WorldWideScience

Sample records for ampa receptor structure

  1. Structural and pharmacological characterization of phenylalanine-based AMPA receptor antagonists at kainate receptors

    DEFF Research Database (Denmark)

    Venskutonyte, Raminta; Frydenvang, Karla; Valadés, Elena Antón;

    2012-01-01

    . A new series of phenylalanine derivatives that target iGluRs was reported to bind AMPA receptors. Herein we report our studies of these compounds at the kainate receptors GluK1-3. Several compounds bind with micromolar affinity at GluK1 and GluK3, but do not bind GluK2. The crystal structure of the most...

  2. Uncompetitive antagonism of AMPA receptors

    DEFF Research Database (Denmark)

    Andersen, Trine F; Tikhonov, Denis B; Bølcho, Ulrik;

    2006-01-01

    Philanthotoxins are uncompetitive antagonists of Ca2+-permeable AMPA receptors presumed to bind to the pore-forming region, but a detailed molecular mechanism for this interaction is missing. Here a small library of novel philanthotoxins was designed and synthesized using a solid-phase strategy. ...... polyamine toxins antagonize the AMPA receptor ion channel and provide the basis for rational development of uncompetitive antagonists of AMPA receptors....

  3. Structural basis for AMPA receptor activation and ligand selectivity

    DEFF Research Database (Denmark)

    Hogner, A; Kastrup, Jette Sandholm Jensen; Jin, R;

    2002-01-01

    and binding experiments, has been used to increase our knowledge concerning the ionotropic glutamate receptor GluR2 at the molecular level. Five high-resolution X-ray structures of the ligand-binding domain of GluR2 (S1S2J) complexed with the three agonists (S)-2-amino-3-[3-hydroxy-5-(2-methyl-2H-tetrazol-5...

  4. Agonist discrimination between AMPA receptor subtypes

    DEFF Research Database (Denmark)

    Coquelle, T; Christensen, J K; Banke, T G;

    2000-01-01

    The lack of subtype-selective compounds for AMPA receptors (AMPA-R) led us to search for compounds with such selectivity. Homoibotenic acid analogues were investigated at recombinant GluR1o, GluR2o(R), GluR3o and GluR1o + 3o receptors expressed in Sf9 insect cells and affinities determined in [3H......]AMPA radioligand binding experiments. (S)-4-bromohomoibotenic acid (BrHIBO) exhibited a 126-fold selectivity for GluR1o compared to GluR3o. Xenopus laevis oocytes were used to express functional homomeric and heteromeric recombinant AMPA-R and to determine BrHIBO potency (EC50) at these channels. (R......,S)-BrHIBO exhibited a 37-fold selectivity range amongst the AMPA-R. It is hoped that BrHIBO can be used as a lead structure for the development of other subtype-selective compounds....

  5. Regulation of AMPA receptors in spinal nociception

    Directory of Open Access Journals (Sweden)

    Lin Qing

    2010-01-01

    Full Text Available Abstract The functional properties of α-amino-3-hydroxy-5-methy-4-isoxazole propionate (AMPA receptors in different brain regions, such as hippocampus and cerebellum, have been well studied in vitro and in vivo. The AMPA receptors present a unique characteristic in the mechanisms of subunit regulation during LTP (long-term potentiation and LTD (long-term depression, which are involved in the trafficking, altered composition and phosphorylation of AMPA receptor subunits. Accumulated data have demonstrated that spinal AMPA receptors play a critical role in the mechanism of both acute and persistent pain. However, less is known about the biochemical regulation of AMPA receptor subunits in the spinal cord in response to painful stimuli. Recent studies have shown that some important regulatory processes, such as the trafficking of AMPA receptor subunit, subunit compositional changes, phosphorylation of AMPA receptor subunits, and their interaction with partner proteins may contribute to spinal nociceptive transmission. Of all these regulation processes, the phosphorylation of AMPA receptor subunits is the most important since it may trigger or affect other cellular processes. Therefore, these study results may suggest an effective strategy in developing novel analgesics targeting AMPA receptor subunit regulation that may be useful in treating persistent and chronic pain without unacceptable side effects in the clinics.

  6. AMPA receptor ligands

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Mellor, Ian

    2004-01-01

    polyamines are known to modulate the function of these receptors in vivo. In this study, recent developments in the medicinal chemistry of polyamine-based ligands are given, particularly focusing on the use of solid-phase synthesis (SPS) as a tool for the facile generation of libraries of polyamine toxin...

  7. Mechanism of Positive Allosteric Modulators Acting on AMPA Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Jin,R.; Clark, S.; Weeks, A.; Dudman, J.; Gouaux, E.; Partin, K.

    2005-01-01

    Ligand-gated ion channels involved in the modulation of synaptic strength are the AMPA, kainate, and NMDA glutamate receptors. Small molecules that potentiate AMPA receptor currents relieve cognitive deficits caused by neurodegenerative diseases such as Alzheimer's disease and show promise in the treatment of depression. Previously, there has been limited understanding of the molecular mechanism of action for AMPA receptor potentiators. Here we present cocrystal structures of the glutamate receptor GluR2 S1S2 ligand-binding domain in complex with aniracetam [1-(4-methoxybenzoyl)-2-pyrrolidinone] or CX614 (pyrrolidino-1, 3-oxazino benzo-1, 4-dioxan-10-one), two AMPA receptor potentiators that preferentially slow AMPA receptor deactivation. Both potentiators bind within the dimer interface of the nondesensitized receptor at a common site located on the twofold axis of molecular symmetry. Importantly, the potentiator binding site is adjacent to the 'hinge' in the ligand-binding core 'clamshell' that undergoes conformational rearrangement after glutamate binding. Using rapid solution exchange, patch-clamp electrophysiology experiments, we show that point mutations of residues that interact with potentiators in the cocrystal disrupt potentiator function. We suggest that the potentiators slow deactivation by stabilizing the clamshell in its closed-cleft, glutamate-bound conformation.

  8. 3-Substituted phenylalanines as selective AMPA- and kainate receptor ligands

    DEFF Research Database (Denmark)

    Szymanska, Ewa; Pickering, Darryl S; Nielsen, Birgitte;

    2009-01-01

    On the basis of X-ray structures of ionotropic glutamate receptor constructs in complex with amino acid-based AMPA and kainate receptor antagonists, a series of rigid as well as flexible biaromatic alanine derivatives carrying selected hydrogen bond acceptors and donors have been synthesized in o...

  9. AMPA receptor inhibition by synaptically released zinc.

    Science.gov (United States)

    Kalappa, Bopanna I; Anderson, Charles T; Goldberg, Jacob M; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-12-22

    The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of synaptic AMPA responses by endogenous modulators remains poorly understood. Here we provide evidence that endogenous zinc, released by single presynaptic action potentials, inhibits synaptic AMPA currents in the dorsal cochlear nucleus (DCN) and hippocampus. Exposure to loud sound reduces presynaptic zinc levels in the DCN and abolishes zinc inhibition, implicating zinc in experience-dependent AMPAR synaptic plasticity. Our results establish zinc as an activity-dependent, endogenous modulator of AMPARs that tunes fast excitatory neurotransmission and plasticity in glutamatergic synapses.

  10. Stereostructure-activity studies on agonists at the AMPA and kainate subtypes of ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Johansen, Tommy N; Greenwood, Jeremy R; Frydenvang, Karla Andrea;

    2003-01-01

    -methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtype of ionotropic Glu receptors in the presence or absence of an agonist has provided important information about ligand-receptor interaction mechanisms. The availability of these binding domain crystal structures has formed the basis for rational...... design of ligands, especially for the AMPA and kainate subtypes of ionotropic Glu receptors. This mini-review will focus on structure-activity relationships on AMPA and kainate receptor agonists with special emphasis on stereochemical and three-dimensional aspects....

  11. Perampanel inhibition of AMPA receptor currents in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Chao-Yin Chen

    Full Text Available Perampanel is an aryl substituted 2-pyridone AMPA receptor antagonist that was recently approved as a treatment for epilepsy. The drug potently inhibits AMPA receptor responses but the mode of block has not been characterized. Here the action of perampanel on AMPA receptors was investigated by whole-cell voltage-clamp recording in cultured rat hippocampal neurons. Perampanel caused a slow (τ∼1 s at 3 µM, concentration-dependent inhibition of AMPA receptor currents evoked by AMPA and kainate. The rates of block and unblock of AMPA receptor currents were 1.5×105 M-1 s-1 and 0.58 s-1, respectively. Perampanel did not affect NMDA receptor currents. The extent of block of non-desensitizing kainate-evoked currents (IC50, 0.56 µM was similar at all kainate concentrations (3-100 µM, demonstrating a noncompetitive blocking action. Parampanel did not alter the trajectory of AMPA evoked currents indicating that it does not influence AMPA receptor desensitization. Perampanel is a selective negative allosteric AMPA receptor antagonist of high-affinity and slow blocking kinetics.

  12. A novel dualistic profile of an allosteric AMPA receptor modulator identified through studies on recombinant receptors, mouse hippocampal synapses and crystal structures

    DEFF Research Database (Denmark)

    Christiansen, G B; Harbak, Barbara; Hede, S E;

    2015-01-01

    Positive allosteric modulators (PAMs) of 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptors receive increasing interest as therapeutic drugs and have long served as important experimental tools in the study of the molecular mechanisms underlying glutamate-mediated neurotra...

  13. Rational Design of a Novel AMPA Receptor Modulator through a Hybridization Approach

    Science.gov (United States)

    2015-01-01

    The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a family of glutamate ion channels of considerable interest in excitatory neurotransmission and associated disease processes. Here, we demonstrate how exploitation of the available X-ray crystal structure of the receptor ligand binding domain enabled the development of a new class of AMPA receptor positive allosteric modulators (7) through hybridization of known ligands (5 and 6), leading to a novel chemotype with promising pharmacological properties. PMID:25893038

  14. Structural proof of a dimeric positive modulator bridging two identical AMPA receptor-binding sites

    DEFF Research Database (Denmark)

    Kaae, Birgitte Høiriis; Harpsøe, Kasper; Kastrup, Jette Sandholm Jensen;

    2007-01-01

    have dramatically increased potencies, more than three orders of magnitude higher than the corresponding monomers. Dimer (R,R)-2a was cocrystallized with the GluR2-S1S2J construct, and an X-ray crystallographic analysis showed (R,R)-2a to bridge two identical binding pockets on two neighboring GluR2...... subunits. Thus, this is biostructural evidence of a homomeric dimer bridging two identical receptor-binding sites....

  15. Synthesis and enantiopharmacology of new AMPA-kainate receptor agonists

    DEFF Research Database (Denmark)

    Conti, P; De Amici, M; De Sarro, G;

    1999-01-01

    , and the rat cortical wedge preparation. CIP-A showed a good affinity for both 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) and kainic acid (KAIN) receptors. These results were confirmed in the cortical slice model where CIP-A displayed an EC(50) value very close to that of AMPA...

  16. Autoinactivation of the stargazin-AMPA receptor complex: subunit-dependency and independence from physical dissociation.

    Directory of Open Access Journals (Sweden)

    Artur Semenov

    Full Text Available Agonist responses and channel kinetics of native α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA receptors are modulated by transmembrane accessory proteins. Stargazin, the prototypical accessory protein, decreases desensitization and increases agonist potency at AMPA receptors. Furthermore, in the presence of stargazin, the steady-state responses of AMPA receptors show a gradual decline at higher glutamate concentrations. This "autoinactivation" has been assigned to physical dissociation of the stargazin-AMPA receptor complex and suggested to serve as a protective mechanism against overactivation. Here, we analyzed autoinactivation of GluA1-A4 AMPA receptors (all flip isoform expressed in the presence of stargazin. Homomeric GluA1, GluA3, and GluA4 channels showed pronounced autoinactivation indicated by the bell-shaped steady-state dose response curves for glutamate. In contrast, homomeric GluA2i channels did not show significant autoinactivation. The resistance of GluA2 to autoinactivation showed striking dependence on the splice form as GluA2-flop receptors displayed clear autoinactivation. Interestingly, the resistance of GluA2-flip containing receptors to autoinactivation was transferred onto heteromeric receptors in a dominant fashion. To examine the relationship of autoinactivation to physical separation of stargazin from the AMPA receptor, we analyzed a GluA4-stargazin fusion protein. Notably, the covalently linked complex and separately expressed proteins expressed a similar level of autoinactivation. We conclude that autoinactivation is a subunit and splice form dependent property of AMPA receptor-stargazin complexes, which involves structural rearrangements within the complex rather than any physical dissociation.

  17. Extensive phosphorylation of AMPA receptors in neurons.

    Science.gov (United States)

    Diering, Graham H; Heo, Seok; Hussain, Natasha K; Liu, Bian; Huganir, Richard L

    2016-08-16

    Regulation of AMPA receptor (AMPAR) function is a fundamental mechanism controlling synaptic strength during long-term potentiation/depression and homeostatic scaling. AMPAR function and membrane trafficking is controlled by protein-protein interactions, as well as by posttranslational modifications. Phosphorylation of the GluA1 AMPAR subunit at S845 and S831 play especially important roles during synaptic plasticity. Recent controversy has emerged regarding the extent to which GluA1 phosphorylation may contribute to synaptic plasticity. Here we used a variety of methods to measure the population of phosphorylated GluA1-containing AMPARs in cultured primary neurons and mouse forebrain. Phosphorylated GluA1 represents large fractions from 12% to 50% of the total population under basal and stimulated conditions in vitro and in vivo. Furthermore, a large fraction of synapses are positive for phospho-GluA1-containing AMPARs. Our results support the large body of research indicating a prominent role of GluA1 phosphorylation in synaptic plasticity. PMID:27482106

  18. Dual-specific Phosphatase-6 (Dusp6) and ERK Mediate AMPA Receptor-induced Oligodendrocyte Death*

    Science.gov (United States)

    Domercq, Maria; Alberdi, Elena; Sánchez-Gómez, Maria Victoria; Ariz, Usue; Pérez-Samartín, Alberto; Matute, Carlos

    2011-01-01

    Oligodendrocytes, the myelinating cells of the CNS, are highly vulnerable to glutamate excitotoxicity, a mechanism involved in tissue damage in multiple sclerosis. Thus, understanding oligodendrocyte death at the molecular level is important to develop new therapeutic approaches to treat the disease. Here, using microarray analysis and quantitative PCR, we observed that dual-specific phosphatase-6 (Dusp6), an extracellular regulated kinase-specific phosphatase, is up-regulated in oligodendrocyte cultures as well as in optic nerves after AMPA receptor activation. In turn, Dusp6 is overexpressed in optic nerves from multiple sclerosis patients before the appearance of evident damage in this structure. We further analyzed the role of Dusp6 and ERK signaling in excitotoxic oligodendrocyte death and observed that AMPA receptor activation induces a rapid increase in ERK1/2 phosphorylation. Blocking Dusp6 expression, which enhances ERK1/2 phosphorylation, significantly diminished AMPA receptor-induced oligodendrocyte death. In contrast, MAPK/ERK pathway inhibition with UO126 significantly potentiates excitotoxic oligodendrocyte death and increases cytochrome c release, mitochondrial depolarization, and mitochondrial calcium overload produced by AMPA receptor stimulation. Upstream analysis demonstrated that MAPK/ERK signaling alters AMPA receptor properties. Indeed, Dusp6 overexpression as well as incubation with UO126 produced an increase in AMPA receptor-induced inward currents and cytosolic calcium overload. Together, these data suggest that levels of phosphorylated ERK, controlled by Dusp6 phosphatase, regulate glutamate receptor permeability and oligodendroglial excitotoxicity. Therefore, targeting Dusp6 may be a useful strategy to prevent oligodendrocyte death in multiple sclerosis and other diseases involving CNS white matter. PMID:21300799

  19. Positioning of AMPA Receptor-Containing Endosomes Regulates Synapse Architecture

    NARCIS (Netherlands)

    Esteves da Silva, Marta; Adrian, Max; Schätzle, Philipp; Lipka, Joanna; Watanabe, Takuya; Cho, Sukhee; Futai, Kensuke; Wierenga, Corette J; Kapitein, Lukas C; Hoogenraad, Casper C

    2015-01-01

    Lateral diffusion in the membrane and endosomal trafficking both contribute to the addition and removal of AMPA receptors (AMPARs) at postsynaptic sites. However, the spatial coordination between these mechanisms has remained unclear, because little is known about the dynamics of AMPAR-containing en

  20. Are AMPA receptor positive allosteric modulators potential pharmacotherapeutics for addiction?

    Science.gov (United States)

    Watterson, Lucas R; Olive, M Foster

    2013-01-01

    Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF) in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications. PMID:24380895

  1. Direct imaging of lateral movements of AMPA receptors inside synapses

    CERN Document Server

    Tardin, Catherine; Bats, Cécile; Lounis, Brahim; Choquet, Daniel

    2003-01-01

    Trafficking of AMPA receptors in and out of synapses is crucial for synaptic plasticity. Previous studies have focused on the role of endo/exocytosis processes or that of lateral diffusion of extra-synaptic receptors. We have now directly imaged AMPAR movements inside and outside synapses of live neurons using single-molecule fluorescence microscopy. Inside individual synapses, we found immobile and mobile receptors, which display restricted diffusion. Extra-synaptic receptors display free diffusion. Receptors could also exchange between these membrane compartments through lateral diffusion. Glutamate application increased both receptor mobility inside synapses and the fraction of mobile receptors present in a juxtasynaptic region. Block of inhibitory transmission to favor excitatory synaptic activity induced a transient increase in the fraction of mobile receptors and a decrease in the proportion of juxtasynaptic receptors. Altogether, our data show that rapid exchange of receptors between a synaptic and ext...

  2. PACSIN1 regulates the dynamics of AMPA receptor trafficking.

    Science.gov (United States)

    Widagdo, Jocelyn; Fang, Huaqiang; Jang, Se Eun; Anggono, Victor

    2016-01-01

    Dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses plays an important role in synaptic plasticity. We previously reported that the protein kinase C and casein kinase II substrate in neurons (PACSIN) forms a complex with AMPARs through its interaction with the protein interacting with C-kinase 1 (PICK1) to regulate NMDA receptor (NMDAR)-induced AMPAR endocytosis and cerebellar long-term depression. However, the molecular mechanism by which PACSIN regulates the dynamics of AMPAR trafficking remains unclear. Using a pH-sensitive green fluorescent protein, pHluorin, tagged to the extracellular domain of the GluA2 subunit of AMPARs, we demonstrate dual roles for PACSIN1 in controlling the internalization and recycling of GluA2 after NMDAR activation. Structure and function analysis reveals a requirement for the PACSIN1 F-BAR and SH3 domains in controlling these NMDAR-dependent processes. Interestingly, the variable region, which binds to PICK1, is not essential for NMDAR-dependent GluA2 internalization and is required only for the correct recycling of AMPARs. These results indicate that PACSIN is a versatile membrane deformation protein that links the endocytic and recycling machineries essential for dynamic AMPAR trafficking in neurons. PMID:27488904

  3. PACSIN1 regulates the dynamics of AMPA receptor trafficking

    Science.gov (United States)

    Widagdo, Jocelyn; Fang, Huaqiang; Jang, Se Eun; Anggono, Victor

    2016-01-01

    Dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses plays an important role in synaptic plasticity. We previously reported that the protein kinase C and casein kinase II substrate in neurons (PACSIN) forms a complex with AMPARs through its interaction with the protein interacting with C-kinase 1 (PICK1) to regulate NMDA receptor (NMDAR)-induced AMPAR endocytosis and cerebellar long-term depression. However, the molecular mechanism by which PACSIN regulates the dynamics of AMPAR trafficking remains unclear. Using a pH-sensitive green fluorescent protein, pHluorin, tagged to the extracellular domain of the GluA2 subunit of AMPARs, we demonstrate dual roles for PACSIN1 in controlling the internalization and recycling of GluA2 after NMDAR activation. Structure and function analysis reveals a requirement for the PACSIN1 F-BAR and SH3 domains in controlling these NMDAR-dependent processes. Interestingly, the variable region, which binds to PICK1, is not essential for NMDAR-dependent GluA2 internalization and is required only for the correct recycling of AMPARs. These results indicate that PACSIN is a versatile membrane deformation protein that links the endocytic and recycling machineries essential for dynamic AMPAR trafficking in neurons. PMID:27488904

  4. AMPA receptor potentiation can prevent ethanol-induced intoxication.

    Science.gov (United States)

    Jones, Nicholas; Messenger, Marcus J; O'Neill, Michael J; Oldershaw, Anna; Gilmour, Gary; Simmons, Rosa M A; Iyengar, Smriti; Libri, Vincenzo; Tricklebank, Mark; Williams, Steve C R

    2008-06-01

    We present a substantial series of behavioral and imaging experiments, which demonstrate, for the first time, that increasing AMPA receptor-mediated neurotransmission via administration of potent and selective biarylsulfonamide AMPA potentiators LY404187 and LY451395 reverses the central effects of an acutely intoxicating dose of ethanol in the rat. Using pharmacological magnetic resonance imaging (phMRI), we observed that LY404187 attenuated ethanol-induced reductions in blood oxygenation level dependent (BOLD) in the anesthetized rat brain. A similar attenuation was apparent when measuring local cerebral glucose utilization (LCGU) via C14-2-deoxyglucose autoradiography in freely moving conscious rats. Both LY404187 and LY451395 significantly and dose-dependently reversed ethanol-induced deficits in both motor coordination and disruptions in an operant task where animals were trained to press a lever for food reward. Both prophylactic and acute intervention treatment with LY404187 reversed ethanol-induced deficits in motor coordination. Given that LY451395 and related AMPA receptor potentiators/ampakines are tolerated in both healthy volunteers and elderly patients, these data suggest that such compounds may form a potential management strategy for acute alcohol intoxication.

  5. Seizure control by decanoic acid through direct AMPA receptor inhibition.

    Science.gov (United States)

    Chang, Pishan; Augustin, Katrin; Boddum, Kim; Williams, Sophie; Sun, Min; Terschak, John A; Hardege, Jörg D; Chen, Philip E; Walker, Matthew C; Williams, Robin S B

    2016-02-01

    The medium chain triglyceride ketogenic diet is an established treatment for drug-resistant epilepsy that increases plasma levels of decanoic acid and ketones. Recently, decanoic acid has been shown to provide seizure control in vivo, yet its mechanism of action remains unclear. Here we show that decanoic acid, but not the ketones β-hydroxybutryate or acetone, shows antiseizure activity in two acute ex vivo rat hippocampal slice models of epileptiform activity. To search for a mechanism of decanoic acid, we show it has a strong inhibitory effect on excitatory, but not inhibitory, neurotransmission in hippocampal slices. Using heterologous expression of excitatory ionotropic glutamate receptor AMPA subunits in Xenopus oocytes, we show that this effect is through direct AMPA receptor inhibition, a target shared by a recently introduced epilepsy treatment perampanel. Decanoic acid acts as a non-competitive antagonist at therapeutically relevant concentrations, in a voltage- and subunit-dependent manner, and this is sufficient to explain its antiseizure effects. This inhibitory effect is likely to be caused by binding to sites on the M3 helix of the AMPA-GluA2 transmembrane domain; independent from the binding site of perampanel. Together our results indicate that the direct inhibition of excitatory neurotransmission by decanoic acid in the brain contributes to the anti-convulsant effect of the medium chain triglyceride ketogenic diet. PMID:26608744

  6. Positioning of AMPA Receptor-Containing Endosomes Regulates Synapse Architecture

    Directory of Open Access Journals (Sweden)

    Marta Esteves da Silva

    2015-11-01

    Full Text Available Lateral diffusion in the membrane and endosomal trafficking both contribute to the addition and removal of AMPA receptors (AMPARs at postsynaptic sites. However, the spatial coordination between these mechanisms has remained unclear, because little is known about the dynamics of AMPAR-containing endosomes. In addition, how the positioning of AMPAR-containing endosomes affects synapse organization and functioning has never been directly explored. Here, we used live-cell imaging in hippocampal neuron cultures to show that intracellular AMPARs are transported in Rab11-positive recycling endosomes, which frequently enter dendritic spines and depend on the microtubule and actin cytoskeleton. By using chemically induced dimerization systems to recruit kinesin (KIF1C or myosin (MyosinV/VI motors to Rab11-positive recycling endosomes, we controlled their trafficking and found that induced removal of recycling endosomes from spines decreases surface AMPAR expression and PSD-95 clusters at synapses. Our data suggest a mechanistic link between endosome positioning and postsynaptic structure and composition.

  7. Discovery of the First α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Antagonist Dependent upon Transmembrane AMPA Receptor Regulatory Protein (TARP) γ-8.

    Science.gov (United States)

    Gardinier, Kevin M; Gernert, Douglas L; Porter, Warren J; Reel, Jon K; Ornstein, Paul L; Spinazze, Patrick; Stevens, F Craig; Hahn, Patric; Hollinshead, Sean P; Mayhugh, Daniel; Schkeryantz, Jeff; Khilevich, Albert; De Frutos, Oscar; Gleason, Scott D; Kato, Akihiko S; Luffer-Atlas, Debra; Desai, Prashant V; Swanson, Steven; Burris, Kevin D; Ding, Chunjin; Heinz, Beverly A; Need, Anne B; Barth, Vanessa N; Stephenson, Gregory A; Diseroad, Benjamin A; Woods, Tim A; Yu, Hong; Bredt, David; Witkin, Jeffrey M

    2016-05-26

    Transmembrane AMPA receptor regulatory proteins (TARPs) are a family of scaffolding proteins that regulate AMPA receptor trafficking and function. TARP γ-8 is one member of this family and is highly expressed within the hippocampus relative to the cerebellum. A selective TARP γ-8-dependent AMPA receptor antagonist (TDAA) is an innovative approach to modulate AMPA receptors in specific brain regions to potentially increase the therapeutic index relative to known non-TARP-dependent AMPA antagonists. We describe here, for the first time, the discovery of a noncompetitive AMPA receptor antagonist that is dependent on the presence of TARP γ-8. Three major iteration cycles were employed to improve upon potency, CYP1A2-dependent challenges, and in vivo clearance. An optimized molecule, compound (-)-25 (LY3130481), was fully protective against pentylenetetrazole-induced convulsions in rats without the motor impairment associated with non-TARP-dependent AMPA receptor antagonists. Compound (-)-25 could be utilized to provide proof of concept for antiepileptic efficacy with reduced motor side effects in patients. PMID:27067148

  8. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    DEFF Research Database (Denmark)

    Madsen, U; Sløk, F A; Stensbøl, T B;

    2000-01-01

    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4-isoxa...

  9. AMPA receptor pHluorin-GluA2 reports NMDA receptor-induced intracellular acidification in hippocampal neurons

    DEFF Research Database (Denmark)

    Rathje, Mette; Fang, Huaqiang; Bachman, Julia L;

    2013-01-01

    NMDA receptor activation promotes endocytosis of AMPA receptors, which is an important mechanism underlying long-term synaptic depression. The pH-sensitive GFP variant pHluorin fused to the N terminus of GluA2 (pH-GluA2) has been used to assay NMDA-mediated AMPA receptor endocytosis and recycling...

  10. Hormonal regulation of AMPA receptor trafficking and memory formation

    Directory of Open Access Journals (Sweden)

    Harmen J Krugers

    2009-10-01

    Full Text Available Humans and rodents retain memories for stressful events very well. The facilitated retention of these memories is normally very useful. However, in susceptible individuals a variety of pathological conditions may develop in which memories related to stressful events remain inappropriately present, such as in post-traumatic stress disorder. The memory enhancing effects of stress are mediated by hormones, such as norepinephrine and glucocorticoids which are released during stressful experiences. Here we review recently identified molecular mechanisms that underlie the effects of stress hormones on synaptic efficacy and learning and memory. We discuss AMPA receptors as major target for stress hormones and describe a model in which norepinephrine and glucocorticoids are able to strengthen and prolong different phases of stressful memories.

  11. Differential trafficking of AMPA receptors following activation of NMDA receptors and mGluRs

    Directory of Open Access Journals (Sweden)

    Sanderson Thomas M

    2011-07-01

    Full Text Available Abstract The removal of AMPA receptors from synapses is a major component of long-term depression (LTD. How this occurs, however, is still only partially understood. To investigate the trafficking of AMPA receptors in real-time we previously tagged the GluA2 subunit of AMPA receptors with ecliptic pHluorin and studied the effects of NMDA receptor activation. In the present study we have compared the effect of NMDA receptor and group I mGluR activation, using GluA2 tagged with super ecliptic pHluorin (SEP-GluA2 expressed in cultured hippocampal neurons. Surprisingly, agonists of the two receptors, which are both able to induce chemical forms of LTD, had clearly distinct effects on AMPA receptor trafficking. In agreement with our previous work we found that transient NMDA receptor activation results in an initial decrease in surface GluA2 from extrasynaptic sites followed by a delayed reduction in GluA2 from puncta (putative synapses. In contrast, transient activation of group I mGluRs, using DHPG, led to a pronounced but more delayed decrease in GluA2 from the dendritic shafts. Surprisingly, there was no average change in the fluorescence of the puncta. Examination of fluorescence at individual puncta, however, indicated that alterations did take place, with some puncta showing an increase and others a decrease in fluorescence. The effects of DHPG were, like DHPG-induced LTD, prevented by treatment with a protein tyrosine phosphatase (PTP inhibitor. The electrophysiological correlate of the effects of DHPG in the SEP-GluA2 infected cultures was a reduction in mEPSC frequency with no change in amplitude. The implications of these findings for the initial mechanisms of expression of both NMDA receptor- and mGluR-induced LTD are discussed.

  12. Modulation of glutamat AMPA receptors by adenosine, in physiological and hypoxic/ischemic conditions

    OpenAIRE

    Dias, Raquel Alice da Silva Baptista, 1983-

    2011-01-01

    Tese de doutoramento, Ciências Biomédicas (Neurociências), Universidade de Lisboa, Faculdade de Medicina, 2011 Most of the fast excitatory transmission in the brain is conveyed by ionotropic glutamate a-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid (AMPA) receptors, formed by tetrameric assemblies of different subunit (GluR1-GluR4) composition. Modulation of AMPA receptors enables profound changes in synaptic efficiency, underlying the maturation of neuronal networks t...

  13. Synthesis and in vitro pharmacology at AMPA and kainate preferring glutamate receptors of 4-heteroarylmethylidene glutamate analogues

    DEFF Research Database (Denmark)

    Valgeirsson, Jon; Christensen, Jeppe K; Kristensen, Anders S;

    2003-01-01

    affinity for the GluR2 subtype of AMPA receptors. As an attempt to develop new pharmacological tools for studies of GluR5 receptors, (S)-E-4-(2-thiazolylmethylene)glutamic acid (4a) was designed as a structural hybrid between 1 and 3. 4a was shown to be a potent GluR5 agonist and a high affinity ligand...

  14. Forster Resonance Energy Transfer (FRET) Analysis of Dual CFP/YFP Labeled AMPA Receptors Reveals Structural Rearrangement within the C-Terminal Domain during Receptor Activation

    DEFF Research Database (Denmark)

    Zachariassen, Linda Grønborg; Katchan, Mila; Plested, Andrew;

    2014-01-01

    variants (CFP and YFP, respectively) of green fluorescent protein at various positions in the GluA2 AMPAR subunit to enable measurements of intra- receptor conformational changes using Fo¨ rster Resonance Energy Transfer (FRET) in live cells. We identify dual CFP/YFP-tagged GluA2 subunit con- structs that...... retain function and display intrareceptor FRET. This includes a construct (GluA2-6Y-10C) containing YFP in the intracellular loop between the M1 and M2 membrane-embedded segments and CFP inserted in the C-ter- minal domain (CTD). GluA2-6Y-10C displays FRET with an efficiency of 0.11 while retaining wild......-type receptor expression and kinetic properties. We have used GluA2-6Y-10C to study conformational changes in homomeric GluA2 receptors during receptor activation. Our results show that the FRET efficiency is dependent on functional state of GluA2-6Y-10C and hereby indi- cates that the intracellular CTD...

  15. Actin-dependent mechanisms in AMPA receptor trafficking

    Directory of Open Access Journals (Sweden)

    Jonathan G Hanley

    2014-11-01

    Full Text Available The precise regulation of AMPA receptor (AMPAR number and subtype at the synapse is crucial for the regulation of excitatory neurotransmission, synaptic plasticity and the consequent formation of appropriate neural circuits during learning and memory. AMPAR trafficking involves the dynamic processes of exocytosis, endocytosis and endosomal recycling, all of which involve the actin cytoskeleton. The actin cytoskeleton is highly dynamic and highly regulated by an abundance of actin-binding proteins and upstream signalling pathways that modulate actin polymerization and depolymerisation. Actin dynamics generate forces that manipulate membranes in the process of vesicle biogenesis, and also for propelling vesicles through the cytoplasm to reach their destination. In addition, trafficking mechanisms exploit more stable aspects of the actin cytoskeleton by using actin-based motor proteins to traffic vesicular cargo along actin filaments. Numerous studies have shown that actin dynamics are critical for AMPAR localization and function. The identification of actin-binding proteins that physically interact with AMPAR subunits, and research into their mode of action is starting to shed light on the mechanisms involved. Such proteins either regulate actin dynamics to modulate mechanical forces exerted on AMPAR-containing membranes, or associate with actin filaments to target or transport AMPAR-containing vesicles to specific subcellular regions. In addition, actin-regulatory proteins that do not physically interact with AMPARs may influence AMPAR trafficking by regulating the local actin environment in the dendritic spine.

  16. 1,2,3-triazolyl amino acids as AMPA receptor ligands

    DEFF Research Database (Denmark)

    Stanley, Nathan J.; Pedersen, Daniel Sejer; Nielsen, Birgitte;

    2010-01-01

    The central nervous system glutamate receptors are an important target for drug discovery. Herein we report initial investigations into the synthesis and glutamate receptor activity of 1,2,3-triazolyl amino acids. Two compounds were found to be selective AMPA receptor ligands, which warrant further...

  17. Cytosolic PLA2(alpha) activation in Purkinje neurons and its role in AMPA-receptor trafficking.

    Science.gov (United States)

    Mashimo, Masato; Hirabayashi, Tetsuya; Murayama, Toshihiko; Shimizu, Takao

    2008-09-15

    Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) selectively releases arachidonic acid from membrane phospholipids and has been proposed to be involved in the induction of long-term depression (LTD), a form of synaptic plasticity in the cerebellum. This enzyme requires two events for its full activation: Ca(2+)-dependent translocation from the cytosol to organelle membranes in order to access phospholipids as substrates, and phosphorylation by several kinases. However, the subcellular distribution and activation of cPLA(2)alpha in Purkinje cells and the role of arachidonic acid in cerebellar LTD have not been fully elucidated. In cultured Purkinje cells, stimulation of AMPA receptors, but not metabotropic glutamate receptors, triggered translocation of cPLA(2)alpha to the somatic and dendritic Golgi compartments. This translocation required Ca(2+) influx through P-type Ca(2+) channels. AMPA plus PMA, a chemical method for inducing LTD, released arachidonic acid via phosphorylation of cPLA(2)alpha. AMPA plus PMA induced a decrease in surface GluR2 for more than 2 hours. Interestingly, this reduction was occluded by a cPLA(2)alpha-specific inhibitor. Furthermore, PMA plus arachidonic acid caused the prolonged internalization of GluR2 without activating AMPA receptors. These results suggest that cPLA(2)alpha regulates the persistent decrease in the expression of AMPA receptors, underscoring the role of cPLA(2)alpha in cerebellar LTD. PMID:18713832

  18. Synaptically Released Matrix Metalloproteinase Activity in Control of Structural Plasticity and the Cell Surface Distribution of GluA1-AMPA Receptors

    OpenAIRE

    Zsuzsanna Szepesi; Eric Hosy; Blazej Ruszczycki; Monika Bijata; Marta Pyskaty; Arthur Bikbaev; Martin Heine; Daniel Choquet; Leszek Kaczmarek; Jakub Wlodarczyk

    2014-01-01

    Synapses are particularly prone to dynamic alterations and thus play a major role in neuronal plasticity. Dynamic excitatory synapses are located at the membranous neuronal protrusions called dendritic spines. The ability to change synaptic connections involves both alterations at the morphological level and changes in postsynaptic receptor composition. We report that endogenous matrix metalloproteinase (MMP) activity promotes the structural and functional plasticity of local synapses by its ...

  19. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    Science.gov (United States)

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation.

  20. Elucidation of AMPA receptor-stargazin complexes by cryo-electron microscopy.

    Science.gov (United States)

    Twomey, Edward C; Yelshanskaya, Maria V; Grassucci, Robert A; Frank, Joachim; Sobolevsky, Alexander I

    2016-07-01

    AMPA-subtype ionotropic glutamate receptors (AMPARs) mediate fast excitatory neurotransmission and contribute to high cognitive processes such as learning and memory. In the brain, AMPAR trafficking, gating, and pharmacology is tightly controlled by transmembrane AMPAR regulatory proteins (TARPs). Here, we used cryo-electron microscopy to elucidate the structural basis of AMPAR regulation by one of these auxiliary proteins, TARP γ2, or stargazin (STZ). Our structures illuminate the variable interaction stoichiometry of the AMPAR-TARP complex, with one or two TARP molecules binding one tetrameric AMPAR. Analysis of the AMPAR-STZ binding interfaces suggests that electrostatic interactions between the extracellular domains of AMPAR and STZ play an important role in modulating AMPAR function through contact surfaces that are conserved across AMPARs and TARPs. We propose a model explaining how TARPs stabilize the activated state of AMPARs and how the interactions between AMPARs and their auxiliary proteins control fast excitatory synaptic transmission. PMID:27365450

  1. Removal of Synaptic Ca2+-Permeable AMPA Receptors during Sleep.

    OpenAIRE

    Ulrich, Daniel; ROWAN, MICHAEL

    2011-01-01

    PUBLISHED here is accumulating evidence that sleep contributes to memory formation and learning, but the underlying cellular mechanisms are incompletely understood. To investigate the impact of sleep on excitatory synaptic transmission, we obtained whole-cell patch-clamp recordings from layer V pyramidal neurons in acute slices of somatosensory cortex of juvenile rats (postnatal days 21-25). In animals after the dark period, philanthotoxin 74 (PhTx)-sensitive calcium-permeable AMPA recepto...

  2. C-terminal interactors of the AMPA receptor auxiliary subunit Shisa9.

    Directory of Open Access Journals (Sweden)

    Anna R Karataeva

    Full Text Available Shisa9 (initially named CKAMP44 has been identified as auxiliary subunit of the AMPA-type glutamate receptors and was shown to modulate its physiological properties. Shisa9 is a type-I transmembrane protein and contains a C-terminal PDZ domain that potentially interacts with cytosolic proteins. In this study, we performed a yeast two-hybrid screening that yielded eight PDZ domain-containing interactors of Shisa9, which were independently validated. The identified interactors are known scaffolding proteins residing in the neuronal postsynaptic density. To test whether C-terminal scaffolding interactions of Shisa9 affect synaptic AMPA receptor function in the hippocampus, we disrupted these interactions using a Shisa9 C-terminal mimetic peptide. In the absence of scaffolding interactions of Shisa9, glutamatergic AMPA receptor-mediated synaptic currents in the lateral perforant path of the mouse hippocampus had a faster decay time, and paired-pulse facilitation was reduced. Furthermore, disruption of the PDZ interactions between Shisa9 and its binding partners affected hippocampal network activity. Taken together, our data identifies novel interaction partners of Shisa9, and shows that the C-terminal interactions of Shisa9 through its PDZ domain interaction motif are important for AMPA receptor synaptic and network functions.

  3. Studies on Aryl-Substituted Phenylalanines: Synthesis, Activity, and Different Binding Modes at AMPA Receptors

    DEFF Research Database (Denmark)

    Szymanska, Ewa; Frydenvang, Karla Andrea; Pickering, Darryl S;

    2016-01-01

    A series of racemic aryl-substituted phenylalanines was synthesized and evaluated in vitro at recombinant rat GluA1−3, at GluK1−3, and at native AMPA receptors. The individual enantiomers of two target compounds, (RS)-2-amino-3-(3,4-dichloro-5-(5-hydroxypyridin-3-yl)phenyl)- propanoic acid (37...

  4. Differential effect of NMDA and AMPA receptor blockade on protein synthesis in the rat infarct borderzone

    DEFF Research Database (Denmark)

    Christensen, Thomas; Bruhn, T; Frank, L;

    1996-01-01

    We investigated whether the known neuroprotective effects of two selective glutamate receptor antagonists, the NMDA antagonist MK-801 and the AMPA antagonist NBQX, are reflected in the regional cerebral protein synthesis rates (CPSR) in rats with middle cerebral artery occlusion (MCAO). Rats trea...

  5. AMPA Receptor Endocytosis in Rat Perirhinal Cortex Underlies Retrieval of Object Memory

    Science.gov (United States)

    Cazakoff, Brittany N.; Howland, John G.

    2011-01-01

    Mechanisms consistent with long-term depression in the perirhinal cortex (PRh) play a fundamental role in object recognition memory; however, whether AMPA receptor endocytosis is involved in distinct phases of recognition memory is not known. To address this question, we used local PRh infusions of the cell membrane-permeable Tat-GluA2[subscript…

  6. Increased NMDA and AMPA receptor densities in the anterior cingulate cortex in schizophrenia

    International Nuclear Information System (INIS)

    Full text: The anterior cingulate cortex (ACC) is a brain area of potential importance to our understanding of the pathophysiology of schizophrenia. Since a disturbed balance between excitatory and inhibitory activity is suggested to occur in the ACC in schizophrenia, the present study has focused on the analysis of binding of [3H]MK801, [3H]AMPA and [3H]kainate, radioligands which respectively label the NMDA, AMPA and kainate receptors of the ionotropic glutamate receptor family in the ACC of 10 schizophrenia patients and 10 matched controls, using quantitative autoradiography. AMPA receptor densities were higher in cortical layer II whereas NMDA receptor densities were higher in cortical layers II-III in the ACC of both control and schizophrenia group. In contrast, kainate receptors displayed the highest density in cortical layer V. [3H]AMPA binding was significantly increased by 25% in layer II in the schizophrenia group as compared to the control group. Similarly, a significant 17% increase of [3H]MK801 binding was observed in layers II-III in the schizophrenia group. No statistically significant differences were observed for [3H] kainate binding between the two groups. These results suggest that ionotropic glutamate receptors are differentially altered in the ACC of schizophrenia. The increase in [3H]AMPA and [3H]MK801 binding points to a postsynaptic compensation for impaired glutamatergic neurotransmission in the ACC in schizophrenia. Such abnormality could lead to an imbalance between the excitatory and inhibitory neurotransmission in this brain area that may contribute to the emergence of some schizophrenia symptoms. Copyright (2002) Australian Neuroscience Society

  7. Competitive antagonism of AMPA receptors by ligands of different classes

    DEFF Research Database (Denmark)

    Hogner, Anders; Greenwood, Jeremy R; Liljefors, Tommy;

    2003-01-01

    Ionotropic glutamate receptors (iGluRs) constitute a family of ligand-gated ion channels that are essential for mediating fast synaptic transmission in the central nervous system. This study presents a high-resolution X-ray structure of the competitive antagonist (S)-2-amino-3-[5-tert-butyl-3-(ph...

  8. Opposite modulation of brain stimulation reward by NMDA and AMPA receptors in the ventral tegmental area.

    Directory of Open Access Journals (Sweden)

    Charles eDucrot

    2013-10-01

    Full Text Available Previous studies have shown that blockade of ventral midbrain (VM glutamate N-Methyl-D-Aspartate (NMDA receptors induces reward, stimulates forward locomotion and enhances brain stimulation reward. Glutamate induces two types of excitatory response on VM neurons, a fast and short lasting depolarisation mediated by a-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA receptors and a longer lasting depolarization mediated by NMDA receptors. A role for the two glutamate receptors in modulation of VM neuronal activity is evidenced by the functional change in AMPA and NMDA synaptic responses that result from repeated exposure to reward. Since both receptors contribute to the action of glutamate on VM neuronal activity, we studied the effects of VM AMPA and NMDA receptor blockade on reward induced by electrical brain stimulation. Experiments were performed on rats trained to self-administer electrical pulses in the medial posterior mesencephalon. Reward thresholds were measured with the curve-shift paradigm before and for two hours after bilateral VM microinjections of the AMPA antagonist, NBQX (2,3,-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(fquinoxaline-7-sulfonamide, 0, 80, and 800 pmol/0.5ul/side and of a single dose (0.825 nmol/0.5ul/side of the NMDA antagonist, PPPA (2R,4S-4-(3-Phosphonopropyl-2-piperidinecarboxylic acid. NBQX produced a dose-dependent increase in reward threshold with no significant change in maximum rate of responding. Whereas PPPA injected at the same VM sites produced a significant time dependent decrease in reward threshold and increase in maximum rate of responding. We found a negative correlation between the magnitude of the attenuation effect of NBQX and the enhancement effect of PPPA; moreover, NBQX and PPPA were most effective when injected respectively into the anterior and posterior VM. These results suggest that glutamate acts on different receptor sub-types, most likely located on different VM neurons, to modulate

  9. Signalling mechanism for somatostatin receptor 5-mediated suppression of AMPA responses in rat retinal ganglion cells.

    Science.gov (United States)

    Deng, Qin-Qin; Sheng, Wen-Long; Zhang, Gong; Weng, Shi-Jun; Yang, Xiong-Li; Zhong, Yong-Mei

    2016-08-01

    Somatostatin (SRIF) is involved in a variety of physiological functions via the activation of five subtypes of specific receptors (sst1-5). Here, we investigated the effects of SRIF on AMPA receptor (AMPAR)-mediated currents (AMPA currents) in isolated rat retinal ganglion cells (GCs) using patch-clamp techniques. Immunofluorescence double labelling demonstrated the expression of sst5 in rat GCs. Consistent to this, whole cell AMPA currents of GCs were dose-dependently suppressed by SRIF, and the effect was reversed by the sst5 antagonist BIM-23056. Intracellular dialysis of GDP-β-S or pre-incubation with the Gi/o inhibitor pertussis toxin (PTX) abolished the SRIF effect. The SRIF effect was mimicked by the administration of either 8-Br-cAMP or forskolin, but was eliminated by the protein kinase A (PKA) antagonists H-89/KT5720/Rp-cAMP. Moreover, SRIF increased intracellular Ca(2+) levels and did not suppress the AMPA currents when GCs were infused with an intracellular Ca(2+)-free solution or in the presence of ryanodine receptor modulators caffeine/ryanodine. Furthermore, the SRIF effect was eliminated when the activity of calmodulin (CaM), calcineurin and protein phosphatase 1 (PP1) was blocked with W-7, FK-506 and okadaic acid, respectively. SRIF persisted to suppress the AMPA currents when cGMP-protein kinase G (PKG) and phosphatidylinositol (PI)-/phosphatidylcholine (PC)-phospholipase C (PLC) signalling pathways were blocked. In rat flat-mount retinas, SRIF suppressed AMPAR-mediated light-evoked excitatory postsynaptic currents (L-EPSCs) in GCs. We conclude that a distinct Gi/o/cAMP-PKA/ryanodine/Ca(2+)/CaM/calcineurin/PP1 signalling pathway comes into play due to the activation of sst5 to mediate the SRIF effect on GCs. PMID:26969240

  10. Synergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study.

    Science.gov (United States)

    Zakharov, Denis; Lapish, Christopher; Gutkin, Boris; Kuznetsov, Alexey

    2016-01-01

    Dopaminergic (DA) neurons display two modes of firing: low-frequency tonic and high-frequency bursts. The high frequency firing within the bursts is attributed to NMDA, but not AMPA receptor activation. In our models of the DA neuron, both biophysical and abstract, the NMDA receptor current can significantly increase their firing frequency, whereas the AMPA receptor current is not able to evoke high-frequency activity and usually suppresses firing. However, both currents are produced by glutamate receptors and, consequently, are often co-activated. Here we consider combined influence of AMPA and NMDA synaptic input in the models of the DA neuron. Different types of neuronal activity (resting state, low frequency, or high frequency firing) are observed depending on the conductance of the AMPAR and NMDAR currents. In two models, biophysical and reduced, we show that the firing frequency increases more effectively if both receptors are co-activated for certain parameter values. In particular, in the more quantitative biophysical model, the maximal frequency is 40% greater than that with NMDAR alone. The dynamical mechanism of such frequency growth is explained in the framework of phase space evolution using the reduced model. In short, both the AMPAR and NMDAR currents flatten the voltage nullcline, providing the frequency increase, whereas only NMDA prevents complete unfolding of the nullcline, providing robust firing. Thus, we confirm a major role of the NMDAR in generating high-frequency firing and conclude that AMPAR activation further significantly increases the frequency. PMID:27252643

  11. Effects of visual deprivation during brain development on expression of AMPA receptor subunits in rat’s hippocampus

    Directory of Open Access Journals (Sweden)

    Sayyed Alireza Talaei

    2015-06-01

    Conclusion: Dark rearing of rats during critical period of brain development changes the relative expression and also arrangement of both AMPA receptor subunits, GluR1 and GluR2 in the hippocampus, age dependently.

  12. Synthesis of AMPA Receptor Antagonist NS1209%AMPA受体拮抗剂NS1209的合成

    Institute of Scientific and Technical Information of China (English)

    杨海超; 葛敏

    2011-01-01

    A AMPA receptor antagonist, NS1209, was synthesized from 5-bromo-isoquinoline by a nine-step reaction in overall yield of 37.3%. The structure was confirmed by 1H NMR and MS.%以5-溴异喹啉为起始原料,经过9步反应合成了AMPA受体拮抗剂——NS1209,总产率37.3%,其结构经1H NMR和MS确证.

  13. Bi-directional modulation of AMPA receptor unitary conductance by synaptic activity

    Directory of Open Access Journals (Sweden)

    Matthews Paul

    2004-11-01

    Full Text Available Abstract Background Knowledge of how synapses alter their efficiency of communication is central to the understanding of learning and memory. The most extensively studied forms of synaptic plasticity are long-term potentiation (LTP and its counterpart long-term depression (LTD of AMPA receptor-mediated synaptic transmission. In the CA1 region of the hippocampus, it has been shown that LTP often involves a rapid increase in the unitary conductance of AMPA receptor channels. However, LTP can also occur in the absence of any alteration in AMPA receptor unitary conductance. In the present study we have used whole-cell dendritic recording, failures analysis and non-stationary fluctuation analysis to investigate the mechanism of depotentiation of LTP. Results We find that when LTP involves an increase in unitary conductance, subsequent depotentiation invariably involves the return of unitary conductance to pre-LTP values. In contrast, when LTP does not involve a change in unitary conductance then depotentiation also occurs in the absence of any change in unitary conductance, indicating a reduction in the number of activated receptors as the most likely mechanism. Conclusions These data show that unitary conductance can be bi-directionally modified by synaptic activity. Furthermore, there are at least two distinct mechanisms to restore synaptic strength from a potentiated state, which depend upon the mechanism of the previous potentiation.

  14. Modification of the philanthotoxin-343 polyamine moiety results in different structure-activity profiles at muscle nicotinic ACh, NMDA and AMPA receptors

    DEFF Research Database (Denmark)

    Mellor, I R; Brier, T J; Pluteanu, F;

    2003-01-01

    Voltage-dependent, non-competitive inhibition by philanthotoxin-343 (PhTX-343) analogues, with reduced charge or length, of nicotinic acetylcholine receptors (nAChR) of TE671 cells and ionotropic glutamate receptors (N-methyl-D-aspartate receptors (NMDAR) and alpha-amino-3-hydroxy-5-methyl-4...... of PhTX-343 were replaced by methylenes, was more potent than PhTX-343 (IC(50)=0.93 microM at -100 mV). Truncated analogues of PhTX-343 were less potent. Inhibition by all analogues was voltage-dependent. PhTX-343 (IC(50)=2.01 microM at -80 mV) was the most potent inhibitor of NMDAR. At AMPAR, most...... analogues were equipotent with PhTX-343 (IC(50)=0.46 microM at -80 mV), apart from PhTX-83, which was more potent (IC(50)=0.032 microM at -80 mV), and PhTX-(12) and 4,9-dioxa-PhTX-(12), which were less potent (IC(50)s>300 microM at -80 mV). These studies show that PhTX-(12) is a selective nAChR inhibitor...

  15. Effects of intrathecal NMDA and AMPA receptors agonists or antagonists on antinociception of propofol

    Institute of Scientific and Technical Information of China (English)

    Ai-junXU; Shi-mingDUAN; Yin-mingZENG

    2004-01-01

    AIM: To study the effects of intrathecal (it) agonists and antagonists of N-methyl-D-aspartate (NMDA) and alphaamino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors and NMDAR1 antisense oligodeoxynucleotides (AS ODN) on the antinociception of propofol. METHODS: Hot-plate test (HPPT) and acetic acid-induced writhing test were used to measure the nociceptive thresholds in mice. The effects of intrathecal NMDA, AMPA, MK-801, NBQX, or NMDAR1 AS ODN on the antinociception of propofol were observed.RESULTS: Propofol (25, 50 mg/kg, ip) displayed an appreciable antinociceptive effect in hot-plate test and acetic acid-induced writhing test. NMDA (12.5, 25 ng, it) or AMPA (1.25, 2.5 ng, it) exhibited no effects on the behavior but decreased HPPT significantly compared with basal HPPT and aCSF group (P<0.05, P<0.01). No effects on behavior and HPPT were obtained in NMDA (6.25 ng, it) or AMPA (0.625 ng, it) groups. NMDA (6.25, 12.5, and 25 ng, it) dose-dependently decreased the HPPT in propofol-treated group. AMPA (1.25, 2.5 ng, it) also decreased HPPT significantly. MK-801 (0.25, 0.5 μg, it) or NBQX (0.25, 0.5 μg, it) groups had no behavioral changes, two antagonists 0.5 μg but not 0.25 μg increased HPPT in conscious or propofol-treated mice. AS ODN (5, 10, and 20 μg, it) groups exhibited dose-dependent increased in HPPT in propofol-treated groups compared with aCSF group(P<0.05, P<0.01). CONCLUSION: Both agonists NMDA and AMPA reversed the antinociception of propofol.MK-801, NBQX, and NMDAR1 AS ODN potentiated the antinociceptive effects of propofol. Propofol produced antinociception through an interaction with spinal NMDA and AMPA receptors in mice.

  16. Intracellular Ca2+ release through ryanodine receptors contributes to AMPA receptor-mediated mitochondrial dysfunction and ER stress in oligodendrocytes

    Science.gov (United States)

    Ruiz, A; Matute, C; Alberdi, E

    2010-01-01

    Overactivation of ionotropic glutamate receptors in oligodendrocytes induces cytosolic Ca2+ overload and excitotoxic death, a process that contributes to demyelination and multiple sclerosis. Excitotoxic insults cause well-characterized mitochondrial alterations and endoplasmic reticulum (ER) dysfunction, which is not fully understood. In this study, we analyzed the contribution of ER-Ca2+ release through ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) to excitotoxicity in oligodendrocytes in vitro. First, we observed that oligodendrocytes express all previously characterized RyRs and IP3Rs. Blockade of Ca2+-induced Ca2+ release by TMB-8 following α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor-mediated insults attenuated both oligodendrocyte death and cytosolic Ca2+ overload. In turn, RyR inhibition by ryanodine reduced as well the Ca2+ overload whereas IP3R inhibition was ineffective. Furthermore, AMPA-triggered mitochondrial membrane depolarization, oxidative stress and activation of caspase-3, which in all instances was diminished by RyR inhibition. In addition, we observed that AMPA induced an ER stress response as revealed by α subunit of the eukaryotic initiation factor 2α phosphorylation, overexpression of GRP chaperones and RyR-dependent cleavage of caspase-12. Finally, attenuating ER stress with salubrinal protected oligodendrocytes from AMPA excitotoxicity. Together, these results show that Ca2+ release through RyRs contributes to cytosolic Ca2+ overload, mitochondrial dysfunction, ER stress and cell death following AMPA receptor-mediated excitotoxicity in oligodendrocytes. PMID:21364659

  17. Role of TARP interaction in S-SCAM-mediated regulation of AMPA receptors

    OpenAIRE

    Danielson, Eric; Metallo, Jacob; Lee, Sang H.

    2012-01-01

    Scaffolding proteins are involved in the incorporation, anchoring, maintenance, and removal of AMPA receptors (AMPARs) at synapses, either through a direct interaction with AMPARs or via indirect association through auxiliary subunits of transmembrane AMPAR regulatory proteins (TARPs). Synaptic scaffolding molecule (S-SCAM) is a newly characterized member of the scaffolding proteins critical for the regulation and maintenance of AMPAR levels at synapses, and directly binds to TARPs through a ...

  18. AMPA Receptors Commandeer an Ancient Cargo Exporter for Use as an Auxiliary Subunit for Signaling

    OpenAIRE

    Nadine Harmel; Barbara Cokic; Gerd Zolles; Henrike Berkefeld; Veronika Mauric; Bernd Fakler; Valentin Stein; Nikolaj Klöcker

    2012-01-01

    Fast excitatory neurotransmission in the mammalian central nervous system is mainly mediated by ionotropic glutamate receptors of the AMPA subtype (AMPARs). AMPARs are protein complexes of the pore-lining alpha-subunits GluA1-4 and auxiliary beta-subunits modulating their trafficking and gating. By a proteomic approach, two homologues of the cargo exporter cornichon, CNIH-2 and CNIH-3, have recently been identified as constituents of native AMPARs in mammalian brain. In heterologous reconstit...

  19. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging

    OpenAIRE

    Henley JM; Wilkinson KA

    2013-01-01

    Even in healthy individuals there is an inexorable agerelated decline in cognitive function. This is due, in large part, to reduced synaptic plasticity caused by changes in the molecular composition of the postsynaptic membrane. AMPA receptors (AMPARs) are glutamate-gated cation channels that mediate the overwhelming majority of fast excitatory transmission in the brain. Changes in AMPAR number and/or function are a core feature of synaptic plasticity and age-related cognitive decline, AMPARs...

  20. Agmatine produces antidepressant-like effects by activating AMPA receptors and mTOR signaling.

    Science.gov (United States)

    Neis, Vivian Binder; Moretti, Morgana; Bettio, Luis Eduardo B; Ribeiro, Camille M; Rosa, Priscila Batista; Gonçalves, Filipe Marques; Lopes, Mark William; Leal, Rodrigo Bainy; Rodrigues, Ana Lúcia S

    2016-06-01

    The activation of AMPA receptors and mTOR signaling has been reported as mechanisms underlying the antidepressant effects of fast-acting agents, specially the NMDA receptor antagonist ketamine. In the present study, oral administration of agmatine (0.1mg/kg), a neuromodulator that has been reported to modulate NMDA receptors, caused a significant reduction in the immobility time of mice submitted to the tail suspension test (TST), an effect prevented by the administration of DNQX (AMPA receptor antagonist, 2.5μg/site, i.c.v.), BDNF antibody (1μg/site, i.c.v.), K-252a (TrkB receptor antagonist, 1μg/site, i.c.v.), LY294002 (PI3K inhibitor, 10nmol/site, i.c.v.) or rapamycin (selective mTOR inhibitor, 0.2nmol/site, i.c.v.). Moreover, the administration of lithium chloride (non-selective GSK-3β inhibitor, 10mg/kg, p.o.) or AR-A014418 (selective GSK-3β inhibitor, 0.01μg/site, i.c.v.) in combination with a sub-effective dose of agmatine (0.0001mg/kg, p.o.) reduced the immobility time in the TST when compared with either drug alone. Furthermore, increased immunocontents of BDNF, PSD-95 and GluA1 were found in the prefrontal cortex of mice just 1h after agmatine administration. These results indicate that the antidepressant-like effect of agmatine in the TST may be dependent on the activation of AMPA and TrkB receptors, PI3K and mTOR signaling as well as inhibition of GSK-3β, and increase in synaptic proteins. The results contribute to elucidate the complex signaling pathways involved in the antidepressant effect of agmatine and reinforce the pivotal role of these molecular targets for antidepressant responses. PMID:27061850

  1. Estudio computacional de las relaciones evolutivas de los receptores ionotrópicos NMDA, AMPA y kainato en cuatro especies de primates

    Directory of Open Access Journals (Sweden)

    Francy Johanna Moreno-Pedraza

    2010-12-01

    Full Text Available Computational study of the evolutionary relationships of the ionotropic receptors NMDA, AMPA and kainate in four species ofprimates. Objective. To identify the influence of changes on the secondary structure and evolutionary relationship of NMDA, AMPA andkainate receptors in Homo sapiens, Pan troglodytes, Pongo pygmaeus and Macaca mulatta. Materials and methods. We identified 91sequences for NMDA, AMPA and kainate receptors and analyzed with software for predicting secondary structure, phosphorylation sites,multiple alignments, selection of protein evolution models and phylogenetic prediction. Results. We found that subunits GLUR5, NR2A,NR2C and NR3A showed structural changes in the C-terminal region and formation or loss of phosphorylation sites in this zone.Additionally the phylogenetic prediction suggests that the NMDA NR2 subunits are the closest to the ancestral node that gives rise to theother subunits. Conclusions. Changes in structure and phosphorylation sites in GLUR5, NR2A, NR2C and NR3A subunits suggestvariations in the interaction of the C-terminal region with kinase proteins and with proteins with PDZ domains, which could affect thetrafficking and anchoring of the subunits. On the other hand, the phylogenetic prediction suggests that the changes that occurred in the NR2subunits gave rise to the other subunits of glutamate ionotropic receptors, primarily because the NMDA and particularly the NR2D subunitsare the most closely related to the ancestral node that possibly gave rise to the iGluRs.

  2. Functional characterization of Tet-AMPA [tetrazolyl-2-amino-3-(3-hydroxy-5-methyl- 4-isoxazolyl)propionic acid] analogues at ionotropic glutamate receptors GluR1-GluR4. The molecular basis for the functional selectivity profile of 2-Bn-Tet-AMPA

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Christesen, Thomas; Bølcho, Ulrik;

    2007-01-01

    Four 2-substituted Tet-AMPA [Tet = tetrazolyl, AMPA = 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid] analogues were characterized functionally at the homomeric AMPA receptors GluR1i, GluR2Qi, GluR3i, and GluR4i in a Fluo-4/Ca2+ assay. Whereas 2-Et-Tet-AMPA, 2-Pr-Tet-AMPA, and 2-iPr...

  3. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells1 2 3

    OpenAIRE

    Maroteaux, Matthieu; Liu, Siqiong June

    2016-01-01

    Abstract The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA...

  4. Going Mobile: AMPA Receptors Move Synapse to Synapse In Vivo

    OpenAIRE

    Rongo, Christopher

    2013-01-01

    Plasticity models invoke the synaptic delivery of AMPARs, yet we know little about how receptors move in vivo. In this issue of Neuron, Hoerndli et al. show that lateral diffusion and kinesin-mediated transport move AMPARs between synapses in vivo.

  5. The AMPA receptor subunit GluR1 regulates dendritic architecture of motor neurons

    Science.gov (United States)

    Inglis, Fiona M.; Crockett, Richard; Korada, Sailaja; Abraham, Wickliffe C.; Hollmann, Michael; Kalb, Robert G.

    2002-01-01

    The morphology of the mature motor neuron dendritic arbor is determined by activity-dependent processes occurring during a critical period in early postnatal life. The abundance of the AMPA receptor subunit GluR1 in motor neurons is very high during this period and subsequently falls to a negligible level. To test the role of GluR1 in dendrite morphogenesis, we reintroduced GluR1 into rat motor neurons at the end of the critical period and quantitatively studied the effects on dendrite architecture. Two versions of GluR1 were studied that differed by the amino acid in the "Q/R" editing site. The amino acid occupying this site determines single-channel conductance, ionic permeability, and other essential electrophysiologic properties of the resulting receptor channels. We found large-scale remodeling of dendritic architectures in a manner depending on the amino acid occupying the Q/R editing site. Alterations in the distribution of dendritic arbor were not prevented by blocking NMDA receptors. These observations suggest that the expression of GluR1 in motor neurons modulates a component of the molecular substrate of activity-dependent dendrite morphogenesis. The control of these events relies on subunit-specific properties of AMPA receptors.

  6. (S)-homo-AMPA, a specific agonist at the mGlu6 subtype of metabotropic glutamic acid receptors

    DEFF Research Database (Denmark)

    Ahmadian, H; Nielsen, B; Bräuner-Osborne, Hans;

    1997-01-01

    Our previous publication (J. Med. Chem. 1996, 39, 3188-3194) described (RS)-2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid (Homo-AMPA) as a highly selective agonist at the mGlu6 subtype of metabotropic excitatory amino acid (EAA) receptors. Homo-AMPA has already become a standard agonist...... of the spectroscopic configurational assignments. The activities of 6 and 7 at ionotropic EAA (iGlu) receptors and at mGlu1-7 were studied. (S)-Homo-AMPA (6) was shown to be a specific agonist at mGlu6 (EC50 = 58 +/- 11 microM) comparable in potency with the endogenous mGlu agonist (S)-glutamic acid (EC50 = 20 +/- 3...... microM). Although Homo-AMPA did not show significant effects at iGlu receptors, (R)-Homo-AMPA (7), which was inactive at mGlu1-7, turned out to be a weak N-methyl-D-aspartic acid (NMDA) receptor antagonist (IC50 = 131 +/- 18 microM)....

  7. Intracellular Ca2+ and not the extracellular matrix determines surface dynamics of AMPA-type glutamate receptors on aspiny neurons

    Science.gov (United States)

    Klueva, Julia; Gundelfinger, Eckart D.; Frischknecht, R. Renato; Heine, Martin

    2014-01-01

    The perisynaptic extracellular matrix (ECM) contributes to the control of the lateral mobility of AMPA-type glutamate receptors (AMPARs) at spine synapses of principal hippocampal neurons. Here, we have studied the effect of the ECM on the lateral mobility of AMPARs at shaft synapses of aspiny interneurons. Single particle tracking experiments revealed that the removal of the hyaluronan-based ECM with hyaluronidase does not affect lateral receptor mobility on the timescale of seconds. Similarly, cross-linking with specific antibodies against the extracellular domain of the GluA1 receptor subunit, which affects lateral receptor mobility on spiny neurons, does not influence receptor mobility on aspiny neurons. AMPARs on aspiny interneurons are characterized by strong inward rectification indicating a significant fraction of Ca2+-permeable receptors. Therefore, we tested whether Ca2+ controls AMPAR mobility in these neurons. Application of the membrane-permeable Ca2+ chelator BAPTA-AM significantly increased the lateral mobility of GluA1-containing synaptic and extrasynaptic receptors. These data indicate that the perisynaptic ECM affects the lateral mobility differently on spiny and aspiny neurons. Although ECM structures on interneurons appear much more prominent, their influence on AMPAR mobility seems to be negligible at short timescales. PMID:25225098

  8. Basal Levels of AMPA Receptor GluA1 Subunit Phosphorylation at Threonine 840 and Serine 845 in Hippocampal Neurons

    Science.gov (United States)

    Babiec, Walter E.; Guglietta, Ryan; O'Dell, Thomas J.

    2016-01-01

    Dephosphorylation of AMPA receptor (AMPAR) GluA1 subunits at two sites, serine 845 (S845) and threonine 840 (T840), is thought to be involved in NMDA receptor-dependent forms of long-term depression (LTD). Importantly, the notion that dephosphorylation of these sites contributes to LTD assumes that a significant fraction of GluA1 subunits are…

  9. AMPA and GABA receptor antagonists and their interaction in rats with a genetic form of absence epilepsy

    NARCIS (Netherlands)

    Kaminski, R.M.; Rijn, C.M. van; Turski, W.A.; Czuczwar, S.J.; Luijtelaar, E.L.J.M. van

    2001-01-01

    The effects of combined and single administration of the -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, 7,8-methylenedioxy-1-(4-aminophenyl)-4-methyl-3-acetyl-4,5-dihydro-2,3 -benzodiazepine (LY 300164), and of the GABAB receptor antagonist -aminopropyl-n-butyl-phosp

  10. Estrous Cycle-Dependent Phasic Changes in the Stoichiometry of Hippocampal Synaptic AMPA Receptors in Rats

    OpenAIRE

    Hirobumi Tada; Mayu Koide; Wakana Ara; Yusuke Shibata; Toshiya Funabashi; Kumiko Suyama; Takahisa Goto; Takuya Takahashi

    2015-01-01

    Cognitive function can be affected by the estrous cycle. However, the effect of the estrous cycle on synaptic functions is poorly understood. Here we show that in female rats, inhibitory-avoidance (IA) task (hippocampus-dependent contextual fear-learning task) drives GluA2-lacking Ca2+-permeable AMPA receptors (CP-AMPARs) into the hippocampal CA3-CA1 synapses during all periods of the estrous cycle except the proestrous period, when estrogen levels are high. In addition, IA task failed to dri...

  11. Facilitation of AMPA receptor synaptic delivery as a molecular mechanism for cognitive enhancement.

    Directory of Open Access Journals (Sweden)

    Shira Knafo

    2012-02-01

    Full Text Available Cell adhesion molecules and downstream growth factor-dependent signaling are critical for brain development and synaptic plasticity, and they have been linked to cognitive function in adult animals. We have previously developed a mimetic peptide (FGL from the neural cell adhesion molecule (NCAM that enhances spatial learning and memory in rats. We have now investigated the cellular and molecular basis of this cognitive enhancement, using biochemical, morphological, electrophysiological, and behavioral analyses. We have found that FGL triggers a long-lasting enhancement of synaptic transmission in hippocampal CA1 neurons. This effect is mediated by a facilitated synaptic delivery of AMPA receptors, which is accompanied by enhanced NMDA receptor-dependent long-term potentiation (LTP. Both LTP and cognitive enhancement are mediated by an initial PKC activation, which is followed by persistent CaMKII activation. These results provide a mechanistic link between facilitation of AMPA receptor synaptic delivery and improved hippocampal-dependent learning, induced by a pharmacological cognitive enhancer.

  12. Odor Preference Learning and Memory Modify GluA1 Phosphorylation and GluA1 Distribution in the Neonate Rat Olfactory Bulb: Testing the AMPA Receptor Hypothesis in an Appetitive Learning Model

    Science.gov (United States)

    Cui, Wen; Darby-King, Andrea; Grimes, Matthew T.; Howland, John G.; Wang, Yu Tian; McLean, John H.; Harley, Carolyn W.

    2011-01-01

    An increase in synaptic AMPA receptors is hypothesized to mediate learning and memory. AMPA receptor increases have been reported in aversive learning models, although it is not clear if they are seen with memory maintenance. Here we examine AMPA receptor changes in a cAMP/PKA/CREB-dependent appetitive learning model: odor preference learning in…

  13. The SOL-2/Neto auxiliary protein modulates the function of AMPA-subtype ionotropic glutamate receptors.

    Science.gov (United States)

    Wang, Rui; Mellem, Jerry E; Jensen, Michael; Brockie, Penelope J; Walker, Craig S; Hoerndli, Frédéric J; Hauth, Linda; Madsen, David M; Maricq, Andres V

    2012-09-01

    The neurotransmitter glutamate mediates excitatory synaptic transmission by gating ionotropic glutamate receptors (iGluRs). AMPA receptors (AMPARs), a subtype of iGluR, are strongly implicated in synaptic plasticity, learning, and memory. We previously discovered two classes of AMPAR auxiliary proteins in C. elegans that modify receptor kinetics and thus change synaptic transmission. Here, we have identified another auxiliary protein, SOL-2, a CUB-domain protein that associates with both the related auxiliary subunit SOL-1 and with the GLR-1 AMPAR. In sol-2 mutants, behaviors dependent on glutamatergic transmission are disrupted, GLR-1-mediated currents are diminished, and GLR-1 desensitization and pharmacology are modified. Remarkably, a secreted variant of SOL-1 delivered in trans can rescue sol-1 mutants, and this rescue depends on in cis expression of SOL-2. Finally, we demonstrate that SOL-1 and SOL-2 have an ongoing role in the adult nervous system to control AMPAR-mediated currents.

  14. Auxiliary Subunit GSG1L Acts to Suppress Calcium-Permeable AMPA Receptor Function

    Science.gov (United States)

    McGee, Thomas P.; Bats, Cécile

    2015-01-01

    AMPA-type glutamate receptors are ligand-gated cation channels responsible for a majority of the fast excitatory synaptic transmission in the brain. Their behavior and calcium permeability depends critically on their subunit composition and the identity of associated auxiliary proteins. Calcium-permeable AMPA receptors (CP-AMPARs) contribute to various forms of synaptic plasticity, and their dysfunction underlies a number of serious neurological conditions. For CP-AMPARs, the prototypical transmembrane AMPAR regulatory protein stargazin, which acts as an auxiliary subunit, enhances receptor function by increasing single-channel conductance, slowing channel gating, increasing calcium permeability, and relieving the voltage-dependent block by endogenous intracellular polyamines. We find that, in contrast, GSG1L, a transmembrane auxiliary protein identified recently as being part of the AMPAR proteome, acts to reduce the weighted mean single-channel conductance and calcium permeability of recombinant CP-AMPARs, while increasing polyamine-dependent rectification. To examine the effects of GSG1L on native AMPARs, we manipulated its expression in cerebellar and hippocampal neurons. Transfection of GSG1L into mouse cultured cerebellar stellate cells that lack this protein increased the inward rectification of mEPSCs. Conversely, shRNA-mediated knockdown of endogenous GSG1L in rat cultured hippocampal pyramidal neurons led to an increase in mEPSC amplitude and in the underlying weighted mean single-channel conductance, revealing that GSG1L acts to suppress current flow through native CP-AMPARs. Thus, our data suggest that GSG1L extends the functional repertoire of AMPAR auxiliary subunits, which can act not only to enhance but also diminish current flow through their associated AMPARs. SIGNIFICANCE STATEMENT Calcium-permeable AMPA receptors (CP-AMPARs) are an important group of receptors for the neurotransmitter glutamate. These receptors contribute to various forms of

  15. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging.

    Science.gov (United States)

    Henley, Jeremy M; Wilkinson, Kevin A

    2013-03-01

    Even in healthy individuals there is an inexorable agerelated decline in cognitive function. This is due, in large part, to reduced synaptic plasticity caused by changes in the molecular composition of the postsynaptic membrane. AMPA receptors (AMPARs) are glutamate-gated cation channels that mediate the overwhelming majority of fast excitatory transmission in the brain. Changes in AMPAR number and/or function are a core feature of synaptic plasticity and age-related cognitive decline, AMPARs are highly dynamic proteins that are subject to highly controlled trafficking, recycling, and/or degradation and replacement. This active regulation of AMPAR synthesis, targeting, synaptic dwell time, and degradation is fundamentally important for memory formation and storage. Further, aberrant AMPAR trafficking and consequent detrimental changes in synapses are strongly implicated in many brain diseases, which represent a vast social and economic burden. The purpose of this article is to provide an overview of the molecular and cellular AMPA receptor trafficking events that control synaptic responsiveness and plasticity, and highlight what is known currently known about how these processes change with age and disease. PMID:23576886

  16. Estrous Cycle-Dependent Phasic Changes in the Stoichiometry of Hippocampal Synaptic AMPA Receptors in Rats.

    Directory of Open Access Journals (Sweden)

    Hirobumi Tada

    Full Text Available Cognitive function can be affected by the estrous cycle. However, the effect of the estrous cycle on synaptic functions is poorly understood. Here we show that in female rats, inhibitory-avoidance (IA task (hippocampus-dependent contextual fear-learning task drives GluA2-lacking Ca2+-permeable AMPA receptors (CP-AMPARs into the hippocampal CA3-CA1 synapses during all periods of the estrous cycle except the proestrous period, when estrogen levels are high. In addition, IA task failed to drive CP-AMPARs into the CA3-CA1 synapses of ovariectomized rats only when estrogen was present. Thus, changes in the stoichiometry of AMPA receptors during learning depend on estrogen levels. Furthermore, the induction of long-term potentiation (LTP after IA task was prevented during the proestrous period, while intact LTP is still expressed after IA task during other period of the estrous cycle. Consistent with this finding, rats conditioned by IA training failed to acquire hippocampus-dependent Y-maze task during the proestrous period. On the other hand, during other estrous period, rats were able to learn Y-maze task after IA conditioning. These results suggest that high estrogen levels prevent the IA learning-induced delivery of CP-AMPARs into hippocampal CA3-CA1 synapses and limit synaptic plasticity after IA task, thus preventing the acquisition of additional learning.

  17. Estrous Cycle-Dependent Phasic Changes in the Stoichiometry of Hippocampal Synaptic AMPA Receptors in Rats.

    Science.gov (United States)

    Tada, Hirobumi; Koide, Mayu; Ara, Wakana; Shibata, Yusuke; Funabashi, Toshiya; Suyama, Kumiko; Goto, Takahisa; Takahashi, Takuya

    2015-01-01

    Cognitive function can be affected by the estrous cycle. However, the effect of the estrous cycle on synaptic functions is poorly understood. Here we show that in female rats, inhibitory-avoidance (IA) task (hippocampus-dependent contextual fear-learning task) drives GluA2-lacking Ca2+-permeable AMPA receptors (CP-AMPARs) into the hippocampal CA3-CA1 synapses during all periods of the estrous cycle except the proestrous period, when estrogen levels are high. In addition, IA task failed to drive CP-AMPARs into the CA3-CA1 synapses of ovariectomized rats only when estrogen was present. Thus, changes in the stoichiometry of AMPA receptors during learning depend on estrogen levels. Furthermore, the induction of long-term potentiation (LTP) after IA task was prevented during the proestrous period, while intact LTP is still expressed after IA task during other period of the estrous cycle. Consistent with this finding, rats conditioned by IA training failed to acquire hippocampus-dependent Y-maze task during the proestrous period. On the other hand, during other estrous period, rats were able to learn Y-maze task after IA conditioning. These results suggest that high estrogen levels prevent the IA learning-induced delivery of CP-AMPARs into hippocampal CA3-CA1 synapses and limit synaptic plasticity after IA task, thus preventing the acquisition of additional learning. PMID:26121335

  18. Effects of 2,3-benzodiazepine AMPA receptor antagonists on dopamine turnover in the striatum of rats with experimental parkinsonism.

    Science.gov (United States)

    Megyeri, Katalin; Marko, Bernadett; Sziray, Nora; Gacsalyi, Istvan; Juranyi, Zsolt; Levay, Gyorgy; Harsing, Laszlo G

    2007-03-15

    Although levodopa is the current "gold standard" for treatment of Parkinson's disease, there has been disputation on whether AMPA receptor antagonists can be used as adjuvant therapy to improve the effects of levodopa. Systemic administration of levodopa, the precursor of dopamine, increases brain dopamine turnover rate and this elevated turnover is believed to be essential for successful treatment of Parkinson's disease. However, long-term treatment of patients with levodopa often leads to development of dyskinesia. Therefore, drugs that feature potentiation of dopamine turnover rate and are able to reduce daily levodopa dosages might be used as adjuvant in the treatment of patients suffering from Parkinson's disease. To investigate such combined treatment, we have examined the effects of two non-competitive AMPA receptor antagonists, GYKI-52466 and GYKI-53405, alone or in combination with levodopa on dopamine turnover rate in 6-hydroxydopamine-lesioned striatum of the rat. We found here that repeated administration of levodopa, added with the peripheral DOPA decarboxylase inhibitor carbidopa, increased dopamine turnover rate after lesioning the striatum with 6-hydroxydopamine. Moreover, combination of levodopa with GYKI-52466 or GYKI-53405 further increased dopamine turnover enhanced by levodopa administration while the AMPA receptor antagonists by themselves failed to influence striatal dopamine turnover. We concluded from the present data that potentiation observed between levodopa and AMPA receptor antagonists may reflect levodopa-sparing effects in clinical treatment indicating the therapeutic potential of such combination in the management of Parkinson's disease.

  19. Brain Region-Specific Effects of cGMP-Dependent Kinase II Knockout on AMPA Receptor Trafficking and Animal Behavior

    Science.gov (United States)

    Kim, Seonil; Pick, Joseph E.; Abera, Sinedu; Khatri, Latika; Ferreira, Danielle D. P.; Sathler, Matheus F.; Morison, Sage L.; Hofmann, Franz; Ziff, Edward B.

    2016-01-01

    Phosphorylation of GluA1, a subunit of AMPA receptors (AMPARs), is critical for AMPAR synaptic trafficking and control of synaptic transmission. cGMP-dependent protein kinase II (cGKII) mediates this phosphorylation, and cGKII knockout (KO) affects GluA1 phosphorylation and alters animal behavior. Notably, GluA1 phosphorylation in the KO…

  20. The essential role of AMPA receptor GluR2 subunit RNA editing in the normal and diseased brain

    Directory of Open Access Journals (Sweden)

    Amanda Lorraine Wright

    2012-04-01

    Full Text Available AMPA receptors are comprised of different combinations of GluR1-GluR4 (also known as GluA1-GluA4 and GluR-A to GluR-D subunits. The GluR2 subunit is subject to Q/R site RNA editing by the ADAR2 enzyme, which converts a codon for glutamine (Q, present in the GluR2 gene, to a codon for arginine (R found in the mRNA. AMPA receptors are calcium (Ca2+-permeable if they contain the unedited GluR2(Q subunit or if they lack the GluR2 subunit. While most AMPA receptors in the brain contain the edited GluR2(R subunit and are therefore Ca2+-impermeable, recent evidence suggests that Ca2+-permeable GluR2-lacking AMPA receptors are important in synaptic plasticity and learning. However, the presence of Ca2+-permeable AMPA receptors containing unedited GluR2 leads to excitotoxic cell loss. Recent studies have indicated that RNA editing of GluR2 is deregulated in diseases, such as amyotrophic lateral sclerosis (ALS, as well in acute neurodegenerative conditions, such as ischemia. More recently, studies have investigated the regulation of RNA editing and possible causes for its deregulation during disease. In this review, we will explore the role of GluR2 RNA editing in the healthy and diseased brain and outline new insights into the mechanisms that control this process.

  1. Effects of Exposure to Aluminum on Long-term Potentiation and AMPA Receptor Subunits in Ratsin vivo

    Institute of Scientific and Technical Information of China (English)

    SONG Jing; LIU Ying; ZHANG Hui Fang; ZHANG Qin Li; NIU Qiao

    2014-01-01

    ObjectiveTo explore the effects of exposure to aluminum(Al) on long-term potentiation(LTP) and AMPA receptor subunits in rats in vivo. MethodsDifferent dosages of aluminum-maltolate complex[Al(mal)3] were given to rats via acute intracerebroventricular (i.c.v.)injection and subchronic intraperitoneal (i.p.) injection. Following Al exposure, the hippocampal LTP were recorded by field potentiation techniquein vivo and the expression of AMPAR subunit proteins (GluR1 and GluR2) in both total and membrane-enriched extracts from the CA1 area of rat hippocampus were detected by Western blot assay. ResultsAcute Al treatment produced dose-dependent suppression of LTP in the rat hippocampus and dose-dependent decreases of GluR1and GluR2in membrane extracts; however, no similar changes were found in the total cell extracts, which suggests decreased trafficking of AMPA receptor subunits from intracellular pools to synaptic sites in the hippocampus. Thedose-dependent suppressive effects on LTP and the expression of AMPA receptor subunits both in the membrane and in total extracts were found after subchronic Al treatment, indicating a decrease in AMPA receptor subunit trafficking from intracellular poolsto synaptic sites and an additional reduction in the expression of the subunits. ConclusionAl(mal)3obviously and dose-dependently suppressed LTP in the rat hippocampal CA1 region in vivo, and this suppression may be related to both trafficking and decreases in the expression of AMPA receptor subunit proteins. However, the mechanisms underlying these observations need further investigation.

  2. Intracellular Ca2+ and not the extracellular matrix determines surface dynamics of AMPA-type glutamate receptors on aspiny neurons

    OpenAIRE

    Klueva, Julia; Gundelfinger, Eckart D; Frischknecht, R. Renato; Heine, Martin

    2014-01-01

    The perisynaptic extracellular matrix (ECM) contributes to the control of the lateral mobility of AMPA-type glutamate receptors (AMPARs) at spine synapses of principal hippocampal neurons. Here, we have studied the effect of the ECM on the lateral mobility of AMPARs at shaft synapses of aspiny interneurons. Single particle tracking experiments revealed that the removal of the hyaluronan-based ECM with hyaluronidase does not affect lateral receptor mobility on the timescale of seconds. Similar...

  3. Reinforcement-related regulation of AMPA glutamate receptor subunits in the ventral tegmental area enhances motivation for cocaine.

    Science.gov (United States)

    Choi, Kwang Ho; Edwards, Scott; Graham, Danielle L; Larson, Erin B; Whisler, Kimberly N; Simmons, Diana; Friedman, Allyson K; Walsh, Jessica J; Rahman, Zia; Monteggia, Lisa M; Eisch, Amelia J; Neve, Rachael L; Nestler, Eric J; Han, Ming-Hu; Self, David W

    2011-05-25

    Chronic cocaine use produces numerous biological changes in brain, but relatively few are functionally associated with cocaine reinforcement. Here we show that daily intravenous cocaine self-administration, but not passive cocaine administration, induces dynamic upregulation of the AMPA glutamate receptor subunits GluR1 and GluR2 in the ventral tegmental area (VTA) of rats. Increases in GluR1 protein and GluR1(S845) phosphorylation are associated with increased GluR1 mRNA in self-administering animals, whereas increased GluR2 protein levels occurred despite substantial decreases in GluR2 mRNA. We investigated the functional significance of GluR1 upregulation in the VTA on cocaine self-administration using localized viral-mediated gene transfer. Overexpression of GluR1(WT) in rat VTA primarily infected dopamine neurons (75%) and increased AMPA receptor-mediated membrane rectification in these neurons with AMPA application. Similar GluR1(WT) overexpression potentiated locomotor responses to intra-VTA AMPA, but not NMDA, infusions. In cocaine self-administering animals, overexpression of GluR1(WT) in the VTA markedly increased the motivation for cocaine injections on a progressive ratio schedule of cocaine reinforcement. In contrast, overexpression of protein kinase A-resistant GluR1(S845A) in the VTA reduced peak rates of cocaine self-administration on a fixed ratio reinforcement schedule. Neither viral vector altered sucrose self-administration, and overexpression of GluR1(WT) or GluR1(S845A) in the adjacent substantia nigra had no effect on cocaine self-administration. Together, these results suggest that dynamic regulation of AMPA receptors in the VTA during cocaine self-administration contributes to cocaine addiction by acting to facilitate subsequent cocaine use.

  4. DCP-LA stimulates AMPA receptor exocytosis through CaMKII activation due to PP-1 inhibition.

    Science.gov (United States)

    Kanno, Takeshi; Yaguchi, Takahiro; Nagata, Tetsu; Tanaka, Akito; Nishizaki, Tomoyuki

    2009-10-01

    The linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) activated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) by inhibiting protein phosphatase-1 (PP-1). DCP-LA induced a transient huge facilitation of synaptic transmission monitored from the CA1 region of rat hippocampal slices, which was largely inhibited by the CaMKII inhibitor KN-93. DCP-LA potentiated kainate-evoked whole-cell membrane currents for Xenopus oocytes expressing alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors composed of the GluR1, GluR3, GluR1/GluR2, GluR1/GluR3, and GluR1/GluR2/GluR3 subunits, and the potentiation was significantly inhibited by KN-93. A similar potentiation was still found with mutant GluR1 (S831A) receptor lacking CaMKII phosphorylation site. The GluR1 and GluR2 subunits formed AMPA receptors in the rat hippocampus, and DCP-LA increased expression of both the subunits on the plasma membrane. The DCP-LA action was blocked by KN-93 and the exocytosis inhibitor botulinum toxin type A, but not by the endocytosis inhibitor phenylarsine oxide. DCP-LA, thus, appears to activate CaMKII through PP-1 inhibition, that stimulates AMPA receptor exocytosis to increase expression of the receptors on the plasma membrane, responsible for potentiate AMPA receptor responses and facilitation of hippocampal synaptic transmission. PMID:19492412

  5. DCP-LA stimulates AMPA receptor exocytosis through CaMKII activation due to PP-1 inhibition.

    Science.gov (United States)

    Kanno, Takeshi; Yaguchi, Takahiro; Nagata, Tetsu; Tanaka, Akito; Nishizaki, Tomoyuki

    2009-10-01

    The linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) activated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) by inhibiting protein phosphatase-1 (PP-1). DCP-LA induced a transient huge facilitation of synaptic transmission monitored from the CA1 region of rat hippocampal slices, which was largely inhibited by the CaMKII inhibitor KN-93. DCP-LA potentiated kainate-evoked whole-cell membrane currents for Xenopus oocytes expressing alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors composed of the GluR1, GluR3, GluR1/GluR2, GluR1/GluR3, and GluR1/GluR2/GluR3 subunits, and the potentiation was significantly inhibited by KN-93. A similar potentiation was still found with mutant GluR1 (S831A) receptor lacking CaMKII phosphorylation site. The GluR1 and GluR2 subunits formed AMPA receptors in the rat hippocampus, and DCP-LA increased expression of both the subunits on the plasma membrane. The DCP-LA action was blocked by KN-93 and the exocytosis inhibitor botulinum toxin type A, but not by the endocytosis inhibitor phenylarsine oxide. DCP-LA, thus, appears to activate CaMKII through PP-1 inhibition, that stimulates AMPA receptor exocytosis to increase expression of the receptors on the plasma membrane, responsible for potentiate AMPA receptor responses and facilitation of hippocampal synaptic transmission.

  6. Impaired associative fear learning in mice with complete loss or haploinsufficiency of AMPA GluR1 receptors

    Directory of Open Access Journals (Sweden)

    Michael Feyder

    2007-12-01

    Full Text Available There is compelling evidence that L-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA glutamate receptors containing the GluR1 subunit contribute to the molecular mechanisms associated with learning. AMPA GluR1 glutamate receptor knockout mice (KO exhibit abnormal hippocampal and amygdala plasticity, and deficits on various assays for cognition including Pavlovian fear conditioning. Here we examined associative fear learning in mice with complete absence (KO or partial loss (heterozygous mutant, HET of GluR1 on multiple fear conditioning paradigms. After multi-trial delay or trace conditioning, KO displayed impaired tone and context fear recall relative to WT, whereas HET were normal. After one-trial delay conditioning, both KO and HET showed impaired tone and context recall. HET and KO showed normal nociceptive sensitivity in the hot plate and tail flick tests. These data demonstrate that the complete absence of GluR1 subunit-containing receptors prevents the formation of associative fear memories, while GluR1 haploinsufficiency is sufficient to impair one-trial fear learning. These findings support growing evidence of a major role for GluR1-containing AMPA receptors in amygdalamediated forms of learning and memory.

  7. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells.

    Science.gov (United States)

    Maroteaux, Matthieu; Liu, Siqiong June

    2016-01-01

    The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current-voltage (I-V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I-V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I-V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I-V relationship of EPSCs at GluA2-lacking AMPAR synapses.

  8. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells.

    Science.gov (United States)

    Maroteaux, Matthieu; Liu, Siqiong June

    2016-01-01

    The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current-voltage (I-V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I-V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I-V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I-V relationship of EPSCs at GluA2-lacking AMPAR synapses. PMID:27280156

  9. Natural reward experience alters AMPA and NMDA receptor distribution and function in the nucleus accumbens.

    Directory of Open Access Journals (Sweden)

    Kyle K Pitchers

    Full Text Available Natural reward and drugs of abuse converge upon the mesolimbic system which mediates motivation and reward behaviors. Drugs induce neural adaptations in this system, including transcriptional, morphological, and synaptic changes, which contribute to the development and expression of drug-related memories and addiction. Previously, it has been reported that sexual experience in male rats, a natural reward behavior, induces similar neuroplasticity in the mesolimbic system and affects natural reward and drug-related behavior. The current study determined whether sexual experience causes long-lasting changes in mating, or ionotropic glutamate receptor trafficking or function in the nucleus accumbens (NAc, following 3 different reward abstinence periods: 1 day, 1 week, or 1 month after final mating session. Male Sprague Dawley rats mated during 5 consecutive days (sexual experience or remained sexually naïve to serve as controls. Sexually experienced males displayed facilitation of initiation and performance of mating at each time point. Next, intracellular and membrane surface expression of N-methyl-D-aspartate (NMDA: NR1 subunit and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA: GluA1, GluA2 subunits receptors in the NAc was determined using a bis(sulfosuccinimidylsuberate (BS(3 protein cross-linking assay followed by Western Blot analysis. NR1 expression was increased at 1 day abstinence both at surface and intracellular, but decreased at surface at 1 week of abstinence. GluA2 was increased intracellularly at 1 week and increased at the surface after 1 month of abstinence. Finally, whole-cell patch clamp electrophysiological recordings determined reduced AMPA/NMDA ratio of synaptic currents in NAc shell neurons following stimulation of cortical afferents in sexually experienced males after all reward abstinence periods. Together, these data show that sexual experience causes long-term alterations in glutamate receptor expression and

  10. AMPA receptors commandeer an ancient cargo exporter for use as an auxiliary subunit for signaling.

    Directory of Open Access Journals (Sweden)

    Nadine Harmel

    Full Text Available Fast excitatory neurotransmission in the mammalian central nervous system is mainly mediated by ionotropic glutamate receptors of the AMPA subtype (AMPARs. AMPARs are protein complexes of the pore-lining α-subunits GluA1-4 and auxiliary β-subunits modulating their trafficking and gating. By a proteomic approach, two homologues of the cargo exporter cornichon, CNIH-2 and CNIH-3, have recently been identified as constituents of native AMPARs in mammalian brain. In heterologous reconstitution experiments, CNIH-2 promotes surface expression of GluAs and modulates their biophysical properties. However, its relevance in native AMPAR physiology remains controversial. Here, we have studied the role of CNIH-2 in GluA processing both in heterologous cells and primary rat neurons. Our data demonstrate that CNIH-2 serves an evolutionarily conserved role as a cargo exporter from the endoplasmic reticulum (ER. CNIH-2 cycles continuously between ER and Golgi complex to pick up cargo protein in the ER and then to mediate its preferential export in a coat protein complex (COP II dependent manner. Interaction with GluA subunits breaks with this ancestral role of CNIH-2 confined to the early secretory pathway. While still taking advantage of being exported preferentially from the ER, GluAs recruit CNIH-2 to the cell surface. Thus, mammalian AMPARs commandeer CNIH-2 for use as a bona fide auxiliary subunit that is able to modify receptor signaling.

  11. AMPA and NMDA glutamate receptors are found in both peptidergic and non-peptidergic primary afferent neurons in the rat

    OpenAIRE

    Willcockson, Helen; Valtschanoff, Juli

    2008-01-01

    Two distinct classes of nociceptive primary afferents, peptidergic and non-peptidergic, respond similarly to acute noxious stimulation; however the peptidergic afferents are more likely to play a role in inflammatory pain, while the non-peptidergic afferents may be more characteristically involved in neuropathic pain. Using multiple immunofluorescence, we determined the proportions of neurons in the rat L4 dorsal root ganglion (DRG) that co-express AMPA or NMDA glutamate receptors and markers...

  12. Calcyon is Necessary for Activity Dependent AMPA Receptor Internalization and LTD in CA1 Neurons of Hippocampus

    OpenAIRE

    Davidson, Heather Trantham; Xiao, Jiping; Dai, Rujuan; Bergson, Clare

    2009-01-01

    Calcyon is a single transmembrane endocytic protein that regulates clathrin assembly and clathrin mediated endocytosis in brain. Ultrastructural studies indicate that calcyon localizes to spines, but whether it regulates glutamate neurotransmission is not known. Here, we show that deletion of the calcyon gene in mice inhibits agonist stimulated endocytosis of AMPA receptors, without altering basal surface levels of the GluR1 or GluR2 subunits. Whole cell patch clamp studies of hippocampal neu...

  13. Role of TARP interaction in S-SCAM-mediated regulation of AMPA receptors.

    Science.gov (United States)

    Danielson, Eric; Metallo, Jacob; Lee, Sang H

    2012-01-01

    Scaffolding proteins are involved in the incorporation, anchoring, maintenance, and removal of AMPA receptors (AMPARs) at synapses, either through a direct interaction with AMPARs or via indirect association through auxiliary subunits of transmembrane AMPAR regulatory proteins (TARPs). Synaptic scaffolding molecule (S-SCAM) is a newly characterized member of the scaffolding proteins critical for the regulation and maintenance of AMPAR levels at synapses, and directly binds to TARPs through a PDZ interaction. However, the functional significance of S-SCAM-TARP interaction in the regulation of AMPARs has not been tested. Here we show that overexpression of the C-terminal peptide of TARP-γ2 fused to EGFP abolished the S-SCAM-mediated enhancement of surface GluA2 expression. Conversely, the deletion of the PDZ-5 domain of S-SCAM that binds TARPs greatly attenuated the S-SCAM-induced increase of surface GluA2 expression. In contrast, the deletion of the guanylate kinase domain of S-SCAM did not show a significant effect on the regulation of AMPARs. Together, these results suggest that S-SCAM is regulating AMPARs through TARPs. PMID:22878254

  14. Shisa6 traps AMPA receptors at postsynaptic sites and prevents their desensitization during synaptic activity.

    Science.gov (United States)

    Klaassen, Remco V; Stroeder, Jasper; Coussen, Françoise; Hafner, Anne-Sophie; Petersen, Jennifer D; Renancio, Cedric; Schmitz, Leanne J M; Normand, Elisabeth; Lodder, Johannes C; Rotaru, Diana C; Rao-Ruiz, Priyanka; Spijker, Sabine; Mansvelder, Huibert D; Choquet, Daniel; Smit, August B

    2016-03-02

    Trafficking and biophysical properties of AMPA receptors (AMPARs) in the brain depend on interactions with associated proteins. We identify Shisa6, a single transmembrane protein, as a stable and directly interacting bona fide AMPAR auxiliary subunit. Shisa6 is enriched at hippocampal postsynaptic membranes and co-localizes with AMPARs. The Shisa6 C-terminus harbours a PDZ domain ligand that binds to PSD-95, constraining mobility of AMPARs in the plasma membrane and confining them to postsynaptic densities. Shisa6 expressed in HEK293 cells alters GluA1- and GluA2-mediated currents by prolonging decay times and decreasing the extent of AMPAR desensitization, while slowing the rate of recovery from desensitization. Using gene deletion, we show that Shisa6 increases rise and decay times of hippocampal CA1 miniature excitatory postsynaptic currents (mEPSCs). Shisa6-containing AMPARs show prominent sustained currents, indicating protection from full desensitization. Accordingly, Shisa6 prevents synaptically trapped AMPARs from depression at high-frequency synaptic transmission.

  15. Phosphorylation of AMPA receptors is required for sensory deprivation-induced homeostatic synaptic plasticity.

    Science.gov (United States)

    Goel, Anubhuti; Xu, Linda W; Snyder, Kevin P; Song, Lihua; Goenaga-Vazquez, Yamila; Megill, Andrea; Takamiya, Kogo; Huganir, Richard L; Lee, Hey-Kyoung

    2011-01-01

    Sensory experience, and the lack thereof, can alter the function of excitatory synapses in the primary sensory cortices. Recent evidence suggests that changes in sensory experience can regulate the synaptic level of Ca(2+)-permeable AMPA receptors (CP-AMPARs). However, the molecular mechanisms underlying such a process have not been determined. We found that binocular visual deprivation, which is a well-established in vivo model to produce multiplicative synaptic scaling in visual cortex of juvenile rodents, is accompanied by an increase in the phosphorylation of AMPAR GluR1 (or GluA1) subunit at the serine 845 (S845) site and the appearance of CP-AMPARs at synapses. To address the role of GluR1-S845 in visual deprivation-induced homeostatic synaptic plasticity, we used mice lacking key phosphorylation sites on the GluR1 subunit. We found that mice specifically lacking the GluR1-S845 site (GluR1-S845A mutants), which is a substrate of cAMP-dependent kinase (PKA), show abnormal basal excitatory synaptic transmission and lack visual deprivation-induced homeostatic synaptic plasticity. We also found evidence that increasing GluR1-S845 phosphorylation alone is not sufficient to produce normal multiplicative synaptic scaling. Our study provides concrete evidence that a GluR1 dependent mechanism, especially S845 phosphorylation, is a necessary pre-requisite step for in vivo homeostatic synaptic plasticity.

  16. Phosphorylation of AMPA receptors is required for sensory deprivation-induced homeostatic synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Anubhuti Goel

    Full Text Available Sensory experience, and the lack thereof, can alter the function of excitatory synapses in the primary sensory cortices. Recent evidence suggests that changes in sensory experience can regulate the synaptic level of Ca(2+-permeable AMPA receptors (CP-AMPARs. However, the molecular mechanisms underlying such a process have not been determined. We found that binocular visual deprivation, which is a well-established in vivo model to produce multiplicative synaptic scaling in visual cortex of juvenile rodents, is accompanied by an increase in the phosphorylation of AMPAR GluR1 (or GluA1 subunit at the serine 845 (S845 site and the appearance of CP-AMPARs at synapses. To address the role of GluR1-S845 in visual deprivation-induced homeostatic synaptic plasticity, we used mice lacking key phosphorylation sites on the GluR1 subunit. We found that mice specifically lacking the GluR1-S845 site (GluR1-S845A mutants, which is a substrate of cAMP-dependent kinase (PKA, show abnormal basal excitatory synaptic transmission and lack visual deprivation-induced homeostatic synaptic plasticity. We also found evidence that increasing GluR1-S845 phosphorylation alone is not sufficient to produce normal multiplicative synaptic scaling. Our study provides concrete evidence that a GluR1 dependent mechanism, especially S845 phosphorylation, is a necessary pre-requisite step for in vivo homeostatic synaptic plasticity.

  17. MAGI-1 modulates AMPA receptor synaptic localization and behavioral plasticity in response to prior experience.

    Directory of Open Access Journals (Sweden)

    Lesley Emtage

    Full Text Available It is well established that the efficacy of synaptic connections can be rapidly modified by neural activity, yet how the environment and prior experience modulate such synaptic and behavioral plasticity is only beginning to be understood. Here we show in C. elegans that the broadly conserved scaffolding molecule MAGI-1 is required for the plasticity observed in a glutamatergic circuit. This mechanosensory circuit mediates reversals in locomotion in response to touch stimulation, and the AMPA-type receptor (AMPAR subunits GLR-1 and GLR-2, which are required for reversal behavior, are localized to ventral cord synapses in this circuit. We find that animals modulate GLR-1 and GLR-2 localization in response to prior mechanosensory stimulation; a specific isoform of MAGI-1 (MAGI-1L is critical for this modulation. We show that MAGI-1L interacts with AMPARs through the intracellular domain of the GLR-2 subunit, which is required for the modulation of AMPAR synaptic localization by mechanical stimulation. In addition, mutations that prevent the ubiquitination of GLR-1 prevent the decrease in AMPAR localization observed in previously stimulated magi-1 mutants. Finally, we find that previously-stimulated animals later habituate to subsequent mechanostimulation more rapidly compared to animals initially reared without mechanical stimulation; MAGI-1L, GLR-1, and GLR-2 are required for this change in habituation kinetics. Our findings demonstrate that prior experience can cause long-term alterations in both behavioral plasticity and AMPAR localization at synapses in an intact animal, and indicate a new, direct role for MAGI/S-SCAM proteins in modulating AMPAR localization and function in the wake of variable sensory experience.

  18. The ubiquitin ligase RPM-1 and the p38 MAPK PMK-3 regulate AMPA receptor trafficking.

    Directory of Open Access Journals (Sweden)

    Eun Chan Park

    Full Text Available Ubiquitination occurs at synapses, yet its role remains unclear. Previous studies demonstrated that the RPM-1 ubiquitin ligase organizes presynaptic boutons at neuromuscular junctions in C. elegans motorneurons. Here we find that RPM-1 has a novel postsynaptic role in interneurons, where it regulates the trafficking of the AMPA-type glutamate receptor GLR-1 from synapses into endosomes. Mutations in rpm-1 cause the aberrant accumulation of GLR-1 in neurites. Moreover, rpm-1 mutations enhance the endosomal accumulation of GLR-1 observed in mutants for lin-10, a Mint2 ortholog that promotes GLR-1 recycling from Syntaxin-13 containing endosomes. As in motorneurons, RPM-1 negatively regulates the pmk-3/p38 MAPK pathway in interneurons by repressing the protein levels of the MAPKKK DLK-1. This regulation of PMK-3 signaling is critical for RPM-1 function with respect to GLR-1 trafficking, as pmk-3 mutations suppress both lin-10 and rpm-1 mutations. Positive or negative changes in endocytosis mimic the effects of rpm-1 or pmk-3 mutations, respectively, on GLR-1 trafficking. Specifically, RAB-5(GDP, an inactive mutant of RAB-5 that reduces endocytosis, mimics the effect of pmk-3 mutations when introduced into wild-type animals, and occludes the effect of pmk-3 mutations when introduced into pmk-3 mutants. By contrast, RAB-5(GTP, which increases endocytosis, suppresses the effect of pmk-3 mutations, mimics the effect of rpm-1 mutations, and occludes the effect of rpm-1 mutations. Our findings indicate a novel specialized role for RPM-1 and PMK-3/p38 MAPK in regulating the endosomal trafficking of AMPARs at central synapses.

  19. Drug-driven AMPA receptor redistribution mimicked by selective dopamine neuron stimulation.

    Directory of Open Access Journals (Sweden)

    Matthew T C Brown

    Full Text Available BACKGROUND: Addictive drugs have in common that they cause surges in dopamine (DA concentration in the mesolimbic reward system and elicit synaptic plasticity in DA neurons of the ventral tegmental area (VTA. Cocaine for example drives insertion of GluA2-lacking AMPA receptors (AMPARs at glutamatergic synapes in DA neurons. However it remains elusive which molecular target of cocaine drives such AMPAR redistribution and whether other addictive drugs (morphine and nicotine cause similar changes through their effects on the mesolimbic DA system. METHODOLOGY/PRINCIPAL FINDINGS: We used in vitro electrophysiological techniques in wild-type and transgenic mice to observe the modulation of excitatory inputs onto DA neurons by addictive drugs. To observe AMPAR redistribution, post-embedding immunohistochemistry for GluA2 AMPAR subunit was combined with electron microscopy. We also used a double-floxed AAV virus expressing channelrhodopsin together with a DAT Cre mouse line to selectively express ChR2 in VTA DA neurons. We find that in mice where the effect of cocaine on the dopamine transporter (DAT is specifically blocked, AMPAR redistribution was absent following administration of the drug. Furthermore, addictive drugs known to increase dopamine levels cause a similar AMPAR redistribution. Finally, activating DA VTA neurons optogenetically is sufficient to drive insertion of GluA2-lacking AMPARs, mimicking the changes observed after a single injection of morphine, nicotine or cocaine. CONCLUSIONS/SIGNIFICANCE: We propose the mesolimbic dopamine system as a point of convergence at which addictive drugs can alter neural circuits. We also show that direct activation of DA neurons is sufficient to drive AMPAR redistribution, which may be a mechanism associated with early steps of non-substance related addictions.

  20. Intracellular Ca²⁺ and not the extracellular matrix determines surface dynamics of AMPA-type glutamate receptors on aspiny neurons.

    Science.gov (United States)

    Klueva, Julia; Gundelfinger, Eckart D; Frischknecht, R Renato; Heine, Martin

    2014-10-19

    The perisynaptic extracellular matrix (ECM) contributes to the control of the lateral mobility of AMPA-type glutamate receptors (AMPARs) at spine synapses of principal hippocampal neurons. Here, we have studied the effect of the ECM on the lateral mobility of AMPARs at shaft synapses of aspiny interneurons. Single particle tracking experiments revealed that the removal of the hyaluronan-based ECM with hyaluronidase does not affect lateral receptor mobility on the timescale of seconds. Similarly, cross-linking with specific antibodies against the extracellular domain of the GluA1 receptor subunit, which affects lateral receptor mobility on spiny neurons, does not influence receptor mobility on aspiny neurons. AMPARs on aspiny interneurons are characterized by strong inward rectification indicating a significant fraction of Ca(2+)-permeable receptors. Therefore, we tested whether Ca(2+) controls AMPAR mobility in these neurons. Application of the membrane-permeable Ca(2+) chelator BAPTA-AM significantly increased the lateral mobility of GluA1-containing synaptic and extrasynaptic receptors. These data indicate that the perisynaptic ECM affects the lateral mobility differently on spiny and aspiny neurons. Although ECM structures on interneurons appear much more prominent, their influence on AMPAR mobility seems to be negligible at short timescales. PMID:25225098

  1. ANTIDEPRESSANT-LIKE EFFECTS OF LOW KETAMINE DOSE IS ASSOCIATED WITH INCREASED HIPPOCAMPAL AMPA/NMDA RECEPTOR DENSITY RATIO IN FEMALE WISTAR-KYOTO RATS

    Science.gov (United States)

    Tizabi, Yousef; Bhatti, Babur H; Manaye, Kebreten F; Das, Jharna R; Akinfiresoye, Luli

    2012-01-01

    Preclinical as well as limited clinical studies indicate that ketamine, a non-competitive glutamate NMDA receptor antagonist, may exert a quick and prolonged antidepressant effect. It has been postulated that ketamine action is due to inhibition of NMDA and stimulation of AMPA receptors. Here, we sought to determine whether ketamine would exert antidepressant effects in Wistar-Kyoto (WKY) rats, a putative animal model of depression and whether this effect would be associated with changes in AMPA/NMDA receptor densities in the hippocampus. Adult female WKY rats and their control Wistar rats were subjected to acute and chronic ketamine doses and their locomotor activity (LMA) and immobility in the forced swim test (FST) were evaluated. Hippocampal AMPA and NMDA receptor densities were also measured following a chronic ketamine dose. Ketamine, both acutely (0.5–5.0 mg/kg ip) and chronically (0.5–2.5 mg/kg daily for 10 days) resulted in a dose-dependent and prolonged decrease in immobility in the FST in WKY rats only, suggesting an antidepressant-like effect in this model. Chronic treatment with an effective dose of ketamine also resulted in an increase in AMPA/NMDA receptor density ratio in the hippocampus of WKY rats. LMA was not affected by any ketamine treatment in either strain. These results indicate a rapid and lasting antidepressant-like effect of a low ketamine dose in WKY rat model of depression. Moreover, the increase in AMPA/NMDA receptor density in hippocampus could be a contributory factor to behavioral effects of ketamine. These findings suggest potential therapeutic benefit in simultaneous reduction of central NMDA and elevation of AMPA receptor function in treatment of depression. PMID:22521815

  2. Hypothermia rescues hippocampal CA1 neurons and attenuates down-regulation of the AMPA receptor GluR2 subunit after forebrain ischemia

    OpenAIRE

    Colbourne, Frederick; Grooms, Sonja Y.; Zukin, R. Suzanne; Buchan, Alastair M.; Bennett, Michael V. L.

    2003-01-01

    Brief forebrain ischemia in rodents induces selective and delayed neuronal death, particularly of hippocampal CA1 pyramidal neurons. Neuronal death is preceded by down-regulation specific to CA1 of GluR2, the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit that limits Ca2+ influx. This alteration is hypothesized to cause neurodegeneration by permitting a lethal influx of Ca2+ and/or Zn2+ through newly formed GluR2-lacking AMPA receptors. Two days of mild hypotherm...

  3. Deficiency of Lipoprotein Lipase in Neurons Decreases AMPA Receptor Phosphorylation and Leads to Neurobehavioral Abnormalities in Mice.

    Directory of Open Access Journals (Sweden)

    Tian Yu

    Full Text Available Alterations in lipid metabolism have been found in several neurodegenerative disorders, including Alzheimer's disease. Lipoprotein lipase (LPL hydrolyzes triacylglycerides in lipoproteins and regulates lipid metabolism in multiple organs and tissues, including the central nervous system (CNS. Though many brain regions express LPL, the functions of this lipase in the CNS remain largely unknown. We developed mice with neuron-specific LPL deficiency that became obese on chow by 16 wks in homozygous mutant mice (NEXLPL-/- and 10 mo in heterozygous mice (NEXLPL+/-. In the present study, we show that 21 mo NEXLPL+/- mice display substantial cognitive function decline including poorer learning and memory, and increased anxiety with no difference in general motor activities and exploratory behavior. These neurobehavioral abnormalities are associated with a reduction in the 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl propanoic acid (AMPA receptor subunit GluA1 and its phosphorylation, without any alterations in amyloid β accumulation. Importantly, a marked deficit in omega-3 and omega-6 polyunsaturated fatty acids (PUFA in the hippocampus precedes the development of the neurobehavioral phenotype of NEXLPL+/- mice. And, a diet supplemented with n-3 PUFA can improve the learning and memory of NEXLPL+/- mice at both 10 mo and 21 mo of age. We interpret these findings to indicate that LPL regulates the availability of PUFA in the CNS and, this in turn, impacts the strength of synaptic plasticity in the brain of aging mice through the modification of AMPA receptor and its phosphorylation.

  4. Role of AMPA and GluR5 kainate receptors in the development and expression of amygdala kindling in the mouse.

    Science.gov (United States)

    Rogawski, M A; Kurzman, P S; Yamaguchi, S I; Li, H

    2001-01-01

    The role of AMPA and GluR5-containing kainate receptors in the development and expression of amygdala kindling was examined using the selective 2,3-benzodiazepine AMPA receptor antagonist GYKI 52466 [(1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2, 3-benzodiazepine] and the decahydroisoquinoline mixed AMPA receptor and GluR5 kainate receptor antagonist LY293558 {(3S,4aR,6R, 8aR)-6-[2-(1(2)H-tetrazole-5-yl)ethyl]decahydroisoquinoline- 3-carboxy lic acid)}. Administration of GYKI 52466 (5-40 mg/kg, intraperitoneally) and LY293558 (10-40 mg/kg, intraperitoneally) prior to daily kindling stimulation in mice produced a dose-dependent suppression of the rate of development of behavioral kindled seizure activity and reduced the duration of the stimulation-induced electrographic afterdischarge. In drug-free stimulation sessions after the initial drug-treatment sessions, there was an acceleration in the rate of kindling development compared with the rate during the preceding drug-administration period; the "rebound" rate was also greater than the kindling rate in saline-treated control animals. In fully kindled animals, both GYKI 52466 and LY293558 produced a dose-dependent suppression of evoked seizures (ED(50), 19.3 and 16.7 mg/kg, respectively). Although AMPA receptors appear to be critical to the expression of kindled seizures, since kindling development progressed despite the suppression of behavioral seizure activity, AMPA receptors are less important to the kindling process. LY293558 was modestly less effective at suppressing behavioral seizures during kindling and was not superior to GYKI 52466 in retarding the overall extent of kindling development, indicating that GluR5 kainate receptors do not contribute to epileptogenesis in this model.

  5. Phenobarbital but not diazepam reduces AMPA/Kainate receptor mediated currents and exerts opposite actions on initial seizures in the neonatal rat hippocampus

    Directory of Open Access Journals (Sweden)

    Romain eNardou

    2011-07-01

    Full Text Available Diazepam (DZP and phenobarbital (PB are extensively used as first and second line drugs to treat acute seizures in neonates and their actions are thought to be mediated by increasing the actions of GABAergic signals. Yet, their efficacy is variable with occasional failure or even aggravation of recurrent seizures questioning whether other mechanisms are not involved in their actions. We have now compared the effects of DZP and PB on ictal-like events (ILEs in an in vitro model of mirror focus (MF. Using the three-compartment chamber with the two immature hippocampi and their commissural fibers placed in 3 different compartments, kainate was applied to one hippocampus and PB or DZP to the contralateral one, either after one ILE or after many recurrent ILEs that produce an epileptogenic MF. We report that in contrast to PB, DZP aggravated propagating ILEs from the start and did not prevent the formation of MF. PB reduced and DZP increased the network driven Giant Depolarising Potentials suggesting that PB may exert additional actions that are not mediated by GABA signalling. In keeping with this, PB but not DZP reduced field potentials recorded in the presence of GABA and NMDA receptor antagonists. These effects are mediated by a direct action on AMPA/Kainate receptors since PB: i reduced AMPA/Kainate receptor mediated currents induced by focal applications of glutamate ; ii reduced the amplitude and the frequency of AMPA but not NMDA receptor mediated miniature EPSCs; iii augmented the number of AMPA receptor mediated EPSCs failures evoked by minimal stimulation. These effects persisted in MF. Therefore, PB exerts its anticonvulsive actions partly by reducing AMPA/Kainate receptors mediated EPSCs in addition to the pro-GABA effects. We suggest that PB may have advantage over DZP in the treatment of initial neonatal seizures since the additional reduction of glutamate receptors mediated signals may reduce the severity of neonatal seizures.

  6. Functional Insights from Glutamate Receptor Ion Channel Structures

    Science.gov (United States)

    Kumar, Janesh; Mayer, Mark L.

    2014-01-01

    X-ray crystal structures for the soluble amino terminal and ligand binding domains of glutamate receptor ion channels, combined with a 3.6 Å resolution structure of the full length AMPA receptor GluA2 homotetramer, provide unique insights into the mechanisms of iGluR assembly and function. Increasingly sophisticated biochemical, computational and electrophysiological experiments are beginning to reveal the mechanism of action of partial agonists, and yield new models for the mechanism of action of allosteric modulators. Newly identified NMDA receptor ligands acting at novel sites offer hope for development of subtype selective modulators. Many issues remain unsolved, including the role of the ATD in AMPA receptor signaling, and the mechanisms by which auxiliary proteins regulate receptor activity. The structural basis for ion permeation and ion channel block also remain areas of uncertainty, and despite substantial progress, molecular dynamics simulations have yet to reveal how binding of glutamate opens the ion channel pore. PMID:22974439

  7. Importance of GluA1 subunit-containing AMPA glutamate receptors for morphine state-dependency.

    Directory of Open Access Journals (Sweden)

    Teemu Aitta-aho

    Full Text Available In state-dependency, information retrieval is most efficient when the animal is in the same state as it was during the information acquisition. State-dependency has been implicated in a variety of learning and memory processes, but its mechanisms remain to be resolved. Here, mice deficient in AMPA-type glutamate receptor GluA1 subunits were first conditioned to morphine (10 or 20 mg/kg s.c. during eight sessions over four days using an unbiased procedure, followed by testing for conditioned place preference at morphine states that were the same as or different from the one the mice were conditioned to. In GluA1 wildtype littermate mice the same-state morphine dose produced the greatest expression of place preference, while in the knockout mice no place preference was then detected. Both wildtype and knockout mice expressed moderate morphine-induced place preference when not at the morphine state (saline treatment at the test; in this case, place preference was weaker than that in the same-state test in wildtype mice. No correlation between place preference scores and locomotor activity during testing was found. Additionally, as compared to the controls, the knockout mice showed unchanged sensitization to morphine, morphine drug discrimination and brain regional μ-opioid receptor signal transduction at the G-protein level. However, the knockout mice failed to show increased AMPA/NMDA receptor current ratios in the ventral tegmental area dopamine neurons of midbrain slices after a single injection of morphine (10 mg/kg, s.c., sliced prepared 24 h afterwards, in contrast to the wildtype mice. The results indicate impaired drug-induced state-dependency in GluA1 knockout mice, correlating with impaired opioid-induced glutamate receptor neuroplasticity.

  8. Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats.

    Science.gov (United States)

    Koike, Hiroyuki; Chaki, Shigeyuki

    2014-09-01

    Ketamine, a non-competitive N-methyl-d-aspartate receptor antagonist, and group II metabotropic glutamate (mGlu2/3) receptor antagonists produce antidepressant effects in animal models of depression, which last for at least 24h, through the transient increase in glutamate release, leading to activation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor. Both ketamine and an mGlu2/3 receptor antagonist reportedly increase the expression of GluR1, an AMPA receptor subunit, within 24h, which may account for the sustained enhancement of excitatory synaptic transmission following ketamine administration. However, whether the sustained increase in AMPA receptor-mediated synaptic transmission is associated with the antidepressant effects of ketamine and mGlu2/3 receptor antagonists has not yet been investigated. In the present study, to address this question, we tested whether AMPA receptor stimulation at 24h after a single injection of ketamine or an mGlu2/3 receptor antagonist, (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl)propanoic acid (LY341495) was necessary for the antidepressant effect of these compounds using a forced swim test in rats. A single injection of ketamine or LY341495 at 24h before the test significantly decreased the immobility time. An AMPA receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), administered 30min prior to the test significantly and dose-dependently reversed the antidepressant effects of ketamine and LY341495, while NBQX itself had no effect on the immobility time. Our findings suggest that AMPA receptor stimulation at 24h after a single injection of ketamine or LY341495 is required to produce the anti-immobility effects of these compounds. Moreover, the present results provide additional evidence that an mGlu2/3 receptor antagonist may share some of neural mechanisms with ketamine to exert antidepressant effects.

  9. A new phenylalanine derivative acts as an antagonist at the AMPA receptor GluA2 and introduces partial domain closure

    DEFF Research Database (Denmark)

    Szymanska, Ewa; Frydenvang, Karla; Contreras-Sanz, Alberto;

    2011-01-01

    In order to map out molecular determinants for competitive blockade of AMPA receptor subtypes, a series of 2-carboxyethylphenylalanine derivatives has been synthesized and pharmacologically characterized in vitro. One compound in this series, (RS)-3h, showed micromolar affinity for GluA1(o) and G...

  10. Anti-AMPA-Receptor Encephalitis Presenting as a Rapid-Cycling Bipolar Disorder in a Young Woman with Turner Syndrome.

    Science.gov (United States)

    Quaranta, Giuseppe; Maremmani, Angelo Giovanni Icro; Perugi, Giulio

    2015-01-01

    Background. Autoimmune encephalitis is a disorder characterised by the subacute onset of seizures, short-term memory loss, and psychiatric and behavioural symptoms. Initially, it was recognised as a paraneoplastic disorder, but recently a subgroup of patients without systemic cancer was identified. Case Description. We describe a 20-year-old woman with Turner syndrome presenting with a treatment-resistant rapid cycling bipolar disorder with cognitive impairment. She was diagnosed with anti-AMPA-receptor encephalitis. She showed marked improvement after starting memantine and valproic acid. Conclusion. This case description emphasises the importance of timely recognition of autoimmune limbic encephalitis in patients with psychiatric manifestations and a possible predisposition to autoimmune conditions, in order to rule out malignancy and to quickly initiate treatment. PMID:26495149

  11. Anti-AMPA-Receptor Encephalitis Presenting as a Rapid-Cycling Bipolar Disorder in a Young Woman with Turner Syndrome

    Directory of Open Access Journals (Sweden)

    Giuseppe Quaranta

    2015-01-01

    Full Text Available Background. Autoimmune encephalitis is a disorder characterised by the subacute onset of seizures, short-term memory loss, and psychiatric and behavioural symptoms. Initially, it was recognised as a paraneoplastic disorder, but recently a subgroup of patients without systemic cancer was identified. Case Description. We describe a 20-year-old woman with Turner syndrome presenting with a treatment-resistant rapid cycling bipolar disorder with cognitive impairment. She was diagnosed with anti-AMPA-receptor encephalitis. She showed marked improvement after starting memantine and valproic acid. Conclusion. This case description emphasises the importance of timely recognition of autoimmune limbic encephalitis in patients with psychiatric manifestations and a possible predisposition to autoimmune conditions, in order to rule out malignancy and to quickly initiate treatment.

  12. Anti-AMPA-Receptor Encephalitis Presenting as a Rapid-Cycling Bipolar Disorder in a Young Woman with Turner Syndrome

    Science.gov (United States)

    Quaranta, Giuseppe; Maremmani, Angelo Giovanni Icro; Perugi, Giulio

    2015-01-01

    Background. Autoimmune encephalitis is a disorder characterised by the subacute onset of seizures, short-term memory loss, and psychiatric and behavioural symptoms. Initially, it was recognised as a paraneoplastic disorder, but recently a subgroup of patients without systemic cancer was identified. Case Description. We describe a 20-year-old woman with Turner syndrome presenting with a treatment-resistant rapid cycling bipolar disorder with cognitive impairment. She was diagnosed with anti-AMPA-receptor encephalitis. She showed marked improvement after starting memantine and valproic acid. Conclusion. This case description emphasises the importance of timely recognition of autoimmune limbic encephalitis in patients with psychiatric manifestations and a possible predisposition to autoimmune conditions, in order to rule out malignancy and to quickly initiate treatment. PMID:26495149

  13. Domain architecture of a calcium-permeable AMPA receptor in a ligand-free conformation

    Directory of Open Access Journals (Sweden)

    Charles R. Midgett

    2012-01-01

    Full Text Available Ligand-gated ion channels couple the free energy of agonist binding to the gating of selective transmembrane ion pores, permitting cells to regulate ion flux in response to external chemical stimuli. However, the stereochemical mechanisms responsible for this coupling remain obscure. In the case of the ionotropic glutamate receptors (iGluRs, the modular nature of receptor subunits has facilitated structural analysis of the N-terminal domain (NTD, and of multiple conformations of the ligand-binding domain (LBD. Recently, the crystallographic structure of an antagonist-bound form of the receptor was determined. However, disulfide trapping of this conformation blocks channel opening, suggesting that channel activation involves additional quaternary packing arrangements. To explore the conformational space available to iGluR channels, we report here a second, clearly distinct domain architecture of homotetrameric, calcium-permeable AMPARs, determined by single-particle electron microscopy of untagged and fluorescently tagged constructs in a ligand-free state. It reveals a novel packing of NTD dimers, and a separation of LBD dimers across a central vestibule. In this arrangement, which reconciles diverse functional observations, agonist-induced cleft closure across LBD dimers can be converted into a twisting motion that provides a basis for receptor activation.

  14. Resolution, configurational assignment, and enantiopharmacology of 2-amino-3-[3-hydroxy-5-(2-methyl-2H- tetrazol-5-yl)isoxazol-4-yl]propionic acid, a potent GluR3- and GluR4-preferring AMPA receptor agonist

    DEFF Research Database (Denmark)

    Vogensen, S B; Jensen, H S; Stensbøl, T B;

    2000-01-01

    We have previously shown that (RS)-2-amino-3-[3-hydroxy-5-(2-methyl-2H-tetrazol-5-yl)isoxazol -4-yl] propionic acid (2-Me-Tet-AMPA) is a selective agonist at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors, markedly more potent than AMPA itself, whereas the isomeric...

  15. The Prefrontal Dectin-1/AMPA Receptor Signaling Pathway Mediates The Robust and Prolonged Antidepressant Effect of Proteo-β-Glucan from Maitake

    Science.gov (United States)

    Bao, Hongkun; Ran, Pengzhan; Zhu, Ming; Sun, Lijuan; Li, Bai; Hou, Yangyang; Nie, Jun; Shan, Liping; Li, Hongliang; Zheng, Shangyong; Xu, Xiufeng; Xiao, Chunjie; Du, Jing

    2016-01-01

    Proteo-β-glucan from Maitake (PGM) is a strong immune regulator, and its receptor is called Dectin-1. Cumulative evidence suggests that AMPA receptors are important for the treatment of depression. Here, we report that PGM treatment leads to a significant antidepressant effect in the tail suspension test and forced swim test after sixty minutes of treatment in mice. After five consecutive days of PGM treatment, this antidepressant effect remained. PGM treatment did not show a hyperactive effect in the open field test. PGM significantly enhanced the expression of its receptor Dectin-1, as well as p-GluA1(S845) and GluA1, but not GluA2 or GluA3 in the prefrontal cortex (PFC) after five days of treatment. The Dectin-1 inhibitor Laminarin was able to block the antidepressant effect of PGM. At the synapses of PFC, PGM treatment significantly up-regulated the p-GluA1(S845), GluA1, GluA2, and GluA3 levels. Moreover, PGM’s antidepressant effects and the increase of p-GluA1(S845)/GluA1 lasted for 3 days after stopping treatment. The AMPA-specific antagonist GYKI 52466 was able to block the antidepressant effect of PGM. This study identified PGM as a novel antidepressant with clinical potential and a new antidepressant mechanism for regulating prefrontal Dectin-1/AMPA receptor signalling. PMID:27329257

  16. Regulated RalBP1 binding to RalA and PSD-95 controls AMPA receptor endocytosis and LTD.

    Directory of Open Access Journals (Sweden)

    Kihoon Han

    2009-09-01

    Full Text Available Long-term depression (LTD is a long-lasting activity-dependent decrease in synaptic strength. NMDA receptor (NMDAR-dependent LTD, an extensively studied form of LTD, involves the endocytosis of AMPA receptors (AMPARs via protein dephosphorylation, but the underlying mechanism has remained unclear. We show here that a regulated interaction of the endocytic adaptor RalBP1 with two synaptic proteins, the small GTPase RalA and the postsynaptic scaffolding protein PSD-95, controls NMDAR-dependent AMPAR endocytosis during LTD. NMDAR activation stimulates RalA, which binds and translocates widespread RalBP1 to synapses. In addition, NMDAR activation dephosphorylates RalBP1, promoting the interaction of RalBP1 with PSD-95. These two regulated interactions are required for NMDAR-dependent AMPAR endocytosis and LTD and are sufficient to induce AMPAR endocytosis in the absence of NMDAR activation. RalA in the basal state, however, maintains surface AMPARs. We propose that NMDAR activation brings RalBP1 close to PSD-95 to promote the interaction of RalBP1-associated endocytic proteins with PSD-95-associated AMPARs. This suggests that scaffolding proteins at specialized cellular junctions can switch their function from maintenance to endocytosis of interacting membrane proteins in a regulated manner.

  17. S-SCAM/MAGI-2 is an essential synaptic scaffolding molecule for the GluA2-containing maintenance pool of AMPA receptors

    OpenAIRE

    Danielson, Eric; Zhang, Nanyan; Metallo, Jacob; Kaleka, Kanwardeep; Shin, Seung Min; Gerges, Nashaat; Lee, Sang H.

    2012-01-01

    Synaptic plasticity, the cellular basis of learning and memory, involves the dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses. One of the remaining key unanswered aspects of AMPAR trafficking is the mechanism by which synaptic strength is preserved in spite of protein turnover. In particular, the identity of AMPAR scaffolding molecule(s) involved in the maintenance of GluA2-containing AMPARs is completely unknown. Here we report that Synaptic scaffolding molecule (S-SCA...

  18. Caloric Restriction Eliminates the Aging-related Declines of NMDA and AMPA Receptor Subunits in the Rat Hippocampus and Induces Homeostasis

    OpenAIRE

    Shi, Lei; Adams, Michelle M.; Linville, M. Constance; Newton, Isabel G.; Forbes, M. Elizabeth; Long, Ashley; Riddle, David R.; Brunso-Bechtold, Judy K.

    2007-01-01

    Caloric restriction (CR) extends lifespan and ameliorates the aging-related decline in hippocampal-dependent cognitive function. In the present study, we compared subunit levels of NMDA and AMPA types of the glutamate receptor and quantified total synapses and multiple spine bouton (MSB) synapses in hippocampal CA1 from young (10 months), middle-aged (18 months), and old (29 months) Fischer 344 x Brown Norway rats that were ad libitum (AL) fed or caloric restricted (CR) from 4 months of age. ...

  19. Post-transcriptional mechanisms of regulation of AMPA receptors : regulation of GluA1 expression by the contactin associated protein 1

    OpenAIRE

    Fernandes, Dominique Moreira

    2011-01-01

    No sistema nervoso central, a maior parte da neurotransmissão excitatória é mediada por receptores de glutamato do tipo AMPA que possuem papéis fundamentais na plasticidade sináptica, o fenómeno celular na base de processos de aprendizagem e memória. Modificações no tráfego destes receptores e na sua inserção ao nível das sinapses, bem como na estabilidade do RNA mensageiro das subunidades dos receptores ou no seu decaimento, são cruciais para induzir alterações de longo prazo ...

  20. Dynamic Regulation of N-Methyl-d-aspartate (NMDA) and α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors by Posttranslational Modifications.

    Science.gov (United States)

    Lussier, Marc P; Sanz-Clemente, Antonio; Roche, Katherine W

    2015-11-27

    Many molecular mechanisms underlie the changes in synaptic glutamate receptor content that are required by neuronal networks to generate cellular correlates of learning and memory. During the last decade, posttranslational modifications have emerged as critical regulators of synaptic transmission and plasticity. Notably, phosphorylation, ubiquitination, and palmitoylation control the stability, trafficking, and synaptic expression of glutamate receptors in the central nervous system. In the current review, we will summarize some of the progress made by the neuroscience community regarding our understanding of phosphorylation, ubiquitination, and palmitoylation of the NMDA and AMPA subtypes of glutamate receptors. PMID:26453298

  1. Activation of AMPA receptor promotes TNF-α release via the ROS-cSrc-NFκB signaling cascade in RAW264.7 macrophages

    International Nuclear Information System (INIS)

    The relationship between glutamate signaling and inflammation has not been well defined. This study aimed to investigate the role of AMPA receptor (AMPAR) in the expression and release of tumor necrosis factor-alpha (TNF-α) from macrophages and the underlying mechanisms. A series of approaches, including confocal microscopy, immunofluorescency, flow cytometry, ELISA and Western blotting, were used to estimate the expression of AMPAR and downstream signaling molecules, TNF-α release and reactive oxygen species (ROS) generation in the macrophage-like RAW264.7 cells. The results demonstrated that AMPAR was expressed in RAW264.7 cells. AMPA significantly enhanced TNF-α release from RAW264.7 cells, and this effect was abolished by CNQX (AMPAR antagonist). AMPA also induced elevation of ROS production, phosphorylation of c-Src and activation of nuclear factor (NF)-κB in RAW264.7 cells. Blocking c-Src by PP2, scavenging ROS by glutathione (GSH) or inhibiting NF-κB activation by pyrrolidine dithiocarbamate (PDTC) decreased TNF-α production from RAW264.7 cells. We concluded that AMPA promotes TNF-α release in RAW264.7 macrophages likely through the following signaling cascade: AMPAR activation → ROS generation → c-Src phosphorylation → NF-κB activation → TNF-α elevation. The study suggests that AMPAR may participate in macrophage activation and inflammation. - Highlights: • AMPAR is expressed in RAW264.7 macrophages and is upregulated by AMPA stimulation. • Activation of AMPAR stimulates TNF-α release in macrophages through the ROS-cSrc-NFκB signaling cascade. • Macrophage AMPAR signaling may play an important role in inflammation

  2. Activation of AMPA receptor promotes TNF-α release via the ROS-cSrc-NFκB signaling cascade in RAW264.7 macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiu-Li [Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing (China); Ding, Fan [Office of Scientific R& D, Tsinghua University, Beijing (China); Li, Hui; Tan, Xiao-Qiu [Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing (China); Liu, Xiao [Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing (China); Cao, Ji-Min, E-mail: caojimin@126.com [Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing (China); Gao, Xue, E-mail: longlongnose@163.com [Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing (China)

    2015-05-29

    The relationship between glutamate signaling and inflammation has not been well defined. This study aimed to investigate the role of AMPA receptor (AMPAR) in the expression and release of tumor necrosis factor-alpha (TNF-α) from macrophages and the underlying mechanisms. A series of approaches, including confocal microscopy, immunofluorescency, flow cytometry, ELISA and Western blotting, were used to estimate the expression of AMPAR and downstream signaling molecules, TNF-α release and reactive oxygen species (ROS) generation in the macrophage-like RAW264.7 cells. The results demonstrated that AMPAR was expressed in RAW264.7 cells. AMPA significantly enhanced TNF-α release from RAW264.7 cells, and this effect was abolished by CNQX (AMPAR antagonist). AMPA also induced elevation of ROS production, phosphorylation of c-Src and activation of nuclear factor (NF)-κB in RAW264.7 cells. Blocking c-Src by PP2, scavenging ROS by glutathione (GSH) or inhibiting NF-κB activation by pyrrolidine dithiocarbamate (PDTC) decreased TNF-α production from RAW264.7 cells. We concluded that AMPA promotes TNF-α release in RAW264.7 macrophages likely through the following signaling cascade: AMPAR activation → ROS generation → c-Src phosphorylation → NF-κB activation → TNF-α elevation. The study suggests that AMPAR may participate in macrophage activation and inflammation. - Highlights: • AMPAR is expressed in RAW264.7 macrophages and is upregulated by AMPA stimulation. • Activation of AMPAR stimulates TNF-α release in macrophages through the ROS-cSrc-NFκB signaling cascade. • Macrophage AMPAR signaling may play an important role in inflammation.

  3. Mutations in ionotropic AMPA receptor 3 alter channel properties and are associated with moderate cognitive impairment in humans.

    Science.gov (United States)

    Wu, Ye; Arai, Amy C; Rumbaugh, Gavin; Srivastava, Anand K; Turner, Gillian; Hayashi, Takashi; Suzuki, Erika; Jiang, Yuwu; Zhang, Lilei; Rodriguez, Jayson; Boyle, Jackie; Tarpey, Patrick; Raymond, F Lucy; Nevelsteen, Joke; Froyen, Guy; Stratton, Mike; Futreal, Andy; Gecz, Jozef; Stevenson, Roger; Schwartz, Charles E; Valle, David; Huganir, Richard L; Wang, Tao

    2007-11-13

    Ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (iGluRs) mediate the majority of excitatory synaptic transmission in the CNS and are essential for the induction and maintenance of long-term potentiation and long-term depression, two cellular models of learning and memory. We identified a genomic deletion (0.4 Mb) involving the entire GRIA3 (encoding iGluR3) by using an X-array comparative genomic hybridization (CGH) and four missense variants (G833R, M706T, R631S, and R450Q) in functional domains of iGluR3 by sequencing 400 males with X-linked mental retardation (XLMR). Three variants were found in males with moderate MR and were absent in 500 control males. Expression studies in HEK293 cells showed that G833R resulted in a 78% reduction of iGluR3 due to protein misfolding. Whole-cell recording studies of iGluR3 homomers in HEK293 cells revealed that neither iGluR3-M706T (S2 domain) nor iGluR3-R631S (near channel core) had substantial channel function, whereas R450Q (S1 domain) was associated with accelerated receptor desensitization. When forming heteromeric receptors with iGluR2 in HEK293 cells, all four iGluR3 variants had altered desensitization kinetics. Our study provides the genetic and functional evidence that mutant iGluR3 with altered kinetic properties is associated with moderate cognitive impairment in humans.

  4. Embryonic expression of zebrafish AMPA receptor genes: zygotic gria2alpha expression initiates at the midblastula transition.

    Science.gov (United States)

    Lin, Wei-Hsiang; Wu, Chan-Hwa; Chen, Yu-Chia; Chow, Wei-Yuan

    2006-09-19

    The AMPA-preferring receptors (AMPARs) mediate rapid excitatory synaptic transmission in the central nervous system of vertebrates. Expression profiles of 8 AMPAR genes were studied by RT-PCR analyses to elucidate the properties of AMPARs during early zebrafish development. Transcripts of all AMPAR genes are detected at the time of fertilization, suggesting maternal transcriptions of zebrafish AMPAR genes. The amounts of gria1 and gria2 transcripts are several-fold higher than that of gria3 and gria4 between 10 and 72 hpf (hour postfertilization). The edited gria2alpha transcript decreases during gastrulation period, suggesting that zygotic expression of gria2alpha begins around the time of midblastula transition. Relative to the amount of beta-actin, the amounts of AMPAR transcripts increase significantly after the completion of neurulation. The amounts of gria2 transcripts exceed the total amounts of the remaining AMPAR transcripts after 36 hpf, suggesting increases in the representation of low Ca2+ permeable AMPARs during neuronal maturation. Many but not all of the known mammalian protein-protein interaction motifs are preserved in the C-terminal domains (CTD) of zebrafish AMPARs. Before 16 hpf, the embryos express predominantly the alternative splice forms encoding longer CTD. Representations of the short CTD splice forms of gria2 and gria4alpha increase after 24 hpf, when neurulation is nearly completed.

  5. Synthetic and endogenous cannabinoids protect retinal neurons from AMPA excitotoxicity in vivo, via activation of CB1 receptors: Involvement of PI3K/Akt and MEK/ERK signaling pathways.

    Science.gov (United States)

    Kokona, Despina; Thermos, Kyriaki

    2015-07-01

    Cannabinoids have been suggested to protect retinal ganglion cells in different models of toxicity, but their effects on other retinal neurons are poorly known. We investigated the neuroprotective actions of the endocannabinoid N-arachidonoyl ethanolamine (Anandamide/AEA) and the synthetic cannabinoids R1-Methanandamide (MethAEA) and HU-210, in an in vivo retinal model of AMPA excitotoxicity, and the mechanisms involved in the neuroprotection. Sprague-Dawley rats were intravitreally injected with PBS or AMPA in the absence or presence of the cannabinoid agonists. Brain nitric oxide synthase (bNOS) and choline acetyltransferase (ChAT) immunoreactivity (IR), as well as TUNEL staining, assessed the AMPA-induced retinal amacrine cell loss and the dose-dependent neuroprotection afforded by cannabinoids. The CB1 receptor selective antagonist AM251 and the PI3K/Akt inhibitor wortmannin reversed the cannabinoid-induced neuroprotection, suggesting the involvement of CB1 receptors and the PI3K/Akt pathway in cannabinoids' actions. Experiments with the CB2 agonist JWH015 and [(3)H]CP55940 radioligand binding suggested that the CB2 receptor is not involved in the neuroprotection. AEA and HU-210 induced phosphorylation of Akt but only AEA induced phosphorylation of ERK1/2 kinases, as revealed by western blot analysis. To investigate the role of caspase-3 in the AMPA-induced cell death, the caspase-3 inhibitor Z-DEVD-FMK was co-injected with AMPA. Z-DEVD-FMK had no effect on AMPA excitotoxicity. Moreover, no difference was observed in the phosphorylation of SAPK/JNK kinases between PBS- and AMPA-treated retinas. These results suggest that endogenous and synthetic cannabinoids protect retinal amacrine neurons from AMPA excitotoxicity in vivo via a mechanism involving the CB1 receptors, and the PI3K/Akt and/or MEK/ERK1/2 signaling pathways.

  6. Differential expression of postsynaptic NMDA and AMPA receptor subunits in the hippocampus and prefrontal cortex of the flinders sensitive line rat model of depression.

    Science.gov (United States)

    Treccani, Giulia; Gaarn du Jardin, Kristian; Wegener, Gregers; Müller, Heidi Kaastrup

    2016-11-01

    Glutamatergic abnormalities have recently been implicated in the pathophysiology of depression, and the ionotropic glutamate receptors in particular have been suggested as possible underlying molecular determinants. The Flinders Sensitive Line (FSL) rats constitute a validated model of depression with dysfunctional regulation of glutamate transmission relatively to their control strain Flinders Resistant Line (FRL). To gain insight into how signaling through glutamate receptors may be altered in the FSL rats, we investigated the expression and phosphorylation of AMPA and NMDA receptor subunits in an enriched postsynaptic fraction of the hippocampus and prefrontal cortex. Compared to the hippocampal postsynaptic fractions of FRL rats, FSL rats exhibited decreased and increased levels of the NMDA receptor subunits GluN2A and GluN2B, respectively, causing a lower ratio of GluN2A/GluN2B. The GluA2/GluA3 AMPA receptor subunit ratio was significantly decreased while the expression of the individual GluA1, GluA2, and GluA3 subunits were unaltered including phosphorylation levels of GluA1 at S831 and S845. There were no changes in the prefrontal cortex. These results support altered expression of postsynaptic glutamate receptors in the hippocampus of FSL rats, which may contribute to the depressive-like phenotype of these rats. PMID:27262028

  7. Differences in rat dorsal striatal NMDA and AMPA receptors following acute and repeated cocaine-induced locomotor activation.

    Directory of Open Access Journals (Sweden)

    Dorothy J Yamamoto

    Full Text Available Sprague-Dawley rats can be classified as low or high cocaine responders (LCRs or HCRs, respectively based on their locomotor activity induced by an acute low dose of cocaine. Upon repeated cocaine exposure, LCRs display greater locomotor sensitization, reward, and reinforcement than HCRs. Altered glutamate receptor expression in the brain reward pathway has been linked to locomotor sensitization and addiction. To determine if such changes contribute to the differential development of locomotor sensitization, we examined protein levels of total, phosphorylated, and cell surface glutamate N-methyl D-aspartate (NMDA and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA receptors (Rs following acute or repeated cocaine (10 mg/kg, i.p. in LCRs, HCRs and saline controls. Three areas involved in the development and expression of locomotor sensitization were investigated: the ventral tegmental area (VTA, nucleus accumbens (NAc and dorsal striatum (dSTR. Our results revealed differences only in the dSTR, where we found that after acute cocaine, GluN2B(Tyr-1472 phosphorylation was significantly greater in LCRs, compared to HCRs and controls. Additionally in dSTR, after repeated cocaine, we observed significant increases in total GluA1, phosphorylated GluA1(Ser-845, and cell surface GluA1 in all cocaine-treated animals vs. controls. The acute cocaine-induced increases in NMDARs in dSTR of LCRs may help to explain the more ready development of locomotor sensitization and susceptibility to addiction-like behaviors in rats that initially exhibit little or no cocaine-induced activation, whereas the AMPAR increases after repeated cocaine may relate to recruitment of more dorsal striatal circuits and maintenance of the marked cocaine-induced locomotor activation observed in all of the rats.

  8. Colocalization of neurokinin-1, NMDA, and AMPA receptors on neurons of the rat nucleus tractus solitarii

    OpenAIRE

    Lin, L. H.; Taktakishvili, O. M.; Talman, W. T.

    2008-01-01

    Substance P (SP) and glutamate are implicated in cardiovascular regulation by the nucleus tractus solitarii (NTS). Our earlier studies suggest that SP, which acts at neurokinin 1 (NK1) receptors, is not a baroreflex transmitter while glutamate is. On the other hand, our recent studies showed that loss of NTS neurons expressing NK1 receptors leads to loss of baroreflex responses and increased blood pressure lability. Furthermore, studies have suggested that SP may interact with glutamate in th...

  9. NMDA and AMPA/kainate glutamatergic receptors in the prelimbic medial prefrontal cortex modulate the elaborated defensive behavior and innate fear-induced antinociception elicited by GABAA receptor blockade in the medial hypothalamus.

    Science.gov (United States)

    de Freitas, Renato Leonardo; Salgado-Rohner, Carlos José; Biagioni, Audrey Francisco; Medeiros, Priscila; Hallak, Jaime Eduardo Cecílio; Crippa, José Alexandre S; Coimbra, Norberto Cysne

    2014-06-01

    The aim of the present study was to investigate the involvement of N-methyl-d-aspartate (NMDA) and amino-3-hydroxy-5-methyl-isoxazole-4-proprionate (AMPA)/kainate receptors of the prelimbic (PL) division of the medial prefrontal cortex (MPFC) on the panic attack-like reactions evoked by γ-aminobutyric acid-A receptor blockade in the medial hypothalamus (MH). Rats were pretreated with NaCl 0.9%, LY235959 (NMDA receptor antagonist), and NBQX (AMPA/kainate receptor antagonist) in the PL at 3 different concentrations. Ten minutes later, the MH was treated with bicuculline, and the defensive responses were recorded for 10 min. The antagonism of NMDA receptors in the PL decreased the frequency and duration of all defensive behaviors evoked by the stimulation of the MH and reduced the innate fear-induced antinociception. However, the pretreatment of the PL cortex with NBQX was able to decrease only part of defensive responses and innate fear-induced antinociception. The present findings suggest that the NMDA-glutamatergic system of the PL is critically involved in panic-like responses and innate fear-induced antinociception and those AMPA/kainate receptors are also recruited during the elaboration of fear-induced antinociception and in panic attack-related response. The activation of the glutamatergic neurotransmission of PL division of the MPFC during the elaboration of oriented behavioral reactions elicited by the chemical stimulation of the MH recruits mainly NMDA receptors in comparison with AMPA/kainate receptors. PMID:23349224

  10. Investigating the influence of PFC transection and nicotine on dynamics of AMPA and NMDA receptors of VTA dopaminergic neurons

    Directory of Open Access Journals (Sweden)

    Chen Ting

    2011-10-01

    Full Text Available Abstract Background All drugs of abuse, including nicotine, activate the mesocorticolimbic system that plays critical roles in nicotine reward and reinforcement development and triggers glutamatergic synaptic plasticity on the dopamine (DA neurons in the ventral tegmental area (VTA. The addictive behavior and firing pattern of the VTA DA neurons are thought to be controlled by the glutamatergic synaptic input from prefrontal cortex (PFC. Interrupted functional input from PFC to VTA was shown to decrease the effects of the drug on the addiction process. Nicotine treatment could enhance the AMPA/NMDA ratio in VTA DA neurons, which is thought as a common addiction mechanism. In this study, we investigate whether or not the lack of glutamate transmission from PFC to VTA could make any change in the effects of nicotine. Methods We used the traditional AMPA/NMDA peak ratio, AMPA/NMDA area ratio, and KL (Kullback-Leibler divergence analysis method for the present study. Results Our results using AMPA/NMDA peak ratio showed insignificant difference between PFC intact and transected and treated with saline. However, using AMPA/NMDA area ratio and KL divergence method, we observed a significant difference when PFC is interrupted with saline treatment. One possible reason for the significant effect that the PFC transection has on the synaptic responses (as indicated by the AMPA/NMDA area ratio and KL divergence may be the loss of glutamatergic inputs. The glutamatergic input is one of the most important factors that contribute to the peak ratio level. Conclusions Our results suggested that even within one hour after a single nicotine injection, the peak ratio of AMPA/NMDA on VTA DA neurons could be enhanced.

  11. Involvement of AMPA/kainate and GABAA receptors in topiramate neuroprotective effects against methylphenidate abuse sequels involving oxidative stress and inflammation in rat isolated hippocampus.

    Science.gov (United States)

    Motaghinejad, Majid; Motevalian, Manijeh

    2016-08-01

    Abuses of methylphenidate (MPH) as psychostimulant cause neural damage of brain cells. Neuroprotective properties of topiramate (TPM) have been indicated in several studies but its exact mechanism of action remains unclear. The current study evaluates protective role of various doses of TPM and its mechanism of action in MPH induced oxidative stress and inflammation. The neuroprotective effects of various doses of TPM against MPH induced oxidative stress and inflammation were evaluated and then the action of TPM was studied in presence of domoic acid (DOM), as AMPA/kainate receptor agonist and bicuculline (BIC) as GABAA receptor antagonist, in isolated rat hippocampus. Open Field Test (OFT) was used to investigate motor activity changes. Oxidative, antioxidant and inflammatory factors were measured in isolated hippocampus. TPM (70 and 100mg/kg) decreased MPH induced motor activity disturbances and inhibit MPH induced oxidative stress and inflammation. On the other hand pretreatment of animals with DOM or BIC, inhibit this effect of TPM and potentiate MPH induced motor activity disturbances and increased lipid peroxidation, mitochondrial oxidized form of glutathione (GSSG) level, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in isolated hippocampal cells and decreased reduced form of glutathione (GSH) level, superoxide dismutase, glutathione peroxidase and glutathione reductase activity. It seems that TPM can protect cells of hippocampus from oxidative stress and neuroinflammation and it could be partly by activation of GABAA receptor and inhibition of AMPA/kainite receptor. PMID:27105819

  12. Involvement of AMPA/kainate and GABAA receptors in topiramate neuroprotective effects against methylphenidate abuse sequels involving oxidative stress and inflammation in rat isolated hippocampus.

    Science.gov (United States)

    Motaghinejad, Majid; Motevalian, Manijeh

    2016-08-01

    Abuses of methylphenidate (MPH) as psychostimulant cause neural damage of brain cells. Neuroprotective properties of topiramate (TPM) have been indicated in several studies but its exact mechanism of action remains unclear. The current study evaluates protective role of various doses of TPM and its mechanism of action in MPH induced oxidative stress and inflammation. The neuroprotective effects of various doses of TPM against MPH induced oxidative stress and inflammation were evaluated and then the action of TPM was studied in presence of domoic acid (DOM), as AMPA/kainate receptor agonist and bicuculline (BIC) as GABAA receptor antagonist, in isolated rat hippocampus. Open Field Test (OFT) was used to investigate motor activity changes. Oxidative, antioxidant and inflammatory factors were measured in isolated hippocampus. TPM (70 and 100mg/kg) decreased MPH induced motor activity disturbances and inhibit MPH induced oxidative stress and inflammation. On the other hand pretreatment of animals with DOM or BIC, inhibit this effect of TPM and potentiate MPH induced motor activity disturbances and increased lipid peroxidation, mitochondrial oxidized form of glutathione (GSSG) level, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in isolated hippocampal cells and decreased reduced form of glutathione (GSH) level, superoxide dismutase, glutathione peroxidase and glutathione reductase activity. It seems that TPM can protect cells of hippocampus from oxidative stress and neuroinflammation and it could be partly by activation of GABAA receptor and inhibition of AMPA/kainite receptor.

  13. Structural mechanism of glutamate receptor activation and desensitization.

    Science.gov (United States)

    Meyerson, Joel R; Kumar, Janesh; Chittori, Sagar; Rao, Prashant; Pierson, Jason; Bartesaghi, Alberto; Mayer, Mark L; Subramaniam, Sriram

    2014-10-16

    Ionotropic glutamate receptors are ligand-gated ion channels that mediate excitatory synaptic transmission in the vertebrate brain. To gain a better understanding of how structural changes gate ion flux across the membrane, we trapped rat AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) and kainate receptor subtypes in their major functional states and analysed the resulting structures using cryo-electron microscopy. We show that transition to the active state involves a 'corkscrew' motion of the receptor assembly, driven by closure of the ligand-binding domain. Desensitization is accompanied by disruption of the amino-terminal domain tetramer in AMPA, but not kainate, receptors with a two-fold to four-fold symmetry transition in the ligand-binding domains in both subtypes. The 7.6 Å structure of a desensitized kainate receptor shows how these changes accommodate channel closing. These findings integrate previous physiological, biochemical and structural analyses of glutamate receptors and provide a molecular explanation for key steps in receptor gating. PMID:25119039

  14. Central nitric oxide modulates hindquarter vasodilation elicited by AMPA receptor stimulation in the NTS of conscious rats.

    Science.gov (United States)

    Dias, Ana Carolina Rodrigues; Colombari, Eduardo

    2006-05-01

    Microinjection of S-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) in the nucleus of the solitary tract (NTS) of conscious rats causes hypertension, bradycardia, and vasoconstriction in the renal, mesenteric, and hindquarter vascular beds. In the hindquarter, the initial vasoconstriction is followed by vasodilation with AMPA doses >5 pmol/100 nl. To test the hypothesis that this vasodilation is caused by activation of a nitroxidergic pathway in the NTS, we examined the effect of pretreatment with the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 10 nmol/100 nl, microinjected into the NTS) on changes in mean arterial pressure, heart rate, and regional vascular conductance (VC) induced by microinjection of AMPA (10 pmol/100 nl in the NTS) in conscious rats. AMPA increased hindquarter VC by 18 +/- 4%, but after pretreatment with L-NAME, AMPA reduced hindquarter VC by 16 +/- 7% and 17 +/- 9% (5 and 15 min after pretreatment, P NTS activates both vasodilatatory and vasoconstrictor mechanisms and that the vasodilatatory mechanism depends on production of nitric oxide in the NTS.

  15. Acute stress causes rapid synaptic insertion of Ca2+ -permeable AMPA receptors to facilitate long-term potentiation in the hippocampus.

    Science.gov (United States)

    Whitehead, Garry; Jo, Jihoon; Hogg, Ellen L; Piers, Thomas; Kim, Dong-Hyun; Seaton, Gillian; Seok, Heon; Bru-Mercier, Gilles; Son, Gi Hoon; Regan, Philip; Hildebrandt, Lars; Waite, Eleanor; Kim, Byeong-Chae; Kerrigan, Talitha L; Kim, Kyungjin; Whitcomb, Daniel J; Collingridge, Graham L; Lightman, Stafford L; Cho, Kwangwook

    2013-12-01

    The neuroendocrine response to episodes of acute stress is crucial for survival whereas the prolonged response to chronic stress can be detrimental. Learning and memory are particularly susceptible to stress with cognitive deficits being well characterized consequences of chronic stress. Although there is good evidence that acute stress can enhance cognitive performance, the mechanism(s) for this are unclear. We find that hippocampal slices, either prepared from rats following 30 min restraint stress or directly exposed to glucocorticoids, exhibit an N-methyl-d-aspartic acid receptor-independent form of long-term potentiation. We demonstrate that the mechanism involves an NMDA receptor and PKA-dependent insertion of Ca2+ -permeable AMPA receptors into synapses. These then trigger the additional NMDA receptor-independent form of LTP during high frequency stimulation.

  16. Efecto neuroprotector de los cannabinoides sobre la muerte neuronal inducida por Ampa en la médula espinal: Activación conjunta de los receptores CB1 y CB2

    Directory of Open Access Journals (Sweden)

    Carmen Guaza

    2005-03-01

    Full Text Available La sobreactivación de receptores de glutamato, como el receptor AMPA, induce la muerte neural por un proceso denominado excitotoxicidad, el cual ha sido claramente implicado en enfermedades agudas del sistema nerviso central (SNC, particularmente con daño axonal.

  17. AMPA receptor trafficking in inflammation-induced dorsal horn central sensitization

    Institute of Scientific and Technical Information of China (English)

    Yuan-Xiang Tao

    2012-01-01

    Activity-dependent postsynaptic receptor trafficking is critical for long-term synaptic plasticity in the brain,but it is unclear whether this mechanism actually mediates the spinal cord dorsal horn central sensitization (a specific form of synaptic plasticity) that is associated with persistent pain.Recent studies have shown that peripheral inflammation drives changes in α-amino-3-hydroxy-5-methy1-4-isoxazolepropionic acid receptor (AMPAR) subunit trafficking in the dorsal horn and that such changes contribute to the hypersensitivity that underlies persistent pain.Here,we review current evidence to illustrate how spinal cord AMPARs participate in the dorsal horn central sensitization associated with persistent pain.Understanding these mechanisms may allow the development of novel therapeutic strategies for treating persistent pain.

  18. The antidepressant-like effects of glutamatergic drugs ketamine and AMPA receptor potentiator LY 451646 are preserved in bdnf⁺/⁻ heterozygous null mice.

    Science.gov (United States)

    Lindholm, Jesse S O; Autio, Henri; Vesa, Liisa; Antila, Hanna; Lindemann, Lothar; Hoener, Marius C; Skolnick, Phil; Rantamäki, Tomi; Castrén, Eero

    2012-01-01

    Accumulating evidence suggests that biogenic amine-based antidepressants act, at least in part, via regulation of brain-derived neurotrophic factor (BDNF) signaling. Biogenic amine-based antidepressants increase BDNF synthesis and activate its signaling pathway through TrkB receptors. Moreover, the antidepressant-like effects of these molecules are abolished in BDNF deficient mice. Glutamate-based drugs, including the NMDA antagonist ketamine, and the AMPA receptor potentiator LY 451646, mimic the effects of antidepressants in preclinical tests with high predictive validity. In humans, a single intravenous dose of ketamine produces an antidepressant effect that is rapid, robust and persistent. In this study, we examined the role of BDNF in expression of the antidepressant-like effects of ketamine and an AMPA receptor potentiator (LY 451646) in the forced swim test (FST). Ketamine and LY 451646 produced antidepressant-like effects in the FST in mice at 45 min after a single injection, but no effects were observed one week after a single ketamine injection. As previously reported, the effects of imipramine in the forced swim test were blunted in heterozygous BDNF knockout (bdnf(+/-)) mice. However ketamine and LY 451646 produced similar antidepressant-like responses in wildtype and bdnf(+/-) mice. Neither ketamine nor LY 451646 significantly influenced the levels BDNF or TrkB phosphorylation in the hippocampus when assessed at 45 min or 7 days after the drug administration. These data demonstrate that under the conditions tested, neither ketamine nor the AMPA-potentiator LY 451656 activate BDNF signaling, but produce a characteristic antidepressant-like response in heterozygous bdnf(+/-) mice. These data indicate that unlike biogenic amine-based agents, BDNF signaling does not play a pivotal role in the antidepressant effects of glutamate-based compounds. This article is part of a Special Issue entitled 'Anxiety and Depression'.

  19. Oligomeric amyloid-{beta} inhibits the proteolytic conversion of brain-derived neurotrophic factor (BDNF), AMPA receptor trafficking, and classical conditioning.

    Science.gov (United States)

    Zheng, Zhaoqing; Sabirzhanov, Boris; Keifer, Joyce

    2010-11-01

    Amyloid-β (Aβ) peptide is thought to have a significant role in the progressive memory loss observed in patients with Alzheimer disease and inhibits synaptic plasticity in animal models of learning. We previously demonstrated that brain-derived neurotrophic factor (BDNF) is critical for synaptic AMPA receptor delivery in an in vitro model of eyeblink classical conditioning. Here, we report that acquisition of conditioned responses was significantly attenuated by bath application of oligomeric (200 nm), but not fibrillar, Aβ peptide. Western blotting revealed that BDNF protein expression during conditioning is significantly reduced by treatment with oligomeric Aβ, as were phosphorylation levels of cAMP-response element-binding protein (CREB), Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV), and ERK. However, levels of PKA and PKCζ/λ were unaffected, as was PDK-1. Protein localization studies using confocal imaging indicate that oligomeric Aβ, but not fibrillar or scrambled forms, suppresses colocalization of GluR1 and GluR4 AMPA receptor subunits with synaptophysin, indicating that trafficking of these subunits to synapses during the conditioning procedure is blocked. In contrast, coapplication of BDNF with oligomeric Aβ significantly reversed these findings. Interestingly, a tolloid-like metalloproteinase in turtle, tTLLs (turtle tolloid-like protein), which normally processes the precursor proBDNF into mature BDNF, was found to degrade oligomeric Aβ into small fragments. These data suggest that an Aβ-induced reduction in BDNF, perhaps due to interference in the proteolytic conversion of proBDNF to BDNF, results in inhibition of synaptic AMPA receptor delivery and suppression of the acquisition of conditioning.

  20. Structure-Activity Relationships of JMV4463, a Vectorized Cathepsin D Inhibitor with Antiproliferative Properties: The Unique Role of the AMPA-Based Vector.

    Science.gov (United States)

    Vezenkov, Lubomir L; Sanchez, Clément A; Bellet, Virginie; Martin, Vincent; Maynadier, Marie; Bettache, Nadir; Lisowski, Vincent; Martinez, Jean; Garcia, Marcel; Amblard, Muriel; Hernandez, Jean-François

    2016-02-01

    Cathepsin D (CathD) is overexpressed and secreted by several solid tumors and stimulates their growth, the mechanism of which is still not understood. In this context, the pepstatin bioconjugate JMV4463 [Ac-arg-O2 Oc-(Val)3-Sta-Ala-Sta-(AMPA)4-NH2; O2 Oc=8-amino-3,6-dioxaoctanoyl, Sta=statine, AMPA=ortho-aminomethylphenylacetyl], containing a new kind of cell-penetrating vector, was previously shown to exhibit potent antiproliferative effects in vitro and to delay the onset of tumors in vivo. In this study, we performed a structure-activity relationship analysis to evaluate the significance of the inhibitor and vector moieties of JMV4463. By modifying both statine residues of pepstatin we found that the antiproliferative activity is correlated with CathD inhibition, supporting a major role of the catalytic activity of intracellular CathD in cancer cell proliferation. Replacing the vector composed of four AMPA units with other vectors was found to abolish cytotoxicity, although all of the conjugates enabled pepstatin transport into cells. In addition, the AMPA4 vector must be localized at the C terminus of the bioconjugate. The unexpected importance of the vector structure and position for cytotoxic action suggests that AMPA4 enables pepstatin to inhibit the proteolysis of critical CathD substrates involved in cell proliferation via a unique mechanism of action. PMID:26639308

  1. SYM 2206 (a potent non-competitive AMPA receptor antagonist) elevates the threshold for maximal electroshock-induced seizures in mice

    OpenAIRE

    Luszczki Jarogniew J.; Leszkowicz Magdalena; Kondrat-Wrobel Maria W.; Florek-Luszczki Magdalena

    2014-01-01

    The aim of this study was to determine the effect of SYM 2206 (a potent non-competitive AMPA receptor antagonist) on the threshold for maximal electroshock (MEST)-induced seizures in mice. Electroconvulsions were produced in mice by means of a current (sinewave, 50 Hz, maximum 500 V, strength from 4 to 14 mA, 0.2-s stimulus duration, tonic hind limb extension taken as the endpoint) delivered via ear-clip electrodes. SYM 2206 administered systemically (i.p.), 30 min before the MEST test, at do...

  2. Studies on an (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor antagonist IKM-159

    DEFF Research Database (Denmark)

    Juknaite, Lina; Sugamata, Yutaro; Tokiwa, Kazuya;

    2013-01-01

    IKM-159 was developed and identified as a member of a new class of heterotricyclic glutamate analogs that act as AMPA receptor-selective antagonists. However, it was not known which enantiomer of IKM-159 was responsible for its pharmacological activities. Here, we report in vivo and in vitro...... neuronal activities of both enantiomers of IKM-159 prepared by enantioselective asymmetric synthesis. Employing (R)-2-amino-2-(4-methoxyphenyl)ethanol as a chiral auxiliary, (2R)-IKM-159 and the (2S)-counterpart were successfully synthesized in 0.70% and 1.5% yields, respectively, over total 18 steps. Both...

  3. Synthesis and biological evaluation of analogues of 7-chloro-4,5-dihydro-4- oxo-8-(1,2,4-triazol-4-yl)-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylic acid (TQX-173) as novel selective AMPA receptor antagonists.

    Science.gov (United States)

    Catarzi, Daniela; Colotta, Vittoria; Varano, Flavia; Calabri, Francesca Romana; Filacchioni, Guido; Galli, Alessandro; Costagli, Chiara; Carlà, Vincenzo

    2004-01-01

    In recent papers (Catarzi, D.; et al. J. Med. Chem. 2000, 43, 3824-3826; 2001, 44, 3157-3165) we reported chemical and biological studies on 4,5-dihydro-4-oxo-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylates (TQXs) bearing different nitrogen-containing heterocycles at position-8. In particular, from these studies it emerged that both the 7-chloro-4,5-dihydro-4-oxo-8-(1,2,4-triazol-4-yl)-1,2,4-triazolo[1,5-a] quinoxaline-2-carboxylic acid TQX-173 (compound B) and its corresponding ethyl ester (compound A) were the most active and selective compounds of this series. In pursuing our investigation on the structure-activity relationships of these TQX derivatives, different electron-withdrawing groups (CF(3), NO(2)) were introduced at position 7 on the TQX ring system, replacing the 7-chloro substituent of B and of other selected 8-heteroaryltriazoloquinoxaline-2-carboxylates previously described. All the newly synthesized compounds were biologically evaluated for their binding at the Gly/NMDA, AMPA, and KA high-affinity receptors. Gly/NMDA binding assays were performed to assess the selectivity of the reported compounds toward the AMPA receptor. Compounds endowed with micromolar binding affinity for the KA high-affinity binding site were also evaluated for their binding at the KA low-affinity receptor. Some selected compounds were also tested for their functional antagonist activity at the AMPA and NMDA receptor-ion channel complex. The results obtained in this study have pointed out that 4,5-dihydro-7-nitro-4-oxo-8-(3-carboxypyrrol-1-yl)-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylic acid (9b) and its corresponding ethyl ester (9a) are the most potent and selective AMPA receptor antagonists reported to date among the TQX series.

  4. Subthreshold receptive fields and baseline excitability of "silent" S1 callosal neurons in awake rabbits: contributions of AMPA/kainate and NMDA receptors.

    Science.gov (United States)

    Swadlow, H A; Hicks, T P

    1997-07-01

    The contribution of NMDA and non-NMDA receptors to excitatory subthreshold receptive fields was examined in callosal efferent neurons (CC neurons) in primary somatosensory cortex of the fully awake rabbit. Only neurons showing no traditional (suprathreshold) receptive fields were examined. Subthreshold responses were examined by monitoring the thresholds of efferent neurons to juxtasomal current pulses (JSCPs) delivered through the recording microelectrode. Changes in threshold following a peripheral conditioning stimulus signify a subthreshold response. Using this method, excitatory postsynaptic potentials and inhibitory postsynaptic potentials are manifested as decreases and increases in JSCP threshold, respectively. NMDA and non-NMDA agonists and antagonists were administered iontophoretically via a multibarrel micropipette assembly attached to the recording/stimulating microelectrode. Receptor-selective doses of both AMPA/kainate and NMDA antagonists decreased the excitability of CC neurons in the absence of any peripheral stimulation. Threshold to JSCPs rose by a mean of 20% for both classes of antagonist. Despite the similar effects of NMDA and non-NMDA antagonists on baseline excitability, these antagonists had dramatically different effects on the subthreshold excitatory response to activation of the receptive field. Whereas receptor-selective doses of AMPA/kainate antagonists either eliminated or severely attenuated the subthreshold excitatory responses to peripheral stimulation, NMDA antagonists had little or no effect on the subthreshold evoked response. PMID:9262195

  5. Activation of the sigma receptor 1 modulates AMPA receptor-mediated light-evoked excitatory postsynaptic currents in rat retinal ganglion cells.

    Science.gov (United States)

    Liu, Lei-Lei; Deng, Qin-Qin; Weng, Shi-Jun; Yang, Xiong-Li; Zhong, Yong-Mei

    2016-09-22

    Sigma receptor (σR), a unique receptor family, is classified into three subtypes: σR1, σR2 and σR3. It was previously shown that σR1 activation induced by 1μM SKF10047 (SKF) suppressed N-methyl-d-aspartate (NMDA) receptor-mediated responses of rat retinal ganglion cells (GCs) and the suppression was mediated by a distinct Ca(2+)-dependent phospholipase C (PLC)-protein kinase C (PKC) pathway. In the present work, using whole-cell patch-clamp techniques in rat retinal slice preparations, we further demonstrate that SKF of higher dosage (50μM) significantly suppressed AMPA receptor (AMPAR)-mediated light-evoked excitatory postsynaptic currents (L-EPSCs) of retinal ON-type GCs (ON GCs), and the effect was reversed by the σR1 antagonist BD1047, suggesting the involvement of σR1. The SKF (50μM) effect was unlikely due to a change in glutamate release from bipolar cells, as suggested by the unaltered paired-pulse ratio (PPR) of AMPAR-mediated EPSCs of ON GCs. SKF (50μM) did not change L-EPSCs of ON GCs when the G protein inhibitor GDP-β-S or the protein kinase G (PKG) inhibitor KT5823 was intracellularly infused. Calcium imaging further revealed that SKF (50μM) did not change intracellular calcium concentration in GCs and persisted to suppress L-EPSCs when intracellular calcium was chelated by BAPTA. The SKF (50μM) effect was intact when protein kinase A (PKA) and phosphatidylinostiol (PI)-PLC signaling pathways were both blocked. We conclude that the SKF (50μM) effect is Ca(2+)-independent, PKG-dependent, but not involving PKA, PI-PLC pathways. PMID:27373906

  6. Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer's disease, Huntington's disease and schizophrenia

    Science.gov (United States)

    Akbarian, S.; Smith, M. A.; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Animal studies and cell culture experiments demonstrated that posttranscriptional editing of the transcript of the GluR-2 gene, resulting in substitution of an arginine for glutamine in the second transmembrane region (TM II) of the expressed protein, is associated with a reduction in Ca2+ permeability of the receptor channel. Thus, disturbances in GluR-2 RNA editing with alteration of intracellular Ca2+ homeostasis could lead to neuronal dysfunction and even neuronal degeneration. The present study determined the proportions of edited and unedited GluR-2 RNA in the prefrontal cortex of brains from patients with Alzheimer's disease, in the striatum of brains from patients with Huntington's disease, and in the same areas of brains from age-matched schizophrenics and controls, by using reverse transcriptase-polymerase chain reaction, restriction endonuclease digestion, gel electrophoresis and scintillation radiometry. In the prefrontal cortex of controls, 99.9% were edited; in the prefrontal cortex both of schizophrenics and of Alzheimer's patients approximately 1.0% of all GluR-2 RNA molecules were unedited and 99% were edited. In the striatum of controls and of schizophrenics, approximately 0.5% of GluR-2 RNA molecules were unedited and 99.5% were edited; in the striatum of Huntington's patients nearly 5.0% of GluR-2 RNA was unedited. In the prefrontal white matter of controls, approximately 7.0% of GluR-2 RNA was unedited. In the normal human prefrontal cortex and striatum, the large majority of GluR-2 RNA molecules contains a CGG codon for arginine in the TMII coding region; this implies that the corresponding AMPA receptors have a low Ca2+ permeability, as previously demonstrated for the rat brain. The process of GluR-2 RNA editing is compromised in a region-specific manner in schizophrenia, in Alzheimer's disease and Huntington's Chorea although in each of these disorders there is still a large excess of edited GluR-2 RNA molecules. Disturbances of GluR-2 RNA

  7. Identification of an ionotropic glutamate receptor AMPA1/GRIA1 polymorphism in crossbred beef cows differing in fertility.

    Science.gov (United States)

    Cushman, R A; Miles, J R; Rempel, L A; McDaneld, T G; Kuehn, L A; Chitko-McKown, C G; Nonneman, D; Echternkamp, S E

    2013-06-01

    A proposed functional polymorphism in the ionotropic glutamate receptor AMPA1 (GRIA1) has been reported to influence antral follicle numbers and fertility in cows. Repeat breeder cows that fail to produce a calf in multiple seasons have been reported to have reduced numbers of small (1 to 3 mm) antral follicles in their ovaries. Therefore, we tested the hypothesis that this GRIA1 polymorphism was affecting antral follicle numbers in repeat breeder cows. Repeat breeder cows (n = 64) and control cows (n = 72) that had always produced a calf were housed in a dry lot and observed twice daily for behavioral estrus. Blood samples were collected, and cows were genotyped for this GRIA1 polymorphism and for a polymorphism in the GnRH receptor (GnRHR) that was proposed to influence age at puberty. On d 3 to 8 after estrus cows were slaughtered, and reproductive organs were collected to determine antral follicle count, ovary size, and uterine horn diameter. Repeat breeder cows were older at first calving than control cows (P = 0.006). The length (P = 0.03) and height (P = 0.02) of the ovary contralateral to the corpus luteum (CL) were greater in control cows than repeat breeder cows. The endometrial diameter in the horn ipsilateral to the CL was greater in the control cows than the repeat breeder cows. Repeat breeder cows had fewer small (1 to 5 mm) antral follicles than control cows (P = 0.003); however, there was no association between GRIA1 genotype and antral follicle number. The GnRHR polymorphism was associated with age at first calving because cows that were homozygous for the C allele had a greater age at first calving than heterozygous cows or cows that were homozygous for the T allele (P = 0.01). In the granulosa cells from small (1 to 5 mm) antral follicles, mRNA abundances of 2 markers of oocyte quality, anti-Müllerian hormone and pentraxin 3, did not differ between fertility groups (P ≥ 0.12). We conclude that this GRIA1 polymorphism exists in beef cows but

  8. Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: When, how and why?

    Directory of Open Access Journals (Sweden)

    Marina E Wolf

    2012-06-01

    Full Text Available In animal models of drug addiction, cocaine exposure has been shown to increase levels of calcium-permeable AMPA receptors (CP-AMPARs in two brain regions that are critical for motivation and reward - the ventral tegmental area (VTA and the nucleus accumbens (NAc. This review compares CP-AMPAR plasticity in the two brain regions and addresses its functional significance. In VTA dopamine neurons, cocaine exposure results in synaptic insertion of high conductance CP-AMPARs in exchange for lower conductance calcium-impermeable AMPARs (CI-AMPARs. This plasticity is rapid (hours, GluA2-dependent, and can be observed with a single cocaine injection. In addition to strengthening synapses and altering Ca2+ signaling, CP-AMPAR insertion affects subsequent induction of plasticity at VTA synapses. However, CP-AMPAR insertion is unlikely to mediate the increased dopamine cell activity that occurs during early withdrawal from cocaine exposure. Within the VTA, the group I metabotropic glutamate receptor mGluR1 exerts a negative influence on CP-AMPAR accumulation. Acutely, mGluR1 stimulation elicits a form of LTD resulting from CP-AMPAR removal and CI-AMPAR insertion. In medium spiny neurons (MSNs of the NAc, extended access cocaine self-administration is required to increase CP-AMPAR levels. This is first detected after approximately a month of withdrawal and then persists. Once present in NAc synapses, CP-AMPARs mediate the expression of incubation of cue-induced cocaine craving. The mechanism of their accumulation may be GluA1-dependent, which differs from that observed in the VTA. However, similar to VTA, mGluR1 stimulation removes CP-AMPARs from MSN synapses. Loss of mGluR1 tone during cocaine withdrawal may contribute to CP-AMPAR accumulation in the NAc. Thus, results in both brain regions point to the possibility of using positive modulators of mGluR1 as a treatment for cocaine addiction.

  9. A Computational Model for the AMPA Receptor Phosphorylation Master Switch Regulating Cerebellar Long-Term Depression.

    Science.gov (United States)

    Gallimore, Andrew R; Aricescu, A Radu; Yuzaki, Michisuke; Calinescu, Radu

    2016-01-01

    The expression of long-term depression (LTD) in cerebellar Purkinje cells results from the internalisation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) from the postsynaptic membrane. This process is regulated by a complex signalling pathway involving sustained protein kinase C (PKC) activation, inhibition of serine/threonine phosphatase, and an active protein tyrosine phosphatase, PTPMEG. In addition, two AMPAR-interacting proteins-glutamate receptor-interacting protein (GRIP) and protein interacting with C kinase 1 (PICK1)-regulate the availability of AMPARs for trafficking between the postsynaptic membrane and the endosome. Here we present a new computational model of these overlapping signalling pathways. The model reveals how PTPMEG cooperates with PKC to drive LTD expression by facilitating the effect of PKC on the dissociation of AMPARs from GRIP and thus their availability for trafficking. Model simulations show that LTD expression is increased by serine/threonine phosphatase inhibition, and negatively regulated by Src-family tyrosine kinase activity, which restricts the dissociation of AMPARs from GRIP under basal conditions. We use the model to expose the dynamic balance between AMPAR internalisation and reinsertion, and the phosphorylation switch responsible for the perturbation of this balance and for the rapid plasticity initiation and regulation. Our model advances the understanding of PF-PC LTD regulation and induction, and provides a validated extensible platform for more detailed studies of this fundamental synaptic process. PMID:26807999

  10. A Computational Model for the AMPA Receptor Phosphorylation Master Switch Regulating Cerebellar Long-Term Depression.

    Directory of Open Access Journals (Sweden)

    Andrew R Gallimore

    2016-01-01

    Full Text Available The expression of long-term depression (LTD in cerebellar Purkinje cells results from the internalisation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs from the postsynaptic membrane. This process is regulated by a complex signalling pathway involving sustained protein kinase C (PKC activation, inhibition of serine/threonine phosphatase, and an active protein tyrosine phosphatase, PTPMEG. In addition, two AMPAR-interacting proteins-glutamate receptor-interacting protein (GRIP and protein interacting with C kinase 1 (PICK1-regulate the availability of AMPARs for trafficking between the postsynaptic membrane and the endosome. Here we present a new computational model of these overlapping signalling pathways. The model reveals how PTPMEG cooperates with PKC to drive LTD expression by facilitating the effect of PKC on the dissociation of AMPARs from GRIP and thus their availability for trafficking. Model simulations show that LTD expression is increased by serine/threonine phosphatase inhibition, and negatively regulated by Src-family tyrosine kinase activity, which restricts the dissociation of AMPARs from GRIP under basal conditions. We use the model to expose the dynamic balance between AMPAR internalisation and reinsertion, and the phosphorylation switch responsible for the perturbation of this balance and for the rapid plasticity initiation and regulation. Our model advances the understanding of PF-PC LTD regulation and induction, and provides a validated extensible platform for more detailed studies of this fundamental synaptic process.

  11. Involvement of hippocampal AMPA glutamate receptor changes and the cAMP/protein kinase A/CREB-P signalling pathway in memory consolidation of an avoidance task in rats

    Directory of Open Access Journals (Sweden)

    Bernabeu R.

    1997-01-01

    Full Text Available Training in step-down inhibitory avoidance (0.3-mA footshock is followed by biochemical changes in rat hippocampus that strongly suggest an involvement of quantitative changes in glutamate AMPA receptors, followed by changes in the dopamine D1 receptor/cAMP/protein kinase A (PKA/CREB-P signalling pathway in memory consolidation. AMPA binding to its receptor and levels of the AMPA receptor-specific subunit GluR1 increase in the hippocampus within the first 3 h after training (20-70%. Binding of the specific D1 receptor ligand, SCH23390, and cAMP levels increase within 3 or 6 h after training (30-100%. PKA activity and CREB-P levels show two peaks: a 35-40% increase 0 h after training, and a second increase 3-6 h later (35-60%. The results correlate with pharmacological findings showing an early post-training involvement of AMPA receptors, and a late involvement of the D1/cAMP/PKA/CREB-P pathway in memory consolidation of this task

  12. A role for calcium-permeable AMPA receptors in synaptic plasticity and learning.

    Directory of Open Access Journals (Sweden)

    Brian J Wiltgen

    Full Text Available A central concept in the field of learning and memory is that NMDARs are essential for synaptic plasticity and memory formation. Surprisingly then, multiple studies have found that behavioral experience can reduce or eliminate the contribution of these receptors to learning. The cellular mechanisms that mediate learning in the absence of NMDAR activation are currently unknown. To address this issue, we examined the contribution of Ca(2+-permeable AMPARs to learning and plasticity in the hippocampus. Mutant mice were engineered with a conditional genetic deletion of GluR2 in the CA1 region of the hippocampus (GluR2-cKO mice. Electrophysiology experiments in these animals revealed a novel form of long-term potentiation (LTP that was independent of NMDARs and mediated by GluR2-lacking Ca(2+-permeable AMPARs. Behavioral analyses found that GluR2-cKO mice were impaired on multiple hippocampus-dependent learning tasks that required NMDAR activation. This suggests that AMPAR-mediated LTP interferes with NMDAR-dependent plasticity. In contrast, NMDAR-independent learning was normal in knockout mice and required the activation of Ca(2+-permeable AMPARs. These results suggest that GluR2-lacking AMPARs play a functional and previously unidentified role in learning; they appear to mediate changes in synaptic strength that occur after plasticity has been established by NMDARs.

  13. Changes of AMPA receptor properties in the neocortex and hippocampus following pilocarpine-induced status epilepticus in rats.

    Science.gov (United States)

    Malkin, Sergey L; Amakhin, Dmitry V; Veniaminova, Ekaterina A; Kim, Kira Kh; Zubareva, Olga E; Magazanik, Lev G; Zaitsev, Aleksey V

    2016-07-01

    Temporal lobe epilepsy (TLE) is the most common type of epilepsy in humans. The lithium-pilocarpine model in rodents reproduces some of the main features of human TLE. Three-week-old Wistar rats were used in this study. The changes in AMPA receptor subunit composition were investigated in several brain areas, including the medial prefrontal cortex (mPFC), the temporal cortex (TC), and the dorsal (DH) and ventral hippocampus (VH) during the first week following pilocarpine-induced status epilepticus (PILO-induced SE). In the hippocampus, GluA1 and GluA2 mRNA expression slightly decreased after PILO-induced SE and returned to the initial level on the seventh day. We did not detect any significant changes in mRNA expression of the GluA1 and GluA2 subunits in the TC, whereas in the mPFC we observed a significant increase of GluA1 mRNA expression on the third day and a decrease in GluA2 mRNA expression during the entire first week. Accordingly, the GluA1/GluA2 expression ratio increased in the mPFC, and the functional properties of the pyramidal cell excitatory synapses were disturbed. Using whole-cell voltage-clamp recordings, we found that on the third day following PILO-induced SE, isolated mPFC pyramidal neurons showed an inwardly rectifying current-voltage relation of kainate-evoked currents, suggesting the presence of GluA2-lacking calcium-permeable AMPARs (CP-AMPARs). IEM-1460, a selective antagonist of CP-AMPARs, significantly reduced the amplitude of evoked EPSC in pyramidal neurons from mPFC slices on the first and third days, but not on the seventh day. The antagonist had no effects on EPSC amplitude in slices from control animals. Thus, our data demonstrate that PILO-induced SE affects subunit composition of AMPARs in different brain areas, including the mPFC. SE induces transient (up to few days) incorporation of CP-AMPARs in the excitatory synapses of mPFC pyramidal neurons, which may disrupt normal circuitry functions. PMID:27109923

  14. Enhanced Long-Term and Impaired Short-Term Spatial Memory in GluA1 AMPA Receptor Subunit Knockout Mice: Evidence for a Dual-Process Memory Model

    Science.gov (United States)

    Sanderson, David J.; Good, Mark A.; Skelton, Kathryn; Sprengel, Rolf; Seeburg, Peter H.; Rawlins, J. Nicholas P.; Bannerman, David M.

    2009-01-01

    The GluA1 AMPA receptor subunit is a key mediator of hippocampal synaptic plasticity and is especially important for a rapidly-induced, short-lasting form of potentiation. GluA1 gene deletion impairs hippocampus-dependent, spatial working memory, but spares hippocampus-dependent spatial reference memory. These findings may reflect the necessity of…

  15. Role of GluR2 expression in AMPA-induced toxicity in cultured murine cerebral cortical neurons

    DEFF Research Database (Denmark)

    Jensen, J B; Lund, Trine Meldgaard; Timmermann, D B;

    2001-01-01

    of the Mg(2+) block of the NMDA receptor on AMPA-R stimulation. The involvement of Ca(2+) influx through AMPA-R was also examined. The number of neurons possessing Ca(2+)-permeable AMPA-R increased during culture development, concurrently with an increasing susceptibility for AMPA-induced toxicity during...

  16. Synthesis and structure-activity studies on acidic amino acids and related diacids as NMDA receptor ligands

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B;

    1994-01-01

    The 3-isoxazolol amino acids (S)-2-amino-3-(3-hydroxy-5-methyl-4- isoxazolyl)propionic acid [(S)-AMPA, 2] and (R,S)-2-amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid (AMAA, 5a) (Figure 1) are potent and specific agonists at the AMPA and N-methyl-D-aspartic acid (NMDA) subtypes, respectively......, of (S)-glutamic acid (1) receptors. A number of amino acids and diacids structurally related to AMAA were synthesized and tested electrophysiologically and in receptor-binding assays. The hydroxymethyl analogue 7c of AMAA was an NMDA agonist approximately equipotent with AMAA in the [3H...

  17. Episodic sucrose intake during food restriction increases synaptic abundance of AMPA receptors in nucleus accumbens and augments intake of sucrose following restoration of ad libitum feeding.

    Science.gov (United States)

    Peng, X-X; Lister, A; Rabinowitsch, A; Kolaric, R; Cabeza de Vaca, S; Ziff, E B; Carr, K D

    2015-06-01

    Weight-loss dieting often leads to loss of control, rebound weight gain, and is a risk factor for binge pathology. Based on findings that food restriction (FR) upregulates sucrose-induced trafficking of glutamatergic AMPA receptors to the nucleus accumbens (NAc) postsynaptic density (PSD), this study was an initial test of the hypothesis that episodic "breakthrough" intake of forbidden food during dieting interacts with upregulated mechanisms of synaptic plasticity to increase reward-driven feeding. Ad libitum (AL) fed and FR subjects consumed a limited amount of 10% sucrose, or had access to water, every other day for 10 occasions. Beginning three weeks after return of FR rats to AL feeding, when 24-h chow intake and rate of body weight gain had normalized, subjects with a history of sucrose intake during FR consumed more sucrose during a four week intermittent access protocol than the two AL groups and the group that had access to water during FR. In an experiment that substituted noncontingent administration of d-amphetamine for sucrose, FR subjects displayed an enhanced locomotor response during active FR but a blunted response, relative to AL subjects, during recovery from FR. This result suggests that the enduring increase in sucrose consumption is unlikely to be explained by residual enhancing effects of FR on dopamine signaling. In a biochemical experiment which paralleled the sucrose behavioral experiment, rats with a history of sucrose intake during FR displayed increased abundance of pSer845-GluA1, GluA2, and GluA3 in the NAc PSD relative to rats with a history of FR without sucrose access and rats that had been AL throughout, whether they had a history of episodic sucrose intake or not. A history of FR, with or without a history of sucrose intake, was associated with increased abundance of GluA1. A terminal 15-min bout of sucrose intake produced a further increase in pSer845-GluA1 and GluA2 in subjects with a history of sucrose intake during FR

  18. Orchestrated regulation of Nogo receptors, LOTUS, AMPA receptors and BDNF in an ECT model suggests opening and closure of a window of synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Max Nordgren

    Full Text Available Electroconvulsive therapy (ECT is an efficient and relatively fast acting treatment for depression. However, one severe side effect of the treatment is retrograde amnesia, which in certain cases can be long-term. The mechanisms behind the antidepressant effect and the amnesia are not well understood. We hypothesized that ECT causes transient downregulation of key molecules needed to stabilize synaptic structure and to prevent Ca2+ influx, and a simultaneous increase in neurotrophic factors, thus providing a short time window of increased structural synaptic plasticity. Here we followed regulation of NgR1, NgR3, LOTUS, BDNF, and AMPA subunits GluR1 and GluR2 flip and flop mRNA levels in hippocampus at 2, 4, 12, 24, and 72 hours after a single episode of induced electroconvulsive seizures (ECS in rats. NgR1 and LOTUS mRNA levels were transiently downregulated in the dentate gyrus 2, 4, 12 and 4, 12, 24 h after ECS treatment, respectively. GluR2 flip, flop and GluR1 flop were downregulated at 4 h. GluR2 flip remained downregulated at 12 h. In contrast, BDNF, NgR3 and GluR1 flip mRNA levels were upregulated. Thus, ECS treatment induces a transient regulation of factors important for neuronal plasticity. Our data provide correlations between ECS treatment and molecular events compatible with the hypothesis that both effects and side effects of ECT may be caused by structural synaptic rearrangements.

  19. Pharmacological and structural characterization of conformationally restricted (S)-glutamate analogues at ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Juknaite, Lina; Venskutonyte, Raminta; Assaf, Zeinab;

    2012-01-01

    at NMDA receptors, where the introduction of the carbocyclic ring is expected to lead to a steric clash with binding site residues. CBG-IV was demonstrated to be an agonist at both GluA2 and the kainate receptor GluK1. CBG-IV showed high affinity binding to GluK1 compared to GluA2, GluK2 and GluK3, which......Conformationally restricted glutamate analogues have been pharmacologically characterized at AMPA and kainate receptors and the crystal structures have been solved of the ligand (2S,1'R,2'S)-2-(2'-carboxycyclobutyl)glycine (CBG-IV) in complex with the ligand binding domains of the AMPA receptor Glu......A2 and the kainate receptor GluK3. These structures show that CBG-IV interacts with the binding pocket in the same way as (S)-glutamate. The binding affinities reveal that CBG-IV has high affinity at the AMPA and kainate receptor subtypes. Appreciable binding affinity of CBG-IV was not observed...

  20. Synthesis, theoretical and structural analyses, and enantiopharmacology of 3-carboxy homologs of AMPA

    DEFF Research Database (Denmark)

    Brehm, Lotte; Greenwood, Jeremy R; Sløk, Frank A;

    2004-01-01

    in ACPA, we have now prepared the (S)- and (R)-enantiomers of ACPA by stereocontrolled syntheses using (1R,2R,5R)- and (1S,2S,5S)-2-hydroxy-3-pinanone, respectively, as chiral auxiliaries. Furthermore, the 5-ethyl analog of ACPA, Ethyl-ACPA, was synthesized, and (S)- and (R)-Ethyl-ACPA were also prepared...... using this method. The absolute configurations of (S)- and (R)-ACPA were established by X-ray crystallographic analysis of a protected (1S,2S,5S)-2-hydroxy-3-pinanone imine derivative of (R)-ACPA. The absolute stereochemistry of (S)- and (R)-Ethyl-ACPA was assigned on the basis of a comparison....... The lower homolog of ACPA, (RS)-2-amino-2-(3-carboxy-5-methyl-4-isoxazolyl)acetic acid (1), which is a Glu analog, was also synthesized. Affinities and neuroexcitatory effects were determined using rat brain membranes and cortical wedges, respectively, at native AMPA, KA, and N-methyl-D-aspartic acid (NMDA...

  1. Effects of ketamine-midazolam anesthesia on the expression of NMDA and AMPA receptor subunit in the peri-infarction of rat brain

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yue-lin; ZHANG Peng-bo; QIU Shu-dong; LIU Yong; TIAN Ying-fang; WANG Ying

    2006-01-01

    Background Activation of N-methyl-D-aspartate (NMDA) receptors and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors play an important role in the neurons death induced by ischemia.The mitigating effect of intravenous anesthetics on ischemic neuron injury is related to their influence on NMDA receptors. This study was performed to investigate the effect of ketamine-midazolam anesthesia on the NMDA and AMPA receptor subunits expression in the peri-infarction of ischemic rat brain and explore its potential mechanism of neuroprotection.This study was supported by National Natural Science Foundation of China (NSFC) (No.30200291).Methods Thirty Sprague Dawley (SD) rats were subjected to permanent middle cerebral artery occlusion under ketamine/atropine (100/0.05 mg/kg) or ketamine-midazolam/atropine (60/50/0.05 mg/kg) intraperitoneal anesthesia (n=15 each). Twenty-four hours after ischemia, five rats in each group were killed by injecting the above dosage of ketamine or ketamine-midazolam intraperitoneally and infarct size was measured. Twenty-four and 72 hours after ischemia, four rats in each group were killed by injecting the above dosage of ketamine or ketamine-midazolam intraperitoneally. After staining the brain tissue slices with toluidine blue, the survived neurons in the peri-infarction were observed. Also, the expression level of NMDA receptors 1 (NR1), NMDA receptors 2A (NR2A), NMDA receptors 2B (NR2B) and AMPA (GluR1 subunit) were determined by grayscale analysis in immunohistochemical stained slices.Results Compared with ketamine anesthesia, ketamine-midazolam anesthesia produced not only smaller infarct size [(24.1±4.6)% vs (38.4±4.2)%, P<0.05], but also higher neuron density (24 hours: 846± 16 vs 756±24,P<0.05; 72 hours: 882±22 vs 785± 18, P<0.05) and lower NR2A (24 hours: 123.0±4.9 vs 95.0±2.5, P<0.05; 72 hours: 77.8±4.1 vs 54.2±3.9, P<0.05) and NR2B (24 hours: 98.5±2.7 vs 76.3±2.4, P<0.05; 72hours: 67.2

  2. Stargazin regulates AMPA receptors trafficking-a new target for pain control%Stargazin调节使君子酸受体亚基转运和突触靶向——疼痛治疗的新靶点

    Institute of Scientific and Technical Information of China (English)

    郭瑞娟; 王云; 吴安石; 岳云

    2012-01-01

    Background α-amino-3-hydroxy-5 -methy-4-isoxazole propionate (AMPA)receptor mediates the most excitatory synaptic transmission in the central nervous system,and is involved in the pain signal transmission.As a member of trans-membrane AMPA receptor regulated protein family,Stargazin serves as a critical protein involved in the trafficking and synaptic targeting ofAMPA receptors and plays an important role in the AMPA receptor-mediated pain. Objective In this review,we will bring together the evidence that Stargazin controls the AMPA receptor subunits trafficking,synaptic insertion and regulates pain signal transmission.Content Stargazin is responsible for the AMPA receptor subunits trafficking into cellular membrane.The interaction between Stargazin and postsynaptic density-95 (PSD-95) controls the synaptic insertion of AMPA receptor subunits.The phosphrylation of Stargazin affects the interaction with PSD-95.Therefore,Stargazin may be implicated in pain transmission via regulating AMPA receptor function. Trend Downregulation of Stargazin expression or disrupting the postsynaptic interaction between stargazin and PSD-95 may be a new approach for pain control and deserves further investigation.%背景 使君子酸(α-amino-3 -hydroxy-5 -methy-4-isoxazole propionate,AMPA)受体是中介中枢神经系统兴奋性突触传递的主要受体,参与疼痛信号传递.Stargazin蛋白是一种AMPA受体调节蛋白,在AMPA受体中介的疼痛信号传递中扮演重要角色.目的 对Stargazin蛋白调节AMPA受体亚基在胞浆胞膜中的转运作用及与疼痛的关系作用进行回顾与总结.内容 Stargazin蛋白可调节AMPA受体不同亚基在胞浆胞膜转运,并通过与突触后膜致密蛋白-95 (postsynaptic density-95,PSD-95)的相互作用,促进AMPA受体亚基突触靶向;Stargazin还通过C末端自身磷酸化修饰改变与PSD-95蛋白相互作用的强度,控制AMPA受体的突触靶向.Stargazin通过调节AMPA受

  3. Long-term changes in brain following continuous phencyclidine administration: An autoradiographic study using flunitrazepam, ketanserin, mazindol, quinuclidinyl benzilate, piperidyl-3,4-{sup 3}H(N)-TCP, and AMPA receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, Gaylord; Keys, Alan; Noguchi, Kevin [Univ. of California Los Angeles, Dept. of Psychology, Los Angeles, CA (United States)

    1999-05-01

    Phencyclidine induces a model psychosis which can persist for prolonged periods and presents a strong drug model of schizophrenia. When given continuously for several days to rats, phencyclidine and other N-methyl-D-aspartate (NMDA) antagonists induce neural degeneration in a variety of limbic structures, including retrosplenial cortex, hippocampus, septohippocampal projections, and piriform cortex. In an attempt to further clarify the mechanisms underlying these degeneration patterns, autoradiographic studies using a variety of receptor ligands were conducted in animals 21 days after an identical dosage of the continuous phencyclidine administration employed in the previous degeneration studies. The results indicated enduring alterations in a number of receptors: these included decreased piperidyl-3,4-{sup 3}H(N)-TCP (TCP), flunitrazepam, and mazindol binding in many of the limbic regions in which degeneration has been reported previously. Quinuclidinyl benzilate and (AMPA) binding were decreased in anterior cingulate and piriform cortex, and in accumbens and striatum. Piperidyl-3,4-{sup 3}H(N)-TCP binding was decreased in most hippocampal regions. Many of these long-term alterations would not have been predicted by prior studies of the neurotoxic effects of continuous phencyclidine, and these results do not suggest a unitary source for the neurotoxicity. Whereas retrosplenial cortex, the structure which degenerates earliest, showed minimal alterations, some of the most consistent, long term alterations were in structures which evidence no immediate signs of neural degeneration, such as anterior cingulate cortex and caudate nucleus. In these structures, some of the receptor changes appeared to develop gradually (they were not present immediately after cessation of drug administration), and thus were perhaps due to changed input from regions evidencing neurotoxicity. Some of these findings, particularly in anterior cingulate, may have implications for models of

  4. Excitatory synapses are stronger in the hippocampus of Rett syndrome mice due to altered synaptic trafficking of AMPA-type glutamate receptors.

    Science.gov (United States)

    Li, Wei; Xu, Xin; Pozzo-Miller, Lucas

    2016-03-15

    Deficits in long-term potentiation (LTP) at central excitatory synapses are thought to contribute to cognitive impairments in neurodevelopmental disorders associated with intellectual disability and autism. Using the methyl-CpG-binding protein 2 (Mecp2) knockout (KO) mouse model of Rett syndrome, we show that naïve excitatory synapses onto hippocampal pyramidal neurons of symptomatic mice have all of the hallmarks of potentiated synapses. Stronger Mecp2 KO synapses failed to undergo LTP after either theta-burst afferent stimulation or pairing afferent stimulation with postsynaptic depolarization. On the other hand, basal synaptic strength and LTP were not affected in slices from younger presymptomatic Mecp2 KO mice. Furthermore, spine synapses in pyramidal neurons from symptomatic Mecp2 KO are larger and do not grow in size or incorporate GluA1 subunits after electrical or chemical LTP. Our data suggest that LTP is occluded in Mecp2 KO mice by already potentiated synapses. The higher surface levels of GluA1-containing receptors are consistent with altered expression levels of proteins involved in AMPA receptor trafficking, suggesting previously unidentified targets for therapeutic intervention for Rett syndrome and other MECP2-related disorders.

  5. Autoimmune epilepsy: distinct subpopulations of epilepsy patients harbor serum autoantibodies to either glutamate/AMPA receptor GluR3, glutamate/NMDA receptor subunit NR2A or double-stranded DNA.

    Science.gov (United States)

    Ganor, Yonatan; Goldberg-Stern, Hadassa; Lerman-Sagie, Tally; Teichberg, Vivian I; Levite, Mia

    2005-06-01

    We studied 82 patients with different types of epilepsy and 49 neurologically intact non-epileptic controls, and identified three different subpopulations of epilepsy patients bearing significantly elevated levels of autoantibodies to either GluR3B-peptide of glutamate/AMPA receptor subtype 3 (17/82; 21% of patients), or to a peptide of NR2A subunit of glutamate/NMDA receptors (15/82; 18%), or to double-stranded (ds) DNA, the hallmark of systemic lupus erythematosus (13/80; 16%). Most patients had only one antibody type, arguing against cross-reactivity. Nearly all anti-dsDNA Ab-positive patients did not harbor anti-nuclear autoantibodies. Most patients had no history of brain damage, febrile convulsions, early onset epilepsy, acute epilepsy or intractable seizures. We suggest to measure the 'autoimmune-fingerprints' of epilepsy patients for diagnostic and therapeutic purposes. PMID:15978777

  6. SYM 2206 (a potent non-competitive AMPA receptor antagonist elevates the threshold for maximal electroshock-induced seizures in mice

    Directory of Open Access Journals (Sweden)

    Luszczki Jarogniew J.

    2014-06-01

    Full Text Available The aim of this study was to determine the effect of SYM 2206 (a potent non-competitive AMPA receptor antagonist on the threshold for maximal electroshock (MEST-induced seizures in mice. Electroconvulsions were produced in mice by means of a current (sinewave, 50 Hz, maximum 500 V, strength from 4 to 14 mA, 0.2-s stimulus duration, tonic hind limb extension taken as the endpoint delivered via ear-clip electrodes. SYM 2206 administered systemically (i.p., 30 min before the MEST test, at doses of 2.5 and 5 mg/kg, did not alter the threshold for maximal electroconvulsions in mice. In contrast, SYM 2206 at doses of 10 and 20 mg/kg significantly elevated the threshold for maximal electroconvulsions in mice (P<0.01 and P<0.001. Linear regression analysis of SYM 2206 doses and their corresponding threshold increases allowed for the determination of threshold increasing doses by 20% and 50% (TID20 and TID50 values that elevate the threshold in drug-treated animals over the threshold in control animals. The experimentally derived TID20 and TID50 values for SYM 2206 were 4.25 and 10.56 mg/kg, respectively. SYM 2206 dose-dependently increased the threshold for MEST-induced seizures, suggesting the anticonvulsant action of the compound in this seizure model in mice.

  7. S-SCAM/MAGI-2 is an essential synaptic scaffolding molecule for the GluA2-containing maintenance pool of AMPA receptors.

    Science.gov (United States)

    Danielson, Eric; Zhang, Nanyan; Metallo, Jacob; Kaleka, Kanwardeep; Shin, Seung Min; Gerges, Nashaat; Lee, Sang H

    2012-05-16

    Synaptic plasticity, the cellular basis of learning and memory, involves the dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses. One of the remaining key unanswered aspects of AMPAR trafficking is the mechanism by which synaptic strength is preserved despite protein turnover. In particular, the identity of AMPAR scaffolding molecule(s) involved in the maintenance of GluA2-containing AMPARs is completely unknown. Here we report that the synaptic scaffolding molecule (S-SCAM; also called membrane-associated guanylate kinase inverted-2 and atrophin interacting protein-1) plays the critical role of maintaining synaptic strength. Increasing S-SCAM levels in rat hippocampal neurons led to specific increases in the surface AMPAR levels, enhanced AMPAR-mediated synaptic transmission, and enlargement of dendritic spines, without significantly effecting GluN levels or NMDA receptor (NMDAR) EPSC. Conversely, decreasing S-SCAM levels by RNA interference-mediated knockdown caused the loss of synaptic AMPARs, which was followed by a severe reduction in the dendritic spine density. Importantly, S-SCAM regulated synaptic AMPAR levels in a manner, dependent on GluA2 not GluA1, sensitive to N-ethylmaleimide-sensitive fusion protein interaction, and independent of activity. Further, S-SCAM increased surface AMPAR levels in the absence of PSD-95, while PSD-95 was dependent on S-SCAM to increase surface AMPAR levels. Finally, S-SCAM overexpression hampered NMDA-induced internalization of AMPARs and prevented the induction of long term-depression, while S-SCAM knockdown did not. Together, these results suggest that S-SCAM is an essential AMPAR scaffolding molecule for the GluA2-containing pool of AMPARs, which are involved in the constitutive pathway of maintaining synaptic strength. PMID:22593065

  8. Ca(2+ permeable AMPA receptor induced long-term potentiation requires PI3/MAP kinases but not Ca/CaM-dependent kinase II.

    Directory of Open Access Journals (Sweden)

    Suhail Asrar

    Full Text Available Ca(2+ influx via GluR2-lacking Ca(2+-permeable AMPA glutamate receptors (CP-AMPARs can trigger changes in synaptic efficacy in both interneurons and principle neurons, but the underlying mechanisms remain unknown. We took advantage of genetically altered mice with no or reduced GluR2, thus allowing the expression of synaptic CP-AMPARs, to investigate the molecular signaling process during CP-AMPAR-induced synaptic plasticity at CA1 synapses in the hippocampus. Utilizing electrophysiological techniques, we demonstrated that these receptors were capable of inducing numerous forms of long-term potentiation (referred to as CP-AMPAR dependent LTP through a number of different induction protocols, including high-frequency stimulation (HFS and theta-burst stimulation (TBS. This included a previously undemonstrated form of protein-synthesis dependent late-LTP (L-LTP at CA1 synapses that is NMDA-receptor independent. This form of plasticity was completely blocked by the selective CP-AMPAR inhibitor IEM-1460, and found to be dependent on postsynaptic Ca(2+ ions through calcium chelator (BAPTA studies. Surprisingly, Ca/CaM-dependent kinase II (CaMKII, the key protein kinase that is indispensable for NMDA-receptor dependent LTP at CA1 synapses appeared to be not required for the induction of CP-AMPAR dependent LTP due to the lack of effect of two separate pharmacological inhibitors (KN-62 and staurosporine on this form of potentiation. Both KN-62 and staurosporine strongly inhibited NMDA-receptor dependent LTP in control studies. In contrast, inhibitors for PI3-kinase (LY294002 and wortmannin or the MAPK cascade (PD98059 and U0126 significantly attenuated this CP-AMPAR-dependent LTP. Similarly, postsynaptic infusion of tetanus toxin (TeTx light chain, an inhibitor of exocytosis, also had a significant inhibitory effect on this form of LTP. These results suggest that distinct synaptic signaling underlies GluR2-lacking CP-AMPAR-dependent LTP, and reinforces

  9. Cortical kindling induces elevated levels of AMPA and GABA receptor subunit mRNA within the amygdala/piriform region and is associated with behavioral changes in the rat.

    Science.gov (United States)

    Henderson, Amy K; Galic, Michael A; Teskey, G Campbell

    2009-11-01

    Cortical kindling causes alterations within the motor cortex and results in long-standing motor deficits. Less attention has been directed to other regions that also participate in the epileptiform activity. We examined if cortical kindling could induce changes in excitatory and inhibitory receptor subunit mRNA in the amygdala/piriform regions and if such changes are associated with behavioral deficits. After cortical kindling, amygdala/piriform regions were dissected to analyze mRNA levels of NMDA, AMPA, and GABA receptor subunits using reverse transcription polymerase chain reaction, or rats were subjected to a series of behavioral tests. Kindled rats had significantly greater amounts of GluR1 and GluR2 AMPA receptor mRNA, and alpha1 and alpha2 GABA receptor subunit mRNA, compared with sham controls, which was associated with greater anxiety-like behaviors in the elevated plus maze and reduced freezing behaviors in the fear conditioning task. In summary, cortical kindling produces dynamic receptor subunit changes in regions in addition to the seizure focus.

  10. AMPA Receptor-mTOR Activation Is Required for the Antidepressant-like Effects of Sarcosine during the Forced Swim Test in rats: Insertion of AMPA Receptor may Play a Role

    Directory of Open Access Journals (Sweden)

    Kuang-Ti eChen

    2015-06-01

    Full Text Available Sarcosine, an endogenous amino acid, is a competitive inhibitor of the type I glycine transporter and an N-methyl-D-aspartate receptor (NMDAR coagonist. Recently, we found that sarcosine, an NMDAR enhancer, can improve depression-related behaviors in rodents and humans. This result differs from previous studies, which have reported antidepressant effects of NMDAR antagonists. The mechanisms underlying the therapeutic response of sarcosine remain unknown. This study examines the role of mammalian target of rapamycin (mTOR signaling and α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor (AMPAR activation, which are involved in the antidepressant-like effects of several glutamatergic system modulators. The effects of sarcosine in a forced swim test (FST and the expression levels of phosphorylated mTOR signaling proteins were examined in the absence or presence of mTOR and AMPAR inhibitors. In addition, the influence of sarcosine on AMPAR trafficking was determined by analyzing the phosphorylation of AMPAR subunit GluR1 at the PKA site (often considered an indicator for GluR1 membrane insertion in neurons. A single injection of sarcosine exhibited antidepressant-like effects in rats in the FST and rapidly activated the mTOR signaling pathway, which were significantly blocked by mTOR inhibitor rapamycin or the AMPAR inhibitor 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(fquinoxaline (NBQX pretreatment. Moreover, NBQX pretreatment eliminated the ability of sarcosine to stimulate the phosphorylated mTOR signaling proteins. Furthermore, GluR1 phosphorylation at its PKA site was significantly increased after an acute in vivo sarcosine treatment. The results demonstrated that sarcosine exerts antidepressant-like effects by enhancing AMPAR–mTOR signaling pathway activity and facilitating AMPAR membrane insertion.Highlights:- A single injection of sarcosine rapidly exerted antidepressant-like effects with a concomitant increase in the activation of the

  11. Enhanced long-term and impaired short-term spatial memory in GluA1 AMPA receptor subunit knockout mice: Evidence for a dual-process memory model

    OpenAIRE

    Sanderson, David J.; Good, Mark A.; Skelton, Kathryn; Sprengel, Rolf; Seeburg, Peter H.; Rawlins, J. Nicholas P.; Bannerman, David M.

    2009-01-01

    The GluA1 AMPA receptor subunit is a key mediator of hippocampal synaptic plasticity and is especially important for a rapidly-induced, short-lasting form of potentiation. GluA1 gene deletion impairs hippocampus-dependent, spatial working memory, but spares hippocampus-dependent spatial reference memory. These findings may reflect the necessity of GluA1-dependent synaptic plasticity for short-term memory of recently visited places, but not for the ability to form long-term associations betwee...

  12. AMPA Receptor-mTOR Activation is Required for the Antidepressant-Like Effects of Sarcosine during the Forced Swim Test in Rats: Insertion of AMPA Receptor may Play a Role.

    Science.gov (United States)

    Chen, Kuang-Ti; Tsai, Mang-Hung; Wu, Ching-Hsiang; Jou, Ming-Jia; Wei, I-Hua; Huang, Chih-Chia

    2015-01-01

    Sarcosine, an endogenous amino acid, is a competitive inhibitor of the type I glycine transporter and an N-methyl-d-aspartate receptor (NMDAR) coagonist. Recently, we found that sarcosine, an NMDAR enhancer, can improve depression-related behaviors in rodents and humans. This result differs from previous studies, which have reported antidepressant effects of NMDAR antagonists. The mechanisms underlying the therapeutic response of sarcosine remain unknown. This study examines the role of mammalian target of rapamycin (mTOR) signaling and α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor (AMPAR) activation, which are involved in the antidepressant-like effects of several glutamatergic system modulators. The effects of sarcosine in a forced swim test (FST) and the expression levels of phosphorylated mTOR signaling proteins were examined in the absence or presence of mTOR and AMPAR inhibitors. In addition, the influence of sarcosine on AMPAR trafficking was determined by analyzing the phosphorylation of AMPAR subunit GluR1 at the PKA site (often considered an indicator for GluR1 membrane insertion in neurons). A single injection of sarcosine exhibited antidepressant-like effects in rats in the FST and rapidly activated the mTOR signaling pathway, which were significantly blocked by mTOR inhibitor rapamycin or the AMPAR inhibitor 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX) pretreatment. Moreover, NBQX pretreatment eliminated the ability of sarcosine to stimulate the phosphorylated mTOR signaling proteins. Furthermore, GluR1 phosphorylation at its PKA site was significantly increased after an acute in vivo sarcosine treatment. The results demonstrated that sarcosine exerts antidepressant-like effects by enhancing AMPAR-mTOR signaling pathway activity and facilitating AMPAR membrane insertion. Highlights-A single injection of sarcosine rapidly exerted antidepressant-like effects with a concomitant increase in the activation of the mammalian

  13. Domoic Acid-Induced Neurotoxicity Is Mainly Mediated by the AMPA/KA Receptor: Comparison between Immature and Mature Primary Cultures of Neurons and Glial Cells from Rat Cerebellum

    Directory of Open Access Journals (Sweden)

    Helena T. Hogberg

    2011-01-01

    Full Text Available Domoic acid (DomA is a naturally occurring shellfish toxin that can induce brain damage in mammalians. Neonates have shown increased sensitivity to DomA-induced toxicity, and prenatal exposure has been associated with e.g. decreased brain GABA levels, and increased glutamate levels. Here, we evaluated DomA-induced toxicity in immature and mature primary cultures of neurons and glial cells from rat cerebellum by measuring the mRNA levels of selected genes. Moreover, we assessed if the induced toxicity was mediated by the activation of the AMPA/KA and/or the NMDA receptor. The expression of all studied neuronal markers was affected after DomA exposure in both immature and mature cultures. However, the mature cultures seemed to be more sensitive to the treatment, as the effects were observed at lower concentrations and at earlier time points than for the immature cultures. The DomA effects were completely prevented by the antagonist of the AMPA/KA receptor (NBQX, while the antagonist of the NMDA receptor (APV partly blocked the DomA-induced effects. Interestingly, the DomA-induced effect was also partly prevented by the neurotransmitter GABA. DomA exposure also affected the mRNA levels of the astrocytic markers in mature cultures. These DomA-induced effects were reduced by the addition of NBQX, APV, and GABA.

  14. 3-pyrazolone analogues of the 3-isoxazolol metabotropic excitatory amino acid receptor agonist homo-AMPA. Synthesis and pharmacological testing

    DEFF Research Database (Denmark)

    Zimmermann, D.; Janin, Y.L.; Brehm, L.;

    1999-01-01

    -4-(1,2-dihydro-5-methyl-3-oxo-3H-pyrazol-4-yl)butyric acid (1) and (RS)-2-amino-4-(1,2-dihydro-1,5-dimethyl-3-oxo-3H-pyrazol-4-yl)butyric acid (2). At a number of steps in the reaction sequences used, the reactions took unexpected courses and provided products which could not be transformed......We have previously shown that the higher homologue of (S)-glutamic acid [(S)-Glu], (S)-a-aminoadipic acid [(S)-a-AA] is selectively recognized by the mGlu and mGlu subtypes of the family of metabotropic glutamic acid (mGlu) receptors. Furthermore, a number of analogues of (S)-a-AA, in which...... the terminal carboxyl group has been replaced by various bioisosteric groups, such as phosphonic acid or 3-isoxazolol groups, have been shown to interact selectively with different subtypes of mGlu receptors. In this paper we report the synthesis of the 3-pyrazolone bioisosteres of a-AA, compounds (RS)-2-amino...

  15. Age-dependent modifications of AMPA receptor subunit expression levels and related cognitive effects in 3xTg-AD mice

    Directory of Open Access Journals (Sweden)

    Pamela eCantanelli

    2014-08-01

    Full Text Available GluA1, GluA2, GluA3, and GluA4 are the constitutive subunits of AMPA receptors (AMPARs, the major mediators of fast excitatory transmission in the mammalian central nervous system. Most AMPARs are Ca2+-impermeable because of the presence of the GluA2 subunit. GluA2 mRNA undergoes an editing process that results in a Q to R substitution, a key factor in the regulation of AMPAR Ca2+-permeability. AMPARs lacking GluA2 or containing the unedited subunit are permeable to Ca2+ and Zn2+. The phenomenon physiologically modulates synaptic plasticity while, in pathologic conditions, leads to increased vulnerability to excitotoxic neuronal death. Given the importance of these subunits, we have therefore evaluated possible associations between changes in expression levels of AMPAR subunits and development of cognitive deficits in 3xTg-AD mice, a widely investigated transgenic mouse model of Alzheimer’s disease. With qRT-PCR, we assayed hippocampal mRNA expression levels of GluA1-4 subunits occurring in young [3 months of age (m.o.a.] and old (12 m.o.a Tg-AD mice and made comparisons with levels found in age-matched wild type (WT mice. Efficiency of GluA2 RNA editing was also analyzed. All animals were cognitively tested for short- and long-term spatial memory with the Morris Water Maze (MWM navigation task. 3xTg-AD mice showed age-dependent decreases of mRNA levels for all the AMPAR subunits, with the exception of GluA2. Editing remained fully efficient with aging in 3xTg-AD and WT mice. A one-to-one correlation analysis between MWM performances and GluA1-4 mRNA expression profiles showed negative correlations between GluA2 levels and MWM performances in young 3xTg-AD mice. On the contrary, positive correlations between GluA2 mRNA and MWM performances were found in young WT mice. Our data suggest that increases of AMPARs that contain GluA1, GluA3, and GluA4 subunits may help in maintaining cognition in pre-symptomatic 3xTg-AD mice.

  16. Role of Site-Specific N-Glycans Expressed on GluA2 in the Regulation of Cell Surface Expression of AMPA-Type Glutamate Receptors.

    Directory of Open Access Journals (Sweden)

    Yusuke Takeuchi

    Full Text Available The AMPA-type glutamate receptor (AMPAR, which is a tetrameric complex composed of four subunits (GluA1-4 with several combinations, mediates the majority of rapid excitatory synaptic transmissions in the nervous system. Cell surface expression levels of AMPAR modulate synaptic plasticity, which is considered one of the molecular bases for learning and memory formation. To date, a unique trisaccharide (HSO3-3GlcAβ1-3Galβ1-4GlcNAc, human natural killer-1 (HNK-1 carbohydrate, was found expressed specifically on N-linked glycans of GluA2 and regulated the cell surface expression of AMPAR and the spine maturation process. However, evidence that the HNK-1 epitope on N-glycans of GluA2 directly affects these phenomena is lacking. Moreover, it is thought that other N-glycans on GluA2 also have potential roles in the regulation of AMPAR functions. In the present study, using a series of mutants lacking potential N-glycosylation sites (N256, N370, N406, and N413 within GluA2, we demonstrated that the mutant lacking the N-glycan at N370 strongly suppressed the intracellular trafficking of GluA2 from the endoplasmic reticulum (ER in HEK293 cells. Cell surface expression of GluA1, which is a major subunit of AMPAR in neurons, was also suppressed by co-expression of the GluA2 N370S mutant. The N370S mutant and wild-type GluA2 were co-immunoprecipitated with GluA1, suggesting that N370S was properly associated with GluA1. Moreover, we found that N413 was the main potential site of the HNK-1 epitope that promoted the interaction of GluA2 with N-cadherin, resulting in enhanced cell surface expression of GluA2. The HNK-1 epitope on N-glycan at the N413 of GluA2 was also involved in the cell surface expression of GluA1. Thus, our data suggested that site-specific N-glycans on GluA2 regulate the intracellular trafficking and cell surface expression of AMPAR.

  17. Differential modulation by AMPA of signals from red- and green-sensitive cones in carp retinal luminosity-type hori-zontal cells

    Institute of Scientific and Technical Information of China (English)

    杨如; 杨雄里

    2001-01-01

    Intracellular recordings were made from luminosity-type horizontal cells (LHCs) in the isolated superfused carp retina and the effect of AMPA (a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid), a glutamate receptor agonist, on these cells was studied. AMPA suppressed the responses of LHCs driven by red-sensitive (R-) cones whereas it potentiated the responses driven by green-sensitive (G-) cones. The AMPA effect could be completely blocked by GYKI 53655, a specific AMPA receptor antagonist, indicating the exclusive involvement of AMPA-preferring receptors. The AMPA effect persisted in the presence of picrotoxin (PTX) or dihydrokainic acid (DHK), suggesting that the feedback from LHCs onto cones and glutamate transporters on cones may not be involved. It is suggested that there may exist different AMPA receptor subtypes with distinct characteristics on LHCs, which mediate signal transfer from R- and G-cones to LHCs, respectively.

  18. AMPA/NMDA cooperativity and integration during a single synaptic event.

    Science.gov (United States)

    Di Maio, Vito; Ventriglia, Francesco; Santillo, Silvia

    2016-10-01

    Coexistence of AMPA and NMDA receptors in glutamatergic synapses leads to a cooperative effect that can be very complex. This effect is dependent on many parameters including the relative and absolute number of the two types of receptors and biophysical parameters that can vary among synapses of the same cell. Herein we simulate the AMPA/NMDA cooperativity by using different number of the two types of receptors and considering the effect of the spine resistance on the EPSC production. Our results show that the relative number of NMDA with respect to AMPA produces a different degree of cooperation which depends also on the spine resistance. PMID:27299885

  19. Positive modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors reverses subcronic PCP-induced deficits in the novel object recognition task in rats

    DEFF Research Database (Denmark)

    Nielsen, Trine Damgaard; Larsen, Dorrit Bjerg; Hansen, Suzanne Lisbet;

    2010-01-01

    Cognitive deficits are a major clinical unmet need in schizophrenia. The psychotomimetic drug phencyclicline (PCP) is widely applied in rodents to mimic symptoms of schizophrenia, including cognitive deficits. Precious studies have shown that sub-chronic PCP induces an enduring episodic memory...... deficit in female Lister hooded rats in teh novel object recognition (NOR) task. Here we show that positive modulation of AMPA receptor (AMPAR) mediated glutamate transmission alleviates cognitive deficits induced by sub-chronic PCP treatment. Female Lister hooded rats were treated sub......-cbronic PCP treatment induced a significant decrease in the discrimination index (DI) and both ampakines CX546 and CX516 were able to reverse this diruption of object memory in rats in the novel object recognition task. These data suggest that positive AMPAR modulation may represent a mechanism for treatment...

  20. 切口痛大鼠脊髓背角GluR1-AMPA受体和GluR2-AMPA受体胞浆至胞膜转运的变化%Changes in trafficking of GluR1-containing AMPA receptor and GluR2-containing AMPA receptor from cytoplasm to cell membrane in spinal dorsal horn in a rat model of incisional pain

    Institute of Scientific and Technical Information of China (English)

    郭瑞娟; 王云; 时蓉; 吴安石; 岳云

    2012-01-01

    Objective To investigate the changes in trafficking of GluRl-containing AMPA (GluR1-AMPA) receptor and GluR2-AMPA receptor from cytoplasm to cell membrane in the spinal cord dorsal horn in a rat model of incisional pain.Methods Thirty-two adult male SD rats aged 6-8 weeks weighing 280-300 g were randomly divided into 2 groups:control group (group C,n =8) and incisional pain group (group Ⅰ,n =24).An 1 cm long incision was made in the plautar surface of right hindpaw according to Brennan et al.in group Ⅰ.Cumulative pain score (CPS) and paw-withdrawal threshold to yon Frey stimuli (PWT) were measured at 3 h and day 1 and 3 afar incision ( T1,2,3 ).The animals were sacrificed after pain behavior assessment.Their lumbar segments of the spinal cord (L3-6) were removed.The expression of GluR1 and GluR2 in cell membrane and cytoplasm in spinal cord dorsal horn was determined by Western blot analysis.The co-expression of Stargazing with GluR1 and GluR2 in the spinal cord dorsal horn was examined by co-immuno-precipitation.Results The CPS was increased and PWT decreased; the GluR1 expression in cytoplasm was decreased while the expression of GluR1 in cell membrane and the co-expression of Stargazing with GluR1 were up-regulated in group Ⅰ as compared with group C.There was no significant change in the expression of GluR2 in cytoplasm and cell membrane and the co-expression of Stargazing with GluR2 in group Ⅰ as compared with group C.Conclusion GluR1-AMPA receptor transfers from cytoplasm to cell membrane but GluR2-AMPA receptor does not in rats with incisional pain.%目的 探讨切口痛大鼠脊髓背角含谷氨酸受体1亚基的使君子酸(GluR1-AMPA)受体和含谷氨酸受体2亚基的使君子酸(GluR2-AMPA)受体胞浆至胞膜转运的变化.方法 成年雄性清洁级SD大鼠32只,体重280~ 300 g,6~8周龄,采用随机数表法,将其随机分为2组:正常对照组(C组,n=8)和切口痛组(Ⅰ组,n=24).Ⅰ组大鼠制作右足底

  1. Lessons from crystal structures of kainate receptors

    DEFF Research Database (Denmark)

    Møllerud, Stine; Frydenvang, Karla Andrea; Pickering, Darryl S;

    2016-01-01

    structure and how they bind agonists, antagonists and ions. The first structure of the ligand-binding domain of the GluK1 subunit was reported in 2005, seven years after publication of the crystal structure of a soluble construct of the ligand-binding domain of the AMPA-type subunit GluA2. Today, a full......-length structure has been determined of GluK2 by cryo electron microscopy to 7.6 Å resolution as well as 84 high-resolution crystal structures of N-terminal domains and ligand-binding domains, including agonist and antagonist bound structures, modulatory ions and mutations. However, there are still many unanswered...

  2. Two-stage AMPA receptor trafficking in classical conditioning and selective role for glutamate receptor subunit 4 (tGluA4) flop splice variant.

    Science.gov (United States)

    Zheng, Zhaoqing; Sabirzhanov, Boris; Keifer, Joyce

    2012-07-01

    Previously, we proposed a two-stage model for an in vitro neural correlate of eyeblink classical conditioning involving the initial synaptic incorporation of glutamate receptor A1 (GluA1)-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid type receptors (AMPARs) followed by delivery of GluA4-containing AMPARs that support acquisition of conditioned responses. To test specific elements of our model for conditioning, selective knockdown of GluA4 AMPAR subunits was used using small-interfering RNAs (siRNAs). Recently, we sequenced and characterized the GluA4 subunit and its splice variants from pond turtles, Trachemys scripta elegans (tGluA4). Analysis of the relative abundance of mRNA expression by real-time RT-PCR showed that the flip/flop variants of tGluA4, tGluA4c, and a novel truncated variant tGluA4trc1 are major isoforms in the turtle brain. Here, transfection of in vitro brain stem preparations with anti-tGluA4 siRNA suppressed conditioning, tGluA4 mRNA and protein expression, and synaptic delivery of tGluA4-containing AMPARs but not tGluA1 subunits. Significantly, transfection of abducens motor neurons by nerve injections of tGluA4 flop rescue plasmid prior to anti-tGluA4 siRNA application restored conditioning and synaptic incorporation of tGluA4-containing AMPARs. In contrast, treatment with rescue plasmids for tGluA4 flip or tGluA4trc1 failed to rescue conditioning. Finally, treatment with a siRNA directed against GluA1 subunits inhibited conditioning and synaptic delivery of tGluA1-containing AMPARs and importantly, those containing tGluA4. These data strongly support our two-stage model of conditioning and our hypothesis that synaptic incorporation of tGluA4-containing AMPARs underlies the acquisition of in vitro classical conditioning. Furthermore, they suggest that tGluA4 flop may have a critical role in conditioning mechanisms compared with the other tGluA4 splice variants.

  3. Role of Hippocampal 5-HT1A Receptor and Its Modulation to NMDA Receptor and AMPA Receptor in Depression Induced by Chronic Unpredictable Mild Stress%应激性抑郁样行为发生中海马5-羟色胺1A受体的作用及其对NMDA受体和AMPA受体的调节

    Institute of Scientific and Technical Information of China (English)

    问黎敏; 安书成; 刘慧

    2012-01-01

    为探讨慢性不可预见性温和应激(chronic unpredictable mild stress,CUMS)诱发抑郁样行为发生中海马5-羟色胺1A受体(5-hydroxytryptamine receptor 1A,5-HT1AR)表达与作用,及其对谷氨酸N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid,NMDA)受体和α-氨基羟甲基异恶唑丙酸(α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid,AMPA)受体的影响.通过建立CUMS动物模型,给应激抑郁模型大鼠海马微量注射5-HT1A受体激动剂、给正常大鼠海马微量注射5-HT1A受体拮抗剂,测量大鼠体重变化率,并采用糖水偏爱测试、旷场实验和悬尾实验等方法对大鼠进行行为学检测,运用Western blot和ELISA方法检测大鼠海马组织中5-HT1AR和NMDAR和AMPAR的关键亚基的表达以及磷酸化水平.结果显示,与对照组相比,CUMS组大鼠表现出抑郁样行为,海马5-HT1AR、AMPA受体的GluR2/3亚基表达及磷酸化明显降低,NMDA受体的NR1和NR2B亚基表达及磷酸化显著增加;正常大鼠海马微量注射5-HT1A受体拮抗剂WAY100635,动物行为学表现及AMPA受体、NMDA受体表达及磷酸化水平均与CUMS组相同;注射5-HT1A受体激动剂8-OH-DPAT能逆转应激诱导的上述改变.以上结果表明,CUMS诱发抑郁榉行为与海马5-HT1AR表达下降,AMPAR表达量及磷酸化水平降低,NMDAR表达量及磷酸化水平升高有关.5-HT通过5-HT1AR产生抗抑郁作用.5-HT1AR激动剂抗抑郁作用与降低NMDAR表达量及磷酸化水平,提高AMPAR表达量及磷酸化水平密切相关.%Stressors markedly influence central neurochemical and hormonal processes and thus play a pivotal role in the occurrence of depressive illnesses. As the center for stress response and the potential target for stressfulprovocation, the hippocampus is becoming a focus in depression research. Although a large number of behavioral paradigms have been proposed as animal models of depression, only a few are considered potentially useful research tools with

  4. Design, synthesis and structure-activity relationships of novel phenylalanine-based amino acids as kainate receptors ligands

    DEFF Research Database (Denmark)

    Szymańska, Ewa; Chałupnik, Paulina; Szczepańska, Katarzyna;

    2016-01-01

    A new series of carboxyaryl-substituted phenylalanines was designed, synthesized and pharmacologically characterized in vitro at native rat ionotropic glutamate receptors as well as at cloned homomeric kainate receptors GluK1-GluK3. Among them, six compounds bound to GluK1 receptor subtypes...... with reasonable affinity (Ki values in the range of 4.9-7.5 uM). A structure-activity relationship (SAR) for the obtained series, focused mainly on the pharmacological effect of structural modifications in the 4- and 5-position of the phenylalanine ring, was established. To illustrate the results, molecular...... docking of the synthesized series to the X-ray structure of GluK1 ligand binding core was performed. The influence of individual substituents at the phenylalanine ring for both the affinity and selectivity at AMPA, GluK1 and GluK3 receptors was analyzed, giving directions for future studies....

  5. AMPA experimental communications systems

    Science.gov (United States)

    Beckerman, D.; Fass, S.; Keon, T.; Sielman, P.

    1982-01-01

    The program was conducted to demonstrate the satellite communication advantages of Adaptive Phased Array Technology. A laboratory based experiment was designed and implemented to demonstrate a low earth orbit satellite communications system. Using a 32 element, L-band phased array augmented with 4 sets of weights (2 for reception and 2 for transmission) a high speed digital processing system and operating against multiple user terminals and interferers, the AMPA system demonstrated: communications with austere user terminals, frequency reuse, communications in the face of interference, and geolocation. The program and experiment objectives are described, the system hardware and software/firmware are defined, and the test performed and the resultant test data are presented.

  6. 鞘内注射NMDA和AMPA受体激动剂或拮抗剂对异丙酚抗伤害作用的影响%Effects of intrathecal NMDA and AMPA receptors agonists or antagonists on antinociception of propofol

    Institute of Scientific and Technical Information of China (English)

    许爱军; 段世明; 曾因明

    2004-01-01

    AIM: To study the effects of intrathecal (it) agonists and antagonists of N-methyl-D-aspartate (NMDA) and alphaamino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors and NMDAR1 antisenseoligodeoxynucleotides (AS ODN) on the antinociception of propofol. METHODS: Hot-plate test (HPPT) and acetic acid-induced writhing test were used to measure the nociceptive thresholds in mice. The effects of intrathecal NMDA, AMPA, MK-801, NBQX, or NMDAR1 AS ODN on the antinociception of propofol were observed.RESULTS: Propofol (25, 50 mg/kg, ip) displayed an appreciable antinociceptive effect in hot-plate test and acetic acid-induced writhing test. NMDA (12.5, 25 ng, it) or AMPA (1.25, 2.5 ng, it) exhibited no effects on the behavior but decreased HPPT significantly compared with basal HPPT and aCSF group (P<0.05, P<0.01). No effects on behavior and HPPT were obtained in NMDA (6.25 ng, it) or AMPA (0.625 ng, it) groups. NMDA (6.25, 12.5, and 25 ng, it) dose-dependently decreased the HPPT in propofol-treated group. AMPA (1.25, 2.5 ng, it) also decreased HPPT significantly. MK-801 (0.25, 0.5 μg, it) or NBQX (0.25, 0.5 μg, it) groups had no behavioral changes, two antagonists 0.5 μg but not 0.25 μg increased HPPT in conscious or propofol-treated mice. AS ODN (5, 10, and 20 μg, it) groups exhibited dose-dependent increased in HPPT in propofol-treated groups compared with aCSF group (P<0.05, P<0.01). CONCLUSION: Both agonists NMDA and AMPA reversed the antinociception of propofol.MK-801, NBQX, and NMDAR1 AS ODN potentiated the antinociceptive effects of propofol. Propofol produced antinociception through an interaction with spinal NMDA and AMPA receptors in mice.

  7. Antidepressant Effects of AMPA and Ketamine Combination: Role of Hippocampal BDNF, Synapsin, and mTOR

    Science.gov (United States)

    Akinfiresoye, Luli; Tizabi, Yousef

    2013-01-01

    Rationale A number of preclinical and clinical studies suggest ketamine, a glutamate NMDA (N-methyl-D-aspartate) receptor antagonist, has a rapid and lasting antidepressant effect when administered either acutely or chronically. It has been postulated that this effect is due to stimulation of AMPA (alpha-amino-3-hydroxy-5-methyl–4-isoxazolepropionic acid) receptors. Objective In this study, we tested whether AMPA alone has an antidepressant effect and if the combination of AMPA and ketamine provides added benefit in Wistar-Kyoto (WKY) rats, a putative animal model of depression. Results Chronic AMPA treatment resulted in a dose dependent antidepressant effect in both the forced swim test (FST) and sucrose preference test. Moreover, chronic administration (10–11d) of combinations of AMPA and ketamine, at doses that were ineffective on their own, resulted in a significant antidepressant effect. The behavioral effects were associated with increases in hippocampal brain derived neurotrophic factor (BDNF), synapsin, and mammalian target of rapamycin (mTOR). Conclusion These findings are the first to provide evidence for an antidepressant effect of AMPA, and suggest the usefulness of AMPA-ketamine combination in treatment of depression. Furthermore, these effects appear to be associated with increases in markers of hippocampal neurogenesis and synaptogenesis, suggesting a mechanism of their action. PMID:23732839

  8. Role of hippocampal AMPA receptors in antidepressant effect of ketamine in rats%海马AMPA受体在氯胺酮对大鼠抗抑郁效应中的作用

    Institute of Scientific and Technical Information of China (English)

    杨春; 高志勤; 杨春; 周志强; 杨建军; 徐建国

    2012-01-01

    Objective To evaluate the role of hippocampal AMPA receptors in the antidepressant effect of ketamine in rats.Methods Thirty male Wistar rats aged 2 months weighing 180-220 g were randomly divided into 3 groups (n =10 each):control group (group C); ketamine group (group K) and AMPA receptor antagonist NBQX group (group N).The animals were forced to swim for 15 min on the 1st day.On the 2nd day,NBQX 10 mg/kg was injected intrapefitoneally in group N; 30 min later,normal saline was injected intraperitoneally in group C,while ketamine 10 mg/kg was injected intraperitoneally in groups K and N.The forced swimming test was performed again for 5 min at 30 min after administration and the immobility time of the rats was recorded.Then the animals were sacrificed and the hippocampus was removed for determination of the expression of phosphorylated rapamycin (p-mTOR) and phosphorylated glutamate receptor 1 (p-GluR1).Results Compared with group C,the immobility time was significantly shortened and the expression of p-mTOR and p-GluR1 up-regulated in group K,and the immobility time was significantly shortened,the expression of p-mTOR up-regulated and the expression of p-GluR1 down-regulated in group N (P < 0.05).Compared with group K,the immobility time was significantly prolonged and the expression of p-mTOR and p-GluR1 down-regulated in group N (P < 0.05 ).Conclusion AMPA receptors in hippocampus are involved in the antidepressant effect of ketamine in rats and the inhibition of mTOR and GluR1 activities may be involved in the mechanism.%目的 评价海马α-氨基-3-羟基-5-甲基-4-异恶唑基丙酸(AMPA)受体在氯胺酮对大鼠抗抑郁效应中的作用.方法 雄性Wistar大鼠30只,2月龄,体重180~220 g,采用随机数字表法,将其随机均分为3组(n=10):对照组(C组)、氯胺酮组(K组)和AMPA受体拮抗剂NBQX组(N组).行强迫游泳实验15 min建立大鼠抑郁模型.于第2天N组腹腔注射NBQX 10 mg/kg;30 min

  9. Alterations in Hippocampal Oxidative Stress, Expression of AMPA Receptor GluR2 Subunit and Associated Spatial Memory Loss by Bacopa monnieri Extract (CDRI-08 in Streptozotocin-Induced Diabetes Mellitus Type 2 Mice.

    Directory of Open Access Journals (Sweden)

    Surya P Pandey

    Full Text Available Bacopa monnieri extract has been implicated in the recovery of memory impairments due to various neurological disorders in animal models and humans. However, the precise molecular mechanism of the role of CDRI-08, a well characterized fraction of Bacopa monnieri extract, in recovery of the diabetes mellitus-induced memory impairments is not known. Here, we demonstrate that DM2 mice treated orally with lower dose of CDRI-08 (50- or 100 mg/kg BW is able to significantly enhance spatial memory in STZ-DM2 mice and this is correlated with a significant decline in oxidative stress and up regulation of the AMPA receptor GluR2 subunit gene expression in the hippocampus. Treatment of DM2 mice with its higher dose (150 mg/kg BW or above shows anti-diabetic effect in addition to its ability to recover the spatial memory impairment by reversing the DM2-induced elevated oxidative stress and decreased GluR2 subunit expression near to their values in normal and CDRI-08 treated control mice. Our results provide evidences towards molecular basis of the memory enhancing and anti diabetic role of the Bacopa monnieri extract in STZ-induced DM2 mice, which may have therapeutic implications.

  10. Radiosynthesis and preliminary PET evaluation of (18)F-labeled 2-(1-(3-fluorophenyl)-2-oxo-5-(pyrimidin-2-yl)-1,2-dihydropyridin-3-yl)benzonitrile for imaging AMPA receptors.

    Science.gov (United States)

    Yuan, Gengyang; Jones, Graham B; Vasdev, Neil; Liang, Steven H

    2016-10-01

    To prompt the development of (18)F-labeled positron emission tomography (PET) tracers for the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, we have prepared (18)F-labeled 2-(1-(3-fluorophenyl)-2-oxo-5-(pyrimidin-2-yl)-1,2-dihydropyridin-3-yl)benzonitrile ([(18)F]8). The radiosynthesis was achieved by a one-pot two-step method that utilized a spirocyclic hypervalent iodine(III) mediated radiofluorination to prepare the (18)F-labeled 1-bromo-3-fluorobenzene ([(18)F]15) intermediate with K(18)F. A subsequent copper(I) iodide mediated coupling reaction was carried out with 2-(2-oxo-5-(pyrimidin-2-yl)-1,2-dihydropyridin-3-yl)benzonitrile (10) to [(18)F]8 in 10±2% uncorrected radiochemical yield relative to starting (18)F-fluoride with >99% radiochemical purity and 29.6±7.4Gbq/μmol specific activity at the time of injection. PET imaging studies with the title radiotracer in normal mice demonstrated good brain uptake (peak standardized uptake value (SUV)=2.3±0.1) and warrants further in vivo validation.

  11. Differential expression of postsynaptic NMDA and AMPA receptor subunits in the hippocampus and prefrontal cortex of the Flinders Sensitive Line rat model of depression

    DEFF Research Database (Denmark)

    Treccani, Giulia; du Jardin, Kristian Gaarn; Wegener, Gregers;

    2016-01-01

    "Using a subcellular fractionation approach for purification of the Triton-Insoluble postsynaptic Fraction (TIF), the authors show altered expression of NMDA receptor subunits in the hippocampus of the Flinders Sensitive Line rat model of depression. Altered composition of NMDA receptors may...... represent a critical component of the depressive-like behaviors observed in this model. " This article is protected by copyright. All rights reserved....

  12. The Structure of a High-Affinity Kainate Receptor: GluK4 Ligand-Binding Domain Crystallized with Kainate.

    Science.gov (United States)

    Kristensen, Ole; Kristensen, Lise Baadsgaard; Møllerud, Stine; Frydenvang, Karla; Pickering, Darryl S; Kastrup, Jette Sandholm

    2016-09-01

    Ionotropic glutamate receptors play a key role in fast neurotransmission in the CNS and have been linked to several neurological diseases and disorders. One subfamily is the kainate receptors, which are grouped into low-affinity (GluK1-3) and high-affinity (GluK4-5) receptors based on their affinity for kainate. Although structures of the ligand-binding domain (LBD) of all low-affinity kainate receptors have been reported, no structures of the high-affinity receptor subunits are available. Here, we present the X-ray structure of GluK4-LBD with kainate at 2.05 Å resolution, together with thermofluor and radiolabel binding affinity data. Whereas binding-site residues in GluK4 are most similar to the AMPA receptor subfamily, the domain closure and D1-D2 interlobe contacts induced by kainate are similar to the low-affinity kainate receptor GluK1. These observations provide a likely explanation for the high binding affinity of kainate at GluK4-LBD.

  13. Transmembrane and ubiquitin-like domain-containing protein 1 (Tmub1/HOPS facilitates surface expression of GluR2-containing AMPA receptors.

    Directory of Open Access Journals (Sweden)

    Hyunjeong Yang

    Full Text Available Some ubiquitin-like (UBL domain-containing proteins are known to play roles in receptor trafficking. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs undergo constitutive cycling between the intracellular compartment and the cell surface in the central nervous system. However, the function of UBL domain-containing proteins in the recycling of the AMPARs to the synaptic surface has not yet been reported.Here, we report that the Transmembrane and ubiquitin-like domain-containing 1 (Tmub1 protein, formerly known as the Hepatocyte Odd Protein Shuttling (HOPS protein, which is abundantly expressed in the brain and which exists in a synaptosomal membrane fraction, facilitates the recycling of the AMPAR subunit GluR2 to the cell surface. Neurons transfected with Tmub1/HOPS-RNAi plasmids showed a significant reduction in the AMPAR current as compared to their control neurons. Consistently, the synaptic surface expression of GluR2, but not of GluR1, was significantly decreased in the neurons transfected with the Tmub1/HOPS-RNAi and increased in the neurons overexpressing EGFP-Tmub1/HOPS. The altered surface expression of GluR2 was speculated to be due to the altered surface-recycling of the internalized GluR2 in our recycling assay. Eventually, we found that GluR2 and glutamate receptor interacting protein (GRIP were coimmunoprecipitated by the anti-Tmub1/HOPS antibody from the mouse brain. Taken together, these observations show that the Tmub1/HOPS plays a role in regulating basal synaptic transmission; it contributes to maintain the synaptic surface number of the GluR2-containing AMPARs by facilitating the recycling of GluR2 to the plasma membrane.

  14. The AMPA receptor subunit GluR-B in its Q/R site-unedited form is not essential for brain development and function

    OpenAIRE

    Kask, Kalev; Zamanillo, Daniel; Rozov, Andrei; Burnashev, Nail; Sprengel, Rolf; Seeburg, Peter H.

    1998-01-01

    Calcium permeability of l-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) in excitatory neurons of the mammalian brain is prevented by coassembly of the GluR-B subunit, which carries an arginine (R) residue at a critical site of the channel pore. The codon for this arginine is created by site-selective adenosine deamination of an exonic glutamine (Q) codon at the pre-mRNA level. Thus, central neurons can potentially control the calcium permeability of AMPARs by the level o...

  15. Postsynaptic VAMP/Synaptobrevin Facilitates Differential Vesicle Trafficking of GluA1 and GluA2 AMPA Receptor Subunits.

    Science.gov (United States)

    Hussain, Suleman; Davanger, Svend

    2015-01-01

    Vertebrate organisms adapt to a continuously changing environment by regulating the strength of synaptic connections between brain cells. Excitatory synapses are believed to increase their strength by vesicular insertion of transmitter glutamate receptors into the postsynaptic plasma membrane. These vesicles, however, have never been demonstrated or characterized. For the first time, we show the presence of small vesicles in postsynaptic spines, often closely adjacent to the plasma membrane and PSD (postsynaptic density). We demonstrate that they harbor vesicle-associated membrane protein 2 (VAMP2/synaptobrevin-2) and glutamate receptor subunit 1 (GluA1). Disrupting VAMP2 by tetanus toxin treatment reduces the concentration of GluA1 in the postsynaptic plasma membrane. GluA1/VAMP2-containing vesicles, but not GluA2/VAMP2-vesicles, are concentrated in postsynaptic spines relative to dendrites. Our results indicate that small postsynaptic vesicles containing GluA1 are inserted directly into the spine plasma membrane through a VAMP2-dependent mechanism.

  16. Postsynaptic VAMP/Synaptobrevin Facilitates Differential Vesicle Trafficking of GluA1 and GluA2 AMPA Receptor Subunits.

    Directory of Open Access Journals (Sweden)

    Suleman Hussain

    Full Text Available Vertebrate organisms adapt to a continuously changing environment by regulating the strength of synaptic connections between brain cells. Excitatory synapses are believed to increase their strength by vesicular insertion of transmitter glutamate receptors into the postsynaptic plasma membrane. These vesicles, however, have never been demonstrated or characterized. For the first time, we show the presence of small vesicles in postsynaptic spines, often closely adjacent to the plasma membrane and PSD (postsynaptic density. We demonstrate that they harbor vesicle-associated membrane protein 2 (VAMP2/synaptobrevin-2 and glutamate receptor subunit 1 (GluA1. Disrupting VAMP2 by tetanus toxin treatment reduces the concentration of GluA1 in the postsynaptic plasma membrane. GluA1/VAMP2-containing vesicles, but not GluA2/VAMP2-vesicles, are concentrated in postsynaptic spines relative to dendrites. Our results indicate that small postsynaptic vesicles containing GluA1 are inserted directly into the spine plasma membrane through a VAMP2-dependent mechanism.

  17. How Ca2+-permeable AMPA receptors, the kinase PKA, and the phosphatase PP2B are intertwined in synaptic LTP and LTD.

    Science.gov (United States)

    Hell, Johannes W

    2016-04-26

    Both synaptic long-term potentiation (LTP) and long-term depression (LTD) are thought to be critical for memory formation. Dell'Acqua and co-workers now demonstrate that transient postsynaptic incorporation of Ca(2+)-permeable (CP) α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is required for LTD in the exemplary hippocampal CA1 region in 2-week-old mice. Mechanistically, LTD depends on AKAP150-anchored protein kinase A (PKA) to promote the initial functional recruitment of CP-AMPARs during LTD induction and on AKAP150-anchored protein phosphatase 2B (PP2B) to trigger their subsequent removal as part of the lasting depression of synaptic transmission.

  18. Nuclear respiratory factor 1 co-regulates AMPA glutamate receptor subunit 2 and cytochrome c oxidase: tight coupling of glutamatergic transmission and energy metabolism in neurons.

    Science.gov (United States)

    Dhar, Shilpa S; Liang, Huan Ling; Wong-Riley, Margaret T T

    2009-03-01

    Neuronal activity, especially of the excitatory glutamatergic type, is highly dependent on energy from the oxidative pathway. We hypothesized that the coupling existed at the transcriptional level by having the same transcription factor to regulate a marker of energy metabolism, cytochrome c oxidase (COX) and an important subunit of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors, GluR2 (Gria2). Nuclear respiratory factor 1 (NRF-1) was a viable candidate because it regulates all COX subunits and potentially activates Gria2. By means of in silico analysis, electrophoretic mobility shift and supershift, chromatin immunoprecipitation, and promoter mutational assays, we found that NRF-1 functionally bound to Gria2 promoter. Silencing of NRF-1 with small interference RNA prevented the depolarization-stimulated up-regulation of Gria2 and COX, and over-expression of NRF-1 rescued neurons from tetrodotoxin-induced down-regulation of Gria2 and COX transcripts. Thus, neuronal activity and energy metabolism are tightly coupled at the molecular level, and NRF-1 is a critical agent in this process.

  19. Structure of Leptin Receptor Related with Obesity

    DEFF Research Database (Denmark)

    Toleikis, Zigmantas

    The hormone leptin is central to obesity, but the molecular processes underlying the activation of the leptin receptor are unknown. To further the understanding of the system, an atomic resolution structure of this cytokine type I receptor in the unbound inactive form and in the activated bound...... receptor, while the D5 domain is the central leptin-binding domain, implicated in the first steps of activation. Both domains are characterized by a fibronectin type III fold and both contain a conserved WSXWS motif (X represents an unconserved amino acid residue), a distinct feature of the cytokine...... receptors. This motif is thought to play a major role in correct folding and activation of the receptor. The complex between leptin and the D5CA domain was analyzed using nuclear magnetic resonance spectroscopy and the amino acid residues implicated in the binding were determined. To investigate which parts...

  20. 7-Chloro-5-(furan-3-yl)-3-methyl-4H-benzo[e][1,2,4]thiadiazine 1,1-Dioxide as Positive Allosteric Modulator of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor. The End of the Unsaturated-Inactive Paradigm?

    Science.gov (United States)

    Citti, Cinzia; Battisti, Umberto M; Cannazza, Giuseppe; Jozwiak, Krzysztof; Stasiak, Natalia; Puja, Giulia; Ravazzini, Federica; Ciccarella, Giuseppe; Braghiroli, Daniela; Parenti, Carlo; Troisi, Luigino; Zoli, Michele

    2016-02-17

    5-Arylbenzothiadiazine type compounds acting as positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-PAMs) have received particular attention in the past decade for their nootropic activity and lack of the excitotoxic side effects of direct agonists. Recently, our research group has published the synthesis and biological activity of 7-chloro-5-(3-furanyl)-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (1), one of the most active benzothiadiazine-derived AMPA-PAMs in vitro to date. However, 1 exists as two stereolabile enantiomers, which rapidly racemize in physiological conditions, and only one isomer is responsible for the pharmacological activity. In the present work, experiments carried out with rat liver microsomes show that 1 is converted by hepatic cytochrome P450 to the corresponding unsaturated derivative 2 and to the corresponding pharmacologically inactive benzenesulfonamide 3. Surprisingly, patch-clamp experiments reveal that 2 displays an activity comparable to that of the parent compound. Molecular modeling studies were performed to rationalize these results. Furthermore, mice cerebral microdialysis studies suggest that 2 is able to cross the blood-brain barrier and increases acetylcholine and serotonin levels in the hippocampus. The experimental data disclose that the achiral hepatic metabolite 2 possesses the same pharmacological activity of its parent compound 1 but with an enhanced chemical and stereochemical stability, as well as an improved pharmacokinetic profile compared with 1. PMID:26580317

  1. Structural Studies of Nicotinic Acetylcholine Receptors

    DEFF Research Database (Denmark)

    Shahsavar, Azadeh; Gajhede, Michael; Kastrup, Jette;

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) are members of the pentameric ligand-gated ion channel superfamily that play important roles in control of neurotransmitter release in the central and peripheral nervous system. These receptors are important therapeutic targets for development of drugs......-resolution structure of a nAChR is yet to be determined, structural studies are to a large extent based on acetylcholine binding proteins (AChBPs) that despite low overall sequence identity display high degree of conservation of overall structure and amino acids at the ligand-binding site. Further, AChBPs reproduce...

  2. 高半胱氨酸对慢性应激性抑郁大鼠海马谷氨酸及其受体的调节%Modulation of hippocampal glutamate and NMDA/AMPA receptor by homocysteine in chronic unpredictable mild stress-induced rat depression

    Institute of Scientific and Technical Information of China (English)

    刘慧; 问黎敏; 乔卉; 安书成

    2013-01-01

    The study was to investigate the role of homocysteine (Hey) which was released by hippocampal glial cells and its relationship with NMDA receptor and AMPA receptor in depression induced by chronic unpredictable mild stress (CUMS), and explore the mechanism of changes of Glu/Glu receptor in glial cells and neurons. CUMS-induced depression model was established. The body weight of rats was weighed on the 1st, 7th, 14th, and 21st days during the experiment. The behavioral performances were observed by means of sucrose consumption test, open field test and tail suspension test. Intrahippocampal microinjection of Hcy, NMDA receptor antagonist MK-801 and AMPA receptor antagonist NBQX was performed under stereotaxic guide cannula. The concentration of Glu and the expression of its receptors' subunits were detected respectively by high performance liquid chromatography (HPLC) and Western blot. The Hey content and the levels of phosphorylation of NMDA receptor and AMPA receptor in hippocampus were separately determined by enzyme linked immunosorbent assay (ELISA). The results showed that CUMS significantly induced the depression-like behaviors in rats, and the content of Glu and Hcy, the expression of NMDA receptors' subunits NR1/NR2B and the level of phosphorylation of NMDA receptor (p-NMDAR) in hippocampus increased significantly, while the expression of AMPA receptors' subunits GluR2/3 and the level of phosphorylation of AMPA receptor (p-AMPAR) decreased significantly. Microinjection of Hcy into hippocampus resulted in similar animal depression-like behaviors and increased Glu content compared to the CON/SAL group, the expression of NRl/NR2B/GluR2/3 and the level of p-NMDAR increased significantly, but the level of p-AMPAR reduced observably. Intrahippocampal injections of MK-801 effectively improved the depression-like behaviors induced by CUMS and Hcy, and attenuated the elevation of Glu content induced by Hcy in hippocampus, whereas NBQX could not improve the

  3. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis

    Directory of Open Access Journals (Sweden)

    Li Q

    2013-07-01

    Full Text Available Qingli Li,1,2 Mark J Lambrechts,1 Qiuyang Zhang,1 Sen Liu,1 Dongxia Ge,1 Rutie Yin,2 Mingrong Xi,2 Zongbing You1 1Departments of Structural and Cellular Biology and Orthopaedic Surgery, Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane Center for Stem Cell Research and Regenerative Medicine, and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, USA; 2Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China Abstract: Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA, are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy. Keywords: serine hydroxymethyltransferase, prostate cancer, apoptosis

  4. Size and receptor density of glutamatergic synapses: a viewpoint from left-right asymmetry of CA3-CA1 connections

    Directory of Open Access Journals (Sweden)

    Yoshiaki Shinohara

    2009-07-01

    Full Text Available Synaptic plasticity is considered to be the main mechanism for learning and memory. Excitatory synapses in the cerebral cortex and hippocampus undergo plastic changes during development and in response to electric stimulation. It is widely accepted that this process is mediated by insertion and elimination of various glutamate receptors. In a series of recent investigations on left-right asymmetry of hippocampal CA3-CA1 synapses, glutamate receptor subunits have been found to have distinctive expression patterns that depend on the postsynaptic density (PSD area. Particularly notable are the GluR1 AMPA receptor subunit and NR2B NMDA receptor subunit, where receptor density has either a supra-linear (GluR1 AMPA or inverse (NR2B NMDAR relationship to the PSD area. We review current understanding of structural and physiological synaptic plasticity and propose a scheme to classify receptor subtypes by their expression pattern with respect to PSD area.

  5. 钩藤碱对甲基苯丙胺条件性位置偏爱大鼠AMPA受体蛋白改变的影响%The effect of rhynchophylline on AMPA receptors expression in methamphetamine dependent rats

    Institute of Scientific and Technical Information of China (English)

    林晓亮; 汤伟; 陈文倩; 翁建霖; 莫志贤

    2010-01-01

    Objective To study changes of AMPA receptors expression in nucleus accumbens and hypothalamus of methamphetamine dependent rats,and the therapeutical effect of rhynchophylline.Methods SPF male rata were randomly divided into normal control group,model group of methamphetamine,low dose of rhynchophylline group and high dose of rhynchophylline group(n=8 in each group).Experiment of conditioned place preference(CPP)was used to build the model of methamphetamine dependent rata.Western blotting was used to examine the changes of GluR2/3 subunits expression.The time of staying in drug-paired compartment of rats was used independent-samples t test to gather statistics,and the photodensity of proteinum strap was used One-Way ANOVA to gather statistics.Results Compare with rats in normal control group(the time of staying in drug-paired compartment of rats was(383.00±38.20)s),the rats produced CPP after treated with methamphetamine(the time of staying in drug-paired compartment of rats was(536.20±57.49)s),and low(30mg/kg) and high (60 ms/kg)dose of rhynchophylline(the time of staying in drug-paired compartment of rats were(299.80±15.96)s and(189.40±59.02)s)both could eliminate CPP effect.Compare with rats in normal control group (the ratio of value of average gray scale were(0.54±0.04)INT·mm~2 and (0.70±0.04)INT·mm~2),GluR2/3 subunits expression in nucleus aecumbens increased significantly in model group(the ratio of value of average gray seale was(0.89±0.03)INT·mm~2)and low dose of rhynchophylline group(the ratio of value of average gray seale was (0.93±0.03)INT·mm~2,P0.05).Conclusion GluR2/3 subunits expression of methamphetamine-induced CPP rats increased in nucleus accumbens but decreased in hypothalamus.High dose of rhynchophylline can reverse such changes and rebound the expression to normal level.%目的 观察甲基苯丙胺成瘾大鼠伏隔核及下丘脑中AMPA受体表达的改变及钩藤碱对其的干预作用.方法 SPF级雄性SD大鼠分为空

  6. Crystal structure of human interferon-γ receptor 2 reveals the structural basis for receptor specificity.

    Science.gov (United States)

    Mikulecký, Pavel; Zahradník, Jirí; Kolenko, Petr; Černý, Jiří; Charnavets, Tatsiana; Kolářová, Lucie; Nečasová, Iva; Pham, Phuong Ngoc; Schneider, Bohdan

    2016-09-01

    Interferon-γ receptor 2 is a cell-surface receptor that is required for interferon-γ signalling and therefore plays a critical immunoregulatory role in innate and adaptive immunity against viral and also bacterial and protozoal infections. A crystal structure of the extracellular part of human interferon-γ receptor 2 (IFNγR2) was solved by molecular replacement at 1.8 Å resolution. Similar to other class 2 receptors, IFNγR2 has two fibronectin type III domains. The characteristic structural features of IFNγR2 are concentrated in its N-terminal domain: an extensive π-cation motif of stacked residues KWRWRH, a NAG-W-NAG sandwich (where NAG stands for N-acetyl-D-glucosamine) and finally a helix formed by residues 78-85, which is unique among class 2 receptors. Mass spectrometry and mutational analyses showed the importance of N-linked glycosylation to the stability of the protein and confirmed the presence of two disulfide bonds. Structure-based bioinformatic analysis revealed independent evolutionary behaviour of both receptor domains and, together with multiple sequence alignment, identified putative binding sites for interferon-γ and receptor 1, the ligands of IFNγR2. PMID:27599734

  7. Prolonged adenosine A1 receptor activation in hypoxia and pial vessel disruption focal cortical ischemia facilitates clathrin-mediated AMPA receptor endocytosis and long-lasting synaptic inhibition in rat hippocampal CA3-CA1 synapses: differential regulation of GluA2 and GluA1 subunits by p38 MAPK and JNK.

    Science.gov (United States)

    Chen, Zhicheng; Xiong, Cherry; Pancyr, Cassandra; Stockwell, Jocelyn; Walz, Wolfgang; Cayabyab, Francisco S

    2014-07-16

    Activation of presynaptic adenosine A1 receptors (A1Rs) causes substantial synaptic depression during hypoxia/cerebral ischemia, but postsynaptic actions of A1Rs are less clear. We found that A1Rs and GluA2-containing AMPA receptors (AMPARs) form stable protein complexes from hippocampal brain homogenates and cultured hippocampal neurons from Sprague Dawley rats. In contrast, adenosine A2A receptors (A2ARs) did not coprecipitate or colocalize with GluA2-containing AMPARs. Prolonged stimulation of A1Rs with the agonist N(6)-cyclopentyladenosine (CPA) caused adenosine-induced persistent synaptic depression (APSD) in hippocampal brain slices, and APSD levels were blunted by inhibiting clathrin-mediated endocytosis of GluA2 subunits with the Tat-GluA2-3Y peptide. Using biotinylation and membrane fractionation assays, prolonged CPA incubation showed significant depletion of GluA2/GluA1 surface expression from hippocampal brain slices and cultured neurons. Tat-GluA2-3Y peptide or dynamin inhibitor Dynasore prevented CPA-induced GluA2/GluA1 internalization. Confocal imaging analysis confirmed that functional A1Rs, but not A2ARs, are required for clathrin-mediated AMPAR endocytosis in hippocampal neurons. Pharmacological inhibitors or shRNA knockdown of p38 MAPK and JNK prevented A1R-mediated internalization of GluA2 but not GluA1 subunits. Tat-GluA2-3Y peptide or A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine also prevented hypoxia-mediated GluA2/GluA1 internalization. Finally, in a pial vessel disruption cortical stroke model, a unilateral cortical lesion compared with sham surgery reduced hippocampal GluA2, GluA1, and A1R surface expression and also caused synaptic depression in hippocampal slices that was consistent with AMPAR downregulation and decreased probability of transmitter release. Together, these results indicate a previously unknown mechanism for A1R-induced persistent synaptic depression involving clathrin-mediated GluA2 and GluA1 internalization that

  8. 3D structure of muscle dihydropyridine receptor

    Directory of Open Access Journals (Sweden)

    Montserrat Samsó

    2015-01-01

    Full Text Available Excitation contraction coupling, the rapid and massive Ca2+ release under control of an action potential that triggers muscle contraction, takes places at specialized regions of the cell called triad junctions. There, a highly ordered supramolecular complex between the dihydropyridine receptor (DHPR and the ryanodine receptor (RyR1 mediates the quasi‐instantaneous conversion from T‐tubule depolarization into Ca2+ release from the sarcoplasmic reticulum (SR. The DHPR has several key modules required for EC coupling: the voltage sensors and II‐III loop in the alpha1s subunit, and the beta subunit. To gain insight into their molecular organization, this review examines the most updated 3D structure of the DHPR as obtained by transmission electron microscopy and image reconstruction. Although structure determination of a heteromeric membrane protein such as the DHPR is challenging, novel technical advances in protein expression and 3D labeling facilitated this task. The 3D structure of the DHPR complex consists of a main body with five irregular corners around its perimeter encompassing the transmembrane alpha 1s subunit besides the intracellular beta subunit, an extended extracellular alpha 2 subunit, and a bulky intracellular II‐III loop. The structural definition attained at 19 Å resolution enabled docking of the atomic coordinates of structural homologs of the alpha1s and beta subunits. These structural features, together with their relative location with respect to the RyR1, are discussed in the context of the functional data.

  9. Structural basis for ligand recognition of incretin receptors

    DEFF Research Database (Denmark)

    Underwood, Christina Rye; Parthier, Christoph; Reedtz-Runge, Steffen

    2010-01-01

    The glucose-dependent insulinotropic polypeptide (GIP) receptor and the glucagon-like peptide-1 (GLP-1) receptor are homologous G-protein-coupled receptors (GPCRs). Incretin receptor agonists stimulate the synthesis and secretion of insulin from pancreatic β-cells and are therefore promising agents...... for the treatment of type 2 diabetes. It is well established that the N-terminal extracellular domain (ECD) of incretin receptors is important for ligand binding and ligand specificity, whereas the transmembrane domain is involved in receptor activation. Structures of the ligand-bound ECD of incretin receptors have...... appear to be the main driving force for ligand binding to the ECD of incretin receptors. Obviously, the-still missing-structures of full-length incretin receptors are required to construct a complete picture of receptor function at the molecular level. However, the progress made recently in structural...

  10. Structure-Function Studies on the Prolactin Receptor

    DEFF Research Database (Denmark)

    Haxholm, Gitte Wolfsberg

    information on the intracellular domains (ICDs) of these receptors. The overall aim of this study was to obtain an improved understanding of cytokine receptor signaling through structure-function studies on the prolactin receptor (PRLR). The primary focus of this thesis was to structurally characterize...

  11. Structure, function and regulation of the melanocortin receptors

    OpenAIRE

    Yang, Yingkui

    2011-01-01

    Melanocortin receptors belong to the seven-transmembrane (TM) domain proteins that are coupled to G-proteins and signaled through intracellular cyclic adenosine monophosphate. Many structural features conserved in other G-protein coupled receptors (GPCRs) are found in the melanocortin receptors. There are five melanocortin receptor subtypes and each of the melanocortin receptor subtypes has a different pattern of tissue expression and has its own profile regarding the relative potency of diff...

  12. 短时重复游泳调节SAM8鼠AMPA受体GluR1亚单位的磷酸化%A transient, but repeated swimming regulating the GluR1 phosphorylation of AMPA receptor in SAM8 mice

    Institute of Scientific and Technical Information of China (English)

    吕媛媛; 赵丽; 王德刚

    2012-01-01

    目的 观察短时重复游泳训练对SAM鼠AMPA受体GluR1亚单位磷酸化的影响,探讨运动改善脑功能的可能机制.方法 选取3月龄SAMP8(prone/8)亚系为研究对象,运动模型采用2w游泳方案:2次/d,每次6min的游泳,结束后给予浴巾擦干放回鼠笼;对照组则在相同时间每天给予两次相同的浴巾安抚刺激.采用Western印迹方法,检测SAM8鼠海马和皮层AMPA受体GluR1亚单位Ser831和Ser845位点的磷酸化水平的变化.结果 SAMP8海马、皮层中AMPA受体GluR1亚单位Ser831和Ser845磷酸化水平与对照组相比均增加(P<0.05).结论 2w的短时间重复游泳运动作为一种应激诱导剂促进了AMPA受体的活化,这可能是运动改善脑功能的机制之一.%Objective To investigate the effects of a transient, but repeated swimming on the GluRl phosphorylation of AMPA receptor in SAM8 mice, and explore the possible molecular mechanisms for exercise improving brain function. Methods 16 male SAM8 mice were equally randomized into normal and swimming groups. Swimming protocol was conducted twice a day for 6 min, each for a total of 14 days. After swimming, the mice were dried with a towel and placed back into their original cage. A control group of animals was handled for 6 s, wrapped in a towel twice a day for 14 days to simulate the handle after swimming. The phosphorylation of GluRl at Ser831 and Ser845 were measured by Western blot. Results Compared with normal group, both in cortex and in hippocampus, the phosphorylation degree of GluRl at Ser831 and Ser845 were significantly increased (all P <0. 01). Conclusions 2-week swimming protocol may be a stress inducer which lead to the activation of AMPA receptor, and that may be the one of mechanisms of exercise benefiting brain function.

  13. Melanocortin 1 Receptor: Structure, Function, and Regulation

    Science.gov (United States)

    Wolf Horrell, Erin M.; Boulanger, Mary C.; D’Orazio, John A.

    2016-01-01

    The melanocortin 1 receptor (MC1R) is a melanocytic Gs protein coupled receptor that regulates skin pigmentation, UV responses, and melanoma risk. It is a highly polymorphic gene, and loss of function correlates with a fair, UV-sensitive, and melanoma-prone phenotype due to defective epidermal melanization and sub-optimal DNA repair. MC1R signaling, achieved through adenylyl cyclase activation and generation of the second messenger cAMP, is hormonally controlled by the positive agonist melanocortin, the negative agonist agouti signaling protein, and the neutral antagonist β-defensin 3. Activation of cAMP signaling up-regulates melanin production and deposition in the epidermis which functions to limit UV penetration into the skin and enhances nucleotide excision repair (NER), the genomic stability pathway responsible for clearing UV photolesions from DNA to avoid mutagenesis. Herein we review MC1R structure and function and summarize our laboratory’s findings on the molecular mechanisms by which MC1R signaling impacts NER. PMID:27303435

  14. Melanocortin 1 Receptor: Structure, Function and Regulation

    Directory of Open Access Journals (Sweden)

    Erin Marissa Wolf Horrell

    2016-05-01

    Full Text Available The melanocortin 1 receptor (MC1R is a melanocytic Gs protein coupled receptor that regulates skin pigmentation, UV responses, and melanoma risk. It is a highly polymorphic gene, and loss of function correlates with a fair, UV-sensitive, and melanoma-prone phenotype due to defective epidermal melanization and sub-optimal DNA repair. MC1R signaling, achieved through adenylyl cyclase activation and generation of the second messenger cAMP, is hormonally controlled by the positive agonist melanocortin, the negative agonist agouti signaling protein, and the neutral antagonist β-defensin 3. Activation of cAMP signaling up-regulates melanin production and deposition in the epidermis which functions to limit UV penetration into the skin and enhances nucleotide excision repair, the genomic stability pathway responsible for clearing UV photolesions from DNA to avoid mutagenesis. Herein we review MC1R structure and function and summarize our laboratory’s findings on the molecular mechanisms by which MC1R signaling impacts nucleotide excision repair.

  15. [Glutamate Metabotropic Receptors: Structure, Localisation, Functions].

    Science.gov (United States)

    Perfilova, V N; Tyurenkov, I N

    2016-01-01

    The data on the structure, location and functions of the metabotropic glutamate receptor is shown. The family consists of 8 mGluRs subtypes and is divided into three groups: I group--mGluRs1/mGluRs5, II group--mGluRs2/mGluRs3, III group--mGluRs4/mGluRs6/mGluRs7/mGluRs8. They are associated with G-protein; signaling in the cells is carried out by IP3 or adenylate cyclase signaling pathways, in the result of which, mGluRs modify glial and neuronal excitability. Receptors are localized in the CNS and periphery in non-neuronal tissues: bone, heart, kidney, pancreas pod and platelets, the gastrointestinal tract, immune system. Their participation in the mechanisms of neurodegenerative diseases, mental and cognitive disorders, autoimmune processes, etc. is displayed. Agonists, antagonists, allosteric modulators of mGluRs are considered as potential medicines for treatment of mental diseases, including depression, fragile X syndrome, anxiety, obsessive-compulsive disorders, Parkinson's disease, etc. PMID:27530046

  16. Structural basis for molecular recognition at serotonin receptors.

    Science.gov (United States)

    Wang, Chong; Jiang, Yi; Ma, Jinming; Wu, Huixian; Wacker, Daniel; Katritch, Vsevolod; Han, Gye Won; Liu, Wei; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D; Gao, Xiang; Zhou, X Edward; Melcher, Karsten; Zhang, Chenghai; Bai, Fang; Yang, Huaiyu; Yang, Linlin; Jiang, Hualiang; Roth, Bryan L; Cherezov, Vadim; Stevens, Raymond C; Xu, H Eric

    2013-05-01

    Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist antimigraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared with the structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs. PMID:23519210

  17. Crystallization and Structure Determination of Superantigens and Immune Receptor Complexes.

    Science.gov (United States)

    Rödström, Karin E J; Lindkvist-Petersson, Karin

    2016-01-01

    Structure determination of superantigens and the complexes they form with immune receptors have over the years provided insight in their modes of action. This technique requires growing large and highly ordered crystals of the superantigen or receptor-superantigen complex, followed by exposure to X-ray radiation and data collection. Here, we describe methods for crystallizing superantigens and superantigen-receptor complexes using the vapor diffusion technique, how the crystals may be optimized, and lastly data collection and structure determination.

  18. Leaching of glyphosate and AMPA under two soil management practices in Burgundy vineyards (Vosne-Romanee, 21-France)

    International Nuclear Information System (INIS)

    Some drinking water reservoirs under the vineyards of Burgundy are contaminated with herbicides. Thus the effectiveness of alternative soil management practices, such as grass cover, for reducing the leaching of glyphosate and its metabolite, AMPA, through soils was studied. The leaching of both molecules was studied in structured soil columns under outdoor conditions for 1 year. The soil was managed under two vineyard soil practices: a chemically treated bare calcosol, and a vegetated calcosol. After 680 mm of rainfall, the vegetated calcosol leachates contained lower amounts of glyphosate and AMPA (0.02% and 0.03%, respectively) than the bare calcosol leachates (0.06% and 0.15%, respectively). No glyphosate and only low amounts of AMPA (<0.01%) were extracted from the soil. Glyphosate, and to a greater extent, AMPA, leach through the soils; thus, both molecules may be potential contaminants of groundwater. However, the alternative soil management practice of grass cover could reduce groundwater contamination by the pesticide. - Glyphosate and AMPA leached in greater amounts through a chemically treated bare calcosol than through a vegetated calcosol

  19. Functional role, structure, and evolution of the melanocortin-4 receptor.

    Science.gov (United States)

    Schiöth, Helgi B; Lagerström, Malin C; Watanobe, Hajime; Jonsson, Logi; Vergoni, Anna Valeria; Ringholm, Aneta; Skarphedinsson, Jon O; Skuladottir, Gudrun V; Klovins, Janis; Fredriksson, Robert

    2003-06-01

    The melanocortin (MC)-4 receptor participates in regulating body weight homeostasis. We demonstrated early that acute blockage of the MC-4 receptor increases food intake and relieves anorexic conditions in rats. Our recent studies show that 4-week chronic blockage of the MC-4 receptor leads to robust increases in food intake and development of obesity, whereas stimulation of the receptor leads to anorexia. Interestingly, the food conversion ratio was clearly increased by MC-4 receptor blockage, whereas it was decreased in agonist-treated rats in a transient manner. Chronic infusion of an agonist caused a transient increase in oxygen consumption. Our studies also show that the MC-4 receptor plays a role in luteinizing hormone and prolactin surges in female rats. The MC-4 receptor has a role in mediating the effects of leptin on these surges. The phylogenetic relation of the MC-4 receptor to other GPCRs in the human genome was determined. The three-dimensional structure of the protein was studied by construction of a high-affinity zinc binding site between the helices, using two histidine residues facing each other. We also cloned the MC-4 receptor from evolutionary important species and showed by chromosomal mapping a conserved synteny between humans and zebrafish. The MC-4 receptor has been remarkably conserved in structure and pharmacology for more than 400 million years, implying that the receptor participated in vital physiological functions early in vertebrate evolution. PMID:12851300

  20. Excitotoxic effects of non-NMDA receptor agonists in organotypic corticostriatal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, B W; Noraberg, J; Jakobsen, B;

    1999-01-01

    The excitotoxic effects of the glutamate receptor agonists kainic acid (KA) and 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and the corresponding neuroprotective effects of the AMPA/KA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX) were examined...

  1. Structural features for functional selectivity at serotonin receptors.

    Science.gov (United States)

    Wacker, Daniel; Wang, Chong; Katritch, Vsevolod; Han, Gye Won; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D; Jiang, Yi; Chu, Meihua; Siu, Fai Yiu; Liu, Wei; Xu, H Eric; Cherezov, Vadim; Roth, Bryan L; Stevens, Raymond C

    2013-05-01

    Drugs active at G protein-coupled receptors (GPCRs) can differentially modulate either canonical or noncanonical signaling pathways via a phenomenon known as functional selectivity or biased signaling. We report biochemical studies showing that the hallucinogen lysergic acid diethylamide, its precursor ergotamine (ERG), and related ergolines display strong functional selectivity for β-arrestin signaling at the 5-HT2B 5-hydroxytryptamine (5-HT) receptor, whereas they are relatively unbiased at the 5-HT1B receptor. To investigate the structural basis for biased signaling, we determined the crystal structure of the human 5-HT2B receptor bound to ERG and compared it with the 5-HT1B/ERG structure. Given the relatively poor understanding of GPCR structure and function to date, insight into different GPCR signaling pathways is important to better understand both adverse and favorable therapeutic activities. PMID:23519215

  2. Synaptic plasticity, AMPA-R trafficking, and Ras-MAPK signaling

    Institute of Scientific and Technical Information of China (English)

    Yun GU; Ruth L STORNETTA

    2007-01-01

    Synaptic modification of transmission is a general phenomenon expressed at al-most every excitatory synapse in the mammalian brain. Over the last three decades,much has been discovered about the cellular, synaptic, molecular, and signalingmechanisms responsible for controlling synaptic transmission and plasticity. Here,we present a brief review of these mechanisms with emphasis on the currentunderstanding of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid recep-tor (AMPA-R) trafficking and Ras-mitogen-activated protein kinase (MAPK)signaling events involved in controlling synaptic transmission.

  3. Structural Basis for Molecular Recognition at Serotonin Receptors

    OpenAIRE

    Wang, Chong; Jiang, Yi; Ma, Jinming; Wu, Huixian; Wacker, Daniel; Katritch, Vsevolod; Han, Gye Won; Liu, Wei; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D.; Gao, Xiang; Zhou, Edward X.; Melcher, Karsten; Zhang, Chenghai

    2013-01-01

    Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist anti-migraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserv...

  4. Crystal structure of a prolactin receptor antagonist bound to the extracellular domain of the prolactin receptor

    DEFF Research Database (Denmark)

    Svensson, L Anders; Bondensgaard, Kent; Nørskov-Lauritsen, Leif;

    2008-01-01

    The crystal structure of the complex between an N-terminally truncated G129R human prolactin (PRL) variant and the extracellular domain of the human prolactin receptor (PRLR) was determined at 2.5A resolution by x-ray crystallography. This structure represents the first experimental structure...

  5. Structure of the [delta]-opioid receptor bound to naltrindole

    Energy Technology Data Exchange (ETDEWEB)

    Granier, Sébastien; Manglik, Aashish; Kruse, Andrew C.; Kobilka, Tong Sun; Thian, Foon Sun; Weis, William I.; Kobilka, Brian K. (Stanford-MED)

    2012-07-11

    The opioid receptor family comprises three members, the {mu}-, {delta}- and {kappa}-opioid receptors, which respond to classical opioid alkaloids such as morphine and heroin as well as to endogenous peptide ligands like endorphins. They belong to the G-protein-coupled receptor (GPCR) superfamily, and are excellent therapeutic targets for pain control. The {delta}-opioid receptor ({delta}-OR) has a role in analgesia, as well as in other neurological functions that remain poorly understood. The structures of the {mu}-OR and {kappa}-OR have recently been solved. Here we report the crystal structure of the mouse {delta}-OR, bound to the subtype-selective antagonist naltrindole. Together with the structures of the {mu}-OR and {kappa}-OR, the {delta}-OR structure provides insights into conserved elements of opioid ligand recognition while also revealing structural features associated with ligand-subtype selectivity. The binding pocket of opioid receptors can be divided into two distinct regions. Whereas the lower part of this pocket is highly conserved among opioid receptors, the upper part contains divergent residues that confer subtype selectivity. This provides a structural explanation and validation for the 'message-address' model of opioid receptor pharmacology, in which distinct 'message' (efficacy) and 'address' (selectivity) determinants are contained within a single ligand. Comparison of the address region of the {delta}-OR with other GPCRs reveals that this structural organization may be a more general phenomenon, extending to other GPCR families as well.

  6. Study of bioengineered zebra fish olfactory receptor 131-2: receptor purification and secondary structure analysis.

    Directory of Open Access Journals (Sweden)

    Kwong-Joo Leck

    Full Text Available How fishes are able to detect trace molecules in large bodies of water is not understood. It is plausible that they use olfactory receptors to detect water-soluble compounds. How the zebra fish Danio Rerio, an organism with only 98 functional olfactory receptors, is able to selectively detect and recognize numerous compounds in water remains a puzzling phenomenon. We are interested in studying the biochemical and molecular mechanisms of olfaction in fish. Here, we report on the study of a bioengineered zebra fish olfactory receptor OR131-2, affinity-purified from a HEK293S tetracycline-inducible system. This receptor was expressed and translocated to the cell plasma membrane as revealed by confocal microscopy. Circular dichroism spectroscopy showed that the purified zebra fish receptor folded into an α-helical structure, as observed for other G-protein coupled receptors (GPCRs. Our study shows that it is possible to produce viable quantities of the zebra fish olfactory receptor. This will not only enable detailed structural and functional analyses, but also aid in the design of biosensor devices in order to detect water-soluble metabolites or its intermediates, which are associated with human health.

  7. LYRA, a webserver for lymphocyte receptor structural modeling

    DEFF Research Database (Denmark)

    Schantz Klausen, Michael; Anderson, Mads Valdemar; Jespersen, Martin Closter;

    2015-01-01

    a complete and automated method for building of B- and T-cell receptor structural models starting from their amino acid sequence alone. The webserver is freely available and easy to use for non-specialists. Upon submission, LYRA automatically generates alignments using ad hoc profiles, predicts...... the structural class of each hypervariable loop, selects the best templates in an automatic fashion, and provides within minutes a complete 3D model that can be downloaded or inspected online. Experienced users can manually select or exclude template structures according to case specific information. LYRA......The accurate structural modeling of B- and T-cell receptors is fundamental to gain a detailed insight in the mechanisms underlying immunity and in developing new drugs and therapies. The LYRA (LYmphocyte Receptor Automated modeling) web server (http://www.cbs.dtu.dk/services/LYRA/) implements...

  8. Class I Cytokine Receptors: Structure and function in the Membrane

    DEFF Research Database (Denmark)

    Bugge, Katrine Østergaard

    of these challenging domains. Supplemented by a review of the current collection of TMD structures from single-pass transmembrane receptors, the thesis as a whole provides important insights on the structure and function in the membrane as well as highlight the open questions to be addressed in the years to come....... with a globular domain in combination with a membrane embedded domain and an intrinsically disordered domain is exceptionally challenging, this structure, along with data collected on the adjacent domains in isolation, was utilized to present the first full-length integrative structure of a class I cytokine......Class I cytokine receptors are involved in important biological functions of both physiological and pathological nature in mammals. However, the molecular details of the cross-membrane signal transduction through these receptors remain obscure. One of the major reasons for this is the lack...

  9. Structure and dynamics of the M3 muscarinic acetylcholine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.; Arlow, Daniel H.; Rosenbaum, Daniel M.; Rosemond, Erica; Green, Hillary F.; Liu, Tong; Chae, Pil Seok; Dror, Ron O.; Shaw, David E.; Weis, William I.; Wess, Jürgen; Kobilka, Brian K. (Stanford); (NIH); (D.E. Shaw); (Hanyang); (UTSMC)

    2012-03-01

    Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G{sub q/11}-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the G{sub i/o}-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.

  10. A structural biology perspective on NMDA receptor pharmacology and function.

    Science.gov (United States)

    Regan, Michael C; Romero-Hernandez, Annabel; Furukawa, Hiro

    2015-08-01

    N-methyld-aspartate receptors (NMDARs) belong to the large family of ionotropic glutamate receptors (iGluRs), which are critically involved in basic brain functions as well as multiple neurological diseases and disorders. The NMDARs are large heterotetrameric membrane protein complexes. The extensive extracellular domains recognize neurotransmitter ligands and allosteric compounds and translate the binding information to regulate activity of the transmembrane ion channel. Here, we review recent advances in the structural biology of NMDARs with a focus on pharmacology and function. Structural analysis of the isolated extracellular domains in combination with the intact heterotetrameric NMDAR structure provides important insights into how this sophisticated ligand-gated ion channel may function.

  11. Pharmacological properties of homomeric and heteromeric GluR1o and GluR3o receptors

    DEFF Research Database (Denmark)

    Nielsen, B S; Banke, T G; Schousboe, A;

    1998-01-01

    .1+/-2.9. The pharmacological profiles of these receptors resembled that of native rat brain AMPA receptors: AMPA analogues > L-glutamate > quinoxaline-2,3-diones > kainate. In the Xenopus oocyte expression system we had previously shown that the agonist (R,S)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionate (ACPA...

  12. Structure and Pharmacologic Modulation of Inhibitory Glycine Receptors.

    Science.gov (United States)

    Burgos, Carlos F; Yévenes, Gonzalo E; Aguayo, Luis G

    2016-09-01

    Glycine receptors (GlyR) are inhibitory Cys-loop ion channels that contribute to the control of excitability along the central nervous system (CNS). GlyR are found in the spinal cord and brain stem, and more recently they were reported in higher regions of the CNS such as the hippocampus and nucleus accumbens. GlyR are involved in motor coordination, respiratory rhythms, pain transmission, and sensory processing, and they are targets for relevant physiologic and pharmacologic modulators. Several studies with protein crystallography and cryoelectron microscopy have shed light on the residues and mechanisms associated with the activation, blockade, and regulation of pentameric Cys-loop ion channels at the atomic level. Initial studies conducted on the extracellular domain of acetylcholine receptors, ion channels from prokaryote homologs-Erwinia chrysanthemi ligand-gated ion channel (ELIC), Gloeobacter violaceus ligand-gated ion channel (GLIC)-and crystallized eukaryotic receptors made it possible to define the overall structure and topology of the Cys-loop receptors. For example, the determination of pentameric GlyR structures bound to glycine and strychnine have contributed to visualizing the structural changes implicated in the transition between the open and closed states of the Cys-loop receptors. In this review, we summarize how the new information obtained in functional, mutagenesis, and structural studies have contributed to a better understanding of the function and regulation of GlyR. PMID:27401877

  13. An alternating GluN1-2-1-2 subunit arrangement in mature NMDA receptors.

    Directory of Open Access Journals (Sweden)

    Morgane Riou

    Full Text Available NMDA receptors (NMDARs form glutamate-gated ion channels that play a critical role in CNS physiology and pathology. Together with AMPA and kainate receptors, NMDARs are known to operate as tetrameric complexes with four membrane-embedded subunits associating to form a single central ion-conducting pore. While AMPA and some kainate receptors can function as homomers, NMDARs are obligatory heteromers composed of homologous but distinct subunits, most usually of the GluN1 and GluN2 types. A fundamental structural feature of NMDARs, that of the subunit arrangement around the ion pore, is still controversial. Thus, in a typical NMDAR associating two GluN1 and two GluN2 subunits, there is evidence for both alternating 1/2/1/2 and non-alternating 1/1/2/2 arrangements. Here, using a combination of electrophysiological and cross-linking experiments, we provide evidence that functional GluN1/GluN2A receptors adopt the 1/2/1/2 arrangement in which like subunits are diagonal to one another. Moreover, based on the recent crystal structure of an AMPA receptor, we show that in the agonist-binding and pore regions, the GluN1 subunits occupy a "proximal" position, closer to the central axis of the channel pore than that of GluN2 subunits. Finally, results obtained with reducing agents that differ in their membrane permeability indicate that immature (intracellular and functional (plasma-membrane inserted pools of NMDARs can adopt different subunit arrangements, thus stressing the importance of discriminating between the two receptor pools in assembly studies. Elucidating the quaternary arrangement of NMDARs helps to define the interface between the subunits and to understand the mechanism and pharmacology of these key signaling receptors.

  14. LYRA, a webserver for lymphocyte receptor structural modeling

    Science.gov (United States)

    Klausen, Michael Schantz; Anderson, Mads Valdemar; Jespersen, Martin Closter; Nielsen, Morten; Marcatili, Paolo

    2015-01-01

    The accurate structural modeling of B- and T-cell receptors is fundamental to gain a detailed insight in the mechanisms underlying immunity and in developing new drugs and therapies. The LYRA (LYmphocyte Receptor Automated modeling) web server (http://www.cbs.dtu.dk/services/LYRA/) implements a complete and automated method for building of B- and T-cell receptor structural models starting from their amino acid sequence alone. The webserver is freely available and easy to use for non-specialists. Upon submission, LYRA automatically generates alignments using ad hoc profiles, predicts the structural class of each hypervariable loop, selects the best templates in an automatic fashion, and provides within minutes a complete 3D model that can be downloaded or inspected online. Experienced users can manually select or exclude template structures according to case specific information. LYRA is based on the canonical structure method, that in the last 30 years has been successfully used to generate antibody models of high accuracy, and in our benchmarks this approach proves to achieve similarly good results on TCR modeling, with a benchmarked average RMSD accuracy of 1.29 and 1.48 Å for B- and T-cell receptors, respectively. To the best of our knowledge, LYRA is the first automated server for the prediction of TCR structure. PMID:26007650

  15. Exploring the GluR2 ligand-binding core in complex with the bicyclical AMPA analogue (S)-4-AHCP

    DEFF Research Database (Denmark)

    Nielsen, Bettina B; Pickering, Darryl S; Greenwood, Jeremy R;

    2005-01-01

    The X-ray structure of the ionotropic GluR2 ligand-binding core (GluR2-S1S2J) in complex with the bicyclical AMPA analogue (S)-2-amino-3-(3-hydroxy-7,8-dihydro-6H-cyclohepta[d]-4-isoxazolyl)propionic acid [(S)-4-AHCP] has been determined, as well as the binding pharmacology of this construct...... and of the full-length GluR2 receptor. (S)-4-AHCP binds with a glutamate-like binding mode and the ligand adopts two different conformations. The K(i) of (S)-4-AHCP at GluR2-S1S2J was determined to be 185 +/- 29 nM and at full-length GluR2(R)o it was 175 +/- 8 nM. (S)-4-AHCP appears to elicit partial agonism...... at GluR2 by inducing an intermediate degree of domain closure (17 degrees). Also, functionally (S)-4-AHCP has an efficacy of 0.38 at GluR2(Q)i, relative to (S)-glutamate. The proximity of bound (S)-4-AHCP to domain D2 prevents full D1-D2 domain closure, which is limited by steric repulsion, especially...

  16. Structural Studies of GABAA Receptor Binding Sites: Which Experimental Structure Tells us What?

    Science.gov (United States)

    Puthenkalam, Roshan; Hieckel, Marcel; Simeone, Xenia; Suwattanasophon, Chonticha; Feldbauer, Roman V; Ecker, Gerhard F; Ernst, Margot

    2016-01-01

    Atomic resolution structures of cys-loop receptors, including one of a γ-aminobutyric acid type A receptor (GABAA receptor) subtype, allow amazing insights into the structural features and conformational changes that these pentameric ligand-gated ion channels (pLGICs) display. Here we present a comprehensive analysis of more than 30 cys-loop receptor structures of homologous proteins that revealed several allosteric binding sites not previously described in GABAA receptors. These novel binding sites were examined in GABAA receptor homology models and assessed as putative candidate sites for allosteric ligands. Four so far undescribed putative ligand binding sites were proposed for follow up studies based on their presence in the GABAA receptor homology models. A comprehensive analysis of conserved structural features in GABAA and glycine receptors (GlyRs), the glutamate gated ion channel, the bacterial homologs Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus GLIC, and the serotonin type 3 (5-HT3) receptor was performed. The conserved features were integrated into a master alignment that led to improved homology models. The large fragment of the intracellular domain that is present in the structure of the 5-HT3 receptor was utilized to generate GABAA receptor models with a corresponding intracellular domain fragment. Results of mutational and photoaffinity ligand studies in GABAA receptors were analyzed in the light of the model structures. This led to an assignment of candidate ligands to two proposed novel pockets, candidate binding sites for furosemide and neurosteroids in the trans-membrane domain were identified. The homology models can serve as hypotheses generators, and some previously controversial structural interpretations of biochemical data can be resolved in the light of the presented multi-template approach to comparative modeling. Crystal and cryo-EM microscopic structures of the closest homologs that were solved in different conformational

  17. Glutamate receptors: variation in structure-function coupling

    DEFF Research Database (Denmark)

    Kristensen, Anders Skov; Geballe, Matthew; Snyder, James P;

    2006-01-01

    Fast excitatory synaptic transmission in the CNS relies almost entirely on the neurotransmitter glutamate and its family of ion channel receptors. An appreciation of the coupling between agonist binding and channel opening has advanced rapidly during the past five years, largely as a result of ne...... structural information about the agonist-binding site. Recent studies suggest that despite many structural similarities different family members use different mechanisms to translate agonist binding into channel opening....

  18. Study of structure function correlation of chemokine receptor CXCR4

    Institute of Scientific and Technical Information of China (English)

    ZHENG Hong; Stephen C PEIPER; ZHU Xi-hua

    2002-01-01

    Objective: To explore the correlation between structure domains and functions of chemokine receptor CXCR4. Methods: After the establishment of wild type chemokine receptor CXCR4 and CXCR2 expressing cell lines, 5 CXCR4/CXCR2 chimeras, 2 CXCR4 mutants were stably expressed on CHO cell line.Binding activities of all variants with the ligand, recombinant human SDF-1β, signal transduction ability after stimulation and their function as coreceptor for HIV-1 were studied with ligand-binding assay, Cytosensor/microphysiometry and cell-cell reporter gene fusion assay. Results: Among all 7 changed CXCR4 receptors, 3 chimeras (2444a, 4442, 4122), and 1 mutant (CXCR4-Tr) bond with SDF-1β in varying degrees, of which only 2444a totally and CXCR4-Tr partially maintain signaling. All changed receptors except for 4222 could act as coreceptors for HIV-1(LAI) in varying degrees. Conclusion: Several structure domains of CXCR4 are involved in the binding with SDF-1β, among which, N-terminal extracellular domain has high affinity of binding with SDF-1β, and the 3rd extracellular loop contributes to the binding, too. Although the C-terminal intracellular domain has no association with the maintenance of the overall structure of the receptor and ligand binding capability, the signaling is decreased when this domain is truncated. For CXCR4 signaling, not only is the conserved motif DRY box needed, but also the characterized conformation of the whole molecule must be formed when activation is required. There are some overlaps between SDF-1β binding domains and coreceptor function domains in molecular structure of CXCR4.

  19. μ Opioid receptor: novel antagonists and structural modeling

    Science.gov (United States)

    Kaserer, Teresa; Lantero, Aquilino; Schmidhammer, Helmut; Spetea, Mariana; Schuster, Daniela

    2016-02-01

    The μ opioid receptor (MOR) is a prominent member of the G protein-coupled receptor family and the molecular target of morphine and other opioid drugs. Despite the long tradition of MOR-targeting drugs, still little is known about the ligand-receptor interactions and structure-function relationships underlying the distinct biological effects upon receptor activation or inhibition. With the resolved crystal structure of the β-funaltrexamine-MOR complex, we aimed at the discovery of novel agonists and antagonists using virtual screening tools, i.e. docking, pharmacophore- and shape-based modeling. We suggest important molecular interactions, which active molecules share and distinguish agonists and antagonists. These results allowed for the generation of theoretically validated in silico workflows that were employed for prospective virtual screening. Out of 18 virtual hits evaluated in in vitro pharmacological assays, three displayed antagonist activity and the most active compound significantly inhibited morphine-induced antinociception. The new identified chemotypes hold promise for further development into neurochemical tools for studying the MOR or as potential therapeutic lead candidates.

  20. Structural Allostery and Binding of the Transferring Receptor Complex

    Energy Technology Data Exchange (ETDEWEB)

    Xu,G.; Liu, R.; Zak, O.; Aisen, P.; Chance, M.

    2005-01-01

    The structural allostery and binding interface for the human serum transferrin (Tf){center_dot}transferrin receptor (TfR) complex were identified using radiolytic footprinting and mass spectrometry. We have determined previously that the transferrin C-lobe binds to the receptor helical domain. In this study we examined the binding interactions of full-length transferrin with receptor and compared these data with a model of the complex derived from cryoelectron microscopy (cryo-EM) reconstructions. The footprinting results provide the following novel conclusions. First, we report characteristic oxidations of acidic residues in the C-lobe of native Tf and basic residues in the helical domain of TfR that were suppressed as a function of complex formation; this confirms ionic interactions between these protein segments as predicted by cryo-EM data and demonstrates a novel method for detecting ion pair interactions in the formation of macromolecular complexes. Second, the specific side-chain interactions between the C-lobe and N-lobe of transferrin and the corresponding interactions sites on the transferrin receptor predicted from cryo-EM were confirmed in solution. Last, the footprinting data revealed allosteric movements of the iron binding C- and N-lobes of Tf that sequester iron as a function of complex formation; these structural changes promote tighter binding of the metal ion and facilitate efficient ion transport during endocytosis.

  1. Theanine Depressed the Food Intake and Gastric Emptying in Female Mice via Lateral Hypothalamic AMPA and NMDA Receptor%茶氨酸经下丘脑腹外侧核抑制雌性小鼠摄食与胃排空作用研究

    Institute of Scientific and Technical Information of China (English)

    虞希冲; 杨伟; 吴波拉

    2013-01-01

    采用比色法观察脑室、核团内微注射和腹腔注射茶氨酸对外周胃排空的影响。结果表明,腹腔给予茶氨酸3~30 mg/kg后显著抑制摄食量和胃排空;脑室给药3~100 ng后,对胃排空的影响表现出V型曲线,3~30 ng茶氨酸剂量依赖性抑制胃排空,50、100 ng茶氨酸使胃排空恢复到正常水平。然而,腹腔注射同样量的茶氨酸并无抑制作用。在下丘脑外侧核内注射同量茶氨酸,出现与脑室内类似的抑制胃排空作用,在弓状核、下丘脑腹内侧核内注射却无明显的改变。在下丘脑外侧核内注射NMDA和AMPA后均能诱导摄食和胃排空的增加,而茶氨酸10、30、100 ng能抑制两者诱导的胃排空及 NMDA诱导的摄食,茶氨酸3~100 ng能抑制 AMPA诱导的摄食。上述结果表明茶氨酸抑制摄食和胃排空作用可能与抑制下丘脑外侧核的NMDA受体和AMPA受体有关。%In the present study, the food intake and gastric emptying of female mice were evaluated after theanine microinjection in cerebral ventrile, lateral hypothalamus, arcurate nuleius and ventromedial hypothalamic nucleus. Results showed that theanine 3~30 mg/kg intraperitoneal injection decreased food intake and gastric emptying;theanine 3~100 ng microinjection into cerebral ventrile induced “V” style effects on gastric, theanine 3~30 ng decreased gastric emptying dose-dependently while theanine 50 and 100 ng recovered gastric emptying. Theanine microinjection in lateral hypothalamus displayed similar effects on gastic emptying as theanine i.c.v while microinjection in arcurate nucleus and ventromedial hypothalamic nucleus did not alert gastric emptying. Theanine decreased food intake and gastric emptying induced by NMDA and AMPA microinjection in lateral hypothalamus. It was concluded that theanine depressed the food intake and gastric emptying after microinjection in lateral hypothalamus via NMDA and AMP receptor, partly.

  2. Effect of brain-derived neurotrophic factor on activity-regulated cytoskeleton-associated protein gene expression in primary frontal cortical neurons. Comparison with NMDA and AMPA.

    Science.gov (United States)

    El-Sayed, Mona; Hofman-Bang, Jacob; Mikkelsen, Jens D

    2011-06-25

    The effect of brain-derived neurotrophic factor (BDNF) on activity-regulated cytoskeleton-associated protein (Arc) mRNA levels in primary neuronal cultures of rat frontal cortex was characterized pharmacologically and compared to the effect on expression of c-fos, bdnf, neuritin, cox-2 as examples of other immediate early genes. BDNF induced a very strong increase (around 100 fold) in Arc mRNA and the maximal effect seen at 25 ng/ml. The effect was dose-dependent with EC50 around 1.6 ng/ml. The time profile revealed a significant effect after 25 min. BDNF also increased levels of c-Fos, neuritin and BDNF mRNA, but not COX-2 mRNA. The pharmacological profile of NMDA and AMPA-induced arc gene expression in frontal cortical neurons was compared to BDNF. NMDA and AMPA increased Arc mRNA but their maximal effect did not exceed 20-fold. The effect of AMPA was completely blocked by the NMDA receptor antagonist MK-801. Further, the relative amount of Arc mRNA compared to c-Fos mRNA was higher for BDNF, equal for NMDA and lower for AMPA. These results demonstrate BDNF to be a highly potent and efficient inducer of arc gene expression in vitro, emphasizing the role of this growth factor in synaptic plasticity in the frontal cortex. PMID:21515256

  3. The D3 dopamine receptor: From structural interactions to function.

    Science.gov (United States)

    Fiorentini, Chiara; Savoia, Paola; Bono, Federica; Tallarico, Paola; Missale, Cristina

    2015-09-01

    Novel structural and functional aspects of the dopamine (DA) D3 receptors (D3R) have been recently described. D3R expressed in dopaminergic neurons have been classically considered to play the role of autoreceptors inhibiting, as the D2R, DA release. However, evidence for D3R-mediated neurotrophic and neuroprotective effects on DA neurons suggests their involvement in preventing pathological alterations leading to neurodegeneration. On the other hand, given its localization and functional role at postsynaptic striatal levels, the D3R may also be involved in the pathogenesis of movement disorders and psychiatric diseases. Functional interactions of D3R with other receptor systems are crucial for the modulation of several physiological events. On this line, the discovery that the D3R can form heteromers with other receptors has opened the possibility of uncover novel molecular mechanisms of brain functions and dysfunctions. This paper summarizes the functional and physical interactions of D3R with other receptors both at pre-synaptic sites, where it is co-expressed with the D2R and nicotinic receptors, and at post-synaptic sites where it interacts with the DA D1 receptors (D1R). The biochemical and functional properties of the D1R-D3R heteromer will be especially discussed. Both D1R and D3R have been in fact implicated in several disorders, including schizophrenia and motor dysfunctions. Therefore, the D1R-D3R heteromer may represent a potential drug target for the treatment of these diseases. PMID:25532864

  4. Crystal Structure of the Human Laminin Receptor Precursor

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson,K.; Wu, J.; Hubbard, S.; Meruelo, D.

    2008-01-01

    The human laminin receptor (LamR) interacts with many ligands, including laminin, prions, Sindbis virus, and the polyphenol (-)-epigallocatechin-3-gallate (EGCG), and has been implicated in a number of diseases. LamR is overexpressed on tumor cells, and targeting LamR elicits anti-cancer effects. Here, we report the crystal structure of human LamR, which provides insights into its function and should facilitate the design of novel therapeutics targeting LamR.

  5. Structural basis for activation of G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Gether, Ulrik; Asmar, Fazila; Meinild, Anne Kristine;

    2002-01-01

    Our understanding of how G-protein-coupled receptors (GPCRs) operate at the molecular level has been considerably improved over the last few years. The application of advanced biophysical techniques as well as the availability of high-resolution structural information has allowed insight both int......-expression with the cAMP sensitive Cl- channel CFTR (cystic fibrosis transmembrane conductance regulator) and electrophysiological measurements....

  6. Structure-Based, Rational Design of T Cell Receptors

    OpenAIRE

    Zoete, V; Irving, M.; Ferber, M.; Cuendet, M. A.; Michielin, O

    2013-01-01

    Adoptive cell transfer using engineered T cells is emerging as a promising treatment for metastatic melanoma. Such an approach allows one to introduce T cell receptor (TCR) modifications that, while maintaining the specificity for the targeted antigen, can enhance the binding and kinetic parameters for the interaction with peptides (p) bound to major histocompatibility complexes (MHC). Using the well-characterized 2C TCR/SIYR/H-2K(b) structure as a model system, we demonstrated that a binding...

  7. A combined computational and structural model of the full-length human prolactin receptor

    Science.gov (United States)

    Bugge, Katrine; Papaleo, Elena; Haxholm, Gitte W.; Hopper, Jonathan T. S.; Robinson, Carol V.; Olsen, Johan G.; Lindorff-Larsen, Kresten; Kragelund, Birthe B.

    2016-05-01

    The prolactin receptor is an archetype member of the class I cytokine receptor family, comprising receptors with fundamental functions in biology as well as key drug targets. Structurally, each of these receptors represent an intriguing diversity, providing an exceptionally challenging target for structural biology. Here, we access the molecular architecture of the monomeric human prolactin receptor by combining experimental and computational efforts. We solve the NMR structure of its transmembrane domain in micelles and collect structural data on overlapping fragments of the receptor with small-angle X-ray scattering, native mass spectrometry and NMR spectroscopy. Along with previously published data, these are integrated by molecular modelling to generate a full receptor structure. The result provides the first full view of a class I cytokine receptor, exemplifying the architecture of more than 40 different receptor chains, and reveals that the extracellular domain is merely the tip of a molecular iceberg.

  8. Androgen receptor: structure, role in prostate cancer and drug discovery.

    Science.gov (United States)

    Tan, M H Eileen; Li, Jun; Xu, H Eric; Melcher, Karsten; Yong, Eu-leong

    2015-01-01

    Androgens and androgen receptors (AR) play a pivotal role in expression of the male phenotype. Several diseases, such as androgen insensitivity syndrome (AIS) and prostate cancer, are associated with alterations in AR functions. Indeed, androgen blockade by drugs that prevent the production of androgens and/or block the action of the AR inhibits prostate cancer growth. However, resistance to these drugs often occurs after 2-3 years as the patients develop castration-resistant prostate cancer (CRPC). In CRPC, a functional AR remains a key regulator. Early studies focused on the functional domains of the AR and its crucial role in the pathology. The elucidation of the structures of the AR DNA binding domain (DBD) and ligand binding domain (LBD) provides a new framework for understanding the functions of this receptor and leads to the development of rational drug design for the treatment of prostate cancer. An overview of androgen receptor structure and activity, its actions in prostate cancer, and how structural information and high-throughput screening have been or can be used for drug discovery are provided herein. PMID:24909511

  9. Structural and Functional Attributes of the Interleukin-36 Receptor.

    Science.gov (United States)

    Yi, Guanghui; Ybe, Joel A; Saha, Siddhartha S; Caviness, Gary; Raymond, Ernest; Ganesan, Rajkumar; Mbow, M Lamine; Kao, C Cheng

    2016-08-01

    Signal transduction by the IL-36 receptor (IL-36R) is linked to several human diseases. However, the structure and function of the IL-36R is not well understood. A molecular model of the IL-36R complex was generated and a cell-based reporter assay was established to assess the signal transduction of recombinant subunits of the IL-36R. Mutational analyses and functional assays have identified residues of the receptor subunit IL-1Rrp2 needed for cytokine recognition, stable protein expression, disulfide bond formation and glycosylation that are critical for signal transduction. We also observed that, overexpression of ectodomain (ECD) of Il-1Rrp2 or IL-1RAcP exhibited dominant-negative effect on IL-36R signaling. The presence of IL-36 cytokine significantly increased the interaction of IL-1Rrp2 ECD with the co-receptor IL-1RAcP. Finally, we found that single nucleotide polymorphism A471T in the Toll-interleukin 1 receptor domain (TIR) of the IL-1Rrp2 that is present in ∼2% of the human population, down-regulated IL-36R signaling by a decrease of interaction with IL-1RAcP. PMID:27307043

  10. The structure and function of G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Rosenbaum, Daniel M; Rasmussen, Søren Gøgsig Faarup; Kobilka, Brian K

    2009-01-01

    G-protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmitters and environmental stimulants, and so have great potential as therapeutic targets for a broad spectrum of diseases. They are also fascinating molecules from the perspective of membrane......-protein structure and biology. Great progress has been made over the past three decades in understanding diverse GPCRs, from pharmacology to functional characterization in vivo. Recent high-resolution structural studies have provided insights into the molecular mechanisms of GPCR activation and constitutive...

  11. Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren's syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor's expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy.

    Science.gov (United States)

    Levite, Mia

    2014-08-01

    Glutamate is the major excitatory neurotransmitter of the Central Nervous System (CNS), and it is crucially needed for numerous key neuronal functions. Yet, excess glutamate causes massive neuronal death and brain damage by excitotoxicity--detrimental over activation of glutamate receptors. Glutamate-mediated excitotoxicity is the main pathological process taking place in many types of acute and chronic CNS diseases and injuries. In recent years, it became clear that not only excess glutamate can cause massive brain damage, but that several types of anti-glutamate receptor antibodies, that are present in the serum and CSF of subpopulations of patients with a kaleidoscope of human neurological diseases, can undoubtedly do so too, by inducing several very potent pathological effects in the CNS. Collectively, the family of anti-glutamate receptor autoimmune antibodies seem to be the most widespread, potent, dangerous and interesting anti-brain autoimmune antibodies discovered up to now. This impression stems from taking together the presence of various types of anti-glutamate receptor antibodies in a kaleidoscope of human neurological and autoimmune diseases, their high levels in the CNS due to intrathecal production, their multiple pathological effects in the brain, and the unique and diverse mechanisms of action by which they can affect glutamate receptors, signaling and effects, and subsequently impair neuronal signaling and induce brain damage. The two main families of autoimmune anti-glutamate receptor antibodies that were already found in patients with neurological and/or autoimmune diseases, and that were already shown to be detrimental to the CNS, include the antibodies directed against ionotorpic glutamate receptors: the anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies and anti-NMDA-NR2 antibodies, and the antibodies directed against Metabotropic glutamate receptors: the anti-mGluR1 antibodies and the anti-mGluR5 antibodies. Each type of these anti

  12. Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia, systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren's syndrome, schizophrenia, mania or stroke. These autoimmune anti-glutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor's expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy.

    Science.gov (United States)

    Levite, Mia

    2014-08-01

    Glutamate is the major excitatory neurotransmitter of the Central Nervous System (CNS), and it is crucially needed for numerous key neuronal functions. Yet, excess glutamate causes massive neuronal death and brain damage by excitotoxicity--detrimental over activation of glutamate receptors. Glutamate-mediated excitotoxicity is the main pathological process taking place in many types of acute and chronic CNS diseases and injuries. In recent years, it became clear that not only excess glutamate can cause massive brain damage, but that several types of anti-glutamate receptor antibodies, that are present in the serum and CSF of subpopulations of patients with a kaleidoscope of human neurological diseases, can undoubtedly do so too, by inducing several very potent pathological effects in the CNS. Collectively, the family of anti-glutamate receptor autoimmune antibodies seem to be the most widespread, potent, dangerous and interesting anti-brain autoimmune antibodies discovered up to now. This impression stems from taking together the presence of various types of anti-glutamate receptor antibodies in a kaleidoscope of human neurological and autoimmune diseases, their high levels in the CNS due to intrathecal production, their multiple pathological effects in the brain, and the unique and diverse mechanisms of action by which they can affect glutamate receptors, signaling and effects, and subsequently impair neuronal signaling and induce brain damage. The two main families of autoimmune anti-glutamate receptor antibodies that were already found in patients with neurological and/or autoimmune diseases, and that were already shown to be detrimental to the CNS, include the antibodies directed against ionotorpic glutamate receptors: the anti-AMPA-GluR3 antibodies, anti-NMDA-NR1 antibodies and anti-NMDA-NR2 antibodies, and the antibodies directed against Metabotropic glutamate receptors: the anti-mGluR1 antibodies and the anti-mGluR5 antibodies. Each type of these anti

  13. A combined computational and structural model of the full-length human prolactin receptor

    DEFF Research Database (Denmark)

    Bugge, Katrine; Papaleo, Elena; Haxholm, Gitte W;

    2016-01-01

    The prolactin receptor is an archetype member of the class I cytokine receptor family, comprising receptors with fundamental functions in biology as well as key drug targets. Structurally, each of these receptors represent an intriguing diversity, providing an exceptionally challenging target for...

  14. Structural Dynamics of Insulin Receptor and Transmembrane Signaling.

    Science.gov (United States)

    Tatulian, Suren A

    2015-09-15

    The insulin receptor (IR) is a (αβ)2-type transmembrane tyrosine kinase that plays a central role in cell metabolism. Each αβ heterodimer consists of an extracellular ligand-binding α-subunit and a membrane-spanning β-subunit that comprises the cytoplasmic tyrosine kinase (TK) domain and the phosphorylation sites. The α- and β-subunits are linked via a single disulfide bridge, and the (αβ)2 tetramer is formed by disulfide bonds between the α-chains. Insulin binding induces conformational changes in IR that reach the intracellular β-subunit followed by a protein phosphorylation and activation cascade. Defects in this signaling process, including IR dysfunction caused by mutations, result in type 2 diabetes. Rational drug design aimed at treatment of diabetes relies on knowledge of the detailed structure of IR and the dynamic structural transformations during transmembrane signaling. Recent X-ray crystallographic studies have provided important clues about the mode of binding of insulin to IR, the resulting structural changes and their transmission to the TK domain, but a complete understanding of the structural basis underlying insulin signaling has not been achieved. This review presents a critical analysis of the current status of the structure-function relationship of IR, with a comparative assessment of the other IR family receptors, and discusses potential advancements that may provide insight into the molecular mechanism of insulin signaling.

  15. Structure-activity relationship studies of argiotoxins

    DEFF Research Database (Denmark)

    Poulsen, Mette H; Lucas, Simon; Bach, Tinna B;

    2013-01-01

    developed solid-phase synthetic methodology for the synthesis of ArgTX-636 and analogues. Initially, the importance of secondary amino groups in the polyamine chain was studied by the synthesis of systematically modified ArgTX-636 analogues, which were evaluated for pharmacological activity at NMDA and AMPA...... receptors. This led to the identification of two compounds with preference for NMDA and AMPA receptors, respectively. These were further elaborated by systematically changing the aromatic headgroup and linker amino acid leading to compounds with increased potency and selectivity for NMDA and AMPA receptors...

  16. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels.

    Science.gov (United States)

    Diaz-Franulic, Ignacio; Poblete, Horacio; Miño-Galaz, Germán; González, Carlos; Latorre, Ramón

    2016-07-01

    The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. In this review we first discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, and then discuss the thermodynamic foundations of thermo-TRP channel activation. We provide a structural overview of the molecular determinants of temperature sensing. We also posit an anisotropic thermal diffusion model that may explain the large temperature sensitivity of TRP channels. Additionally, we examine the effect of several ligands on TRP channel function and the evidence regarding their mechanisms of action. PMID:27297398

  17. A combined computational and structural model of the full-length human prolactin receptor

    DEFF Research Database (Denmark)

    Bugge, Katrine Østergaard; Papaleo, Elena; Haxholm, Gitte Wolfsberg;

    2016-01-01

    The prolactin receptor is an archetype member of the class I cytokine receptor family, comprising receptors with fundamental functions in biology as well as key drug targets. Structurally, each of these receptors represent an intriguing diversity, providing an exceptionally challenging target...... for structural biology. Here, we access the molecular architecture of the monomeric human prolactin receptor by combining experimental and computational efforts. We solve the NMR structure of its transmembrane domain in micelles and collect structural data on overlapping fragments of the receptor with small......-angle X-ray scattering, native mass spectrometry and NMR spectroscopy. Along with previously published data, these are integrated by molecular modelling to generate a full receptor structure. The result provides the first full view of a class I cytokine receptor, exemplifying the architecture of more than...

  18. Behavioural and neuronal activation after microinjections of AMPA and NMDA into the perifornical lateral hypothalamus in rats.

    Science.gov (United States)

    Li, Frederick W; Deurveilher, Samuel; Semba, Kazue

    2011-10-31

    The perifornical lateral hypothalamic area (PeFLH), which houses orexin/hypocretin (OX) neurons, is thought to play an important role in arousal, feeding, and locomotor activity. The present study examined behavioural effects of activating PeFLH neurons with microinjections of ionotropic glutamate receptor agonists. Three separate unilateral microinjections of either (1) AMPA (1 and 2mM in 0.1 μL artificial cerebrospinal fluid, ACSF) and ACSF, or (2) NMDA (1 and 10mM in 0.1 μL ACSF), and ACSF were made into the PeFLH of adult male rats. Following each injection, the rats were placed into an open field for behavioural scoring for 45 min. Rats were perfused after the third injection for immunohistochemistry for c-Fos and OX to assess the level of activation of OX neurons. Behavioural analyses showed that, as compared to ACSF conditions, AMPA injections produced a dose-dependent increase in locomotion and rearing that persisted throughout the 45 min recording period, and an increase in drinking. Injection of NMDA at 10mM, but not 1mM, induced a transient increase in locomotion and an increase in feeding. Histological analyses showed that while both agonists increased the number of neurons immunoreactive for c-Fos in the PeFLH, only AMPA increased the number of neurons immunoreactive for both c-Fos and OX. There were positive correlations between the number of c-Fos/OX-immunoreactive neurons and the amounts of locomotion, rearing, and drinking. These results support the role of ionotropic glutamate receptors on OX and other neurons in the PeFLH in the regulation of locomotor and ingestive behaviours.

  19. Human antibody-Fc receptor interactions illuminated by crystal structures.

    Science.gov (United States)

    Woof, Jenny M; Burton, Dennis R

    2004-02-01

    Immunoglobulins couple the recognition of invading pathogens with the triggering of potent effector mechanisms for pathogen elimination. Different immunoglobulin classes trigger different effector mechanisms through interaction of immunoglobulin Fc regions with specific Fc receptors (FcRs) on immune cells. Here, we review the structural information that is emerging on three human immunoglobulin classes and their FcRs. New insights are provided, including an understanding of the antibody conformational adjustments that are required to bring effector cell and target cell membranes sufficiently close for efficient killing and signal transduction to occur. The results might also open up new possibilities for the design of therapeutic antibodies. PMID:15040582

  20. Structure of the LDL receptor extracellular domain at endosomalpH

    Energy Technology Data Exchange (ETDEWEB)

    Rudenko, Gabby; Henry, Lisa; Henderson, Keith; Ichtchenko,Konstantin; Brown, Michael S.; Goldstein, Joseph L.; Deisenhofer, Johann

    2002-09-05

    The structure of the low-density lipoprotein receptor extracellular portion has been determined. The document proposes a mechanism for the release of lipoprotein in the endosome. Without this release, the mechanism of receptor recycling cannot function.

  1. L-Glutamate and its Ionotropic Receptors in the Nervous System of Cephalopods

    OpenAIRE

    Di Cosmo, A; Di Cristo, C; Messenger, JB

    2006-01-01

    In several species of cephalopod molluscs there is good evidence for the presence of L-glutamate in the central and peripheral nervous system and evidence for both classes of ionotropic receptor, AMPA/kainate and NMDA.

  2. Toxicity of AMPA to the earthworm Eisenia andrei Bouché, 1972 in tropical artificial soil

    OpenAIRE

    Anahí Domínguez; George Gardner Brown; Klaus Dieter Sautter; Cintia Mara Ribas de Oliveira; Eliane Carvalho Vasconcelos; Cintia Carla Niva; Marie Luise Carolina Bartz; José Camilo Bedano

    2016-01-01

    Aminomethylphosphonic acid (AMPA) - one of glyphosate’s main metabolites - has been classified as persistent in soils, raising concern regarding the widespread use of glyphosate in agriculture and forestry. Glyphosate may have negative or neutral effects on soil biota, but no information is available on the toxicity of AMPA to soil invertebrates. Therefore our aim was to study the effect of AMPA on mortality and reproduction of the earthworm species Eisenia andrei using standard soil ecotoxic...

  3. Binding Mode of an α-Amino Acid-Linked Quinoxaline-2,3-dione Analogue at Glutamate Receptor Subtype GluK1

    DEFF Research Database (Denmark)

    Demmer, Charles S; Møller, Charlotte; Brown, Patricia M G E;

    2015-01-01

    Two α-amino acid-functionalized quinoxalines, 1a (CNG-10301) and 1b (CNG-10300), of a quinoxaline moiety coupled to an amino acid moiety were designed, synthesized, and characterized pharmacologically. While 1a displayed low affinity at native AMPA, KA, and NMDA receptors, and at homomeric GluK1...... in the GluK1-LBD (ligand-binding domain) disclosed an unexpected binding mode compared to the predictions made during the design phase; the quinoxaline moiety remains to act as an amino acid bioisostere, but the amino acid moiety is oriented into a new area within the GluK1 receptor. The structure of the Glu...

  4. CX717 as a positive allosteric modulator of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid receptor: research advances%AMPA受体正向变构调节剂CX717研究进展

    Institute of Scientific and Technical Information of China (English)

    贺艺超; 肖典; 齐倩倩; 赵国明; 周辛波

    2013-01-01

    α-氨基-3-羟基-5-甲基-4-异噁唑丙酸(AMPA)受体是离子型谷氨酸受体的一种亚型,分布于中枢神经系统的突触后膜,介导大多数快速兴奋性神经传递.CX717是由美国Cortex制药公司研制的苯甲酰胺类AMPA受体正向调节剂,能够降低AMPA受体失活或降敏的速度从而提高突触的活性,与阿尔茨海默病、帕金森病、抑郁症和注意力缺陷多动症等疾病的治疗密切相关.本文主要综述CX717在化学结构、药代动力学、毒理学和药效学方面的研究进展.%α-Amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA) receptor,a subtype of ionotropic glutamate receptors in the postsynaptic membrane of the central nervous system (CNS),mediates most of the fast excitatory neurotransmission.CX717 developed by Cortex Pharmaceuticals Company of the USA belongs to the benzamide series of AMPA receptor positive modulators.It can reduce the speed of AMPA receptor inactivation or desensitization,thereby enhancing synaptic activity,and is closely related to the treatment of Alzheimer's disease,Parkinson's disease,depression and attention deficit hyperactivity disorder(ADHD).This article reviews the latest research of CX717 regarding its structure,pharmacokinetics,toxicology and pharmacodynamics.

  5. Structural Basis for Simvastatin Competitive Antagonism of Complement Receptor 3.

    Science.gov (United States)

    Jensen, Maria Risager; Bajic, Goran; Zhang, Xianwei; Laustsen, Anne Kjær; Koldsø, Heidi; Skeby, Katrine Kirkeby; Schiøtt, Birgit; Andersen, Gregers R; Vorup-Jensen, Thomas

    2016-08-12

    The complement system is an important part of the innate immune response to infection but may also cause severe complications during inflammation. Small molecule antagonists to complement receptor 3 (CR3) have been widely sought, but a structural basis for their mode of action is not available. We report here on the structure of the human CR3 ligand-binding I domain in complex with simvastatin. Simvastatin targets the metal ion-dependent adhesion site of the open, ligand-binding conformation of the CR3 I domain by direct contact with the chelated Mg(2+) ion. Simvastatin antagonizes I domain binding to the complement fragments iC3b and C3d but not to intercellular adhesion molecule-1. By virtue of the I domain's wide distribution in binding kinetics to ligands, it was possible to identify ligand binding kinetics as discriminator for simvastatin antagonism. In static cellular experiments, 15-25 μm simvastatin reduced adhesion by K562 cells expressing recombinant CR3 and by primary human monocytes, with an endogenous expression of this receptor. Application of force to adhering monocytes potentiated the effects of simvastatin where only a 50-100 nm concentration of the drug reduced the adhesion by 20-40% compared with untreated cells. The ability of simvastatin to target CR3 in its ligand binding-activated conformation is a novel mechanism to explain the known anti-inflammatory effects of this compound, in particular because this CR3 conformation is found in pro-inflammatory environments. Our report points to new designs of CR3 antagonists and opens new perspectives and identifies druggable receptors from characterization of the ligand binding kinetics in the presence of antagonists. PMID:27339893

  6. 丙泊酚对大鼠胶质瘤细胞侵袭和迁移能力的影响及ADAR2-AMPA受体GluR2通路在其中的作用%Effects of propofol on invasion and migration of glioma cells in rats and the role of ADAR2-AMPA receptor GluR2 pathway

    Institute of Scientific and Technical Information of China (English)

    王欣悦; 王海云; 王国林; 杨卓; 张涛

    2016-01-01

    目的 评价丙泊酚对大鼠胶质瘤细胞侵袭和迁移能力的影响及腺苷脱氨酶(ADAR2)-α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体GluR2通路在其中的作用.方法 传代培养大鼠C6胶质瘤细胞,采用随机数字表法分为4组(n=24):对照组(C组)、丙泊酚组(P组)、阴性siRNA转染+丙泊酚组(NP组)和ADAR2-siRNA转染+丙泊酚组(AP组).C组正常培养;NP组和AP组分别将阴性siRNA或ADAR2-siRNA转染至细胞内,48 h后处理同P组;P组加入丙泊酚,终浓度1.2 μg/ml,孵育6h后换为正常培养液,继续培养18h.采用MTT比色分析法检测细胞活力,Transwell侵袭实验测定侵袭细胞数,细胞划痕实验测定迁移率,Western blot法检测胞核ADAR2和胞膜GluR2的表达.结果 与C组比较,P组和NP组细胞活力、侵袭细胞数和迁移率降低,胞核A-DAR2及胞膜GluR2表达上调(P<0.05);与P组比较,AP组细胞活力、侵袭细胞数和迁移率升高,胞核ADAR2及胞膜GluR2表达下调(P<0.05);与NP组比较,AP组细胞活力、侵袭细胞数和迁移率升高,胞核ADAR2及胞膜GluR2表达下调(P<0.05).结论 丙泊酚可抑制大鼠胶质瘤细胞的侵袭和迁移能力,其机制与激活ADAR2-AMPA受体GluR2通路有关.%Objective To evaluate the effects of propofol on the invasion and migration of glioma cells in the rats and the role of adenosine deaminase acting on RNA 2 (ADAR2)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunit glutamate 2 (GluR2) pathway.Methods C6 glioma cells were subcuhured and randomly divided into 4 groups (n =24 each) using a random number table:control group (group C);propofol group (group P);negative siRNA transfection + propofol group (group NP);ADAR2-siRNA transfection + propofol group (group AP).The cells were cultured in the common culture medium in group C.In NP and AP groups,negative siRNA and ADAR2-siRNA were transfected into the cells,respectively,and 48 h later the other procedures were similar

  7. Structure and function of the human megalin receptor

    DEFF Research Database (Denmark)

    Dagil, Robert

    . The extracellular domain of megalin consists of several modular domains, of which the most abundant are the ligand binding complement type (CR) domains, that are divided into four clusters separated by YWTD -propeller domains. The broad ligand binding profile has associated megalin with the unwanted cellular uptake....... Recently, structural data has provided direct proof that the -propeller domains from the lipoprotein receptor family actively engage in ligand binding. Previously, these domains were thought to serve as ’spacer regions’ in the extracellular domain. By analyzing the structural data a number of simple ligand...... binding motifs were identified and an analysis of the distribution of these simple motifs in -propeller domains throughout the LRP family was performed in order to identify -propellers capable of ligand binding. The analysis showed that several -propeller domains have ligand binding motifs, indicating...

  8. Structural basis for simvastatin competitive antagonism of complement receptor 3

    DEFF Research Database (Denmark)

    Jensen, Maria Risager; Bajic, Goran; Zhang, Xianwei;

    2016-01-01

    The complement system is an important part of the innate immune response to infection, but may also cause severe complications during inflammation. Small molecule antagonists to complement receptor (CR)3 have been widely sought, but a structural basis for their mode of action is not available. We...... report here on the structure of the human CR3 ligand-binding I domain in complex with simvastatin. Simvastatin targets the metal ion-dependent adhesion site of the open, ligand-binding conformation of the CR3 I domain by direct contact with the chelated Mg2+ ion. Simvastatin antagonizes I domain binding...... to the complement fragments iC3b and C3d, but not to intercellular adhesion molecule-1. By virtue of the I domain's wide distribution in binding kinetics to ligands, it was possible to identify ligand binding kinetics as discriminator for simvastatin antagonism. In static cellular experiments, 15-25 μM simvastatin...

  9. Structure of the STRA6 receptor for retinol uptake.

    Science.gov (United States)

    Chen, Yunting; Clarke, Oliver B; Kim, Jonathan; Stowe, Sean; Kim, Youn-Kyung; Assur, Zahra; Cavalier, Michael; Godoy-Ruiz, Raquel; von Alpen, Desiree C; Manzini, Chiara; Blaner, William S; Frank, Joachim; Quadro, Loredana; Weber, David J; Shapiro, Lawrence; Hendrickson, Wayne A; Mancia, Filippo

    2016-08-26

    Vitamin A homeostasis is critical to normal cellular function. Retinol-binding protein (RBP) is the sole specific carrier in the bloodstream for hydrophobic retinol, the main form in which vitamin A is transported. The integral membrane receptor STRA6 mediates cellular uptake of vitamin A by recognizing RBP-retinol to trigger release and internalization of retinol. We present the structure of zebrafish STRA6 determined to 3.9-angstrom resolution by single-particle cryo-electron microscopy. STRA6 has one intramembrane and nine transmembrane helices in an intricate dimeric assembly. Unexpectedly, calmodulin is bound tightly to STRA6 in a noncanonical arrangement. Residues involved with RBP binding map to an archlike structure that covers a deep lipophilic cleft. This cleft is open to the membrane, suggesting a possible mode for internalization of retinol through direct diffusion into the lipid bilayer. PMID:27563101

  10. A new pyrrolyl-quinoxalinedione series of non-NMDA glutamate receptor antagonists: pharmacological characterization and comparison with NBQX and valproate in the kindling model of epilepsy.

    Science.gov (United States)

    Löscher, W; Lehmann, H; Behl, B; Seemann, D; Teschendorf, H J; Hofmann, H P; Lubisch, W; Höger, T; Lemaire, H G; Gross, G

    1999-01-01

    Antagonists at the ionotropic non-NMDA [AMPA (amino-methyl proprionic acid)/kainate] type of glutamate receptors have been suggested to possess several advantages compared to NMDA (N-methyl-D-aspartate) receptor antagonists, particularly in terms of risk/benefit ratio, but the non-NMDA receptor antagonists available so far have not fulfilled this promise. From a large series of pyrrolyl-quinoxalinedione derivatives, we selected six new competitive non-NMDA receptor antagonists. The basis of selection was high potency and selectivity for AMPA and/or kainate receptors, high in vivo potency after systemic administration, and an acceptable ratio between neuroprotective or anticonvulsant effects and adverse effects. Pharmacological characteristics of these novel compounds are described in this study with special emphasis on their effects in the kindling model of temporal lobe epilepsy, the most common type of epilepsy in humans. In most experiments, NBQX and the major antiepileptic drug valproate were used for comparison with the novel compounds. The novel non-NMDA receptor antagonists markedly differed in their AMPA and kainate receptor affinities from NBQX. Thus, while NBQX essentially did not bind to kainate receptors at relevant concentrations, several of the novel compounds exhibited affinity to rat brain kainate receptors or recombinant kainate receptor subtypes in addition to AMPA receptors. One compound, LU 97175, bound to native high affinity kainate receptors and rat GluR5-GluR7 subunits, i.e. low affinity kainate binding sites, with much higher affinities than to AMPA receptors. All compounds potently blocked AMPA-induced cell death in vitro and, except LU 97175, AMPA-induced convulsions in vivo. In the kindling model, compounds with a high affinity for GluR7 (LU 97175) or compounds (LU 115455, LU 136541) which potently bind to AMPA receptors and low affinity kainate receptor subunits were potent anticonvulsants in the kindling model, whereas the AMPA

  11. EBI2, GPR18 and GPR17--three structurally related, but biologically distinct 7TM receptors

    DEFF Research Database (Denmark)

    Nørregaard, Kristine; Benned-Jensen, Tau; Rosenkilde, Mette Marie

    2011-01-01

    have been deorphanized, many remain orphan, and these orphan receptors constitute a large pool of potential drug targets. This review focuses on one of these orphan targets, the Epstein-Barr Virus-induced receptor 2, EBI2 (or GPR183), together with two structurally related receptors, GPR17 and GPR18...

  12. Tetrazolyl isoxazole amino acids as ionotropic glutamate receptor antagonists: synthesis, modelling and molecular pharmacology

    DEFF Research Database (Denmark)

    Frølund, Bente; Greenwood, Jeremy R; Holm, Mai Marie;

    2005-01-01

    and 1b were pharmacologically characterized in receptor binding assays, and electrophysiologically on homomeric AMPA receptors (GluR1-4), homomeric (GluR5 and GluR6) and heteromeric (GluR6/KA2) kainic acid receptors, using two-electrode voltage-clamped Xenopus laevis oocytes expressing these receptors...

  13. Magnetically-refreshable receptor platform structures for reusable nano-biosensor chips

    Science.gov (United States)

    Yoo, Haneul; Lee, Dong Jun; Cho, Dong-guk; Park, Juhun; Nam, Ki Wan; Tak Cho, Young; Park, Jae Yeol; Chen, Xing; Hong, Seunghun

    2016-01-01

    We developed a magnetically-refreshable receptor platform structure which can be integrated with quite versatile nano-biosensor structures to build reusable nano-biosensor chips. This structure allows one to easily remove used receptor molecules from a biosensor surface and reuse the biosensor for repeated sensing operations. Using this structure, we demonstrated reusable immunofluorescence biosensors. Significantly, since our method allows one to place receptor molecules very close to a nano-biosensor surface, it can be utilized to build reusable carbon nanotube transistor-based biosensors which require receptor molecules within a Debye length from the sensor surface. Furthermore, we also show that a single sensor chip can be utilized to detect two different target molecules simply by replacing receptor molecules using our method. Since this method does not rely on any chemical reaction to refresh sensor chips, it can be utilized for versatile biosensor structures and virtually-general receptor molecular species.

  14. "Mirror image" antagonists of thrombin-induced platelet activation based on thrombin receptor structure.

    OpenAIRE

    Hung, D. T.; Vu, T K; Wheaton, V I; Charo, I F; Nelken, N A; Esmon, N; Esmon, C T; Coughlin, S R

    1992-01-01

    Platelet activation by thrombin plays a critical role in hemostasis and thrombosis. Based on structure-activity studies of a cloned platelet thrombin receptor, we designed two "mirror image" antagonists of thrombin and thrombin receptor function. First, "uncleavable" peptides mimicking the receptor domain postulated to interact with thrombin were found to be potent thrombin inhibitors. Second, proteolytically inactive mutant thrombins designed to bind but not cleave the thrombin receptor were...

  15. Excitatory amino acid neurotoxicity and modulation of glutamate receptor expression in organotypic brain slice cultures

    DEFF Research Database (Denmark)

    Zimmer, J; Kristensen, Bjarne Winther; Jakobsen, B;

    2000-01-01

    Using organotypic slice cultures of hippocampus and cortex-striatum from newborn to 7 day old rats, we are currently studying the excitotoxic effects of kainic acid (KA), AMPA and NMDA and the neuroprotective effects of glutamate receptor blockers, like NBQX. For detection and quantitation...... and AMPA (and NMDA) in hippocampal slice cultures, and --b) KA and AMPA in corticostriatal slice cocultures, with demonstration of differentiated neuroprotective effects of NBQX in relation to cortex and striatum and KA and AMPA. A second set of studies include modulation of hippocampal KA......-induced excitotoxicity and KA-glutamate receptor subunit mRNA expression after long-term exposure to low, non-toxic doses of KA and NBQX. We conclude that organotypic brain slice cultures, combined with standardized procedures for quantitation of cell damage and receptor subunit changes is of great potential use...

  16. Structure and biological properties of scavenger receptor MARCO

    OpenAIRE

    Brännström, Annika

    2002-01-01

    Macrophages are monocyte-derived cells that play an important role in the innate immune response against invading pathogens. These cells express several host defense receptors that can be divided into two classes; those dependent on opsonizing components for recognition of pathogens, and those that can recognize pathogens directly, pattern recognition receptors (PRRs). Class A scavenger receptors are a family of PRRs composed of three members: Scavenger Receptor A (SRA), MAc...

  17. Structural basis of transcobalamin recognition by human CD320 receptor

    Science.gov (United States)

    Alam, Amer; Woo, Jae-Sung; Schmitz, Jennifer; Prinz, Bernadette; Root, Katharina; Chen, Fan; Bloch, Joël S.; Zenobi, Renato; Locher, Kaspar P.

    2016-07-01

    Cellular uptake of vitamin B12 (cobalamin) requires capture of transcobalamin (TC) from the plasma by CD320, a ubiquitous cell surface receptor of the LDLR family. Here we present the crystal structure of human holo-TC in complex with the extracellular domain of CD320, visualizing the structural basis of the TC-CD320 interaction. The observed interaction chemistry can rationalize the high affinity of CD320 for TC and lack of haptocorrin binding. The in vitro affinity and complex stability of TC-CD320 were quantitated using a solid-phase binding assay and thermostability analysis. Stable complexes with TC were also observed for the disease-causing CD320ΔE88 mutant and for the isolated LDLR-A2 domain. We also determined the structure of the TC-CD320ΔE88 complex, which revealed only minor changes compared with the wild-type complex. Finally, we demonstrate significantly reduced in vitro affinity of TC for CD320 at low pH, recapitulating the proposed ligand release during the endocytic pathway.

  18. Pengaruh Ampas Tebu sebagai Adsorbent pada Proses Pretreatment Minyak Jelantah terhadap Karakteristik Biodiesel

    Directory of Open Access Journals (Sweden)

    Ratno Ratno

    2013-09-01

    Full Text Available Telah dilakukan penelitian mengenai pengaruh ampas tebu pada proses pretreatment minyak jelantah terhadap karakteristik biodiesel. Proses pretreatment dilakukan sebelum minyak jelantah diolah menjadi biodiesel, yakni ampas tebu dengan ukuran partikel dan massa yang bervariasi direndam pada minyak tersebut selama 2 jam. Ukuran partikel ampas tebu yang digunakan adalah 80, 115, 170, dan 200 mesh, sedangkan massa ampas tebu divariasi untuk tiap ukuran partikel yaitu 25 gram, 37,5 gram, dan 50 gram. Penggunaan ampas tebu sebagai adsorbent dinilai cukup efektif menurunkan kadar asam lemak bebas (FFA minyak jelantah dengan penurunan terbesar 57,3% terjadi pada minyak jelantah yang telah mengalami pretreatment ampas tebu berukuran partikel 200 mesh sebanyak 50 gram. Biodiesel dibuat dengan mereaksikan minyak jelantah yang telah mengalami pretreatment ampas tebu dengan lauratan Methanol dan Kalium Hidroksida (KOH selama 1 jam pada suhu 55oC. Hasil karakterisasi  menunjukkan bahwa massa jenis, titik nyala, titik kabut, dan titik tuang biodiesel telah memenuhi standar SNI-04-7182-2006 kecuali sampel yang mengalami pretreatment dengan ampas tebu 80 mesh sebanyak 25 gram. Sedangkan viskositas kinematik terdapat 5 sampel yang memenuhi untuk standar yang sama.

  19. Role of post-translational modifications on structure, function and pharmacology of class C G protein-coupled receptors

    DEFF Research Database (Denmark)

    Nørskov-Lauritsen, Lenea; Bräuner-Osborne, Hans

    2015-01-01

    taste receptors (T1R1-3), one calcium-sensing (CaS) receptor, one GPCR, class C, group 6, subtype A (GPRC6) receptor, and seven orphan receptors. G protein-coupled receptors undergo a number of post-translational modifications, which regulate their structure, function and/or pharmacology. Here, we...

  20. Water quality of the main tributaries of the Paraná Basin: glyphosate and AMPA in surface water and bottom sediments.

    Science.gov (United States)

    Ronco, A E; Marino, D J G; Abelando, M; Almada, P; Apartin, C D

    2016-08-01

    The Paraná River, the sixth largest in the world, is the receptor of pollution loads from tributaries traversing urban and industrialized areas plus agricultural expanses, particularly so in the river's middle and lower reaches along the Argentine sector. In the present study, we analyzed and discussed the main water quality parameters, sediment compositions, and content of the herbicide glyphosate plus its metabolite aminomethylphosphonic acid (AMPA) in water and sediments. Samples were obtained from distal positions in the principal tributaries of the Paraná and the main watercourse during surveys conducted in 2011 and 2012 to monitor the basin. Only 15 % of the water samples contained detectable concentrations of glyphosate at an average concentration of 0.60 μg/L, while no detectable levels of AMPA were observed. The herbicide and metabolite were primarily present in sediments of the middle and lower stretch's tributaries, there occurring at a respective average of 37 and 17 % in samples. The mean detectable concentrations measured were 742 and 521 μg/kg at mean, maximum, and minimum glyphosate/AMPA ratios of 2.76, 7.80, and 0.06, respectively. The detection of both compounds was correlated with the presence of sulfides and copper in the sediment matrix. PMID:27395359

  1. Effect of brain-derived neurotrophic factor on activity-regulated cytoskeleton-associated protein gene expression in primary frontal cortical neurons. Comparison with NMDA and AMPA

    DEFF Research Database (Denmark)

    El-Sayed, Mona; Hofman-Bang, Jacob; Mikkelsen, Jens D

    2011-01-01

    The effect of brain-derived neurotrophic factor (BDNF) on activity-regulated cytoskeleton-associated protein (Arc) mRNA levels in primary neuronal cultures of rat frontal cortex was characterized pharmacologically and compared to the effect on expression of c-fos, bdnf, neuritin, cox-2 as examples...... of other immediate early genes. BDNF induced a very strong increase (around 100 fold) in Arc mRNA and the maximal effect seen at 25 ng/ml. The effect was dose-dependent with EC50 around 1.6 ng/ml. The time profile revealed a significant effect after 25 min. BDNF also increased levels of c-Fos, neuritin...... and BDNF mRNA, but not COX-2 mRNA. The pharmacological profile of NMDA and AMPA-induced arc gene expression in frontal cortical neurons was compared to BDNF. NMDA and AMPA increased Arc mRNA but their maximal effect did not exceed 20-fold. The effect of AMPA was completely blocked by the NMDA receptor...

  2. A preliminary experimental study on the cardiac toxicity of glutamate and the role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor in rats

    Institute of Scientific and Technical Information of China (English)

    LIU Yan; ZHOU Lan; XU Hai-fei; YAN Li; DING Fan; HAO Wei; CAO Ji-min

    2013-01-01

    Background Monosodium L-glutamate (MSG) is a food flavour enhancer and its potential harmfulness to the heart remains controversial.We investigated whether MSG could induce cardiac arrhythmias and apoptosis via the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor.Methods Myocardial infarction (MI) was created by ligating the coronary artery and ventricular arrhythmias were monitored by electrocardiogram in the rat in vivo.Neonatal rat cardiomyocytes were isolated and cultured.Cell viability was estimated by 3-(4,5)-dimethylthiahiazo(-z-yl)-3,5-di-phenytetrazoliumromide (MTT) assay.Calcium mobilization was monitored by confocal microscopy.Cardiomyocyte apoptosis was evaluated by acridine orange staining,flow cytometry,DNA laddering,reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting.Results MSG (i.v.) decreased the heart rate at 0.5 g/kg and serious bradycardia at 1.5 g/kg,but could not induce ventricular tachyarrhythmias in normal rats in vivo.In rats with acute MI in vivo,however,MSG (1.5 g/kg,i.v.) induced ventricular tachyarrhythmias and these arrhythmias could be prevented by blocking the AMPA and N-methyl-d-aspartate (NMDA) receptors.Selectively activating the AMPA or NMDA receptor induced ventricular tachyarrhythmias in MI rats.At the cellular level,AMPA induced calcium mobilization,oxidative stress,mitochondrial dysfunction and apoptosis in cultured cardiomyocytes,especially when the AMPA receptor desensitization were blocked by cyclothiazide.The above toxic cellular effects of AMPA were abolished by AMPA receptor blockade or by H2O2 scavengers.Conclusions MSG induces bradycardia in normal rats,but triggers lethal tachyarrhythmias in myocardial infarcted rats probably by hindering AMPA receptors.AMPA receptor overstimulation also induces cardiomyocyte apoptosis,which may facilitate arrhythmia.

  3. Compatibility between itinerant synaptic receptors and stable postsynaptic structure

    CERN Document Server

    Sekimoto, Ken

    2009-01-01

    The density of synaptic receptors in front of presynaptic release sites is stabilized in the presence of scaffold proteins, but the receptors and scaffold molecules have local exchanges with characteristic times shorter than that of the receptor-scaffold assembly. We propose a mesoscopic model to account for the regulation of the local density of receptors as quasiequilibrium. It is based on two zones (synaptic and extrasynaptic) and multi-layer (membrane, sub-membrane and cytoplasmic) topological organization. The model includes the balance of chemical potentials associated with the receptor and scaffold protein concentrations in the various compartments. The model shows highly cooperative behavior including a "phase change" resulting in the formation of well-defined post-synaptic domains. This study provides theoretical tools to approach the complex issue of synaptic stability at the synapse, where receptors are transiently trapped yet rapidly diffuse laterally on the plasma membrane.

  4. Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Smit, M J; Waldhoer, M

    2008-01-01

    A number of human and animal herpes viruses encode G-protein coupled receptors with seven transmembrane (7TM) segments-most of which are clearly related to human chemokine receptors. It appears, that these receptors are used by the virus for immune evasion, cellular transformation, tissue targeting...... pathogenesis is still poorly understood. Here we focus on the current knowledge of structure, function and trafficking patterns of virally encoded chemokine receptors and further address the putative roles of these receptors in virus survival and host -cell and/or -immune system modulation. Finally, we...

  5. Structure and Function of Serotonin G protein Coupled Receptors

    OpenAIRE

    McCorvy, John D.; Roth, Bryan L.

    2015-01-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a...

  6. Nature and regulation of the insulin receptor: structure and function

    International Nuclear Information System (INIS)

    Native, cell-surface insulin receptor consists of two glycoprotein subunit types with apparent masses of about 125,000 daltons (alpha subunit) and 90,000 daltons (beta subunit). The alpha and beta insulin-receptor subunits seem to have distinct functions such that alpha appears to bind hormone whereas beta appears to possess intrinsic tyrosine kinase activity. In detergent extracts, insulin activates receptor autophosphorylation of tyrosine residues on its beta subunit, whereas in the presence of reductant, the alpha subunit is also phosphorylated. In intact cells, insulin activates serine/threonine phosphorylation of insulin receptor beta subunit as well as tyrosine phosphorylation. The biological role of the receptor-associated tyrosine kinase is not known. The insulin receptor kinase is regulated by beta-adrenergic agonists and other agents that elevate cAMP in adipocytes, presumably via the cAMP-dependent protein kinase. Such agents decrease receptor affinity for insulin and partially uncouple receptor tyrosine kinase activity from activation by insulin. These effects appear to contribute to the biological antagonism between insulin and beta-agonists. These data suggest the hypothesis that a complex network of tyrosine and serine/threonine phosphorylations on the insulin receptor modulate its binding and kinase activities in an antagonistic manner

  7. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Haga, Kazuko; Kruse, Andrew C.; Asada, Hidetsugu; Yurugi-Kobayashi, Takami; Shiroishi, Mitsunori; Zhang, Cheng; Weis, William I.; Okada, Tetsuji; Kobilka, Brian K.; Haga, Tatsuya; Kobayashi, Takuya (Stanford-MED); (Kyoto); (Gakushuin); (Kyushu)

    2012-03-15

    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.

  8. Quantitative structure-activity relationships of selective antagonists of glucagon receptor using QuaSAR descriptors.

    Science.gov (United States)

    Manoj Kumar, Palanivelu; Karthikeyan, Chandrabose; Hari Narayana Moorthy, Narayana Subbiah; Trivedi, Piyush

    2006-11-01

    In the present paper, quantitative structure activity relationship (QSAR) approach was applied to understand the affinity and selectivity of a novel series of triaryl imidazole derivatives towards glucagon receptor. Statistically significant and highly predictive QSARs were derived for glucagon receptor inhibition by triaryl imidazoles using QuaSAR descriptors of molecular operating environment (MOE) employing computer-assisted multiple regression procedure. The generated QSAR models revealed that factors related to hydrophobicity, molecular shape and geometry predominantly influences glucagon receptor binding affinity of the triaryl imidazoles indicating the relevance of shape specific steric interactions between the molecule and the receptor. Further, QSAR models formulated for selective inhibition of glucagon receptor over p38 mitogen activated protein (MAP) kinase of the compounds in the series highlights that the same structural features, which influence the glucagon receptor affinity, also contribute to their selective inhibition. PMID:17077558

  9. Structure-function relationships for the interleukin 2 receptor system

    Directory of Open Access Journals (Sweden)

    Richard J. Robb

    1987-01-01

    Full Text Available Receptors for interleukin 2 (IL-2 esit in at least three forms which differ in their subunit compositio, their affinity for ligand and their ability to mediate a cellular reponse. Type I receptors occur following cellular acitivation and consist of the 55,000 m. w. glycoprotein Tac. These receptors bind IL-2 with a low affinity, do not internalize ligand and have not been definitively associated with any response. Type II receptors, on the other hand, conssit of one or more glycoproteins of 70,000 m. w. which have been termed "beta ([beta] chains." They bind IL-2 with an intermediate affinity and rapidly internalize the ligand. [Beta] proteins mediate many cellular IL-2-dependent reponses, including the short-term activation of natural killer cells and the induction of Tac protein expression. Type III receptors consist of a ternary complex of the Tac protein, the [beta] chain(s and IL-2. They are characterized by a paricularly high affinity for ligand association. Type III receptors also internalize ligand and mediate IL-2-dependent responses at low factor concentrations. The identification of two independent IL-2-binding molecules, Tac and [beta], thus provides the elusive molecular explanation for the differences in IL-2 receptor affinity and suggests the potential for selective therapeutic manipulation of IL-2 reponses.

  10. [Opioid receptors of the CNS: function, structure and distribution].

    Science.gov (United States)

    Slamberová, R

    2004-01-01

    Even though the alkaloids of opium, such as morphine and codeine, were isolated at the beginning of 19th century, the opioid receptors were not determined until 1970's. The discovery of endogenous opioid peptides, such as endorphins, enkephalins and dynorphins, has helped to differentiate between the specific opioid receptor subtypes, mu, delta and kappa, that are used up to now. Opioid receptors are distributed in the central nervous system unevenly. Each receptor subtype has its own specific and nonspecific agonists and antagonists. Opioides, as exogenous opioid receptor agonists, are drugs that are often used in medicine for their analgesic effects, but they are also some of the most heavily abused drugs in the world. Opioides may also induce long-term changes in the numbers and binding activities of opioid receptors. Some of our studies in fact demonstrate that prenatal morphine exposure can alter opioid receptors of adult rats. This may begin to provide insight into the sources of some of the morphological and behavioral changes in the progeny of mothers that received or abused opioides during pregnancy.

  11. Structure of the Murine Constitutive Androstane Receptor Complexed to Androstenol: A Molecular Basis for Inverse Agonism

    OpenAIRE

    Shan, Li; Vincent, Jeremy; Brunzelle, Joseph S.; Dussault, Isabelle; Lin, Min; Ianculescu, Irina; Sherman, Mark A.; Forman, Barry M.; Fernandez, Elias J.

    2004-01-01

    The nuclear receptor CAR is a xenobiotic responsive transcription factor that plays a central role in the clearance of drugs and bilirubin while promoting cocaine and acetaminophen toxicity. In addition, CAR has established a “reverse” paradigm of nuclear receptor action where the receptor is active in the absence of ligand and inactive when bound to inverse agonists. We now report the crystal structure of murine CAR bound to the inverse agonist androstenol. Androstenol binds within the ligan...

  12. Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors

    DEFF Research Database (Denmark)

    de Turco, Elena B; Diemer, Nils Henrik; Bazan, Nicolas G;

    2002-01-01

    To define the significance of glutamate ionotropic receptors in sPLA -mediated neuronal cell death we used the NMDA receptor antagonist MK-801 and the AMPA receptor antagonist PNQX. In primary neuronal cell cultures both MK-801 and PNQX inhibited sPLA - and glutamate-induced neuronal death. [ H]A...

  13. L-(TH)glutamate binds to kainate-, NMDA- and AMPA-sensitive binding sites: an autoradiographic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Monaghan, D.T.; Yao, D.; Cotman, C.W.

    1985-08-12

    The anatomical distribution of L-(TH)glutamate binding sites was determined in the presence of various glutamate analogues using quantitative autoradiography. The binding of L-(TH)glutamate is accounted for by the presence of 3 distinct binding sites when measured in the absence of CaS , Cl and Na ions. The anatomical distribution and pharmacological specificity of these binding sites correspond to that reported for the 3 excitatory amino acid binding sites selectively labelled by D-(TH)2-amino-5-phosphonopentanoate (D-(TH)AP5), (TH)kainate ((TH)KA) and (TH) -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ((TH)AMPA) which are thought to be selective ligands for the N-methyl-D-aspartate (NMDA), KA and quisqualate (QA) receptors, respectively. (Auth.). 29 refs.; 1 figure; 1 table.

  14. Functional and structural stability of the epidermal growth factor receptor in detergent micelles and phospholipid nanodiscs

    DEFF Research Database (Denmark)

    Mi, Li-Zhi; Grey, Michael J; Nishida, Noritaka;

    2008-01-01

    Cellular signaling mediated by the epidermal growth factor receptor (EGFR or ErbB) family of receptor tyrosine kinases plays an important role in regulating normal and oncogenic cellular physiology. While structures of isolated EGFR extracellular domains and intracellular protein tyrosine kinase...... domains have suggested mechanisms for growth factor-mediated receptor dimerization and allosteric kinase domain activation, understanding how the transmembrane and juxtamembrane domains contribute to transmembrane signaling requires structural studies on intact receptor molecules. In this report......, recombinant EGFR constructs containing the extracellular, transmembrane, juxtamembrane, and kinase domains are overexpressed and purified from human embryonic kidney 293 cell cultures. The oligomerization state, overall structure, and functional stability of the purified EGF-bound receptor are characterized...

  15. Structural Features for Functional Selectivity at Serotonin Receptors

    OpenAIRE

    Wacker, Daniel; Wang, Chong; Katritch, Vsevolod; Han, Gye Won; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D.; Jiang, Yi; Chu, Meihua; Siu, Fai Yiu; Liu, Wei; Xu, H Eric; Cherezov, Vadim; Roth, Bryan L.; Stevens, Raymond C.

    2013-01-01

    Drugs active at G protein-coupled receptors (GPCRs) can differentially modulate either canonical or non-canonical signaling pathways via a phenomenon known as functional selectivity or biased signaling. We report biochemical studies that show that the hallucinogen lysergic acid diethylamide (LSD), its precursor ergotamine (ERG) and related ergolines display strong functional selectivity for β-arrestin signaling at the 5-hydroxytryptamine (5-HT) receptor 5-HT2B, while being relatively unbiased...

  16. The Structure of the Mouse Serotonin 5-HT3 Receptor in Lipid Vesicles.

    Science.gov (United States)

    Kudryashev, Mikhail; Castaño-Díez, Daniel; Deluz, Cédric; Hassaine, Gherici; Grasso, Luigino; Graf-Meyer, Alexandra; Vogel, Horst; Stahlberg, Henning

    2016-01-01

    The function of membrane proteins is best understood if their structure in the lipid membrane is known. Here, we determined the structure of the mouse serotonin 5-HT3 receptor inserted in lipid bilayers to a resolution of 12 Å without stabilizing antibodies by cryo electron tomography and subtomogram averaging. The reconstruction reveals protein secondary structure elements in the transmembrane region, the extracellular pore, and the transmembrane channel pathway, showing an overall similarity to the available X-ray model of the truncated 5-HT3 receptor determined in the presence of a stabilizing nanobody. Structural analysis of the 5-HT3 receptor embedded in a lipid bilayer allowed the position of the membrane to be determined. Interactions between the densely packed receptors in lipids were visualized, revealing that the interactions were maintained by the short horizontal helices. In combination with methodological improvements, our approach enables the structural analysis of membrane proteins in response to voltage and ligand gating.

  17. A strategy using NMR peptide structures of thromboxane A2 receptor as templates to construct ligand-recognition pocket of prostacyclin receptor

    Directory of Open Access Journals (Sweden)

    Ruan Ke-He

    2005-11-01

    Full Text Available Abstract Background: Prostacyclin receptor (IP and thromboxane A2 receptor (TP belong to rhodopsin-type G protein-coupling receptors and respectively bind to prostacyclin and thromboxane A2 derived from arachidonic acid. Recently, we have determined the extracellular loop (eLP structures of the human TP receptor by 2-D 1H NMR spectroscopy using constrained peptides mimicking the individual eLP segments. The studies have identified the segment along with several residues in the eLP domains important to ligand recognition, as well as proposed a ligand recognition pocket for the TP receptor. Results: The IP receptor shares a similar primary structure in the eLPs with those of the TP receptor. Forty percent residues in the second eLPs of the receptors are identical, which is the major region involved in forming the ligand recognition pocket in the TP receptor. Based on the high homology score, the eLP domains of the IP receptor were constructed by the homology modeling approach using the NMR structures of the TP eLPs as templates, and then configured to the seven transmembrane (TM domains model constructed using the crystal structure of the bovine rhodopsin as a template. A NMR structure of iloprost was docked into the modeled IP ligand recognition pocket. After dynamic studies, the segments and residues involved in the IP ligand recognition were proposed. A key residue, Arg173 involved in the ligand recognition for the IP receptor, as predicted from the modeling, was confirmed by site-directed mutagenesis. Conclusion: A 3-D model of the human IP receptor was constructed by homology modeling using the crystal structure of bovine rhodopsin TM domains and the NMR structures of the synthetic constrained peptides of the eLP domains of the TP receptor as templates. This strategy can be applied to molecular modeling and the prediction of ligand recognition pockets for other prostanoid receptors.

  18. Monitoring glyphosate and AMPA concentrations in wells and drains using the sorbicell passive sampler

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; de Jonge, Hubert; Møldrup, Per;

    2012-01-01

    Glyphosate is one of the world’s most extensively used weed control agents. Glyphosate, and its metabolite aminomethylphosphonic acid (AMPA), are suspected to be hazardous to human health and the aquatic environment. In Denmark, the extensive use has resulted in an increasing number of occurrences......Cell, will decrease the workload and number of samples freeing up funds for larger monitoring programs. When installed in a well the SorbiCell will continuously sample the water giving either a flux-weighed or time-weighted average measurement of the glyphosate/AMPA concentration throughout the sampling period....... It may therefore be possible to measure lower concentrations as the glyphosate/AMPA sorbed in the SorbiCell is an accumulated measurement. Also, glyphosate/AMPA associated with sudden flush events will be detected by the SorbiCells, while such events may pass between two consecutive grab samples...

  19. Glyphosate and AMPA in the estuaries of the Baltic Sea method optimization and field study.

    Science.gov (United States)

    Skeff, Wael; Neumann, Christine; Schulz-Bull, Detlef E

    2015-11-15

    Water samples from ten German Baltic estuaries were collected in 2012 in order to study the presence of the herbicide glyphosate, its primary metabolite AMPA and their potential transport to the marine environment. For the analyses an LC-MS/MS based analytical method after derivatization with FMOC-Cl was optimized and validated for marine water samples. All investigated estuarine stations were contaminated with AMPA and nine of them also with glyphosate. Concentration ranges observed were 28 to 1690ng/L and 45 to 4156ng/L for glyphosate and AMPA, respectively with strong spatial and temporal fluctuations. Both contaminants were found at inbound sampling sites in the stream Muehlenfliess and concentrations decreased along the salinity gradient to the estuaries of the Baltic Sea. The data obtained in this study clearly depict the transport of glyphosate and AMPA to the Baltic Sea. Hence, detailed fate and risk assessment for both contaminants in marine environments are required.

  20. Structure of the murine constitutive androstane receptor complexed to androstenol: a molecular basis for inverse agonism

    Energy Technology Data Exchange (ETDEWEB)

    Shan, L.; Vincent, J.; Brunzelle, J.S.; Dussault, I.; Lin, M.; Ianculescu, I.; Sherman, M.A.; Forman, B.M.; Fernandez, E. (Tennesse)

    2010-03-08

    The nuclear receptor CAR is a xenobiotic responsive transcription factor that plays a central role in the clearance of drugs and bilirubin while promoting cocaine and acetaminophen toxicity. In addition, CAR has established a 'reverse' paradigm of nuclear receptor action where the receptor is active in the absence of ligand and inactive when bound to inverse agonists. We now report the crystal structure of murine CAR bound to the inverse agonist androstenol. Androstenol binds within the ligand binding pocket, but unlike many nuclear receptor ligands, it makes no contacts with helix H12/AF2. The transition from constitutive to basal activity (androstenol bound) appears to be associated with a ligand-induced kink between helices H10 and H11. This disrupts the previously predicted salt bridge that locks H12 in the transcriptionally active conformation. This mechanism of inverse agonism is distinct from traditional nuclear receptor antagonists thereby offering a new approach to receptor modulation.

  1. Structural Overview of the Nuclear Receptor Superfamily: Insights into Physiology and Therapeutics

    Science.gov (United States)

    Huang, Pengxiang; Chandra, Vikas; Rastinejad, Fraydoon

    2013-01-01

    As ligand-regulated transcription factors, the nuclear hormone receptors are nearly ideal drug targets, with internal pockets that bind to hydrophobic, drug-like molecules and well-characterized ligand-induced conformational changes that recruit transcriptional coregulators to promoter elements. Yet, due to the multitude of genes under the control of a single receptor, the major challenge has been the identification of ligands with gene-selective actions, impacting disease outcomes through a narrow subset of target genes and not across their entire gene-regulatory repertoire. Here, we summarize the concepts and work to date underlying the development of steroidal and nonsteroidal receptor ligands, including the use of crystal structures, high-throughput screens, and rational design approaches for finding useful therapeutic molecules. Difficulties in finding selective receptor modulators require a more complete understanding of receptor interdomain communications, posttranslational modifications, and receptor-protein interactions that could be exploited for target gene selectivity. PMID:20148675

  2. Basic fibroblast growth factor increases the number of endogenous neural stem cells and inhibits the expression of amino methyl isoxazole propionic acid receptors in amyotrophic lateral sclerosis mice

    Institute of Scientific and Technical Information of China (English)

    Weihui Huang; Dawei Zang; Yi Lu; Ping Jiang

    2012-01-01

    This study aimed to investigate the number of amino methyl isoxazole propionic acid (AMPA) re-ceptors and production of endogenous neural stem cells in the SOD1G93AG1H transgenic mouse model of amyotrophic lateral sclerosis, at postnatal day 60 following administration of basic fibroblast growth factor (FGF-2). A radioligand binding assay and immunohistochemistry were used to estimate the number of AMPA receptors and endogenous neural stem cells respectively. Results showed that the number of AMPA receptors and endogenous neural stem cells in the brain stem and sensorimotor cortex were significantly increased, while motor function was significantly decreased at postnatal days 90 and 120. After administration of FGF-2 into mice, numbers of endogenous neural stem cells increased, while expression of AMPA receptors decreased, whilst motor functions were recovered. At postnatal day 120, the number of AMPA receptors was negatively correlated with the number of endogenous neural stem cells in model mice and FGF-2-treated mice. Our experimental findings indicate that FGF-2 can inhibit AMPA receptors and increase the number of endogenous neural stem cells, thus repairing neural injury in amyotrophic lateral sclerosis mice.

  3. Thermodynamics and mechanism of the interaction of willardiine partial agonists with a glutamate receptor: implications for drug development.

    Science.gov (United States)

    Martinez, Madeline; Ahmed, Ahmed H; Loh, Adrienne P; Oswald, Robert E

    2014-06-17

    Understanding the thermodynamics of binding of a lead compound to a receptor can provide valuable information for drug design. The binding of compounds, particularly partial agonists, to subtypes of the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor is, in some cases, driven by increases in entropy. Using a series of partial agonists based on the structure of the natural product, willardiine, we show that the charged state of the ligand determines the enthalpic contribution to binding. Willardiines have uracil rings with pKa values ranging from 5.5 to 10. The binding of the charged form is largely driven by enthalpy, while that of the uncharged form is largely driven by entropy. This is due at least in part to changes in the hydrogen bonding network within the binding site involving one water molecule. This work illustrates the importance of charge to the thermodynamics of binding of agonists and antagonists to AMPA receptors and provides clues for further drug discovery.

  4. Structural Insights into Divalent Cation Modulations of ATP-Gated P2X Receptor Channels.

    Science.gov (United States)

    Kasuya, Go; Fujiwara, Yuichiro; Takemoto, Mizuki; Dohmae, Naoshi; Nakada-Nakura, Yoshiko; Ishitani, Ryuichiro; Hattori, Motoyuki; Nureki, Osamu

    2016-02-01

    P2X receptors are trimeric ATP-gated cation channels involved in physiological processes ranging widely from neurotransmission to pain and taste signal transduction. The modulation of the channel gating, including that by divalent cations, contributes to these diverse physiological functions of P2X receptors. Here, we report the crystal structure of an invertebrate P2X receptor from the Gulf Coast tick Amblyomma maculatum in the presence of ATP and Zn(2+) ion, together with electrophysiological and computational analyses. The structure revealed two distinct metal binding sites, M1 and M2, in the extracellular region. The M1 site, located at the trimer interface, is responsible for Zn(2+) potentiation by facilitating the structural change of the extracellular domain for pore opening. In contrast, the M2 site, coupled with the ATP binding site, might contribute to regulation by Mg(2+). Overall, our work provides structural insights into the divalent cation modulations of P2X receptors. PMID:26804916

  5. EXPRESSION OF AMPA RECEPTORS AND RELATED PROTEIN IN IMMOBILIZATION STRESSED RATS AND EFFECT OF XIAOYAOSAN%AMPA受体和相关蛋白在束缚应激大鼠相关脑区的表达变化及逍遥散对其影响

    Institute of Scientific and Technical Information of China (English)

    岳广欣; 王竹风; 张巧丽; 赵歆; 岳利峰; 丁杰; 陈家旭

    2008-01-01

    目的:观察海马及杏仁核α-氨基羟甲基恶唑丙酸(AMPA)受体亚基和相关调节蛋白在束缚应激状态下蛋白表达变化及逍遥散的调节作用.方法:使用每天捆绑3 h的方法制作慢性束缚应激动物模型,并用逍遥散进行干预,分别于7 d后和21 d后用western blot方法检测各组大鼠海马CA1区、CA3区、齿状回(DG)和杏仁核的AMPA受体亚基GluR2/3及N-乙基顺丁烯二酰亚胺敏感性的融合蛋白(NSF)、PKC作用蛋白1(PICK1)蛋白表达的情况.结果:7 d应激可使DG和杏仁核的GluR2/3、NSF表达显著降低(P均<0.1315),使PICK1在CA1区的表达量显著增多(P<0.05),逍遥散对PICK1变化显示出一定调节作用.21 d应激可使CA1区的GluR2/3、NSF表达升高,其中GluR2/3有显著性差异(P<0.01),而在杏仁核表达有降低趋势,逍遥散对其均有显著调节作用(均为P<0.05),21 d应激使杏仁核PICK1表达量出现升高趋势,逍遥散可显著降低其表达(P<0.05).结论:AMPA受体在短期重复应激和慢性应激状态下反应不同,海马和杏仁核反应相反,逍遥散对慢性应激状态下AMPA受体表达的调节作用较短期重复应激强.

  6. Structural Insights into the Interactions between Platelet Receptors and Fibrillar Collagen*

    OpenAIRE

    Herr, Andrew B.; Farndale, Richard W.

    2009-01-01

    Collagen peptides have been used to identify binding sites for several important collagen receptors, including integrin α2β1, glycoprotein VI, and von Willebrand factor. In parallel, the structures of these collagen receptors have been reported, and their interactions with collagen peptides have been studied. Recently, the three-dimensional structure of the intact type I collagen fiber from rat tail tendon has been resolved by fiber diffraction. It is now possible to map the binding sites of ...

  7. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants. PMID:27155486

  8. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants.

  9. Toxicity of AMPA to the earthworm Eisenia andrei Bouché, 1972 in tropical artificial soil.

    Science.gov (United States)

    Domínguez, Anahí; Brown, George Gardner; Sautter, Klaus Dieter; de Oliveira, Cintia Mara Ribas; de Vasconcelos, Eliane Carvalho; Niva, Cintia Carla; Bartz, Marie Luise Carolina; Bedano, José Camilo

    2016-01-01

    Aminomethylphosphonic acid (AMPA) - one of glyphosate's main metabolites - has been classified as persistent in soils, raising concern regarding the widespread use of glyphosate in agriculture and forestry. Glyphosate may have negative or neutral effects on soil biota, but no information is available on the toxicity of AMPA to soil invertebrates. Therefore our aim was to study the effect of AMPA on mortality and reproduction of the earthworm species Eisenia andrei using standard soil ecotoxicological methods (ISO). Field-relevant concentrations of AMPA had no significant effects on mortality in acute or chronic assays. Except at the highest concentration tested, a significant biomass loss was observed compared to controls in the chronic assay. The number of juveniles and cocoons increased with higher concentrations of AMPA applied, but their mean weights decreased. This mass loss indicates higher sensitivity of juveniles than adults to AMPA. Our results suggest that earthworms coming from parents grown in contaminated soils may have reduced growth, limiting their beneficial roles in key soil ecosystem functions. Nevertheless, further research is needed to better understand the mechanisms underlying the sublethal effects observed here. PMID:26792548

  10. Ceftriaxone attenuates cocaine relapse after abstinence through modulation of nucleus accumbens AMPA subunit expression.

    Science.gov (United States)

    LaCrosse, Amber L; Hill, Kristine; Knackstedt, Lori A

    2016-02-01

    Using the extinction-reinstatement model of cocaine relapse, we and others have demonstrated that the antibiotic ceftriaxone attenuates cue- and cocaine-primed reinstatement of cocaine-seeking. Reinstatement is contingent on the release of glutamate in the nucleus accumbens core (NAc) and manipulations that reduce glutamate efflux or block post-synaptic glutamate receptors attenuate reinstatement. We have demonstrated that the mechanism of action by which ceftriaxone attenuates reinstatement involves increased NAc GLT-1 expression and a reduction in NAc glutamate efflux during reinstatement. Here we investigated the effects of ceftriaxone (100 and 200 mg/kg) on context-primed relapse following abstinence without extinction training and examined the effects of ceftriaxone on GluA1, GluA2 and GLT-1 expression. We conducted microdialysis during relapse to determine if an increase in NAc glutamate accompanies relapse after abstinence and whether ceftriaxone blunts glutamate efflux. We found that both doses of ceftriaxone attenuated relapse. While relapse was accompanied by an increase in NAc glutamate, ceftriaxone (200 mg/kg) was unable to significantly reduce NAc glutamate efflux during relapse despite its ability to upregulate GLT-1. GluA1 was reduced in the NAc by both doses of ceftriaxone while GluA2 expression was unchanged, indicating that ceftriaxone altered AMPA subunit composition following cocaine. Finally, GLT-1 was not altered in the PFC by ceftriaxone. These results indicate that it is possible to attenuate context-primed relapse to cocaine-seeking through modification of post-synaptic receptor properties without attenuating glutamate efflux during relapse. Furthermore, increasing NAc GLT-1 protein expression is not sufficient to attenuate glutamate efflux.

  11. Ceftriaxone attenuates cocaine relapse after abstinence through modulation of nucleus accumbens AMPA subunit expression.

    Science.gov (United States)

    LaCrosse, Amber L; Hill, Kristine; Knackstedt, Lori A

    2016-02-01

    Using the extinction-reinstatement model of cocaine relapse, we and others have demonstrated that the antibiotic ceftriaxone attenuates cue- and cocaine-primed reinstatement of cocaine-seeking. Reinstatement is contingent on the release of glutamate in the nucleus accumbens core (NAc) and manipulations that reduce glutamate efflux or block post-synaptic glutamate receptors attenuate reinstatement. We have demonstrated that the mechanism of action by which ceftriaxone attenuates reinstatement involves increased NAc GLT-1 expression and a reduction in NAc glutamate efflux during reinstatement. Here we investigated the effects of ceftriaxone (100 and 200 mg/kg) on context-primed relapse following abstinence without extinction training and examined the effects of ceftriaxone on GluA1, GluA2 and GLT-1 expression. We conducted microdialysis during relapse to determine if an increase in NAc glutamate accompanies relapse after abstinence and whether ceftriaxone blunts glutamate efflux. We found that both doses of ceftriaxone attenuated relapse. While relapse was accompanied by an increase in NAc glutamate, ceftriaxone (200 mg/kg) was unable to significantly reduce NAc glutamate efflux during relapse despite its ability to upregulate GLT-1. GluA1 was reduced in the NAc by both doses of ceftriaxone while GluA2 expression was unchanged, indicating that ceftriaxone altered AMPA subunit composition following cocaine. Finally, GLT-1 was not altered in the PFC by ceftriaxone. These results indicate that it is possible to attenuate context-primed relapse to cocaine-seeking through modification of post-synaptic receptor properties without attenuating glutamate efflux during relapse. Furthermore, increasing NAc GLT-1 protein expression is not sufficient to attenuate glutamate efflux. PMID:26706696

  12. Muscarinic acetylcholine receptor subtypes: localization and structure/function

    DEFF Research Database (Denmark)

    Brann, M R; Ellis, J; Jørgensen, H;

    1993-01-01

    Based on the sequence of the five cloned muscarinic receptor subtypes (m1-m5), subtype selective antibody and cDNA probes have been prepared. Use of these probes has demonstrated that each of the five subtypes has a markedly distinct distribution within the brain and among peripheral tissues. The...

  13. Glyphosate-Resistant and Conventional Canola (Brassica napus L.) Responses to Glyphosate and Aminomethylphosphonic Acid (AMPA) Treatment.

    Science.gov (United States)

    Corrêa, Elza Alves; Dayan, Franck E; Owens, Daniel K; Rimando, Agnes M; Duke, Stephen O

    2016-05-11

    Glyphosate-resistant (GR) canola contains two transgenes that impart resistance to the herbicide glyphosate: (1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and (2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase. The objectives of this research were to determine the phytotoxicity of AMPA to canola, the relative metabolism of glyphosate to AMPA in GR and conventional non-GR (NGR) canola, and AMPA pool sizes in glyphosate-treated GR canola. AMPA applied at 1.0 kg ha(-1) was not phytotoxic to GR or NGR. At this AMPA application rate, NGR canola accumulated a higher concentration of AMPA in its tissues than GR canola. At rates of 1 and 3.33 kg ae ha(-1) of glyphosate, GR canola growth was stimulated. This stimulatory effect is similar to that of much lower doses of glyphosate on NGR canola. Both shikimate and AMPA accumulated in tissues of these glyphosate-treated plants. In a separate experiment in which young GR and NGR canola plants were treated with non-phytotoxic levels of [(14)C]-glyphosate, very little glyphosate was metabolized in NGR plants, whereas most of the glyphosate was metabolized to AMPA in GR plants at 7 days after application. Untreated leaves of GR plants accumulated only metabolites (mostly AMPA) of glyphosate, indicating that GOX activity is very high in the youngest leaves. These data indicate that more glyphosate is transformed to AMPA rapidly in GR canola and that the accumulated AMPA is not toxic to the canola plant. PMID:27092715

  14. Glyphosate-Resistant and Conventional Canola (Brassica napus L.) Responses to Glyphosate and Aminomethylphosphonic Acid (AMPA) Treatment.

    Science.gov (United States)

    Corrêa, Elza Alves; Dayan, Franck E; Owens, Daniel K; Rimando, Agnes M; Duke, Stephen O

    2016-05-11

    Glyphosate-resistant (GR) canola contains two transgenes that impart resistance to the herbicide glyphosate: (1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and (2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase. The objectives of this research were to determine the phytotoxicity of AMPA to canola, the relative metabolism of glyphosate to AMPA in GR and conventional non-GR (NGR) canola, and AMPA pool sizes in glyphosate-treated GR canola. AMPA applied at 1.0 kg ha(-1) was not phytotoxic to GR or NGR. At this AMPA application rate, NGR canola accumulated a higher concentration of AMPA in its tissues than GR canola. At rates of 1 and 3.33 kg ae ha(-1) of glyphosate, GR canola growth was stimulated. This stimulatory effect is similar to that of much lower doses of glyphosate on NGR canola. Both shikimate and AMPA accumulated in tissues of these glyphosate-treated plants. In a separate experiment in which young GR and NGR canola plants were treated with non-phytotoxic levels of [(14)C]-glyphosate, very little glyphosate was metabolized in NGR plants, whereas most of the glyphosate was metabolized to AMPA in GR plants at 7 days after application. Untreated leaves of GR plants accumulated only metabolites (mostly AMPA) of glyphosate, indicating that GOX activity is very high in the youngest leaves. These data indicate that more glyphosate is transformed to AMPA rapidly in GR canola and that the accumulated AMPA is not toxic to the canola plant.

  15. Structural Characterization of the Hemagglutinin Receptor Specificity from the 2009 H1N1 Influenza Pandemic

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Rui; McBride, Ryan; Nycholat, Corwin M.; Paulson, James C.; Wilson, Ian A. (Scripps)

    2012-02-13

    Influenza virus hemagglutinin (HA) is the viral envelope protein that mediates viral attachment to host cells and elicits membrane fusion. The HA receptor-binding specificity is a key determinant for the host range and transmissibility of influenza viruses. In human pandemics of the 20th century, the HA normally has acquired specificity for human-like receptors before widespread infection. Crystal structures of the H1 HA from the 2009 human pandemic (A/California/04/2009 [CA04]) in complex with human and avian receptor analogs reveal conserved recognition of the terminal sialic acid of the glycan ligands. However, favorable interactions beyond the sialic acid are found only for {alpha}2-6-linked glycans and are mediated by Asp190 and Asp225, which hydrogen bond with Gal-2 and GlcNAc-3. For {alpha}2-3-linked glycan receptors, no specific interactions beyond the terminal sialic acid are observed. Our structural and glycan microarray analyses, in the context of other high-resolution HA structures with {alpha}2-6- and {alpha}2-3-linked glycans, now elucidate the structural basis of receptor-binding specificity for H1 HAs in human and avian viruses and provide a structural explanation for the preference for {alpha}2-6 siaylated glycan receptors for the 2009 pandemic swine flu virus.

  16. Structural Disorder in the Complex of Human Pregnane X Receptor and the Macrolide Antibiotic Rifampicin

    Energy Technology Data Exchange (ETDEWEB)

    Chrencik, Jill E.; Orans, Jillian; Moore, Linda B.; Xue, Yu; Peng, Li; Collins, Jon L.; Wisely, G. Bruce; Lambert, Millard H.; Kliewer, Steven A.; Redinbo, Matthew R. (U. of Texas-SMED); (UNC)

    2010-07-13

    The human nuclear xenobiotic receptor, pregnane X receptor (PXR), detects a variety of structurally distinct endogenous and xenobiotic compounds and controls expression of genes central to drug and cholesterol metabolism. The macrolide antibiotic rifampicin, a front-line treatment for tuberculosis, is an established PXR agonist and, at 823 Da, is one of the largest known ligands for the receptor. We present the 2.8 {angstrom} crystal structure of the ligand-binding domain of human PXR in complex with rifampicin. We also use structural and mutagenesis data to examine the origins of the directed promiscuity exhibited by the PXRs across species. Three structurally flexible loops adjacent to the ligand-binding pocket of PXR are disordered in this crystal structure, including the 200-210 region that is part of a sequence insert novel to the promiscuous PXRs relative to other members of the nuclear receptor superfamily. The 4-methyl-1-piperazinyl ring of rifampicin, which would lie adjacent to the disordered protein regions, is also disordered and not observed in the structure. Taken together, our results indicate that one wall of the PXR ligand-binding cavity can remain flexible even when the receptor is in complex with an activating ligand. These observations highlight the key role that structural flexibility plays in PXR's promiscuous response to xenobiotics.

  17. Molecular dynamics simulation of the structure and dynamics of 5-HT3 serotonin receptor

    Science.gov (United States)

    Antonov, M. Yu.; Popinako, A. V.; Prokopiev, G. A.

    2016-10-01

    In this work, we investigated structure, dynamics and ion transportation in transmembrane domain of the 5-HT3 serotonin receptor. High-resolution (0.35 nm) structure of the 5-HT3 receptor in complex with stabilizing nanobodies was determined by protein crystallography in 2014 (Protein data bank (PDB) code 4PIR). Transmembrane domain of the structure was prepared in complex with explicit membrane environment (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC)) and solvent (TIP3P water model). Molecular dynamics protocols for simulation and stabilization of the transmembrane domain of the 5-HT3 receptor model were developed and 60 ns simulation of the structure was conducted in order to explore structural parameters of the system. We estimated the mean force profile for Na+ ions using umbrella sampling method.

  18. Androgen receptor: structure, role in prostate cancer and drug discovery

    OpenAIRE

    Tan, MH Eileen; Li, Jun; Xu, H. Eric; Melcher, Karsten; Yong, Eu-Leong

    2014-01-01

    Androgens and androgen receptors (AR) play a pivotal role in expression of the male phenotype. Several diseases, such as androgen insensitivity syndrome (AIS) and prostate cancer, are associated with alterations in AR functions. Indeed, androgen blockade by drugs that prevent the production of androgens and/or block the action of the AR inhibits prostate cancer growth. However, resistance to these drugs often occurs after 2–3 years as the patients develop castration-resistant prostate cancer ...

  19. Selective Negative Allosteric Modulation Of Metabotropic Glutamate Receptors – A Structural Perspective of Ligands and Mutants

    Science.gov (United States)

    Harpsøe, Kasper; Isberg, Vignir; Tehan, Benjamin G.; Weiss, Dahlia; Arsova, Angela; Marshall, Fiona H.; Bräuner-Osborne, Hans; Gloriam, David E.

    2015-01-01

    The metabotropic glutamate receptors have a wide range of modulatory functions in the central nervous system. They are among the most highly pursued drug targets, with relevance for several neurological diseases, and a number of allosteric modulators have entered clinical trials. However, so far this has not led to a marketed drug, largely because of the difficulties in achieving subtype-selective compounds with desired properties. Very recently the first crystal structures were published for the transmembrane domain of two metabotropic glutamate receptors in complex with negative allosteric modulators. In this analysis, we make the first comprehensive structural comparison of all metabotropic glutamate receptors, placing selective negative allosteric modulators and critical mutants into the detailed context of the receptor binding sites. A better understanding of how the different mGlu allosteric modulator binding modes relates to selective pharmacological actions will be very valuable for rational design of safer drugs. PMID:26359761

  20. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs

    Science.gov (United States)

    Dror, Ron O.; Green, Hillary F.; Valant, Celine; Borhani, David W.; Valcourt, James R.; Pan, Albert C.; Arlow, Daniel H.; Canals, Meritxell; Lane, J. Robert; Rahmani, Raphaël; Baell, Jonathan B.; Sexton, Patrick M.; Christopoulos, Arthur; Shaw, David E.

    2013-11-01

    The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug-receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation-π interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15Å from the classical, `orthosteric' ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator's allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.

  1. The type I interferon receptor: structure, function, and evolution of a family business.

    Science.gov (United States)

    Mogensen, K E; Lewerenz, M; Reboul, J; Lutfalla, G; Uzé, G

    1999-10-01

    Recent results indicate that coherent models of how multiple interferons (IFN) are recognized and signal selectively through a common receptor are now feasible. A proposal is made that the IFN receptor, with its subunits IFNAR-1 and IFNAR-2, presents two separate ligand binding sites, and this double structure is both necessary and sufficient to ensure that the different IFN are recognized and can act selectively. The key feature is the duplication of the extracellular domain of the IFNAR-1 subunit and the configurational geometry that this imposes on the intracellular domains of the receptor subunits and their associated tyrosine kinases. PMID:10547147

  2. Structure of the CCR5 Chemokine Receptor-HIV Entry Inhibitor Maraviroc Complex

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Qiuxiang; Zhu, Ya; Li, Jian; Chen, Zhuxi; Han, Gye Won; Kufareva, Irina; Li, Tingting; Ma, Limin; Fenalti, Gustavo; Li, Jing; Zhang, Wenru; Xie, Xin; Yang, Huaiyu; Jiang, Hualiang; Cherezov, Vadim; Liu, Hong; Stevens, Raymond C.; Zhao, Qiang; Wu, Beili [Scripps; (Chinese Aca. Sci.); (UCSD)

    2013-10-21

    The CCR5 chemokine receptor acts as a co-receptor for HIV-1 viral entry. Here we report the 2.7 angstrom–resolution crystal structure of human CCR5 bound to the marketed HIV drug maraviroc. The structure reveals a ligand-binding site that is distinct from the proposed major recognition sites for chemokines and the viral glycoprotein gp120, providing insights into the mechanism of allosteric inhibition of chemokine signaling and viral entry. A comparison between CCR5 and CXCR4 crystal structures, along with models of co-receptor–gp120-V3 complexes, suggests that different charge distributions and steric hindrances caused by residue substitutions may be major determinants of HIV-1 co-receptor selectivity. These high-resolution insights into CCR5 can enable structure-based drug discovery for the treatment of HIV-1 infection.

  3. Synthesis and structure-activity relationships of novel indazolyl glucocorticoid receptor partial agonists.

    Science.gov (United States)

    Gilmore, John L; Sheppeck, James E; Wang, Jim; Dhar, T G Murali; Cavallaro, Cullen; Doweyko, Arthur M; Mckay, Lorraine; Cunningham, Mark D; Habte, Sium F; Nadler, Steven G; Dodd, John H; Somerville, John E; Barrish, Joel C

    2013-10-01

    SAR was used to further develop an indazole class of non-steroidal glucocorticoid receptor agonists aided by a GR LBD (ligand-binding domain)-agonist co-crystal structure described in the accompanying paper. Progress towards discovering a dissociated GR agonist guided by human in vitro assays biased the optimization of this compound series towards partial agonists that possessed excellent selectivity against other nuclear hormone receptors. PMID:23916594

  4. Structure of adenovirus bound to cellular receptor car

    Science.gov (United States)

    Freimuth, Paul I.

    2007-01-02

    Disclosed is a mutant CAR-DI-binding adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have a significantly weakened binding affinity for CAR-DI relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type.

  5. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function

    DEFF Research Database (Denmark)

    Rosenbaum, Daniel M; Cherezov, Vadim; Hanson, Michael A;

    2007-01-01

    of the reported high-resolution structure of beta2AR-T4L provides insights into inverse-agonist binding and the structural changes required to accommodate catecholamine agonists. Amino acids known to regulate receptor function are linked through packing interactions and a network of hydrogen bonds, suggesting...

  6. Structural Basis for Antibody Discrimination between Two Hormones That Recognize the Parathyroid Hormone Receptor

    Energy Technology Data Exchange (ETDEWEB)

    McKinstry, William J.; Polekhina, Galina; Diefenbach-Jagger, Hannelore; Ho, Patricia W.M.; Sato, Koh; Onuma, Etsuro; Gillespie, Matthew T.; Martin, T. John; Parker, Michael W.; (SVIMR-A); (Chugai); (Melbourne)

    2009-08-18

    Parathyroid hormone-related protein (PTHrP) plays a vital role in the embryonic development of the skeleton and other tissues. When it is produced in excess by cancers it can cause hypercalcemia, and its local production by breast cancer cells has been implicated in the pathogenesis of bone metastasis formation in that disease. Antibodies have been developed that neutralize the action of PTHrP through its receptor, parathyroid hormone receptor 1, without influencing parathyroid hormone action through the same receptor. Such neutralizing antibodies against PTHrP are therapeutically effective in animal models of the humoral hypercalcemia of malignancy and of bone metastasis formation. We have determined the crystal structure of the complex between PTHrP (residues 1-108) and a neutralizing monoclonal anti-PTHrP antibody that reveals the only point of contact is an {alpha}-helical structure extending from residues 14-29. Another striking feature is that the same residues that interact with the antibody also interact with parathyroid hormone receptor 1, showing that the antibody and the receptor binding site on the hormone closely overlap. The structure explains how the antibody discriminates between the two hormones and provides information that could be used in the development of novel agonists and antagonists of their common receptor.

  7. The genomic structure of the human UFO receptor.

    Science.gov (United States)

    Schulz, A S; Schleithoff, L; Faust, M; Bartram, C R; Janssen, J W

    1993-02-01

    Using a DNA transfection-tumorigenicity assay we have recently identified the UFO oncogene. It encodes a tyrosine kinase receptor characterized by the juxtaposition of two immunoglobulin-like and two fibronectin type III repeats in its extracellular domain. Here we describe the genomic organization of the human UFO locus. The UFO receptor is encoded by 20 exons that are distributed over a region of 44 kb. Different isoforms of UFO mRNA are generated by alternative splicing of exon 10 and differential usage of two imperfect polyadenylation sites resulting in the presence or absence of 1.5-kb 3' untranslated sequences. Primer extension and S1 nuclease analyses revealed multiple transcriptional initiation sites including a major site 169 bp upstream of the translation start site. The promoter region is GC rich, lacks TATA and CAAT boxes, but contains potential recognition sites for a variety of trans-acting factors, including Sp1, AP-2 and the cyclic AMP response element-binding protein. Proto-UFO and its oncogenic counterpart exhibit identical cDNA and promoter regions sequences. Possible modes of UFO activation are discussed.

  8. The effects of AMPA blockade on the spectral profile of human early visual cortex recordings studied with non-invasive MEG.

    Science.gov (United States)

    Muthukumaraswamy, Suresh D; Routley, Bethany; Droog, Wouter; Singh, Krish D; Hamandi, Khalid

    2016-08-01

    The generation of gamma-band (>30 Hz) cortical activity is thought to depend on the reciprocal connections of excitatory glutamatergic principal cells with inhibitory GABAergic interneurons. Both in vitro and in vivo animal studies have shown that blockade of glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors reduces the amplitude of gamma-band activity. In this registered report, we hypothesised that similar effects would be observed in humans following administration of perampanel, a first in class AMPA antagonist, used in the treatment of epilepsy. In a single-blind placebo-controlled crossover study, 20 healthy male participants completed two study days. On one day participants were given a 6 mg dose of perampanel and on the other an inactive placebo. magnetoencephalography (MEG) recordings of brain activity were taken before and two hours after drug administration, with activity in the visual cortex probed using a stimulation protocol known to induce gamma-band activity in the primary visual cortex. As hypothesised, our results indicated a decrease in gamma-band amplitudes following perampanel administration. The decreases in gamma-band amplitudes observed were temporally restricted to the early time-period of stimulus presentation (up to 400 msec) with no significant effects observed on early evoked responses or alpha rhythms. This suggests that the early time-window of induced visual gamma-band activity, thought to reflect input to the visual cortex from the lateral geniculate nucleus, is most sensitive to AMPA blocking drugs. PMID:27209006

  9. Three-dimensional structure of the ligand-binding core of GluR2 in complex with the agonist (S)-ATPA

    DEFF Research Database (Denmark)

    Lunn, Marie-Louise; Hogner, Anders; Stensbøl, Tine B;

    2003-01-01

    Two X-ray structures of the GluR2 ligand-binding core in complex with (S)-2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid ((S)-ATPA) have been determined with and without Zn(2+) ions. (S)-ATPA induces a domain closure of ca. 21 degrees compared to the apo form. The tert-butyl moiety...... of (S)-ATPA is buried in a partially hydrophobic pocket and forces the ligand into the glutamate-like binding mode. The structures provide new insight into the molecular basis of agonist selectivity between AMPA and kainate receptors....

  10. Scavenging ROS dramatically increase NMDA receptor whole-cell currents in painted turtle cortical neurons.

    Science.gov (United States)

    Dukoff, David James; Hogg, David William; Hawrysh, Peter John; Buck, Leslie Thomas

    2014-09-15

    Oxygen deprivation triggers excitotoxic cell death in mammal neurons through excessive calcium loading via over-activation of N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. This does not occur in the western painted turtle, which overwinters for months without oxygen. Neurological damage is avoided through anoxia-mediated decreases in NMDA and AMPA receptor currents that are dependent upon a modest rise in intracellular Ca(2+) concentrations ([Ca(2+)]i) originating from mitochondria. Anoxia also blocks mitochondrial reactive oxygen species (ROS) generation, which is another potential signaling mechanism to regulate glutamate receptors. To assess the effects of decreased intracellular [ROS] on NMDA and AMPA receptor currents, we scavenged ROS with N-2-mercaptopropionylglycine (MPG) or N-acetylcysteine (NAC). Unlike anoxia, ROS scavengers increased NMDA receptor whole-cell currents by 100%, while hydrogen peroxide decreased currents. AMPA receptor currents and [Ca(2+)]i concentrations were unaffected by ROS manipulation. Because decreases in [ROS] increased NMDA receptor currents, we next asked whether mitochondrial Ca(2+) release prevents receptor potentiation during anoxia. Normoxic activation of mitochondrial ATP-sensitive potassium (mKATP) channels with diazoxide decreased NMDA receptor currents and was unaffected by subsequent ROS scavenging. Diazoxide application following ROS scavenging did not rescue scavenger-mediated increases in NMDA receptor currents. Fluorescent measurement of [Ca(2+)]i and ROS levels demonstrated that [Ca(2+)]i increases before ROS decreases. We conclude that decreases in ROS concentration are not linked to anoxia-mediated decreases in NMDA/AMPA receptor currents but are rather associated with an increase in NMDA receptor currents that is prevented during anoxia by mitochondrial Ca(2+) release.

  11. Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems.

    Science.gov (United States)

    Botta, Fabrizio; Lavison, Gwenaëlle; Couturier, Guillaume; Alliot, Fabrice; Moreau-Guigon, Elodie; Fauchon, Nils; Guery, Bénédicte; Chevreuil, Marc; Blanchoud, Hélène

    2009-09-01

    A study of glyphosate and aminomethyl phosphonic acid (AMPA) transfer in the Orge watershed (France) was carried out during 2007 and 2008. Water samples were collected in surface water, wastewater sewer, storm sewer and wastewater treatment plant (WWTP). These two molecules appeared to be the most frequently detected ones in the rivers and usually exceeded the European quality standard concentrations of 0.1microg L(-1) for drinking water. The annual glyphosate estimated load was 1.9 kg year(-1) upstream (agricultural zone) and 179.5 kg year(-1) at the catchment outlet (urban zone). This result suggests that the contamination of this basin by glyphosate is essentially from urban origin (road and railway applications). Glyphosate reached surface water prevalently through storm sewer during rainfall event. Maximum concentrations were detected in storm sewer just after a rainfall event (75-90 microg L(-1)). High concentrations of glyphosate in surface water during rainfall events reflected urban runoff impact. AMPA was always detected in the sewerage system. This molecule reached surface water mainly via WWTP effluent and also through storm sewer. Variations in concentrations of AMPA during hydrological episodes were minor compared to glyphosate variations. Our study highlights that AMPA and glyphosate origins in urban area are different. During dry period, detergent degradation seemed to be the major AMPA source in wastewater.

  12. Comparison on the Reception Property of Gunn Mounted ASRA and AMPA

    Directory of Open Access Journals (Sweden)

    Somnath Chatterjee

    2013-08-01

    Full Text Available A Gunn mounted active microstrip patch antenna (AMPA and active microstrip slot antenna (ASRA has been investigated for the reception of FM microwave signal. Current well/valley phenomenon has been successfully utilized to demodulate the modulation information. Reception poperty of the both antennas are studied in multi-channel environment. Because of its simple circuit configuration and similarity in transmitter and receiver architecture, active patch antenna as demonstrated is well suited for commercial and military application as a two-way microwave communication system. A comparative study on the role of AMPA and ASRA as a receiver shows that ASRA do better performances than AMPA. In case of ASRA the modulating signal are demodulated without any distortion. ASRA also has large locking range (29 MHz compare to AMPA (5 MHz. So the ASRA has broad band tuning capabilities than AMPA. With ASRA configuration demodulation bandwidth in excess of 14 MHz is realizable which can successfully accommodate a large number of voice or data channels.

  13. Structural mechanism of ligand activation in human calcium-sensing receptor

    Science.gov (United States)

    Geng, Yong; Mosyak, Lidia; Kurinov, Igor; Zuo, Hao; Sturchler, Emmanuel; Cheng, Tat Cheung; Subramanyam, Prakash; Brown, Alice P; Brennan, Sarah C; Mun, Hee-chang; Bush, Martin; Chen, Yan; Nguyen, Trang X; Cao, Baohua; Chang, Donald D; Quick, Matthias; Conigrave, Arthur D; Colecraft, Henry M; McDonald, Patricia; Fan, Qing R

    2016-01-01

    Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor (GPCR) that maintains extracellular Ca2+ homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich domain, and seven-helix transmembrane region. Here, we present the crystal structures of the entire extracellular domain of CaSR in the resting and active conformations. We provide direct evidence that L-amino acids are agonists of the receptor. In the active structure, L-Trp occupies the orthosteric agonist-binding site at the interdomain cleft and is primarily responsible for inducing extracellular domain closure to initiate receptor activation. Our structures reveal multiple binding sites for Ca2+ and PO43- ions. Both ions are crucial for structural integrity of the receptor. While Ca2+ ions stabilize the active state, PO43- ions reinforce the inactive conformation. The activation mechanism of CaSR involves the formation of a novel dimer interface between subunits. DOI: http://dx.doi.org/10.7554/eLife.13662.001 PMID:27434672

  14. Structural mechanism of ligand activation in human calcium-sensing receptor

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Yong; Mosyak, Lidia; Kurinov, Igor; Zuo, Hao; Sturchler, Emmanuel; Cheng, Tat Cheung; Subramanyam, Prakash; Brown, Alice P.; Brennan, Sarah C.; Mun, Hee-chang; Bush, Martin; Chen, Yan; Nguyen, Trang X.; Cao, Baohua; Chang, Donald D.; Quick, Matthias; Conigrave, Arthur D.; Colecraft, Henry M.; McDonald, Patricia; Fan, Qing R.

    2016-07-19

    Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor (GPCR) that maintains extracellular Ca2+homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich domain, and seven-helix transmembrane region. Here, we present the crystal structures of the entire extracellular domain of CaSR in the resting and active conformations. We provide direct evidence that L-amino acids are agonists of the receptor. In the active structure, L-Trp occupies the orthosteric agonist-binding site at the interdomain cleft and is primarily responsible for inducing extracellular domain closure to initiate receptor activation. Our structures reveal multiple binding sites for Ca2+and PO43-ions. Both ions are crucial for structural integrity of the receptor. While Ca2+ions stabilize the active state, PO43-ions reinforce the inactive conformation. The activation mechanism of CaSR involves the formation of a novel dimer interface between subunits.

  15. DMPD: Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17667936 Structure, function and regulation of the Toll/IL-1 receptor adaptor prote... (.svg) (.html) (.csml) Show Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. ...PubmedID 17667936 Title Structure, function and regulation of the Toll/IL-1 recep

  16. Sources of aminomethylphosphonic acid (AMPA) in urban and rural catchments in Ontario, Canada: Glyphosate or phosphonates in wastewater?

    International Nuclear Information System (INIS)

    Correlation analysis suggests that occurrences of AMPA in streams of southern Ontario are linked mainly to glyphosate in both urban and rural settings, rather than to wastewater sources, as some previous studies have suggested. For this analysis the artificial sweetener acesulfame was analyzed as a wastewater indicator in surface water samples collected from urban and rural settings in southern Ontario, Canada. This interpretation is supported by the concurrence of seasonal fluctuations of glyphosate and AMPA concentrations. Herbicide applications in larger urban centres and along major transportation corridors appear to be important sources of glyphosate and AMPA in surface water, in addition to uses of this herbicide in rural and mixed use areas. Fluctuations in concentrations of acesulfame and glyphosate residues were found to be related to hydrologic events. - Highlights: • Widespread occurrence of glyphosate and AMPA in surface waters of southern Ontario. • Linked to applications of glyphosate in urban and rural settings. • Supported by lack of correlation between AMPA and the wastewater tracer acesulfame. • Contrasts with view that AMPA found in the environment is derived from wastewater. • AMPA more persistent than glyphosate and both fluctuated with hydrological cycles. - The occurrence of AMPA in streams in southern Ontario is linked mainly to glyphosate rather than wastewater sources

  17. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aaron A.; Liu, Wei; Chun, Eugene; Katritch, Vsevolod; Wu, Huixian; Vardy, Eyal; Huang, Xi-Ping; Trapella, Claudio; Guerrini, Remo; Calo, Girolamo; Roth, Bryan L.; Cherezov, Vadim; Stevens, Raymond C. (Ferrara); (Scripps); (UNC)

    2012-07-11

    Members of the opioid receptor family of G-protein-coupled receptors (GPCRs) are found throughout the peripheral and central nervous system, where they have key roles in nociception and analgesia. Unlike the 'classical' opioid receptors, {delta}, {kappa} and {mu} ({delta}-OR, {kappa}-OR and {mu}-OR), which were delineated by pharmacological criteria in the 1970s and 1980s, the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP, also known as ORL-1) was discovered relatively recently by molecular cloning and characterization of an orphan GPCR. Although it shares high sequence similarity with classical opioid GPCR subtypes ({approx}60%), NOP has a markedly distinct pharmacology, featuring activation by the endogenous peptide N/OFQ, and unique selectivity for exogenous ligands. Here we report the crystal structure of human NOP, solved in complex with the peptide mimetic antagonist compound-24 (C-24) (ref. 4), revealing atomic details of ligand-receptor recognition and selectivity. Compound-24 mimics the first four amino-terminal residues of the NOP-selective peptide antagonist UFP-101, a close derivative of N/OFQ, and provides important clues to the binding of these peptides. The X-ray structure also shows substantial conformational differences in the pocket regions between NOP and the classical opioid receptors {kappa} (ref. 5) and {mu} (ref. 6), and these are probably due to a small number of residues that vary between these receptors. The NOP-compound-24 structure explains the divergent selectivity profile of NOP and provides a new structural template for the design of NOP ligands.

  18. Structure-function Aspects of Extracellular Leucine-rich Repeat-containing Cell Surface Receptors in Plants

    Institute of Scientific and Technical Information of China (English)

    Zhao Zhang; Bart PHJ Thomma

    2013-01-01

    Plants exploit several types of cell surface receptors for perception of extracellular signals, of which the extracellular leucine-rich repeat (eLRR)-containing receptors form the major class. Although the function of most plant eLRR receptors remains unclear, an increasing number of these receptors are shown to play roles in innate immunity and a wide variety of developmental processes. Recent efforts using domain swaps, gene shuffling analyses, site-directed mutagenesis, interaction studies, and crystallographic analyses resulted in the current knowledge on ligand binding and the mechanism of activation of plant eLRR receptors. This review provides an overview of eLRR receptor research, specifically summarizing the recent understanding of interactions among plant eLRR receptors, their co-receptors and corresponding ligands. The functions of distinct eLRR receptor domains, and their role in structure, ligand perception and multimeric complex formation are discussed.

  19. Structures of pattern recognition receptors reveal molecular mechanisms of autoinhibition, ligand recognition and oligomerization.

    Science.gov (United States)

    Chuenchor, Watchalee; Jin, Tengchuan; Ravilious, Geoffrey; Xiao, T Sam

    2014-02-01

    Pattern recognition receptors (PRRs) are essential sentinels for pathogens or tissue damage and integral components of the innate immune system. Recent structural studies have provided unprecedented insights into the molecular mechanisms of ligand recognition and signal transduction by several PRR families at distinct subcellular compartments. Here we highlight some of the recent discoveries and summarize the common themes that are emerging from these exciting studies. Better mechanistic understanding of the structure and function of the PRRs will improve future prospects of therapeutic targeting of these important innate immune receptors.

  20. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B;

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation......)-phenylethylamine salt of N-BOC-(R)-ATAA. Like ATAA, neither (R)- nor (S)-ATAA significantly affected (IC50 > 100 microM) the receptor binding of tritiated AMPA, kainic acid, or (RS)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, the latter being a competitive NMDA antagonist. Electrophysiological experiments......, using the rat cortical wedge preparation, showed the NMDA antagonist effect as well as the AMPA antagonist effect of ATAA to reside exclusively in the (R)-enantiomer (Ki = 75 +/- 5 microM and 57 +/- 1 microM, respectively). Neither (R)- nor (S)-ATAA significantly reduced kainic acid-induced excitation...

  1. The VPAC1 receptor: structure and function of a class B GPCR prototype

    Directory of Open Access Journals (Sweden)

    Alain eCouvineau

    2012-11-01

    Full Text Available The class B G protein-coupled receptors (GPCRs represents a small sub-family encompassing 15 members, and are very promising targets for the development of drugs to treat many diseases such as chronic inflammation, neurodegeneration, diabetes, stress and osteoporosis. The VPAC1 receptor which is an archetype of the class B GPCRs binds Vasoactive Intestinal Peptide (VIP, a neuropeptide widely distributed in central and peripheral nervous system modulating many physiological processes including regulation of exocrine secretions, hormone release, foetal development, immune response... VIP appears to exert beneficial effect in neuro-degenerative and inflammatory diseases. This article reviews the current knowledge regarding the structure and molecular pharmacology of VPAC1 receptors. Over the past decade, structure-function relationship studies have demonstrated that the N-terminal ectodomain (N-ted of VPAC1 plays a pivotal role in VIP recognition. The use of different approaches such as directed mutagenesis, photoaffinity labeling, Nuclear Magnetic Resonance (NMR, molecular modeling and molecular dynamic simulation has led to demonstrate that: i the central and C-terminal part of the VIP molecule interacts with the N-ted of VPAC1 receptor which is itself structured as a « Sushi » domain; ii the N-terminal end of the VIP molecule interacts with the first transmembrane domain of the receptor where three residues (K143, T144 and T147 play an important role in VPAC1 interaction with the first histidine residue of VIP.

  2. Crystal structure of the Sema-PSI extracellular domain of human RON receptor tyrosine kinase.

    Directory of Open Access Journals (Sweden)

    Kinlin L Chao

    Full Text Available Human RON (Recepteur d'Origine Nantais receptor tyrosine kinase is a cell surface receptor for Macrophage Stimulating Protein (MSP. RON mediates signal transduction pathways that regulate cell adhesion, invasion, motility and apoptosis processes. Elevated levels of RON and its alternatively spliced variants are implicated in the progression and metastasis of tumor cells. The binding of MSP α/β heterodimer to the extracellular region of RON receptor induces receptor dimerization and activation by autophosphorylation of the intracellular kinase domains. The ectodomain of RON, containing the ligand recognition and dimerization domains, is composed of a semaphorin (Sema, Plexins-Semaphorins-Integrins domain (PSI, and four Immunoglobulins-Plexins-Transcription factor (IPT domains. High affinity association between MSP and RON is mediated by the interaction between MSP β-chain and RON Sema, although RON activation requires intact RON and MSP proteins. Here, we report the structure of RON Sema-PSI domains at 1.85 Å resolution. RON Sema domain adopts a seven-bladed β-propeller fold, followed by disulfide bond rich, cysteine-knot PSI motif. Comparison with the homologous Met receptor tyrosine kinase reveals that RON Sema-PSI contains distinguishing secondary structural features. These define the receptors' exclusive selectivity towards their respective ligands, RON for MSP and Met for HGF. The RON Sema-PSI crystal packing generates a homodimer with interface formed by the Sema domain. Mapping of the dimer interface using the RON homology to Met, MSP homology to Hepatocyte Growth Factor (HGF, and the structure of the Met/HGF complex shows the dimer interface overlapping with the putative MSPβ binding site. The crystallographically determined RON Sema-PSI homodimer may represent the dimer assembly that occurs during ligand-independent receptor activation and/or the inhibition of the constitutive activity of RONΔ160 splice variant by the soluble RON

  3. Structure of complement receptor 2 in complex with its C3d ligand.

    Science.gov (United States)

    Szakonyi, G; Guthridge, J M; Li, D; Young, K; Holers, V M; Chen, X S

    2001-06-01

    Complement receptor 2 (CR2/CD21) is an important receptor that amplifies B lymphocyte activation by bridging the innate and adaptive immune systems. CR2 ligands include complement C3d and Epstein-Barr virus glycoprotein 350/220. We describe the x-ray structure of this CR2 domain in complex with C3d at 2.0 angstroms. The structure reveals extensive main chain interactions between C3d and only one short consensus repeat (SCR) of CR2 and substantial SCR side-side packing. These results provide a detailed understanding of receptor-ligand interactions in this protein family and reveal potential target sites for molecular drug design. PMID:11387479

  4. Aspects of dopamine and acetylcholine release induced by glutamate receptors; Aspectos das liberacoes de dopamina e acetilcolina mediadas por receptores de glutamato

    Energy Technology Data Exchange (ETDEWEB)

    Paes, Paulo Cesar de Arruda

    2002-07-01

    The basal ganglia play an important role in the motor control of rats and humans. This control involves different neurotransmitters and the mutual control of these key elements has been subject to several studies. In this work we determined the role of glutamate on the release of radioactively labelled dopamine and acetylcholine from chopped striatal tissue in vitro. The values of Effective Concentration 50% for glutamate, NMDA, kainic, quisqualic acids and AMPA on the release of dopamine and acetylcholine were obtained. The inhibitory effects of magnesium, tetrodotoxin, MK-801, AP5 and MCPG, as well as the effects of glycin were evaluated. The results suggested that dopamine is influenced by the NMDA type glutamate receptor while acetylcholine seems to be influenced by NMDA, kainate and AMPA receptors. Tetrodotoxin experiments suggested that kainate receptors are both present in cholinergic terminals and cell bodies while AMPA and NMDA receptors are preferentially distributed in cell bodies. Magnesium effectively blocked the NMDA stimulation and unexpectedly also AMPA- and quisqualate-induced acetylcholine release. The latter could not be blocked by MCPG ruling out the participation of methabotropic receptors. MK-801 also blocked NMDA-receptors. Results point out the importance of the glutamic acid control of dopamine and acetylcholine release in striatal tissue. (author)

  5. Mitochondrial superoxide production and MnSOD activity following exposure to an agonist and antagonists of ionotropic receptors in rat brain

    Directory of Open Access Journals (Sweden)

    Radenović Lidija Lj.

    2005-01-01

    Full Text Available The involvement of NMDA and AMPA/kainate receptors in the induction of superoxide production in the rat brain was examined after intrahippocampal injection of kainate, a non-NMDA receptor agonist; kainate plus CNQX, a selective AMPA/kainate receptor antagonist; or kainate plus APV, a selective NMDA receptor antagonist. The measurements took place at different times in the ipsi- and contralateral hippocampus, forebrain cortex, striatum, and cerebellum homogenates. The used glutamate antagonists both ensured sufficient neuroprotection in the sense of lowering superoxide production and raising MnSOD levels, but in the mechanisms and time dynamics of their effects were different. Our findings suggest that NMDA and AMPA/kainate receptors are differentially involved in superoxide production. UDC 612.815 612.82.

  6. Pharmacological analysis of ionotropic glutamate receptor function in neuronal circuits of the zebrafish olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Rico Tabor

    Full Text Available Although synaptic functions of ionotropic glutamate receptors in the olfactory bulb have been studied in vitro, their roles in pattern processing in the intact system remain controversial. We therefore examined the functions of ionotropic glutamate receptors during odor processing in the intact olfactory bulb of zebrafish using pharmacological manipulations. Odor responses of mitral cells and interneurons were recorded by electrophysiology and 2-photon Ca(2+ imaging. The combined blockade of AMPA/kainate and NMDA receptors abolished odor-evoked excitation of mitral cells. The blockade of AMPA/kainate receptors alone, in contrast, increased the mean response of mitral cells and decreased the mean response of interneurons. The blockade of NMDA receptors caused little or no change in the mean responses of mitral cells and interneurons. However, antagonists of both receptor types had diverse effects on the magnitude and time course of individual mitral cell and interneuron responses and, thus, changed spatio-temporal activity patterns across neuronal populations. Oscillatory synchronization was abolished or reduced by AMPA/kainate and NMDA receptor antagonists, respectively. These results indicate that (1 interneuron responses depend mainly on AMPA/kainate receptor input during an odor response, (2 interactions among mitral cells and interneurons regulate the total olfactory bulb output activity, (3 AMPA/kainate receptors participate in the synchronization of odor-dependent neuronal ensembles, and (4 ionotropic glutamate receptor-containing synaptic circuits shape odor-specific patterns of olfactory bulb output activity. These mechanisms are likely to be important for the processing of odor-encoding activity patterns in the olfactory bulb.

  7. Structural variation and uniformity among tetraloop-receptor interactions and other loop-helix interactions in RNA crystal structures.

    Directory of Open Access Journals (Sweden)

    Li Wu

    Full Text Available Tetraloop-receptor interactions are prevalent structural units in RNAs, and include the GAAA/11-nt and GNRA-minor groove interactions. In this study, we have compiled a set of 78 nonredundant loop-helix interactions from X-ray crystal structures, and examined them for the extent of their sequence and structural variation. Of the 78 interactions in the set, only four were classical GAAA/11-nt motifs, while over half (48 were GNRA-minor groove interactions. The GNRA-minor groove interactions were not a homogeneous set, but were divided into five subclasses. The most predominant subclass is characterized by two triple base pair interactions in the minor groove, flanked by two ribose zipper contacts. This geometry may be considered the "standard" GNRA-minor groove interaction, while the other four subclasses are alternative ways to form interfaces between a minor groove and tetraloop. The remaining 26 structures in the set of 78 have loops interacting with mostly idiosyncratic receptors. Among the entire set, a number of sequence-structure correlations can be identified, which may be used as initial hypotheses in predicting three-dimensional structures from primary sequences. Conversely, other sequence patterns are not predictive; for example, GAAA loop sequences and GG/CC receptors bind to each other with three distinct geometries. Finally, we observe an example of structural evolution in group II introns, in which loop-receptor motifs are substituted for each other while maintaining the larger three-dimensional geometry. Overall, the study gives a more complete view of RNA loop-helix interactions that exist in nature.

  8. Primary structure of nicotinic acetylcholine receptor. Final report, 9 April 1989-6 April 1992

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, J.W.

    1992-05-06

    Signals are transmitted between cells in the brain using neurotransmitters and neurotransmitter receptors. Poisons that interfere with this process stop normal brain function and often kill nerve cells. One of the neurotransmitters used in the mammalian brain is acetylcholine. We discovered that there is a large number of different nicotinic receptors for the neurotransmitter acetylcholine, each with its different properties. We used recombinant DNA technology to clone and sequence the gene transcripts that encode the subunits of these receptors. From these sequences we deduced the primary structures of the nicotinic receptor subunits. We also used the cDNA clones to determine which brain loci express the respective genes. We have expressed the clones in the Xenopus oocyte and have demonstrated that each functional combination of subunits has a unique pharmacology Unlike their homologs at the neuromuscular junction, the nicotinic acetylcholine receptors in the brain are exceptionally permeable to calcium. This property suggests that these receptors may play an important role in regulating calcium-dependent cytoplasmic processes and that they may be important contributors to use-dependent cell death.

  9. Leptin receptor-positive and leptin receptor-negative proopiomelanocortin neurons innervate an identical set of brain structures.

    Science.gov (United States)

    Lima, Leandro B; Metzger, Martin; Furigo, Isadora C; Donato, J

    2016-09-01

    Neurons that express the prohormone proopiomelanocortin (POMC) in the arcuate hypothalamic nucleus (Arc) are engaged in the regulation of energy balance and glucose homeostasis. Additionally, POMC neurons are considered key first-order cells regulated by leptin. Interestingly, in the Arc, POMC cells that express the leptin receptor (POMC/LepR+ cells) are found side by side with POMC cells not directly responsive to leptin (POMC/LepR- cells). However, it remains unknown whether these distinct populations innervate different target regions. Therefore, the objective of the present study was to compare the projections of POMC/LepR+ and POMC/LepR- neurons. Using genetically modified LepR-reporter mice to identify leptin receptor-expressing cells and immunohistochemistry to stain POMC-derived peptides (α-MSH or β-endorphin) we confirmed that approximately 80% of Arc β-endorphin-positive neurons co-expressed leptin receptors. POMC/LepR+ and POMC/LepR- axons were intermingled in all of their target regions. As revealed by confocal microscopy, we found an elevated degree of co-localization between α-MSH+ axons and the reporter protein (tdTomato) in all brain regions analyzed, with co-localization coefficients ranging from 0.889 to 0.701. Thus, these two populations of POMC neurons seem to project to the same set of brain structures, although one of the two subtypes of POMC axons was sometimes found to be more abundant than the other in distinct subregions of the same nucleus. Therefore, POMC/LepR+ and POMC/LepR- cells may target separate neuronal populations and consequently activate distinct neuronal circuits within some target nuclei. These findings contribute to unravel the neuronal circuits involved in the regulation of energy balance and glucose homeostasis. PMID:27321158

  10. Structural Insights into Divalent Cation Modulations of ATP-Gated P2X Receptor Channels

    Directory of Open Access Journals (Sweden)

    Go Kasuya

    2016-02-01

    Full Text Available P2X receptors are trimeric ATP-gated cation channels involved in physiological processes ranging widely from neurotransmission to pain and taste signal transduction. The modulation of the channel gating, including that by divalent cations, contributes to these diverse physiological functions of P2X receptors. Here, we report the crystal structure of an invertebrate P2X receptor from the Gulf Coast tick Amblyomma maculatum in the presence of ATP and Zn2+ ion, together with electrophysiological and computational analyses. The structure revealed two distinct metal binding sites, M1 and M2, in the extracellular region. The M1 site, located at the trimer interface, is responsible for Zn2+ potentiation by facilitating the structural change of the extracellular domain for pore opening. In contrast, the M2 site, coupled with the ATP binding site, might contribute to regulation by Mg2+. Overall, our work provides structural insights into the divalent cation modulations of P2X receptors.

  11. A new crystal structure fragment-based pharmacophore method for G protein-coupled receptors

    DEFF Research Database (Denmark)

    Fidom, Kimberley; Isberg, Vignir; Hauser, Alexander Sebastian;

    2015-01-01

    We have developed a new method for the building of pharmacophores for G protein-coupled receptors, a major drug target family. The method is a combination of the ligand- and target-based pharmacophore methods and founded on the extraction of structural fragments, interacting ligand moiety and rec...

  12. Pyrazolo Derivatives as Potent Adenosine Receptor Antagonists: An Overview on the Structure-Activity Relationships

    Directory of Open Access Journals (Sweden)

    Siew Lee Cheong

    2011-01-01

    Full Text Available In the past few decades, medicinal chemistry research towards potent and selective antagonists of human adenosine receptors (namely, A1, A2A, A2B, and A3 has been evolving rapidly. These antagonists are deemed therapeutically beneficial in several pathological conditions including neurological and renal disorders, cancer, inflammation, and glaucoma. Up to this point, many classes of compounds have been successfully synthesized and identified as potent human adenosine receptor antagonists. In this paper, an overview of the structure-activity relationship (SAR profiles of promising nonxanthine pyrazolo derivatives is reported and discussed. We have emphasized the SAR for some representative structures such as pyrazolo-[4,3-e]-1,2,4-triazolo-[1,5-c]pyrimidines; pyrazolo-[3,4-c] or -[4,3-c]quinolines; pyrazolo-[4,3-d]pyrimidinones; pyrazolo-[3,4-d]pyrimidines and pyrazolo-[1,5-a]pyridines. This overview not only clarifies the structural requirements deemed essential for affinity towards individual adenosine receptor subtypes, but it also sheds light on the rational design and optimization of existing structural templates to allow us to conceive new, more potent adenosine receptor antagonists.

  13. X-ray structure of the mouse serotonin 5-HT3 receptor

    NARCIS (Netherlands)

    Hassaine, Gherici; Deluz, Cedric; Grasso, Luigino; Wyss, Romain; Tol, Menno B.; Hovius, Ruud; Graff, Alexandra; Stahlberg, Henning; Tomizaki, Takashi; Desmyter, Aline; Moreau, Christophe; Li, Xiao-Dan; Poitevin, Frederic; Vogel, Horst; Nury, Hugues

    2014-01-01

    Neurotransmitter-gated ion channels of the Cys-loop receptor family mediate fast neurotransmission throughout the nervous system. The molecular processes of neurotransmitter binding, subsequent opening of the ion channel and ion permeation remain poorly understood. Here we present the X-ray structur

  14. Structures of Receptor Complexes of a North American H7N2 Influenza Hemagglutinin with a Loop Deletion in the Receptor Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hua; Chen, Li-Mei; Carney, Paul J.; Donis, Ruben O.; Stevens, James (CDC)

    2012-02-21

    Human infections with subtype H7 avian influenza viruses have been reported as early as 1979. In 1996, a genetically stable 24-nucleotide deletion emerged in North American H7 influenza virus hemagglutinins, resulting in an eight amino acid deletion in the receptor-binding site. The continuous circulation of these viruses in live bird markets, as well as its documented ability to infect humans, raises the question of how these viruses achieve structural stability and functionality. Here we report a detailed molecular analysis of the receptor binding site of the North American lineage subtype H7N2 virus A/New York/107/2003 (NY107), including complexes with an avian receptor analog (3'-sialyl-N-acetyllactosamine, 3'SLN) and two human receptor analogs (6'-sialyl-N-acetyllactosamine, 6'SLN; sialyllacto-N-tetraose b, LSTb). Structural results suggest a novel mechanism by which residues Arg220 and Arg229 (H3 numbering) are used to compensate for the deletion of the 220-loop and form interactions with the receptor analogs. Glycan microarray results reveal that NY107 maintains an avian-type ({alpha}2-3) receptor binding profile, with only moderate binding to human-type ({alpha}2-6) receptor. Thus despite its dramatically altered receptor binding site, this HA maintains functionality and confirms a need for continued influenza virus surveillance of avian and other animal reservoirs to define their zoonotic potential.

  15. Hydrazone based luminescent receptors for fluorescent sensing of Cu{sup 2+}: Structure and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Soma, E-mail: sommukh445@yahoo.co.in [Department of Environmental Science, University of Kalyani, Kalyani, Nadia, 741235 West Bengal (India); Mal, Palash [Department of Environmental Science, University of Kalyani, Kalyani, Nadia, 741235 West Bengal (India); Stoeckli-Evans, Helen [Institute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel (Switzerland)

    2014-11-15

    Two new luminescent hydrazones, HL1 and HL2 were investigated for selective and sensitive fluorescent recognition of Cu{sup 2+} in aqueous medium (CH{sub 3}CN/H{sub 2}O (1:4, v/v) solvent system) with a 1:1 binding stoichiometry. The emission peak of HL (λ{sub em}=405 nm), undergoes significant quenching upon complexation with Cu{sup 2+}. The quantum yields for the receptors and in situ formed Cu{sup 2+} complexes were determined. The absorption ratiometric analysis was carried out in presence of various metal ions to confirm the selectivity of the receptors towards Cu{sup 2+}. They were able to detect Cu{sup 2+} with a ∼0.9 µM detection limit as indicated by fluorimetric measurements. The molecular structures of the receptors were determined by single crystal X-ray diffraction analysis. - Highlights: • Small molecule luminescent hydrazones were developed for recognition of Cu{sup 2+}. • Selectivity and sensitivity were studied spectroscopically in aqueous medium. • Binding stoichiometry, association constant, and quantum yields were calculated. • Receptors have low detection limit for Cu{sup 2+}. • Crystal structures of the receptors were solved by X-ray diffractometry.

  16. Structural Basis for Platelet Collagen Responses by the Immune-type Receptor Glycoprotein VI

    Energy Technology Data Exchange (ETDEWEB)

    Horii,K.; Kahn, M.; Herr, A.

    2006-01-01

    Activation of circulating platelets by exposed vessel wall collagen is a primary step in the pathogenesis of heart attack and stroke, and drugs to block platelet activation have successfully reduced cardiovascular morbidity and mortality. In humans and mice, collagen activation of platelets is mediated by glycoprotein VI (GPVI), a receptor that is homologous to immune receptors but bears little sequence similarity to known matrix protein adhesion receptors. Here we present the crystal structure of the collagen-binding domain of human GPVI and characterize its interaction with a collagen-related peptide. Like related immune receptors, GPVI contains 2 immunoglobulin-like domains arranged in a perpendicular orientation. Significantly, GPVI forms a back-to-back dimer in the crystal, an arrangement that could explain data previously obtained from cell-surface GPVI inhibition studies. Docking algorithms identify 2 parallel grooves on the GPVI dimer surface as collagen-binding sites, and the orientation and spacing of these grooves precisely match the dimensions of an intact collagen fiber. These findings provide a structural basis for the ability of an immunetype receptor to generate signaling responses to collagen and for the development of GPVI inhibitors as new therapies for human cardiovascular disease.

  17. Crystal structure of the human OX2 orexin receptor bound to the insomnia drug suvorexant

    Science.gov (United States)

    Yin, Jie; Mobarec, Juan Carlos; Kolb, Peter; Rosenbaum, Daniel M.

    2015-03-01

    The orexin (also known as hypocretin) G protein-coupled receptors (GPCRs) respond to orexin neuropeptides in the central nervous system to regulate sleep and other behavioural functions in humans. Defects in orexin signalling are responsible for the human diseases of narcolepsy and cataplexy; inhibition of orexin receptors is an effective therapy for insomnia. The human OX2 receptor (OX2R) belongs to the β branch of the rhodopsin family of GPCRs, and can bind to diverse compounds including the native agonist peptides orexin-A and orexin-B and the potent therapeutic inhibitor suvorexant. Here, using lipid-mediated crystallization and protein engineering with a novel fusion chimaera, we solved the structure of the human OX2R bound to suvorexant at 2.5 Å resolution. The structure reveals how suvorexant adopts a π-stacked horseshoe-like conformation and binds to the receptor deep in the orthosteric pocket, stabilizing a network of extracellular salt bridges and blocking transmembrane helix motions necessary for activation. Computational docking suggests how other classes of synthetic antagonists may interact with the receptor at a similar position in an analogous π-stacked fashion. Elucidation of the molecular architecture of the human OX2R expands our understanding of peptidergic GPCR ligand recognition and will aid further efforts to modulate orexin signalling for therapeutic ends.

  18. Functional and Structural Overview of G-Protein-Coupled Receptors Comprehensively Obtained from Genome Sequences

    Directory of Open Access Journals (Sweden)

    Makiko Suwa

    2011-04-01

    Full Text Available An understanding of the functional mechanisms of G-protein-coupled receptors (GPCRs is very important for GPCR-related drug design. We have developed an integrated GPCR database (SEVENS http://sevens.cbrc.jp/ that includes 64,090 reliable GPCR genes comprehensively identified from 56 eukaryote genome sequences, and overviewed the sequences and structure spaces of the GPCRs. In vertebrates, the number of receptors for biological amines, peptides, etc. is conserved in most species, whereas the number of chemosensory receptors for odorant, pheromone, etc. significantly differs among species. The latter receptors tend to be single exon type or a few exon type and show a high ratio in the numbers of GPCRs, whereas some families, such as Class B and Class C receptors, have long lengths due to the presence of many exons. Statistical analyses of amino acid residues reveal that most of the conserved residues in Class A GPCRs are found in the cytoplasmic half regions of transmembrane (TM helices, while residues characteristic to each subfamily found on the extracellular half regions. The 69 of Protein Data Bank (PDB entries of complete or fragmentary structures could be mapped on the TM/loop regions of Class A GPCRs covering 14 subfamilies.

  19. Structure-based, rational design of T cell receptors

    Directory of Open Access Journals (Sweden)

    Vincent eZoete

    2013-09-01

    Full Text Available Adoptive cell transfer using engineered T cells is emerging as a promising treatment for metastatic melanoma. Such an approach allows one to introduce TCR modifications that, while maintaining the specificity for the targeted antigen, can enhance the binding and kinetic parameters for the interaction pMHC. Using the well-characterized 2C TCR/SIYR/H-2K(b structure as a model system, we demonstrated that a binding free energy decomposition based on the MM-GBSA approach provides a detailed and reliable description of the TCR/pMHC interactions at the structural and thermodynamic levels. Starting from this result, we developed a new structure-based approach, to rationally design new TCR sequences, and applied it to the BC1 TCR targeting the HLA-A2 restricted NY-ESO-1157-165 cancer-testis epitope. 54% of the designed sequence replacements exhibited improved pMHC-binding as compared to the native TCR, with up to 150 fold increase in affinity, while preserving specificity. Genetically-engineered CD8+ T cells expressing these modified TCRs showed an improved functional activity compared to those expressing BC1 TCR. We measured maximum levels of activities for TCRs within the upper limit of natural affinity. Beyond the affinity threshold at KD < 1 μM we observed an attenuation in cellular function. We have also developed a homology modeling-based approach, TCRep 3D, to obtain accurate structural models of any TCR-pMHC complexes. We have complemented the approach with a simplified rigid method to predict the TCR orientation over pMHC. These methods potentially extend the use of our TCR engineering method to entire TCR repertoires for which no X-ray structure is available. We have also performed a steered molecular dynamics study of the unbinding of the TCR-pMHC complex to get a better understanding of how TCRs interact with pMHCs. This entire rational TCR design pipeline is now being used to produce rationally optimized TCRs for adoptive cell therapies of

  20. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  1. Structure-activity relationships of seco-prezizaane and picrotoxane/picrodendrane terpenoids by Quasar receptor-surface modeling.

    Science.gov (United States)

    Schmidt, Thomas J; Gurrath, Marion; Ozoe, Yoshihisa

    2004-08-01

    The seco-prezizaane-type sesquiterpenes pseudoanisatin and parviflorolide from Illicium are noncompetitive antagonists at housefly (Musca domestica) gamma-aminobutyric acid (GABA) receptors. They show selectivity toward the insect receptor and thus represent new leads toward selective insecticides. Based on the binding data for 13 seco-prezizaane terpenoids and 17 picrotoxane and picrodendrane-type terpenoids to housefly and rat GABA receptors, a QSAR study was conducted by quasi-atomistic receptor-surface modeling (Quasar). The resulting models provide insight into the structural basis of selectivity and properties of the binding sites at GABA receptor-coupled chloride channels of insects and mammals. PMID:15246092

  2. Structural basis for bifunctional peptide recognition at human δ-opioid receptor.

    Science.gov (United States)

    Fenalti, Gustavo; Zatsepin, Nadia A; Betti, Cecilia; Giguere, Patrick; Han, Gye Won; Ishchenko, Andrii; Liu, Wei; Guillemyn, Karel; Zhang, Haitao; James, Daniel; Wang, Dingjie; Weierstall, Uwe; Spence, John C H; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J; Gati, Cornelius; Yefanov, Oleksandr M; White, Thomas A; Oberthuer, Dominik; Metz, Markus; Yoon, Chun Hong; Barty, Anton; Chapman, Henry N; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E; Fromme, Raimund; Fromme, Petra; Tourwé, Dirk; Schiller, Peter W; Roth, Bryan L; Ballet, Steven; Katritch, Vsevolod; Stevens, Raymond C; Cherezov, Vadim

    2015-03-01

    Bifunctional μ- and δ-opioid receptor (OR) ligands are potential therapeutic alternatives, with diminished side effects, to alkaloid opiate analgesics. We solved the structure of human δ-OR bound to the bifunctional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt-Tic-Phe-Phe-NH2 (DIPP-NH2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt and Tic. The observed receptor-peptide interactions are critical for understanding of the pharmacological profiles of opioid peptides and for development of improved analgesics. PMID:25686086

  3. CLE Peptides in Plants: Proteolytic Processing,Structure-Activity Relationship, and Ligand-Receptor Interaction

    Institute of Scientific and Technical Information of China (English)

    Xiaoming Gao; Yongfeng Guo

    2012-01-01

    Ligand-receptor signaling initiated by the CLAVATA3/ENDOSPERM SURROUNDING REGION (CLE) family peptides is critical in regulating cell division and differentiation in meristematic tissues in plants.Biologically active CLE peptides are released from precursor proteins via proteolytic processing.The mature form of CLE ligands consists of 12-13 amino acids with several post-translational modifications.This review summarizes recent progress toward understanding the proteolytic activities that cleave precursor proteins to release CLE peptides,the molecular structure and function of mature CLE ligands,and interactions between CLE ligands and corresponding leucine-rich repeat (LRR) receptor-like kinases (RLKs).

  4. Structural modeling of G-protein coupled receptors: An overview on automatic web-servers.

    Science.gov (United States)

    Busato, Mirko; Giorgetti, Alejandro

    2016-08-01

    Despite the significant efforts and discoveries during the last few years in G protein-coupled receptor (GPCR) expression and crystallization, the receptors with known structures to date are limited only to a small fraction of human GPCRs. The lack of experimental three-dimensional structures of the receptors represents a strong limitation that hampers a deep understanding of their function. Computational techniques are thus a valid alternative strategy to model three-dimensional structures. Indeed, recent advances in the field, together with extraordinary developments in crystallography, in particular due to its ability to capture GPCRs in different activation states, have led to encouraging results in the generation of accurate models. This, prompted the community of modelers to render their methods publicly available through dedicated databases and web-servers. Here, we present an extensive overview on these services, focusing on their advantages, drawbacks and their role in successful applications. Future challenges in the field of GPCR modeling, such as the predictions of long loop regions and the modeling of receptor activation states are presented as well. PMID:27102413

  5. Structural modeling of G-protein coupled receptors: An overview on automatic web-servers.

    Science.gov (United States)

    Busato, Mirko; Giorgetti, Alejandro

    2016-08-01

    Despite the significant efforts and discoveries during the last few years in G protein-coupled receptor (GPCR) expression and crystallization, the receptors with known structures to date are limited only to a small fraction of human GPCRs. The lack of experimental three-dimensional structures of the receptors represents a strong limitation that hampers a deep understanding of their function. Computational techniques are thus a valid alternative strategy to model three-dimensional structures. Indeed, recent advances in the field, together with extraordinary developments in crystallography, in particular due to its ability to capture GPCRs in different activation states, have led to encouraging results in the generation of accurate models. This, prompted the community of modelers to render their methods publicly available through dedicated databases and web-servers. Here, we present an extensive overview on these services, focusing on their advantages, drawbacks and their role in successful applications. Future challenges in the field of GPCR modeling, such as the predictions of long loop regions and the modeling of receptor activation states are presented as well.

  6. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, J; Zimmer, J

    2001-01-01

    The excitotoxic profiles of (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propionic acid (ATPA), (RS)-2-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainic acid (KA) and N-methyl-D-aspartate (NMDA) were evaluated using cellular uptake of propidium iodide (PI) as a measure for...

  7. Structure-based rational design of a Toll-like receptor 4 (TLR4 decoy receptor with high binding affinity for a target protein.

    Directory of Open Access Journals (Sweden)

    Jieun Han

    Full Text Available Repeat proteins are increasingly attracting much attention as alternative scaffolds to immunoglobulin antibodies due to their unique structural features. Nonetheless, engineering interaction interface and understanding molecular basis for affinity maturation of repeat proteins still remain a challenge. Here, we present a structure-based rational design of a repeat protein with high binding affinity for a target protein. As a model repeat protein, a Toll-like receptor4 (TLR4 decoy receptor composed of leucine-rich repeat (LRR modules was used, and its interaction interface was rationally engineered to increase the binding affinity for myeloid differentiation protein 2 (MD2. Based on the complex crystal structure of the decoy receptor with MD2, we first designed single amino acid substitutions in the decoy receptor, and obtained three variants showing a binding affinity (K(D one-order of magnitude higher than the wild-type decoy receptor. The interacting modes and contributions of individual residues were elucidated by analyzing the crystal structures of the single variants. To further increase the binding affinity, single positive mutations were combined, and two double mutants were shown to have about 3000- and 565-fold higher binding affinities than the wild-type decoy receptor. Molecular dynamics simulations and energetic analysis indicate that an additive effect by two mutations occurring at nearby modules was the major contributor to the remarkable increase in the binding affinities.

  8. Primary structure of nicotinic acetylcholine receptor. Report for 7 April 1989-6 October 1990

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, J.W.

    1990-10-06

    Although we now understand the general principles of chemical signalling between nerve cells in the brain, our appreciation of the molecular mechanisms involved has been limited by the complexity of the system and the scarcity of material. In our work we have taken a new approach to this problem and have focused our attention on nicotinic cholinergic synaptic transmission in the brain. Using the techniques of molecular biology, we have discovered a family of genes that encode proteins that associate in a large variety of combinations to produce many different nicotinic acetylcholine receptor molecules. We have shown that the receptors thus formed differ in their structures, their pharmacologies, their functional properties,and their distribution in the adult brain. This unexpected diversity changes the way we think about nicotinic cholinergic receptors in the brain, forcing us to consider them as sites of action of pharmacological agents and making available to us a more precise family of targets for therapeutic drugs.

  9. Structure-Driven Pharmacology of Transient Receptor Potential Channel Vanilloid 1.

    Science.gov (United States)

    Díaz-Franulic, Ignacio; Caceres-Molina, Javier; Sepulveda, Romina V; Gonzalez-Nilo, Fernando; Latorre, Ramon

    2016-09-01

    The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal receptor that mediates the flux of cations across the membrane in response to several stimuli, including heat, voltage, and ligands. The best known agonist of TRPV1 channels is capsaicin, the pungent component of "hot" chili peppers. In addition, peptides found in the venom of poisonous animals, along with the lipids phosphatidylinositol 4,5-biphosphate, lysophosphatidic acid, and cholesterol, bind to TRPV1 with high affinity to modulate channel gating. Here, we discuss the functional evidence regarding ligand-dependent activation of TRPV1 channels in light of structural data recently obtained by cryoelectron microscopy. This review focuses on the mechanistic insights into ligand binding and allosteric gating of TRPV1 channels and the relevance of accurate polymodal receptor biophysical characterization for drug design in novel pain therapies. PMID:27335334

  10. Structure-Driven Pharmacology of Transient Receptor Potential Channel Vanilloid 1.

    Science.gov (United States)

    Díaz-Franulic, Ignacio; Caceres-Molina, Javier; Sepulveda, Romina V; Gonzalez-Nilo, Fernando; Latorre, Ramon

    2016-09-01

    The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal receptor that mediates the flux of cations across the membrane in response to several stimuli, including heat, voltage, and ligands. The best known agonist of TRPV1 channels is capsaicin, the pungent component of "hot" chili peppers. In addition, peptides found in the venom of poisonous animals, along with the lipids phosphatidylinositol 4,5-biphosphate, lysophosphatidic acid, and cholesterol, bind to TRPV1 with high affinity to modulate channel gating. Here, we discuss the functional evidence regarding ligand-dependent activation of TRPV1 channels in light of structural data recently obtained by cryoelectron microscopy. This review focuses on the mechanistic insights into ligand binding and allosteric gating of TRPV1 channels and the relevance of accurate polymodal receptor biophysical characterization for drug design in novel pain therapies.

  11. Structural Basis for Hydroxycholesterols as Natural Ligands of Orphan Nuclear Receptor ROR[gamma

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Lihua; Martynowski, Dariusz; Zheng, Songyang; Wada, Taira; Xie, Wen; Li, Yong (Pitt); (Xiamen)

    2010-09-03

    The retinoic acid-related orphan receptor {gamma} (ROR{gamma}) has important roles in development and metabolic homeostasis. Although the biological functions of ROR{gamma} have been studied extensively, no ligands for ROR{gamma} have been identified, and no structure of ROR{gamma} has been reported. In this study, we showed that hydroxycholesterols promote the recruitment of coactivators by ROR{gamma} using biochemical assays. We also report the crystal structures of the ROR{gamma} ligand-binding domain bound with hydroxycholesterols. The structures reveal the binding modes of various hydroxycholesterols in the ROR{gamma} pocket, with the receptors all adopting the canonical active conformation. Mutations that disrupt the binding of hydroxycholesterols abolish the constitutive activity of ROR{gamma}. Our observations suggest an important role for the endogenous hydroxycholesterols in modulating ROR{gamma}-dependent biological processes.

  12. Phytoestrogens and Mycoestrogens Induce Signature Structure Dynamics Changes on Estrogen Receptor α

    Science.gov (United States)

    Chen, Xueyan; Uzuner, Ugur; Li, Man; Shi, Weibing; Yuan, Joshua S.; Dai, Susie Y.

    2016-01-01

    Endocrine disrupters include a broad spectrum of chemicals such as industrial chemicals, natural estrogens and androgens, synthetic estrogens and androgens. Phytoestrogens are widely present in diet and food supplements; mycoestrogens are frequently found in grains. As human beings and animals are commonly exposed to phytoestrogens and mycoestrogens in diet and environment, it is important to understand the potential beneficial or hazardous effects of estrogenic compounds. Many bioassays have been established to study the binding of estrogenic compounds with estrogen receptor (ER) and provided rich data in the literature. However, limited assays can offer structure information with regard to the ligand/ER complex. Our current study surveys the global structure dynamics changes for ERα ligand binding domain (LBD) when phytoestrogens and mycoestrogens bind. The assay is based on the structure dynamics information probed by hydrogen deuterium exchange mass spectrometry and offers a unique viewpoint to elucidate the mechanism how phytoestrogens and mycoestrogens interact with estrogen receptor. The cluster analysis based on the hydrogen deuterium exchange (HDX) assay data reveals a unique pattern when phytoestrogens and mycoestrogens bind with ERα LBD compared to that of estradiol and synthetic estrogen modulators. Our study highlights that structure dynamics could play an important role in the structure function relationship when endocrine disrupters interact with estrogen receptors. PMID:27589781

  13. Phytoestrogens and Mycoestrogens Induce Signature Structure Dynamics Changes on Estrogen Receptor α.

    Science.gov (United States)

    Chen, Xueyan; Uzuner, Ugur; Li, Man; Shi, Weibing; Yuan, Joshua S; Dai, Susie Y

    2016-01-01

    Endocrine disrupters include a broad spectrum of chemicals such as industrial chemicals, natural estrogens and androgens, synthetic estrogens and androgens. Phytoestrogens are widely present in diet and food supplements; mycoestrogens are frequently found in grains. As human beings and animals are commonly exposed to phytoestrogens and mycoestrogens in diet and environment, it is important to understand the potential beneficial or hazardous effects of estrogenic compounds. Many bioassays have been established to study the binding of estrogenic compounds with estrogen receptor (ER) and provided rich data in the literature. However, limited assays can offer structure information with regard to the ligand/ER complex. Our current study surveys the global structure dynamics changes for ERα ligand binding domain (LBD) when phytoestrogens and mycoestrogens bind. The assay is based on the structure dynamics information probed by hydrogen deuterium exchange mass spectrometry and offers a unique viewpoint to elucidate the mechanism how phytoestrogens and mycoestrogens interact with estrogen receptor. The cluster analysis based on the hydrogen deuterium exchange (HDX) assay data reveals a unique pattern when phytoestrogens and mycoestrogens bind with ERα LBD compared to that of estradiol and synthetic estrogen modulators. Our study highlights that structure dynamics could play an important role in the structure function relationship when endocrine disrupters interact with estrogen receptors. PMID:27589781

  14. Phytoestrogens and Mycoestrogens Induce Signature Structure Dynamics Changes on Estrogen Receptor α

    Directory of Open Access Journals (Sweden)

    Xueyan Chen

    2016-08-01

    Full Text Available Endocrine disrupters include a broad spectrum of chemicals such as industrial chemicals, natural estrogens and androgens, synthetic estrogens and androgens. Phytoestrogens are widely present in diet and food supplements; mycoestrogens are frequently found in grains. As human beings and animals are commonly exposed to phytoestrogens and mycoestrogens in diet and environment, it is important to understand the potential beneficial or hazardous effects of estrogenic compounds. Many bioassays have been established to study the binding of estrogenic compounds with estrogen receptor (ER and provided rich data in the literature. However, limited assays can offer structure information with regard to the ligand/ER complex. Our current study surveys the global structure dynamics changes for ERα ligand binding domain (LBD when phytoestrogens and mycoestrogens bind. The assay is based on the structure dynamics information probed by hydrogen deuterium exchange mass spectrometry and offers a unique viewpoint to elucidate the mechanism how phytoestrogens and mycoestrogens interact with estrogen receptor. The cluster analysis based on the hydrogen deuterium exchange (HDX assay data reveals a unique pattern when phytoestrogens and mycoestrogens bind with ERα LBD compared to that of estradiol and synthetic estrogen modulators. Our study highlights that structure dynamics could play an important role in the structure function relationship when endocrine disrupters interact with estrogen receptors.

  15. Structural comparison of phospholipase-A2-binding regions in phospholipase-A2 receptors from various mammals.

    Science.gov (United States)

    Higashino, K; Ishizaki, J; Kishino, J; Ohara, O; Arita, H

    1994-10-01

    We determined the nucleotide sequence of a mouse cDNA encoding the receptor for pancreatic group I phospholipase A2 (PLA2-I). Interspecies structural comparison of the mouse receptor with bovine PLA2-I receptor, whose structure had been clarified, revealed that the fourth carbohydrate-recognition domain (CRD)-like domain (CRD-like 4) was the most conserved among the domains in the PLA2-I receptor, suggesting the functional importance of CRD-like 4. A transient expression experiment with a truncated form of the receptor consisting of three CRD-like domains, from the third to the fifth, demonstrated that the PLA2-I-binding site of the receptor is constituted from these three CRD-like domains, supporting the functional indispensability of CRD-like 4 in the receptor. Since the PLA2-I-binding region was thus assigned to be CRD-like domains 3-5, we further analyzed the structures of the PLA2-I-binding regions in the PLA2-I receptors from the rat, rabbit and human. Furthermore, the obtained PLA2-I receptor cDNA fragments from these animals made it possible to examine the tissue expression patterns of this receptor in various mammals. The results, together with the results of the genomic structural analysis of this gene, indicated that a PLA2 receptor recently characterized by Lambeau et al. [Lambeau, G., Ancian, P., Barhanin, J. & Lazdunski, M. (1994) J. Biol. Chem. 269, 1575-1578] is a rabbit counterpart of the PLA2-I receptor although these two PLA2 receptors have distinctive PLA2-binding specificities.

  16. Glutamate receptors as seen by light: spectroscopic studies of structure-function relationships

    Directory of Open Access Journals (Sweden)

    K.A. Mankiewicz

    2007-11-01

    Full Text Available Ionotropic glutamate receptors are major excitatory receptors in the central nervous system and also have a far reaching influence in other areas of the body. Their modular nature has allowed for the isolation of the ligand-binding domain and for subsequent structural studies using a variety of spectroscopic techniques. This review will discuss the role of specific ligand:protein interactions in mediating activation in the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid subtype of glutamate receptors as established by various spectroscopic investigations of the GluR2 and GluR4 subunits of this receptor. Specifically, this review will provide an introduction to the insight gained from X-ray crystallography and nuclear magnetic resonance investigations and then go on to focus on studies utilizing vibrational spectroscopy and fluorescence resonance energy transfer to study the behavior of the isolated ligand-binding domain in solution and discuss the importance of specific ligand:protein interactions in the mechanism of receptor activation.

  17. Structural model for gamma-aminobutyric acid receptor noncompetitive antagonist binding: widely diverse structures fit the same site.

    Science.gov (United States)

    Chen, Ligong; Durkin, Kathleen A; Casida, John E

    2006-03-28

    Several major insecticides, including alpha-endosulfan, lindane, and fipronil, and the botanical picrotoxinin are noncompetitive antagonists (NCAs) for the GABA receptor. We showed earlier that human beta(3) homopentameric GABA(A) receptor recognizes all of the important GABAergic insecticides and reproduces the high insecticide sensitivity and structure-activity relationships of the native insect receptor. Despite large structural diversity, the NCAs are proposed to fit a single binding site in the chloride channel lumen lined by five transmembrane 2 segments. This hypothesis is examined with the beta(3) homopentamer by mutagenesis, pore structure studies, NCA binding, and molecular modeling. The 15 amino acids in the cytoplasmic half of the pore were mutated to cysteine, serine, or other residue for 22 mutants overall. Localization of A-1'C, A2'C, T6'C, and L9'C (index numbers for the transmembrane 2 region) in the channel lumen was established by disulfide cross-linking. Binding of two NCA radioligands [(3)H]1-(4-ethynylphenyl)-4-n-propyl-2,6,7-trioxabicyclo[2.2.2]octane and [(3)H] 3,3-bis-trifluoromethyl-bicyclo[2,2,1]heptane-2,2-dicarbonitrile was dramatically reduced with 8 of the 15 mutated positions, focusing attention on A2', T6', and L9' as proposed binding sites, consistent with earlier mutagenesis studies. The cytoplasmic half of the beta3 homopentamer pore was modeled as an alpha-helix. The six NCAs listed above plus t-butylbicyclophosphorothionate fit the 2' to 9' pore region forming hydrogen bonds with the T6' hydroxyl and hydrophobic interactions with A2', T6', and L9' alkyl substituents, thereby blocking the channel. Thus, widely diverse NCA structures fit the same GABA receptor beta subunit site with important implications for insecticide cross-resistance and selective toxicity between insects and mammals.

  18. Structural Heterogeneity and Functional Domains of Murine Immunoglobulin G Fc Receptors

    Science.gov (United States)

    Ravetch, Jeffrey V.; Luster, Andrew D.; Weinshank, Richard; Kochan, Jarema; Pavlovec, Amalia; Portnoy, Daniel A.; Hulmes, Jeffrey; Pan, Yu-Ching E.; Unkeless, Jay C.

    1986-11-01

    Binding of antibodies to effector cells by way of receptors to their constant regions (Fc receptors) is central to the pathway that leads to clearance of antigens by the immune system. The structure and function of this important class of receptors on immune cells is addressed through the molecular characterization of Fc receptors (FcR) specific for the murine immunoglobulin G isotype. Structural diversity is encoded by two genes that by alternative splicing result in expression of molecules with highly conserved extracellular domains and different transmembrane and intracytoplasmic domains. The proteins encoded by these genes are members of the immunoglobulin supergene family, most homologous to the major histocompatibility complex molecule Eβ. Functional reconstitution of ligand binding by transfection of individual FcR genes demonstrates that the requirements for ligand binding are encoded in a single gene. These studies demonstrate the molecular basis for the functional heterogeneity of FcR's, accounting for the possible transduction of different signals in response to a single ligand.

  19. Leptin and leptin receptor: Analysis of a structure to function relationship in interaction and evolution from humans to fish

    OpenAIRE

    Prokop, JW; Duff, RJ; Ball, HC; Copeland, DL; Londraville, RL

    2012-01-01

    Leptin is a circulating protein which regulates dietary intake through binding the leptin receptor. Numerous labs have used known structures and mutagenesis to study this binding process in common animal models (human, mouse and rat). Understanding this binding process in other vertebrate species will allow for a better understanding of leptin and leptin receptor function. The binding site between leptin and leptin receptor is highly conserved in mammals as confirmed through sequence alignmen...

  20. Structural heterogeneity of membrane receptors and GTP-binding proteins and its functional consequences for signal transduction

    OpenAIRE

    Boege, Fritz; Neumann, Eberhard; Helmreich, Ernst J. M.

    1991-01-01

    Recent information obtained, mainly by recombinant cDNA technology, on structural heterogeneity of hormone and transmitter receptors, of GTP-binding proteins (G-proteins) and, especially, of G-protein-linked receptors is reviewed and the implications of structural heterogeneity for diversity of hormone and transmitter actions is discussed. For the future, three-dimensional structural analysis of membrane proteins participating in signal transmission and transduction pathways is needed in orde...

  1. The Structural Basis for the Function of Two Anti-VEGF Receptor 2 Antibodies

    Energy Technology Data Exchange (ETDEWEB)

    M Franklin; E Navarro; Y Wang; S Patel; P Singh; Y Zhang; K Persaud; A Bari; H Griffith; et al.

    2011-12-31

    The anti-VEGF receptor 2 antibody IMC-1121B is a promising antiangiogenic drug being tested for treatment of breast and gastric cancer. We have determined the structure of the 1121B Fab fragment in complex with domain 3 of VEGFR2, as well as the structure of a different neutralizing anti-VEGFR2 antibody, 6.64, also in complex with VEGFR2 domain 3. The two Fab fragments bind at opposite ends of VEGFR2 domain 3; 1121B directly blocks VEGF binding, whereas 6.64 may prevent receptor dimerization by perturbing the domain 3:domain 4 interface. Mutagenesis reveals that residues essential for VEGF, 1121B, and 6.64 binding are nonoverlapping among the three contact patches.

  2. The Structural Basis for the Function of Two Anti-VEGF Receptor 2 Antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Franklin, Matthew C.; Navarro, Elizabeth C.; Wang, Yujie; Patel, Sheetal; Singh, Pinki; Zhang, Yi; Persaud, Kris; Bari, Amtul; Griffith, Heather; Shen, Leyi; Balderes, Paul; Kussie, Paul (ImClone)

    2011-10-28

    The anti-VEGF receptor 2 antibody IMC-1121B is a promising antiangiogenic drug being tested for treatment of breast and gastric cancer. We have determined the structure of the 1121B Fab fragment in complex with domain 3 of VEGFR2, as well as the structure of a different neutralizing anti-VEGFR2 antibody, 6.64, also in complex with VEGFR2 domain 3. The two Fab fragments bind at opposite ends of VEGFR2 domain 3; 1121B directly blocks VEGF binding, whereas 6.64 may prevent receptor dimerization by perturbing the domain 3:domain 4 interface. Mutagenesis reveals that residues essential for VEGF, 1121B, and 6.64 binding are nonoverlapping among the three contact patches.

  3. Structural Basis for Negative Cooperativity in Growth Factor Binding to an EGF Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A. (UPENN-MED)

    2010-09-27

    Transmembrane signaling by the epidermal growth factor receptor (EGFR) involves ligand-induced dimerization and allosteric regulation of the intracellular tyrosine kinase domain. Crystallographic studies have shown how ligand binding induces dimerization of the EGFR extracellular region but cannot explain the high-affinity and low-affinity classes of cell-surface EGF-binding sites inferred from curved Scatchard plots. From a series of crystal structures of the Drosophila EGFR extracellular region, we show here how Scatchard plot curvature arises from negatively cooperative ligand binding. The first ligand-binding event induces formation of an asymmetric dimer with only one bound ligand. The unoccupied site in this dimer is structurally restrained, leading to reduced affinity for binding of the second ligand, and thus negative cooperativity. Our results explain the cell-surface binding characteristics of EGF receptors and suggest how individual EGFR ligands might stabilize distinct dimeric species with different signaling properties.

  4. Linking structure to function: Recent lessons from inositol 1,4,5-trisphosphate receptor mutagenesis.

    Science.gov (United States)

    Yule, David I; Betzenhauser, Matthew J; Joseph, Suresh K

    2010-06-01

    Great insight has been gained into the structure and function of the inositol 1,4,5 trisphosphate receptor (InsP(3)R) by studies employing mutagenesis of the cDNA encoding the receptor. Notably, early studies using this approach defined the key constituents required for InsP(3) binding in the N-terminus and the membrane spanning regions in the C-terminal domain responsible for channel formation, targeting and function. In this article we evaluate recent studies which have used a similar approach to investigate key residues underlying the in vivo modulation by select regulatory factors. In addition, we review studies defining the structural requirements in the channel domain which comprise the conduction pathway and are suggested to be involved in the gating of the channel.

  5. Structure-function analysis of nucleolin and ErbB receptors interactions.

    Directory of Open Access Journals (Sweden)

    Keren Farin

    Full Text Available BACKGROUND: The ErbB receptor tyrosine kinases and nucleolin are major contributors to malignant transformation. Recently we have found that cell-surface ErbB receptors interact with nucleolin via their cytoplasmic tail. Overexpression of ErbB1 and nucleolin leads to receptor phosphorylation, dimerization and anchorage independent growth. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we explored the regions of nucleolin and ErbB responsible for their interaction. Using mutational analyses, we addressed the structure-function relationship of the interaction between ErbB1 and nucleolin. We identified the ErbB1 nuclear localization domain as nucleolin interacting region. This region is important for nucleolin-associated receptor activation. Notably, though the tyrosine kinase domain is important for nucleolin-associated receptor activation, it is not involved in nucleolin/ErbB interactions. In addition, we demonstrated that the 212 c-terminal portion of nucleolin is imperative for the interaction with ErbB1 and ErbB4. This region of nucleolin is sufficient to induce ErbB1 dimerization, phosphorylation and growth in soft agar. CONCLUSIONS/SIGNIFICANCE: The oncogenic potential of ErbB depends on receptor levels and activation. Nucleolin affects ErbB dimerization and activation leading to enhanced cell growth. The C-terminal region of nucleolin and the ErbB1 NLS-domain mediate this interaction. Moreover, when the C-terminal 212 amino acids region of nucleolin is expressed with ErbB1, it can enhance anchorage independent cell growth. Taken together these results offer new insight into the role of ErbB1 and nucleolin interaction in malignant cells.

  6. Metabotropic glutamate receptors depress vagal and aortic baroreceptor signal transmission in the NTS.

    Science.gov (United States)

    Liu, Z; Chen, C Y; Bonham, A C

    1998-11-01

    We sought to determine whether metabotropic glutamate receptors contribute to frequency-dependent depression of vagal and aortic baroreceptor signal transmission in the nucleus of the solitary tract (NTS) in vivo. In alpha-chloralose-anesthetized rabbits, we determined the number of extracellular action potentials synaptically evoked by low (1 Hz)- or high-frequency vagal (3-20 Hz) or aortic depressor nerve (ADN) (6-80 Hz) stimulation and postsynaptically evoked by the ionotropic glutamate receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The metabotropic glutamate receptor agonist (2S,1'S, 2'S)-2-(carboxycyclopropyl)glycine (L-CCG-I) attenuated NTS responses monosynaptically evoked by 1-Hz vagus stimulation by 34% (n = 25; P = 0.011), while augmenting AMPA-evoked responses by 64% (n = 17; P = 0.026). The metabotropic glutamate receptor antagonist alpha-methyl-4-phosphonophenylglycine (MPPG) did not affect NTS responses to low-frequency vagal stimulation (n = 11) or AMPA (n = 10) but augmented responses to high-frequency stimulation by 50% (n = 25; P = 0.0001). MPPG also augmented NTS responses to high-frequency ADN stimulation by 35% (n = 9; P = 0.048) but did not affect responses to low-frequency stimulation (n = 9) or AMPA (n = 7). The results suggest that metabotropic glutamate receptors, presumably at presynaptic sites, contribute to frequency-dependent depression of vagal and aortic baroreceptor signal transmission in NTS. PMID:9815076

  7. All-Atom Structural Models of the Transmembrane Domains of Insulin and Type 1 Insulin-Like Growth Factor Receptors

    Science.gov (United States)

    Mohammadiarani, Hossein; Vashisth, Harish

    2016-01-01

    The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane–solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane–solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor. PMID

  8. NMR structure and dynamics of the agonist dynorphin peptide bound to the human kappa opioid receptor

    OpenAIRE

    O’Connor, Casey; White, Kate L.; Doncescu, Nathalie; Didenko, Tatiana; Roth, Bryan L.; Czaplicki, Georges; Stevens, Raymond C.; Wüthrich, Kurt; Milon, Alain

    2015-01-01

    The human kappa opioid receptor (KOR) is implicated in addiction, pain, reward, mood, cognition, and perception. Activation of KOR by the neuropeptide dynorphin is critical in mediating analgesia and tolerance. Our solution NMR study of dynorphin (1–13) provided quantitative data on a KOR-bound conformation. Analysis of the peptide structure and dynamics revealed a central helical turn bounded on both sides by flexibly disordered peptide segments. Future drug development will benefit from kno...

  9. Structural dynamics and energetics underlying allosteric inactivation of the cannabinoid receptor CB1.

    Science.gov (United States)

    Fay, Jonathan F; Farrens, David L

    2015-07-01

    G protein-coupled receptors (GPCRs) are surprisingly flexible molecules that can do much more than simply turn on G proteins. Some even exhibit biased signaling, wherein the same receptor preferentially activates different G-protein or arrestin signaling pathways depending on the type of ligand bound. Why this behavior occurs is still unclear, but it can happen with both traditional ligands and ligands that bind allosterically outside the orthosteric receptor binding pocket. Here, we looked for structural mechanisms underlying these phenomena in the marijuana receptor CB1. Our work focused on the allosteric ligand Org 27569, which has an unusual effect on CB1-it simultaneously increases agonist binding, decreases G--protein activation, and induces biased signaling. Using classical pharmacological binding studies, we find that Org 27569 binds to a unique allosteric site on CB1 and show that it can act alone (without need for agonist cobinding). Through mutagenesis studies, we find that the ability of Org 27569 to bind is related to how much receptor is in an active conformation that can couple with G protein. Using these data, we estimated the energy differences between the inactive and active states. Finally, site-directed fluorescence labeling studies show the CB1 structure stabilized by Org 27569 is different and unique from that stabilized by antagonist or agonist. Specifically, transmembrane helix 6 (TM6) movements associated with G-protein activation are blocked, but at the same time, helix 8/TM7 movements are enhanced, suggesting a possible mechanism for the ability of Org 27569 to induce biased signaling.

  10. Structural determinants for binding to angiotensin converting enzyme 2 (ACE2 and angiotensin receptors

    Directory of Open Access Journals (Sweden)

    Daniel eClayton

    2015-01-01

    Full Text Available Angiotensin converting enzyme 2 (ACE2 is a zinc carboxypeptidase involved in the renin angiotensin system (RAS and inactivates the potent vasopressive peptide angiotensin II (Ang II by removing the C-terminal phenylalanine residue to yield Ang1-7. This conversion inactivates the vasoconstrictive action of Ang II and yields a peptide that acts as a vasodilatory molecule at the Mas receptor and potentially other receptors. Given the growing complexity of RAS and level of cross-talk between ligands and their corresponding enzymes and receptors, the design of molecules with selectivity for the major RAS binding partners to control cardiovascular tone is an on-going challenge. In previous studies we used single β-amino acid substitutions to modulate the structure of Ang II and its selectivity for ACE2, AT1R and angiotensin type 2 (AT2R receptor. We showed that modification at the C-terminus of Ang II generally resulted in more pronounced changes to secondary structure and ligand binding, and here we further explore this region for the potential to modulate ligand specificity. In this study, 1 a library of forty-seven peptides derived from the C-terminal tetra-peptide sequence (-IHPF of Ang II was synthesised and assessed for ACE2 binding, 2 the terminal group requirements for high affinity ACE2 binding were explored by and N- and C-terminal modification, 3 high affinity ACE2 binding chimeric AngII analogues were then synthesized and assessed, 4 the structure of the full-length Ang II analogues were assessed by circular dichroism, and 5 the Ang II analogues were assessed for AT1R/AT2R selectivity by cell-based assays. Studies on the C-terminus of Ang II demonstrated varied specificity at different residue positions for ACE2 binding and four Ang II chimeric peptides were identified as selective ligands for the AT2 receptor. Overall, these results provide insight into the residue and structural requirements for ACE2 binding and angiotensin receptor

  11. Crystal structure of the[mu]-opioid receptor bound to a morphinan antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Manglik, Aashish; Kruse, Andrew C.; Kobilka, Tong Sun; Thian, Foon Sun; Mathiesen, Jesper M.; Sunahara, Roger K.; Pardo, Leonardo; Weis, William I.; Kobilka, Brian K.; Granier, Sébastien (Michigan-Med); (Stanford-MED); (UAB, Spain)

    2012-06-27

    Opium is one of the world's oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many undesirable side effects (sedation, apnoea and dependence) by binding to and activating the G-protein-coupled {mu}-opioid receptor ({mu}-OR) in the central nervous system. Here we describe the 2.8 {angstrom} crystal structure of the mouse {mu}-OR in complex with an irreversible morphinan antagonist. Compared to the buried binding pocket observed in most G-protein-coupled receptors published so far, the morphinan ligand binds deeply within a large solvent-exposed pocket. Of particular interest, the {mu}-OR crystallizes as a two-fold symmetrical dimer through a four-helix bundle motif formed by transmembrane segments 5 and 6. These high-resolution insights into opioid receptor structure will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction.

  12. Structural determinants of diphenethylamines for interaction with the κ opioid receptor: Synthesis, pharmacology and molecular modeling studies.

    Science.gov (United States)

    Guerrieri, Elena; Bermudez, Marcel; Wolber, Gerhard; Berzetei-Gurske, Ilona P; Schmidhammer, Helmut; Spetea, Mariana

    2016-10-01

    The κ opioid (KOP) receptor crystal structure in an inactive state offers nowadays a valuable platform for inquiry into receptor function. We describe the synthesis, pharmacological evaluation and docking calculations of KOP receptor ligands from the class of diphenethylamines using an active-like structure of the KOP receptor attained by molecular dynamics simulations. The structure-activity relationships derived from computational studies was in accordance with pharmacological activities of targeted diphenethylamines at the KOP receptor established by competition binding and G protein activation in vitro assays. Our analysis identified that agonist binding results in breaking of the Arg156-Thr273 hydrogen bond, which stabilizes the inactive receptor conformation, and a crucial hydrogen bond with His291 is formed. Compounds with a phenolic 4-hydroxy group do not form the hydrogen bond with His291, an important residue for KOP affinity and agonist activity. The size of the N-substituent hosted by the hydrophobic pocket formed by Val108, Ile316 and Tyr320 considerably influences binding and selectivity, with the n-alkyl size limit being five carbon atoms, while bulky substituents turn KOP agonists in antagonists. Thus, combination of experimental and molecular modeling strategies provides an initial framework for understanding the structural features of diphenethylamines that are essential to promote binding affinity and selectivity for the KOP receptor, and may be involved in transduction of the ligand binding event into molecular changes, ultimately leading to receptor activation. PMID:27567368

  13. Prostaglandin E2 receptor expression in the rat trigeminal-vascular system and other brain structures involved in pain

    DEFF Research Database (Denmark)

    Myren, Maja; Olesen, Jes; Gupta, Saurabh

    2012-01-01

    receptors in both peripheral and central structures involved in pain transmission and perception in migraine: dura mater, cerebral arteries, trigeminal ganglion, trigeminal nucleus caudalis, periaqueductal grey, thalamus, hypothalamus, cortex, pituitary gland, hippocampus and cerebellum. In the trigeminal-vascular......, all four receptors are located in areas implicated in migraine supporting the possible involvement of PGE(2) in this disease....

  14. Structural determinants of diphenethylamines for interaction with the κ opioid receptor: Synthesis, pharmacology and molecular modeling studies.

    Science.gov (United States)

    Guerrieri, Elena; Bermudez, Marcel; Wolber, Gerhard; Berzetei-Gurske, Ilona P; Schmidhammer, Helmut; Spetea, Mariana

    2016-10-01

    The κ opioid (KOP) receptor crystal structure in an inactive state offers nowadays a valuable platform for inquiry into receptor function. We describe the synthesis, pharmacological evaluation and docking calculations of KOP receptor ligands from the class of diphenethylamines using an active-like structure of the KOP receptor attained by molecular dynamics simulations. The structure-activity relationships derived from computational studies was in accordance with pharmacological activities of targeted diphenethylamines at the KOP receptor established by competition binding and G protein activation in vitro assays. Our analysis identified that agonist binding results in breaking of the Arg156-Thr273 hydrogen bond, which stabilizes the inactive receptor conformation, and a crucial hydrogen bond with His291 is formed. Compounds with a phenolic 4-hydroxy group do not form the hydrogen bond with His291, an important residue for KOP affinity and agonist activity. The size of the N-substituent hosted by the hydrophobic pocket formed by Val108, Ile316 and Tyr320 considerably influences binding and selectivity, with the n-alkyl size limit being five carbon atoms, while bulky substituents turn KOP agonists in antagonists. Thus, combination of experimental and molecular modeling strategies provides an initial framework for understanding the structural features of diphenethylamines that are essential to promote binding affinity and selectivity for the KOP receptor, and may be involved in transduction of the ligand binding event into molecular changes, ultimately leading to receptor activation.

  15. A Hybrid Approach to Structure and Function Modeling of G Protein-Coupled Receptors.

    Science.gov (United States)

    Latek, Dorota; Bajda, Marek; Filipek, Sławomir

    2016-04-25

    The recent GPCR Dock 2013 assessment of serotonin receptor 5-HT1B and 5-HT2B, and smoothened receptor SMO targets, exposed the strengths and weaknesses of the currently used computational approaches. The test cases of 5-HT1B and 5-HT2B demonstrated that both the receptor structure and the ligand binding mode can be predicted with the atomic-detail accuracy, as long as the target-template sequence similarity is relatively high. On the other hand, the observation of a low target-template sequence similarity, e.g., between SMO from the frizzled GPCR family and members of the rhodopsin family, hampers the GPCR structure prediction and ligand docking. Indeed, in GPCR Dock 2013, accurate prediction of the SMO target was still beyond the capabilities of most research groups. Another bottleneck in the current GPCR research, as demonstrated by the 5-HT2B target, is the reliable prediction of global conformational changes induced by activation of GPCRs. In this work, we report details of our protocol used during GPCR Dock 2013. Our structure prediction and ligand docking protocol was especially successful in the case of 5-HT1B and 5-HT2B-ergotamine complexes for which we provide one of the most accurate predictions. In addition to a description of the GPCR Dock 2013 results, we propose a novel hybrid computational methodology to improve GPCR structure and function prediction. This computational methodology employs two separate rankings for filtering GPCR models. The first ranking is ligand-based while the second is based on the scoring scheme of the recently published BCL method. In this work, we prove that the use of knowledge-based potentials implemented in BCL is an efficient way to cope with major bottlenecks in the GPCR structure prediction. Thereby, we also demonstrate that the knowledge-based potentials for membrane proteins were significantly improved, because of the recent surge in available experimental structures.

  16. A Hybrid Approach to Structure and Function Modeling of G Protein-Coupled Receptors.

    Science.gov (United States)

    Latek, Dorota; Bajda, Marek; Filipek, Sławomir

    2016-04-25

    The recent GPCR Dock 2013 assessment of serotonin receptor 5-HT1B and 5-HT2B, and smoothened receptor SMO targets, exposed the strengths and weaknesses of the currently used computational approaches. The test cases of 5-HT1B and 5-HT2B demonstrated that both the receptor structure and the ligand binding mode can be predicted with the atomic-detail accuracy, as long as the target-template sequence similarity is relatively high. On the other hand, the observation of a low target-template sequence similarity, e.g., between SMO from the frizzled GPCR family and members of the rhodopsin family, hampers the GPCR structure prediction and ligand docking. Indeed, in GPCR Dock 2013, accurate prediction of the SMO target was still beyond the capabilities of most research groups. Another bottleneck in the current GPCR research, as demonstrated by the 5-HT2B target, is the reliable prediction of global conformational changes induced by activation of GPCRs. In this work, we report details of our protocol used during GPCR Dock 2013. Our structure prediction and ligand docking protocol was especially successful in the case of 5-HT1B and 5-HT2B-ergotamine complexes for which we provide one of the most accurate predictions. In addition to a description of the GPCR Dock 2013 results, we propose a novel hybrid computational methodology to improve GPCR structure and function prediction. This computational methodology employs two separate rankings for filtering GPCR models. The first ranking is ligand-based while the second is based on the scoring scheme of the recently published BCL method. In this work, we prove that the use of knowledge-based potentials implemented in BCL is an efficient way to cope with major bottlenecks in the GPCR structure prediction. Thereby, we also demonstrate that the knowledge-based potentials for membrane proteins were significantly improved, because of the recent surge in available experimental structures. PMID:26978043

  17. Evidence for homogeneity of thromboxane A2 receptor using structurally different antagonists.

    Science.gov (United States)

    Swayne, G T; Maguire, J; Dolan, J; Raval, P; Dane, G; Greener, M; Owen, D A

    1988-08-01

    Nine structurally dissimilar thromboxane antagonists (SQ 29548, ICI 185282, AH 23848, BM 13505 (Daltroban), BM 13177 (Sulotroban), SK&F 88046, L-636499, L-640035 and a Bayer compound SK&F 47821) were studied for activity as thromboxane A2 receptor antagonists. The assays used were inhibition of responses induced by the thromboxane mimetic, U46619, on human washed platelet aggregation, rabbit platelet aggregation, rabbit aortic strip contraction, anaesthetised guinea-pig bronchoconstriction, and a radio-labelled ligand (125I-PTA-OH) binding assay as a measure of affinity for the human platelet receptor. The results of the present study, with activities spanning at least four orders of magnitude along with statistically significant correlations (at least P less than 0.01), strongly suggests that between assays, antagonists and species a homogenous population of thromboxane A2 receptors exists. This finding is in contrast to those of a close series of 13-azapinane antagonists studied by other workers which have suggested receptor heterogeneity.

  18. A Structural Model of the Human α7 Nicotinic Receptor in an Open Conformation.

    Directory of Open Access Journals (Sweden)

    Letizia Chiodo

    Full Text Available Nicotinic acetylcholine receptors (nAchRs are ligand-gated ion channels that regulate chemical transmission at the neuromuscular junction. Structural information is available at low resolution from open and closed forms of an eukaryotic receptor, and at high resolution from other members of the same structural family, two prokaryotic orthologs and an eukaryotic GluCl channel. Structures of human channels however are still lacking. Homology modeling and Molecular Dynamics simulations are valuable tools to predict structures of unknown proteins, however, for the case of human nAchRs, they have been unsuccessful in providing a stable open structure so far. This is due to different problems with the template structures: on one side the homology with prokaryotic species is too low, while on the other the open eukaryotic GluCl proved itself unstable in several MD studies and collapsed to a dehydrated, non-conductive conformation, even when bound to an agonist. Aim of this work is to obtain, by a mixing of state-of-the-art homology and simulation techniques, a plausible prediction of the structure (still unknown of the open state of human α7 nAChR complexed with epibatidine, from which it is possible to start structural and functional test studies. To prevent channel closure we employ a restraint that keeps the transmembrane pore open, and obtain in this way a stable, hydrated conformation. To further validate this conformation, we run four long, unbiased simulations starting from configurations chosen at random along the restrained trajectory. The channel remains stable and hydrated over the whole runs. This allows to assess the stability of the putative open conformation over a cumulative time of 1 μs, 800 ns of which are of unbiased simulation. Mostly based on the analysis of pore hydration and size, we suggest that the obtained structure has reasonable chances to be (at least one of the possible structures of the channel in the open conformation.

  19. Molecular and Structural Characterization of a Novel Escherichia coli Interleukin Receptor Mimic Protein

    Directory of Open Access Journals (Sweden)

    Danilo G. Moriel

    2016-03-01

    Full Text Available Urinary tract infection (UTI is a disease of extremely high incidence in both community and nosocomial settings. UTIs cause significant morbidity and mortality, with approximately 150 million cases globally per year. Uropathogenic Escherichia coli (UPEC is the primary cause of UTI and is generally treated empirically. However, the rapidly increasing incidence of UTIs caused by multidrug-resistant UPEC strains has led to limited available treatment options and highlights the urgent need to develop alternative treatment and prevention strategies. In this study, we performed a comprehensive analysis to define the regulation, structure, function, and immunogenicity of recently identified UPEC vaccine candidate C1275 (here referred to as IrmA. We showed that the irmA gene is highly prevalent in UPEC, is cotranscribed with the biofilm-associated antigen 43 gene, and is regulated by the global oxidative stress response OxyR protein. Localization studies identified IrmA in the UPEC culture supernatant. We determined the structure of IrmA and showed that it adopts a unique domain-swapped dimer architecture. The dimeric structure of IrmA displays similarity to those of human cytokine receptors, including the interleukin-2 receptor (IL-2R, interleukin-4 receptor (IL-4R, and interleukin-10 receptor (IL-10R binding domains, and we showed that purified IrmA can bind to their cognate cytokines. Finally, we showed that plasma from convalescent urosepsis patients contains high IrmA antibody titers, demonstrating the strong immunogenicity of IrmA. Taken together, our results indicate that IrmA may play an important role during UPEC infection.

  20. Common structural basis for constitutive activity of the ghrelin receptor family

    DEFF Research Database (Denmark)

    Holst, Birgitte; Holliday, Nicholas D; Bach, Anders;

    2004-01-01

    Three members of the ghrelin receptor family were characterized in parallel: the ghrelin receptor, the neurotensin receptor 2 and the orphan receptor GPR39. In transiently transfected COS-7 and human embryonic kidney 293 cells, all three receptors displayed a high degree of ligand-independent sig......Three members of the ghrelin receptor family were characterized in parallel: the ghrelin receptor, the neurotensin receptor 2 and the orphan receptor GPR39. In transiently transfected COS-7 and human embryonic kidney 293 cells, all three receptors displayed a high degree of ligand...

  1. The structure of cytomegalovirus immune modulator UL141 highlights structural Ig-fold versatility for receptor binding

    Energy Technology Data Exchange (ETDEWEB)

    Nemčovičová, Ivana [La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037 (United States); Slovak Academy of Sciences, Dúbravská cesta 9, SK 84505 Bratislava (Slovakia); Zajonc, Dirk M., E-mail: dzajonc@liai.org [La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037 (United States)

    2014-03-01

    The crystal structure of Human cytomegalovirus immune modulator UL141 was solved at 3.25 Å resolution. Here, a detailed analysis of its intimate dimerization interface and the biophysical properties of its receptor (TRAIL-R2 and CD155) binding interactions are presented. Natural killer (NK) cells are critical components of the innate immune system as they rapidly detect and destroy infected cells. To avoid immune recognition and to allow long-term persistence in the host, Human cytomegalovirus (HCMV) has evolved a number of genes to evade or inhibit immune effector pathways. In particular, UL141 can inhibit cell-surface expression of both the NK cell-activating ligand CD155 as well as the TRAIL death receptors (TRAIL-R1 and TRAIL-R2). The crystal structure of unliganded HCMV UL141 refined to 3.25 Å resolution allowed analysis of its head-to-tail dimerization interface. A ‘dimerization-deficient’ mutant of UL141 (ddUL141) was further designed, which retained the ability to bind to TRAIL-R2 or CD155 while losing the ability to cross-link two receptor monomers. Structural comparison of unliganded UL141 with UL141 bound to TRAIL-R2 further identified a mobile loop that makes intimate contacts with TRAIL-R2 upon receptor engagement. Superposition of the Ig-like domain of UL141 on the CD155 ligand T-cell immunoreceptor with Ig and ITIM domains (TIGIT) revealed that UL141 can potentially engage CD155 similar to TIGIT by using the C′C′′ and GF loops. Further mutations in the TIGIT binding site of CD155 (Q63R and F128R) abrogated UL141 binding, suggesting that the Ig-like domain of UL141 is a viral mimic of TIGIT, as it targets the same binding site on CD155 using similar ‘lock-and-key’ interactions. Sequence alignment of the UL141 gene and its orthologues also showed conservation in this highly hydrophobic (L/A)X{sub 6}G ‘lock’ motif for CD155 binding as well as conservation of the TRAIL-R2 binding patches, suggesting that these host–receptor

  2. FERMENTASI CAIR AMPAS KELAPA SAWIT DAN KAPANG RHIZOPUS OLIGOSPORUS UNTUK MENGHASILKAN ASAM LEMAK OMEGA-3

    Directory of Open Access Journals (Sweden)

    Erwin Affandi

    2012-11-01

    :1, linoleic acid (18:2 and linolenic (18:3 increased. However, all fatty acid in low-carbon treatment decreased, except the linolenic-acid. The conclusion: The fermentation of palm-oil waste with Rhizopus oligosporus mold could increase the content of fat and produce fatty acid omega-3.   In addition, the high-carbon substrat could increase the production of unsaturated-fatty acid.  Submit : 19-12-2011  Review : 08-03-2012 Review : 12 -03-2012 revisi : 17–4-2012 56 Keywords: liquefied-fermentation, waste product of palm oil, R.oligosporus, fatty acid 0mega-3 Abstrak Latar belakang: Pemanfaatan kapang Rhizopus. oligosporus untuk menghasilkan asam lemak omega-3 pada substrat cair telah banyak dilakukan. Kandungan lemak ampas kelapa sawit 5,56 gram/100 gram masih berpotensi untuk menghasilkan asam lemak omega-3. Fermentasi padat pada substrat ampas tahu dan ampas kelapa sawit dengan kapang Rhizopus. oligosporus dapat meningkatkan kadar lemak: ampas tahu 34,4%, sedangkan pada substrat ampas kelapa sawit dengan formula tinggi karbon, kadar lemak meningkat 61,57%. Metoda: Sampel ampas sawit diambil dari pabrik industri minyak sawit. Pada penelitian ini ampas sawit dipakai sebagai substrat fermentasi dan kapang yang digunakan adalah R.oligosporus. Untuk bahan suplemen digunakan urea dan sukrosa Kontrol adalah ampas-sawit tanpa suplemen, sedangkan perlakuan ampas sawit ditambahkan urea sebagai sumber Nitrogen(N dan ampas sawit ditambah sukrosa sebagai sumber Karbon(C. Penambahan sumber N sebagai substrat rendah karbon dan sumber C sebagai substrat tinggi karbon. Fermentasi dilakukan selama 7 hari diatas shaker pada suhu ruang.  Produk hasil fermentasi dilakukan analisis: kadar air; abu, lemak, dan asam lemak omega-3. Hasil penelitian: Hasil menunjukkan bahwa kadar air  produk hasil fermentasi menurun pada kontrol dan semua perlakuan. Kadar abu meningkat untuk semua perlakuan. Kandungan lemak pada ampas kontrol dan ampas-sukrosa  meningkat 6,43% dan 31,67%, sedang substrat

  3. Development of calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in cultured neocortical neurons visualized by cobalt staining

    DEFF Research Database (Denmark)

    Jensen, J B; Schousboe, A; Pickering, D S;

    1998-01-01

    -sulphamoylbenzo-[f]-quinoxaline-2,3-dione (NBQX) was able to prevent all staining at 5 and 8 DIV and most of the staining at 12 DIV, indicating that the non-NMDA ionotropic glutamate receptors are involved in cobalt uptake into the neurons. The AMPA receptor-selective antagonist GYKI 53655 was used...

  4. Modeling structure of G protein-coupled receptors in huan genome

    KAUST Repository

    Zhang, Yang

    2016-01-26

    G protein-coupled receptors (or GPCRs) are integral transmembrane proteins responsible to various cellular signal transductions. Human GPCR proteins are encoded by 5% of human genes but account for the targets of 40% of the FDA approved drugs. Due to difficulties in crystallization, experimental structure determination remains extremely difficult for human GPCRs, which have been a major barrier in modern structure-based drug discovery. We proposed a new hybrid protocol, GPCR-I-TASSER, to construct GPCR structure models by integrating experimental mutagenesis data with ab initio transmembrane-helix assembly simulations, assisted by the predicted transmembrane-helix interaction networks. The method was tested in recent community-wide GPCRDock experiments and constructed models with a root mean square deviation 1.26 Å for Dopamine-3 and 2.08 Å for Chemokine-4 receptors in the transmembrane domain regions, which were significantly closer to the native than the best templates available in the PDB. GPCR-I-TASSER has been applied to model all 1,026 putative GPCRs in the human genome, where 923 are found to have correct folds based on the confidence score analysis and mutagenesis data comparison. The successfully modeled GPCRs contain many pharmaceutically important families that do not have previously solved structures, including Trace amine, Prostanoids, Releasing hormones, Melanocortins, Vasopressin and Neuropeptide Y receptors. All the human GPCR models have been made publicly available through the GPCR-HGmod database at http://zhanglab.ccmb.med.umich.edu/GPCR-HGmod/ The results demonstrate new progress on genome-wide structure modeling of transmembrane proteins which should bring useful impact on the effort of GPCR-targeted drug discovery.

  5. Structural Mimicry of Receptor Interaction by Antagonistic Interleukin-6 (IL-6) Antibodies.

    Science.gov (United States)

    Blanchetot, Christophe; De Jonge, Natalie; Desmyter, Aline; Ongenae, Nico; Hofman, Erik; Klarenbeek, Alex; Sadi, Ava; Hultberg, Anna; Kretz-Rommel, Anke; Spinelli, Silvia; Loris, Remy; Cambillau, Christian; de Haard, Hans

    2016-06-24

    Interleukin 6 plays a key role in mediating inflammatory reactions in autoimmune diseases and cancer, where it is also involved in metastasis and tissue invasion. Neutralizing antibodies against IL-6 and its receptor have been approved for therapeutic intervention or are in advanced stages of clinical development. Here we describe the crystal structures of the complexes of IL-6 with two Fabs derived from conventional camelid antibodies that antagonize the interaction between the cytokine and its receptor. The x-ray structures of these complexes provide insights into the mechanism of neutralization by the two antibodies and explain the very high potency of one of the antibodies. It effectively competes for binding to the cytokine with IL-6 receptor (IL-6R) by using side chains of two CDR residues filling the site I cavities of IL-6, thus mimicking the interactions of Phe(229) and Phe(279) of IL-6R. In the first antibody, a HCDR3 tryptophan binds similarly to hot spot residue Phe(279) Mutation of this HCDR3 Trp residue into any other residue except Tyr or Phe significantly weakens binding of the antibody to IL-6, as was also observed for IL-6R mutants of Phe(279) In the second antibody, the side chain of HCDR3 valine ties into site I like IL-6R Phe(279), whereas a LCDR1 tyrosine side chain occupies a second cavity within site I and mimics the interactions of IL-6R Phe(229). PMID:27129274

  6. Polymodal Transient Receptor Potential Vanilloid Type 1 Nocisensor: Structure, Modulators, and Therapeutic Applications.

    Science.gov (United States)

    Cui, Minghua; Gosu, Vijayakumar; Basith, Shaherin; Hong, Sunhye; Choi, Sun

    2016-01-01

    Transient receptor potential (TRP) channels belong to a superfamily of sensory-related ion channels responding to a wide variety of thermal, mechanical, or chemical stimuli. In an attempt to comprehend the piquancy and pain mechanism of the archetypal vanilloids, transient receptor potential vanilloid (TRPV) 1 was discovered. TRPV1, a well-established member of the TRP family, is implicated in a range of functions including inflammation, painful stimuli sensation, and mechanotransduction. TRPV1 channels are nonselective cation receptors that are gated by a broad array of noxious ligands. Such polymodal-sensor aspect makes the TRPV1 channel extremely versatile and important for its role in sensing burning pain. Besides ligands, TRPV1 signaling can also be modulated by lipids, secondary messengers, protein kinases, cytoskeleton, and several other proteins. Due to its central role in hyperalgesia transduction and inflammatory processes, it is considered as the primary pharmacological pain target. Moreover, understanding the structural and functional intricacies of the channel is indispensable for the therapeutic intervention of TRPV1 in pain and other pathological disorders. In this chapter, we seek to give a mechanistic outlook on the TRPV1 channel. Specifically, we will explore the TRPV1 structure, activation, modulation, ligands, and its therapeutic targeting. However, the major objective of this review is to highlight the fact that TRPV1 channel can be treated as an effective therapeutic target for treating several pain- and nonpain-related physiological and pathological states. PMID:27038373

  7. Crystal structure of the β2 adrenergic receptor-Gs protein complex

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Søren G.F.; DeVree, Brian T; Zou, Yaozhong; Kruse, Andrew C; Chung, Ka Young; Kobilka, Tong Sun; Thian, Foon Sun; Chae, Pil Seok; Pardon, Els; Calinski, Diane; Mathiesen, Jesper M; Shah, Syed T.A.; Lyons, Joseph A; Caffrey, Martin; Gellman, Samuel H; Steyaert, Jan; Skiniotis, Georgios; Weis, William I; Sunahara, Roger K; Kobilka, Brian K [Brussels; (Trinity); (Michigan); (Stanford-MED); (Michigan-Med); (UW)

    2011-12-07

    G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The β2 adrenergic receptor2AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric β2AR and nucleotide-free Gs heterotrimer. The principal interactions between the β2AR and Gs involve the amino- and carboxy-terminal α-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The largest conformational changes in the β2AR include a 14Å outward movement at the cytoplasmic end of transmembrane segment 6 (TM6) and an α-helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signalling by a GPCR.

  8. Structure and chromosomal localization of the human antidiuretic hormone receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Seibold, A.; Brabet, P.; Rosenthal, W.; Birnbaumer, M. (Baylor College of Medicine, Houston, TX (United States))

    1992-11-01

    Applying a genomic DNA-expression approach, the authors cloned the gene and cDNA coding for the human antidiuretic hormone receptor, also called vasopressin V2 receptor' (V2R). The nucleotide sequence of both cloned DNAs provided the information to elucidate the structure of the isolated transcriptional unit. The structure of this gene is unusual in that it is the first G protein-coupled receptor gene that contains two very small intervening sequences, the second of which separates the region encoding the seventh transmembrane region from the rest of the open reading frame. The sequence information was used to synthesize appropriate oligonucleotides to be used as primers in the PCR. The V2R gene was localized by PCR using DNA from hybrid cells as template. The gene was found to reside in the q28-qter portion of the human X chromosome, a region identified as the locus for congential nephrogenic diabetes insipidus. 27 refs., 4 figs.

  9. Structure-based drug design targeting the cell membrane receptor GPBAR1: exploiting the bile acid scaffold towards selective agonism

    Science.gov (United States)

    Di Leva, Francesco Saverio; Festa, Carmen; Renga, Barbara; Sepe, Valentina; Novellino, Ettore; Fiorucci, Stefano; Zampella, Angela; Limongelli, Vittorio

    2015-01-01

    Bile acids can regulate nutrient metabolism through the activation of the cell membrane receptor GPBAR1 and the nuclear receptor FXR. Developing an exogenous control over these receptors represents an attractive strategy for the treatment of enterohepatic and metabolic disorders. A number of dual GPBAR1/FXR agonists are known, however their therapeutic use is limited by multiple unwanted effects due to activation of the diverse downstream signals controlled by the two receptors. On the other hand, designing selective GPBAR1 and FXR agonists is challenging since the two proteins share similar structural requisites for ligand binding. Here, taking advantage of our knowledge of the two targets, we have identified through a rational drug design study a series of amine lithocholic acid derivatives as selective GPBAR1 agonists. The presence of the 3α-NH2 group on the steroidal scaffold is responsible for the selectivity over FXR unveiling unprecedented structural insights into bile acid receptors activity modulation. PMID:26567894

  10. Structure-based drug design targeting the cell membrane receptor GPBAR1: exploiting the bile acid scaffold towards selective agonism

    Science.gov (United States)

    di Leva, Francesco Saverio; Festa, Carmen; Renga, Barbara; Sepe, Valentina; Novellino, Ettore; Fiorucci, Stefano; Zampella, Angela; Limongelli, Vittorio

    2015-11-01

    Bile acids can regulate nutrient metabolism through the activation of the cell membrane receptor GPBAR1 and the nuclear receptor FXR. Developing an exogenous control over these receptors represents an attractive strategy for the treatment of enterohepatic and metabolic disorders. A number of dual GPBAR1/FXR agonists are known, however their therapeutic use is limited by multiple unwanted effects due to activation of the diverse downstream signals controlled by the two receptors. On the other hand, designing selective GPBAR1 and FXR agonists is challenging since the two proteins share similar structural requisites for ligand binding. Here, taking advantage of our knowledge of the two targets, we have identified through a rational drug design study a series of amine lithocholic acid derivatives as selective GPBAR1 agonists. The presence of the 3α-NH2 group on the steroidal scaffold is responsible for the selectivity over FXR unveiling unprecedented structural insights into bile acid receptors activity modulation.

  11. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Burg, John S.; Ingram, Jessica R.; Venkatakrishnan, A.J.; Jude, Kevin M.; Dukkipati, Abhiram; Feinberg, Evan N.; Angelini, Alessandro; Waghray, Deepa; Dror, Ron O.; Ploegh, Hidde L.; Garcia, K. Christopher (Stanford); (Stanford-MED); (Whitehead); (MIT)

    2015-03-05

    Chemokines are small proteins that function as immune modulators through activation of chemokine G protein-coupled receptors (GPCRs). Several viruses also encode chemokines and chemokine receptors to subvert the host immune response. How protein ligands activate GPCRs remains unknown. We report the crystal structure at 2.9 angstrom resolution of the human cytomegalovirus GPCR US28 in complex with the chemokine domain of human CX3CL1 (fractalkine). The globular body of CX3CL1 is perched on top of the US28 extracellular vestibule, whereas its amino terminus projects into the central core of US28. The transmembrane helices of US28 adopt an active-state-like conformation. Atomic-level simulations suggest that the agonist-independent activity of US28 may be due to an amino acid network evolved in the viral GPCR to destabilize the receptor’s inactive state.

  12. Structure-based design of eugenol analogs as potential estrogen receptor antagonists.

    Science.gov (United States)

    Anita, Yulia; Radifar, Muhammad; Kardono, Leonardus Bs; Hanafi, Muhammad; Istyastono, Enade P

    2012-01-01

    Eugenol is an essential oil mainly found in the buds and leaves of clove (Syzygium aromaticum (L.) Merrill and Perry), which has been reported to have activity on inhibition of cell proliferation and apoptosis induction in human MCF-7 breast cancer cells. This biological activity is correlated to its activity as an estrogen receptor antagonist. In this article, we present the construction and validation of structure-based virtual screening (SBVS) protocols to identify the potent estrogen receptor α (ER) antagonists. The selected protocol, which gave acceptable enrichment factors as a virtual screening protocol, subsequently used to virtually screen eugenol, its analogs and their dimers. Based on the virtual screening results, dimer eugenol of 4-[4-hydroxy-3-(prop-2-en-1- yl)phenyl]-2-(prop-2-en-1-yl)phenol is recommended to be developed further in order to discover novel and potent ER antagonists. PMID:23144548

  13. A novel hydroxyfuroic acid compound as an insulin receptor activator – structure and activity relationship of a prenylindole moiety to insulin receptor activation

    Directory of Open Access Journals (Sweden)

    Tsai Henry J

    2009-07-01

    Full Text Available Abstract Background Diabetes Mellitus is a chronic disease and many patients of which require frequent subcutaneous insulin injection to maintain proper blood glucose levels. Due to the inconvenience of insulin administration, an orally active insulin replacement has long been a prime target for many pharmaceutical companies. Demethylasterriquinone (DMAQ B1, extracted from tropical fungus, Pseudomassaria sp., has been reported to be an orally effective agent at lowering circulating glucose levels in diabetic (db/db mice; however, the cytotoxicity associated with the quinone moiety has not been addressed thus far. Methods A series of hydroxyfuroic acid compounds were synthesized and tested for their efficacies at activating human insulin receptor. Cytotoxicity to Chinese hamster ovary cells, selectivities over insulin-like growth factor-1 (IGF-1, epidermal growth factor (EGF, and fibroblast growth factor (FGF receptors were examined in this study. Result and Conclusion This study reports a new non-quinone DMAQ B1 derivative, a hydroxyfuroic acid compound (D-410639, which is 128 fold less cytotoxic as DMAQ B1 and as potent as compound 2, a DMAQ B1 synthetic derivative from Merck, at activating human insulin receptor. D-410639 has little activation potential on IGF-1 receptor but is a moderate inhibitor to EGF receptor. Structure and activity relationship of the prenylindole moiety to insulin receptor activation is discussed.

  14. Structure modeling of all identified G protein-coupled receptors in the human genome.

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2006-02-01

    Full Text Available G protein-coupled receptors (GPCRs, encoded by about 5% of human genes, comprise the largest family of integral membrane proteins and act as cell surface receptors responsible for the transduction of endogenous signal into a cellular response. Although tertiary structural information is crucial for function annotation and drug design, there are few experimentally determined GPCR structures. To address this issue, we employ the recently developed threading assembly refinement (TASSER method to generate structure predictions for all 907 putative GPCRs in the human genome. Unlike traditional homology modeling approaches, TASSER modeling does not require solved homologous template structures; moreover, it often refines the structures closer to native. These features are essential for the comprehensive modeling of all human GPCRs when close homologous templates are absent. Based on a benchmarked confidence score, approximately 820 predicted models should have the correct folds. The majority of GPCR models share the characteristic seven-transmembrane helix topology, but 45 ORFs are predicted to have different structures. This is due to GPCR fragments that are predominantly from extracellular or intracellular domains as well as database annotation errors. Our preliminary validation includes the automated modeling of bovine rhodopsin, the only solved GPCR in the Protein Data Bank. With homologous templates excluded, the final model built by TASSER has a global C(alpha root-mean-squared deviation from native of 4.6 angstroms, with a root-mean-squared deviation in the transmembrane helix region of 2.1 angstroms. Models of several representative GPCRs are compared with mutagenesis and affinity labeling data, and consistent agreement is demonstrated. Structure clustering of the predicted models shows that GPCRs with similar structures tend to belong to a similar functional class even when their sequences are diverse. These results demonstrate the usefulness

  15. Glyphosate and AMPA contents in sediments produced by wind erosion of agricultural soils in Argentina

    Science.gov (United States)

    Aparicio, Virginia; Aimar, Silvia; De Gerónimo, Eduardo; Buschiazzo, Daniel; Mendez, Mariano; Costa, José Luis

    2014-05-01

    Wind erosion of soils is an important event in arid and semiarid regions of Argentina. The magnitude of wind erosion occurring under different management practices is relatively well known in this region but less information is available on the quality of the eroded material. Considering that the intensification of agriculture may increase the concentrations of substances in the eroded material, producing potential negative effects on the environment, we analyzed the amount of glyphosate and AMPA in sediments produced by wind erosion of agricultural soils of Argentina. Wind eroded materials were collected by means of BSNE samplers in two loess sites of the semiarid region of Argentina: Chaco and La Pampa. Samples were collected from 1 ha square fields at 13.5, 50 and 150 cm height. Results showed that at higher heights the concentrations of glyphosate and AMPA were mostly higher. The glyphosate concentration was more variable and higher in Chaco (0.66 to 313 µg kg-1) than in La Pampa (4.17 to 114 µg kg-1). These results may be due to the higher use of herbicides in Chaco, where the predominant crops are soybeans and corn, produced under no-tillage. Under these conditions the use of glyphosate for weeds control is a common practice. Conversely, AMPA concentrations were higher in La Pampa (13.1 to 101.3 µg kg-1) than in Chaco (1.3 to 83 µg kg-1). These preliminary results show high concentrations of glyphosate and AMPA in wind eroded materials of agricultural soils of Argentina. More research is needed to confirm these high concentrations in other conditions in order to detect the temporal and spatial distribution patterns of the herbicide.

  16. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor

    DEFF Research Database (Denmark)

    Cherezov, Vadim; Rosenbaum, Daniel M; Hanson, Michael A;

    2007-01-01

    Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound...... to the partial inverse agonist carazolol at 2.4 angstrom resolution. The structure provides a high-resolution view of a human G protein-coupled receptor bound to a diffusible ligand. Ligand-binding site accessibility is enabled by the second extracellular loop, which is held out of the binding cavity by a pair...

  17. Genomic organization of a receptor from sea anemones, structurally and evolutionary related to glycoprotein hormone receptors from mamals

    DEFF Research Database (Denmark)

    Vibede, N; Hauser, Frank; Williamson, M;

    1998-01-01

    organization of this sea anemone receptor. The receptor gene contains eight introns that are all localized within a region coding for the large extracellular N terminus. These introns occur at the same positions and have the same intron phasing as eight introns in the genes coding for the mammalian...... that the cnidarian receptor is coded for by a single gene. *1 The nucleotide sequences reported in this paper have been deposited with the DDBJ, EMBL, and GenBank Nucleotide Sequence Databases under Accession Nos. AF084384-AF084390....

  18. Transient Receptor Potential Channels Contribute to Pathological Structural and Functional Remodeling After Myocardial Infarction

    Science.gov (United States)

    Davis, Jennifer; Correll, Robert N.; Trappanese, Danielle M.; Hoffman, Nicholas E.; Troupes, Constantine D.; Berretta, Remus M.; Kubo, Hajime; Madesh, Muniswamy; Chen, Xiongwen; Gao, Erhe; Molkentin, Jeffery D.; Houser, Steven R.

    2014-01-01

    Rationale The cellular and molecular basis for post myocardial infarction (MI) structural and functional remodeling is not well understood. Objective To determine if Ca2+ influx through transient receptor potential (canonical) (TRPC) channels contributes to post-MI structural and functional remodeling. Methods and Results TRPC1/3/4/6 channel mRNA increased after MI in mice and was associated with TRPC-mediated Ca2+ entry. Cardiac myocyte specific expression of a dominant negative (dn: loss of function) TRPC4 channel increased basal myocyte contractility and reduced hypertrophy and cardiac structural and functional remodeling after MI while increasing survival. We used adenovirus-mediated expression of TRPC3/4/6 channels in cultured adult feline myocytes (AFMs) to define mechanistic aspects of these TRPC-related effects. TRPC3/4/6 over expression in AFMs induced calcineurin (Cn)-Nuclear Factor of Activated T cells (NFAT) mediated hypertrophic signaling, which was reliant on caveolae targeting of TRPCs. TRPC3/4/6 expression in AFMs increased rested state contractions and increased spontaneous sarcoplasmic reticulum (SR) Ca2+ sparks mediated by enhanced phosphorylation of the ryanodine receptor. TRPC3/4/6 expression was associated with reduced contractility and response to catecholamines during steady state pacing, likely due to enhanced SR Ca2+ leak. Conclusions Ca2+ influx through TRPC channels expressed after MI activates pathological cardiac hypertrophy and reduces contractility reserve. Blocking post-MI TRPC activity improved post-MI cardiac structure and function. PMID:25047165

  19. Structure of the human [kappa]-opioid receptor in complex with JDTic

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huixian; Wacker, Daniel; Mileni, Mauro; Katritch, Vsevolod; Han, Gye Won; Vardy, Eyal; Liu, Wei; Thompson, Aaron A.; Huang, Xi-Ping; Carroll, F. Ivy; Mascarella, S. Wayne; Westkaemper, Richard B.; Mosier, Philip D.; Roth, Bryan L.; Cherezov, Vadim; Stevens, Raymond C. (VCU); (Scripps); (UNC); (Res. Tri. Inst.)

    2013-04-25

    Opioid receptors mediate the actions of endogenous and exogenous opioids on many physiological processes, including the regulation of pain, respiratory drive, mood, and - in the case of {kappa}-opioid receptor ({kappa}-OR) - dysphoria and psychotomimesis. Here we report the crystal structure of the human {kappa}-OR in complex with the selective antagonist JDTic, arranged in parallel dimers, at 2.9 {angstrom} resolution. The structure reveals important features of the ligand-binding pocket that contribute to the high affinity and subtype selectivity of JDTic for the human {kappa}-OR. Modelling of other important {kappa}-OR-selective ligands, including the morphinan-derived antagonists norbinaltorphimine and 5'-guanidinonaltrindole, and the diterpene agonist salvinorin A analogue RB-64, reveals both common and distinct features for binding these diverse chemotypes. Analysis of site-directed mutagenesis and ligand structure-activity relationships confirms the interactions observed in the crystal structure, thereby providing a molecular explanation for {kappa}-OR subtype selectivity, and essential insights for the design of compounds with new pharmacological properties targeting the human {kappa}-OR.

  20. The adhesion modulation protein, AmpA localizes to an endocytic compartment and influences substrate adhesion, actin polymerization and endocytosis in vegetative Dictyostelium cells

    Directory of Open Access Journals (Sweden)

    Noratel Elizabeth F

    2012-11-01

    Full Text Available Abstract Background AmpA is a secreted 24Kd protein that has pleiotropic effects on Dictyostelium development. Null mutants delay development at the mound stage with cells adhering too tightly to the substrate. Prestalk cells initially specify as prespore cells and are delayed in their migration to the mound apex. Extracellular AmpA can rescue these defects, but AmpA is also necessary in a cell autonomous manner for anterior like cells (ALCs to migrate to the upper cup. The ALCs are only 10% of the developing cell population making it difficult to study the cell autonomous effect of AmpA on the migration of these cells. AmpA is also expressed in growing cells, but, while it contains a hydrophobic leader sequence that is cleaved, it is not secreted from growing cells. This makes growing cells an attractive system for studying the cell autonomous function of AmpA. Results In growing cells AmpA plays an environment dependent role in cell migration. Excess AmpA facilitates migration on soft, adhesive surfaces but hinders migration on less adhesive surfaces. AmpA also effects the level of actin polymerization. Knockout cells polymerize less actin while over expressing cells polymerize more actin than wild type. Overexpression of AmpA also causes an increase in endocytosis that is traced to repeated formation of multiple endocytic cups at the same site on the membrane. Immunofluorescence analysis shows that AmpA is found in the Golgi and colocalizes with calnexin and the slow endosomal recycling compartment marker, p25, in a perinuclear compartment. AmpA is found on the cell periphery and is endocytically recycled to the perinuclear compartment. Conclusion AmpA is processed through the secretory pathway and traffics to the cell periphery where it is endocytosed and localizes to what has been defined as a slow endosomal recycling compartment. AmpA plays a role in actin polymerization and cell substrate adhesion. Additionally AmpA influences cell

  1. Structure-based virtual screening of the nociceptin receptor: hybrid docking and shape-based approaches for improved hit identification.

    Science.gov (United States)

    Daga, Pankaj R; Polgar, Willma E; Zaveri, Nurulain T

    2014-10-27

    The antagonist-bound crystal structure of the nociceptin receptor (NOP), from the opioid receptor family, was recently reported along with those of the other opioid receptors bound to opioid antagonists. We recently reported the first homology model of the 'active-state' of the NOP receptor, which when docked with 'agonist' ligands showed differences in the TM helices and residues, consistent with GPCR activation after agonist binding. In this study, we explored the use of the active-state NOP homology model for structure-based virtual screening to discover NOP ligands containing new chemical scaffolds. Several NOP agonist and antagonist ligands previously reported are based on a common piperidine scaffold. Given the structure-activity relationships for known NOP ligands, we developed a hybrid method that combines a structure-based and ligand-based approach, utilizing the active-state NOP receptor as well as the pharmacophoric features of known NOP ligands, to identify novel NOP binding scaffolds by virtual screening. Multiple conformations of the NOP active site including the flexible second extracellular loop (EL2) loop were generated by simulated annealing and ranked using enrichment factor (EF) analysis and a ligand-decoy dataset containing known NOP agonist ligands. The enrichment factors were further improved by combining shape-based screening of this ligand-decoy dataset and calculation of consensus scores. This combined structure-based and ligand-based EF analysis yielded higher enrichment factors than the individual methods, suggesting the effectiveness of the hybrid approach. Virtual screening of the CNS Permeable subset of the ZINC database was carried out using the above-mentioned hybrid approach in a tiered fashion utilizing a ligand pharmacophore-based filtering step, followed by structure-based virtual screening using the refined NOP active-state models from the enrichment analysis. Determination of the NOP receptor binding affinity of a selected set

  2. Facilitation of AMPA receptor synaptic delivery as a molecular mechanism for cognitive enhancement

    OpenAIRE

    Knafo, Shira; Sánchez-Puelles, Cristina; Franco, A; Esteban, José A.

    2012-01-01

    Cell adhesion molecules and downstream growth factor-dependent signaling are critical for brain development and synaptic plasticity, and they have been linked to cognitive function in adult animals. We have previously developed a mimetic peptide (FGL) from the neural cell adhesion molecule (NCAM) that enhances spatial learning and memory in rats. We have now investigated the cellular and molecular basis of this cognitive enhancement, using biochemical, morphological, electrophysiological, and...

  3. Role of the Ventral Tegmental Area in Methamphetamine Extinction: AMPA Receptor-Mediated Neuroplasticity

    Science.gov (United States)

    Chen Han-Ting; Chen, Jin-Chung

    2015-01-01

    The molecular mechanisms underlying drug extinction remain largely unknown, although a role for medial prefrontal cortex (mPFC) glutamate neurons has been suggested. Considering that the mPFC sends glutamate efferents to the ventral tegmental area (VTA), we tested whether the VTA is involved in methamphetamine (METH) extinction via conditioned…

  4. Sleep deprivation impairs spatial working memory and reduces hippocampal AMPA receptor phosphorylation

    NARCIS (Netherlands)

    Hagewoud, Roelina; Havekes, Robbert; Novati, Arianna; Keijser, Jan N.; van der Zee, Eddy A.; Meerlo, Peter

    2010-01-01

    Sleep is important for brain function and cognitive performance. Sleep deprivation (SD) may affect subsequent learning capacity and ability to form new memories, particularly in the case of hippocampus-dependent tasks. In the present study we examined whether SD for 6 or 12 h during the normal resti

  5. Differential role of AMPA receptors in mouse tests of antidepressant and anxiolytic action

    DEFF Research Database (Denmark)

    Andreasen, Jesper T; Fitzpatrick, Ciaran M; Larsen, Maria;

    2015-01-01

    and memory we also tested if GYKI-53655 disrupted performance in the V-maze test for attention-dependent behaviour, and the social transmission of food preference (STFP) test of long-term memory. LY451646 (3 mg/kg) showed an antidepressant-like profile in the FST and TST, and GYKI-53655 (≥ 5 mg/kg) had...... swim (FST) and tail suspension tests (TST), and anxiety-related behaviour using the elevated zero maze (EZM), marble burying (MB) and novelty-induced hypophagia (NIH) tests. The serotonin-selective antidepressant citalopram was included for comparison. Due to the importance of AMPARs in learning......-like effect in the FST (≥ 10 mg/kg), but not TST, an anxiolytic-like effect in the EZM (≥ 3 mg/kg) and MB test (≥ 2.5 mg/kg), and an anxiogenic-like effect in the NIH test (≥ 30 mg/kg). GYKI-53655 did not affect cognitive performance in the V-maze or STFP tests. Collectively, these findings suggest...

  6. Facilitation of AMPA receptor synaptic delivery as a molecular mechanism for cognitive enhancement

    DEFF Research Database (Denmark)

    Knafo, Shira; Venero, César; Sánchez-Puelles, Cristina;

    2012-01-01

    Cell adhesion molecules and downstream growth factor-dependent signaling are critical for brain development and synaptic plasticity, and they have been linked to cognitive function in adult animals. We have previously developed a mimetic peptide (FGL) from the neural cell adhesion molecule (NCAM)...

  7. Long-Term Potentiation: From CaMKII to AMPA Receptor Trafficking.

    Science.gov (United States)

    Herring, Bruce E; Nicoll, Roger A

    2016-01-01

    For more than 20 years, we have known that Ca(2+)/calmodulin-dependent protein kinase (CaMKII) activation is both necessary and sufficient for the induction of long-term potentiation (LTP). During this time, tremendous effort has been spent in attempting to understand how CaMKII activation gives rise to this phenomenon. Despite such efforts, there is much to be learned about the molecular mechanisms involved in LTP induction downstream of CaMKII activation. In this review, we highlight recent developments that have shaped our current thinking about the molecular mechanisms underlying LTP and discuss important questions that remain in the field. PMID:26863325

  8. Accumbens Shell AMPA Receptors Mediate Expression of Extinguished Reward Seeking through Interactions with Basolateral Amygdala

    Science.gov (United States)

    Millan, E. Zayra; McNally, Gavan P.

    2011-01-01

    Extinction is the reduction in drug seeking when the contingency between drug seeking behavior and the delivery of drug reward is broken. Here, we investigated a role for the nucleus accumbens shell (AcbSh). Rats were trained to respond for 4% (v/v) alcoholic beer in one context (Context A) followed by extinction in a second context (Context B).…

  9. Insights into the structural biology of G-protein coupled receptors impacts drug design for central nervous system neurodegenerative processes**

    Institute of Scientific and Technical Information of China (English)

    Farfán-García Eunice Dalet; Soriano-Ursúa Marvin Antonio

    2013-01-01

    In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that al osteric binding sites are involved in the affinity and selec-tivity of ligands for G-protein coupled receptors, and that signaling by these receptors involves both G-protein dependent and independent pathways. The present review outlines the physiological and pharmacological implications of this perspective for the design of new drugs to treat disorders of the central nervous system. Specifical y, new possibilities are explored in relation to al osteric and orthosteric binding sites on dopamine receptors for the treatment of Parkinson’s disease, and on muscarinic receptors for Alzheimer’s disease. Future research can seek to identify ligands that can bind to more than one site on the same receptor, or simultaneously bind to two receptors and form a dimer. For example, the design of bivalent drugs that can reach homo/hetero-dimers of D2 dopa-mine receptor holds promise as a relevant therapeutic strategy for Parkinson’s disease. Regarding the treatment of Alzheimer’s disease, the design of dualsteric ligands for mono-oligomeric musca-rinic receptors could increase therapeutic effectiveness by generating potent compounds that could activate more than one signaling pathway.

  10. Structure and function of the Juxta membrane domain of the human epidermal growth factor receptor by NMR spectroscopy

    International Nuclear Information System (INIS)

    The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family involved in the regulation of cellular proliferation and differentiation. Its juxta membrane domain (JX), the region located between the transmembrane and kinase domains, plays important roles in receptor trafficking since both basolateral sorting in polarized epithelial cells and lysosomal sorting signals are identified in this region. In order to understand the regulation of these signals, we characterized the structural properties of recombinant JX domain in dodecyl phosphocholine detergent (DPC) by nuclear magnetic resonance (NMR) spectroscopy. In DPC micelles, structures derived from NMR data showed three amphipathic, helical segments. Two equivalent average structural models on the surface of micelles were obtained that differ only in the relative orientation between the first and second helices. Our data suggests that the activity of sorting signals may be regulated by their membrane association and restricted accessibility in the intact receptor

  11. Steroid hormone receptors and prostate cancer: role of structural dynamics in therapeutic targeting

    Science.gov (United States)

    Kumar, Raj

    2016-01-01

    Steroid hormone receptors (SHRs) act in cell type- and gene-specific manner through interactions with coregulatory proteins to regulate numerous physiological and pathological processes at the level of gene regulation. Binding of steroid receptor modulator (SRM) ligand leads to allosteric changes in SHR to exert positive or negative effects on the expression of target genes. Due, in part, to the fact that current SRMs generally target ligand binding domain (LBD)/AF2 and neglect intrinsically disordered (ID) N-terminal domain (NTD)/AF1, clinically relevant SRMs lack selectivity and are also prone to the development of resistance over time. Therefore, to maximize the efficacy of SHR-based therapeutics, the possibility of developing unique modulators that act to control AF1 activity must be considered. Recent studies targeting androgen receptor's (AR's) ID AF1 domain for the castration-resistant prostate cancer has provided the possibility of therapeutically targeting ID NTD/AF1 surfaces by allosteric modulations to achieve desired effects. In this review article, we discuss how inter- and intra- molecular allosteric regulations controlled by AR's structural flexibility and dynamics particularly the ID NTD/AF1 is an emerging area of investigation, which could be exploited for drug development and therapeutic targeting of prostate cancer. PMID:27364545

  12. Effect of ConA—receptor interaction on the structure of cell membrane

    Institute of Scientific and Technical Information of China (English)

    DAIJIANWU; KECHUNLIN; 等

    1992-01-01

    Recently,the effect of ligand receptor interaction on the membrane structure of liposomes has been studied extensively,However,little is known about how it exists on biological membranes,In this paper,the effect of Concanavalin A(ConA) receptorinteratcion on the structure of cell membranes was studied by Circular DIchrosim(CD) and 31P Nuclear Magnetic Resonance(NMR).CD results of both the purified macrophage membranes and human erythrocyte hgosts(EG) showed that the conformation of membrane proteins changed after ConA binding.For further research,31P-NMR was used to detect the orgainzation of phosp[holipid molecules on macrophage membranes.After ConA binding,the tendercy to form non bilayer structure increased with the amount of ConA.The changes of 31P-NMR spectra of living macrophages might be partly due to the above stated reason too.In addition,ConA-receptor interaction also induced similar results of 31P-NMR spectra in EG.In contrast,wheat germ agglutinin (WGA),another kind of lectin,rarely showed the same influence.

  13. Structure-Based Evolution of Subtype-Selective Neurotensin Receptor Ligands

    OpenAIRE

    Schaab, Carolin; Kling, Ralf Christian; Einsiedel, Jürgen; Hübner, Harald; Clark, Tim; Seebach, Dieter; Gmeiner, Peter

    2014-01-01

    Subtype-selective agonists of the neurotensin receptor NTS2 represent a promising option for the treatment of neuropathic pain, as NTS2 is involved in the mediation of μ-opioid-independent anti-nociceptive effects. Based on the crystal structure of the subtype NTS1 and previous structure–activity relationships (SARs) indicating a potential role for the sub-pocket around Tyr11 of NT(8–13) in subtype-specific ligand recognition, we have developed new NTS2-selective ligands. Starting from NT(8–1...

  14. Receptor Polymorphism and Genomic Structure Interact to Shape Bitter Taste Perception.

    Directory of Open Access Journals (Sweden)

    Natacha Roudnitzky

    Full Text Available The ability to taste bitterness evolved to safeguard most animals, including humans, against potentially toxic substances, thereby leading to food rejection. Nonetheless, bitter perception is subject to individual variations due to the presence of genetic functional polymorphisms in bitter taste receptor (TAS2R genes, such as the long-known association between genetic polymorphisms in TAS2R38 and bitter taste perception of phenylthiocarbamide. Yet, due to overlaps in specificities across receptors, such associations with a single TAS2R locus are uncommon. Therefore, to investigate more complex associations, we examined taste responses to six structurally diverse compounds (absinthin, amarogentin, cascarillin, grosheimin, quassin, and quinine in a sample of the Caucasian population. By sequencing all bitter receptor loci, inferring long-range haplotypes, mapping their effects on phenotype variation, and characterizing functionally causal allelic variants, we deciphered at the molecular level how a subjects' genotype for the whole-family of TAS2R genes shapes variation in bitter taste perception. Within each haplotype block implicated in phenotypic variation, we provided evidence for at least one locus harboring functional polymorphic alleles, e.g. one locus for sensitivity to amarogentin, one of the most bitter natural compounds known, and two loci for sensitivity to grosheimin, one of the bitter compounds of artichoke. Our analyses revealed also, besides simple associations, complex associations of bitterness sensitivity across TAS2R loci. Indeed, even if several putative loci harbored both high- and low-sensitivity alleles, phenotypic variation depended on linkage between these alleles. When sensitive alleles for bitter compounds were maintained in the same linkage phase, genetically driven perceptual differences were obvious, e.g. for grosheimin. On the contrary, when sensitive alleles were in opposite phase, only weak genotype

  15. Rat insulinoma cells express both a 115-kDa growth hormone receptor and a 95-kDa prolactin receptor structurally related to the hepatic receptors

    DEFF Research Database (Denmark)

    Møldrup, Annette; Billestrup, N; Nielsen, Jens Høiriis

    1990-01-01

    of both lactogen and somatogen receptor populations. Covalent cross-linking of 125I-hGH, 125I-rGH, and 125I-rPRL to the RIN cells identified a 115-kDa somatogen receptor protein that binds hGH and rGH but not rPRL and hPL, and a 95-kDa lactogen receptor protein that binds hGH, rPRL, and hPL but not r......GH. Antiserum directed against the 37.5- and 40.7-kDa GH-binding proteins of mouse hepatic tissue specifically recognized the 115-kDa protein cross-linked with 125I-hGH, whereas a monoclonal antibody raised against the hepatic 42-kDa rPRL receptor recognized the 95-kDa protein cross-linked with 125I...

  16. Sources and Input Pathways of Glyphosate and its Degradation Product AMPA

    Science.gov (United States)

    Bischofberger, S.; Hanke, I.; Wittmer, I.; Singer, H.; Stamm, C.

    2009-04-01

    Despite being the pesticide used in the largest quantities worldwide, the environmental relevance of glyphosate has been considered low for many years. Reasons for this assessment were the observations that glyphosate degrades quickly into its degradation product AMPA and that it sorbs strongly to soil particles. Hence, little losses to water bodies had been expected. Research during the last few years however contradicts this expectation. Although glyphosate is a dominant pesticide used in agriculture, recent studies on other pesticides revealed that urban sources may play a significant role for water quality. Therefore this study compares glyphosate input into streams from agricultural and urban sources. For that purpose, a catchment of an area of 25 km2 was selected. It has by about 12'000 inhabitants and about 15 % of the area is used as arable land. Four sampling sites were selected in the river system in order to reflect different urban and agricultural sources. Additionally, we sampled a combined sewer overflow, a rain sewer and the outflow of a waste water treatment plant. At each site discharge was measured continuously from March to November 2007. During 16 rain events samples were taken by automatic devices at a high temporal resolution. To analyze the concentration of glyphosate and its degradation product AMPA, the samples were derivatized with FMOC-Cl at low pH conditions and then filtrated. The solid phase extraction was conducted with Strata-X sorbent cartridge. Glyphosate and AMPA were detected with API 4000 after the chromatography with X bridge column C18. To assure the data quality, interne standards of Glyphosate and AMPA were added to every sample. The limit of detection and quantification for glyphosate and AMPA are bellow 1ng/l. We analyzed two rain events at a high resolution for all stations and several events at the outlet of the catchment. We measured high glyphosate concentration in urban and agriculture dominated catchments with up to

  17. New G-protein-coupled receptor structures provide insights into the recognition of CXCL12 and HIV-1 gp120 by CXCR4

    Institute of Scientific and Technical Information of China (English)

    Chen Zhong; Jianping Ding

    2011-01-01

    The G protein-coupled receptor (GPCR) superfamily consists of thousands of integral membrane proteins that exert a wide variety of physiological functions and account for a large portion of the drag targets identified so far.However,structural knowledge of GPCRs is scarce, with crystal structures determined for only a few members including β1and β2 adrenergic receptors, adenosine receptor, rhodopsin,and dopamine D3 receptor [1].

  18. Monitoring Solution Structures of Peroxisome Proliferator-Activated Receptor β/δ upon Ligand Binding.

    Science.gov (United States)

    Schwarz, Rico; Tänzler, Dirk; Ihling, Christian H; Sinz, Andrea

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) have been intensively studied as drug targets to treat type 2 diabetes, lipid disorders, and metabolic syndrome. This study is part of our ongoing efforts to map conformational changes in PPARs in solution by a combination of chemical cross-linking and mass spectrometry (MS). To our best knowledge, we performed the first studies addressing solution structures of full-length PPAR-β/δ. We monitored the conformations of the ligand-binding domain (LBD) as well as full-length PPAR-β/δ upon binding of two agonists. (Photo-) cross-linking relied on (i) a variety of externally introduced amine- and carboxyl-reactive linkers and (ii) the incorporation of the photo-reactive amino acid p-benzoylphenylalanine (Bpa) into PPAR-β/δ by genetic engineering. The distances derived from cross-linking experiments allowed us to monitor conformational changes in PPAR-β/δ upon ligand binding. The cross-linking/MS approach proved highly advantageous to study nuclear receptors, such as PPARs, and revealed the interplay between DBD (DNA-binding domain) and LDB in PPAR-β/δ. Our results indicate the stabilization of a specific conformation through ligand binding in PPAR-β/δ LBD as well as full-length PPAR-β/δ. Moreover, our results suggest a close distance between the N- and C-terminal regions of full-length PPAR-β/δ in the presence of GW1516. Chemical cross-linking/MS allowed us gaining detailed insights into conformational changes that are induced in PPARs when activating ligands are present. Thus, cross-linking/MS should be added to the arsenal of structural methods available for studying nuclear receptors. PMID:26992147

  19. Disulfide Trapping for Modeling and Structure Determination of Receptor:Chemokine Complexes

    Science.gov (United States)

    Kufareva, Irina; Gustavsson, Martin; Holden, Lauren G.; Qin, Ling; Zheng, Yi; Handel, Tracy M.

    2016-01-01

    Despite the recent breakthrough advances in GPCR crystallography, structure determination of protein-protein complexes involving chemokine receptors and their endogenous chemokine ligands remains challenging. Here we describe disulfide trapping, a methodology for generating irreversible covalent binary protein complexes from unbound protein partners by introducing two cysteine residues, one per interaction partner, at selected positions within their interaction interface. Disulfide trapping can serve at least two distinct purposes: (i) stabilization of the complex to assist structural studies, and/or (ii) determination of pairwise residue proximities to guide molecular modeling. Methods for characterization of disulfide-trapped complexes are described and evaluated in terms of throughput, sensitivity, and specificity towards the most energetically favorable cross-links. Due to abundance of native disulfide bonds at receptor:chemokine interfaces, disulfide trapping of their complexes can be associated with intramolecular disulfide shuffling and result in misfolding of the component proteins; because of this, evidence from several experiments is typically needed to firmly establish a positive disulfide crosslink. An optimal pipeline that maximizes throughput and minimizes time and costs by early triage of unsuccessful candidate constructs is proposed. PMID:26921956

  20. Structural basis for integration of GluD receptors within synaptic organizer complexes.

    Science.gov (United States)

    Elegheert, Jonathan; Kakegawa, Wataru; Clay, Jordan E; Shanks, Natalie F; Behiels, Ester; Matsuda, Keiko; Kohda, Kazuhisa; Miura, Eriko; Rossmann, Maxim; Mitakidis, Nikolaos; Motohashi, Junko; Chang, Veronica T; Siebold, Christian; Greger, Ingo H; Nakagawa, Terunaga; Yuzaki, Michisuke; Aricescu, A Radu

    2016-07-15

    Ionotropic glutamate receptor (iGluR) family members are integrated into supramolecular complexes that modulate their location and function at excitatory synapses. However, a lack of structural information beyond isolated receptors or fragments thereof currently limits the mechanistic understanding of physiological iGluR signaling. Here, we report structural and functional analyses of the prototypical molecular bridge linking postsynaptic iGluR δ2 (GluD2) and presynaptic β-neurexin 1 (β-NRX1) via Cbln1, a C1q-like synaptic organizer. We show how Cbln1 hexamers "anchor" GluD2 amino-terminal domain dimers to monomeric β-NRX1. This arrangement promotes synaptogenesis and is essential for D: -serine-dependent GluD2 signaling in vivo, which underlies long-term depression of cerebellar parallel fiber-Purkinje cell (PF-PC) synapses and motor coordination in developing mice. These results lead to a model where protein and small-molecule ligands synergistically control synaptic iGluR function. PMID:27418511

  1. Loss of Insulin Receptor in Osteoprogenitor Cells Impairs Structural Strength of Bone

    Directory of Open Access Journals (Sweden)

    Kathryn Thrailkill

    2014-01-01

    Full Text Available Type 1 diabetes mellitus (T1D is associated with decreased bone mineral density, a deficit in bone structure, and subsequently an increased risk of fragility fracture. These clinical observations, paralleled by animal models of T1D, suggest that the insulinopenia of T1D has a deleterious effect on bone. To further examine the action of insulin signaling on bone development, we generated mice with an osteoprogenitor-selective (osterix-Cre ablation of the insulin receptor (IR, designated OIRKO. OIRKO mice exhibited an 80% decrease in IR in osteoblasts. Prenatal elimination of IR did not affect fetal survival or gross morphology. However, loss of IR in mouse osteoblasts resulted in a postnatal growth-constricted phenotype. By 10–12 weeks of age, femurs of OIRKO mice were more slender, with a thinner diaphyseal cortex and, consequently, a decrease in whole bone strength when subjected to bending. In male mice alone, decreased metaphyseal trabecular bone, with thinner and more rodlike trabeculae, was also observed. OIRKO mice did not, however, exhibit abnormal glucose tolerance. The skeletal phenotype of the OIRKO mouse appeared more severe than that of previously reported bone-specific IR knockdown models, and confirms that insulin receptor expression in osteoblasts is critically important for proper bone development and maintenance of structural integrity.

  2. Improvement in Aqueous Solubility of Retinoic Acid Receptor (RAR) Agonists by Bending the Molecular Structure.

    Science.gov (United States)

    Hiramatsu, Michiaki; Ichikawa, Yuki; Tomoshige, Shusuke; Makishima, Makoto; Muranaka, Atsuya; Uchiyama, Masanobu; Yamaguchi, Takao; Hashimoto, Yuichi; Ishikawa, Minoru

    2016-08-01

    Aqueous solubility is a key requirement for many functional molecules, e. g., drug candidates. Decrease of the partition coefficient (log P) by chemical modification, i.e., introduction of hydrophilic group(s) into molecules, is a classical strategy for improving aqueous solubility. We have been investigating alternative strategies for improving the aqueous solubility of pharmaceutical compounds by disrupting intermolecular interactions. Here, we show that introducing a bend into the molecular structure of retinoic acid receptor (RAR) agonists by changing the substitution pattern from para to meta or ortho dramatically enhances aqueous solubility by up to 890-fold. We found that meta analogs exhibit similar hydrophobicity to the parent para compound, and have lower melting points, supporting the idea that the increase of aqueous solubility was due to decreased intermolecular interactions in the solid state as a result of the structural changes. PMID:27378357

  3. Structure-kinetics relationships of Capadenoson derivatives as adenosine A1 receptor agonists.

    Science.gov (United States)

    Louvel, Julien; Guo, Dong; Soethoudt, Marjolein; Mocking, Tamara A M; Lenselink, Eelke B; Mulder-Krieger, Thea; Heitman, Laura H; IJzerman, Adriaan P

    2015-08-28

    We report the synthesis and biological evaluation of new derivatives of Capadenoson, a former drug candidate that was previously advanced to phase IIa clinical trials. 19 of the 20 ligands show an affinity below 100 nM at the human adenosine A1 receptor (hA1AR) and display a wide range of residence times at this target (from approx. 5 min (compound 10) up to 132 min (compound 5)). Structure-affinity and structure-kinetics relationships were established, and computational studies of a homology model of the hA1AR revealed crucial interactions for both the affinity and dissociation kinetics of this family of ligands. These results were also combined with global metrics (Ligand Efficiency, cLogP), showing the importance of binding kinetics as an additional way to better select a drug candidate amongst seemingly similar leads.

  4. Insulin/receptor binding: the last piece of the puzzle? What recent progress on the structure of the insulin/receptor complex tells us (or not) about negative cooperativity and activation.

    Science.gov (United States)

    De Meyts, Pierre

    2015-04-01

    Progress in solving the structure of insulin bound to its receptor has been slow and stepwise, but a milestone has now been reached with a refined structure of a complex of insulin with a "microreceptor" that contains the primary binding site. The insulin receptor is a dimeric allosteric enzyme that belongs to the family of receptor tyrosine kinases. The insulin binding process is complex and exhibits negative cooperativity. Biochemical evidence suggested that insulin, through two distinct binding sites, crosslinks two receptor sites located on each α subunit. The structure of the unliganded receptor ectodomain showed a symmetrical folded-over conformation with an antiparallel disposition. Further work resolved the detailed structure of receptor site 1, both without and with insulin. Recently, a missing piece in the puzzle was added: the C-terminal portion of insulin's B-chain known to be critical for binding and negative cooperativity. Here I discuss these findings and their implications.

  5. Role of Structural Dynamics at the Receptor G Protein Interface for Signal Transduction.

    Directory of Open Access Journals (Sweden)

    Alexander S Rose

    Full Text Available GPCRs catalyze GDP/GTP exchange in the α-subunit of heterotrimeric G proteins (Gαßγ through displacement of the Gα C-terminal α5 helix, which directly connects the interface of the active receptor (R* to the nucleotide binding pocket of G. Hydrogen-deuterium exchange mass spectrometry and kinetic analysis of R* catalysed G protein activation have suggested that displacement of α5 starts from an intermediate GDP bound complex (R*•GGDP. To elucidate the structural basis of receptor-catalysed displacement of α5, we modelled the structure of R*•GGDP. A flexible docking protocol yielded an intermediate R*•GGDP complex, with a similar overall arrangement as in the X-ray structure of the nucleotide free complex (R*•Gempty, however with the α5 C-terminus (GαCT forming different polar contacts with R*. Starting molecular dynamics simulations of GαCT bound to R* in the intermediate position, we observe a screw-like motion, which restores the specific interactions of α5 with R* in R*•Gempty. The observed rotation of α5 by 60° is in line with experimental data. Reformation of hydrogen bonds, water expulsion and formation of hydrophobic interactions are driving forces of the α5 displacement. We conclude that the identified interactions between R* and G protein define a structural framework in which the α5 displacement promotes direct transmission of the signal from R* to the GDP binding pocket.

  6. Kainate receptors mediate signaling in both transient and sustained OFF bipolar cell pathways in mouse retina.

    Science.gov (United States)

    Borghuis, Bart G; Looger, Loren L; Tomita, Susumu; Demb, Jonathan B

    2014-04-30

    A fundamental question in sensory neuroscience is how parallel processing is implemented at the level of molecular and circuit mechanisms. In the retina, it has been proposed that distinct OFF cone bipolar cell types generate fast/transient and slow/sustained pathways by the differential expression of AMPA- and kainate-type glutamate receptors, respectively. However, the functional significance of these receptors in the intact circuit during light stimulation remains unclear. Here, we measured glutamate release from mouse bipolar cells by two-photon imaging of a glutamate sensor (iGluSnFR) expressed on postsynaptic amacrine and ganglion cell dendrites. In both transient and sustained OFF layers, cone-driven glutamate release from bipolar cells was blocked by antagonists to kainate receptors but not AMPA receptors. Electrophysiological recordings from bipolar and ganglion cells confirmed the essential role of kainate receptors for signaling in both transient and sustained OFF pathways. Kainate receptors mediated responses to contrast modulation up to 20 Hz. Light-evoked responses in all mouse OFF bipolar pathways depend on kainate, not AMPA, receptors.

  7. Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors

    Energy Technology Data Exchange (ETDEWEB)

    Angel, T.; Chance, M; Palczewski, K

    2009-01-01

    G protein-coupled receptors with seven transmembrane {alpha}-helices (GPCRs) comprise the largest receptor superfamily and are involved in detecting a wide variety of extracellular stimuli. The availability of high-resolution crystal structures of five prototypical GPCRs, bovine and squid rhodopsin, engineered A2A-adenosine, {beta}1- and {beta}2-adrenergic receptors, permits comparative analysis of features common to these and likely all GPCRs. We provide an analysis of the distribution of water molecules in the transmembrane region of these GPCR structures and find conserved contacts with microdomains demonstrated to be involved in receptor activation. Colocalization of water molecules associating with highly conserved and functionally important residues in several of these GPCR crystal structures supports the notion that these waters are likely to be as important to proper receptor function as the conserved residues. Moreover, in the absence of large conformational changes in rhodopsin after photoactivation, we propose that ordered waters contribute to the functional plasticity needed to transmit activation signals from the retinal-binding pocket to the cytoplasmic face of rhodopsin and that fundamental features of the mechanism of activation, involving these conserved waters, are shared by many if not all family A receptors.

  8. Structure and Function of the Intracellular Region of the Plexin-B1 Transmembrane Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yufeng; Hota, Prasanta K.; Penachioni, Junia Y.; Hamaneh, Mehdi B.; Kim, SoonJeung; Alviani, Rebecca S.; Shen, Limin; He, Hao; Tempel, Wolfram; Tamagnone, Luca; Park, Hee-Won; Buck, Matthias; (Torino); (Toronto); (Case Western U.-Med)

    2010-02-11

    Members of the plexin family are unique transmembrane receptors in that they interact directly with Rho family small GTPases; moreover, they contain a GTPase-activating protein (GAP) domain for R-Ras, which is crucial for plexin-mediated regulation of cell motility. However, the functional role and structural basis of the interactions between the different intracellular domains of plexins remained unclear. Here we present the 2.4 {angstrom} crystal structure of the complete intracellular region of human plexin-B1. The structure is monomeric and reveals that the GAP domain is folded into one structure from two segments, separated by the Rho GTPase binding domain (RBD). The RBD is not dimerized, as observed previously. Instead, binding of a conserved loop region appears to compete with dimerization and anchors the RBD to the GAP domain. Cell-based assays on mutant proteins confirm the functional importance of this coupling loop. Molecular modeling based on structural homology to p120{sup GAP} {center_dot}H-Ras suggests that Ras GTPases can bind to the plexin GAP region. Experimentally, we show that the monomeric intracellular plexin-B1 binds R-Ras but not H-Ras. These findings suggest that the monomeric form of the intracellular region is primed for GAP activity and extend a model for plexin activation.

  9. Sequence-structure based phylogeny of GPCR Class A Rhodopsin receptors.

    Science.gov (United States)

    Kakarala, Kavita Kumari; Jamil, Kaiser

    2014-05-01

    Current methods of G protein coupled receptors (GPCRs) phylogenetic classification are sequence based and therefore inappropriate for highly divergent sequences, sharing low sequence identity. In this study, sequence structure profile based alignment generated by PROMALS3D was used to understand the GPCR Class A Rhodopsin superfamily evolution using the MEGA 5 software. Phylogenetic analysis included a combination of Neighbor-Joining method and Maximum Likelihood method, with 1000 bootstrap replicates. Our study was able to identify potential ligand association for Class A Orphans and putative/unclassified Class A receptors with no cognate ligand information: GPR21 and GPR52 with fatty acids; GPR75 with Neuropeptide Y; GPR82, GPR18, GPR141 with N-arachidonylglycine; GPR176 with Free fatty acids, GPR10 with Tachykinin & Neuropeptide Y; GPR85 with ATP, ADP & UDP glucose; GPR151 with Galanin; GPR153 and GPR162 with Adrenalin, Noradrenalin; GPR146, GPR139, GPR142 with Neuromedin, Ghrelin, Neuromedin U-25 & Thyrotropin-releasing hormone; GPR171 with ATP, ADP & UDP Glucose; GPR88, GPR135, GPR161, GPR101with 11-cis-retinal; GPR83 with Tackykinin; GPR148 with Prostanoids, GPR109b, GPR81, GPR31with ATP & UTP and GPR150 with GnRH I & GnRHII. Furthermore, we suggest that this study would prove useful in re-classification of receptors, selecting templates for homology modeling and identifying ligands which may show cross reactivity with other GPCRs as signaling via multiple ligands play a significant role in disease modulation. PMID:24503482

  10. Changes in cardiac structure and function in rats immunized by angiotensin type 1 receptor peptides

    Institute of Scientific and Technical Information of China (English)

    Zhu Jin; Jin Wang; Wenhui Zhang; Guohua Zhang; Xiang ying Jiao; Jianming Zhi

    2011-01-01

    Angiotensin II (Ang II) is known to induce cardiomyocyte hypertrophy by activating the Ang II type 1 (AT1) receptor.Some studies have demonstrated that the autoantibodies against angiotensin AT1 receptor (AT1-AAs)cause functional effects,which is similar to those observed for the natural agonist Ang Ⅱ.In this study,we investigated the effects of AT1-AAs on cardiomyocytes' structure and function.Male Wistar rats were immunized with synthetic peptides corresponding to the second extracellular loop of AT1 receptor and Freund's adjuvant.The titers of AT1-AAs in rat serum were detected by enzymelinked immunosorbent assay every week.Hemodynamic analysis and heart weight (HW) indices were measured on the 4th and 8th months after initial immunization,respectively.Cultured neonatal rat cardiomyocytes were used to observe the hypertrophic effects of AT1-AAs.Results showed that systolic blood pressure and heart rate were significantly increased,the titers of AT1-AAs were also increased after 4 weeks of initial immunization.Compared with control group,the HW/body weight (BV)and left ventricular weight/BW of immunized rats were increased significantly and cardiac function was enhanced compensatively.The cultured neonatal rat cardiomyocytes respond to AT1-AAs stimulation with increased 3H-leucine incorporation and cell surface area in a dosedependent manner. These results suggest that the AT1-AAs have an agonist effect similar to Ang II in hypertrophy of cardiomyocytes in vivo and in vitro.AT1-AAs are involved in the pathogenesis of cardiovascular diseases and hypertension.

  11. Loss of progesterone receptor-mediated actions induce preterm cellular and structural remodeling of the cervix and premature birth.

    Directory of Open Access Journals (Sweden)

    Steven M Yellon

    Full Text Available A decline in serum progesterone or antagonism of progesterone receptor function results in preterm labor and birth. Whether characteristics of premature remodeling of the cervix after antiprogestins or ovariectomy are similar to that at term was the focus of the present study. Groups of pregnant rats were treated with vehicle, a progesterone receptor antagonist (onapristone or mifepristone, or ovariectomized on day 17 postbreeding. As expected, controls given vehicle delivered at term while rats delivered preterm after progesterone receptor antagonist treatment or ovariectomy. Similar to the cervix before term, the preterm cervix of progesterone receptor antagonist-treated rats was characterized by reduced cell nuclei density, decreased collagen content and structure, as well as a greater presence of macrophages per unit area. Thus, loss of nuclear progesterone receptor-mediated actions promoted structural remodeling of the cervix, increased census of resident macrophages, and preterm birth much like that found in the cervix at term. In contrast to the progesterone receptor antagonist-induced advance in characteristics associated with remodeling, ovariectomy-induced loss of systemic progesterone did not affect hypertrophy, extracellular collagen, or macrophage numbers in the cervix. Thus, the structure and macrophage census in the cervix appear sufficient for premature ripening and birth to occur well before term. With progesterone receptors predominantly localized on cells other than macrophages, the findings suggest that interactions between cells may facilitate the loss of progesterone receptor-mediated actions as part of a final common mechanism that remodels the cervix in certain etiologies of preterm and with parturition at term.

  12. Novel computational methodologies for structural modeling of spacious ligand binding sites of G-protein-coupled receptors: development and application to human leukotriene B4 receptor.

    Science.gov (United States)

    Ishino, Yoko; Harada, Takanori

    2012-01-01

    This paper describes a novel method to predict the activated structures of G-protein-coupled receptors (GPCRs) with high accuracy, while aiming for the use of the predicted 3D structures in in silico virtual screening in the future. We propose a new method for modeling GPCR thermal fluctuations, where conformation changes of the proteins are modeled by combining fluctuations on multiple time scales. The core idea of the method is that a molecular dynamics simulation is used to calculate average 3D coordinates of all atoms of a GPCR protein against heat fluctuation on the picosecond or nanosecond time scale, and then evolutionary computation including receptor-ligand docking simulations functions to determine the rotation angle of each helix of a GPCR protein as a movement on a longer time scale. The method was validated using human leukotriene B4 receptor BLT1 as a sample GPCR. Our study demonstrated that the proposed method was able to derive the appropriate 3D structure of the active-state GPCR which docks with its agonists.

  13. Sources of aminomethylphosphonic acid (AMPA) in urban and rural catchments in Ontario, Canada: Glyphosate or phosphonates in wastewater?

    Science.gov (United States)

    Struger, J; Van Stempvoort, D R; Brown, S J

    2015-09-01

    Correlation analysis suggests that occurrences of AMPA in streams of southern Ontario are linked mainly to glyphosate in both urban and rural settings, rather than to wastewater sources, as some previous studies have suggested. For this analysis the artificial sweetener acesulfame was analyzed as a wastewater indicator in surface water samples collected from urban and rural settings in southern Ontario, Canada. This interpretation is supported by the concurrence of seasonal fluctuations of glyphosate and AMPA concentrations. Herbicide applications in larger urban centres and along major transportation corridors appear to be important sources of glyphosate and AMPA in surface water, in addition to uses of this herbicide in rural and mixed use areas. Fluctuations in concentrations of acesulfame and glyphosate residues were found to be related to hydrologic events.

  14. GABAB receptors modulate NMDA receptor calcium signals in dendritic spines.

    Science.gov (United States)

    Chalifoux, Jason R; Carter, Adam G

    2010-04-15

    Metabotropic GABA(B) receptors play a fundamental role in modulating the excitability of neurons and circuits throughout the brain. These receptors influence synaptic transmission by inhibiting presynaptic release or activating postsynaptic potassium channels. However, their ability to directly influence different types of postsynaptic glutamate receptors remains unresolved. Here we examine GABA(B) receptor modulation in layer 2/3 pyramidal neurons from the mouse prefrontal cortex. We use two-photon laser-scanning microscopy to study synaptic modulation at individual dendritic spines. Using two-photon optical quantal analysis, we first demonstrate robust presynaptic modulation of multivesicular release at single synapses. Using two-photon glutamate uncaging, we then reveal that GABA(B) receptors strongly inhibit NMDA receptor calcium signals. This postsynaptic modulation occurs via the PKA pathway and does not affect synaptic currents mediated by AMPA or NMDA receptors. This form of GABA(B) receptor modulation has widespread implications for the control of calcium-dependent neuronal function.

  15. Structure-activity relationships for the antifungal activity of selective estrogen receptor antagonists related to tamoxifen.

    Directory of Open Access Journals (Sweden)

    Arielle Butts

    Full Text Available Cryptococcosis is one of the most important invasive fungal infections and is a significant contributor to the mortality associated with HIV/AIDS. As part of our program to repurpose molecules related to the selective estrogen receptor modulator (SERM tamoxifen as anti-cryptococcal agents, we have explored the structure-activity relationships of a set of structurally diverse SERMs and tamoxifen derivatives. Our data provide the first insights into the structural requirements for the antifungal activity of this scaffold. Three key molecular characteristics affecting anti-cryptococcal activity emerged from our studies: 1 the presence of an alkylamino group tethered to one of the aromatic rings of the triphenylethylene core; 2 an appropriately sized aliphatic substituent at the 2 position of the ethylene moiety; and 3 electronegative substituents on the aromatic rings modestly improved activity. Using a cell-based assay of calmodulin antagonism, we found that the anti-cryptococcal activity of the scaffold correlates with calmodulin inhibition. Finally, we developed a homology model of C. neoformans calmodulin and used it to rationalize the structural basis for the activity of these molecules. Taken together, these data and models provide a basis for the further optimization of this promising anti-cryptococcal scaffold.

  16. Structural insights into human peroxisome proliferator activated receptor delta (PPAR-delta selective ligand binding.

    Directory of Open Access Journals (Sweden)

    Fernanda A H Batista

    Full Text Available Peroxisome proliferator activated receptors (PPARs δ, α and γ are closely related transcription factors that exert distinct effects on fatty acid and glucose metabolism, cardiac disease, inflammatory response and other processes. Several groups developed PPAR subtype specific modulators to trigger desirable effects of particular PPARs without harmful side effects associated with activation of other subtypes. Presently, however, many compounds that bind to one of the PPARs cross-react with others and rational strategies to obtain highly selective PPAR modulators are far from clear. GW0742 is a synthetic ligand that binds PPARδ more than 300-fold more tightly than PPARα or PPARγ but the structural basis of PPARδ:GW0742 interactions and reasons for strong selectivity are not clear. Here we report the crystal structure of the PPARδ:GW0742 complex. Comparisons of the PPARδ:GW0742 complex with published structures of PPARs in complex with α and γ selective agonists and pan agonists suggests that two residues (Val312 and Ile328 in the buried hormone binding pocket play special roles in PPARδ selective binding and experimental and computational analysis of effects of mutations in these residues confirms this and suggests that bulky substituents that line the PPARα and γ ligand binding pockets as structural barriers for GW0742 binding. This analysis suggests general strategies for selective PPARδ ligand design.

  17. NRLiSt BDB, the manually curated nuclear receptors ligands and structures benchmarking database.

    Science.gov (United States)

    Lagarde, Nathalie; Ben Nasr, Nesrine; Jérémie, Aurore; Guillemain, Hélène; Laville, Vincent; Labib, Taoufik; Zagury, Jean-François; Montes, Matthieu

    2014-04-10

    Nuclear receptors (NRs) constitute an important class of drug targets. We created the most exhaustive NR-focused benchmarking database to date, the NRLiSt BDB (NRs ligands and structures benchmarking database). The 9905 compounds and 339 structures of the NRLiSt BDB are ready for structure-based and ligand-based virtual screening. In the present study, we detail the protocol used to generate the NRLiSt BDB and its features. We also give some examples of the errors that we found in ChEMBL that convinced us to manually review all original papers. Since extensive and manually curated experimental data about NR ligands and structures are provided in the NRLiSt BDB, it should become a powerful tool to assess the performance of virtual screening methods on NRs, to assist the understanding of NR's function and modulation, and to support the discovery of new drugs targeting NRs. NRLiSt BDB is freely available online at http://nrlist.drugdesign.fr .

  18. Depth distribution of glyphosate and AMPA under diferent tillage system and soils in long-term experiments

    Science.gov (United States)

    Aparicio, Virginia; Costa, Jose Luis; De Geronimo, Eduardo

    2016-04-01

    Glyphosate (N-(phosphonomethyl glycine) is a post-emergence, non-selective, foliar herbicide. Around 200 million liters of this herbicide are applied every year in Argentina, where the main agricultural practice is no-till (NT), accounting for 78 % of the cultivated land. In this work, we studied the depth distribution of glyphosate in long-term experiments (more than 15 years) at different locations under NT and conventional tillage (CT). Samples from 0-2, 2-5, 5-10, 10-15, and 15-20 cm depth with four replication and two treatments NT CT at three locations: Balcarce (BA) a loam soil, Bordenave (BO) a sandy loam soil y Marcos Juarez a silty loam soil (MJ). The glyphosate concentration in the first 2 cm of soil was, on the average, 70% greater than in the next 2-5 cm. The mass of glyphosate in CT was higher at 2 to 10 cm depth. The depth concentration of AMPA follows the same trend than glyphosate, although its average concentration at 0-2 cm depth is 28 times higher than the glyphosate concentration at 2-5 cm (glyphosate = 147 ppb and AMPA = 4100 ppb). Beside the AMPA concentration at 0-2 cm depth is greater in NT than in CT, the mass of AMPA is higher in CT only for the Balcarce location. To our knowledge, this study is the first dealing with the depth distribution of glyphosate concentration in soils under different soil managements. In the present study, it was demonstrated that glyphosate and AMPA are present in soils under agricultural activity with maximum concentration in the first two cm of soil and the AMPA concentration at this depth is greater in NT than in CT.

  19. Synthesis and Structure-Activity Relationships of Substituted Urea Derivatives on Mouse Melanocortin Receptors.

    Science.gov (United States)

    Singh, Anamika; Kast, Johannes; Dirain, Marvin L S; Huang, Huisuo; Haskell-Luevano, Carrie

    2016-02-17

    The melanocortin system is involved in the regulation of several complex physiological functions. In particular, the melanocortin-3 and -4 receptors (MC3R/MC4R) have been demonstrated to regulate body weight, energy homeostasis, and feeding behavior. Synthetic and endogenous melanocortin agonists have been shown to be anorexigenic in rodent models. Herein, we report synthesis and structure-activity relationship (SAR) studies of 27 nonpeptide small molecule ligands based on an unsymmetrical substituted urea core. Three templates containing key residues from the lead compounds, showing diversity at three positions (R(1), R(2), R(3)), were designed and synthesized. The syntheses were optimized for efficient microwave-assisted chemistry that significantly reduced total syntheses time compared to a previously reported room temperature method. The pharmacological characterization of the compounds on the mouse melanocortin receptors identified compounds 1 and 12 with full agonist activity at the mMC4R, but no activity was observed at the mMC3R when tested up to 100 μM concentrations. The SAR identified compounds possessing aliphatic or saturated cyclic amines at the R(1) position, bulky aromatic groups at the R(2) position, and benzyl group at the R(3) position resulted in mMC4R selectivity over the mMC3R. The small molecule template and SAR knowledge from this series may be helpful in further design of MC3R/MC4R selective small molecule ligands. PMID:26645732

  20. Structure-activity relationships for the irreversible blockade of nicotinic receptor agonist sites by lophotoxin and congeneric diterpene lactones

    Energy Technology Data Exchange (ETDEWEB)

    Culver, P.; Burch, M.; Potenza, C.; Wasserman, L.; Fenical, W.; Taylor, P.

    1985-11-01

    Lophotoxin, a diterpene lactone paralytic toxin from gorgonian corals of the genus Lophogorgia, inhibits ( SVI)-alpha-toxin binding to surface nicotinic receptors of BC3H-1 cells by irreversible occupation of the primary agonist sites. In contrast, receptor-bearing membrane fragments or detergent-solubilized receptors prepared from BC3H-1 cells are not susceptible to lophotoxin block. Thus, lophotoxin inhibition requires intact cells. However, when intact cells were incubated with lophotoxin, subsequent membrane-fragment preparation or detergent solubilization of the receptors did not diminish lophotoxin occupation of ( SVI)-alpha-toxin-binding sites, indicating that lophotoxin binds very tightly to nicotinic receptors. These studies further demonstrate that both surface and nonsurface nicotinic receptors of BC3H-1 cells are susceptible to irreversible occupation by lophotoxin, indicating that the lipophilic toxin freely permeates intact cells. The authors also examined several structural analogs of lophotoxin, one of which was equipotent with lophotoxin for inhibition of ( SVI)-alpha-toxin binding to intact cells and, notably, also blocked alpha-toxin binding to detergent-extracted receptor.

  1. Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor.

    Science.gov (United States)

    Miao, Yinglong; Goldfeld, Dahlia Anne; Moo, Ee Von; Sexton, Patrick M; Christopoulos, Arthur; McCammon, J Andrew; Valant, Celine

    2016-09-20

    Design of ligands that provide receptor selectivity has emerged as a new paradigm for drug discovery of G protein-coupled receptors, and may, for certain families of receptors, only be achieved via identification of chemically diverse allosteric modulators. Here, the extracellular vestibule of the M2 muscarinic acetylcholine receptor (mAChR) is targeted for structure-based design of allosteric modulators. Accelerated molecular dynamics (aMD) simulations were performed to construct structural ensembles that account for the receptor flexibility. Compounds obtained from the National Cancer Institute (NCI) were docked to the receptor ensembles. Retrospective docking of known ligands showed that combining aMD simulations with Glide induced fit docking (IFD) provided much-improved enrichment factors, compared with the Glide virtual screening workflow. Glide IFD was thus applied in receptor ensemble docking, and 38 top-ranked NCI compounds were selected for experimental testing. In [(3)H]N-methylscopolamine radioligand dissociation assays, approximately half of the 38 lead compounds altered the radioligand dissociation rate, a hallmark of allosteric behavior. In further competition binding experiments, we identified 12 compounds with affinity of ≤30 μM. With final functional experiments on six selected compounds, we confirmed four of them as new negative allosteric modulators (NAMs) and one as positive allosteric modulator of agonist-mediated response at the M2 mAChR. Two of the NAMs showed subtype selectivity without significant effect at the M1 and M3 mAChRs. This study demonstrates an unprecedented successful structure-based approach to identify chemically diverse and selective GPCR allosteric modulators with outstanding potential for further structure-activity relationship studies. PMID:27601651

  2. [Beta-3 adrenergic receptor--structure and role in obesity and metabolic disorders].

    Science.gov (United States)

    Wiejak, J; Wyroba, E

    1999-01-01

    Structure and essential motifs of beta 3-adrenergic receptor (known previously as atypical beta-AR), which plays a central role in regulation of lipid metabolism have been described. Obesity results from an imbalance between caloric intake and energy expenditure. The consequence of catecholamine activation of beta 3-AR is increased mobilization of fatty acids from triglyceride stores (lipolysis) in brown and white adipose tissue as well as increased fatty acid beta-oxidation and heat-production via UCP-1 (thermogenesis) in brown adipose tissue. A pharmacokinetic effects of beta 3-agonists and putative involvement of Trp/Arg mutation in beta 3-AR gene in obesity and another metabolic disorders have been discussed.

  3. Structural basis for EGF receptor inhibition by the therapeutic antibody IMC-11F8.

    Science.gov (United States)

    Li, Shiqing; Kussie, Paul; Ferguson, Kathryn M

    2008-02-01

    Therapeutic anticancer strategies that target and inactivate the epidermal growth factor receptor (EGFR) are under intense study in the clinic. Here we describe the mechanism of EGFR inhibition by an antibody drug IMC-11F8. IMC-11F8 is a fully human antibody that has similar antitumor potency as the chimeric cetuximab/Erbitux and might represent a safer therapeutic alternative. We report the X-ray crystal structure of the Fab fragment of IMC-11F8 (Fab11F8) in complex with the entire extracellular region and with isolated domain III of EGFR. We compare this to our previous study of the cetuximab/EGFR interaction. Fab11F8 interacts with a remarkably similar epitope, but through a completely different set of interactions. Both the similarities and differences in binding of these two antibodies have important implications for the development of inhibitors that could exploit this same mechanism of EGFR inhibition.

  4. [Autoimmune mechanisms of modulation of the activity of glutamate receptors in children with epilepsy and craniocerebral injury].

    Science.gov (United States)

    Pinelis, V G; Sorokina, E G

    2008-01-01

    The role of glutamate receptors and their hyperstimulation in the development of autoimmune processes is discussed with reference to brain pathology associated with hypoxia and ischemia. Epilepsy, paroxismal condition, and craniocerebral injury (CCI) in children are shown to be accompanied by a rise in the levels of antibodies against AMPA and NMDA receptors of glutamate and nitric oxide markers (cGMP, nitrates + nitrites). Also enhanced in epilepsy and paroxismal condition are the levels of cGMP and antibodies against AMPA(GluR1) receptors of glutamate. Acute CCI period is characterized by a marked change in the levels of NO metabolites and antibodies to two subtypes of glutamate receptor, AMPA and NMDA. The levels of antibodies to NMDA(NR2A) receptors are significantly different within 1 day after CCI depending on its outcome. Unfavourable outcome of CCI is associated with the lowest level of antibodies and high NO metabolite content. Relationship between the levels of NO and antibodies against glutamate receptors is discussed with the use of experimental data. It is concluded that antibodies to glutamate receptors and receptor hyperstimulation play an important role in pathogenesis of hypoxia. PMID:19189459

  5. Structure and diversity of the T-cell receptor alpha chain in the Mexican axolotl.

    Science.gov (United States)

    Fellah, J S; Kerfourn, F; Dumay, A M; Aubet, G; Charlemagne, J

    1997-01-01

    Polymerase chain reaction was used to isolate cDNA clones encoding putative T-cell receptor (TCR) alpha chains in an amphibian, the Mexican axolotl (Ambystoma mexicanum). Five TCRalpha-V chain-encoding segments were identified, each belonging to a separate family. The best identity scores for these axolotl TCRalpha-V segments were all provided by sequences belonging to the human TCRalpha-V1 family and the mouse TCRalpha-V3 and TCRalpha-V8 families. A total of 14 different TCRA-J segments were identified from 44 TCRA-V/TCRA-J regions sequenced, suggesting that a large repertoire of TCRA-J segments is a characteristic of most vertebrates. The structure of the axolotl CDR3 alpha chain loop is in good agreement with that of mammals, including a majority of small hydrophobic residues at position 92 and of charged, hydrophilic, or polar residues at positions 93 and 94, which are highly variable and correspond to the TCRA-V/J junction. This suggests that some positions of the axolotl CDR3 alpha chain loop are positively selected during T-cell differentiation, particularly around residue 93 that could be selected for its ability to makes contacts with major histocompatibility complex-associated antigenic peptides, as in mammals. The axolotl Calpha domain had the typical structure of mammalian and avian Calpha domains, including the charged residues in the TM segment that are thought to interact with other proteins in the membrane, as well as most of the residues forming the conserved antigen receptor transmembrane motif. PMID:9002443

  6. Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-HT2 receptors.

    Directory of Open Access Journals (Sweden)

    Vignir Isberg

    Full Text Available Serotonergic ligands have proven effective drugs in the treatment of migraine, pain, obesity, and a wide range of psychiatric and neurological disorders. There is a clinical need for more highly 5-HT2 receptor subtype-selective ligands and the most attention has been given to the phenethylamine class. Conformationally constrained phenethylamine analogs have demonstrated that for optimal activity the free lone pair electrons of the 2-oxygen must be oriented syn and the 5-oxygen lone pairs anti relative to the ethylamine moiety. Also the ethyl linker has been constrained providing information about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9-11, and describe their synthetic routes. Ligand docking in the 5-HT2B crystal structure showed that the 1,2-heterocyclized compounds can be accommodated in the binding site. Conformational analysis showed that 11 can only bind in a higher-energy conformation, which would explain its absent or low affinity. The amine and 2-oxygen interactions with D3.32 and S3.36, respectively, can form but shift the placement of the core scaffold. The constraints in 9-11 resulted in docking poses with the 4-bromine in closer vicinity to 5.46, which is polar only in the human 5-HT2A subtype, for which 9-11 have the lowest affinity. The new ligands, conformational analysis and docking expand the structure-activity relationships of constrained phenethylamines and contributes towards the development of 5-HT2 receptor subtype-selective ligands.

  7. Long-term fluoxetine treatment induces input-specific LTP and LTD impairment and structural plasticity in the CA1 hippocampal subfield.

    Directory of Open Access Journals (Sweden)

    Francisco J Rubio

    2013-05-01

    Full Text Available Antidepressant drugs are usually administered for long time for the treatment of major depressive disorder. However, they are also prescribed in several additional psychiatric conditions as well as during long term maintenance treatments. Antidepressants induce adaptive changes in several forebrain structures which include modifications at glutamatergic synapses. We recently found that repetitive administration of the selective serotonin reuptake inhibitor fluoxetine to naϊve adult male rats induced an increase of mature, mushroom-type dendritic spines in several forebrain regions. This was associated with an increase of GluA2-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPA-Rs in telencephalic postsynaptic densities. To unravel the functional significance of such a synaptic re-arrangement, we focused on glutamate neurotransmission in the hippocampus. We evaluated the effect of four weeks of treatment with 0.7 mg/kg of fluoxetine on long-term potentiation (LTP and long-term depression (LTD in the Schaffer collateral-CA1 synapses and the perforant path-CA1 synapses. Recordings in hippocampal slices revealed profound deficits in LTP and LTD at Schaffer collateral-CA1 synapses associated to increased spine density and enhanced presence of mushroom-type spines, as revealed by Golgi staining. However, the same treatment had neither an effect on spine morphology, nor on LTP and LTD at perforant path-CA1 synapses. Cobalt staining experiments revealed decreased AMPA-R Ca2+ permeability in the stratum radiatum together with increased GluA2-containing, Ca2+-impermeable AMPA-Rs. Therefore, 4 weeks of fluoxetine treatment promoted structural and functional adaptations in CA1 neurons in a pathway-specific manner that were selectively associated with impairment of activity-dependent plasticity at Schaffer collateral-CA1 synapses.

  8. Structure and functional interaction of the extracellular domain of human GABA[subscript B] receptor GBR2

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Yong; Xiong, Dazhi; Mosyak, Lidia; Malito, David L.; Kniazeff, Julie; Chen, Yan; Burmakina, Svetlana; Quick, Matthias; Bush, Martin; Javitch, Jonathan A.; Pin, Jean-Philippe; Fan, Qing R. (CNRS-UMR); (Columbia)

    2012-10-24

    Inhibitory neurotransmission is mediated primarily by GABA. The metabotropic GABA{sub B} receptor is a G protein-coupled receptor central to mammalian brain function. Malfunction of GABA{sub B} receptor has been implicated in several neurological disorders. GABA{sub B} receptor functions as a heterodimeric assembly of GBR1 and GBR2 subunits, where GBR1 is responsible for ligand-binding and GBR2 is responsible for G protein coupling. Here we demonstrate that the GBR2 ectodomain directly interacts with the GBR1 ectodomain to increase agonist affinity by selectively stabilizing the agonist-bound conformation of GBR1. We present the crystal structure of the GBR2 ectodomain, which reveals a polar heterodimeric interface. We also identify specific heterodimer contacts from both subunits, and GBR1 residues involved in ligand recognition. Lastly, our structural and functional data indicate that the GBR2 ectodomain adopts a constitutively open conformation, suggesting a structural asymmetry in the active state of GABA{sub B} receptor that is unique to the GABAergic system.

  9. Plastic Changes of Synapses and Excitatory Neurotransmitter Receptors in Facial Nucleus Following Facial-facial Anastomosis

    Institute of Scientific and Technical Information of China (English)

    Pei CHEN; Jun SONG; Linghui LUO; Shusheng GONG

    2008-01-01

    The remodeling process of synapses and eurotransmitter receptors of facial nucleus were observed. Models were set up by facial-facial anastomosis in rat. At post-surgery day (PSD) 0, 7, 21 and 60, synaptophysin (p38), NMDA receptor subunit 2A and AMPA receptor subunit 2 (GIuR2) were observed by immunohistochemical method and emi-quantitative RT-PCR, respectively. Meanwhile, the synaptic structure of the facial motorneurons was observed under a transmission electron microscope (TEM). The intensity of p38 immunoreactivity was decreased, reaching the lowest value at PSD day 7, and then increased slightly at PSD 21. Ultrastructurally, the number of synapses in nucleus of the operational side decreased, which was consistent with the change in P38 immhnoreactivity. NMDAR2A mRNA was down-regulated significantly in facial nucleus after the operation (P000.05). The synapses innervation and the expression of NMDAR2A and AMPAR2 mRNA in facial nucleus might be modified to suit for the new motor tasks following facial-facial anastomosis, and influenced facial nerve regeneration and recovery.

  10. Structure of a pheromone receptor-associated MHC molecule with an open and empty groove.

    Directory of Open Access Journals (Sweden)

    Rich Olson

    2005-08-01

    Full Text Available Neurons in the murine vomeronasal organ (VNO express a family of class Ib major histocompatibility complex (MHC proteins (M10s that interact with the V2R class of VNO receptors. This interaction may play a direct role in the detection of pheromonal cues that initiate reproductive and territorial behaviors. The crystal structure of M10.5, an M10 family member, is similar to that of classical MHC molecules. However, the M10.5 counterpart of the MHC peptide-binding groove is open and unoccupied, revealing the first structure of an empty class I MHC molecule. Similar to empty MHC molecules, but unlike peptide-filled MHC proteins and non-peptide-binding MHC homologs, M10.5 is thermally unstable, suggesting that its groove is normally occupied. However, M10.5 does not bind endogenous peptides when expressed in mammalian cells or when offered a mixture of class I-binding peptides. The F pocket side of the M10.5 groove is open, suggesting that ligands larger than 8-10-mer class I-binding peptides could fit by extending out of the groove. Moreover, variable residues point up from the groove helices, rather than toward the groove as in classical MHC structures. These data suggest that M10s are unlikely to provide specific recognition of class I MHC-binding peptides, but are consistent with binding to other ligands, including proteins such as the V2Rs.

  11. Structure of a Pheromone Receptor-Associated Mhc Molecule With An Open And Empty Groove

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R.; Huey-Tubman, K.E.; Dulac, C.; Bjorkman, P.J.; /Caltech /Harvard U.

    2006-10-06

    Neurons in the murine vomeronasal organ (VNO) express a family of class Ib major histocompatibility complex (MHC) proteins (M10s) that interact with the V2R class of VNO receptors. This interaction may play a direct role in the detection of pheromonal cues that initiate reproductive and territorial behaviors. The crystal structure of M10.5, an M10 family member, is similar to that of classical MHC molecules. However, the M10.5 counterpart of the MHC peptide-binding groove is open and unoccupied, revealing the first structure of an empty class I MHC molecule. Similar to empty MHC molecules, but unlike peptide-filled MHC proteins and non-peptide-binding MHC homologs, M10.5 is thermally unstable, suggesting that its groove is normally occupied. However, M10.5 does not bind endogenous peptides when expressed in mammalian cells or when offered a mixture of class I-binding peptides. The F pocket side of the M10.5 groove is open, suggesting that ligands larger than 8-10-mer class I-binding peptides could fit by extending out of the groove. Moreover, variable residues point up from the groove helices, rather than toward the groove as in classical MHC structures. These data suggest that M10s are unlikely to provide specific recognition of class I MHC-binding peptides, but are consistent with binding to other ligands, including proteins such as the V2Rs.

  12. Structural plasticity of GABAergic axons is regulated by network activity and GABAA receptor activation

    Directory of Open Access Journals (Sweden)

    Anne eSchuemann

    2013-06-01

    Full Text Available Coordinated changes at excitatory and inhibitory synapses are essential for normal brain development and function. It is well established that excitatory neurons undergo structural changes, but our knowledge about inhibitory structural plasticity is rather scarce. Here we present a quantitative analysis of the dynamics of GABAergic boutons in the dendritic region of the hippocampal CA1 area using time-lapse two-photon imaging in organotypic hippocampal cultures from GAD65-GFP mice. We show that ~20% of inhibitory boutons are not stable. They are appearing, disappearing and reappearing at specific locations along the inhibitory axon and reflect immature or incomplete synapses. Furthermore, we observed that persistent boutons show large volume fluctuations over several hours, suggesting that presynaptic content of inhibitory synapses is not constant. Our data show that inhibitory boutons are highly dynamic structures and suggest that inhibitory axons are continuously probing potential locations for inhibitory synapse formation by redistributing presynaptic material along the axon.In addition, we found that neuronal activity affects the exploratory dynamics of inhibitory axons. Blocking network activity rapidly reduces the number of transient boutons, whereas enhancing activity reduces the number of persistent inhibitory boutons, possibly reflecting enhanced competition between boutons along the axon. The latter effect requires signaling through GABAA receptors. We propose that activity-dependent regulation of bouton dynamics contributes to inhibitory synaptic plasticity.

  13. Solution structure of the transmembrane domain of the insulin receptor in detergent micelles.

    Science.gov (United States)

    Li, Qingxin; Wong, Ying Lei; Kang, CongBao

    2014-05-01

    The insulin receptor (IR) binds insulin and plays important roles in glucose homeostasis by regulating the tyrosine kinase activity at its C-terminus. Its transmembrane domain (TMD) is shown to be important for transferring conformational changes induced by insulin across the cell membrane to regulate kinase activity. In this study, a construct IR(940-988) containing the TMD was expressed and purified for structural studies. Its solution structure in dodecylphosphocholine (DPC) micelles was determined. The sequence containing residues L962 to Y976 of the TMD of the IR in micelles adopts a well-defined helical structure with a kink formed by glycine and proline residues present at its N-terminus, which might be important for its function. Paramagnetic relaxation enhancement (PRE) and relaxation experimental results suggest that residues following the TMD are flexible and expose to aqueous solution. Although purified IR(940-988) in micelles existed mainly as a monomeric form verified by gel filtration and relaxation analysis, cross-linking study suggests that it may form a dimer or oligomers under micelle conditions.

  14. Phocid seal leptin: tertiary structure and hydrophobic receptor binding site preservation during distinct leptin gene evolution.

    Directory of Open Access Journals (Sweden)

    John A Hammond

    Full Text Available The cytokine hormone leptin is a key signalling molecule in many pathways that control physiological functions. Although leptin demonstrates structural conservation in mammals, there is evidence of positive selection in primates, lagomorphs and chiropterans. We previously reported that the leptin genes of the grey and harbour seals (phocids have significantly diverged from other mammals. Therefore we further investigated the diversification of leptin in phocids, other marine mammals and terrestrial taxa by sequencing the leptin genes of representative species. Phylogenetic reconstruction revealed that leptin diversification was pronounced within the phocid seals with a high dN/dS ratio of 2.8, indicating positive selection. We found significant evidence of positive selection along the branch leading to the phocids, within the phocid clade, but not over the dataset as a whole. Structural predictions indicate that the individual residues under selection are away from the leptin receptor (LEPR binding site. Predictions of the surface electrostatic potential indicate that phocid seal leptin is notably different to other mammalian leptins, including the otariids. Cloning the grey seal leptin binding domain of LEPR confirmed that this was structurally conserved. These data, viewed in toto, support a hypothesis that phocid leptin divergence is unlikely to have arisen by random mutation. Based upon these phylogenetic and structural assessments, and considering the comparative physiology and varying life histories among species, we postulate that the unique phocid diving behaviour has produced this selection pressure. The Phocidae includes some of the deepest diving species, yet have the least modified lung structure to cope with pressure and volume changes experienced at depth. Therefore, greater surfactant production is required to facilitate rapid lung re-inflation upon surfacing, while maintaining patent airways. We suggest that this additional

  15. Brainstem metabotropic glutamate receptors reduce food intake and activate dorsal pontine and medullar structures after peripheral bacterial lipopolysaccharide administration.

    Science.gov (United States)

    Chaskiel, Léa; Paul, Flora; Gerstberger, Rüdiger; Hübschle, Thomas; Konsman, Jan Pieter

    2016-08-01

    During infection-induced inflammation food intake is reduced. Vagal and brainstem pathways are important both in feeding regulation and immune-to-brain communication. Glutamate is released by vagal afferent terminals in the nucleus of the solitary tract and by its neurons projecting to the parabrachial nuclei. We therefore studied the role of brainstem glutamate receptors in spontaneous food intake of healthy animals and during sickness-associated hypophagia after peripheral administration of bacterial lipopolysaccharides or interleukin-1beta. Brainstem group I and II metabotropic, but not ionotropic, glutamate receptor antagonism increased food intake both in saline- and lipopolysaccharide-treated rats. In these animals, expression of the cellular activation marker c-Fos in the lateral parabrachial nuclei and lipopolysaccharide-induced activation of the nucleus of the solitary tract rostral to the area postrema were suppressed. Group I metabotropic glutamate receptors did not colocalize with c-Fos or neurons regulating gastric function in these structures. Group I metabotropic glutamate receptors were, however, found on raphé magnus neurons that were part of the brainstem circuit innervating the stomach and on trigeminal and hypoglossal motor neurons. In conclusion, our findings show that brainstem metabotropic glutamate receptors reduce food intake and activate the lateral parabrachial nuclei as well as the rostral nucleus of the solitary tract after peripheral bacterial lipopolysaccharide administration. They also provide insight into potential group I metabotropic glutamate receptor-dependent brainstem circuits mediating these effects. PMID:27016016

  16. Genetic Variation in TLR10, an Inhibitory Toll-Like Receptor, Influences Susceptibility to Complicated Skin and Skin Structure Infections.

    NARCIS (Netherlands)

    Stappers, M.H.T.; Oosting, M.; Ioana, M.; Reimnitz, P.; Mouton, J.W.; Netea, M.G.; Gyssens, I.C.J.; Joosten, L.A.B.

    2015-01-01

    BACKGROUND: Toll-like receptors (TLRs) play a central role in the innate immune response to complicated skin and skin structure infections (cSSSIs), with TLR10 being the first family member known to have an inhibitory function. This study assessed the role of TLR10 in recognition of cSSSI-related pa

  17. SPECIES DIFFERENCES IN ANDROGEN AND ESTROGEN RECEPTOR STRUCTURE AND FUNCTION AMONG VERTEBRATES AND INVERTEBRATES: INTERSPECIES EXTRAPOLATIONS REGARDING ENDOCRINE DISRUPTING CHEMICALS

    Science.gov (United States)

    Species Differences in Androgen and Estrogen Receptor Structure and Function Among Vertebrates and Invertebrates: Interspecies Extrapolations regarding Endocrine Disrupting Chemicals VS Wilson1, GT Ankley2, M Gooding 1,3, PD Reynolds 1,4, NC Noriega 1, M Cardon 1, P Hartig1,...

  18. The Structure-Function Relationships of Complement Receptor Type 2 (CR2; CD21).

    Science.gov (United States)

    Hannan, Jonathan Paul

    2016-01-01

    Human complement receptor type 2 (CR2; CD21) is a surface-associated glycoprotein which binds to a variety of endogenous ligands, including the complement component C3 fragments iC3b, C3dg and C3d, the low-affinity IgE receptor CD23, and the type I cytokine, interferon-alpha. CR2 links the innate complement-mediated immune response to pathogens and foreign antigens with the adaptive immune response by binding to C3d that is covalently attached to targets, and which results in a cell signalling phenomenon that lowers the threshold for B cell activation. Variations or deletions of the CR2 gene in humans, or the Cr2 gene in mice associate with a variety of autoimmune and inflammatory conditions. A number of infectious agents including Epstein-Barr virus (EBV), Human Immunodeficiency Virus (HIV) and prions also bind to CR2 either directly or indirectly by means of C3d-targeted immune complexes. In this review we discuss the interactions that CR2 undertakes with its best characterized ligands C3d, CD23 and the EBV gp350/220 envelope protein. To date only a single physiologically relevant complex of CR2 with one of its ligands, C3d, has been elucidated. By contrast, the interactions with CD23 and EBV gp350/220, while being important from physiologic and disease-associated standpoints, respectively, are only incompletely understood. A detailed knowledge of the structure-function relationships that CR2 undergoes with its ligands is necessary to understand the implications of using recombinant CR2 in therapeutic or imaging agents, or alternatively targeting CR2 to down-regulate the antibody mediated immune response in cases of autoimmunity. PMID:26916158

  19. The Structure-Function Relationships of Complement Receptor Type 2 (CR2; CD21).

    Science.gov (United States)

    Hannan, Jonathan Paul

    2016-01-01

    Human complement receptor type 2 (CR2; CD21) is a surface-associated glycoprotein which binds to a variety of endogenous ligands, including the complement component C3 fragments iC3b, C3dg and C3d, the low-affinity IgE receptor CD23, and the type I cytokine, interferon-alpha. CR2 links the innate complement-mediated immune response to pathogens and foreign antigens with the adaptive immune response by binding to C3d that is covalently attached to targets, and which results in a cell signalling phenomenon that lowers the threshold for B cell activation. Variations or deletions of the CR2 gene in humans, or the Cr2 gene in mice associate with a variety of autoimmune and inflammatory conditions. A number of infectious agents including Epstein-Barr virus (EBV), Human Immunodeficiency Virus (HIV) and prions also bind to CR2 either directly or indirectly by means of C3d-targeted immune complexes. In this review we discuss the interactions that CR2 undertakes with its best characterized ligands C3d, CD23 and the EBV gp350/220 envelope protein. To date only a single physiologically relevant complex of CR2 with one of its ligands, C3d, has been elucidated. By contrast, the interactions with CD23 and EBV gp350/220, while being important from physiologic and disease-associated standpoints, respectively, are only incompletely understood. A detailed knowledge of the structure-function relationships that CR2 undergoes with its ligands is necessary to understand the implications of using recombinant CR2 in therapeutic or imaging agents, or alternatively targeting CR2 to down-regulate the antibody mediated immune response in cases of autoimmunity.

  20. Identification and Structure-Function Analysis of Subfamily Selective G Protein-Coupled Receptor Kinase Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Kristoff T.; Larimore, Kelly M.; Elkins, Jonathan M.; Szklarz, Marta; Knapp, Stefan; Tesmer, John J.G. [Michigan; (Oxford)

    2015-02-13

    Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson’s disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can be clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors.

  1. Low Resolution Structure and Dynamics of a Colicin-Receptor Complex Determined by Neutron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Luke A [ORNL; Johnson, Christopher L [ORNL; Solovyova, Alexandra [University of Newcastle upon Tyne; Callow, Phil [Institut Laue-Langevin (ILL); Weiss, Kevin L [ORNL; Ridley, Helen [University of Newcastle upon Tyne; Le Brun, Anton P [ORNL; Kinane, Christian [ISIS Facility, Rutherford Appleton Laboratory; Webster, John [ISIS Facility, Rutherford Appleton Laboratory; Holt, Stephen A [ORNL; Lakey, Jeremy H [ORNL

    2012-01-01

    Proteins that translocate across cell membranes need to overcome a significant hydrophobic barrier. This is usually accomplished via specialized protein complexes, which provide a polar transmembrane pore. Exceptions to this include bacterial toxins, which insert into and cross the lipid bilayer itself. We are studying the mechanism by which large antibacterial proteins enter Escherichia coli via specific outer membrane proteins. Here we describe the use of neutron scattering to investigate the interaction of colicin N with its outer membrane receptor protein OmpF. The positions of lipids, colicin N, and OmpF were separately resolved within complex structures by the use of selective deuteration. Neutron reflectivity showed, in real time, that OmpF mediates the insertion of colicin N into lipid monolayers. This data were complemented by Brewster Angle Microscopy images, which showed a lateral association of OmpF in the presence of colicin N. Small angle neutron scattering experiments then defined the three-dimensional structure of the colicin N-OmpF complex. This revealed that colicin N unfolds and binds to the OmpF-lipid interface. The implications of this unfolding step for colicin translocation across membranes are discussed.

  2. Disease Mutations in the Ryanodine Receptor Central Region: Crystal Structures of a Phosphorylation Hot Spot Domain

    Energy Technology Data Exchange (ETDEWEB)

    Yuchi, Zhiguang; Lau, Kelvin; Van Petegem, Filip (UBC)

    2015-02-09

    Ryanodine Receptors (RyRs) are huge Ca{sup 2+} release channels in the endoplasmic reticulum membrane and form targets for phosphorylation and disease mutations. We present crystal structures of a domain in three RyR isoforms, containing the Ser2843 (RyR1) and Ser2808/Ser2814 (RyR2) phosphorylation sites. The RyR1 domain is the target for 11 disease mutations. Several of these are clustered near the phosphorylation sites, suggesting that phosphorylation and disease mutations may affect the same interface. The L2867G mutation causes a drastic thermal destabilization and aggregation at room temperature. Crystal structures for other disease mutants show that they affect surface properties and intradomain salt bridges. In vitro phosphorylation experiments show that up to five residues in one long loop of RyR2 can be phosphorylated by PKA or CaMKII. Docking into cryo-electron microscopy maps suggests a putative location in the clamp region, implying that mutations and phosphorylation may affect the allosteric motions within this area.

  3. Conserved structure of amphibian T-cell antigen receptor beta chain.

    Science.gov (United States)

    Fellah, J S; Kerfourn, F; Guillet, F; Charlemagne, J

    1993-07-15

    All jawed vertebrates possess well-differentiated thymuses and elicit T-cell-like cell-mediated responses; however, no surface T-cell receptor (TCR) molecules or TCR genes have been identified in ectothermic vertebrate species. Here we describe cDNA clones from an amphibian species, Ambystoma mexicanum (the Mexican axolotl), that have sequences highly homologous to the avian and mammalian TCR beta chains. The cloned amphibian beta chain variable region (V beta) shares most of the structural characteristics with the more evolved vertebrate V beta and presents approximately 56% amino acid identities with the murine V beta 14 and human V beta 18 families. The two different cloned axolotl beta chain joining regions (J beta) were found to have conserved all the invariant mammalian J beta residues, and in addition, the presence of a conserved glycine at the V beta-J beta junction suggests the existence of diversity elements. The extracellular domains of the two axolotl beta chain constant region isotypes C beta 1 and C beta 2 show an impressively high degree of identity, thus suggesting that a very efficient mechanism of gene correction has been in operation to preserve this structure at least from the early tetrapod evolution. The transmembrane axolotl C beta domains have been less well conserved when compared to the mammalian C beta but they do maintain the lysine residue that is thought to be involved in the charged interaction between the TCR alpha beta heterodimer and the CD3 complex. PMID:8341702

  4. Structural Changes in the Lectin Domain of CD23, the Low-Affinity IgE Receptor, upon Calcium Binding

    Energy Technology Data Exchange (ETDEWEB)

    Wurzburg, Beth A.; Tarchevskaya, Svetlana S.; Jardetzky, Theodore S. (NWU)

    2010-03-08

    CD23, the low-affinity receptor for IgE (Fc{var_epsilon}RII), regulates IgE synthesis and also mediates IgE-dependent antigen transport and processing. CD23 is a unique Fc receptor belonging to the C-type lectin-like domain superfamily and binds IgE in an unusual, non-lectin-like manner, requiring calcium but not carbohydrate. We have solved the high-resolution crystal structures of the human CD23 lectin domain in the presence and absence of Ca{sup 2+}. The crystal structures differ significantly from a previously determined NMR structure and show that calcium binding occurs at the principal binding site, but not at an auxiliary site that appears to be absent in human CD23. Conformational differences between the apo and Ca{sup 2+} bound structures suggest how IgE-Fc binding can be both calcium-dependent and carbohydrate-independent.

  5. Modelling fate and transport of glyphosate and AMPA in the Meuse catchment to assess the contribution of different pollution sources

    Science.gov (United States)

    Desmet, Nele; Seuntjens, Piet

    2013-04-01

    Large river basins have multiple sources of pesticides and usually the pollution sources are spread over the entire catchment. The cumulative effect of pesticides entering the river system in upstream areas and the formation of persistent degradation products can compromise downstream water use e.g. raw water quality for drinking water abstractions. For assessments at catchment scale pesticide fluxes coming from different sources and sub basins need to be taken into account. To improve management strategies, a sound understanding of the sources, emission routes, transport, environmental fate and conversion of pesticides is needed. In the Netherlands, the Meuse river basin is an important source for drinking water production. The river suffers from elevated concentrations of glyphosate and aminomethylphosphonic acid (AMPA). For AMPA it is rather unclear to what extent the pollution is related to glyphosate degradation and what is the contribution of other sources, especial phosphonates in domestic and industrial waste water. Based on the available monitoring data only it is difficult to distinguish between AMPA sources in such a large river basin. This hampers interpretation and decision making for water quality management in the Meuse catchment. Here, application of water quality models is very useful to obtain complementary information and insights. Modelling allows accounting for temporal and spatial variability in discharge and concentrations as well as distinguishing the contribution from conversion processes. In this study, a model for the river Meuse was developed and applied to assess the contribution of tributary and transnational influxes, glyphosate degradation and other sources to the AMPA pollution.

  6. Glyphosate-resistant and conventional canola (Brassica napus L.)responses to glyphosate and Aminomethylphosphonic Acid (AMPA) treatment

    Science.gov (United States)

    Glyphosate-resistant (GR) canola expresses two transgenes: 1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and 2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshiki...

  7. Acoustic trauma slows AMPA receptor‐mediated EPSCs in the auditory brainstem, reducing GluA4 subunit expression as a mechanism to rescue binaural function

    Science.gov (United States)

    Pilati, Nadia; Linley, Deborah M.; Selvaskandan, Haresh; Uchitel, Osvaldo; Hennig, Matthias H.; Kopp‐Scheinpflug, Cornelia

    2016-01-01

    Key points Lateral superior olive (LSO) principal neurons receive AMPA receptor (AMPAR) ‐ and NMDA receptor (NMDAR)‐mediated EPSCs and glycinergic IPSCs.Both EPSCs and IPSCs have slow kinetics in prehearing animals, which during developmental maturation accelerate to sub‐millisecond decay time‐constants. This correlates with a change in glutamate and glycine receptor subunit composition quantified via mRNA levels.The NMDAR‐EPSCs accelerate over development to achieve decay time‐constants of 2.5 ms. This is the fastest NMDAR‐mediated EPSC reported.Acoustic trauma (AT, loud sounds) slow AMPAR‐EPSC decay times, increasing GluA1 and decreasing GluA4 mRNA.Modelling of interaural intensity difference suggests that the increased EPSC duration after AT shifts interaural level difference to the right and compensates for hearing loss.Two months after AT the EPSC decay times recovered to control values.Synaptic transmission in the LSO matures by postnatal day 20, with EPSCs and IPSCs having fast kinetics. AT changes the AMPAR subunits expressed and slows the EPSC time‐course at synapses in the central auditory system. Abstract Damaging levels of sound (acoustic trauma, AT) diminish peripheral synapses, but what is the impact on the central auditory pathway? Developmental maturation of synaptic function and hearing were characterized in the mouse lateral superior olive (LSO) from postnatal day 7 (P7) to P96 using voltage‐clamp and auditory brainstem responses. IPSCs and EPSCs show rapid acceleration during development, so that decay kinetics converge to similar sub‐millisecond time‐constants (τ, 0.87 ± 0.11 and 0.77 ± 0.08 ms, respectively) in adult mice. This correlated with LSO mRNA levels for glycinergic and glutamatergic ionotropic receptor subunits, confirming a switch from Glyα2 to Glyα1 for IPSCs and increased expression of GluA3 and GluA4 subunits for EPSCs. The NMDA receptor (NMDAR)‐EPSC decay τ accelerated from >40 ms in

  8. A divergent INS protein in Caenorhabditis elegans structurally resembles human insulin and activates the human insulin receptor

    OpenAIRE

    Hua, Qing-Xin; Nakagawa, Satoe H.; Wilken, Jill; Ramos, Rowena R.; Jia, Wenhua; Bass, Joseph; Weiss, Michael A.

    2003-01-01

    Caenorhabditis elegans contains a family of putative insulin-like genes proposed to regulate dauer arrest and senescence. These sequences often lack characteristic sequence features of human insulin essential for its folding, structure, and function. Here, we describe the structure and receptor-binding properties of INS-6, a single-chain polypeptide expressed in specific neurons. Despite multiple nonconservative changes in sequence, INS-6 recapitulates an insulin-like fold. Although lacking c...

  9. Delineation of structural domains involved in the subtype specificity of tachykinin receptors through chimeric formation of substance P/substance K receptors.

    OpenAIRE

    Y. Yokota; Akazawa, C; Ohkubo, H; Nakanishi, S.

    1992-01-01

    The mammalian tachykinin receptors belong to the family of G protein-coupled receptors and consist of the substance P, substance K and neuromedin K receptors (SPR, SKR and NKR). We constructed 14 chimeric receptors in which seven transmembrane segments were sequentially exchanged between the rat SPR and SKR and examined the subtype specificity of the chimeric receptors by radioligand binding and inositol phosphate measurements after transfection into COS cells. All chimeric receptors showed m...

  10. Micro-structured peptide surfaces for the detection of high-affinity peptide-receptor interactions in living cells.

    Science.gov (United States)

    Lipp, Anna-Maria; Ji, Bozhi; Hager, Roland; Haas, Sandra; Schweiggl, Simone; Sonnleitner, Alois; Haselgrübler, Thomas

    2015-12-15

    Peptide ligands have great potential as selective agents for diagnostic imaging and therapeutic targeting of human cancers. A number of high-throughput assays for screening potential candidate peptides have been developed. Although these screening assays are indispensable for the identification of peptide ligands at a large scale, it is crucial to validate peptide binding and selectivity for targeted receptors in a live-cell context. For testing high-affinity peptide-receptor interactions in the plasma membrane of living cells, we developed cell-resistant, micro-structured glass surfaces with high-density and high-contrast peptide features. Cell adhesion and recruitment of fluorescent receptors to micro-patterned peptides in the live-cell membrane were evaluated by reflection interference contrast (RIC) and total internal reflection (TIRF) microscopy, respectively. To demonstrate both the specificity and modularity of the assay, co-patterning of fluorescent receptors with three different immobilized micro-structured ligands was shown: first, interaction of green fluorescent protein (GFP)-tagged epidermal growth factor (EGF) receptor expressed in Jurkat cells with immobilized EGF was detected and quantified. Second, using Jurkat cells, we demonstrated specific interaction of yellow fluorescent protein (YFP)-tagged β3 integrin with c(RGDfK) peptide. Third, we identified indirect recruitment of GFP-tagged α5 integrin to an 11-mer peptide. In summary, our results show that the developed micro-structured surfaces are a useful tool for the validation and quantification of peptide-receptor interactions in their natural cellular environment. PMID:26210593

  11. Structure of a Thyroid Hormone Receptor DNA-Binding Domain Homodimer Bound to an Inverted Palindrome DNA Response Element

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yi; Young, Matthew A. (Michigan)

    2010-10-22

    Thyroid hormone receptor (TR), as a member of the nuclear hormone receptor family, can recognize and bind different classes of DNA response element targets as either a monomer, a homooligomer, or a heterooligomer. We report here the first crystal structure of a homodimer TR DNA-binding domain (DBD) in complex with an inverted repeat class of thyroid response element (TRE). The structure shows a nearly symmetric structure of the TR DBD assembled on the F2 TRE where the base recognition contacts in the homodimer DNA complex are conserved relative to the previously published structure of a TR-9-cis-retinoic acid receptor heterodimer DNA complex. The new structure also reveals that the T-box region of the DBD can function as a structural hinge that enables a large degree of flexibility in the position of the C-terminal extension helix that connects the DBD to the ligand-binding domain. Although the isolated TR DBDs exist as monomers in solution, we have measured highly cooperative binding of the two TR DBD subunits onto the inverted repeat DNA sequence. This suggests that elements of the DBD can influence the specific TR oligomerization at target genes, and it is not just interactions between the ligand-binding domains that are responsible for TR oligomerization at target genes. Mutational analysis shows that intersubunit contacts at the DBD C terminus account for some, but not all, of the cooperative homodimer TR binding to the inverted repeat class TRE.

  12. The herbicide glyphosate and its metabolite AMPA in the Lavaux vineyard area, western Switzerland: proof of widespread export to surface waters. Part II: the role of infiltration and surface runoff.

    Science.gov (United States)

    Daouk, Silwan; De Alencastro, Luiz F; Pfeifer, Hans-Rudolf

    2013-01-01

    Two parcels of the Lavaux vineyard area, western Switzerland, were studied to assess to which extent the widely used herbicide, glyphosate, and its metabolite aminomethylphosphonic acid (AMPA) were retained in the soil or exported to surface waters. They were equipped at their bottom with porous ceramic cups and runoff collectors, which allowed retrieving water samples for the growing seasons 2010 and 2011. The role of slope, soil properties and rainfall regime in their export was examined and the surface runoff/throughflows ratio was determined with a mass balance. Our results revealed elevated glyphosate and AMPA concentrations at 60 and 80 cm depth at parcel bottoms, suggesting their infiltration in the upper parts of the parcels and the presence of preferential flows in the studied parcels. Indeed, the succession of rainy days induced the gradual saturation of the soil porosity, leading to rapid infiltration through macropores, as well as surface runoff formation. Furthermore, the presence of more impervious weathered marls at 100 cm depth induced throughflows, the importance of which in the lateral transport of the herbicide molecules was determined by the slope steepness. Mobility of glyphosate and AMPA into the unsaturated zone was thus likely driven by precipitation regime and soil characteristics, such as slope, porosity structure and layer permeability discrepancy. Important rainfall events (>10 mm/day) were clearly exporting molecules from the soil top layer, as indicated by important concentrations in runoff samples. The mass balance showed that total loss (10-20%) mainly occurred through surface runoff (96%) and, to a minor extent, by throughflows in soils (4%), with subsequent exfiltration to surface waters. PMID:23688223

  13. The herbicide glyphosate and its metabolite AMPA in the Lavaux vineyard area, western Switzerland: proof of widespread export to surface waters. Part II: the role of infiltration and surface runoff.

    Science.gov (United States)

    Daouk, Silwan; De Alencastro, Luiz F; Pfeifer, Hans-Rudolf

    2013-01-01

    Two parcels of the Lavaux vineyard area, western Switzerland, were studied to assess to which extent the widely used herbicide, glyphosate, and its metabolite aminomethylphosphonic acid (AMPA) were retained in the soil or exported to surface waters. They were equipped at their bottom with porous ceramic cups and runoff collectors, which allowed retrieving water samples for the growing seasons 2010 and 2011. The role of slope, soil properties and rainfall regime in their export was examined and the surface runoff/throughflows ratio was determined with a mass balance. Our results revealed elevated glyphosate and AMPA concentrations at 60 and 80 cm depth at parcel bottoms, suggesting their infiltration in the upper parts of the parcels and the presence of preferential flows in the studied parcels. Indeed, the succession of rainy days induced the gradual saturation of the soil porosity, leading to rapid infiltration through macropores, as well as surface runoff formation. Furthermore, the presence of more impervious weathered marls at 100 cm depth induced throughflows, the importance of which in the lateral transport of the herbicide molecules was determined by the slope steepness. Mobility of glyphosate and AMPA into the unsaturated zone was thus likely driven by precipitation regime and soil characteristics, such as slope, porosity structure and layer permeability discrepancy. Important rainfall events (>10 mm/day) were clearly exporting molecules from the soil top layer, as indicated by important concentrations in runoff samples. The mass balance showed that total loss (10-20%) mainly occurred through surface runoff (96%) and, to a minor extent, by throughflows in soils (4%), with subsequent exfiltration to surface waters.

  14. Peripheral activation of corticotropin-releasing factor receptor 2 inhibits food intake and alters meal structures in mice

    OpenAIRE

    Wang, Lixin; Stengel, Andreas; Goebel, Miriam; Martinez, Vicente; Gourcerol, Guillaume; Rivier, Jean; Taché, Yvette

    2010-01-01

    The orexigenic effect of urocortins (Ucn 1, Ucn 2 and Ucn 3) through activation of corticotropin-releasing factor (CRF) receptors, has been well characterized after injection into the brain but not in the periphery. We examined the role of CRF receptor subtype 2 (CRF2) in the regulation of food intake using intraperitoneal (ip) injection of Ucns, the selective CRF2 antagonist, astressin2-B, and CRF2 knockout (−/−) mice. Meal structures were monitored using an automated episodic solid food int...

  15. A Specific Cholesterol Binding Site Is Established by the 2.8 Å Structure of the Human [beta][subscript 2]-Adrenergic Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Michael A.; Cherezov, Vadim; Griffith, Mark T.; Roth, Christopher B.; Jaakola, Veli-Pekka; Chien, Ellen Y.T.; Velasquez, Jeffrey; Kuhn, Peter; Stevens, Raymond C. (Scripps)

    2008-07-08

    The role of cholesterol in eukaryotic membrane protein function has been attributed primarily to an influence on membrane fluidity and curvature. We present the 2.8 {angstrom} resolution crystal structure of a thermally stabilized human {beta}{sub 2}-adrenergic receptor bound to cholesterol and the partial inverse agonist timolol. The receptors pack as monomers in an antiparallel association with two distinct cholesterol molecules bound per receptor, but not in the packing interface, thereby indicating a structurally relevant cholesterol-binding site between helices I, II, III, and IV. Thermal stability analysis using isothermal denaturation confirms that a cholesterol analog significantly enhances the stability of the receptor. A consensus motif is defined that predicts cholesterol binding for 44% of human class A receptors, suggesting that specific sterol binding is important to the structure and stability of other G protein-coupled receptors, and that this site may provide a target for therapeutic discovery.

  16. ANALISA TEKNIS KEKUATAN MEKANIS MATERIAL KOMPOSIT BERPENGUAT SERAT AMPAS TEBU (BAGGASE DITINJAU DARI KEKUATAN TARIK DAN IMPAK

    Directory of Open Access Journals (Sweden)

    Hartono Yudo

    2012-04-01

    Full Text Available Serat ampas tebu (baggase merupakan limbah organik yang banyak dihasilkan di pabrik-pabrik pengolahan gula tebu di Indonesia. Serat ini memiliki nilai ekonomis yang cukup tinggi selain merupakan hasil limbah pabrik gula tebu, serat ini juga mudah didapat, murah, tidak membahayakan kesehatan, dapat terdegredasi secara alami (biodegradability sehingga nantinya dengan pemanfaatan sebagai serat penguat komposit mampu mengatasi permasalahan lingkungan. Dari pertimbangan diatas maka penelitian ini dilakukan untuk mendapatkan analisa teknis berupa kekuatan tarik dan impak dari komposit berpenguat serat ampas tebu (baggase dengan perlakuan pola anyaman variasi arah serat sudut arah serat sudut searah 00 dan bersilangan 450. sebagai penguat matrik resin polyester. Dari hasil pengujian spesimen dilakukan analisa kekuatan mekanis kemudian dibandingkan dengan nilai kekuatan mekanis yang disyaratkan/diizinkan oleh Biro Klasifikasi Indonesia (BKI sebagai tolak ukur standar ujinya. Pengujian komposit berpenguat serat ampas tebu membandingkan arah serat sudut 00 dan 450, perlakuan serat pola anyaman, fraksi volume 44% matrik polyester dan 56% serat ampas tebu, dengan metode hand lay up, hasil pengujian didapat harga kekuatan tarik tertinggi dimiliki oleh komposit dengan arah serat sudut searah 00. Hasil pengujian menunjukkan bahwa kekuatan tarik dan modulus elastisitas dari komposit berpenguat serat ampas tebu belum dapat memenuhi standar kekuatan tarik dan modulus elastisitas yang disyaratkan BKI yakni : untuk arah serat sudut searah 00 kekuatan tariknya sebesar 1.69 kg/mm2 dan modulus elastisitasnya sebesar 115.85 kg/mm2, untuk arah serat sudut bersilangan 450 kekuatan tariknya sebesar 1.34 kg/mm2 dan modulus elastisitasnya sebesar 108.40 kg/mm2.

  17. Structure of the ligand-binding domain (LBD) of human androgen receptor in complex with a selective modulator LGD2226

    International Nuclear Information System (INIS)

    Crystal structure of the ligand-binding domain of androgen receptor in complex with LGD2226. The androgen receptor (AR) is a ligand-inducible steroid hormone receptor that mediates androgen action, determining male sexual phenotypes and promoting spermatogenesis. As the androgens play a dominant role in male sexual development and function, steroidal androgen agonists have been used clinically for some years. However, there is a risk of potential side effects and most steroidal androgens cannot be dosed orally, which limits the use of these substances. 1,2-Dihydro-6-N,N-bis(2,2,2-trifluoroethyl) amino-4-trifluoromethyl-2-quinolinone (LGD2226) is a synthetic nonsteroidal ligand and a novel selective AR modulator. The crystal structure of the complex of LGD2226 with the androgen receptor ligand-binding domain (AR LBD) at 2.1 Å was solved and compared with the structure of the AR LBD–R1881 complex. It is hoped that this will aid in further explaining the selectivity of LGD2226 observed in in vitro and in vivo assays and in developing more selective and effective therapeutic agents

  18. Cholinergic-mediated IP3-receptor activation induces long-lasting synaptic enhancement in CA1 pyramidal neurons

    OpenAIRE

    Fernández de Sevilla, D.; Núñez Molina, Ángel; Borde, M.; Malinow, R.; Buño, Washinton

    2008-01-01

    Cholinergic-glutamatergic interactions influence forms of synaptic plasticity that are thought to mediate memory and learning. We tested in vitro the induction of long-lasting synaptic enhancement at Schaffer collaterals by acetylcholine (ACh) at the apical dendrite of CA1 pyramidal neurons and in vivo by stimulation of cholinergic afferents. In vitro ACh induced a Ca2+ wave and synaptic enhancement mediated by insertion of AMPA receptors in spines. Activation of muscarinic ACh receptors (mAC...

  19. Glyphosate and AMPA in U.S. streams, groundwater, precipitation and soils

    Science.gov (United States)

    Battaglin, William A.; Meyer, Michael T.; Kuivila, Kathryn M.; Dietze, Julie E.

    2014-01-01

    Herbicides containing glyphosate are used in more than 130 countries on more than 100 crops. In the United States (U.S.), agricultural use of glyphosate [N-(phosphonomethyl)glycine] has increased from less than 10,000 metric tons per year (active ingredient) in 1993 to more than 70,000 metric tons per year in 2006. In 2006, glyphosate accounted for about 20 percent of all herbicide use (by weight of active ingredient). Glyphosate formulations such as Roundup® are used in homes and in agriculture. Part of the reason for the popularity of glyphosate is the perception that it is an “environmentally benign” herbicide that has low toxicity and little mobility or persistence in the environment. The U.S. Geological Survey developed an analytical method using liquid chromatography/tandem mass spectrometry that can detect small amounts of glyphosate and its primary degradation product aminomethylphosphonic acid (AMPA) in water and sediment. Results from more than 2,000 samples collected from locations distributed across the U.S. indicate that glyphosate is more mobile and occurs more widely in the environment than was previously thought. Glyphosate and AMPA were detected (reporting limits between 0.1 and 0.02 micrograms per liter) in samples collected from surface water, groundwater, rainfall, soil water, and soil, at concentrations from less than 0.1 to more than 100 micrograms per liter. Glyphosate was detected more frequently in rain (86%), ditches and drains (71%), and soil (63%); and less frequently in groundwater (3%) and large rivers (18%). AMPA was detected more frequently in rain (86%), soil (82%), and large rivers (78%); and less frequently in groundwater (8%) and wetlands or vernal pools (37%). Most observed concentrations of glyphosate were well below levels of concern for humans or wildlife, and none exceeded the U.S. Environmental Protection Agency’s Maximum Contaminant Level of 700 micrograms per liter. However, the ecosystem effects of chronic low

  20. Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Ellen Y.T.; Liu, Wei; Zhao, Qiang; Katritch, Vsevolod; Han, Gye Won; Hanson, Michael A.; Shi, Lei; Newman, Amy Hauck; Javitch, Jonathan A.; Cherezov, Vadim; Stevens, Raymond C. (Cornell); (Scripps); (NIDA); (Columbia); (UCSD); (Receptos)

    2010-11-30

    Dopamine modulates movement, cognition, and emotion through activation of dopamine G protein-coupled receptors in the brain. The crystal structure of the human dopamine D3 receptor (D3R) in complex with the small molecule D2R/D3R-specific antagonist eticlopride reveals important features of the ligand binding pocket and extracellular loops. On the intracellular side of the receptor, a locked conformation of the ionic lock and two distinctly different conformations of intracellular loop 2 are observed. Docking of R-22, a D3R-selective antagonist, reveals an extracellular extension of the eticlopride binding site that comprises a second binding pocket for the aryl amide of R-22, which differs between the highly homologous D2R and D3R. This difference provides direction to the design of D3R-selective agents for treating drug abuse and other neuropsychiatric indications.