancer diagnosis. Emphasis is placed on the principles of the technologies, their merits and limitations and on the evolution from laboratory-based methods to point-of-care devices. While the current market is predominantly associated with clinical immunoassay kits, over the last decade a major thrust in development of immunosensors is evident due to their potential in point-of-care devices. Technological advancements in immunosensors, extending from labeled to label-free detection, with and without mediators, for enhancing proficiencies and reliability have been dealt with in detail. Aspects of the utilisation of nanomaterials and immobilization strategies for enhancing sensitivity and altering the detection range have also been addressed. Finally, we have discussed some distinct characteristics and limitations associated with the recently commericalised technologies used for quantitation of relevant ovarian cancer markers. PMID:27233124

  6. ZnO thin film transistor immunosensor with high sensitivity and selectivity

    Science.gov (United States)

    Reyes, Pavel Ivanoff; Ku, Chieh-Jen; Duan, Ziqing; Lu, Yicheng; Solanki, Aniruddh; Lee, Ki-Bum

    2011-04-01

    A zinc oxide thin film transistor-based immunosensor (ZnO-bioTFT) is presented. The back-gate TFT has an on-off ratio of 108 and a threshold voltage of 4.25 V. The ZnO channel surface is biofunctionalized with primary monoclonal antibodies that selectively bind with epidermal growth factor receptor (EGFR). Detection of the antibody-antigen reaction is achieved through channel carrier modulation via pseudo double-gating field effect caused by the biochemical reaction. The sensitivity of 10 fM detection of pure EGFR proteins is achieved. The ZnO-bioTFT immunosensor also enables selectively detecting 10 fM of EGFR in a 5 mg/ml goat serum solution containing various other proteins.

  7. An amperometric hemoglobin A1c biosensor based on immobilization of fructosyl amino acid oxidase onto zinc oxide nanoparticles-polypyrrole film.

    Science.gov (United States)

    Chawla, Sheetal; Pundir, Chandra Shekhar

    2012-11-15

    Measurement of hemoglobin A1c (HbA1c, glycated hemoglobin) level in blood provides the long-term glucose level in diabetic patients without the influence of short-term fluctuations. The existing methods for HbA1c determination, including biosensors, suffer from insufficient sensitivity, detection limit, response time, and storage stability. These problems were overcome in the current biosensor. A method is described for construction of an amperometric HbA1c biosensor by immobilizing a fructosyl amino acid oxidase (FAO) onto zinc oxide nanoparticles/polypyrrole (ZnONPs/PPy) hybrid film deposited onto gold (Au) electrode and using it as working electrode, Ag/AgCl as reference electrode, and platinum (Pt) as auxiliary electrode. The whole blood samples were hemolyzed and digested by protease before measuring their HbA1c level by the biosensor. The enzyme electrode detected fructosyl valine (FV) as low as 50μM at a signal-to-noise ratio of 3 within 2s at +0.27V versus Ag/AgCl, pH7.0, and 35°C with a linear working range of 0.1 to 3.0mM for FV and sensitivity of 38.42μAmM(-1). The electrode showed only a 30% loss of its initial response over a period of 160days when stored at 4°C. The biosensor measured HbA1c in whole blood of apparently healthy individuals and diabetic patients and found it to be in the ranges of 4.0% to 5.6% and 5.7% to 12.0%, respectively. PMID:22906687

  8. Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase on core-shell organosilica-chitosan nanospheres and multiwall carbon nanotubes composite

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shihong [College of Chemistry and Chemical Engineering, Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, Southwest University, Chongqing 400715 (China); Yuan Ruo [College of Chemistry and Chemical Engineering, Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, Southwest University, Chongqing 400715 (China)], E-mail: yuanruo@swu.edu.cn; Chai Yaqin; Yin Bin; Li Wenjun; Min Ligen [College of Chemistry and Chemical Engineering, Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, Southwest University, Chongqing 400715 (China)

    2009-04-15

    The application of the composites of multiwall carbon nanotubes (MWNTs) and core-shell organosilica-chitosan crosslinked nanospheres as an immobilization matrix for the construction of an amperometric hydrogen peroxide (H{sub 2}O{sub 2}) biosensor was described. MWNTs and positively charged organosilica-chitosan nanospheres were dispersed in acetic acid solution (0.6 wt%) to achieve organosilica-chitosan/MWNTs composites, which were cast onto a glass carbon electrode (GCE) surface directly. And then, horseradish peroxidase (HRP), as a model enzyme, was immobilized onto it through electrostatic interaction between oppositely charged organosilica-chitosan nanospheres and HRP. The direct electron transfer of HRP was achieved at HRP/organosilica-chitosan/MWNTs/GCE, which exhibited excellent electrocatalytic activity for the reduction of H{sub 2}O{sub 2}. The catalysis currents increased linearly to H{sub 2}O{sub 2} concentration in a wide range of 7.0 x 10{sup -7} to 2.8 x 10{sup -3} M, with a sensitivity of 49.8 {mu}A mM{sup -1} cm{sup -2} and with a detection limit of 2.5 x 10{sup -7} M at 3{sigma}. A Michaelies-Menten constant K{sub M}{sup app} value was estimated to be 0.32 mM, indicating a high-catalytic activity of HRP. Moreover, the proposed biosensor displayed a rapid response to H{sub 2}O{sub 2} and possessed good stability and reproducibility. When used to detect H{sub 2}O{sub 2} concentration in disinfector samples and sterilized milks, respectively, it showed satisfactory results.

  9. Detection of Explosives in a Dynamic Marine Environment Using a Moored TNT Immunosensor

    Directory of Open Access Journals (Sweden)

    Paul T. Charles

    2014-02-01

    Full Text Available A field demonstration and longevity assessment for long-term monitoring of the explosive 2,4,6-trinitrotoluene (TNT in a marine environment using an anti-TNT microfluidic immunosensor is described. The TNT immunosensor is comprised of a microfluidic device with 39 parallel microchannels (2.5 cm × 250 µm × 500 µm, L × W × D fabricated in poly(methylmethacrylate (PMMA, then chemically functionalized with antibodies possessing a high affinity for TNT. Synthesized fluorescence reporter complexes used in a displacement-based assay format were used for TNT identification. For field deployment the TNT immunosensor was configured onto a submersible moored steel frame along with frame controller, pumps and TNT plume generator and deployed pier side for intermittent plume sampling of TNT (1h increments. Under varying current and tidal conditions trace levels of TNT in natural seawater were detected over an extended period (>18 h. Overnight operation and data recording was monitored via a web interface.

  10. Opto-Microfluidic Immunosensors: From Colorimetric to Plasmonic

    Directory of Open Access Journals (Sweden)

    Jie-Long He

    2016-02-01

    Full Text Available Optical detection has long been the most popular technique in immunosensing. Recent developments in the synthesis of luminescent probes and the fabrication of novel nanostructures enable more sensitive and efficient optical detection, which can be miniaturized and integrated with microfluidics to realize compact lab-on-a-chip immunosensors. These immunosensors are portable, economical and automated, but their sensitivity is not compromised. This review focuses on the incorporation and implementation of optical detection and microfluidics in immunosensors; it introduces the working principles of each optical detection technique and how it can be exploited in immunosensing. The recent progress in various opto-microfluidic immunosensor designs is described. Instead of being comprehensive to include all opto-microfluidic platforms, the report centers on the designs that are promising for point-of-care immunosensing diagnostics, in which ease of use, stability and cost-effective fabrication are emphasized.

  11. Modelling amperometric enzyme electrode with substrate cyclic conversion.

    Science.gov (United States)

    Baronas, Romas; Kulys, Juozas; Ivanauskas, Feliksas C

    2004-03-15

    A mathematical model of amperometric enzyme electrodes in which chemical amplification by cyclic substrate conversion takes place in a single enzyme membrane has been developed. The model is based on non-stationary diffusion equations containing a non-linear term related to Michaelis-Menten kinetic of the enzymatic reaction. The digital simulation was carried out using the finite difference technique. The influence of the substrate concentration, the maximal enzymatic rate as well as the membrane thickness on the biosensor response was investigated. The numerical experiments demonstrate significant (up to dozens of times) gain in biosensor sensitivity at low concentrations of substrate when the biosensor response is under diffusion control. PMID:15128111

  12. Amperometric Biosensors for Real Time Assays of Organophosphates

    Directory of Open Access Journals (Sweden)

    Kamil Kuca

    2008-09-01

    Full Text Available An amperometric biosensor based on acetylcholinesterase (AChE immobilized in gelatin was used to develop an assay for the organophosphate paraoxon. The more traditional manner employing preincubation was used for comparison between measurement procedures, although the aim of the study was to examine the performance of the biosensor for real time monitoring of organophosphates. The biosensor was immersed in a reaction chamber and paraoxon was injected inside. We were able to detect 200 pg of paraoxon within one minute or 2.5 ppb when the biosensor was preincubed in the sample solution for 15 minutes. The practical impact and expectations are discussed.

  13. A novel thin-layer amperometric detector based on chemically modified ring-disc electrode and its application for simultaneous measurements of nitric oxide and nitrite in rat brain combined with in vivo microdialysis.

    Science.gov (United States)

    Mao, L; Shi, G; Tian, Y; Liu, H; Jin, L; Yamamoto, K; Tao, S; Jin, J

    1998-08-01

    A novel thin-layer amperometric detector (TLAD) based on chemically modified ring-disc electrode and its application for simultaneous measurements of nitric oxide (NO) and nitrite (NO(2)(-)) in rat brain were demonstrated in this work. The ring-disc electrode was simultaneously sensitive to nitric oxide (NO) and nitrite (NO(2)(-)) by modifying its inner disc with electropolymerized film of cobalt(II) tetraaminophthalocyanine (polyCoTAPc)/Nafion and its outer ring with poly(vinylpyridine) (PVP), respectively. The ring-disc electrode was used to constitute a novel TLAD in radial flow cell for simultaneous measurements of NO and NO(2)(-) in rat brain combined with techniques of high performance liquid chromatography (HPLC) and in vivo microdialysis. It was found that the basal concentration of NO in the caudate nucleus of rat brain is lower than 1.0x10(-7) mol l(-1), NO(2)(-) concentration is 5.0x10(-7) mol l(-1) and NO exists in brain maybe mainly in the form of its decomposed product. PMID:18967286

  14. An ultrasensitive electrochemical immunosensor platform with double signal amplification for indole-3-acetic acid determinations in plant seeds.

    Science.gov (United States)

    Yin, Huanshun; Xu, Zhenning; Zhou, Yunlei; Wang, Mo; Ai, Shiyun

    2013-03-21

    A label-free electrochemical immunosensor for ultra-sensitive detection of indole-3-acetic acid (IAA), a very important phytohormone, has been developed in this work. The detection strategy was mainly based on 4-aminophenylboronic acid, magnetic nanoparticles functionalized with horseradish peroxidase-conjugated goat anti-rat immunoglobulin G (HRP-IgG-Fe(3)O(4)) and rat monoclonal antibody against IAA-modified gold nanoparticles (anti-IAA-AuNPs). HRP-IgG-AuNPs was covalently assembled on the electrode surface through the specific chemical reaction between boronic acid and the vicinal diol in HRP-IgG. Then, anti-IAA-AuNPs was further assembled on the electrode via the interaction between IgG and antibody. Through the dual amplification of HRP-IgG-Fe(3)O(4) and anti-IAA-AuNPs, the trapping capacity of the immunosensor for IAA was significantly enhanced based on the promotion of the immunoreaction between antibody and antigen, which resulted in a large decrease of the electrochemical response of the redox probe, Fe(CN)(6)(3-), and an increase in sensitivity. The developed electrochemical immunosensor exhibited a wide linear range from 0.02 to 500 ng mL(-1) with a low detection limit of 0.018 ng mL(-1) (S/N = 3). Moreover, the proposed immunosensor showed acceptable selectivity, reproducibility, accuracy and stability. The IAA extracted from various seeds was successfully detected using the developed immunosensor. This assay method might provide an alternative strategy for the detection of various phytohormones. PMID:23377501

  15. Electrical Characterization of a Thiol SAM on Gold as a First Step for the Fabrication of Immunosensors based on a Quartz Crystal Microbalance

    OpenAIRE

    Mhamed A. Maaref; Salwa Hleli; Adnane Abdelghani; Asma Tlili

    2004-01-01

    Abstract: In order to develop a robust biosensor based on quartz crystal microbalance technique for antigen detection, a control of the steps of the surface functionalization has been performed by impedance spectroscopy. The gold electrode is functionalized with the self-assembled monolayer technique. The high insulating properties of the acidic thiol monolayer has been characterized with cyclic voltammetry and impedance spectroscopy. The modified surface is activated with N-hydroxysuccinimid...

  16. Electrochemical magnetic beads-based immunosensing platform for the determination of α-lactalbumin in milk.

    Science.gov (United States)

    Ruiz-Valdepeñas Montiel, Víctor; Campuzano, Susana; Torrente-Rodríguez, Rebeca M; Reviejo, A Julio; Pingarrón, José M

    2016-12-15

    Alpha-lactalbumin (α-LA) is one of the whey proteins in cows' milk that has been identified as allergenic. In this work, we present, for the first time, a very sensitive magnetic beads (MBs)-based immunosensor for the determination of α-LA. A sandwich configuration involving selective capture and horseradish peroxidase-labeled detector antibodies was implemented on carboxylic acid-modified magnetic beads, captured magnetically under the surface of a disposable screen-printed carbon electrode for amperometric detection using the hydroquinone (HQ)/H2O2 system. The α-LA immunosensor exhibited a wide linear range (37.0-5000pg/ml), a low limit of detection (LOD, 11.0pg/ml) and noteworthy selectivity against other non-target proteins. The MBs-based immunosensing platform was applied successfully for the determination of α-LA in several varieties of milk (raw and UHT cows' milk as well as human milk) and infant formulations. The results were corroborated with those obtained using a commercial ELISA method, thereby substantiating the analytical merits of this unique method. PMID:27451223

  17. Electrical Characterization of a Thiol SAM on Gold as a First Step for the Fabrication of Immunosensors based on a Quartz Crystal Microbalance

    Science.gov (United States)

    Tlili, Asma; Abdelghani, Adnane; Hleli, Salwa; Maaref, Mhamed A.

    2004-01-01

    In order to develop a robust biosensor based on quartz crystal microbalance technique for antigen detection, a control of the steps of the surface functionalization has been performed by impedance spectroscopy. The gold electrode is functionalized with the self-assembled monolayer technique. The high insulating properties of the acidic thiol monolayer has been characterized with cyclic voltammetry and impedance spectroscopy. The modified surface is activated with N-hydroxysuccinimide(NHS) and 1-(3-(dimethylamino)propyl)-3-ethylcarbodimide hydrochloride(EDC) cross-linker for antibody coupling. The non-specific sites are blocked with bovin serum albumine molecules. Different concentrations of antigen can be detected with a good reversibility in real time with the quartz crystal microbalance.

  18. Electrical Characterization of a Thiol SAM on Gold as a First Step for the Fabrication of Immunosensors based on a Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Mhamed A. Maaref

    2004-08-01

    Full Text Available Abstract: In order to develop a robust biosensor based on quartz crystal microbalance technique for antigen detection, a control of the steps of the surface functionalization has been performed by impedance spectroscopy. The gold electrode is functionalized with the self-assembled monolayer technique. The high insulating properties of the acidic thiol monolayer has been characterized with cyclic voltammetry and impedance spectroscopy. The modified surface is activated with N-hydroxysuccinimide(NHS and 1-(3-(dimethylaminopropyl-3-ethylcarbodimide hydrochloride(EDC cross-linker for antibody coupling. The non-specific sites are blocked with bovin serum albumine molecules. Different concentrations of antigen can be detected with a good reversibility in real time with the quartz crystal microbalance.

  19. Amperometric glucose sensor based on enhanced catalytic reduction of oxygen using glucose oxidase adsorbed onto core-shell Fe{sub 3}O{sub 4}-silica-Au magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang Aijun [College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004 (China); Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Li Yongfang [College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003 (China); Li Zhonghua [Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Feng Jiuju, E-mail: jjfengnju@gmail.com [College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004 (China); Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Sun Yanli [Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Chen Jianrong [College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004 (China)

    2012-08-01

    Monodisperse Fe{sub 3}O{sub 4} magnetic nanoparticles (NPs) were prepared under facile solvothermal conditions and successively functionalized with silica and Au to form core/shell Fe{sub 3}O{sub 4}-silica-Au NPs. Furthermore, the samples were used as matrix to construct a glucose sensor based on glucose oxidase (GOD). The immobilized GOD retained its bioactivity with high protein load of 3.92 Multiplication-Sign 10{sup -9} mol{center_dot}cm{sup -2}, and exhibited a surface-controlled quasi-reversible redox reaction, with a fast heterogeneous electron transfer rate of 7.98 {+-} 0.6 s{sup -1}. The glucose biosensor showed a broad linear range up to 3.97 mM with high sensitivity of 62.45 {mu}A{center_dot}mM{sup -1} cm{sup -2} and fast response (less than 5 s). - Graphical abstract: Core-shell structured Fe{sub 3}O{sub 4}-silica-Au nanoparticles were prepared and used as matrix to construct an amperometric glucose sensor based on glucose oxidase, which showed broad linear range, high sensitivity, and fast response. Highlights: Black-Right-Pointing-Pointer Synthesis of monodispersed Fe{sub 3}O{sub 4} nanoparticles. Black-Right-Pointing-Pointer Fabrication of core/shell Fe{sub 3}O{sub 4}-silica-Au nanoparticles. Black-Right-Pointing-Pointer Construction of a novel glucose sensor with wide linear range, high sensitivity and fast response.

  20. Application of Ionic Liquids in Amperometric Gas Sensors.

    Science.gov (United States)

    Gębicki, Jacek; Kloskowski, Adam; Chrzanowski, Wojciech; Stepnowski, Piotr; Namiesnik, Jacek

    2016-01-01

    This article presents an analysis of available literature data on metrological parameters of the amperometric gas sensors containing ionic liquids as an electrolyte. Four mechanism types of signal generation in amperometric sensors with ionic liquid are described. Moreover, this article describes the influence of selected physico-chemical properties of the ionic liquids on the metrological parameters of these sensors. Some metrological parameters are also compared for amperometric sensors with GDE and SPE electrodes and with ionic liquids for selected analytes. PMID:25830724

  1. Application of Ionic Liquids in Amperometric Gas Sensors.

    Science.gov (United States)

    Gębicki, Jacek; Kloskowski, Adam; Chrzanowski, Wojciech; Stepnowski, Piotr; Namiesnik, Jacek

    2016-01-01

    This article presents an analysis of available literature data on metrological parameters of the amperometric gas sensors containing ionic liquids as an electrolyte. Four mechanism types of signal generation in amperometric sensors with ionic liquid are described. Moreover, this article describes the influence of selected physico-chemical properties of the ionic liquids on the metrological parameters of these sensors. Some metrological parameters are also compared for amperometric sensors with GDE and SPE electrodes and with ionic liquids for selected analytes.

  2. Final Technical Report - In-line Uranium Immunosensor

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Diane A.

    2006-07-05

    In this project, personnel at Tulane University and Sapidyne Instruments Inc. developed an in-line uranium immunosensor that could be used to determine the efficacy of specific in situ biostimulation approaches. This sensor was designed to operate autonomously over relatively long periods of time (2-10 days) and was able to provide near real-time data about uranium immobilization in the absence of personnel at the site of the biostimulation experiments. An alpha prototype of the in-line immmunosensor was delivered from Sapidyne Instruments to Tulane University in December of 2002 and a beta prototype was delivered in November of 2003. The beta prototype of this instrument (now available commercially from Sapidyne Instruments) was programmed to autonomously dilute standard uranium to final concentrations of 2.5 to 100 nM (0.6 to 24 ppb) in buffer containing a fluorescently labeled anti-uranium antibody and the uranium chelator, 2,9-dicarboxyl-1,10-phenanthroline. The assay limit of detection for hexavalent uranium was 5.8 nM or 1.38 ppb. This limit of detection is well below the drinking water standard of 30 ppb recently promulgated by the EPA. The assay showed excellent precision; the coefficients of variation (CV’s) in the linear range of the assay were less than 5% and CV’s never rose above 14%. Analytical recovery in the immunosensors-based assay was assessed by adding variable known quantities of uranium to purified water samples. A quantitative recovery (93.75% - 108.17%) was obtained for sample with concentrations from 7.5 to 20 nM (2-4.75 ppb). In August of 2005 the sensor was transported to Oak Ridge National Laboratory, for testing of water samples at the Criddle test site (see Wu et al., Environ. Sci. Technol. 40:3978-3985 2006 for a description of this site). In this first on-site test, the in-line sensor was able to accurately detect changes in the concentrations of uranium in effluent samples from this site. Although the absolute values for the

  3. 基于共面薄膜金电极的三磷酸腺苷适体传感器%An Aptamer-based Amperometric Biosensor for Adenosine Triphosphate Detection Based on Coplanar Thin-film Gold Electrode

    Institute of Scientific and Technical Information of China (English)

    姜利英; 王芬芬; 胡杰; 岳保磊; 闫艳霞; 陈青华

    2014-01-01

    Thin-film gold electrodes were fabricated based on MEMS technology. Adenosine triphosphate with mercapto-group was immobilized on a surface of gold electrode via self-assembly. An aptamer-based amperometric biosensor was constructed to measure the concentration of the ATP that using aptamer as the recognition element based on coplanar thin-film gold electrode. Adenosine triphosphate was detected by the characteristic impedance changes based on phosphate backbone of nucleic with negatively charge that electrostatic reject [ Fe( CN) 6 ] 3-/4-. Firstly, under the conditions of bare gold electrode and before and after ATP was added and whether 6-mercapto-1-hexanol was closed on electrode and the different self-assembly time (3, 8, 15, 24 and 30 h),the electrode of impedance changes in electrochemical impedance solution was researched with electrochemical Impedance Spectroscopy. The experiments show that the measurable linearity range of adenosine triphosphate is 1-500 nmol/L, the detection limit is 1 nmol/L and the correlation coefficient was 0 . 9842 when the time of the self-assembly was 24 h and closed gold electrode with 6-mercapto-hexanol. This electrochemical aptasensor was simplicity and has low detection limit and good repeatability.%为了检测三磷酸腺苷( ATP)的浓度,利用微系统( MEMS)技术小批量加工薄膜金电极,采用自组装法将巯基修饰的三磷酸腺苷适体固定到金电极表面,以三磷酸腺苷适体作为识别元件,构建了一种基于共面薄膜金电极的三磷酸腺苷适体传感器。依据核酸磷酸骨架荷负电特性静电排斥[Fe(CN)6]3-/4-所引起的阻抗变化实现对ATP浓度的检测。首先采用电化学阻抗谱法研究了裸金电极及ATP加入前后、6-巯基己醇封闭电极前后以及不同自组装时间(3,8,15,24和30 h)条件下,电极在电化学阻抗溶液中阻抗值变化。然后研究了不同浓度ATP适体传感器的电化学阻抗谱以及适体传感器的线性度和

  4. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles

    International Nuclear Information System (INIS)

    For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges of 0.1–30.0 μM and 30.0–330.0 μM with a limit of detection (LOD) of 0.05 μM. This sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferents therefore, we found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability and good antifouling properties. The proposed sensor was used to the determination of nitrite in several foodstuff and water samples. - Highlights: • Eight variables were screened by Min Run Res IV FD to identify the key variables. • Mathematical models for the two studied responses were developed by FCCCD. • By using DF the responses were optimized simultaneously. • The SEM image of the modified electrode was processed by digital image processing. • The sensor was successfully applied to determination of nitrite in real samples

  5. An ultra-sensitive impedimetric immunosensor for detection of the serum oncomarker CA-125 in ovarian cancer patients

    Science.gov (United States)

    Johari-Ahar, M.; Rashidi, M. R.; Barar, J.; Aghaie, M.; Mohammadnejad, D.; Ramazani, A.; Karami, P.; Coukos, G.; Omidi, Y.

    2015-02-01

    Effective treatment of ovarian cancer depends upon the early detection of the malignancy. Here, we report on the development of a new nanostructured immunosensor for early detection of cancer antigen 125 (CA-125). A gold electrode was modified with mercaptopropionic acid (MPA), and then consecutively conjugated with silica coated gold nanoparticles (AuNP@SiO2), CdSe quantum dots (QDs) and anti-CA-125 monoclonal antibody (mAb). The engineered MPA|AuNP@SiO2|QD|mAb immunosensor was characterised using transmission electron microscopy (TEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Successive conjugation of AuNP@SiO2, CdSe QD and anti-CA-125 mAb onto the gold electrode resulted in sensitive detection of CA-125 with a limit of detection (LOD) of 0.0016 U mL-1 and a linear detection range (LDR) of 0-0.1 U mL-1. Based on the high sensitivity and specificity of the immunosensor, we propose this highly stable and reproducible biosensor for the early detection of CA-125.Effective treatment of ovarian cancer depends upon the early detection of the malignancy. Here, we report on the development of a new nanostructured immunosensor for early detection of cancer antigen 125 (CA-125). A gold electrode was modified with mercaptopropionic acid (MPA), and then consecutively conjugated with silica coated gold nanoparticles (AuNP@SiO2), CdSe quantum dots (QDs) and anti-CA-125 monoclonal antibody (mAb). The engineered MPA|AuNP@SiO2|QD|mAb immunosensor was characterised using transmission electron microscopy (TEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Successive conjugation of AuNP@SiO2, CdSe QD and anti-CA-125 mAb onto the gold electrode resulted in sensitive detection of CA-125 with a limit of detection (LOD) of 0.0016 U mL-1 and a linear detection range (LDR) of 0-0.1 U mL-1. Based on the high sensitivity and specificity of the immunosensor, we propose

  6. Progress of Interdigitated Array Microelectrodes Based Impedance Immunosensor%基于叉指阵列微电极的阻抗免疫传感器研究进展

    Institute of Scientific and Technical Information of China (English)

    颜小飞; 汪懋华; 安冬

    2011-01-01

    叉指阵列微电极(Interdigitated array microelectrodes,IDAM)具有检出限低、灵敏度高和信噪比好等优点,近年来在分析化学领域引起了极大的关注.阻抗免疫传感器将IDAM与免疫测定技术相结合,通过抗原抗体的特异性反应引起IDAM之间介质的阻抗变化实现对目标物的检测.本文分析了 IDAM的特点、制作材料以及电极设计参数对系统检测性能的影响,评述了IDAM阻抗免疫传感器的工作原理、等效电路分析,综述了IDAM阻抗免疫传感器在食品安全分析和临床诊断领域中的应用,并讨论了目前研究中存在的问题及其发展趋势.%Interdigitated array microclectrodes ( IDAM ) present promising advantages in terms of low detection limit, high sensitivity and increased signal-to-noise ratio, thus have received great attention in the area of analytical chemistry. According to the impedance signal induced by immune reaction of antibody and antigen on the surface of microelectrods, IDAM impedance immunosensor could be used to detect target analyte in samples specifically. This review introduced the characteristics, materials and design parameters of IDAM, discussed the principle and equivalent circuit of impedance immunosensor, and summarized their applications in food safety and clinical diagnosis. Additionally, the shortcomings of current research and developing trends in the future are also discussed.

  7. Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface

    International Nuclear Information System (INIS)

    Highlights: ► An impedimetric label-free immunosensor was developed for the specific detection of human serum albumin proteins. ► Anti-HSA antibodies were covalently immobilized on silicon nitride surfaces using a direct functionalization methodology. ► Silicon nitride offers multiple advantages compared to other common materials. ► The proposed sensor has high sensitivity and good selectivity for the detection of HSA proteins. - Abstract: In this work we report the fabrication and characterization of a label-free impedimetric immunosensor based on a silicon nitride (Si3N4) surface for the specific detection of human serum albumin (HSA) proteins. Silicon nitride provides several advantages compared with other materials commonly used, such as gold, and in particular in solid-state physics for electronic-based biosensors. However, few Si3N4-based biosensors have been developed; the lack of an efficient and direct protocol for the integration of biological elements with silicon-based substrates is still one of its the main drawbacks. Here, we use a direct functionalization method for the direct covalent binding of monoclonal anti-HSA antibodies on an aldehyde-functionalized Si-p/SiO2/Si3N4 structure. This methodology, in contrast with most of the protocols reported in literature, requires less chemical reagents, it is less time-consuming and it does not need any chemical activation. The detection capability of the immunosensor was tested by performing non-faradaic electrochemical impedance spectroscopy (EIS) measurements for the specific detection of HSA proteins. Protein concentrations within the linear range of 10−13–10−7 M were detected, showing a sensitivity of 0.128 Ω μM−1 and a limit of detection of 10−14 M. The specificity of the sensor was also addressed by studying the interferences with a similar protein, bovine serum albumin. The results obtained show that the antibodies were efficiently immobilized and the proteins detected specifically

  8. Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, David, E-mail: caballero@unistra.fr [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); University of Barcelona, Department of Electronics, C/ Marti i Franques 1, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain); Martinez, Elena [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain); Bausells, Joan [Centre Nacional de Microelectronica (CNM-IMB), CSIC, Campus UAB, 08193 Bellaterra (Spain); Errachid, Abdelhamid, E-mail: abdelhamid.errachid-el-salhi@univ-lyon1.fr [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); Universite Claude Bernard - Lyon 1, LSA - UMR 5180, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Samitier, Josep [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); University of Barcelona, Department of Electronics, C/ Marti i Franques 1, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer An impedimetric label-free immunosensor was developed for the specific detection of human serum albumin proteins. Black-Right-Pointing-Pointer Anti-HSA antibodies were covalently immobilized on silicon nitride surfaces using a direct functionalization methodology. Black-Right-Pointing-Pointer Silicon nitride offers multiple advantages compared to other common materials. Black-Right-Pointing-Pointer The proposed sensor has high sensitivity and good selectivity for the detection of HSA proteins. - Abstract: In this work we report the fabrication and characterization of a label-free impedimetric immunosensor based on a silicon nitride (Si{sub 3}N{sub 4}) surface for the specific detection of human serum albumin (HSA) proteins. Silicon nitride provides several advantages compared with other materials commonly used, such as gold, and in particular in solid-state physics for electronic-based biosensors. However, few Si{sub 3}N{sub 4}-based biosensors have been developed; the lack of an efficient and direct protocol for the integration of biological elements with silicon-based substrates is still one of its the main drawbacks. Here, we use a direct functionalization method for the direct covalent binding of monoclonal anti-HSA antibodies on an aldehyde-functionalized Si-p/SiO{sub 2}/Si{sub 3}N{sub 4} structure. This methodology, in contrast with most of the protocols reported in literature, requires less chemical reagents, it is less time-consuming and it does not need any chemical activation. The detection capability of the immunosensor was tested by performing non-faradaic electrochemical impedance spectroscopy (EIS) measurements for the specific detection of HSA proteins. Protein concentrations within the linear range of 10{sup -13}-10{sup -7} M were detected, showing a sensitivity of 0.128 {Omega} {mu}M{sup -1} and a limit of detection of 10{sup -14} M. The specificity of the sensor was also addressed by studying the

  9. Detection of hexavalent uranium with inline and field-portable immunosensors

    Energy Technology Data Exchange (ETDEWEB)

    Melton, Scott J.; Yu, Haini; Ali, Mehnaaz F.; Williams, Kenneth H; Wilkins, Michael J.; Long, Philip E.; Blake, Diane A.

    2008-10-02

    An antibody that recognizes a chelated form of hexavalent uranium was used in the development of two different immunosensors for uranium detection. Specifically, these sensors were utilized for the analysis of groundwater samples collected during a 2007 field study of in situ bioremediation in a aquifer located at Rifle, CO. The antibody-based sensors provided data comparable to that obtained using Kinetic Phosphorescence Analysis (KPA). Thus, these novel instruments and associated reagents should provide field researchers and resource managers with valuable new tools for on-site data acquisition.

  10. Optimization of bioselective membrane of amperometric enzyme sensor on basis of glucose oxidase using NH2-modified multi-wall carbone nanotubes

    OpenAIRE

    Korpan Ya. I.; Rogaleva N. S.; Biloivan O. A.

    2010-01-01

    Aim. To investigate a possibility of application of multi-wall carbone nanotubes modified with NH2-groups (MWCNT-NH2) for creation of sensitive elements of the amperometric biosensor based on immobilized oxidoreductases, in particular, glucose oxidase (GOD). To study electrochemical properties of the membranes obtained. Methods. Experiments were carried out with amperometric methods using the ìStat 200 device («DropSens», Spain). The enzymes were immobilised in glutaraldehyde vapour. Results....

  11. A self-amplified transistor immunosensor under dual gate operation: highly sensitive detection of hepatitis B surface antigen

    Science.gov (United States)

    Lee, I.-K.; Jeun, M.; Jang, H.-J.; Cho, W.-J.; Lee, K. H.

    2015-10-01

    Ion-sensitive field-effect transistors (ISFETs), although they have attracted considerable attention as effective immunosensors, have still not been adopted for practical applications owing to several problems: (1) the poor sensitivity caused by the short Debye screening length in media with high ion concentration, (2) time-consuming preconditioning processes for achieving the highly-diluted media, and (3) the low durability caused by undesirable ions such as sodium chloride in the media. Here, we propose a highly sensitive immunosensor based on a self-amplified transistor under dual gate operation (immuno-DG ISFET) for the detection of hepatitis B surface antigen. To address the challenges in current ISFET-based immunosensors, we have enhanced the sensitivity of an immunosensor by precisely tailoring the nanostructure of the transistor. In the pH sensing test, the immuno-DG ISFET showed superior sensitivity (2085.53 mV per pH) to both standard ISFET under single gate operation (58.88 mV per pH) and DG ISFET with a non-tailored transistor (381.14 mV per pH). Moreover, concerning the detection of hepatitis B surface antigens (HBsAg) using the immuno-DG ISFET, we have successfully detected trace amounts of HBsAg (22.5 fg mL-1) in a non-diluted 1× PBS medium with a high sensitivity of 690 mV. Our results demonstrate that the proposed immuno-DG ISFET can be a biosensor platform for practical use in the diagnosis of various diseases.Ion-sensitive field-effect transistors (ISFETs), although they have attracted considerable attention as effective immunosensors, have still not been adopted for practical applications owing to several problems: (1) the poor sensitivity caused by the short Debye screening length in media with high ion concentration, (2) time-consuming preconditioning processes for achieving the highly-diluted media, and (3) the low durability caused by undesirable ions such as sodium chloride in the media. Here, we propose a highly sensitive immunosensor

  12. Label free sensing of creatinine using a 6 GHz CMOS near-field dielectric immunosensor.

    Science.gov (United States)

    Guha, S; Warsinke, A; Tientcheu, Ch M; Schmalz, K; Meliani, C; Wenger, Ch

    2015-05-01

    In this work we present a CMOS high frequency direct immunosensor operating at 6 GHz (C-band) for label free determination of creatinine. The sensor is fabricated in standard 0.13 μm SiGe:C BiCMOS process. The report also demonstrates the ability to immobilize creatinine molecules on a Si3N4 passivation layer of the standard BiCMOS/CMOS process, therefore, evading any further need of cumbersome post processing of the fabricated sensor chip. The sensor is based on capacitive detection of the amount of non-creatinine bound antibodies binding to an immobilized creatinine layer on the passivated sensor. The chip bound antibody amount in turn corresponds indirectly to the creatinine concentration used in the incubation phase. The determination of creatinine in the concentration range of 0.88-880 μM is successfully demonstrated in this work. A sensitivity of 35 MHz/10 fold increase in creatinine concentration (during incubation) at the centre frequency of 6 GHz is gained by the immunosensor. The results are compared with a standard optical measurement technique and the dynamic range and sensitivity is of the order of the established optical indication technique. The C-band immunosensor chip comprising an area of 0.3 mm(2) reduces the sensing area considerably, therefore, requiring a sample volume as low as 2 μl. The small analyte sample volume and label free approach also reduce the experimental costs in addition to the low fabrication costs offered by the batch fabrication technique of CMOS/BiCMOS process. PMID:25782697

  13. Modelling of Amperometric Biosensor Used for Synergistic Substrates Determination

    Directory of Open Access Journals (Sweden)

    Dainius Simelevicius

    2012-04-01

    Full Text Available In this paper the operation of an amperometric biosensor producing a chemically amplified signal is modelled numerically. The chemical amplification is achieved by using synergistic substrates. The model is based on non-stationary reaction-diffusion equations. The model involves three layers (compartments: a layer of enzyme solution entrapped on the electrode surface, a dialysis membrane covering the enzyme layer and an outer diffusion layer which is modelled by the Nernst approach. The equation system is solved numerically by using the finite difference technique. The biosensor response and sensitivity are investigated by altering the model parameters influencing the enzyme kinetics as well as the mass transport by diffusion. The biosensor action was analyzed with a special emphasis to the effect of the chemical amplification. The simulation results qualitatively explain and confirm the experimentally observed effect of the synergistic substrates conversion on the biosensor response.

  14. Modelling of amperometric biosensor used for synergistic substrates determination.

    Science.gov (United States)

    Simelevicius, Dainius; Baronas, Romas; Kulys, Juozas

    2012-01-01

    In this paper the operation of an amperometric biosensor producing a chemically amplified signal is modelled numerically. The chemical amplification is achieved by using synergistic substrates. The model is based on non-stationary reaction-diffusion equations. The model involves three layers (compartments): a layer of enzyme solution entrapped on the electrode surface, a dialysis membrane covering the enzyme layer and an outer diffusion layer which is modelled by the Nernst approach. The equation system is solved numerically by using the finite difference technique. The biosensor response and sensitivity are investigated by altering the model parameters influencing the enzyme kinetics as well as the mass transport by diffusion. The biosensor action was analyzed with a special emphasis to the effect of the chemical amplification. The simulation results qualitatively explain and confirm the experimentally observed effect of the synergistic substrates conversion on the biosensor response. PMID:22666066

  15. Comparison of glucose oxidases from Penicillium adametzii, Penicillium Funiculosum and Aspergillus Niger in the design of amperometric glucose biosensors.

    Science.gov (United States)

    Ramanavicius, Arunas; Voronovic, Jaroslav; Semashko, Tatiana; Mikhailova, Raisa; Kausaite-Minkstimiene, Asta; Ramanaviciene, Almira

    2014-01-01

    The properties of amperometric glucose biosensors based on three different glucose oxidases and various redox mediators were evaluated. Glucose oxidases (GOx) from Penicillium adametzii, Penicillium funiculosum and Aspergillus niger and artificial redox mediators, such as ferrocene, ferrocenecarboxaldehyde, α-methylferrocene methanol and ferrocenecarboxylic acid, were used for modifying the graphite rod electrode and amperometrical reagent-less glucose detection. The obtained results were compared using N-methylphenazonium methyl sulphate in the solution. Taking into account the experimental kinetic parameters and the stability of the tested enzymatic electrodes, GOx from Penicillium funiculosum proved to be more suitable for glucose biosensor design in comparison with other evaluated enzymes. PMID:25492463

  16. A novel photoelectrochemical immunosensor by integration of nanobody and TiO₂ nanotubes for sensitive detection of serum cystatin C.

    Science.gov (United States)

    Mi, Li; Wang, Pingyan; Yan, Junrong; Qian, Jing; Lu, Jusheng; Yu, Jiachao; Wang, Yuzhen; Liu, Hong; Zhu, Min; Wan, Yakun; Liu, Songqin

    2016-01-01

    Cystatin C (CysC) is a sensitive marker for the estimation of the glomerular filtration rate and the clinical diagnosis of different diseases. In this paper, CysC-specific nanobodies (Nbs) were isolated from a phage display nanobody library. A simple and sensitive photoelectrochemical immunosensor based on TiO2 nanotube arrays (TNAs) was proposed for the sensitive detection of CysC. The TiO2 nanotube arrays deposited by electrochemical anodization displayed a high and stable photocurrent response under irradiation. After coupling CysC-specific nanobody to TNA (Nb/TNA), the proposed immunosensor for CysC can be utilized for tracking the photocurrent change of Nb/TNA caused by immunoreactions between CysC and the immobilized CysC-specific Nb. This allowed for the determination of CysC with a calibration range from 0.72 pM to 7.19 nM. The variation of the photocurrent was in a linear relationship with the logarithm of the CysC concentration in the range of 0.72 pM-3.6 nM. The immunosensor had a correlation coefficient of 0.97 and a detection limit of 0.14 pM at a signal-to-noise ratio of 3. The proposed immunosensor showed satisfactory intra- and inter-assay accuracy, high selectivity and good stability. As a result, this proposed strategy would offer a novel and simple approach for the detection of immunoreactions, provide new insights in popularizing the diagnosis of CysC, and extend the application of TiO2 nanotubes. PMID:26703259

  17. Biomonitoring of Organophosphorus Agent Exposure by Reactivation of Cholinesterase Enzyme Based on Carbon Nanotube-Enhanced Flow-Injection Amperometric Detection

    Energy Technology Data Exchange (ETDEWEB)

    Du, Dan; Wang, Jun; Smith, Jordan N.; Timchalk, Charles; Lin, Yuehe

    2009-11-15

    A portable, rapid, and sensitive assessment of sub-clinical organophosphorus (OPs) agent exposure based on reactivation of cholinesterase (ChE) from OP-inhibited ChE using rat saliva (in vitro) was developed using an electrochemical sensor coupled with a microflow-injection system. The sensor was based on a carbon nanotube (CNT)-modified screen printed carbon electrode (SPE), which was integrated into a flow cell. Due to the extent of inter-individual ChE activity variability, ChE biomonitoring often requires an initial base-line determination (non-inhibited) of enzyme activity which is then directly compared with activity after OP exposure. This manuscript described an alternative strategy where reactivation of the phosphorylated enzyme was exploited to enable measurement of both inhibited and baseline ChE activity (i.e. after reactivation) in the same sample. The use of CNT makes the electrochemical detection of the products from enzymatic reactions more feasible with extremely high sensitivity and at low potentials. Paraoxon was selected as a model OP compound for in vitro inhibition studies. Some experiment parameters, (e.g. inhibition and reactivation times), have been optimized such that, 92 - 95% ChE reactivation can be achieved over a broad range of ChE inhibition (5 - 94 %) with paraoxon. The extent of enzyme inhibition using this electrochemical sensor correlates well with conventional enzyme activity measurements.

  18. Electrochemical impedance spectroscopy for analytical determination of paraquat in meconium samples using an immunosensor modified with fullerene, ferrocene and ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xiulan [State Key Laboratory of Food Science and Technology, Wuxi 214122 (China); Li Zaijun, E-mail: zaijunli@263.ne [School of Chemical and Materials Engineering, Jiangnan University, Lihu Road 1800, Wuxi 214122 (China); Cai, Yan; Wei, Zhilei [School of Chemical and Materials Engineering, Jiangnan University, Lihu Road 1800, Wuxi 214122 (China); Fang Yinjun; Ren Guoxiao; Huang Yaru [Zhejiang Zanyu Technology Limited Corporation, Hangzhou 311215 (China)

    2011-01-01

    The paper reports a highly sensitive electrochemical immunosensor for the detection of paraquat. The immunosensor bases on glassy carbon electrode modified with a composite made from fullerene, ferrocene and the ionic liquid. The components were immobilized on the electrode surface by chitosan. The antibody of paraquat was covalently conjugated to the surface which was then blocked with bovine serum albumin. Analytical characteristics of the immunosensor were investigated by electrochemical impedance spectroscopy. It offers good repeatability (RSD = 1.5%), a stability of more than 150 days, an impedimetric response to paraquat in the range from 3.89 x 10{sup -11} to 4.0 x 10{sup -8} mol L{sup -1}, and a detection limit (S/N = 3) of 9.0 x 10{sup -12} mol L{sup -1}. The effects of omitting fullerene and the ionic liquid were well tested. The results indicated that sensitivity of the immunosensor is 3.7-fold better if fullerene and ionic liquid are used. This demonstrates that fullerene facilitates electron transfer on surface of the electrode due to unique electrochemical properties, while the ionic liquid provides biocompatible microenvironment for the antibody, which results in the enhanced sensitivity and stability. Moreover, surface morphology feature and electrochemical properties of the electrode were also examined. The method was satisfactorily applied to the determination of paraquat in meconium.

  19. Amperometric Detection of Bacillus anthracis Spores: A Portable, Low-Cost Approach to the ELISA

    Directory of Open Access Journals (Sweden)

    Gabriel D. Peckham

    2013-01-01

    Full Text Available Antibody-based detection assays are generally robust, a desirable characteristic for in-the-field use. However, to quantify the colorimetric or fluorescent signal, these assays require expensive and fragile instruments which are ill-suited to in-the-field use. Lateral flow devices (LFDs circumvent these barriers to portability but suffer from poor sensitivity and subjective interpretation. Here, an antibody-based method for detecting Bacillus anthracis spores via amperometric signal generation is compared to ELISA and LFDs. This amperometric immunoassay uses antibody conjugated to magnetic beads and glucose oxidase (GOX along with the electron mediator 2, 6-dichlorophenolindophenol (DCPIP for production of a measurable current from a 0.4 V bias voltage. With similar sensitivity to ELISA, the assay can be completed in about 75 minutes while being completely powered and operated from a laptop computer. Immunoassay amperometry holds promise for bringing low-cost, quantitative detection of hazardous agents to the field.

  20. Functionalized single-walled carbon nanotubes/polypyrrole composites for amperometric glucose biosensors

    OpenAIRE

    Raicopol, Matei; Prună, Alina; Damian, Celina; Pilan, Luisa

    2013-01-01

    This article reports an amperometric glucose biosensor based on a new type of nanocomposite of polypyrrole (PPY) with p-phenyl sulfonate-functionalized single-walled carbon nanotubes (SWCNTs-PhSO3 −). An environmentally friendly functionalization procedure of the SWCNTs in the presence of substituted aniline and an oxidative species was adopted. The nanocomposite-modified electrode exhibited excellent electrocatalytic activities towards the reduction or oxidation of H2O2. This feature allowed...

  1. Computational Modeling of Mediator Oxidation by Oxygen in an Amperometric Glucose Biosensor

    OpenAIRE

    Dainius Šimelevičius; Karolis Petrauskas; Romas Baronas; Julija Razumienė

    2014-01-01

    In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, whi...

  2. An amperometric acetylcholinesterase sensor based on Fe3O4 nanoparticle/multi-walled carbon nanotube-modified ITO-coated glass plate for the detection of pesticides

    International Nuclear Information System (INIS)

    Highlights: ► Constructed AChE biosensor based on AChE/Fe3O4NPs/c-MWCNT/ITO electrode. ► Enzyme electrode was characterized by AFM, FTIR, CV and EIS. ► Detection limit and working range of biosensor were 0.1 nM and 0.1–100 nM. ► Half life of enzyme electrode was 3 months. ► Biosensor measured pesticides in environmental and food samples. - Abstract: A method is described for the construction of a highly sensitive electrochemical biosensor for the detection of malathion, chlorpyrifos, monocrotophos and endosulfan based on covalent immobilization of acetylcholinesterase (AChE) on iron oxide nanoparticles (Fe3O4NPs)-decorated carboxylated multi-walled carbon nanotubes (c-MWCNTs) electrodeposited onto indium tin oxide (ITO)-coated glass plate. Transmission electron microscopic (TEM) and UV analysis of nanocomposite materials demonstrated that Fe3O4NPs were well deposited on the outer walls of c-MWCNTs. The modified electrode was characterized by atomic force microscopy (AFM), cyclic voltammetry (CV), Fourier transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS). The resulting biosensor exhibited a linear response for acetylthiocholine in a concentration range of 0.1–700 μmol L−1 with a remarkable sensitivity of 0.402 mA/μmol L−1. Under optimum conditions, the inhibition rates of pesticides were proportional to their concentrations in the range of 0.1–70 nmol L−1, 0.1–50 nmol L−1, 0.1–70 nmol L−1 and 0.1–100 nmol L−1 for malathion, chlorpyrifos, monocrotophos and endosulfan, respectively. The detection limit of the biosensor for all pesticides was 0.1 nmol L−1 at a signal-to-noise ratio of 3. The biosensor showed good reproducibility, no interference by metal ions and long-term stability. The measurement results obtained by the present biosensor were in good agreement with those obtained by the standard gas chromatography–mass spectrometry method. The biosensor was employed for the determination

  3. A Choline Oxidase Amperometric Bioassay for the Detection of Mustard Agents Based on Screen-Printed Electrodes Modified with Prussian Blue Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fabiana Arduini

    2015-02-01

    Full Text Available In this work a novel bioassay for mustard agent detection was proposed. The bioassay is based on the capability of these compounds to inhibit the enzyme choline oxidase. The enzymatic activity, which is correlated to the mustard agents, was electrochemically monitored measuring the enzymatic product, hydrogen peroxide, by means of a screen-printed electrode modified with Prussian Blue nanoparticles. Prussian Blue nanoparticles are able to electrocatalyse the hydrogen peroxide concentration reduction at low applied potential (−50 mV vs. Ag/AgCl, thus allowing the detection of the mustard agents with no electrochemical interferences. The suitability of this novel bioassay was tested with the nitrogen mustard simulant bis(2-chloroethylamine and the sulfur mustard simulants 2-chloroethyl ethyl sulfide and 2-chloroethyl phenyl sulfide. The bioassay proposed in this work allowed the detection of mustard agent simulants with good sensitivity and fast response, which are excellent premises for the development of a miniaturised sensor well suited for an alarm system in case of terrorist attacks.

  4. A piezoelectric immunosensor for the determination of pesticide residues and metabolites in fruit juices.

    Science.gov (United States)

    March, C; Manclús, J J; Jiménez, Y; Arnau, A; Montoya, A

    2009-05-15

    A quartz crystal microbalance (QCM) immunosensor was developed for the determination of the insecticide carbaryl and 3,5,6-trichloro-2-pyridinol (TCP), the main metabolite of the insecticide chlorpyrifos and of the herbicide triclopyr. The detection was based on a competitive conjugate-immobilized immunoassay format using monoclonal antibodies (MAbs). Hapten conjugates were covalently immobilized, via thioctic acid self-assembled monolayer (SAM), onto the gold electrode sensitive surface of the quartz crystal. This covalent immobilization allowed the reusability of the modified electrode surface for at least one hundred and fifty assays without significant loss of sensitivity. The piezoimmunosensor showed detection limits (analyte concentrations producing 10% inhibition of the maximum signal) of 11 and 7 microg l(-1) for carbaryl and TCP, respectively. The sensitivity attained (I(50) value) was around 30 microg l(-1) for both compounds. Linear working ranges were 15-53 microg l(-1) for carbaryl and 13-83 microg l(-1) for TCP. Each complete assay cycle took 20 min. The good sensitivity, specificity, and reusability achieved, together with the short response time, allowed the application of this immunosensor to the determination of carbaryl and TCP in fruits and vegetables at European regulatory levels, with high precision and accuracy. PMID:19269436

  5. Electrochemical Immunosensor Based on AuNPs/PDDA-GO for Detection of SirT1%基于AuNPs/PDDA-GO纳米复合物的电化学免疫传感器的构建及对SirT1蛋白的检测

    Institute of Scientific and Technical Information of China (English)

    毕文姬; 陆丹琴; 符莹; 黄齐林; 徐志爱; 张文

    2013-01-01

    基于AuNPs/PDDA-GO纳米复合物制备了一种新型电化学免疫传感器,并将其用于SirT1的检测.首先,在电极表面修饰复合材料AuNPs/PDDA-GO,然后将目标蛋白SirT1固定到修饰了AuNPs/PDDA-GO的电极表面,再通过特异性免疫反应结合一抗(Ab1)和辣根过氧化酶标记的二抗分子(HRP-Ab2),最后用示差脉冲伏安法检测电流信号,实现了对SirT1蛋白水平的测定.在优化的实验条件下,SirT1蛋白的浓度在0.1~100 ng/mL范围内与响应电流呈良好线性关系,检出限为0.029 ng/mL.%AuNPs/PDDA-GO nanocomposite was produced by combining poly(diallyldimethylammonium chloride) (PDDA) functionalized graphene oxide nanosheets (PDDA-GO) and gold nanoparticles (AuNPs)through self-assembly method,which offered an efficient platform for antibody immobilization with good biocompatibility.A new type of electrochemical immunosensor based on AuNPs/PDDA-GO nanocomposite for the detection of SirT1 was then developed.The immunosensor construction consisted of the immobilization of the hybrid architecture,the immunoreaction of target antigen SirT1 and capture antibody(Ab1),followed by the binding of HRP-Ab2.The designed immunoassay showed an excellent analytical performance,and exhibited a wide dynamic response range for SirT1 from 0.1 ng/mL to 100 ng/mL with a detection limit of 0.029 ng/mL.Overall,this developed strategy is proved as a simple,cost-effective method,and can be easily extended to other protein analysis.

  6. 基于纳米酞菁钴修饰的石墨烯作为过氧化物模拟酶的信号放大型免疫传感器的研究%A signal amplification immunosensor based on nano-cobalt phthalocyanine modified graphene as a peroxidase simulated enzyme

    Institute of Scientific and Technical Information of China (English)

    杨哲涵; 汪娟; 卓颖; 柴雅琴

    2015-01-01

    In this work, a signal-amplified electrochemical immunosensor based on cobalt phthalocyanine nanoparticles decorated graphene oxide nanocomposite (NanoCoPc/GO) was proposed for sensitive detection procalcitonin (PCT). Here, both cobalt phthalocyanine nanoparticles and graphene oxide exhibited an intrinsic enzyme mimetic activity similar to natural peroxidase. In the present of H2O2, an enhanced electrochemical signal was obtained as the catalysis of NanoCoPc/GO to H2O2. Importantly, NanoCoPc/GO as peroxidase mimetic applied to electrochemical amplification system could avoid the disadvantage of nature enzymes such as expensive and easily denatured by environmental changes. The proposed immunosensor showed good sensitivity for quantitative determination of PCT.%该文利用酞菁钴纳米粒子修饰氧化石墨烯(NanoCoPc/GO)用于构建无酶的信号放大型电化学免疫传感器来灵敏地检测降钙素原(PCT)。纳米酞菁钴和氧化石墨烯都具有类似于天然过氧化物酶的性质可以催化氧化H2O2。因此,当H2O2的存在时,NanoCoPc/GO通过催化H2O2实现对电活性物质的信号的放大。NanoCoPc/GO作为模拟酶用于电化学放大时,可以避免天然酶的缺点比如价格昂贵和容易随着环境变化而发生变性。结果表明,该免疫传感器检测PCT的线性范围在0.025~5.0 ng/mL,最低检测限为8 pg/mL。

  7. Thin-film amperometric multibiosensor for simultaneous determination of lactate and glucose in wine.

    Science.gov (United States)

    Shkotova, Lyudmyla V; Piechniakova, Nataliia Y; Kukla, Oleksandr L; Dzyadevych, Sergei V

    2016-04-15

    An amperometric multi-biosensor based on lactate and glucose oxidases has been developed for determination of lactate and glucose in wine. Gold thin-film amperometric electrodes were used as multi-transducers. Analytical characteristics of the multi-biosensor developed were studied. The minimum detectable concentration was 5×10(-6) mol/l for both glucose and lactate. High reproducibility and storage stability of the multi-biosensor are demonstrated in this paper. Lactate and glucose were determined in wine, and a good correlation was obtained with concentrations determined using high-performance liquid chromatography (correlation coefficient for glucose R(2)=0.998, for lactate R(2)=0.718). PMID:26617042

  8. Thin-film amperometric multibiosensor for simultaneous determination of lactate and glucose in wine.

    Science.gov (United States)

    Shkotova, Lyudmyla V; Piechniakova, Nataliia Y; Kukla, Oleksandr L; Dzyadevych, Sergei V

    2016-04-15

    An amperometric multi-biosensor based on lactate and glucose oxidases has been developed for determination of lactate and glucose in wine. Gold thin-film amperometric electrodes were used as multi-transducers. Analytical characteristics of the multi-biosensor developed were studied. The minimum detectable concentration was 5×10(-6) mol/l for both glucose and lactate. High reproducibility and storage stability of the multi-biosensor are demonstrated in this paper. Lactate and glucose were determined in wine, and a good correlation was obtained with concentrations determined using high-performance liquid chromatography (correlation coefficient for glucose R(2)=0.998, for lactate R(2)=0.718).

  9. An amperometric nanobiosensor using a biocompatible conjugate for early detection of metastatic cancer cells in biological fluid.

    Science.gov (United States)

    Pallela, Ramjee; Chandra, Pranjal; Noh, Hui-Bog; Shim, Yoon-Bo

    2016-11-15

    Metastasis is the major cause of cancer-associated death in humans, and its early diagnosis will help clinicians to develop suitable therapeutic strategies which may save life of cancer patients. In this direction, we designed an amperometric biosensor using a biocompatible conjugate to diagnose cancer metastasis by detecting epithelial cell adhesion molecule expressing metastatic cancer cells (Ep-MCCs). The sensor probe is fabricated by immobilizing monoclonal capture antibody (CapAnti) on the gold nanoparticles (AuNPs)/conducting polymer composite layer. The detection relies on a sandwich-type approach using a bioconjugate composed of reporter antibody (RepAnti), nanostructured collagen (nCOL), AuNPs, and hydrazine (Hyd) which served as a nonenzymatic electrocatalyst for the reduction of H2O2. The binding of Ep-MCCs with the sensor probe was confirmed using electrochemical impedance spectroscopy, cyclic voltammetry, and chronoamperometry. A dynamic range for the Ep-MCCs detection is determined between 45 and 100,000 Ep-MCCs/mL with the detection limit of 28±3 Ep-MCCs/mL. The proposed immunosensor is successfully applied to detect Ep-MCCs in serum and mixed cell samples and interferences due to nontarget cells and molecules present in the real sample matrix are also examined. The early stage of Ep-MCCs was examined by fluorescence-activated cell sorting assay, which confirms that the developed biosensor has detected Ep-MCCs in its early stage. PMID:27311113

  10. Amperometric biosensors based on conducting nanotubes

    NARCIS (Netherlands)

    Kros, Alexander

    2000-01-01

    This thesis describes a multidisciplinary study towards the development of a glucose biosensor that in the future can be used for in vivo implantations. The research focuses on three major topics, viz. the construction of the glucose sensor, the development of a biocompatible coating and a study of

  11. Modeling amperometric biosensors based on allosteric enzymes

    Directory of Open Access Journals (Sweden)

    Liutauras Ričkus

    2013-09-01

    Full Text Available Computational modeling of a biosensor with allosteric enzyme layer was investigated in this study. The operation of the biosensor is modeled using non-stationary reaction-diffusion equations. The model involves three regions: the allosteric enzyme layer where the allosteric enzyme reactions as well as then mass transport by diffusion take place, the diffusion region where the mass transport by diffusion and non-enzymatic reactions take place and the convective region in which the analyte concentration is maintained constant. The biosensor response on dependency substrate concentration, cooperativity coefficient and the diffusion layer thickness on the same parameters have been studied.

  12. An Ultrasensitive Electrochemical Immunosensor for HIV p24 Based on Fe3O4@SiO2 Nanomagnetic Probes and Nanogold Colloid-Labeled Enzyme–Antibody Copolymer as Signal Tag

    Directory of Open Access Journals (Sweden)

    Tianhua Li

    2013-03-01

    Full Text Available An ultrasensitive portable electrochemical immunosensor for human immunodeficiency virus p24 (HIV p24 antigen detection has been developed, whereby the detection sensitivity was 1000 times higher than that of the ELISA method. Firstly, a novel HRP enzyme–antibody copolymer (EV-p24 Ab2 was synthesized through an EnVision regent (EV, a dextrin amine skeleton anchoring more than 100 molecules of HRP and 15 molecules of anti IgG, then incubated in the secondary antibody of p24. Secondly, the copolymer was immobilized on the gold nanocolloids (AuNPs to fabricate a novel signal tag (AuNPs/EV-p24 Ab2. Subsequently, a sandwich-type immunoreaction would take place between the capture probe (silicon dioxide-coated magnetic Fe3O4 nanoparticles (MNPs labeled with the primary p24 antibody (MNPs-p24 Ab1, p24 (different concentrations and the signal tag [AuNPs/EV-p24 Ab2] to form the immunocomplex. Finally, the immunocomplex was absorbed on the surface of screen printed carbon electrode (SPCE by a magnet and immersed in the o-hydroxyl phenol (HQ and H2O2. The large amounts of HRP on the signal tag can catalyze the oxidation of HQ by H2O2, which can induce an amplified reductive current. Moreover, the capture probe could improve the accumulation ability of p24 and facilitate its separation from the substrate through the magnet. Under optimal conditions, the proposed immunoassay exhibited good sensitivity to p24 within a certain concentration range from 0.001 to 10.00 ng/mL, with a detection limit of 0.5 pg/mL (S/N = 3. The proposed method can be used for real-time and early detection of HIV-infected people.

  13. Electrochemistry of metal complexes and their use in amperometric sensors

    OpenAIRE

    Somasundrum, Mithran

    1994-01-01

    This thesis concerns the utilization of metal complexes in amperometric sensors. Chapter One provides a general introduction to the area. The electrochemical theories relating to the development and use of amperometric sensors, are described, and applications for such sensors are outlined. These include trace element analysis for environmental and clinical use and the determination of NADH for the detection of clinical analytes. In Chapter Two, the electrochemical changes oc...

  14. Amperometric determination of vanadium (3) and vanadium (4) with gallocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Perevoshchikova, V.V. (Gor' kovskij Inzhenerno-Stroitel' nyj Inst. (USSR))

    1983-04-01

    The complexation between vanadium (3), vanadium (4) and gallocyanine in acid solutions has been examined. The apparent stability constants for the complexes have been estimated. The effect of foreign elements on amperometric titration of V(3) and V(4) with gallocyanine has been studied. A method is suggested of amperometric determination of 0.1-40 mg/ml of vanadium in its lowest oxidation states in the presence of each other.

  15. Simultaneous capacitance and amperometric measurements of exocytosis: a comparison.

    OpenAIRE

    Oberhauser, A F; Robinson, I M; Fernandez, J. M.

    1996-01-01

    We measured the exocytotic response induced by flash photolysis of caged compounds in isolated mast cells and chromaffin cells. Vesicle fusion was measured by monitoring the cell membrane capacitance. The release of vesicular contents was followed by amperometry. In response to a GTP gamma S stimulus we found that the time integral of the amperometric current could be superimposed on the capacitance trace. This shows that the integrated amperometric signal provides an alternative method of me...

  16. Amperometric determination of vanadium (3) and vanadium (4) with gallocyanine

    International Nuclear Information System (INIS)

    The complexation between vanadium (3), vanadium (4) and gallocyanine in acid solutions has been examined. The apparent stability constants for the complexes have been estimated. The effect of fereign elements on amperometric titration of V(3) and V(4) with gallocyanine has been studied. A method is sUggested of amperometric determination of 0.1-40 mg/ml of vanadium in its lowest oxidation states in the presence of each other

  17. Amperometric Noise at Thin Film Band Electrodes

    DEFF Research Database (Denmark)

    Larsen, Simon T.; Heien, Michael L.; Taboryski, Rafael

    2012-01-01

    polymers and measured the current noise in physiological buffer solution for a wide range of different electrode areas. The noise measurements could be modeled by an analytical expression, representing the electrochemical cell as a resistor and capacitor in series. The studies revealed three domains......; for electrodes with low capacitance, the amplifier noise dominated, for electrodes with large capacitances, the noise from the resistance of the electrochemical cell was dominant, while in the intermediate region, the current noise scaled with electrode capacitance. The experimental results and the model......Background current noise is often a significant limitation when using constant-potential amperometry for biosensor application such as amperometric recordings of transmitter release from single cells through exocytosis. In this paper, we fabricated thin-film electrodes of gold and conductive...

  18. Highly sensitive potentiometric immunosensor for hepatitis B surface antigen diagnosis

    Institute of Scientific and Technical Information of China (English)

    YUAN; Ruo; TANG; Dianping; CHAI; Yaqin; ZHANG; Lingyan; LI

    2005-01-01

    A highly sensitive potentiometric immunosensor for the diagnoses of epidemic diseases has been developed by means of self-assembly to immobilize hepatitis B surface antibody (HBsAb) for the detection of hepatitis B surface antigen (HBsAg) as a model. At first, the Nafion containing -SO3- groups was immobilized on a platinum electrode surface to absorb the -NH3+ groups of antibody molecules via the opposite-charged adsorption technique, in the meantime, hepatitis B surface antibodies were adsorbed onto the surface of Au nanoparticles, then hepatitis B surface antibodies and Au nanopartilces were entrapped into polyvinyl butyral on the surface of Nafion film. The modified procedure was further characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The influence and factors influencing the performance of resulting immunosensor were studied in detail. The resulting immunosensor exhibited sigmoid curve with log HBsAg concentrations, high sensitivity, wide linear range from 26 to 1280 ng·mL-1 with a detection limit of 3.1 ng·mL-1, rapid potentiometric response (4 months). Analytical results of clinical samples show that the developed immunoassay is comparable with the enzyme-linked immunosorbent assays (ELISAs) method, implying a promising alternative approach for detecting HBsAg in the clinical diagnosis.

  19. Iridium Oxide Film-Enhanced Impedance Immunosensor for Rapid Detection of Carcinoembyronic Antigen

    Institute of Scientific and Technical Information of China (English)

    DING,Yan-Jun; WANG,Hua; JIANG,Jian-Hui; SHEN,Guo-Li; YU,Ru-Qin

    2007-01-01

    A simple, rapid and sensitive impedance immunosensor based on iridium oxide (IrOx) thin film for the detection of carcinoembyronic antigen (CEA) in human sera has been proposed. Gold electrode was electrochemically modified with IrOx thin film and simultaneously functionalized with protein A (PA) to bind anti-CEA antibodies in an orientated way. It has been found that the antibody loading amount was dependent on the PA concentration and the deposition time of IrOx matrix. Under the optimized experimental conditions, the electron transfer resistances obtained were linearly related to the CEA concentration ranging from 36.2 to 460.0 ng/mL, with a detection limit of 28.0 ng/mL. Analytical results of clinical samples from cancer patients show that the proposed immunoassay is reasonably comparable with the chemiluminescence immunoassay (CLIA), indicating the feasibility of using the proposed method for CEA immunoassay in clinical laboratory.

  20. Development and characterization of a microfluidic glucose sensing system based on an enzymatic microreactor and chemiluminescence detection

    NARCIS (Netherlands)

    Moon, B. -U; de Vries, M. G.; Westerink, B. H. C.; Verpoorte, E.

    2012-01-01

    Chemiluminescence detection was developed as an alternative to amperometric detection for glucose analysis in a portable, microfluidics-based continuous glucose monitoring system. Amperometric detection allows easy determination of hydrogen peroxide, a product of the glucose oxidase-catalyzed reacti

  1. Optimization of bioselective membrane of amperometric enzyme sensor on basis of glucose oxidase using NH2-modified multi-wall carbone nanotubes

    Directory of Open Access Journals (Sweden)

    Korpan Ya. I.

    2010-02-01

    Full Text Available Aim. To investigate a possibility of application of multi-wall carbone nanotubes modified with NH2-groups (MWCNT-NH2 for creation of sensitive elements of the amperometric biosensor based on immobilized oxidoreductases, in particular, glucose oxidase (GOD. To study electrochemical properties of the membranes obtained. Methods. Experiments were carried out with amperometric methods using the ìStat 200 device («DropSens», Spain. The enzymes were immobilised in glutaraldehyde vapour. Results. The method of formation of bioselective matrix based on immobilised GOD with MNP-NH2 on the surface of gold amperometric electrodes was optimised. Optimal working conditions of the biosensor developed were determined. Conclusion. MWCNT integration into a bioselective matrix improves the biosensor analytical characteristics which means: higher signal value, wider linear range of glucose analysis, and possibility of substrate determination in wide range of working potential.

  2. Amperometric Bioelectronic Tongue for glucose determination

    Directory of Open Access Journals (Sweden)

    Yazan Al-Issa

    2015-03-01

    Full Text Available An amperometric Bioelectronic Tongue is reported for glucose determination that contains eight sensor electrodes constructed using different metal electrodes (Pt, Au, oxidoreductase enzymes (glucose oxidase, ascorbate oxidase, uricase, and membrane coatings (Nafion, chitosan. The response to varying concentrations of glucose, ascorbic acid, uric acid, and acetaminophen was tested for two models, concentration determination by current density measurements at individual electrodes and concentration determination by a linear regression model for the entire electrode array. The reduced chi-squared for the full array model was found to be about one order of magnitude lower than that for the individual-electrode model. Discrimination of glucose from chemical interference by the other three species is accomplished through a combination of enzyme catalysis, metal electrocatalysis, and membrane surface charge. The benefit of incorporating enzyme electrodes into the sensor array is illustrated by the lower correlation coefficients between different enzyme electrodes relative to non-enzyme coated electrodes. This approach can be more generally applied to detection of other substrates of oxidoreductase enzymes.

  3. Studies of Active Ingredients in Cough Syrup by Capillary Zone Electrophoresis with Amperometric Detection

    Institute of Scientific and Technical Information of China (English)

    ZHOU Tian-shu; WANG Ai-fang; WU Fang; SHI Guo-yue; FANG Yu-zhi

    2003-01-01

    The present paper covers a simple, reliable and reproducible method, based on capillary zone electrophoresis(CZE) with amperometric detection(AD), for the separation and the determination of ephedrine hydrochloride, promethazine hydrochloride and codeine phosphate. Under the optimal conditions, the three analytes were base-line separated completely within 16 min. Good linear relationships between the peak heights and the concentrations of the three analytes were obtained with the correlation coefficients better than 0.9993. The method was directly applied to the determination of the active ingredients in pharmaceutical preparations and the assay results were satisfactory.

  4. Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor

    International Nuclear Information System (INIS)

    This letter demonstrates the direct laser printing of photosynthetic material onto low cost nonfunctionalized screen printed electrodes for the fabrication of photosynthesis-based amperometric biosensors. The high kinetic energy of the transferred material induces direct immobilization of the thylakoids onto the electrodes without the use of linkers. This type of immobilization is able to establish efficient electrochemical contact between proteins and electrode, stabilizing the photosynthetic biomolecule and transporting electrons to the solid state device with high efficiency. The functionality of the laser printed biosensors was evaluated by the detection of a common herbicide such as Linuron.

  5. Application of L-lactate-cytochrome c-oxidoreductase for development of amperometric biosensor for L-lactate determination

    Directory of Open Access Journals (Sweden)

    Dzyadevych S. V.

    2009-06-01

    Full Text Available Aim. Development of amperometric biosensor based on L-lactate-cytochrome c-oxidoreductase (flavocytochrome b2, FC b2 for lactate determination. Methods. All experiments were performed using the amperometric method of detection. The methods of electrochemical polymerization and immobilization in glutaraldehyde vapors were used for FC b2 immobilization on the surface of electrodes. Results. The FC b2 preparation, which demonstrated the best operational characteristics after immobilization in poly (3,4-ethylen dioxythiophene, was selected. The selectivity, operational and storage stability, and pH-optimum for operation of the created biosensor were determined. The analysis of L-lactate in the model solutions and wine samples was carried outusing the developed biosensor. Conclusion. The FC b2-based biosensor due to its high stability can be effectively used for lactate determination in blood and other liquids containing no ethanol. After the selectivity optimization, the devise can be also applied for wine analysis.

  6. A novel electrochemical immunosensor using β-cyclodextrins functionalized silver supported adamantine-modified glucose oxidase as labels for ultrasensitive detection of alpha-fetoprotein.

    Science.gov (United States)

    Gao, Jian; Ma, Hongmin; Lv, Xiaohui; Yan, Tao; Li, Na; Cao, Wei; Wei, Qin

    2015-09-17

    In this work, a novel sandwich-type electrochemical immunosensor based on host-guest interaction was fabricated for the detection of alpha-fetoprotein (AFP). Due to the large specific surface area of multiwalled carbon nanotubes and the unique supramolecular recognition ability of β-cyclodextrins, ferrocenecarboxylic acid (Fc) was incorporated into this sensor platform by host-guest interaction to generate an electrochemical signal. And β-cyclodextrins functionalized silver supported adamantine-modified glucose oxidase (GOD-CD-Ag), was used as a label to improve the analytical performance of the immunosensor by the dual amplification strategy. The obtained GOD-CD-Ag conjugates could convert glucose into gluconic acid with the formation of hydrogen peroxide (H2O2). And then silver nanoparticles could in situ catalyze the reduction of the generated H2O2, dramatically improving the oxidation reaction of Fc. The developed immunosensor shows a wide linear calibration range from 0.001 to 5.0 ng/mL with a low detection limit (0.2 pg/mL) for the detection of AFP. The method, with ideal reproducibility and selectivity, has a wide application prospect in clinical research.

  7. Electrochemical immunosensor with NiAl-layered double hydroxide/graphene nanocomposites and hollow gold nanospheres double-assisted signal amplification.

    Science.gov (United States)

    Qiao, Lu; Guo, Yemin; Sun, Xia; Jiao, Yancui; Wang, Xiangyou

    2015-08-01

    A sensitive electrochemical immunosensor based on NiAl-layered double hydroxide/graphene nanocomposites (NiAl-LDH/G) and hollow gold nanospheres (HGNs) was proposed for chlorpyrifos detection. The NiAl-LDH/G was prepared using a conventional coprecipitation process and reduction of the supporting graphene oxide. Subsequently, the nanocomposites were dispersed with chitosan (CS). The NiAl-LDH/G possessed good electrochemical behavior and high binding affinity to the electrode. The high surface areas of HGNs and the vast aminos and hydroxyls of CS provided a platform for the covalently crosslinking of antibody. Under optimal conditions, the immunosensor exhibited a wide linear range from 5 to 150 μg/mL and from 150 to 2 μg/mL, with a detection limit of 0.052 ng/mL. The detection results showed good agreement with standard gas chromatography method. The constructed immunosensor exhibited good reproducibility, high specificity, acceptable stability and regeneration performance, which provided a new promising tool for chlorpyrifos detection in real samples. PMID:25801002

  8. A highly sensitive impedimetric label free immunosensor for Ochratoxin measurement in cocoa beans.

    Science.gov (United States)

    Malvano, Francesca; Albanese, Donatella; Pilloton, Roberto; Di Matteo, Marisa

    2016-12-01

    In this work the development and optimization of an impedimetric label free immunosensor for the detection of Ochratoxin A (OTA) is reported. Two antibody immobilization methods (oriented and not oriented) were compared highlighting a lower limit of detection (5pg/ml) for the not oriented immobilization but a closer linear range in contrast to oriented anti-OTA immunosensors which showed linearity in the range of 0.01-5ng/mL OTA. The analysis of the Atomic Force Microscopy (AFM) images showed two different nanostructures indicating that the use of oriented immobilization created a more ordered and highly dense antibody surface. Finally the oriented immunosensor was used to quantify OTA in spiked cocoa bean samples and the results were compared with those registered with competitive ELISA kit. The immunosensor was sensitive to OTA lower than 2μg/kg that represents the lower acceptable limit of OTA established by European legislation for the common food products. PMID:27374585

  9. Homemade Bienzymatic-Amperometric Biosensor for Beverages Analysis

    Science.gov (United States)

    Blanco-Lopez, M. C.; Lobo-Castanon, M. J.; Miranda-Ordieres, A. J.

    2007-01-01

    The construction of an amperometric biosensor for glucose analysis is described demonstrating that the analysis is easy to perform and the biosensor gives good analytical performance. This experiment helped the students to acquire problem-solving and teamwork skills, allowing them to reach a high level of independent and critical thought.

  10. Bioethanol in Biofuels Checked by an Amperometric Organic Phase Enzyme Electrode (OPEE Working in “Substrate Antagonism” Format

    Directory of Open Access Journals (Sweden)

    Mauro Tomassetti

    2016-08-01

    Full Text Available The bioethanol content of two samples of biofuels was determined directly, after simple dilution in decane, by means of an amperometric catalase enzyme biosensor working in the organic phase, based on substrate antagonisms format. The results were good from the point of view of accuracy, and satisfactory for what concerns the recovery test by the standard addition method. Limit of detection (LOD was on the order of 2.5 × 10−5 M.

  11. Bioethanol in Biofuels Checked by an Amperometric Organic Phase Enzyme Electrode (OPEE) Working in "Substrate Antagonism" Format.

    Science.gov (United States)

    Tomassetti, Mauro; Spuri Capesciotti, Gabriele; Angeloni, Riccardo; Martini, Elisabetta; Campanella, Luigi

    2016-01-01

    The bioethanol content of two samples of biofuels was determined directly, after simple dilution in decane, by means of an amperometric catalase enzyme biosensor working in the organic phase, based on substrate antagonisms format. The results were good from the point of view of accuracy, and satisfactory for what concerns the recovery test by the standard addition method. Limit of detection (LOD) was on the order of 2.5 × 10(-5) M. PMID:27571076

  12. Amperometric sensing of HIF1α expressed in cancer cells and the effect of hypoxic mimicking agents.

    Science.gov (United States)

    Hussain, Khalil K; Gurudatt, N G; Mir, Tanveer Ahmad; Shim, Yoon-Bo

    2016-09-15

    Hypoxia inducible factor 1 alpha (HIF1α) overexpression was detected in cancerous cells using an amperometric immunosensor with a nano-bioconjugate. The sensor probe was fabricated by covalently immobilizing the antibody (anti-HIF1α) onto a composite layer of functionalized conducting polymer [2,2:5,2-terthiophene-3-(p-benzoic acid)] (pTTBA) formed on a layer of gold nanoparticles (AuNPs). A nano-bioconjugate with hydrazine and a secondary antibody of HIF1α (sec-Ab2) attached on AuNPs reveals the immunoreaction at the sensor probe through the catalytic reduction of H2O2 by hydrazine at -0.35V vs. Ag/AgCl. Morphology and performance of the sensor probe were characterized using FE-SEM, XPS, EIS, and cyclic voltammetry. The calibration plot at optimized experimental conditions shows a dynamic range of 25-350pM/mL with a detection limit of 5.35±0.02pM/mL. The reliability of the sensor was evaluated using non-cancerous Vero and cancerous MCF-7 cell lysates, where the HIF1α expression was compared with three cancerous cell lines MCF-7, PC-3, and A549. Furthermore, the sensor probe confirms the stable expression of HIF1α in the A549 lung cancer cells when exposing them to hypoxic mimicking agents Co, Ni, and Mn ions. Of these, Co ions show the highest stabilization effect on HIF1α followed by Ni and Mn ions, respectively. PMID:27132006

  13. Enzyme-Free Amperometric Hydrogen Peroxide Biosensor Based on Electro-Polymerization of Bromophenol Blue%聚溴酚蓝过氧化氢传感器的研究

    Institute of Scientific and Technical Information of China (English)

    傅小红; 袁若; 柴雅琴; 张凌燕; 陈时洪; 唐明宇

    2006-01-01

    通过电聚合溴酚蓝于铂丝电极上,利用该聚合膜对H2O2直接催化制得无酶过氧化氢传感器. 实验结果表明该聚合膜对H2O2呈现出良好的催化特性,并对该传感器性能及影响该传感器性能的因素作了详细的研究. 在优化的条件下,该传感器的线性响应范围为5.6×10-8~1.4×10-5 mol/L,检测线为3.1×10-8 mol/L. 并且,该传感器灵敏度较高、重现性好、稳定性较长.%A novel enzyme-free amperometric hydrogen peroxide biosensor was developed by means of electro-polymerization bromophenol blue(PBPB) onto a platinum wire electrode. Experimental results showed that the PBPB-modified biosensor exhibited directly electrocatalytic behavior to the reduction of H2O2 without enzyme. The performance and factors influencing the proposed biosensor were studied in detail. Under the optimal conditions, the resulted electrode showed a linear response to hydrogen peroxide concentration ranging from 5.6×10-8 mol/L to 1.4×10-5 mol/L with a limit of detection of 3.1×10-8 mol/L and a sensitivity of 512 μA·mmol·L-1·cm-2. In addition, the resulted biosensor exhibited high sensitivity, good reproducibility and long-term stability.

  14. Automatic bionalyzer using an integrated amperometric biosensor for the determination of L-malic acid in wines.

    Science.gov (United States)

    Vargas, E; Ruiz, M A; Ferrero, F J; Campuzano, S; Ruiz-Valdepeñas Montiel, V; Reviejo, A J; Pingarrón, J M

    2016-09-01

    A new automatic bioanalyzer for L-malic acid using an integrated amperometric biosensor as detector is reported for the first time in this work. The biosensor is constructed by gold film sputtering deposition on a stainless steel disk electrode and co-immobilization of the enzymes malate dehydrogenase (MDH) and diaphorase (DP) together with the redox mediator tetrathiafulvalene (TTF) by means of dialysis membrane. The analytical performance of the biosensor was evaluated when it was used as amperometric detector in three different analytical methodologies: stirred solutions, semiautomatic FIA system and automatic bioanalyzer. The bienzyme biosensor exhibited great analytical performance in terms of sensitivity, selectivity and reproducibility of the measurements and its usefulness was demonstrated by analyzing wine reference materials with certified content of L-malic acid. The attractive analytical and operational characteristics demonstrated by the automatic bioanalyzer make it a promising simple, rapid and field-based tool for routine wine and fruit control. PMID:27343571

  15. Cleanup and analysis of sugar phosphates in biological extracts by using solid phase extraction and anion-exchange chromatography with pulsed amperometric detection

    DEFF Research Database (Denmark)

    Smith, Hans Peter; Cohen, A.; Buttler, T.;

    1998-01-01

    A cleanup method based on anion-exchange solid-phase extraction (SPE) was developed to render biological extracts suitable for the analysis of hexose phosphates with a modified anion-exchange chromatography method and pulsed amperometric detection. The method was applied to cell extracts of Sacch...

  16. Disposable amperometric magnetoimmunosensor for the sensitive detection of the cardiac biomarker amino-terminal pro-B-type natriuretic peptide in human serum

    Energy Technology Data Exchange (ETDEWEB)

    Esteban-Fernández de Ávila, Berta, E-mail: berta.efa@quim.ucm.es; Escamilla-Gómez, Vanessa, E-mail: vaneeg@quim.ucm.es; Campuzano, Susana, E-mail: susanacr@quim.ucm.es; Pedrero, María, E-mail: mpedrero@quim.ucm.es; Pingarrón, José M., E-mail: pingarro@quim.ucm.es

    2013-06-19

    Graphical abstract: -- Highlights: •Novel and sensitive amperometric magnetoimmunosensor for NT-proBNP detection. •Indirect competitive immunoassay onto HOOC-MBs and Au/SPEs as transducers. •Excellent analytical performance at levels clinically relevant in human serum. •Useful in clinical diagnosis and prognosis of cardiac diseases. -- Abstract: A novel amperometric magnetoimmunosensor using an indirect competitive format is developed for the sensitive detection of the amino-terminal pro-B-type natriuretic peptide (NT-proBNP). The immunosensor design involves the covalent immobilization of the antigen onto carboxylic-modified magnetic beads (HOOC-MBs) activated with N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS), and further incubation in a mixture solution containing variable concentrations of the antigen and a fixed concentration of an HRP-labeled detection antibody. Accordingly, the target NT-proBNP in the sample and that immobilized on the MBs compete for binding to a fixed amount of the specific HRP-labeled secondary antibody. The immunoconjugate-bearing MBs are captured by a magnet placed under the surface of a disposable gold screen-printed electrode (Au/SPE). The amperometric responses measured at –0.10 V (vs. a Ag pseudo-reference electrode), upon addition of 3,3′,5,5′-tetramethylbenzidine (TMB) as electron transfer mediator and H{sub 2}O{sub 2} as the enzyme substrate, are used to monitor the affinity reaction. The developed magnetoimmunosensor provides attractive analytical characteristics in 10-times diluted human serum samples, exhibiting a linear range of clinical usefulness (0.12–42.9 ng mL{sup −1}) and a detection limit of 0.02 ng mL{sup −1}, which can be used in clinical diagnosis of chronic heart failure in the elderly and for classifying patients at risk of death after heart transplantation. The magnetoimmunosensor was successfully applied to the analysis of spiked human serum

  17. The interference of HEPES buffer during amperometric detection of ATP in clinical applications.

    Science.gov (United States)

    Masson, Jean-Francois; Gauda, Estelle; Mizaikoff, Boris; Kranz, Christine

    2008-04-01

    HEPES-based biological buffer is subject to photooxidation upon exposure to fluorescent illumination. Thereby hydrogen peroxide is generated, which interferes with amperometric oxidoreductase-based biosensors for glucose or adenosine triphosphate (ATP). These biosensors operate at an oxidation potential above 500 mV vs. the standard calomel electrode (SCE) and involve hydrogen peroxide as the electroactive molecule detected at the electrode surface. False-positive detection of ATP was observed in HEPES buffer utilizing an amperometric microbiosensor based on the co-immobilization of glucose oxidase and hexokinase for detection of ATP in biological specimens. Electrochemical, mass spectrometric, (31)P NMR, and (1)H NMR studies indicate that complexation of ATP and HEPES induced by the presence of Ca(2+) in HEPES buffer decreases the photooxidation of HEPES. Consequently, the hydrogen peroxide background concentration is reduced, thereby leading to erroneous ATP detection at the dual-enzyme microbiosensor, which determines an increase in ATP via a reduced hydrogen peroxide signal. PMID:18368390

  18. Reengineered glucose oxidase for amperometric glucose determination in diabetes analytics.

    Science.gov (United States)

    Arango Gutierrez, Erik; Mundhada, Hemanshu; Meier, Thomas; Duefel, Hartmut; Bocola, Marco; Schwaneberg, Ulrich

    2013-12-15

    Glucose oxidase is an oxidoreductase exhibiting a high β-D-glucose specificity and high stability which renders glucose oxidase well-suited for applications in diabetes care. Nevertheless, GOx activity is highly oxygen dependent which can lead to inaccuracies in amperometric β-D-glucose determinations. Therefore a directed evolution campaign with two rounds of random mutagenesis (SeSaM followed by epPCR), site saturation mutagenesis studies on individual positions, and one simultaneous site saturation library (OmniChange; 4 positions) was performed. A diabetes care well suited mediator (quinone diimine) was selected and the GOx variant (T30V I94V) served as starting point. For directed GOx evolution a microtiter plate detection system based on the quinone diimine mediator was developed and the well-known ABTS-assay was applied in microtiter plate format to validate oxygen independency of improved GOx variants. Two iterative rounds of random diversity generation and screening yielded to two subsets of amino acid positions which mainly improved activity (A173, A332) and oxygen independency (F414, V560). Simultaneous site saturation of all four positions with a reduced subset of amino acids using the OmniChange method yielded finally variant V7 with a 37-fold decreased oxygen dependency (mediator activity: 7.4 U/mg WT, 47.5 U/mg V7; oxygen activity: 172.3 U/mg WT, 30.1 U/mg V7). V7 is still highly β-D-glucose specific, highly active with the quinone diimine mediator and thermal resistance is retained (prerequisite for GOx coating of diabetes test stripes). The latter properties and V7's oxygen insensitivity make V7 a very promising candidate to replace standard GOx in diabetes care applications. PMID:23835222

  19. Direct monitoring of organic vapours with amperometric enzyme gas sensors.

    Science.gov (United States)

    Hämmerle, Martin; Hilgert, Karin; Achmann, Sabine; Moos, Ralf

    2010-02-15

    In this study, amperometric enzyme gas sensors for direct monitoring of organic vapours (formaldehyde, ethanol and phenol) are presented using exemplarily different sensing strategies: NADH detection, H(2)O(2) detection and direct substrate recycling, respectively. The presented sensor configurations allow the selective, continuous, online monitoring of organic vapours without prior accumulation or sampling of the analyte. The gaseous samples are provided as headspace above aqueous solutions. The concentration in the gas phase was calculated from the concentration in solution at room temperature according to the respective Henry constants given in the literature. The enzymes employed are NAD-dependent formaldehyde dehydrogenase [EC 1.2.1.46] from Pseudomonas putida, alcohol oxidase [EC 1.1.3.13] from Pichia pastoris, and tyrosinase [EC 1.14.18.1] from mushroom. The gas diffusion working electrodes used in the sensors are based on a porous, hydrophobic PTFE membrane (exposed geometric electrode area: 1.77 cm(2)) covered with a porous layer of gold, platinum or graphite/Teflon. Detection limit, sensitivity, and measuring range are 34 microM (6.5 ppb), 117 nA/mM, and 0.46-66.4 mM for formaldehyde, 9.9 microM (55 ppb), 3.43 microA/mM, and 0.1-30 mM for ethanol, and 0.89 microM (0.36 ppb), 2.4 microA/mM, and 0.01-1 mM for phenol, respectively. Further sensor characteristics such as response time and stability are also determined: t(90%) (formaldehyde: 4.5 min; ethanol: 69 s; phenol: 27 min), stability at permanent exposure (formaldehyde: 63%, 15 h @ 2.62 mM; ethanol: 86%, 18 @ 1 mM; phenol: 86%, 16.5 h @ 0.1 M). PMID:19926472

  20. [Immunosensors: sources of origin, achievements and perspectives].

    Science.gov (United States)

    Starodub, M F; Starodub, V M

    2000-01-01

    The analysis of the recent data in the literature and results of investigations in the field of the development and study of function efficiency of different types of immune sensors, that are performed at the Department of Biochemistry Sensory and Regulatory Systems of the A. V. Palladin Institute of Biochemistry of Ukrainian National Academy of Sciences are presented. Sources of origination and perspectives of the devlopment of biosensors are discussed as well. The paper also gives an overview of main research projects at the Department, mainly in the filed of biosensors. They include development of the scientific bases for the creation of a new generation of chemo- and biosensors for their application in medicine and ecology. Multi-immune, multi-enzyme and combined multi-parametrical sensors can provide express analyses in laboratory and field conditions with the purpose to perform immune chemical diagnostics of diabet, kidney diseases, immune defficiencies, autoimmune, allergic, pre-infarction and pre-tumor states as well as to control total toxicity of the environment and identification of main types of toxic elements in it. The investigations are based on the latest achivements in the field of physics, chemistry, information technology and electronics with the use of different types of planar electrodes, ion sensitive field effect transistors (ISFETs), semiconductor capacitive structures, termistors, optrodes, piezocrystalls and application of such methods and effects as laser correlation spectroscopy, chemiluminescence, fluorescence, surface plasmon resonance, photoluminescence of porous silicon, interferometry, evanescent wave technique, nonemmiting energy transfer and holography. PMID:11200443

  1. Nano and Microparticle-Enhanced Immunosensor Approaches for the Detection of Cancer Biomarker Proteins

    Science.gov (United States)

    Mani, Vigneshwaran

    Accurate, sensitive, point-of-care multiplexed protein measurements are critical for early disease detection and monitoring, impacting biomarker and drug discovery, and personalized medicine. Significant application involves monitoring panels of proteins in the blood that are biomarkers for diagnosing cancer. However, measurements of biomarker panels in blood or other bodily fluids have been slow to integrate into current practice of cancer diagnostics partly due to the lack of technically simple, low-cost, sensitive, point-of-care multiplexed measurement devices, as well as the lack of rigorously validated protein panels. The present thesis in part addresses these limitations by the development of electrochemical and surface plasmon resonance (SPR) immunosensors utilizing 1mum superparamagnetic labels for accurate detection of prostate cancer biomarker proteins in patient serum samples. Electrochemical discrete immunosensors featuring nanostructured surface with densely packed 5 nm glutathione-coated gold nanoparticles coupled with multi-enzyme magnetic particle (MP) labels enabled measurement of prostate specific antigen (PSA) with a detection limit (DL) of 0.5 pg mL-1 in undiluted serum. Such low DLs are attributed to high surface area, conductivity of nanostructured surface, and multi-enzyme signal amplification. DLs are further improved by utilizing MP bioconjugated with more than 100,000 antibody labels to offline capture proteins from the serum sample matrix, minimizing nonspecific binding of interfering proteins on sensor surface before detection. This approach provided an unprecedented 10 fg DL mL-1 for PSA in undiluted serum using a flow SPR biosensor. Finally electrochemical microfluidic immunoarrays featuring nanostructured surface and offline protein capture by multi-label MPs enabled multiplexed detection of prostate cancer biomarkers PSA and interleukin-6 (IL-6). These approaches provided up to 1000-fold lower DLs compared to commercial bead based

  2. Nanosilver-penetrated polyion graphene complex membrane for mediator-free amperometric immunoassay of alpha-fetoprotein using nanosilver-coated silica nanoparticles

    International Nuclear Information System (INIS)

    Research highlights: → We fabricate a polyion graphene complex membrane-based immunosensing platform for sensitive electrochemical immunoassay of alpha-fetoprotein. → Nanosilver-coated silica nanocomposites as bionanolabels. → Graphene nanosheets, single-stranded DNA and silver nanoparticles as matrices. → Direct electron transfer without electron mediator. → Analysis of real samples and method comparison. - Abstract: A facile and sensitive mediator-free electrochemical immunosensor for detection of alpha-fetoprotein (AFP) was designed by using nanosilver-coated silica nanoparticles (Ag-SiO2) as bionanolabels. To construct such an electrochemical immunosensor, silver ions/single-stranded DNA/graphene nanosheets were initially immobilized on a gold electrode in turn, then silver ions were in situ reduced to silver nanoparticles with the aid of NaBH4, and anti-AFP antibodies conjugated to silver nanoparticles were used. In the presence of AFP analyte, the sandwiched immunocomplex was formed on the electrode surface by using horseradish peroxidase-anti-AFP conjugate-labeled Ag-SiO2 (HRP-anti-AFP-Ag-SiO2) as secondary antibodies. Compared with pure silver nanoparticles, Ag-SiO2 nanocomposites could provide a large room for the immobilization of HRP-anti-AFP, and improve the electrochemical responses of the immunosensor. Meanwhile, the presence of highly conductive graphene nanosheets and silver nanoparticles provided a good pathway for electron transfer. Under optimal conditions, the immunosensor exhibited good electrochemical responses toward AFP ranging from 0.3 to 200 ng/mL with a detection limit (LOD) of 0.05 ng/mL (at 3σ) in pH 6.0 PBS-H2O2 system. Intra- and inter-assay displayed good precisions with coefficient of variation below 9.5%. In addition, the method was evaluated with 23 clinical serum samples, receiving good correlation with results from commercially available electrochemiluminescent analyzer.

  3. Nanosilver-penetrated polyion graphene complex membrane for mediator-free amperometric immunoassay of alpha-fetoprotein using nanosilver-coated silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tang Juan [Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108 (China); Tang Dianping, E-mail: dianping.tang@fzu.edu.c [Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108 (China); Su Biling; Li Qunfang; Qiu Bin [Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108 (China); Chen Guonan, E-mail: gnchen@fzu.edu.c [Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350108 (China)

    2011-04-15

    Research highlights: {yields} We fabricate a polyion graphene complex membrane-based immunosensing platform for sensitive electrochemical immunoassay of alpha-fetoprotein. {yields} Nanosilver-coated silica nanocomposites as bionanolabels. {yields} Graphene nanosheets, single-stranded DNA and silver nanoparticles as matrices. {yields} Direct electron transfer without electron mediator. {yields} Analysis of real samples and method comparison. - Abstract: A facile and sensitive mediator-free electrochemical immunosensor for detection of alpha-fetoprotein (AFP) was designed by using nanosilver-coated silica nanoparticles (Ag-SiO{sub 2}) as bionanolabels. To construct such an electrochemical immunosensor, silver ions/single-stranded DNA/graphene nanosheets were initially immobilized on a gold electrode in turn, then silver ions were in situ reduced to silver nanoparticles with the aid of NaBH{sub 4}, and anti-AFP antibodies conjugated to silver nanoparticles were used. In the presence of AFP analyte, the sandwiched immunocomplex was formed on the electrode surface by using horseradish peroxidase-anti-AFP conjugate-labeled Ag-SiO{sub 2} (HRP-anti-AFP-Ag-SiO{sub 2}) as secondary antibodies. Compared with pure silver nanoparticles, Ag-SiO{sub 2} nanocomposites could provide a large room for the immobilization of HRP-anti-AFP, and improve the electrochemical responses of the immunosensor. Meanwhile, the presence of highly conductive graphene nanosheets and silver nanoparticles provided a good pathway for electron transfer. Under optimal conditions, the immunosensor exhibited good electrochemical responses toward AFP ranging from 0.3 to 200 ng/mL with a detection limit (LOD) of 0.05 ng/mL (at 3{sigma}) in pH 6.0 PBS-H{sub 2}O{sub 2} system. Intra- and inter-assay displayed good precisions with coefficient of variation below 9.5%. In addition, the method was evaluated with 23 clinical serum samples, receiving good correlation with results from commercially available

  4. Separation of natural antioxidants using PDMS electrophoresis microchips coupled with amperometric detection and reverse polarity.

    Science.gov (United States)

    Lucca, Bruno Gabriel; Lunte, Susan Marie; Tomazelli Coltro, Wendell Karlos; Ferreira, Valdir Souza

    2014-12-01

    This report describes the use of PDMS ME coupled with amperometric detection for rapid separation of ascorbic, gallic , ferulic, p-coumaric acids using reverse polarity. ME devices were fabricated in PDMS by soft lithography and detection was accomplished using an integrated carbon fiber working electrode aligned in the end-channel configuration. Separation and detection parameters were investigated and the best conditions were obtained using a run buffer consisting of 5 mM phosphate buffer (pH 6.9) and a detection voltage of 1.0 V versus Ag/AgCl reference electrode. All compounds were separated within 70 s using gated injection mode with baseline resolution and separation efficiencies between 1200 and 9000 plates. Calibration curves exhibited good linearity and the LODs achieved ranged from 1.7 to 9.7 μM. The precision for migration time and peak height provided maximum values of 4% for the intrachip studies. Lastly, the analytical method was successfully applied for the analysis of ascorbic and gallic acids in commercial beverage samples. The results achieved using ME coupled with amperometric detection were in good agreement with the values provided by the supplier. Based on the data reported here, the proposed method shows suitability to be applied for the routine analysis of beverage samples.

  5. Platinum nanoparticle modified polyaniline-functionalized boron nitride nanotubes for amperometric glucose enzyme biosensor.

    Science.gov (United States)

    Wu, Jianmin; Yin, Longwei

    2011-11-01

    A novel amperometric biosensor based on the BNNTs-Pani-Pt hybrids with Pt nanoparticle homogeneously decorated on polyaniline (Pani)-wrapped boron nitride nanotubes (BNNTs), was developed. It is shown that π interactions take place between BNNTs and polyaniline (Pani) located at N atoms from BNNTs and C atoms from Pani, resulting in the water solubility for the Pani wrapped BNNTs hybrids. The developed glucose biosensor displayed high sensitivity and stability, good reproducibility, anti-interference ability, especially excellent acid stability and heat resistance. The resulted BNNTs-Pani-Pt hybrid amperometric glucose biosensor exhibited a fast response time (within 3 s) and a linear calibration range from 0.01 to 5.5 mM with a high sensitivity and low detection limit of 19.02 mA M(-1) cm(-2) and 0.18 μM glucose (S/N = 3). Surprisedly, the relative activity of the GC/BNNTs-Pani-Pt-GOD electrode keeps almost no change in a range from pH 3 to 7. Futhermore, the BNNTs-Pani-Pt hybrid biosensor maintains a high GOD enzymatic activity even at a relatively high temperature of 60 °C. This might be attributed to the effect of electrostatic field and hydrophobia of BNNTs. The unique acid stability and heat resistance of this sensor indicate great promising application in numerous industrial and biotechnological operations involving harsh conditions. PMID:22013877

  6. Batch-injection analysis with amperometric detection of the DPPH radical for evaluation of antioxidant capacity.

    Science.gov (United States)

    Oliveira, Gracy K F; Tormin, Thiago F; Sousa, Raquel M F; de Oliveira, Alberto; de Morais, Sérgio A L; Richter, Eduardo M; Munoz, Rodrigo A A

    2016-02-01

    This work proposes the application of batch-injection analysis with amperometric detection to determine the antioxidant capacity of real samples based on the measurement of DPPH radical consumption. The efficient concentration or EC50 value corresponds to the concentration of sample or standard required to scavenge 50% DPPH radicals. For the accurate determination of EC50, samples were incubated with DPPH radical for 1h because many polyphenolic compounds typically found in plants and responsible for the antioxidant activity exhibit slow kinetics. The BIA system with amperometric detection using a glassy-carbon electrode presented high precision (RSD = 0.7%, n = 12), low detection limit (1 μmol L(-1)) and selective detection of DPPH (free of interferences from antioxidants). These contributed to low detection limits for the antioxidant (0.015 and 0.19 μmol L(-1) for gallic acid and butylated hydroxytoluene, respectively). Moreover, BIA methods show great promise for portable analysis because battery-powered instrumentation (electronic micropipette and potentiostats) is commercially available. PMID:26304399

  7. Amperometric magnetoimmunoassay for the direct detection of tumor necrosis factor alpha biomarker in human serum

    Energy Technology Data Exchange (ETDEWEB)

    Eletxigerra, U. [Micro-NanoFabrication Unit, IK4-Tekniker, Eibar (Spain); CIC microGUNE, Arrasate-Mondragón (Spain); Martinez-Perdiguero, J. [CIC microGUNE, Arrasate-Mondragón (Spain); Merino, S. [Micro-NanoFabrication Unit, IK4-Tekniker, Eibar (Spain); CIC microGUNE, Arrasate-Mondragón (Spain); Villalonga, R.; Pingarrón, J.M. [Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid (Spain); Campuzano, S., E-mail: susanacr@quim.ucm.es [Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid (Spain)

    2014-08-01

    Highlights: • Electrochemical magnetoimmunosensor for tumor necrosis factor alpha (TNFα) biomarker. • Sensitive and selective detection of TNFα in undiluted serum. • LOD achieved lower than the cut-off value established for relevant illnesses. • Useful and affordable alternative to ELISAs for TNFα determination in serum. - Abstract: An amperometric immunoassay for the determination of tumor necrosis factor alpha (TNFα) protein biomarker in human serum based on the use of magnetic microbeads (MBs) and disposable screen-printed carbon electrodes (SPCEs) has been developed. The specifically modified microbeads were magnetically captured on the working electrode surface and the amperometric responses were measured at −0.20 V (vs. Ag pseudo-reference electrode), upon addition of hydroquinone (HQ) as electron transfer mediator and H{sub 2}O{sub 2} as the enzyme substrate. After a thorough optimization of the assay, extremely low limits of detection were achieved: 2.0 pg mL{sup −1} (36 fM) and 5.8 pg mL{sup −1} (105 fM) for standard solutions and spiked human serum, respectively. The simplicity, robustness and this clinically interesting LOD proved the developed TNFα immunoassay as a good contender for real clinical application.

  8. A Electrochemical Immunosensor Detection of Avian Influenza Virus (H5N1) Based on Nano Materials%基于纳米材料的电化学免疫传感器检测HSN1亚型禽流感病毒的研究

    Institute of Scientific and Technical Information of China (English)

    黄娇玲; 谢芝勋; 罗思思; 谢志勤; 谢丽基; 刘加波; 庞耀珊; 范晴

    2013-01-01

    利用氧化石墨烯(GO)负载H5N1亚型禽流感病毒多克隆抗体(PAb-H5N1)及牛血清白蛋白(BSA)作为信号放大材料,构建一种新型电化学免疫传感器用于检测H5N1亚型禽流感病毒.结果表明:以PAb-H5N1-GOBSA纳米复合物作为信号放大材料构建的电化学免疫传感器的灵敏度比不用此纳米复合物作为信号放大的高256倍.以PAb-H5N1-GO-BSA纳米复合物作为信号放大材料构建的电化学免疫传感器对H5N1亚型禽流感病毒的检测限为2-15HA unit·50μL-1,检测线性范围为2-15~2-8 HA unit·50 μL-1.此传感器特异性好,灵敏度高,在病原微生物快速检测领域具有良好的应用前景.%A novel electrochemical immunosensor for sensitive detection of avian influenza virus (AIV) H5N1 was described.A graphene oxide (GO) carrying H5N1-polychonal antibodies (PAb-H5N1) and Bovine serum albumin (BSA) were used as signal amplification materials.On the basis of the signal amplification strategy of PAb-H5N1-GO-BSA nanocomposite,the developed immunosensor showed a 256-fold increase in detection limit compared to the immunosensor without PAb-H5N1-GO-BSA nanocomposite amplification.The developed method could detect 2-15 HA unit · 50 μL-1 H5N1 with a linear calibration range from 2-15 to 2-8 HA unit · 50 μL-1.This immunosensor has a good specificity and high sensitivity,and it is promising for rapid detection of pathogenic microorganisms.

  9. Impedimetric Label-Free Immunosensor on Disposable Modified Screen-Printed Electrodes for Ochratoxin A

    Directory of Open Access Journals (Sweden)

    Francesca Malvano

    2016-06-01

    Full Text Available An impedimetric label-free immunosensor on disposable screen-printed carbon electrodes (SPCE for quantitative determination of Ochratoxin A (OTA has been developed. After modification of the SPCE surface with gold nanoparticles (AuNPs, the anti-OTA was immobilized on the working electrode through a cysteamine layer. After each coating step, the modified surfaces were characterized by cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS. The capacitance was chosen as the best parameter that describes the reproducible change in electrical properties of the electrode surface at different OTA concentrations and it was used to investigate the analytical parameters of the developed immunosensor. Under optimized conditions, the immunosensor showed a linear relationship between 0.3 and 20 ng/mL with a low detection limit of 0.25 ng/mL, making it suitable to control OTA content in many common food products. Lastly, the immunosensor was used to measure OTA in red wine samples and the results were compared with those registered with a competitive ELISA kit. The immunosensor was sensitive to OTA lower than 2 μg/kg, which represents the lower acceptable limit of OTA established by European legislation for common food products.

  10. Visual and efficient immunosensor technique for advancing biomedical applications of quantum dots on Salmonella detection and isolation

    Science.gov (United States)

    Tang, Feng; Pang, Dai-Wen; Chen, Zhi; Shao, Jian-Bo; Xiong, Ling-Hong; Xiang, Yan-Ping; Xiong, Yan; Wu, Kai; Ai, Hong-Wu; Zhang, Hui; Zheng, Xiao-Li; Lv, Jing-Rui; Liu, Wei-Yong; Hu, Hong-Bing; Mei, Hong; Zhang, Zhen; Sun, Hong; Xiang, Yun; Sun, Zi-Yong

    2016-02-01

    It is a great challenge in nanotechnology for fluorescent nanobioprobes to be applied to visually detect and directly isolate pathogens in situ. A novel and visual immunosensor technique for efficient detection and isolation of Salmonella was established here by applying fluorescent nanobioprobes on a specially-designed cellulose-based swab (a solid-phase enrichment system). The selective and chromogenic medium used on this swab can achieve the ultrasensitive amplification of target bacteria and form chromogenic colonies in situ based on a simple biochemical reaction. More importantly, because this swab can serve as an attachment site for the targeted pathogens to immobilize and immunologically capture nanobioprobes, our mAb-conjugated QD bioprobes were successfully applied on the solid-phase enrichment system to capture the fluorescence of targeted colonies under a designed excitation light instrument based on blue light-emitting diodes combined with stereomicroscopy or laser scanning confocal microscopy. Compared with the traditional methods using 4-7 days to isolate Salmonella from the bacterial mixture, this method took only 2 days to do this, and the process of initial screening and preliminary diagnosis can be completed in only one and a half days. Furthermore, the limit of detection can reach as low as 101 cells per mL Salmonella on the background of 105 cells per mL non-Salmonella (Escherichia coli, Proteus mirabilis or Citrobacter freundii, respectively) in experimental samples, and even in human anal ones. The visual and efficient immunosensor technique may be proved to be a favorable alternative for screening and isolating Salmonella in a large number of samples related to public health surveillance.It is a great challenge in nanotechnology for fluorescent nanobioprobes to be applied to visually detect and directly isolate pathogens in situ. A novel and visual immunosensor technique for efficient detection and isolation of Salmonella was established here

  11. Direct immobilization of antibodies on a new polymer film for fabricating an electrochemical impedance immunosensor.

    Science.gov (United States)

    Zhang, Xiangyang; Shen, Guangyu; Shen, Youming; Yin, Dan; Zhang, Chunxiang

    2015-09-15

    A new polymer bearing aldehyde groups was designed and synthesized by grafting 4-pyridinecarboxaldehyde onto poly(epichlorohydrin). Antibodies can be directly immobilized on the surface of the polymer film through the covalent bonding of aldehyde groups of the film with amino groups of antibodies. In this study, human immunoglobulin G (IgG) was used as a model analyte for the fabrication of an electrochemical impedance immunosensor. Using the proposed immunosensor, IgG in the range from 0.1 to 80 ng ml(-1) was detected with a detection limit of 0.07 ng ml(-1) (signal/noise [S/N]=3). In addition, the electrochemical impedance immunosensor displays good stability and reproducibility.

  12. Graphene modified screen printed immunosensor for highly sensitive detection of parathion.

    Science.gov (United States)

    Mehta, Jyotsana; Vinayak, Priya; Tuteja, Satish K; Chhabra, Varun A; Bhardwaj, Neha; Paul, A K; Kim, Ki-Hyun; Deep, Akash

    2016-09-15

    Due to indiscriminate use of pesticides, there is a growing need to develop sensors that can sensitively detect the trace amount of pesticides in food and water samples. Parathion, identified as an acetylcholinesterase inhibitor, had been one of the most widely used pesticides throughout the world. Symptoms of its poisoning are found to be diverse enough to include nausea, vomiting, diarrhea, muscle cramping/twitching, and shortness of breath. In this work, a graphene based impedimetric immunosensor has been fabricated and employed for highly sensitive and specific detection of parathion. The fabrication proceeded through the modification of the screen-printed carbon electrodes (SPE) with graphene sheets, followed by their functionalization with 2-aminobenzyl amine (2-ABA) via an electrochemical reaction. These amine functionalized graphene electrodes were then bio-interfaced with the anti-parathion antibodies. In the impedimetric mode, this biosensor detected parathion in a broad linear range, i.e. 0.1-1000ng/L with a very low limit of detection (52pg/L). It also showed high selectivity towards parathion in the presence of malathion, paraoxon, and fenitrothion. The viability of this biosensor was demonstrated by detecting parathion in real samples (e.g., tomato and carrot) and through cross-calibration against HPLC. PMID:27135939

  13. Sensitivity Improvement of an Impedimetric Immunosensor Using Functionalized Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Imen Hafaid

    2009-01-01

    Full Text Available This work has explored the development of impedimetric immunosensors based on magnetic iron nanoparticles (IrNP functionalized with streptavidin to which a biotinylated FAB part of the antibody has been bound using a biotin-streptavidin interaction. SPR analysis shows a deviation on the measured (angle during antigen-antibody recognition whereas label free detection using by EIS allows us to monitor variation of polarization resistance. Before detection, layers were analyzed by FTIR and AFM. Compared to immobilization of antibody on bare gold surface using aminodecanethiol SAM, antibody immobilization on nanoparticles permitted to reach lower detection limit: 500 pg/ml instead of 1 ng/ml to in the case of EIS and 300 ng/ml instead of 4.5 μg/ml in the case of SPR. Thus, it permitted to improve the sensitivity: from 257.3  Ω⋅cm2⋅μg−1⋅ml to 1871 Ω⋅cm2⋅μg−1⋅ml in the case of EIS and from 0.003°μg−1⋅ml to 0.094°μg−1⋅ml in the case of SPR.

  14. Development of SPR Immunosensor by Indirect Competitive Method for Rapid and Highly Sensitive Salivary Cortisol Detection

    Directory of Open Access Journals (Sweden)

    Yusuke eTahara

    2014-05-01

    Full Text Available The monitoring of salivary cortisol as a key biomarker of an individual’s stress response has been increasingly focused on. This paper describes the development of a novel cortisol biosensor based on an indirect competitive method using a surface plasmon resonance (SPR immunosensor. The surface of a Au chip was modified with PEG6-COOH aromatic dialkanethiol self-assembled monolayers (SAMs and hydrocortisone 3-(O-carboxymethyl oxime (hydrocortisone 3-CMO as a cortisol analogue. A detection limit of 38 ppt range with a measurement range of 10 ppt to 100 ppb was accomplished without the incubation of a mixing solution consisting of standard cortisol and an anti-cortisol antibody, and the response time was 5 min from the sample injection. We experimentally compared our biosensor with a commercialized salivary cortisol enzyme-linked immunosorbent assay (ELISA kit using human saliva samples. It was found that the results obtained by the cortisol biosensor had a high correlation with those obtained by ELISA assay (R = 0.96. Our findings indicate the potential utility of the cortisol biosensor for on-site diagnosis and bedside point-of-care testing (POCT from bedside testing.

  15. Magneto immunosensor for gliadin detection in gluten-free foodstuff: towards food safety for celiac patients.

    Science.gov (United States)

    Laube, T; Kergaravat, S V; Fabiano, S N; Hernández, S R; Alegret, S; Pividori, M I

    2011-09-15

    Gliadin is a constituent of the cereal protein gluten, responsible for the intolerance generated in celiac disease. Its detection is of high interest for food safety of celiac patients, since the only treatment known until now is a lifelong avoidance of this protein in the diet. Therefore, it is essential to have an easy and reliable method of analysis to control the contents in gluten-free foods. An electrochemical magneto immunosensor for the quantification of gliadin or small gliadin fragments in natural or pretreated food samples is described for the first time and compared to a novel magneto-ELISA system based on optical detection. The immunological reaction was performed on magnetic beads as solid support by the oriented covalent immobilization, of the protein gliadin on tosyl-activated beads. Direct, as well as indirect competitive immunoassays were optimized, achieving the best analytical performance with the direct competitive format. Excellent detection limits (in the order of μg L(-1)) were achieved, according to the legislation for gluten-free products. The matrix effect, as well as the performance of the assays was successfully evaluated using spiked gluten-free foodstuffs (skimmed milk and beer), obtaining excellent recovery values in the results.

  16. Fiber optic immunosensor for cross-linked fibrin concentration

    Science.gov (United States)

    Moskowitz, Samuel E.

    2000-08-01

    Working with calcium ions in the blood, platelets produce thromboplastin which transforms prothrombin into thrombin. Removing peptides, thrombin changes fibrinogen into fibrin. Cross-linked insoluble fibrin polymers are solubilized by enzyme plasmin found in blood plasma. Resulting D-dimers are elevated in patients with intravascular coagulation, deep venous thrombosis, pulmonary embolism, myocardial infarction, multiple trauma, cancer, impaired renal and liver functions, and sepsis. Consisting principally of a NIR 780 nm GaAlAs laser diode and a 800 nm avalanche photodiode (APD), the fiber-optic immunosensor can determined D-dimer concentration to levels <0.1 ng/ml. A capture monoclonal antibody to the antigen soluble cross-linked fibrin is employed. Immobilized at the tip of an optical fiber by avidin-biotin, the captured antigen is detected by a second antibody which is labeled with NN 382 fluorescent dye. An evanescent wave traveling on an excitation optical fiber excites the antibody-antigen fluorophore complex. Concentration of cross-linked fibrin is directly proportional to the APD measured intensity of fluorescence. NIR fluorescence has advantages of low background interference, short fluorescence lifetime, and large difference between excitation and emission peaks. Competitive ELISA test for D-dimer concentration requires trained personnel performing a time consuming operation.

  17. Computational Modeling of Mediator Oxidation by Oxygen in an Amperometric Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Dainius Šimelevičius

    2014-02-01

    Full Text Available In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior.

  18. Computational modeling of mediator oxidation by oxygen in an amperometric glucose biosensor.

    Science.gov (United States)

    Simelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Razumienė, Julija

    2014-01-01

    In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior. PMID:24514882

  19. CHARACTERISTICS AND OPTIMAL WORKING CONDITIONS OF AMPEROMETRIC BIOSENSOR FOR ADENOSINE TRIPHOSPHATE DETERMINATION

    Directory of Open Access Journals (Sweden)

    Kucherenko I. S.

    2014-02-01

    Full Text Available Analytical characteristics of a biosensor based on glucose oxidase and hexokinase and intended for ATP determination were studied. Platinum disc electrodes were used as amperometric transducers. Range of working potentials for biosensor functioning was shown. An optimal time of enzymes immobilization was determined. Optimal conditions for biosensor functioning during work with biological fluids were selected. Biosensor work in three buffer solutions (PBS, tris and HEPES was investigated and it was shown that it was possible to obtain various operational characteristics of the biosensor depending on tasks that are assigned to it by varying the composition of sample. Reproducibility of biosensor responses to ATP and glucose during a day and of biosensor preparation was shown. The proposed biosensor can be further used for analysis of glucose and ATP content in water solutions.

  20. The Influence of the Enzyme Membrane Thickness on the Response of Amperometric Biosensors

    Directory of Open Access Journals (Sweden)

    Juozas Kulys

    2003-07-01

    Full Text Available A mathematical model of amperometric biosensors has been developed. The model is based on non-stationary diffusion equations containing a non-linear term related to Michaelis-Menten kinetics of the enzymatic reaction. Using digital simulation, the influence of the thickness of enzyme membrane on the biosensor response was investigated. The digital simulation of the biosensor operation showed the non-monotonous change of the maximal biosensor current versus the membrane thickness at the various maximal enzymatic rates. Digital simulation was carried out using the finite difference technique. Results of the numerical simulation was compared with known analytical solutions. This paper presents a framework for selection of the membrane thickness, ensuring the sufficiently stable sensitivity of a biosensor in a required range of the maximal enzymatic rate.

  1. Electrochemical study of ferrocenemethanol-modified layered double hydroxides composite matrix: application to glucose amperometric biosensor.

    Science.gov (United States)

    Shan, Dan; Yao, Wenjuan; Xue, Huaiguo

    2007-10-31

    A novel amperometric glucose sensor based on co-immobilization of ferrocenemethanol (MeOHFc) and glucose oxidase (GOD) in the layered double hydroxides (LDHs) was described. MeOHFc immobilized in LDHs played effectively the role of an electron shuttle and allowed the detection of glucose at 0.25 V (versus SCE), with dramatically reduced interference from easily oxidizable constituents. The sensor (LDHs/MeOHFc/GOD) exhibited a relatively fast response (response time was about 5s), low detection limit (3 microM), and high sensitivity (ca. 60 mA M(-1)cm(-2)) with a linear range of 6.7 x 10(-6) to 3.86 x 10(-4)M of glucose. Apparent Michaelis-Menten constant was calculated to be 2.25 mM. PMID:17720475

  2. A screen-printed, amperometric biosensor for the determination of organophosphorus pesticides in water samples

    Institute of Scientific and Technical Information of China (English)

    Junfeng Dou; Fuqiang Fan; Aizhong Ding; Lirong Cheng; Raju Sekar; Hongting Wang; Shuairan Li

    2012-01-01

    An amperometric biosensor based on screen-printed electrodes (SPEs) was developed for the determination of organophosphorus pesticides in water samples.The extent of acetylcholinesterase (AChE) deactivation was determined and quantified for pesticideconcentrations in water samples.An enzyme immobilization adsorption procedure and polyacrylamide gel matrix polymerization were used for fabrication of the biosensor,with minimal losses in enzyme activity.The optimal conditions for enzyme catalytic reaction on the SPEs surfaces were acetylthiocholine chloride (ATChC(1)) concentration of 5 mmol/L,pH 7 and reaction time of 4 min.The detectionlimits for three organophosphorus pesticides (dichlorvos,monocrotophs and parathion) were in the range of 4 to 7 μg/L when an AChE amount of 0.1 U was used for immobilization.

  3. Functionalized single-walled carbon nanotubes/polypyrrole composites for amperometric glucose biosensors

    Science.gov (United States)

    Raicopol, Matei; Prună, Alina; Damian, Celina; Pilan, Luisa

    2013-07-01

    This article reports an amperometric glucose biosensor based on a new type of nanocomposite of polypyrrole (PPY) with p-phenyl sulfonate-functionalized single-walled carbon nanotubes (SWCNTs-PhSO3 -). An environmentally friendly functionalization procedure of the SWCNTs in the presence of substituted aniline and an oxidative species was adopted. The nanocomposite-modified electrode exhibited excellent electrocatalytic activities towards the reduction or oxidation of H2O2. This feature allowed us to use it as bioplatform on which glucose oxidase (GOx) was immobilized by entrapment in an electropolymerized PPY/SWCNTs-PhSO3 - film for the construction of the glucose biosensor. The amperometric detection of glucose was assayed by applying a constant electrode potential value necessary to oxidize or reduce the enzymatically produced H2O2 with minimal interference from the possible coexisting electroactive compounds. With the introduction of a thin film of Prussian blue (PB) at the substrate electrode surface, the PPY/GOx/SWCNTs-PhSO3 -/PB system shows synergy between the PB and functionalized SWCNTs which amplifies greatly the electrode sensitivity when operated at low potentials. The biosensor showed good analytical performances in terms of low detection (0.01 mM), high sensitivity (approximately 6 μA mM-1 cm-2), and wide linear range (0.02 to 6 mM). In addition, the effects of applied potential, the electroactive interference, and the stability of the biosensor were discussed. The facile procedure of immobilizing GOx used in the present work can promote the development of other oxidase-based biosensors which could have a practical application in clinical, food, and environmental analysis.

  4. A wafer-level liquid cavity integrated amperometric gas sensor with ppb-level nitric oxide gas sensitivity

    Science.gov (United States)

    Gatty, Hithesh K.; Stemme, Göran; Roxhed, Niclas

    2015-10-01

    A miniaturized amperometric nitric oxide (NO) gas sensor based on wafer-level fabrication of electrodes and a liquid electrolyte chamber is reported in this paper. The sensor is able to detect NO gas concentrations of the order of parts per billion (ppb) levels and has a measured sensitivity of 0.04 nA ppb-1 with a response time of approximately 12 s. A sufficiently high selectivity of the sensor to interfering gases such as carbon monoxide (CO) and to ammonia (NH3) makes it potentially relevant for monitoring of asthma. In addition, the sensor was characterized for electrolyte evaporation which indicated a sensor operation lifetime allowing approximately 200 measurements.

  5. Feasibility of evanescent wave interferometer immunosensors for pesticide detection: chemical aspects

    NARCIS (Netherlands)

    Lechuga, L.M.; Lenferink, A.T.M.; Kooyman, R.P.H.; Greve, J.

    1995-01-01

    A waveguide Mach-Zehnder Interferometer (MZI) immunosensor has been developed which can detect, in a direct way, a minimum average layer growth thickness of the analyte of 2×10−3 nm (bound mass, I′=1×10−4 δ cm−2). The design and fabrication of the sensor and the experimental set-up are aimed at decr

  6. Rapid Determination of Phytophthora infestans sporangia Using a Surface Plasmon Resonance Immunosensor

    DEFF Research Database (Denmark)

    Skottrup, Peter; Nicolaisen, Mogens; Justesen, Annemarie Fejer

    2007-01-01

    Phytophthora infestans is the cause of late blight disease in potato and is an economically important pathogen worldwide. Early disease detection is important to implement disease control measures. In this study a surface plasmon resonance (SPR) immunosensor for detection of P. infestans sporangia...

  7. An Immunosensor for Detection of 17β-Estradiol Based on Screen-Printed Electrode with Nano-Gold and Protein-A%基于蛋白A-纳米金-丝网印刷电极的雌二醇免疫传感器

    Institute of Scientific and Technical Information of China (English)

    杨勇; 牟婧男; 丁亚萍; 王俊霞; 李健爽; 杜晓燕; 常东

    2012-01-01

    A immunosensor for detection of 17β-estradiol was prepared by modifying nano-gold and protein-A on the surface of screen-printed electrode. The large specific surface area and high surface free energy of gold nanopaticles could make protein-A molecules immobilized firmly,and then protein-A was used to directionally immobilize the Fc portions of anti-17|$-estradiol antibody. Thus a immunosensor was developed for rapid detection of 17β-estradiol by competitive enzyme-linked immunoassay. The modified process was characterized by scanning electron microscopy (SEM)and cyclic votammetry ( CV). Under the optimized conditions, the immunosensor showed high sensitivity. There was a negative linear correlation between the current of reduction peak and the concentration of 17β-estradiol in the range of 0.1 u.g/L -20 u,g/L with a detection limit of 0.035 ug/L( S/N =3). When this immunosensor was used to determine the real normal human urine samples, the results were consistent well with high performance liquid chromatography method,and the recovery was in the range of 96% -114%.%将蛋白A固定在纳米金修饰的丝网印刷电极表面,纳米金大的比表面积以及较高的表面自由能使蛋白A比较牢固地固定在其上;蛋白A分子可以定向结合17β-雌二醇抗体的Fc片段,使抗体在电极表面有序固定化.利用 17β-雌二醇和酶标17β-雌二醇的酶免疫竞争反应,研制了快速测定17β-雌二醇的电化学传感器.用循环伏安法和扫描电子显微镜对修饰过程进行了表征.优化测定条件后,传感器呈现了很高的测定灵敏度,电流响应信号与17β-雌二醇浓度在0.1μg/L-20 μg/L范围内呈良好的负线性相关,检出限为0.035 μg/L( S/N =3).应用该免疫传感器测定了正常人群尿样中17β-雌二醇含量,测定范围与报道的高效液相色谱法测定结果相一致,样品加标回收率为96%~114%.

  8. Detection of hydrogen peroxide in Photosystem II (PSII using catalytic amperometric biosensor

    Directory of Open Access Journals (Sweden)

    Ankush ePrasad

    2015-10-01

    Full Text Available Hydrogen peroxide (H2O2 is known to be generated in Photosystem II (PSII via enzymatic and non-enzymatic pathways. Hydrogen peroxide (H2O2 is known to be generated in Photosystem II (PSII via enzymatic and non-enzymatic pathways. Detection of H2O2 by different spectroscopic techniques has been explored, however its sensitive detection has always been a challenge in photosynthetic research. During the recent past, fluorescence probes such as Amplex Red has been used but is known to either lack specificity or limitation with respect to the minimum detection limit of H2O2. We have employed an electrochemical biosensor for real time monitoring of H2O2 generation at the level of sub-cellular organelles. The electrochemical biosensor comprises of counter electrode and working electrodes. The counter electrode is a platinum plate, while the working electrode is a mediator based catalytic amperometric biosensor device developed by the coating of a carbon electrode with osmium-horseradish peroxidase which acts as H2O2 detection sensor. In the current study, generation and kinetic behaviour of H2O2 in PSII membranes have been studied under light illumination. Electrochemical detection of H2O2 using the catalytic amperometric biosensor device is claimed to serve as a promising technique for detection of H2O2 in photosynthetic cells and subcellular structures including PSII or thylakoid membranes. It can also provide a precise information on qualitative determination of H2O2 and thus can be widely used in photosynthetic research.

  9. A study of biofunctionalized silica nanospring surface for immunosensor applications

    Science.gov (United States)

    Timalsina, Yukta P.; McIlroy, David N.

    2012-02-01

    A study of biofunctionalized VANS (vertically aligned (silica) nanospring) surface for immunosensor applications is presented. VANS surface treated with 3-aminopropyltriethoxysilane (APTES) leaves a primary amine groups on the VANS surface. Glutaraldehyde (GA) reacts with APTES modified VANS surface forming imine bonds at one end of glutaraldehyde, leaving aldehyde groups at the other end to react with the antibody. X-ray photoelectron study verifies each step of VANS surface functionalization. A goat anti mouse antibody (GαM IgG I) is immobilized as a biorecognition layer on the APTES-GA modified surface and targeted to mouse IgG. It is investigated that mouse IgG captured from the solution phase specifically binds to goat anti mouse IgG on APTES-GA- GαM IgG I. Then layer of GαM IgG II attached to the APTES-GA- GαM IgG I-mouse IgG surface reacts only when there is mouse IgG instead of rabbit IgG. A modeling of a resistor-inductor-capacitor (RLC) circuit of impedance spectra measured after the addition of successive layer indicates the these biological layers behave as insulating layers. It is explored that there is a greater magnitude of change between successive bio-layers below 10 kHz. Changes in the magnitudes of the elements of the RLC equivalent circuit indicate that the addition of biological layers impedes ionic motion thereby changing the effective dielectric response by the biomolecule polarization.

  10. Development of Amperometric Laccase Biosensor through Immobilizing Enzyme in Magnesium-Containing Mesoporous Silica Sieve (Mg-MCM-41)/Polyvinyl Alcohol Matrix

    OpenAIRE

    2014-01-01

    Magnesium-containing mesoporous silica sieve (Mg-MCM-41) provided a suitable immobilization of biomolecule matrix due to its uniform pore structure, high surface areas, fast electron-transfer rate, and good biocompatibility. Based on this, an amperometric biosensor was developed by entrapping laccase into the Mg-MCM-41/PVA composite matrix. Laccase from Trametes versicolor was assembled on a composite film of Mg-MCM-41/PVA modified Au electrode and the electrode was investigated by cyclic vol...

  11. Label-free electrochemical immunosensor for the carcinoembryonic antigen using a glassy carbon electrode modified with electrodeposited Prussian Blue, a graphene and carbon nanotube assembly and an antibody immobilized on gold nanoparticles

    International Nuclear Information System (INIS)

    We described a sensitive, label-free electrochemical immunosensor for the detection of carcinoembryonic antigen. It is based on the use of a glassy carbon electrode (GCE) modified with a multi-layer films made from Prussian Blue (PB), graphene and carbon nanotubes by electrodeposition and assembling techniques. Gold nanoparticles were electrostatically absorbed on the surface of the film and used for the immobilization of antibody, while PB acts as signaling molecule. The stepwise assembly process was investigated by differential pulse voltammetry and scanning electron microscopy. It is found that the formation of antibody-antigen complexes partially inhibits the electron transfer of PB and decreased its peak current. Under the optimal conditions, the decrease of intensity of the peak current of PB is linearly related to the concentration of carcinoembryonic antigen in two ranges (0.2–1.0, and 1.0–40.0 ng·mL−1), with a detection limit of 60 pg·mL−1 (S/N = 3). The immunosensor was applied to analyze five clinical samples, and the results obtained were in agreement with clinical data. In addition, the immunosensor exhibited good precision, acceptable stability and reproducibility. (author)

  12. Novel signal amplification strategy for ultrasensitive sandwich-type electrochemical immunosensor employing Pd-Fe3O4-GS as the matrix and SiO2 as the label.

    Science.gov (United States)

    Wang, Yulan; Ma, Hongmin; Wang, Xiaodong; Pang, Xuehui; Wu, Dan; Du, Bin; Wei, Qin

    2015-12-15

    An ultrasensitive sandwich-type electrochemical immunosensor based on a novel signal amplification strategy was developed for the quantitative determination of human immunoglobulin G (IgG). Pd nanocubes functionalized magnetic graphene sheet (Pd-Fe3O4-GS) was employed as the matrix to immobilize the primary antibodies (Ab1). Owing to the synergetic effect between Pd nanocubes and magnetic graphene sheet (Fe3O4-GS), Pd-Fe3O4-GS can provide an obviously increasing electrochemical signal by electrochemical catalysis towards hydrogen peroxide (H2O2). Silicon dioxide (SiO2) was functionalized as the label to conjugate with the secondary antibodies (Ab2). Due to the larger steric hindrance of the obtained conjugate (SiO2@Ab2), the sensitive decrease of the electrochemical signal can be achieved after the specific recognition between antibodies and antigens. In this sense, this proposed immunosensor can achieve a high sensitivity, especially in the presence of low concentrations of IgG. Under optimum conditions, the proposed immunosensor offered an ultrasensitive and specific determination of IgG down to 3.2 fg/mL. This immunoassay method would open up a new promising platform to detect various tumor markers at ultralow levels for early diagnoses of different cancers.

  13. Portable optical immunosensor for highly sensitive detection of microcystin-LR in water samples.

    Science.gov (United States)

    Long, F; He, M; Zhu, A N; Shi, H C

    2009-04-15

    Fast and sensitive detection of microcystin-LR (MC-LR) was conducted with a portable trace organic pollutant analyzer (TOPA) based on the principle of immunoassay and total internal reflection fluorescence. The reusable fiber optic probe surface was produced by covalently immobilizing a MC-LR-ovalbumin (MC-LR-OVA) conjugate onto a self-assembled thiol-silane monolayer of fiber optic probe through a heterobifunctional reagent. It has been established that the MC-LR-OVA immobilized fiber optic probe is highly resistive to non-specific binding of proteins, while bound anti-MC-LR antibody can easily be eluted from the immunosurface with high recoveries (more than 150 assay cycles) in the way of pepsin solution, without any damage to the surface-immobilized MC-LR derivatives. One assay cycle including surface regeneration was less than 20 min. For the standard curve, the limit of detection (LOD) of 0.03 microg/L and the quantitative detection range of 0.1-10.1 microg/L was obtained when the concentration of antibody labeled by Cy5.5 was 0.28 microg/mL. Cross-reactivity against a few compounds structurally similar to MC-LR was little. The developed immunosensor method was applied to the monitoring of MC-LR in various types of water. The recovery of MC-LR added to water samples at different concentrations ranged from 80 to 110% with relative standard deviation (R.S.D.) values less than 5%. The immunoassay performance of the TOPA was validated with respect to conventional high-performance liquid chromatography, and the correlation between methods was in good agreement (r(2)=0.9978). The TOPA is a portable, easy-to-use, and robust immunoassay system and commercially obtained from the company JQ-environ Co. Ltd. (China). PMID:19153038

  14. The procedure of ethanol determination in wine by enzyme amperometric biosensor

    Directory of Open Access Journals (Sweden)

    Dzyadevych S. V.

    2009-08-01

    Full Text Available Aim. Development of the procedure of ethanol determination in wine by an enzyme amperometric biosensor. Methods. The amperometric biosensor method of ethanol analysis has been used in this work. Results. The paper presents comparative analysis of two methods of alcohol oxidase (AO immobilization for development of amperometric biosensor for ethanol determination in wine. The method of AO immobilization in glutaraldehyde vapour was chosen as optimal for this purpose. The selectivity, operational and storage stability, and pH-optimum for operation of the created biosensor were determined. The procedure of ethanol determination in wine by amperometric biosensor on the basis of platinum printed electrode SensLab and AO was optimized. The analysis of ethanol concentration in wine and must samples was carried out using the developed high-stable biosensor. A good correlation between the data obtained by the biosensor and densitometry methods was shown. Conclusion. The proposed method of ethanol analysis could be used in wine production

  15. A Label-Free Impedance Immunosensor Using Screen-Printed Interdigitated Electrodes and Magnetic Nanobeads for the Detection of E. coli O157:H7.

    Science.gov (United States)

    Wang, Ronghui; Lum, Jacob; Callaway, Zach; Lin, Jianhan; Bottje, Walter; Li, Yanbin

    2015-12-01

    Escherichia coli O157:H7 is one of the leading bacterial pathogens causing foodborne illness. In this study, an impedance immunosensor based on the use of magnetic nanobeads and screen-printed interdigitated electrodes was developed for the rapid detection of E. coli O157:H7. Magnetic nanobeads coated with anti-E. coli antibody were mixed with an E. coli sample and used to isolate and concentrate the bacterial cells. The sample was suspended in redox probe solution and placed onto a screen-printed interdigitated electrode. A magnetic field was applied to concentrate the cells on the surface of the electrode and the impedance was measured. The impedance immunosensor could detect E. coli O157:H7 at a concentration of 10(4.45) cfu·mL(-1) (~1400 bacterial cells in the applied volume of 25 μL) in less than 1 h without pre-enrichment. A linear relationship between bacteria concentration and impedance value was obtained between 10(4.45) cfu·mL(-1) and 10(7) cfu·mL(-1). Though impedance measurement was carried out in the presence of a redox probe, analysis of the equivalent circuit model showed that the impedance change was primarily due to two elements: Double layer capacitance and resistance due to electrode surface roughness. The magnetic field and impedance were simulated using COMSOL Multiphysics software. PMID:26694478

  16. A Label-Free Impedance Immunosensor Using Screen-Printed Interdigitated Electrodes and Magnetic Nanobeads for the Detection of E. coli O157:H7

    Directory of Open Access Journals (Sweden)

    Ronghui Wang

    2015-12-01

    Full Text Available Escherichia coli O157:H7 is one of the leading bacterial pathogens causing foodborne illness. In this study, an impedance immunosensor based on the use of magnetic nanobeads and screen-printed interdigitated electrodes was developed for the rapid detection of E. coli O157:H7. Magnetic nanobeads coated with anti-E. coli antibody were mixed with an E. coli sample and used to isolate and concentrate the bacterial cells. The sample was suspended in redox probe solution and placed onto a screen-printed interdigitated electrode. A magnetic field was applied to concentrate the cells on the surface of the electrode and the impedance was measured. The impedance immunosensor could detect E. coli O157:H7 at a concentration of 104.45 cfu·mL−1 (~1400 bacterial cells in the applied volume of 25 μL in less than 1 h without pre-enrichment. A linear relationship between bacteria concentration and impedance value was obtained between 104 cfu·mL−1 and 107 cfu·mL−1. Though impedance measurement was carried out in the presence of a redox probe, analysis of the equivalent circuit model showed that the impedance change was primarily due to two elements: Double layer capacitance and resistance due to electrode surface roughness. The magnetic field and impedance were simulated using COMSOL Multiphysics software.

  17. Poly 3,4-ethylenedioxythiophene as an entrapment support for amperometric enzyme sensor

    OpenAIRE

    Fabiano, Silvia; Tran-Minh, Canh; Piro, Benoît; Anh Dang, Lan; Chau Pham, Minh; Vittori, Olivier

    2002-01-01

    International audience A conducting polymer of poly 3,4-ethylenedioxythiophene (PEDT) was used as a matrix for entrapment of enzymes onto a platinum electrode surface in order to construct amperometric biosensors. Glucose oxidase (GOD) was used as an example, and it was entrapped in the polymer during the electrochemical polymerization. Glucose in oxygenated solutions was tested by amperometric measurements at +650 mV (vs. SCE) in a batch system. The influence of several experimental param...

  18. Modelling of Amperometric Biosensors in the Case of Substrate Inhibition

    Science.gov (United States)

    Kulys, Juozas; Baronas, Romas

    2006-01-01

    The response of an amperometric biosensor at mixed enzyme kinetics and diffusion limitations was modelled digitally in the case of substrate inhibition. Digital simulations were carried out using a finite difference technique. Calculations showed complex kinetics of biosensor response. At low enzyme activity and substrate concentration (S0), the response of the sensor looks like it is limited by a simple substrate diffusion. At substrate concentration comparable to the Michaelis-Menten constant (KM), the response change shows a maximal value. A sharp response change was indicated at high enzyme activity and high (4.9 > S0/KM > 4.5) substrate concentration. This was explained by multi-concentration of substrate generation inside the enzyme layer. This conclusion was confirmed by the analytical solution of the simplified biosensor model with external diffusion limitation at steady-state conditions. The complex kinetics of response change produces different calibration graphs for biosensor response at transition and steady state.

  19. Modelling of Amperometric Biosensors in the Case of Substrate Inhibition

    Directory of Open Access Journals (Sweden)

    Romas Baronas

    2006-11-01

    Full Text Available The response of an amperometric biosensor at mixed enzyme kinetics anddiffusion limitations was modelled digitally in the case of substrate inhibition. Digitalsimulations were carried out using a finite difference technique. Calculations showedcomplex kinetics of biosensor response. At low enzyme activity and substrate concentration(S0, the response of the sensor looks like it is limited by a simple substrate diffusion. Atsubstrate concentration comparable to the Michaelis-Menten constant (KM, the responsechange shows a maximal value. A sharp response change was indicated at high enzymeactivity and high (4.9 > S0/KM > 4.5 substrate concentration. This was explained by multiconcentrationof substrate generation inside the enzyme layer. This conclusion wasconfirmed by the analytical solution of the simplified biosensor model with externaldiffusion limitation at steady-state conditions. The complex kinetics of response changeproduces different calibration graphs for biosensor response at transition and steady state.

  20. Studies on Immunosensor for Enterobacter Sakazakii Based on Multi-Wall Carbon Nanotubes/SDBS and Thionine%基于多壁碳纳米管/SDBS/硫堇阪崎肠杆菌免疫传感器的研究

    Institute of Scientific and Technical Information of China (English)

    张晓; 窦文超; 赵广英

    2012-01-01

    目的:研制一种灵敏度高、电化学性能稳定的免疫传感器,构建准确检测阪崎肠杆菌(Enterobacter sakazakii,E.sakazakii)的电化学方法.方法:将硫堇(Thi)、辣根过氧化物酶标记的阪崎肠杆菌抗体(HRP-antiE.sakazakii)依次自组装固定于多壁碳纳米管(MWCNT)/十二烷基苯磺酸钠(SDBS)修饰的四通道丝网印刷电极上,制得一次性免疫传感器.采用原子力显微镜(AFM)表征电极修饰和孵育抗原后的表面形态,用循环伏安法(CV)考察不同修饰电极的电化学特性,根据还原峰电流的变化对阪崎肠杆菌进行测定.结果:在优化的实验条件下,该方法检测阪崎肠杆菌的线性范围为102~108 cfu/mL,检测限为5.7×101 cfu/mL (S/N=3).结论:该免疫传感器灵敏度很高,具有较好的特异性、重现性(RSD=6.3%)、稳定性(4℃无菌容器中放置15d后电流响应为初始值的93.24%)和准确性(与GB/T 4789.40-2010符合率为96.67%),具有一定的应用潜力.%Object: For the purpose of establishing the accurate electrochemical method for detecting Enterobacter sakazakii (E. Sakazakii), a sensitive and stable immunosensor was successfully fabricated. Method: First, multi-wall carbon nanotube (MWCNT)/sodium dodecylbenzene sulfonate (SDBS) homogeneous composite was dropped on the surface of the 4-channel screen-printed carbon electrode. Then Thionine was chemisorbed by carboxylic MWCNT. Furthermore, horseradish peroxidase labeled antibody to E. Sakazakii (HRP -anti-E.sakazakii) was chemisorbed onto Thionine film through the electrostatic force with the amino group of Thionine. The preparation process of modified electrode was characterized with atomic force microscope (AFM). Cyclic voltammetry (CV) was carried out to characterize the electrochemical properties of different electrodes and detect E. Sakazakii. Results: under optimal conditions, concentration of E. Sakazakii from 102~108 cfu/mL could be detected with a detection limit of 5

  1. Protein and polysaccharide-composite sol-gel silicate film for an interference-free amperometric glucose biosensor.

    Science.gov (United States)

    Matsuhisa, Hironori; Tsuchiya, Munenori; Hasebe, Yasushi

    2013-11-01

    A novel permselective, organic-inorganic-hybrid, sol-gel silicate-film was chemically modified on an anodized platinum (Pt) electrode surface to form a selective, sensitive and interference-free amperometric glucose biosensor. This permselective hybrid sol-gel film consists of three organo-silanes [i.e., 3-aminopropyltriethoxysilane (APTES); tetraethoxysilane (TEOS); triethoxy-1H,1H,2H,2H-tridecafluoro-n-octylsilane (FAS)] and two biomacromolecules [i.e., bovine serum albumin (BSA) and a chitosan (CHIT)]. After the addition of the film to the Pt electrode, glucose oxidase (GOx) was covalently immobilized within the film with glutaraldehyde. The incorporation of the BSA and CHIT not only enhanced the permselectivity of H2O2 but also improved the activity of the immobilized GOx. The CHIT effectively suppressed any swelling of the film. Moreover, the conjugation of the FAS was especially effective in reducing the interference currents of AA and UA to levels less than 1/400 and 1/300 of the current of H2O2. The resulting organic-inorganic-hybrid sol-gel-film-based amperometric glucose biosensor exhibited rapid and sensitive responses to glucose (100% response in detection limit: 0.032 mM), and the highly selective determination of glucose was possible, even in the presence of 0.1mM AA and UA. PMID:23886787

  2. Disposable electrochemical immunosensor by using carbon sphere/gold nanoparticle composites as labels for signal amplification.

    Science.gov (United States)

    Xu, Qiunan; Yan, Feng; Lei, Jianping; Leng, Chuan; Ju, Huangxian

    2012-04-16

    This work designed a simple, sensitive, and low-cost immunosensor for the detection of protein marker by using a carbon sphere/gold nanoparticle (CNS/AuNP) composite as an electrochemical label. The nanoscale carbon spheres, prepared with a hydrothermal method by using glucose as raw material, were used to load AuNPs for labeling antibody by electrostatic interaction, which provided a feasible pathway for electron transfer due to the remarkable conductivity. The disposable immunosensor was constructed by coating a polyethylene glycol (PEG) film on a screen-printed carbon-working electrode and then immobilizing capture antibody on the film. With a sandwich-type immunoassay format, the analyte and then the CNS/AuNP-labeled antibody were successively bound to the immunosensor. The bound AuNPs were finally electro-oxidized in 0.1  M HCl to produce AuCl(4)(-) for differential pulse voltammetric (DPV) detection. The high-loading capability of AuNPs on CNS for the sandwich-type immunorecognition led to obvious signal amplification. By using human immunoglobulin G (IgG) as model target, the DPV signal of AuNPs after electro-oxidized at optimal potential of +1.40 V for 40 s showed a wide linear dependence on the logarithm of target concentration ranging from 10 pg  mL(-1) to 10 ng  mL(-1). The detection limit was around 9 pg  mL(-1). The immunosensor showed excellent analytical performance with cost effectivity, good fabrication reproducibility, and acceptable precision and accuracy, providing significant potential application in clinical analysis. PMID:22438025

  3. Fabrication of an Amperometric Biosensor for Glucose Based on Nafion,Azure Ⅰ and Gold Nanoparticles%以天青Ⅰ为介体的纳米金颗粒增强的葡萄糖传感器

    Institute of Scientific and Technical Information of China (English)

    周勇

    2009-01-01

    采用层层自组装的方法和异种电荷互相吸引的原理,将Nafion修饰在金电极上固载带正电荷的天青Ⅰ,并利用天青Ⅰ中的氨基固载纳米金,再通过纳米金将酶固定在金电极表面,制成了葡萄糖传感器.采用循环伏安法和交流阻抗法,研究了金电极表面组装各层之后的电化学特征,以及电极对葡萄糖的电化学催化作用. 结果表明,天青Ⅰ不仅可以固定酶和纳米金,而且还可以在酶和电极之间有效地传递电子.在优化的实验条件下,该传感器对葡萄糖响应的线性范围为5.1×10-6 ~4.0×10-3 mol/L,检出限(S/N=3)为1.0 μmol/L.该生物传感器显示出较好的稳定性和抗干扰能力,将其用于人体血清中葡萄糖的测定,结果令人满意.%A novel glucose biosensor was fabricated by immobilizing Nafion(Naf),azure Ⅰ(Azu),gold nanoparticles(nano-Au) and glucose oxidase(GOD) on the gold electrode based on the self-assembled technique and the opposite-charged adsorption mechanism.The electrochemical characteristics of modified electrode were investigated by cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS).The results indicated that the Azu could not only use to immobilize enzyme and nano-Au,but also improve the electron transfer capability between enzyme and electrode.Under optimal conditions,the biosensor could detect the glucose in the range of 5.1×10-6-4.0×10-3 mol/L with a low detection limit of 1.0 μmol/L (S/N=3).This sensor showed a good stability and strong anti-disturbance capability,and was applied in the determination of glucose in human serum with satisfactory results.

  4. Optical immunosensors for detection of Listeria monocytogenes and Salmonella enteritidis from food

    Science.gov (United States)

    Bhunia, Arun K.; Geng, Tao; Lathrop, Amanda; Valadez, Angela; Morgan, Mark T.

    2004-03-01

    Listeria monocytogenes and Salmonella are two major foodborne pathogens of significant concern. Two optical evanescent wave immunosensors were evaluated for detection: Antibody-coupled fiber-optic biosensor and a surface plasmon resonant (SPR) immunosensor. In the fiber-optic sensor, polyclonal antibodies for the test organisms were immobilized on polystyrene fiber wave -guides using streptavidin - biotin chemistry. Cyanine 5 -labeled monoclonal antibodies C11E9 (for L. monocytogenes) and SF-11 (for Salmonella Enteritidis) were used to generate a specific fluorescent signal. Signal acquisition was performed by launching a laser-light (635 nm) from an Analyte-2000. This immunosensor was able to detect 103 - 109 cfu/ml of L. monocytogenes or 106-109 cfu/ml of Salmonella Enteritidis and the assays were conducted at near real-time with results obtained within one hour of sampling. The assays were specific and showed signal even in the presence of other microorganisms such as E. coli, Enterococcus faecalis or Salmonella Typhimurium. In the SPR system, IAsys instrument (resonant mirror sensor) was used. Monoclonal antibody-C11E9 was directly immobilized onto a carboxylate cuvette. Whole Listeria cells at various concentrations did not yield any signal while surface protein extracts did. Crude protein extracts from L. monocytogenes and L. innocua had average binding responses of around 150 arc sec (0.25 ng/mm2), which was significantly different from L. grayi, L. ivanovii, or L. welshimeri with average responses of detection of foodborne L. monocytogenes and Salmonella Enteritidis.

  5. A label-free impedimetric immunosensor for direct determination of the textile dye Disperse Orange 1.

    Science.gov (United States)

    Yang, Jing; da Rocha, Carolina Gomes; Wang, Shengfu; Ferreira, Antonio Aparecido Pupim; Yamanaka, Hideko

    2015-09-01

    A strategy for a label-free impedimetric immunosensor is described for detection of the textile dye Disperse Orange 1 (DO1). The compounds 1,12-diaminododecane (DADD) and then 1,7-diaminoheptane (DAH) were firstly successively grafted onto a glassy carbon electrode (GCE) surface by electro-oxidation of one amino group, while the other terminal amino group was modified with the antibody anti-DO1. The construction process of the immunosensor was characterized by cyclic voltammetry, electrochemical impedance spectroscopy and capacitance measurements. The electron transfer resistance (Rct) exhibited an effective response to the affinity between the immobilized antibody and the antigen in solution. The linear range for the target compound was from 5.0 nmol L(-1) to 0.5 μmol L(-1) (R=0.9980), and the limit of detection (LOD) was 7.56 nmol L(-1). The proposed impedimetric immunosensor has the advantages of simplicity, cost-effectiveness, and sensitivity. PMID:26003710

  6. Explosives detection in the marine environment using UUV-modified immunosensor

    Science.gov (United States)

    Charles, Paul T.; Adams, André A.; Deschamps, Jeffrey R.; Veitch, Scott P.; Hanson, Alfred; Kusterbeck, Anne W.

    2011-05-01

    Port and harbor security has rapidly become a point of interest and concern with the emergence of new improvised explosive devices (IEDs). The ability to provide physical surveillance and identification of IEDs and unexploded ordnances (UXO) at these entry points has led to an increased effort in the development of unmanned underwater vehicles (UUVs) equipped with sensing devices. Traditional sensors used to identify and locate potential threats are side scan sonar/acoustic methods and magnetometers. At the Naval Research Laboratory (NRL), we have developed an immunosensor capable of detecting trace levels of explosives that has been integrated into a REMUS payload for use in the marine environment. Laboratory tests using a modified PMMA microfluidic device with immobilized monoclonal antibodies specific for TNT and RDX have been conducted yielding detection levels in the low parts-per-billion (ppb) range. New designs and engineered improvements in microfluidic devices, fluorescence signal probes, and UUV internal fluidic and optical components have been investigated and integrated into the unmanned underwater prototype. Results from laboratory and recent field demonstrations using the prototype UUV immunosensor will be discussed. The immunosensor in combination with acoustic and other sensors could serve as a complementary characterization tool for the detection of IEDs, UXOs and other potential chemical or biological threats.

  7. A disposable electrochemical immunosensor for prolactin involving affinity reaction on streptavidin-functionalized magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Guzman, Maria; Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Computense of Madrid, 28040 Madrid (Spain); Yanez-Sedeno, Paloma, E-mail: yseo@quim.ucm.es [Department of Analytical Chemistry, Faculty of Chemistry, University Computense of Madrid, 28040 Madrid (Spain); Pingarron, Jose M. [Department of Analytical Chemistry, Faculty of Chemistry, University Computense of Madrid, 28040 Madrid (Spain)

    2011-04-29

    A novel electrochemical immunosensor was developed for the determination of the hormone prolactin. The design involved the use of screen-printed carbon electrodes and streptavidin-functionalized magnetic particles. Biotinylated anti-prolactin antibodies were immobilized onto the functionalized magnetic particles and a sandwich-type immunoassay involving prolactin and anti-prolactin antibody labelled with alkaline phosphatase was employed. The resulting bio-conjugate was trapped on the surface of the screen-printed electrode with a small magnet and prolactin quantification was accomplished by differential pulse voltammetry of 1-naphtol formed in the enzyme reaction using 1-naphtyl phosphate as alkaline phosphatase substrate. All variables involved in the preparation of the immunosensor and in the electrochemical detection step were optimized. The calibration plot for prolactin exhibited a linear range between 10 and 2000 ng mL{sup -1} with a slope value of 7.0 nA mL ng{sup -1}. The limit of detection was 3.74 ng mL{sup -1}. Furthermore, the modified magnetic beads-antiprolactin conjugates showed an excellent stability. The immunosensor exhibited also a high selectivity with respect to other hormones. The analytical usefulness of the immnunosensor was demonstrated by analyzing human sera spiked with prolactin at three different concentration levels.

  8. Highly Sensitive Reagentless Amperometric Immunosensor based on Layer-by-layer Assembly of Redox-active Organic-inorganic Composite Film for Determining Prostate Specific Antigen%新型有机-无机氧化还原复合膜层层组装的无试剂高灵敏电流型前列腺特异性抗原免疫传感器研究

    Institute of Scientific and Technical Information of China (English)

    刘中原; 袁若; 柴雅琴; 卓颖; 洪成林

    2009-01-01

    以前列腺特异性抗原(PSA)和前列腺特异性抗体(anti-PSA)为生物模型分子,采用电沉积技术和共价键合作用,研制了新型高灵敏电流型免疫传感器.利用具有良好导电性和热稳定性的新型有机材料[苝四甲酸二酐(PTCDA)衍生物,简写为PTC-NH2]膜具有的多孔结构,该膜可与电沉积制得的冰晶状普鲁士蓝(PB)颗粒进行层层组装镶嵌,形成多层稳定的有机-无机氧化还原复合膜以增加PB的同定量和稳定性,从而提高电极的电流响应信号;同时,通过复合膜表面丰富的氨基吸附大量纳米金以增加抗体的固定量,从而提高免疫传感器的灵敏度.利用扫描电子显微镜(SEM)和X射线光电子能谱仪(XPS)对PTC-NH2膜的形貌和结构进行表征,通过循环伏安法考察了电极修饰过程的电化学特性,详细研究了该免疫传感器的性能.该免疫电极对前列腺特异性抗原检测的线性范围为0.5~16.0 ng/mL,相关系数为0.985,检测限为0.02 ng/mL.实验结果表明,利用该方法制备的免疫传感器具有灵敏度高、稳定性和选择性好等优点.

  9. Amperometric Enzyme-based Biosensors for Lowering the Interferences

    OpenAIRE

    Nien, Po-Chin; Chen, Po-Yen; Ho, Kuo-Chuan

    2010-01-01

    In system A, the PEDOT-modified electrode was used as a matrix to entrap glucose oxidase and was integrated in a flow system of sensing chip successfully. The optimal injecting volume and flow rate were 30 μl and 10 ml/hr, respectively. The performances of sensitivity, linear range, response time, recovery time and limit of detection were 157 μC cm-2 mM-1, 1-10 mM, 15 s, 35-75 s and 0.15 mM at a flow rate of 10 ml/hr, respectively. With an applied potential of 0.7 V on WE2, it can reduce th...

  10. Amperometric ATP biosensor based on polymer entrapped enzymes.

    Science.gov (United States)

    Kueng, Angelika; Kranz, Christine; Mizaikoff, Boris

    2004-05-15

    A dual enzyme electrode for the detection of adenosine-5'-triphosphate (ATP) at physiologically relevant pH levels was developed by co-immobilization of the enzymes glucose oxidase (GOD) and hexokinase (HEX) using pH-shift induced deposition of enzyme containing polymer films. Application of a simple electrochemical procedure for the co-immobilization of the enzymes at electrode surfaces exhibits a major improvement of sensitivity, response time, reproducibility, and ease of fabrication of ATP biosensors. Competition between glucose oxidase and hexokinase for the substrate glucose involving ATP as a co-substrate allows the determination of ATP concentrations. Notable control on the immobilization process enables fabrication of micro biosensors with a diameter of 25 microm. The presented concept provides the technological basis for a new generation of fast responding, sensitive, and robust biosensors for the detection of ATP at physiological pH values with a detection limit of 10 nmol l(-1). PMID:15046763

  11. Amperometric microsensor for direct probing of ascorbic acid in human gastric juice

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, Emily A.; Pauliukaite, Rasa; Hocevar, Samo B. [Analytical Chemistry Laboratory, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Ogorevc, Bozidar, E-mail: bogorevc@ki.s [Analytical Chemistry Laboratory, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Smyth, Malcolm R. [National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland)

    2010-09-30

    This article reports on a novel microsensor for amperometric measurement of ascorbic acid (AA) under acidic conditions (pH 2) based on a carbon fiber microelectrode (CFME) modified with nickel oxide and ruthenium hexacyanoferrate (NiO-RuHCF). This sensing layer was deposited electrochemically in a two-step procedure involving an initial galvanostatic NiO deposition followed by a potentiodynamic RuHCF deposition from solutions containing the precursor salts. Several important parameters were examined to characterize and optimize the NiO-RuHCF sensing layer with respect to its current response to AA by using cyclic voltammetry, and scanning electron microscopy-energy dispersive X-ray spectroscopy methods. With the NiO-RuHCF coated CFME, the AA oxidation potential under acidic conditions was shifted to a less positive value for about 0.2 V (E{sub p} of ca. 0.23 V vs. Ag/AgCl) as compared to a bare CFME, which greatly improves the electrochemical selectivity. Using the hydrodynamic amperometry mode, the current vs. AA concentration in 0.01 M HCl, at a selected operating potential of 0.30 V, was found to be linear over a wide range of 10-1610 {mu}M (n = 22, r = 0.999) with a calculated limit of detection of 1.0 {mu}M. The measurement repeatability was satisfactory with a relative standard deviation (r.s.d.) ranging from 4% to 5% (n = 6), depending on the AA concentration, and with a sensor-to-sensor reproducibility (r.s.d.) of 6.9% at 100 {mu}M AA. The long-term reproducibility, using the same microsensor for 112 consecutive measurements of 20 {mu}M AA over 11 h of periodic probing sets over 4 days, was 16.1% r.s.d., thus showing very good stability at low AA levels and suitability for use over a prolonged period of time. Moreover, using the proposed microsensor, additionally coated with a protective cellulose acetate membrane, the calibration plot obtained in the extremely complex matrix of real undiluted gastric juice was linear from 10 to 520 {mu}M (n = 14, r = 0

  12. Electrochemical fabrication and amperometric sensor application of graphene sheets

    Science.gov (United States)

    Öztürk, Ayşe; Alanyalıoğlu, Murat

    2016-07-01

    Graphene sheets have been fabricated by applying two-step electrochemical processes in two-electrode cell system containing 0.1 M sodium dodecyl sulfate (SDS). First step is intercalation of SDS into graphite anode electrode and this process has been applied at different intercalation potential values of 1, 3, 5, and 7 V. Second step includes exfoliation of SDS-intercalated graphite electrode in the same medium by acting as cathode. Stable graphene dispersions are obtained after these two electrochemical steps. Characterization of graphene sheets have been carried out using scanning electron microscopy, electron dispersive spectroscopy, fourier transform infrared spectroscopy, UV-Vis. absorption spectroscopy, X-ray diffraction, and cyclic voltammetry techniques. Graphene sheets have been modified onto glassy carbon electrode (GCE) by drop-casting of graphene dispersion. Graphene/GCE having a good electrocatalytic activity has been used for amperometric determination of nitrite in both standard laboratory and real samples. The oxidation current density was linearly proportional to the nitrite concentration in a range between 1 and 250 μM. The sensitivity of the sensor was calculated as 0.843 μAμM-1 cm-2 with a detection limit of 0.24 μM at a signal-to-noise ratio of 3.0.

  13. Amperometric monitoring of quercetin permeation through skin membranes.

    Science.gov (United States)

    Rembiesa, Jadwiga; Gari, Hala; Engblom, Johan; Ruzgas, Tautgirdas

    2015-12-30

    Transdermal delivery of quercetin (QR, 3,3',4',5,7-pentahydroxyflavone), a natural flavonoid with a considerable antioxidant capacity, is important for medical treatment of, e.g., skin disorders. QR permeability through skin is low, which, at the same time, makes the monitoring of percutaneous QR penetration difficult. The objective of this study was to assess an electrochemical method for monitoring QR penetration through skin membranes. An electrode was covered with the membrane, exposed to QR solution, and electrode current was measured. The registered current was due to electro-oxidation of QR penetrating the membrane. Exploiting strict current-QR flux relationships diffusion coefficient, D, of QR in skin and dialysis membranes was calculated. The D values were strongly dependent on the theoretical model and parameters assumed in the processing of the amperometric data. The highest values of D were in the range of 1.6-6.1×10(-7)cm(2)/s. This was reached only for skin membranes pretreated with buffer-ethanol mixture for more than 24h. QR solutions containing penetration enhancers, ethanol and l-menthol, definitely increased D values. The results demonstrate that electrochemical setup gives a possibility to assess penetration characteristics as well as enables monitoring of penetration dynamics, which is more difficult by traditional methods using Franz cells. PMID:26541297

  14. Wireless Amperometric Neurochemical Monitoring Using an Integrated Telemetry Circuit

    Science.gov (United States)

    Roham, Masoud; Halpern, Jeffrey M.; Martin, Heidi B.; Chiel, Hillel J.

    2015-01-01

    An integrated circuit for wireless real-time monitoring of neurochemical activity in the nervous system is described. The chip is capable of conducting high-resolution amperometric measurements in four settings of the input current. The chip architecture includes a first-order ΔΣ modulator (ΔΣM) and a frequency-shift-keyed (FSK) voltage-controlled oscillator (VCO) operating near 433 MHz. It is fabricated using the AMI 0.5 μm double-poly triple-metal n-well CMOS process, and requires only one off-chip component for operation. Measured dc current resolutions of ~250 fA, ~1.5 pA, ~4.5 pA, and ~17 pA were achieved for input currents in the range of ±5, ±37, ±150, and ±600 nA, respectively. The chip has been interfaced with a diamond-coated, quartz-insulated, microneedle, tungsten electrode, and successfully recorded dopamine concentration levels as low as 0.5 μM wirelessly over a transmission distance of ~0.5 m in flow injection analysis experiments. PMID:18990633

  15. Development of highly sensitive amperometric biosensor for glucose using carbon nanosphere/sodium alginate composite matrix for enzyme immobilization.

    Science.gov (United States)

    Han, En; Li, Xia; Cai, Jian-Rong; Cui, Hai-Ying; Zhang, Xing-Ai

    2014-01-01

    In this study, we developed a highly sensitive amperometric biosensor for glucose detection based on glucose oxidase immobilized in a novel carbon nanosphere (CNS)/sodium alginate (SA) composite matrix. This hybrid material combined the advantages of CNS and natural biopolymer SA. This composite film was characterized by scanning electron microscope, electrochemical impedance spectroscopy and UV-vis, which indicated that the hybrid material was suitable for immobilization of glucose oxidase. Various experimental conditions were investigated that influenced the performance of the biosensor, such as pH, applied potential and temperature. Under the optimum conditions, the biosensor showed excellent performance for glucose over a wide linear concentration range from 1.0 × 10(-6) to 4.6 × 10(-3) M with a detection limit of 0.5 μM based on a signal-to-noise ratio of 3. Furthermore, the biosensor exhibited excellent long-term stability and satisfactory reproducibility. PMID:25213818

  16. Measurement of tear glucose levels with amperometric glucose biosensor/capillary tube configuration.

    Science.gov (United States)

    Yan, Qinyi; Peng, Bo; Su, Gang; Cohan, Bruce E; Major, Terry C; Meyerhoff, Mark E

    2011-11-01

    An amperometric needle-type electrochemical glucose sensor intended for tear glucose measurements is described and employed in conjunction with a 0.84 mm i.d. capillary tube to collect microliter volumes of tear fluid. The sensor is based on immobilizing glucose oxidase on a 0.25 mm o.d. platinum/iridium (Pt/Ir) wire and anodically detecting the liberated hydrogen peroxide from the enzymatic reaction. Inner layers of Nafion and an electropolymerized film of 1,3-diaminobenzene/resorcinol greatly enhance the selectivity for glucose over potential interferences in tear fluid, including ascorbic acid and uric acid. Further, the new sensor is optimized to achieve very low detection limits of 1.5 ± 0.4 μM of glucose (S/N = 3) that is required to monitor glucose levels in tear fluid with a glucose sensitivity of 0.032 ± 0.02 nA/μM (n = 6). Only 4-5 μL of tear fluid in the capillary tube is required when the needle sensor is inserted into the capillary. The glucose sensor was employed to measure tear glucose levels in anesthetized rabbits over an 8 h period while also measuring the blood glucose values. A strong correlation between tear and blood glucose levels was found, suggesting that measurement of tear glucose is a potential noninvasive substitute for blood glucose measurements, and the new sensor configuration could aid in conducting further research in this direction. PMID:21961809

  17. Determination of Four Active Ingredients in Vc Yinqiao Tablets by Capillary Zone Electrophoresis with Amperometric Detection

    Institute of Scientific and Technical Information of China (English)

    L(U),Jin; WANG,Qing-Jiang; CHENG,Xi; LIU,Hai-Yan; HE,Pin-Gang; FANG,Yu-Zhi

    2006-01-01

    A simple, reliable and reproducible method, based on capillary zone electrophoresis with amperometric detection (CZE-AD), has been developed for simultaneous determination of four active ingredients in Vc Yinqiao tablets including paracetamol, vitamin C, caffeic acid and chlorogenic acid. A carbon-disk electrode was used as working electrode and 0.95 V (versus SCE) was selected as detection potential. The optimal conditions of CZE experiment were 30 mmol·L-1 borate solution (pH 9.5) as running buffer, 14 kV as separation voltage and 8 s (14 kV) as electro-kinetic sampling time. Under the selected optimum conditions, paracetamol, vitamin C, caffeic acid and chlorogenic acid could be perfectly separated within 22 min, and their detection limits (S/N=3) ranged from 5 × 10-7 to 1×10-6 mol·L-1. This proposed method demonstrated good reproducibility with relative standard deviations of less than 3% for both migration time and peak current (n=7). The utility of this method was demonstrated by monitoring a kind of compound medicine named Vc Yinqiao tablets and the assay results were satisfactory.

  18. Open Tubular Microreactor with Enzyme Functionalized Micro- fluidic Channel for Amperometric Detection of Glucose

    Institute of Scientific and Technical Information of China (English)

    张蕾; 曲平; 盛金; 雷建平; 鞠烷先

    2012-01-01

    A simple and efficient method using enzyme immobilized microfluidic channel as open tubular microreactor was designed for amperometric detection of glucose. The microreactor was composed of a polydimethylsilicone/ glass hybrid device with three reservoirs, a cooling cave and a 6 cm capillary with a sampling fracture as micro-channel. The microchannel was further modified by thermal polymerization, followed by covalently attaching with glucose oxidase. Through fracture sampling and electrochromatography separation, the production via enzymatic reaction was determinated by Pt electrode at the end of capillary. The linear range for the detection of glucose was 0.05--7.5 mmol·L-1 with detection limit of 23μmol.L-1 The inter-and intra-chip reproducibilities for determination of 2.5 mmol-L-1 glucose were 98.5% (n=5) and 96.0% (n=5), respectively. With the advantage of flexible assembly, rapid efficiency, good stability and low-cost, this microreactor provided a potential platform for estab- lishing a portable enzyme-based chemical detection system in practical application.

  19. Construction of an amperometric pyruvate oxidase enzyme electrode for determination of pyruvate and phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Akyilmaz, Erol; Yorganci, Emine [Department of Biochemistry, Faculty of Science, Ege University, 35100 Bornova-izmir (Turkey)

    2007-11-01

    In this study an amperometric biosensor based on pyruvate oxidase was developed for the determination of pyruvate and phosphate. For construction of the biosensor pyruvate oxidase was immobilized with gelatin and insolubilized in film by forming cross-linked bonds with glutaraldehyde. The film was fixed on a YSI type dissolved oxygen (DO) probe, covered with a teflon membrane which is high-sensitive for oxygen. The working principle of the biosensor depends on detection of consumed DO concentration related to pyruvate concentration which is used in enzymatic reaction catalyzed by pyruvate oxidase. The biosensor response shows a linearity with pyruvate concentration between 0.0025 and 0.05 {mu}M and also response time of the biosensor is 3 min. In the optimization studies of the biosensor the most suitable enzyme activity was found as 2.5 U/cm{sup 2} for pyruvate oxidase, and also phosphate buffer (pH 7.0; 50 mM) and 35 C were established as providing the optimum working conditions. In the characterization studies of the biosensor some parameters such as reproducibility, substrate specificity, operational stability, determination of phosphate, and interference effects of some compounds on the pyruvate determination were investigated. Finally, the concentration of pyruvate was determined by using spectrophotometric method and the results obtained were compared to results obtained by the biosensor. (author)

  20. Simultaneous Voltammetric/Amperometric Determination of Sulfide and Nitrite in Water at BDD Electrode

    Directory of Open Access Journals (Sweden)

    Anamaria Baciu

    2015-06-01

    Full Text Available This work reported new voltammetric/amperometric-based protocols using a commercial boron-doped diamond (BDD electrode for simple and fast simultaneous detection of sulfide and nitrite from water. Square-wave voltammetry operated under the optimized working conditions of 0.01 V step potential, 0.5 V modulation amplitude and 10 Hz frequency allowed achieving the best electroanalytical parameters for the simultaneous detection of nitrite and sulfide. For practical in-field detection applications, the multiple-pulsed amperometry technique was operated under optimized conditions, i.e., −0.5 V/SCE for a duration of 0.3 s as conditioning step, +0.85 V/SCE for a duration of 3 s that assure the sulfide oxidation and +1.25 V/SCE for a duration of 0.3 s, where the nitrite oxidation occurred, which allowed the simultaneously detection of sulfide and nitrite without interference between them. Good accuracy was found for this protocol in comparison with standardized methods for each anion. Also, no interference effect was found for the cation and anion species, which are common in the water matrix.

  1. Simultaneous Voltammetric/Amperometric Determination of Sulfide and Nitrite in Water at BDD Electrode

    Science.gov (United States)

    Baciu, Anamaria; Ardelean, Magdalena; Pop, Aniela; Pode, Rodica; Manea, Florica

    2015-01-01

    This work reported new voltammetric/amperometric-based protocols using a commercial boron-doped diamond (BDD) electrode for simple and fast simultaneous detection of sulfide and nitrite from water. Square-wave voltammetry operated under the optimized working conditions of 0.01 V step potential, 0.5 V modulation amplitude and 10 Hz frequency allowed achieving the best electroanalytical parameters for the simultaneous detection of nitrite and sulfide. For practical in-field detection applications, the multiple-pulsed amperometry technique was operated under optimized conditions, i.e., −0.5 V/SCE for a duration of 0.3 s as conditioning step, +0.85 V/SCE for a duration of 3 s that assure the sulfide oxidation and +1.25 V/SCE for a duration of 0.3 s, where the nitrite oxidation occurred, which allowed the simultaneously detection of sulfide and nitrite without interference between them. Good accuracy was found for this protocol in comparison with standardized methods for each anion. Also, no interference effect was found for the cation and anion species, which are common in the water matrix. PMID:26102487

  2. Amperometric Choline Biosensor Fabricated through Electrostatic Assembly of Bienzyme/Polyelectrolyte Hybrid Layers on Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun; Liu, Guodong; Lin, Yuehe

    2006-03-01

    We report a flow injection amperometric choline biosensors based on the electrostatic assembly of an enzyme of choline oxidase (ChO) and a bi-enzyme of ChO and horseradish peroxidase (HRP) onto multi-wall carbon nanotubes (MWCNT) modified glassy carbon (GC) electrodes. These choline biosensors were fabricated by immobilization of enzymes on the negatively charged MWCNT surface through alternatively assembling a cationic polydiallydiimethylammonium chloride (PDDA) layer and an enzyme layer. Using this layer-by-layer assembling approach, bioactive nanocomposite film of a PDDA/ChO/PDDA/HRP/PDDA/CNT (ChO/HRP/CNT) and a PDDA/ChO/PDDA/ CNT (ChO/ CNT) were fabricated on GC surface, respectively. Owning to the electrocatalytic effect of carbon nanotubes, the measurement of faradic responses resulting from enzymatic reactions has been realized at low potential with acceptable sensitivity. It is found the ChO/HRP/CNT biosensor is more sensitive than the ChO/CNT one. Experimental parameters affecting the sensitivity of biosensors, e.g. applied potential, flow rate, etc. were optimized and potential interference was examined. The response time for this choline biosensor is fast (less than a few seconds). The linear range of detection for the choline biosensor is from 5 x 10-5 to 5 x 10-3 M and the detection limit is determined to be about 1.0 x 10-5 M.

  3. Fabricating electrodes for amperometric detection in hybrid paper/polymer lab-on-a-chip devices.

    Science.gov (United States)

    Godino, Neus; Gorkin, Robert; Bourke, Ken; Ducrée, Jens

    2012-09-21

    We present a novel, low-resource fabrication and assembly method for creating disposable amperometric detectors in hybrid paper-polymer devices. Currently, mere paper-based microfluidics is far from being able to achieve the same level of process control and integration as state-of-the-art microfluidic devices made of polymers. To overcome this limitation, in this work both substrate types are synergistically combined through a hybrid, multi-component/multi-material system assembly. Using established inkjet wax printing, we transform the paper into a profoundly hydrophobic substrate in order to create carbon electrodes which are simply patterned from carbon inks via custom made adhesive stencils. By virtue of the compressibility of the paper substrate, the resulting electrode-on-paper hybrids can be directly embedded in conventional, 3D polymeric devices by bonding through an adhesive layer. This manufacturing scheme can be easily recreated with readily available off-the-shelf equipment, and is extremely cost-efficient and rapid with turn-around times of only a few hours. PMID:22842728

  4. Fast determination of aldehyde preservatives by miniaturized capillary electrophoresis with amperometric detection.

    Science.gov (United States)

    Li, Ying; Chen, Fang; Ge, Jinyuan; Tong, Fanghong; Deng, Zhaoyue; Shen, Fengwu; Gu, Qianxia; Ye, Jiannong; Chu, Qingcui

    2014-02-01

    A novel miniaturized CE with amperometric detection (mini-CE-AD) method has been developed for fast determination of aliphatic aldehyde preservatives, namely formaldehyde and glyoxal, in commodities. After derivatization with an electroactive compound 2-thiobarbituric acid, these two nonelectroactive aldehydes were converted to electroactive adducts, therefore detectable by mini-CE-AD approach. Under the optimum conditions, two aldehydes can be well-separated with the coexisting interferents as well as their homologs (acetaldehyde and methyl-glyoxal), and the LODs (S/N = 3) were achieved at nanogram-per-milliliter level (1.64-2.80 ng/mL) based on the online enrichment method of transient moving chemical reaction boundary. The proposed method has been applied for the analyses of above aldehyde preservatives in different real commodity samples including skincare products, baby lotion, and toothpaste, and the average recoveries were in the range of 94-105%, which should find a wide range of analytical applications as an alternative to conventional and microchip CE approaches.

  5. Ceramic Carbon/Polypyrrole Materials for the Construction of Bienzymatic Amperometric Biosensor for Glucose

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel amperometric glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of glucose oxidase (GOD) on the surface of a horseradish peroxidase (HRP) modified ferrocenecarboxylic acid (FCA) mediated sol-gel derived ceramic carbon electrode. The amperometric detection of glucose was carried out at +0.16 V (vs. SCE) in 0.1 mol/L phosphate buffer solution (pH 6.9) with a linear response range between 8.0×10-5 and 1.3×10-3 mol/L of glucose. The biosensor showed a good suppression of inter- ference and a negligible deviation in the amperometric detection.

  6. Development of Anodic Titania Nanotubes for Application in High Sensitivity Amperometric Glucose and Uric Acid Biosensors

    OpenAIRE

    Tai-Ping Sun; Jyh-Ling Lin; Li-Fan Zhang; Hsiang-Ching Lee; Yuan-Lung Chin

    2013-01-01

    The purpose of this study was to develop novel nanoscale biosensors using titania nanotubes (TNTs) made by anodization. Titania nanotubes were produced on pure titanium sheets by anodization at room temperature. In this research, the electrolyte composition ethylene glycol 250 mL/NH4F 1.5 g/DI water 20 mL was found to produce the best titania nanotubes array films for application in amperometric biosensors. The amperometric results exhibit an excellent linearity for uric acid (UA) concentrati...

  7. Copper modified platinum electrode for amperometric detection of spectinomycin sulfate by anion-exchange chromatography

    Institute of Scientific and Technical Information of China (English)

    Ling Ling Xi; Pei Min Zhang; Yan Zhu

    2009-01-01

    A La~(3+)-Cu/Pt modified electrode was fabricated by electrodepositing process in CuSO_4 solution by adding a small amount of lanthium compound, and it was employed for direct current (DC) amperometric detection of spectinomycin by anion-exchange chromatography. Without derivatization, this method can simultaneously determine the main component and impurities in spectinomycin pharmaceutical raw material. Ease of preparation, being applied in DC detection mode and good catalytic stability confirmed the interests of this modified electrode as amperometric sensor for the determination of spectinomycin.

  8. A wafer-level liquid cavity integrated amperometric gas sensor with ppb-level nitric oxide gas sensitivity

    International Nuclear Information System (INIS)

    A miniaturized amperometric nitric oxide (NO) gas sensor based on wafer-level fabrication of electrodes and a liquid electrolyte chamber is reported in this paper. The sensor is able to detect NO gas concentrations of the order of parts per billion (ppb) levels and has a measured sensitivity of 0.04 nA ppb−1 with a response time of approximately 12 s. A sufficiently high selectivity of the sensor to interfering gases such as carbon monoxide (CO) and to ammonia (NH3) makes it potentially relevant for monitoring of asthma. In addition, the sensor was characterized for electrolyte evaporation which indicated a sensor operation lifetime allowing approximately 200 measurements. (paper)

  9. Amperometric detection of heavy metal ions in ion pair chromatography at an array of water/nitrobenzene micro interfaces.

    Science.gov (United States)

    Wilke, S; Wang, H; Muraczewska, M; Müller, H

    1996-09-01

    A novel amperometric detector for heavy metal ions has been developed and successfully applied for ion pair chromatography. The detector is based on the electrochemical transfer of the metal ions across an array of water/nitrobenzene micro interfaces. The ion transfer is facilitated by the neutral ionophores methylenebis(diphenylphosphineoxide) and methylenebis(di- phenylphosphinesulfide). More than eight metals are separated in less than 15 min on an RP18 column using octyl sulfonate as ion pair reagent. For the heavy metals, the limits of decision are 19(Pb(2+)), 9(Zn(2+)), 9l (Co(2+)), 8(Cd(2+)) and 1.6(Mn(2+)) microg/L. The applicability of the new method for water samples is demonstrated. PMID:15048359

  10. Amperometric Detection of Aqueous Silver Ions by Inhibition of Glucose Oxidase Immobilized on Nitrogen-Doped Carbon Nanotube Electrodes.

    Science.gov (United States)

    Rust, Ian M; Goran, Jacob M; Stevenson, Keith J

    2015-07-21

    An amperometric glucose biosensor based on immobilization of glucose oxidase on nitrogen-doped carbon nanotubes (N-CNTs) was successfully developed for the determination of silver ions. Upon exposure to glucose, a steady-state enzymatic turnover rate was detected through amperometric oxidation of the H2O2 byproduct, directly related to the concentration of glucose in solution. Inhibition of the steady-state enzymatic glucose oxidase reaction by heavy metals ions such as Ag(+), produced a quantitative decrease in the steady-state rate, subsequently creating an ultrasensitive metal ion biosensor through enzymatic inhibition. The Ag(+) biosensor displayed a sensitivity of 2.00 × 10(8) ± 0.06 M(-1), a limit of detection (σ = 3) of 0.19 ± 0.04 ppb, a linear range of 20-200 nM, and sample recovery at 101 ± 2%, all acquired at a low-operating potential of 0.05 V (vs Hg/Hg2SO4). Interestingly, the biosensor does not display a loss in sensitivity with continued use due to the % inhibition based detection scheme: loss of enzyme (from continued use) does not influence the % inhibition, only the overall current associated with the activity loss. The heavy metals Cu(2+) and Co(2+) were also detected using the enzyme biosensor but found to be much less inhibitory, with sensitivities of 1.45 × 10(6) ± 0.05 M(-1) and 2.69 × 10(3) ± 0.07 M(-1), respectively. The mode of GOx inhibition was examined for both Ag(+) and Cu(2+) using Dixon and Cornish-Bowden plots, where a strong correlation was observed between the inhibition constants and the biosensor sensitivity. PMID:26079664

  11. Self-interconnecting Pt nanowire network electrode for electrochemical amperometric biosensor.

    Science.gov (United States)

    Wang, Shuqi; Xu, Li-Ping; Liang, Hai-Wei; Yu, Shu-Hong; Wen, Yongqiang; Wang, Shutao; Zhang, Xueji

    2015-07-14

    One-dimensional Pt nanostructures are of considerable interest for the development of highly stable and sensitive electrochemical sensors. This paper describes a self-interconnecting Pt nanowire network electrode (PtNNE) for the detection of hydrogen peroxide (H2O2) and glucose with ultrahigh sensitivity and stability. The as-prepared PtNNE consists of polycrystalline nanowires with high-index facets along the side surface which provides more active surface atoms on kinks and steps, those ultralong nanowires being interconnected with each other to form a free-standing network membrane. The excellent structural features of the PtNNE promoted its performance as a Pt-based electrochemical sensor both in terms of electrocatalytic activity and stability. Amperometric measurements towards hydrogen peroxide were performed; the PtNNE sensor showed an extremely high sensitivity of 1360 μA mM(-1) cm(-2). This excellent sensitivity is mainly attributed to the high-index facets of the nanowires resulting in their superior electrocatalytic activity towards H2O2, and the interconnected nanowire network forming an "electron freeway" transport model, which could provide multiple electron pathways and fast electron transport on the electrode, leading to rapid reaction and sensitive signal detection. The as-prepared PtNNE also holds promise as an oxidase-based biosensor. As a proof of concept, a PtNNE-based glucose biosensor also showed an outstanding sensitivity as high as 114 μA mM(-1) cm(-2), a low detection limit of 1.5 μM, and an impressive detection range from 5 μM to 30 mM. PMID:26083932

  12. Amperometric biosensor system for simultaneous determination of adenosine-5'-triphosphate and glucose.

    Science.gov (United States)

    Kucherenko, Ivan S; Didukh, Daria Yu; Soldatkin, Oleksandr O; Soldatkin, Alexei P

    2014-06-01

    The majority of biosensors for adenosine-5'-triphosphate (ATP) determination are based on cascades of enzymatic reactions; therefore, they are sensitive to glucose or glycerol (depending on the enzymatic system) as well as to ATP. The presence of unknown concentrations of these substances in the sample greatly complicates the determination of ATP. To overcome this disadvantage of known biosensors, we developed a biosensor system consisting of two biosensors: the first one is based on glucose oxidase and is intended for measuring glucose concentration, and the second one is based on glucose oxidase and hexokinase and is sensitive toward both glucose and ATP. Using glucose concentration measured by the first biosensor, we can analyze the total response to glucose and ATP obtained by the second biosensor. Platinum disc electrodes were used as amperometric transducers. The polyphenilenediamine membrane was deposited onto the surface of platinum electrodes to avoid the response to electroactive substances. The effect of glucose concentration on biosensor determination of ATP was studied. The reproducibility of biosensor responses to glucose and ATP during a day was tested (relative standard deviation, RSD, of responses to glucose was 3-6% and to ATP was 8-12%) as well as storage stability of the biosensors (no decrease of glucose responses and 43% drop of ATP responses during 50 days). The measurements of ATP and glucose in pharmaceutical vials (including mixtures of ATP and glucose) were carried out. It was shown that the developed biosensor system can be used for simultaneous analysis of glucose and ATP concentrations in water solutions. PMID:24810180

  13. Sensitive voltammetric and amperometric responses of respiratory toxins at hemin-adsorbed carbon-felt

    Institute of Scientific and Technical Information of China (English)

    Yasushi Hasebe; Yue Wang

    2013-01-01

    A hemin [iron-Fe(Ⅲ) protoporphyrin Ⅸ chloride] was adsorbed onto a carbon-felt (CF),which is a microelectrode ensemble of micro carbon fiber (ca.7 μm diameter).The resulting hemin-adsorbed-CF (hemin-CF) showed a well-defined redox wave based on the hemin-Fe(2)/Fe(Ⅱ) redox process with the formal potential of-0.225 Ⅴ vs.Ag/AgCI in deoxygenated phosphate/citrate buffer solution (0.1mol/L,pH 5.0).The apparent heterogenous electron transfer rate constant was estimated to be 8.6 sec-1.In air-saturated electrolyte solution,the hemin-CF exhibited an excellent electrocatalytic activity for the reduction of dioxygen (O2).This activity was reversibly inhibited by respiratory toxins such as cyanide and azide,which bind sixth coordination position of iron active center of hemin.The electrocatalytic O2 reduction current at the hemin-CF was modulated by the toxins in a concentration-depending manner.Based on the relationship between the %inhibition and the toxin concentration,apparent inhibition constants of cyanide and azide were evaluated to be 4.52 and 1.98 μmol/L,respectively.When the hemin-CF was used as a working electrode unit of the CF-based electrochemical flow-through detector with air-saturated carrier,the injection of the azide induced peak-shape current responses,which allowed rapid and continuous flow-amperometric determination of azide with high sensitivity.

  14. Increasing amperometric biosensor sensitivity by length fractionated single-walled carbon nanotubes

    DEFF Research Database (Denmark)

    Tasca, Federico; Gorton, Lo; Wagner, Jakob Birkedal;

    2008-01-01

    In this work the sensitivity-increasing effect of single-walled carbon nanotubes (SWCNTs) in amperometric biosensors, depending on their average length distribution, was studied. For this purpose the SWCNTs were oxidatively shortened and subsequently length separated by size exclusion...

  15. Electrochemical immunosensor for detection of antibodies against influenza A virus H5N1 in hen serum.

    Science.gov (United States)

    Jarocka, Urszula; Sawicka, Róża; Góra-Sochacka, Anna; Sirko, Agnieszka; Zagórski-Ostoja, Włodzimierz; Radecki, Jerzy; Radecka, Hanna

    2014-05-15

    This paper describes the development of an immunosensor for detection of anti-hemagglutinin antibodies. Its preparation consists of successive modification steps of glassy carbon electrodes: (i) creation of COOH groups, (ii) covalent immobilization of protein A with EDC/NHS coupling reaction, (iii) covering with anti-His IgG monoclonal antibody, (iv) immobilization of the recombinant His-tagged hemagglutinin (His6-H5 HA), (v) filling free space with BSA. The interactions between two variants of recombinant HA (short and long) from highly pathogenic avian influenza virus H5N1 and the anti-H5 HA monoclonal antibody (Mab 6-9-1) have been explored with electrochemical impedance spectroscopy (EIS). The impedimetric immunosensor displayed a very good detection limit (LOD) of 2.1 pg/mL, the quantification limit (LOQ) of 6.3 pg/mL and a dynamic range from 4 pg/mL to 20 pg/mL. In addition, this analytical device was applied for detection of antibodies against His6-H5 HA in serum of vaccinated hen using serial 10-fold dilutions of serum. The immunosensor proposed was able to detect antibody in hen serum diluted up to 7 × 10(7)-fold. The sensitivity of immunosensor was about four orders of magnitude much better than ELISA. PMID:24412426

  16. A Doped Polyaniline Modified Electrode Amperometric Biosensor for Gluconic Acid Determination in Grapes

    Directory of Open Access Journals (Sweden)

    Donatella Albanese

    2014-06-01

    Full Text Available In winemaking gluconic acid is an important marker for quantitative evaluation of grape infection by Botrytis cinerea. A screen-printed amperometric bienzymatic sensor for the determination of gluconic acid based on gluconate kinase (GK and 6-phospho-D-gluconate dehydrogenase (6PGDH coimmobilized onto polyaniline/poly (2-acrylamido-2-methyl-1-propanesulfonic acid; PANI-PAAMPSA is reported in this study. The conductive polymer electrodeposed on the working electrode surface allowed the detection of NADH at low potential (0.1 V with a linear range from 4 × 10−3 to 1 mM (R2 = 0.99 and a sensitivity of 419.44 nA∙mM−1. The bienzymatic sensor has been optimized with regard to GK/6PGDH enzymatic unit ratio and ATP/NADP+ molar ratio which resulted equal to 0.33 and 1.2, respectively. Under these conditions a sensitivity of 255.2 nA∙mM−1, a limit of detection of 5 μM and a Relative Standard Deviation (RSD of 4.2% (n = 5 have been observed. Finally, the biosensor has been applied for gluconic acid measurements in must grape samples and the matrix effect has been taken into consideration. The results have been compared with those obtained on the same samples with a commercial kit based on a spectrophotometric enzyme assay and were in good agreement, showing the capability of the bienzymatic PANI-PAAMPSA biosensor for gluconic acid measurements and thus for the evaluation of Botrytis cinerea infection in grapes.

  17. Ultrasensitive electrochemical immunosensor employing glucose oxidase catalyzed deposition of gold nanoparticles for signal amplification.

    Science.gov (United States)

    Zhang, Jie; Pearce, Mark C; Ting, Boon Ping; Ying, Jackie Y

    2011-09-15

    This paper describes a novel enzymatic amplification strategy for ultrasensitive electrochemical immunosensing. This approach utilizes glucose oxidase for the enzymatic deposition of gold nanoparticles onto an indium tin oxide (ITO) electrode surface using a novel gold developer solution consisting of 20 mM of glucose, 20 mM of NaSCN, 0.5 M of p-benzoquinone (PBQ) and 1 mM of AuCl(4)(-) dissolved in 0.1 M of pH 7.5 phosphate buffer solution. The amount of gold deposited was quantified electrochemically by monitoring the reduction of gold oxide in an aqueous solution of 0.5 M of H(2)SO(4), which was correlated to the amount of antigens in the solution. The effectiveness of this strategy was demonstrated experimentally through the construction of an immunosensor for the detection of mouse IgG using a sandwich immunoassay in a linear dynamic range of 5 pg/ml to 50 ng/ml. A good mean apparent recovery in the range of 88-102% was obtained over the entire linear dynamic range of the sensor response in the serum samples. This suggested that the immunosensor would be useful for the testing of proteins in real clinical samples. PMID:21782410

  18. Site-directed introduction of disulfide groups on antibodies for highly sensitive immunosensors.

    Science.gov (United States)

    Acero Sánchez, Josep Ll; Fragoso, Alex; Joda, Hamdi; Suárez, Guillaume; McNeil, Calum J; O'Sullivan, Ciara K

    2016-07-01

    The interface between the sample and the transducer surface is critical to the performance of a biosensor. In this work, we compared different strategies for covalent self-assembly of antibodies onto bare gold substrates by introducing disulfide groups into the immunoglobulin structure, which acted as anchor molecules able to chemisorb spontaneously onto clean gold surfaces. The disulfide moieties were chemically introduced to the antibody via the primary amines, carboxylic acids, and carbohydrates present in its structure. The site-directed modification via the carbohydrate chains exhibited the best performance in terms of analyte response using a model system for the detection of the stroke marker neuron-specific enolase. SPR measurements clearly showed the potential for creating biologically active densely packed self-assembled monolayers (SAMs) in a one-step protocol compared to both mixed SAMs of alkanethiol compounds and commercial immobilization layers. The ability of the carbohydrate strategy to construct an electrochemical immunosensor was investigated using electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) transduction. Graphical Abstract Left: Functionalization strategies of bare gold substrates via direct bio-SAM using disulfide-containing antibody chemically modified via their primary amines (A), carbohydrates (B) and carboxylic acids (C). Right: Dependence of the peak height with NSE concentration at NSE21-CHO modified electrochemical immunosensor. Inset: Logarithmic calibration plot. PMID:27220524

  19. Biossensores amperométricos para determinação de compostos fenólicos em amostras de interesse ambiental Amperometric biosensors for phenolic compounds determination in the environmental interess samples

    Directory of Open Access Journals (Sweden)

    Simone Soares Rosatto

    2001-02-01

    Full Text Available Phenols are widely used in many areas and commonly found as industrial by-products. A great number of agricultural and industrial activities realise phenolic compounds in the environmental. Waste phenols are produced mainly by the wood-pulp industry and during production of synthetic polymers, drugs, plastics, dyes, pesticides and others. Phenols are also released into the environmental by the degradation of pesticides with phenolic skeleton. The phenols level control is very important for the environmental protection. Amperometric biosensor has shown the feasibility to complement laboratory-based analytical methods for the determination of phenolic compounds, providing alternatives to conventional methods which have many disadvantages. This brief review considers the evolution of an approach to amperometric measurement using the catalytic properties of some enzymes for phenolic compounds monitoring.

  20. A sensitive electrochemical impedance immunosensor for determination of malachite green and leucomalachite green in the aqueous environment.

    Science.gov (United States)

    Zhu, Dan; Li, Qiangqiang; Pang, Xiumei; Liu, Yue; Wang, Xue; Chen, Gang

    2016-08-01

    Application of malachite green (MG) and leucomalachite green (LMG) in fish farm water causes an environmental problem. This study proposes for the first time a sensitive and convenient electrochemical impedance spectroscopy (EIS) method for determining MG and LMG by a bovine serum albumin-decorated gold nanocluster (BSA-AuNC)/antibody composite film-based immunosensor. In order to improve the analytical performance, the glassy carbon electrode (GCE) was modified with 1, 4-phenylenediamine to form a stable layer, and then, BSA-AuNCs were covalently bound to the GCE. An adequate quantity of the polyclonal antibody of LMG was immobilized onto the surface of the BSA-AuNCs by the chemical reaction of EDC/NHS. The sensors can respond to the specific target based on specific covalent bonding. The experimental parameters, such as the pH, incubating concentration, and time, have been investigated and optimized. The calibration curve for LMG was linear in the range of 0.1~10.0 ng/mL with the limit of detection (LOD) 0.03 ng/mL. Furthermore, the sum of MG and LMG was detected in fish farm water by MG reduction. The recovery was between 89.7 % and 99.2 % in spiked samples. The EC sensor method was also compared with the ELISA method and validated by the LC-MS/MS method, which proves its great promise as a field instrument for the rapid monitoring of MG and LMG pollution. Graphical abstract 1, 4-Phenylenediamine and BSA-AuNC/antibody-decorated glassy carbon electrodes have been used for the impedimetric detection of the sum of malachite green and leucomalachite green via specific immuno-binding.

  1. 基于仿双酶原位产生共反应试剂而构建的超灵敏电致化学发光免疫传感器%An ultrasensitive peroxydisulfate electrochemiluminescence immunosensor based on mimicking bi-enzyme synergetic catalysis to in situ generate coreactant

    Institute of Scientific and Technical Information of China (English)

    王海军; 袁若; 柴雅琴

    2012-01-01

      A novel signal amplion cation strategy of mimicking bi-enzyme synergetic catalysis to in situ generate coreactant was designed to fabricate an ultrasensitive peroxydisulfate electrochemiluminescence (ECL) immunosen-sor for detection ofɑ-1-fetoprotein (AFP). Through the self-assembly layer by layer ((L-cys-HPtPd)n) between L-cys and HPtPd, the loading amount of L-cys and HPtPd was greatly increased, which could greatly enhance the ECL signal of peroxydisulfate. At the same time, Glucose Oxidase (GOD), used to block nonspecific binding sites of (L-cys-HPtPd)n compound, could rapidly oxidize D-glucose in the detection solution into gluconic acid accompanying with the generation of H2O2, which was further catalyzed by HPtPd nanoparticles to generate O2 that acted as the coreactant of peroxydisulfate could greatly amplify the ECL signal. With the several amplion cation factors of a sand-wich-type structure we designed, a wide linear ranged from 0.000 1 to 100 ng/mL was acquired with a relatively low detection limit of 33 fg/mL for AFP.%  该实验基于仿双酶原位产生共反应试剂放大信号构建了用于检测甲胎蛋白(AFP)肿瘤标志物的S2O82-电致化学发光(ECL)免疫传感器.通过L-半胱氨酸(L-cys)与空心铂钯纳米链(HPtPd)的层层自组装,提高L-cys与HPtPd的固载量.再结合二者本身对S2O82-发光的催化性,极大地增强了发光信号.同时,作为封闭剂的葡萄糖氧化酶(GOD)可以催化底物葡萄糖产生H2O2,而HPtPd可以作为H2O2的模拟酶催化其生成O2.O2作为S2O82-电致化学发光的共反应试剂可以极大地提高传感器的灵敏度.根据以上信号放大因素,设计夹心结构的免疫传感器,其线性范围为0.0001到100 ng/mL,检出限也达到了33 fg/mL.

  2. Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, B.A.; Heller, A. (Univ. of Texas, Austin (USA))

    1990-02-01

    Oxidoreductases, such as glucose oxidase, can be electrically wired to electrodes by electrostatic complexing or by covalent binding of redox polymers so that the electrons flow from the enzyme, through the polymer, to the electrode. We describe two materials for amperometric biosensors based on a cross-linkable poly(vinylpyridine) complex of (Os-(bpy){sub 2}Cl){sup +/2+} that communicates electrically with flavin adenine dinucleiotide redox centers of enzymes such as glucose oxidase. The uncomplexed pyridines of the poly(vinylpyridine) are quaternized with two types of groups, one promoting hydrophilicity (2-bromoethanol or 3-bromopropionic acid), the other containing an active ester (N-hydroxysuccinimide) that forms amide bonds with both lysines on the enzyme surface and with an added polyamine cross-linking agent (tri-ethylenetetraamine, trien). In the presence of glucose oxidase and trien this polymer forms rugged, cross-linked, electroactive films on the surface of electrodes, thereby eliminating the requirement for a membrane for containing the enzyme and redox couple. The glucose response time of the resulting electrodes is less than 10 s. The glucose response under N{sub 2} shows an apparent Michaelis constant, K{sub m}{prime} = 7.3 mM, and limiting current densities, j{sub max}, between 100 and 800 {mu}A/cm{sup 2}. Currents are decreased by 30-50% in air-saturated solutions because of competition between O{sub 2} and the Os(III) complex for electrons from the reduced enzyme. Rotating ring disk experiments in air-saturated solutions containing 10 mM glucose show that about 20% of the active enzyme is electrooxidized via the Os(III) complex, while the rest is oxidized by O{sub 2}. These results suggest that only part of the active enzyme is in electrical contact with the electrode.

  3. Monochloramine-sensitive amperometric microelectrode: optimization of gold, platinum, and carbon fiber sensing materials for removal of dissolved oxygen interference

    Science.gov (United States)

    Amperometric monochloramine detection using newly fabricated gold, platinum, and carbon-fiber microsensors was investigated to optimize sensor operation and eliminate oxygen interference. Gold and platinum microsensors exhibited no oxygen interference during monochloramine measu...

  4. Layer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Baoyan Wu

    2015-09-01

    Full Text Available A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs and glucose oxidase (GOD onto single-walled carbon nanotubes (SWCNTs-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs- GOD4/Au biosensor exhibited a good linear range of 0.01–8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance.

  5. A Facile Electrochemical Preparation of Reduced Graphene Oxide@Polydopamine Composite: A Novel Electrochemical Sensing Platform for Amperometric Detection of Chlorpromazine

    Science.gov (United States)

    Palanisamy, Selvakumar; Thirumalraj, Balamurugan; Chen, Shen-Ming; Wang, Yi-Ting; Velusamy, Vijayalakshmi; Ramaraj, Sayee Kannan

    2016-01-01

    We report a novel and sensitive amperometric sensor for chlorpromazine (CPZ) based on reduced graphene oxide (RGO) and polydopamine (PDA) composite modified glassy carbon electrode. The RGO@PDA composite was prepared by electrochemical reduction of graphene oxide (GO) with PDA. The RGO@PDA composite modified electrode shows an excellent electro-oxidation behavior to CPZ when compared with other modified electrodes such as GO, RGO and GO@PDA. Amperometric i-t method was used for the determination of CPZ. Amperometry result shows that the RGO@PDA composite detects CPZ in a linear range from 0.03 to 967.6 μM. The sensor exhibits a low detection limit of 0.0018 μM with the analytical sensitivity of 3.63 ± 0.3 μAμM–1 cm–2. The RGO@PDA composite shows its high selectivity towards CPZ in the presence of potentially interfering drugs such as metronidazole, phenobarbital, chlorpheniramine maleate, pyridoxine and riboflavin. In addition, the fabricated RGO@PDA modified electrode showed an appropriate recovery towards CPZ in the pharmaceutical tablets. PMID:27650697

  6. Dual amplified electrochemical immunosensor for highly sensitive detection of Pantoea stewartii sbusp. stewartii.

    Science.gov (United States)

    Zhao, Yuan; Liu, Liqiang; Kong, Dezhao; Kuang, Hua; Wang, Libing; Xu, Chuanlai

    2014-12-10

    Accurate and highly sensitive detection of Pantoea stewartii sbusp. stewartii-NCPPB 449 (PSS) is urgently required for international shipments due to tremendous agricultural economic losses. Herein, a dual amplified electrochemical sandwich immunosensor for PSS detection was developed, utilizing the good specificity and low cost of electrochemical immunoassay, the favorable conductivity and large specific surface area of gold nanoparticles (Au NPs), and the excellent catalytic ability of and horseradish peroxidase (HRP). A linear curve between current response and PSS concentration was established, and the limit of detection (LOD) was 7.8 × 10(3) cfu/mL, which is 20 times lower than that for conventional enzyme-linked immunosorbent assay (ELISA). This strategy is a useful approach for the highly sensitive detection of plant pathogenic bacterium. PMID:25384268

  7. A reagentless enzymatic amperometric biosensor using vertically aligned carbon nanofibers (VACNF)

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, Martha L [University of Tennessee, Knoxville (UTK); Rahman, Touhidur [ORNL; Frymier, Paul Dexter [ORNL; Islam, Syed K [University of Tennessee, Knoxville (UTK); McKnight, Timothy E [ORNL

    2008-01-01

    A reagentless amperometric enzymatic biosensor is constructed on a carbon substrate for detection of ethanol. Yeast alcohol dehydrogenase (YADH), an oxidoreductase, and its cofactor nicotinamide adenine dinucleotide (NAD+) are immobilized by adsorption and covalent attachment to the carbon substrate. Carbon nanofibers grown by plasma enhanced chemical vapor deposition (PECVD) are chosen as the electrode material due to their excellent structural and electrical properties. Electrochemical techniques are employed to test the functionality and performance of the biosensor using reduced form of nicotinamide adenine dinucleotide (NADH) which also determines the oxidation peak potential of NADH. Subsequently, amperometric measurements are conducted for detection of ethanol to determine the electrical current response due to the increase in analyte concentration. The detection range, storage stability, reusability, and response time of the biosensor are also examined.

  8. Rapid endoglin determination in serum samples using an amperometric magneto-actuated disposable immunosensing platform.

    Science.gov (United States)

    Torrente-Rodríguez, Rebeca M; Campuzano, Susana; Ruiz-Valdepeñas-Montiel, Víctor; Pedrero, María; Fernández-Aceñero, M Jesús; Barderas, Rodrigo; Pingarrón, José M

    2016-09-10

    A sensitive and rapid method for the determination of the clinically relevant biomarker human endoglin (CD105) in serum samples is presented, involving a magneto-actuated immunoassay and amperometric detection at disposable screen-printed carbon electrodes (SPCEs). Micro-sized magnetic particles were modified with a specific antibody to selectively capture the target protein which was further sandwiched with a secondary HRP-labeled antibody. The immunocomplexes attached to the magnetic carriers were amperometrically detected at SPCEs using the hydroquinone (HQ)/H2O2/HRP system. The magneto-actuated immunosensing platform was able to detect 5 pmoles of endoglin (in 25μL of sample, 0.2μM) in 30min providing statistically similar results to those obtained using a commercial ELISA kit for the determination of endogenous content of endoglin in human serum samples. PMID:27448312

  9. Microchip Capillary Electrophoresis with an End-Channel Amperometric Detector and Its Preliminary Application

    Institute of Scientific and Technical Information of China (English)

    吴友谊; 屈锋; 林金明

    2005-01-01

    An end-channel amperometric detector with a guide tube for working electrode was designed and integrated on a home-made glass microchip. The guide tube was directly patterned and fabricated at the end of the detection reservoir, which made the fixation and alignment of working electrode relatively easy. The fabrication was carried out in a two-step etching process. A 30 μm carbon fiber microdisk electrode and Pt cathode were also integrated onto the amperometric detector. The baseline separation of dopamine (DA), catechol (CA) and epinephrine (EP) was achieved within 80 s. Relative standard deviations of not more than 5.2% were obtained for both peak currents and migration times of DA and CA (n=5). Using standard adding method, DA in tLrine and plasma samples was detected. The recoveries were in the range of 83%—103%.

  10. Immobilizing water-soluble graphene quantum dots with gold nanoparticles for a low potential electrochemiluminescence immunosensor

    Science.gov (United States)

    Dong, Yongqiang; Wu, Huan; Shang, Pengxiang; Zeng, Xiaoting; Chi, Yuwu

    2015-10-01

    Hydrazide-modified graphene quantum dots (HM-GQDs) obtained by refluxing GQDs with hydrazine hydrate were hybridized with gold nanoparticles (AuNPs) through a redox reaction between HM-GQDs and AuCl4-. The obtained nano-hybrids (HM-GQD-AuNPs) possess the unique electrochemiluminescence (ECL) properties of HM-GQDs and the easy self-assembly with some bio-molecules of AuNPs, which have great potential applications in bio-sensors. HM-GQD-AuNPs were modified on a glassy carbon electrode to develop a novel ECL immunosensor of carcinoembryonic antigen (CEA) as a model target analyte. Due to the increment of electron-transfer resistance after immunoreaction, the ECL intensity decreased as the concentration of CEA was increased. The linear response range was between 0.02 and 80 ng mL-1, and the detection limit was 0.01 ng mL-1.Hydrazide-modified graphene quantum dots (HM-GQDs) obtained by refluxing GQDs with hydrazine hydrate were hybridized with gold nanoparticles (AuNPs) through a redox reaction between HM-GQDs and AuCl4-. The obtained nano-hybrids (HM-GQD-AuNPs) possess the unique electrochemiluminescence (ECL) properties of HM-GQDs and the easy self-assembly with some bio-molecules of AuNPs, which have great potential applications in bio-sensors. HM-GQD-AuNPs were modified on a glassy carbon electrode to develop a novel ECL immunosensor of carcinoembryonic antigen (CEA) as a model target analyte. Due to the increment of electron-transfer resistance after immunoreaction, the ECL intensity decreased as the concentration of CEA was increased. The linear response range was between 0.02 and 80 ng mL-1, and the detection limit was 0.01 ng mL-1. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04328j

  11. An Amperometric Biosensor for Glucose Determination Prepared from Glucose Oxidase Immobilized in Polyaniline-Polyvinylsulfonate Film

    OpenAIRE

    Halit Arslan; Selvin Ustabaş; Fatma Arslan

    2011-01-01

    In this study, a novel amperometric glucose biosensor with immobilization of glucose oxidase on electrochemically polymerized polyaniline-polyvinylsulphonate (Pani-Pvs) films has been accomplished via the entrapment technique. Electropolymerization of aniline on the Pt surface of the Pt electrode was carried out at constant potential (0.75 V, vs. Ag/AgCl) using an electrochemical cell containing aniline and polyvinylsulphonate. Firstly, the optimum working conditions for preparing polyaniline...

  12. Analytical Expressions of Concentrations of Substrate and Hydroquinone in an Amperometric Glucose Biosensor

    OpenAIRE

    Uma Maheswari, M.; Rajendran, L.

    2013-01-01

    The theoretical model for an amperometric glucose biosensor is discussed. In this model glucose oxidase enzyme is immobilized in conducting polypyrrole. This model contains a nonlinear term related to enzyme reaction kinetics. He’s homotopy perturbation method is used to find the approximate analytical solutions of coupled non-linear reaction diffusion equations. A closed-form expression of substrate and mediator concentration under non-steady-state conditions is obtained. A comparison of the...

  13. Construction and evaluation of a novel end-column amperometric detection system for electrophoresis microchips

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A set of integrated end-column amperometric detection system has been developed,onto which an electrophoresis microchip can be conveniently integrated.Finely machined by a piece of transparent organic glass,the system consists of an electrophoresis microchip platform and an amperometric detection reservoir,in which the microchip can be fixed onto the platform by microchip grooves and with stainless steel fixture.Each detection electrode can be directly fixed in the amperometric detection reservoir by screws and nuts.With dopamine as the model analyte,we take platinum disc electrodes with different diameters of 100 μm,300 μm and 500 μm and a carbon fiber electrode with the diameter of 240 μm as the working electrode,all of which accomplish sensitive detection.The detection parameters of the system are optimized with the carbon fiber electrode.The detection results show that in the electrochemical cleaning procedure,the relative deviations of 3.2% and 0.5% for the peak current and retention time,respectively,can be obtained for the successive detections of 100 μM dopamine,and the limit of detection for dopamine can reach 0.4 μM(S/N = 3).This system is small,but its performance of detection is stable and sensitive,and the replacement of its working electrodes is convenient,so it is very suitable as a universal platform of end-column amperometric detection for electrophoresis microchips.

  14. A New Amperometric Glucose Biosensor with Naphthol Green B as Mediator

    Institute of Scientific and Technical Information of China (English)

    Qin ZHAO; Ruo YUAN; Chang Li MO; Ya Qin CHAI; Xia ZHONG

    2004-01-01

    Naphthol green B was used, for the first time, as a new mediator in an amperometric glucose biosensor. It is a good mediator, promoting electron transfer from glucose oxidase to graphite electrode. The biosensor shows high sensitivity to glucose at low potential with response time of 30 seconds. The linear range is from 1.5 to 18 μmol/L glucose with detection limit of 0.5 μmol/L glucose.

  15. Artificial electron donors for nitrate and nitrite reductases usable as mediators in amperometric biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Strehlitz, B. (Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig (Germany)); Gruendig, B. (Institut fuer Chemo- und Biosensorik, Muenster-Roxel (Germany)); Vorlop, K.D. (Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig (Germany). Inst. fuer Technologie); Bartholmes, P. (Witten-Herdecke Univ., Witten (Germany). Inst. fuer Biochemie); Kotte, H. (Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig (Germany)); Stottmeister, U. (Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig (Germany))

    1994-07-01

    Various nitrate and nitrite reductases are capable of accepting electrons from artificial donors. Combining these redox active donors with an amperometric redox electrode which is covered with an immobilized layer of such a nitrate or nitrite reductase, new enzyme sensors can be created for the detection of nitrate or nitrite, respectively. A range of suitable electron donors for nitrate reductases and nitrite reductase from different sources have been selected and characterized by electrochemical methods. (orig.)

  16. Anodic Voltammetry of Thioacetamide and its Amperometric Determination in Aqueous Media

    Directory of Open Access Journals (Sweden)

    Daniela Dascălu

    2008-08-01

    Full Text Available TAA is a harmful, presumptive pollutant in tap waters and waste waters. Several alternatives have been tested as new possibilities for the anodic determination of TAA in aqueous solutions, simulated waste waters and tap water. The electrochemical behaviour of thioacetamide (TAA was investigated at a boron-doped diamond (BDD electrode both in unbuffered 0.1 M Na2SO4 and buffered solutions as supporting electrolytes. The anodic oxidation of TAA showed well-defined limiting currents or current peaks and a good linearity of the amperometric signal vs. concentration plots. The analytical parameters of sensitivity, RSD and LOD, obtained under various experimental conditions, suggest the suitability of the BDD electrode for electroanalytical purposes. Low fouling effects, good reproducibility and stability, as well as the sharpness of the amperometric signals in both unbuffered/ buffered acidic or neutral media, highly superior to those obtained using a glassy carbon (GC electrode, recommend the unmodified BDD electrode as a promising potential amperometric sensor for environmental applications, regarding the direct anodic determination of TAA in aqueous media.

  17. Immunosensor for diagnosis of Alzheimer disease using amyloid-β 1-40 peptide and silk fibroin thin films.

    Science.gov (United States)

    Gonçalves, J M; Lima, L R; Moraes, M L; Ribeiro, S J L

    2016-11-01

    Layer-by-Layer (LbL) films containing silk fibroin (SF) and the 40 aminoacid-long amyloid-β peptide (Aβ1-40) were prepared with the purpose of developing a new prototype of an electrochemical immunosensor. The film showed a satisfactory growth in quartz substrate and screen-printed carbon electrodes, as observed by UV-vis spectroscopy and cyclic voltammetric, respectively. The peptide immobilized in LbL films in junction with SF shows secondary structure induced, as shown by circular dichroism measurements, favoring the interaction SF/peptide LbL film with the specific antibody. Immunosensor showed a linear response in the presence of the antibody with concentrations from 0 to 10ngmL(-1) both analyzed by current changes in 0.3V and voltammogram area. This system can be applied as a new prototype for preliminary diagnosis of Alzheimer's disease. PMID:27524028

  18. Comparison of Electrochemical Immunosensors and Aptasensors for Detection of Small Organic Molecules in Environment, Food Safety, Clinical and Public Security

    Directory of Open Access Journals (Sweden)

    Benoit Piro

    2016-02-01

    Full Text Available We review here the most frequently reported targets among the electrochemical immunosensors and aptasensors: antibiotics, bisphenol A, cocaine, ochratoxin A and estradiol. In each case, the immobilization procedures are described as well as the transduction schemes and the limits of detection. It is shown that limits of detections are generally two to three orders of magnitude lower for immunosensors than for aptasensors, due to the highest affinities of antibodies. No significant progresses have been made to improve these affinities, but transduction schemes were improved instead, which lead to a regular improvement of the limit of detections corresponding to ca. five orders of magnitude over these last 10 years. These progresses depend on the target, however.

  19. Comparison of Electrochemical Immunosensors and Aptasensors for Detection of Small Organic Molecules in Environment, Food Safety, Clinical and Public Security

    Science.gov (United States)

    Piro, Benoit; Shi, Shihui; Reisberg, Steeve; Noël, Vincent; Anquetin, Guillaume

    2016-01-01

    We review here the most frequently reported targets among the electrochemical immunosensors and aptasensors: antibiotics, bisphenol A, cocaine, ochratoxin A and estradiol. In each case, the immobilization procedures are described as well as the transduction schemes and the limits of detection. It is shown that limits of detections are generally two to three orders of magnitude lower for immunosensors than for aptasensors, due to the highest affinities of antibodies. No significant progresses have been made to improve these affinities, but transduction schemes were improved instead, which lead to a regular improvement of the limit of detections corresponding to ca. five orders of magnitude over these last 10 years. These progresses depend on the target, however. PMID:26938570

  20. Microfabricated biosensor for the simultaneous amperometric and luminescence detection and monitoring of Ochratoxin A.

    Science.gov (United States)

    Tria, Scherrine A; Lopez-Ferber, David; Gonzalez, Catherine; Bazin, Ingrid; Guiseppi-Elie, Anthony

    2016-05-15

    The low molecular weight hapten, Ochratoxin A (OTA), is a natural carcinogenic mycotoxin produced by Aspergillus and Penicillium fungi and so it commonly appears in wines, other foods, and in the environment. An amperometric biosensor has been developed that uses the immobilized synthetic peptide, NFO4; which possesses a high binding affinity and thus provides for molecular recognition of OTA; simulating the mycotoxin-specific antibody. Biotransducers were produced from a microlithographically fabricated electrochemical cell-on-a-chip that uses the microdisc electrode array working electrode format augmented with microporous graphitized carbon (MGC) that was electrodeposited within a poly(aniline-co-meta-aminoaniline) electroconductive polymer layer. A redox mediator, iron-nickel hexacyanoferrate (Fe|NiHCF) was amperometrically deposited onto the MGC. The device was then dip-coated with monomer cocktail that yielded poly(HEMA-co-AEMA) foam that was prepared in-situ by UV crosslinking and by sequentially freezing followed by freeze drying of the chip to yield a 3-D support for the chelation of Zn(2+) ions (ZnCl2) and the subsequent immobilization of N-terminus his-tagged peptide, NFO4. To conduct the biosensors assay, HRP conjugated OTA was added to the free OTA solutions and together competitively incubated on the biospecific MDEA ECC 5037-Pt|MGC|HCF|Hydrogel-NFO4 biotransducer. The amperometric response to peroxide was determined after 5 min of enzymatic reaction following addition of standard substrate H2O2/luminol. Simultaneous analysis of light emission signals (λmax=425 nm) allowed direct comparison of amperometric and luminescence performance. Using chitosan foam and a luminescence bioassay we obtained maximum inhibition at 10 μg L(-1) and half inhibition occurred at 2.1 μg L(-1). Using poly(HEMA-co-AEMA) hydrogel and an amperometric bioassay (50s) we obtained maximum inhibition at 10 μg L(-1) and half inhibition occurred at 2.8 μg L(-1). PMID:26774998

  1. Catalytic activity of iron hexacyanoosmate(II) towards hydrogen peroxide and nicotinamide adenine dinucleotide and its use in amperometric biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Kotzian, Petr; Janku, Tereza [Department of Analytical Chemistry, University of Pardubice, Nam. Cs. Legii 565, CZ-532 10 Pardubice (Czech Republic); Kalcher, Kurt [Institute of Chemistry - Analytical Chemistry, Karl-Franzens University, Universitaetsplatz 1, A-8010 Graz (Austria); Vytras, Karel [Department of Analytical Chemistry, University of Pardubice, Nam. Cs. Legii 565, CZ-532 10 Pardubice (Czech Republic)], E-mail: karel.vytras@upce.cz

    2007-09-19

    Hydrogen peroxide and nicotinamide adenine dinucleotide (NADH) may be determined amperometrically using screen-printed electrodes chemically modified with iron(III) hexacyanoosmate(II) (Osmium purple) in flow injection analysis (FIA). The determination is based on the exploitation of catalytic currents resulting from the oxidation/reduction of the modifier. The performance of the sensor was characterized and optimized by controlling several operational parameters (applied potential, pH and flow rate of the phosphate buffer). Comparison has been made with analogous complexes of ruthenium (Ruthenium purple) and iron (Prussian blue). Taking into account the sensitivity and stability of corresponding sensors, the best results were obtained with the use of Osmium purple. The sensor exhibited a linear increase of the amperometric signal with the concentration of hydrogen peroxide in the range of 0.1-100 mg L{sup -1} with a detection limit (evaluated as 3{sigma}) of 0.024 mg L{sup -1} with a R.S.D. 1.5% for 10 mg L{sup -1} H{sub 2}O{sub 2} under optimized flow rate of 0.4 mL min{sup -1} in 0.1 M phosphate buffer carrier (pH 6) and a working potential of +0.15 V versus Ag/AgCl. Afterwards, a biological recognition element - either glucose oxidase or ethanol dehydrogenase - was incorporated to achieve a sensor facilitating the determination of glucose or ethanol, respectively. The glucose sensor gave linearity between current and concentration in the range from 1 to 250 mg L{sup -1} with a R.S.D. 2.4% for 100 mg L{sup -1} glucose, detection limit 0.02 mg L{sup -1} (3{sigma}) and retained its original activity after 3 weeks when stored at 6 deg. C. Optimal parameters in the determination of ethanol were selected as: applied potential +0.45 V versus Ag/AgCl, flow rate 0.2 mL min{sup -1} in 0.1 M phosphate buffer carrier (pH 7). Different structural designs of the ethanol sensor were tested and linearity obtained was up to 1000 mg L{sup -1} with a maximum R.S.D. of 5

  2. Novel alkaline-reduced cuprous oxide/graphene nanocomposites for non-enzymatic amperometric glucose sensor application.

    Science.gov (United States)

    Yazid, Siti Nur Akmar Mohd; Isa, Illyas Md; Hashim, Norhayati

    2016-11-01

    This paper presents the fabrication of a highly sensitive and selective glucose sensor based on cuprous oxide/graphene nanocomposites-modified glassy carbon electrode (Cu2O/graphene/GCE). The Cu2O/graphene nanocomposites were synthesized based on a simple and straightforward chemical reduction process in alkaline aqueous solution using sodium carbonate as reductant. The size and shape of Cu2O nanoparticles on graphene sheets can be controlled by changing the amount of graphene oxide added during reaction. The electrochemical properties of Cu2O/graphene/GCE in 0.1M phosphate buffer solution were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. It was found that the pH, concentration of supporting electrolyte, and scan rate had very crucial effect on the sensitivity of prepared sensor towards glucose oxidation. At an applied potential of +0.50V, the Cu2O/graphene/GCE presented a high sensitivity of 1330.05μAmM(-1)cm(-2) and fast response (within 3s). The amperometric non-enzymatic glucose sensor developed had a linear relationship from 0.01mM to 3.0mM glucose and detection limit of 0.36μM. In the presence of ascorbic acid, uric acid, dopamine, chloride and citrate ion and other carbohydrates, the interferences were negligible. The proposed sensor was successfully applied for the determination of glucose concentration in real human blood samples. PMID:27524043

  3. Layer-by-layer assemblies of chitosan/multi-wall carbon nanotubes and glucose oxidase for amperometric glucose biosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Wu Baoyan [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631, Guangdong (China); Hou Shihua [School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640, Guangdong (China); Yu Min; Qin Xia; Li, Sha [Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Chen Qiang [Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China)], E-mail: qiangchen@nankai.edu.cn

    2009-01-01

    A novel amperometric glucose biosensor based on multilayer films containing chitosan, multi-wall carbon nanotubes (MWCNTs) and glucose oxidase (GOD) was developed. MWCNTs were solubilized in chitosan (Chit-MWCNTs) used to interact with GOD. Poly (allylamine) (PAA) and polyvinylsulfuric acid potassium salt (PVS) were alternately deposited on the cleaned Pt electrode surface ((PVS/PAA){sub 3}/Pt). The (PVS/PAA){sub 3}/Pt electrode was alternately immersed in Chit-MWCNTs and GOD to assemble different layers of multilayer films. PBS washing was applied at the end of each assembly deposition for dissociating the weak adsorption. Micrographs of MWCNTs were obtained by scanning electron microscope, and properties of the resulting biosensors were measured by electrochemical measurements. Among the resulting biosensors, the biosensor based on eight layers of multilayer films was best. The resulting biosensor was able to efficiently monitor glucose, with the response time within 8 s, a detection limit of 21 {mu}M estimated at a signal-to-noise ratio of 3, a linear range of 1-10 mM, the sensitivity of 0.45 {mu}A/mM, and well stability. The study can provide a feasible simple approach on developing a new immobilization matrix for biosensors and surface functionalization.

  4. Enzyme-Free Amperometric Detection of Glucose on Platinum-Replaced Porous Copper Frameworks

    International Nuclear Information System (INIS)

    Highlights: • Macroporous Cu foams with large surface were assembled by electrodeposition assisted with hydrogen evolution. • The synthesized Cu was substituted by metallic Pt through facile galvanic replacement, forming Pt monolayer-support alloy structures with highly catalytic activity. • The electrochemical oxidation behavior of glucose on this interface was investigated. • Favorable properties for nonenzymatic glucose detection were obtained at the proposed sensor based on Pt-placed Cu frameworks. - Abstract: With respect to a nonenzymatic electrochemical sensor for detection of small biomolecules like glucose, it is well recognized that an interface with highly electrocatalytic properties is desired. Our previous studies have demonstrated that porous Cu foams from hydrogen evolution assisted electrodeposition could provide beneficial structures for large active surface and mass transfer in glucose sensing (Biosens. Bioelectron., 2014, 51: 22-28), and decoration of micro-scale Pt cubes on this multiaperture substrate through manipulative deposition offered exciting activity and stability for electro-catalyzing glucose in neutral media (Chem. Eur. J., 2013, 19: 9534-9541). On the basis of these results here we further cover the porous Cu frameworks with a Pt monolayer through the galvanic replacement reaction, and fabricate a new electrochemical interface for high-performance determination of glucose. The sensing surface was facilely assembled by firstly electrodepositing porous Cu architectures with hydrogen evolution and then galvanically replacing the surface layer with Pt, and was well characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and energy dispersive spectroscopy. It was found that the unilaminar Pt-replaced Cu frameworks, with the profitable reaction surface derived from porous skeletons and the underlying activity of Pt-support composites, could supply the highly electrocatalytic oxidation of

  5. New carbosilane polymers with interacting ferrocenes as support and bioelectrocatalysts of oxidases to develop versatile and specific amperometric biodevices.

    Science.gov (United States)

    Armada, M Pilar García; Jiménez, Almudena; Losada, José; Alonso, Beatriz; Casado, Carmen M

    2012-12-01

    In this work, the bioelectrocatalytical properties and kinetic characteristics of new oxidase amperometric biosensors based on two different ferrocene functionalized carbosilane polymers, polydiallylmethylsilane (PDAMS) and polymethyldiundecenylsilane (PMDUS) are described. In the development of these biodevices, glucose oxidase has been used as example of oxidase enzyme, and two different immobilization procedures have been studied. The polymer-modified electrodes act as efficient transducers for glucose sensing in anodic and cathodic aerobic conditions and also in anodic anaerobic conditions, and this fact turns them into useful devices for a wide field of applications. PMDUS has shown to be the bioelectrocatalyst with best kinetic and analytical properties in aerobic media while PDAMS was better in anaerobic conditions. The best aerobic biosensor developed displayed a strictly linear range from 0 to 3.0 mM, a detection limit of 7.8 μM and a response time less than 2 s in an ascorbate interference free work potential interval. The apparent Michaelis-Menten constant was calculated to be 1.36 mM according to the Lineweaver-Burk equation. PMID:22971836

  6. Carbon Fiber Ultramicrodic Electrode Electrodeposited with Over-Oxidized Polypyrrole for Amperometric Detection of Vesicular Exocytosis from Pheochromocytoma Cell

    Directory of Open Access Journals (Sweden)

    Li Wang

    2015-01-01

    Full Text Available Vesicular exocytosis is ubiquitous, but it is difficult to detect within the cells’ communication mechanism. For this purpose, a 2 µm ultramicrodic carbon fiber electrode was fabricated in this work based on electrodeposition with over-oxidized polypyrrole nanoparticle (PPyox-CFE, which was applied successfully for real-time monitoring of quantal exocytosis from individual pheochromocytoma (PC12 cells. PPyox-CFE was evaluated by dopamine (DA solutions through cyclic voltammetry and amperometry electrochemical methods, and results revealed that PPyox-CFE improved the detection limit of DA. In particular, the sensitivity of DA was improved to 24.55 µA·µM−1·µm−2 using the PPyox-CFE. The ultramicrodic electrode combined with the patch-clamp system was used to detect vesicular exocytosis of DA from individual PC12 cells with 60 mM K+ stimulation. A total of 287 spikes released from 7 PC12 cells were statistically analyzed. The current amplitude (Imax and the released charge (Q of the amperometric spikes from the DA release by a stimulated PC12 cell is 45.1 ± 12.5 pA and 0.18 ± 0.04 pC, respectively. Furthermore, on average ~562,000 molecules were released in each vesicular exocytosis. PPyox-CFE, with its capability of detecting vesicular exocytosis, has potential application in neuron communication research.

  7. Classification of Spanish white wines using their electrophoretic profiles obtained by capillary zone electrophoresis with amperometric detection.

    Science.gov (United States)

    Arribas, Alberto Sánchez; Martínez-Fernández, Marta; Moreno, Mónica; Bermejo, Esperanza; Zapardiel, Antonio; Chicharro, Manuel

    2014-06-01

    A method was developed for the simultaneous detection of eight polyphenols (t-resveratrol, (+)-catechin, quercetin and p-coumaric, caffeic, sinapic, ferulic, and gallic acids) by CZE with electrochemical detection. Separation of these polyphenols was achieved within 25 min using a 200 mM borate buffer (pH 9.4) containing 10% methanol as separation electrolyte. Amperometric detection of polyphenols was carried out with a glassy carbon electrode (GCE) modified with a multiwalled carbon nanotubes (CNT) layer obtained from a dispersion of CNT in polyethylenimine. The excellent electrochemical properties of this modified electrode allowed the detection and quantification of the selected polyphenols in white wines without any pretreatment step, showing remarkable signal stability despite the presence of potential fouling substances in wine. The electrophoretic profiles of white wines, obtained using this methodology, have proven to be useful for the classification of these wines by means of chemometric multivariate techniques. Principal component analysis and discriminant analysis allowed accurate classification of wine samples on the basis of their grape varietal (verdejo and airén) using the information contained in selected zones of the electropherogram. The utility of the proposed CZE methodology based on the electrochemical response of CNT-modified electrodes appears to be promising in the field of wine industry and it is expected to be successfully extended to classification of a wider range of wines made of other grape varietals.

  8. Analysis of polyphenols in white wine by CZE with amperometric detection using carbon nanotube-modified electrodes.

    Science.gov (United States)

    Moreno, Mónica; Arribas, Alberto Sánchez; Bermejo, Esperanza; Zapardiel, Antonio; Chicharro, Manuel

    2011-04-01

    A method for the simultaneous detection of five polyphenols (caffeic, chlorogenic, ferulic and gallic acids and (+)-catechin) by CZE with electrochemical detection was developed. Separation of these polyphenols was performed in a 100 mM borate buffer (pH 9.2) within 15 min. Under optimized separation conditions, the performance of glassy carbon (GC) electrodes modified with multiwalled carbon nanotube layer obtained from different dispersions was examined. GC electrode modified with a dispersion of multi-walled carbon nanotubes (CNT) in polyethylenimine has proven to be the most suitable CNT-based electrode for its application as amperometric detector for the CZE separation of the studied compounds. The excellent electrochemical properties of this electrode allowed the detection of the selected polyphenols at +200 mV and improved the efficiency and the resolution of their CZE separation. Limits of detection below 3.1 μM were obtained with linear ranges covering the 10⁻⁵ to 10⁻⁴  M range. The proposed method has been successfully applied for the detection (ferulic, caffeic and gallic acids and (+)-catechin) and the quantification (gallic acid and (+)-catechin) of polyphenols in two different white wines without any preconcentration step. A remarkable signal stability was observed on the electrode performance despite the presence of potential fouling substances in wine.

  9. Fast quantification of α-lipoic acid in biological samples and dietary supplements using batch injection analysis with amperometric detection.

    Science.gov (United States)

    Santos Pereira, Laise Nayra Dos; da Silva, Iranaldo Santos; Araújo, Thaylan Pinheiro; Tanaka, Auro Atsushi; Angnes, Lúcio

    2016-07-01

    Batch injection analysis (BIA) with amperometric detection, using a pyrolytic graphite electrode modified with cobalt phthalocyanine (PG/CoPc), was employed for determination of α-lipoic acid (ALA) in pharmaceutical product and in synthetic urine samples. The proposed BIA method is based on the application of a potential of +0.9V vs. Ag/AgCl, KCl sat, enabling quantification of ALA over a concentration range from 1.3×10(-6) to 1.0×10(-4)molL(-1), with a detection limit of 1.5×10(-8)molL(-1). A sampling rate of 180 injections per hour was attained and measurements of the reproducibility of successive injections (100µmolL(-1) ALA on the same electrode) showed a RSD of 2.11% for 40 successive injections. The new sensor was utilised for ALA quantification in a dietary pharmaceutical supplement and in synthetic urine and the results obtained for both samples were compared with parallel analysis using high performance liquid chromatography (HPLC), the method recommended by the United States Pharmacopeia. The results obtained were similar (at a 95% confidence level) and in the case of the synthetic urine sample (prepared with a known amount of ALA) the recovery was situated between 98.0% and 102.6%. PMID:27154671

  10. On the Electrooxidation and Amperometric Detection of NO Gas at the Pt/Nafion® Electrode

    Directory of Open Access Journals (Sweden)

    Jin-Cherng Yang

    2003-08-01

    Full Text Available The electrochemical oxidation of nitric oxide (NO gas at the Pt/Nafion® electrode has been studied at a concentration of 500 ppm. The electrooxidation of NO taking place over a wide potential range can be described by a transcendental equation, from which the half-wave potential of the reaction can be determined. For NO oxidation with appreciable overpotentials but negligible mass-transfer effects, the Tafel kinetics applies. The obtained charge transfer coefficient (a and the exchange current density (io are 0.77 and 14 mA/cm2, respectively. An amperometric NO gas sensor based on the Pt/Nafion® electrode has been fabricated and tested over the NO concentration range from 0 to 500 ppm. The Pt/Nafion® electrode was used as an anode at a fixed potential, preferably 1.15 V (vs. Ag/AgCl/sat. KCl, which assures current limitation by diffusion only. The sensitivity of the electrochemical sensor was found to be 1.86 mA/ppm/cm2. The potential interference by other gases, such as nitrogen dioxide (NO2 and carbon monoxide (CO, was also studied in the range 0-500 ppm. Both sensitivity for NO and selectivity of NO over NO2/CO show significant enhancement upon using a cyclic voltammetric (CV activation, or cleaning procedure.

  11. Influence of selected factors on the performance of amperometric glucose biosensors

    Science.gov (United States)

    Legawiec-Jarzyna, Marta; Zawicki, Ignacy

    1997-02-01

    Effects of different ways of sample feed to the sensor, types of used membranes, extent of stretching the membrane pack by working electrode and timing of excitation voltage on performance of amperometric glucose biosensor with oxygen indicating electrode were investigated. In the sensors, enzymatic membranes containing immobilized glucose oxidase and some auxiliary membranes constituted an easily detachable laminated pack. In one of the tested sensors position of the membrane pack with respect to working electrode was adjustable. It was found that the above factors, except the timing of excitation voltage, have not essential influence on performance of O2-type glucose biosensor.

  12. Continuous amperometric monitoring of glucose in a brittle diabetic chimpanzee with a miniature subcutaneous electrode

    OpenAIRE

    Wagner, J. G.; Schmidtke, D. W.; Quinn, C P; Fleming, T F; Bernacky, B.; Heller, A.

    1998-01-01

    The performance of an amperometric biosensor, consisting of a subcutaneously implanted miniature (0.29 mm diameter, 5 × 10−4 cm2 mass transporting area), 90 s 10–90% rise/decay time glucose electrode, and an on-the-skin electrocardiogram Ag/AgCl electrode was tested in an unconstrained, naturally diabetic, brittle, type I, insulin-dependent chimpanzee. The chimpanzee was trained to wear on her wrist a small electronic package and to present her heel for capillary blood samples. In five sets o...

  13. Microfluidic Amperometric Sensor for Analysis of Nitric Oxide in Whole Blood

    OpenAIRE

    Hunter, Rebecca A.; Privett, Benjamin J.; Henley, W. Hampton; Breed, Elise R.; Liang, Zhe; Mittal, Rohit; Yoseph, Benyam P.; McDunn, Jonathan E.; Eileen M Burd; Coopersmith, Craig M.; Ramsey, J. Michael; Schoenfisch, Mark H.

    2013-01-01

    Standard photolithographic techniques and a nitric oxide (NO) selective xerogel polymer were utilized to fabricate an amperometric NO microfluidic sensor with low background noise and the ability to analyze NO levels in small sample volumes (~250 μL). The sensor exhibited excellent analytical performance in phosphate buffered saline, including a NO sensitivity of 1.4 pA nM−1, a limit of detection (LOD) of 840 pM, and selectivity over nitrite, ascorbic acid, acetaminophen, uric acid, hydrogen ...

  14. Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein.

    Science.gov (United States)

    Sinawang, Prima Dewi; Rai, Varun; Ionescu, Rodica E; Marks, Robert S

    2016-03-15

    An Electrochemical Lateral Flow Immunosensor (ELFI) is developed combining screen-printed gold electrodes (SPGE) enabling quantification together with the convenience of a lateral flow test strip. A cellulose glassy fiber paper conjugate pad retains the marker immunoelectroactive nanobeads which will bind to the target analyte of interest. The specific immunorecognition event continues to occur along the lateral flow bed until reaching the SPGE-capture antibodies at the end of the cellulosic lateral flow strip. The rationale of the immunoassay consists in the analyte antigen NS1 protein being captured selectively and specifically by the dengue NS1 antibody conjugated onto the immunonanobeads thus forming an immunocomplex. With the aid of a running buffer, the immunocomplexes flow and reach the immuno-conjugated electrode surface and form specific sandwich-type detection due to specific, molecular recognition, while unbound beads move along past the electrodes. The successful sandwich immunocomplex formation is then recorded electrochemically. Specific detection of NS1 is translated into an electrochemical signal contributed by a redox label present on the bead-immobilized detection dengue NS1 antibody while a proportional increase of faradic current is observed with increase in analyte NS1 protein concentration. The first generation ELFI prototype is simply assembled in a cassette and successfully demonstrates wide linear range over a concentration range of 1-25 ng/mL with an ultrasensitive detection limit of 0.5 ng/mL for the qualitative and quantitative detection of analyte dengue NS1 protein. PMID:26433352

  15. Establishment of evanescent wave fiber-optic immunosensor method for detection bluetongue virus.

    Science.gov (United States)

    Yin, Hui-Qiong; Xiao, Rui; Rong, Zhen; Jin, Pei-Pei; Ji, Chang-Fu; Zhang, Jin-Gang

    2015-11-15

    The evanescent wave fiber immunosensors (EWFI) technique was developed for the real-time rapidly sensitive and specific detection of the monoclonal antibody 3E2 of BTV. The outer-core protein VP7 of BTV was labled on the surface of the exposed fiber-optic core. The monoclonal antibody 3E2 of BTV VP7 were added and then the goat ant-rat IgG conjugated with Cy3 was captured. After the 532nm pulse (excitation source) reached the fiber probe, evanescent wave was generated, which excited the Cy3 bound to the immuno-complex and produced the fluorescent signal, which was changed into electrical signals read through computer. The preliminary results suggested that a detection limit of 10ng/ml was measured for the monoclonal antibody 3E2, which is equal to the sensitivity of ELISA. The 3E2 sample was specifically detected through the EWFI assay in 15min, and the fiber can be recycled at least ten times through TEA solution condition. This developed EWFI was a real-time rapidly sensitive and specific way for the detection of BTV antibodies. PMID:25982137

  16. Amperometric determination of bonded glucose with an MnO(2) and glucose oxidase bulk-modified screen-printed electrode using flow-injection analysis.

    Science.gov (United States)

    Turkusic, Emir; Kalcher, Josef; Kahrovic, Emira; Beyene, Negussie W; Moderegger, Helmut; Sofic, Emin; Begic, Sabina; Kalcher, Kurt

    2005-01-30

    A screen-printed amperometric biosensor based on carbon ink double bulk-modified with MnO(2) as a mediator and glucose oxidase as a biocomponent was investigated for its ability to serve as a detector for bonded glucose in different compounds, such as cellobiose, saccharose, (-)-4-nitrophenyl-beta-d-glucopyranoside, as well as in beer samples by flow-injection analysis (FIA). The biosensor could be operated under physiological conditions (0.1M phosphate buffer, pH 7.5) and exhibited good reproducibility and stability. Bonded glucose was released with glucosidase in solution, and the free glucose was detected with the modified screen-printed electrode (SPE). The release of glucose by the aid of glucosidase from cellobiose, saccharose and (-)-4-nitrophenyl-beta-d-glucopyranoside in solution showed that stoichiometric quantities of free glucose could be monitored in all three cases. The linear range of the amperometric response of the biosensor in the FIA-mode flow rate 0.2mLmin(-1), injection volume 0.25mL, operation potential 0.48V versus Ag/AgCl) extends from 11 to 13,900mumolL(-1) glucose in free form. The limit of detection (3sigma) is 1mumolL(-1) glucose. A concentration of 100mumolL(-1) yields a relative standard deviation of approximately 7% with five injections. These values correspond to the same concentrations of bonded glucose supposed that it is liberated quantitatively (incubation for 2h with glucosidase). Bonded glucose could be determined in beer samples using the same assay. The results corresponded very well with the reference procedure. PMID:18969835

  17. Development of Anodic Titania Nanotubes for Application in High Sensitivity Amperometric Glucose and Uric Acid Biosensors

    Directory of Open Access Journals (Sweden)

    Tai-Ping Sun

    2013-10-01

    Full Text Available The purpose of this study was to develop novel nanoscale biosensors using titania nanotubes (TNTs made by anodization. Titania nanotubes were produced on pure titanium sheets by anodization at room temperature. In this research, the electrolyte composition ethylene glycol 250 mL/NH4F 1.5 g/DI water 20 mL was found to produce the best titania nanotubes array films for application in amperometric biosensors. The amperometric results exhibit an excellent linearity for uric acid (UA concentrations in the range between 2 and 14 mg/dL, with 23.3 (µA·cm−2·(mg/dL−1 UA sensitivity, and a correlation coefficient of 0.993. The glucose biosensor presented a good linear relationship in the lower glucose concentration range between 50 and 125 mg/dL, and the corresponding sensitivity was approximately 249.6 (µA·cm−2·(100 mg/dL−1 glucose, with a correlation coefficient of 0.973.

  18. Amperometric Biosensor for Oxalate Determination in Urine Using Sequential Injection Analysis

    Directory of Open Access Journals (Sweden)

    Enrique Barrado

    2012-07-01

    Full Text Available An amperometric flow biosensor for oxalate determination in urine samples after enzymatic reaction with oxalate oxidase immobilized on a modified magnetic solid is described. The solid was magnetically retained on the electrode surface of an electrode modified with Fe (III-tris-(2-thiopyridone borate placed into a sequential injection system preceding the amperometric detector. The variables involved in the system such as flow rate, aspired volumes (modified magnetic suspension and sample and reaction coil length were evaluated using a Taguchi parameter design. Under optimal conditions, the calibration curve of oxalate was linear between 3.0–50.0 mg·L−1, with a limit of detection of 1.0 mg·L−1. The repeatability for a 30.0 mg·L−1 oxalate solution was 0.7%. The method was validated by comparing the obtained results to those provided by the spectrophotometric method; no significant differences were observed.

  19. Screening and confirmatory methods for the analysis of macrocyclic lactone mycotoxins by CE with amperometric detection.

    Science.gov (United States)

    Arribas, Alberto Sánchez; Bermejo, Esperanza; Zapardiel, Antonio; Téllez, Helena; Rodríguez-Flores, Juana; Zougagh, Mohammed; Ríos, Angel; Chicharro, Manuel

    2009-02-01

    A simple analytical scheme for the screening and quantification of zearalenone and its metabolites, alpha-zearalenol and beta-zearalenol, is reported. Extracts from maize flour samples were collected by supercritical fluid extraction and afterwards, they were analyzed by CE with amperometric detection. This scheme allowed a rapid and reliable identification of contaminated flour samples according to the reference value established for zearalenone by directive 2005/38/EC (200 microg/kg). The sample screening method was carried out by CZE using 25 mM borate separation buffer at pH 9.2 and 25.0 kV as separation voltage, monitoring the amperometric signal at +700 mV with a carbon paste electrode. In this way, total amount of mycotoxins was determined and samples were processed in 4 min with a detection limit of 12 microg/L, enough to discriminate between positive (more than 200 microg/L total mycotoxins) and negative samples (less than 200 microg/L total mycotoxins). Positive samples were then subjected to CZE separation and quantification of each analyte was done with 50 mM borate running buffer modified with 30% methanol at pH 9.7 and 17.5 kV as separation voltage. Under these conditions, separation was achieved in 15 min with detection limits from 20 to 35 microg/L for each analyte.

  20. Amperometric mediatorless hydrogen peroxide sensor with horseradish peroxidase encapsulated in peptide nanotubes

    Directory of Open Access Journals (Sweden)

    Hamid Feyzizarnagh

    2016-03-01

    Full Text Available A mediatorless sensor with horseradish peroxidase (HRP enzymes encapsulated inside peptide nanotubes (PNTs has been proposed for amperometric detection of hydrogen peroxide. PNTs not only encapsulate the enzymes to retain their activity and stability, but also can provide direct electron transfer between an electrode and the electroactive sites of HRP without mediators. Experimental results were compared with hydroquinone (HQ-mediated electron transfer results. The PNT/HRP sensor produced a current signal comparable to the HQ/HRP sensor in the entire range of hydrogen peroxide concentrations (0–60 mM. The amperometric signal was the greatest when PNT and HQ were used together. The current signal of the PNT/HQ/HRP system increased rapidly with the hydrogen peroxide concentration while the PNT/HRP and HQ/HRP systems showed a similar increase in the rate of current with hydrogen peroxide. The current-H2O2 concentration relations of the tested systems were analyzed using the Michaelis–Menten type equation. Using PNTs as immobilizing agents for enzymes may circumvent the drawbacks of chemical mediators such as HQ that may interfere with the redox reactions and may cause toxicity problems to enzymes.