WorldWideScience

Sample records for amorphous state

  1. Solid-state diffusion in amorphous zirconolite

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.; Dove, M. T.; Trachenko, K. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Zarkadoula, E. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6138 (United States); Todorov, I. T. [STFC Daresbury Laboratory, Warrington WA4 1EP (United Kingdom); Geisler, T. [Steinmann-Institut für Geologie, Mineralogie und Paläontologie, University of Bonn, D-53115 Bonn (Germany); Brazhkin, V. V. [Institute for High Pressure Physics, RAS, 142190 Moscow (Russian Federation)

    2014-11-14

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.

  2. Metastable states in amorphous chalcogenide semiconductors

    CERN Document Server

    Mikla, Victor I

    2009-01-01

    This book addresses an interesting and technologically important class of materials, the amorphous chalcogenide semiconductors. Experimental results on the structural and electronic metastable states in Se-rich chalcogenides are presented. Special attention is paid to the states in the mobility gap and their sensitivity to various factors such as irradiation, annealing and composition. Photoinduced changes of structure and physical properties are also considered and structural transformation at photocrystallization is studied in detail. Finally, the authors discuss potential applications of th

  3. Polyamorphism in Water: Amorphous Ices and their Glassy States

    Science.gov (United States)

    Amann-Winkel, K.; Boehmer, R.; Fujara, F.; Gainaru, C.; Geil, B.; Loerting, T.

    2015-12-01

    Water is ubiquitous and of general importance for our environment. But it is also known as the most anomalous liquid. The fundamental origin of the numerous anomalies of water is still under debate. An understanding of these anomalous properties of water is closely linked to an understanding of the phase diagram of the metastable non-crystalline states of ice. The process of pressure induced amorphization of ice was first observed by Mishima et al. [1]. The authors pressurized hexagonal ice at 77 K up to a pressure of 1.6 GPa to form high density amorphous ice (HDA). So far three distinct structural states of amorphous water are known [2], they are called low- (LDA), high- (HDA) and very high density amorphous ice (VHDA). Since the discovery of multiple distinct amorphous states it is controversy discussed whether this phenomenon of polyamorphism at high pressures is connected to the occurrence of more than one supercooled liquid phase [3]. Alternatively, amorphous ices have been suggested to be of nanocrystalline nature, unrelated to liquids. Indeed inelastic X-ray scattering measurements indicate sharp crystal-like phonons in the amorphous ices [4]. In case of LDA the connection to the low-density liquid (LDL) was inferred from several experiments including the observation of a calorimetric glass-to-liquid transition at 136 K and ambient pressure [5]. Recently also the glass transition in HDA was observed at 116 K at ambient pressure [6] and at 140 K at elevated pressure of 1 GPa [7], using calorimetric measurements as well as dielectric spectroscopy. We discuss here the general importance of amorphous ices and their liquid counterparts and present calorimetric and dielectric measurements on LDA and HDA. The good agreement between dielectric and calorimetric results convey for a clearer picture of water's vitrification phenomenon. [1] O. Mishima, L. D. Calvert, and E. Whalley, Nature 314, 76, 1985 [2] D.T. Bowron, J. L. Finney, A. Hallbrucker, et al., J. Chem

  4. Improved physical stability of amorphous state through acid base interactions.

    Science.gov (United States)

    Telang, Chitra; Mujumdar, Siddharthya; Mathew, Michael

    2009-06-01

    To investigate role of specific interactions in aiding formation and stabilization of amorphous state in ternary and binary dispersions of a weakly acidic drug. Indomethacin (IMC), meglumine (MU), and polyvinyl pyrollidone (PVP) were the model drug, base, and polymer, respectively. Dispersions were prepared using solvent evaporation. Physical mixtures were cryogenically coground. XRPD, PLM, DSC, TGA, and FTIR were used for characterization. MU has a high crystallization tendency and is characterized by a low T(g) (17 degrees C). IMC crystallization was inhibited in ternary dispersion with MU compared to IMC/PVP alone. An amorphous state formed readily even in coground mixtures. Spectroscopic data are indicative of an IMC-MU amorphous salt and supports solid-state proton transfer. IMC-MU salt displays a low T(g) approximately 50 degrees C, but is more physically stable than IMC, which in molecular mixtures with MU, resisted crystallization even when present in stoichiometric excess of base. This is likely due to a disrupted local structure of amorphous IMC due to specific interactions. IMC showed improved physical stability on incorporating MU in polymer, in spite of low T(g) of the base indicating that chemical interactions play a dominant role in physical stabilization. Salt formation could be induced thermally and mechanically.

  5. Solid-state characterization of amorphous and mesomorphous calcium ketoprofen.

    Science.gov (United States)

    Atassi, Faraj; Mao, Chen; Masadeh, Ahmad S; Byrn, Stephen R

    2010-09-01

    This article is concerned with exploring the application of pair distribution in pharmaceutical analysis. The solid-state characterization of amorphous and mesomorphous (liquid crystalline) calcium ketoprofen is used as an example and the structures of the amorphous and mesomorphous phases of calcium ketoprofen are compared to that of the crystalline phase. An approach to calculating the optimal experimental parameters in pair distribution function (PDF) analysis as well as a suggested method to help assign the many different peaks in a PDF diagram of an organic material are discussed. The studied salts were analyzed by X-ray powder diffraction (XRPD), single crystal X-ray diffraction, Raman spectroscopy, polarized light microscopy (PLM), solid-state NMR (SSNMR), variable-temperature SSNMR, and PDF. Raman and SSNMR were useful techniques in identifying and differentiating the crystalline phase from the other two phases but failed, alone, to differentiate between the amorphous and mesomorphous phases. The absence of significant changes in chemical shifts in SSNMR and peak shifts in Raman spectra suggested that the differences in the molecular environment of the major chemical groups in the amorphous and mesomorphous phases were minimal. However, the broadening of the Raman and SSNMR peaks in the noncrystalline phases indicated an increase in the disorder in these systems. PDF analysis of the disordered phases revealed that upon dehydration or quench cooling where the system transformed from crystalline to become disordered, the calcium-calcium and calcium-oxygen (oxygen of the carboxylic acid) distances remained intact meanwhile the rest of the molecule became disordered. The preliminary results from variable-temperature SSNMR showed two different T(1) relaxation time profiles for the amorphous and mesomorphous phases. This was consistent with the hypothesis that part of the molecule remained ordered while the rest of the molecule became disordered and the amorphous

  6. Solid-state flat panel imager with avalanche amorphous selenium

    Science.gov (United States)

    Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei

    2016-03-01

    Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.

  7. Structural characterisation of amorphous materials by solid state NMR

    CERN Document Server

    Mollison, N B

    2002-01-01

    Solid state nuclear magnetic resonance (NMR) is a structural elucidation technique that is ideal as a probe in the investigation of atomic structure of highly complex amorphous materials. In this study, NMR is employed in the structural characterisation of a series of sodium-lithium disilicate glasses. These so-called 'mixed-alkali' glasses are of great scientific interest, since they exhibit non-linear ionic transport related properties; the theory of which is not understood, but is thought to be related to the cation distribution in the disilicate network. This project attempts to utilise solid state NMR to its fullest potential, by combining several techniques, including the novel MQMAS experiment and a series of double resonance measurements. The double resonance techniques TRAPDOR and SEDOR have been attempted to measure sup 2 sup 9 Si-left brace sup 2 sup 3 Na right brace and sup 6 sup , sup 7 Li-left brace sup 7 sup , sup 6 Li right brace interactions respectively. Since these experiments rely on the d...

  8. Solid state amorphization of nanocrystalline nickel by cryogenic laser shock peening

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Chang, E-mail: cye@uakron.edu; Ren, Zhencheng; Zhao, Jingyi; Hou, Xiaoning; Dong, Yalin [Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325 (United States); Liu, Yang; Sang, Xiahan [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-10-07

    In this study, complete solid state amorphization in nanocrystalline nickel has been achieved through cryogenic laser shock peening (CLSP). High resolution transmission electron microscopy has revealed the complete amorphous structure of the sample after CLSP processing. A molecular dynamic model has been used to investigate material behavior during the shock loading and the effects of nanoscale grain boundaries on the amorphization process. It has been found that the initial nanoscale grain boundaries increase the initial Gibbs free energy before plastic deformation and also serve as dislocation emission sources during plastic deformation to contribute to defect density increase, leading to the amorphization of pure nanocrystalline nickel.

  9. The pressure-amorphized state in zirconium tungstate: a precursor to decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Akhilesh K [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sastry, V S [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sahu, P Ch [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Mary, T A [Department of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States)

    2004-02-25

    In contrast to widely accepted view that pressure-induced amorphization arises due to kinetic hindrance of equilibrium phase transitions, here we provide evidence that the metastable pressure-amorphized state in zirconium tungstate is a precursor to decomposition of the compound into a mixture of simple oxides. This is from the volume collapse {delta}V across amorphization, which is obtained for the first time by measuring linear dimensions of irreversibly amorphized samples during their recovery to the original cubic phase upon isochronal annealing up to 1000 K. The anomalously large {delta}V of 25.7 {+-} 1.2% being the same as that expected for the decomposition indicates that this amorphous state is probably a precursor to kinetically hindered decomposition. A P-T diagram of the compound is also proposed.

  10. Exchange bias and bistable magneto-resistance states in amorphous TbFeCo thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaopu, E-mail: xl6ba@virginia.edu; Ma, Chung T.; Poon, S. Joseph, E-mail: sjp9x@virginia.edu [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Lu, Jiwei [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Devaraj, Arun [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Spurgeon, Steven R.; Comes, Ryan B. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2016-01-04

    Amorphous TbFeCo thin films sputter deposited at room temperature on thermally oxidized Si substrate are found to exhibit strong perpendicular magnetic anisotropy. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb atomic percentages distributed within the amorphous film. Exchange bias accompanied by bistable magneto-resistance states has been uncovered near room temperature by magnetization and magneto-transport measurements. The exchange anisotropy originates from the exchange interaction between the ferrimagnetic and ferromagnetic components corresponding to the two amorphous phases. This study provides a platform for exchange bias and magneto-resistance switching using single-layer amorphous ferrimagnetic thin films that require no epitaxial growth.

  11. Exchange bias and bistable magneto-resistance states in amorphous TbFeCo thin films

    Science.gov (United States)

    Li, Xiaopu; Ma, Chung T.; Lu, Jiwei; Devaraj, Arun; Spurgeon, Steven R.; Comes, Ryan B.; Poon, S. Joseph

    2016-01-01

    Amorphous TbFeCo thin films sputter deposited at room temperature on thermally oxidized Si substrate are found to exhibit strong perpendicular magnetic anisotropy. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb atomic percentages distributed within the amorphous film. Exchange bias accompanied by bistable magneto-resistance states has been uncovered near room temperature by magnetization and magneto-transport measurements. The exchange anisotropy originates from the exchange interaction between the ferrimagnetic and ferromagnetic components corresponding to the two amorphous phases. This study provides a platform for exchange bias and magneto-resistance switching using single-layer amorphous ferrimagnetic thin films that require no epitaxial growth.

  12. Heterogeneity of the state and functionality of water molecules sorbed in an amorphous sugar matrix.

    Science.gov (United States)

    Imamura, Koreyoshi; Kagotani, Ryo; Nomura, Mayo; Kinugawa, Kohshi; Nakanishi, Kazuhiro

    2012-04-01

    An amorphous matrix, comprised of sugar molecules, is frequently used in the pharmaceutical industry. An amorphous sugar matrix exhibits high hygroscopicity, and it has been established that the sorbed water lowers the glass transition temperature T(g) of the amorphous sugar matrix. It is naturally expected that the random allocation and configuration of sugar molecules would result in heterogeneity of states for sorbed water. However, most analyses of the behavior of water, when sorbed to an amorphous sugar matrix, have implicitly assumed that all of the sorbed water molecules are in a single state. In this study, the states of water molecules sorbed in an amorphous sugar matrix were analyzed by Fourier-transform IR spectroscopy and a Fourier self-deconvolution technique. When sorbed water molecules were classified into five states, according to the extent to which they are restricted, three of the states resulted in a lowering of T(g) of an amorphous sugar matrix, while the other two were independent of the plasticization of the matrix. This finding provides an explanation for the paradoxical fact that compression at several hundreds of MPa significantly decreases the equilibrium water content at a given RH, while the T(g) remains unchanged.

  13. Multivariate Quantification of the Solid State Phase Composition of Co-Amorphous Naproxen-Indomethacin

    Directory of Open Access Journals (Sweden)

    Andreas Beyer

    2015-10-01

    Full Text Available To benefit from the optimized dissolution properties of active pharmaceutical ingredients in their amorphous forms, co-amorphisation as a viable tool to stabilize these amorphous phases is of both academic and industrial interest. Reports dealing with the physical stability and recrystallization behavior of co-amorphous systems are however limited to qualitative evaluations based on the corresponding X-ray powder diffractograms. Therefore, the objective of the study was to develop a quantification model based on X-ray powder diffractometry (XRPD, followed by a multivariate partial least squares regression approach that enables the simultaneous determination of up to four solid state fractions: crystalline naproxen, γ-indomethacin, α-indomethacin as well as co-amorphous naproxen-indomethacin. For this purpose, a calibration set that covers the whole range of possible combinations of the four components was prepared and analyzed by XRPD. In order to test the model performances, leave-one-out cross validation was performed and revealed root mean square errors of validation between 3.11% and 3.45% for the crystalline molar fractions and 5.57% for the co-amorphous molar fraction. In summary, even four solid state phases, involving one co-amorphous phase, can be quantified with this XRPD data-based approach.

  14. Optical characterization and density of states determination of silicon nanocrystals embedded in amorphous silicon based matrix

    Science.gov (United States)

    van Sebille, M.; Vasudevan, R. A.; Lancee, R. J.; van Swaaij, R. A. C. M. M.; Zeman, M.

    2015-08-01

    We present a non-destructive measurement and simple analysis method for obtaining the absorption coefficient of silicon nanocrystals (NCs) embedded in an amorphous matrix. This method enables us to pinpoint the contribution of silicon NCs to the absorption spectrum of NC containing films. The density of states (DOS) of the amorphous matrix is modelled using the standard model for amorphous silicon while the NCs are modelled using one Gaussian distribution for the occupied states and one for the unoccupied states. For laser annealed a-Si0.66O0.34:H films, our analysis shows a reduction of the NC band gap from approximately 2.34-2.08 eV indicating larger mean NC size for increasing annealing laser fluences, accompanied by a reduction in NC DOS distribution width from 0.28-0.26 eV, indicating a narrower size distribution.

  15. Thermodynamic and Kinetic Study of Crystallization Reaction of Fe/Dy Multilayers Form Amorphous State

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To give further insight into the behavior of Fe/Dy multilayers in the crystallization from as-deposited amorphous state, free energy diagram of Fe/Dy system was constructed based on Miedema semiempirical theory. It is shown that the crystallization of amorphous films is controlled by both thermodynamic and kinetic conditions. The calculated free energies of crystalline Fe and Dy are significantly lower than those in the amorphous states, which provide thermodynamic driving force for crystallization. During annealing, the kinetic phase evolution of the multilayers is controlled by free energy barrier of nucleation and critical-size of new phase nucleus. Thus it explains the experimental results that Fe crystallites formed first followed by Dy grains, whereas crystalline Fe-Dy intermetallic compounds were not observed during annealing at moderate temperatures.

  16. Solid state 31NMR studies of the conversion of amorphous tricalcium phosphate to apatitic tricalcium phosphate.

    Science.gov (United States)

    Roberts, J E; Heughebaert, M; Heughebaert, J C; Bonar, L C; Glimcher, M J; Griffin, R G

    1991-12-01

    The hydrolytic conversion of a solid amorphous calcium phosphate of empirical formula Ca9 (PO4)6 to a poorly crystalline apatitic phase, under conditions where Ca2+ and PO4(3-) were conserved, was studied by means of solid-state magic-angle sample spinning 31P-NMR (nuclear magnetic resonance). Results showed a gradual decrease in hydrated amorphous calcium phosphate and the formation of two new PO4(3-)-containing components: an apatitic component similar to poorly crystalline hydroxyapatite and a protonated PO4(3-), probably HPO4(2-) in a dicalcium phosphate dihydrate (DCPD) brushite-like configuration. This latter component resembles the brushite-like HPO4(2-) component previously observed by 31P-NMR in apatitic calcium phosphates of biological origin. Results were consistent with previous studies by Heughebaert and Montel [18] of the kinetics of the conversion of amorphous calcium phosphate to hydroxyapatite under the same conditions.

  17. Stabilisation of the amorphous state of a thin layer sandwiched between two crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hyot, B.; Poupinet, L.; Desre, P.J

    2003-11-01

    It has been experimentally proven that thinning an amorphous layer, sandwiched between two crystals, up to the nanometer scale, leads to a higher crystallization temperature. The present work is an attempt to explain such behaviour on the basis of thermodynamical arguments. The approach assumes that a nanometric amorphous layer is submitted to the crystal field leading to a gradient of atomic density across the glassy layer. It is shown that the stabilisation of the glassy layer is expected when approaching a thickness of few nanometers. This study is closely related to the concerns of the phase change optical storage because such a technology involves both the use of very thin films and fast structural transitions between the two states (amorphous and crystalline) of the active material.

  18. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs.

    Science.gov (United States)

    Baghel, Shrawan; Cathcart, Helen; O'Reilly, Niall J

    2016-09-01

    Poor water solubility of many drugs has emerged as one of the major challenges in the pharmaceutical world. Polymer-based amorphous solid dispersions have been considered as the major advancement in overcoming limited aqueous solubility and oral absorption issues. The principle drawback of this approach is that they can lack necessary stability and revert to the crystalline form on storage. Significant upfront development is, therefore, required to generate stable amorphous formulations. A thorough understanding of the processes occurring at a molecular level is imperative for the rational design of amorphous solid dispersion products. This review attempts to address the critical molecular and thermodynamic aspects governing the physicochemical properties of such systems. A brief introduction to Biopharmaceutical Classification System, solid dispersions, glass transition, and solubility advantage of amorphous drugs is provided. The objective of this review is to weigh the current understanding of solid dispersion chemistry and to critically review the theoretical, technical, and molecular aspects of solid dispersions (amorphization and crystallization) and potential advantage of polymers (stabilization and solubilization) as inert, hydrophilic, pharmaceutical carrier matrices. In addition, different preformulation tools for the rational selection of polymers, state-of-the-art techniques for preparation and characterization of polymeric amorphous solid dispersions, and drug supersaturation in gastric media are also discussed.

  19. Characterization of degradation products of amorphous and polymorphic forms of clopidogrel bisulphate under solid state stress conditions

    DEFF Research Database (Denmark)

    Raijada, Dhara K; Prasad, Bhagwat; Paudel, Amrit

    2010-01-01

    The present study deals with the stress degradation studies on amorphous and polymorphic forms of clopidogrel bisulphate. The objective was to characterize the degradation products and postulate mechanism of decomposition of the drug under solid state stress conditions. For that, amorphous form...

  20. Steady-state flow properties of amorphous materials

    Science.gov (United States)

    Jadhao, Vikram; O'Connor, Thomas; Robbins, Mark

    2015-03-01

    Molecular dynamics (MD) simulations are used to investigate the steady-state shear flow curves of a standard glass model: the bidisperse Lennard-Jones system. For a wide range of temperatures in the neighborhood of the glass transition temperature Tg predicted by the mode coupling theory, we compute the steady-state shear stress and viscosity as a function of the shear rate γ ˙. At temperatures near and above Tg, the stress crosses over from linear Newtonian behavior at low rates to power law shear-thinning at high rates. As T decreases below Tg, the stress shows a plateau, becoming nearly rate-independent at low γ ˙. There is a weak increase in stress that is consistent with Eyring theory for activated flow of a solid. We find that when the strain rate is reduced to extremely low values, Newtonian behavior appears once more. Insights gained from these simulations are applied to the computation of flow curves of a well-established boundary lubricant: squalane. In the elastohydrodynamic regime, squalane responds like a glassy solid with an Eyring-like response, but at low rates it has a relatively small Newtonian viscosity. Supported by the Army Research Laboratory under Grant W911NF-12-2-0022.

  1. AMORPHOUS POLY(ETHYLENE TEREPHTHALATE) FILMS IN THE STATE OF HIGH GLOBAL CHAIN ORIENTATION BUT NEARLY RANDOM SEGMENTAL ORIENTATION

    Institute of Scientific and Technical Information of China (English)

    QIAN Renyuan; FAN Qingrong; GUAN Jiayu; Chung Long Choy; Shigeyoshi Osaki

    1997-01-01

    The isotropy or anisotropy in some physical properties of the amorphous poly(ethylene terephthalate) films uniaxially drawn at temperatures above its Tg and then quenched to room temperature have been studied. Experimental results here presented show that this amorphous state of high global chain orientation but nearly random segmental orientation,the GOLR state, is nearly isotropic in refractive indices and Young's modulus for small deformation, while it is very probably anisotropic in thermal conduction and microwave dielectric properties.

  2. Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model

    Energy Technology Data Exchange (ETDEWEB)

    Baltrusaitis, Jonas, E-mail: job314@lehigh.edu [Department of Chemical Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015 (United States); PhotoCatalytic Synthesis group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Meander 229, P.O. Box 217, 7500 AE Enschede (Netherlands); Mendoza-Sanchez, Beatriz [CRANN, Chemistry School, Trinity College Dublin, Dublin (Ireland); Fernandez, Vincent [Institut des Matériaux Jean Rouxel, 2 rue de la Houssinière, BP 32229, F-44322 Nantes Cedex 3 (France); Veenstra, Rick [PhotoCatalytic Synthesis group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Meander 229, P.O. Box 217, 7500 AE Enschede (Netherlands); Dukstiene, Nijole [Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas (Lithuania); Roberts, Adam [Kratos Analytical Ltd, Trafford Wharf Road, Wharfside, Manchester, M17 1GP (United Kingdom); Fairley, Neal [Casa Software Ltd, Bay House, 5 Grosvenor Terrace, Teignmouth, Devon TQ14 8NE (United Kingdom)

    2015-01-30

    Highlights: • We analyzed and modeled spectral envelopes of complex molybdenum oxides. • Molybdenum oxide films of varying valence and crystallinity were synthesized. • MoO{sub 3} and MoO{sub 2} line shapes from experimental data were created. • Informed amorphous sample model (IASM) developed. • Amorphous molybdenum oxide XPS envelopes were interpreted. - Abstract: Accurate elemental oxidation state determination for the outer surface of a complex material is of crucial importance in many science and engineering disciplines, including chemistry, fundamental and applied surface science, catalysis, semiconductors and many others. X-ray photoelectron spectroscopy (XPS) is the primary tool used for this purpose. The spectral data obtained, however, is often very complex and can be subject to incorrect interpretation. Unlike traditional XPS spectra fitting procedures using purely synthetic spectral components, here we develop and present an XPS data processing method based on vector analysis that allows creating XPS spectral components by incorporating key information, obtained experimentally. XPS spectral data, obtained from series of molybdenum oxide samples with varying oxidation states and degree of crystallinity, were processed using this method and the corresponding oxidation states present, as well as their relative distribution was elucidated. It was shown that monitoring the evolution of the chemistry and crystal structure of a molybdenum oxide sample due to an invasive X-ray probe could be used to infer solutions to complex spectral envelopes.

  3. Synthesis and electrochemical evaluation of an amorphous titanium dioxide derived from a solid state precursor

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Christopher D.; LaDuca, Holly; Lopez, Carmen M.; Jansen, Andrew N.; Vaughey, J.T. [Electrochemical Energy Storage Group, Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave., Argonne, IL 60439 (United States); McIntyre, Toni; Simmons, Sade; Breitzer, Jonathan G. [Department of Natural Science, Fayetteville State University, Fayetteville, NC (United States)

    2010-04-02

    Titanium oxides are an important class of lithium-ion battery electrodes owing to their good capacity and stability within the cell environment. Although most Ti(IV) oxides are poor electronic conductors, new methods developed to synthesize nanometer scale primary particles have achieved the higher rate capability needed for modern commercial applications. In this report, the anionic water stable titanium oxalate anion [TiO(C{sub 2}O{sub 4}){sub 2}]{sup 2-} was isolated in high yield as the insoluble DABCO (1,4-diazabicyclo[2.2.2]octane) salt. Powder X-ray diffraction studies show that the titanium dioxide material isolated after annealing in air is initially amorphous, converts to N-doped anatase above 400 C, then to rutile above 600 C. Electrochemical studies indicate that the amorphous titanium dioxide phase within a carbon matrix has a stable cycling capacity of {proportional_to}350 mAh g{sup -1}. On crystallizing at 400 C to a carbon-coated anatase the capacity drops to 210 mAh g{sup -1}, and finally upon carbon burn-off to 50 mAh g{sup -1}. Mixtures of the amorphous titanium dioxide and Li{sub 4}Ti{sub 5}O{sub 12} showed a similar electrochemical profile and capacity to Li{sub 4}Ti{sub 5}O{sub 12} but with the addition of a sloping region to the end of the discharge curve that could be advantageous for determining state-of-charge in systems using Li{sub 4}Ti{sub 5}O{sub 12}. (author)

  4. Novel Transrotational Solid State Order Discovered by TEM in Crystallizing Amorphous Films

    Science.gov (United States)

    Kolosov, Vladimir

    Exotic thin crystals with unexpected transrotational microstructures have been discovered by transmission electron microscopy (TEM) for crystal growth in thin (10-100 nm) amorphous films of different chemical nature (oxides, chalcogenides, metals and alloys) prepared by various methods. Primarily we use our TEM bend contour technique. The unusual phenomenon can be traced in situ in TEM column: dislocation independent regular internal bending of crystal lattice planes in a growing crystal. Such transrotation (unit cell trans lation is complicated by small rotationrealized round an axis lying in the film plane) can result in strong regular lattice orientation gradients (up to 300 degrees per micrometer) of different geometries: cylindrical, ellipsoidal, toroidal, saddle, etc. Transrotation is increasing as the film gets thinner. Transrotational crystal resembles ideal single crystal enclosed in a curved space. Transrotational micro crystals have been eventually recognized by other authors in some vital thin film materials, i.e. PCMs for memory, silicides, SrTiO3. Atomic model and possible mechanisms of the phenomenon are discussed. New transrotational nanocrystalline model of amorphous state is also proposed Support of RF Ministry of Education and Science is acknowledged.

  5. Amorphous state in the mixed phase of quark-hadron phase transition in protoneutron stars

    CERN Document Server

    Yasutake, Nobutoshi; Tatsumi, Toshitaka

    2012-01-01

    We study the quark-hadron mixed phase in protoneutron stars, where neutrinos are trapped and lepton number becomes a conserved quantity besides the baryon number and electric charge. Considering protoneutron star matter as a ternary system, the Gibbs conditions are applied together with the Coulomb interaction. We find there appears no crystalline ("pasta") structure in the regime of high lepton-number fraction; the size of pasta becomes very large and the geometrical structure becomes mechanically unstable due to the charge screening effect. Consequently the whole system is separated into two bulk regions like an amorphous state, where the surface effect is safely neglected. The local charge neutrality is approximately attained there. After neutrinos are ejected, the matter becomes a binary system. Charge neutrality is globally ensured and the pasta structures appear there. These features are important to consider the quark-hadron phase transition during the evolution of protoneutron stars.

  6. Achieving an H-induced transparent state in 200 nm thick Mg-Ti film by amorphization

    Science.gov (United States)

    Fang, Fang; Zhao, Qiyang; Wu, Wangyang; Qiu, Jiameng; Song, Yun; Cui, Xiaoli; Sun, Dalin; Ouyang, Liuzhang; Zhu, Min

    2014-01-01

    Crystalline Mg-Ti films with a thickness of more than 50 nm are only switched to a highly absorbing state and cannot be further changed to the transparent state after hydrogen loading at room temperature. To solve this problem, 200 nm thick amorphous MgTix (x = 0.11-0.29) films were prepared and their switchable mirror properties upon hydrogen loading and unloading were investigated. The results show that amorphous MgTix films can be reversibly switched between mirror and transparent states without an absorbing state due to the significant acceleration of hydrogen diffusion by amorphization. Moreover, the switching time of amorphous MgTix films are dramatically shortened with increasing Ti content. Using quartz crystal microbalance method plus transmission spectrum, it is experimentally proved that Ti addition shows little influence on hydrogen diffusion but a strong catalytic effect on MgH2 formation and decomposition. Therefore, the quick formation of a blocking MgH2 layer due to the combined effect of slower hydrogen diffusion in crystalline films and rapid MgH2 formation under Ti catalysis is considered as the reason why the crystalline Mg-Ti films cannot be changed to transparent state after hydrogen loading.

  7. Effect of milling conditions on solid-state amorphization of glipizide, and characterization and stability of solid forms.

    Science.gov (United States)

    Xu, Kailin; Xiong, Xinnuo; Zhai, Yuanming; Wang, Lili; Li, Shanshan; Yan, Jin; Wu, Di; Ma, Xiaoli; Li, Hui

    2016-09-10

    In this study, the amorphization of glipizide was systematically investigated through high-energy ball milling at different temperatures. The results of solid-state amorphization through milling indicated that glipizide underwent direct crystal-to-glass transformation at 15 and 25°C and crystal-to-glass-to-crystal conversion at 35°C; hence, milling time and temperature had significant effects on the amorphization of glipizide, which should be effectively controlled to obtain totally amorphous glipizide. Solid forms of glipizide were detailedly characterized through analyses of X-ray powder diffraction, morphology, thermal curves, vibrational spectra, and solid-state nuclear magnetic resonance. The physical stability of solid forms was investigated under different levels of relative humidity (RH) at 25°C. Forms I and III are kinetically stable and do not form any new solid-state forms at various RH levels. By contrast, Form II is kinetically unstable, undergoing direct glass-to-crystal transformation when RH levels higher than 32.8%. Therefore, stability investigation indicated that Form II should be stored under relatively dry conditions to prevent rapid crystallization. High temperatures can also induce the solid-state transformation of Form II; the conversion rate increased with increasing temperature.

  8. Energy band alignment and electronic states of amorphous carbon surfaces in vacuo and in aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Caro, Miguel A., E-mail: mcaroba@gmail.com [Department of Electrical Engineering and Automation, Aalto University, Espoo (Finland); Department of Applied Physics, COMP Centre of Excellence in Computational Nanoscience, Aalto University, Espoo (Finland); Määttä, Jukka [Department of Chemistry, Aalto University, Espoo (Finland); Lopez-Acevedo, Olga [Department of Applied Physics, COMP Centre of Excellence in Computational Nanoscience, Aalto University, Espoo (Finland); Laurila, Tomi [Department of Electrical Engineering and Automation, Aalto University, Espoo (Finland)

    2015-01-21

    In this paper, we obtain the energy band positions of amorphous carbon (a–C) surfaces in vacuum and in aqueous environment. The calculations are performed using a combination of (i) classical molecular dynamics (MD), (ii) Kohn-Sham density functional theory with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, and (iii) the screened-exchange hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE). PBE allows an accurate generation of a-C and the evaluation of the local electrostatic potential in the a-C/water system, HSE yields an improved description of energetic positions which is critical in this case, and classical MD enables a computationally affordable description of water. Our explicit calculation shows that, both in vacuo and in aqueous environment, the a-C electronic states available in the region comprised between the H{sub 2}/H{sub 2}O and O{sub 2}/H{sub 2}O levels of water correspond to both occupied and unoccupied states within the a-C pseudogap region. These are localized states associated to sp{sup 2} sites in a-C. The band realignment induces a shift of approximately 300 meV of the a-C energy band positions with respect to the redox levels of water.

  9. Analysis of amorphous solid dispersions using 2D solid-state NMR and (1)H T(1) relaxation measurements.

    Science.gov (United States)

    Pham, Tran N; Watson, Simon A; Edwards, Andrew J; Chavda, Manisha; Clawson, Jacalyn S; Strohmeier, Mark; Vogt, Frederick G

    2010-10-04

    Solid-state NMR (SSNMR) can provide detailed structural information about amorphous solid dispersions of pharmaceutical small molecules. In this study, the ability of SSNMR experiments based on dipolar correlation, spin diffusion, and relaxation measurements to characterize the structure of solid dispersions is explored. Observation of spin diffusion effects using the 2D (1)H-(13)C cross-polarization heteronuclear correlation (CP-HETCOR) experiment is shown to be a useful probe of association between the amorphous drug and polymer that is capable of directly proving glass solution formation. Dispersions of acetaminophen and indomethacin in different polymers are examined using this approach, as well as (1)H double-quantum correlation experiments to probe additional structural features. (1)H-(19)F CP-HETCOR serves a similar role for fluorinated drug molecules such as diflunisal in dispersions, providing a rapid means to prove the formation of a glass solution. Phase separation is detected using (13)C, (19)F, and (23)Na-detected (1)H T(1) experiments in crystalline and amorphous solid dispersions that contain small domains. (1)H T(1) measurements of amorphous nanosuspensions of trehalose and dextran illustrate the ability of SSNMR to detect domain size effects in dispersions that are not glass solutions via spin diffusion effects. Two previously unreported amorphous solid dispersions involving up to three components and containing voriconazole and telithromycin are analyzed using these experiments to demonstrate the general applicability of the approach.

  10. Multivariate Quantification of the Solid State Phase Composition of Co-Amorphous Naproxen-Indomethacin

    DEFF Research Database (Denmark)

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian;

    2015-01-01

    To benefit from the optimized dissolution properties of active pharmaceutical ingredients in their amorphous forms, co-amorphisation as a viable tool to stabilize these amorphous phases is of both academic and industrial interest. Reports dealing with the physical stability and recrystallization ...

  11. Steady-state photoconductivity of amorphous (As4S3Se3)1-x:Snx films

    Science.gov (United States)

    Iaseniuc, O. V.; Iovu, M. S.; Cojocaru, I. A.; Prisacar, A. M.

    2015-02-01

    Amorphous arsenic trisulfide (As2S3) and arsenic triselenide (As2Se3) are among widely investigated amorphous materials due to its interesting electrical, optical and photoelectrical properties. In order to improve the physical properties and recording characteristics, and to extend the spectral range of photosensibility, a special interest represents the mixed amorphous materials, like (As2S3):(As2Se3). Chalcogenide vitreous semiconductors (ChVS) of the As-S-Se system exhibit photostructural transformations with reversible and irreversible properties, and are promising materials as registration media for holography and optical information, for fabrication of diffractive elements, and other optoelectronic applications. Because many optoelectronic devices on amorphous semiconductors are based on the photoconductivity effect, special interests represent investigation of the stationary and non-stationary characteristics of photoconductivity. In this paper the experimental results of steady-state photoconductivity and holographic characteristics of amorphous (As4S3Se3)1-x:Snx thin films are presented. It was shown that the photoconductivity spectra depend on the polarity on the top illuminated electrode and on the Sn concentration in the host glass. The photosensitivity of amorphous ((As4S3Se3)1-x:Snx thin films is almost constant for all Sn-containing glasses. The Moss rule was used for determination of the optical forbidden gap Eg from the photoconductivity spectra. It was demonstrated that the investigated amorphous films are sensitive to the light irradiation and can be used as effective registration media for holographic information. The relaxation of photodarkening in amorphous (As4S3Se3)1-x:Snx thin films was investigated and was shown that the relaxation curves of transmittance T/T0 = f(t) can be described the stretch exponential function T(t)/T(0) = A0+Aexp[-(t-t0)/τ] (1-β) . The kinetics of diffraction efficiency growth η(t) was measured by registration of

  12. Density and localized states' impact on amorphous carbon electron transport mechanisms

    Science.gov (United States)

    Caicedo-Dávila, S.; Lopez-Acevedo, O.; Velasco-Medina, J.; Avila, A.

    2016-12-01

    This work discusses the electron transport mechanisms that we obtained as a function of the density of amorphous carbon (a-C) ultra-thin films. We calculated the density of states (total and projected), degree of electronic states' localization, and transmission function using the density functional theory and nonequilibrium Green's functions method. We generated 25 sample a-C structures using ab-initio molecular dynamics within the isothermal-isobaric ensemble. We identified three transport regimes as a function of the density, varying from semimetallic in low-density samples ( ≤2.4 g/cm3) to thermally activated in high-density ( ≥2.9 g/cm3) tetrahedral a-C. The middle-range densities (2.4 g/cm3 ≤ρ≤ 2.9 g/cm3) are characterized by resonant tunneling and hopping transport. Our findings offer a different perspective from the tight-binding model proposed by Katkov and Bhattacharyya [J. Appl. Phys. 113, 183712 (2013)], and agree with experimental observations in low-dimensional carbon systems [see S. Bhattacharyya, Appl. Phys. Lett. 91, 21 (2007)]. Identifying transport regimes is crucial to the process of understanding and applying a-C thin film in electronic devices and electrode coating in biosensors.

  13. Solid state amorphization in the Al-Fe binary system during high energy milling

    Energy Technology Data Exchange (ETDEWEB)

    Urban, P., E-mail: purban@us.es; Montes, J. M.; Cintas, J. [University of Seville, Department of Mechanical and Materials Engineering, ETSI, Camino de los Descubrimientos s/n, Seville, 41092 (Spain); Cuevas, F. G., E-mail: fgcuevas@dqcm.uhu.es [University of Huelva, Department of Chemistry and Materials Science, ETSI, Campus La Rábida, Carretera Palos s/n, Palos de la Frontera, Huelva, 21819 (Spain)

    2013-12-16

    In the present study, mechanical alloying (MA) of Al75Fe25 elemental powders mixture was carried out in argon atmosphere, using a high energy attritor ball mill. The microstructure of the milled products at different stages of milling was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results showed that the amorphous phase content increased by increasing the milling time, and after 50 hours the amorphization process became complete. Heating the samples resulted in the crystallization of the synthesized amorphous alloys and the appearance of the equilibrium intermetallic compounds Al{sub 5}Fe{sub 2}.

  14. XAFS Study on Solid State Amorphization of Alloys by Mechanical Alloying

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Structural evolution of alloys by ball-milling during solid stateamorphization were studied by means of XAFS technique. The first one is amorphization process of Fe and B powder mixtures by mechanical alloying (MA), and the second one is amorphization process of ordered B2 CoZr intermetallic compound by mechanical milling (MM). The mixing process of Fe and B and disintegration process of ordered B2 CoZr intermetallic compound crystal were observed clearly in atomic level by XAFS method. The micro-mechanism of amorphization process of alloy by ball-milling was discussed.

  15. Solid-state properties and dissolution behaviour of tablets containing co-amorphous indomethacin-arginine

    DEFF Research Database (Denmark)

    Lenz, Elisabeth; Jensen, Katrine Birgitte Tarp; Blaabjerg, Lasse Ingerslev;

    2015-01-01

    Co-amorphous drug formulations provide the possibility to stabilize a drug in its amorphous form by interactions with low molecular weight compounds, e.g. amino acids. Recent studies have shown the feasibility of spray drying as a technique to manufacture co-amorphous indomethacin......–arginine in a larger production scale. In this work, a tablet formulation was developed for a co-amorphous salt, namely spray dried indomethacin–arginine (SD IND–ARG). The effects of compaction pressure on tablet properties, physical stability and dissolution profiles under non-sink conditions were examined....... Dissolution profiles of tablets with SD IND–ARG (TAB SD IND–ARG) were compared to those of tablets containing a physical mixture of crystalline IND and ARG (TAB PM IND–ARG) and to the dissolution of pure spray dried powder. Concerning tableting, the developed formulation allowed for the preparation of tablets...

  16. Anode properties of silicon-rich amorphous silicon suboxide films in all-solid-state lithium batteries

    Science.gov (United States)

    Miyazaki, Reona; Ohta, Narumi; Ohnishi, Tsuyoshi; Takada, Kazunori

    2016-10-01

    This paper reports the effects of introducing oxygen into amorphous silicon films on their anode properties in all-solid-state lithium batteries. Although poor cycling performance is a critical issue in silicon anodes, it has been effectively improved by introducing even a small amount of oxygen, that is, even in Si-rich amorphous silicon suboxide (a-SiOx) films. Because of the small amount of oxygen in the films, high cycling performance has been achieved without lowering the capacity and power density: an a-Si film delivers discharge capacity of 2500 mAh g-1 under high discharge current density of 10 mA cm-2 (35 C). These results demonstrate that a-SiOx is a promising candidate for high-capacity anode materials in solid-state batteries.

  17. Solid-State Spectroscopic Investigation of Molecular Interactions between Clofazimine and Hypromellose Phthalate in Amorphous Solid Dispersions.

    Science.gov (United States)

    Nie, Haichen; Su, Yongchao; Zhang, Mingtao; Song, Yang; Leone, Anthony; Taylor, Lynne S; Marsac, Patrick J; Li, Tonglei; Byrn, Stephen R

    2016-11-07

    It has been technically challenging to specify the detailed molecular interactions and binding motif between drugs and polymeric inhibitors in the solid state. To further investigate drug-polymer interactions from a molecular perspective, a solid dispersion of clofazimine (CLF) and hypromellose phthalate (HPMCP), with reported superior amorphous drug loading capacity and physical stability, was selected as a model system. The CLF-HPMCP interactions in solid dispersions were investigated by various solid state spectroscopic methods including ultraviolet-visible (UV-vis), infrared (IR), and solid-state NMR (ssNMR) spectroscopy. Significant spectral changes suggest that protonated CLF is ionically bonded to the carboxylate from the phthalyl substituents of HPMCP. In addition, multivariate analysis of spectra was applied to optimize the concentration of polymeric inhibitor used to formulate the amorphous solid dispersions. Most interestingly, proton transfer between CLF and carboxylic acid was experimentally investigated from 2D (1)H-(1)H homonuclear double quantum NMR spectra by utilizing the ultrafast magic-angle spinning (MAS) technique. The molecular interaction pattern and the critical bonding structure in CLF-HPMCP dispersions were further delineated by successfully correlating ssNMR findings with quantum chemistry calculations. These high-resolution investigations provide critical structural information on active pharmaceutical ingredient-polymer interaction, which can be useful for rational selection of appropriate polymeric carriers, which are effective crystallization inhibitors for amorphous drugs.

  18. Hydrogen Bonding Interactions in Amorphous Indomethacin and Its Amorphous Solid Dispersions with Poly(vinylpyrrolidone) and Poly(vinylpyrrolidone-co-vinyl acetate) Studied Using (13)C Solid-State NMR.

    Science.gov (United States)

    Yuan, Xiaoda; Xiang, Tian-Xiang; Anderson, Bradley D; Munson, Eric J

    2015-12-07

    Hydrogen bonding interactions in amorphous indomethacin and amorphous solid dispersions of indomethacin with poly(vinylpyrrolidone), or PVP, and poly(vinylpyrrolidone-co-vinyl acetate), or PVP/VA, were investigated quantitatively using solid-state NMR spectroscopy. Indomethacin that was (13)C isotopically labeled at the carboxylic acid carbon was used to selectively analyze the carbonyl region of the spectrum. Deconvolution of the carboxylic acid carbon peak revealed that 59% of amorphous indomethacin molecules were hydrogen bonded through carboxylic acid cyclic dimers, 15% were in disordered carboxylic acid chains, 19% were hydrogen bonded through carboxylic acid and amide interactions, and the remaining 7% were free of hydrogen bonds. The standard dimerization enthalpy and entropy of amorphous indomethacin were estimated to be -38 kJ/mol and -91 J/(mol · K), respectively, using polystyrene as the "solvent". Polymers such as PVP and PVP/VA disrupted indomethacin self-interactions and formed hydrogen bonds with the drug. The carboxylic acid dimers were almost completely disrupted with 50% (wt) of PVP or PVP/VA. The fraction of disordered carboxylic acid chains also decreased as the polymer content increased. The solid-state NMR results were compared with molecular dynamics (MD) simulations from the literature. The present work highlights the potential of (13)C solid-state NMR to detect and quantify various hydrogen bonded species in amorphous solid dispersions as well as to serve as an experimental validation of MD simulations.

  19. Pressure-volume-temperature and excess molar volume prediction of amorphous and crystallizable polymer blends by equation of state

    Institute of Scientific and Technical Information of China (English)

    Fakhri Yousefi; Hajir Karimi; Maryam Gomar

    2015-01-01

    In this work the statistical mechanical equation of state was developed for volumetric properties of crystal ine and amorphous polymer blends. The Ihm–Song–Mason equations of state (ISMEOS) based on temperature and density at melting point (Tm andρm) as scaling constants were developed for crystalline polymers such as poly(propylene glycol)+poly(ethylene glycol)-200 (PPG+PEG-200), poly(ethylene glycol) methyl ether-300 (PEGME-350)+PEG-200 and PEGME-350+PEG-600. Furthermore, for amorphous polymer blends con-taining poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)+polystyrene (PS) and PS+poly(vinylmethylether) (PVME), the density and surface tension at glass transition (ρg andγg) were used for estimation of second Virial coefficient. The calculation of second Virial coefficients (B2), effective van der Waals co-volume (b) and correction factor (α) was required for judgment about applicability of this model. The obtained results by ISMEOS for crys-talline and amorphous polymer blends were in good agreement with the experimental data with absolute aver-age deviations of 0.84%and 1.04%, respectively.

  20. State transformations and ice nucleation in glassy or (semi-solid amorphous organic aerosol

    Directory of Open Access Journals (Sweden)

    K. J. Baustian

    2012-10-01

    Full Text Available Glassy or amorphous (semi-solid organic aerosol particles have the potential to serve as surfaces for heterogeneous ice nucleation in cirrus clouds. Raman spectroscopy and optical microscopy have been used in conjunction with a cold stage to examine water uptake and ice nucleation on individual aqueous organic glass particles at atmospherically relevant temperatures (200–273 K. Three organic compounds considered proxies for atmospheric secondary organic aerosol (SOA were used in this investigation: sucrose, citric acid and glucose. Internally mixed particles consisting of each organic species and ammonium sulfate were also investigated.

    Results from water uptake experiments were used to construct glass transition curves and state diagrams for each organic and corresponding mixture. A unique glass transition point on each state diagram, Tg', was used to quantify and compare results from this study to previous works. Values of Tg' determined for aqueous sucrose, glucose and citric acid glasses were 236 K, 230 K and 220 K, respectively. Values of Tg' for internally mixed organic/sulfate particles were always significantly lower; 210 K, 207 K and 215 K for sucrose/sulfate, glucose/sulfate and citric acid/sulfate, respectively.

    All investigated organic species were observed to serve as heterogeneous ice nuclei at tropospheric temperatures. Heterogeneous ice nucleation on pure organic particles occurred at Sice=1.1–1.4 for temperatures between 235 K and 200 K. Particles consisting of 1:1 organic-sulfate mixtures remained liquid over a greater range of conditions but were in some cases also observed to depositionally nucleate ice at temperatures below 202 K (Sice=1.25–1.38.

    Glass transition curves constructed from experimental data were incorporated into the Community Aerosol Radiation Model for Atmospheres (CARMA along with the

  1. Self Exchange Bias and Bi-stable Magneto-Resistance States in Amorphous TbFeCo and TbSmFeCo Thin Films

    Science.gov (United States)

    Ma, Chung; Li, Xiaopu; Lu, Jiwei; Poon, Joseph; Comes, Ryan; Devaraj, Arun; Spurgeon, Steven

    Amorphous ferrimagetic TbFeCo and TbSmFeCo thin films are found to exhibit strong perpendicular magnetic anisotropy. Self exchange bias effect and bi-stable magneto-resistance states are observed near compensation temperature by magnetic hysteresis loop, anomalous Hall effect and transverse magneto-resistance measurements. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb concentration distributed within the amorphous films. The observed exchange anisotropy originates from the exchange interaction between the two nanoscale amorphous phases. Exchange bias effect is used for increasing stability in spin valves and magnetic tunneling junctions. This study opens up a new platform for using amorphous ferrimagnetic thin films that require no epitaxial growth in nanodevices.. The work was supported by the Defense Threat Reduction Agency Grant and the U.S. Department of Energy.

  2. Gap states in the electronic structure of SnO2 single crystals and amorphous SnOx thin films

    Science.gov (United States)

    Haeberle, J.; Machulik, S.; Janowitz, C.; Manzke, R.; Gaspar, D.; Barquinha, P.; Schmeißer, D.

    2016-09-01

    The electronic structure of a SnO2 single crystal is determined by employing resonant photoelectron spectroscopy. We determine the core level, valence band, and X-ray absorption (XAS) data and compare these with those of amorphous SnOx thin films. We find similar properties concerning the data of the core levels, the valence band features, and the absorption data at the O1s edge. We find strong signals arising from intrinsic in-gap states and discuss their origin in terms of polaronic and charge-transfer defects. We deduce from the XAS data recorded at the Sn3d edge that the Sn4d10 ground state has contributions of 4d9 and 4d8 states due to configuration interaction. We identify localized electronic states depending on the strength of the 4d-5s5p interaction and of the O2p-to-Sn4d charge-transfer processes, both appear separated from the extended band-like states of the conduction band. For the amorphous SnOx thin films, significant differences are found only in the absorption data at the Sn3d-edge due to a stronger localization of the in-gap states.

  3. Investigating miscibility and molecular mobility of nifedipine-PVP amorphous solid dispersions using solid-state NMR spectroscopy.

    Science.gov (United States)

    Yuan, Xiaoda; Sperger, Diana; Munson, Eric J

    2014-01-06

    Solid-state NMR (SSNMR) (1)H T1 and T1ρ relaxation times were used to evaluate the miscibility of amorphous solid dispersions of nifedipine (NIF) and polyvinylpyrrolidone (PVP) prepared by three different methods: melt quenching in the typical lab setting, spray drying and melt quenching in the NMR rotor while spinning. Of the five compositions prepared by melt quenching in the lab setting, the 95:5 and 90:10 NIF:PVP (w:w) amorphous solid dispersions were not miscible while 75:25, 60:40, and 50:50 NIF:PVP dispersions were miscible by the (1)H T1ρ measurements. The domain size of the miscible systems was estimated to be less than 4.5 nm. Amorphous solid dispersions with composition of 90:10 NIF:PVP prepared by spray drying and melt quenching in the NMR rotor showed miscibility by (1)H T1ρ values. Variable-temperature SSNMR (1)H T1ρ relaxation measurements revealed a change in relaxation time at approximately 20 °C below Tg, suggesting increased molecular mobility above that temperature.

  4. Amorphous chalcogenide semiconductors for solid state dosimetric systems of high-energetic ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Pedagogical University, Czestochowa (Poland)]|[Institute of Materials, Lvov (Ukraine)

    1997-12-31

    The application possibilities of amorphous chalcogenide semiconductors use as radiation-sensitive elements of high-energetic (E > 1 MeV) dosimetric systems are analysed. It is shown that investigated materials are characterized by more wide region of registered absorbed doses and low temperature threshold of radiation information bleaching in comparison with well-known analogies based on coloring oxide glasses. (author). 16 refs, 1 tab.

  5. Solid state photochemistry. Subpanel A-2(b): Metastability in hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, D. [Solarex Corporation, Newton, PA (United States)

    1996-09-01

    All device quality amorphous silicon based materials exhibit degradation in electronic properties when exposed to sunlight. The photo-induced defects are associated with Si dangling bonds that are created by the recombination and/or trapping of photogenerated carriers. The defects are metastable and can be annealed out at temperatures of about 150 to 200 degrees Centigrade. The density of metastable defects is larger in films that are contaminated with > 10{sup 19} per cubic cm of impurities such as oxygen, carbon and nitrogen. However, recent experimental results indicate that some metastable defects are still present in films with very low impurity concentrations. The photo-induced defects typically saturate after 100 to 1000 hours of exposure to one sun illumination depending on the deposition conditions. There is also experimental evidence that photo-induced structural changes are occurring in the amorphous silicon based materials and that hydrogen may be playing an important role in both the photo-induced structural changes and in the creation of metastable defects.

  6. Nuclear magnetic resonance studies of DNP-ready trehalose obtained by solid state mechanochemical amorphization.

    Science.gov (United States)

    Filibian, M; Elisei, E; Colombo Serra, S; Rosso, A; Tedoldi, F; Cesàro, A; Carretta, P

    2016-06-22

    (1)H nuclear spin-lattice relaxation and Dynamic Nuclear Polarization (DNP) have been studied in amorphous samples of trehalose sugar doped with TEMPO radicals by means of mechanical milling, in the 1.6-4.2 K temperature range. The radical concentration was varied between 0.34 and 0.81%. The highest polarization of 15% at 1.6 K, observed in the sample with concentration 0.50%, is of the same order of magnitude of that reported in standard frozen solutions with TEMPO. The temperature and concentration dependence of the spin-lattice relaxation rate 1/T1, dominated by the coupling with the electron spins, were found to follow power laws with an exponent close to 3 in all samples. The observed proportionality between 1/T1 and the polarization rate 1/Tpol, with a coefficient related to the electron polarization, is consistent with the presence of Thermal Mixing (TM) and a good contact between the nuclear and the electron spins. At high electron concentration additional relaxation channels causing a decrease in the nuclear polarization must be considered. These results provide further support for a more extensive use of amorphous DNP-ready samples, obtained by means of comilling, in dissolution DNP experiments and possibly for in vivo metabolic imaging.

  7. Microscopic origin of resistance drift in the amorphous state of the phase-change compound GeTe

    Science.gov (United States)

    Gabardi, S.; Caravati, S.; Sosso, G. C.; Behler, J.; Bernasconi, M.

    2015-08-01

    Aging is a common feature of the glassy state. In the case of phase-change chalcogenide alloys the aging of the amorphous state is responsible for an increase of the electrical resistance with time. This phenomenon called drift is detrimental in the application of these materials in phase-change nonvolatile memories, which are emerging as promising candidates for storage class memories. By means of combined molecular dynamics and electronic structure calculations based on density functional theory, we have unraveled the atomistic origin of the resistance drift in the prototypical phase-change compound GeTe. The drift results from a widening of the band gap and a reduction of Urbach tails due to structural relaxations leading to the removal of chains of Ge-Ge homopolar bonds. The same structural features are actually responsible for the high mobility above the glass transition which boosts the crystallization speed exploited in the device.

  8. Processing Bi-Pb-Sr-Ca-Cu-O superconductors from amorphous state

    Science.gov (United States)

    Chiang, C. K.; Freiman, S. W.; Wong-Ng, W.; Hwang, N. M.; Shapiro, A. J.; Hill, M. D.; Cook, L. P.; Shull, R. D.; Swartzendruber, L. J.; Bennett, L. H.

    1990-01-01

    Researchers produced superconducting ceramics of the Bi-Pb-Sr-Ca-Cu-O system started from a glass. To form the glass, the mixed oxide powder was melted at 1200 C in air. The liquid was quenched rapidly by pouring it onto an aluminum plate and rapidly pressing with another plate. The quenched compound was in the form of black amorphous solid, whose x-ray powder pattern has no crystalline peaks. After heat treatment at high temperatures, the glass crystallized into a superconductor. The crystalline phases in the superconductor identified using x-ray diffraction patterns. These phases were that associated with the superconducting phases of T(sub c) = 80 K (Bi2Ca1Sr2Cu2Ox) and of T(sub c) = 110 K (Bi2Ca2Sr2Cu3Ox). The dc resistivity and the ac susceptibility of these superconductors were studied.

  9. Structural and dynamic properties of amorphous solid dispersions: the role of solid-state nuclear magnetic resonance spectroscopy and relaxometry.

    Science.gov (United States)

    Paudel, Amrit; Geppi, Marco; Van den Mooter, Guy

    2014-09-01

    Amorphous solid dispersions (ASDs) are one of the frontier strategies to improve solubility and dissolution rate of poorly soluble drugs and hence tackling the growing challenges in oral bioavailability. Pharmaceutical performance, physicochemical stability, and downstream processability of ASD largely rely on the physical structure of the product. This necessitates in-depth characterization of ASD microstructure. Solid-state nuclear magnetic resonance (SS-NMR) techniques bear the ultimate analytical capabilities to provide the molecular level information on the dynamics and phase compositions of amorphous dispersions. SS-NMR spectroscopy/relaxometry, as a single and nondestructive technique, can reveal diverse and critical structural information of complex ASD formulations that are barely amenable from any other existing technique. The purpose of the current article is to review the recent most important studies on various sophisticated and information-rich one-dimensional and two-dimensional SS-NMR spectroscopy/relaxometry for the analysis of molecular mobility, miscibility, drug-carrier interactions, crystallinity, and crystallization in ASD. Some specific examples on microstructural elucidations of challenging ASD using multidimensional and multinuclear SS-NMR are presented. Additionally, some relevant examples on the utility of solution-NMR and NMR-imaging techniques for the investigation of the dissolution behavior of ASD are gathered.

  10. The role of Carboxydothermus hydrogenoformans in the conversion of calcium phosphate from amorphous to crystalline state.

    Science.gov (United States)

    Haddad, Mathieu; Vali, Hojatollah; Paquette, Jeanne; Guiot, Serge R

    2014-01-01

    Two previously unknown modes of biomineralization observed in the presence of Carboxydothermus hydrogenoformans are presented. Following the addition of NaHCO3 and the formation of an amorphous calcium phosphate precipitate in a DSMZ medium inoculated with C. hydrogenoformans, two distinct crystalline solids were recovered after 15 and 30 days of incubation. The first of these solids occurred as micrometric clusters of blocky, angular crystals, which were associated with bacterial biofilm. The second solid occurred as 30-50 nm nanorods that were found scattered among the organic products of bacterial lysis. The biphasic mixture of solids was clearly dominated by the first phase. The X-ray diffractometry (XRD) peaks and Fourier transform infrared spectroscopy (FTIR) spectrum of this biphasic material consistently showed features characteristic of Mg-whitlockite. No organic content or protein could be identified by dissolving the solids. In both cases, the mode of biomineralization appears to be biologically induced rather than biologically controlled. Since Mg is known to be a strong inhibitor of the nucleation and growth of CaP, C. hydrogenoformans may act by providing sites that chelate Mg or form complexes with it, thus decreasing its activity as nucleation and crystal growth inhibitor. The synthesis of whitlockite and nano-HAP-like material by C. hydrogenoformans demonstrates the versatility of this organism also known for its ability to perform the water-gas shift reaction, and may have applications in bacterially mediated synthesis of CaP materials, as an environmentally friendly alternative process.

  11. The role of Carboxydothermus hydrogenoformans in the conversion of calcium phosphate from amorphous to crystalline state.

    Directory of Open Access Journals (Sweden)

    Mathieu Haddad

    Full Text Available Two previously unknown modes of biomineralization observed in the presence of Carboxydothermus hydrogenoformans are presented. Following the addition of NaHCO3 and the formation of an amorphous calcium phosphate precipitate in a DSMZ medium inoculated with C. hydrogenoformans, two distinct crystalline solids were recovered after 15 and 30 days of incubation. The first of these solids occurred as micrometric clusters of blocky, angular crystals, which were associated with bacterial biofilm. The second solid occurred as 30-50 nm nanorods that were found scattered among the organic products of bacterial lysis. The biphasic mixture of solids was clearly dominated by the first phase. The X-ray diffractometry (XRD peaks and Fourier transform infrared spectroscopy (FTIR spectrum of this biphasic material consistently showed features characteristic of Mg-whitlockite. No organic content or protein could be identified by dissolving the solids. In both cases, the mode of biomineralization appears to be biologically induced rather than biologically controlled. Since Mg is known to be a strong inhibitor of the nucleation and growth of CaP, C. hydrogenoformans may act by providing sites that chelate Mg or form complexes with it, thus decreasing its activity as nucleation and crystal growth inhibitor. The synthesis of whitlockite and nano-HAP-like material by C. hydrogenoformans demonstrates the versatility of this organism also known for its ability to perform the water-gas shift reaction, and may have applications in bacterially mediated synthesis of CaP materials, as an environmentally friendly alternative process.

  12. Effective interface state effects in hydrogenated amorphous-crystalline silicon heterostructures using ultraviolet laser photocarrier radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, A. [Center for Advanced Diffusion-Wave Technologies (CADIFT), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8 (Canada); Mandelis, A. [Center for Advanced Diffusion-Wave Technologies (CADIFT), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8 (Canada); Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4 (Canada); Halliop, B.; Kherani, N. P. [Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4 (Canada)

    2013-12-28

    Ultraviolet photocarrier radiometry (UV-PCR) was used for the characterization of thin-film (nanolayer) intrinsic hydrogenated amorphous silicon (i-a-Si:H) on c-Si. The small absorption depth (approximately 10 nm at 355 nm laser excitation) leads to strong influence of the nanolayer parameters on the propagation and recombination of the photocarrier density wave (CDW) within the layer and the substrate. A theoretical PCR model including the presence of effective interface carrier traps was developed and used to evaluate the transport parameters of the substrate c-Si as well as those of the i-a-Si:H nanolayer. Unlike conventional optoelectronic characterization methods such as photoconductance, photovoltage, and photoluminescence, UV-PCR can be applied to more complete quantitative characterization of a-Si:H/c-Si heterojunction solar cells, including transport properties and defect structures. The quantitative results elucidate the strong effect of a front-surface passivating nanolayer on the transport properties of the entire structure as the result of effective a-Si:H/c-Si interface trap neutralization through occupation. A further dramatic improvement of those properties with the addition of a back-surface passivating nanolayer is observed and interpreted as the result of the interaction of the increased excess bulk CDW with, and more complete occupation and neutralization of, effective front interface traps.

  13. Effective interface state effects in hydrogenated amorphous-crystalline silicon heterostructures using ultraviolet laser photocarrier radiometry

    Science.gov (United States)

    Melnikov, A.; Mandelis, A.; Halliop, B.; Kherani, N. P.

    2013-12-01

    Ultraviolet photocarrier radiometry (UV-PCR) was used for the characterization of thin-film (nanolayer) intrinsic hydrogenated amorphous silicon (i-a-Si:H) on c-Si. The small absorption depth (approximately 10 nm at 355 nm laser excitation) leads to strong influence of the nanolayer parameters on the propagation and recombination of the photocarrier density wave (CDW) within the layer and the substrate. A theoretical PCR model including the presence of effective interface carrier traps was developed and used to evaluate the transport parameters of the substrate c-Si as well as those of the i-a-Si:H nanolayer. Unlike conventional optoelectronic characterization methods such as photoconductance, photovoltage, and photoluminescence, UV-PCR can be applied to more complete quantitative characterization of a-Si:H/c-Si heterojunction solar cells, including transport properties and defect structures. The quantitative results elucidate the strong effect of a front-surface passivating nanolayer on the transport properties of the entire structure as the result of effective a-Si:H/c-Si interface trap neutralization through occupation. A further dramatic improvement of those properties with the addition of a back-surface passivating nanolayer is observed and interpreted as the result of the interaction of the increased excess bulk CDW with, and more complete occupation and neutralization of, effective front interface traps.

  14. The influence of d- and f-states on structure formation - amorphous alloys containing rare earths as model systems

    Energy Technology Data Exchange (ETDEWEB)

    Stiehler, Martin; Pleul, Michael; Haeussler, Peter [Chemnitz University of Technology, 09126 Chemnitz (Germany)

    2011-07-01

    Amorphous phases as precursors of the crystalline state are interesting for investigating fundamental structure forming processes and the related evolution of electronic transport. During the last years we were able to show that many different classes of alloys organize themselves under the influence of a resonance-like interaction between the global subsystems of the electrons and the static structure. Especially for binary Al-TM alloys TM: the transition metals of the 4th period (Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu) we reported recently on an electronic influence on phase stability driven by hybridization effects between the Al-p- and the TM-d-states, showing an interesting systematics depending on the number of unoccupied TM-d-states reflected in different properties. Currently we are about to extend those investigations to systems with transition metals of the 5th and 6th period. Embedded in this class of elements are the so-called Rare Earth metals (Sc, Y, La, and the Lanthanoids). These elements exhibit very similar chemical properties although some of them (the Lanthanoids) contain f-electrons. This provides the possibility of studying the influence of localized magnetic moments (f-states) on structure formation. In this contribution we report on results concerning the static structure, the electrical resistivity and the Hall effect of the binary systems Al-Y and Al-Ce.

  15. The influence of d- and f-states on structure formation - amorphous alloys containing Rare Earths as model systems

    Energy Technology Data Exchange (ETDEWEB)

    Stiehler, Martin; Pleul, Michael; Haeussler, Peter [Chemnitz University of Technology, 09126 Chemnitz (Germany)

    2010-07-01

    Amorphous phases as precursors of the crystalline state are interesting for investigating fundamental structure forming processes and the related evolution of electronic transport. During the last years we were able to show that many different classes of alloys organize themselves under the influence of a resonance interaction between the global subsystems of the electrons and the static structure. Especially for binary Al-TM alloys (TM: the transition metals of the 4th period Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu) we reported recently on an electronic influence on phase stability driven by hybridization effects between the Al-p- and the TM-d-states, showing an interesting systematics depending on the number of unoccupied TM-d-states reflected in different properties. Currently we are about to extend the investigations to systems with transition metals of the 5th and 6th period. Embedded in this class of elements are the so-called Rare Earth metals (Sc, Y, La, and the Lanthanoids). These elements exhibit very similar chemical properties although some of them (the Lanthanoids) contain f-electrons. This provides the possibility of studying the influence of magnetic influences, provided by the localized f-states, on structure formation. In this contribution we report on preliminary results concerning the static structure, the electrical resistivity and the Hall effect of the binary systems Al-Y and Al-Ce.

  16. Trehalose amorphization and recrystallization.

    Science.gov (United States)

    Sussich, Fabiana; Cesàro, Attilio

    2008-10-13

    The stability of the amorphous trehalose prepared by using several procedures is presented and discussed. Amorphization is shown to occur by melting (T(m)=215 degrees C) or milling (room temperature) the crystalline anhydrous form TRE-beta. Fast dehydration of the di-hydrate crystalline polymorph, TRE-h, also produces an amorphous phase. Other dehydration procedures of TRE-h, such as microwave treatment, supercritical extraction or gentle heating at low scan rates, give variable fractions of the polymorph TRE-alpha, that undergo amorphization upon melting (at lower temperature, T(m)=130 degrees C). Additional procedures for amorphization, such as freeze-drying, spray-drying or evaporation of trehalose solutions, are discussed. All these procedures are classified depending on the capability of the undercooled liquid phase to undergo cold crystallization upon heating the glassy state at temperatures above the glass transition temperature (T(g)=120 degrees C). The recrystallizable amorphous phase is invariably obtained by the melt of the polymorph TRE-alpha, while other procedures always give an amorphous phase that is unable to crystallize above T(g). The existence of two different categories is analyzed in terms of the transformation paths and the hypothesis that the systems may exhibit different molecular mobilities.

  17. Amorphous nanophotonics

    CERN Document Server

    Scharf, Toralf

    2013-01-01

    This book represents the first comprehensive overview over amorphous nano-optical and nano-photonic systems. Nanophotonics is a burgeoning branch of optics that enables many applications by steering the mould of light on length scales smaller than the wavelength with devoted nanostructures. Amorphous nanophotonics exploits self-organization mechanisms based on bottom-up approaches to fabricate nanooptical systems. The resulting structures presented in the book are characterized by a deterministic unit cell with tailored geometries; but their spatial arrangement is not controlled. Instead of periodic, the structures appear either amorphous or random. The aim of this book is to discuss all aspects related to observable effects in amorphous nanophotonic material and aspects related to their design, fabrication, characterization and integration into applications. The book has an interdisciplinary nature with contributions from scientists in physics, chemistry and materials sciences and sheds light on the topic fr...

  18. Thermal conductivity of carbon doped GeTe thin films in amorphous and crystalline state measured by modulated photo thermal radiometry

    Science.gov (United States)

    Kusiak, Andrzej; Battaglia, Jean-Luc; Noé, Pierre; Sousa, Véronique; Fillot, F.

    2016-09-01

    The thermal conductivity and thermal boundary resistance of GeTe and carbon doped GeTe thin films, designed for phase change memory (PCM) applications, were investigated by modulated photo thermal radiometry. It was found that C doping has no significant effect on the thermal conductivity of these chalcogenides in amorphous state. The thermal boundary resistance between the amorphous films and SiO2 substrate is also not affected by C doping. The films were then crystallized by an annealing at 450°C as confirmed by optical reflectivity analysis. The thermal conductivity of non-doped GeTe significantly increases after crystallization annealing. But, surprisingly the thermal conductivity of the crystallized C doped GeTe was found to be similar from that of the amorphous state and independent of C concentration. As for the amorphous phase, C doping does not affect the thermal boundary resistance between the crystalline GeTe films and SiO2 substrate. This behaviour is discussed thanks to XRD and FTIR analysis. In particular, XRD shows a decrease of crystalline grain size in crystalline films as C concentration is increased. FTIR analysis of the film before and after crystallization evidenced that this evolution could be attributed to the disappearing of Ge-C bonds and migration of C atoms out of the GeTe phase upon crystallization, limiting then the growth of GeTe crystallites in C-doped films.

  19. Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model

    Science.gov (United States)

    Baltrusaitis, Jonas; Mendoza-Sanchez, Beatriz; Fernandez, Vincent; Veenstra, Rick; Dukstiene, Nijole; Roberts, Adam; Fairley, Neal

    2015-01-01

    Accurate elemental oxidation state determination for the outer surface of a complex material is of crucial importance in many science and engineering disciplines, including chemistry, fundamental and applied surface science, catalysis, semiconductors and many others. X-ray photoelectron spectroscopy (XPS) is the primary tool used for this purpose. The spectral data obtained, however, is often very complex and can be subject to incorrect interpretation. Unlike traditional XPS spectra fitting procedures using purely synthetic spectral components, here we develop and present an XPS data processing method based on vector analysis that allows creating XPS spectral components by incorporating key information, obtained experimentally. XPS spectral data, obtained from series of molybdenum oxide samples with varying oxidation states and degree of crystallinity, were processed using this method and the corresponding oxidation states present, as well as their relative distribution was elucidated. It was shown that monitoring the evolution of the chemistry and crystal structure of a molybdenum oxide sample due to an invasive X-ray probe could be used to infer solutions to complex spectral envelopes.

  20. Investigation of drug-excipient interactions in lapatinib amorphous solid dispersions using solid-state NMR spectroscopy.

    Science.gov (United States)

    Song, Yang; Yang, Xinghao; Chen, Xin; Nie, Haichen; Byrn, Stephen; Lubach, Joseph W

    2015-03-02

    This study investigated the presence of specific drug-excipient interactions in amorphous solid dispersions of lapatinib (LB) and four commonly used pharmaceutical polymers, including Soluplus, polyvinylpyrrolidone vinyl acetate (PVPVA), hydroxypropylmethylcellulose acetate succinate (HPMCAS), and hydroxypropylmethylcellulose phthalate (HPMCP). Based on predicted pKa differences, LB was hypothesized to exhibit a specific ionic interaction with HPMCP, and possibly with HPMCAS, while Soluplus and PVPVA were studied as controls without ionizable functionality. Thermal studies showed a single glass transition (Tg) for each dispersion, in close agreement with predicted values for Soluplus, PVPVA, and HPMCAS systems. However, the Tg values of LB-HPMCP solid dispersions were markedly higher than predicted values, indicating a strong intermolecular interaction between LB and HPMCP. (15)N solid-state NMR provided direct spectroscopic evidence for protonation of LB (i.e., salt formation) within the HPMCP solid dispersions. (1)H T1 and (1)H T1ρ relaxation studies of the dispersions supported the ionic interaction hypothesis, and indicated multiple phases in the cases of excess drug or polymer. In addition, the dissolution and stability behavior of each system was examined. Both acidic polymers, HPMCAS and HPMCP, effectively inhibited the crystallization of LB on accelerated stability, likely owing to beneficial strong intermolecular hydrogen and/or specific ionic bonds with the acidic polymers. Soluplus and PVPVA showed poor physical properties on stability and subsequently poor crystallization inhibition.

  1. The local physical structure of amorphous hydrogenated boron carbide: insights from magic angle spinning solid-state NMR spectroscopy.

    Science.gov (United States)

    Paquette, Michelle M; Li, Wenjing; Sky Driver, M; Karki, Sudarshan; Caruso, A N; Oyler, Nathan A

    2011-11-01

    Magic angle spinning solid-state nuclear magnetic resonance spectroscopy techniques are applied to the elucidation of the local physical structure of an intermediate product in the plasma-enhanced chemical vapour deposition of thin-film amorphous hydrogenated boron carbide (B(x)C:H(y)) from an orthocarborane precursor. Experimental chemical shifts are compared with theoretical shift predictions from ab initio calculations of model molecular compounds to assign atomic chemical environments, while Lee-Goldburg cross-polarization and heteronuclear recoupling experiments are used to confirm atomic connectivities. A model for the B(x)C:H(y) intermediate is proposed wherein the solid is dominated by predominantly hydrogenated carborane icosahedra that are lightly cross-linked via nonhydrogenated intraicosahedral B atoms, either directly through B-B bonds or through extraicosahedral hydrocarbon chains. While there is no clear evidence for extraicosahedral B aside from boron oxides, ∼40% of the C is found to exist as extraicosahedral hydrocarbon species that are intimately bound within the icosahedral network rather than in segregated phases.

  2. Methods of quantum chemistry and nanotechnology as applied to the study of the energy states of amorphous tetrahedral structures

    Directory of Open Access Journals (Sweden)

    B. A. Golodenko

    2013-01-01

    Full Text Available The technique and results of an experimental research of power conditions of amorphous alloy hydrogenated carbide silicon is described. Application of power spectra of a silicon valence zone for definition phase structure of its amorphous hydrogenated carbide is shown. Quantitative dependence of a share carbide phases of silicon in structure of its alloy from the maintenance of methane in an initial gas mix is established.

  3. Effect of polymers and media type on extending the dissolution of amorphous pioglitazone and inhibiting the recrystallization from a supersaturated state.

    Science.gov (United States)

    Shi, Nian-Qiu; Yao, Jing; Wang, Xing-Lin

    2014-08-01

    Amorphous forms of crystalline drug are widely utilized for bioavailability enhancement of low solubility drugs in the pharmaceutical industry. Polymers have been found to be effective crystallization inhibitors for amorphous forms in solid states during storage or in liquid states during dissolution process. The dissolution and crystallization behaviors of these amorphous forms in the presence or absence of polymers are still far from adequately understood especially in different dissolution environments. The objective of this study was to investigate the effects of polymers and media type on extending the dissolution of amorphous pioglitazone and inhibiting the recrystallization from a supersaturated state. Polyvinylpyrrolidone K30 (PVPK30), polyvinylpyrrolidone K90 (PVPK90), polyethylene glycol 6000 (PEG6000), polyethylene-polypropylene glycol 188 (F-68), hydroxypropylmethylcellulose (HPMC) and beta-cyclodextrin (β-CD) were employed to understand these behaviors changes because these polymers were used widely. Three solutions including neutral water and phosphate buffer solutions (PBS, pH6.8 and pH7.4) were adopted as dissolution media to determine the behaviors changes comprehensively. In the presence of polymers, dissolution and solubility were extended to different degrees in three media. Polymers can delay the crystallization routes dependently of the medium type. Buffer salts in media reduced the dissolution and accelerated the crystallization process. Crystallization inhibition of these polymers was strongly dependent on the type and pH of media. HPMC displayed the strongest crystallization inhibition effects, resulting in the greatest degree of maintaining a supersaturated state that can sustain most effectively for biologically relevant timeframes.

  4. Effect of temperature and magnetic fields on the structural state of the Fe-Zr-B amorphous alloy below crystallization temperature

    Directory of Open Access Journals (Sweden)

    Fedotova N.L.

    2011-05-01

    Full Text Available Amorphous materials give the possibility to observe the phase and structural transformations in sufficiently narrow temperature intervals with the retention of their unchanged chemical composition. The present report is concerned with the results of the study of structure evolution and its dependence on magnetic field upon heating in the Fe-Zr-B amorphous alloy by the method of the photometric analysis of structural images (PHASI. The PHASI method makes it possible to establish the effect of external temperature and magnetic fields on the brightness spectra of the reflection from the surface of the object under study and the distribution of the zones, in which these changes are localized. The established temperature dependence of the energy characteristics of the reflection brightness spectrum in arbitrary units indicates the complex structural transformations caused by heating of the alloy under study. Also it is shown that the magnetic field produces residual structural changes in the alloy in comparison with its initial state

  5. Structure analyses using X-ray photoelectron spectroscopy and X-ray absorption near edge structure for amorphous MS3 (M: Ti, Mo) electrodes in all-solid-state lithium batteries

    Science.gov (United States)

    Matsuyama, Takuya; Deguchi, Minako; Mitsuhara, Kei; Ohta, Toshiaki; Mori, Takuya; Orikasa, Yuki; Uchimoto, Yoshiharu; Kowada, Yoshiyuki; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2016-05-01

    Electronic structure changes of sulfurs in amorphous TiS3 and MoS3 for positive electrodes of all-solid-state lithium batteries are examined by X-ray photoelectron spectroscopy (XPS) and the X-ray absorption near edge structure (XANES). The all-solid-state cell with amorphous TiS3 electrode shows the reversible capacity of about 510 mAh g-1 for 10 cycles with sulfur-redox in amorphous TiS3 during charge-discharge process. On the other hand, the cell with amorphous MoS3 shows the 1st reversible capacity of about 720 mAh g-1. The obtained capacity is based on the redox of both sulfur and molybdenum in amorphous MoS3. The irreversible capacity of about 50 mAh g-1 is observed at the 1st cycle, which is attributed to the irreversible electronic structure change of sulfur during the 1st cycle. The electronic structure of sulfur in amorphous MoS3 after the 10th charge is similar to that after the 1st charge. Therefore, the all-solid-state cell with amorphous MoS3 electrode shows relatively good cyclability after the 1st cycle.

  6. Synthesis and characterisation of composite based biohydroxyapatite bovine bone mandible waste (BHAp) doped with 10 wt % amorphous SiO2 from rice husk by solid state reaction

    Science.gov (United States)

    Asmi, Dwi; Sulaiman, Ahmad; Oktavia, Irene Lucky; Badaruddin, Muhammad; Zulfia, Anne

    2016-04-01

    Effect of 10 wt% amorphous SiO2 from rice husk addition on the microstructures of biohydroxyapatite (BHAp) obtained from bovine bone was synthesized by solid state reaction. In this study, biohydroxyapatite powder was obtained from bovine bone mandible waste heat treated at 800 °C for 5 h and amorphous SiO2 powder was extracted from citric acid leaching of rice husk followed by combustion at 700°C for 5 h. The composite powder then mixed and sintered at 1200 °C for 3 h. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) techniques are utilized to characterize the phase relations, functional group present and morphology of the sample. The study has revealed that the processing procedures played an important role in microstructural development of BHAp-10 wt% SiO2 composite. The XRD study of the raw material revealed that the primary phase material in the heat treated of bovine bone mandible waste is hydroxyapatite and in the combustion of rice husk is amorphous SiO2. However, in the composite the hydroxyapatite, β-tricalcium phosphate, and calcium phosphate silicate were observed. The FTIR result show that the hydroxyl stretching band in the composite decrease compared with those of hydroxyapatite spectra and the evolution of morphology was occurred in the composite.

  7. Solid state characterization of azelnidipine-oxalic acid co-crystal and co-amorphous complexes: The effect of different azelnidipine polymorphs.

    Science.gov (United States)

    Pan, Yahui; Pang, Wenzhe; Lv, Jie; Wang, Jing; Yang, Caiqin; Guo, Wei

    2017-02-04

    In present study, based on the two polymorphs (α and β form) of azelnidipine (AZE), 12 complexes of AZE and oxalic acid (OXA) were prepared by solvent-assisted grinding (SG) and neat powder grinding (NG) methods at the AZE/OXA molar ratios of 2:1, 1:1, and 1:2. The effect of the different polymorphs of AZE on the micro-structure of the complexes were investigated by powder X-ray diffraction (PXRD), tempreture modulated differential scanning calorimetry and thermogravimetric analysis, cryo-field emission scanning electron microscope system, fourier transform infrared (FTIR), and solid-state nuclear magnetic resonance spectroscopy. β-AZE-OXA co-crystal was produced at β-AZE/OXA molar ratio of 2:1 when SG method was used; while α-AZE was used to produce α-AZE-OXA co-crystal at same condition. However, the other 10 combinations were in co-amorphous forms, including the NG samples with α (or β)-AZE/OXA molar ratios of 2:1, 1:1 (SG and NG), and 1:2 (SG and NG). Although the XRD pattern and IR spectra of the two co-crystals showed no difference, the melting enthalpy and specific heat cp of the β-AZE-OXA co-crystal was higher than that of the α-AZE-OXA co-crystal, indicating that the numbers of solvent molecules which entered the two co-crystal lattices were different. Interestingly, obvious difference occurred in the IR spectra between the α-AZE-OXA and β-AZE-OXA co-amorphous systems. 1745cm(-1) wave-numbers, which were assigned to the free CO groups, appeared in the α-AZE-OXA co-amorphous systems even when just a small amount of OXA was introduced, thereby indicating the presence of different intermolecular forces in the two series of co-amorphous forms. The solubility in different media and the dissolution rate in 0.1molL(-1) HCl of the 12 complexes were determined. The dramatically improved dissolution rates of the α- and β-AZE-OXA 1:2 (NG) combinations in vitro showed potential in improving the physicochemical properties of AZE by co-amorphous complex

  8. Solvent-shift strategy to identify suitable polymers to inhibit humidity-induced solid-state crystallization of lacidipine amorphous solid dispersions.

    Science.gov (United States)

    Sun, Mengchi; Wu, Chunnuan; Fu, Qiang; Di, Donghua; Kuang, Xiao; Wang, Chao; He, Zhonggui; Wang, Jian; Sun, Jin

    2016-04-30

    The solvent-shift strategy was used to identify appropriate polymers that inhibit humidity-induced solid-state crystallization of amorphous solid dispersions (ASDs). Lacidipine with the polymers, PVP-K30, HPMC-E5 or Soluplus, were combined to form amorphous solid dispersions prepared by solvent evaporation. The formulations were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier-transform infrared spectroscopy (FT-IR) and were subjected to in vitro dissolution testing. The moisture had a significant impact on the amount dissolved for the solid dispersions. Molecular docking studies established that hydrogen bonding was critical for the stabilization of the solid dispersions. The rank order of the binding energy of the drug-polymer association was Soluplus (-6.21 kcal/mol)>HPMC-E5 (-3.21 kcal/mol)>PVP-K30 (-2.31 kcal/mol). PVP-K30 had the highest water uptake among the polymers, as did ASD system of lacidipine-PVP-K30 ASDs. In the Soluplus ASDs, with its strong drug-polymer interactions and low water uptake, moisture-induced solid-state crystallization was not observed.

  9. Properties of amorphous carbon

    CERN Document Server

    2003-01-01

    Amorphous carbon has a wide range of properties that are primarily controlled by the different bond hydridisations possible in such materials. This allows for the growth of an extensive range of thin films that can be tailored for specific applications. Films can range from those with high transparency and are hard diamond-like, through to those which are opaque, soft and graphitic-like. Films with a high degree of sp3 bonding giving the diamond-like properties are used widely by industry for hard coatings. Application areas including field emission cathodes, MEMS, electronic devices, medical and optical coatings are now close to market. Experts in amorphous carbon have been drawn together to produce this comprehensive commentary on the current state and future prospects of this highly functional material.

  10. Controlling interfacial states in amorphous/crystalline LaAlO3/SrTiO3 heterostructures by electric fields

    DEFF Research Database (Denmark)

    Christensen, Dennis; Trier, Felix; Chen, Yunzhong;

    2013-01-01

    amorphous LaAlO3 films on SrTiO3. Here, we present a non-volatile and reversible tuning of the interface conductivity by more than 3 orders of magnitude at room temperature by applying an electric field to such amorphous/crystalline heterostructures with amorphous LaAlO3 film thicknesses of 2 nm. We show...

  11. Generic origin of subgap states in transparent amorphous semiconductor oxides illustrated for the cases of In-Zn-O and In-Sn-O

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, Wolfgang; Urban, Daniel F.; Elsaesser, Christian [Fraunhofer Institute for Mechanics of Materials IWM, Woehlerstr. 11, 79108, Freiburg (Germany)

    2015-07-15

    We present a microscopic interpretation for the appearance and behaviour of subgap states in stoichiometric and oxygen-deficient, amorphous In-Zn-O (a-IZO) and In-Sn-O (a-ITO) derived from a density functional theory analysis using a self-interaction-correction scheme. Our findings concerning the defect structures and the resulting deep levels are qualitatively similar to earlier results on a-IGZO and a-ZTO and in agreement with recent experimental results. Based on our extensive set of DFT results for In-, Sn-, Zn- based oxides we develop a general concept of the subgap states which is applicable to these systems. Electronic defect levels in the lower half of the band gap are created by undercoordinated oxygen atoms while local oxygen deficiencies cause defect levels in the upper part of the band gap. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. A solid-state approach to enable early development compounds: selection and animal bioavailability studies of an itraconazole amorphous solid dispersion.

    Science.gov (United States)

    Engers, David; Teng, Jing; Jimenez-Novoa, Jonathan; Gent, Philip; Hossack, Stuart; Campbell, Cheryl; Thomson, John; Ivanisevic, Igor; Templeton, Alison; Byrn, Stephen; Newman, Ann

    2010-09-01

    A solid-state approach to enable compounds in preclinical development is used by identifying an amorphous solid dispersion in a simple formulation to increase bioavailability. Itraconazole (ITZ) was chosen as a model crystalline compound displaying poor aqueous solubility and low bioavailability. Solid dispersions were prepared with different polymers (PVP K-12, K29/32, K90; PVP VA S-630; HPMC-P 55; and HPMC-AS HG) at varied concentrations (1:5, 1:2, 2:1, 5:1 by weight) using two preparation methods (evaporation and freeze drying). Physical characterization and stability data were collected to examine recommended storage, handling, and manufacturing conditions. Based on generated data, a 1:2 (w/w) ITZ/HPMC-P dispersion was selected for further characterization, testing, and scale-up. Thermal data and computational analysis suggest that it is a possible solid nanosuspension. The dispersion was successfully scaled using spray drying, with the materials exhibiting similar physical properties as the screening samples. A simple formulation of 1:2 (w/w) ITZ/HPMC-P dispersion in a capsule was compared to crystalline ITZ in a capsule in a dog bioavailability study, with the dispersion being significantly more bioavailable. This study demonstrated the utility of using an amorphous solid form with desirable physical properties to significantly improve bioavailability and provides a viable strategy for evaluating early drug candidates.

  13. Investigation of Phase Mixing in Amorphous Solid Dispersions of AMG 517 in HPMC-AS Using DSC, Solid-State NMR, and Solution Calorimetry.

    Science.gov (United States)

    Calahan, Julie L; Azali, Stephanie C; Munson, Eric J; Nagapudi, Karthik

    2015-11-02

    Intimate phase mixing between the drug and the polymer is considered a prerequisite to achieve good physical stability for amorphous solid dispersions. In this article, spray dried amorphous dispersions (ASDs) of AMG 517 and HPMC-as were studied by differential scanning calorimetry (DSC), solid-state NMR (SSNMR), and solution calorimetry. DSC analysis showed a weakly asymmetric (ΔTg ≈ 13.5) system with a single glass transition for blends of different compositions indicating phase mixing. The Tg-composition data was modeled using the BKCV equation to accommodate the observed negative deviation from ideality. Proton spin-lattice relaxation times in the laboratory and rotating frames ((1)H T1 and T1ρ), as measured by SSNMR, were consistent with the observation that the components of the dispersion were in intimate contact over a 10-20 nm length scale. Based on the heat of mixing calculated from solution calorimetry and the entropy of mixing calculated from the Flory-Huggins theory, the free energy of mixing was calculated. The free energy of mixing was found to be positive for all ASDs, indicating that the drug and polymer are thermodynamically predisposed to phase separation at 25 °C. This suggests that miscibility measured by DSC and SSNMR is achieved kinetically as the result of intimate mixing between drug and polymer during the spray drying process. This kinetic phase mixing is responsible for the physical stability of the ASD.

  14. Understanding API-polymer proximities in amorphous stabilized composite drug products using fluorine-carbon 2D HETCOR solid-state NMR.

    Science.gov (United States)

    Abraham, Anuji; Crull, George

    2014-10-06

    A simple and robust method for obtaining fluorine-carbon proximities was established using a (19)F-(13)C heteronuclear correlation (HETCOR) two-dimensional (2D) solid-state nuclear magnetic resonance (ssNMR) experiment under magic-angle spinning (MAS). The method was applied to study a crystalline active pharmaceutical ingredient (API), avagacestat, containing two types of fluorine atoms and its API-polymer composite drug product. These results provide insight into the molecular structure, aid with assigning the carbon resonances, and probe API-polymer proximities in amorphous spray dried dispersions (SDD). This method has an advantage over the commonly used (1)H-(13)C HETCOR because of the large chemical shift dispersion in the fluorine dimension. In the present study, fluorine-carbon distances up to 8 Å were probed, giving insight into the API structure, crystal packing, and assignments. Most importantly, the study demonstrates a method for probing an intimate molecular level contact between an amorphous API and a polymer in an SDD, giving insights into molecular association and understanding of the role of the polymer in API stability (such as recrystallization, degradation, etc.) in such novel composite drug products.

  15. Kinetics and mechanisms of pyrolysis of polyborosilazanes to thermally stable amorphous and crystalline states by a novel synthesis route

    Science.gov (United States)

    Lee, Jongsang

    A new type of SiBCN ceramic is being investigated and considered for a variety of high temperature applications. SiBCN ceramics have been produced by various synthesis methods in different monomer systems and subsequent pyrolysis processes at different temperatures. The final ceramic composition and structure are significantly affected by the selection of the polymer precursor material and the pyrolysis conditions. Although detailed studies or discussions of the synthesis of the preceramic materials are rather limited, considerable progress has been achieved by alternative synthesis approaches in recent decades. Our study introduced a novel synthesis route to produce thermally stable SiBCN-based ceramics. This route also is approximately an order of magnitude less costly, and processing is simpler and faster than other routes investigated to date. Polyborosilazane was synthesized by using three monomers. Polymerization is initiated by substituting chlorines attached to silicon and boron for trimethylsilylamino groups in hexamethyldisilazane (HMDZ). The polyborosilazane becomes an amorphous structure with crosslinked bonds during the elimination of [(CH3) 3SiCl]n. In a second stage, an intermolecular condensation reaction occurred, with the loss of HMDZ in the absence of crosslinking agents. This new route allows the SiBCN preceramic polymers to be produced with a high yield, and without a special filtering step. The polyborosilazane preceramic polymers were modified by altering the monomers and their respective molar ratios, and by optimizing the reaction temperature during polymerization. Remarkably, the pyrolyzed ceramic products remain amorphous to temperatures up to 1600°C. Results show that SiBCN-containing ceramics have enough thermal stability to retard crystallization. The chemical structure and composition of the polyborosilazane preceramic polymers were postulated and analyzed via a combination of structural and compositional analysis. By pyrolysis of

  16. Correlation of trap states with negative bias thermal illumination stress stabilities in amorphous In-Ga-Zn-O thin-film transistors studied by photoinduced transient spectroscopy

    Science.gov (United States)

    Hayashi, Kazushi; Ochi, Mototaka; Hino, Aya; Tao, Hiroaki; Goto, Hiroshi; Kugimiya, Toshihiro

    2017-03-01

    Negative bias thermal illumination stress (NBTIS) stabilities in amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs) were studied by photoinduced transient spectroscopy (PITS). The degradation of TFT performance correlated with trap states in the channel region of a-IGZO TFTs with an etch stop layer (ESL). A prominent peak at approximately 100 K was observed in a-IGZO formed under a partial pressure (p/p) of 4% O2. With increasing O2 p/p, an apparent shoulder of around 230 K appeared in PITS spectra. A higher flow rate of SiH4/N2O for the ESL deposition induced trap states associated with the 230 K peak. The peak at approximately 100 K could originate from the depletion of Zn by preannealing, while the peak at approximately 230 K should be attributed to the oxygen-deficient and/or Zn-rich defects due to the formation of OH in a-IGZO. The trap states in a-IGZO TFTs gave rise to degradation in terms of NBTIS. The threshold voltage shift (ΔV th) was 2.5 V, but it increased with the O2 p/p as well as the flow rate of SiH4/N2O for ESL deposition. The time dependence of ΔV th suggested that hydrogen from the ESL and/or in the a-IGZO thin films was incorporated and modified the trap states in the channel region of the a-IGZO TFTs.

  17. Importance of agglomeration state and exposure conditions for uptake and pro-inflammatory responses to amorphous silica nanoparticles in bronchial epithelial cells.

    Science.gov (United States)

    Gualtieri, Maurizio; Skuland, Tonje; Iversen, Tore-Geir; Låg, Marit; Schwarze, Per; Bilaničová, Dagmar; Pojana, Giulio; Refsnes, Magne

    2012-11-01

    Amorphous silica nanoparticles (SiNPs, 30 and 50 nm) and rhodamine-coated SiNPs (50 nm) were examined for their ability to induce pro-inflammatory responses and cytotoxicity in BEAS-2B cells under different experimental conditions. The SiNPs formed micrometre-sized agglomerates in the absence of bovine serum albumin (BSA) in the culture medium, whereas with BSA (0.1%) they were much less agglomerated. All the SiNPs induced IL-6 and IL-8 responses, as measured by ELISA and real-time PCR. The responses were more marked without BSA and higher for the rhodamine SiNPs than the plain ones. Rhodamine SiNPs were not taken up by cells during a 3-h exposure, even though cytokine mRNAs were up-regulated. In conclusion, agglomerated SiNPs induced more potent cytokine responses than the non-agglomerated ones; either due to the agglomeration state per se or more conceivably to a change in surface reactivity against cellular targets due to BSA. Furthermore, cytokine expression was up-regulated independently of SiNP uptake.

  18. Freeze-drying synthesis of an amorphous Zn(2+) complex and its transformation to a 2-D coordination framework in the solid state.

    Science.gov (United States)

    Itakura, T; Horike, S; Inukai, M; Kitagawa, S

    2016-03-14

    An amorphous and metastable precursor for a Zn two-dimensional coordination framework was synthesised via freeze drying. The precursor comprises randomly packed discrete clusters of a Zn complex. The amorphous-to-crystalline framework transformation, which was triggered by the gentle application of heat or pressure, was accompanied by a change in the coordination geometry of the Zn(2+) ions from tetrahedral to octahedral symmetry.

  19. Comparison of X-ray powder diffraction and solid-state nuclear magnetic resonance in estimating crystalline fraction of tacrolimus in sustained-release amorphous solid dispersion and development of discriminating dissolution method.

    Science.gov (United States)

    Rahman, Ziyaur; Bykadi, Srikant; Siddiqui, Akhtar; Khan, Mansoor A

    2015-05-01

    The focus of present investigation was to explore X-ray powder diffraction (XRPD) and solid-state nuclear magnetic resonance (ssNMR) techniques for amorphous and crystalline tacrolimus quantification in the sustained-release amorphous solid dispersion (ASD), and to propose discriminating dissolution method that can detect crystalline drug. The ASD and crystalline physical mixture was mixed in various proportions to make sample matrices containing 0%-100% crystalline-amorphous tacrolimus. Partial-least-square regression and principle component regression were applied to the spectral data. Dissolution of the ASD in the US FDA recommended dissolution medium with and without surfactant was performed. R(2) > 0.99 and slope was close to one for all the models. Root-mean-square of prediction, standard error of prediction, and bias were higher in ssNMR-based models when compared with XRPD data models. Dissolution of the ASD decreased with an increase in the crystalline tacrolimus in the formulations. Furthermore, detection of crystalline tacrolimus in the ASD was progressively masked with an increase in the surfactant level in the dissolution medium. XRPD and ssNMR can be used equally to quantitate the crystalline and amorphous fraction of tacrolimus in the ASD with good accuracy; however, ssNMR data collection time is excessively long, and minimum surfactant level in the dissolution medium maximizes detection of crystalline reversion in the formulation.

  20. Cohesional Entanglement of Amorphous Polymer in Glass State as Probed by Equilibrium Swelling in a "Non-Solvent"

    Institute of Scientific and Technical Information of China (English)

    YU,Yan-Sheng(于燕生); QIAN,Ren-Yuan(钱人元)

    2002-01-01

    The equilibrium swelling of the system Polystyrene (PS) (M=1.7× 105, monodisperse)/diethyl ether at30 ℃ and35 ℃ has been studied in detail in quiescent state for a time span over 150d. Arguments are given to show that the swellingg process in a "non-solvent" is a network swelling rather than a phase separation process. It is different from the cloud point curve (CPC)experiment studied in literature, where the experiment starts from a one-phase solution, so that the cohesional entanglement present in the solid polymer is disrupted by dissolution. The cohesional entanglement structure of the solid polymer, on the contrary, is retained in the concentrated phase on swelling, at least in the initial stage. The course of swelling as presented by the curve Vs(t) was found to proceed in three stages, where Vs is the volume of the concentratd phase. In the first and third stages of Vs(t), the curve goes up smoothly, while in the second stage the curve Vs( t ) shows large up and down jumps,indicating probably a readjustment in the network structure.Some results on a monodisperse PS sample of M = 5.8 × 105and a polydisperse sample of M = 2.0 × 105 are also given. The values of Vs observed at swelling equilibrium are not in accord with the expected cloud point temperature. The cloud point curve represents a phase separation process occurring in local regions (space limited to um) and in time scale of the order of mimute, while the process Vs( t ) occurred in the whole space of the concentrated phase, in time scale of days. For quantitative characterization of the network present in the concentrated phase, a precise value of the polymer- solvent interaction parameter χ is needed.

  1. [Amorphization in pharmaceutical technology].

    Science.gov (United States)

    Révész, Piroska; Laczkovich, Orsolya; Eros, István

    2004-01-01

    The amorphization of crystalline active ingredients may be necessary because of the polymorphism of the active substance, the poor water-solubility of the drug material, difficult processing in the crystalline form and the taking out of a patent for a new (amorphous) form. This article introduces protocols for amorphization, which use methods traditionally applied in pharmaceutical technology. The protocols involve three possible routes: solvent methods, hot-melt technologies and milling procedures. With this presentation, the authors suggest help for practising experts to find the correct amorphization method.

  2. Amorphous LiCoO2sbnd Li2SO4 active materials: Potential positive electrodes for bulk-type all-oxide solid-state lithium batteries with high energy density

    Science.gov (United States)

    Nagao, Kenji; Hayashi, Akitoshi; Deguchi, Minako; Tsukasaki, Hirofumi; Mori, Shigeo; Tatsumisago, Masahiro

    2017-04-01

    Newly amorphous Li2-x/100Cox/100S1-x/100O4-x/50 (xLiCoO2·(100-x)Li2SO4 (mol%)) positive electrode active materials are synthesized using mechanochemical techniques. SEM observation indicates that average radii of the Li1.2Co0.8S0.2O2.4 (80LiCoO2·20Li2SO4 (mol%)) particles are about 3 μm. HR-TEM images indicate that the particles comprise nano-crystalline and amorphous phases. The crystalline phase is attributable to cubic LiCoO2 phase. These active materials exhibit a high electronic conductivity of around 10-5-10-1 S cm-1 and an ionic conductivity of around 10-7-10-6 S cm-1 at room temperature. Bulk-type all-oxide solid-state cells (Lisbnd In alloy/Li3BO3-based glass-ceramic electrolyte/amorphous Li2-x/100Cox/100S1-x/100O4-x/50) are fabricated by pressing at room temperature without high temperature sintering. Although the cell with the milled LiCoO2 shows no capacity, the cell using the Li1.2Co0.8S0.2O2.4 electrode with no conductive components (ca. 150 μm thickness) operates as a secondary battery at 100 °C, with an average discharge potential of 3.3 V (vs. Li+/Li) and discharge capacity of 163 mAh g-1. A positive electrode with large amounts of active materials is suitable for achieving high energy density in all-solid-state batteries. These newly synthesized amorphous Li2-x/100Cox/100S1-x/100O4-x/50 electrodes with ionic and electronic conductivities and good processability meet that demand.

  3. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud;

    2012-01-01

    exothermic than that of amorphous calcium carbonate (ACC). This suggests that enthalpy of crystallization in carbonate systems is ionic-size controlled, which may have significant implications in a wide variety of conditions, including geological sequestration of anthropogenic carbon dioxide.......Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  4. Amorphous Solid Water:

    DEFF Research Database (Denmark)

    Wenzel, Jack; Linderstrøm-Lang, C. U.; Rice, Stuart A.

    1975-01-01

    The structure factor of amorphous solid D2O deposited from the vapor at 10°K has been obtained by measuring the neutron diffraction spectrum in the wave vector transfer from 0.8 to 12.3 reciprocal angstroms. The results indicate that the phase investigated is amorphous and has a liquiid-like stru......The structure factor of amorphous solid D2O deposited from the vapor at 10°K has been obtained by measuring the neutron diffraction spectrum in the wave vector transfer from 0.8 to 12.3 reciprocal angstroms. The results indicate that the phase investigated is amorphous and has a liquiid...

  5. Amorphous pharmaceutical solids.

    Science.gov (United States)

    Vranić, Edina

    2004-07-01

    Amorphous forms are, by definition, non-crystalline materials which possess no long-range order. Their structure can be thought of as being similar to that of a frozen liquid with the thermal fluctuations present in a liquid frozen out, leaving only "static" structural disorder. The amorphous solids have always been an essential part of pharmaceutical research, but the current interest has been raised by two developments: a growing attention to pharmaceutical solids in general, especially polymorphs and solvates and a revived interest in the science of glasses and the glass transition. Amorphous substances may be formed both intentionally and unintentionally during normal pharmaceutical manufacturing operations. The properties of amorphous materials can be exploited to improve the performance of pharmaceutical dosage forms, but these properties can also give rise to unwanted effects that need to be understood and managed in order for the systems to perform as required.

  6. Solvent-mediated amorphous-to-crystalline transformation of nitrendipine in amorphous particle suspensions containing polymers

    DEFF Research Database (Denmark)

    Xia, Dengning; Wu, Jian-Xiong; Cui, Fude;

    2012-01-01

    quantitatively determined using image analysis based on polarized light microscopy. The findings from the image analysis revealed that the transformation process occurred through the dissolution of amorphous drug precipitate followed by the nucleation and growth of the crystalline phase with the amorphous....... However, a further increase in drug concentration to 100mg/ml decelerated the growth of nitrendipine crystals. Combining image analysis of polarized light micrographs together with Raman spectroscopy and XRPD provided an in-depth insight into solid state transformations in amorphous nitrendipine...

  7. Electrons and phonons in amorphous semiconductors

    Science.gov (United States)

    Prasai, Kiran; Biswas, Parthapratim; Drabold, D. A.

    2016-07-01

    The coupling between lattice vibrations and electrons is one of the central concepts of condensed matter physics. The subject has been deeply studied for crystalline materials, but far less so for amorphous and glassy materials, which are among the most important for applications. In this paper, we explore the electron-lattice coupling using current tools of a first-principles computer simulation. We choose three materials to illustrate the phenomena: amorphous silicon (a-Si), amorphous selenium (a-Se) and amorphous gallium nitride (a-GaN). In each case, we show that there is a strong correlation between the localization of electron states and the magnitude of thermally induced fluctuations in energy eigenvalues obtained from the density-functional theory (i.e. Kohn-Sham eigenvalues). We provide a heuristic theory to explain these observations. The case of a-GaN, a topologically disordered partly ionic insulator, is distinctive compared to the covalent amorphous examples. Next, we explore the consequences of changing the charge state of a system as a proxy for tracking photo-induced structural changes in the materials. Where transport is concerned, we lend insight into the Meyer-Neldel compensation rule and discuss a thermally averaged Kubo-Greenwood formula as a means to estimate electrical conductivity and especially its temperature dependence. We close by showing how the optical gap of an amorphous semiconductor can be computationally engineered with the judicious use of Hellmann-Feynman forces (associated with a few defect states) using molecular dynamics simulations. These forces can be used to close or open an optical gap, and identify a structure with a prescribed gap. We use the approach with plane-wave density functional methods to identify a low-energy amorphous phase of silicon including several coordination defects, yet with a gap close to that of good quality a-Si models.

  8. Delivery of poorly soluble compounds by amorphous solid dispersions.

    Science.gov (United States)

    Lee, Thomas W Y; Boersen, Nathan A; Hui, H W; Chow, S F; Wan, K Y; Chow, Albert H L

    2014-01-01

    Solid state manipulation by amorphous solid dispersion has been the subject of intensive research for decades due to their excellent potential for dissolution and bioavailability enhancement. The present review aims to highlight the latest advancement in this area, with focus on the fundamentals, characterization, formulation development and manufacturing of amorphous solid dispersions as well as the new generation amorphization technologies. Additionally, specific applications of amorphous solid dispersion in the formulation of herbal drugs or bioactive natural products are reviewed to reflect the growing interest in this relatively neglected area.

  9. Crystallization inhibition of an amorphous sucrose system using raffinose

    Institute of Scientific and Technical Information of China (English)

    LEINEN K.M.; LABUZA T.P.

    2006-01-01

    The shelf life of pure amorphous sucrose systems, such as cotton candy, can be very short. Previous studies have shown that amorphous sucrose systems held above the glass transition temperature will collapse and crystallize. One study,however, showed that adding a small percent of another type of sugar, such as trehalose, to sucrose can extend the shelf life of the amorphous system by slowing crystallization. This study explores the hypothesis that raffinose increases the stability of an amorphous sucrose system. Cotton candy at 5 wt% raffinose and 95 wt% sucrose was made and stored at room temperature and three different relative humidities (%RH) 11%RH, 33%RH, and 43%RH. XRD patterns, and glass transition temperatures were obtained to determine the stability as a function of %RH. The data collected showed that raffinose slows sucrose crystallization in a low moisture amorphous state above the glass transition temperature and therefore improves the stability of amorphous sucrose systems.

  10. Amorphous track models: a numerical comparison study

    DEFF Research Database (Denmark)

    Greilich, Steffen; Grzanka, Leszek; Hahn, Ute;

    Amorphous track models such as Katz' Ion-Gamma-Kill (IGK) approach [1, 2] or the Local Effect Model (LEM) [3, 4] had reasonable success in predicting the response of solid state dosimeters and radiobiological systems. LEM is currently applied in radiotherapy for biological dose optimization in ca...

  11. Towards upconversion for amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    de Wild, J.; Rath, J.K.; Schropp, R.E.I. [Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, Nanophotonics, P.O. Box 80000, 3508 TA Utrecht (Netherlands); Meijerink, A. [Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, Condensed Matter and Interfaces, P.O. Box 80000, 3508 TA Utrecht (Netherlands); van Sark, W.G.J.H.M. [Utrecht University, Copernicus Institute for Sustainable Development and Innovation, Science, Technology and Society, Heidelberglaan 2, 3584 CS Utrecht (Netherlands)

    2010-11-15

    Upconversion of subbandgap light of thin film single junction amorphous silicon solar cells may enhance their performance in the near infrared (NIR). In this paper we report on the application of the NIR-vis upconverter {beta}-NaYF{sub 4}:Yb{sup 3+}(18%) Er{sup 3+}(2%) at the back of an amorphous silicon solar cell in combination with a white back reflector and its response to infrared irradiation. Current-voltage measurements and spectral response measurements were done on experimental solar cells. An enhancement of 10 {mu}A/cm{sup 2} was measured under illumination with a 980 nm diode laser (10 mW). A part of this was due to defect absorption in localized states of the amorphous silicon. (author)

  12. Photoemission studies of amorphous silicon induced by P + ion implantation

    Science.gov (United States)

    Petö, G.; Kanski, J.

    1995-12-01

    An amorphous Si layer was formed on a Si (1 0 0) surface by P + implantation at 80 keV. This layer was investigated by means of photoelectron spectroscopy. The resulting spectra are different from earlier spectra on amorphous Si prepared by e-gun evaporation or cathode sputtering. The differences consist of a decreased intensity in the spectral region corresponding to p-states, and appearace of new states at higher binding energy. Qualitativity similar results have been reported for Sb implanted amorphous Ge and the modification seems to be due to the changed short range order.

  13. Amorphous Photonic Lattices: Band Gaps, Effective Mass and Suppressed Transport

    CERN Document Server

    Rechtsman, Mikael; Dreisow, Felix; Heinrich, Matthias; Keil, Robert; Nolte, Stefan; Segev, Mordechai

    2010-01-01

    We present, theoretically and experimentally, amorphous photonic lattices exhibiting a band-gap yet completely lacking Bragg diffraction: 2D waveguides distributed randomly according to a liquid-like model responsible for the absence of Bragg peaks as opposed to ordered lattices containing disorder, which always exhibit Bragg peaks. In amorphous lattices the bands are comprised of localized states, but we find that defect states residing in the gap are more localized than the Anderson localization length. Finally, we show how the concept of effective mass carries over to amorphous lattices.

  14. Amorphous Photonic Lattices: Band Gaps, Effective Mass and Suppressed Transport

    OpenAIRE

    Rechtsman, Mikael; Szameit, Alexander; Dreisow, Felix; Heinrich, Matthias; Keil, Robert; Nolte, Stefan; Segev, Mordechai

    2010-01-01

    We present, theoretically and experimentally, amorphous photonic lattices exhibiting a band-gap yet completely lacking Bragg diffraction: 2D waveguides distributed randomly according to a liquid-like model responsible for the absence of Bragg peaks as opposed to ordered lattices containing disorder, which always exhibit Bragg peaks. In amorphous lattices the bands are comprised of localized states, but we find that defect states residing in the gap are more localized than the Anderson localiz...

  15. Composition Range of Amorphous Mg-Ni-Y Alloys

    Institute of Scientific and Technical Information of China (English)

    陈红梅; 钟夏平; 欧阳义芳

    2003-01-01

    Based on the thermodynamic point of view, a method for predication of the composition range of amorphous ternary alloys was proposed. The composition range of amorphous ternary alloys is determined by the comparison of the excess free energy of the amorphous alloy and the free energy of competing crystalline states. The free energy is extrapolated from the data of three binary alloys by using Toop′s model. The method was applied to predict the composition range of amorphous Mg-Ni-Y alloys. The theoretical results are in good agreement with the available experimental results. It indicates that the present method can be used to predict the composition range for amorphous ternary alloys.

  16. Atomic structure of amorphous shear bands in boron carbide.

    Science.gov (United States)

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  17. Magnetostrictive amorphous bimetal sensors

    CERN Document Server

    Mehnen, L; Kaniusas, E

    2000-01-01

    The paper describes the application of a magnetostrictive amorphous ribbon (AR) for the detection of bending. In order to increase sensitivity, a bimetal structure is used which consists of AR and a nonmagnetic carrier ribbon. Several methods for the preparation of the bimetal are discussed. Results of the bending sensitivities are given for various combinations of the material types indicating crucial problems of bimetal preparation.

  18. Hydrogen-induced crystallization of an amorphous metal

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Pil-Ryung [School of Advanced Materials Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of)], E-mail: cprdream@kookmin.ac.kr; Kim, Yu Chan [Advanced Metals Research Center, Korean Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Kim, Ki-Bae [Advanced Metals Research Center, Korean Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Seok, Hyun-Kwang [Advanced Metals Research Center, Korean Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Fleury, Eric [Advanced Metals Research Center, Korean Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Han, Seung-Hee [Advanced Metals Research Center, Korean Institute of Science and Technology, Seoul 130-650 (Korea, Republic of)

    2007-04-15

    The influence of hydrogen on the structural stability of an amorphous nickel has been analyzed by molecular dynamics simulation. We find that the volume of the amorphous metal increases nonlinearly with the hydrogen concentration and that it crystallizes at a certain critical concentration. The crystallization is shown to be caused by hydrogen-induced transition from the amorphous to the supercooled liquid state, and the change of diffusion mechanism from atomic hopping to string-like collective motion is also observed at the transition.

  19. Crystallization and Transport Properties of Amorphous Cr-Si Thin Film Thermoelectrics

    Science.gov (United States)

    Novikov, S. V.; Burkov, A. T.; Schumann, J.

    2014-06-01

    We studied the thermoelectric properties, crystallization, and stability of amorphous and nanocrystalline states in Cr-Si composite films. Amorphous films, prepared by magnetron sputtering, were transformed into the nanocrystalline state by annealing with in situ thermopower and electrical resistivity measurements. We have found that the amorphous state is stable in these film composites to about 550 K. Prior to crystallization, the amorphous films undergo a structural relaxation, detected by peculiarities in the temperature dependences of the transport properties, but not visible in x-ray or electron diffraction. The magnitude and temperature dependences of electrical conductivity and thermopower indicate that electron transport in the amorphous films is through extended states. The amorphous films are crystallized at annealing temperatures above 550 K into a nanocrystalline composite with an average grain size of 10-20 nm.

  20. Influence of amorphous structure on polymorphism in vanadia

    Science.gov (United States)

    Stone, Kevin H.; Schelhas, Laura T.; Garten, Lauren M.; Shyam, Badri; Mehta, Apurva; Ndione, Paul F.; Ginley, David S.; Toney, Michael F.

    2016-07-01

    Normally we think of the glassy state as a single phase and therefore crystallization from chemically identical amorphous precursors should be identical. Here we show that the local structure of an amorphous precursor is distinct depending on the initial deposition conditions, resulting in significant differences in the final state material. Using grazing incidence total x-ray scattering, we have determined the local structure in amorphous thin films of vanadium oxide grown under different conditions using pulsed laser deposition (PLD). Here we show that the subsequent crystallization of films deposited using different initial PLD conditions result in the formation of different polymorphs of VO2. This suggests the possibility of controlling the formation of metastable polymorphs by tuning the initial amorphous structure to different formation pathways.

  1. Directional amorphization of boron carbide subjected to laser shock compression

    Science.gov (United States)

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; LaSalvia, Jerry C.; Wehrenberg, Christopher E.; Behler, Kristopher D.; Meyers, Marc A.

    2016-10-01

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45˜50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B4C.

  2. Interactions of hydrogen with amorphous hafnium oxide

    Science.gov (United States)

    Kaviani, Moloud; Afanas'ev, Valeri V.; Shluger, Alexander L.

    2017-02-01

    We used density functional theory (DFT) calculations to study the interaction of hydrogen with amorphous hafnia (a -HfO2 ) using a hybrid exchange-correlation functional. Injection of atomic hydrogen, its diffusion towards electrodes, and ionization can be seen as key processes underlying charge instability of high-permittivity amorphous hafnia layers in many applications. Hydrogen in many wide band gap crystalline oxides exhibits negative-U behavior (+1 and -1 charged states are thermodynamically more stable than the neutral state) . Our results show that in a -HfO2 hydrogen is also negative-U, with charged states being the most thermodynamically stable at all Fermi level positions. However, metastable atomic hydrogen can share an electron with intrinsic electron trapping precursor sites [Phys. Rev. B 94, 020103 (2016)., 10.1103/PhysRevB.94.020103] forming a [etr -+O -H ] center, which is lower in energy on average by about 0.2 eV. These electron trapping sites can affect both the dynamics and thermodynamics of the interaction of hydrogen with a -HfO2 and the electrical behavior of amorphous hafnia films in CMOS devices.

  3. Powder Processing of Amorphous Tungsten-bearing Alloys and Composites

    Science.gov (United States)

    2015-03-01

    8725 John J. Kingman Road, MS-6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA-TR-14-73 Powder Processing of Amorphous Tungsten ...Technology, Boise State University, Army Research Laboratory Project Title: Powder Processing of Amorphous Tungsten -bearing Alloys and Composites...strength, we made them better suited to study the mechanical alloying of tungsten -transition metal couples in which interdiffusion during mechanical

  4. Evidence for the Improved Defect-Pool Model for Gap States in Amorphous Silicon from Charge DLTS Experiments on Undoped a-Si:H

    Science.gov (United States)

    Nádazdy, V.; Durný, R.; Pinc̆ik, E.

    1997-02-01

    Results of the first charge deep level transient spectroscopy (DLTS) measurements on undoped a-Si:H are presented. The ability of the charge DLTS technique to resolve the gap-state distribution and to monitor directly its evolution after preequilibrium preparation by bias annealing is demonstrated. Three groups of gap states with mean energies of 0.63, 0.82, and 1.25 eV are observed. The condition for their creation as well as the energy values are in a good agreement with the D+, D0, and D- states of the improved defect-pool model.

  5. Variable-amplitude oscillatory shear response of amorphous materials

    Science.gov (United States)

    Perchikov, Nathan; Bouchbinder, Eran

    2014-06-01

    Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.

  6. Beyond amorphous organic semiconductors

    Science.gov (United States)

    Hanna, Jun-ichi

    2003-07-01

    Recently it has been discovered that some types of liquid crystals, which believed to be governed by ionic conduction, exhibit a very fast electronic conduction. Their charge carrier transport is characterized by high mobility over 10-2 cm2/Vs independent of electric field and temperature. Now, the liquid crystals are being recognized as a new class of organic semiconductors. In this article, a new aspect of liquid crystals as a self-organizing molecular semiconductor are reviewed, focused on their basic charge carrier transport properties and discussed in comparison with those of molecular crystals and amorphous materials. And it is concluded that the liquid crystal is promising as a quality organic semiconductor for the devices that require a high mobility.

  7. Measurement of the equation of state and of the index of refraction of an amorphous glow discharge polymer up to 45 GPa

    Science.gov (United States)

    Plisson, Thomas; Colin-Lalu, Pierre; Huser, Gael; Loubeyre, Paul

    2016-08-01

    We present an experimental determination of the ambient temperature equation of state, P ( ρ / ρ 0 , 293 K ) , up to 45 GPa, of the glow discharge polymer (GDP) used as a confining capsule for the fusible deuterium-tritium mixture in inertial confinement fusion experiments. An original method has been implemented to measure both the compression factor and the refractive index versus pressure. The data are obtained in a diamond anvil cell with two sample chambers of equal thickness containing, respectively, the GDP and a NaCl reference. This experimental equation of state is compared to numerical first principles simulations. Deviations are ascribed to the difficulty to simulate the detailed atomic structure of the polymer under moderate pressure.

  8. Containerless processing of amorphous ceramics

    Science.gov (United States)

    Weber, J. K. Richard; Krishnan, Shankar; Schiffman, Robert A.; Nordine, Paul C.

    1990-01-01

    The absence of gravity allows containerless processing of materials which could not otherwise be processed. High melting point, hard materials such as borides, nitrides, and refractory metals are usually brittle in their crystalline form. The absence of dislocations in amorphous materials frequently endows them with flexibility and toughness. Systematic studies of the properties of many amorphous materials have not been carried out. The requirements for their production is that they can be processed in a controlled way without container interaction. Containerless processing in microgravity could permit the control necessary to produce amorphous forms of hard materials.

  9. Apatite Formation from Amorphous Calcium Phosphate and Mixed Amorphous Calcium Phosphate/Amorphous Calcium Carbonate.

    Science.gov (United States)

    Ibsen, Casper J S; Chernyshov, Dmitry; Birkedal, Henrik

    2016-08-22

    Crystallization from amorphous phases is an emerging pathway for making advanced materials. Biology has made use of amorphous precursor phases for eons and used them to produce structures with remarkable properties. Herein, we show how the design of the amorphous phase greatly influences the nanocrystals formed therefrom. We investigate the transformation of mixed amorphous calcium phosphate/amorphous calcium carbonate phases into bone-like nanocrystalline apatite using in situ synchrotron X-ray diffraction and IR spectroscopy. The speciation of phosphate was controlled by pH to favor HPO4 (2-) . In a carbonate free system, the reaction produces anisotropic apatite crystallites with large aspect ratios. The first formed crystallites are highly calcium deficient and hydrogen phosphate rich, consistent with thin octacalcium phosphate (OCP)-like needles. During growth, the crystallites become increasingly stoichiometric, which indicates that the crystallites grow through addition of near-stoichiometric apatite to the OCP-like initial crystals through a process that involves either crystallite fusion/aggregation or Ostwald ripening. The mixed amorphous phases were found to be more stable against phase transformations, hence, the crystallization was inhibited. The resulting crystallites were smaller and less anisotropic. This is rationalized by the idea that a local phosphate-depletion zone formed around the growing crystal until it was surrounded by amorphous calcium carbonate, which stopped the crystallization.

  10. Amorphous drugs and dosage forms

    DEFF Research Database (Denmark)

    Grohganz, Holger; Löbmann, K.; Priemel, P.;

    2013-01-01

    formulation principles are needed to ensure the stability of amorphous drug forms. The formation of solid dispersions is still the most investigated approach, but additional approaches are desirable to overcome the shortcomings of solid dispersions. Spatial separation by either coating or the use of micro......The transformation to an amorphous form is one of the most promising approaches to address the low solubility of drug compounds, the latter being an increasing challenge in the development of new drug candidates. However, amorphous forms are high energy solids and tend to recry stallize. New......-containers has shown potential to prevent or delay recrystallization. Another recent approach is the formation of co-amorphous mixtures between either two drugs or one drug and one low molecular weight excipient. Molecular interactions between the two molecules provide an energy barrier that has to be overcome...

  11. An amorphous LiCo{sub 1/3}Mn{sub 1/3}Ni{sub 1/3}O{sub 2} thin film deposited on NASICON-type electrolyte for all-solid-state Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J. [Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507 (Japan); Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O. [Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507 (Japan)

    2010-09-01

    Amorphous LiCo{sub 1/3}Mn{sub 1/3}Ni{sub 1/3}O{sub 2} thin films were deposited on the NASICON-type Li-ion conducting glass ceramics, Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} (LATSP), by radio frequency (RF) magnetron sputtering below 130 C. The amorphous films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The Li/PEO{sub 18}-Li(CF{sub 3}SO{sub 2}){sub 2}N/LATSP/LiCo{sub 1/3}Mn{sub 1/3}Ni{sub 1/3}O{sub 2}/Au all-solid-state cells were fabricated to investigate the electrochemical performance of the amorphous films. It was found that the low-temperature deposited amorphous cathode film shows a high discharge voltage and a high discharge capacity of around 130 mAh g{sup -1}. (author)

  12. A novel solid-state NMR method for the investigation of trivalent lanthanide sorption on amorphous silica at low surface loadings.

    Science.gov (United States)

    Mason, H E; Begg, J D; Maxwell, R S; Kersting, A B; Zavarin, M

    2016-07-13

    The modelling of radionuclide transport in the subsurface depends on a comprehensive understanding of their interactions with mineral surfaces. Spectroscopic techniques provide important insight into these processes directly, but at high concentrations are sometimes hindered by safety concerns and limited solubilities of many radionuclides, especially the actinides. Here we use Eu(iii) as a surrogate for trivalent actinide species, and study Eu(iii) sorption on the silica surface at pH 5 where sorption is fairly limited. We have applied a novel, surface selective solid-state nuclear magnetic resonance (NMR) technique to provide information about Eu binding at the silica surface at estimated surface loadings ranging from 0.1 to 3 nmol m(-2) (<0.1% surface loading). The NMR results show that inner sphere Eu(iii) complexes are evenly distributed across the silica surface at all concentrations, but that at the highest surface loadings there are indications that precipitates may form. These results illustrate that this NMR technique may be applied in solubility-limited systems to differentiate between adsorption and precipitation to better understand the interactions of radionuclides at solid surfaces.

  13. Dynamics of hydrogen in hydrogenated amorphous silicon

    Indian Academy of Sciences (India)

    Ranber Singh; S Prakash

    2003-07-01

    The problem of hydrogen diffusion in hydrogenated amorphous silicon (a-Si:H) is studied semiclassically. It is found that the local hydrogen concentration fluctuations-induced extra potential wells, if intense enough, lead to the localized electronic states in a-Si:H. These localized states are metastable. The trapping of electrons and holes in these states leads to the electrical degradation of the material. These states also act as recombination centers for photo-generated carriers (electrons and holes) which in turn may excite a hydrogen atom from a nearby Si–H bond and breaks the weak (strained) Si–Si bond thereby apparently enhancing the hydrogen diffusion and increasing the light-induced dangling bonds.

  14. Surface magnetic anisotropy in amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tejedor, M.; Rubio, H.; Elbaile, L.; Iglesias, R. (Univ. de Oviedo (Spain). Dept. de Fisica)

    1993-11-01

    The total in-plane magnetic anisotropy and the in-plane surface magnetic anisotropy constants have been measured in nearly-zero magnetostrictive amorphous ribbons in as-quenched state. The magnetostatic energy of a two-dimensional square-lattice of parallelepipeds or ellipsoids, whose dimensions are determined by the parameters characterizing the roughness, is evaluated. From the results obtained, they can conclude that the in-plane surface anisotropy can be magnetostatic in origin but it has little influence on the total in-plane magnetic anisotropy of the ribbon.

  15. Deep-level transient spectroscopy on an amorphous InGaZnO4 Schottky diode

    NARCIS (Netherlands)

    Chasin, A.; Simoen, E.; Bhoolokam, A.; Nag, M.; Genoe, J.; Gielen, G.; Heremans, P.

    2014-01-01

    The first direct measurement is reported of the bulk density of deep states in amorphous IGZO (indium-gallium-zinc oxide) semiconductor by means of deep-level transient spectroscopy (DLTS). The device under test is a Schottky diode of amorphous IGZO semiconductor on a palladium (Pd) Schottky-barrier

  16. Fundamentals of amorphous solids structure and properties

    CERN Document Server

    Stachurski, Zbigniew H

    2014-01-01

    Long awaited, this textbook fills the gap for convincing concepts to describe amorphous solids. Adopting a unique approach, the author develops a framework that lays the foundations for a theory of amorphousness. He unravels the scientific mysteries surrounding the topic, replacing rather vague notions of amorphous materials as disordered crystalline solids with the well-founded concept of ideal amorphous solids. A classification of amorphous materials into inorganic glasses, organic glasses, glassy metallic alloys, and thin films sets the scene for the development of the model of ideal amorph

  17. Nanostructures having crystalline and amorphous phases

    Science.gov (United States)

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  18. Amorphization of Crystalline Water Ice

    CERN Document Server

    Zheng, Weijun; Kaiser, Ralf I

    2008-01-01

    We conducted a systematic experimental study to investigate the amorphization of crystalline ice by irradiation in the 10-50 K temperature range with 5 keV electrons at a dose of ~140 eV per molecule. We found that crystalline water ice can be converted partially to amorphous ice by electron irradiation. Our experiments showed that some of the 1.65-micrometer band survived the irradiation, to a degree that depends on the temperature, demonstrating that there is a balance between thermal recrystallization and irradiation-induced amorphization, with thermal recrystallizaton dominant at higher temperatures. At 50 K, recrystallization due to thermal effects is strong, and most of the crystalline ice survived. Temperatures of most known objects in the solar system, including Jovian satellites, Saturnian satellites, and Kuiper belt objects, are equal to or above 50 K, this might explain why water ice detected on those objects is mostly crystalline.

  19. Analysis and Application of the Amorphous Properties in Freeze-Dried Foods

    Science.gov (United States)

    Kawai, Kiyoshi

    The dynamic properties of amorphous materials drastically change by the phase transition between glassy state and rubber state. Furthermore, the dynamic properties of amorphous materials in glassy state are affected by the thermal history such as processing and/or storage conditions. In this paper, effect of the glass transition of freeze-dried food systems on the storage stability was summarized. Moreover, analytical approaches of the amorphous properties for glassy products with enthalpy relaxation measurements by using differential scanning calorimetry were presented and its application to food industry was proposed.

  20. Casimir Force Contrast Between Amorphous and Crystalline Phases of AIST

    NARCIS (Netherlands)

    Torrichelli, G.; Zwol, van P.J.; Shpak, O.; Palasantzas, G.; Svetovoy, V.B.; Binns, C.; Kooi, B.J.; Jost, P.; Wittig, M.

    2012-01-01

    Phase change materials (PCMs) can be rapidly and reversibly switched between the amorphous and crystalline state. The structural transformation is accompanied by a signifi cant change of optical and electronic properties rendering PCMs suitable for rewritable optical data storage and nonvolatile ele

  1. Upconversion spectroscopy of erbium in amorphous aluminum oxide microstructures

    NARCIS (Netherlands)

    Agazzi, L.; Wörhoff, K.; Pollnau, M.

    2012-01-01

    The influence of energy migration and energy-transfer upconversion (ETU) among neighboring erbium ions on luminescence decay and steady-state population densities in amorphous aluminum oxide microstructures is investigated by means of photoluminescence decay measurements under quasi-CW excitation. .

  2. Correlating thermodynamic and kinetic parameters with amorphous stability

    DEFF Research Database (Denmark)

    Graeser, Kirsten A; Patterson, James E; Zeitler, J Axel;

    2009-01-01

    Poor physical stability is one of the single most important factors limiting the widespread use of the amorphous state in pharmaceutics. The purpose of this study is to move away from the case study approach by investigating thermodynamic and kinetic parameters as potential predictors of physical...

  3. Properties of amorphous FeCoB alloy particles (abstract)

    DEFF Research Database (Denmark)

    Charles, S. W.; Wells, S.; Meagher, A.

    1988-01-01

    -ray diffraction. Magnetic measurements of the saturation magnetization, coercivity, and remanence of the particles have been measured. The transition from the amorphous-to-crystalline state has been studied using differential scanning calorimetry (DSC) and thermomagnetometry up to a temperature of 450 °C (see Fig...

  4. Improving co-amorphous drug formulations by the addition of the highly water soluble amino acid proline

    DEFF Research Database (Denmark)

    Jensen, Katrine Birgitte Tarp; Löbmann, Korbinian; Rades, Thomas;

    2014-01-01

    by combining the model drug, naproxen (NAP), with an amino acid to physically stabilize the co-amorphous system (tryptophan, TRP, or arginine, ARG) and a second highly soluble amino acid (proline, PRO) for an additional improvement of the dissolution rate. Co-amorphous drug-amino acid blends were prepared......Co-amorphous drug amino acid mixtures were previously shown to be a promising approach to create physically stable amorphous systems with the improved dissolution properties of poorly water-soluble drugs. The aim of this work was to expand the co-amorphous drug amino acid mixture approach...... by ball milling and investigated for solid state characteristics, stability and the dissolution rate enhancement of NAP. All co-amorphous mixtures were stable at room temperature and 40 °C for a minimum of 84 days. PRO acted as a stabilizer for the co-amorphous system, including NAP–TRP, through enhancing...

  5. Ab initio modelling of boron related defects in amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Tiago A.; Torres, Vitor J.B. [Department of Physics, University of Aveiro, Campus Santiago, 3810-193 Aveiro (Portugal)

    2012-10-15

    We have modeled boron related point defects in amorphous silicon, using an ab initio method, the Density functional theory-pseudopotential code Aimpro. The boron atoms were embedded in 64 atom amorphous silicon cubic supercells. The calculations were performed using boron defects in 15 different supercells. These supercells were developed using a modified Wooten-Winer-Weaire bond switching mechanism. In average, the properties of the 15 supercells agree with the observed radial and bond angle distributions, as well the electronic and vibrational density of states and Raman spectra. In amorphous silicon it has been very hard to find real self-interstitials, since for almost all the tested configurations, the amorphous lattice relaxes overall. We found that substitutional boron prefers to be 4-fold coordinated. We find also an intrinsic hole-trap in the non-doped amorphous lattice, which may explain the low efficiency of boron doping. The local vibrational modes are, in average, higher than the correspondent crystalline values (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Amorphous Dielectric Thin Films with Extremely Low Mechanical Loss

    Directory of Open Access Journals (Sweden)

    Liu X.

    2015-04-01

    Full Text Available The ubiquitous low-energy excitations are one of the universal phenomena of amorphous solids. These excitations dominate the acoustic, dielectric, and thermal properties of structurally disordered solids. One exception has been a type of hydrogenated amorphous silicon (a-Si:H with 1 at.% H. Using low temperature elastic and thermal measurements of electron-beam evap-orated amorphous silicon (a-Si, we show that TLS can be eliminated in this system as the films become denser and more structurally ordered under certain deposition conditions. Our results demonstrate that TLS are not intrinsic to the glassy state but instead reside in low density regions of the amorphous network. This work obviates the role hydrogen was previously thought to play in removing TLS in a-Si:H and favors an ideal four-fold covalently bonded amorphous structure as the cause for the disappearance of TLS. Our result supports the notion that a-Si can be made a “perfect glass” with “crystal-like” properties, thus offering an encouraging opportunity to use it as a simple crystal dielectric alternative in applications, such as in modern quantum devices where TLS are the source of dissipation, decoherence and 1/f noise.

  7. Amorphous titanium-oxide supercapacitors

    Science.gov (United States)

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-10-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.

  8. Amorphization in Gd-Co alloys and multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, J.A. [Departamento de Fisica Teorica, Universidad de Valladolid, Valladolid (Spain); Hojvat de Tendler, R. [Instituto de Estudios Nucleares, Centro Atomico Ezeiza, CNEA, Buenos Aires (Argentina); Barbiric, D.A. [Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Universidad de Buenos Aires, Buenos Aires (Argentina); Riveiro, J.M. [Departamento de Fisica Aplicada, Universidad de Castilla-La Mancha, Ciudad Real (Spain)

    2002-10-07

    A semiempirical model is used to analyse the results of published experiments reporting on the solid-state amorphization reactions in bilayers and multilayers formed by Gd and Co. The role of the interfacial effects in raising the free energy of the initial arrangement in a multilayered configuration, and in promoting the amorphization reaction, is studied in detail. The model explains the observation of amorphous alloys over a broad composition range in the bilayer experiments. The preferred composition obtained in the multilayer experiments is discussed critically and the model prediction of a preferred composition Gd{sub 0.46}Co{sub 0.54} is in good agreement with the compositions observed in recent experiments. (author)

  9. Amorphous and nanostructured silica and aluminosilicate spray-dried microspheres

    Science.gov (United States)

    Todea, M.; Turcu, R. V. F.; Frentiu, B.; Tamasan, M.; Mocuta, H.; Ponta, O.; Simon, S.

    2011-08-01

    Amorphous silica and aluminosilicate microspheres with diameters in the 0.1-20 μm range were produced by spray drying method. SEM, TEM and AFM images showed the spherical shape of the obtained particles. Based on thermal analysis data, several heat treatments have been applied on the as-prepared samples in order to check the amorphous state stability of the microspheres and to develop nanosized crystalline phases. As-prepared microspheres remain amorphous up to 1400 °C. By calcination at 1400 °C, cristobalite type nanocrystals are developed on silica sample, while in aluminosilicate sample first are developed mullite type nanocrystals and only after prolonged treatment are developed also cristobalite type nanocrystals. 29Si and 27Al MAS NMR results show that the local order around aluminum and silicon atoms strongly depend on the thermal history of the microspheres.

  10. Molecular simulation of freestanding amorphous nickel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.Q. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France); Hoang, V.V., E-mail: vvhoang2002@yahoo.com [Department of Physics, Institute of Technology, National University of Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Lauriat, G. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France)

    2013-10-31

    Size effects on glass formation in freestanding Ni thin films have been studied via molecular dynamics simulation with the n-body Gupta interatomic potential. Atomic mechanism of glass formation in the films is determined via analysis of the spatio-temporal arrangements of solid-like atoms occurred upon cooling from the melt. Solid-like atoms are detected via the Lindemann ratio. We find that solid-like atoms initiate and grow mainly in the interior of the film and grow outward. Their number increases with decreasing temperature and at a glass transition temperature they dominate in the system to form a relatively rigid glassy state of a thin film shape. We find the existence of a mobile surface layer in both liquid and glassy states which can play an important role in various surface properties of amorphous Ni thin films. We find that glass formation is size independent for models containing 4000 to 108,000 atoms. Moreover, structure of amorphous Ni thin films has been studied in details via coordination number, Honeycutt–Andersen analysis, and density profile which reveal that amorphous thin films exhibit two different parts: interior and surface layer. The former exhibits almost the same structure like that found for the bulk while the latter behaves a more porous structure containing a large amount of undercoordinated sites which are the origin of various surface behaviors of the amorphous Ni or Ni-based thin films found in practice. - Highlights: • Glass formation is analyzed via spatio-temporal arrangements of solid-like atoms. • Amorphous Ni thin film exhibits two different parts: surface and interior. • Mobile surface layer enhances various surface properties of the amorphous Ni thin films. • Undercoordinated sites play an important role in various surface activities.

  11. Amorphous LiCoO{sub 2} thin films on Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} prepared by radio frequency magnetron sputtering for all-solid-state Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J., E-mail: xiejian1977@zju.edu.c [Department of Materials Science and Engineering, Zhejiang University, Zheda Road no.38, Hangzhou, Zhejiang Province 310027 (China); Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O. [Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507 (Japan); Cao, G.S.; Zhao, X.B. [Department of Materials Science and Engineering, Zhejiang University, Zheda Road no.38, Hangzhou, Zhejiang Province 310027 (China)

    2010-07-30

    Amorphous LiCoO{sub 2} thin films were deposited on the NASICON-type glass ceramics, Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} (LATSP), by radio frequency (RF) magnetron sputtering below 180 {sup o}C. The as-deposited LiCoO{sub 2} thin films were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscope. All-solid-state Li/PEO{sub 18}-Li (CF{sub 3}SO{sub 2}){sub 2}N/LATSP/LiCoO{sub 2}/Au cells were fabricated using the amorphous film. The electrochemical performance of the cells was investigated by galvanostatic cycling, cyclic voltammetry, potentiostatic intermittent titration technique and electrochemical impedance spectroscopy. It was found that the amorphous LiCoO{sub 2} thin film shows a promising electrochemical performance, making it a potential application in microbatteries for microelectronic devices.

  12. Thermal behaviour of Cu-Ti and Cu-Ti-H amorphous powders prepared by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Baricco, M. (Ist. Elettrotecnico Nazionale Galileo Ferraris and INFM/GNSM, Research Unity, Turin (Italy)); Battezzati, L. (Dipt. di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali, Turin Univ. (Italy)); Soletta, I.; Schiffini, L. (Dipt. di Chimica, Univ. di Sassari (Italy)); Cowlam, N. (Dept. of Physics, Univ. of Sheffield (UK))

    1991-03-25

    Solid state amorphization reactions in Cu-Ti have been studied by means of DSC and structural techniques. The influence of hydrogen from the parent titanium powder on the amorphization and crystallization processes has been investigated. For Cu-Ti a diffusion-controlled process can be inferred for solid state amorphization from the parabolic trend of the heat of crystallization, as a function of the milling time. The presence of hydrogen in the alloys is found to modify the crystallization behaviour of the amorphous phase. A DSC method for the determination of the amount of hydrogen present in the alloys is given. (orig.).

  13. Emergent interparticle interactions in thermal amorphous solids

    Science.gov (United States)

    Gendelman, Oleg; Lerner, Edan; Pollack, Yoav G.; Procaccia, Itamar; Rainone, Corrado; Riechers, Birte

    2016-11-01

    Amorphous media at finite temperatures, be them liquids, colloids, or glasses, are made of interacting particles that move chaotically due to thermal energy, continuously colliding and scattering off each other. When the average configuration in these systems relaxes only at long times, one can introduce effective interactions that keep the mean positions in mechanical equilibrium. We introduce a framework to determine the effective force laws that define an effective Hessian that can be employed to discuss stability properties and the density of states of the amorphous system. We exemplify the approach with a thermal glass of hard spheres; these experience zero forces when not in contact and infinite forces when they touch. Close to jamming we recapture the effective interactions that at temperature T depend on the gap h between spheres as T /h [C. Brito and M. Wyart, Europhys. Lett. 76, 149 (2006), 10.1209/epl/i2006-10238-x]. For hard spheres at lower densities or for systems whose binary bare interactions are longer ranged (at any density), the emergent force laws include ternary, quaternary, and generally higher-order many-body terms, leading to a temperature-dependent effective Hessian.

  14. Flexible amorphous metal films with high stability

    Science.gov (United States)

    Liu, M.; Cao, C. R.; Lu, Y. M.; Wang, W. H.; Bai, H. Y.

    2017-01-01

    We report the formation of amorphous Cu50Zr50 films with a large-area of more than 100 cm2. The films were fabricated by ion beam assisted deposition with a slow deposition rate at moderate temperature. The amorphous films have markedly enhanced thermal stability, excellent flexibility, and high reflectivity with atomic level smoothness. The multifunctional properties of the amorphous films are favorites in the promising applications of smart skin or wearable devices. The method of preparing highly stable amorphous metal films by tuning the deposition rate instead of deposition temperature could pave a way for exploring amorphous metal films with unique properties.

  15. Catalytic acceleration of graphitisation of amorphous carbon during synthesis of tungsten carbide from tungsten and excess amorphous carbon in a solar furnace

    Energy Technology Data Exchange (ETDEWEB)

    Shohoji, N. [Inst. Nacional de Engenharia e Tecnologia Industrial, Lisbon (Portugal); Guerra Rosa, L.; Cruz Fernandes, J. [Instituto Superior Tecnico, Departamento de Engenharia de Materiais, Av. Rovisco Pais, 1049-001, Lisbon (Portugal); Martinez, D.; Rodriguez, J. [Plataforma Solar de Almeria, Centro Europeo de Ensayos de Energia Solar, Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, P.O. Box 22, 04200, Tabernas (Spain)

    1999-03-25

    Amorphous carbon is one of the allotropes of carbon possessing carbon activity a(C) higher than that of graphite (standard state with a(C) = 1). Amorphous carbon is in a metastable state but, under normal circumstances, it takes several hours to be graphitised to an extent detectable by X-ray diffraction even at temperature higher than 1500 C. In the present work, we report the accelerated graphitisation of amorphous carbon induced apparently by the catalytic action of tungsten (W) or tungsten carbide (WC) during synthesis of WC started from W and active carbon in solar furnace under controlled atmosphere (Ar or N{sub 2}). This degree of graphitisation of amorphous carbon did not proceed by the similar reaction undertaken in the traditional laboratory furnace under the comparable conditions. (orig.) 14 refs.

  16. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-04-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  17. Functionalized Amorphous Aluminosilicates

    Science.gov (United States)

    Mesgar, Milad

    Alkali treated aluminosilicate (geopolymer) was functionalized by surfactant to increase the hydrophobicity for making Pickering emulsion for the first part of this work. In the first part of this study, alkali treated metakaolin was functionalized with cetyltrimethylammonium bromide ((C16H33)N(CH 3)3Br, CTAB). The electrostatic interaction between this quaternary ammonium and the surface of the aluminosilicate which has negative charge has taken place. The particles then were used to prepare Pickering emulsion. The resulting stable dispersions, obtained very fast at very simple conditions with low ratio of aluminosilicate to liquid phase. In the second part, the interaction between geopolymer and glycerol was studied to see the covalent grafting of the geopolymer for making geopolymer composite. The composite material would be the basis material to be used as support catalyst, thin coating reagent and flame retardant material and so on, Variety of techniques, Thermogravimetric (TGA), Particle-induced X-ray emission (PIXE), FTIR, Solid state NMR, Powder X-ray diffraction (PXRD), BET surface area, Elemental analysis (CHN), TEM, SEM and Optical microscopy were used to characterize the functionalized geopolymer.

  18. Preparation and characterization of spray-dried co-amorphous drug-amino acid salts

    DEFF Research Database (Denmark)

    Jensen, Katrine Birgitte Tarp; Blaabjerg, Lasse Ingerslev; Lenz, Elisabeth;

    2016-01-01

    scale. In this study, spray-drying was investigated as a scale up preparation method for co-amorphous indomethacin (IND)-amino acid mixtures. In addition, the physico-chemical properties of the different co-amorphous systems were investigated with respect to the amino acids' ability towards co...... dissolution behaviour, and physical stability at various storage conditions, were examined. KEY FINDINGS: Results showed that IND could be converted into an amorphous form in combination with the amino acids arginine (ARG), histidine (HIS) and lysine (LYS) by spray-drying. Solid state characterization...... mixtures were physically stable (>10 months) at room temperature and 40°C under dry conditions. Intrinsic dissolution of the co-amorphous mixtures showed an improved dissolution behaviour under intestinal pH conditions for IND-ARG compared with the crystalline and amorphous forms of the drug. On the other...

  19. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  20. Electronic transport in disordered n-alkanes: From fluid methane to amorphous polyethylene

    Science.gov (United States)

    Cubero, David; Quirke, Nicholas; Coker, David F.

    2003-08-01

    We use a fast Fourier transform block Lanczos diagonalization algorithm to study the electronic states of excess electrons in fluid alkanes (methane, ethane, and propane) and in a molecular model of amorphous polyethylene (PE) relevant to studies of space charge in insulating polymers. We obtain a new pseudopotential for electron-PE interactions by fitting to the electronic properties of fluid alkanes and use this to obtain new results for electron transport in amorphous PE. From our simulations, while the electronic states in fluid methane are extended throughout the whole sample, in amorphous PE there is a transition between localized and delocalized states slightly above the vacuum level (˜+0.06 eV). The localized states in our amorphous PE model extend to -0.33 eV below this level. Using the Kubo-Greenwood equation we compute the zero-field electron mobility in pure amorphous PE to be μ≈2×10-3 cm2/V s. Our results highlight the importance of electron transport through extended states in amorphous regions to an understanding of electron transport in PE.

  1. On Structure and Properties of Amorphous Materials

    Directory of Open Access Journals (Sweden)

    Zbigniew H. Stachurski

    2011-09-01

    Full Text Available Mechanical, optical, magnetic and electronic properties of amorphous materials hold great promise towards current and emergent technologies. We distinguish at least four categories of amorphous (glassy materials: (i metallic; (ii thin films; (iii organic and inorganic thermoplastics; and (iv amorphous permanent networks. Some fundamental questions about the atomic arrangements remain unresolved. This paper focuses on the models of atomic arrangements in amorphous materials. The earliest ideas of Bernal on the structure of liquids were followed by experiments and computer models for the packing of spheres. Modern approach is to carry out computer simulations with prediction that can be tested by experiments. A geometrical concept of an ideal amorphous solid is presented as a novel contribution to the understanding of atomic arrangements in amorphous solids.

  2. Machine learning based interatomic potential for amorphous carbon

    Science.gov (United States)

    Deringer, Volker L.; Csányi, Gábor

    2017-03-01

    We introduce a Gaussian approximation potential (GAP) for atomistic simulations of liquid and amorphous elemental carbon. Based on a machine learning representation of the density-functional theory (DFT) potential-energy surface, such interatomic potentials enable materials simulations with close-to DFT accuracy but at much lower computational cost. We first determine the maximum accuracy that any finite-range potential can achieve in carbon structures; then, using a hierarchical set of two-, three-, and many-body structural descriptors, we construct a GAP model that can indeed reach the target accuracy. The potential yields accurate energetic and structural properties over a wide range of densities; it also correctly captures the structure of the liquid phases, at variance with a state-of-the-art empirical potential. Exemplary applications of the GAP model to surfaces of "diamondlike" tetrahedral amorphous carbon (ta -C) are presented, including an estimate of the amorphous material's surface energy and simulations of high-temperature surface reconstructions ("graphitization"). The presented interatomic potential appears to be promising for realistic and accurate simulations of nanoscale amorphous carbon structures.

  3. The physics and applications of amorphous semiconductors

    CERN Document Server

    Madan, Arun

    1988-01-01

    This comprehensive, detailed treatise on the physics and applications of the new emerging technology of amorphous semiconductors focuses on specific device research problems such as the optimization of device performance. The first part of the book presents hydrogenated amorphous silicon type alloys, whose applications include inexpensive solar cells, thin film transistors, image scanners, electrophotography, optical recording and gas sensors. The second part of the book discusses amorphous chalcogenides, whose applications include electrophotography, switching, and memory elements. This boo

  4. Manufacture of iron-based, amorphous coatings with high fracture toughness

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Königstein, T.

    2017-03-01

    Amorphous iron-based material have excellent corrosion behaviour, show good tribological performances and exhibit interesting thermophysical properties. The deposition as a coating system by thermal spraying technology is an innovative approach to manufacture these materials. In this study, the mechanical properties of three iron-based amorphous coatings with different chromium content xCr = 0, 5 and 15 at.% are presented deposited by means of High Velocity Oxygen Fuel Spraying. For the determination of the amorphous content the linear relationship between crystallization energy and amount of amorphous structures is used. Comparing the crystallization energies of amorphous ribbons manufactured by melt spinning to those of feedstock materials and free standing coatings, assumptions regarding the amorphous contents are drawn. The results show that the amorphous content in the feedstock material is influenced by the amount of chromium content. Furthermore, the amorphous content of all coatings do not exceed those of the feedstock materials. Powder xCr = 15 at.% and the corresponding coating exhibit smallest amount of amorphous structure, presumably due to a not fully melted state of the impacting particles. The values of fracture toughness of the coatings are determined by means of indentation and subsequent measurement of the crack lengths. Furthermore, values of indentation modulus and hardness are measured and compared to each other. While length of indentation cracks decreases with increasing chromium content, an increase in indention modulus and hardness is observed. In comparison to ceramic reference YSZ and the steel reference 1.4404, all amorphous coatings show promising properties such as low indentation crack lengths and high hardness.

  5. Structural study of amorphous polyaniline

    Science.gov (United States)

    Laridjani, M.; Pouget, J. P.; MacDiarmid, A. G.; Epstein, A. J.

    1992-06-01

    Many materials, especially polymers, have a substantial volume fraction with no long range crystalline order. Through these regions are often termed amorphous, they frequently have a specific local order. We describe and use here a method, base on a non-energy dispersive X-ray diffraction technique, to obtain good quality interference functions and, by Fourier transform, radial distribution functions of the amorphous structure of polymers. We apply this approach to members of a family of electronic polymers of current interest : polyaniline emeraldine bases. We show that the local order exhibits significant differences in type I and type II materials, precipitated as salt and base respectively. These studies demonstrate the importance of sample preparation in evaluating the physical properties of polyaniline, and provide a structural origin for memory effects observed in the doping-dedoping processes. Beaucoup de matériaux, spécialement les polymères, ont une importante fraction de leur volume sans ordre cristallin à longue portée. Bien que ces régions soient souvent appelées amorphes, elles présentent fréquemment un ordre local caractéristique. Nous décrivons et utilisons dans ce papier une méthode, basée sur une technique de diffraction de rayons X non dispersive en énergie, pour obtenir des fonctions d'interférence de bonne qualité et, par transformée de Fourier, la fonction de distribution radiale des polymères amorphes. Nous appliquons cette technique à plusieurs éléments d'une même famille de polymères électroniques d'intérêt actuel : les polyanilines éméraldine bases. Nous montrons que l'ordre local présente d'appréciables différences dans les matériaux de type I et II, préparés respectivement sous forme de sel et de base. Cette étude démontre l'importance des conditions de préparation sur les propriétés physiques du polyaniline et donne une base structurale aux effets observés dans les processus de dopage-dédopage de

  6. Fracture Phenomena in Amorphous Selenium

    DEFF Research Database (Denmark)

    Lindegaard-Andersen, Asger; Dahle, Birgit

    1966-01-01

    the velocities of ultrasonic longitudinal and shear waves were measured to 1820 m/sec and 930 m/sec, respectively. Based on these results the two line systems in the transition zone can be interpreted as ``Wallner lines'' with sources within the zone. ©1966 The American Institute of Physics......Fracture surfaces of amorphous selenium broken in flexure at room temperature have been studied. The fracture velocity was found to vary in different regions of the fracture surface. Peculiar features were observed in a transition zone between fast and slower fracture. In this zone cleavage steps...

  7. The influence of pressure on the intrinsic dissolution rate of amorphous indomethacin

    DEFF Research Database (Denmark)

    Löbmann, Korbinian; Flouda, Konstantina; Qiu, Danwen;

    2014-01-01

    of different compression pressures on the IDR was determined from powder compacts of amorphous (ball-milling) indomethacin (IND), a glass solution of IND and poly(vinylpyrrolidone) (PVP) and crystalline IND. Solid state properties were analyzed with X-ray powder diffraction (XRPD) and the final compacts were......, compression pressure had an impact on the IDR of pure amorphous IND compacts. Above a critical compression pressure, amorphous particles sintered to form a single compact with dissolution properties similar to quench-cooled disc and crystalline IND compacts. In such a case, the apparent dissolution advantage...

  8. Magnetic and magnetocaloric properties of amorphous Y3Fe5O12 compound

    Science.gov (United States)

    Nóbrega, E. P.; Costa, S. S.; Alvarenga, T. S. T.; Alho, B. P.; Caldas, A.; Ribeiro, P. O.; de Sousa, V. S. R.; de Oliveira, N. A.; von Ranke, P. J.

    2017-01-01

    We report a theoretical model formed by two coupled magnetic sublattices of localized spins in the presence of an applied magnetic field to investigate the magnetic characteristics and magnetocaloric properties of amorphous yttrium iron garnet. The magnetic state equation is based on Handrich-Kobe´s theory, where the amorphization is taken into account by introducing fluctuations in the exchange parameters. Experimental results report that Y3Fe5O12 presents a structural phase transition from crystalline to amorphous caused by a variation of external pressure. This phase transition on Y3Fe5O12 leads to interesting results in the magnetic properties and magnetocaloric quantities.

  9. Joint ESRF-Cecam workshop polymorphous in liquid and amorphous matter

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L.; Hennet, L.; Krishnan, S.; Sinn, H.; Alp, E.E.; Saboungi, M.L.; Holland-Moritz, D.; Mossa, S.; Tarjus, G.; Trapananti, A.; Di Cicco, A.; Filipponi, A.; Tanaka, H.; Soper, A.K.; Strassle, Th.; Klotz, S.; Hamel, G.; Nelmes, R.J.; Loveday, J.S.; Rousse, G.; Canny, B.; Chervin, J.C.; Saitta, M.; Marek Koza, M.; Schober, H.; Geiger, A.; Brovchenko, I.; Oleinikova, A.; Strassle, T.; Reichert, H.; Jakse, N.; Lebacq, O.; Pasturel, A.; Salmon, P.S.; Martin, R.A.; Massobrio, C.; Poon, W.C.K.; Pham, K.N.; Voigtmann, Th.; Egelhaaf, S.U.; Pusey, P.N.; Petukhov, A.V.; Dolbnya, I.P.; Vroege, G.J.; Lekkerkerker, H.N.W.; Konig, H.; Keen, D.A.; Benedetti, L.R.; Sihachakr, D.; Dewaele, A.; Weck, G.; Crichton, W.; Mezouar, M.; Loubeyre, P.; Shimojo, F.; Ferlat, G.; San Miguel, A.; Xu, H.; Martinez-Garcia, D.; Zuniga, J.; Munoz-Sanjose, V.; Felipponi, A.; Panfilis, S. de; Di Cicco, A.; Guthrie, M.; Tulk, C.A.; Bemore, C.J.; Xu, J.; Yarger, J.L.; Mao, H.K.; Hemley, R.J

    2004-07-01

    This workshop is dedicated to new trends in the simulation and experimental studies of liquid and amorphous matter. Particular emphasis is given to polymorphism in equilibrium and under-cooled metastable liquids, glasses and to amorphous network-forming systems. 5 mains sessions over the 3 days have been organized: 1) under-cooled liquid metals, 2) liquid, glassy and amorphous semiconductors, 3) water and related systems, 4) colloids, macro-molecules and biological cells, and 5) state-of-the-art in experimental and theoretical investigations. This document gathers the abstracts of the presentations.

  10. Neutron diffraction and thermal studies of amorphous CS{sub 2} realised by low-temperature vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yamamuro, O.; Matsuo, T. [Osaka Univ., Dept. of Chemistry, Graduate School of Sciences (Japan); Onoda-Yamamuro, N. [Tokyo Denki Univ., College of Sciences and Technology (Japan); Takeda, K. [Naruto Univ., Dept. of Chemistry, Tokushima (Japan); Munemura, H.; Tanaka, S.; Misawa, M. [Niigata Univ. (Japan). Faculty of Science

    2003-08-01

    We have succeeded in preparing amorphous carbon disulphide (CS{sub 2}) by depositing its vapour on a cold substrate at 10 K. Complete formation of the amorphous state has been confirmed by neutron diffraction and differential thermal analysis (DTA). The amorphous sample crystallized at ca. 70 K, which is lower than the hypothetical glass transition temperature (92 K) estimated from the DTA data of the (CS{sub 2}){sub x}(S{sub 2}Cl{sub 2}){sub 1-x} binary mixture. CS{sub 2}, a symmetric linear tri-atomic molecule, is the simplest of the amorphized molecular substances whose structural and thermal information has been reported so far. Comparison of the static structure factors S(Q) has shown that the orientational correlation of CS{sub 2} molecules may be much stronger in the amorphous state than in the liquid state at higher temperature. (authors)

  11. AMORPHOUS SILICON ELECTRONIC STRUCTURE MODELING AND BASIC ELECTRO-PHYSICAL PARAMETERS CALCULATION

    Directory of Open Access Journals (Sweden)

    B. A. Golodenko

    2014-01-01

    Full Text Available Summary. The amorphous semiconductor has any unique processing characteristics and it is perspective material for electronic engineering. However, we have not authentic information about they atomic structure and it is essential knot for execution calculation they electronic states and electro physical properties. The author's methods give to us decision such problem. This method allowed to calculation the amorphous silicon modeling cluster atomics Cartesian coordinates, determined spectrum and density its electronic states and calculation the basics electro physical properties of the modeling cluster. At that determined numerical means of the energy gap, energy Fermi, electron concentration inside valence and conduction band for modeling cluster. The find results provides real ability for purposeful control to type and amorphous semiconductor charge carriers concentration and else provides relation between atomic construction and other amorphous substance physical properties, for example, heat capacity, magnetic susceptibility and other thermodynamic sizes.

  12. Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells

    Science.gov (United States)

    Wiesmann, H.; Dolan, J.; Fricano, G.; Danginis, V.

    1987-02-01

    A study was undertaken of the optoelectronic properties of amorphous silicon-hydrogen thin films deposited from disilane at high deposition rates. The information derived from this study was used to fabricate amorphous silicon solar cells with efficiencies exceeding 7%. The intrinsic layer of these solar cells was deposited at 15 angstroms/second. Material properties investigated included dark conductivity, photoconductivity, minority carrier diffusion length, and density of states. The solar cells properties characterized were absolute quantum yield and simulated global AM 1.5 efficiencies. Investigations were undertaken utilizing optical and infrared spectroscopy to optimize the microstructures of the intrinsic amorphous silicon. That work was sponsored by the New York State Energy Research and Development Authority. The information was used to optimize the intrinsic layer of amorphous silicon solar cells, resulting in AM 1.5 efficiencies exceeding 7%.

  13. Energy-level density of amorphous carbon and its modification by the annealing

    CERN Document Server

    Ivanov-Omskij, V I; Tagliaferro, A; Fanchini, G

    2002-01-01

    Annealing influence on the modification of electron density states of amorphous carbon a-C and amorphous hydrogenated carbon a-C:H has been studied. Optical transmission spectra were studied in 1.5-5.6 eV range and ellipsometric angles were measured for He-Ne laser wavelength. The model was suggested of the optical response of amorphous carbon. This model was based on the hypothesis of size fluctuations of sp sup 2 -components of amorphous carbon. The size of the optical gap E sub g for both types of materials was explained in terms of availability of fluctuations of their allotropic content having critical values. The dependence of the density of states of electrons both in fundamental and excited bands on the energy experimental data using model parameters

  14. Laser surface treatment of amorphous metals

    Science.gov (United States)

    Katakam, Shravana K.

    Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic structure. Fe-based amorphous materials are economical and due to their ease of processing are of potential interest to synthesize as coatings materials for wear and corrosion resistance applications. Fe-Cr-Mo-Y-C-B amorphous system was used to develop thick coatings on 4130 Steel substrate and the corrosion resistance of the amorphous coatings was improved. It is also shown that the mode of corrosion depends on the laser processing

  15. Microstructural analyses of amorphic diamond, i-C, and amorphous carbon

    DEFF Research Database (Denmark)

    Collins, C. B.; Davanloo, F.; Jander, D.R.;

    1992-01-01

    Recent experiments have identified the microstructure of amorphic diamond with a model of packed nodules of amorphous diamond expected theoretically. However, this success has left in doubt the relationship of amorphic diamond to other noncrystalline forms of carbon. This work reports...... the comparative examinations of the microstructures of samples of amorphic diamond, i-C, and amorphous carbon. Four distinct morphologies were found that correlated closely with the energy densities used in preparing the different materials. Journal of Applied Physics is copyrighted by The American Institute...

  16. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio and...

  17. Photoexcitation-induced processes in amorphous semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai [School of Engineering and Logistics, Charles Darwin University, Darwin, NT 0909 (Australia)]. E-mail: jai.singh@cdu.edu.au

    2005-07-30

    Theories for the mechanism of photo-induced processes of photodarkening (PD), volume expansion (VE) in amorphous chalcogenides are presented. Rates of spontaneous emission of photons by radiative recombination of excitons in amorphous semiconductors are also calculated and applied to study the excitonic photoluminescence in a-Si:H. Results are compared with previous theories.

  18. Band Gaps of an Amorphous Photonic Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Yi-Quan; FENG Zhi-Fang; HU Xiao-Yong; CHENG Bing-Ying; ZHANG Dao-Zhong

    2004-01-01

    @@ A new kind of amorphous photonic materials is presented. Both the simulated and experimental results show that although the disorder of the whole dielectric structure is strong, the amorphous photonic materials have two photonic gaps. This confirms that the short-range order is an essential factor for the formation of the photonic gaps.

  19. Co amorphous systems: A product development perspective.

    Science.gov (United States)

    Chavan, Rahul B; Thipparaboina, Rajesh; Kumar, Dinesh; Shastri, Nalini R

    2016-12-30

    Solubility is one of the major problems associated with most of the new chemical entities that can be reasonably addressed by drug amorphization. However, being a high-energy form, it usually tends to re-crystallize, necessitating new formulation strategies to stabilize amorphous drugs. Polymeric amorphous solid dispersion (PASD) is one of the widely investigated strategies to stabilize amorphous drug, with major limitations like limited polymer solubility and hygroscopicity. Co amorphous system (CAM), a new entrant in amorphous arena is a promising alternative to PASD. CAMs are multi component single phase amorphous solid systems made up of two or more small molecules that may be a combination of drugs or drug and excipients. Excipients explored for CAM preparation include amino acids, carboxylic acids, nicotinamide and saccharine. Advantages offered by CAM include improved aqueous solubility and physical stability of amorphous drug, with a potential to improve therapeutic efficacy. This review attempts to address different aspects in the development of CAM as drug products. Criterion for co-former selection, various methods involved in CAM preparation, characterization tools, stability, scale up and regulatory requirements for the CAM product development are discussed.

  20. Electron beam recrystallization of amorphous semiconductor materials

    Science.gov (United States)

    Evans, J. C., Jr.

    1968-01-01

    Nucleation and growth of crystalline films of silicon, germanium, and cadmium sulfide on substrates of plastic and glass were investigated. Amorphous films of germanium, silicon, and cadmium sulfide on amorphous substrates of glass and plastic were converted to the crystalline condition by electron bombardment.

  1. Neutron irradiation induced amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Hay, J.C. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  2. Tritiated amorphous silicon for micropower applications

    Energy Technology Data Exchange (ETDEWEB)

    Kherani, N.P. [Ontario Hydro Technologies, Toronto, Ontario (Canada)]|[Univ. of Toronto, Ontario (Canada); Kosteski, T.; Zukotynski, S. [Univ. of Toronto, Ontario (Canada); Shmayda, W.T. [Ontario Hydro Technologies, Toronto, Ontario (Canada)

    1995-10-01

    The application of tritiated amorphous silicon as an intrinsic energy conversion semiconductor for radioluminescent structures and betavoltaic devices is presented. Theoretical analysis of the betavoltaic application shows an overall efficiency of 18% for tritiated amorphous silicon. This is equivalent to a 330 Ci intrinsic betavoltaic device producing 1 mW of power for 12 years. Photoluminescence studies of hydrogenated amorphous silicon, a-Si:H, show emission in the infra-red with a maximum quantum efficiency of 7.2% at 50 K; this value drops by 3 orders of magnitude at a temperature of 300 K. Similar studies of hydrogenated amorphous carbon show emission in the visible with an estimated quantum efficiency of 1% at 300 K. These results suggest that tritiated amorphous carbon may be the more promising candidate for room temperature radioluminescence in the visible. 18 refs., 5 figs.

  3. Amorphous metals for radial airgap electric machines

    Energy Technology Data Exchange (ETDEWEB)

    Lu Ning; Kokernak, J.M. [Rensselaer Polytechnic Institute, Dept. of Electric Poer Engineering, Troy, NY (United States)

    2000-08-01

    Amorphous steel teas been in use for some time in the transformer industry. The difficulty associated with handling such a hard material paired with the extremely thin nature of the casting has prevented amorphous steel from being seriously considered for radial airgap electric motors. In light of recent advances in manufacturing and handling of the amorphous materials, this paper presents an investigation into the performance advantages of an amorphous brushless dc motor. A two-dimensional, time-stepped, finite element model is used to analyze the electromagnetic field and motor performance for an amorphous brushless dc (BLDC) motor and a M-l9 BLDC motor. Each is modeled with identical structure geometries. Magnetic core losses are also estimated for the two motors operating over a frequency range of 50 to 200 Hz. (orig.)

  4. EXAFS characterization of amorphous GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Ridgway, M.C.; Glover, C.J. [Australia National Univ., Canberra (Australia); Foran, G.J. [Australian Nuclear Science and Technology Organization, Menai (Australia); Yu, K.M. [Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1998-12-31

    The structural parameters of stoichiometric, amorphous GaAs have been determined with extended x-ray absorption fine structure (EXAFS) measurements performed in transmission mode at 10 K. Amorphous GaAs samples were fabricated with a combination of epitaxial growth, ion implantation and selective chemical etching. Relative to a crystalline sample, the nearest-neighbor bond length and Debye-Waller factor both increased for amorphous material. In contrast, the coordination numbers about both Ga and As atoms in the amorphous phase decreased to {approximately} 3.85 atoms from the crystalline value of four. All structural parameters were independent of implantation conditions and as a consequence, were considered representative of intrinsic, amorphous GaAs as opposed to an implantation-induced extrinsic structure.

  5. Drug-excipient behavior in polymeric amorphous solid dispersions.

    OpenAIRE

    Surikutchi Bhanu Teja; Shashank Pralhad Patil; Ganesh Shete; Sarsvatkumar Patel; Arvind Kumar Bansal

    2016-01-01

    Amorphous drug delivery systems are increasingly utilized to enhance aqueous solubility and oral bioavailability. However, they lack physical and/or chemical stability. One of the most common ways of stabilizing an amorphous form is by formulating it as an amorphous solid dispersion. This review focuses on polymeric amorphous solid dispersions wherein polymers are used as excipients to stabilize the amorphous form. A brief introduction to the basic concepts of amorphous systems such as glass ...

  6. Drug excipient behavior in polymeric amorphous solid dispersions

    OpenAIRE

    Bhanu Teja Surikutchi; Shashank Pralhad Patil; Ganesh Shete; Sarsvatkumar Patel; Arvind Kumar Bansal

    2013-01-01

    Amorphous drug delivery system is being increasingly utilized for enhancing aqueous solubility and oral bioavailability. However it suffers from lack of physical/chemical stability. One of the most common ways of stabilizing an amorphous form is by formulating it as amorphous solid dispersion. This review focuses on the polymeric amorphous solid dispersion wherein polymers are used as excipients to stabilize the amorphous form. We present a brief introduction of basic concepts of amorphous sy...

  7. Effect of ion irradiation on the stability of amorphous Ge{sub 2}Sb{sub 2}Te{sub 5} thin films

    Energy Technology Data Exchange (ETDEWEB)

    De Bastiani, R. [Dipartimento di Fisica e Astronomia, Universita di Catania and MATIS CNR-INFM, Via S. Sofia 64, I-95123 Catania (Italy)], E-mail: riccardo.debastiani@ct.infn.it; Piro, A.M.; Crupi, I.; Grimaldi, M.G. [Dipartimento di Fisica e Astronomia, Universita di Catania and MATIS CNR-INFM, Via S. Sofia 64, I-95123 Catania (Italy); Rimini, E. [Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Consiglio Nazionale delle Ricerche - Istituto per la Microelettronica e Microsistemi (CNR-IMM), Stradale Primosole 50, I-95121 Catania (Italy)

    2008-05-15

    The archival life of phase-change memories (PCM) is determined by the thermal stability of amorphous phase in a crystalline matrix. In this paper, we report the effect of ion beam irradiation on the crystallization kinetics of amorphous Ge{sub 2}Sb{sub 2}Te{sub 5} alloy (GST). The transition rate of amorphous GST films was measured by in situ time resolved reflectivity (TRR). The amorphous to crystal transformation time decreases considerably in irradiated amorphous GST samples when ion fluence increases. The stability of amorphous Ge{sub 2}Sb{sub 2}Te{sub 5} thin films subjected to ion irradiation is discussed in terms of the free energy variation of the amorphous state because of damage accumulation.

  8. Stochastic approach to plasticity and yield in amorphous solids

    Science.gov (United States)

    Hentschel, H. G. E.; Jaiswal, Prabhat K.; Procaccia, Itamar; Sastry, Srikanth

    2015-12-01

    We focus on the probability distribution function (PDF) P (Δ γ ;γ ) where Δ γ are the measured strain intervals between plastic events in a athermal strained amorphous solids, and γ measures the accumulated strain. The tail of this distribution as Δ γ →0 (in the thermodynamic limit) scales like Δ γη . The exponent η is related via scaling relations to the tail of the PDF of the eigenvalues of the plastic modes of the Hessian matrix P (λ ) which scales like λθ, η =(θ -1 )/2 . The numerical values of η or θ can be determined easily in the unstrained material and in the yielded state of plastic flow. Special care is called for in the determination of these exponents between these states as γ increases. Determining the γ dependence of the PDF P (Δ γ ;γ ) can shed important light on plasticity and yield. We conclude that the PDF's of both Δ γ and λ are not continuous functions of γ . In slowly quenched amorphous solids they undergo two discontinuous transitions, first at γ =0+ and then at the yield point γ =γ Y to plastic flow. In quickly quenched amorphous solids the second transition is smeared out due to the nonexisting stress peak before yield. The nature of these transitions and scaling relations with the system size dependence of are discussed.

  9. Optical property of amorphous semiconductor mercury cadmium telluride from first-principles study

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The structural and optical properties of amorphous semiconductor mercury cadmium telluride (a-MCT) are obtained by the first principles calculations. The total pair distribution functions and the density of states show that the a-MCT has the semiconductor characteristic. The calculated results of dielectric function show that E2 peak of the imaginary of dielectric function for the crystal mercury cadmium telluride abruptly disappears in the amorphous case due to the long-range disorders. And the imaginary of dielectric function of a-MCT shows a large broad peak, which is in agreement with the available results of other amorphous semiconductors. From the linear extrapolation of the curve ωε 2(ω)1/2 versus ω, it can be obtained that the optical energy gap of amorphous semiconductor Hg0.5Cd0.5Te is 0.51±0.05 eV.

  10. Micromagnetic study of magnetic domain structure and magnetization reversal in amorphous wires with circular anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt, I., E-mail: israelb@correo.unam.m [Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Mexico D.F. 04510 (Mexico); Hrkac, G. [Department of Engineering Materials, University of Sheffield, Mappin St., Sheffield S1 3JD (United Kingdom); Schrefl, T. [Department of Engineering Materials, University of Sheffield, Mappin St., Sheffield S1 3JD (United Kingdom); St. Poelten University of Applied Sciences (Austria)

    2011-05-15

    In this work we present a detailed numerical investigation on the magnetic domain formation and magnetization reversal mechanism in sub-millimeter amorphous wires with negative magnetostriction by means of micromagnetic calculations. The formation of circular magnetic domains surrounding a multidomain axially oriented central nucleus was observed for the micromagnetic model representing the amorphous wire. The magnetization reversal explained by micromagnetic computations for the M-H curve is described in terms of a combined nucleation-propagation-rotational mechanism after the saturated state. Results are interpreted in terms of the effective magnetic anisotropy. - Research highlights: > Magnetic domain formation in small amorphous wires is studied by micromagnetic calculations. > Magnetization reversal in small amorphous wires is studied by micromagnetic calculations. > Formation of circular domains around an axially oriented central core was observed. > Magnetization reversal is described in terms of nucleation-propagation-rotational mechanisms. > Magnetic domains and reversal mechanism are consistent with experimental reports.

  11. Dissolution properties of co-amorphous drug-amino acid formulations in buffer and biorelevant media

    DEFF Research Database (Denmark)

    Heikkinen, A. T.; DeClerck, L.; Löbmann, Korbinian

    2015-01-01

    -amorphous formulations have been tested only in buffers and their supersaturation ability remain unexplored. Consequently, dissolution studies in simulated intestinal fluids need to be conducted in order to better evaluate the potential of these systems in increasing the oral bioavailability of biopharmaceutics...... classification system class II drugs. In this study, solubility and dissolution properties of the co-amorphous simvastatin-lysine, gibenclamideserine, glibenclamide-threonine and glibenclamide-serine-threonine were studied in phosphate buffer pH 7.2 and biorelevant media (fasted and fed state simulated...... intestinal fluids (FaSSIF and FeSSIF, respectively)). The co-amorphous formulations were found to provide a long-lasting supersaturation and improve the dissolution of the drugs compared to the crystalline and amorphous drugs alone in buffer. Similar improvement, but in lesser extent, was observed...

  12. Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers

    DEFF Research Database (Denmark)

    Lenz, Elisabeth; Löbmann, Korbinian; Rades, Thomas

    2017-01-01

    in a larger scale. In this study, the feasibility of hot melt extrusion for continuous manufacturing of co-amorphous drug-amino acid formulations was examined, challenging the fact that amino acids melt with degradation at high temperatures. Furthermore, the need for an addition of a polymer in this process...... was evaluated. After a polymer screening via the solvent evaporation method, co-amorphous indomethacin-arginine was prepared by a melting-solvent extrusion process without and with copovidone. The obtained products were characterized with respect to their solid-state properties, non-sink dissolution behavior......Co-amorphous drug-amino acid systems have gained growing interest as an alternative to common amorphous formulations which contain polymers as stabilizers. Several preparation methods have recently been investigated, including vibrational ball milling on a laboratory scale or spray drying...

  13. Effect of crystallization on corrosion behavior of Fe40Ni38B18Mo4 amorphous alloy in 3.5% sodium chloride solution

    DEFF Research Database (Denmark)

    Wu, Y.F.; Chiang, Wen-Chi; Wu, J.K.

    2008-01-01

    After the crystallization of F40Ni38B18Mo4 amorphous alloy by vacuum annealing, the corrosion resistance of its crystalline state shows inferior to its amorphous state due to the local cell action between Ni phase and (Fe, Ni, Mo)(23)B-6 phase in matrix....

  14. STUDY ON MAXIMUM HYDROGEN CAPACITY FOR Zr-Ni AMORPHOUS ALLOY

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To design the amorphous hydrogen storage alloy efficiently, the maximum hydrogen capacities for Zr-Ni amorphous alloy were calculated. Based on the Rhomb Unit Structure Model(RUSM) for amorphous alloy and the experimental result that hydrogen atoms exist in 3Zr1Ni and 4Zr tetrahedron interstices in Zr-Ni amorphous alloy, the numbers of 3Zr-1Ni and 4Zr tetrahedron interstices in a RUSM were calculated which correspond to the hydrogen capacity. The two extremum Zr distribution states were calculated, such as highly heterogeneous Zr distribution and homogeneous Zr distribution. The calculated curves of hydrogen capacity with different Zr contents at two states indicate that the hydrogen capacity increases with increasing Zr content and reaches its maximum when Zr is 75%. The theoretical maximum hydrogen capacity for Zr-Ni amorphous alloy is 2.0(H/M). Meanwhile, the hydrogen capacity of heterogeneous Zr distribution alloy is higher than that of homogenous one at the same Zr content. The experimental results prove the calculated results reasonable, and accordingly, the experimental results that the distribution of Zr atom in amorphous alloy occur heterogeneous after a few hydrogen absorption-desorption cycles can be explained.

  15. Electronic transport in amorphous phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Luckas, Jennifer Maria

    2012-09-14

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  16. Particle-induced amorphization of complex ceramics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.C.; Wang, L.M.

    1998-08-01

    The crystalline-to-amorphous (c-a) phase transition is of fundamental importance. Particle irradiations provide an important, highly controlled means of investigating this phase transformation and the structure of the amorphous state. The interaction of heavy-particles with ceramics is complex because these materials have a wide range of structure types, complex compositions, and because chemical bonding is variable. Radiation damage and annealing can produce diverse results, but most commonly, single crystals become aperiodic or break down into a polycrystalline aggregate. The authors continued the studies of the transition from the periodic-to-aperiodic state in natural materials that have been damaged by {alpha}-recoil nuclei in the uranium and thorium decay series and in synthetic, analogous structures. The transition from the periodic to aperiodic state was followed by detailed x-ray diffraction analysis, in-situ irradiation/transmission electron microscopy, high resolution transmission electron microscopy, extended x-ray absorption fine structure spectroscopy/x-ray absorption near edge spectroscopy and other spectroscopic techniques. These studies were completed in conjunction with bulk irradiations that can be completed at Los Alamos National Laboratory or Sandia National Laboratories. Principal questions addressed in this research program included: (1) What is the process at the atomic level by which a ceramic material is transformed into a disordered or aperiodic state? (2) What are the controlling effects of structural topology, bond-type, dose rate, and irradiation temperature on the final state of the irradiated material? (3) What is the structure of the damaged material? (4) What are the mechanisms and kinetics for the annealing of interstitial and aggregate defects in these irradiated ceramic materials? (5) What general criteria may be applied to the prediction of amorphization in complex ceramics?

  17. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    Science.gov (United States)

    Farmer, Joseph C.; Wong, Frank M.G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2014-07-15

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  18. Tracer Diffusion Mechanism in Amorphous Solids

    Directory of Open Access Journals (Sweden)

    P. K. Hung

    2011-01-01

    Full Text Available Tracer diffusion in amorphous solid is studied by mean of nB-bubble statistic. The nB-bubble is defined as a group of atoms around a spherical void and large bubble that represents a structural defect which could be eliminated under thermal annealing. It was found that amorphous alloys such as CoxB100−x (x=90, 81.5 and 70 and Fe80P20 suffer from a large number of vacancy bubbles which function like diffusion vehicle. The concentration of vacancy bubble weakly depends on temperature, but essentially on the relaxation degree of considered sample. The diffusion coefficient estimated for proposed mechanism via vacancy bubbles is in a reasonable agreement with experiment for actual amorphous alloys. The relaxation effect for tracer diffusion in amorphous alloys is interpreted by the elimination of vacancy bubbles under thermal annealing.

  19. Theoretical Considerations in Developing Amorphous Solid Dispersions

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Priemel, Petra Alexandra; Surwase, Sachin;

    2014-01-01

    Before pursuing the laborious route of amorphous solid dispersion formulation and development, which is the topic of many of the subsequent chapters in this book, the formulation scientist would benefit from a priori knowledge whether the amorphous route is a viable one for a given drug and how...... to their glass-forming ability and glass stability. In the main parts of this chapter, we review theoretical approaches to determine amorphous drug polymer miscibility and crystalline drug polymer solubility, as a prerequisite to develop amorphous solid dispersions (glass solutions)....... much solubility improvement, and hence increase in bioavailability, can be expected, and what forms of solid dispersion have been developed in the past. In this chapter, we therefore initially define the various forms of solid dispersions, and then go on to discuss properties of pure drugs with respect...

  20. Surface Acidity of Amorphous Aluminum Hydroxide

    Institute of Scientific and Technical Information of China (English)

    K. FUKUSHI; K. TSUKIMURA; H. YAMADA

    2006-01-01

    The surface acidity of synthetic amorphous Al hydroxide was determined by acid/base titration with several complementary methods including solution analyses of the reacted solutions and XRD characterization of the reacted solids. The synthetic specimen was characterized to be the amorphous material showing four broad peaks in XRD pattern. XRD analyses of reacted solids after the titration experiments showed that amorphous Al hydroxide rapidly transformed to crystalline bayerite at the alkaline condition (pH>10). The solution analyses after and during the titration experiments showed that the solubility of amorphous aluminum hydroxide, Ksp =aAl3+/a3H+,was 1010.3,The amount of consumption of added acid or base during the titration experiment was attributed to both the protonation/deprotonation of dissolved Al species and surface hydroxyl group. The surface acidity constants, surface hydroxyl density and specific surface area were estimated by FITEQL 4.0.

  1. Molecular structure of vapor-deposited amorphous selenium

    Science.gov (United States)

    Goldan, A. H.; Li, C.; Pennycook, S. J.; Schneider, J.; Blom, A.; Zhao, W.

    2016-10-01

    The structure of amorphous selenium is clouded with much uncertainty and contradictory results regarding the dominance of polymeric chains versus monomer rings. The analysis of the diffraction radial distribution functions are inconclusive because of the similarities between the crystalline allotropes of selenium in terms of the coordination number, bond length, bond angle, and dihedral angle. Here, we took a much different approach and probed the molecular symmetry of the thermodynamically unstable amorphous state via analysis of structural phase transformations. We verified the structure of the converted metastable and stable crystalline structures using scanning transmission electron microscopy. In addition, given that no experimental technique can tell us the exact three-dimensional atomic arrangements in glassy semiconductors, we performed molecular-dynamic simulations using a well-established empirical three-body interatomic potential. We developed a true vapor-deposited process for the deposition of selenium molecules onto a substrate using empirical molecular vapor compositions and densities. We prepared both vapor-deposited and melt-quenched samples and showed that the simulated radial distribution functions match very well to experiment. The combination of our experimental and molecular-dynamic analyses shows that the structures of vapor- and melt-quenched glassy/amorphous selenium are quite different, based primarily on rings and chains, respectively, reflecting the predominant structure of the parent phase in its thermodynamic equilibrium.

  2. Electrochromic study on amorphous tungsten oxide films by sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuan, E-mail: cli10@yahoo.com [Department of Biomedical Engineering, National Yang Ming University, Taipei 11221, Taiwan (China); Department of Mechanical Engineering, National Central University, Jhongli, Taoyuan 32001, Taiwan (China); Hsieh, J.H. [Department of Materials Engineering, Ming Chi University of Technology, Taishan, Taipei 24301, Taiwan (China); Hung, Ming-Tsung [Department of Mechanical Engineering, National Central University, Jhongli, Taoyuan 32001, Taiwan (China); Huang, B.Q. [Department of Biomedical Engineering, National Yang Ming University, Taipei 11221, Taiwan (China)

    2015-07-31

    Tungsten oxide films under different oxygen flow rates are deposited by DC sputtering. The voltage change at target and analyses for the deposited films by X-ray diffraction, scanning electronic microscope, X-ray photoelectron spectroscopy and ultraviolet–visible-near infrared spectroscopy consistently indicate that low oxygen flow rate (5 sccm) only creates metal-rich tungsten oxide films, while higher oxygen flow rate (10–20 sccm) assures the deposition of amorphous WO{sub 3} films. To explore the electrochromic function of deposited WO{sub 3} films, we use electrochemical tests to perform the insertion of lithium ions and electrons into films. The WO{sub 3} films switch between color and bleach states effectively by both potentiostat and cyclic voltammetry. Quantitative evaluation on electrochemical tests indicates that WO{sub 3} film with composition close to its stoichiometry is an optimal choice for electrochromic function. - Highlights: • Amorphous WO{sub 3} films are deposited by DC sputtering under different O{sub 2} flow rates. • Higher oxygen flow rate (> 10 sccm) assures the deposition of amorphous WO{sub 3} films. • Both potentiostat and cyclic voltammetry make WO{sub 3} films switch its color. • An optimal electrochromic WO{sub 3} is to make films close to its stoichiometry.

  3. Solubility Advantage (and Disadvantage) of Pharmaceutical Amorphous Solid Dispersions.

    Science.gov (United States)

    Huang, Siyuan; Mao, Chen; Williams, Robert O; Yang, Chia-Yi

    2016-12-01

    The solubility of a drug is ultimately governed by its chemical potential as it is present in the undissolved solute. For a pharmaceutical amorphous solid dispersion (ASD), its solubility depends on the state and composition of the undissolved solute when the ASD is equilibrated with water. Concerning the undissolved solute phase that can contain up to 3 components (drug, polymer, and water), we developed a complete thermodynamic model to calculate the chemical potential of a drug in the multicomponent, amorphous system. This approach enables the estimation of the true solubility advantage of ASD from calorimetric measurements and moisture sorption isotherms. Both theoretical estimation and experimental studies, using indomethacin (IMC)/Eudragit E ASD systems, show that the solubility advantage of the amorphous IMC is significantly reduced through ASD formation and water partitioning. For the ASD with 70% drug loading, the solubility of IMC is lower than its crystalline counterpart. Our results show that stabilization through the ASD formation and water sorption can be manifested by the lowering of drug solubility; they demonstrate that the core property in ASD development is the drug chemical potential, which is essentially the thermodynamic driving force and can be quantitated using the model presented in this work.

  4. Deep Subgap Feature in Amorphous Indium Gallium Zinc Oxide. Evidence Against Reduced Indium

    Energy Technology Data Exchange (ETDEWEB)

    Sallis, Shawn [Binghamton Univ., NY (United States); Quackenbush, Nicholas F. [Binghamton Univ., NY (United States); Williams, Deborah S. [Binghamton Univ., NY (United States); Senger, Mikell [Binghamton Univ., NY (United States); Woicik, Joseph C. [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); White, Bruce E. [Binghamton Univ., NY (United States); Piper, Louis F. [Binghamton Univ., NY (United States)

    2015-01-14

    Amorphous indium gallium zinc oxide (a-IGZO) is the archetypal transparent amorphous oxide semiconductor. In spite of the gains made with a-IGZO over amorphous silicon in the last decade, the presence of deep subgap states in a-IGZO active layers facilitate instabilities in thin film transistor properties under negative bias illumination stress. Several candidates could contribute to the formation of states within the band gap. We present evidence against In+ lone pair active electrons as the origin of the deep subgap features. No In+ species are observed, only In0 nano-crystallites under certain oxygen deficient growth conditions. Our results further support under coordinated oxygen as the source of the deep subgap states.

  5. Deep subgap feature in amorphous indium gallium zinc oxide: Evidence against reduced indium

    Energy Technology Data Exchange (ETDEWEB)

    Sallis, Shawn; Williams, Deborah S. [Materials Science and Engineering, Binghamton University, Binghamton, New York, 13902 (United States); Quackenbush, Nicholas F.; Senger, Mikell [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York, 13902 (United States); Woicik, Joseph C. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899 (United States); White, Bruce E.; Piper, Louis F.J. [Materials Science and Engineering, Binghamton University, Binghamton, New York, 13902 (United States); Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York, 13902 (United States)

    2015-07-15

    Amorphous indium gallium zinc oxide (a-IGZO) is the archetypal transparent amorphous oxide semiconductor. Despite the gains made with a-IGZO over amorphous silicon in the last decade, the presence of deep subgap states in a-IGZO active layers facilitate instabilities in thin film transistor properties under negative bias illumination stress. Several candidates could contribute to the formation of states within the band gap. Here, we present evidence against In{sup +} lone pair active electrons as the origin of the deep subgap features. No In{sup +} species are observed, only In{sup 0} nano-crystallites under certain oxygen deficient growth conditions. Our results further support under coordinated oxygen as the source of the deep subgap states. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Dehydration and crystallization of amorphous calcium carbonate in solution and in air.

    Science.gov (United States)

    Ihli, Johannes; Wong, Wai Ching; Noel, Elizabeth H; Kim, Yi-Yeoun; Kulak, Alexander N; Christenson, Hugo K; Duer, Melinda J; Meldrum, Fiona C

    2014-01-01

    The mechanisms by which amorphous intermediates transform into crystalline materials are poorly understood. Currently, attracting enormous interest is the crystallization of amorphous calcium carbonate, a key intermediary in synthetic, biological and environmental systems. Here we attempt to unify many contrasting and apparently contradictory studies by investigating this process in detail. We show that amorphous calcium carbonate can dehydrate before crystallizing, both in solution and in air, while thermal analyses and solid-state nuclear magnetic resonance measurements reveal that its water is present in distinct environments. Loss of the final water fraction--comprising less than 15% of the total--then triggers crystallization. The high activation energy of this step suggests that it occurs by partial dissolution/recrystallization, mediated by surface water, and the majority of the particle then crystallizes by a solid-state transformation. Such mechanisms are likely to be widespread in solid-state reactions and their characterization will facilitate greater control over these processes.

  7. A Magnetic Sensor with Amorphous Wire

    Directory of Open Access Journals (Sweden)

    Dongfeng He

    2014-06-01

    Full Text Available Using a FeCoSiB amorphous wire and a coil wrapped around it, we have developed a sensitive magnetic sensor. When a 5 mm long amorphous wire with the diameter of 0.1 mm was used, the magnetic field noise spectrum of the sensor was about 30 pT/ÖHz above 30 Hz. To show the sensitivity and the spatial resolution, the magnetic field of a thousand Japanese yen was scanned with the magnetic sensor.

  8. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  9. A Magnetic Sensor with Amorphous Wire

    OpenAIRE

    Dongfeng He; Mitsuharu Shiwa

    2014-01-01

    Using a FeCoSiB amorphous wire and a coil wrapped around it, we have developed a sensitive magnetic sensor. When a 5 mm long amorphous wire with the diameter of 0.1 mm was used, the magnetic field noise spectrum of the sensor was about 30 pT/ÖHz above 30 Hz. To show the sensitivity and the spatial resolution, the magnetic field of a thousand Japanese yen was scanned with the magnetic sensor.

  10. Emerging trends in the stabilization of amorphous drugs

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Strachan, Clare J.;

    2013-01-01

    water-soluble drugs can be increased by the formation of stabilized amorphous forms. Currently, formulation as solid polymer dispersions is the preferred method to enhance drug dissolution and to stabilize the amorphous form of a drug. The purpose of this review is to highlight emerging alternative...... methods to amorphous polymer dispersions for stabilizing the amorphous form of drugs. First, an overview of the properties and stabilization mechanisms of amorphous forms is provided. Subsequently, formulation approaches such as the preparation of co-amorphous small-molecule mixtures and the use...... of mesoporous silicon and silica-based carriers are presented as potential means to increase the stability of amorphous pharmaceuticals....

  11. Thermal transport in amorphous materials: a review

    Science.gov (United States)

    Wingert, Matthew C.; Zheng, Jianlin; Kwon, Soonshin; Chen, Renkun

    2016-11-01

    Thermal transport plays a crucial role in performance and reliability of semiconductor electronic devices, where heat is mainly carried by phonons. Phonon transport in crystalline semiconductor materials, such as Si, Ge, GaAs, GaN, etc, has been extensively studied over the past two decades. In fact, study of phonon physics in crystalline semiconductor materials in both bulk and nanostructure forms has been the cornerstone of the emerging field of ‘nanoscale heat transfer’. On the contrary, thermal properties of amorphous materials have been relatively less explored. Recently, however, a growing number of studies have re-examined the thermal properties of amorphous semiconductors, such as amorphous Si. These studies, which included both computational and experimental work, have revealed that phonon transport in amorphous materials is perhaps more complicated than previously thought. For instance, depending on the type of amorphous materials, thermal transport occurs via three types of vibrations: propagons, diffusons, and locons, corresponding to the propagating, diffusion, and localized modes, respectively. The relative contribution of each of these modes dictates the thermal conductivity of the material, including its magnitude and its dependence on sample size and temperature. In this article, we will review the fundamental principles and recent development regarding thermal transport in amorphous semiconductors.

  12. Stable amorphous semiconductors for solar cells. Final report; Stabile amorphe Halbleiterfilme fuer Solarzellen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Fuhs, W.; Lips, K.; Mell, H.; Stachowitz, R.; Will, S.; Ulber, I.

    1997-12-31

    This study was founded on the preceding projects. The main objective was the preparation and characterization of stable amorphous silicon films (a-Si:H) by plasma enhanced chemical vapor deposition (PECVD). For this purpose the deposition conditions were varied in a wide range. The main effort was on the change of the reactor geometry and the increase of the substrate temperature to values beyond 250 C. Comparative studies of the film stability were carried out using different degradation techniques. The electronic and structural properties of the films were investigated with the aim to find correlations between the stability and other film properties. Information on the defect density was obtained from electron spin resonance (ESR), photothermal deflection spectroscopy (PDS) and photocurrent spectroscopy (CPM). The influence of native and light-induced defects on the recombination kinetics was studied using both films and solar cells. The techniques mainly used for that were steady-state and frequency-resolved photoluminescence spectroscopy (FRS) and electrically detected magnetic resonance (EDMR). The results of these studies were published in international journals and presented at international conferences. (orig.) [Deutsch] Das Vorhaben baute auf den vorangegangenen Projekten auf. Wichtigstes Ziel war die Herstellung und Charakterisierung stabiler amorpher Siliziumfilme (a-Si:H) durch Plasmadeposition. Dazu wurden die Depositionsbedingungen in einem weiten Bereich variiert. Im Vordergrund standen dabei die Aenderung der Reaktorgeometrie und die Erhoehung der Substrattemperatur auf Werte oberhalb von 250 C. Die Stabilitaet der Filme wurde mit verschiedenen Degradationsverfahren vergleichend geprueft. Die Filme wurden hinsichtlich ihrer elektronischen und strukturellen Eigenschaften mit dem Ziel untersucht, einen Zusammenhang zwischen der Stabilitaet und anderen Probeneigenschaften aufzufinden. Als Messverfahren fuer die Defektdichte standen

  13. Miscibility/stability considerations in binary solid dispersion systems composed of functional excipients towards the design of multi-component amorphous systems.

    Science.gov (United States)

    Yoo, Seung-uk; Krill, Steven L; Wang, Zeren; Telang, Chitra

    2009-12-01

    The correlations between amorphous miscibility/physical stability of binary solid dispersions (a highly crystalline additive-an amorphous polymer) and the physicochemical properties of the components were investigated. Crystalline functional excipients including surfactants, organic acids, and organic bases were prepared in binary solid dispersions in amorphous polymers by solvent evaporation method. Amorphous miscibility and physical stability of the systems were characterized using polarized light microscope, differential scanning calorimeter, and powder X-ray diffraction. Physicochemical parameters (solubility parameter (delta), hydrogen bond energy, Log P, pK(a) value as an indicator of acid-base ionic interaction, and T(g) of the dispersion as a surrogate of system's mobility) were selected as thermodynamic and kinetic factors to examine their influences on the systems' amorphous miscibility and physical stability. All systems possessing acid-base ionic interaction formed amorphous state. In the absence of the ionic interaction, solubility parameter and partition coefficient were shown to have major roles on amorphous formation. Upon storage condition at 25 degrees C/60% RH for 50 days, systems having ionic interaction and high T(g) remained in the amorphous state. This binary system study provides an insight and a basis for formation of the amorphous state of multi-component solid dispersions utilizing their physicochemical properties.

  14. A Comparison of Photo-Induced Hysteresis Between Hydrogenated Amorphous Silicon and Amorphous IGZO Thin-Film Transistors.

    Science.gov (United States)

    Ha, Tae-Jun; Cho, Won-Ju; Chung, Hong-Bay; Koo, Sang-Mo

    2015-09-01

    We investigate photo-induced instability in thin-film transistors (TFTs) consisting of amorphous indium-gallium-zinc-oxide (a-IGZO) as active semiconducting layers by comparing with hydrogenated amorphous silicon (a-Si:H). An a-IGZO TFT exhibits a large hysteresis window in the illuminated measuring condition but no hysteresis window in the dark condition. On the contrary, a large hysteresis window measured in the dark condition in a-Si:H was not observed in the illuminated condition. Even though such materials possess the structure of amorphous phase, optical responses or photo instability in TFTs looks different from each other. Photo-induced hysteresis results from initially trapped charges at the interface between semiconductor and dielectric films or in the gate dielectric which possess absorption energy to interact with deep trap-states and affect the movement of Fermi energy level. In order to support our claim, we also perform CV characteristics in photo-induced hysteresis and demonstrate thermal-activated hysteresis. We believe that this work can provide important information to understand different material systems for optical engineering which includes charge transport and band transition.

  15. Effect of crystalline/amorphous interfaces on thermal transport across confined thin films and superlattices

    Science.gov (United States)

    Giri, Ashutosh; Braun, Jeffrey L.; Hopkins, Patrick E.

    2016-06-01

    We report on the thermal boundary resistances across crystalline and amorphous confined thin films and the thermal conductivities of amorphous/crystalline superlattices for Si/Ge systems as determined via non-equilibrium molecular dynamics simulations. Thermal resistances across disordered Si or Ge thin films increase with increasing length of the interfacial thin films and in general demonstrate higher thermal boundary resistances in comparison to ordered films. However, for films ≲3 nm, the resistances are highly dependent on the spectral overlap of the density of states between the film and leads. Furthermore, the resistances at a single amorphous/crystalline interface in these structures are much lower than those at interfaces between the corresponding crystalline materials, suggesting that diffusive scattering at an interface could result in higher energy transmissions in these systems. We use these findings, together with the fact that high mass ratios between amorphous and crystalline materials can lead to higher thermal resistances across thin films, to design amorphous/crystalline superlattices with very low thermal conductivities. In this regard, we study the thermal conductivities of amorphous/crystalline superlattices and show that the thermal conductivities decrease monotonically with increasing interface densities above 0.1 nm-1. These thermal conductivities are lower than that of the homogeneous amorphous counterparts, which alludes to the fact that interfaces non-negligibly contribute to thermal resistance in these superlattices. Our results suggest that the thermal conductivity of superlattices can be reduced below the amorphous limit of its material constituent even when one of the materials remains crystalline.

  16. An investigation into the role of polymeric carriers on crystal growth within amorphous solid dispersion systems.

    Science.gov (United States)

    Tian, Yiwei; Jones, David S; Andrews, Gavin P

    2015-04-06

    Using phase diagrams derived from Flory-Huggins theory, we defined the thermodynamic state of amorphous felodipine within three different polymeric carriers. Variation in the solubility and miscibility of felodipine within different polymeric materials (using F-H theory) has been identified and used to select the most suitable polymeric carriers for the production of amorphous drug-polymer solid dispersions. With this information, amorphous felodipine solid dispersions were manufactured using three different polymeric materials (HPMCAS-HF, Soluplus, and PVPK15) at predefined drug loadings, and the crystal growth rates of felodipine from these solid dispersions were investigated. Crystallization of amorphous felodipine was studied using Raman spectral imaging and polarized light microscopy. Using this data, we examined the correlation among several characteristics of solid dispersions to the crystal growth rate of felodipine. An exponential relationship was found to exist between drug loading and crystal growth rate. Moreover, crystal growth within all selected amorphous drug-polymer solid dispersion systems were viscosity dependent (η(-ξ)). The exponent, ξ, was estimated to be 1.36 at a temperature of 80 °C. Values of ξ exceeding 1 may indicate strong viscosity dependent crystal growth in the amorphous drug-polymer solid dispersion systems. We argue that the elevated exponent value (ξ > 1) is a result of drug-polymer mixing which leads to a less fragile amorphous drug-polymer solid dispersion system. All systems investigated displayed an upper critical solution temperature, and the solid-liquid boundary was always higher than the spinodal decomposition curve. Furthermore, for PVP-FD amorphous dispersions at drug loadings exceeding 0.6 volume ratio, the mechanism of phase separation within the metastable zone was found to be driven by nucleation and growth rather than liquid-liquid separation.

  17. Chromic mechanism in amorphous WO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J G; Benson, D K; Tracy, C E; Deb, S K; Czanderna, A W [National Renewable Energy Lab., Golden, CO (United States); Bechinger, C [Universitaet Konstanz (Germany)

    1996-11-01

    The authors propose a new model for the chromic mechanism in amorphous tungsten oxide films (WO{sub 3{minus}y}{center_dot}nH{sub 2}O). This model not only explains a variety of seemingly conflicting experimental results reported in the literature that cannot be explained by existing models, it also has practical implications with respect to improving the coloring efficiency and durability of electrochromic devices. According to this model, a typical as-deposited tungsten oxide film has tungsten mainly in W{sup 6+} and W{sup 4+} states and can be represented as W{sub 1{minus}y}{sup 6+} W{sub y}{sup 4+}O{sub 3{minus}y}{center_dot}nH{sub 2}O. The proposed chromic mechanism is based on the small polaron transition between the charge-induced W{sup 5+} state and the original W{sup 4+} state instead of the W{sup 5+} and W{sup 6+} states as suggested in previous models. The correlation between the electrochromic and photochromic behavior in amorphous tungsten oxide films is also discussed.

  18. Thermally driven hopping and electron transport in amorphous materials from density functional calculations

    Energy Technology Data Exchange (ETDEWEB)

    Abtew, Tesfaye A; Drabold, D A [Department of Physics and Astronomy, Ohio University, Athens, OH 45701-2979 (United States)

    2004-11-10

    In this paper we study electron dynamics and transport in models of amorphous silicon and amorphous silicon hydride. By integrating the time-dependent Kohn-Sham equation, we compute the time evolution of electron states near the gap, and study the spatial and spectral diffusion of these states due to lattice motion. We perform these calculations with a view to developing ab initio hopping transport methods. The techniques are implemented with the ab initio local basis code SIESTA, and may be applicable to molecular, biomolecular and other condensed matter systems.

  19. Spectroscopic and mechanical studies on the Fe-based amorphous alloy 2605SA1

    Energy Technology Data Exchange (ETDEWEB)

    Cabral P, A.; Garcia S, I. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Contreras V, J. A.; Garcia S, F. [Universidad Autonoma del Estado de Mexico, Facultad de Ciencias, El Cerrillo Piedras Blancas, Toluca, Estado de Mexico (Mexico); Nava, N., E-mail: agustin.cabral@inin.gob.m [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, 07730 Mexico D. F. (Mexico)

    2010-07-01

    The Vickers micro-hardness of this alloy was unusually dependent on the heat treatment from 300 to 634 K, inferring important micro-structural changes and the presence of amorphous grains before its phase transition. Once the alloy is crystallized, the micro-hardness is characteristic of a brittle alloy, the main problem of these alloys. Within the amorphous state, other properties like free-volume, magnetic states and Fe-Fe distances were followed by Positron annihilation lifetime spectroscopy and Moessbauer spectroscopy, respectively, to analyze those micro-structural changes, thermally induced, which are of paramount interest to understand their brittleness problem. (Author)

  20. Origin of the ESR signal with g=2.0055 in amorphous silicon

    OpenAIRE

    1990-01-01

    Defect-state wave functions for threefold- and fivefold-coordinated Si atoms in amorphous silicon clusters have been calculated with use of a first-principles linear combination of the atomic orbitals method in order to clarify the origin of the ESR signal with g=2.0055 in amorphous silicon. The wave function of the defect state originating from the threefold-coordinated Si atom is strongly localized on this atom. On the other hand, that for the fivefold-coordinated Si atom is extended on thi...

  1. An example of how to handle amorphous fractions in API during early pharmaceutical development: SAR114137--a successful approach.

    Science.gov (United States)

    Petzoldt, Christine; Bley, Oliver; Byard, Stephen J; Andert, Doris; Baumgartner, Bruno; Nagel, Norbert; Tappertzhofen, Christoph; Feth, Martin Philipp

    2014-04-01

    The so-called pharmaceutical solid chain, which encompasses drug substance micronisation to the final tablet production, at pilot plant scale is presented as a case study for a novel, highly potent, pharmaceutical compound: SAR114137. Various solid-state analytical methods, such as solid-state Nuclear Magnetic Resonance (ssNMR), Differential Scanning Calorimetry (DSC), Dynamic Water Vapour Sorption Gravimetry (DWVSG), hot-stage Raman spectroscopy and X-ray Powder Diffraction (XRPD) were applied and evaluated to characterise and quantify amorphous content during the course of the physical treatment of crystalline active pharmaceutical ingredient (API). DSC was successfully used to monitor the changes in amorphous content during micronisation of the API, as well as during stability studies. (19)F solid-state NMR was found to be the method of choice for the detection and quantification of low levels of amorphous API, even in the final drug product (DP), since compaction during tablet manufacture was identified as a further source for the formation of amorphous API. The application of different jet milling techniques was a critical factor with respect to amorphous content formation. In the present case, the change from spiral jet milling to loop jet milling led to a decrease in amorphous API content from 20-30 w/w% to nearly 0 w/w% respectively. The use of loop jet milling also improved the processability of the API. Stability investigations on both the milled API and the DP showed a marked tendency for recrystallisation of the amorphous API content on exposure to elevated levels of relative humidity. No significant impact of amorphous API on either the chemical stability or the dissolution rate of the API in drug formulation was observed. Therefore, the presence of amorphous content in the oral formulation was of no consequence for the clinical trial phases I and II.

  2. Torsion impedance of CoFeSiB amorphous wires

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, M.L. E-mail: grande@pinon.ccu.uniovi.es; Prida, V.M.; Hernando, B.; Tejedor, M.; Vazquez, M

    2002-08-01

    In this work we report some results concerning the torsion impedance of amorphous Co{sub 68.1}Fe{sub 4.4}Si{sub 12.5}B{sub 15} wires in the as-cast state, and after a stress annealing treatment. The influence of the drive current amplitude and frequency is also studied for these samples. A sensitivity to the applied torsion up to 17.6%/rad m is obtained for the annealed wire. The magnetoimpedance response of both types of samples gives evidence to the difference in their domain structure.

  3. Eigenmode Splitting in all Hydrogenated Amorphous Silicon Nitride Coupled Microcavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-Gao; HUANG Xin-Fan; CHEN Kun-Ji; QIAN Bo; CHEN San; DING Hong-Lin; LIU Sui; WANG Xiang; XU Jun; LI Wei

    2008-01-01

    Hydrogenated amorphous silicon nitride based coupled optical microcavity is investigated theoretically and experimentally. The theoretical calculation of the transmittance spectra of optical microcavity with one cavity and coupled microcavity with two-cavity is performed.The optical eigenmode splitting for coupled microcavity is found due to the interaction between the neighbouring localized cavities.Experimentally,the coupled cavity samples are prepared by plasma enhanced chemical vapour deposition and characterized by photoluminescence measurements.It is found that the photoluminescence peak wavelength agrees well with the cavity mode in the calculated transmittance spectra.This eigenmode splitting is analogous to the electron state energy splitting in diatom molecules.

  4. Properties Of Gallium-doped Hydrogenated Amorphous Germanium

    OpenAIRE

    1995-01-01

    The effects of adding small quantities of gallium atoms to hydrogenated amorphous germanium (a-Ge:H) on its dark-conductivity, band-gap, electronic density of states and the hydrogen bonding, were studied in detail by dark-conductivity, optical and infrared-transmission, and photothermal- deflection-spectroscopy measurements. Films of a-Ge:H having relative Ga atomic concentrations ranging between 3×10-5 and 1×10-2 were deposited by the cosputtering of solid Ge and Ga targets in a rf-plasma s...

  5. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  6. Molecular dynamics simulation of amorphous segregation inAg-Rh alloys

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jingxiang; BIAN Xiufang

    2003-01-01

    Molecular dynamics simulation was carried out to investigate the liquid and amorphous microstructures of binary Agx-Rh(100-x) (x = 25, 50, 75 in atom fraction) alloys. Segregation feature of homogeneous interatomic binding of Ag-Rh liquid was found and probed, which can be retained into amorphous solids upon rapid cooling. Homogeneous binding may occur when the difference in the elemental atomic sizes is less than 10%. The icosahedra in liquid before the formation of amorphous state exist in a stable state and the network formed by 1551-clusters in molten alloys would inhibit the crystallization and diffusion of atoms. A higher degree of 155 1-clusters will be favorable to form metallic glasses.

  7. Improving Co-Amorphous Drug Formulations by the Addition of the Highly Water Soluble Amino Acid, Proline

    Directory of Open Access Journals (Sweden)

    Katrine Tarp Jensen

    2014-07-01

    Full Text Available Co-amorphous drug amino acid mixtures were previously shown to be a promising approach to create physically stable amorphous systems with the improved dissolution properties of poorly water-soluble drugs. The aim of this work was to expand the co-amorphous drug amino acid mixture approach by combining the model drug, naproxen (NAP, with an amino acid to physically stabilize the co-amorphous system (tryptophan, TRP, or arginine, ARG and a second highly soluble amino acid (proline, PRO for an additional improvement of the dissolution rate. Co-amorphous drug-amino acid blends were prepared by ball milling and investigated for solid state characteristics, stability and the dissolution rate enhancement of NAP. All co-amorphous mixtures were stable at room temperature and 40 °C for a minimum of 84 days. PRO acted as a stabilizer for the co-amorphous system, including NAP–TRP, through enhancing the molecular interactions in the form of hydrogen bonds between all three components in the mixture. A salt formation between the acidic drug, NAP, and the basic amino acid, ARG, was found in co-amorphous NAP–ARG. In comparison to crystalline NAP, binary NAP–TRP and NAP–ARG, it could be shown that the highly soluble amino acid, PRO, improved the dissolution rate of NAP from the ternary co-amorphous systems in combination with either TRP or ARG. In conclusion, both the solubility of the amino acid and potential interactions between the molecules are critical parameters to consider in the development of co-amorphous formulations.

  8. Amorphous Diamond MEMS and Sensors

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, JOHN P.; FRIEDMANN, THOMAS A.; ASHBY, CAROL I.; DE BOER, MAARTEN P.; SCHUBERT, W. KENT; SHUL, RANDY J.; HOHLFELDER, ROBERT J.; LAVAN, D.A.

    2002-06-01

    This report describes a new microsystems technology for the creation of microsensors and microelectromechanical systems (MEMS) using stress-free amorphous diamond (aD) films. Stress-free aD is a new material that has mechanical properties close to that of crystalline diamond, and the material is particularly promising for the development of high sensitivity microsensors and rugged and reliable MEMS. Some of the unique properties of aD include the ability to easily tailor film stress from compressive to slightly tensile, hardness and stiffness 80-90% that of crystalline diamond, very high wear resistance, a hydrophobic surface, extreme chemical inertness, chemical compatibility with silicon, controllable electrical conductivity from insulating to conducting, and biocompatibility. A variety of MEMS structures were fabricated from this material and evaluated. These structures included electrostatically-actuated comb drives, micro-tensile test structures, singly- and doubly-clamped beams, and friction and wear test structures. It was found that surface micromachined MEMS could be fabricated in this material easily and that the hydrophobic surface of the film enabled the release of structures without the need for special drying procedures or the use of applied hydrophobic coatings. Measurements using these structures revealed that aD has a Young's modulus of {approx}650 GPa, a tensile fracture strength of 8 GPa, and a fracture toughness of 8 MPa{center_dot}m {sup 1/2}. These results suggest that this material may be suitable in applications where stiction or wear is an issue. Flexural plate wave (FPW) microsensors were also fabricated from aD. These devices use membranes of aD as thin as {approx}100 nm. The performance of the aD FPW sensors was evaluated for the detection of volatile organic compounds using ethyl cellulose as the sensor coating. For comparable membrane thicknesses, the aD sensors showed better performance than silicon nitride based sensors. Greater

  9. Crystallographic analysis of amorphization caused by ion irradiation

    CERN Document Server

    Nakagawa, S T; Ono, T; Hada, Y; Betz, G

    2003-01-01

    Ion irradiation often causes amorphization in a crystal. We have presented a new crystallographic analysis that defines a new type of order parameter, which we call pixel mapping (PM). PM can describe algebraically to what extent and how the crystallinity has changed under ion bombardment. In other words, PM describes the long-range-order (LRO) interactions, based on the crystallography. PM can be effectively used, when it is incorporated in a classical molecular dynamics (MD) calculation. In the case of B ions implanted into a Si crystal, we observed crystal to amorphous (CA) transitions under energetic ion bombardment at low temperature. The PM profiling was more effective to reveal the CA transition than other atomistic methods of analyses as radial distribution function g(r) or vacancy mapping N sub v. PM could distinguish between perfect crystalline states, transition states, and random states. Moreover, PM revealed that the lattice reaction was cooperative even in a mesoscopic volume, e.g. in a cube of ...

  10. Ordered Growth of Topological Insulator Bi2Se3 Thin Films on Dielectric Amorphous SiO2 by MBE

    OpenAIRE

    2013-01-01

    Topological insulators (TIs) are exotic materials which have topologically protected states on the surface due to the strong spin-orbit coupling. However, a lack of ordered growth of TI thin films on amorphous dielectrics and/or insulators presents a challenge for applications of TI-junctions. We report the growth of topological insulator Bi2Se3 thin films on amorphous SiO2 by molecular beam epitaxy (MBE). To achieve the ordered growth of Bi2Se3 on amorphous surface, the formation of other ph...

  11. Realistic inversion of diffraction data for an amorphous solid: The case of amorphous silicon

    Science.gov (United States)

    Pandey, Anup; Biswas, Parthapratim; Bhattarai, Bishal; Drabold, D. A.

    2016-12-01

    We apply a method called "force-enhanced atomic refinement" (FEAR) to create a computer model of amorphous silicon (a -Si) based upon the highly precise x-ray diffraction experiments of Laaziri et al. [Phys. Rev. Lett. 82, 3460 (1999), 10.1103/PhysRevLett.82.3460]. The logic underlying our calculation is to estimate the structure of a real sample a -Si using experimental data and chemical information included in a nonbiased way, starting from random coordinates. The model is in close agreement with experiment and also sits at a suitable energy minimum according to density-functional calculations. In agreement with experiments, we find a small concentration of coordination defects that we discuss, including their electronic consequences. The gap states in the FEAR model are delocalized compared to a continuous random network model. The method is more efficient and accurate, in the sense of fitting the diffraction data, than conventional melt-quench methods. We compute the vibrational density of states and the specific heat, and we find that both compare favorably to experiments.

  12. Short range ordering and microstructure property relationship in amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shariq, A.

    2006-07-01

    A novel algorithm, ''Next Neighbourhood Evaluation (NNE)'', is enunciated during the course of this work, to elucidate the next neighbourhood atomic vicinity from the data, analysed using tomographic atom probe (TAP) that allows specifying atom positions and chemical identities of the next neighbouring atoms for multicomponent amorphous materials in real space. The NNE of the Pd{sub 55}Cu{sub 23}P{sub 22} bulk amorphous alloy reveals that the Pd atoms have the highest probability to be the next neighbours to each other. Moreover, P-P correlation corroborates earlier investigations with scattering techniques that P is not a direct next neighbour to another P atom. Analogous investigations on the Fe{sub 40}Ni{sub 40}B{sub 20} metallic glass ribbons, in the as quenched state and for a state heat treated at 350 C for 1 hour insinuate a pronounced elemental inhomogeneity for the annealed state, though, it also depicts glimpse of a slight inhomogeneity for B distribution even for the as quenched sample. Moreover, a comprehensive microstructural investigation has been carried out on the Zr{sub 53}Co{sub 23.5}Al{sub 23.5} glassy system. TEM and TAP investigations evince that the as cast bulk samples constitutes a composite structure of an amorphous phase and crystalline phase(s). The crystallization is essentially triggered at the mould walls due to heterogeneous nucleation. The three dimensional atomic reconstruction maps of the volume analysed by TAP reveal a complex stereological interconnected network of two phases. The phase that is rich in Zr and Al concentration is depleted in Co concentration while the phase that is rich in Co concentration is depleted both in Zr and Al. Zr{sub 53}Co{sub 23.5}Al{sub 23.5} glassy splat samples exhibit a single exothermic crystallization peak contrary to the as cast bulk sample with a different T{sub g} temperature. A single homogeneous amorphous phase revealed by TEM investigations depicts that the faster cooling

  13. LOW TEMPERATURE OPTICAL PROPERTIES OF AMORPHOUS OXIDE NANOCLUSTERS IN POLYMETHYL METHACRYLATE MATRIX

    Institute of Scientific and Technical Information of China (English)

    V. V. VOLKOV; WANG ZHONG-LIN; Zou BING-SUO; XIE SI-SHEN

    2000-01-01

    We studied the temperature-dependent steady-state and time-resolved fluorescence properties of very small (1-2 nm) ZnO, CdO, and PbO amorphous nanoclusters prepared in AOT reverse micelles and imbedded in polymethyl methacrylate(PMMA) films. X-ray diffraction and electron diffraction and imaging indicate that these structures are amorphous. These amorphous oxide nanoclusters demonstrate similar structural, electronic, and optical properties. Properties of steady-state fluorescence spectra indicate the unique localization of electronic states due to the amorphous structure. ZnO and CdO show double-band fluorescence structure, which is due to the spin-orbital splitting, similar to Cu2O. Time-resolved fluorescence studies of the nanoclusters in the polymer reveal two lifetime components, as found in solution. The slow component reflects relaxation processes from band-tail states while the fast component may be related to high-lying extended states. The temperature dependence of fast fluorescence component reveals the presence of exciton hopping between anharmonic wells at temperatures higher than 200K. We correlate the barrier height between two wells formed around local atoms with the inter-atomic distance and bond ionicity.

  14. Structural Evolution of Compressing Amorphous Ice

    Institute of Scientific and Technical Information of China (English)

    WANG Yan; DONG Shun-Le

    2007-01-01

    Molecular dynamics simulation is employed to study structural evolution during compressing low density amorphous ice from one atmosphere to 2.5 GPa.The calculated results show that high density amorphous ice is formed under intermediate pressure of about 1.0 GPa and O-O-O angle ranges from about 83°to 113°and O-H……O is bent from 112°to 160°.The very high density amorphous ice is also formed under the pressure larger than 1.4 GPa and interstitial molecules are found in 0.3-0.4 (A) just beyond the nearest O-O distance.Low angle O-H……O disappears and it is believed that these hydrogen bonds are broken or re-bonded under high pressures.

  15. Origin of “memory glass” effect in pressure-amorphized rare-earth molybdate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Willinger, Elena, E-mail: kudrenko@fhi-berlin.mpg.de [Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka (Russian Federation); Fritz-Haber Institute of the Max Planck Society, 14195 Berlin (Germany); Sinitsyn, Vitaly; Khasanov, Salavat; Redkin, Boris; Shmurak, Semeon; Ponyatovsky, Eugeny [Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka (Russian Federation)

    2015-02-15

    The memory glass effect (MGE) describes the ability of some materials to recover the initial structure and crystallographic orientation after pressure-induced amorphization (PIA). In spite of numerous studies the nature and underlying mechanisms of this phenomenon are still not clear. Here we report investigations of MGE in β′-Eu{sub 2}(MoO{sub 4}){sub 3} single crystal samples subjected to high pressure amorphization. Using the XRD and TEM techniques we carried out detailed analysis of the structural state of high pressure treated single crystal samples as well as structural transformations due to subsequent annealing at atmospheric pressure. The structure of the sample has been found to be complex, mainly amorphous, however, the amorphous medium contains evenly distributed nanosize inclusions of a paracrystalline phase. The inclusions are highly correlated in orientation and act as “memory units” in the MGE. - Graphical abstract: Schematic representation of pressure-induced amorphization and “memory glass” effect in rare-earth molybdate single crystals. The XRD and TEM measurements have revealed the presence of the residual identically oriented paracrystalline nanodomains in the pressure-amorphized state. These domains preserve the information about initial structure and orientation of the sample. They act as memory units and crystalline seeds during transformation of the amorphous phase back to the starting single crystalline one. - Highlights: • Pressure-amorphized Eu{sub 2}(MoO4){sub 3} single crystals were studied ex-situ by XRD and TEM. • Tiny residual crystalline inclusions were found in amorphous matrix of sample. • The inclusions keep in memory the parent crystal structure and orientation. • The inclusions account for “memory glass” effect in rare-earth molibdates.

  16. Raman Amplifier Based on Amorphous Silicon Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. A. Ferrara

    2012-01-01

    Full Text Available The observation of stimulated Raman scattering in amorphous silicon nanoparticles embedded in Si-rich nitride/silicon superlattice structures (SRN/Si-SLs is reported. Using a 1427 nm continuous-wavelength pump laser, an amplification of Stokes signal up to 0.9 dB/cm at 1540.6 nm and a significant reduction in threshold power of about 40% with respect to silicon are experimentally demonstrated. Our results indicate that amorphous silicon nanoparticles are a great promise for Si-based Raman lasers.

  17. Co-Amorphous Combination of Nateglinide-Metformin Hydrochloride for Dissolution Enhancement.

    Science.gov (United States)

    Wairkar, Sarika; Gaud, Ram

    2016-06-01

    The aim of the present work was to prepare a co-amorphous mixture (COAM) of Nateglinide and Metformin hydrochloride to enhance the dissolution rate of poorly soluble Nateglinide. Nateglinide (120 mg) and Metformin hydrochloride (500 mg) COAM, as a dose ratio, were prepared by ball-milling technique. COAMs were characterized for saturation solubility, amorphism and physicochemical interactions (X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR)), SEM, in vitro dissolution, and stability studies. Solubility studies revealed a sevenfold rise in solubility of Nateglinide from 0.061 to 0.423 mg/ml in dose ratio of COAM. Solid-state characterization of COAM suggested amorphization of Nateglinide after 6 h of ball milling. XRPD and DSC studies confirmed amorphism in Nateglinide, whereas FTIR elucidated hydrogen interactions (proton exchange between Nateglinide and Metformin hydrochloride). Interestingly, due to low energy of fusion, Nateglinide was completely amorphized and stabilized by Metformin hydrochloride. Consequently, in vitro drug release showed significant increase in dissolution of Nateglinide in COAM, irrespective of dissolution medium. However, little change was observed in the solubility and dissolution profile of Metformin hydrochloride, revealing small change in its crystallinity. Stability data indicated no traces of devitrification in XRPD of stability sample of COAM, and % drug release remained unaffected at accelerated storage conditions. Amorphism of Nateglinide, proton exchange with Metformin hydrochloride, and stabilization of its amorphous form have been noted in ball-milled COAM of Nateglinide-Metformin hydrochloride, revealing enhanced dissolution of Nateglinide. Thus, COAM of Nateglinide-Metformin hydrochloride system is a promising approach for combination therapy in diabetic patients.

  18. Relaxation and crystallization of amorphous carbamazepine studied by terahertz pulsed spectroscopy

    DEFF Research Database (Denmark)

    Zeitler, J Axel; Taday, Philip F; Pepper, Michael;

    2007-01-01

    At the example of carbamazepine the crystallization of a small organic molecule from its amorphous phase was studied using in situ variable temperature terahertz pulsed spectroscopy (TPS). Even though terahertz spectra of disordered materials in the glassy state exhibit no distinct spectral featu...

  19. A New Physical Metallurgy Phenomenon-the Shock Wave Nanocrystallization of Amorphous Alloys

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Some results of amorphous alloy nanocrystallization by shock wave are presented. Compared with the well knownannealing crystallization, these results seem novel and are very difficult to be explained by the diffusion theory, such asnucleation and growth mechanism in the solid state phase transitions. The shock wave crystallization of amorphousalloy is a new metallurgical phenomenon with possibilities for improving the crystallization theory in physics.

  20. Fracture of FeNiB-NiP amorphous bilayer ribbon

    NARCIS (Netherlands)

    Miskuf, J; Csach, K; Ocelik, [No Value; Duhaj, P; Ocelik, Vaclav

    1997-01-01

    The Study of failure surfaces of amorphous bimetal ribbons Fe40Ni40B20-Ni82P18 failed during tensile testing in the as-quenched and relaxed states (anneaIed at 250 degrees C) is presented. Two different fracture morphologies are observed on failed as-quenched samples: (i) near the maximum shear stre

  1. Room-temperature fabrication of light-emitting thin films based on amorphous oxide semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junghwan, E-mail: JH.KIM@lucid.msl.titech.ac.jp; Miyokawa, Norihiko; Ide, Keisuke [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Toda, Yoshitake [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan)

    2016-01-15

    We propose a light-emitting thin film using an amorphous oxide semiconductor (AOS) because AOS has low defect density even fabricated at room temperature. Eu-doped amorphous In-Ga-Zn-O thin films fabricated at room temperature emitted intense red emission at 614 nm. It is achieved by precise control of oxygen pressure so as to suppress oxygen-deficiency/excess-related defects and free carriers. An electronic structure model is proposed, suggesting that non-radiative process is enhanced mainly by defects near the excited states. AOS would be a promising host for a thin film phosphor applicable to flexible displays as well as to light-emitting transistors.

  2. Radiative lifetime of geminate and non-geminate pairs in amorphous semiconductors: a-Ge:H

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai [Faculty of Technology, Charles Darwin University, Darwin, NT 0909 (Australia)

    2006-07-01

    Lifetimes of radiative recombination of geminate and non-geminate pairs in amorphous semiconductors are calculated at thermal equilibrium. The theory is applied to calculate the radiative lifetimes of type I and II geminate pairs and non-geminate pairs in hydrogenated amorphous germanium (a-Ge:H) and compared with the experimental results. The type II geminate pairs can exist in singlet and triplet spin states, only singlet is considered here, whereas the type I geminate pairs do not have spin dependence. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Theoretical investigation on the magnetocaloric effect in amorphous Eu80 Au20 system

    Science.gov (United States)

    Costa, S. S.; Roriz, O. A. V.; Silvano, N. de O.; von Ranke, P. J.; Nóbrega, E. P.

    2016-09-01

    In this work, we investigated the magnetic and magnetocaloric properties of the amorphous system Eu80 Au20. The magnetic state equation and entropy were considered in the framework of Handrich-Kaneyoshi model, which takes into account the amorphization through the symmetric exchange fluctuation in the mean field approximation. The exchange and structural fluctuations parameters were chosen based on the experimental data of Eu80 Au20. The isothermal entropy change was calculated for several variations of external magnetic field. Furthermore, the adiabatic temperature change and the refrigerant capacity were calculated for a magnetic field change from 0 to 5 T.

  4. Dissolution properties of co-amorphous drug-amino acid formulations in buffer and biorelevant media

    DEFF Research Database (Denmark)

    Heikkinen, A. T.; DeClerck, L.; Löbmann, Korbinian;

    2015-01-01

    -amorphous formulations have been tested only in buffers and their supersaturation ability remain unexplored. Consequently, dissolution studies in simulated intestinal fluids need to be conducted in order to better evaluate the potential of these systems in increasing the oral bioavailability of biopharmaceutics...... classification system class II drugs. In this study, solubility and dissolution properties of the co-amorphous simvastatin-lysine, gibenclamideserine, glibenclamide-threonine and glibenclamide-serine-threonine were studied in phosphate buffer pH 7.2 and biorelevant media (fasted and fed state simulated...

  5. Production, Properties and Applications of Bulk Amorphous Alloys

    Institute of Scientific and Technical Information of China (English)

    Tao Zhang; Akihisa Inoue

    2000-01-01

    A review is given of recent work concerned with the production method, the characteristic properties(1) Bulk amorphous system; (2) Mechanical and magnetic properties of bulkamorphous alloys; (3)application of bulk amorphous alloys.

  6. Investigation of crystallization and amorphization dynamics of phase-change thin films by subnanosecond laser pulses.

    Science.gov (United States)

    Kieu, Khanh; Narumi, Kenji; Mansuripur, Masud

    2006-10-20

    We report experimental results on amorphization and crystallization dynamics of reversible phase-change (PC) thin-film samples, GeSbTe and GeBiTe, for optical disk data storage. The investigation was conducted with subnanosecond laser pulses using a pump-and-probe configuration. Amorphization of the crystalline films could be achieved with a single subnanosecond laser pulse; the amorphization dynamics follow closely the temperature kinetics induced in the irradiated spot. As for crystallization of the samples initially in the amorphous state, a single subnanosecond pulse was found to be insufficient to fully crystallize the irradiated spot, but we could crystallize the PC film (in the area under the focused spot) by applying multiple short pulses. Our multipulse studies reveal that the GeSbTe crystallization is dominated by the growth of nuclei whose initial formation is slow but, once formed, their subsequent growth (under a sequence of subnanosecond pulses) happens quickly. In the case of GeBiTe samples, the crystalline nuclei appear to be present in the material initially, as they grow immediately upon illumination with laser pulses. Whereas our amorphous GeSbTe samples required approximately 200 pulses for full crystallization, for the GeBiTe samples approximately 15 pulses sufficed.

  7. Clozapine-carboxylic acid plasticized co-amorphous dispersions: Preparation, characterization and solution stability evaluation

    Directory of Open Access Journals (Sweden)

    Ali Ahmed Mahmoud Abdelhaleem

    2015-06-01

    Full Text Available This study addressed the possibility of forming of co-amorphous systems between clozapine (CZ and various carboxylic acid plasticizers (CAPs. The aim was to improve the solubility and oral bioavailability of clozapine. Co-amorphous dispersions were prepared using modified solvent evaporation methodology at drug/plasticizer stoichiometric ratios of 1:1, 1:1.5 and 1:2. Solid state characterization was performed using differential scanning calorimetry, X-ray diffraction and infra red spectroscopy. Highly soluble homogeneous co-amorphous dispersions were formed between clozapine and CAPs via hydrogen bonding. The co-amorphous dispersions formed with tartaric acid (1:2 showed the highest dissolution percentage (> 95 % in 20 minutes compared to pure crystalline CZ (56 %. Highly stable solutions were obtained from co-amorphous CZ-citric and CZ-tartaric acid at 1:1.5 molar ratio. The prepared dispersions suggest the possibility of peroral or sublingual administration of highly soluble clozapine at a reduced dose with the great chance to bypass the first pass metabolism.

  8. Inhibition of Recrystallization of Amorphous Lactose in Nanocomposites Formed by Spray-Drying.

    Science.gov (United States)

    Hellrup, Joel; Alderborn, Göran; Mahlin, Denny

    2015-11-01

    This study aims at investigating the recrystallization of amorphous lactose in nanocomposites. In particular, the focus is on the influence of the nano- to micrometer length scale nanofiller arrangement on the amorphous to crystalline transition. Further, the relative significance of formulation composition and manufacturing process parameters for the properties of the nanocomposite was investigated. Nanocomposites of amorphous lactose and fumed silica were produced by co-spray-drying. Solid-state transformation of the lactose was studied at 43%, 84%, and 94% relative humidity using X-ray powder diffraction and microcalorimetry. Design of experiments was used to analyze spray-drying process parameters and nanocomposite composition as factors influencing the time to 50% recrystallization. The spray-drying process parameters showed no significant influence. However, the recrystallization of the lactose in the nanocomposites was affected by the composition (fraction silica). The recrystallization rate constant decreased as a function of silica content. The lowered recrystallization rate of the lactose in the nanocomposites could be explained by three mechanisms: (1) separation of the amorphous lactose into discrete compartments on a micrometer length scale (compartmentalization), (2) lowered molecular mobility caused by molecular interactions between the lactose molecules and the surface of the silica (rigidification), and/or (3) intraparticle confinement of the amorphous lactose.

  9. Performance improvement in amorphous silicon based uncooled microbolometers through pixel design and materials development

    Science.gov (United States)

    Ajmera, Sameer; Brady, John; Hanson, Charles; Schimert, Tom; Syllaios, A. J.; Taylor, Michael

    2011-06-01

    Uncooled amorphous silicon microbolometers have been established as a field-worthy technology for a broad range of applications where performance and form factor are paramount, such as soldier-borne systems. Recent developments in both bolometer materials and pixel design at L-3 in the 17μm pixel node have further advanced the state-of-the-art. Increasing the a-Si material temperature coefficient of resistance (TCR) has the impact of improving NETD sensitivity without increasing thermal time constant (TTC), leading to an improvement in the NETD×TTC product. By tuning the amorphous silicon thin-film microstructure using hydrogen dilution during deposition, films with high TCR have been developed. The electrical properties of these films have been shown to be stable even after thermal cycling to temperatures greater than 300oC enabling wafer-level vacuum packaging currently performed at L-3 to reduce the size and weight of the vacuum packaged unit. Through appropriate selection of conditions during deposition, amorphous silicon of ~3.4% TCR has been integrated into the L-3 microbolometer manufacturing flow. By combining pixel design enhancements with improvements to amorphous silicon thin-film technology, L-3's amorphous silicon microbolometer technology will continue to provide the performance required to meet the needs to tomorrow's war-fighter.

  10. Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers.

    Science.gov (United States)

    Lenz, Elisabeth; Löbmann, Korbinian; Rades, Thomas; Knop, Klaus; Kleinebudde, Peter

    2017-01-01

    Co-amorphous drug-amino acid systems have gained growing interest as an alternative to common amorphous formulations which contain polymers as stabilizers. Several preparation methods have recently been investigated, including vibrational ball milling on a laboratory scale or spray drying in a larger scale. In this study, the feasibility of hot melt extrusion for continuous manufacturing of co-amorphous drug-amino acid formulations was examined, challenging the fact that amino acids melt with degradation at high temperatures. Furthermore, the need for an addition of a polymer in this process was evaluated. After a polymer screening via the solvent evaporation method, co-amorphous indomethacin-arginine was prepared by a melting-solvent extrusion process without and with copovidone. The obtained products were characterized with respect to their solid-state properties, non-sink dissolution behavior, and stability. Results were compared to those of spray-dried formulations with the same compositions and to spray-dried indomethacin-copovidone. Overall, stable co-amorphous systems could be prepared by extrusion without or with copovidone, which exhibited comparable molecular interaction properties to the respective spray-dried products, while phase separation was detected by differential scanning calorimetry in several cases. The formulations containing indomethacin in combination with arginine and copovidone showed enhanced dissolution behavior over the formulations with only copovidone or arginine.

  11. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    A R M Yusoff; M N Syahrul; K Henkel

    2007-08-01

    A major issue encountered during fabrication of triple junction -Si solar cells on polyimide substrates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and Gouldflex), and the effect of tie coats on film adhesion.

  12. Athermal nonlinear elastic constants of amorphous solids.

    Science.gov (United States)

    Karmakar, Smarajit; Lerner, Edan; Procaccia, Itamar

    2010-08-01

    We derive expressions for the lowest nonlinear elastic constants of amorphous solids in athermal conditions (up to third order), in terms of the interaction potential between the constituent particles. The effect of these constants cannot be disregarded when amorphous solids undergo instabilities such as plastic flow or fracture in the athermal limit; in such situations the elastic response increases enormously, bringing the system much beyond the linear regime. We demonstrate that the existing theory of thermal nonlinear elastic constants converges to our expressions in the limit of zero temperature. We motivate the calculation by discussing two examples in which these nonlinear elastic constants play a crucial role in the context of elastoplasticity of amorphous solids. The first example is the plasticity-induced memory that is typical to amorphous solids (giving rise to the Bauschinger effect). The second example is how to predict the next plastic event from knowledge of the nonlinear elastic constants. Using the results of our calculations we derive a simple differential equation for the lowest eigenvalue of the Hessian matrix in the external strain near mechanical instabilities; this equation predicts how the eigenvalue vanishes at the mechanical instability and the value of the strain where the mechanical instability takes place.

  13. Electrodeposition of amorphous gold alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Masaru; Senda, Kazutaka [Central Research Laboratory, Kanto Chemical Co., Inc., Saitama 340-0003 (Japan); Advanced Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Musha, Yuta [Department of Applied Chemistry, School of Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Sasano, Junji [Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, Tokyo 169-0051 (Japan); Okinaka, Yutaka [Advanced Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Osaka, Tetsuya [Department of Applied Chemistry, School of Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, Tokyo 169-0051 (Japan); Advanced Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan)], E-mail: osakatet@waseda.jp

    2007-11-20

    The process for electroplating amorphous gold-nickel-tungsten alloy that we developed previously based on the addition of a gold salt to a known amorphous Ni-W electroplating solution was investigated further using the X-ray diffraction (XRD) method for the purpose of quickly surveying the effects of various experimental variables on the microstructure of the alloy. In this system the gold concentration in the plating bath was found to be critical; i.e., when it is either very low or very high, the deposit becomes crystalline to XRD. The deposit composition varies linearly with the mole ratio of Au to Ni in solution, and the alloy deposit is amorphous to XRD when the atomic ratio of Au/Ni in the deposit is between 0.5 and 1.5. At suitable concentrations of the metal ions, the deposit contains essentially no tungsten. By extending the work on the Au-Ni-W system, an amorphous Au-Co alloy plating process was also developed.

  14. Radiative recombination of excitons in amorphous semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai [School of Engineering and Logistics, Faculty Technology, B-41, Charles Darwin University, Darwin, NT 0909 (Australia)]. E-mail: jai.singh@cdu.edu.au

    2005-04-15

    A theory for calculating the radiative lifetime of excitons in amorphous semiconductors is presented. Four possibilities of excitonic radiative recombination are considered and the corresponding rates are derived at thermal equilibrium. The radiative lifetime is calculated from the inverse of the maximum rate for all the four possibilities. Results agree very well with experiments.

  15. Noise and degradation of amorphous silicon devices

    NARCIS (Netherlands)

    Bakker, J.P.R.

    2003-01-01

    Electrical noise measurements are reported on two devices of the disordered semiconductor hydrogenated amorphous silicon (a-Si:H). The material is applied in sandwich structures and in thin-film transistors (TFTs). In a sandwich configuration of an intrinsic layer and two thin doped layers, the obse

  16. Amorphous Alloy and Magnetic Stabilization Bed

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Sponsored by NSFC,a research team led by Prof.Enze Min (CAS Member) from Research Institute of Petroleum Processing,through 20 years' effort,settled the puzzled grave issue that amorphous alloy material has small specific surface area and low thermal stability.

  17. Compaction of amorphous iron–boron powder

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian;

    1993-01-01

    report on attempts to compact amorphous iron–boron particles prepared by chemical reduction of Fe(II) ions in aqueous solution by NaBH4 (Ref. 2). The particles prepared in this way are pyrophoric, but can be passivated. The small particle size (10–100 nm), characteristic of this preparation technique...

  18. Trap level spectroscopy in amorphous semiconductors

    CERN Document Server

    Mikla, Victor V

    2010-01-01

    Although amorphous semiconductors have been studied for over four decades, many of their properties are not fully understood. This book discusses not only the most common spectroscopic techniques but also describes their advantages and disadvantages.Provides information on the most used spectroscopic techniquesDiscusses the advantages and disadvantages of each technique

  19. Amorphous silicon for thin-film transistors

    NARCIS (Netherlands)

    Schropp, Rudolf Emmanuel Isidore

    1987-01-01

    Hydrogenated amorphous silicon (a-Si:H) has considerable potential as a semiconducting material for large-area photoelectric and photovoltaic applications. Moreover, a-Si:H thin-film transistors (TFT’s) are very well suited as switching devices in addressable liquid crystal display panels and addres

  20. Amorphous track models: A numerical comparison study

    DEFF Research Database (Denmark)

    Greilich, Steffen; Grzanka, L.; Bassler, N.;

    2010-01-01

    We present an open-source code library for amorphous track modelling which is suppose to faciliate the application and numerical comparability as well as serve as a frame-work for the implementation of new models. We show an example of using the library indicating the choice of submodels has a si...

  1. Induced growth of high quality ZnO thin films by crystallized amorphous ZnO

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Jun; Song Li-Jun; Li Shou-Chun; Lu You-Ming; Tian Yun-Xia; Liu Jia-Yi; Wang Lian-Yuan

    2006-01-01

    This paper reports the induced growth of high quality ZnO thin film by crystallized amorphous ZnO. Firstly amorphous ZnO was prepared by solid-state pyrolytic reaction, then by taking crystallized amorphous ZnO as seeds (buffer layer), ZnO thin films have been grown in diethyene glycol solution of zinc acetate at 80℃. X-ray Diffraction curve indicates that the films were preferentially oriented [001] out-of-plane direction of the ZnO. Atomic force microscopy and scanning electron microscopy were used to evaluate the surface morphology of the ZnO thin film. Photoluminescence spectrum exhibits a strong ultraviolet emission while the visible emission is very weak. The results indicate that high quality ZnO thin film was obtained.

  2. Disorder-assisted melting and the glass transition in amorphous solids

    Science.gov (United States)

    Zaccone, Alessio; Terentjev, Eugene

    2013-03-01

    The mechanical response of solids depends on temperature because the way atoms and molecules respond collectively to deformation is affected at various levels by thermal motion. This is a fundamental problem of solid state science and plays a crucial role in metallurgy, aerospace engineering, energy. In disordered solids (glass, amorphous semiconductors, ceramics, metallic glass, polymers) the vanishing of rigidity as a function of temperature is not well understood because continuum elasticity is inapplicable due to the disorder leading to nontrivial (nonaffine) components in the atomic displacements. Our theory explains the basic mechanism of the melting transition of amorphous solids in terms of the lattice energy lost to nonaffine motion, compared to which thermal vibrations turn out to play a negligible role. The theory is in good agreement with data on melting of amorphous polymers (where no alternative theory can be found in the literature) and offers new opportunities in materials science.

  3. Calculating formation range of binary amorphous alloys fabricated by electroless plating

    Science.gov (United States)

    Zhang, Bangwei; Liao, Shuzhi; Shu, Xiaolin; Xie, Haowen

    2016-06-01

    A lot of amorphous alloy deposits in the binary (Ni, Co, Cu)-(P, B) alloy systems fabricated by electroless plating (EP) have been reported up to date. But no one reported their theoretical modeling of the amorphous formation and calculated their concentration range of amorphous formation (RAF). Using Miedema model and subregular model scheme, the RAFs for the six EP (Ni, Co, Cu)-(P, B) alloys and three Ni-Cu, Ni-Co and Co-Cu alloys have been calculated systematically for the first time. The calculated results are in agreement with experimental observations. Experiments and calculations for the RAFs in the latter three alloy systems reveal that not any RAF formed except crystalline states. The huge difference between the six metal-metalloid alloys and three metal-metal alloys in RAF has been discussed in detail in the paper.

  4. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying

    DEFF Research Database (Denmark)

    Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger;

    2015-01-01

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co......-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) showed...... the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions) was observed when SLS was spray-dried with SVS (and LYS). In conclusion, spray drying of SVS and LYS from...

  5. Long-Term Stability of New Co-Amorphous Drug Binary Systems: Study of Glass Transitions as a Function of Composition and Shelf Time

    Directory of Open Access Journals (Sweden)

    Luz María Martínez

    2016-12-01

    Full Text Available The amorphous state is of particular interest in the pharmaceutical industry due to the higher solubility that amorphous active pharmaceutical ingredients show compared to their respective crystalline forms. Due to their thermodynamic instability, drugs in the amorphous state tend to recrystallize; in order to avoid crystallization, it has been a common strategy to add a second component to hinder the crystalline state and form a thermally stable co-amorphous system, that is to say, an amorphous binary system which retains its amorphous structure. The second component can be a small molecule excipient (such as a sugar or an aminoacid or a second drug, with the advantage that a second active pharmaceutical ingredient could be used for complementary or combined therapeutic purposes. In most cases, the compositions studied are limited to 1:1, 2:1 and 1:2 molar ratios, leaving a gap of information about phase transitions and stability on the amorphous state in a wider range of compositions. In the present work, a study of novel co–amorphous formulations in which the selection of the active pharmaceutical ingredients was made according to the therapeutic effect is presented. Resistance against crystallization and behavior of glass transition temperature ( T g were studied through calorimetric measurements as a function of composition and shelf time. It was found that binary formulations with T g temperatures higher than those of pure components presented long-term thermal stability. In addition, significant increments of T g values, of as much as 15 ∘ C, were detected as a result of glass relaxation at room temperature during storage time; this behavior of glass transition has not been previously reported for co-amorphous drugs. Based on these results, it can be concluded that monitoring behavior of T g and relaxation processes during the first weeks of storage leads to a more objective evaluation of the thermomechanical stability of an amorphous

  6. Long-Term Stability of New Co-Amorphous Drug Binary Systems: Study of Glass Transitions as a Function of Composition and Shelf Time.

    Science.gov (United States)

    Martínez, Luz María; Videa, Marcelo; Sosa, Nahida González; Ramírez, José Héctor; Castro, Samuel

    2016-12-14

    The amorphous state is of particular interest in the pharmaceutical industry due to the higher solubility that amorphous active pharmaceutical ingredients show compared to their respective crystalline forms. Due to their thermodynamic instability, drugs in the amorphous state tend to recrystallize; in order to avoid crystallization, it has been a common strategy to add a second component to hinder the crystalline state and form a thermally stable co-amorphous system, that is to say, an amorphous binary system which retains its amorphous structure. The second component can be a small molecule excipient (such as a sugar or an aminoacid) or a second drug, with the advantage that a second active pharmaceutical ingredient could be used for complementary or combined therapeutic purposes. In most cases, the compositions studied are limited to 1:1, 2:1 and 1:2 molar ratios, leaving a gap of information about phase transitions and stability on the amorphous state in a wider range of compositions. In the present work, a study of novel co-amorphous formulations in which the selection of the active pharmaceutical ingredients was made according to the therapeutic effect is presented. Resistance against crystallization and behavior of glass transition temperature ( T g were studied through calorimetric measurements as a function of composition and shelf time. It was found that binary formulations with T g temperatures higher than those of pure components presented long-term thermal stability. In addition, significant increments of T g values, of as much as 15 ∘ C, were detected as a result of glass relaxation at room temperature during storage time; this behavior of glass transition has not been previously reported for co-amorphous drugs. Based on these results, it can be concluded that monitoring behavior of T g and relaxation processes during the first weeks of storage leads to a more objective evaluation of the thermomechanical stability of an amorphous formulation.

  7. Transitions of amorphous- crystalline-amorphous in bulk metallic glass under HP and HT

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In-situ SR-XRD measurements revealed that the crystallization process in Zr41.2Ti13.sCu12.5Ni10Be22.5 bulk metallic glass is significantly different from that in traditional glasses. Subsequent heating at 10 GPa converts the sample from amorphous phase into the metastable fcc phase and then leads to the fcc phase back to the amorphous phase,nomena in the material under high pressure and high temperature.``

  8. The structure and physical properties of paracrystalline atomistic models of amorphous silicon.

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, P. M.; Zotov, N.; Nakhmanson, S. M.; Drabold, D. A.; Gibson, J. M.; Treacy, M. M. J.; Keblinski, P.; Materials Science Division; Univ. of Illinois; Univ. Bayreuth; Ohio Univ.; NEC Research Inst.; Rensselaer Polytechnic Inst.

    2001-11-01

    We have examined the structure and physical properties of paracrystalline molecular dynamics models of amorphous silicon. Simulations from these models show qualitative agreement with the results of recent mesoscale fluctuation electron microscopy experiments on amorphous silicon and germanium. Such agreement is not found in simulations from continuous random network models. The paracrystalline models consist of topologically crystalline grains which are strongly strained and a disordered matrix between them. We present extensive structural and topological characterization of the medium range order present in the paracrystalline models and examine their physical properties, such as the vibrational density of states, Raman spectra, and electron density of states. We show by direct simulation that the ratio of the transverse acoustic mode to transverse optical mode intensities I{sub TA}/I{sub TO} in the vibrational density of states and the Raman spectrum can provide a measure of medium range order. In general, we conclude that the current paracrystalline models are a good qualitative representation of the paracrystalline structures observed in the experiment and thus provide guidelines toward understanding structure and properties of medium-range-ordered structures of amorphous semiconductors as well as other amorphous materials.

  9. Impact of water on molecular dynamics of amorphous α-, β-, and γ-cyclodextrins studied by dielectric spectroscopy

    Science.gov (United States)

    Kaminski, K.; Adrjanowicz, K.; Kaminska, E.; Grzybowska, K.; Hawelek, L.; Paluch, M.; Tarnacka, M.; Gruszka, I.; Kasprzycka, A.

    2012-09-01

    Dielectric, calorimetric, and x-ray diffraction measurements were carried out on α-, β-, and γ-cyclodextrins, which are cyclic saccharides built by, respectively, six, seven, and eight glucose units connected via glycosidic linkage. Differential scanning calorimetry measurements indicated that each carbohydrate has a melting temperature located much above the temperature at which thermal decomposition begins. Moreover, calorimetric data revealed that it is possible to completely dehydrate each cyclodextrin by annealing them above 413 K. Unfortunately, it is impossible to obtain amorphous forms of cyclodextrin by simple cooling of the melt. Thus, a solid state amorphization method has been applied. X-ray diffraction studies demonstrated that by ball milling at room temperature we are able to obtain completely amorphous cyclodextrins. Finally, dielectric measurements were carried out to probe molecular dynamics in the amorphous state of cyclodextrins. It was found that there is only one relaxation process in amorphous hydrated cyclodextrins, while in dried samples two secondary relaxations are present. Moreover, we have shown that water has an enormous effect on the dynamics of both relaxation modes, i.e., with increasing content of water, the activation energy of the slow mode decreases, while that evaluated for the fast mode increases. We were not able to follow the dynamics of the structural relaxation process, because glass transition temperatures of amorphous cyclodextrins were found to lie above thermal degradation points.

  10. Two-level tunneling systems in amorphous alumina

    Science.gov (United States)

    Lebedeva, Irina V.; Paz, Alejandro P.; Tokatly, Ilya V.; Rubio, Angel

    2014-03-01

    The decades of research on thermal properties of amorphous solids at temperatures below 1 K suggest that their anomalous behaviour can be related to quantum mechanical tunneling of atoms between two nearly equivalent states that can be described as a two-level system (TLS). This theory is also supported by recent studies on microwave spectroscopy of superconducting qubits. However, the microscopic nature of the TLS remains unknown. To identify structural motifs for TLSs in amorphous alumina we have performed extensive classical molecular dynamics simulations. Several bistable motifs with only one or two atoms jumping by considerable distance ~ 0.5 Å were found at T=25 K. Accounting for the surrounding environment relaxation was shown to be important up to distances ~ 7 Å. The energy asymmetry and barrier for the detected motifs lied in the ranges 0.5 - 2 meV and 4 - 15 meV, respectively, while their density was about 1 motif per 10 000 atoms. Tuning of motif asymmetry by strain was demonstrated with the coupling coefficient below 1 eV. The tunnel splitting for the symmetrized motifs was estimated on the order of 0.1 meV. The discovered motifs are in good agreement with the available experimental data. The financial support from the Marie Curie Fellowship PIIF-GA-2012-326435 (RespSpatDisp) is gratefully acknowledged.

  11. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review.

    Science.gov (United States)

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-11-11

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a "simple" and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc.

  12. The Infrared Spectra and Absorption Intensities of Amorphous Ices

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.; Loeffler, Mark

    2016-06-01

    Our research group is carrying out new IR measurements of icy solids relevant to the outer solar system and to the interstellar medium, with an emphasis on amorphous and crystalline ices below ~ 120 K. Our goal is to update and add to the relatively meager literature on this subject and to provide electronic versions of state-of-the-art data, since the abundances of such molecules cannot be deduced without accurate reference spectra and IR band strengths. In the past year, we have focused on three of the simplest and most abundant components of interstellar and solar-system ices: methane (CH4), carbon dioxide (CO2), and methanol (CH3OH). Infrared spectra from ˜ 4500 to 500 cm-1 have been measured for each of these molecules in μm-thick films at temperatures from 10 to 120 K. All known amorphous and crystalline phases have been reproduced and, for some, presented for the first time. We also report measurements of the index of refraction at 670 nm and the mass densities for each ice phase. Comparisons are made to earlier work where possible. Electronic versions of our new results are available at http://science.gsfc.nasa.gov/691/cosmicice/ constants.html.

  13. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review

    Directory of Open Access Journals (Sweden)

    Carlos Morón

    2015-11-01

    Full Text Available Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a “simple” and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc.

  14. Crystallization behaviour of Al-Sm amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Battezzati, L. (Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali, Universita di Torino, Via P. Giuria 9, 10125 Torino (Italy)); Baricco, M. (Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali, Universita di Torino, Via P. Giuria 9, 10125 Torino (Italy)); Schumacher, P. (Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)); Shih, W.C.; Greer, A.L.

    1994-05-01

    Various Al[sub 100-x]Sm[sub x] alloys (10[<=]qslantx[<=]qslant14) have been rapidly solidified by single-roller melt spinning with careful control of the atmosphere in the quenching device. The structural state and subsequent devitrification behaviour of the melt-spun ribbons are found to be particularly sensitive to the quenching conditions. Except for the thinnest ribbons, there are inhomogeneities both through the ribbon thickness and along the length. Both fully and partially amorphous ribbons have been obtained. The crystallization processes of the amorphous phases have been followed by X-ray diffraction, transmission electron microscopy and differential scanning calorimetry (DSC). Al[sub 92]Sm[sub 8] shows primary crystallization of Al, followed by the formation of metastable phases; Al[sub 90]Sm[sub 10] transforms polymorphically to a metastable intermetallic; Al[sub 88]Sm[sub 12] and Al[sub 86]Sm[sub 14] display eutectic crystallization into Al and a metastable mixture of compounds. For Al[sub 90]Sm[sub 10], the DSC traces involve several overlapping peaks. This may be the result of transformations occurring in distinct parts of the ribbon with different mechanisms. A kinetic analysis of the crystallization processes has been performed by means of isothermal and non-isothermal DSC experiments. A discussion of the kinetic parameters derived from Kissinger and Avrami analyses is provided. ((orig.))

  15. Role of Amorphous Manganese Oxide in Nitrogen Loss

    Institute of Scientific and Technical Information of China (English)

    LILIANG-MO; WUQI-TU

    1991-01-01

    Studies have been made,by 15N-tracer technique on nitrogen loss resulting from adding amorphous manganese oxide to NH4+-N medium under anaerobic conditions.The fact that the total nitrogen recovery was decreased and that 15NO2,15N2O,15N14NO,15NO,15N2 and 15N14N were emitted has proved that,like amorphous iron oxide,amorphous manganese oxide can also act as an electron acceptor in the oxidation of NH4+-N under anaerobic conditions and give rise to nitrogen loss.This once again illustrates another mechanism by which the loss of ammonium nitrogen in paddy soils is brought about by amorphous iron and manganese oxides.The quantity of nitrogen loss by amorphous manganese oxide increased with an increase in the amount of amorphous manganese oxide added and lessened with time of its aging.The nitrogen loss resulting from amorphous manganese oxide was less than that from amorphous iron oxide.And the nitrogen loss resulting from amorphous manganese oxide was less than that from amorphous iron oxide.And the nitrogen loss by cooperation of amorphous manganese oxide and microorganisms (soil suspension) was larger than that by amorphous manganese oxide alone.In the system,nitrogen loss was associated with the specific surface ares and oxidation-reduction of amorphous manganese oxide.However,their quantitative relationship and the exact reaction processes of nitrogen loss induced by amorphous manganese oxide remain to be further studied.

  16. Breakdown of elasticity in amorphous solids

    Science.gov (United States)

    Biroli, Giulio; Urbani, Pierfrancesco

    2016-12-01

    What characterizes a solid is the way that it responds to external stresses. Ordered solids, such as crystals, exhibit an elastic regime followed by a plastic regime, both understood microscopically in terms of lattice distortion and dislocations. For amorphous solids the situation is instead less clear, and the microscopic understanding of the response to deformation and stress is a very active research topic. Several studies have revealed that even in the elastic regime the response is very jerky at low temperature, resembling very much the response of disordered magnetic materials. Here we show that in a very large class of amorphous solids this behaviour emerges upon decreasing temperature, as a phase transition, where standard elastic behaviour breaks down. At the transition all nonlinear elastic moduli diverge and standard elasticity theory no longer holds. Below the transition, the response to deformation becomes history- and time-dependent.

  17. Fetus Amorphous Acardious – A Case Report

    Directory of Open Access Journals (Sweden)

    N. S. Kamakeri

    2016-04-01

    Full Text Available Fetus amorphous acardious is a rare fetal malformation lacking a functional heart and bearing no resemblance to human embryos. The main differential diagnosis is with placental teratoma and is based on the degree of skeletal organization and umbilical cord formation. A 26 year old woman delivered a healthy newborn at 38 weeks of gestation by caesarian section. An amorphous mass covered with healthy looking skin was connected to the placenta with a short pedicle. Xray examination of the mass revealed the presence of vertebral column associated with ribs and pelvic bones and axial skeleton. Histopathological examination demonstrates the presence of cartilage, bone, adipose tissue, skin with adnexal structures and neural tissue.

  18. Temperature dependence of amorphous and interface phases in the Fe{sub 80}Nb{sub 7}Cu{sub 1}B{sub 12} nanocrystalline alloy

    Energy Technology Data Exchange (ETDEWEB)

    Miglierini, M. [Slovak University of Technology, Department of Nuclear Physics and Technology (Slovakia); Greneche, J.-M. [Universite du Maine, Faculte des Sciences, F-72085 Le, Laboratoire de Physique de l' Etat Condense, UPRESA CNRS 6087 (France)

    1999-11-15

    Temperature measurements (77-625 K) of Fe{sub 80}Nb{sub 7}Cu{sub 1}B{sub 12} nanocrystalline alloy prepared from amorphous precursor annealed for 1 h at 470 deg. C and 620 deg. C are presented. Structural and magnetic behaviours of the crystalline phase, the amorphous residual matrix, and the interface zone between crystalline grains and the amorphous phase are studied by distributions of hyperfine magnetic fields. Magnetic regions are developing in the retained amorphous phase with rising temperature of annealing. They can be suppressed, however, at high enough measuring temperatures turning the amorphous matrix into paramagnetic state. As a consequence, the respective spectral components do not interfere so much and the role of interface zone can be studied.

  19. Hall effect in semiconducting epitaxial and amorphous Y-Ba-Cu-O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Shan, P.; Jahanzeb, A.; Butler, D.P.; Celik-Butler, Z. [Department of Electrical Engineering, Southern Methodist University, Dallas, Texas 75275 (United States); Kula, W.; Sobolewski, R. [Department of Electrical Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627 (United States)

    1997-05-01

    An experimental study of the Hall effect in nonmetallic Y-Ba-Cu-O thin films is reported. Both epitaxial crystalline YBa{sub 2}Cu{sub 3}O{sub 6+x} (x{le}0.5) and multiphase/amorphous Y-Ba-Cu-O thin films were studied. The structure of the samples was measured by x-ray diffraction and Raman microprobe. The amorphous Y-Ba-Cu-O samples were found to have a grain size of about 100 {Angstrom}. The conduction properties were studied and analyzed for the two types of samples over a wide temperature range including room temperature. The Hall effect measurements showed positive charge carriers with a concentration ranging from 10{sup 17} to 10{sup 20} cm{sup {minus}3} at room temperature. The mobility was found to decrease with higher Hall carrier concentration. The empirical relationship for the mobility dependence on impurity concentration agreed with the relationship between mobility and the experimental Hall carrier concentration, suggesting that the same localized states were responsible for both providing the carriers and reducing the mobility through scattering. It was also observed that the mobility values for both amorphous and crystalline samples followed the same empirical curve, a result which showed that the conduction mechanisms in the epitaxial (tetragonal) and amorphous Y-Ba-Cu-O materials are very likely to be similar despite the differences in the composition and structure of the films. The similarity is consistent with other work that concludes that the conduction mechanism occurs along the copper oxide planes. Our work implies that the conduction mechanism operates over a short range, less than the 100 {Angstrom} grain size of the amorphous, such that the lack of order in the amorphous samples was essentially irrelevant to the charge transport. {copyright} {ital 1997 American Institute of Physics.}

  20. Hall effect in semiconducting epitaxial and amorphous Y-Ba-Cu-O thin films

    Science.gov (United States)

    Shan, Pao-Chuan; Jahanzeb, Agha; Butler, Donald P.; ćelik-Butler, Zeynep; Kula, Witold; Sobolewski, Roman

    1997-05-01

    An experimental study of the Hall effect in nonmetallic Y-Ba-Cu-O thin films is reported. Both epitaxial crystalline YBa2Cuoverflow="scroll">3O6+x (x⩽0.5) and multiphase/amorphous Y-Ba-Cu-O thin films were studied. The structure of the samples was measured by x-ray diffraction and Raman microprobe. The amorphous Y-Ba-Cu-O samples were found to have a grain size of about 100 Å. The conduction properties were studied and analyzed for the two types of samples over a wide temperature range including room temperature. The Hall effect measurements showed positive charge carriers with a concentration ranging from 1017 to 1020 cm-3 at room temperature. The mobility was found to decrease with higher Hall carrier concentration. The empirical relationship for the mobility dependence on impurity concentration agreed with the relationship between mobility and the experimental Hall carrier concentration, suggesting that the same localized states were responsible for both providing the carriers and reducing the mobility through scattering. It was also observed that the mobility values for both amorphous and crystalline samples followed the same empirical curve, a result which showed that the conduction mechanisms in the epitaxial (tetragonal) and amorphous Y-Ba-Cu-O materials are very likely to be similar despite the differences in the composition and structure of the films. The similarity is consistent with other work that concludes that the conduction mechanism occurs along the copper oxide planes. Our work implies that the conduction mechanism operates over a short range, less than the 100 Å grain size of the amorphous, such that the lack of order in the amorphous samples was essentially irrelevant to the charge transport.

  1. Charge deep-level transient spectroscopy study of high-energy-electron-beam-irradiated hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Klaver, A.; Nádaždy, V.; Zeman, M.; Swaaiij, R.A.C.M.M.

    2006-01-01

    We present a study of changes in the defect density of states in hydrogenated amorphous silicon (a-Si:H) due to high-energy electron irradiation using charged deep-level transient spectroscopy. It was found that defect states near the conduction band were removed, while in other band gap regions the

  2. FY06 Annual Report: Amorphous Semiconductors for Gamma Radiation Detection (ASGRAD)

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Bradley R.; Riley, Brian J.; Crum, Jarrod V.; Sundaram, S. K.; Henager, Charles H.; Zhang, Yanwen; Shutthanandan, V.

    2007-01-01

    We describe progress in the development of new materials for portable, room-temperature, gamma-radiation detection at Pacific Northwest National Laboratory at the Hanford Site in Washington State. High Z, high resistivity, amorphous semiconductors are being designed for use as solid-state detectors at near ambient temperatures; principles of operation are analogous to single-crystal semiconducting detectors. Amorphous semiconductors have both advantages and disadvantages compared to single crystals, and this project is developing methods to mitigate technical problems and design optimized material for gamma detection. Several issues involved in the fabrication of amorphous semiconductors are described, including reaction thermodynamics and kinetics, the development of pyrolytic coating, and the synthesis of ingots. The characterization of amorphous semiconductors is described, including sectioning and polishing protocols, optical microscopy, X-ray diffraction, scanning electron microscopy, optical spectroscopy, particle-induced X-ram emission, Rutherford backscattering, and electrical testing. Then collaboration with the University of Illinois at Urbana-Champaign is discussed in the areas of Hall-effect measurements and current voltage data. Finally, we discuss the strategy for continuing the program.

  3. Formation of iron disilicide on amorphous silicon

    Science.gov (United States)

    Erlesand, U.; Östling, M.; Bodén, K.

    1991-11-01

    Thin films of iron disilicide, β-FeSi 2 were formed on both amorphous silicon and on crystalline silicon. The β-phase is reported to be semiconducting with a direct band-gap of about 0.85-0.89 eV. This phase is known to form via a nucleation-controlled growth process on crystalline silicon and as a consequence a rather rough silicon/silicide interface is usually formed. In order to improve the interface a bilayer structure of amorphous silicon and iron was sequentially deposited on Czochralski silicon in an e-gun evaporation system. Secondary ion mass spectrometry profiling (SIMS) and scanning electron micrographs revealed an improvement of the interface sharpness. Rutherford backscattering spectrometry (RBS) and X-ray diffractiometry showed β-FeSi 2 formation already at 525°C. It was also observed that the silicide growth was diffusion-controlled, similar to what has been reported for example in the formation of NiSi 2 for the reaction of nickel on amorphous silicon. The kinetics of the FeSi 2 formation in the temperature range 525-625°C was studied by RBS and the activation energy was found to be 1.5 ± 0.1 eV.

  4. Concurrent multiscale modeling of amorphous materials

    Science.gov (United States)

    Tan, Vincent

    2013-03-01

    An approach to multiscale modeling of amorphous materials is presented whereby atomistic scale domains coexist with continuum-like domains. The atomistic domains faithfully predict severe deformation while the continuum domains allow the computation to scale up the size of the model without incurring excessive computational costs associated with fully atomistic models and without the introduction of spurious forces across the boundary of atomistic and continuum-like domains. The material domain is firstly constructed as a tessellation of Amorphous Cells (AC). For regions of small deformation, the number of degrees of freedom is then reduced by computing the displacements of only the vertices of the ACs instead of the atoms within. This is achieved by determining, a priori, the atomistic displacements within such Pseudo Amorphous Cells associated with orthogonal deformation modes of the cell. Simulations of nanoscale polymer tribology using full molecular mechanics computation and our multiscale approach give almost identical prediction of indentation force and the strain contours of the polymer. We further demonstrate the capability of performing adaptive simulations during which domains that were discretized into cells revert to full atomistic domains when their strain attain a predetermined threshold. The authors would like to acknowledge the financial support given to this study by the Agency of Science, Technology and Research (ASTAR), Singapore (SERC Grant No. 092 137 0013).

  5. Shock induced crystallization of amorphous Nickel powders

    Science.gov (United States)

    Cherukara, Mathew; Strachan, Alejandro

    2015-06-01

    Recent experimental work has shown the efficacy of amorphous Ni/crystalline Al composites as energetic materials, with flame velocities twice that of a comparable crystalline Ni/crystalline Al system. Of further interest is the recrystallization mechanisms in the pure amorphous Ni powders, both thermally induced and mechanically induced. We present large-scale molecular dynamics simulations of shock-induced recrystallization in loosely packed amorphous Nickel powders. We study the time dependent nucleation and growth processes by holding the shocked samples at the induced pressures and temperatures for extended periods following the passage of the shock (up to 6 ns). We find that the nanostructure of the recrystallized Ni and time scales of recrystallization are dependent on the piston velocity. At low piston velocities, nucleation events are rare, leading to long incubation times and a relatively coarse nanostructure. At higher piston velocities, local variations in temperature due to jetting phenomena and void collapse, give rise to multiple nucleation events on time scales comparable to the passage of the shock wave, leading to the formation of a fine-grained nanostructure. Interestingly, we observe that the nucleation and growth process occurs in two steps, with the first nuclei crystallizing into the BCC structure, before evolving over time into the expected FCC structure. U.S. Defense Threat Reduction Agency, HDTRA1-10-1-0119 (Program Manager Suhithi Peiris).

  6. Computer model of tetrahedral amorphous diamond

    Science.gov (United States)

    Djordjević, B. R.; Thorpe, M. F.; Wooten, F.

    1995-08-01

    We computer generate a model of amorphous diamond using the Wooten-Weaire method, with fourfold coordination everywhere. We investigate two models: one where four-membered rings are allowed and the other where the four-membered rings are forbidden; each model consisting of 4096 atoms. Starting from the perfect diamond crystalline structure, we first randomize the structure by introducing disorder through random bond switches at a sufficiently high temperature. Subsequently, the temperature is reduced in stages, and the topological and geometrical relaxation of the structure takes place using the Keating potential. After a long annealing process, a random network of comparatively low energy is obtained. We calculate the pair distribution function, mean bond angle, rms angular deviation, rms bond length, rms bond-length deviation, and ring statistics for the final relaxed structures. We minimize the total strain energy by adjusting the density of the sample. We compare our results with similar computer-generated models for amorphous silicon, and with experimental measurement of the structure factor for (predominantly tetrahedral) amorphous carbon.

  7. Amorphous molybdenum silicon superconducting thin films

    Directory of Open Access Journals (Sweden)

    D. Bosworth

    2015-08-01

    Full Text Available Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using WxSi1−x, though other amorphous superconductors such as molybdenum silicide (MoxSi1−x offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc reaches a maximum of 7.6 K at a composition of Mo83Si17. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz, there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

  8. Electronic transport in amorphous phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Luckas, Jennifer Maria

    2012-09-14

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  9. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying.

    Science.gov (United States)

    Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas; Laitinen, Riikka

    2015-12-03

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a "spring and parachute" effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions) was observed when SLS was spray-dried with SVS (and LYS). In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS.

  10. Ordered growth of topological insulator Bi2Se3 thin films on dielectric amorphous SiO2 by MBE.

    Science.gov (United States)

    Jerng, Sahng-Kyoon; Joo, Kisu; Kim, Youngwook; Yoon, Sang-Moon; Lee, Jae Hong; Kim, Miyoung; Kim, Jun Sung; Yoon, Euijoon; Chun, Seung-Hyun; Kim, Yong Seung

    2013-11-07

    Topological insulators (TIs) are exotic materials which have topologically protected states on the surface due to strong spin-orbit coupling. However, a lack of ordered growth of TI thin films on amorphous dielectrics and/or insulators presents a challenge for applications of TI-junctions. We report the growth of topological insulator Bi2Se3 thin films on amorphous SiO2 by molecular beam epitaxy (MBE). To achieve the ordered growth of Bi2Se3 on an amorphous surface, the formation of other phases at the interface is suppressed by Se passivation. Structural characterizations reveal that Bi2Se3 films are grown along the [001] direction with a good periodicity by the van der Waals epitaxy mechanism. A weak anti-localization effect of Bi2Se3 films grown on amorphous SiO2 shows a modulated electrical property by the gating response. Our approach for ordered growth of Bi2Se3 on an amorphous dielectric surface presents considerable advantages for TI-junctions with amorphous insulator or dielectric thin films.

  11. Amorphous InGaMgO Ultraviolet Photo-TFT with Ultrahigh Photosensitivity and Extremely Large Responsivity

    Directory of Open Access Journals (Sweden)

    Yiyu Zhang

    2017-02-01

    Full Text Available Recently, amorphous InGaZnO ultraviolet photo thin-film transistors have exhibited great potential for application in future display technologies. Nevertheless, the transmittance of amorphous InGaZnO (~80% is still not high enough, resulting in the relatively large sacrifice of aperture ratio for each sensor pixel. In this work, the ultraviolet photo thin-film transistor based on amorphous InGaMgO, which processes a larger bandgap and higher transmission compared to amorphous InGaZnO, was proposed and investigated. Furthermore, the effects of post-deposition annealing in oxygen on both the material and ultraviolet detection characteristics of amorphous InGaMgO were also comprehensively studied. It was found that oxygen post-deposition annealing can effectively reduce oxygen vacancies, leading to an optimized device performance, including lower dark current, higher sensitivity, and larger responsivity. We attributed it to the combined effect of the reduction in donor states and recombination centers, both of which are related to oxygen vacancies. As a result, the 240-min annealed device exhibited the lowest dark current of 1.7 × 10−10 A, the highest photosensitivity of 3.9 × 106, and the largest responsivity of 1.5 × 104 A/W. Therefore, our findings have revealed that amorphous InGaMgO photo thin-film transistors are a very promising alternative for UV detection, especially for application in touch-free interactive displays.

  12. Characterizing Amorphous Silicates in Extraterrestrial Materials

    Science.gov (United States)

    Fu, X.; Wang, A.; Krawczynski, M. J.

    2015-12-01

    Amorphous silicates are common in extraterrestrial materials. They are seen in the matrix of carbonaceous chondrites as well as in planetary materials. Tagish Lake is one of the most primitive carbonaceous meteorites in which TEM and XRD analyses found evidence for poorly crystalline phyllosilicate-like species; Raman spectra revealed amorphous silicates with variable degree of polymerization and low crystallinity. On Mars, CheMin discovered amorphous phases in all analyzed samples, and poorly crystalline smectite in mudstone samples. These discoveries pose questions on the crystallinity of phyllosilicates found by remote sensing on Mars, which is directly relevant to aqueous alteration during geologic history of Mars. Our goal is to use spectroscopy to better characterize amorphous silicates. We use three approaches: (1) using silicate glasses synthesized with controlled chemistry to study the effects of silicate polymerization and (2) using phyllosilicates synthesized with controlled hydrothermal treatment to study the effect of crystallinity on vibrational spectroscopy, finally (3) to use the developed correlations in above two steps to study amorphous phases in meteorites, and those found in future missions to Mars. In the 1st step, silicate glasses were synthesized from pure oxides in a range of NBO/T ratios (from 0 to 4). Depending on the targeted NBO/T and composition of mixed oxides, temperatures for each experiment fell in a range from 1260 to 1520 °C, run for ~ 4 hrs. The melt was quenched in liquid N2 or water. Homogeneity of glass was checked under optical microscopy. Raman spectra were taken over 100 spots on small chips free of bubbles and crystals. We have observed that accompanying an increase of NBO/T, there is a strengthening and a position shift of the Raman peak near 1000 cm-1 (Si-Onon-bridging stretching mode), and the weakening of broad Raman peaks near 500 cm-1 (ring breathing mode) and 700cm-1 (Si-Obridging-Si mode). We are building the

  13. Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process.

    Science.gov (United States)

    Kim, Jeong-Soo; Kim, Min-Soo; Park, Hee Jun; Jin, Shun-Ji; Lee, Sibeum; Hwang, Sung-Joo

    2008-07-09

    The objective of the study was to prepare amorphous atorvastatin hemi-calcium using spray-drying and supercritical antisolvent (SAS) process and evaluate its physicochemical properties and oral bioavailability. Atorvastatin hemi-calcium trihydrate was transformed to anhydrous amorphous form by spray-drying and SAS process. With the SAS process, the mean particle size and the specific surface area of amorphous atorvastatin were drastically changed to 68.7+/-15.8nm, 120.35+/-1.40m2/g and 95.7+/-12.2nm, 79.78+/-0.93m2/g from an acetone solution and a tetrahydrofuran solution, respectively and appeared to be associated with better performance in apparent solubility, dissolution and pharmacokinetic studies, compared with unprocessed crystalline atorvastatin. Oral AUC0-8h values in SD rats for crystalline and amorphous atorvastatin were as follow: 1121.4+/-212.0ngh/mL for crystalline atorvastatin, 3249.5+/-406.4ngh/mL and 3016.1+/-200.3ngh/mL for amorphous atorvastatin from an acetone solution and a tetrahydrofuran solution with SAS process, 2227.8+/-274.5 and 2099.9+/-339.2ngh/mL for amorphous atorvastatin from acetone and tetrahydrofuran with spray-drying. The AUCs of all amorphous atorvastatin significantly increased (PSAS process exhibits better bioavailability than spray-drying because of particle size reduction with narrow particle size distribution. It was concluded that physicochemical properties and bioavailability of crystalline atorvastatin could be improved by physical modification such as particle size reduction and generation of amorphous state using spray-drying and SAS process. Further, SAS process was a powerful methodology for improving the physicochemical properties and bioavailability of atorvastatin.

  14. The specific heat of pure and hydrogenated amorphous silicon

    Science.gov (United States)

    Queen, Daniel Robert

    At low temperature, amorphous materials have low energy excitations that result in a heat capacity that is in excess of the Debye heat capacity calculated from the sound velocity. These excitations are ubiquitous to the glassy state and occur with roughly the same density for all glasses. The specific heat has a linear temperature dependence below 1K that has been described by the phenomenological two-level systems (TLS) model in addition to a T 3 temperature dependence which is in excess of the T3 Debye specific heat. It is still unknown what exact mechanism gives rise to the TLS but it is assumed that groups of atoms have configurations that are close in energy and, at low temperature, these atoms can change configurations by tunneling through the energy barrier separating them. It has been an open question as to whether tetrahedrally bonded materials, like amorphous silicon, can support TLS due to the over-constrained nature of their bonding. It is shown in this work that amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) have specific heat CP in excess of the Debye specific heat which depends on the details of the growth process. There is a linear term that is due to TLS in addition to an excess T3 contribution. We find that the TLS density depends on number density of atoms in the a-Si film and that the presence of hydrogen in a-Si:H increases CP further. We suggest that regions of low density are sufficiently under-constrained to support tunneling between structural configurations at low temperature as described by the TLS model. The presence of H further lowers the energy barriers for the tunneling process resulting in an increase in TLS density in a-Si:H. The presence of H in a-Si:H network is found to be metastable. Annealing causes H to diffuse away from clustered regions which reduces the density of TLS. A low temperature anomaly is found in the a-Si:H films in their as prepared state that is of unknown origin but appears to take the

  15. Elasticity in Amorphous Solids: Nonlinear or Piecewise Linear?

    Science.gov (United States)

    Dubey, Awadhesh K; Procaccia, Itamar; Shor, Carmel A B Z; Singh, Murari

    2016-02-26

    Quasistatic strain-controlled measurements of stress versus strain curves in macroscopic amorphous solids result in a nonlinear-looking curve that ends up either in mechanical collapse or in a steady state with fluctuations around a mean stress that remains constant with increasing strain. It is therefore very tempting to fit a nonlinear expansion of the stress in powers of the strain. We argue here that at low temperatures the meaning of such an expansion needs to be reconsidered. We point out the enormous difference between quenched and annealed averages of the stress versus strain curves and propose that a useful description of the mechanical response is given by a stress (or strain) -dependent shear modulus for which a theoretical evaluation exists. The elastic response is piecewise linear rather than nonlinear.

  16. Microstructural analysis of the radial distribution function for liquid and amorphous Al

    CERN Document Server

    Li, G X; Zhu, Z G; Liu, C S

    2003-01-01

    Constant-pressure molecular dynamics simulations and analysis of the local atomic structures have been performed to study the conventional and 'inherent' structural evolution of liquid Al during rapid solidification. The results show that the radial distribution functions g(r) exhibit a second-peak splitting feature not only for the general structures of the amorphous states but also for the inherent structure of liquid states. The second peak of g(r) decomposes into three main components, each corresponding to different pairs. The first subpeak in the inherent structure of the liquid arises from 2211 and 2331 pairs (which correspond to triangles with a common side and the tetrahedra sharing a face respectively), while the first subpeak in the amorphous state arises from 2331 pairs; in both cases the second subpeak is due to the 2101 pairs (linear trimers). The existence of a shoulder or the splitting in the second peak of g(r) in the amorphous state, and even in the undercooled liquid state, results mainly f...

  17. Molecular dynamics simulation of amorphous indomethacin-poly(vinylpyrrolidone) glasses: solubility and hydrogen bonding interactions.

    Science.gov (United States)

    Xiang, Tian-Xiang; Anderson, Bradley D

    2013-03-01

    Amorphous drug dispersions are frequently employed to enhance solubility and dissolution of poorly water-soluble drugs and thereby increase their oral bioavailability. Because these systems are metastable, phase separation of the amorphous components and subsequent drug crystallization may occur during storage. Computational methods to determine the likelihood of these events would be very valuable, if their reliability could be validated. This study investigates amorphous systems of indomethacin (IMC) in poly(vinylpyrrolidone) (PVP) and their molecular interactions by means of molecular dynamics (MD) simulations. IMC and PVP molecules were constructed using X-ray diffraction data, and force-field parameters were assigned by analogy with similar groups in Amber-ff03. Five assemblies varying in PVP and IMC composition were equilibrated in their molten states then cooled at a rate of 0.03 K/ps to generate amorphous glasses. Prolonged aging dynamic runs (100 ns) at 298 K and 1 bar were then carried out, from which solubility parameters, the Flory-Huggins interaction parameter, and associated hydrogen bonding properties were obtained. Calculated glass transition temperature (T(g)) values were higher than experimental results because of the faster cooling rates in MD simulations. Molecular mobility as characterized by atomic fluctuations was substantially reduced below the T(g) with IMC-PVP systems exhibiting lower mobilities than that found in amorphous IMC, consistent with the antiplasticizing effect of PVP. The number of IMC-IMC hydrogen bonds (HBs) formed per IMC molecule was substantially lower in IMC-PVP mixtures, particularly the fractions of IMC molecules involved in two or three HBs with other IMC molecules that may be potential precursors for crystal growth. The loss of HBs between IMC molecules in the presence of PVP was largely compensated for by the formation of IMC-PVP HBs. The difference (6.5 MPa(1/2)) between the solubility parameters in amorphous IMC

  18. Development of empirical potentials for amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Carre, A.

    2007-09-15

    Amorphous silica (SiO{sub 2}) is of great importance in geoscience and mineralogy as well as a raw material in glass industry. Its structure is characterized as a disordered continuous network of SiO{sub 4} tetrahedra. Many efforts have been undertaken to understand the microscopic properties of silica by classical molecular dynamics (MD) simulations. In this method the interatomic interactions are modeled by an effective potential that does not take explicitely into account the electronic degrees of freedom. In this work, we propose a new methodology to parameterize such a potential for silica using ab initio simulations, namely Car-Parrinello (CP) method [Phys. Rev. Lett. 55, 2471 (1985)]. The new potential proposed is compared to the BKS potential [Phys. Rev. Lett. 64, 1955 (1990)] that is considered as the benchmark potential for silica. First, CP simulations have been performed on a liquid silica sample at 3600 K. The structural features so obtained have been compared to the ones predicted by the classical BKS potential. Regarding the bond lengths the BKS tends to underestimate the Si-O bond whereas the Si-Si bond is overestimated. The inter-tetrahedral angular distribution functions are also not well described by the BKS potential. The corresponding mean value of the SiOSi angle is found to be {approx_equal} 147 , while the CP yields to a SiOSi angle centered around 135 . Our aim is to fit a classical Born-Mayer/Coulomb pair potential using ab initio calculations. To this end, we use the force-matching method proposed by Ercolessi and Adams [Europhys. Lett. 26, 583 (1994)]. The CP configurations and their corresponding interatomic forces have been considered for a least square fitting procedure. The classical MD simulations with the resulting potential have lead to a structure that is very different from the CP one. Therefore, a different fitting criterion based on the CP partial pair correlation functions was applied. Using this approach the resulting

  19. Spatial confinement can lead to increased stability of amorphous indomethacin

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Keller, Stephan Sylvest; Gordon, Keith C.;

    2012-01-01

    The aim of this study was to investigate whether the physical stability of amorphous indomethacin can be improved by separating the drug material into small units by the use of microcontainers. Crystallisation from the spatially confined amorphous indomethacin in the microcontainers was determined...... and compared with the crystallisation kinetics of amorphous bulk indomethacin.Amorphous indomethacin in both a bulk form and contained within microcontainers was prepared by melting of bulk or container-incorporated γ-indomethacin, respectively, followed by quench-cooling. Microcontainers of three different...... microcontainers of each size was selected and measured on a Raman microscope over a period of 30days to ascertain whether the indomethacin in each container was amorphous or crystalline. Over time, a crystallisation number was obtained for the amorphous indomethacin in the microcontainers. The crystallisation...

  20. [The development of co-amorphous drug systems].

    Science.gov (United States)

    Yao, Jing; Shi, Nian-Qiu; Wang, Xing-Lin

    2013-05-01

    Converting two poorly water-soluble crystalline drugs to co-amorphous drug systems by ball milling, quench-cooling, or cryo-milling method can improve stability of the drug, enhance dissolution rates, and reduce adverse reactions of the single drug. Co-amorphous system has been used to solve problems of co-administration of medicines. Formation and intermolecular interactions of co-amorphous drug systems may be verified by differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Raman spectroscopy (RS) and Fourier transform infrared spectroscopy (FT-IR). Stability of co-amorphous drug systems is influenced by their glass transition temperature (Tg) and intermolecular interactions. The theoretical Tg values and the interaction parameter x are calculated by Gordon-Taylor equation and the Flory-Huggins equation, respectively. Thus, co-amorphous drug systems are analyzed theoretically at molecular level. Co-amorphous drug systems provide a new sight for the co-administration of medicines.

  1. The improvement of hole transport property and optical band gap for amorphous Cu{sub 2}O films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qin; Li, Jin; Bi, Xiaofang

    2015-10-25

    This work presents an interesting observation that the suppression of crystallization for p-type Cu{sub 2}O facilitates the transition of transport behaviors from variable-range-hopping (VRH) to Arrhenius-like mechanism and further lead to a great reduction of thermal activation energy. Raman spectroscopy analysis shows a distortion of symmetrical O–Cu–O crosslink structure in the amorphous Cu{sub 2}O. The disruption of symmetry is revealed to increase dispersion of upper valence band and reduce Fermi as well, which results in possible intrusion of the Fermi level into a band tail state adjacent to the upper valence band level. Meanwhile, the amorphous Cu{sub 2}O film shows an optical band gap of 2.7 eV, much larger than 2.0 eV for the crystalline counterparts. The blue shift is consistent with the variation of energy band structure with the film changing from crystalline to amorphous state, suggesting that the O-mediated d–d interaction can be weakened with the nonsymmetrical structure in amorphous phase. - Graphical abstract: Suppression of crystallization for p-type Cu{sub 2}O is observed to facilitate the transition of transport behaviors from variable-range-hopping to the Arrhenius-like behavior based on the band tail transport mode. The amorphous Cu{sub 2}O film also shows a blue shift as compared to its crystalline counterpart. The effect of amorphous structure on the performances is discussed in combination with Raman spectroscopy and band structure calculation. - Highlights: • Amorphous Cu{sub 2}O films show Arrhenius-like p-type conductivity. • Raman spectroscopy is analyzed on the change of crystallization. • Physical origin of the transport behavior is clarified with electronic structure. • Optical band gap can be widened by suppressing crystallization of Cu{sub 2}O.

  2. Low temperature amorphization and superconductivity in FeSe single crystals at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Stemshorn, Andrew K.; Tsoi, Georgiy; Vohra, Yogesh K.; Sinogeiken, Stanislav; Wu, Phillip M.; Huang, Yilin; Rao, Sistla M.; Wu, Maw-Kuen; Yeh, Kuo W.; Weir, Samuel T. (IP-Taiwan); (UAB); (Duke); (LLNL)

    2010-08-04

    In this study, we report low temperature x-ray diffraction studies combined with electrical resistance measurements on single crystals of iron-based layered superconductor FeSe to a temperature of 10 K and a pressure of 44 GPa. The low temperature high pressure x-ray diffraction studies were performed using a synchrotron source and superconductivity at high pressure was studied using designer diamond anvils. At ambient temperature, the FeSe sample shows a phase transformation from a PbO-type tetragonal phase to a NiAs-type hexagonal phase at 10 {+-} 2 GPa. On cooling, a structural distortion from a PbO-type tetragonal phase to an orthorhombic Cmma phase is observed below 100 K. At a low temperature of 10 K, compression of the orthorhombic Cmma phase results in a gradual transformation to an amorphous phase above 15 GPa. The transformation to the amorphous phase is completed by 40 GPa at 10 K. A loss of superconductivity is observed in the amorphous phase and a dramatic change in the temperature behavior of electrical resistance indicates formation of a semiconducting state at high pressures and low temperatures. The formation of the amorphous phase is attributed to a kinetic hindrance to the growth of a hexagonal NiAs phase under high pressures and low temperatures.

  3. Superconductivity in the amorphous phase of topological insulator Bi x Sb100-x alloys

    Science.gov (United States)

    Barzola-Quiquia, J.; Lauinger, C.; Zoraghi, M.; Stiller, M.; Sharma, S.; Häussler, P.

    2017-01-01

    In this work we investigated the electrical properties of rapidly quenched amorphous Bi x Sb{}100-x alloys in the temperature range of 1.2 K to 345 K. The resistance reveals that for a broad range of different compositions, including that for the topological insulator (TI), a superconducting state in the amorphous phase is present. After crystallization and annealing at an intermediate temperature, we found that in pure Bi and Bi x Sb{}100-x alloys with composition corresponding to the TI, the superconductivity persists, but the transition shifts to a lower temperature. The highest superconducting transition temperature {T}{{C}0} was found for pure Bi and those TI’s, with a shift to low temperatures when the Sb content is increased. After annealing at a maximum temperature of T = 345 K, the samples are non-superconducting within the experimental range and the behavior changes from semiconducting-like for pure Bi, to metallic-like for pure Sb. Transition temperature {T}{{C}0} of the amorphous Bi x Sb{}100-x alloys have been calculated in the BCS-Eliashberg-McMillan framework, modified for binary alloys. The results can explain the experimental results and show that amorphous Bi x Sb{}100-x exhibits a strong to intermediate electron-phonon coupling.

  4. Amorphous semiconductor solar cell having a grained transparent electrode

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y.; Iida, H.; Itou, A.; Karasawa, H.; Mishuku, T.; Shiba, N.; Yamanaka, M.

    1985-02-19

    An amorphous semiconductor solar cell is disclosed which comprises a glass substrate and a transparent electrode coated on the substrate. The device also comprises an amorphous semiconductor layer on the transparent electrode, and a rear electrode on the amorphous layer, wherein the average grain diameter of the surface of the transparent electrode ranges from 0.1 ..mu..m to 2.5 ..mu..m.

  5. Preparation and Cycling Performance of Iron or Iron Oxide Containing Amorphous Al-Li Alloys as Electrodes

    Directory of Open Access Journals (Sweden)

    Franziska Thoss

    2014-12-01

    Full Text Available Crystalline phase transitions cause volume changes, which entails a fast destroying of the electrode. Non-crystalline states may avoid this circumstance. Herein we present structural and electrochemical investigations of pre-lithiated, amorphous Al39Li43Fe13Si5-powders, to be used as electrode material for Li-ion batteries. Powders of master alloys with the compositions Al39Li43Fe13Si5 and Al39Li43Fe13Si5 + 5 mass-% FeO were prepared via ball milling and achieved amorphous/nanocrystalline states after 56 and 21.6 h, respectively. In contrast to their Li-free amorphous pendant Al78Fe13Si9, both powders showed specific capacities of about 400 and 700 Ah/kgAl, respectively, after the third cycle.

  6. Bipolar resistive switching behavior of an amorphous Ge₂Sb₂Te₅ thin films with a Te layer.

    Science.gov (United States)

    Yoo, Sijung; Eom, Taeyong; Gwon, Taehong; Hwang, Cheol Seong

    2015-04-14

    The mechanism of bipolar resistive switching (BRS) of amorphous Ge2Sb2Te5 (GST) thin films sandwiched between inert electrodes (Ti and Pt) was examined. Typical bipolar resistive switching behavior with a high resistance ratio (∼10(3)) and reliable switching characteristics was achieved. High-resolution transmission electron microscopy revealed the presence of a conductive Te-filament bridging between the top and bottom electrodes through an amorphous GST matrix. The conduction mechanism analysis showed that the low-resistance state was semiconducting and dominated by band transport, whereas Poole-Frenkel conduction governed the carrier transport in the high-resistance state. Thus, the BRS behavior can be attributed to the formation and rupture of the semiconducting conductive Te bridge through the migration of the Te ions in the amorphous GST matrix under a high electric field. The Te ions are provided by the thin (∼5 nm) Te-rich layer formed at the bottom electrode interface.

  7. Bipolar resistive switching behavior of an amorphous Ge2Sb2Te5 thin films with a Te layer

    Science.gov (United States)

    Yoo, Sijung; Eom, Taeyong; Gwon, Taehong; Hwang, Cheol Seong

    2015-03-01

    The mechanism of bipolar resistive switching (BRS) of amorphous Ge2Sb2Te5 (GST) thin films sandwiched between inert electrodes (Ti and Pt) was examined. Typical bipolar resistive switching behavior with a high resistance ratio (~103) and reliable switching characteristics was achieved. High-resolution transmission electron microscopy revealed the presence of a conductive Te-filament bridging between the top and bottom electrodes through an amorphous GST matrix. The conduction mechanism analysis showed that the low-resistance state was semiconducting and dominated by band transport, whereas Poole-Frenkel conduction governed the carrier transport in the high-resistance state. Thus, the BRS behavior can be attributed to the formation and rupture of the semiconducting conductive Te bridge through the migration of the Te ions in the amorphous GST matrix under a high electric field. The Te ions are provided by the thin (~5 nm) Te-rich layer formed at the bottom electrode interface.

  8. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  9. On the crystallization of amorphous germanium films

    Science.gov (United States)

    Edelman, F.; Komem, Y.; Bendayan, M.; Beserman, R.

    1993-06-01

    The incubation time for crystallization of amorphous Ge (a-Ge) films, deposited by e-gun, was studied as a function of temperature between 150 and 500°C by means of both in situ transmission electron microscopy and Raman scattering spectroscopy. The temperature dependence of t0 follows an Arrhenius curve with an activation energy of 2.0 eV for free-sustained a-Ge films. In the case where the a-Ge films were on Si 3N 4 substrate, the activation energy of the incubation process was 1.3 eV.

  10. Three-Terminal Amorphous Silicon Solar Cells

    OpenAIRE

    Cheng-Hung Tai; Chu-Hsuan Lin; Chih-Ming Wang; Chun-Chieh Lin

    2011-01-01

    Many defects exist within amorphous silicon since it is not crystalline. This provides recombination centers, thus reducing the efficiency of a typical a-Si solar cell. A new structure is presented in this paper: a three-terminal a-Si solar cell. The new back-to-back p-i-n/n-i-p structure increased the average electric field in a solar cell. A typical a-Si p-i-n solar cell was also simulated for comparison using the same thickness and material parameters. The 0.28 μm-thick three-terminal a-Si...

  11. Encoding of Memory in Sheared Amorphous Solids

    Science.gov (United States)

    Fiocco, Davide; Foffi, Giuseppe; Sastry, Srikanth

    2014-01-01

    We show that memory can be encoded in a model amorphous solid subjected to athermal oscillatory shear deformations, and in an analogous spin model with disordered interactions, sharing the feature of a deformable energy landscape. When these systems are subjected to oscillatory shear deformation, they retain memory of the deformation amplitude imposed in the training phase, when the amplitude is below a "localization" threshold. Remarkably, multiple persistent memories can be stored using such an athermal, noise-free, protocol. The possibility of such memory is shown to be linked to the presence of plastic deformations and associated limit cycles traversed by the system, which exhibit avalanche statistics also seen in related contexts.

  12. Femtosecond laser crystallization of amorphous Ge

    Science.gov (United States)

    Salihoglu, Omer; Kürüm, Ulaş; Yaglioglu, H. Gul; Elmali, Ayhan; Aydinli, Atilla

    2011-06-01

    Ultrafast crystallization of amorphous germanium (a-Ge) in ambient has been studied. Plasma enhanced chemical vapor deposition grown a-Ge was irradiated with single femtosecond laser pulses of various durations with a range of fluences from below melting to above ablation threshold. Extensive use of Raman scattering has been employed to determine post solidification features aided by scanning electron microscopy and atomic force microscopy measurements. Linewidth of the Ge optic phonon at 300 cm-1 as a function of laser fluence provides a signature for the crystallization of a-Ge. Various crystallization regimes including nanostructures in the form of nanospheres have been identified.

  13. Thermodynamical modeling of nuclear glasses: coexistence of amorphous phases; Modelisation thermodynamique des verres nucleaires: coexistence entre phases amorphes

    Energy Technology Data Exchange (ETDEWEB)

    Adjanor, G

    2007-11-15

    Investigating the stability of borosilicate glasses used in the nuclear industry with respect to phase separation requires to estimate the Gibbs free energies of the various phases appearing in the material. In simulation, using current computational resources, a direct state-sampling of a glassy system with respect to its ensemble statistics is not ergodic and the estimated ensemble averages are not reliable. Our approach consists in generating, at a given cooling rate, a series of quenches, or paths connecting states of the liquid to states of the glass, and then in taking into account the probability to generate the paths leading to the different glassy states in ensembles averages. In this way, we introduce a path ensemble formalism and calculate a Landau free energy associated to a glassy meta-basin. This method was validated by accurately mapping the free energy landscape of a 38-atom glassy cluster. We then applied this approach to the calculation of the Gibbs free energies of binary amorphous Lennard-Jones alloys, and checked the correlation between the observed tendencies to order or to phase separate and the computed Gibbs free energies. We finally computed the driving force to phase separation in a simplified three-oxide nuclear glass modeled by a Born-Mayer-Huggins potential that includes a three-body term, and we compared the estimated quantities to the available experimental data. (author)

  14. Hydrogen diffusion in Zr35Ni55V10 amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiao-ying; WAHG Fang

    2007-01-01

    Hydrogen diffusion in Zr35Ni55V10 amorphous alloy was measured by chronopotentiometry. The results show that at lower molar ratio of hydrogen (x<0.06, x=n(H)/n(M)), the diffusivity of hydrogen increases rapidly with increasing the molar ratio of hydrogen. However, when x(H)>0.1, the diffusivity of hydrogen decreases slightly with increasing the molar ratio of hydrogen, which is similar to the change in crystalline alloy. It is proposed that hydrogen atoms mainly occupy the sites corresponding to tetrahedra with 4 Zr atoms at lower molar ratio of hydrogen. When the molar ratio of hydrogen is higher, the additional hydrogen atoms are in sites with higher energy and these sites in amorphous state are similar to these in crystalline states.

  15. Molecular dynamics simulation of calcium fluoride——Crystalline, superionic, molten and quenched-amorphous phases

    Institute of Scientific and Technical Information of China (English)

    程兆年; 郏正明; 张静; 陈念贻

    1995-01-01

    The results from the molecular dynamics simulations on crystalline, superionic, molten and quenched-amorphous states of calcium fluoride system are reported. The Ca++ and F- sublattices are studied by using the method of bond order parameters. The result shows that both Ca++ and F- sublattices can be described with the bond-orientation normal distribution model. In the superionic phase the Ca++ cations keep their original stable fcc frame, but in the F- case random distortion generates from their original simple cubic (sc) structure. The simulation on the molten phase gives three radial distribution functions that are difficult to separate from the experimental X-ray diffraction data. The simulation of quenched-amorphous state shows that a dense random packing of equivalent spheres centered by Ca++ cations occurs in the system simulated. However, the system quenched is not stable enough because the Ca++ cation and F- anions around it do not form themselves into a certain configuration.

  16. Amorphous Li-Al-Based Compounds: A Novel Approach for Designing High Performance Electrode Materials for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Franziska Thoss

    2013-11-01

    Full Text Available A new amorphous compound with the initial atomic composition Al43Li43Y6Ni8 applied as electrode material for Li-ion batteries is investigated. Unlike other amorphous compounds so-far investigated as anode materials, it already contains Li as a base element in the uncycled state. The amorphous compound powder is prepared by high energy ball milling of a master alloy. It shows a strongly enhanced specific capacity in contrast to amorphous alloys without Li in the initial state. Therewith, by enabling a reversible (delithiation of metallic electrodes without the phase transition caused volume changes it offers the possibility of much increased specific capacities than conventional graphite anodes. According to the charge rate (C-rate, the specific capacity is reversible over 20 cycles at minimum in contrast to conventional crystalline intermetallic phases failing by volume changes. The delithiation process occurs quasi-continuously over a voltage range of nearly 4 V, while the lithiation is mainly observed between 0.1 V and 1.5 V. That way, the electrode is applicable for different potential needs. The electrode stays amorphous during cycling, thus avoiding volume changes. The cycling performance is further enhanced by a significant amount of Fe introduced as wear debris from the milling tools, which acts as a promoting element.

  17. Amorphous track predictions in ‘libamtrack’ for alanine relative effectiveness in ion beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Greilich, Steffen; Grzanka, Leszek;

    2011-01-01

    Solid state dosimetery in therapeutic ion beams is seriously hampered by ionisation density effects. In most cases the use of empirical corrections is limited and therefore model predictions, especially from amorphous track models (ATMs), play a major role. Due to its high saturation dose and sim...... transport and stopping powers hinders a thorough interpretation of the deviation found and stress the necessity for a broader data base at lower particle energies....

  18. Magnetostriction Dependence of the Relaxation Frequency in the Magnetoimpedance Effect for Amorphous and Nanocrystalline Ribbons

    Institute of Scientific and Technical Information of China (English)

    M.L.Sánchez; V.M.Prida; B.Hernando; G.V.Kurlyandskaya; J.D.Santos; M.Tejedor; M.Vázquez

    2002-01-01

    The magnetoimpedance effect and changes of the relaxation frequency fx are studied in CoFeSiB and CoFeMoSiB amorphous and FeCuNbSiB nanocrystalline ribbons. The evolution of the magnetostriction constant λs and relaxation frequency is analysed for the states with different magnetic anisotropies induced in the same ribbons.A monotonic decrease of the relaxation frequency is observed for shifting of λs towards positive values.

  19. Magneto-optical switch with amorphous silicon waveguides on magneto-optical garnet

    Science.gov (United States)

    Ishida, Eiichi; Miura, Kengo; Shoji, Yuya; Mizumoto, Tetsuya; Nishiyama, Nobuhiko; Arai, Shigehisa

    2016-08-01

    We fabricated a magneto-optical (MO) switch with a hydrogenated amorphous silicon waveguide on an MO garnet. The switch is composed of a 2 × 2 Mach-Zehnder interferometer (MZI). The switch state is controlled by an MO phase shift through a magnetic field generated by a current flowing in an electrode located on the MZI. The switching operation was successfully demonstrated with an extinction ratio of 11.7 dB at a wavelength of 1550 nm.

  20. Structural morphology of amorphous conducting carbon film

    Indian Academy of Sciences (India)

    P N Vishwakarma; V Prasad; S V Subramanyam; V Ganesan

    2005-10-01

    Amorphous conducting carbon films deposited over quartz substrates were analysed using X-ray diffraction and AFM technique. X-ray diffraction data reveal disorder and roughness in the plane of graphene sheet as compared to that of graphite. This roughness increases with decrease in preparation temperature. The AFM data shows surface roughness of carbon films depending on preparation temperatures. The surface roughness increases with decrease in preparation temperature. Also some nucleating islands were seen on the samples prepared at 900°C, which are not present on the films prepared at 700°C. Detailed analysis of these islands reveals distorted graphitic lattice arrangement. So we believe these islands to be nucleating graphitic. Power spectrum density (PSD) analysis of the carbon surface indicates a transition from the nonlinear growth mode to linear surface-diffusion dominated growth mode resulting in a relatively smoother surface as one moves from low preparation temperature to high preparation temperature. The amorphous carbon films deposited over a rough quartz substrate reveal nucleating diamond like structures. The density of these nucleating diamond like structures was found to be independent of substrate temperature (700–900°C).

  1. Cyclic behaviors of amorphous shape memory polymers.

    Science.gov (United States)

    Yu, Kai; Li, Hao; McClung, Amber J W; Tandon, Gyaneshwar P; Baur, Jeffery W; Qi, H Jerry

    2016-04-01

    Cyclic loading conditions are commonly encountered in the applications of shape memory polymers (SMPs), where the cyclic characteristics of the materials determine their performance during the service life, such as deformation resistance, shape recovery speed and shape recovery ratio. Recent studies indicate that in addition to the physical damage or some other irreversible softening effects, the viscoelastic nature could also be another possible reason for the degraded cyclic behavior of SMPs. In this paper, we explore in detail the influence of the viscoelastic properties on the cyclic tension and shape memory (SM) behavior of an epoxy based amorphous thermosetting polymer. Cyclic experiments were conducted first, which show that although the epoxy material does not have any visible damage or irreversible softening effect during deformation, it still exhibits obvious degradation in the cyclic tension and SM behaviors. A linear multi-branched model is utilized to assist in the prediction and understanding of the mechanical responses of amorphous SMPs. Parametric studies based on the applied model suggest that the shape memory performance can be improved by adjusting programming and recovery conditions, such as lowering the loading rate, increasing the programming temperature, and reducing the holding time.

  2. Anisotropic mechanical amorphization drives wear in diamond.

    Science.gov (United States)

    Pastewka, Lars; Moser, Stefan; Gumbsch, Peter; Moseler, Michael

    2011-01-01

    Diamond is the hardest material on Earth. Nevertheless, polishing diamond is possible with a process that has remained unaltered for centuries and is still used for jewellery and coatings: the diamond is pressed against a rotating disc with embedded diamond grit. When polishing polycrystalline diamond, surface topographies become non-uniform because wear rates depend on crystal orientations. This anisotropy is not fully understood and impedes diamond's widespread use in applications that require planar polycrystalline films, ranging from cutting tools to confinement fusion. Here, we use molecular dynamics to show that polished diamond undergoes an sp(3)-sp(2) order-disorder transition resulting in an amorphous adlayer with a growth rate that strongly depends on surface orientation and sliding direction, in excellent correlation with experimental wear rates. This anisotropy originates in mechanically steered dissociation of individual crystal bonds. Similarly to other planarization processes, the diamond surface is chemically activated by mechanical means. Final removal of the amorphous interlayer proceeds either mechanically or through etching by ambient oxygen.

  3. Deposition of amorphous carbon-silver composites

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Zarco, O. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, Ciudad Universitaria. 04510, Mexico D. F. Mexico (Mexico); Rodil, S.E., E-mail: ser42@iim.unam.m [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, Ciudad Universitaria. 04510, Mexico D. F. Mexico (Mexico); Camacho-Lopez, M.A. [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Tollocan s/n, esq. Paseo Colon, Toluca, Estado de Mexico, 50110 (Mexico)

    2009-12-31

    Composites of amorphous carbon films and silver were deposited by co-sputtering, where the target (10 cm diameter) was of pure graphite with small inclusion of pure silver (less than 1 cm{sup 2}). The films were deposited under different powers, from 40 to 250 W, and different target-substrate distances. The substrate was earthed and rotated in order to obtain a uniform distribution of the silver content. The addition of the Ag piece into the target increased the deposition rate of the carbon films, which could be related to the higher sputter yield of the silver, but there seems to be also a contribution from a larger emission of secondary electrons from the Ag that enhances the plasma and therefore the sputtering process becomes more efficient. Scanning electron micrographs acquired using backscattered electrons showed that the silver was segregated from the carbon matrix, forming nanoparticles or larger clusters as the power was increased. The X-ray diffraction pattern showed that the silver was crystalline and the carbon matrix remained amorphous, although for certain conditions a peak attributed to fullerene-like structures was obtained. Finally, we used Raman spectroscopy to understand the bonding characteristics of the carbon-silver composites, finding that there are variations in the D/G ratio, which can be correlated to the observed structure and X-ray diffraction results.

  4. Reducing the magnetic losses of amorphous ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Raybould, D.; Das, S.K. [AlliedSignal Inc., Morristown, NJ (United States). Aerospace Technol. Team; Meola, M.; Bye, R. [AlliedSignal Inc., Amorphous Metals, Morristown, NJ 07962-1021 (United States)

    1998-01-30

    Amorphous alloys have lower magnetization losses than silicon steel and are therefore used as the cores of high-efficiency electrical transformers. Laser scribing the amorphous alloys using a very low power, so as not to melt the surface, results in an appreciable decrease in core loss with no decrease in measurable induction. A 2-5 mm line spacing appears optimum. Scribing prior to or after magnetic annealing results in similar properties, although the former requires a slightly higher laser power. Excimer and YAG lasers using optimized parameters both result in identical magnetic properties, but the optimum morphology of the scribed line is different for the two types of laser. For 25 {mu}m thick ribbon, a 29% decrease in core loss is obtained with no increase in exciting power. For thick, 50 {mu}m ribbon, properties superior to those of conventional 25 {mu}m ribbon are achievable, the core loss being decreased nearly 50% with no increase in exciting power. Thick ribbon with these properties could decrease the fabrication cost, while increasing the efficiency of power transformers. (orig.) 15 refs.

  5. Amino acids as co-amorphous stabilizers for poorly water soluble drugs--Part 1: preparation, stability and dissolution enhancement.

    Science.gov (United States)

    Löbmann, Korbinian; Grohganz, Holger; Laitinen, Riikka; Strachan, Clare; Rades, Thomas

    2013-11-01

    Poor aqueous solubility of an active pharmaceutical ingredient (API) is one of the most pressing problems in pharmaceutical research and development because up to 90% of new API candidates under development are poorly water soluble. These drugs usually have a low and variable oral bioavailability, and therefore an unsatisfactory therapeutic effect. One of the most promising approaches to increase dissolution rate and solubility of these drugs is the conversion of a crystalline form of the drug into its respective amorphous form, usually by incorporation into hydrophilic polymers, forming glass solutions. However, this strategy only led to a small number of marketed products usually because of inadequate physical stability of the drug (crystallization). In this study, we investigated a fundamentally different approach to stabilize the amorphous form of drugs, namely the use of amino acids as small molecular weight excipients that form specific molecular interactions with the drug resulting in co-amorphous forms. The two poorly water soluble drugs carbamazepine and indomethacin were combined with amino acids from the binding sites of the biological receptors of these drugs. Mixtures of drug and the amino acids arginine, phenylalanine, tryptophan and tyrosine were prepared by vibrational ball milling. Solid-state characterization with X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) revealed that the various blends could be prepared as homogeneous, single phase co-amorphous formulations indicated by the appearance of an amorphous halo in the XRPD diffractograms and a single glass transition temperature (Tg) in the DSC measurements. In addition, the Tgs of the co-amorphous mixtures were significantly increased over those of the individual drugs. The drugs remained chemically stable during the milling process and the co-amorphous formulations were generally physically stable over at least 6 months at 40 °C under dry conditions. The

  6. Structural transformations and tribological properties of amorphous alloys upon wear at room and cryogenic temperatures

    Science.gov (United States)

    Korshunov, L. G.; Chernenko, N. L.; Goikhenberg, Yu. N.

    2009-09-01

    The abrasive wear resistance of the Fe64Co30Si3B3, Co86.5Cr4Si7B2.5, Fe73.5Nb3Cu1Si13.5B9, and Fe82.6Nb5Cu3Si8B1.4 commercial amorphous alloys (ribbon 0.03 mm thick and 12 mm wide) has been investigated under the conditions of abrasive and adhesive wear upon sliding friction. The character of fracture of the surface and structural transformations that occur in these materials upon wear have been studied by the metallographic and electron-microscopic methods. It has been shown that at room and cryogenic (-196°C) temperatures of tests the abrasive wear resistance of the amorphous alloys is two-three times lower than that of tool steels Kh12M and U8. A comparatively small abrasive wear resistance of the amorphous alloys is explained by local softening of these materials in the process of wear. Under the conditions of adhesive wear of like friction pairs at room temperature in air and argon, the amorphous alloys are characterized by the rate of wear that is smaller approximately by an order of magnitude than in steels 12Kh13 and 12Kh18N9. It has been established that upon wear the deformed surface layer of the alloys under study retains a predominantly amorphous state but in local sections of this layer nanocrystalline structures that consist of crystals of bcc and fcc phases and borides are formed. The possible effects of this partial crystallization on the microhardness, friction coefficient, and wear resistance of these alloys have been considered.

  7. Swift heavy ion-beam induced amorphization and recrystallization of yttrium iron garnet.

    Science.gov (United States)

    Costantini, Jean-Marc; Miro, Sandrine; Beuneu, François; Toulemonde, Marcel

    2015-12-16

    Pure and (Ca and Si)-substituted yttrium iron garnet (Y3Fe5O12 or YIG) epitaxial layers and amorphous films on gadolinium gallium garnet (Gd3Ga5O12, or GGG) single crystal substrates were irradiated by 50 MeV (32)Si and 50 MeV (or 60 MeV) (63)Cu ions for electronic stopping powers larger than the threshold value (~4 MeV μm(-1)) for amorphous track formation in YIG crystals. Conductivity data of crystalline samples in a broad ion fluence range (10(11)-10(16) cm(-2)) are modeled with a set of rate equations corresponding to the amorphization and recrystallization induced in ion tracks by electronic excitations. The data for amorphous layers confirm that a recrystallization process takes place above ~10(14) cm(-2). Cross sections for both processes deduced from this analysis are discussed in comparison to previous determinations with reference to the inelastic thermal-spike model of track formation. Micro-Raman spectroscopy was also used to follow the related structural modifications. Raman spectra show the progressive vanishing and randomization of crystal phonon modes in relation to the ion-induced damage. For crystalline samples irradiated at high fluences (⩾10(14) cm(-2)), only two prominent broad bands remain like for amorphous films, thereby reflecting the phonon density of states of the disordered solid, regardless of samples and irradiation conditions. The main band peaked at ~660 cm(-1) is assigned to vibration modes of randomized bonds in tetrahedral (FeO4) units.

  8. Enhanced stability and local structure in biologically relevant amorphous materials containing pyrophosphate

    Energy Technology Data Exchange (ETDEWEB)

    Slater, Colin; Laurencin, Danielle; Burnell, Victoria; Smith, Mark E.; Grover, Liam M.; Hriljac, Joseph A.; Wright, Adrian J. (CNRS-UMR); (Birmingham UK)

    2012-10-25

    There is increasing evidence that amorphous inorganic materials play a key role in biomineralisation in many organisms, however the inherent instability of synthetic analogues in the absence of the complex in vivo matrix limits their study and clinical exploitation. To address this, we report here an approach that enhances long-term stability to >1 year of biologically relevant amorphous metal phosphates, in the absence of any complex stabilizers, by utilizing pyrophosphates (P{sub 2}O{sub 7}{sup 4-}); species themselves ubiquitous in vivo. Ambient temperature precipitation reactions were employed to synthesise amorphous Ca{sub 2}P{sub 2}O{sub 7}.nH{sub 2}O and Sr{sub 2}P{sub 2}O{sub 7}.nH{sub 2}O (3.8 < n < 4.2) and their stability and structure were investigated. Pair distribution functions (PDF) derived from synchrotron X-ray data indicated a lack of structural order beyond 8 {angstrom} in both phases, with this local order found to resemble crystalline analogues. Further studies, including {sup 1}H and {sup 31}P solid state NMR, suggest the unusually high stability of these purely inorganic amorphous phases is partly due to disorder in the P-O-P bond angles within the P{sub 2}O{sub 7} units, which impede crystallization, and to water molecules, which are involved in H-bonds of various strengths within the structures and hamper the formation of an ordered network. In situ high temperature powder X-ray diffraction data indicated that the amorphous nature of both phases surprisingly persisted to 450 C. Further NMR and TGA studies found that above ambient temperature some water molecules reacted with P{sub 2}O{sub 7} anions, leading to the hydrolysis of some P-O-P linkages and the formation of HPO{sub 4}{sup 2-} anions within the amorphous matrix. The latter anions then recombined into P{sub 2}O{sub 7} ions at higher temperatures prior to crystallization. Together, these findings provide important new materials with unexplored potential for enzyme

  9. Prenatal toxicity of synthetic amorphous silica nanomaterial in rats

    NARCIS (Netherlands)

    Hofmanna, T.; Schneider, S.; Wolterbeek, A.; Sandt, H. van de; Landsiedel, R.; Ravenzwaay, B. van

    2015-01-01

    Synthetic amorphous silica is a nanostructured material, which is produced and used in a wide variety of technological applications and consumer products. No regulatory prenatal toxicity studies with this substance were reported yet. Therefore, synthetic amorphous silica was tested for prenatal toxi

  10. Quantifying Nanoscale Order in Amorphous Materials via Fluctuation Electron Microscopy

    Science.gov (United States)

    Bogle, Stephanie Nicole

    2009-01-01

    Fluctuation electron microscopy (FEM) has been used to study the nanoscale order in various amorphous materials. The method is explicitly sensitive to 3- and 4-body atomic correlation functions in amorphous materials; this is sufficient to establish the existence of structural order on the nanoscale, even when the radial distribution function…

  11. Polarization effects in femtosecond laser induced amorphization of monocrystalline silicon

    Science.gov (United States)

    Bai, Feng; Li, Hong-Jin; Huang, Yuan-Yuan; Fan, Wen-Zhong; Pan, Huai-Hai; Wang, Zhuo; Wang, Cheng-Wei; Qian, Jing; Li, Yang-Bo; Zhao, Quan-Zhong

    2016-10-01

    We have used femtosecond laser pulses to ablate monocrystalline silicon wafer. Raman spectroscopy and X-ray diffraction analysis of ablation surface indicates horizontally polarized laser beam shows an enhancement in amorphization efficiency by a factor of 1.6-1.7 over the circularly polarized laser ablation. This demonstrates that one can tune the amorphization efficiency through the polarization of irradiation laser.

  12. Recent advances in co-amorphous drug formulations

    DEFF Research Database (Denmark)

    Dengale, Swapnil Jayant; Grohganz, Holger; Rades, Thomas;

    2016-01-01

    Co-amorphous drug delivery systems have recently gained considerable interest in the pharmaceutical field because of their potential to improve oral bioavailability of poorly water-soluble drugs through drug dissolution enhancement as a result of the amorphous nature of the material. A co-amorpho...... findings. In particular, we investigate co-amorphous formulations from the viewpoint of solid dispersions, describe their formation and mechanism of stabilization, study their impact on dissolution and in vivo performance and briefly outline the future potentials.......Co-amorphous drug delivery systems have recently gained considerable interest in the pharmaceutical field because of their potential to improve oral bioavailability of poorly water-soluble drugs through drug dissolution enhancement as a result of the amorphous nature of the material. A co-amorphous...... system is characterized by the use of only low molecular weight components that are mixed into a homogeneous single-phase co-amorphous blend. The use of only low molecular weight co-formers makes this approach very attractive, as the amount of amorphous stabilizer can be significantly reduced compared...

  13. Creep of FINEMET alloy at amorphous to nanocrystalline transition

    NARCIS (Netherlands)

    Csach, K.; Miškuf, J.; Juríková, A.; Ocelík, V.

    2009-01-01

    The application of FINEMET-type materials with specific magnetic properties prepared by the crystallization of amorphous alloys is often limited by their brittleness. The structure of these materials consists of nanosized Fe-based grains surrounded with amorphous phase. Then the final macroscopic me

  14. Rate equations for sodium catalyzed amorphous silica dissolution

    Science.gov (United States)

    Rimstidt, J. Donald; Zhang, Yilun; Zhu, Chen

    2016-12-01

    Newly measured amorphous silica dissolution rate data were combined with data from the literature to produce an equation that predicts the dissolution flux (J, mol/m2 s) of amorphous silica as a function of temperature (T, K), sodium concentration (mNa+, molal), and hydrogen ion activity (aH+).

  15. Magnetic flux distribution in the amorphous modular transformers

    Science.gov (United States)

    Tomczuk, B.; Koteras, D.

    2011-06-01

    3D magnetic fluxes in one-phase and three-phase transformers with amorphous modular cores have been studied. Scalar potentials were implemented for the 3D Finite Element field calculation. Due to the inability to simulate each thin amorphous layer, we introduced supplementary permeabilities along the main directions of magnetization. The calculated fluxes in the cores were tested on the prototypes.

  16. RAPID ASSOCIATION OF UNCONJUGATED BILIRUBIN WITH AMORPHOUS CALCIUM-PHOSPHATE

    NARCIS (Netherlands)

    VANDERVEERE, CN; SHOEMAKER, B; VANDERMEER, R; GROEN, AK; JANSEN, PLM; ELFERINK, RPJO

    1995-01-01

    The association of unconjugated bilirubin (UCB) with amorphous calcium phosphate was studied in vitro. To this end UCB, solubilized in different micellar bile salt solutions, was incubated with freshly prepared calcium phosphate precipitate. It was demonstrated that amorphous calcium phosphate (ACP)

  17. Strong Metal-Support Interaction: Growth of Individual Carbon Nanofibers from Amorphous Carbon Interacting with an Electron Beam

    DEFF Research Database (Denmark)

    Zhang, Wei; Kuhn, Luise Theil

    2013-01-01

    The article discusses the growth behavior of carbon nanofibers (CNFs). It mentions that CNFs can be synthesized using methods such as arc-discharge, laser ablation and chemical vapor deposition. It further states that CNFs can be grown from a physical mixing of amorphous carbon and CGO...

  18. Accelerated growth from amorphous clusters to metallic nanoparticles observed in electrochemical deposition of platinum within nanopores of porous silicon

    NARCIS (Netherlands)

    Munoz-Noval, Alvaro; Fukami, Kazuhiro; Koyama, Akira; Gallach, Dario; Hermida-Merino, Daniel; Portale, Giuseppe; Kitada, Atsushi; Murase, Kuniaki; Abe, Takeshi; Hayakawa, Shinjiro; Sakka, Tetsuo

    2016-01-01

    This study examined the formation of amorphous platinum (Pt) clusters in nanopores of porous silicon at an initial stage of pore filling. The time dependency of the chemical state and local structure of Pt in the nanoporous silicon were characterized by X-ray absorption fine structure spectroscopy (

  19. Charge transport in amorphous organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lukyanov, Alexander

    2011-03-15

    Organic semiconductors with the unique combination of electronic and mechanical properties may offer cost-effective ways of realizing many electronic applications, e. g. large-area flexible displays, printed integrated circuits and plastic solar cells. In order to facilitate the rational compound design of organic semiconductors, it is essential to understand relevant physical properties e. g. charge transport. This, however, is not straightforward, since physical models operating on different time and length scales need to be combined. First, the material morphology has to be known at an atomistic scale. For this atomistic molecular dynamics simulations can be employed, provided that an atomistic force field is available. Otherwise it has to be developed based on the existing force fields and first principle calculations. However, atomistic simulations are typically limited to the nanometer length- and nanosecond time-scales. To overcome these limitations, systematic coarse-graining techniques can be used. In the first part of this thesis, it is demonstrated how a force field can be parameterized for a typical organic molecule. Then different coarse-graining approaches are introduced together with the analysis of their advantages and problems. When atomistic morphology is available, charge transport can be studied by combining the high-temperature Marcus theory with kinetic Monte Carlo simulations. The approach is applied to the hole transport in amorphous films of tris(8- hydroxyquinoline)aluminium (Alq{sub 3}). First the influence of the force field parameters and the corresponding morphological changes on charge transport is studied. It is shown that the energetic disorder plays an important role for amorphous Alq{sub 3}, defining charge carrier dynamics. Its spatial correlations govern the Poole-Frenkel behavior of the charge carrier mobility. It is found that hole transport is dispersive for system sizes accessible to simulations, meaning that calculated

  20. Atomistic simulation of damage accumulation and amorphization in Ge

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Selles, Jose L., E-mail: joseluis.gomezselles@imdea.org; Martin-Bragado, Ignacio [IMDEA Materials Institute, Eric Kandel 2, 28906 Getafe, Madrid (Spain); Claverie, Alain [CEMES/CNRS, 29 rue J. Marvig, 31055 Toulouse Cedex (France); Sklenard, Benoit [CEA, LETI, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Benistant, Francis [GLOBALFOUNDRIES Singapore Pte Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore)

    2015-02-07

    Damage accumulation and amorphization mechanisms by means of ion implantation in Ge are studied using Kinetic Monte Carlo and Binary Collision Approximation techniques. Such mechanisms are investigated through different stages of damage accumulation taking place in the implantation process: from point defect generation and cluster formation up to full amorphization of Ge layers. We propose a damage concentration amorphization threshold for Ge of ∼1.3 × 10{sup 22} cm{sup −3} which is independent on the implantation conditions. Recombination energy barriers depending on amorphous pocket sizes are provided. This leads to an explanation of the reported distinct behavior of the damage generated by different ions. We have also observed that the dissolution of clusters plays an important role for relatively high temperatures and fluences. The model is able to explain and predict different damage generation regimes, amount of generated damage, and extension of amorphous layers in Ge for different ions and implantation conditions.

  1. Parametrized dielectric functions of amorphous GeSn alloys

    Science.gov (United States)

    D'Costa, Vijay Richard; Wang, Wei; Schmidt, Daniel; Yeo, Yee-Chia

    2015-09-01

    We obtained the complex dielectric function of amorphous Ge1-xSnx (0 ≤ x ≤ 0.07) alloys using spectroscopic ellipsometry from 0.4 to 4.5 eV. Amorphous GeSn films were formed by room-temperature implantation of phosphorus into crystalline GeSn alloys grown by molecular beam epitaxy. The optical response of amorphous GeSn alloys is similar to amorphous Ge and can be parametrized using a Kramers-Kronig consistent Cody-Lorentz dispersion model. The parametric model was extended to account for the dielectric functions of amorphous Ge0.75Sn0.25 and Ge0.50Sn0.50 alloys from literature. The compositional dependence of band gap energy Eg and parameters associated with the Lorentzian oscillator have been determined. The behavior of these parameters with varying x can be understood in terms of the alloying effect of Sn on Ge.

  2. Carrier transport in amorphous silicon utilizing picosecond photoconductivity

    Science.gov (United States)

    Johnson, A. M.

    1981-08-01

    The development of a high-speed electronic measurement capability permitted the direct observation of the transient photoresponse of amorphous silicon (a-Si) with a time resolution of approximately 10ps. This technique was used to measure the initial mobility of photogenerated (2.1eV) free carriers in three types of a-Si having widely different densities of structural defects (i.e., as prepared by: (1) RF glow discharge (a-Si:H); (2) chemical vapor deposition; and (3) evaporation in ultra-high vacuum). In all three types of a-Si, the same initial mobility of approximately 1 cu cm/Vs at room temperature was found. This result tends to confirm the often-made suggestion that the free carrier mobility is determined by the influence of shallow states associated with the disorder in the random atomic network, and is an intrinsic property of a-Si which is unaffected by the method of preparation. The rate of decay of the photocurrent correlates with the density of structural defects and varies from 4ps to 200ps for the three types of a-Si investigated. The initial mobility of a-Si:H was found to be thermally activated. The possible application of extended state transport controlled by multiple trapping and small polaron formation is discussed.

  3. Buckling instability in amorphous carbon films

    Science.gov (United States)

    Zhu, X. D.; Narumi, K.; Naramoto, H.

    2007-06-01

    In this paper, we report the buckling instability in amorphous carbon films on mirror-polished sapphire (0001) wafers deposited by ion beam assisted deposition at various growth temperatures. For the films deposited at 150 °C, many interesting stress relief patterns are found, which include networks, blisters, sinusoidal patterns with π-shape, and highly ordered sinusoidal waves on a large scale. Starting at irregular buckling in the centre, the latter propagate towards the outer buckling region. The maximum length of these ordered patterns reaches 396 µm with a height of ~500 nm and a wavelength of ~8.2 µm. However, the length decreases dramatically to 70 µm as the deposition temperature is increased to 550 °C. The delamination of the film appears instead of sinusoidal waves with a further increase of the deposition temperature. This experimental observation is correlated with the theoretic work of Crosby (1999 Phys. Rev. E 59 R2542).

  4. Energy landscape of relaxed amorphous silicon

    Science.gov (United States)

    Valiquette, Francis; Mousseau, Normand

    2003-09-01

    We analyze the structure of the energy landscape of a well-relaxed 1000-atom model of amorphous silicon using the activation-relaxation technique (ART nouveau). Generating more than 40 000 events starting from a single minimum, we find that activated mechanisms are local in nature, that they are distributed uniformly throughout the model, and that the activation energy is limited by the cost of breaking one bond, independently of the complexity of the mechanism. The overall shape of the activation-energy-barrier distribution is also insensitive to the exact details of the configuration, indicating that well-relaxed configurations see essentially the same environment. These results underscore the localized nature of relaxation in this material.

  5. Nickel-induced crystallization of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J A; Arce, R D; Buitrago, R H [INTEC (CONICET-UNL), Gueemes 3450, S3000GLN Santa Fe (Argentina); Budini, N; Rinaldi, P, E-mail: jschmidt@intec.unl.edu.a [FIQ - UNL, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2009-05-01

    The nickel-induced crystallization of hydrogenated amorphous silicon (a-Si:H) is used to obtain large grained polycrystalline silicon thin films on glass substrates. a-Si:H is deposited by plasma enhanced chemical vapour deposition at 200 deg. C, preparing intrinsic and slightly p-doped samples. Each sample was divided in several pieces, over which increasing Ni concentrations were sputtered. Two crystallization methods are compared, conventional furnace annealing (CFA) and rapid thermal annealing (RTA). The crystallization was followed by optical microscopy and scanning electron microscopy observations, X-ray diffraction, and reflectance measurements in the UV region. The large grain sizes obtained - larger than 100{mu}m for the samples crystallized by CFA - are very encouraging for the preparation of low-cost thin film polycrystalline silicon solar cells.

  6. ENHANCING ADHESION OF TETRAHEDRAL AMORPHOUS CARBON FILMS

    Institute of Scientific and Technical Information of China (English)

    Zhao Yuqing; Lin Yi; Wang Xiaoyan; Wang Yanwu; Wei Xinyu

    2005-01-01

    Objective The high energy ion bombardment technique is applied to enhancing the adhesion of the tetrahedral amorphous carbon (TAC) films deposited by the filtered cathode vacuum arc (FCVA). Methods The abrasion method, scratch method, heating and shaking method as well as boiling salt solution method is used to test the adhesion of the TAC films on various material substrates. Results The test results show that the adhesion is increased as the ion bombardment energy increases. However, if the bombardment energy were over the corresponding optimum value, the adhesion would be enhanced very slowly for the harder material substrates and drops quickly, for the softer ones. Conclusion The optimum values of the ion bombardment energy are larger for the harder materials than that for the softer ones.

  7. A tissue-inspired amorphous photonic metamaterial

    CERN Document Server

    Bi, Dapeng

    2016-01-01

    Inspired by how cells pack in dense biological tissues, we design an amorphous material which possesses a complete photonic band gap. A physical parameter inspired by how cells adhere with one another and regulate their shapes can continuously tune the photonic band gap size as well as the bulk mechanical property of the material. The material can be further tuned to undergo a solid-fluid phase transition during which the shear modulus vanishes yet the photonic band gap persists, hence giving rise to a photonic fluid that is robust to flow and rearrangements. Experimentally this design should lead to the engineering of self-assembled non-rigid photonic structures with photonic band gaps that can be controlled in real time.

  8. Negative Magnetoresistance in Amorphous Indium Oxide Wires

    Science.gov (United States)

    Mitra, Sreemanta; Tewari, Girish C.; Mahalu, Diana; Shahar, Dan

    2016-11-01

    We study magneto-transport properties of several amorphous Indium oxide nanowires of different widths. The wires show superconducting transition at zero magnetic field, but, there exist a finite resistance at the lowest temperature. The R(T) broadening was explained by available phase slip models. At low field, and far below the superconducting critical temperature, the wires with diameter equal to or less than 100 nm, show negative magnetoresistance (nMR). The magnitude of nMR and the crossover field are found to be dependent on both temperature and the cross-sectional area. We find that this intriguing behavior originates from the interplay between two field dependent contributions.

  9. Spray drying formulation of amorphous solid dispersions.

    Science.gov (United States)

    Singh, Abhishek; Van den Mooter, Guy

    2016-05-01

    Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed.

  10. Nanostructural characterization of amorphous diamondlike carbon films

    Energy Technology Data Exchange (ETDEWEB)

    SIEGAL,MICHAEL P.; TALLANT,DAVID R.; MARTINEZ-MIRANDA,L.J.; BARBOUR,J. CHARLES; SIMPSON,REGINA L.; OVERMYER,DONALD L.

    2000-01-27

    Nanostructural characterization of amorphous diamondlike carbon (a-C) films grown on silicon using pulsed-laser deposition (PLD) is correlated to both growth energetic and film thickness. Raman spectroscopy and x-ray reflectivity probe both the topological nature of 3- and 4-fold coordinated carbon atom bonding and the topographical clustering of their distributions within a given film. In general, increasing the energetic of PLD growth results in films becoming more ``diamondlike'', i.e. increasing mass density and decreasing optical absorbance. However, these same properties decrease appreciably with thickness. The topology of carbon atom bonding is different for material near the substrate interface compared to material within the bulk portion of an a-C film. A simple model balancing the energy of residual stress and the free energies of resulting carbon topologies is proposed to provide an explanation of the evolution of topographical bonding clusters in a growing a-C film.

  11. Three-Terminal Amorphous Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Hung Tai

    2011-01-01

    Full Text Available Many defects exist within amorphous silicon since it is not crystalline. This provides recombination centers, thus reducing the efficiency of a typical a-Si solar cell. A new structure is presented in this paper: a three-terminal a-Si solar cell. The new back-to-back p-i-n/n-i-p structure increased the average electric field in a solar cell. A typical a-Si p-i-n solar cell was also simulated for comparison using the same thickness and material parameters. The 0.28 μm-thick three-terminal a-Si solar cell achieved an efficiency of 11.4%, while the efficiency of a typical a-Si p-i-n solar cell was 9.0%. Furthermore, an efficiency of 11.7% was achieved by thickness optimization of the three-terminal solar cell.

  12. Preparation of High Purity Amorphous Boron Powder

    Directory of Open Access Journals (Sweden)

    K.V. Tilekar

    2005-10-01

    Full Text Available Amorphous boron powder of high purity (92-94 % with a particle size of l-2 mm is preferred as a fuel for fuel-rich propellants for integrated rocket ramjets and for igniter formulations. Thispaper describes the studies on process optimisation of two processes, ie, oxidative roasting of boron (roasting boron in air and roasting boron with zinc in an inert medium for preparing high purity boron. Experimental studies reveal that roasting boron with zinc at optimised process conditions yields boron of purity more than 93 per cent, whereas oxidative roasting method yields boron of purity - 92 per cent. Oxidative roasting has comparative edge over the other processes owing to its ease of scale-up and simplicity

  13. Tunable plasticity in amorphous silicon carbide films.

    Science.gov (United States)

    Matsuda, Yusuke; Kim, Namjun; King, Sean W; Bielefeld, Jeff; Stebbins, Jonathan F; Dauskardt, Reinhold H

    2013-08-28

    Plasticity plays a crucial role in the mechanical behavior of engineering materials. For instance, energy dissipation during plastic deformation is vital to the sufficient fracture resistance of engineering materials. Thus, the lack of plasticity in brittle hybrid organic-inorganic glasses (hybrid glasses) often results in a low fracture resistance and has been a significant challenge for their integration and applications. Here, we demonstrate that hydrogenated amorphous silicon carbide films, a class of hybrid glasses, can exhibit a plasticity that is even tunable by controlling their molecular structure and thereby leads to an increased and adjustable fracture resistance in the films. We decouple the plasticity contribution from the fracture resistance of the films by estimating the "work-of-fracture" using a mean-field approach, which provides some insight into a potential connection between the onset of plasticity in the films and the well-known rigidity percolation threshold.

  14. Amorphous silica scale in cooling waters

    Energy Technology Data Exchange (ETDEWEB)

    Midkiff, W.S.; Foyt, H.P.

    1976-01-01

    In 1968, most of the evaporation cooled recirculating water systems at Los Alamos Scientific Laboratory were nearly inoperable due to scale. These systems, consisting of cooling towers, evaporative water coolers, evaporative condensers, and air washers had been operated on continuous blowdown without chemical treatment. The feedwater contained 80 mg/l silica. A successful program of routine chemical addition in the make-up water was begun. Blends of chelants, dispersants and corrosion inhibitors were found to gradually remove old scale, prevent new scale, and keep corrosion to less than an indicated rate of one mil per year. An explanation has been proposed that amorphous silica by itself does not form a troublesome scale. When combined with a crystal matrix such as calcite, the resultant silica containing scale can be quite troublesome. Rapid buildup of silica containing scale can be controlled and prevented by preventing formation of crystals from other constituents in the water such as hardness or iron. (auth)

  15. Influence of microenvironment pH, humidity, and temperature on the stability of polymorphic and amorphous forms of clopidogrel bisulfate

    DEFF Research Database (Denmark)

    Raijada, Dhara K; Singh, Saranjit; Bansal, Arvind K

    2010-01-01

    The effect of microenvironment pH, humidity, and temperature was evaluated on the stability of polymorphic and amorphous forms of clopidogrel bisulfate, when present alone or in combinations. Oxalic acid and sodium carbonate were used as solid stressors to create acidic and alkaline pH, respectiv......The effect of microenvironment pH, humidity, and temperature was evaluated on the stability of polymorphic and amorphous forms of clopidogrel bisulfate, when present alone or in combinations. Oxalic acid and sodium carbonate were used as solid stressors to create acidic and alkaline p...... salt to free base. Thermal studies indicated that polymorphic forms of clopidogrel bisulfate and also its glassy amorphous form were highly resistant to temperature, whereas the rubbery state of the drug degraded significantly at temperatures of > or =80 degrees C....

  16. Influence of the Quenching Rate on the Structure and Magnetic Properties of the Fe-Based Amorphous Alloy

    Directory of Open Access Journals (Sweden)

    Nabiałek M.

    2016-03-01

    Full Text Available This paper presents the results of investigations into the structure, microstructure and magnetic properties of Fe61Co10Y8W1B20 amorphous alloy. The alloy samples were in two physical forms: (1 plates of approximate thickness 0.5 mm (so-called bulk amorphous alloys and (2 a ribbon of approximate thickness 35 μm (so-called classic amorphous alloy. The investigations comprised: X-ray diffractometry, Mössbauer spectrometry, transmission electron microscopy, and selected magnetic measurements; all of the investigations were carried out on samples in the as-quenched state. Analysis of the obtained SEM and TEM images, X-ray diffraction patterns, Mössbauer spectrometry results and measurements of the magnetisation in a high magnetic field facilitated collectively the detailed description of the structure of the investigated alloy, which was found to depend on the quenching speed.

  17. PREFACE: 13th International Conference on Liquid and Amorphous Metals

    Science.gov (United States)

    Popel, Pjotr; Gelchinskii, Boris; Sidorov, Valeriy; Son, Leonid; Sabirzjanov, Alexandre

    2007-06-01

    The state of the art in the field of liquid and amorphous metals and alloys is regularly updated through two series of complementary international conferences, the LAM (Liquid and Amorphous Metals) and the RQ (Rapidly Quenched Materials). The first series of the conferences started as LM-1 in 1966 at Brookhaven for the basic understanding of liquid metals. The subsequent LM conferences were held in Tokyo (1972) and Bristol (1976). The conference was renewed in Grenoble (1980) as a LAM conference including amorphous metals and continued in Los Angeles (1983), Garmisch-Partenkirchen (1986), Kyoto (1989), Vienna (1992), Chicago (1995), Dortmund (1998), Yokohama (2001) and Metz (2004). The conferences are mainly devoted to liquid and amorphous metals and alloys. However, communications on some non-metallic systems such as semi conductors, quasicrystals etc, were accepted as well. The conference tradition strongly encourages the participation of junior researchers and graduate students. The 13th conference of the LAM series was organized in Ekaterinburg, Russia, by the Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences (IMet UB RAS) and Ural State Pedagogical University (USPU) and held on 8-13 July 2007 under the chairmanship of Professors Pjotr Popel (USPU) and Boris Gelchinskii (IMet UB RAS). There were 242 active and about 60 guest participants from 20 countries who attended the conference. There were no parallel sessions and all oral reports were separated into three groups: invited talks (40 min), full-scale (25 min) and brief (15 min) oral reports. The program included 10 sessions, ranging from purely theoretical subjects to technological application of molten and amorphous alloys. The following sessions took place: A) Electronic structure and transport, magnetic properties; B) Phase transitions; C) Structure; D) Atomic dynamics and transport; E) Thermodynamics; F) Modelling, simulation; G) Surface and interface; H) Mechanical properties

  18. Phyllosilicates and Amorphous Gel in the Nakhlites

    Science.gov (United States)

    Hicks, L. J.; Bridges, J. C.; Gurman, S. J.

    2013-09-01

    Previous studies of the nakhlite martian meteorites have revealed hydrothermal minerals present within the fractures of the olivine minerals and the mesostasis. The olivine fractures of the Lafayette nakhlite reveal variations with initial deposits of siderite on the fracture walls, followed by crystalline phyllosilicates (smectite), and finishing with a rapidly cooled amorphous silicate gel within the central regions of the fractures. The mesostasis fractures of Lafayette also contain a crystalline phyllosilicate (serpentine). The amorphous gel is the most abundant secondary phase within the fractures of the other nakhlites [1, 2]. By studying nine nakhlite samples, including Lafayette, Governador Valadares, Nakhla, Y-000593, Y-000749, Miller-Range 03346, NWA 817, NWA 998, and NWA 5790, our aim is to constrain the identity of the phyllosilicate secondary phase minerals found throughout the nakhlite martian meteorites. This is achieved using methods including Electron Probe Micro-analysis (EPMA); X-ray Absorption Near-Edge Structure (Fe-K XANES) spectroscopy measured using Beamline I-18 at the Diamond Light Source synchrotron; and the use of Transmission Electron Microscopy (TEM) at the University of Leicester for High-Resolution (HR) imaging and Selected Area Electron Diffraction (SAED). BF studying nine nakhlite samples, including Lafayette, Governador Valadares, Nakhla, Y-000593, Y-000749, Miller-Range 03346, NWA 817, NWA 998, and NWA 5790, our aim is to constrain the identity of the phyllosilicate secondary phase minerals found throughout the nakhlite martian meteorites. This is achieved using methods including Electron Probe Micro-analysis (EPMA); X-ray Absorption Near-Edge Structure (Fe-K XANES) spectroscopy measured using Beamline I-18 at the Diamond Light Source synchrotron; and the use of Transmission Electron Microscopy (TEM) at the University of Leicester for High-Resolution (HR) imaging and Selected Area Electron Diffraction (SAED).

  19. Imaging of Crystalline and Amorphous Surface Regions Using Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS): Application to Pharmaceutical Materials.

    Science.gov (United States)

    Iuraş, Andreea; Scurr, David J; Boissier, Catherine; Nicholas, Mark L; Roberts, Clive J; Alexander, Morgan R

    2016-04-01

    The structure of a material, in particular the extremes of crystalline and amorphous forms, significantly impacts material performance in numerous sectors such as semiconductors, energy storage, and pharmaceutical products, which are investigated in this paper. To characterize the spatial distribution for crystalline-amorphous forms at the uppermost molecular surface layer, we performed time-of-flight secondary-ion mass spectroscopy (ToF-SIMS) measurements for quench-cooled amorphous and recrystallized samples of the drugs indomethacin, felodipine, and acetaminophen. Polarized light microscopy was used to localize crystallinity induced in the samples under controlled conditions. Principal component analysis was used to identify the subtle changes in the ToF-SIMS spectra indicative of the amorphous and crystalline forms for each drug. The indicators of amorphous and crystalline surfaces were common in type across the three drugs, and could be explained in general terms of crystal packing and intermolecular bonding, leading to intramolecular bond scission in the formation of secondary ions. Less intramolecular scission occurred in the amorphous form, resulting in a greater intensity of molecular and dimer secondary ions. To test the generality of amorphous-crystalline differentiation using ToF-SIMS, a different recrystallization method was investigated where acetaminophen single crystals were recrystallized from supersaturated solutions. The findings indicated that the ability to assign the crystalline/amorphous state of the sample using ToF-SIMS was insensitive to the recrystallization method. This demonstrates that ToF-SIMS is capable of detecting and mapping ordered crystalline and disordered amorphous molecular materials forms at micron spatial resolution in the uppermost surface of a material.

  20. Anomalous hopping conduction in nanocrystalline/amorphous composites and amorphous semiconductor thin films

    Science.gov (United States)

    Kakalios, James; Bodurtha, Kent

    Composite nanostructured materials consisting of nanocrystals (nc) embedded within a thin film amorphous matrix can exhibit novel opto-electronic properties. Composite films are synthesized in a dual-chamber co-deposition PECVD system capable of producing nanocrystals of material A and embedding then within a thin film matrix of material B. Electronic conduction in composite thin films of hydrogenated amorphous silicon (a-Si:H) containing nc-germanium or nc-silicon inclusions, as well as in undoped a-Si:H, does not follow an Arrhenius temperature dependence, but rather is better described by an anomalous hopping expression (exp[-(To/T)3/4) , as determined from the ``reduced activation energy'' proposed by Zabrodskii and Shlimak. This temperature dependence has been observed in other thin film resistive materials, such as ultra-thin disordered films of Ag, Bi, Pb and Pd; carbon-black polymer composites; and weakly coupled Au and ZnO quantum dot arrays. There is presently no accepted theoretical understanding of this expression. The concept of a mobility edge, accepted for over four decades, appears to not be necessary to account for charge transport in amorphous semiconductors. Supported by NSF-DMR and the Minnesota Nano Center.

  1. Preparation and structural characterization of amorphous spray-dried dispersions of tenoxicam with enhanced dissolution.

    Science.gov (United States)

    Patel, Jagdishwar R; Carlton, Robert A; Yuniatine, Fnu; Needham, Thomas E; Wu, Lianming; Vogt, Frederick G

    2012-02-01

    Tenoxicam is a poorly soluble nonsteroidal anti-inflammatory drug. In this work, the solubility of tenoxicam is enhanced using amorphous spray-dried dispersions (SDDs) prepared using two molar equivalents of l-arginine and optionally with 10%-50% (w/w) polyvinylpyrrolidone (PVP). When added to the dispersions, PVP is shown to improve physical properties and also assists in maintaining supersaturation in solution. The dispersions provide a twofold increase over equilibrium solubility at the same pH. The dispersions are characterized using electron microscopy, vibrational spectroscopy, diffuse-reflectance visible spectroscopy, and X-ray powder diffraction. The structures of the dispersions are probed using solid-state nuclear magnetic resonance (SSNMR) experiments applied to the (1) H, (13) C, and (15) N nuclei, including two-dimensional dipolar correlation experiments that detect molecular association and the formation of a glass solution between tenoxicam, l-arginine, and PVP. Other aspects of the amorphous structure, including hydrogen-bonding interactions and the ionization state of tenoxicam and l-arginine, are also explored using SSNMR methods. These methods are used to show that the SDDs contain an amorphous l-arginine salt of tenoxicam in a glass solution that also includes PVP when present. Finally, the dispersions show only a minor decrease in chemical stability during accelerated stability studies relative to a crystalline form of tenoxicam.

  2. Spray-dried amorphous isomalt and melibiose, two potential protein-stabilizing excipients.

    Science.gov (United States)

    Lipiäinen, Tiina; Peltoniemi, Marikki; Räikkönen, Heikki; Juppo, Anne

    2016-08-20

    The possibility of producing amorphous isomalt and melibiose by spray drying was studied. The impact of process parameters on yield and solid-state stability was compared to sucrose and trehalose. All powders remained amorphous during 2-3 weeks. Processing was challenging due to powder stickiness. Low-temperature and low-humidity drying processes generally performed best. Most isomalt and sucrose powder was retrieved when using 60°C inlet temperature, 800L/h atomizing rate, 1.4ml/min feed rate, 15% concentration and 100% aspirator rate, giving 42-43°C outlet temperature. Isomalt was the most problematic, because it had the lowest Tg and became sticky very easily, therefore process parameters needed to be precisely balanced. There was more freedom in designing processes for melibiose but best yields were obtained with low-temperature (50°C inlet temperature, 800L/h atomizing rate, 4.9ml/min feed rate, 10% concentration and 100% aspirator, 39°C outlet temperature). Trehalose was different in that higher temperatures resulted in better yields. Yet, trehalose generally contained the highest moisture contents. The possibility to produce amorphous isomalt and melibiose at low-temperature process conditions makes them promising considering spray drying applications for heat-sensitive proteins. Melibiose is a better candidate than isomalt because of easier processability and superior solid-state stability.

  3. Preparation of fine silicon particles from amorphous silicon monoxide by the disproportionation reaction

    Science.gov (United States)

    Mamiya, Mikito; Takei, Humihiko; Kikuchi, Masae; Uyeda, Chiaki

    2001-07-01

    Fine Si particles have been prepared by the disproportionation reaction of silicon monoxide (SiO), that is: 2SiO→Si+SiO 2. Amorphous powders of SiO are heated between 900°C and 1400°C in a flow of Ar and the obtained specimens are analyzed by X-ray powder diffraction and high-resolution transmission electron microscopy. The treatments between 1000°C and 1300°C for more than 0.5 h result in origination of Si particles dispersed in amorphous oxide media. The particle size varies from 1-3 to 20-40 nm, depending on the heating temperature. Kinetic analyses of the reaction reveal that the activation energy is 1.1 eV (82.1 kJ mol -1). The specimens annealed above 1350°C changes into a mixture of Si and cristobalite, suggesting a solid state transformation in the surrounding oxides from the amorphous to crystalline states.

  4. Molecular dynamics study of the mechanical loss in amorphous pure and doped silica

    Energy Technology Data Exchange (ETDEWEB)

    Hamdan, Rashid; Trinastic, Jonathan P.; Cheng, H. P., E-mail: cheng@qtp.ufl.edu [Department of Physics and Quantum Theory Project, University of Florida, Gainesville, Florida 32611 (United States)

    2014-08-07

    Gravitational wave detectors and other precision measurement devices are limited by the thermal noise in the oxide coatings on the mirrors of such devices. We have investigated the mechanical loss in amorphous oxides by calculating the internal friction using classical, atomistic molecular dynamics simulations. We have implemented the trajectory bisection method and the non-local ridge method in the DL-POLY molecular dynamics simulation software to carry out those calculations. These methods have been used to locate the local potential energy minima that a system visits during a molecular dynamics trajectory and the transition state between any two consecutive minima. Using the numerically calculated barrier height distributions, barrier asymmetry distributions, relaxation times, and deformation potentials, we have calculated the internal friction of pure amorphous silica and silica mixed with other oxides. The results for silica compare well with experiment. Finally, we use the numerical calculations to comment on the validity of previously used theoretical assumptions.

  5. NATO Advanced Study Institute on Hydrogen in Disordered and Amorphous Solids

    CERN Document Server

    Bowman, Robert

    1986-01-01

    This is the second volume in the NATO ASI series dealing with the topic of hydrogen in solids. The first (V. B76, Metal Hydrides) appeared five years ago and focussed primarily on crystalline phases of hydrided metallic systems. In the intervening period, the amorphous solid state has become an area of intense research activity, encompassing both metallic and non-metallic, e.g. semiconducting, systems. At the same time the problem of storage of hydrogen, which motivated the first ASI, continues to be important. In the case of metallic systems, there were early indications that metallic glasses and disordered alloys may be more corrosion resistant, less susceptible to embrittlement by hydrogen and have a higher hydrogen mobility than ordered metals or intermetallics. All of these properties are desirable for hydrogen storage. Subsequent research has shown that thermodynamic instability is a severe problem in many amorphous metal hydrides. The present ASI has provided an appropriate forum to focus on these issu...

  6. Amino acids as co-amorphous stabilizers for poorly water soluble drugs--Part 1

    DEFF Research Database (Denmark)

    Löbmann, Korbinian; Grohganz, Holger; Laitinen, Riikka

    2013-01-01

    . However, this strategy only led to a small number of marketed products usually because of inadequate physical stability of the drug (crystallization). In this study, we investigated a fundamentally different approach to stabilize the amorphous form of drugs, namely the use of amino acids as small...... molecular weight excipients that form specific molecular interactions with the drug resulting in co-amorphous forms. The two poorly water soluble drugs carbamazepine and indomethacin were combined with amino acids from the binding sites of the biological receptors of these drugs. Mixtures of drug...... and the amino acids arginine, phenylalanine, tryptophan and tyrosine were prepared by vibrational ball milling. Solid-state characterization with X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) revealed that the various blends could be prepared as homogeneous, single phase co...

  7. Thermal Processing of PVP- and HPMC-Based Amorphous Solid Dispersions.

    Science.gov (United States)

    LaFountaine, Justin S; Prasad, Leena Kumari; Brough, Chris; Miller, Dave A; McGinity, James W; Williams, Robert O

    2016-02-01

    Thermal processing technologies continue to gain interest in pharmaceutical manufacturing. However, the types and grades of polymers that can be utilized in common thermal processing technologies, such as hot-melt extrusion (HME), are often limited by thermal or rheological factors. The objectives of the present study were to compare and contrast two thermal processing methods, HME and KinetiSol® Dispersing (KSD), and investigate the influence of polymer type, polymer molecular weight, and drug loading on the ability to produce amorphous solid dispersions (ASDs) containing the model compound griseofulvin (GRIS). Dispersions were analyzed by a variety of imaging, solid-state, thermal, and solution-state techniques. Dispersions were prepared by both HME and KSD using polyvinylpyrrolidone (PVP) K17 or hydroxypropyl methylcellulose (HPMC) E5. Dispersions were only prepared by KSD using higher molecular weight grades of HPMC and PVP, as these could not be extruded under the conditions selected. Powder X-ray diffraction (PXRD) analysis showed that dispersions prepared by HME were amorphous at 10% and 20% drug load; however, it showed significant crystallinity at 40% drug load. PXRD analysis of KSD samples showed all formulations and drug loads to be amorphous with the exception of trace crystallinity seen in PVP K17 and PVP K30 samples at 40% drug load. These results were further supported by other analytical techniques. KSD produced amorphous dispersions at higher drug loads than could be prepared by HME, as well as with higher molecular weight polymers that were not processable by HME, due to its higher rate of shear and torque output.

  8. Applications of KinetiSol dispersing for the production of plasticizer free amorphous solid dispersions.

    Science.gov (United States)

    DiNunzio, James C; Brough, Chris; Miller, Dave A; Williams, Robert O; McGinity, James W

    2010-06-14

    Thermal manufacturing methods for the production of solid dispersions frequently require the addition of a plasticizer in order to achieve requisite molten material flow properties when processed by unit operations such as hot melt extrusion. KinetiSol Dispersing, a rapid high energy thermal manufacturing process, was investigated for the ability to produce amorphous solid dispersions without the aid of a plasticizer. For this study itraconazole was used as a model active ingredient, while Eudragit L100-55 and Carbomer 974P were used as model solid dispersion carriers. Triethyl citrate (TEC) was used as necessary as a model plasticizer. Compositions prepared by KinetiSol Dispersing and hot melt extrusion were evaluated for solid state properties, supersaturated in vitro dissolution behavior under pH change conditions and accelerated stability performance. Results showed that both manufacturing processes were capable of producing amorphous solid dispersions, however compositions produced by hot melt extrusion required the presence of TEC and yielded a glass transition temperature (T(g)) of approximately 54 degrees C. Plasticized and unplasticized compositions were successfully produced by KinetiSol Dispersing, with plasticizer free solid dispersions exhibiting a T(g) of approximately 101 degrees C. Supersaturated in vitro dissolution testing revealed a significantly higher dissolution rate of plasticized material which was attributed to the pore forming behavior of TEC during the acidic phase of testing. A further contribution to release may also have been provided by the greater diffusivity in the plasticized polymer. X-ray diffraction testing revealed that under accelerated stability conditions, plasticized compositions exhibited partial recrystallization, while plasticizer free materials remained amorphous throughout the 6-month testing period. These results demonstrated that KinetiSol Dispersing could be used for the production of amorphous solid dispersions

  9. Silicon Monoxide at 1 atm and Elevated Pressures: Crystalline or Amorphous?

    KAUST Repository

    AlKaabi, Khalid

    2014-03-05

    The absence of a crystalline SiO phase under ordinary conditions is an anomaly in the sequence of group 14 monoxides. We explore theoretically ordered ground-state and amorphous structures for SiO at P = 1 atm, and crystalline phases also at pressures up to 200 GPa. Several competitive ground-state P = 1 atm structures are found, perforce with Si-Si bonds, and possessing Si-O-Si bridges similar to those in silica (SiO2) polymorphs. The most stable of these static structures is enthalpically just a little more stable than a calculated random bond model of amorphous SiO. In that model we find no segregation into regions of amorphous Si and amorphous SiO2. The P = 1 atm structures are all semiconducting. As the pressure is increased, intriguing new crystalline structures evolve, incorporating Si triangular nets or strips and stishovite-like regions. A heat of formation of crystalline SiO is computed; it is found to be the most negative of all the group 14 monoxides. Yet, given the stability of SiO2, the disproportionation 2SiO (s) → Si(s)+SiO2(s) is exothermic, falling right into the series of group 14 monoxides, and ranging from a highly negative ΔH of disproportionation for CO to highly positive for PbO. There is no major change in the heat of disproportionation with pressure, i.e., no range of stability of SiO with respect to SiO2. The high-pressure SiO phases are metallic. © 2014 American Chemical Society.

  10. Effect of substitutional doping on temperature dependent electrical parameters of amorphous Se-Te semiconductors

    Science.gov (United States)

    Sharma, Neha; Sharda, Sunanda; Sharma, Dheeraj; Sharma, Vineet; Barman, P. B.; Katyal, S. C.; Sharma, Pankaj; Hazra, S. K.

    2013-09-01

    Steady state current-voltage characteristics of the amorphous (Se80Te20)98Y2 (Y = Ag, Bi, Ge, Cd) semiconductors at different temperatures are reported. The measurements were performed using direct-current voltage bias to understand the basic conductivity mechanism and to evaluate the impact of each substituent on electrical response. The space charge limited conduction mechanism, and the density of states near Fermi level have been calculated. The difference in electrical response due to different substitutions in the glassy matrix is analyzed.

  11. Health hazards due to the inhalation of amorphous silica.

    Science.gov (United States)

    Merget, R; Bauer, T; Küpper, H U; Philippou, S; Bauer, H D; Breitstadt, R; Bruening, T

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic ("thermal" or "fumed") silica, and (3) chemically or physically modified silica. According to the different physicochemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no study

  12. Continuous controllable amorphization ratio of nanoscale phase change memory cells

    Science.gov (United States)

    He, Q.; Li, Z.; Peng, J. H.; Deng, Y. F.; Zeng, B. J.; Zhou, W.; Miao, X. S.

    2014-06-01

    The controllable heat behavior, including heat generation and dissipation, is one of the most important physical problems of nanoscale phase-change memory (PCM). A method based on heat accumulation effect to control heat behavior by synthetically modulating the three parameters of applied double pulses is proposed to achieve any expected amorphization ratio. A compact model of nanoscale PCM cells is used to simulate the thermal behavior and amorphization ratio under the condition of single parameter and multi-parameter change of applied double pulses. The results are in good agreement with the experimental results. Repeated experiments also prove the feasibility of continuous controllable amorphization ratio of nanoscale phase-change materials.

  13. Preparation of Ti-based amorphous brazing alloy

    Institute of Scientific and Technical Information of China (English)

    ZOU Jia-sheng; JIANG Zhi-guo; XU Zhi-rong; CHEN Guang

    2006-01-01

    A new kind of amorphous active brazing alloy foil with the composition of Ti40Zr25Ni15Cu20 was successfully synthesized using melt spinning in roll forging machine in argon atmosphere. The amorphous structure and composition were examined by X-ray diffraction, differential thermal analysis and energy dispersive X-ray detector. The results show that the Ti40Zr25Ni15Cu20 amorphous alloy foil has excellent wettability on Si3N4 ceramic and demonstrate a strong glass forming ability. The reduced glass transition temperature (Trg) and the temperature interval of supercooled liquid region before crystallization are 0.76 and 78 K, respectively.

  14. Depressurization amorphization of single-crystal boron carbide.

    Science.gov (United States)

    Yan, X Q; Tang, Z; Zhang, L; Guo, J J; Jin, C Q; Zhang, Y; Goto, T; McCauley, J W; Chen, M W

    2009-02-20

    We report depressurization amorphization of single-crystal boron carbide (B4C) investigated by in situ high-pressure Raman spectroscopy. It was found that localized amorphization of B4C takes place during unloading from high pressures, and nonhydrostatic stresses play a critical role in the high-pressure phase transition. First-principles molecular dynamics simulations reveal that the depressurization amorphization results from pressure-induced irreversible bending of C-B-C atomic chains cross-linking 12 atom icosahedra at the rhombohedral vertices.

  15. Structural studies of several distinct metastable forms of amorphous ice.

    Science.gov (United States)

    Tulk, C A; Benmore, C J; Urquidi, J; Klug, D D; Neuefeind, J; Tomberli, B; Egelstaff, P A

    2002-08-23

    Structural changes during annealing of high-density amorphous ice were studied with both neutron and x-ray diffraction. The first diffraction peak was followed from the high- to the low-density amorphous form. Changes were observed to occur through a series of intermediate forms that appear to be metastable at each anneal temperature. Five distinct amorphous forms were studied with neutron scattering, and many more forms may be possible. Radial distribution functions indicate that the structure evolves systematically between 4 and 8 angstroms. The phase transformations in low-temperature liquid water may be much more complex than currently understood.

  16. Structural transformations of amorphous iron-based alloys upon abrasive and thermal treatments

    Science.gov (United States)

    Korshunov, L. G.; Shabashov, V. A.; Litvinov, A. V.; Chernenko, N. L.

    2010-05-01

    Wear resistance and structural changes have been investigated in amorphous alloys Fe64Co30Si3B3 and Fe73.5Nb3Cu1Si13.5B9 upon wear using a fixed abrasive. The structural studies have been performed by the methods of metallography, electron microscopy, and Mössbauer spectroscopy. It has been shown that the abrasive resistance of amorphous alloys is 1.6-3.1 times lower than that of high-carbon tool steels, which have a close level of hardness. The low abrasive wear resistance of amorphous alloys is caused by the deformation softening of the alloy surface in the process of wear. The major volume of the deformed surface layer of the alloys preserves the amorphous state. Its structural changes upon wear are characterized by the formation of inhomogeneities (fragments with a size of 10-50 nm) and by a decrease in the width of the strongest “halo” in the selected-area electron-diffractions patterns. In the amorphous matrix of the Fe64Co30Si3B3 alloy, a strong magnetic texture is formed and a redistribution of atoms occurs, which leads to an increase in the local shortrange order corresponding to FeB, Fe2B, Fe3B and α-Fe phases. In microvolumes of a thin (several μm) surface layer, the formation of a nanocrystalline structure (on the order of several volume %) was revealed. A tempering of the Fe73.5Cu1Nb3S13.5B9 alloy at temperatures below 500°C does not affect the hardness and wear resistance of the alloy. At 500°C, there occurs an increase in microhardness and wear resistance of the Fe73.5Cu1Nb3S13.5B9 alloy as a result of the formation in it of a nanocrystalline structure with the retention of a certain amount of the amorphous phase. The complete crystallization of the alloy at 540°C increases the brittleness of the alloy, which leads to a sharp reduction in its wear resistance.

  17. Iron-Based Amorphous Metals:The High Performance Corrosion Resistant Materials(HPCRM) Program

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J

    2007-07-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  18. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Material (HPCRM) Development

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J S; Saw, C; Haslam, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D' Amato, A; Aprigliano, L

    2008-01-09

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  19. Amorphous carbon interlayers for gold on elastomer stretchable conductors

    Science.gov (United States)

    Manzoor, M. U.; Tuinea-Bobe, C. L.; McKavanagh, F.; Byrne, C. P.; Dixon, D.; Maguire, P. D.; Lemoine, P.

    2011-06-01

    Gold on polydimethylsiloxane (PDMS) stretchable conductors were prepared using a novel approach by interlacing an hydrogenated amorphous carbon (a-C : H) layer between the deposited metal layer and the elastomer. AFM analysis of the a-C : H film surface before gold deposition shows nanoscale buckling, the corresponding increase in specific surface area corresponds to a strain compensation for the first 4-6% of bi-axial tensile loading. Without this interlayer, the deposited gold films show much smaller and uni-directional ripples as well as more cracks and delaminations. With a-C : H interlayer, the initial electrical resistivity of the metal film decreases markedly (280-fold decrease to 8 × 10-6 Ω cm). This is not due to conduction within the carbon interlayer; both a-C : H/PDMS and PDMS substrates are electrically insulating. Upon cyclic tensile loading, both films become more resistive, but return to their initial state after 20 tensile cycles up to 60% strain. Profiling experiments using secondary ion mass spectroscopy and x-ray photoelectron spectroscopy indicate that the a-C : H layer intermixes with the PDMS, resulting in a graded layer of decreasing stiffness. We believe that both this graded layer and the surface buckling contribute to the observed improvement in the electrical performance of these stretchable conductors.

  20. Band gap tuning of amorphous Al oxides by Zr alloying

    DEFF Research Database (Denmark)

    Canulescu, Stela; Jones, N. C.; Borca, C. N.;

    2016-01-01

    minimum changes non-linearly as well.Fitting of the energy band gap values resulted in a bowing parameter of 2 eV. The band gap bowing of themixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction bandminimum of anodized Al2O3.......The optical band gap and electronic structure of amorphous Al-Zr mixed oxides, with Zr content ranging from4.8 to 21.9% were determined using vacuum ultraviolet (VUV) and X-ray absorption spectroscopy (XAS). Thelight scattering by the nano-porous structure of alumina at low wavelengths...... was estimated based on the Miescattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on Zr content deviatesfrom linearity and decreases from 7.3 eV for pure anodized Al2O3 to 6.45 eV for Al-Zr mixed oxide with Zrcontent of 21.9%. With increasing Zr content, the conduction band...

  1. Nanocrystallization of amorphous M-Si thin film composites (M=Cr, Mn) and their thermoelectric properties

    Science.gov (United States)

    Burkov, A. T.; Novikov, S. V.; Schumann, J.

    2012-06-01

    We report on electrical resistivity and thermoelectric power of Cr-Si and Mn-Si composite films at temperatures from 300 K to 1000 K. The films were deposited on unheated Si/SiO2 substrates by magnetron sputtering from composite targets. The as-deposited films have amorphous structure. We use annealing with in-situ transport properties measurements to transform the films into nanocrystalline state with continuous monitoring their state. Nanocrystallization is considered as a promising way to improve thermoelectric efficiency, primarily due to reduction of lattice thermal conductivity κ. Among variety of methods for fabrication of NC materials, crystallization from amorphous state has features which are crucially important with respect to their electronic transport properties: since the crystallites and their interfaces are formed in this method via solid state reaction, the NC samples are dense and the interfaces are clean. This removes additional factors affecting properties of a nanocrystalline composite, such as contamination of nanocrystal interfaces by elements from environment or nanocrystal lattice distortion during nanocrystallization. Depending on the initial film composition, the films are transformed during annealing into single phase or multi-phase nanocrystalline composites with average grain size of 10 nm to 20 nm. We study the crystallization kinetics, stability of amorphous and nanocrystalline state and relation between electronic transport properties and structural state of the composites.

  2. Amorphous solid dispersions of piroxicam and Soluplus(®): Qualitative and quantitative analysis of piroxicam recrystallization during storage.

    Science.gov (United States)

    Lust, Andres; Strachan, Clare J; Veski, Peep; Aaltonen, Jaakko; Heinämäki, Jyrki; Yliruusi, Jouko; Kogermann, Karin

    2015-01-01

    The conversion of active pharmaceutical ingredient (API) from amorphous to crystalline form is the primary stability issue in formulating amorphous solid dispersions (SDs). The aim of the present study was to carry out qualitative and quantitative analysis of the physical solid-state stability of the SDs of poorly water-soluble piroxicam (PRX) and polyvinyl caprolactam-polyvinyl acetate-polyethylene-glycol graft copolymer (Soluplus(®)). The SDs were prepared by a solvent evaporation method and stored for six months at 0% RH/6 °C, 0% RH/25 °C, 40% RH/25 °C and 75% RH/25 °C. Fourier transform infrared spectroscopy equipped with attenuated total reflection accessory (ATR-FTIR) and Raman spectroscopy were used for characterizing the physical solid-state changes and drug-polymer interactions. The principal component analysis (PCA) and multivariate curve resolution alternating least squares (MCR-ALS) were used for the qualitative and quantitative analysis of Raman spectra collected during storage. When stored at 0% RH/6 °C and at 0% RH/25 °C, PRX in SDs remained in an amorphous form since no recrystallization was observed by ATR-FTIR and Raman spectroscopy. Raman spectroscopy coupled with PCA and MCR-ALS and ATR-FTIR spectroscopy enabled to detect the recrystallization of amorphous PRX in the samples stored at higher humidity.

  3. Nanocavity Shrinkage and Preferential Amorphization during Irradiation in Silicon

    Institute of Scientific and Technical Information of China (English)

    ZHU Xian-Fang; WANG Zhan-Guo

    2005-01-01

    @@ We model the recent experimental results and demonstrate that the internal shrinkage of nanocavities in silicon is intrinsically associated with preferential amorphization as induced by self-ion irradiation.

  4. RF Sputtering for preparing substantially pure amorphous silicon monohydride

    Science.gov (United States)

    Jeffrey, Frank R.; Shanks, Howard R.

    1982-10-12

    A process for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicon produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous silicon hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  5. Molecular dynamics simulation of wetting on modified amorphous silica surface

    Science.gov (United States)

    Chai, Jingchun; Liu, Shuyan; Yang, Xiaoning

    2009-08-01

    The microscopic wetting of water on amorphous silica surfaces has been investigated by molecular dynamics simulation. Different degrees of surface hydroxylation/silanization were considered. It was observed that the hydrophobicity becomes enhanced with an increase in the degree of surface silanization. A continuous transformation from hydrophilicity to hydrophobicity can be attained for the amorphous silica surfaces through surface modification. From the simulation result, the contact angle can exceed 90° when surface silanization percentage is above 50%, showing a hydrophobic character. It is also found that when the percentage of surface silanization is above 70% on the amorphous silica surface, the water contact angle almost remains unchanged (110-120°). This phenomenon is a little different from the wetting behavior on smooth quartz plates in previous experimental report. This change in the wettability on modified amorphous silica surfaces can be interpreted in terms of the interaction between water molecules and the silica surfaces.

  6. Stress originating from nanovoids in hydrogenated amorphous semiconductors

    Science.gov (United States)

    Wang, Zumin; Flötotto, David; Mittemeijer, Eric J.

    2017-03-01

    Structural inhomogeneities in the form of voids of nanometer sizes (nanovoids) have long been known to be present in hydrogenated amorphous semiconductors (Si, Ge). The physical and electrical properties of hydrogenated amorphous semiconductors can be pronouncedly influenced by the presence and characteristics of such nanovoids. In this work, by measuring in situ the intrinsic stress developments during deposition of pure, amorphous and of hydrogenated amorphous semiconductor (Si, Ge) thin films, under the same conditions in ultrahigh vacuum and on a comparative basis, a major source of tensile stress development could be ascribed to the occurrence of nanovoids in a-Si:H and a-Ge:H. The measurements allowed a quantitative evaluation of the surface stress acting along the surface of the nanovoids: 1.1-1.9 N/m for a-Si:H and 0.9-1.9 N/m for a-Ge:H.

  7. Refining stability and dissolution rate of amorphous drug formulations

    DEFF Research Database (Denmark)

    Grohganz, Holger; Priemel, Petra A; Löbmann, Korbinian;

    2014-01-01

    amorphous counterpart is often seen as a potential solution to increase the solubility. However, amorphous systems are physically unstable. Therefore, pharmaceutical formulations scientists need to find ways to stabilise amorphous forms. Areas covered: The use of polymer-based solid dispersions is the most......Introduction: Poor aqueous solubility of active pharmaceutical ingredients (APIs) is one of the main challenges in the development of new small molecular drugs. Additionally, the proportion of poorly soluble drugs among new chemical entities is increasing. The transfer of a crystalline drug to its...... established technique for the stabilisation of amorphous forms, and this review will initially focus on new developments in this field. Additionally, newly discovered formulation approaches will be investigated, including approaches based on the physical restriction of crystallisation and crystal growth...

  8. Amorphous solid dispersions: Rational selection of a manufacturing process.

    Science.gov (United States)

    Vasconcelos, Teófilo; Marques, Sara; das Neves, José; Sarmento, Bruno

    2016-05-01

    Amorphous products and particularly amorphous solid dispersions are currently one of the most exciting areas in the pharmaceutical field. This approach presents huge potential and advantageous features concerning the overall improvement of drug bioavailability. Currently, different manufacturing processes are being developed to produce amorphous solid dispersions with suitable robustness and reproducibility, ranging from solvent evaporation to melting processes. In the present paper, laboratorial and industrial scale processes were reviewed, and guidelines for a rationale selection of manufacturing processes were proposed. This would ensure an adequate development (laboratorial scale) and production according to the good manufacturing practices (GMP) (industrial scale) of amorphous solid dispersions, with further implications on the process validations and drug development pipeline.

  9. Predicting Crystallization of Amorphous Drugs with Terahertz Spectroscopy.

    Science.gov (United States)

    Sibik, Juraj; Löbmann, Korbinian; Rades, Thomas; Zeitler, J Axel

    2015-08-03

    There is a controversy about the extent to which the primary and secondary dielectric relaxations influence the crystallization of amorphous organic compounds below the glass transition temperature. Recent studies also point to the importance of fast molecular dynamics on picosecond-to-nanosecond time scales with respect to the glass stability. In the present study we provide terahertz spectroscopy evidence on the crystallization of amorphous naproxen well below its glass transition temperature and confirm the direct role of Johari-Goldstein (JG) secondary relaxation as a facilitator of the crystallization. We determine the onset temperature Tβ above which the JG relaxation contributes to the fast molecular dynamics and analytically quantify the level of this contribution. We then show there is a strong correlation between the increase in the fast molecular dynamics and onset of crystallization in several chosen amorphous drugs. We believe that this technique has immediate applications to quantify the stability of amorphous drug materials.

  10. Structure and Properties of an Amorphous Metal-Organic Framework

    Science.gov (United States)

    Bennett, Thomas D.; Goodwin, Andrew L.; Dove, Martin T.; Keen, David A.; Tucker, Matthew G.; Barney, Emma R.; Soper, Alan K.; Bithell, Erica G.; Tan, Jin-Chong; Cheetham, Anthony K.

    2010-03-01

    ZIF-4, a metal-organic framework (MOF) with a zeolitic structure, undergoes a crystal-amorphous transition on heating to 300°C. The amorphous form, which we term a-ZIF, is recoverable to ambient conditions or may be converted to a dense crystalline phase of the same composition by heating to 400°C. Neutron and x-ray total scattering data collected during the amorphization process are used as a basis for reverse Monte Carlo refinement of an atomistic model of the structure of a-ZIF. The structure is best understood in terms of a continuous random network analogous to that of a-SiO2. Optical microscopy, electron diffraction and nanoindentation measurements reveal a-ZIF to be an isotropic glasslike phase capable of plastic flow on its formation. Our results suggest an avenue for designing broad new families of amorphous and glasslike materials that exploit the chemical and structural diversity of MOFs.

  11. Raman and ellipsometric characterization of hydrogenated amorphous silicon thin films

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Hydrogenated amorphous silicon (a-Si:H) thin films were deposited by plasma-enhanced vapor deposition (PECVD) at different silane temperatures (Tg) before glow-discharge. The effect of Tg on the amorphous network and optoelectronic properties of the films has been investigated by Raman scattering spectra, ellipsometric transmittance spectra, and dark conductivity measurement, respectively. The results show that the increase in Tg leads to an improved ordering of amorphous network on the short and intermediate scales and an increase of both refractive index and absorption coefficient in a-Si:H thin films. It is indicated that the dark conductivity increases by two orders of magnitude when Tg is raised from room temperature (RT) to 433 K. The continuous ordering of amorphous network of a-Si:H thin films deposited at a higher Tg is the main cause for the increase of dark conductivity.

  12. Amorphous semiconductor sample preparation for transmission EXAFS measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ridgway, M.C.; Glover, C.J.; Tan, H.H. [Australian National Univ., Canberra (Australia). Dept. of Electronic Materials Engineering] [and others

    1998-12-31

    A novel methodology has been developed for the preparation of amorphous semiconductor samples for use in transmission extended x-ray absorption fine structure (EXAFS) measurements. Epitaxial heterostructures were fabricated by metal organic chemical vapor deposition (group III-Vs) or molecular beam epitaxy (group IVs). An epitaxial layer of {approximately} 2 {micro}m thickness was separated from the underlying substrate by selective chemical etching of an intermediate sacrificial layer. Ion implantation was utilized to amorphize the epitaxial layer either before or after selective chemical etching. The resulting samples were both stoichiometric and homogeneous in contrast to those produced by conventional techniques. The fabrication of amorphous GaAs, InP, In{sub 0.53}Ga{sub 0.47}As and Si{sub x}Ge{sub 1{minus}x} samples is described. Furthermore, EXAFS measurements comparing both fluorescence and transmission detection, and crystalline and amorphized GaAs, are shown.

  13. Microcavity effects in the photoluminescence of hydrogenated amorphous silicon nitride

    Science.gov (United States)

    Serpenguzel, Ali; Aydinli, Atilla; Bek, Alpan

    1998-07-01

    Fabry-Perot microcavities are used for the alteration of photoluminescence in hydrogenated amorphous silicon nitride grown with and without ammonia. The photoluminescence is red-near-infrared for the samples grown without ammonia, and blue-green for the samples grown with ammonia. In the Fabry- Perot microcavities, the amplitude of the photoluminescence is enhanced, while its linewidth is reduced with respect to the bulk hydrogenated amorphous silicon nitride. The microcavity was realized by a metallic back mirror and a hydrogenated amorphous silicon nitride--air or a metallic front mirror. The transmittance, reflectance, and absorbance spectra were also measured and calculated. The calculated spectra agree well with the experimental spectra. The hydrogenated amorphous silicon nitride microcavity has potential for becoming a versatile silicon based optoelectronic device such as a color flat panel display, a resonant cavity enhanced light emitting diode, or a laser.

  14. Hydrogen Bonding in Hydrogenated Amorphous Germanium

    Institute of Scientific and Technical Information of China (English)

    M.S.Abo-Ghazala; S. Al Hazmy

    2004-01-01

    Thin films of hydrogenated amorphous germanium (a-Ge:H) were prepared by radio frequency glow discharge deposition at various substrate temperatures. The hydrogen distribution and bonding structure in a-Ge:H were discussed based on infrared absorption data. The correlation between infrared absorption spectra and hydrogen effusion measurements was used to determine the proportionality constant for each vibration mode of the Ge-H bonds. The results reveal that the bending mode appearing at 835 cm?1 is associated with the Ge-H2 (dihydride) groups on the internal surfaces of voids. While 1880 cm?1 is assigned to vibrations of Ge-H (monohydride) groups in the bulk, the 2000 cm?1 stretching mode is attributed to Ge-H and Ge-H2 bonds located on the surfaces of voids. For films associated with bending modes in the infrared spectra, the proportionality constant values of the stretching modes near 1880 and 2000 cm?1 are found to be lower than those of films which had no corresponding bending modes.

  15. Stability of deuterated amorphous silicon solar cells

    CERN Document Server

    Munyeme, G; Van der Meer, L F G; Dijkhuis, J I; Van der Weg, W F; Schropp, R

    2004-01-01

    In order to elucidate the microscopic mechanism for the earlier observed enhanced stability of deuterated amorphous silicon solar cells we conducted a side by-side study of fully deuterated intrinsic layers on crystalline silicon substrates using the free-electron laser facility at Nieuwegein (FELIX) to resonantly excite the Si-D stretching vibration and measure the various relaxation channels available to these modes, and of p-i-n solar cells with identical intrinsic absorber layers on glass/TCO substrates to record the degradation and stabilization of solar cell parameters under prolonged light soaking treatments. From our comparative study it is shown that a-Si:D has a superior resistance against light-induced defect creation as compared to a-Si:H and that this can now be explained in the light of the 'H collision model' since the initial step in the process, the release of H, is more likely than that of D. Thus, a natural explanation for the stability as observed in a-Si:D solar cells is provided.

  16. Hydrogen effusion from tritiated amorphous silicon

    Science.gov (United States)

    Kherani, N. P.; Liu, B.; Virk, K.; Kosteski, T.; Gaspari, F.; Shmayda, W. T.; Zukotynski, S.; Chen, K. P.

    2008-01-01

    Results for the effusion and outgassing of tritium from tritiated hydrogenated amorphous silicon (a-Si:H:T) films are presented. The samples were grown by dc-saddle field glow discharge at various substrate temperatures between 150 and 300°C. The tracer property of radioactive tritium is used to detect tritium release. Tritium effusion measurements are performed in a nonvacuum ion chamber and are found to yield similar results as reported for standard high vacuum technique. The results suggest for decreasing substrate temperature the growth of material with an increasing concentration of voids. These data are corroborated by analysis of infrared absorption data in terms of microstructure parameters. For material of low substrate temperature (and high void concentration) tritium outgassing in air at room temperature was studied, and it was found that after 600h about 0.2% of the total hydrogen (hydrogen+tritium) content is released. Two rate limiting processes are identified. The first process, fast tritium outgassing with a time constant of 15h, seems to be related to surface desorption of tritiated water (HTO) with a free energy of desorption of 1.04eV. The second process, slow tritium outgassing with a time constant of 200-300h, appears to be limited by oxygen diffusivity in a growing oxide layer. This material of lowest H stability would lose half of the hydrogen after 60years.

  17. Inversion of diffraction data for amorphous materials

    Science.gov (United States)

    Pandey, Anup; Biswas, Parthapratim; Drabold, D. A.

    2016-09-01

    The general and practical inversion of diffraction data-producing a computer model correctly representing the material explored-is an important unsolved problem for disordered materials. Such modeling should proceed by using our full knowledge base, both from experiment and theory. In this paper, we describe a robust method to jointly exploit the power of ab initio atomistic simulation along with the information carried by diffraction data. The method is applied to two very different systems: amorphous silicon and two compositions of a solid electrolyte memory material silver-doped GeSe3. The technique is easy to implement, is faster and yields results much improved over conventional simulation methods for the materials explored. By direct calculation, we show that the method works for both poor and excellent glass forming materials. It offers a means to add a priori information in first-principles modeling of materials, and represents a significant step toward the computational design of non-crystalline materials using accurate interatomic interactions and experimental information.

  18. New Approaches to the Computer Simulation of Amorphous Alloys: A Review

    Directory of Open Access Journals (Sweden)

    Fernando Alvarez-Ramirez

    2011-04-01

    Full Text Available In this work we review our new methods to computer generate amorphous atomic topologies of several binary alloys: SiH, SiN, CN; binary systems based on group IV elements like SiC; the GeSe2 chalcogenide; aluminum-based systems: AlN and AlSi, and the CuZr amorphous alloy. We use an ab initio approach based on density functionals and computationally thermally-randomized periodically-continued cells with at least 108 atoms. The computational thermal process to generate the amorphous alloys is the undermelt-quench approach, or one of its variants, that consists in linearly heating the samples to just below their melting (or liquidus temperatures, and then linearly cooling them afterwards. These processes are carried out from initial crystalline conditions using short and long time steps. We find that a step four-times the default time step is adequate for most of the simulations. Radial distribution functions (partial and total are calculated and compared whenever possible with experimental results, and the agreement is very good. For some materials we report studies of the effect of the topological disorder on their electronic and vibrational densities of states and on their optical properties.

  19. Thermally highly stable amorphous zinc phosphate intermediates during the formation of zinc phosphate hydrate.

    Science.gov (United States)

    Bach, Sven; Celinski, Vinicius R; Dietzsch, Michael; Panthöfer, Martin; Bienert, Ralf; Emmerling, Franziska; Schmedt auf der Günne, Jörn; Tremel, Wolfgang

    2015-02-18

    The mechanisms by which amorphous intermediates transform into crystalline materials are still poorly understood. Here we attempt to illuminate the formation of an amorphous precursor by investigating the crystallization process of zinc phosphate hydrate. This work shows that amorphous zinc phosphate (AZP) nanoparticles precipitate from aqueous solutions prior to the crystalline hopeite phase at low concentrations and in the absence of additives at room temperature. AZP nanoparticles are thermally stable against crystallization even at 400 °C (resulting in a high temperature AZP), but they crystallize rapidly in the presence of water if the reaction is not interrupted. X-ray powder diffraction with high-energy synchrotron radiation, scanning and transmission electron microscopy, selected area electron diffraction, and small-angle X-ray scattering showed the particle size (≈20 nm) and confirmed the noncrystallinity of the nanoparticle intermediates. Energy dispersive X-ray, infrared, and Raman spectroscopy, inductively coupled plasma mass spectrometry, and optical emission spectrometry as well as thermal analysis were used for further compositional characterization of the as synthesized nanomaterial. (1)H solid-state NMR allowed the quantification of the hydrogen content, while an analysis of (31)P{(1)H} C rotational echo double resonance spectra permitted a dynamic and structural analysis of the crystallization pathway to hopeite.

  20. Physics and technology of amorphous-crystalline heterostructure silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sark, Wilfried G.J.H.M. van [Utrecht Univ. (Netherlands). Copernicus Institute, Science Technology and Society; Roca, Francesco [Unita Tecnologie Portici, Napoli (Italy). ENEA - Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile; Korte, Lars [Helmholtz-Zentrum Berlin fuer Materialien und Energie (Germany). Inst. Silizium-Photovoltaik

    2012-07-01

    The challenge of developing photovoltaic (PV) technology to a cost-competitive alternative for established energy sources can be achieved using simple, high-throughput mass-production compatible processes. Issues to be addressed for large scale PV deployment in large power plants or in building integrated applications are enhancing the performance of solar energy systems by increasing solar cell efficiency, using low amounts of materials which are durable, stable, and abundant on earth, and reducing manufacturing and installation cost. Today's solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si:H) constitutes both ''emitter'' and ''base-contact/back surface field'' on both sides of a thin crystalline silicon wafer-base (c-Si) where the photogenerated electrons and holes are generated; at the same time, a Si:H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells. In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells. (orig.)

  1. Low-mobility solar cells: a device physics primer with application to amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schiff, E.A. [Syracuse University, New York (United States). Department of Physics

    2003-07-01

    The properties of pin solar cells based on photogeneration of charge carriers into low-mobility materials were calculated for two models. Ideal p- and n-type electrode layers were assumed in both cases. The first, elementary case involves only band mobilities and direct electron-hole recombination. An analytical approximation indicates that the power in thick cells rises as the 1/4 power of the lower band mobility, which reflects the buildup of space-charge under illumination. The approximation agrees well with computer simulation. The second model includes exponential bandtail trapping, which is commonly invoked to account for very low hole drift mobilities in amorphous silicon and other amorphous semiconductors. The two models have similar qualitative behavior. Predictions for the solar conversion efficiency of amorphous silicon-based cells that are limited by valence bandtail trapping are presented. The predictions account adequately for the efficiencies of present a-Si : H cells in their 'as-prepared' state (without light-soaking), and indicate the improvement that may be expected if hole drift mobilities (and valence bandtail widths) can be improved. (author)

  2. Developments in the Ni-Nb-Zr amorphous alloy membranes. A review

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, S.; Chandra, D. [University of Nevada, Materials Science and Engineering, Reno, NV (United States); Hirscher, M. [Max-Planck-Institut fuer Intelligente Systeme, Stuttgart (Germany); Dolan, M.; Viano, D. [CSIRO, QCAT, Energy, Pullenvale, QLD (Australia); Isheim, D. [Northwestern University, Materials Science and Engineering, Evanston, IL (United States); Wermer, J. [Los Alamos National Laboratory, Los Alamos, NM (United States); Baricco, M. [University of Turin, Department of Chemistry and NIS, Turin (Italy); Udovic, T.J. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Grant, D. [University of Nottingham, Nottingham (United Kingdom); Palumbo, O.; Paolone, A. [CNR-ISC, U.O.S. La Sapienza, Rome (Italy); Cantelli, R. [University of Rome, La Sapienza, Roma (Italy)

    2016-03-15

    Most of the global H{sub 2} production is derived from hydrocarbon-based fuels, and efficient H{sub 2}/CO{sub 2} separation is necessary to deliver a high-purity H{sub 2} product. Hydrogen-selective alloy membranes are emerging as a viable alternative to traditional pressure swing adsorption processes as a means for H{sub 2}/CO{sub 2} separation. These membranes can be formed from a wide range of alloys, and those based on Pd are the closest to commercial deployment. The high cost of Pd (USD ∝31,000 kg{sup -1}) is driving the development of less-expensive alternatives, including inexpensive amorphous (Ni{sub 60}Nb{sub 40}){sub 100-x} Zr{sub x} alloys. Amorphous alloy membranes can be fabricated directly from the molten state into continuous ribbons via melt spinning and depending on the composition can exhibit relatively high hydrogen permeability between 473 and 673 K. Here we review recent developments in these low-cost membrane materials, especially with respect to permeation behavior, electrical transport properties, and understanding of local atomic order. To further understand the nature of these solids, atom probe tomography has been performed, revealing amorphous Nb-rich and Zr-rich clusters embedded in majority Ni matrix whose compositions deviated from the nominal overall composition of the membrane. (orig.)

  3. Thermal decomposition of silane to form hydrogenated amorphous Si

    Science.gov (United States)

    Strongin, M.; Ghosh, A.K.; Wiesmann, H.J.; Rock, E.B.; Lutz, H.A. III

    Hydrogenated amorphous silicon is produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, at elevated temperatures of about 1700 to 2300/sup 0/C, in a vacuum of about 10/sup -8/ to 10/sup -4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate to form hydrogenated amorphous silicon.

  4. Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Frances

    1998-10-03

    OAK B204 Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films. The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and hTi-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials.

  5. Domain Wall Mobility in Co-Based Amorphous Wire

    Directory of Open Access Journals (Sweden)

    Maria Kladivova

    2007-01-01

    Full Text Available Dynamics of the domain wall between opposite circularly magnetized domains in amorphous cylindrical sample with circular easy direction is theoretically studied. The wall is driven by DC current. Various mechanisms which influence the wall velocity were taken into account: current magnitude, deformation of the mowing wall, Hall effect, axially magnetized domain in the middle of the wire. Theoretical results obtained are in a good agreement with experiments on Cobased amorphous ferromagnetic wires.

  6. Structure and Properties of Amorphous Transparent Conducting Oxides

    Science.gov (United States)

    Medvedeva, Julia

    Driven by technological appeal, the research area of amorphous oxide semiconductors has grown tremendously since the first demonstration of the unique properties of amorphous indium oxide more than a decade ago. Today, amorphous oxides, such as a-ITO, a-IZO, a-IGZO, or a-ZITO, exhibit the optical, electrical, thermal, and mechanical properties that are comparable or even superior to those possessed by their crystalline counterparts, pushing the latter out of the market. Large-area uniformity, low-cost low-temperature deposition, high carrier mobility, optical transparency, and mechanical flexibility make these materials appealing for next-generation thin-film electronics. Yet, the structural variations associated with crystalline-to-amorphous transition as well as their role in carrier generation and transport properties of these oxides are far from being understood. Although amorphous oxides lack grain boundaries, factors like (i) size and distribution of nanocrystalline inclusions; (ii) spatial distribution and clustering of incorporated cations in multicomponent oxides; (iii) formation of trap defects; and (iv) piezoelectric effects associated with internal strains, will contribute to electron scattering. In this work, ab-initio molecular dynamics (MD) and accurate density-functional approaches are employed to understand how the properties of amorphous ternary and quaternary oxides depend on quench rates, cation compositions, and oxygen stoichiometries. The MD results, combined with thorough experimental characterization, reveal that interplay between the local and long-range structural preferences of the constituent oxides gives rise to a complex composition-dependent structural behavior in the amorphous oxides. The proposed network models of metal-oxygen polyhedra help explain the observed intriguing electrical and optical properties in In-based oxides and suggest ways to broaden the phase space of amorphous oxide semiconductors with tunable properties. The

  7. Glass transition phenomena applied to powdered amorphous food carbohydrates

    OpenAIRE

    Ronkart, Sebastien N; Blecker, Christophe; Deroanne, Claude; Paquot, Michel

    2009-01-01

    Glass transition phenomena applied to powdered amorphous food carbohydrates. During these last fifteen years, some food technologists and scientists have become aware of the importance of the glass transition, a thermal property of glassy or amorphous material, in food preparation processes. Recent studies have successfully correlated this fundamental notion to technofunctional changes within the powder. The aim of this paper is to present in a non exhaustive manner the relationship between g...

  8. Magnetic Properties of Nanometer-sized Crystalline and Amorphous Particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Bødker, Franz; Hansen, Mikkel Fougt;

    1997-01-01

    Amorphous transition metal-metalloid alloy particles can be prepared by chemical preparation techniques. We discuss the preparation of transition metal-boron and iron-carbon particles and their magnetic properties. Nanometer-sized particles of both crystalline and amorphous magnetic materials...... are superparamagnetic at finite temperatures. The temperature dependence of the superparamagnetic relaxation time and the influence of inter-particle interactions is discussed. Finally, some examples of studies of surface magnetization of alpha-Fe particles are presented....

  9. Threshold irradiation dose for amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be {approximately}0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10{sup {minus}3} dpa/s and with fission neutrons irradiated at 1 x 10{sup {minus}6} dpa/s irradiated to 15 dpa in the temperature range of {approximately}340 {+-} 10K.

  10. Amorphous solid dispersion of cyclosporine A prepared with fine droplet drying process: Physicochemical and pharmacokinetic characterization.

    Science.gov (United States)

    Suzuki, Hiroki; Moritani, Tatsuru; Morinaga, Tadahiko; Seto, Yoshiki; Sato, Hideyuki; Onoue, Satomi

    2017-03-15

    The present study aimed to develop an amorphous solid dispersion (ASD) of cyclosporine A (CsA) by a fine droplet drying (FDD) process for improvement in oral absorption of CsA. CsA and hydroxypropyl cellulose-SSL were dissolved in 1,4-dioxane, and the solution was powdered by the FDD process to obtain the ASD formulation of CsA (ASD/CsA). The ASD/CsA was characterized in terms of morphology, particle size distribution, crystallinity, dissolution behavior, physicochemical stability, and pharmacokinetic behavior in rats. The ASD/CsA was obtained in the form of uniform spherical particles, and the span factor was calculated to be ca. 0.4. CsA in the formulation existed in an amorphous state. The ASD/CsA exhibited a higher dissolution behavior of CsA than amorphous CsA, whereas storage of the ASD/CsA under accelerated conditions led to impairment in the dissolution behavior. The constant release of CsA from non-aged ASD/CsA was observed during dissolution testing. After oral administration of CsA samples (10mg-CsA/kg) in rats, the ASD/CsA showed a high and sustained plasma concentration of CsA as evidenced by a 18-fold increase in the oral bioavailability of CsA compared with amorphous CsA. From these findings, the FDD process might be an efficacious option for the ASD formulation of CsA with enhanced biopharmaceutics properties.

  11. Soft magnetic and microstructural investigation in Fe-based amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nabiałek, Marcin, E-mail: nmarcell@wp.pl

    2015-09-05

    Highlights: • Samples were obtained using the injection-casting method. • The samples were manufactured in the shape of plates of the thickness 0.5 mm. • The amorphous and nanocrystalline structure was confirmed using XRD, SEM, TEM, CT. • Magnetic properties were analysed in terms of contents of the spin waves stiffness parameter b. - Abstract: In this paper, the results of investigations concerning Fe{sub 61}Co{sub 10}Y{sub 8}W{sub 1}B{sub 20} alloy are presented. The alloy samples were produced, using an injection-casting method, in the form of plates of approximate thickness 0.5 mm. Analysis of the results facilitates the description of structural transformations which occurred within the amorphous material as a result of isothermal annealing, the latter having been carried out under specified conditions. This thermal treatment led to the creation within the amorphous matrix of evenly distributed nanometric sized crystalline grains. The structure and microstructure of the samples in the as-quenched and nanocrystalline states were analysed by means of: X-ray diffractometry (XRD), scanning and transmission electron microscopy (SEM and TEM) and computer tomography (CT). The influence of the structural changes on the magnetic properties was studied using a vibrating sample magnetometer (VSM). Detailed analysis of the microstructure was performed on the ferromagnetic alloy samples with amorphous and nanocrystalline structure; this, in connection with the magnetic studies, facilitated full description of the influence of changes in the microstructure, and imperfections created during the production process, on the magnetic properties.

  12. Nanostructured amorphous nickel oxide with enhanced antioxidant activity

    Energy Technology Data Exchange (ETDEWEB)

    Madhu, G. [Department of Physics, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581 (India); Department of Physics, University College, Thiruvananthapuram, Kerala 695034 (India); Biju, V., E-mail: bijunano@gmail.com [Department of Physics, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695581 (India)

    2015-07-15

    Highlights: • Synthesis of nanostructured amorphous nickel oxide by a facile chemical route. • Enhanced antioxidant activity of amorphous NiO compared to crystalline samples. • Role of O{sup 2−} vacancies and high specific surface area in antioxidant activity. • Use of DC conductivity, XPS and BET to explain enhanced antioxidant activity. - Abstract: Nanostructured amorphous nickel oxide was synthesized by the thermal decomposition of nickel chloride–ethanol amine complex. The X-ray diffraction and Transmission Electron Microscopic studies established the amorphous nature of the sample. The Fourier Transform Infrared, Scanning Electron Microscopy, Energy Dispersive and X-ray Photoelectron Spectroscopic studies of the sample revealed the formation of NiO. The specific surface area of the sample is measured using Brunauer–Emmett–Teller analysis and the mesoporous nature of the sample is established through Barrett–Joyner–Halenda pore size distribution analysis. The antioxidant activity of the amorphous sample measured by 1,1-diphenyl-2-picryl hydrazyl (DPPH) scavenging is found to be nearly twice greater than that reported for nanocrystalline NiO samples. The estimated radical scavenging activity of the sample is correlated with the DC conductivity values measured in vacuum and air ambience. The enhanced antioxidant activity of the amorphous NiO is accounted by the increase in the concentration of O{sup 2−} vacancies and the specific surface area. The Ni 2p and O 1s X-ray Photoelectron Spectroscopic studies of the sample support the inference.

  13. Thermoanalytical and Fourier transform infrared spectral curve-fitting techniques used to investigate the amorphous indomethacin formation and its physical stability in Indomethacin-Soluplus® solid dispersions.

    Science.gov (United States)

    Lin, Shan-Yang; Lin, Hong-Liang; Chi, Ying-Ting; Huang, Yu-Ting; Kao, Chi-Yu; Hsieh, Wei-Hsien

    2015-12-30

    The amorphous form of a drug has higher water solubility and faster dissolution rate than its crystalline form. However, the amorphous form is less thermodynamically stable and may recrystallize during manufacturing and storage. Maintaining the amorphous state of drug in a solid dosage form is extremely important to ensure product quality. The purpose of this study was to quantitatively determine the amount of amorphous indomethacin (INDO) formed in the Soluplus® solid dispersions using thermoanalytical and Fourier transform infrared (FTIR) spectral curve-fitting techniques. The INDO/Soluplus® solid dispersions with various weight ratios of both components were prepared by air-drying and heat-drying processes. A predominate IR peak at 1683cm(-1) for amorphous INDO was selected as a marker for monitoring the solid state of INDO in the INDO/Soluplus® solid dispersions. The physical stability of amorphous INDO in the INDO/Soluplus® solid dispersions prepared by both drying processes was also studied under accelerated conditions. A typical endothermic peak at 161°C for γ-form of INDO (γ-INDO) disappeared from all the differential scanning calorimetry (DSC) curves of INDO/Soluplus® solid dispersions, suggesting the amorphization of INDO caused by Soluplus® after drying. In addition, two unique IR peaks at 1682 (1681) and 1593 (1591)cm(-1) corresponded to the amorphous form of INDO were observed in the FTIR spectra of all the INDO/Soluplus® solid dispersions. The quantitative amounts of amorphous INDO formed in all the INDO/Soluplus® solid dispersions were increased with the increase of γ-INDO loaded into the INDO/Soluplus® solid dispersions by applying curve-fitting technique. However, the intermolecular hydrogen bonding interaction between Soluplus® and INDO were only observed in the samples prepared by heat-drying process, due to a marked spectral shift from 1636 to 1628cm(-1) in the INDO/Soluplus® solid dispersions. The INDO/Soluplus® solid

  14. Understanding the Tendency of Amorphous Solid Dispersions to Undergo Amorphous–Amorphous Phase Separation in the Presence of Absorbed Moisture

    OpenAIRE

    Rumondor, Alfred C. F.; Wikström, Håkan; Van Eerdenbrugh, Bernard; Taylor, Lynne S.

    2011-01-01

    Formulation of an amorphous solid dispersion (ASD) is one of the methods commonly considered to increase the bioavailability of a poorly water-soluble small-molecule active pharmaceutical ingredient (API). However, many factors have to be considered in designing an API–polymer system, including any potential changes to the physical stability of the API. In this study, the tendency of ASD systems containing a poorly water-soluble API and a polymer to undergo amorphous–amorphous phase separatio...

  15. Characterizing the Phyllosilicates and Amorphous Phases Found by MSL Using Laboratory XRD and EGA Measurements of Natural and Synthetic Materials

    Science.gov (United States)

    Rampe, Elizabeth B.; Morris, Richard V.; Chipera, Steve; Bish, David L.; Bristow, Thomas; Archer, Paul Douglas; Blake, David; Achilles, Cherie; Ming, Douglas W.; Vaniman, David; Crisp, Joy A.; DesMarais, David J.; Downs, Robert; Farmer, Jack D.; Morookian, John Michael; Morrison, Shaunna; Sarrazin, Philippe; Spanovich, Nicole; Treiman, Allan H.; Yen, Albert S.

    2013-01-01

    The Curiosity Rover landed on the Peace Vallis alluvial fan in Gale crater on August 5, 2012. A primary mission science objective is to search for past habitable environments, and, in particular, to assess the role of past water. Identifying the minerals and mineraloids that result from aqueous alteration at Gale crater is essential for understanding past aqueous processes at the MSL landing site and hence for interpreting the site's potential habitability. X-ray diffraction (XRD) data from the CheMin instrument and evolved gas analyses (EGA) from the SAM instrument have helped the MSL science team identify phases that resulted from aqueous processes: phyllosilicates and amorphous phases were measure in two drill samples (John Klein and Cumberland) obtained from the Sheepbed Member, Yellowknife Bay Fm., which is believed to represent a fluvial-lacustrine environment. A third set of analyses was obtained from scoop samples from the Rocknest sand shadow. Chemical data from the APXS instrument have helped constrain the chemical compositions of these secondary phases and suggest that the phyllosilicate component is Mg-enriched and the amorphous component is Fe-enriched, relatively Si-poor, and S- and H-bearing. To refine the phyllosilicate and amorphous components in the samples measured by MSL, we measured XRD and EGA data for a variety of relevant natural terrestrial phyllosilicates and synthetic mineraloids in laboratory testbeds of the CheMin and SAM instruments. Specifically, Mg-saturated smectites and vermiculites were measured with XRD at low relative humidity to understand the behavior of the 001 reflections under Mars-like conditions. Our laboratory XRD measurements suggest that interlayer cation composition affects the hydration state of swelling clays at low RH and, thus, the 001 peak positions. XRD patterns of synthetic amorphous materials, including allophane, ferrihydrite, and hisingerite were used in full-pattern fitting (FULLPAT) models to help

  16. Analytical drain current model for amorphous IGZO thin-film transistors in abovethreshold regime

    Institute of Scientific and Technical Information of China (English)

    He Hongyu; Zheng Xueren

    2011-01-01

    An analytical drain current model is presented for amorphous In-Ga-Zn-oxide thin-film transistors in the above-threshold regime,assuming an exponential trap states density within the bandgap.Using a charge sheet approximation,the trapped and free charge expressions are calculated,then the surface potential based drain current expression is developed.Moreover,threshold voltage based drain current expressions are presented using the Taylor expansion to the surface potential based drain current expression.The calculated results of the surface potential based and threshold voltage based drain current expressions are compared with experimental data and good agreements are achieved.

  17. Molecular-dynamics simulation of shock-stress-induced amorphization of α-quartz

    Science.gov (United States)

    Chaplot, S. L.; Sikka, S. K.

    2000-05-01

    The molecular-dynamics technique is used to investigate the shock propagation in α-quartz using a very long periodic macrocell, and semiempirical long-range Coulomb and short-range interatomic potentials. The equation of state and the phase transformation pressure are in good agreement with published experimental data. The transformed phase is identified to be amorphous, and not as stishovite, and is retained on release of the shock pressure. The Raman A1 phonon frequency is also simulated successfully which is known to show a significantly different variation with static and shock pressures.

  18. Amino acids as co-amorphous excipients for simvastatin and glibenclamide

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Grohganz, Holger

    2014-01-01

    to a few drugs and amino acids. To facilitate the rational selection of amino acids, the practical importance of the amino acid coming from the biological target site of the drug (and associated intermolecular interactions) needs to be established. In the present study, the formation of co......-amorphous systems using cryomilling and combinations of two poorly water-soluble drugs (simvastatin and glibenclamide) with the amino acids aspartic acid, lysine, serine, and threonine was investigated. Solid-state characterization with X-ray powder diffraction, differential scanning calorimetry, and Fourier...

  19. Novel photochemical vapor deposition reactor for amorphous silicon solar cell deposition

    Science.gov (United States)

    Rocheleau, Richard E.; Hegedus, Steven S.; Buchanan, Wayne A.; Jackson, Scott C.

    1987-07-01

    A novel photochemical vapor deposition (photo-CVD) reactor having a flexible ultraviolet-transparent Teflon curtain and a secondary gas flow to eliminate deposition on the window has been used to deposit amorphous silicon films and p-i-n solar cells. The background levels of atmospheric contaminants (H2O, CO2, N2) depend strongly on the vacuum procedures but not on the presence of a Teflon curtain in the reactor. Intrinsic films with a midgap density of states of 3×1015 eV-1 cm-3 and all-photo-CVD pin solar cells with efficiencies of 8.5% have been deposited.

  20. Direct measurement of free-energy barrier to nucleation of crystallites in amorphous silicon thin films

    Science.gov (United States)

    Shi, Frank G.

    1994-01-01

    A method is introduced to measure the free-energy barrier W(sup *), the activation energy, and activation entropy to nucleation of crystallites in amorphous solids, independent of the energy barrier to growth. The method allows one to determine the temperature dependence of W(sup *), and the effect of the preparation conditions of the initial amorphous phase, the dopants, and the crystallization methds on W(sup *). The method is applied to determine the free-energy barrier to nucleation of crystallites in amorphous silicon (a-Si) thin films. For thermally induced nucleation in a-Si thin films with annealing temperatures in the range of from 824 to 983 K, the free-energy barrier W(sup *) to nucleation of silicon crystals is about 2.0 - 2.1 eV regardless of the preparation conditions of the films. The observation supports the idea that a-Si transforms into an intermediate amorphous state through the structural relaxation prior to the onset of nucleation of crystallites in a-Si. The observation also indicates that the activation entropy may be an insignificant part of the free-energy barrier for the nucleation of crystallites in a-Si. Compared with the free-energy barrier to nucleation of crystallites in undoped a-Si films, a significant reduction is observed in the free-energy barrier to nucleation in Cu-doped a-Si films. For a-Si under irradiation of Xe(2+) at 10(exp 5) eV, the free-energy barrier to ion-induced nucleation of crystallites is shown to be about half of the value associated with thermal-induced nucleation of crystallites in a-Si under the otherwise same conditions, which is much more significant than previously expected. The present method has a general kinetic basis; it thus should be equally applicable to nucleation of crystallites in any amorphous elemental semiconductors and semiconductor alloys, metallic and polymeric glasses, and to nucleation of crystallites in melts and solutions.

  1. Health hazards due to the inhalation of amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Merget, R.; Bruening, T. [Research Institute for Occupational Medicine (BGFA), Bochum (Germany); Bauer, T. [Bergmannsheil, University Hospital, Department of Internal Medicine, Division of Pneumonology, Allergology and Sleep Medicine, Bochum (Germany); Kuepper, H.U.; Breitstadt, R. [Degussa-Huels Corp., Wesseling (Germany); Philippou, S. [Department of Pathology, Augusta Krankenanstalten, Bochum (Germany); Bauer, H.D. [Research Institute for Hazardous Substances (IGF), Bochum (Germany)

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or

  2. Amorphous iron–chromium oxide nanoparticles with long-term stability

    Energy Technology Data Exchange (ETDEWEB)

    Iacob, Mihail [“Petru Poni” Institute of Macromolecular Chemistry, Iasi 700487 (Romania); Institute of Chemistry of ASM, Academiei str. 3, Chisinau 2028, Republic of Moldova (Moldova, Republic of); Cazacu, Maria, E-mail: mcazacu@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, Iasi 700487 (Romania); Turta, Constantin [Institute of Chemistry of ASM, Academiei str. 3, Chisinau 2028, Republic of Moldova (Moldova, Republic of); Doroftei, Florica [“Petru Poni” Institute of Macromolecular Chemistry, Iasi 700487 (Romania); Botko, Martin; Čižmár, Erik; Zeleňáková, Adriana; Feher, Alexander [Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, SK-04154 Košice (Slovakia)

    2015-05-15

    Highlights: • Fe–Cr oxide nanoparticles with pre-established metals ratio were obtained. • The amorphous state and its long-term stability were highlighted by X-ray diffraction. • The average diameter of dried nanoparticles was 3.5 nm, as was estimated by TEM, AFM. • In hexane dispersion, nanoparticles with diameter in the range 2.33–4.85 nm were found. • Superparamagnetic state of NPs co-exists with diamagnetism of the organic layer. - Abstract: Iron–chromium nanoparticles (NPs) were obtained through the thermal decomposition of μ{sub 3}-oxo heterotrinuclear (FeCr{sub 2}O) acetate in the presence of sunflower oil and dodecylamine (DA) as surfactants. The average diameter of the NPs was 3.5 nm, as estimated on the basis of transmission electron microscopy and atomic force microscopy images. Both techniques revealed the formation of roughly approximated spheres with some irregularities and agglomerations in larger spherical assemblies of 50–100 nm. In hexane, NPs with diameters in the 2.33–4.85 nm range are individually dispersed, as emphasized by dynamic light scattering measurements. The amorphous nature of the product was emphasized by X-ray powder diffraction. The study of the magnetic properties shows the presence of superparamagnetic state of iron–chromium oxide NPs and the diamagnetic contribution from DA layer forming a shell of NPs.

  3. Impact of defect occupation on conduction in amorphous Ge2Sb2Te5

    Science.gov (United States)

    Kaes, Matthias; Salinga, Martin

    2016-08-01

    Storage concepts employing the resistance of phase-change memory (PRAM) have matured in recent years. Attempts to model the conduction in the amorphous state of phase-change materials dominating the resistance of PRAM devices commonly invoke a connection to the electronic density-of-states (DoS) of the active material in form of a “distance between trap states s”. Here, we point out that s depends on the occupation of defects and hence on temperature. To verify this, we numerically study how the occupation in the DoS of Ge2Sb2Te5 is affected by changes of temperature and illumination. Employing a charge-transport model based on the Poole-Frenkel effect, we correlate these changes to the field- and temperature-dependent current-voltage characteristics of lateral devices of amorphous Ge2Sb2Te5, measured in darkness and under illumination. In agreement with our calculations, we find a pronounced temperature-dependence of s. As the device-current depends exponentially on the value of s, accounting for its temperature-dependence has profound impact on device modeling.

  4. Amorphous metal distribution transformers: The energy-efficient alternative

    Energy Technology Data Exchange (ETDEWEB)

    Garrity, T.F. [GE Power Systems, Schenectady, NY (United States)

    1994-12-31

    Amorphous metal distribution transformers have been commercially available for the past 13 years. During that time, they have realized the promise of exceptionally high core efficiency as compared to silicon steel transformer cores. Utility planners today must consider all options available to meet the requirements of load growth. While additional generation capacity will be added, many demand-side initiatives are being undertaken as complementary programs to generation expansion. The efficiency improvement provided by amorphous metal distribution transformers deserves to be among the demand-side options. The key to understanding the positive impact of amorphous metal transformer efficiency is to consider the aggregate contribution those transformers can make towards demand reduction. It is estimated that distribution transformer core losses comprise at least 1% of the utility`s peak demand. Because core losses are continuous, any significant reduction in their magnitude is of great significance to the planner. This paper describes the system-wide economic contributions amorphous metal distribution transformers can make to a utility and suggests evaluation techniques that can be used. As a conservation tool, the amorphous metal transformer contributes to reduced power plant emissions. Calibration of those emissions reductions is also discussed in the paper.

  5. Two-phase electrochemical lithiation in amorphous silicon.

    Science.gov (United States)

    Wang, Jiang Wei; He, Yu; Fan, Feifei; Liu, Xiao Hua; Xia, Shuman; Liu, Yang; Harris, C Thomas; Li, Hong; Huang, Jian Yu; Mao, Scott X; Zhu, Ting

    2013-02-13

    Lithium-ion batteries have revolutionized portable electronics and will be a key to electrifying transport vehicles and delivering renewable electricity. Amorphous silicon (a-Si) is being intensively studied as a high-capacity anode material for next-generation lithium-ion batteries. Its lithiation has been widely thought to occur through a single-phase mechanism with gentle Li profiles, thus offering a significant potential for mitigating pulverization and capacity fade. Here, we discover a surprising two-phase process of electrochemical lithiation in a-Si by using in situ transmission electron microscopy. The lithiation occurs by the movement of a sharp phase boundary between the a-Si reactant and an amorphous Li(x)Si (a-Li(x)Si, x ~ 2.5) product. Such a striking amorphous-amorphous interface exists until the remaining a-Si is consumed. Then a second step of lithiation sets in without a visible interface, resulting in the final product of a-Li(x)Si (x ~ 3.75). We show that the two-phase lithiation can be the fundamental mechanism underpinning the anomalous morphological change of microfabricated a-Si electrodes, i.e., from a disk shape to a dome shape. Our results represent a significant step toward the understanding of the electrochemically driven reaction and degradation in amorphous materials, which is critical to the development of microstructurally stable electrodes for high-performance lithium-ion batteries.

  6. Amorphous computing in the presence of stochastic disturbances.

    Science.gov (United States)

    Chu, Dominique; Barnes, David J; Perkins, Samuel

    2014-11-01

    Amorphous computing is a non-standard computing paradigm that relies on massively parallel execution of computer code by a large number of small, spatially distributed, weakly interacting processing units. Over the last decade or so, amorphous computing has attracted a great deal of interest both as an alternative model of computing and as an inspiration to understand developmental biology. A number of algorithms have been developed that can take advantage of the massive parallelism of this computing paradigm to solve specific problems. One of the interesting properties of amorphous computers is that they are robust with respect to the loss of individual processing units, in the sense that a removal of some of them should not impact on the computation as a whole. However, much less understood is to what extent amorphous computers are robust with respect to minor disturbances to the individual processing units, such as random motion or occasional faulty computation short of total component failure. In this article we address this question. As an example problem we choose an algorithm to calculate a straight line between two points. Using this example, we find that amorphous computers are not in general robust with respect to Brownian motion and noise, but we find strategies that restore reliable computation even in their presence. We will argue that these strategies are generally applicable and not specific to the particular AC we consider, or even specific to electronic computers.

  7. Devitrification of rapidly quenched Al–Cu–Ti amorphous alloys

    Indian Academy of Sciences (India)

    D K Misra; R S Tiwari; O N Srivastava

    2003-08-01

    X-ray diffraction, transmission electron microscopy and differential scanning calorimetry were carried out to study the transformation from amorphous to icosahedral/crystalline phases in the rapidly quenched Al50Cu45Ti5 and Al45Cu45Ti10 alloys. In the present investigation, we have studied the formation and stability of amorphous phase in Al50Cu45Ti5 and Al45Cu45Ti10 rapidly quenched alloys. The DSC curve shows a broad complex type of exothermic overlapping peaks (288–550°C) for Al50Cu45Ti5 and a well defined peak around 373°C for Al45Cu45Ti10 alloy. In the case of Al50Cu45Ti5 alloy amorphous to icosahedral phase transformation has been observed after annealing at 280°C for 73 h. Large dendritic growth of icosahedral phase along with -Al phase has been found. Annealing of Al50Cu45Ti5 alloy at 400°C for 8 h results in formation of Al3Ti type phase. Al45Cu45Ti10 amorphous alloy is more stable in comparison to Al50Cu45Ti5 alloy and after annealing at 400°C for 8 h it also transforms to Al3Ti type phase. However, this alloy does not show amorphous to icosahedral phase transformation.

  8. Comprehensive modeling of ion-implant amorphization in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Mok, K.R.C. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain) and Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576 (Singapore)]. E-mail: g0202446@nus.edu.sg; Jaraiz, M. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Martin-Bragado, I. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Synopsys, Karl-Hammerschmidt Strasse 34, D-85609 Aschheim/Dornach (Germany); Rubio, J.E. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Castrillo, P. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Pinacho, R. [Departamento de E. y Electronica, Universidad de Valladolid, ETSIT Campus Miguel Delibes, 47011 Valladolid (Spain); Srinivasan, M.P. [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576 (Singapore); Benistant, F. [Chartered Semiconductor Manufacturing. 60 Woodlands Industrial Park D, Street 2, Singapore 738406 (Singapore)

    2005-12-05

    A physically based model has been developed to simulate the ion-implant induced damage accumulation up to amorphization in silicon. Based on damage structures known as amorphous pockets (AP), which are three-dimensional, irregularly shaped agglomerates of interstitials (I) and vacancies (V) surrounded by crystalline silicon, the model is able to reproduce a wide range of experimental observations of damage accumulation and amorphization with interdependent implantation parameters. Instead of recrystallizing the I's and V's instantaneously, the recrystallization rate of an AP containing nI and mV is a function of its effective size, defined as min(n, m), irrespective of its internal spatial configuration. The parameters used in the model were calibrated using the experimental silicon amorphous-crystalline transition temperature as a function of dose rate for C, Si, and Ge. The model is able to show the superlinear damage build-up with dose, the extent of amorphous layer and the superadditivity effect of polyatomic ions.

  9. Electroplating process of amorphous Fe-Ni-Cr alloy

    Institute of Scientific and Technical Information of China (English)

    何湘柱; 夏畅斌; 王红军; 龚竹清; 蒋汉瀛

    2001-01-01

    A novel process of electroplating amorphous Fe-Cr-Ni alloy in chloride aqueous solution with Fe( Ⅱ ), Ni ( lⅡ ) and Cr( Ⅲ ) was reported. Couple plasma atomic emission spectrometry (ICP-AES), X-ray diffractometry(XRD),scanning electronic microscopy(SEM), microhardness test and rapid heating-cooling method were adopted to detect the properties of the amorphous Fe-Ni-Cr deposit, such as composition, crystalline structure, micrograph, hardness, and adherence between deposit and substrate. The effects of the operating parameters on the electrodeposit of the amorphous FeNi-Cr alloy were discussed in detail. The results show that a 8.7 μm thick mirror-like amorphous Fe-Ni-Cr alloy deposit,with Vicker's hardness of 530 and composition of 45%~55% Fe, 33%~37% Ni, 9%~23% Cr was obtained by electroplating for 20 min at room temperature( 10 30 C ), cathode current 10~16 A/dm2, pH = 1.0~3.0. The XRD pat terns show that there only appears a broad hump around 2θ of 41 °~47 °for the amorphous Fe-Ni-Cr alloy deposit, while the SEM micrographs show that the deposit contains only a few fine cracks but no pinholes.

  10. Parametrized dielectric functions of amorphous GeSn alloys

    Energy Technology Data Exchange (ETDEWEB)

    D' Costa, Vijay Richard, E-mail: elevrd@nus.edu.sg; Wang, Wei; Yeo, Yee-Chia, E-mail: eleyeoyc@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Schmidt, Daniel [Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603 (Singapore)

    2015-09-28

    We obtained the complex dielectric function of amorphous Ge{sub 1−x}Sn{sub x} (0 ≤ x ≤ 0.07) alloys using spectroscopic ellipsometry from 0.4 to 4.5 eV. Amorphous GeSn films were formed by room-temperature implantation of phosphorus into crystalline GeSn alloys grown by molecular beam epitaxy. The optical response of amorphous GeSn alloys is similar to amorphous Ge and can be parametrized using a Kramers-Kronig consistent Cody-Lorentz dispersion model. The parametric model was extended to account for the dielectric functions of amorphous Ge{sub 0.75}Sn{sub 0.25} and Ge{sub 0.50}Sn{sub 0.50} alloys from literature. The compositional dependence of band gap energy E{sub g} and parameters associated with the Lorentzian oscillator have been determined. The behavior of these parameters with varying x can be understood in terms of the alloying effect of Sn on Ge.

  11. Infrared Spectra and Optical Constants of Elusive Amorphous Methane

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.

    2015-01-01

    New and accurate laboratory results are reported for amorphous methane (CH4) ice near 10 K for the study of the interstellar medium (ISM) and the outer Solar System. Near- and mid-infrared (IR) data, including spectra, band strengths, absorption coefficients, and optical constants, are presented for the first time for this seldom-studied amorphous solid. The apparent IR band strength near 1300 cm(exp -1) (7.69 micrometer) for amorphous CH4 is found to be about 33% higher than the value long used by IR astronomers to convert spectral observations of interstellar CH4 into CH4 abundances. Although CH4 is most likely to be found in an amorphous phase in the ISM, a comparison of results from various laboratory groups shows that the earlier CH4 band strength at 1300 cm(exp -1) (7.69 micrometer) was derived from IR spectra of ices that were either partially or entirely crystalline CH4 Applications of the new amorphous-CH4 results are discussed, and all optical constants are made available in electronic form.

  12. Visible light response, electrical transport, and amorphization in compressed organolead iodine perovskites

    Science.gov (United States)

    Ou, Tianji; Yan, Jiejuan; Xiao, Chuanhai; Shen, Wenshu; Liu, Cailong; Liu, Xizhe; Han, Yonghao; Ma, Yanzhang; Gao, Chunxiao

    2016-06-01

    Recent scientific advances on organic-inorganic hybrid perovskites are mainly focused on the improvement of power conversion efficiency. So far, how compression tunes their electronic and structural properties remains less understood. By combining in situ photocurrent, impedance spectroscopy, and X-ray diffraction (XRD) measurements, we have studied the electrical transport and structural properties of compressed CH3NH3PbI3 (MAPbI3) nanorods. The visible light response of MAPbI3 remains robust below 3 GPa while it is suppressed when it becomes amorphous. Pressure-induced electrical transport properties of MAPbI3 including resistance, relaxation frequency, and relative permittivity have been investigated under pressure up to 8.5 GPa by in situ impedance spectroscopy measurements. These results indicate that the discontinuous changes of these physical parameters occur around the structural phase transition pressure. The XRD studies of MAPbI3 under high pressure up to 20.9 GPa show that a phase transformation below 0.7 GPa, could be attributed to the tilting and distortion of PbI6 octahedra. And pressure-induced amorphization is reversible at a low density amorphous state but irreversible at a relatively higher density state. Furthermore, the MAPbI3 nanorods crush into nanopieces around 0.9 GPa which helps us to explain why the mixed phase of tetragonal and orthorhombic was observed at 0.5 GPa. The pressure modulated changes of electrical transport and visible light response properties open up a new approach for exploring CH3NH3PbI3-based photo-electronic applications.Recent scientific advances on organic-inorganic hybrid perovskites are mainly focused on the improvement of power conversion efficiency. So far, how compression tunes their electronic and structural properties remains less understood. By combining in situ photocurrent, impedance spectroscopy, and X-ray diffraction (XRD) measurements, we have studied the electrical transport and structural properties of

  13. Amorphous silicene—a view from molecular dynamics simulation

    Science.gov (United States)

    Van Hoang, Vo; Long, N. T.

    2016-05-01

    Models of amorphous silicene (a-silicene) containing 104 atoms are obtained by cooling from the melt via molecular dynamics (MD) simulation. The evolution of various kinds of structural and thermodynamic behavior in models upon cooling from the melt is found, including total energy, radial distribution function (RDF), interatomic distance, coordination number, and ring and bond-angle distributions. We also show the buckling distribution and a 2D visualization of the atomic configurations. The diffraction pattern shows that a glass state is indeed formed in the system. The glass transition temperature of 2D silicon ({{T}\\text{g}}=1350 K) has a reasonable value compared to that of its 3D counterpart. Calculations show that although most atoms in a-silicene obtained at 300 K have a three-fold coordination and mainly evolve into six-fold rings, a-silicene also contains various structural defects including those not found in crystalline silicene (c-silicene) such as adatoms, clusters of small-membered rings, large-membered rings and local linear defects. The concentration of defects in a-silicene is much higher than that of the crystalline version. We find that buckling is not unique for all the atoms in the model. The strong distorted structure of a-silicene compared to that of the crystalline version may lead to physico-chemical properties, including the possibility of opening the band gap in the former compared to the zero band gap of the latter. Note that due to the fixed length being equal to buckling of 0.44 Å in the z direction with the elastic reflection behavior boundary, our models are relevant for a-silicene formed in confinement between two planar simple hard walls.

  14. Oxidation of fluorinated amorphous carbon (a-CF(x)) films.

    Science.gov (United States)

    Yun, Yang; Broitman, Esteban; Gellman, Andrew J

    2010-01-19

    Amorphous fluorinated carbon (a-CF(x)) films have a variety of potential technological applications. In most such applications these films are exposed to air and undergo partial surface oxidation. X-ray photoemission spectroscopy has been used to study the oxidation of fresh a-CF(x) films deposited by magnetron sputtering. The oxygen sticking coefficient measured by exposure to low pressures (<10(-3) Torr) of oxygen at room temperature is on the order of S approximately 10(-6), indicating that the surfaces of these films are relatively inert to oxidation when compared with most metals. The X-ray photoemission spectra indicate that the initial stages of oxygen exposure (<10(7) langmuirs) result in the preferential oxidation of the carbon atoms with zero or one fluorine atom, perhaps because these carbon atoms are more likely to be found in configurations with unsaturated double bonds and radicals than carbon atoms with two or three fluorine atoms. Exposure of the a-CF(x) film to atmospheric pressures of air (effective exposure of 10(12) langmuirs to O(2)) results in lower levels of oxygen uptake than the low pressure exposures (<10(7) langmuirs). It is suggested that this is the result of oxidative etching of the most reactive carbon atoms, leaving a relatively inert surface. Finally, low pressure exposures to air result in the adsorption of both nitrogen and oxygen onto the surface. Some of the nitrogen adsorbed on the surface at low pressures is in a reversibly adsorbed state in the sense that subsequent exposure to low pressures of O(2) results in the displacement of nitrogen by oxygen. Similarly, when an a-CF(x) film oxidized in pure O(2) is exposed to low pressures of air, some of the adsorbed oxygen is displaced by nitrogen. It is suggested that these forms of nitrogen and oxygen are bound to free radical sites in the film.

  15. Near-edge elastic photon scattering in amorphous systems

    Energy Technology Data Exchange (ETDEWEB)

    Hugtenburg, R.P. [School of Physics and Astronomy, University of Birmingham, B15 2TT (United Kingdom); Queen Elizabeth Medical Centre, University Hospital Birmingham, B15 2TH (United Kingdom)], E-mail: r.p.hugtenburg@bham.ac.uk; England, D.W. [Queen Elizabeth Medical Centre, University Hospital Birmingham, B15 2TH (United Kingdom); Bradley, D.A. [Department of Physics, School of Electronics and Physical Sciences, University of Surrey, GU2 7XH (United Kingdom)

    2007-10-15

    The structure of valence and unoccupied electron orbitals and the neighbouring electron density distribution of atoms and ions in amorphous systems can be examined through use of resonance in the elastic photon scattering-cross-section in the vicinity of core atomic orbital energies. So-called anomalous X-ray scattering (AXS) is a mode of analysis that offers similar information to that of EXAFS but can be obtained concurrently with diffraction mode imaging. Of interest is whether the dilute-ion aqueous system provides an environment suitable for testing independent particle approximation (IPA) predictions. With the aqueous environment as the reference system for calibrating relative cross-sections, particular challenges include photons scattered by the medium being subsequently absorbed by the ion, limiting the thickness of the attenuating medium and motivating use of bright synchrotron photon sources where tunable X-rays are obtained at sub-eV resolution using a Si 111 monochromator. Measured scattering intensities and fluorescent yields were compared and shown to agree qualitatively with Monte Carlo calculations utilising amplitudes calculated from modified form-factors with anomalous scatter factors at a resolution of several eV determined from the Dirac-Slater exchange potential. Experimentally determined form-factors for pure water were used to calibrate fluorescent yield and elastic scattering intensities for measurement of the energy dependent variation of these quantities near edge and XRF imaging of the Zn concentration in wax mounted, formalin fixed, breast tumour samples. Results indicate the distribution of Zn at higher resolution than sampling dimensions used in previous studies. Shifts in the position and profile of K-edge absorption and elastic scattering features in aqeuous Zn, Zn doped sol-gel glass and Zn in tissue are shown to reflect changes in the atomic charge state and environment and offer support for the presence of non-nutrient Zn bearing

  16. Near-edge elastic photon scattering in amorphous systems

    Science.gov (United States)

    Hugtenburg, R. P.; England, D. W.; Bradley, D. A.

    2007-10-01

    The structure of valence and unoccupied electron orbitals and the neighbouring electron density distribution of atoms and ions in amorphous systems can be examined through use of resonance in the elastic photon scattering-cross-section in the vicinity of core atomic orbital energies. So-called anomalous X-ray scattering (AXS) is a mode of analysis that offers similar information to that of EXAFS but can be obtained concurrently with diffraction mode imaging. Of interest is whether the dilute-ion aqueous system provides an environment suitable for testing independent particle approximation (IPA) predictions. With the aqueous environment as the reference system for calibrating relative cross-sections, particular challenges include photons scattered by the medium being subsequently absorbed by the ion, limiting the thickness of the attenuating medium and motivating use of bright synchrotron photon sources where tunable X-rays are obtained at sub-eV resolution using a Si 111 monochromator. Measured scattering intensities and fluorescent yields were compared and shown to agree qualitatively with Monte Carlo calculations utilising amplitudes calculated from modified form-factors with anomalous scatter factors at a resolution of several eV determined from the Dirac-Slater exchange potential. Experimentally determined form-factors for pure water were used to calibrate fluorescent yield and elastic scattering intensities for measurement of the energy dependent variation of these quantities near edge and XRF imaging of the Zn concentration in wax mounted, formalin fixed, breast tumour samples. Results indicate the distribution of Zn at higher resolution than sampling dimensions used in previous studies. Shifts in the position and profile of K-edge absorption and elastic scattering features in aqeuous Zn, Zn doped sol-gel glass and Zn in tissue are shown to reflect changes in the atomic charge state and environment and offer support for the presence of non-nutrient Zn bearing

  17. Influence of particle size and preparation methods on the physical and chemical stability of amorphous simvastatin

    DEFF Research Database (Denmark)

    Zhang, Fang; Aaltonen, Jaakko; Tian, Fang

    2009-01-01

    This study investigated the factors influencing the stability of amorphous simvastatin. Quench-cooled amorphous simvastatin in two particle size ranges, 150-180 microm (QC-big) and physical and chemical......, particle size, a factor that has often been overlooked when dealing with amorphous materials, was shown to have an influence on physical stability of amorphous simvastatin....... stability were investigated. Physical stability (crystallization) of amorphous simvastatin stored at two conditions was monitored by X-ray powder diffractometry (XRPD) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Assessment of enthalpy relaxation of amorphous forms was conducted...

  18. Microwave response of amorphous microwires: magnetoimpedance and ferromagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, M. E-mail: manolo.dominguez@uca.es; Garcia-Beneytez, J.M.; Vazquez, M.; Lofland, S.E.; Bhagat, S.M

    2002-08-01

    It has been established that giant magnetoimpedance (GMI) in amorphous wires is due to a rapid change in the skin depth, caused by the low-field sensitivity of the azimuthal dynamic permeability (a classical electromagnetic effect). In 5 {mu}m diameter glass-covered amorphous wires, GMI may be observed at the microwave range. A correlation between GMI and ferromagnetic resonance (FMR) was proposed in this microwave range. We have measured the microwave response of amorphous microwires for several alloys from the system (Co{sub 100-x}Fe{sub x}){sub 75}Si{sub 15}B{sub 10} (x=2, 6, 10) with positive, zero, and negative magnetostriction, respectively. Our main results indicate: (i) GMI and FMR effects are well separated at different fields, (ii) GMI follows the magnetization process, confirming its classical electromagnetic origin, and (iii) FMR fields are also affected by the skin effect.

  19. Amorphous intergranular phases control the properties of rodent tooth enamel

    Science.gov (United States)

    Gordon, Lyle M.; Cohen, Michael J.; MacRenaris, Keith W.; Pasteris, Jill D.; Seda, Takele; Joester, Derk

    2015-02-01

    Dental enamel, a hierarchical material composed primarily of hydroxylapatite nanowires, is susceptible to degradation by plaque biofilm-derived acids. The solubility of enamel strongly depends on the presence of Mg2+, F-, and CO32-. However, determining the distribution of these minor ions is challenging. We show—using atom probe tomography, x-ray absorption spectroscopy, and correlative techniques—that in unpigmented rodent enamel, Mg2+ is predominantly present at grain boundaries as an intergranular phase of Mg-substituted amorphous calcium phosphate (Mg-ACP). In the pigmented enamel, a mixture of ferrihydrite and amorphous iron-calcium phosphate replaces the more soluble Mg-ACP, rendering it both harder and more resistant to acid attack. These results demonstrate the presence of enduring amorphous phases with a dramatic influence on the physical and chemical properties of the mature mineralized tissue.

  20. Chemical vapor deposition of amorphous ruthenium-phosphorus alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Shin Jinhong [Texas Materials Institute, University of Texas at Austin, Austin, TX 78750 (United States); Waheed, Abdul [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States); Winkenwerder, Wyatt A. [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Kim, Hyun-Woo [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Agapiou, Kyriacos [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States); Jones, Richard A. [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 (United States); Hwang, Gyeong S. [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Ekerdt, John G. [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States)]. E-mail: ekerdt@che.utexas.edu

    2007-05-07

    Chemical vapor deposition growth of amorphous ruthenium-phosphorus films on SiO{sub 2} containing {approx} 15% phosphorus is reported. cis-Ruthenium(II)dihydridotetrakis-(trimethylphosphine), cis-RuH{sub 2}(PMe{sub 3}){sub 4} (Me = CH{sub 3}) was used at growth temperatures ranging from 525 to 575 K. Both Ru and P are zero-valent. The films are metastable, becoming increasingly more polycrystalline upon annealing to 775 and 975 K. Surface studies illustrate that demethylation is quite efficient near 560 K. Precursor adsorption at 135 K or 210 K and heating reveal the precursor undergoes a complex decomposition process in which the hydride and trimethylphosphine ligands are lost at temperatures as low at 280 K. Phosphorus and its manner of incorporation appear responsible for the amorphous-like character. Molecular dynamics simulations are presented to suggest the local structure in the films and the causes for phosphorus stabilizing the amorphous phase.

  1. Amorphous surface layers in Ti-implanted Fe

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, J.A.; Follstaedt, D.M.; Picraux, S.T.

    1979-01-01

    Implanting Ti into high-purity Fe results in an amorphous surface layer which is composed of not only Fe and Ti, but also C. Implantations were carried out at room temperature over the energy range 90 to 190 keV and fluence range 1 to 2 x 10/sup 16/ at/cm/sup 2/. The Ti-implanted Fe system has been characterized using transmission electron microscopy (TEM), ion backscattering and channeling analysis, and (d,p) nuclear reaction analysis. The amorphous layer was observed to form at the surface and grow inward with increasing Ti fluence. For an implant of 1 x 10/sup 17/ Ti/cm/sup 2/ at 180 keV the layer thickness was 150 A, while the measured range of the implanted Ti was approx. 550 A. This difference is due to the incorporation of C into the amorphous alloy by C being deposited on the surface during implantation and subsequently diffusing into the solid. Our results indicate that C is an essential constituent of the amorphous phase for Ti concentrations less than or equal to 10 at. %. For the 1 x 10/sup 17/ Ti/cm/sup 2/ implant, the concentration of C in the amorphous phase was approx. 25 at. %, while that of Ti was only approx. 3 at. %. A higher fluence implant of 2 x 10/sup 17/ Ti/cm/sup 2/ produced an amorphous layer with a lower C concentration of approx. 10 at. % and a Ti concentration of approx. 20 at. %.

  2. Amorphous Alloy Membranes for High Temperature Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, K

    2013-09-30

    At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute® (SwRI®), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 °C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys

  3. A study of the crystallisation of amorphous salbutamol sulphate using water vapour sorption and near infrared spectroscopy.

    Science.gov (United States)

    Columbano, Angela; Buckton, Graham; Wikeley, Philip

    2002-04-26

    The crystallisation of amorphous salbutamol sulphate prepared by spray drying was monitored using a humidity controlled microbalance (Dynamic Vapour Sorption apparatus, Surface Measurement Systems) combined with a near-infrared probe. Amorphous salbutamol sulphate was prepared by spray drying from a solution in water. The particles were then analysed using scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, powder X-ray diffraction, isothermal microcalorimetry and water vapour sorption analysis combined with near-infrared spectroscopy (NIR). Isothermal microcalorimetry and water vapour sorption combined with NIR spectroscopy were able to detect the transition from the amorphous to crystalline state. However while the isothermal microcalorimeter showed only a classic crystallisation exotherm when the material was exposed at 75% RH, the DVS-NIR results at the same humidity highlighted a more complex process. When exposed at 75% RH, the uptake of water was followed by crystallisation that was detected using NIR. The expulsion of water after crystallisation was very slow and at a constant rate whether the material was exposed to 75 or 0% RH. The NIR and DVS studies indicated that the material had crystallised very soon after exposure to high RH. The water that was expelled during crystallisation was not displaced from the particles and remained associated with the particles for many days. This study showed that the use of gravimetric analysis together with NIR spectroscopy provided valuable information on the dynamics of the crystallisation of salbutamol sulphate. The retention of water within recently crystallised salbutamol is potentially important to the behaviour of dosage forms containing the amorphous (or partially amorphous) form of this drug.

  4. Anisotropic phase separation through the metal-insulator transition in amorphous Mo-Ge and Fe-Ge alloys

    Energy Technology Data Exchange (ETDEWEB)

    Regan, M.J.

    1993-12-01

    Since an amorphous solid is often defined as that which lacks long-range order, the atomic structure is typically characterized in terms of the high-degree of short-range order. Most descriptions of vapor-deposited amorphous alloys focus on characterizing this order, while assuming that the material is chemically homogeneous beyond a few near neighbors. By coupling traditional small-angle x-ray scattering which probes spatial variations of the electron density with anomalous dispersion which creates a species-specific contrast, one can discern cracks and voids from chemical inhomogeneity. In particular, one finds that the chemical inhomogeneities which have been previously reported in amorphous Fe{sub x}Ge{sub 1-x} and Mo{sub x}Ge{sub 1-x} are quite anisotropic, depending significantly on the direction of film growth. With the addition of small amounts of metal atoms (x<0.2), no films appear isotropic nor homogeneous through the metal/insulator transition. The results indicate that fluctuations in the growth direction play a pivotal role in preventing simple growth models of a columnar structure or one that evolves systematically as it grows. The anomalous scattering measurements identify the metal atoms (Fe or Mo) as the source of the anisotropy, with the Ge atoms distributed homogeneously. The author has developed a method for using these measurements to determine the compositions of the phase-separating species. The results indicate phase separation into an amorphous Ge and an intermetallic phase of stoichiometry close to FeGe{sub 2} or MoGe{sub 3}. Finally, by manipulating the deposited power flux and rates of growth, Fe{sub x}Ge{sub 1-x} films which have the same Fe composition x can be grown to different states of phase separation. These results may help explain the difficulty workers have had in isolating the metal/insulator transition for these and other vapor-deposited amorphous alloys.

  5. Containerless synthesis of amorphous and nanophase organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Benmore, Chris J.; Weber, Johann R.

    2016-05-03

    The invention provides a method for producing a mixture of amorphous compounds, the method comprising supplying a solution containing the compounds; and allowing at least a portion of the solvent of the solution to evaporate while preventing the solute of the solution from contacting a nucleation point. Also provided is a method for transforming solids to amorphous material, the method comprising heating the solids in an environment to form a melt, wherein the environment contains no nucleation points; and cooling the melt in the environment.

  6. Light-induced metastable structural changes in hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, H. [Univ. of Chicago, IL (United States)

    1996-09-01

    Light-induced defects (LID) in hydrogenated amorphous silicon (a-Si:H) and its alloys limit the ultimate efficiency of solar panels made with these materials. This paper reviews a variety of attempts to find the origin of and to eliminate the processes that give rise to LIDs. These attempts include novel deposition processes and the reduction of impurities. Material improvements achieved over the past decade are associated more with the material`s microstructure than with eliminating LIDs. We conclude that metastable LIDs are a natural by-product of structural changes which are generally associated with non-radiative electron-hole recombination in amorphous semiconductors.

  7. 1/F Noise in Amorphous GeTe.

    Science.gov (United States)

    1976-06-18

    AD—A035 105 NAVAL SURFACE WEAPONS CEN TeR WHITE OAK LAB SILVER SP——ETC F/S 20/12 1/F NOISE IN AMORPHOUS IElt .(U) ani 76 K P SCHARNI4O*ST UNCLASSIFIED... preparation procedure had to be used. Six millimeter long sections of amorphous GeTe of different thicknesses and widths were deposited on 10 to 20 mil...structure and have initiated an effort to improve our sample preparation procedure. Exposure of samples to ambient during transfer from one evaporator

  8. Energy reversible switching from amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-08-01

    We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young\\'s modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young\\'s modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.

  9. Shock-induced localized amorphization in boron carbide.

    Science.gov (United States)

    Chen, Mingwei; McCauley, James W; Hemker, Kevin J

    2003-03-01

    High-resolution electron microscope observations of shock-loaded boron carbide have revealed the formation of nanoscale intragranular amorphous bands that occur parallel to specific crystallographic planes and contiguously with apparent cleaved fracture surfaces. This damage mechanism explains the measured, but not previously understood, decrease in the ballistic performance of boron carbide at high impact rates and pressures. The formation of these amorphous bands is also an example of how shock loading can result in the synthesis of novel structures and materials with substantially altered properties.

  10. Angular magnetoresistance in semiconducting undoped amorphous carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, Rizwan Ur Rehman; Saleemi, Awais Siddique; Zhang, Xiaozhong, E-mail: xzzhang@tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People' s Republic of China and Beijing National Center for Electron Microscopy, Beijing 100084 (China)

    2015-05-07

    Thin films of undoped amorphous carbon thin film were fabricated by using Chemical Vapor Deposition and their structure was investigated by using High Resolution Transmission Electron Microscopy and Raman Spectroscopy. Angular magnetoresistance (MR) has been observed for the first time in these undoped amorphous carbon thin films in temperature range of 2 ∼ 40 K. The maximum magnitude of angular MR was in the range of 9.5% ∼ 1.5% in 2 ∼ 40 K. The origin of this angular MR was also discussed.

  11. The Role of Configurational Entropy in Amorphous Systems

    Directory of Open Access Journals (Sweden)

    Kirsten A. Graeser

    2010-05-01

    Full Text Available Configurational entropy is an important parameter in amorphous systems. It is involved in the thermodynamic considerations, plays an important role in the molecular mobility calculations through its appearance in the Adam-Gibbs equation and provides information on the solubility increase of an amorphous form compared to its crystalline counterpart. This paper presents a calorimetric method which enables the scientist to quickly determine the values for the configurational entropy at any temperature and obtain the maximum of information from these measurements.

  12. Shape anisotropy in zero-magnetostrictive rapidly solidified amorphous nanowires

    Science.gov (United States)

    Rotărescu, C.; Atitoaie, A.; Stoleriu, L.; Óvári, T.-A.; Lupu, N.; Chiriac, H.

    2016-04-01

    The magnetic behavior of zero-magnetostrictive rapidly solidified amorphous nanowires has been investigated in order to understand their magnetic bistability. The study has been performed both experimentally - based on inductive hysteresis loop measurements - and theoretically, by means of micromagnetic simulations. Experimental hysteresis loops have shown that the amorphous nanowires display an axial magnetic bistability, characterized by a single-step magnetization reversal when the applied field reaches a critical value called switching field. The simulated loops allowed us to understand the effect of shape anisotropy on coercivity. The results are key for understanding and controlling the magnetization processes in these novel nanowires, with important application possibilities in new miniaturized sensing devices.

  13. Nanoscale Morphology in Tensile Fracture of a Brittle Amorphous Ribbon

    Institute of Scientific and Technical Information of China (English)

    Xifeng LI; Kaifeng ZHANG; Guofeng WANG

    2008-01-01

    The paper reports on the observation of nanoscale morphology on the tensile fracture surface of a brittle amorphous Fe-based ribbon. The formation of nanoscale damage cavity structure is a main characteristic morphology on the fracture surfaces. Approaching the ribbon boundary, these damage cavities assemble and form the nanoscale periodic corrugations, which are neither Wallner lines nor crack front waves. The periodic corrugations result from the interactions between the reflected elastic waves by the boundaries of amorphous ribbon and the stress fields of the crack tip.

  14. Charge transport in amorphous and tetragonal semiconducting YBaCuO films

    Science.gov (United States)

    Çelik-Butler, Z.; Shan, P. C.; Butler, D. P.; Jahanzeb, A.; Travers, C. M.; Kula, W.; Sobolewski, R.

    1997-06-01

    We have explored the charge transport mechanisms in six different YBaCuO semiconducting thin films in the temperature range of 70 K to room temperature. Two of the samples were deposited on LaAlO 3 substrate and were tetragonal with the composition of YBa 2Cu 3O 6.5 and YBa 2Cu 3O 6.3. The other four were amorphous as-deposited on Si substrate with and without a MgO buffer layer, and on an oxidized Si substrate with and without a MgO buffer layer. All tested films exhibited semiconductor-type resistance vs. temperature characteristics with increasing resistance as the temperature was decreased. Around room temperature all six samples had thermally activated transport characteristics that was interpreted as activation of hole-like carriers from localized states around the Fermi level to extended states. As the temperature was decreased, two tetragonal samples went through a transition to a variable range hopping-like conduction. The amorphous ones remained within the thermally-activated transport regime in the temperature range of 253 K to 318 K, with EA ≈ 0.2 eV.

  15. Stoichiometry dependence of resistance drift phenomena in amorphous GeSnTe phase-change alloys

    Science.gov (United States)

    Luckas, J.; Piarristeguy, A.; Bruns, G.; Jost, P.; Grothe, S.; Schmidt, R. M.; Longeaud, C.; Wuttig, M.

    2013-01-01

    In phase-change materials, the amorphous state resistivity increases with time following a power law ρ ∝ (t/t0)αRD. This drift in resistivity seriously hampers the potential of multilevel-storage to achieve an increased capacity in phase-change memories. This paper presents the stoichiometric dependence of drift phenomena in amorphous GeSnTe systems (a-GeSnTe) and other known phase-change alloys with the objective to identify low drift materials. The substitution of Ge by Sn results in a systematic decrease of the drift parameter from a-GeTe (αRD = 0.129) to a-Ge2Sn2Te4 (αRD = 0.053). Furthermore, with increasing Sn content a decrease in crystallization temperature, trap state density, optical band gap, and activation energy for electronic conduction is observed. In a-GeSnTe, a-GeSbTe, and a-AgInSbTe alloys as well, the drift parameter αRD correlates to the activation energy for electronic conduction. This study indicates that low drift materials are characterized by low activation energies of electronic conduction. The correlation found between drift and activation energy of electronic conduction manifests a useful criterion for material optimization.

  16. Crystallization Process of Heat-treated Amorphous Ni-P Alloy Coating

    Directory of Open Access Journals (Sweden)

    JIN Shi-wei

    2016-09-01

    Full Text Available Amorphous Ni-P alloy coatings were prepared on 45 carbon steel blocks using electrodeposition method. The thermal effect and quality change of Ni-P alloy coating under heating rate of 20℃/min were analyzed by differential scanning calorimetry (DSC and thermogravimetry (TG. Coatings were heat-treated at 300℃ and 400℃ for 0, 15, 30, 45, 60, 75min respectively, coating surface was characterized by scanning electron microscope (SEM, energy dispersive spectrometer (EDS, X-ray diffraction (XRD, microhardness tester. The result shows that the exothermic peak of Ni-P alloy coating appears at 284.8℃, coating quality and elemental composition are stable during the heat treatment. Crystallization process experiences a transformation of amorphous, metastable state NiP and Ni5P2, stable state Ni3P. The microhardness of coating can be improved remarkably after heat treatment, namely, the maximum value of heat-treated coating is 1036.56HV, which is nearly 2 times as hard as as-deposited coating. The corrosion resistance of heat-treated Ni-P alloy coating in NaCl solution is inferior to as-deposited coating, but they are both much better than 45 carbon steel substrate.

  17. Template-assisted mineral formation via an amorphous liquid phase precursor route

    Science.gov (United States)

    Amos, Fairland F.

    The search for alternative routes to synthesize inorganic materials has led to the biomimetic route of producing ceramics. In this method, materials are manufactured at ambient temperatures and in aqueous solutions with soluble additives and insoluble matrix, similar to the biological strategy for the formation of minerals by living organisms. Using this approach, an anionic polypeptide additive was used to induce an amorphous liquid-phase precursor to either calcium carbonate or calcium phosphate. This precursor was then templated on either organic or inorganic substrates. Non-equilibrium morphologies, such as two-dimensional calcium carbonate films, one-dimensional calcium carbonate mesostructures and "molten" calcium phosphate spherulites were produced, which are not typical of the traditional (additive-free) solution grown crystals in the laboratory. In the study of calcium carbonate, the amorphous calcium carbonate mineral formed via the liquid-phase precursor, either underwent a dissolution-recrystallization event or a pseudo-solid-state transformation to produce different morphologies and polymorphs of the mineral. Discrete or aggregate calcite crystals were formed via the dissolution of the amorphous phase to allow the reprecipitation of the stable crystal. Non-equilibrium morphologies, e.g., films, mesotubules and mesowires were templated using organic and inorganic substrates and compartments. These structures were generated via an amorphous solid to crystalline solid transformation. Single crystalline tablets and mesowires of aragonite, which are reported to be found only in nature as skeletal structures of marine organisms, such as mollusk nacre and echinoderm teeth, were successfully synthesized. These biomimetic structures were grown via the polymer-induced liquid-phase precursor route in the presence of magnesium. Only low magnesium-bearing calcite was formed in the absence of the polymer. A similar approach of using a polymeric additive was

  18. Reversible electrical resistance switching in GeSbTe thin films : An electrolytic approach without amorphous-crystalline phase-change

    NARCIS (Netherlands)

    Pandian, Ramanathaswamy; Kooi, Bart J.; Palasantzas, George; De Hosson, Jeff Th. M.; Wouters, DJ; Hong, S; Soss, S; Auciello, O

    2008-01-01

    Besides the well-known resistance switching originating from the amorphous-crystalline phase-change in GeSbTe thin films, we demonstrate another switching mechanism named 'polarity-dependent resistance (PDR) switching'. 'Me electrical resistance of the film switches between a low- and high-state whe

  19. Amorphous Metal Composites for use in Long-Life, Low-Temperature Gearboxes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed concept is to explore the use of Amorphous Metals (AMs) and Amorphous Metal Composites (AMCs) (fabricated entirely at JPL) for use as gears and bearing...

  20. Exchange coupling in crystalline/amorphous Nd-Fe-B nanoassemblies

    Energy Technology Data Exchange (ETDEWEB)

    Shield, J. E. [Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Kappes, B. B. [Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Crew, D. C. [Department of Applied Science, Brookhaven National Laboratory, Upton, New York 11973 (United States); Branagan, D. J. [Idaho National Engineering and Environmental Laboratory, Idaho Falls, Idaho 83415 (United States)

    2000-05-01

    The demagnetization behavior of nanoassembled crystalline/amorphous microstructures was investigated. The microstructures consisted of isolated Nd{sub 2}Fe{sub 14}B crystallites surrounded by regions of remaining amorphous phase. The hard magnetic crystallites interacted with the surrounding amorphous phase over a length scale of approximately 1.5-2 nm. As the extent of the amorphous phase decreased to less than this, interactions between hard magnetic grains were observed. (c) 2000 American Institute of Physics.

  1. Radiation-induced amorphization of rare-earth titanate pyrochlores

    Science.gov (United States)

    Lian, Jie; Chen, Jian; Wang, L. M.; Ewing, Rodney C.; Farmer, J. Matt; Boatner, Lynn A.; Helean, K. B.

    2003-10-01

    Single crystals of the entire series of A2Ti2O7 (A=Sm to Lu, and Y) pyrochlore compounds were irradiated by 1-MeV Kr+ ions at temperatures from 293 to 1073 K, and the microstructure evolution, as a function of increasing radiation fluence, was characterized using in situ transmission electron microscopy (TEM). The critical amorphization temperature, Tc, generally increases from ˜480 to ˜1120 K with increasing A-site cation size (e.g., 0.977 Å for Lu3+ to 1.079 Å for Sm3+). An abnormally high susceptibility to ion beam damage was found for Gd2Ti2O7 (with the highest Tc of ˜1120 K). Factors influencing the response of titanate pyrochlores to ion irradiation-induced amorphization are discussed in terms of cation radius ratio, defect formation, and the tendency to undergo an order-disorder transition to the defect-fluorite structure. The resistance of the pyrochlore structure to ion beam-induced amorphization is not only affected by the relative sizes of the A- and B-site cations, but also the cation electronic configuration and the structural disorder. Pyrochlore compositions that have larger structural deviations from the ideal fluorite structure, as evidenced by the smaller 48f oxygen positional parameter, x, are more sensitive to ion beam-induced amorphization.

  2. Structural origin of resistance drift in amorphous GeTe

    Science.gov (United States)

    Zipoli, Federico; Krebs, Daniel; Curioni, Alessandro

    2016-03-01

    We used atomistic simulations to study the origin of the change of resistance over time in the amorphous phase of GeTe, a prototypical phase-change material (PCM). Understanding the cause of resistance drift is one of the biggest challenges to improve multilevel storage technology. For this purpose, we generated amorphous structures via classical molecular-dynamics simulations under conditions as close as possible to the experimental operating ones of such memory devices. Moreover, we used the replica-exchange technique to generate structures comparable with those obtained in the experiment after long annealing that show an increase of resistance. This framework allowed us to overcome the main limitation of previous simulations, based on density-functional theory, that suffered from being computationally too expensive therefore limited to the nanosecond time scale. We found that resistance drift is caused by consumption of Ge atom clusters in which the coordination of at least one Ge atom differs from that of the crystalline phase and by removal of stretched bonds in the amorphous network, leading to a shift of the Fermi level towards the middle of the band gap. These results show that one route to design better memory devices based on current chalcogenide alloys is to reduce the resistance drift by increasing the rigidity of the amorphous network.

  3. Sorptive stabilization of organic matter by amorphous Al hydroxide

    NARCIS (Netherlands)

    M.P.W. Schneider; T. Scheel; R. Mikutta; P. van Hees; K. Kaiser; K. Kalbitz

    2010-01-01

    Amorphous Al hydroxides (am-Al(OH)(3)) strongly sorb and by this means likely protect dissolved organic matter (OM) against microbial decay in soils. We carried out batch sorption experiments (pH 4.5; 40 mg organic C L-1) with OM extracted from organic horizons under a Norway spruce and a European b

  4. Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths.

    Science.gov (United States)

    Safioui, Jassem; Leo, François; Kuyken, Bart; Gorza, Simon-Pierre; Selvaraja, Shankar Kumar; Baets, Roel; Emplit, Philippe; Roelkens, Gunther; Massar, Serge

    2014-02-10

    We report supercontinuum (SC) generation centered on the telecommunication C-band (1550 nm) in CMOS compatible hydrogenated amorphous silicon waveguides. A broadening of more than 550 nm is obtained in 1cm long waveguides of different widths using as pump picosecond pulses with on chip peak power as low as 4 W.

  5. Growth induced magnetic anisotropy in crystalline and amorphous thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, F.

    1998-07-20

    The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and Ni-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials. A brief summary of work done in each area is given.

  6. Nanoscale Transformations in Metastable, Amorphous, Silicon-Rich Silica.

    Science.gov (United States)

    Mehonic, Adnan; Buckwell, Mark; Montesi, Luca; Munde, Manveer Singh; Gao, David; Hudziak, Stephen; Chater, Richard J; Fearn, Sarah; McPhail, David; Bosman, Michel; Shluger, Alexander L; Kenyon, Anthony J

    2016-09-01

    Electrically biasing thin films of amorphous, substoichiometric silicon oxide drives surprisingly large structural changes, apparent as density variations, oxygen movement, and ultimately, emission of superoxide ions. Results from this fundamental study are directly relevant to materials that are increasingly used in a range of technologies, and demonstrate a surprising level of field-driven local reordering of a random oxide network.

  7. New amorphous interface for precipitate nitrides in steel

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson; Kadkhodazadeh, Shima; Grumsen, Flemming Bjerg;

    2014-01-01

    during electron beam exposure. The amorphous shells were observed around Ta- and Nb-based nitrides, which are considered to have a high interfacial energy with the ferrite matrix. They were not observed around V-based nitrides which have a Baker–Nutting relationship with low-misfit to the matrix....

  8. Grain boundary resistance to amorphization of nanocrystalline silicon carbide

    Science.gov (United States)

    Chen, Dong; Gao, Fei; Liu, Bo

    2015-11-01

    Under the C displacement condition, we have used molecular dynamics simulation to examine the effects of grain boundaries (GBs) on the amorphization of nanocrystalline silicon carbide (nc-SiC) by point defect accumulation. The results show that the interstitials are preferentially absorbed and accumulated at GBs that provide the sinks for defect annihilation at low doses, but also driving force to initiate amorphization in the nc-SiC at higher doses. The majority of surviving defects are C interstitials, as either C-Si or C-C dumbbells. The concentration of defect clusters increases with increasing dose, and their distributions are mainly observed along the GBs. Especially these small clusters can subsequently coalesce and form amorphous domains at the GBs during the accumulation of carbon defects. A comparison between displacement amorphized nc-SiC and melt-quenched single crystal SiC shows the similar topological features. At a dose of 0.55 displacements per atom (dpa), the pair correlation function lacks long range order, demonstrating that the nc-SiC is fully amorphilized.

  9. Modeling of amorphous carbon structures with arbitrary structural constraints.

    Science.gov (United States)

    Jornada, F H; Gava, V; Martinotto, A L; Cassol, L A; Perottoni, C A

    2010-10-06

    In this paper we describe a method to generate amorphous structures with arbitrary structural constraints. This method employs the simulated annealing algorithm to minimize a simple yet carefully tailored cost function (CF). The cost function is composed of two parts: a simple harmonic approximation for the energy-related terms and a cost that penalizes configurations that do not have atoms in the desired coordinations. Using this approach, we generated a set of amorphous carbon structures spawning nearly all the possible combinations of sp, sp(2) and sp(3) hybridizations. The bulk moduli of this set of amorphous carbons structures was calculated using Brenner's potential. The bulk modulus strongly depends on the mean coordination, following a power-law behavior with an exponent ν = 1.51 ± 0.17. A modified cost function that segregates carbon with different hybridizations is also presented, and another set of structures was generated. With this new set of amorphous materials, the correlation between the bulk modulus and the mean coordination weakens. The method proposed can be easily modified to explore the effects on the physical properties of the presence of hydrogen, dangling bonds, and structural features such as carbon rings.

  10. Low temperature dynamics in amorphous solids : A photon echo study

    NARCIS (Netherlands)

    Meijers, Hans C.; Wiersma, Douwe A.

    1994-01-01

    The long-lived stimulated photon echo is put forward as a powerful technique to probe structural dynamics in glasses and other amorphous solids. We present results of optical dephasing measurements on several doped organic glasses (deuterated ethanol, toluene, and triethylamine) and polymers (polyst

  11. Wear mechanism of electrodeposited amorphous Ni-Fe-P alloys

    Institute of Scientific and Technical Information of China (English)

    高诚辉; 赵源

    2004-01-01

    The wear mechanism of amorphous Ni-Fe-P coating was discussed. The wear resistance of the amor phous Ni-Fe-P coatings was tested on a Timken wear apparatus, and the wear track of the amorphous Ni-Fe-P coat ings as-deposited and heated at various temperatures was observed by SEM. The results show that the wear resistthe coating will change with the heating temperature increasing from pitting+plowing at 200 ℃ to pitting at 400 ℃,and to plowing at 600 ℃. The pits on the worn surface of the amorphous Ni-Fe-P coating result from the tribo-fatigue fracture. The cracks of spalling initiate at pits and propagate at certain angle with the sliding direction on sur face, and then extend into sub-surface along the poor P layers or the interface between layers. Finally under repeated action of the stress in the rubbing process the cracks meet and the debris forms. The generation of the pits and spal-ling is related with the internal stress, brittleness and layer structure of the amorphous Ni-Fe-P coating.

  12. Evolution of clusters in energetic heavy ion bombarded amorphous graphite

    CERN Document Server

    Akhtar, M N; Ahmad, Shoaib

    2016-01-01

    Carbon clusters have been generated by a novel technique of energetic heavy ion bombardment of amorphous graphite. The evolution of clusters and their subsequent fragmentation under continuing ion bombardment is revealed by detecting various clusters in the energy spectra of the direct recoils emitted as a result of collision between ions and the surface constituents.

  13. SOME PECULIARITIES OF DUCTILE SHEAR FAILURE OF AMORPHOUS ALLOY RIBBONS

    NARCIS (Netherlands)

    BENGUS, VZ; TABACHNIKOVA, ED; SHUMILIN, SE; GOLOVIN, YI; MAKAROV, MV; SHIBKOV, AA; MISKUF, J; CSACH, K; Ocelik, Vaclav

    1993-01-01

    The kinetics of a shear crack propagation under ductile shear failure of amorphous alloys ribbons is studied experimentally. Some phenomena that accompany this failure are also studied: repeated alternation of the shear crack orientation, plastic corrugation of a ribbon, extreme local heating at the

  14. Amorphous Silk Fibroin Membranes for Separation of CO2

    Science.gov (United States)

    Aberg, Christopher M.; Patel, Anand K.; Gil, Eun Seok; Spontak, Richard J.; Hagg, May-Britt

    2009-01-01

    Amorphous silk fibroin has shown promise as a polymeric material derivable from natural sources for making membranes for use in removing CO2 from mixed-gas streams. For most applications of silk fibroin, for purposes other than gas separation, this material is used in its highly crystalline, nearly natural form because this form has uncommonly high tensile strength. However, the crystalline phase of silk fibroin is impermeable, making it necessary to convert the material to amorphous form to obtain the high permeability needed for gas separation. Accordingly, one aspect of the present development is a process for generating amorphous silk fibroin by treating native silk fibroin in an aqueous methanol/salt solution. The resulting material remains self-standing and can be prepared as thin film suitable for permeation testing. The permeability of this material by pure CO2 has been found to be highly improved, and its mixed-gas permeability has been found to exceed the mixed-gas permeabilities of several ultrahigh-CO2-permeable synthetic polymers. Only one of the synthetic polymers poly(trimethylsilylpropyne) [PTMSP] may be more highly permeable by CO2. PTMSP becomes unstable with time, whereas amorphous silk should not, although at the time of this reporting this has not been conclusively proven.

  15. Beating the amorphous limit in thermal conductivity by superlattices design.

    Science.gov (United States)

    Mizuno, Hideyuki; Mossa, Stefano; Barrat, Jean-Louis

    2015-09-16

    The value measured in the amorphous structure with the same chemical composition is often considered as a lower bound for the thermal conductivity of any material: the heat carriers are strongly scattered by disorder, and their lifetimes reach the minimum time scale of thermal vibrations. An appropriate design at the nano-scale, however, may allow one to reduce the thermal conductivity even below the amorphous limit. In the present contribution, using molecular-dynamics simulation and the Green-Kubo formulation, we study systematically the thermal conductivity of layered phononic materials (superlattices), by tuning different parameters that can characterize such structures. We have discovered that the key to reach a lower-than-amorphous thermal conductivity is to block almost completely the propagation of the heat carriers, the superlattice phonons. We demonstrate that a large mass difference in the two intercalated layers, or weakened interactions across the interface between layers result in materials with very low thermal conductivity, below the values of the corresponding amorphous counterparts.

  16. Water migration mechanisms in amorphous powder material and related agglomeration

    NARCIS (Netherlands)

    Renzetti, S.; Voogt, J.A.; Oliver, L.; Meinders, M.B.J.

    2012-01-01

    The agglomeration phenomenon of amorphous particulate material is a major problem in the food industry. Currently, the glass transition temperature (Tg) is used as a fundamental parameter to describe and control agglomeration. Models are available that describe the kinetics of the agglomeration proc

  17. First-principles study of hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Jarolimek, K.; Groot, R.A. de; Wijs, G.A. de; Zeman, M.

    2009-01-01

    We use a molecular-dynamics simulation within density-functional theory to prepare realistic structures of hydrogenated amorphous silicon. The procedure consists of heating a crystalline structure of Si64H8 to 2370 K, creating a liquid and subsequently cooling it down to room temperature. The effect

  18. Physical stability and recrystallization kinetics of amorphous ibipinabant drug product by fourier transform raman spectroscopy.

    Science.gov (United States)

    Sinclair, Wayne; Leane, Michael; Clarke, Graham; Dennis, Andrew; Tobyn, Mike; Timmins, Peter

    2011-11-01

    The solid-state physical stability and recrystallization kinetics during storage stability are described for an amorphous solid dispersed drug substance, ibipinabant, at a low concentration (1.0%, w/w) in a solid oral dosage form (tablet). The recrystallization behavior of the amorphous ibipinabant-polyvinylpyrrolidone solid dispersion in the tablet product was characterized by Fourier transform (FT) Raman spectroscopy. A partial least-square analysis used for multivariate calibration based on Raman spectra was developed and validated to detect less than 5% (w/w) of the crystalline form (equivalent to less than 0.05% of the total mass of the tablet). The method provided reliable and highly accurate predictive crystallinity assessments after exposure to a variety of stability storage conditions. It was determined that exposure to moisture had a significant impact on the crystallinity of amorphous ibipinabant. The information provided by the method has potential utility for predictive physical stability assessments. Dissolution testing demonstrated that the predicted crystallinity had a direct correlation with this physical property of the drug product. Recrystallization kinetics was measured using FT Raman spectroscopy for the solid dispersion from the tablet product stored at controlled temperature and relative humidity. The measurements were evaluated by application of the Johnson-Mehl-Avrami (JMA) kinetic model to determine recrystallization rate constants and Avrami exponent (n = 2). The analysis showed that the JMA equation could describe the process very well, and indicated that the recrystallization kinetics observed was a two-step process with an induction period (nucleation) followed by rod-like crystal growth.

  19. Fluctuation Electron Microscopy of Amorphous and Polycrystalline Materials

    Science.gov (United States)

    Rezikyan, Aram

    Fluctuation Electron Microscopy (FEM) has become an effective materials' structure characterization technique, capable of probing medium-range order (MRO) that may be present in amorphous materials. Although its sensitivity to MRO has been exercised in numerous studies, FEM is not yet a quantitative technique. The holdup has been the discrepancy between the computed kinematical variance and the experimental variance, which previously was attributed to source incoherence. Although high-brightness, high coherence, electron guns are now routinely available in modern electron microscopes, they have not eliminated this discrepancy between theory and experiment. The main objective of this thesis was to explore, and to reveal, the reasons behind this conundrum. The study was started with an analysis of the speckle statistics of tilted dark-field TEM images obtained from an amorphous carbon sample, which confirmed that the structural ordering is sensitively detected by FEM. This analysis also revealed the inconsistency between predictions of the source incoherence model and the experimentally observed variance. FEM of amorphous carbon, amorphous silicon and ultra nanocrystalline diamond samples was carried out in an attempt to explore the conundrum. Electron probe and sample parameters were varied to observe the scattering intensity variance behavior. Results were compared to models of probe incoherence, diffuse scattering, atom displacement damage, energy loss events and multiple scattering. Models of displacement decoherence matched the experimental results best. Decoherence was also explored by an interferometric diffraction method using bilayer amorphous samples, and results are consistent with strong displacement decoherence in addition to temporal decoherence arising from the electron source energy spread and energy loss events in thick samples. It is clear that decoherence plays an important role in the long-standing discrepancy between experimental FEM and its

  20. Thermally reduced graphenes exhibiting a close relationship to amorphous carbon

    Science.gov (United States)

    An Wong, Colin Hong; Ambrosi, Adriano; Pumera, Martin

    2012-07-01

    Graphene is an important material for sensing and energy storage applications. Since the vast majority of sensing and energy storage chemical and electrochemical systems require bulk quantities of graphene, thermally reduced graphene oxide (TRGO) is commonly employed instead of pristine graphene. The sp2 planar structure of TRGO is heavily damaged, consisting of a very short sp2 crystallite size of nanometre length and with areas of sp3 hybridized carbon. Such a structure of TRGO is reminiscent of the key characteristic of the structure of amorphous carbon, which is defined as a material without long-range crystalline order consisting of both sp2 and sp3 hybridized carbons. Herein, we describe the characterization of TRGO, its parent graphite material and carbon black (a form of amorphous carbon) via transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry experiments. We used the data obtained as well as consideration of practical factors to perform a comparative assessment of the relative electrochemical performances of TRGO against amorphous carbon. We found out that TRGO and amorphous carbon exhibit almost identical characteristics in terms of density of defects in the sp2 lattice and a similar crystallite size as determined by Raman spectroscopy. These two materials also exhibit similar amounts of oxygen containing groups as determined by XPS and nearly indistinguishable cyclic voltammetric response providing almost identical heterogeneous electron transfer constants. This leads us to conclude that for some sensing and energy storage electrochemical applications, the use of amorphous carbon might be a much more economical solution than the one requiring digestion of highly crystalline graphite with strong oxidants to graphite oxide and then thermally exfoliating it to thermally reduced graphene oxide.

  1. Mechanisms for pressure-induced crystal-crystal transition, amorphization, and devitrification of SnI{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.; Tse, J. S., E-mail: john.tse@usask.ca [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B2 (Canada); Hu, M. Y.; Bi, W.; Zhao, J.; Alp, E. E. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States); Pasternak, M. [School of Physics and Astronomy, Tel Aviv University, Ramat Aviv (Israel); Taylor, R. D.; Lashley, J. C. [Los Alamos National Laboratory, PO Box 1663 Bikini Atoll Road, Los Alamos, New Mexico 87545 (United States)

    2015-10-28

    The pressure-induced amorphization and subsequent recrystallization of SnI{sub 4} have been investigated using first principles molecular dynamics calculations together with high-pressure {sup 119}Sn nuclear resonant inelastic x-ray scattering measurements. Above ∼8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ∼64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI{sub 4} under ambient conditions. Although high pressure structures of SnI{sub 4} were thought to be determined by random packing of equal-sized spheres, we detected electron charge transfer in each phase. This charge transfer results in a crystal structure packing determined by larger than expected iodine atoms.

  2. Electronic structure and sign reversal of the Hall coefficient in amorphous CuZr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Manh, D.N.; Pavuna, D.; Cyrot-Lackmann, F.; Mayou, D.; Pasturel, A.

    1986-04-15

    We present calculated densities of states (DOS) for Cu/sub x/Zr/sub 1-x/ amorphous alloys across the compositional range. We find that for x<80 at. % Cu there is no ordering and the Fermi level E/sub F/ is dominated by the Zr 4d subband, while above 80 at. % Cu the local order increases and the DOS at E/sub F/ abruptly decreases and is dominated by the s states. These changes in DOS and the fact that the energy derivative of the self-energy changes its sign (implying a change of sign of the Fermi velocity) gives further insight into the experimentally observed sign reversal of the Hall coefficient which occurs for 80< or =x< or =85 at. % Cu.

  3. A novel antifuse structure based on amorphous bismuth zinc niobate thin films

    Institute of Scientific and Technical Information of China (English)

    Wang Gang; Li Wei; Li Ping; Li Zuxiong; Fan Xue; Jiang Jing

    2012-01-01

    A novel antifuse structure with amorphous bismuth zinc niobate (a-BZN) dielectrics was proposed.The characteristics of the a-BZN antifuse were investigated.Programming direction of up to down was chosen to rupture the a-BZN antifuse.The breakdown voltage of the a-BZN antifuse was obtained at a magnitude of 6.56 V.A large off-state resistance of more than 1 GΩ for the a-BZN antifuse was demonstrated.The surface micrograph of the ruptured a-BZN antifuses was illustrated.Programming characteristics with the programming time of 0.46 ms and on-state properties with the average resistance value of 26.1 Ω of the a-BZN antifuse were exhibited.The difference of characteristics of the a-BZN antifuse from that of a cubic pyrochlore bismuth zinc niobate (cp-BZN) antifuse and gate oxide antifuse was compared and analyzed.

  4. X-Ray Amorphous Phases in Terrestrial Analog Volcanic Sediments: Implications for Amorphous Phases in Gale Crater, Mars

    Science.gov (United States)

    Smith, R. J.; Horgan, B.; Rampe, E.; Dehouck, E.; Morris, R. V.

    2017-01-01

    X-ray diffraction (XRD) amorphous phases have been found as major components (approx.15-60 wt%) of all rock and soil samples measured by the CheMin XRD instrument in Gale Crater, Mars. The nature of these phases is not well understood and could be any combination of primary (e.g., glass) and secondary (e.g., allophane) phases. Amorphous phases form in abundance during surface weathering on Earth. Yet, these materials are poorly characterized, and it is not certain how properties like composition and structure change with formation environment. The presence of poorly crystalline phases can be inferred from XRD patterns by the appearance of a low angle rise (Alpha Particle X-ray Spectrometer (APXS) have been used to estimate the abundance and composition of the XRD amorphous materials in soil and rock samples on Mars. Here we apply a similar approach to a diverse suite of terrestrial samples - modern soils, glacial sediments, and paleosols - in order to determine how formation environment, climate, and diagenesis affect the abundance and composition of X-ray amorphous phases.

  5. The atomic structure of ternary amorphous TixSi1-xO2 hybrid oxides.

    Science.gov (United States)

    Landmann, M; Köhler, T; Rauls, E; Frauenheim, T; Schmidt, W G

    2014-06-25

    Atomic length-scale order characteristics of binary and ternary amorphous oxides are presented within the framework of ab initio theory. A combined numerically efficient density functional based tight-binding molecular dynamics and density functional theory approach is applied to model the amorphous (a) phases of SiO2 and TiO2 as well as the amorphous phase of atomically mixed TixSi1-xO2 hybrid-oxide alloys over the entire composition range. Short and mid-range order in the disordered material phases are characterized by bond length and bond-angle statistics, pair distribution function analysis, coordination number and coordination polyhedra statistics, as well as ring statistics. The present study provides fundamental insights into the order characteristics of the amorphous hybrid-oxide frameworks formed by versatile types of TiOn and SiOm coordination polyhedra. In a-SiO2 the fourfold crystal coordination of Si ions is almost completely preserved and the atomic structure is widely dominated by ring-like mid-range order characteristics. In contrast, the structural disorder of a-TiO2 arises from short-range disorder in the local coordination environment of the Ti ion. The coordination number analysis indicates a large amount of over and under-coordinated Ti ions (coordination defects) in a-TiO2. Aside from the ubiquitous distortions of the crystal-like coordinated polyhedra, even the basic coordination-polyhedra geometry type changes for a significant fraction of TiO6 units (geometry defects). The combined effects of topological and chemical disorder in a-TixSi1-xO2 alloys lead to a continuos increase in both the Si as well as the Ti coordination number with the chemical composition x. The important roles of intermediate fivefold coordination states of Ti and Si cations are highlighted for ternary a-TixSi1-xO2 as well as for binary a-TiO2. The continuous decrease in ring size with increasing Ti content reflects the progressive loss of mid-range order structure

  6. Amorphous and Polycrystalline Photoconductors for Direct Conversion Flat Panel X-Ray Image Sensors

    Directory of Open Access Journals (Sweden)

    Karim S. Karim

    2011-05-01

    Full Text Available In the last ten to fifteen years there has been much research in using amorphous and polycrystalline semiconductors as x-ray photoconductors in various x-ray image sensor applications, most notably in flat panel x-ray imagers (FPXIs. We first outline the essential requirements for an ideal large area photoconductor for use in a FPXI, and discuss how some of the current amorphous and polycrystalline semiconductors fulfill these requirements. At present, only stabilized amorphous selenium (doped and alloyed a-Se has been commercialized, and FPXIs based on a-Se are particularly suitable for mammography, operating at the ideal limit of high detective quantum efficiency (DQE. Further, these FPXIs can also be used in real-time, and have already been used in such applications as tomosynthesis. We discuss some of the important attributes of amorphous and polycrystalline x-ray photoconductors such as their large area deposition ability, charge collection efficiency, x-ray sensitivity, DQE, modulation transfer function (MTF and the importance of the dark current. We show the importance of charge trapping in limiting not only the sensitivity but also the resolution of these detectors. Limitations on the maximum acceptable dark current and the corresponding charge collection efficiency jointly impose a practical constraint that many photoconductors fail to satisfy. We discuss the case of a-Se in which the dark current was brought down by three orders of magnitude by the use of special blocking layers to satisfy the dark current constraint. There are also a number of polycrystalline photoconductors, HgI2 and PbO being good examples, that show potential for commercialization in the same way that multilayer stabilized a-Se x-ray photoconductors were developed for commercial applications. We highlight the unique nature of avalanche multiplication in a-Se and how it has led to the development of the commercial HARP video-tube. An all solid state version of the

  7. Amorphous and polycrystalline photoconductors for direct conversion flat panel x-ray image sensors.

    Science.gov (United States)

    Kasap, Safa; Frey, Joel B; Belev, George; Tousignant, Olivier; Mani, Habib; Greenspan, Jonathan; Laperriere, Luc; Bubon, Oleksandr; Reznik, Alla; DeCrescenzo, Giovanni; Karim, Karim S; Rowlands, John A

    2011-01-01

    In the last ten to fifteen years there has been much research in using amorphous and polycrystalline semiconductors as x-ray photoconductors in various x-ray image sensor applications, most notably in flat panel x-ray imagers (FPXIs). We first outline the essential requirements for an ideal large area photoconductor for use in a FPXI, and discuss how some of the current amorphous and polycrystalline semiconductors fulfill these requirements. At present, only stabilized amorphous selenium (doped and alloyed a-Se) has been commercialized, and FPXIs based on a-Se are particularly suitable for mammography, operating at the ideal limit of high detective quantum efficiency (DQE). Further, these FPXIs can also be used in real-time, and have already been used in such applications as tomosynthesis. We discuss some of the important attributes of amorphous and polycrystalline x-ray photoconductors such as their large area deposition ability, charge collection efficiency, x-ray sensitivity, DQE, modulation transfer function (MTF) and the importance of the dark current. We show the importance of charge trapping in limiting not only the sensitivity but also the resolution of these detectors. Limitations on the maximum acceptable dark current and the corresponding charge collection efficiency jointly impose a practical constraint that many photoconductors fail to satisfy. We discuss the case of a-Se in which the dark current was brought down by three orders of magnitude by the use of special blocking layers to satisfy the dark current constraint. There are also a number of polycrystalline photoconductors, HgI(2) and PbO being good examples, that show potential for commercialization in the same way that multilayer stabilized a-Se x-ray photoconductors were developed for commercial applications. We highlight the unique nature of avalanche multiplication in a-Se and how it has led to the development of the commercial HARP video-tube. An all solid state version of the HARP has been

  8. Applying state diagrams to food processing and development

    Science.gov (United States)

    Roos, Y.; Karel, M.

    1991-01-01

    The physical state of food components affects their properties during processing, storage, and consumption. Removal of water by evaporation or by freezing often results in formation of an amorphous state (Parks et al., 1928; Troy and Sharp, 1930; Kauzmann, 1948; Bushill et al., 1965; White and Cakebread, 1966; Slade and Levine, 1991). Amorphous foods are also produced from carbohydrate melts by rapid cooling after extrusion or in the manufacturing of hard sugar candies and coatings (Herrington and Branfield, 1984). Formation of the amorphous state and its relation to equilibrium conditions are shown in Fig. 1 [see text]. The most important change, characteristic of the amorphous state, is noticed at the glass transition temperature (Tg), which involves transition from a solid "glassy" to a liquid-like "rubbery" state. The main consequence of glass transition is an increase of molecular mobility and free volume above Tg, which may result in physical and physico-chemical deteriorative changes (White and Cakebread, 1966; Slade and Levine, 1991). We have conducted studies on phase transitions of amorphous food materials and related Tg to composition, viscosity, stickiness, collapse, recrystallization, and ice formation. We have also proposed that some diffusion-limited deteriorative reactions are controlled by the physical state in the vicinity of Tg (Roos and Karel, 1990, 1991a, b, c). The results are summarized in this article, with state diagrams based on experimental and calculated data to characterize the relevant water content, temperature, and time-dependent phenomena of amorphous food components.

  9. Structure and electronic properties features of amorphous chalhogenide semiconductor films prepared by ion-plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Korobova, N., E-mail: korobova3@mail.ru; Timoshenkov, S. [Department of Microelectronics, National Research University of Electronic Technology (MIET), Zelenograd (Russian Federation); Almasov, N.; Prikhodko, O. [al-Farabi Kazakh National University, Almaty (Kazakhstan); Tsendin, K. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation)

    2014-10-21

    Structure of amorphous chalcogenide semiconductor glassy As-S-Se films, obtained by high-frequency (HF) ion-plasma sputtering has been investigated. It was shown that the length of the atomic structure medium order and local structure were different from the films obtained by thermal vacuum evaporation. Temperature dependence of dark conductivity, as well as the dependence of the spectral transmittance has been studied. Conductivity value was determined at room temperature. Energy activation conductivity and films optical band gap have been calculated. Temperature and field dependence of the drift mobility of charge carriers in the HF As-S-Se films have been shown. Bipolarity of charge carriers drift mobility has been confirmed. Absence of deep traps for electrons in the As{sub 40}Se{sub 30}S{sub 30} spectrum of localized states for films obtained by HF plasma ion sputtering was determined. Bipolar drift of charge carriers was found in amorphous As{sub 40}Se{sub 30}S{sub 30} films obtained by ion-plasma sputtering of high-frequency, unlike the films of these materials obtained by thermal evaporation.

  10. Bandgap and Carrier Transport Engineering of Quantum Confined Mixed Phase Nanocrystalline/Amorphous Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Tianyuan; Klafehn, Grant; Kendrick, Chito; Theingi, San; Airuoyo, Idemudia; Lusk, Mark T.; Stradins, Paul; Taylor, Craig; Collins, Reuben T.

    2016-11-21

    Mixed phase nanocrystalline/amorphous-silicon (nc/a-Si:H) thin films with band-gap higher than bulk silicon are prepared by depositing silicon nanoparticles (SiNPs), prepared in a separate deposition zone, and hydrogenated amorphous silicon (a-Si:H), simultaneously. Since the two deposition phases are well decoupled, optimized parameters for each component can apply to the growth process. Photoluminescence spectroscopy (PL) shows that the embedded SiNPs are small enough to exhibit quantum confinement effects. The low temperature PL measurements on the mixed phase reveal a dominant emission feature, which is associated with SiNPs surrounded by a-Si:H. In addition, we compare time dependent low temperature PL measurements for both a-Si:H and mixed phase material under intensive laser exposure for various times up to two hours. The PL intensity of a-Si:H with embedded SiNPs degrades much less than that of pure a-Si:H. We propose this improvement of photostability occurs because carriers generated in the a-Si:H matrix quickly transfer into SiNPs and recombine there instead of recombining in a-Si:H and creating defect states (Staebler-Wronski Effect).

  11. Resonant tunnelling assisted electrical switching in amorphous-carbon multilayer-superlattice structures

    Science.gov (United States)

    Bhattacharyya, Somnath; Silva, S. R. P.

    2007-03-01

    Negative differential resistance (NDR) in an amorphous carbon (a-C) double barrier resonant tunnel diode (DB-RTD) with an estimated cut-off frequency well into the gigahertz regime is reported [1]. Presently we extend this work in carbon multi-layer superlattice structures by showing room temperature resonant tunnelling and establish a high value of the phase coherence length of ˜10 nm for low-dimensional amorphous materials. By applying a high bias, these structures are modified with reversible current switching of up to four orders of magnitude with a NDR signature and multiple peaks representative of resonant tunnelling in the ON state. In addition to the formation of filamentary channels by applying high bias, all these features are also explained using concepts based on tunnelling through the interface of the carbon layers, quantum-dot heterostructures and the presence of a confined two dimensional electron gas. This switching behavior and its tunability have been tested by applying a microwave signal up to 100 GHz which suggest the potential for novel high-speed memory devices. [1] S. Bhattacharyya, S.J. Henley, E. Mendoza, L.G-Rojas, J. Allam and S.R.P. Silva, Nature Mater. 5, 19 (2006).

  12. Amorphous Solid Dispersions: Utilization and Challenges in Drug Discovery and Development.

    Science.gov (United States)

    He, Yan; Ho, Chris

    2015-10-01

    Amorphous solid dispersion (ASD) can accelerate a project by improving dissolution rate and solubility, offering dose escalation flexibility and excipient acceptance for toxicology studies, as well as providing adequate preclinical and clinical exposure. The prerequisite physicochemical properties for a compound to form a stable ASD are glass-forming ability and low-crystallization tendency, which can be assessed using computational tools and experimental methods. Polymer excipient screening by in silico miscibility prediction and experimental screening techniques is discussed. Improved technologies for polymer screening with minimal quantity of drug substance, and the scalability of ASD from bench to commercial are reviewed. Considerations of in vitro evaluations, preclinical animal selection, and the translation of the preclinical results to clinical studies are also discussed. Better understanding of how polymers improve the stability of the amorphous phase in the solid state and how ASD improves bioavailability have facilitated the applications of ASD ranging from discovery research to preclinical development and further to commercialization. With the understanding of how ASDs are currently used in the pharmaceutical industry and what challenges remain to be solved, ASD can be applied to solve drug formulation problems at given research and development stages.

  13. Ideal solution behaviour of glassy Cu–Ti, Zr, Hf alloys and properties of amorphous copper

    Energy Technology Data Exchange (ETDEWEB)

    Ristić, R. [Department of Physics, University of Osijek, Trg Ljudevita Gaja 6, HR-3100 Osijek (Croatia); Cooper, J.R. [Department of Physics, Cavendish Laboratory, J.J. Thomson Avenue, CB3 0HE Cambridge (United Kingdom); Zadro, K.; Pajić, D. [Department of Physics, Faculty of Science, Bijenička cesta 32, HR-10002 Zagreb (Croatia); Ivkov, J. [Institute of Physics, Bijenička cesta 46, HR-10002 Zagreb (Croatia); Babić, E. [Department of Physics, Faculty of Science, Bijenička cesta 32, HR-10002 Zagreb (Croatia)

    2015-02-05

    Highlights: • Ideal solution behaviour (ISB) is established in all Cu–Ti, Zr, Hf glassy alloys. • ISB enables reliable estimates for various properties of amorphous Cu. • ISB also impacts glass forming ability in these and probably other similar alloys. - Abstract: A comprehensive study of selected properties of amorphous (a) Cu–TE alloys (TE = Ti, Zr and Hf) has been performed. Data for average atomic volumes of a-Cu–Hf, Ti alloys combined with literature data show that ideal solution behaviour (Vegard’s law) extends over the whole glass forming range (GFR) in all a-Cu–TE alloys. This enables one to obtain an insight into some properties and probable atomic arrangements for both, a-TEs (Ristić et al., 2010) and a-Cu by extrapolation of the data for alloys. Indeed the atomic volumes and other properties studied for all a-Cu–TE alloys extrapolate to the same values for a-Cu. Depending on the property, these values are either close to those of crystalline (c) Cu, or are close to those for liquid (L) Cu. In particular, the electronic transport properties of a-Cu seem close to those of L-Cu, whereas the static properties, such as the density of states, and Young’s modulus, converge to those of c-Cu. The possible impact of these results on our understanding of a-Cu–TE alloys, including glass forming ability, is discussed.

  14. Amorphous Nickel Based Alloy Catalysts and Magnetically Stabilized Bed Hydrogenation Technology

    Institute of Scientific and Technical Information of China (English)

    MuXuhong; ZongBaoning; 等

    2002-01-01

    Amorphous nickel based alloy catalysts(denoted as the SRNA series catalysts)were prepared via rapid quenching method followed by alkali leaching and other activation procedures.The physicochemical characterizations show that nickel,the active component in these catalysts,exists in the amorphous state,and the catalyst particles possess many nanosized voids leading to large surface area(the highest is 145m2/g).The evaluation results in some model reactions show that the SRNA series catalysts have 2 to 4 times higher activity and selectivity than conventional Raney Ni catalyst for the hydrogenation of compounds with unsatur-ated functional groups.At present,the SRNA series catalysts have been successfully used in hydrogenation of glucose,hydrogenation of pharmaceutical intermediates and purification of caprolactam.In order to use these catalysts efficiently,a magnetically stabilized bed(MSB) technology has been developed by combining the ferromagnetic property of the catalyst with the good mass transfer characteristics of MSB.The demonstration unit of MSB hydrogenation technology has been set up and has kept running for 2800 hours.The results show that,after running 2800 hours,the catalyst still retained good activity; meanwhile,the hydrogenation effi-ciency had been improved 10 times in comparison with the traditional CSTR process.

  15. Amorphous Nickel Based Alloy Catalysts and Magnetically Stabilized Bed Hydrogenation Technology

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Amorphous nickel based alloy catalysts (denoted as the SRNA series catalysts) were prepared viarapid quenching method followed by alkali leaching and other activation procedures. The physicochemicalcharacterizations show that nickel, the active component in these catalysts, exists in the amorphous state, andthe catalyst particles possess many nanosized voids leading to large surface area (the highest is 145m2/g). Theevaluation results in some model reactions show that the SRNA series catalysts have 2 to 4 times higheractivity and selectivity than conventional Raney Ni catalyst for the hydrogenation of compounds with unsatur-ated functional groups. At present, the SRNA series catalysts have been successfully used in hydrogenation ofglucose, hydrogenation of pharmaceutical intermediates and purification of caprolactam. In order to use thesecatalysts efficiently, a magnetically stabilized bed (MSB) technology has been developed by combining theferromagnetic property of the catalyst with the good mass transfer characteristics of MSB. The demonstrationunit of MSB hydrogenation technology has been set up and has kept running for 2800 hours. The results showthat, after running 2800 hours, the catalyst still retained good activity; meanwhile, the hydrogenation effi-ciency had been improved 10 times in comparison with the traditional CSTR process.

  16. Amorphous Nickel Based Alloy Catalysts and Magnetically Stabilized Bed Hydrogenation Technology

    Institute of Scientific and Technical Information of China (English)

    Mu Xuhong; Zong Baoning; Meng Xiangkun; Min Enze

    2002-01-01

    Amorphous nickel based alloy catalysts (denoted as the SRNAseries catalysts) were prepared viarapid quenching method followed by alkali leaching and other activation procedures. The physicochemicalcharacterizations show that nickel, the active component in these catalysts, exists in the amorphous state, andthe catalyst particles possess many nanosized voids leading to large surface area (the highest is 145m2/g). Theevaluation results in some model reactions show that the SRNA series catalysts have 2 to 4 times higheractivity and selectivity than conventional Raney Ni catalyst for the hydrogenation of compounds with unsatur-ated functional groups. At present, the SRNA series catalysts have been successfully used in hydrogenation ofglucose, hydrogenation of pharmaceutical intermediates and purification of caprolactam. In order to use thesecatalysts efficiently, a magnetically stabilized bed (MSB) technology has been developed by combining theferromagnetic property of the catalyst with the good mass transfer characteristics of MSB. The demonstrationunit of MSB hydrogenation technology has been set up and has kept running for 2800 hours. The results showthat, after running 2800 hours, the catalyst still retained good activity; meanwhile, the hydrogenation effi-ciency had been improved 10 times in comparison with the traditional CSTR process.

  17. 2.5 D Transrotational Microcrystals and Nanostructures Revealed by TEM in Crystallizing Amorphous Films

    Science.gov (United States)

    Kolosov, Vladimir

    2015-03-01

    Unexpected transrotational microcrystals can be grown in thin 10-100 nm amorphous films. Crystals of different morphology (from nanowhiskers to spherulites, complex textures) and chemical nature (oxides, chalcogenides, metals and alloys) grown in thin films prepared by various methods are studied by transmission electron microscopy (TEM). We use primarily our TEM bend-contour method and SAED (HREM, AFM are also performed). The phenomenon resides in strong (up to 300 degrees/ μm) regular internal bending of crystal lattice planes in a growing crystal. It can be traced inside TEM in situ. Usual translation is complicated by slight regular rotation of the crystal unit cell (transrotation) most prominent at the mesoscale. Different geometries of transrotation of positive and negative curvature are revealed. Transrotational crystal resembles ideal single crystal enclosed in a curved space. It can be also considered similar to hypothetical endless 2.5 D analogy of MW nanotube/nano-onion halves. Transrotation is strongly increasing as the film gets thinner in the range 100-15 nm. Transrotations supplement dislocations and disclinations. New transrotational nanocrystalline model of amorphous state is proposed. Support of Ministry of Higher Education and Science is acknowledged.

  18. Study of Critical Behavior in Amorphous Fe85Sn5Zr10 Alloy Ribbon

    Science.gov (United States)

    Han, L. A.; Hua, X. H.; Zhu, H. Z.; Yang, J.; Yang, H. P.; Yan, Z. X.; Zhang, T.

    2016-10-01

    We have investigated the critical behavior in amorphous Fe85Sn5Zr10 alloy ribbon prepared using a single-roller melt-spinning method. This alloy shows a second-order magnetic transition from paramagnetic to ferromagnetic (FM) state at the Curie temperature T C (˜306 K). To obtain more information on the features of the magnetic transition, a detailed critical exponent study was carried out using isothermal magnetization M (H, T) data in the vicinity of the T C. Modified Arrott plot, Kouvel-Fisher plot, Widom's scaling relation and critical isotherm analysis techniques were used to investigate the critical behavior of this alloy system around its phase transition point. The values of critical exponents determined using the above methods are self-consistent. The estimated critical exponents are fairly close to the theoretical prediction of the three-dimensional (3D) Heisenberg model, implying that short-range FM interactions dominate the critical behavior in amorphous Fe85Sn5Zr10 alloy ribbon.

  19. Study of Critical Behavior in Amorphous Fe85Sn5Zr10 Alloy Ribbon

    Science.gov (United States)

    Han, L. A.; Hua, X. H.; Zhu, H. Z.; Yang, J.; Yang, H. P.; Yan, Z. X.; Zhang, T.

    2017-02-01

    We have investigated the critical behavior in amorphous Fe85Sn5Zr10 alloy ribbon prepared using a single-roller melt-spinning method. This alloy shows a second-order magnetic transition from paramagnetic to ferromagnetic (FM) state at the Curie temperature T C (˜306 K). To obtain more information on the features of the magnetic transition, a detailed critical exponent study was carried out using isothermal magnetization M ( H, T) data in the vicinity of the T C. Modified Arrott plot, Kouvel-Fisher plot, Widom's scaling relation and critical isotherm analysis techniques were used to investigate the critical behavior of this alloy system around its phase transition point. The values of critical exponents determined using the above methods are self-consistent. The estimated critical exponents are fairly close to the theoretical prediction of the three-dimensional (3D) Heisenberg model, implying that short-range FM interactions dominate the critical behavior in amorphous Fe85Sn5Zr10 alloy ribbon.

  20. Molecular dynamics simulation of ion-beam-amorphization of Si, Ge and GaAs

    CERN Document Server

    Nord, J D; Keinonen, J

    2002-01-01

    We use molecular dynamics simulations to study ion-irradiation-induced amorphization in Si, Ge and GaAs using several different interatomic force models. We find that the coordination number is higher, and the average bond length longer, for the irradiated amorphous structures than for the molten ones in Si and Ge. For amorphous GaAs, we suggest that longer Ga-Ga bonds, also present in pure Ga, are produced during the irradiation. In Si the amorphization is found to proceed via growth of amorphous regions, and low energy recoils are found to induce athermal recrystallization during irradiation.

  1. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    Science.gov (United States)

    Farmer, Joseph C.

    2011-12-13

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  2. Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Materials (HPCRM) Development Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Choi, J; Saw, C; Haslem, J; Day, D; Hailey, P; Lian, T; Rebak, R; Perepezko, J; Payer, J; Branagan, D; Beardsley, B; D' Amato, A; Aprigliano, L

    2009-03-16

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was co-sponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the United States Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition; materials synthesis; thermal stability; corrosion resistance; environmental cracking; mechanical properties; damage tolerance; radiation effects; and important potential applications. Amorphous alloys identified as SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been produced as melt-spun ribbons, drop-cast ingots and thermal-spray coatings. Chromium (Cr), molybdenum (Mo) and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of melt-spun ribbons and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests. Good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while simultaneously monitoring the open-circuit corrosion potentials. Reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal make this amorphous alloy an effective neutron absorber, and suitable for criticality control applications. In general, the corrosion resistance of these iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional

  3. Solution growth of microcrystalline silicon on amorphous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Heimburger, Robert

    2010-07-05

    This work deals with low-temperature solution growth of micro-crystalline silicon on glass. The task is motivated by the application in low-cost solar cells. As glass is an amorphous material, conventional epitaxy is not applicable. Therefore, growth is conducted in a two-step process. The first step aims at the spatial arrangement of silicon seed crystals on conductive coated glass substrates, which is realized by means of vapor-liquid-solid processing using indium as the solvent. Seed crystals are afterwards enlarged by applying a specially developed steady-state solution growth apparatus. This laboratory prototype mainly consists of a vertical stack of a silicon feeding source and the solvent (indium). The growth substrate can be dipped into the solution from the top. The system can be heated to a temperature below the softening point of the utilized glass substrate. A temperature gradient between feeding source and growth substrate promotes both, supersaturation and material transport by solvent convection. This setup offers advantages over conventional liquid phase epitaxy at low temperatures in terms of achievable layer thickness and required growth times. The need for convective solute transport to gain the desired thickness of at least 50 {mu}m is emphasized by equilibrium calculations in the binary system indium-silicon. Material transport and supersaturation conditions inside the utilized solution growth crucible are analyzed. It results that the solute can be transported from the lower feeding source to the growth substrate by applying an appropriate heating regime. These findings are interpreted by means of a hydrodynamic analysis of fluid flow and supporting FEM simulation. To ensure thermodynamic stability of all materials involved during steady-state solution growth, the ternary phase equilibrium between molybdenum, indium and silicon at 600 C was considered. Based on the obtained results, the use of molybdenum disilicide as conductive coating

  4. Systems and Methods for Fabricating Objects Including Amorphous Metal Using Techniques Akin to Additive Manufacturing

    Science.gov (United States)

    Hofmann, Douglas (Inventor)

    2017-01-01

    Systems and methods in accordance with embodiments of the invention fabricate objects including amorphous metals using techniques akin to additive manufacturing. In one embodiment, a method of fabricating an object that includes an amorphous metal includes: applying a first layer of molten metallic alloy to a surface; cooling the first layer of molten metallic alloy such that it solidifies and thereby forms a first layer including amorphous metal; subsequently applying at least one layer of molten metallic alloy onto a layer including amorphous metal; cooling each subsequently applied layer of molten metallic alloy such that it solidifies and thereby forms a layer including amorphous metal prior to the application of any adjacent layer of molten metallic alloy; where the aggregate of the solidified layers including amorphous metal forms a desired shape in the object to be fabricated; and removing at least the first layer including amorphous metal from the surface.

  5. The yielding transition in amorphous solids under oscillatory shear deformation

    Science.gov (United States)

    Leishangthem, Premkumar; Parmar, Anshul D. S.; Sastry, Srikanth

    2017-01-01

    Amorphous solids are ubiquitous among natural and man-made materials. Often used as structural materials for their attractive mechanical properties, their utility depends critically on their response to applied stresses. Processes underlying such mechanical response, and in particular the yielding behaviour of amorphous solids, are not satisfactorily understood. Although studied extensively, observed yielding behaviour can be gradual and depend significantly on conditions of study, making it difficult to convincingly validate existing theoretical descriptions of a sharp yielding transition. Here we employ oscillatory deformation as a reliable probe of the yielding transition. Through extensive computer simulations for a wide range of system sizes, we demonstrate that cyclically deformed model glasses exhibit a sharply defined yielding transition with characteristics that are independent of preparation history. In contrast to prevailing expectations, the statistics of avalanches reveals no signature of the impending transition, but exhibit dramatic, qualitative, changes in character across the transition. PMID:28248289

  6. Overview of the amorphous precursor phase strategy in biomineralization

    Institute of Scientific and Technical Information of China (English)

    Steve WEINER; Julia MAHAMID; Yael POLITI; Yurong MA; Lia ADDADI

    2009-01-01

    It was assumed for a long time that organisms produce minerals directly from a saturated solution. A few exceptions were known,including the well documented mineralized teeth of the chiton. In 1997 it was demon-stratedthat sea urchin larvae form their calcitic spicules by first depositing a highly unstable mineral phase called amorphous cualcium carbonate.This other phgyla has since been shown to be used by anlmals from other phyla and for both aragonita and calcite Recent evidence shows that vertebrate bone mineral may also be formed via a precursor phase of amorphous calcium carbonate. This strategy thus appears to be widespread The challenge now is to understand the mechanisms by which these unstable phases are initially formed,how they are temporarily stabilized and how they are destabilized and trans form into a crystalline mature product.

  7. Amorphous diffusion bonding of steel pipe and its impact toughness

    Institute of Scientific and Technical Information of China (English)

    WANG Xuegang; YAN Fengjie; YAN Qian; LI Xingeng

    2007-01-01

    An iron-based amorphous foil (FeNiCrSiB) was used as an interlayer for the amorphous diffusion bonding of low carbon steel pipes under argon flux. The microstructure and mechanical properties of the joint were analyzed using an electron probe micro-analyzer (EPMA), tensile test, bending test and impact test. The results show that the joint micro-structure resembles that of the base metal and no precipitates form at the joint. Melting point depressants 03, Si) diffuse far away from the joint and the base metal element is homoge-nous across the joint. The joint impact toughness is greater than the base metal toughness and the mechanical properties of the joint are similar around the pipe.

  8. Torsional impedance effect in Fe-rich amorphous wires

    Energy Technology Data Exchange (ETDEWEB)

    Prida, V.M. E-mail: vmpp@pinon.ccu.uniovi.es; Hernando, B.; Sanchez, M.L.; Li, Y.-F.; Tejedor, M.; Vazquez, M

    2003-03-01

    An amorphous ferromagnetic wire with a highly positive saturation magnetostriction constant, made of Fe{sub 73.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1}, was simultaneously submitted to both, an AC current flowing through it and a torsional stress, in order to induce a helical magnetic anisotropy that modifies the magnetic domain structure and therefore the magnetic response of the sample. We study the torsion-impedance effect in an Fe-rich amorphous wire when it is submitted to different applied torsional stresses in both senses, up to 0.8{pi} rad/cm, as a function of the drive current frequency, in the range of 10 Hz-2 MHz. The experimental results are explained on the basis of the core-shell magnetic structure model combined with the skin effect.

  9. Growth, characterisation and electronic applications of amorphous hydrogenated carbon

    CERN Document Server

    Paul, S

    2000-01-01

    temperature on GaAs, has been studied and concluded to be satisfactory on the basis of good adherence and low leakage currents. Such a structure was motivated by the applicability in Metal Insulator Semiconductor Field Effect Transistors (MISFET). My thesis proposes solutions to a number of riddles associated with the material, hydrogenated amorphous carbon, (a-C:H). This material has lately generated interest in the electronic engineering community, owing to some remarkable properties. The characterisation of amorphous carbon films, grown by radio frequency plasma enhanced chemical vapour deposition has been reported. The coexistence of multiple phases in the same a-C:H film manifests itself in the inconsistent electrical behaviour of different parts of the film, thus rendering it difficult to predict the nature of films. For the first time, in this thesis, a reliable prediction of Schottky contact formation on a-C:H films is reported. A novel and simple development on a Scanning Electron Microscope, configu...

  10. High thermal conductivity of a hydrogenated amorphous silicon film.

    Science.gov (United States)

    Liu, Xiao; Feldman, J L; Cahill, D G; Crandall, R S; Bernstein, N; Photiadis, D M; Mehl, M J; Papaconstantopoulos, D A

    2009-01-23

    We measured the thermal conductivity kappa of an 80 microm thick hydrogenated amorphous silicon film prepared by hot-wire chemical-vapor deposition with the 3omega (80-300 K) and the time-domain thermo-reflectance (300 K) methods. The kappa is higher than any of the previous temperature dependent measurements and shows a strong phonon mean free path dependence. We also applied a Kubo based theory using a tight-binding method on three 1000 atom continuous random network models. The theory gives higher kappa for more ordered models, but not high enough to explain our results, even after extrapolating to lower frequencies with a Boltzmann approach. Our results show that this material is more ordered than any amorphous silicon previously studied.

  11. The reliability and stability of multijunction amorphous silicon PV modules

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, D.E. [Solarex, Newtown, PA (United States)

    1995-11-01

    Solarex is developing a manufacturing process for the commercial production of 8 ft{sup 2} multijunction amorphous silicon (a-Si) PV modules starting in 1996. The device structure used in these multijunction modules is: glass/textured tin oxide/p-i-n/p-i-n/ZnO/Al/EVA/Tedlar where the back junction of the tandem structure contains an amorphous silicon germanium alloy. As an interim step, 4 ft{sup 2} multijunction modules have been fabricated in a pilot production mode over the last several months. The distribution of initial conversion efficiencies for an engineering run of 67 modules (4 ft{sup 2}) is shown. Measurements recently performed at NREL indicate that the actual efficiencies are about 5% higher than those shown, and thus exhibit an average initial conversion efficiency of about 9.5%. The data indicates that the process is relatively robust since there were no modules with initial efficiencies less than 7.5%.

  12. Amorphous solid dispersions: a robust platform to address bioavailability challenges.

    Science.gov (United States)

    Newman, Ann; Nagapudi, Karthik; Wenslow, Robert

    2015-02-01

    Amorphous solid dispersions (ASDs) are being used with increasing frequency for poorly soluble pharmaceutical compounds in development. These systems consist of an amorphous active pharmaceutical ingredient stabilized by a polymer to produce a system with improved physical and solution stability. ASDs are commonly considered as a means of improving the apparent solubility of an active pharmaceutical ingredient. This review will discuss methods of preparation and characterization of ASDs with an emphasis on understanding and predicting stability. Theoretical understanding of supersaturation and predicting in vivo performance will be stressed. Additionally, a summary of preclinical and clinical development efforts will be presented to give the reader an understanding of risks and key pitfalls when developing an ASD.

  13. Coaxial carbon plasma gun deposition of amorphous carbon films

    Science.gov (United States)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  14. Amorphous ruthenium nanoparticles for enhanced electrochemical water splitting

    Science.gov (United States)

    Tee, Si Yin; Lee, Coryl Jing Jun; Safari Dinachali, Saman; Lai, Szu Cheng; Williams, Evan Laurence; Luo, He-Kuan; Chi, Dongzhi; Hor, T. S. Andy; Han, Ming-Yong

    2015-10-01

    This paper demonstrates an optimized fabrication of amorphous Ru nanoparticles through annealing at various temperatures ranging from 150 to 700 °C, which are used as water oxidation catalyst for effective electrochemical water splitting under a low overpotential of less than 300 mV. The amorphous Ru nanoparticles with short-range ordered structure exhibit an optimal and stable electrocatalytic activity after annealing at 250 °C. Interestingly, a small quantity of such Ru nanoparticles in a thin film on fluorine-doped tin oxide glass is also effectively driven by a conventional crystalline silicon solar cell that has excellent capability for harvesting visible light. Remarkably, it achieves an overall solar-to-hydrogen efficiency of 11.3% in acidic electrolyte.

  15. Nucleation of amorphous shear bands at nanotwins in boron suboxide

    Science.gov (United States)

    An, Qi; Reddy, K. Madhav; Qian, Jin; Hemker, Kevin J.; Chen, Ming-Wei; Goddard, William A., III

    2016-03-01

    The roles of grain boundaries and twin boundaries in mechanical properties are well understood for metals and alloys. However, for covalent solids, their roles in deformation response to applied stress are not established. Here we characterize the nanotwins in boron suboxide (B6O) with twin boundaries along the planes using both scanning transmission electron microscopy and quantum mechanics. Then, we use quantum mechanics to determine the deformation mechanism for perfect and twinned B6O crystals for both pure shear and biaxial shear deformations. Quantum mechanics suggests that amorphous bands nucleate preferentially at the twin boundaries in B6O because the twinned structure has a lower maximum shear strength by 7.5% compared with perfect structure. These results, which are supported by experimental observations of the coordinated existence of nanotwins and amorphous shear bands in B6O, provide a plausible atomistic explanation for the influence of nanotwins on the deformation behaviour of superhard ceramics.

  16. Photoluminescence in amorphous MgSiO_3 silicate

    CERN Document Server

    Thompson, S P; Day, S J; Connor, L D; Evans, A

    2013-01-01

    Samples of amorphous MgSiO_3 annealed at temperature steps leading up to their crystallisation temperature show a rise in photoluminescence activity, peaking at ~450C. The photoluminescence band has a main peak at 595nm and a weaker peak at 624nm. We present laboratory data to show that the maximum in photoluminescence activity is related to substantial structural reordering that occurs within a relatively narrow temperature range. We attribute the origin of the photoluminescence to non-bridging oxygen hole centre defects, which form around ordered nano-sized domain structures as a result of the breakup of tetrahedral connectivity in the disordered inter-domain network, aided by the loss of bonded OH. These defects are removed as crystallisation progresses, resulting in the decrease and eventual loss of photoluminescence. Thermally processed hydrogenated amorphous silicate grains could therefore represent a potential carrier of extended red emission.

  17. Properties of electrodeposited amorphous Fe-Ni-W alloy deposits

    Institute of Scientific and Technical Information of China (English)

    HE Feng-jiao; WANG Miao; LU Xin

    2006-01-01

    A new technique of electroplating amorphous Fe-Ni-W alloy deposits was proposed. The structure and morphology of Fe-Ni-W alloy deposit were detected by XRD and SEM. The friction and wear behavior of Fe-Ni-W alloy deposit were studied and compared with that of chromium deposit. The corrosion properties against 5% sodium chloride, 5% sulfuric acid and 5% sodium hydroxide were also discussed. The experimental results indicate that Fe-Ni-W alloy deposits have superior properties against wear than hard chromium deposits under dry sliding condition. Under oil sliding condition, except their better wear resistance, the deposits can protect their counterparts against wear. The deposits plated on brass and AISI 1045 steel show good behavior against corrosion of 5% sodium chloride, 5% sulfuric acid and 5% sodium hydroxide. The bath of electroplating amorphous Fe-Ni-W alloy deposits is environmentally friendly and would find widely use in industry.

  18. Development and Characterization of Amorphous Thermoplastic Matrix Graphene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Alfonso Maffezzoli

    2012-10-01

    Full Text Available The aim of the present work is the development of amorphous thermoplastic matrix nanocomposites based on graphite nanoparticles. Different types of graphite were used, including unmodified graphite, graphene nanoplatelets and graphite intercalation compounds. Graphite intercalation compounds were subjected to thermal treatment to attain exfoliation of the nanofiller. The exfoliation process was studied by means of thermal analysis. The nanofillers and nanocomposites were characterized by means of X-ray Diffraction (XRD and Scanning Electron Microscope (SEM analysis. The nanocomposites were further characterized by means of mechanical and dielectric analysis. The flammability of the nanocomposites was also analyzed. Results obtained indicate that addition of the nanofiller allows improving the proprieties of the amorphous thermoplastic matrix. The effect of the degree of dispersion of the nanofiller is particularly relevant for the dielectric properties of the nanocomposites, whereas no direct correlation between degree of dispersion and mechanical properties can be observed.

  19. Amorphous Hafnium-Indium-Zinc Oxide Semiconductor Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang

    2012-01-01

    Full Text Available We reported on the performance and electrical properties of co-sputtering-processed amorphous hafnium-indium-zinc oxide (α-HfIZO thin film transistors (TFTs. Co-sputtering-processed α-HfIZO thin films have shown an amorphous phase in nature. We could modulate the In, Hf, and Zn components by changing the co-sputtering power. Additionally, the chemical composition of α-HfIZO had a significant effect on reliability, hysteresis, field-effect mobility (μFE, carrier concentration, and subthreshold swing (S of the device. Our results indicated that we could successfully and easily fabricate α-HfIZO TFTs with excellent performance by the co-sputtering process. Co-sputtering-processed α-HfIZO TFTs were fabricated with an on/off current ratio of ~106, higher mobility, and a subthreshold slope as steep as 0.55 V/dec.

  20. Controlled rejuvenation of amorphous metals with thermal processing.

    Science.gov (United States)

    Wakeda, Masato; Saida, Junji; Li, Ju; Ogata, Shigenobu

    2015-05-26

    Rejuvenation is the configurational excitation of amorphous materials and is one of the more promising approaches for improving the deformability of amorphous metals that usually exhibit macroscopic brittle fracture modes. Here, we propose a method to control the level of rejuvenation through systematic thermal processing and clarify the crucial feasibility conditions by means of molecular dynamics simulations of annealing and quenching. We also experimentally demonstrate rejuvenation level control in Zr(55)Al(10)Ni(5)Cu(30) bulk metallic glass. Our local heat-treatment recipe (rising temperature above 1.1T(g), followed by a temperature quench rate exceeding the previous) opens avenue to modifying the glass properties after it has been cast and processed into near component shape, where a higher local cooling rate may be afforded by for example transient laser heating, adding spatial control and great flexibility to the processing.