WorldWideScience

Sample records for amorphous silicon thin

  1. Amorphous silicon for thin-film transistors

    OpenAIRE

    Schropp, Rudolf Emmanuel Isidore

    1987-01-01

    Hydrogenated amorphous silicon (a-Si:H) has considerable potential as a semiconducting material for large-area photoelectric and photovoltaic applications. Moreover, a-Si:H thin-film transistors (TFT’s) are very well suited as switching devices in addressable liquid crystal display panels and addressable image sensor arrays, due to a new technology of low-cost, Iow-temperature processing overlarge areas. ... Zie: Abstract

  2. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon

    OpenAIRE

    Ben Slama, Sonia; Hajji, Messaoud; Ezzaouia, Hatem

    2012-01-01

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that...

  3. Surface passivation of crystalline silicon by Cat-CVD amorphous and nanocrystalline thin silicon films

    OpenAIRE

    Voz Sánchez, Cristóbal; Martin, I.; Orpella, A.; Puigdollers i González, Joaquim; Vetter, M.; Alcubilla González, Ramón; Soler Vilamitjana, David; Fonrodona Turon, Marta; Bertomeu i Balagueró, Joan; Andreu i Batallé, Jordi

    2003-01-01

    In this work, we study the electronic surface passivation of crystalline silicon with intrinsic thin silicon films deposited by Catalytic CVD. The contactless method used to determine the effective surface recombination velocity was the quasi-steady-state photoconductance technique. Hydrogenated amorphous and nanocrystalline silicon films were evaluated as passivating layers on n- and p-type float zone silicon wafers. The best results were obtained with amorphous silicon films, which allowed ...

  4. Raman and ellipsometric characterization of hydrogenated amorphous silicon thin films

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Hydrogenated amorphous silicon (a-Si:H) thin films were deposited by plasma-enhanced vapor deposition (PECVD) at different silane temperatures (Tg) before glow-discharge. The effect of Tg on the amorphous network and optoelectronic properties of the films has been investigated by Raman scattering spectra, ellipsometric transmittance spectra, and dark conductivity measurement, respectively. The results show that the increase in Tg leads to an improved ordering of amorphous network on the short and intermediate scales and an increase of both refractive index and absorption coefficient in a-Si:H thin films. It is indicated that the dark conductivity increases by two orders of magnitude when Tg is raised from room temperature (RT) to 433 K. The continuous ordering of amorphous network of a-Si:H thin films deposited at a higher Tg is the main cause for the increase of dark conductivity.

  5. Raman and ellipsometric characterization of hydrogenated amorphous silicon thin films

    Institute of Scientific and Technical Information of China (English)

    LIAO NaiMan; LI Wei; KUANG YueJun; JIANG YaDong; LI ShiBin; WU ZhiMing; QI KangCheng

    2009-01-01

    Hydrogenated amorphous silicon (a-Si:H) thin films were deposited by plasma-enhanced vapor depo-sition (PEOVD) at different silane temperatures (Tg) before glow-discharge. The effect of Tg on the amorphous network and optoelectronic properties of the films has been investigated by Raman scat-tering spectra, ellipsometric transmittance spectra, and dark conductivity measurement, respectively. The results show that the increase in Tg leads to an improved ordering of amorphous network on the short and intermediate scales and an increase of both refractive index and absorption coefficient in a-Si:H thin films. It is indicated that the dark conductivity increases by two orders of magnitude when Tg is raised from room temperature (RT) to 433 K. The continuous ordering of amorphous network of a-Si:H thin films deposited at a higher Tg is the main cause for the increase of dark conductivity.

  6. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  7. Heat-Induced Agglomeration of Amorphous Silicon Nanoparticles Toward the Formation of Silicon Thin Film.

    Science.gov (United States)

    Jang, Bo Yun; Kim, Ja Young; Seo, Gyeongju; Shin, Chae-Ho; Ko, Chang Hyun

    2016-01-01

    The thermal behavior of silicon nanoparticles (Si NPs) was investigated for the preparation of silicon thin film using a solution process. TEM analysis of Si NPs, synthesized by inductively coupled plasma, revealed that the micro-structure of the Si NPs was amorphous and that the Si NPs had melted and merged at a comparatively low temperature (~750 °C) considering bulk melting temperature of silicon (1414 °C). A silicon ink solution was prepared by dispersing amorphous Si NPs in propylene glycol (PG). It was then coated onto a silicon wafer and a quartz plate to form a thin film. These films were annealed in a vacuum or in an N₂ environment to increase their film density. N2 annealing at 800 °C and 1000 °C induced the crystallization of the amorphous thin film. An elemental analysis by the SIMS depth profile showed that N₂annealing at 1000 °C for 180 min drastically reduced the concentrations of carbon and oxygen inside the silicon thin film. These results indicate that silicon ink prepared using amorphous Si NPs in PG can serve as a proper means of preparing silicon thin film via solution process. PMID:27398566

  8. Optical limiting in hydrogenated amorphous silicon-selenium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Manaa, Hacene, E-mail: hmanaa@gmail.co [Physics Department, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait); Al-Mulla, Abdullah; Al-Jamal, Noor [Physics Department, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait); Al-Dallal, Shawqi; Al-Alawi, Saleh [Physics Department, University of Bahrain, P.O. Box 32038 (Bahrain)

    2010-05-03

    Hydrogenated amorphous silicon-selenium alloy thin films grown by capacitively coupled radio-frequency glow-discharge are investigated. Nonlinear absorptive effects are evaluated with the help of open aperture z-scan technique in the 525 to 580 nm spectral range. The nonlinear absorption coefficient is found to be very large and reaching the value of 5.14 x 10{sup -3} cm/W at 525 nm. The origin of the optical nonlinearities is studied and found to be due mainly to two photon absorption in the case of pulsed excitation, whereas thermal effects are thought to be dominant when the sample is excited with a continuous wave laser. Optical limiting potentialities of the thin film are experimentally observed and their thresholds are found to be very low.

  9. Hydrogenated amorphous silicon thin film anode for proton conducting batteries

    Science.gov (United States)

    Meng, Tiejun; Young, Kwo; Beglau, David; Yan, Shuli; Zeng, Peng; Cheng, Mark Ming-Cheng

    2016-01-01

    Hydrogenated amorphous Si (a-Si:H) thin films deposited by chemical vapor deposition were used as anode in a non-conventional nickel metal hydride battery using a proton-conducting ionic liquid based non-aqueous electrolyte instead of alkaline solution for the first time, which showed a high specific discharge capacity of 1418 mAh g-1 for the 38th cycle and retained 707 mAh g-1 after 500 cycles. A maximum discharge capacity of 3635 mAh g-1 was obtained at a lower discharge rate, 510 mA g-1. This electrochemical discharge capacity is equivalent to about 3.8 hydrogen atoms stored in each silicon atom. Cyclic voltammogram showed an improved stability 300 mV below the hydrogen evolution potential. Both Raman spectroscopy and Fourier transform infrared spectroscopy studies showed no difference to the pre-existing covalent Si-H bond after electrochemical cycling and charging, indicating a non-covalent nature of the Si-H bonding contributing to the reversible hydrogen storage of the current material. Another a-Si:H thin film was prepared by an rf-sputtering deposition followed by an ex-situ hydrogenation, which showed a discharge capacity of 2377 mAh g-1.

  10. Silicon nanocrystals on amorphous silicon carbide alloy thin films: Control of film properties and nanocrystals growth

    Energy Technology Data Exchange (ETDEWEB)

    Barbe, Jeremy, E-mail: jeremy.barbe@hotmail.com [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, 31062 Toulouse (France); Xie, Ling; Leifer, Klaus [Department of Engineering Sciences, Uppsala University, Box 534, S-751 21 Uppsala (Sweden); Faucherand, Pascal; Morin, Christine; Rapisarda, Dario; De Vito, Eric [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Makasheva, Kremena; Despax, Bernard [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, 31062 Toulouse (France); CNRS, LAPLACE, F-31062 Toulouse (France); Perraud, Simon [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2012-11-01

    The present study demonstrates the growth of silicon nanocrystals on amorphous silicon carbide alloy thin films. Amorphous silicon carbide films [a-Si{sub 1-x}C{sub x}:H (with x < 0.3)] were obtained by plasma enhanced chemical vapor deposition from a mixture of silane and methane diluted in hydrogen. The effect of varying the precursor gas-flow ratio on the film properties was investigated. In particular, a wide optical band gap (2.3 eV) was reached by using a high methane-to-silane flow ratio during the deposition of the a-Si{sub 1-x}C{sub x}:H layer. The effect of short-time annealing at 700 Degree-Sign C on the composition and properties of the layer was studied by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. It was observed that the silicon-to-carbon ratio in the layer remains unchanged after short-time annealing, but the reorganization of the film due to a large dehydrogenation leads to a higher density of SiC bonds. Moreover, the film remains amorphous after the performed short-time annealing. In a second part, it was shown that a high density (1 Multiplication-Sign 10{sup 12} cm{sup -2}) of silicon nanocrystals can be grown by low pressure chemical vapor deposition on a-Si{sub 0.8}C{sub 0.2} surfaces at 700 Degree-Sign C, from silane diluted in hydrogen. The influence of growth time and silane partial pressure on nanocrystals size and density was studied. It was also found that amorphous silicon carbide surfaces enhance silicon nanocrystal nucleation with respect to SiO{sub 2}, due to the differences in surface chemical properties. - Highlights: Black-Right-Pointing-Pointer Silicon nanocrystals (Si-NC) growth on amorphous silicon carbide alloy thin films Black-Right-Pointing-Pointer Plasma deposited amorphous silicon carbide films with well-controlled properties Black-Right-Pointing-Pointer Study on the thermal effect of 700 Degree-Sign C short-time annealing on the layer properties Black-Right-Pointing-Pointer Low pressure

  11. Infrared Insight into the Network of Hydrogenated Amorphous and Polycrystalline Silicon thin Films

    OpenAIRE

    Jarmila Mullerova

    2006-01-01

    IR measurements were carried out on both amorphous and polycrystalline silicon samples deposited by PECVD on glass substrate. The transition from amorphous to polycrystalline phase was achieved by increasing dilution of silane plasma at the deposition process. The samples were found to be mixed phase materials. Commonly, infrared spectra of hydrogenated silicon thin films yield information about microstructure, hydrogen content and hydrogen bonding to silicon. In this paper, addit...

  12. Structure and Optical Properties of Silicon Nanocrystals Embedded in Amorphous Silicon Thin Films Obtained by PECVD

    Directory of Open Access Journals (Sweden)

    B. M. Monroy

    2011-01-01

    Full Text Available Silicon nanocrystals embedded in amorphous silicon matrix were obtained by plasma enhanced chemical vapor deposition using dichlorosilane as silicon precursor. The RF power and dichlorosilane to hydrogen flow rate ratio were varied to obtain different crystalline fractions and average sizes of silicon nanocrystals. High-resolution transmission electron microscopy images and RAMAN measurements confirmed the existence of nanocrystals embedded in the amorphous matrix with average sizes between 2 and 6 nm. Different crystalline fractions (from 12% to 54% can be achieved in these films by regulating the selected growth parameters. The global optical constants of the films were obtained by UV-visible transmittance measurements. Effective band gap variations from 1.78 to 2.3 eV were confirmed by Tauc plot method. Absorption coefficients higher than standard amorphous silicon were obtained in these thin films for specific growth parameters. The relationship between the optical properties is discussed in terms of the different internal nanostructures of the samples.

  13. Characteristics of Disorder and Defect in Hydrogenated Amorphous Silicon Nitride Thin Films Containing Silicon Nanograins

    Institute of Scientific and Technical Information of China (English)

    DING Wen-ge; YU Wei; ZHANG Jiang-yong; HAN Li; FU Guang-sheng

    2006-01-01

    The hydrogenated amorphous silicon nitride (SiNx) thin films embedded with nano-structural silicon were prepared and the microstructures at the interface of silicon nano-grains/SiNx were identified by the optical absorption and Raman scattering measurements. Characterized by the exponential tail of optical absorption and the band-width of the Raman scattering TO mode, the disorder in the interface region increases with the gas flow ratio increasing. Besides, as reflected by the sub-gap absorption coefficients, the density of interface defect states decreases, which can be attributed to the structural mismatch in the interface region and also the changes of hydrogen content in the deposited films. Additional annealing treatment results in a significant increase of defects and degree of disorder, for which the hydrogen out-diffusion in the annealing process would be responsible.

  14. Structure and Optical Properties of Silicon Nanocrystals Embedded in Amorphous Silicon Thin Films Obtained by PECVD

    OpenAIRE

    Monroy, B. M.; Aduljay Remolina Millán; García-Sánchez, M. F.; Ponce, A.; Picquart, M.; Santana, G.

    2011-01-01

    Silicon nanocrystals embedded in amorphous silicon matrix were obtained by plasma enhanced chemical vapor deposition using dichlorosilane as silicon precursor. The RF power and dichlorosilane to hydrogen flow rate ratio were varied to obtain different crystalline fractions and average sizes of silicon nanocrystals. High-resolution transmission electron microscopy images and RAMAN measurements confirmed the existence of nanocrystals embedded in the amorphous matrix with average sizes between 2...

  15. Fabrication of amorphous silicon nanoribbons by atomic force microscope tip induced local oxidation for thin film device applications

    OpenAIRE

    Pichon, Laurent; Rogel, Regis; Demami, Fouad

    2010-01-01

    WOS International audience We demonstrate the feasibility of induced local oxidation of amorphous silicon by atomic force microscopy. The resulting local oxide is used as mask for the elaboration of thin film silicon resistor. A thin amorphous silicon layer deposited on a glass substrate is locally oxidized following narrow continuous lines. The corresponding oxide line is then used as mask during plasma etching of the amorphous layer leading to the formation of nanoribbon. Such amorpho...

  16. Amorphous silicon thin films: The ultimate lightweight space solar cell

    Science.gov (United States)

    Vendura, G. J., Jr.; Kruer, M. A.; Schurig, H. H.; Bianchi, M. A.; Roth, J. A.

    1994-01-01

    Progress is reported with respect to the development of thin film amorphous (alpha-Si) terrestrial solar cells for space applications. Such devices promise to result in very lightweight, low cost, flexible arrays with superior end of life (EOL) performance. Each alpha-Si cell consists of a tandem arrangement of three very thin p-i-n junctions vapor deposited between film electrodes. The thickness of this entire stack is approximately 2.0 microns, resulting in a device of negligible weight, but one that must be mechanically supported for handling and fabrication into arrays. The stack is therefore presently deposited onto a large area (12 by 13 in), rigid, glass superstrate, 40 mil thick, and preliminary space qualification testing of modules so configured is underway. At the same time, a more advanced version is under development in which the thin film stack is transferred from the glass onto a thin (2.0 mil) polymer substrate to create large arrays that are truly flexible and significantly lighter than either the glassed alpha-Si version or present conventional crystalline technologies. In this paper the key processes for such effective transfer are described. In addition, both glassed (rigid) and unglassed (flexible) alpha-Si cells are studied when integrated with various advanced structures to form lightweight systems. EOL predictions are generated for the case of a 1000 W array in a standard, 10 year geosynchronous (GEO) orbit. Specific powers (W/kg), power densities (W/sq m) and total array costs ($/sq ft) are compared.

  17. Infrared Insight into the Network of Hydrogenated Amorphous and Polycrystalline Silicon thin Films

    Directory of Open Access Journals (Sweden)

    Jarmila Mullerova

    2006-01-01

    Full Text Available IR measurements were carried out on both amorphous and polycrystalline silicon samples deposited by PECVDon glass substrate. The transition from amorphous to polycrystalline phase was achieved by increasing dilution of silaneplasma at the deposition process. The samples were found to be mixed phase materials. Commonly, infrared spectra ofhydrogenated silicon thin films yield information about microstructure, hydrogen content and hydrogen bonding to silicon. Inthis paper, additional understanding was retrieved from infrared response. Applying standard optical laws, effective mediatheory and Clausius-Mossoti approach concerning the Si-Si and Si-H bonds under IR irradiation as individual oscillators,refractive indices in the long wavelength limit, crystalline, amorphous and voids volume fractions and the mass density of thefilms were determined. The mass density was found to decrease with increasing crystalline volume fraction, which can beattributed to the void-dominated mechanism of network formation.

  18. CW laser induced crystallization of thin amorphous silicon films deposited by EBE and PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Said-Bacar, Z., E-mail: zabardjade@yahoo.fr [InESS (UMR 7163 CNRS-UDS), 23 rue de Loess, 67037 Strasbourg Cedex 2 (France); Prathap, P. [InESS (UMR 7163 CNRS-UDS), 23 rue de Loess, 67037 Strasbourg Cedex 2 (France); Cayron, C. [CEA, LITEN, DEHT, Minatec, 17 rue des Martyrs, 38054 Cedex 9 (France); Mermet, F. [IREPA LASER, Pole API - Parc d' Innovation, 67400 Illkirch (France); Leroy, Y.; Antoni, F.; Slaoui, A.; Fogarassy, E. [InESS (UMR 7163 CNRS-UDS), 23 rue de Loess, 67037 Strasbourg Cedex 2 (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer The effect of hydrogen in CW laser crystallization of hydrogenated amorphous silicon thin films has been investigated. Black-Right-Pointing-Pointer Large hydrogen content results in decohesion of the films due to hydrogen effusion. Black-Right-Pointing-Pointer Very low hydrogen content or hydrogen free amorphous silicon film are suitable for crystallization induced by CW laser. Black-Right-Pointing-Pointer Grains of size between 20 and 100 {mu}m in width and about 200 {mu}m in long in scanning direction are obtained with these latter films. - Abstract: This work presents the Continuous Wave (CW) laser crystallization of thin amorphous silicon (a-Si) films deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD) and by Electron Beam Evaporation (EBE) on low cost glass substrate. The films are characterized by Elastic Recoil Detection Analysis (ERDA) and by Fourier-Transform Infrared (FTIR) spectroscopy to evaluate the hydrogen content. Analysis shows that the PECVD films contain a high hydrogen concentration ({approx}10 at.%) while the EBE films are almost hydrogen-free. It is found that the hydrogen is in a bonding configuration with the a-Si network and in a free form, requiring a long thermal annealing for exodiffusion before the laser treatment to avoid explosive effusion. The CW laser crystallization process of the amorphous silicon films was operated in liquid phase regime. We show by Electron Backscatter Diffraction (EBSD) that polysilicon films with large grains can be obtained with EBE as well as for the PECVD amorphous silicon provided that for the latest the hydrogen content is lower than 2 at.%.

  19. Failure analysis of thin-film amorphous-silicon solar-cell modules

    Science.gov (United States)

    Kim, Q.

    1984-01-01

    A failure analysis of thin film amorphous silicon solar cell modules was conducted. The purpose of this analysis is to provide information and data for appropriate corrective action that could result in improvements in product quality and reliability. Existing techniques were expanded in order to evaluate and characterize degradational performance of a-Si solar cells. Microscopic and macroscopic defects and flaws that significantly contribute to performance degradation were investigated.

  20. A delta-doped amorphous silicon thin-film transistor with high mobility and stability

    International Nuclear Information System (INIS)

    Ultrathin doped layers, known as delta-doped layers, were introduced within the intrinsic amorphous silicon (a-Si) active layer to fabricate hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) with enhanced field-effect mobility. The performance of the delta-doped a-Si:H TFTs depended on the phosphine (PH3) flow rate and the distance from the n+ a-Si to the delta-doping layer. The delta-doped a-Si:H TFTs fabricated using a commercial manufacturing process exhibited an enhanced field-effect mobility of approximately ∼0.23 cm2/Vs (compared to a conventional a-Si:H TFT with 0.15 cm2/Vs) and a desirable stability under a bias-temperature stress test.

  1. Transition metal oxide window layer in thin film amorphous silicon solar cells

    International Nuclear Information System (INIS)

    Pin-type hydrogenated amorphous silicon solar cells have been fabricated by replacing state of the art silicon based window layer with more transparent transition metal oxide (TMO) materials. Three kinds of TMOs: vanadium oxide, tungsten oxide, and molybdenum oxide (MoOx) were comparatively investigated to reveal the design principles of metal oxide window layers. It was found that MoOx exhibited the best performance due to its higher work function property compared to other materials. In addition, the band alignment between MoOx and amorphous Si controls the series resistance, which was verified through compositional variation of MoOx thin films. The design principles of TMO window layer in amorphous Si solar cells are summarized as follows: A wide optical bandgap larger than 3.0 eV, a high work function larger than 5.2 eV, and a band alignment condition rendering efficient hole collection from amorphous Si absorber layer. - Highlights: • High work function metal oxides can potentially replace the conventional p-a-SiC. • V2Ox, WOx, and MoOx are comparatively investigated in this study. • MoOx is the most relevant material due to its highest work function. • Slightly oxygen deficient MoOx exhibited performance enhancement at x = 2.9

  2. Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD

    Directory of Open Access Journals (Sweden)

    Yaser Abdulraheem

    2014-05-01

    Full Text Available An optical study based on spectroscopic ellipsometry, performed on ultrathin hydrogenated amorphous silicon (a-Si:H layers, is presented in this work. Ultrathin layers of intrinsic amorphous silicon have been deposited on n-type mono-crystalline silicon (c-Si wafers by plasma enhanced chemical vapor deposition (PECVD. The layer thicknesses along with their optical properties –including their refractive index and optical loss- were characterized by spectroscopic ellipsometry (SE in a wavelength range from 250 nm to 850 nm. The data was fitted to a Tauc-Lorentz optical model and the fitting parameters were extracted and used to compute the refractive index, extinction coefficient and optical bandgap. Furthermore, the a-Si:H film grown on silicon was etched at a controlled rate using a TMAH solution prepared at room temperature. The optical properties along with the Tauc-Lorentz fitting parameters were extracted from the model as the film thickness was reduced. The etch rate for ultrathin a-Si:H layers in TMAH at room temperature was found to slow down drastically as the c-Si interface is approached. From the Tauc-Lorentz parameters obtained from SE, it was found that the a-Si film exhibited properties that evolved with thickness suggesting that the deposited film is non-homogeneous across its depth. It was also found that the degree of crystallinity and optical (Tauc bandgap increased as the layers were reduced in thickness and coming closer to the c-Si substrate interface, suggesting the presence of nano-structured clusters mixed into the amorphous phase for the region close to the crystalline silicon substrate. Further results from Atomic Force Microscopy and Transmission Electron Microscopy confirmed the presence of an interfacial transitional layer between the amorphous film and the underlying substrate showing silicon nano-crystalline enclosures that can lead to quantum confinement effects. Quantum confinement is suggested to be the cause

  3. Silicon nitride and intrinsic amorphous silicon double antireflection coatings for thin-film solar cells on foreign substrates

    International Nuclear Information System (INIS)

    Hydrogenated intrinsic amorphous silicon (a-Si:H) was investigated as a surface passivation method for crystalline silicon thin film solar cells on graphite substrates. The results of the experiments, including quantum efficiency and current density-voltage measurements, show improvements in cell performance. This improvement is due to surface passivation by an a-Si:H(i) layer, which increases the open circuit voltage and the fill factor. In comparison with our previous work, we have achieved an increase of 0.6% absolute cell efficiency for a 40 μm thick 4 cm2 aperture area on the graphite substrate. The optical properties of the SiNx/a-Si:H(i) stack were studied using spectroscopic ellipsometer techniques. Scanning transmission electron microscopy inside a scanning electron microscope was applied to characterize the cross section of the SiNx/a-Si:H(i) stack using focus ion beam preparation. - Highlights: • We report a 10.8% efficiency for thin-film silicon solar cell on graphite. • Hydrogenated intrinsic amorphous silicon was applied for surface passivation. • SiNx/a-Si:H(i) stacks were characterized by spectroscopic ellipsometer techniques. • Cross-section micrograph was obtained by scanning transmission electron microscopy. • Quantum efficiency and J-V measurements show improvements in the cell performance

  4. Deposition and characterization of amorphous silicon with embedded nanocrystals and microcrystalline silicon for thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, R., E-mail: rambrosi@uacj.mx [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, UACJ, C.J., Chihuahua (Mexico); Moreno, M.; Torres, A. [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Carrillo, A. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, UACJ, C.J., Chihuahua (Mexico); Vivaldo, I.; Cosme, I. [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Heredia, A. [Universidad Popular Autónoma del Estado de Puebla, Puebla (Mexico)

    2015-09-15

    Highlights: • Nanostructured silicon thin films were deposited by PECVD. • Polymorphous and microcrystalline were obtained varying the pressure and power. • Structural and optoelectronics properties were studied. • The σ{sub dark} changed by 5 order of magnitude under illumination, V{sub d} was at 2.5 A/s. • The evidence of embedded nanocrystals into the amorphous matrix was investigated. - Abstract: Amorphous silicon thin films with embedded nanocrystals and microcrystalline silicon were deposited by the standard Radio Frequency (RF) Plasma Enhanced Chemical Vapor Deposition (PECVD) technique, from SiH{sub 4}, H{sub 2}, Ar gas mixture at substrate temperature of 200 °C. Two series of films were produced varying deposition parameters as chamber pressure and RF power density. The chemical bonding in the films was characterized by Fourier transform infrared spectroscopy, where it was observed a correlation between the hydrogen content and the morphological and electrical properties in the films. Electrical and optical parameters were extracted in both series of films, as room temperature conductivity (σ{sub RT}), activation energy (E{sub a}), and optical band gap (E{sub g}). As well, structural analysis in the films was performed by Raman spectroscopy and Atomic Force Microscopy (AFM), which gives an indication of the films crystallinity. The photoconductivity changed in a range of 2 and 6 orders of magnitude from dark to AM 1.5 illumination conditions, which is of interest for thin film solar cells applications.

  5. Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells

    OpenAIRE

    Massiot, I.; Colin, Clément; Péré-Laperne, Nicolas; Roca I Cabarrocas, Pere; Sauvan, Christophe; Lalanne, Philippe; Pelouard, Jean-Luc; Collin, Stéphane

    2012-01-01

    International audience Broadband light trapping is numerically demonstrated in ultra-thin solar cells composed of a flat amorphous silicon absorber layer deposited on a silver mirror. A one-dimensional silver array is used to enhance light absorption in the visible spectral range with low polarization and angle dependencies. In addition, the metallic nanowires play the role of transparent electrodes. We predict a short-circuit current density of 14:6mA=cm2 for a solar cell with a 90 nm-thi...

  6. A Comparison of Photo-Induced Hysteresis Between Hydrogenated Amorphous Silicon and Amorphous IGZO Thin-Film Transistors.

    Science.gov (United States)

    Ha, Tae-Jun; Cho, Won-Ju; Chung, Hong-Bay; Koo, Sang-Mo

    2015-09-01

    We investigate photo-induced instability in thin-film transistors (TFTs) consisting of amorphous indium-gallium-zinc-oxide (a-IGZO) as active semiconducting layers by comparing with hydrogenated amorphous silicon (a-Si:H). An a-IGZO TFT exhibits a large hysteresis window in the illuminated measuring condition but no hysteresis window in the dark condition. On the contrary, a large hysteresis window measured in the dark condition in a-Si:H was not observed in the illuminated condition. Even though such materials possess the structure of amorphous phase, optical responses or photo instability in TFTs looks different from each other. Photo-induced hysteresis results from initially trapped charges at the interface between semiconductor and dielectric films or in the gate dielectric which possess absorption energy to interact with deep trap-states and affect the movement of Fermi energy level. In order to support our claim, we also perform CV characteristics in photo-induced hysteresis and demonstrate thermal-activated hysteresis. We believe that this work can provide important information to understand different material systems for optical engineering which includes charge transport and band transition.

  7. A Comparison of Photo-Induced Hysteresis Between Hydrogenated Amorphous Silicon and Amorphous IGZO Thin-Film Transistors.

    Science.gov (United States)

    Ha, Tae-Jun; Cho, Won-Ju; Chung, Hong-Bay; Koo, Sang-Mo

    2015-09-01

    We investigate photo-induced instability in thin-film transistors (TFTs) consisting of amorphous indium-gallium-zinc-oxide (a-IGZO) as active semiconducting layers by comparing with hydrogenated amorphous silicon (a-Si:H). An a-IGZO TFT exhibits a large hysteresis window in the illuminated measuring condition but no hysteresis window in the dark condition. On the contrary, a large hysteresis window measured in the dark condition in a-Si:H was not observed in the illuminated condition. Even though such materials possess the structure of amorphous phase, optical responses or photo instability in TFTs looks different from each other. Photo-induced hysteresis results from initially trapped charges at the interface between semiconductor and dielectric films or in the gate dielectric which possess absorption energy to interact with deep trap-states and affect the movement of Fermi energy level. In order to support our claim, we also perform CV characteristics in photo-induced hysteresis and demonstrate thermal-activated hysteresis. We believe that this work can provide important information to understand different material systems for optical engineering which includes charge transport and band transition. PMID:26716230

  8. Adjustable optical response of amorphous silicon nanowires integrated with thin films.

    Science.gov (United States)

    Dhindsa, Navneet; Walia, Jaspreet; Pathirane, Minoli; Khodadad, Iman; Wong, William S; Saini, Simarjeet Singh

    2016-04-01

    We experimentally demonstrate a new optical platform by integrating hydrogenated amorphous silicon nanowire arrays with thin films deposited on transparent substrates like glass. A 535 nm thick thin film is anisotropically etched to fabricate vertical nanowire arrays of 100 nm diameter arranged in a square lattice. Adjusting the nanowire length, and consequently the thin film thickness permits the optical properties of this configuration to be tuned for either transmission filter response or enhanced broadband absorption. Vivid structural colors are also achieved in reflection and transmission. The optical properties of the platform are investigated for three different etch depths. Transmission filter response is achieved for a configuration with nanowires on glass without any thin film. Alternatively, integrating thin film with nanowires increases the absorption efficiency by ∼97% compared to the thin film starting layer and by ∼78% over nanowires on glass. The ability to tune the optical response of this material in this fashion makes it a promising platform for high performance photovoltaics, photodetectors and sensors. PMID:26906427

  9. Crystallization of amorphous silicon thin films using nanoenergetic intermolecular materials with buffer layers

    Science.gov (United States)

    Lee, Choong Hee; Jeong, Tae Hoon; Kim, Do Kyung; Jeong, Woong Hee; Kang, Myung-Koo; Hwang, Tae Hyung; Kim, Hyun Jae

    2009-02-01

    Optimization of the crystallization of amorphous silicon (a-Si) using a mixture of nanoenergetic materials of iron oxide/aluminum (Fe 2O 3/Al) was studied. To achieve high-quality polycrystalline Si (poly-Si) thin films, silicon oxide (SiO 2) and silver (Ag) layer were deposited on the a-Si as buffer layers to prevent the metal diffusion in a-Si during thermite reaction and to transport the thermal energy released from nanoenergetic materials, respectively. Raman measurement was used to define the crystallinity of poly-Si. For molar ratio of Al and Fe of 2 with 100-nm-thick-SiO 2, Raman measurement showed the 519.59 cm -1 of peak position and the 5.08 cm -1 of full width at half maximum with 353 MPa of low tensile stress indicating high quality poly-Si thin film. These results showed that optimized thermite reaction could be used successfully in crystallization of a-Si to high -quality poly-Si thin films.

  10. Morphological characteristics and optical properties of hydrogenated amorphous silicon thin films

    Science.gov (United States)

    Tang, Haihua; Liu, Shuang; Zhou, Xiang; Liu, Yunfei; Chen, Dejun; Liu, Yong; Zhong, Zhiyong

    2016-05-01

    Hydrogenated amorphous silicon (a-Si:H) thin films were prepared by radio frequency (RF) plasma enhanced chemical vapor deposition (RF-PECVD) technique with silane (SiH4) as reactive gas. The influence of process parameters on the morphological characteristics and optical properties of a-Si:H thin films were systematically investigated. When the RF power density was taken as the only variable, it firstly improves the smoothness of the surface with increasing the RF power density below the value of 0.17 W/cm2, and then exhibits an obvious degradation at further power density. The refractive index, extinction coefficient, optical energy gap initially increase and reach a maximum at 0.17 W/cm2, followed by a significant decrease with further RF power density. When the RF power density was taken as the only variable, the surface of a-Si:H thin films become smoother by increasing the reaction pressure in the investigated range (from 50 Pa to 140 Pa), and the refractive index, extinction coefficient, optical energy gap increase with increasing of reaction pressure. The effect of RF power density and the reaction pressure on the morphological characteristics and optical properties of a-Si:H thin films was obtained, contributing to the further studies of the performance and applications of a-Si:H thin films.

  11. Direct measurement of free-energy barrier to nucleation of crystallites in amorphous silicon thin films

    Science.gov (United States)

    Shi, Frank G.

    1994-01-01

    A method is introduced to measure the free-energy barrier W(sup *), the activation energy, and activation entropy to nucleation of crystallites in amorphous solids, independent of the energy barrier to growth. The method allows one to determine the temperature dependence of W(sup *), and the effect of the preparation conditions of the initial amorphous phase, the dopants, and the crystallization methds on W(sup *). The method is applied to determine the free-energy barrier to nucleation of crystallites in amorphous silicon (a-Si) thin films. For thermally induced nucleation in a-Si thin films with annealing temperatures in the range of from 824 to 983 K, the free-energy barrier W(sup *) to nucleation of silicon crystals is about 2.0 - 2.1 eV regardless of the preparation conditions of the films. The observation supports the idea that a-Si transforms into an intermediate amorphous state through the structural relaxation prior to the onset of nucleation of crystallites in a-Si. The observation also indicates that the activation entropy may be an insignificant part of the free-energy barrier for the nucleation of crystallites in a-Si. Compared with the free-energy barrier to nucleation of crystallites in undoped a-Si films, a significant reduction is observed in the free-energy barrier to nucleation in Cu-doped a-Si films. For a-Si under irradiation of Xe(2+) at 10(exp 5) eV, the free-energy barrier to ion-induced nucleation of crystallites is shown to be about half of the value associated with thermal-induced nucleation of crystallites in a-Si under the otherwise same conditions, which is much more significant than previously expected. The present method has a general kinetic basis; it thus should be equally applicable to nucleation of crystallites in any amorphous elemental semiconductors and semiconductor alloys, metallic and polymeric glasses, and to nucleation of crystallites in melts and solutions.

  12. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    Energy Technology Data Exchange (ETDEWEB)

    Mouro, J.; Gualdino, A.; Chu, V. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Conde, J. P. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Department of Bioengineering, Instituto Superior Técnico (IST), 1049-001 Lisbon (Portugal)

    2013-11-14

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.

  13. Estimation of the impact of electrostatic discharge on density of states in hydrogenated amorphous silicon thin-film transistors

    NARCIS (Netherlands)

    Tosic Golo, Natasa; Wal, van der Siebrigje; Kuper, F.G.; Mouthaan, A.J.

    2002-01-01

    The objective of this letter is to give an estimation of the impact of an electrostatic discharge (ESD) stress on the density of states (DOS) within the energy gap of hydrogenated amorphous silicon (a-Si:H) thin-film transistors. ESD stresses were applied by means of a transmission line model tester

  14. Plasma optical emission spectroscopy diagnostic during amorphous silicon thin films deposition by Rf sputtering technique

    International Nuclear Information System (INIS)

    This paper deals with the study of the glow discharge, used for amorphous silicon thin films deposition by Rf sputtering technique. The produced plasma is investigated by mean of the optical emission spectroscopy (OES) analysis. Different plasmas obtained with changing the gas pressure and Rf powers were analysed at different positions in the inter-electrode space. Emission lines from Ar, Si, Si+ and Ar+ were observed in the visible region. It was found that emission intensities of all the observed lines have a spatial Gaussian shape. The maximum intensity is located in the core of the plasma and decrease in the electrodes region. The ratio between the Si and Ar+ intensities (ISi/IAr+), in the target region, is proposed as a new tool to estimate the Ar sputtering yield. This ratio was compared to the theoretical calculated sputtering yield. The difference between these two quantities is exploited to determine the contribution of fast Ar neutrals in the sputtering process.

  15. Enhanced light trapping with double-groove grating in thin-film amorphous silicon solar cells

    Science.gov (United States)

    Wu, Jun

    2016-05-01

    A design to enhance light absorption in thin-film amorphous silicon (a-Si) solar cells is proposed. It is achieved by patterning a double-groove grating with waveguide layer as the absorbing layer and coating a double-groove grating anti-reflective layer in the front window of the cell. The broadband absorption under normal incidence can be achieved for both TE and TM polarizations. It is shown that the averaged integrated absorptions have very large angle independence for the optimized solar cell. An qualitative understanding of such broadband enhanced absorption effect, which is attributed to the guided mode resonance, is presented. The conclusions can be exploited to guide the design of solar cells based on a grating structure.

  16. Amorphous and microcrystalline silicon applied in very thin tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schicho, Sandra

    2011-07-28

    Thin-film solar cells are fabricated by low-cost production processes, and are therefore an alternative to conventionally used wafer solar cells based on crystalline silicon. Due to the different band gaps, tandem cells that consist of amorphous (a-Si:H) and microcrystalline ({mu}c-Si:H) single junction solar cells deposited on top of each other use the solar spectrum much more efficient than single junction solar cells. The silicon layers are usually deposited on TCO (Transparent Conductive Oxide)-coated glass and metal- or plastic foils. Compared to the CdTe and CIGS based thin-film technologies, silicon thin-film solar cells have the advantage that no limitation of raw material supply is expected and no toxic elements are used. Nevertheless, the production cost per Wattpeak is the decisive factor concerning competitiveness and can be reduced by, e.g., shorter deposition times or reduced material consumption. Both cost-reducing conceptions are simultaneously achieved by reducing the a-Si:H and {mu}c-Si:H absorber layer thicknesses in a tandem device. In the work on hand, the influence of an absorber layer thickness reduction up to 77% on the photovoltaic parameters of a-Si:H/{mu}c-Si:H tandem solar cells was investigated. An industry-oriented Radio Frequency Plasma-Enhanced Chemical Vapour Deposition (RF-PECVD) system was used to deposit the solar cells on glass substrates coated with randomly structured TCO layers. The thicknesses of top and bottom cell absorber layers were varied by adjusting the deposition time. Reduced layer thicknesses lead to lower absorption and, hence, to reduced short-circuit current densities which, however, are partially balanced by higher open-circuit voltages and fill factors. Furthermore, by using very thin amorphous top cells, the light-induced degradation decreases tremendously. Accordingly, a thickness reduction of 75% led to an efficiency loss of only 21 %. By adjusting the parameters for the deposition of a-Si:H top cells, a

  17. Low temperature plasma deposition of silicon thin films: From amorphous to crystalline

    OpenAIRE

    Roca I Cabarrocas, Pere; Cariou, Romain; Labrune, Martin

    2012-01-01

    International audience We report on the epitaxial growth of crystalline silicon films on (100) oriented crystalline silicon substrates by standard plasma enhanced chemical vapor deposition at 175 °C. Such unexpected epitaxial growth is discussed in the context of deposition processes of silicon thin films, based on silicon radicals and nanocrystals. Our results are supported by previous studies on plasma synthesis of silicon nanocrystals and point toward silicon nanocrystals being the most...

  18. Modeling the Crystallization of Amorphous Silicon Thin Films Using a High Repetition Rate Scanning Laser

    OpenAIRE

    Černý, R.; A. Kalbáč

    2000-01-01

    An optimum design of experimental setup for the preparation of polycrystalline silicon (pc-Si) films from amorphous layers applicable in the solar cell production is analyzed in the paper. In the computational simulations, the influence of basic characteristic parameters of the experimental procedure on the mechanisms of pc-Si lateral growth is studied. Among these parameters, the energy density of the applied laser and the thickness of the amorphous silicon (a-Si) layer are identified ...

  19. [The Influence of Deposition Pressure on the Properties of Hydrogenated Amorphous Silicon Thin Films].

    Science.gov (United States)

    Yuan, Jun-bao; Yang, Wen; Chen, Xiao-bo; Yang, Pei-zhi; Song, Zhao-ning

    2016-02-01

    Hydrogenated amorphous silicon (a-Si:H) thin films on soda-lime glass substrates were deposited by plasma enhanced chemical vapor deposition (PECVD) using disilane and hydrogen as source gases. To study the influence of deposition pressure on the deposition rate, optical band gap and structure factor, a surface profilometer, an ultraviolet-visible spectrometer, a Fourier transform infrared (FTIR) spectrometer and a scanning electron microscopy (SEM) were used to characterize the deposited thin films. It is found that the deposition rate firstly increased and then decreased and the optical band gap monotonically decreased with the increasing deposition pressure. Moreover, the formation of SiH bond was preferable to the formation of SH₂ or SiH₃ bond when the deposition pressure was less than 210 Pa, while it was opposite when the deposition pressure is higher than 210 Pa. Finally, the deposition pressure in the range of 110~210 Pa was found to be more suitable for the preparation of high quality a-Si:H thin films. PMID:27209724

  20. Hydrogenated amorphous silicon sensors based on thin film on ASIC technology

    CERN Document Server

    Despeisse, M; Anelli, G; Jarron, P; Kaplon, J; Rusack, R; Saramad, S; Wyrsch, N

    2006-01-01

    The performance and limitations of a novel detector technology based on the deposition of a thin-film sensor on top of processed integrated circuits have been studied. Hydrogenated amorphous silicon (a-Si:H) films have been deposited on top of CMOS circuits developed for these studies and the resulting "thin-film on ASIC" (TFA) detectors are presented. The leakage current of the a-Si:H sensor at high reverse biases turns out to be an important parameter limiting the performance of a TFA detector. Its detailed study and the pixel segmentation of the detector are presented. High internal electric fields (in the order of 10/sup 4/-10/sup 5/ V/cm) can be built in the a-Si:H sensor and overcome the low mobility of electrons and holes in a-Si:H. Signal induction by generated carrier motion and speed in the a-Si:H sensor have been studied with a 660 nm pulsed laser on a TFA detector based on an ASIC integrating 5 ns peaking time pre- amplifiers. The measurement set-up also permits to study the depletion of the senso...

  1. Towards upconversion for amorphous silicon solar cells

    NARCIS (Netherlands)

    de Wild, J.; Meijerink, A.; Rath, J.K.; van Sark, W.G.J.H.M.; Schropp, R.E.I.

    2010-01-01

    Upconversion of subbandgap light of thin film single junction amorphous silicon solar cells may enhance their performance in the near infrared (NIR). In this paper we report on the application of the NIR–vis upconverter β-NaYF4:Yb3+(18%) Er3+(2%) at the back of an amorphous silicon solar cell in com

  2. Development of thin film amorphous silicon oxide/microcrystalline silicon double-junction solar cells and their temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Sriprapha, K.; Piromjit, C.; Limmanee, A.; Sritharathikhun, J. [Institute of Solar Energy Technology Development (SOLARTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang, Pathumthani 12120 (Thailand)

    2011-01-15

    We have developed thin film silicon double-junction solar cells by using micromorph structure. Wide bandgap hydrogenated amorphous silicon oxide (a-SiO:H) film was used as an absorber layer of top cell in order to obtain solar cells with high open circuit voltage (V{sub oc}), which are attractive for the use in high temperature environment. All p, i and n layers were deposited on transparent conductive oxide (TCO) coated glass substrate by a 60 MHz-very-high-frequency plasma enhanced chemical vapor deposition (VHF-PECVD) technique. The p-i-n-p-i-n double-junction solar cells were fabricated by varying the CO{sub 2} and H{sub 2} flow rate of i top layer in order to obtain the wide bandgap with good quality material, which deposited near the phase boundary between a-SiO:H and hydrogenated microcrystalline silicon oxide ({mu}c-SiO:H), where the high V{sub oc} can be expected. The typical a-SiO:H/{mu}c-Si:H solar cell showed the highest initial cell efficiency of 10.5%. The temperature coefficient (TC) of solar cells indicated that the values of TC for conversion efficiency ({eta}) of the double-junction solar cells were inversely proportional to the initial V{sub oc}, which corresponds to the bandgap of the top cells. The TC for {eta} of typical a-SiO:H/{mu}c-Si:H was -0.32%/ C, lower than the value of conventional a-Si:H/{mu}c-Si:H solar cell. Both the a-SiO:H/{mu}c-Si:H solar cell and the conventional solar cell showed the same light induced degradation ratio of about 20%. We concluded that the solar cells using wide bandgap a-SiO:H film in the top cells are promising for the use in high temperature regions. (author)

  3. Baseline Evaluation of Thin-Film Amorphous Silicon, Copper Indium Diselenide, and Cadmium Telluride for the 21st Century: Preprint

    International Nuclear Information System (INIS)

    This paper examines three thin-film PV technologies: amorphous silicon, cadmium telluride, and copper indium selenide. The purpose is to: (1) assess their status and potential; (2) provide an improved set of criteria for comparing these existing thin films against any new PV technological alternatives, and examining the longer-term (c. 2050) potential of thin films to meet cost goals that would be competitive with conventional sources of energy without any added value from the substantial environmental advantages of PV. Among the conclusions are: (1) today's thin films have substantial economic potential, (2) any new approach to PV should be examined against the substantial achievements and potential of today's thin films, (3) the science and technology base of today's thin films needs substantial strengthening, (4) some need for alternative technologies exists, especially as the future PV marketplace expands beyond about 30 GW of annual production

  4. Band engineering of amorphous silicon ruthenium thin film and its near-infrared absorption enhancement combined with nano-holes pattern on back surface of silicon substrate

    Science.gov (United States)

    Guo, Anran; Zhong, Hao; Li, Wei; Gu, Deen; Jiang, Xiangdong; Jiang, Yadong

    2016-10-01

    Silicon is widely used in semiconductor industry but has poor performance in near-infrared photoelectronic devices because of its bandgap limit. In this study, a narrow bandgap silicon rich semiconductor is achieved by introducing ruthenium (Ru) into amorphous silicon (a-Si) to form amorphous silicon ruthenium (a-Si1-xRux) thin films through co-sputtering. The increase of Ru concentration leads to an enhancement of light absorption and a narrower bandgap. Meanwhile, a specific light trapping technique is employed to realize high absorption of a-Si1-xRux thin film in a finite thickness to avoid unnecessary carrier recombination. A double-layer absorber comprising of a-Si1-xRux thin film and silicon random nano-holes layer is formed on the back surface of silicon substrates, and significantly improves near-infrared absorption while the leaky light intensity is less than 5%. This novel absorber, combining narrow bandgap thin film with light trapping structure, may have a potential application in near-infrared photoelectronic devices.

  5. Investigation on Silicon Thin Film Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.

  6. Behavioral data of thin-film single junction amorphous silicon (a-Si) photovoltaic modules under outdoor long term exposure.

    Science.gov (United States)

    Kichou, Sofiane; Silvestre, Santiago; Nofuentes, Gustavo; Torres-Ramírez, Miguel; Chouder, Aissa; Guasch, Daniel

    2016-06-01

    Four years׳ behavioral data of thin-film single junction amorphous silicon (a-Si) photovoltaic (PV) modules installed in a relatively dry and sunny inland site with a Continental-Mediterranean climate (in the city of Jaén, Spain) are presented in this article. The shared data contributes to clarify how the Light Induced Degradation (LID) impacts the output power generated by the PV array, especially in the first days of exposure under outdoor conditions. Furthermore, a valuable methodology is provided in this data article permitting the assessment of the degradation rate and the stabilization period of the PV modules. Further discussions and interpretations concerning the data shared in this article can be found in the research paper "Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure" (Kichou et al., 2016) [1].

  7. Behavioral data of thin-film single junction amorphous silicon (a-Si) photovoltaic modules under outdoor long term exposure.

    Science.gov (United States)

    Kichou, Sofiane; Silvestre, Santiago; Nofuentes, Gustavo; Torres-Ramírez, Miguel; Chouder, Aissa; Guasch, Daniel

    2016-06-01

    Four years׳ behavioral data of thin-film single junction amorphous silicon (a-Si) photovoltaic (PV) modules installed in a relatively dry and sunny inland site with a Continental-Mediterranean climate (in the city of Jaén, Spain) are presented in this article. The shared data contributes to clarify how the Light Induced Degradation (LID) impacts the output power generated by the PV array, especially in the first days of exposure under outdoor conditions. Furthermore, a valuable methodology is provided in this data article permitting the assessment of the degradation rate and the stabilization period of the PV modules. Further discussions and interpretations concerning the data shared in this article can be found in the research paper "Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure" (Kichou et al., 2016) [1]. PMID:26977439

  8. Modeling the Crystallization of Amorphous Silicon Thin Films Using a High Repetition Rate Scanning Laser

    Directory of Open Access Journals (Sweden)

    R. Černý

    2000-01-01

    Full Text Available An optimum design of experimental setup for the preparation of polycrystalline silicon (pc-Si films from amorphous layers applicable in the solar cell production is analyzed in the paper. In the computational simulations, the influence of basic characteristic parameters of the experimental procedure on the mechanisms of pc-Si lateral growth is studied. Among these parameters, the energy density of the applied laser and the thickness of the amorphous silicon (a-Si layer are identified as the most significant. As an optimum solution, the mechanism of pc-Si growth consisting in repeated melting of a part of already crystallized pc-Si layer by the scanning laser is proposed.

  9. Low Cost Amorphous Silicon Intrinsic Layer for Thin-Film Tandem Solar Cells

    Directory of Open Access Journals (Sweden)

    Ching-In Wu

    2013-01-01

    Full Text Available The authors propose a methodology to improve both the deposition rate and SiH4 consumption during the deposition of the amorphous silicon intrinsic layer of the a-Si/μc-Si tandem solar cells prepared on Gen 5 glass substrate. It was found that the most important issue is to find out the saturation point of deposition rate which guarantees saturated utilization of the sourcing gas. It was also found that amorphous silicon intrinsic layers with the same k value will result in the same degradation of the fabricated modules. Furthermore, it was found that we could significantly reduce the production cost of the a-Si/μc-Si tandem solar cells prepared on Gen 5 glass substrate by fine-tuning the process parameters.

  10. Impact of contamination on hydrogenated amorphous silicon thin films and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Woerdenweber, Jan

    2011-09-26

    This thesis deals with atmospheric contamination and cross-contamination of boron (single-chamber process) of the intrinsic absorber layer (i-layer) of p-i-n thin film solar cells based on hydrogenated amorphous silicon. The atmospheric contaminations were introduced by means of intentional leaks. Hereby, the focus is on the influence of contamination species (oxygen and nitrogen), quantity of contamination (leak flow), source of contamination (leaks at chamber wall or in the process gas pipe), and plasma power on the properties of solar cells. Thereby, the minimum requirements for the purity of vacuum and process gas as well as leak conditions of the recipient and gas pipe system have been determined. Additionally, deposition regimes were developed, where the incorporation of impurities is significantly suppressed. For standard processes critical levels of nitrogen and oxygen contamination are determined to be {proportional_to} 4 x 10{sup 18} cm{sup -3} and {proportional_to} 2 x 10{sup 19} cm{sup -3}, respectively, for a leak situated at the chamber wall. Above these concentrations the solar cell efficiency deteriorates. In literature, incorporation of oxygen and nitrogen in doping configuration is assumed to be the reason for the cell deterioration. This assumption is supported by additional material studies of contaminated absorber layers done in this work. The difference in critical concentration is due to the higher doping efficiency of nitrogen compared to that for oxygen. Nevertheless, applying an air leak the critical concentrations of O and N are reached almost simultaneously since the incorporation probability of oxygen is about one order of magnitude higher compared to that for nitrogen. Applying a leak in the process gas pipe the critical oxygen contamination level increases to {proportional_to} 2 x 10{sup 20} cm{sup -3} whereas the critical nitrogen level remains unchanged compared to a chamber wall leak. Applying a deposition regime with a very high

  11. Synthesis of Poly-Silicon Thin Films on Glass Substrate Using Laser Initiated Metal Induced Crystallization of Amorphous Silicon for Space Power Application

    Science.gov (United States)

    Abu-Safe, Husam H.; Naseem, Hameed A.; Brown, William D.

    2007-01-01

    Poly-silicon thin films on glass substrates are synthesized using laser initiated metal induced crystallization of hydrogenated amorphous silicon films. These films can be used to fabricate solar cells on low cost glass and flexible substrates. The process starts by depositing 200 nm amorphous silicon films on the glass substrates. Following this, 200 nm of sputtered aluminum films were deposited on top of the silicon layers. The samples are irradiated with an argon ion cw laser beam for annealing. Laser power densities ranging from 4 to 9 W/cm2 were used in the annealing process. Each area on the sample is irradiated for a different exposure time. Optical microscopy was used to examine any cracks in the films and loss of adhesion to the substrates. X-Ray diffraction patterns from the initial results indicated the crystallization in the films. Scanning electron microscopy shows dendritic growth. The composition analysis of the crystallized films was conducted using Energy Dispersive x-ray Spectroscopy. The results of poly-silicon films synthesis on space qualified flexible substrates such as Kapton are also presented.

  12. Characterization and FDTD simulation analysis on light trapping structures of amorphous silicon thin films by laser irradiation

    Science.gov (United States)

    Huang, Lu; Jin, Jing; Yuan, Zhijun; Yang, Weiguang; Wang, Linjun; Shi, Weimin; Zhou, Jun; Lou, Qihong

    2016-05-01

    The effect of laser energy density on the light-trapping structures of amorphous silicon (α-Si) thin films is studied both theoretically and experimentally. The thin films are irradiated by a frequency-doubled (λ = 532 nm) Nd:YAG pulsed nanosecond laser. An effective finite difference time domain (FDTD) model is built to find the optimized laser energy density (EL) for the light trapping structures of α-Si. Based on the simulation analysis, it shows the variation of reflection spectra with laser energy density. The optimized reflection spectra at EL = 1000 mJ/cm2 measured by UV-visible spectroscopy confirms to agree well with that corresponding to the depth to diameter ratio (h/D) in the FDTD simulation. The surface morphology characterization by optical microscope (OM) and scanning electron microscope (SEM) accords fairly well to of light-trapping modeling in the simulation.

  13. Picosecond and nanosecond laser annealing and simulation of amorphous silicon thin films for solar cell applications

    Science.gov (United States)

    Theodorakos, I.; Zergioti, I.; Vamvakas, V.; Tsoukalas, D.; Raptis, Y. S.

    2014-01-01

    In this work, a picosecond diode pumped solid state laser and a nanosecond Nd:YAG laser have been used for the annealing and the partial nano-crystallization of an amorphous silicon layer. These experiments were conducted as an alternative/complementary to plasma-enhanced chemical vapor deposition method for fabrication of micromorph tandem solar cell. The laser experimental work was combined with simulations of the annealing process, in terms of temperature distribution evolution, in order to predetermine the optimum annealing conditions. The annealed material was studied, as a function of several annealing parameters (wavelength, pulse duration, fluence), as far as it concerns its structural properties, by X-ray diffraction, SEM, and micro-Raman techniques.

  14. Picosecond and nanosecond laser annealing and simulation of amorphous silicon thin films for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Theodorakos, I.; Zergioti, I.; Tsoukalas, D.; Raptis, Y. S., E-mail: yraptis@central.ntua.gr [Physics Department, National Technical University of Athens, Heroon Polytechniou 9, 15780 Zographou, Athens (Greece); Vamvakas, V. [Heliosphera SA, Industrial Area of Tripolis, 8th Building Block, 5th Road, GR-221 00 Tripolis (Greece)

    2014-01-28

    In this work, a picosecond diode pumped solid state laser and a nanosecond Nd:YAG laser have been used for the annealing and the partial nano-crystallization of an amorphous silicon layer. These experiments were conducted as an alternative/complementary to plasma-enhanced chemical vapor deposition method for fabrication of micromorph tandem solar cell. The laser experimental work was combined with simulations of the annealing process, in terms of temperature distribution evolution, in order to predetermine the optimum annealing conditions. The annealed material was studied, as a function of several annealing parameters (wavelength, pulse duration, fluence), as far as it concerns its structural properties, by X-ray diffraction, SEM, and micro-Raman techniques.

  15. Visible Absorption Properties of Retinoic Acid Controlled on Hydrogenated Amorphous Silicon Thin Film

    Science.gov (United States)

    Tsujiuchi, Yutaka; Masumoto, Hiroshi; Goto, Takashi

    2008-02-01

    Langmuir-Blodgett (LB) films of retinoic acid and LB films of retinoic acid mixed with a peptide that contains an alanine-lysine-valine (AKV) amino acid sequence deposited on a hydrogenated amorphous silicon (a-Si:H) film prepared by electron cyclotron resonance (ECR) plasma sputtering were fabricated, and their light absorption spectrums were compared. A specific visible light absorption at approximately 500 nm occurred in a film that had a film thickness of more than 80 nm and a hydrogen concentration of more than 20% in the sputtering process gas. Mixing the AKV sequence peptide with retinoic acid caused a 6 nm blueshift, from 363 to 357 nm, of the absorption maximum of the composite LB film on a SiO2 substrate. Using the same peptide, a large 30 nm blueshift, from 500 to 470 nm, was induced in the composite LB film on the a-Si:H film.

  16. 非晶硅锗电池性能的调控研究%Modification to the performance of hydrogenated amorphous silicon germanium thin film solar cell

    Institute of Scientific and Technical Information of China (English)

    刘伯飞; 白立沙; 魏长春; 孙建; 侯国付; 赵颖; 张晓丹

    2013-01-01

    采用射频等离子体增强化学气相沉积技术,研究了非晶硅锗薄膜太阳电池。针对非晶硅锗薄膜材料的本身特性,通过调控硅锗合金中硅锗的比例,实现了对硅锗薄膜太阳电池中开路电压和短路电流密度的分别控制。借助于本征层硅锗材料帯隙梯度的设计,获得了可有效用于多结叠层电池中的非晶硅锗电池。%In this paper, we study hydrogenated amorphous silicon germanium thin film solar cells prepared by the radio frequency plasma-enhanced chemical vapor deposition. In the light of the inherent characteristics of hydrogenated amorphous silicon germanium mate-rial, the modulation of the germanium/silicon ratio in silicon germanium alloys can separately control open circuit voltage (Voc) and short circuit current density (Jsc) of a-SiGe:H thin film solar cells. By the structural design of band gap profiling in the amorphous silicon germanium intrinsic layer, hydrogenated amorphous silicon germanium thin film solar cells, which can be used efficiently as the component cell of multi-junction solar cells, are obtained.

  17. Noise and degradation of amorphous silicon devices

    NARCIS (Netherlands)

    Bakker, J.P.R.

    2003-01-01

    Electrical noise measurements are reported on two devices of the disordered semiconductor hydrogenated amorphous silicon (a-Si:H). The material is applied in sandwich structures and in thin-film transistors (TFTs). In a sandwich configuration of an intrinsic layer and two thin doped layers, the obse

  18. Amorphous silicon based particle detectors

    OpenAIRE

    Wyrsch, N; Franco, A; Riesen, Y.; Despeisse, M; S. Dunand; Powolny, F; Jarron, P.; Ballif, C.

    2012-01-01

    Radiation hard monolithic particle sensors can be fabricated by a vertical integration of amorphous silicon particle sensors on top of CMOS readout chip. Two types of such particle sensors are presented here using either thick diodes or microchannel plates. The first type based on amorphous silicon diodes exhibits high spatial resolution due to the short lateral carrier collection. Combination of an amorphous silicon thick diode with microstrip detector geometries permits to achieve micromete...

  19. Characterization and simulation on antireflective coating of amorphous silicon oxide thin films with gradient refractive index

    Science.gov (United States)

    Huang, Lu; Jin, Qi; Qu, Xingling; Jin, Jing; Jiang, Chaochao; Yang, Weiguang; Wang, Linjun; Shi, Weimin

    2016-08-01

    The optical reflective properties of silicon oxide (SixOy) thin films with gradient refractive index are studied both theoretically and experimentally. The thin films are widely used in photovoltaic as antireflective coatings (ARCs). An effective finite difference time domain (FDTD) model is built to find the optimized reflection spectra corresponding to structure of SixOy ARCs with gradient refractive index. Based on the simulation analysis, it shows the variation of reflection spectra with gradient refractive index distribution. The gradient refractive index of SixOy ARCs can be obtained in adjustment of SiH4 to N2O ratio by plasma-enhanced chemical vapor deposition (PECVD) system. The optimized reflection spectra measured by UV-visible spectroscopy confirms to agree well with that simulated by FDTD method.

  20. Laser annealing and simulation of amorphous silicon thin films for solar cell applications

    Science.gov (United States)

    Theodorakos, I.; Raptis, Y. S.; Vamvakas, V.; Tsoukalas, D.; Zergioti, I.

    2014-03-01

    In this work, a picosecond DPSS and a nanosecond Nd:YAG laser have been used for the annealing and the partial nanocrystallization of an amorphous silicon layer. These experiments were conducted in order to improve the characteristics of a micromorph tandem solar cell. The laser annealing was attempted at 1064nm in order to obtain the desired crystallization's depth and ratios. Preliminary annealing-processes, with different annealing parameters, have been tested, such as fluence, repetition rate and number of pulses. Irradiations were applied in the sub-melt regime, in order to prevent significant diffusion of p- and n-dopants to take place within the structure. The laser experimental work was combined with simulations of the laser annealing process, in terms of temperature distribution evolution, using the Synopsys Sentaurus Process TCAD software. The optimum annealing conditions for the two different pulse durations were determined. Experimentally determined optical properties of our samples, such as the absorption coefficient and reflectivity, were used for a more realistic simulation. From the simulations results, a temperature profile, appropriate to yield the desired recrystallization was obtained for the case of ps pulses, which was verified from the experimental results described below. The annealed material was studied, as far as it concerns its structural properties, by XRD, SEM and micro-Raman techniques, providing consistent information on the characteristics of the nanocrystalline material produced by the laser annealing experiments. It was found that, with the use of ps pulses, the resultant polycrystalline region shows crystallization's ratios similar to a PECVD developed poly-Silicon layer, with slightly larger nanocrystallite's size.

  1. Development of Thin Film Amorphous Silicon Tandem Junction Based Photocathodes Providing High Open-Circuit Voltages for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    F. Urbain

    2014-01-01

    Full Text Available Hydrogenated amorphous silicon thin film tandem solar cells (a-Si:H/a-Si:H have been developed with focus on high open-circuit voltages for the direct application as photocathodes in photoelectrochemical water splitting devices. By temperature variation during deposition of the intrinsic a-Si:H absorber layers the band gap energy of a-Si:H absorber layers, correlating with the hydrogen content of the material, can be adjusted and combined in a way that a-Si:H/a-Si:H tandem solar cells provide open-circuit voltages up to 1.87 V. The applicability of the tandem solar cells as photocathodes was investigated in a photoelectrochemical cell (PEC measurement set-up. With platinum as a catalyst, the a-Si:H/a-Si:H based photocathodes exhibit a high photocurrent onset potential of 1.76 V versus the reversible hydrogen electrode (RHE and a photocurrent of 5.3 mA/cm2 at 0 V versus RHE (under halogen lamp illumination. Our results provide evidence that a direct application of thin film silicon based photocathodes fulfills the main thermodynamic requirements to generate hydrogen. Furthermore, the presented approach may provide an efficient and low-cost route to solar hydrogen production.

  2. Carrier collection losses in interface passivated amorphous silicon thin-film solar cells

    Science.gov (United States)

    Neumüller, A.; Bereznev, S.; Ewert, M.; Volobujeva, O.; Sergeev, O.; Falta, J.; Vehse, M.; Agert, C.

    2016-07-01

    In silicon thin-film solar cells the interface between the i- and p-layer is the most critical. In the case of back diffusion of photogenerated minority carriers to the i/p-interface, recombination occurs mainly on the defect states at the interface. To suppress this effect and to reduce recombination losses, hydrogen plasma treatment (HPT) is usually applied. As an alternative to using state of the art HPT we apply an argon plasma treatment (APT) before the p-layer deposition in n-i-p solar cells. To study the effect of APT, several investigations were applied to compare the results with HPT and no plasma treatment at the interface. Carrier collection losses in resulting solar cells were examined with spectral response measurements with and without bias voltage. To investigate single layers, surface photovoltage and X-ray photoelectron spectroscopy (XPS) measurements were conducted. The results with APT at the i/p-interface show a beneficial contribution to the carrier collection compared with HPT and no plasma treatment. Therefore, it can be concluded that APT reduces the recombination centers at the interface. Further, we demonstrate that carrier collection losses of thin-film solar cells are significantly lower with APT.

  3. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    A R M Yusoff; M N Syahrul; K Henkel

    2007-08-01

    A major issue encountered during fabrication of triple junction -Si solar cells on polyimide substrates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and Gouldflex), and the effect of tie coats on film adhesion.

  4. Hydrogenated amorphous silicon oxide containing a microcrystalline silicon phase and usage as an intermediate reflector in thin-film silicon solar cells

    OpenAIRE

    Lambertz, A.; Grundler, T.; F. Finger

    2011-01-01

    To further improve the stability of amorphous/microcrystalline silicon (a-Si:H/mu c-Si:H) tandem solar cells, it is important to reduce the thickness of the a-Si: H top cell. This can be achieved by introduction of an intermediate reflector between the a-Si: H top and the mu c-Si: H bottom cell which reflects light back into the a-Si: H cell and thus, increases its photocurrent at possibly reduced thickness. Microcrystalline silicon oxide (mu c-SiOx:H) is used for this purpose and the trade-o...

  5. Dual-Layer Nanostructured Flexible Thin-Film Amorphous Silicon Solar Cells with Enhanced Light Harvesting and Photoelectric Conversion Efficiency.

    Science.gov (United States)

    Lin, Yinyue; Xu, Zhen; Yu, Dongliang; Lu, Linfeng; Yin, Min; Tavakoli, Mohammad Mahdi; Chen, Xiaoyuan; Hao, Yuying; Fan, Zhiyong; Cui, Yanxia; Li, Dongdong

    2016-05-01

    Three-dimensional (3-D) structures have triggered tremendous interest for thin-film solar cells since they can dramatically reduce the material usage and incident light reflection. However, the high aspect ratio feature of some 3-D structures leads to deterioration of internal electric field and carrier collection capability, which reduces device power conversion efficiency (PCE). Here, we report high performance flexible thin-film amorphous silicon solar cells with a unique and effective light trapping scheme. In this device structure, a polymer nanopillar membrane is attached on top of a device, which benefits broadband and omnidirectional performances, and a 3-D nanostructure with shallow dent arrays underneath serves as a back reflector on flexible titanium (Ti) foil resulting in an increased optical path length by exciting hybrid optical modes. The efficient light management results in 42.7% and 41.7% remarkable improvements of short-circuit current density and overall efficiency, respectively. Meanwhile, an excellent flexibility has been achieved as PCE remains 97.6% of the initial efficiency even after 10 000 bending cycles. This unique device structure can also be duplicated for other flexible photovoltaic devices based on different active materials such as CdTe, Cu(In,Ga)Se2 (CIGS), organohalide lead perovskites, and so forth. PMID:27052357

  6. NMR INVESTIGATIONS OF HYDROGENATED AMORPHOUS SILICON

    OpenAIRE

    J. Reimer

    1981-01-01

    A review is presented of the N.M.R. (Nuclear Magnetic Resonance) studies to date of hydrogenated amorphous silicon-hydrogen films. Structural features of proton N.M.R. lineshapes, dynamics of hydrogen containing defect sites, and the promise of quantitative determinations of local silicon-hydrogen bonding environments are discussed in detail. Finally, some comments are given on future directions for N.M.R. studies of hydrogenated thin films.

  7. Stable Transistors in Hydrogenated Amorphous Silicon

    OpenAIRE

    J. M. Shannon

    2004-01-01

    Thin-film field-effect transistors in hydrogenated amorphous silicon are notoriously unstable due to the formation of silicon dangling bond trapping states in the accumulated channel region during operation. Here, we show that by using a source-gated transistor a major improvement in stability is obtained. This occurs because the electron quasi-Fermi level is pinned near the center of the band in the active source region of the device and strong accumulation of electrons is prevented. The use...

  8. Simulation in Amorphous Silicon and Amorphous Silicon Carbide Pin Diodes

    OpenAIRE

    Gonçalves, Dora; Fernandes, Miguel; Louro, Paula; Fantoni, Alessandro; Vieira, Manuela

    2014-01-01

    Part 21: Electronics: Devices International audience Photodiodes are devices used as image sensors, reactive to polychromatic light and subsequently color detecting, and they are also used in optical communication applications. To improve these devices performance it is essential to study and control their characteristics, in fact their capacitance and spectral and transient responses. This study considers two types of diodes, an amorphous silicon pin and an amorphous silicon carbide pi...

  9. Optimization of Recombination Layer in the Tunnel Junction of Amorphous Silicon Thin-Film Tandem Solar Cells

    OpenAIRE

    Yang-Shin Lin; Shui-Yang Lien; Chao-Chun Wang; Chia-Hsun Hsu; Chih-Hsiang Yang; Asheesh Nautiyal; Dong-Sing Wuu; Pi-Chuen Tsai; Shuo-Jen Lee

    2011-01-01

    The amorphous silicon/amorphous silicon (a-Si/a-Si) tandem solar cells have attracted much attention in recent years, due to the high efficiency and low manufacturing cost compared to the single-junction a-Si solar cells. In this paper, the tandem cells are fabricated by high-frequency plasma-enhanced chemical vapor deposition (HF-PECVD) at 27.1 MHz. The effects of the recombination layer and the i-layer thickness matching on the cell performance have been investigated. The results show that ...

  10. Towards upconversion for amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    de Wild, J.; Rath, J.K.; Schropp, R.E.I. [Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, Nanophotonics, P.O. Box 80000, 3508 TA Utrecht (Netherlands); Meijerink, A. [Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, Condensed Matter and Interfaces, P.O. Box 80000, 3508 TA Utrecht (Netherlands); van Sark, W.G.J.H.M. [Utrecht University, Copernicus Institute for Sustainable Development and Innovation, Science, Technology and Society, Heidelberglaan 2, 3584 CS Utrecht (Netherlands)

    2010-11-15

    Upconversion of subbandgap light of thin film single junction amorphous silicon solar cells may enhance their performance in the near infrared (NIR). In this paper we report on the application of the NIR-vis upconverter {beta}-NaYF{sub 4}:Yb{sup 3+}(18%) Er{sup 3+}(2%) at the back of an amorphous silicon solar cell in combination with a white back reflector and its response to infrared irradiation. Current-voltage measurements and spectral response measurements were done on experimental solar cells. An enhancement of 10 {mu}A/cm{sup 2} was measured under illumination with a 980 nm diode laser (10 mW). A part of this was due to defect absorption in localized states of the amorphous silicon. (author)

  11. Amorphous silicon thin film transistor active-matrix organic light-emitting diode displays fabricated on flexible substrates

    Science.gov (United States)

    Nichols, Jonathan A.

    Organic light-emitting diode (OLED) displays are of immense interest because they have several advantages over liquid crystal displays, the current dominant flat panel display technology. OLED displays are emissive and therefore are brighter, have a larger viewing angle, and do not require backlights and filters, allowing thinner, lighter, and more power efficient displays. The goal of this work was to advance the state-of-the-art in active-matrix OLED display technology. First, hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) active-matrix OLED pixels and arrays were designed and fabricated on glass substrates. The devices operated at low voltages and demonstrated that lower performance TFTs could be utilized in active-matrix OLED displays, possibly allowing lower cost processing and the use of polymeric substrates. Attempts at designing more control into the display at the pixel level were also made. Bistable (one bit gray scale) active-matrix OLED pixels and arrays were designed and fabricated. Such pixels could be used in novel applications and eventually help reduce the bandwidth requirements in high-resolution and large-area displays. Finally, a-Si:H TFT active-matrix OLED pixels and arrays were fabricated on a polymeric substrate. Displays fabricated on a polymeric substrates would be lightweight; flexible, more rugged, and potentially less expensive to fabricate. Many of the difficulties associated with fabricating active-matrix backplanes on flexible substrates were studied and addressed.

  12. Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells.

    Science.gov (United States)

    Yang, Zhenhai; Gao, Pingqi; Zhang, Cheng; Li, Xiaofeng; Ye, Jichun

    2016-01-01

    Dielectric nanosphere arrays are considered as promising light-trapping designs with the capability of transforming the freely propagated sunlight into guided modes. This kinds of designs are especially beneficial to the ultrathin hydrogenated amorphous silicon (a-Si:H) solar cells due to the advantages of using lossless material and easily scalable assembly. In this paper, we demonstrate numerically that the front-sided integration of high-index subwavelength titanium dioxide (TiO2) nanosphere arrays can significantly enhance the light absorption in 100 nm-thick a-Si:H thin films and thus the power conversion efficiencies (PCEs) of related solar cells. The main reason behind is firmly attributed to the strong scattering effect excited by TiO2 nanospheres in the whole waveband, which contributes to coupling the light into a-Si:H layer via two typical ways: 1) in the short-waveband, the forward scattering of TiO2 nanospheres excite the Mie resonance, which focuses the light into the surface of the a-Si:H layer and thus provides a leaky channel; 2) in the long-waveband, the transverse waveguided modes caused by powerful scattering effectively couple the light into almost the whole active layer. Moreover, the finite-element simulations demonstrate that photocurrent density (Jph) can be up to 15.01 mA/cm(2), which is 48.76% higher than that of flat system. PMID:27455911

  13. Behavioral data of thin-film single junction amorphous silicon (a-Si photovoltaic modules under outdoor long term exposure

    Directory of Open Access Journals (Sweden)

    Sofiane Kichou

    2016-06-01

    Further discussions and interpretations concerning the data shared in this article can be found in the research paper “Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure” (Kichou et al., 2016 [1].

  14. Amorphization and recrystallization processes in monocrystalline beta silicon carbide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Edmond, J.A.; Withrow, S.P.; Kong, H.S.; Davis, R.F.

    1985-01-01

    Individual, as well as multiple doses of /sup 27/Al/sup +/, /sup 31/P/sup +/, /sup 28/Si/sup +/, and /sup 28/Si/sup +/ and /sup 12/C/sup +/, were implanted into (100) oriented monocrystalline ..beta..-SiC films. The critical energy of approx. =16 eV/atom required for the amorphization of ..beta..-SiC via implantation of /sup 27/Al/sup +/ and /sup 31/P/sup +/ was determined using the TRIM84 computer program for calculation of the damage-energy profiles coupled with the results of RBS/ion channeling analyses. In order to recrystallize amorphized layers created by the individual implantation of all four ion species, thermal annealing at 1600, 1700, or 1800/sup 0/C was employed. Characterization of the recrystallized layers was performed using XTEM. Examples of SPE regrown layers containing precipitates and dislocation loops, highly faulted-microtwinned regions, and random crystallites were observed.

  15. Optimization of optical absorption in thin layers of amorphous silicon enhanced by silver nanospheres

    CERN Document Server

    Omelyanovich, Mikhail; Simovski, Constantin

    2015-01-01

    We study a highly controllable perfect plasmonic absorber -- a thin metamaterial layer which possess balanced electric and magnetic responses in some frequency range. We show that this regime is compatible with both metal-backed variant of the structure or its semitransparent variant. This regime can be implemented in a prospective thin-film photovoltaic cell with negligible parasitic losses.

  16. Plasma Deposition of Amorphous Silicon

    Science.gov (United States)

    Calcote, H. F.

    1982-01-01

    Strongly adhering films of silicon are deposited directly on such materials as Pyrex and Vycor (or equivalent materials) and aluminum by a non-equilibrium plasma jet. Amorphous silicon films are formed by decomposition of silicon tetrachloride or trichlorosilane in the plasma. Plasma-jet technique can also be used to deposit an adherent silicon film on aluminum from silane and to dope such films with phosphorus. Ability to deposit silicon films on such readily available, inexpensive substrates could eventually lead to lower cost photovoltaic cells.

  17. Investigation of the crystallization process of amorphous silicon thin films%非晶硅薄膜晶化过程的研究

    Institute of Scientific and Technical Information of China (English)

    黄木香; 杨琳; 刘玉琪; 王江涌

    2012-01-01

    Polycrystalline silicon thin film is a high quality material for micro - electronic components, thin film transistors and large flat-panel LCD displays because of its high electrical mobility and stable photoelectric properties. Moreover, it has been regarded as a candidate material for making high efficiency, lower energy consumption and optimized thin film solar cells. Therefore, how to fabricate polycrystalline silicon thin film is a very meaningful research topic. Solid phase crystallization is a usual method to fabricate polycrystalline silicon thin film, by high temperature annealing to transfer amorphous film to polycrystalline phase, In this paper, the solid phase crystallization process of amorphous silicon thin films fabricated by different techniques are studied systematically by XRD and Raman spectroscopy.%多晶硅薄膜具有较高的电迁移率和稳定的光电性能,是制备微电子器件、薄膜晶体管、大面积平板液晶显示的优质材料.多晶硅薄膜被公认为是制备高效、低耗、最理想的薄膜太阳能电池的材料.因此,如何制备多晶硅薄膜是一个非常有意义的研究课题.固相法是制备多晶硅薄膜的一种常用方法,它是在高温退火的条件下,使非晶硅薄膜通过固相相变而成为多晶硅薄膜.本文采用固相法,利用X-ray衍射及拉曼光谱,对用不同方法制备的非晶硅薄膜的晶化过程进行了系统地研究.

  18. Sub-micron gap in-plane micromechanical resonators based on low-temperature amorphous silicon thin-films on glass substrates

    Science.gov (United States)

    Gualdino, A.; Gaspar, J.; Chu, V.; Conde, J. P.

    2015-07-01

    In this work, high-frequency bulk mode resonators made from low stress hydrogenated amorphous silicon (a-Si:H) thin-films are demonstrated. The microelectromechanical structures are fabricated using surface micromachining techniques at a maximum processing temperature of 175 °C on glass substrates. The silicon thin-film based resonators presented here are temperature compatible with post processing on standard CMOS. The resonators are capacitively driven and sensed across 400 nm air gaps. A proof of concept design consisting of a 200 µm side length square has been selectively excited in the Lamé-mode at a characteristic vibration frequency of 13.64 MHz. The quality factor of the resonators is in the 103 range and the motional resistance was measured to be approximately 21.8 MΩ at a DC bias voltage of 40 V.

  19. Sub-micron gap in-plane micromechanical resonators based on low-temperature amorphous silicon thin-films on glass substrates

    International Nuclear Information System (INIS)

    In this work, high-frequency bulk mode resonators made from low stress hydrogenated amorphous silicon (a–Si:H) thin-films are demonstrated. The microelectromechanical structures are fabricated using surface micromachining techniques at a maximum processing temperature of 175 °C on glass substrates. The silicon thin-film based resonators presented here are temperature compatible with post processing on standard CMOS. The resonators are capacitively driven and sensed across 400 nm air gaps. A proof of concept design consisting of a 200 µm side length square has been selectively excited in the Lamé-mode at a characteristic vibration frequency of 13.64 MHz. The quality factor of the resonators is in the 103 range and the motional resistance was measured to be approximately 21.8 MΩ at a DC bias voltage of 40 V. (paper)

  20. Nickel-induced crystallization of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J A; Arce, R D; Buitrago, R H [INTEC (CONICET-UNL), Gueemes 3450, S3000GLN Santa Fe (Argentina); Budini, N; Rinaldi, P, E-mail: jschmidt@intec.unl.edu.a [FIQ - UNL, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2009-05-01

    The nickel-induced crystallization of hydrogenated amorphous silicon (a-Si:H) is used to obtain large grained polycrystalline silicon thin films on glass substrates. a-Si:H is deposited by plasma enhanced chemical vapour deposition at 200 deg. C, preparing intrinsic and slightly p-doped samples. Each sample was divided in several pieces, over which increasing Ni concentrations were sputtered. Two crystallization methods are compared, conventional furnace annealing (CFA) and rapid thermal annealing (RTA). The crystallization was followed by optical microscopy and scanning electron microscopy observations, X-ray diffraction, and reflectance measurements in the UV region. The large grain sizes obtained - larger than 100{mu}m for the samples crystallized by CFA - are very encouraging for the preparation of low-cost thin film polycrystalline silicon solar cells.

  1. Threshold-Voltage-Shift Compensation and Suppression Method Using Hydrogenated Amorphous Silicon Thin-Film Transistors for Large Active Matrix Organic Light-Emitting Diode Displays

    Science.gov (United States)

    Oh, Kyonghwan; Kwon, Oh-Kyong

    2012-03-01

    A threshold-voltage-shift compensation and suppression method for active matrix organic light-emitting diode (AMOLED) displays fabricated using a hydrogenated amorphous silicon thin-film transistor (TFT) backplane is proposed. The proposed method compensates for the threshold voltage variation of TFTs due to different threshold voltage shifts during emission time and extends the lifetime of the AMOLED panel. Measurement results show that the error range of emission current is from -1.1 to +1.7% when the threshold voltage of TFTs varies from 1.2 to 3.0 V.

  2. Experimental study of the hysteresis in hydrogenated amorphous silicon thin-film transistors for an active matrix organic light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Hoon; Shin, Kwang-Sub; Park, Joong-Hyun; Han, Min-Koo [Seoul National University, Seoul (Korea, Republic of)

    2006-01-15

    An experimental scheme for validating the cause of the hysteresis phenomenon in hydrogenated amorphous-silicon-thin-film transistors (a-Si:H TFTs) is reported. A different gate starting voltage to the desired gate voltage has been considered to prove an effect of filling an acceptor-like or donor-like state in the interface. The integration time of the semiconductor parameter analyzer has also been controlled to investigate the effect between the de-trapping rate and hysteresis. The experimental results show that the previous data voltage in the (n-1)th frame affects the OLED current in the (n)th frame.

  3. Amorphous metallic films in silicon metallization systems

    Science.gov (United States)

    So, F.; Kolawa, E.; Nicolet, M. A.

    1985-01-01

    Diffusion barrier research was focussed on lowering the chemical reactivity of amorphous thin films on silicon. An additional area of concern is the reaction with metal overlays such as aluminum, silver, and gold. Gold was included to allow for technology transfer to gallium arsenide PV cells. Amorphous tungsten nitride films have shown much promise. Stability to annealing temperatures of 700, 800, and 550 C were achieved for overlays of silver, gold, and aluminum, respectively. The lower results for aluminum were not surprising because there is an eutectic that can form at a lower temperature. It seems that titanium and zirconium will remove the nitrogen from a tungsten nitride amorphous film and render it unstable. Other variables of research interest were substrate bias and base pressure during sputtering.

  4. Amorphous silicon crystalline silicon heterojunction solar cells

    CERN Document Server

    Fahrner, Wolfgang Rainer

    2013-01-01

    Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to ""fill in the blanks"" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the curre

  5. Optimization of Recombination Layer in the Tunnel Junction of Amorphous Silicon Thin-Film Tandem Solar Cells

    Directory of Open Access Journals (Sweden)

    Yang-Shin Lin

    2011-01-01

    Full Text Available The amorphous silicon/amorphous silicon (a-Si/a-Si tandem solar cells have attracted much attention in recent years, due to the high efficiency and low manufacturing cost compared to the single-junction a-Si solar cells. In this paper, the tandem cells are fabricated by high-frequency plasma-enhanced chemical vapor deposition (HF-PECVD at 27.1 MHz. The effects of the recombination layer and the i-layer thickness matching on the cell performance have been investigated. The results show that the tandem cell with a p+ recombination layer and i2/i1 thickness ratio of 6 exhibits a maximum efficiency of 9.0% with the open-circuit voltage (Voc of 1.59 V, short-circuit current density (Jsc of 7.96 mA/cm2, and a fill factor (FF of 0.70. After light-soaking test, our a-Si/a-Si tandem cell with p+ recombination layer shows the excellent stability and the stabilized efficiency of 8.7%.

  6. Interaction of hydrogenated amorphous silicon films with transparent conductive films

    OpenAIRE

    Kitagawa, M.; Mori, K; Ishihara, S.; Ohno, M.; Hirao, T.; Yoshioka, Y.; Kohiki, S

    1983-01-01

    The effects of the deposition temperature on the interaction of the hydrogenated amorphous silicon films with indium-tin-oxide and tin-oxide films have been investigated in the temperature range 150-300 degrees C, using Auger electron spectroscopy, secondary ion mass spectrometry, and scanning electron microscopy. It was found that the constituent atoms such as indium and tin are detected in the thin amorphous silicon films deposited. Around the interface between the transparent conductive fi...

  7. Increasing the deposition rate of microcrystalline and amorphous silicon thin films for photovoltaic applications - Phase IV: 1997-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This report on behalf of the Swiss Federal Office of Energy (SFOE) describes Phase IV of the project to test the feasibility and usefulness of Very High Frequency (VHF) plasma operation in large-area reactors suitable for the production of solar cell panels using thinly-deposited micro-crystalline silicon films. The report discusses the results of fast-deposition tests and trials using high-current DC arcs and VHF techniques to obtain deposition rates and film quality suitable for industrial processes for the production of thin-film solar cell panels. The effects of alternative plasma chemistry were also studied by adding silicon tetrafluoride to the standard silane/hydrogen mixtures. The report is concluded with calculations for optimum radio-frequency (RF) contact configuration for large area reactors with 1 m{sup 2} electrodes.

  8. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  9. Amorphous silicon based betavoltaic devices

    OpenAIRE

    Wyrsch, N; Riesen, Y.; Franco, A; S. Dunand; Kind, H.; Schneider, S.; Ballif, C.

    2013-01-01

    Hydrogenated amorphous silicon betavoltaic devices are studied both by simulation and experimentally. Devices exhibiting a power density of 0.1 μW/cm2 upon Tritium exposure were fabricated. However, a significant degradation of the performance is taking place, especially during the first hours of the exposure. The degradation behavior differs from sample to sample as well as from published results in the literature. Comparisons with degradation from beta particles suggest an effect of tritium...

  10. The investigation of ZnO:Al2O3/metal composite back reflectors in amorphous silicon germanium thin film solar cells

    Institute of Scientific and Technical Information of China (English)

    Wang Guang-Hong; Zhao Lei; Yan Bao-Jun; Chen Jing-Wei; Wang Ge; Diao Hong-Wei; Wang Wen-Jing

    2013-01-01

    Different aluminum-doped ZnO (AZO)/metal composite thin films,including AZO/Ag/Al,AZO/Ag/nickelchromium alloy (NiCr),and AZO/Ag/NiCr/Al,are utilized as the back reflectors of p-i-n amorphous silicon germanium thin film solar cells.NiCr is used as diffusion barrier layer between Ag and Al to prevent mutual diffusion,which increases the short circuit current density of solar cell.NiCr and NiCr/Al layers are used as protective layers of Ag layer against oxidation and sulfurization,the higher efficiency of solar cell is achieved.The experimental results show that the performance of a-SiGe solar cell with AZO/Ag/NiCr/Al back reflector is best.The initial conversion efficiency is achieved to be 8.05%.

  11. Amorphous-silicon cell reliability testing

    Science.gov (United States)

    Lathrop, J. W.

    1985-01-01

    The work on reliability testing of solar cells is discussed. Results are given on initial temperature and humidity tests of amorphous silicon devices. Calibration and measurement procedures for amorphous and crystalline cells are given. Temperature stress levels are diagrammed.

  12. Radiation resistance studies of amorphous silicon films

    Science.gov (United States)

    Woodyard, James R.; Payson, J. Scott

    1989-01-01

    Hydrogenated amorphous silicon thin films were irradiated with 2.00 MeV helium ions using fluences ranging from 1E11 to 1E15 cm(-2). The films were characterized using photothermal deflection spectroscopy and photoconductivity measurements. The investigations show that the radiation introduces sub-band-gap states 1.35 eV below the conduction band and the states increase supralinearly with fluence. Photoconductivity measurements suggest the density of states above the Fermi energy is not changing drastically with fluence.

  13. Thermal properties of amorphous/crystalline silicon superlattices.

    Science.gov (United States)

    France-Lanord, Arthur; Merabia, Samy; Albaret, Tristan; Lacroix, David; Termentzidis, Konstantinos

    2014-09-01

    Thermal transport properties of crystalline/amorphous silicon superlattices using molecular dynamics are investigated. We show that the cross-plane conductivity of the superlattices is very low and close to the conductivity of bulk amorphous silicon even for amorphous layers as thin as ≃ 6 Å. The cross-plane thermal conductivity weakly increases with temperature which is associated with a decrease of the Kapitza resistance with temperature at the crystalline/amorphous interface. This property is further investigated considering the spatial analysis of the phonon density of states in domains close to the interface. Interestingly, the crystalline/amorphous superlattices are shown to display large thermal anisotropy, according to the characteristic sizes of elaborated structures. These last results suggest that the thermal conductivity of crystalline/amorphous superlattices can be phonon engineered, providing new directions for nanostructured thermoelectrics and anisotropic materials in thermal transport. PMID:25105883

  14. Electron field emission from amorphous semiconductor thin films

    International Nuclear Information System (INIS)

    The flat panel display market requires new and improved technologies in order to keep up with the requirements of modem lifestyles. Electron field emission from thin film amorphous semiconductors is potentially such a technology. For this technology to become viable, improvements in the field emitting properties of these materials must be achieved. To this end, it is important that a better understanding of the emission mechanisms responsible is attained. Amorphous carbon thin films, amorphous silicon thin films and other materials have been deposited, in-house and externally. These materials have been characterised using ellipsometry, profilometry, optical absorption, scanning electron microscopy, atomic force microscopy, electron paramagnetic resonance and Rutherford backscattering spectroscopy. An experimental system for evaluating the electron field emitting performance of thin films has been developed. In the process of developing thin film cathodes in this study, it has been possible to add a new and potentially more useful semiconductor, namely amorphous silicon, to the family of cold cathode emitters. Extensive experimental field emission data from amorphous carbon thin films, amorphous silicon thin films and other materials has been gathered. This data has been used to determine the mechanisms responsible for the observed electron emission. Preliminary computer simulations using appropriate values for the different material properties have exhibited emission mechanisms similar to those identified by experiment. (author)

  15. High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells.

    Science.gov (United States)

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    Thin films of hydrogenated amorphous silicon can be produced at MPa pressures from silane without the use of plasma at temperatures as low as 345 °C. High pressure chemical vapor deposition may open a new way to low cost deposition of amorphous silicon solar cells and other thin film structures over very large areas in very compact, simple reactors. PMID:27174318

  16. Influence of the absorber layer thickness and rod length on the performance of three-dimensional nanorods thin film hydrogenated amorphous silicon solar cells

    Science.gov (United States)

    Ho, Chung-I.; Liang, Wei-Chieh; Yeh, Dan-Ju; Su, Vin-Cent; Yang, Po-Chuan; Chen, Shih-Yen; Yang, Tsai-Ting; Lee, Jeng-Han; Kuan, Chieh-Hsiung; Cheng, I.-Chun; Lee, Si-Chen

    2013-04-01

    Performance of substrate-configured hydrogenated amorphous silicon solar cells based on ZnO nanorod arrays prepared by hydrothermal method has been investigated. The light harvest ability of three-dimensional nanorods solar cells is a compromise between the absorber layer thickness and the nanorods geometry. By optimizing the intrinsic a-Si:H absorber layer thickness from 75 to 250 nm and varying the length of the nanorods from 600 to 1800 nm, the highest energy conversion efficiency of 6.07% is obtained for the nanorods solar cell having thin absorber layer thickness of 200 nm with the rod length of 600 nm. This represents up to 28% enhanced efficiency compared to the conventional flat reference cell with similar absorber layer thickness.

  17. Modeling of current–voltage characteristics for dual-gate amorphous silicon thin-film transistors considering deep Gaussian density-of-state distribution

    International Nuclear Information System (INIS)

    Accounting for the deep Gaussian and tail exponential distribution of the density of states, a physical approximation for potentials of amorphous silicon thin-film transistors using a symmetric dual gate (sDG a-Si:H TFT) has been presented. The proposed scheme provides a complete solution of the potentials at the surface and center of the layer without solving any transcendental equations. A channel current model incorporating features of gate voltage-dependent mobility and coupling factor is derived. We show the parameters required for accurately describing the current–voltage (I–V) characteristics of DG a-Si:H TFT and just how sensitively these parameters affect TFT current. Particularly, the parameters' dependence on the I–V characteristics with respect to the density of deep state and channel thickness has been investigated in detail. The resulting scheme and model are successively verified through comparison with numerical simulations as well as the available experimental data. (paper)

  18. Driving Method for Compensating Reliability Problem of Hydrogenated Amorphous Silicon Thin Film Transistors and Image Sticking Phenomenon in Active Matrix Organic Light-Emitting Diode Displays

    Science.gov (United States)

    Shin, Min-Seok; Jo, Yun-Rae; Kwon, Oh-Kyong

    2011-03-01

    In this paper, we propose a driving method for compensating the electrical instability of hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs) and the luminance degradation of organic light-emitting diode (OLED) devices for large active matrix OLED (AMOLED) displays. The proposed driving method senses the electrical characteristics of a-Si:H TFTs and OLEDs using current integrators and compensates them by an external compensation method. Threshold voltage shift is controlled a using negative bias voltage. After applying the proposed driving method, the measured error of the maximum emission current ranges from -1.23 to +1.59 least significant bit (LSB) of a 10-bit gray scale under the threshold voltage shift ranging from -0.16 to 0.17 V.

  19. Investigation of Sb diffusion in amorphous silicon

    OpenAIRE

    Csik, A.; Langer, G A; Erdelyi, G.; Beke, D. L.; Erdelyi, Z.; Vad, K.

    2009-01-01

    Amorphous silicon materials and its alloys become extensively used in some technical applications involving large area of the microelectronic and optoelectronic devices. However, the amorphous-crystalline transition, segregation and diffusion processes still have numerous unanswered questions. In this work we study the Sb diffusion into an amorphous Si film by means of Secondary Neutral Mass Spectrometry (SNMS). Amorphous Si/Si1-xSbx/Si tri-layer samples with 5 at% antimony concentration were...

  20. Comparison of silicon oxide and silicon carbide absorber materials in silicon thin-film solar cells

    OpenAIRE

    Walder Cordula; Kellermann Martin; Wendler Elke; Rensberg Jura; von Maydell Karsten; Agert Carsten

    2015-01-01

    Since solar energy conversion by photovoltaics is most efficient for photon energies at the bandgap of the absorbing material the idea of combining absorber layers with different bandgaps in a multijunction cell has become popular. In silicon thin-film photovoltaics a multijunction stack with more than two subcells requires a high bandgap amorphous silicon alloy top cell absorber to achieve an optimal bandgap combination. We address the question whether amorphous silicon carbide (a-SiC:H) or ...

  1. Tests Of Amorphous-Silicon Photovoltaic Modules

    Science.gov (United States)

    Ross, Ronald G., Jr.

    1988-01-01

    Progress in identification of strengths and weaknesses of amorphous-silicon technology detailed. Report describes achievements in testing reliability of solar-power modules made of amorphous-silicon photovoltaic cells. Based on investigation of modules made by U.S. manufacturers. Modules subjected to field tests, to accelerated-aging tests in laboratory, and to standard sequence of qualification tests developed for modules of crystalline-silicon cells.

  2. Research on Stability Technology of Amorphous Silicon Thin Film Solar Cells%非晶硅薄膜太阳能电池稳定性技术研究

    Institute of Scientific and Technical Information of China (English)

    郑奇

    2011-01-01

    This paper introduced the preparation principle of the amorphous silicon thin film and improvement methods for preparation of silicon membrane. In the process of preparing the amorphous silicon thin film,by discussing the parameter design of amorphous silicon membrane structure,the technology method and battery stability data analysis,the article proposes that taking these measures can improve the stability of the silicon thin film solar cells.%介绍了非晶硅薄膜的制备原理以及硅膜制备过程中的重要改进方法,在制备非晶硅薄膜过程中从非晶硅膜结构的参数设计、生产中的工艺技术方法以及电池稳定性实验数据分析,提出采用该系列措施可在一定程度上改善硅薄膜太阳能电池不够稳定的缺陷.

  3. Studies of pure and nitrogen-incorporated hydrogenated amorphous carbon thin films and their possible application for amorphous silicon solar cells

    International Nuclear Information System (INIS)

    Hydrogenated amorphous carbon (a-C:H) and nitrogen-incorporated a-C:H (a-C:N:H) thin films were deposited using radio frequency-plasma-enhanced chemical vapor deposition technique and studied for their electrical, optical, and nano-mechanical properties. Introduction of nitrogen and increase of self bias enhanced the conductivity of a-C:H and a-C:N:H films, whereas current-voltage measurement reveals heterojunction formation due to their rectifying behavior. The bandgap of these films was changed over wide range from 1.9 eV to 3.45 eV by varying self bias and the nitrogen incorporation. Further, activation energy was correlated with the electronic structure of a-C:H and a-C:N:H films, and conductivity was discussed as a function of bandgap. Moreover, a-C:N:H films exhibited high hardness and elastic modulus, with maximum values as 42 GPa and 430 GPa, respectively, at -100 V. Observed fascinating electrical, optical, and nano-mechanical properties made it a material of great utility in the development of optoelectronic devices, such as solar cells. In addition, we also performed simulation study for an a-Si:H solar cell, considering a-C:H and C:N:H as window layers, and compared their performance with the a-Si:H solar cell having a-SiC:H as window layer. We also proposed several structures for the development of a near full-spectrum solar cell. Moreover, due to high hardness, a-C:N:H films can be used as a protective and encapsulate layer on solar cells, especially in n-i-p configuration on metal substrate. Nevertheless, a-C:H and a-C:N:H as a window layer can avoid the use of additional hard and protective coating and, hence, minimize the cost of the product.

  4. Integral bypass diodes in an amorphous silicon alloy photovoltaic module

    Science.gov (United States)

    Hanak, J. J.; Flaisher, H.

    1991-01-01

    Thin-film, tandem-junction, amorphous silicon (a-Si) photovoltaic modules were constructed in which a part of the a-Si alloy cell material is used to form bypass protection diodes. This integral design circumvents the need for incorporating external, conventional diodes, thus simplifying the manufacturing process and reducing module weight.

  5. Nanoscale Transformations in Metastable, Amorphous, Silicon-Rich Silica.

    Science.gov (United States)

    Mehonic, Adnan; Buckwell, Mark; Montesi, Luca; Munde, Manveer Singh; Gao, David; Hudziak, Stephen; Chater, Richard J; Fearn, Sarah; McPhail, David; Bosman, Michel; Shluger, Alexander L; Kenyon, Anthony J

    2016-09-01

    Electrically biasing thin films of amorphous, substoichiometric silicon oxide drives surprisingly large structural changes, apparent as density variations, oxygen movement, and ultimately, emission of superoxide ions. Results from this fundamental study are directly relevant to materials that are increasingly used in a range of technologies, and demonstrate a surprising level of field-driven local reordering of a random oxide network.

  6. First principles simulation of amorphous silicon bulk, interfaces, and nanowires for photovoltaics

    OpenAIRE

    Belayneh, Merid Legesse

    2015-01-01

    Amorphous silicon has become the material of choice for many technologies, with major applications in large area electronics: displays, image sensing and thin film photovoltaic cells. This technology development has occurred because amorphous silicon is a thin film semiconductor that can be deposited on large, low cost substrates using low temperature. In this thesis, classical molecular dynamics and first principles DFT calculations have been performed to generate structural models of amorph...

  7. 微波退火非晶硅薄膜低温晶化研究%Study on the Crystallization of Amorphous Silicon Thin Film by Microwave Annealing at Low Temperature

    Institute of Scientific and Technical Information of China (English)

    饶瑞; 曾祥斌; 徐重阳; 孙国才

    2001-01-01

    多晶硅薄膜晶体管以其独特的优点在液晶显示领域中起着重要的作用。为了满足在普通玻璃衬底上制备多晶硅薄膜晶体管有源矩阵液晶显示器,低温制备(<600°C)高质量多晶硅薄膜已成为研究热点。文章研究了一种低温制备多晶硅薄膜的新工艺:微波退火非晶硅薄膜固相晶化法,利用X射线衍射、拉曼光谱和扫描电镜分析了微波退火工艺对非晶硅薄膜固相晶化的影响,成功实现了低温制备多晶硅薄膜。%Polycrystalline silicon thin film transistor has played adominant role in the area of liquid display.Preparation of polycrystalline silicon thin film with high quality at low temperature(<600 °C)has been recently become one of the hot spots in order to meet the requirement of polycrystalline silicon thin film transistors in the active matrix liquid crystal display on the substrate of common glass.We developed a new process for preparing polycrystalline silicon thin film at low temperature by microwave-induced solid phase crystallization of amorphous silicon thin film.The influence of microwave annealing process on the crystallization of amorphous silicon thin film has been studied by XRD,raman spectrum and SEM.And then polycrystalline silicon thin film was prepared at low temperature.

  8. Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation

    CERN Document Server

    Vora, Ankit; Pearce, Joshua M; Bergstrom, Paul L; Güney, Durdu Ö

    2014-01-01

    We study polarization independent improved light trapping in commercial thin film hydrogenated amorphous silicon (a-Si:H) solar photovoltaic cells using a three-dimensional silver array of multi-resonant nano-disk structures embedded in a silicon nitride anti-reflection coating (ARC) to enhance optical absorption in the intrinsic layer (i-a-Si:H) for the visible spectrum for any polarization angle. Predicted total optical enhancement (OE) in absorption in the i-a-Si:H for AM-1.5 solar spectrum is 18.51% as compared to the reference, and producing a 19.65% improvement in short-circuit current density (JSC) over 11.7 mA/cm2 for a reference cell. The JSC in the nano-disk patterned solar cell (NDPSC) was found to be higher than the commercial reference structure for any incident angle. The NDPSC has a multi-resonant optical response for the visible spectrum and the associated mechanism for OE in i-a-Si:H layer is excitation of Fabry-Perot resonance facilitated by surface plasmon resonances. The detrimental Staebl...

  9. Pyrolytic transformation from polydihydrosilane to hydrogenated amorphous silicon film

    OpenAIRE

    Masuda, Takashi; Matsuki, Yasuo; Shimoda, Tatsuya

    2012-01-01

    The fabrication of thin film silicon devices based on solution processes rather than on conventional vacuum processes is of substantial interest since cost reductions may result. Using a solution process, we coated substrates with polydihydrosilane solution and studied the pyrolytic transformation of the material into hydrogenated amorphous silicon (a-Si:H). From thermal gravimetry and differential thermal analysis data a significant reduction in weight of the material and a construction of S...

  10. Amorphous Silicon Display Backplanes on Plastic Substrates

    Science.gov (United States)

    Striakhilev, Denis; Nathan, Arokia; Vygranenko, Yuri; Servati, Peyman; Lee, Czang-Ho; Sazonov, Andrei

    2006-12-01

    Amorphous silicon (a-Si) thin-film transistor (TFT) backplanes are very promising for active-matrix organic light-emitting diode displays (AMOLEDs) on plastic. The technology benefits from a large manufacturing base, simple fabrication process, and low production cost. The concern lies in the instability of the TFTs threshold voltage (VT) and its low device mobility. Although VT-instability can be compensated by means of advanced multi-transistor pixel circuits, the lifetime of the display is still dependent on the TFT process quality and bias conditions. A-Si TFTs with field-effect mobility of 1.1 cm2/V · s and pixel driver circuits have been fabricated on plastic substrates at 150 °C. The circuits are characterized in terms of current drive capability and long-term stability of operation. The results demonstrate sufficient and stable current delivery and the ability of the backplane on plastic to meet AMOLED requirements.

  11. Electrical Characterization of Amorphous Silicon Nitride Passivation Layers for Crystalline Silicon Solar Cells

    OpenAIRE

    Helland, Susanne

    2011-01-01

    High quality surface passivation is important for the reduction of recombination losses in solar cells. In this work, the passivation properties of amorphous hydrogenated silicon nitride for crystalline silicon solar cells were investigated, using electrical characterization, lifetime measurements and spectroscopic ellipsometry. Thin films of varying composition were deposited on p-type monocrystalline silicon wafers by plasma enhanced chemical vapor deposition (PECVD). Highest quality surfac...

  12. Raman Amplifier Based on Amorphous Silicon Nanoparticles

    OpenAIRE

    M.A. Ferrara; Rendina, I.; S. N. Basu; Dal Negro, L.; Sirleto, L.

    2012-01-01

    The observation of stimulated Raman scattering in amorphous silicon nanoparticles embedded in Si-rich nitride/silicon superlattice structures (SRN/Si-SLs) is reported. Using a 1427 nm continuous-wavelength pump laser, an amplification of Stokes signal up to 0.9 dB/cm at 1540.6 nm and a significant reduction in threshold power of about 40% with respect to silicon are experimentally demonstrated. Our results indicate that amorphous silicon nanoparticles are a great promise for Si-based Raman la...

  13. Research and developments in thin film silicon photovoltaics

    OpenAIRE

    Despeisse, M; Ballif, C.; Feltrin, A.; Meillaud, F.; Fay, S.; F.-J. Haug, F.-J.; Dominé, D.; Python, M.; Soderstrom, T.; Buehlmann, P; Bugnon, G.; Parascandolo, G

    2009-01-01

    The increasing demand for photovoltaic devices and the associated crystalline silicon feedstock demand scenario have led in the past years to the fast growth of the thin film silicon industry. The high potential for cost reduction and the suitability for building integration have initiated both industrial and research laboratories dynamisms for amorphous silicon and micro-crystalline silicon based photovoltaic technologies. The recent progress towards higher efficiencies thin film silicon sol...

  14. Laser annealing of hydrogen implanted amorphous silicon

    International Nuclear Information System (INIS)

    Amorphous silicon, prepared by silicon bombardment at energies of 200 to 250 keV, was implanted with 40 keV H2+ to peak concentrations up to 15 at .% and recrystallized in air by single 20 nsec pulses at 1.06 μm from a Nd:glass laser. Amorphous layer formation and recrystallization were verified using Raman spectroscopy and ion backscattering/channeling analysis

  15. Influence of microstructure and hydrogen concentration on amorphous silicon crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Budini, N., E-mail: nbudini@intec.unl.edu.a [Instituto de Desarrollo Tecnologico para la Industria Quimica, UNL-CONICET, Gueemes 3450, S3000GLN Santa Fe (Argentina); Rinaldi, P.A. [Instituto de Desarrollo Tecnologico para la Industria Quimica, UNL-CONICET, Gueemes 3450, S3000GLN Santa Fe (Argentina); Schmidt, J.A.; Arce, R.D.; Buitrago, R.H. [Instituto de Desarrollo Tecnologico para la Industria Quimica, UNL-CONICET, Gueemes 3450, S3000GLN Santa Fe (Argentina); Facultad de Ingenieria Quimica, UNL, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2010-07-01

    Hydrogenated amorphous silicon samples were deposited on glass substrates at different temperatures by high frequency plasma-enhanced chemical vapor deposition. In this way, samples with different hydrogen concentrations and structures were obtained. The transition from an amorphous to a crystalline material, induced by a four-step thermal annealing sequence, has been followed. Effusion of hydrogen from the films plays an important role in the nucleation and growth mechanisms of crystalline silicon grains. Measurements of hydrogen concentrations, Raman scattering, X-ray diffraction and UV reflectance showed that an enhanced crystallization was obtained on samples deposited at lower substrate temperatures. A correlation between these measurements allows to analyze the evolution of structural properties of the samples. The presence of voids in the material, related to disorder in the amorphous matrix, results in a better quality of the resulting nanocrystalline silicon thin films.

  16. Influence of microstructure and hydrogen concentration on amorphous silicon crystallization

    International Nuclear Information System (INIS)

    Hydrogenated amorphous silicon samples were deposited on glass substrates at different temperatures by high frequency plasma-enhanced chemical vapor deposition. In this way, samples with different hydrogen concentrations and structures were obtained. The transition from an amorphous to a crystalline material, induced by a four-step thermal annealing sequence, has been followed. Effusion of hydrogen from the films plays an important role in the nucleation and growth mechanisms of crystalline silicon grains. Measurements of hydrogen concentrations, Raman scattering, X-ray diffraction and UV reflectance showed that an enhanced crystallization was obtained on samples deposited at lower substrate temperatures. A correlation between these measurements allows to analyze the evolution of structural properties of the samples. The presence of voids in the material, related to disorder in the amorphous matrix, results in a better quality of the resulting nanocrystalline silicon thin films.

  17. Electron tunnelling into amorphous germanium and silicon.

    Science.gov (United States)

    Smith, C. W.; Clark, A. H.

    1972-01-01

    Measurements of tunnel conductance versus bias, capacitance versus bias, and internal photoemission were made in the systems aluminum-oxide-amorphous germanium and aluminium-oxide-amorphous silicon. A function was extracted which expresses the deviation of these systems from the aluminium-oxide-aluminium system.

  18. The U.S. and Japanese amorphous silicon technology programs A comparison

    Science.gov (United States)

    Shimada, K.

    1984-01-01

    The U.S. Department of Energy/Solar Energy Research Institute Amorphous Silicon (a-Si) Solar Cell Program performs R&D on thin-film hydrogenated amorphous silicon for eventual development of stable amorphous silicon cells with 12 percent efficiency by 1988. The Amorphous Silicon Solar Cell Program in Japan is sponsored by the Sunshine Project to develop an alternate energy technology. While the objectives of both programs are to eventually develop a-Si photovoltaic modules and arrays that would produce electricity to compete with utility electricity cost, the U.S. program approach is research oriented and the Japanese is development oriented.

  19. Development of Tandem Amorphous/Microcrystalline Silicon Thin-Film Large-Area See-Through Color Solar Panels with Reflective Layer and 4-Step Laser Scribing for Building-Integrated Photovoltaic Applications

    OpenAIRE

    Chin-Yi Tsai; Chin-Yao Tsai

    2014-01-01

    In this work, tandem amorphous/microcrystalline silicon thin-film large-area see-through color solar modules were successfully designed and developed for building-integrated photovoltaic applications. Novel and key technologies of reflective layers and 4-step laser scribing were researched, developed, and introduced into the production line to produce solar panels with various colors, such as purple, dark blue, light blue, silver, golden, orange, red wine, and coffee. The highest module power...

  20. Modeling of current-voltage characteristics for dual-gate amorphous silicon thin-film transistors considering deep Gaussian density-of-state distribution

    Science.gov (United States)

    Jian, Qin; Ruohe, Yao

    2015-12-01

    Accounting for the deep Gaussian and tail exponential distribution of the density of states, a physical approximation for potentials of amorphous silicon thin-film transistors using a symmetric dual gate (sDG a-Si:H TFT) has been presented. The proposed scheme provides a complete solution of the potentials at the surface and center of the layer without solving any transcendental equations. A channel current model incorporating features of gate voltage-dependent mobility and coupling factor is derived. We show the parameters required for accurately describing the current-voltage (I-V) characteristics of DG a-Si:H TFT and just how sensitively these parameters affect TFT current. Particularly, the parameters' dependence on the I-V characteristics with respect to the density of deep state and channel thickness has been investigated in detail. The resulting scheme and model are successively verified through comparison with numerical simulations as well as the available experimental data. Project supported by the National Natural Science Foundation of China (No. 61274085) and the Cadence Design System, Inc.

  1. Effect of the hydrogen flow rate on the structural and optical properties of hydrogenated amorphous silicon thin films prepared by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ben Amor, Sana; Dimassi, Wissem; Ali Tebai, Mohamed; Ezzaouia, Hatem [Photovoltaic Laboratory Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif (Tunisia)

    2012-10-15

    Hydrogenated amorphous silicon (a-Si:H) thin films were deposited from pure silane (SiH{sub 4}) and hydrogen (H{sub 2}) gas mixture by plasma enhanced chemical vapor deposition (PECVD) method at low temperature (400 C) using high rf power (60 W). The structural and optical properties of these films are systematically investigated as a function of the flow rate of hydrogen (F{sub H2}).The surface morphology is analyzed by atomic force microscopy (AFM). The characterization of these films with low angle X-ray diffraction revealed that the crystallite size in the films tends to decrease with increase in (F{sub H2}). The Fourier transform infrared (FTIR) spectroscopic analysis showed that at low values of (F{sub H2}),the hydrogen bonding in Si:H films shifts from di-hydrogen (Si-H{sub 2}) and (Si-H{sub 2})n complexes to the mono-hydrogen (Si-H) bonding configuration. Finally, for these optimized conditions, the deposition rate decreases with increasing (F{sub H2}). (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Atomic-scale disproportionation in amorphous silicon monoxide.

    Science.gov (United States)

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material. PMID:27172815

  3. Atomic-scale disproportionation in amorphous silicon monoxide

    Science.gov (United States)

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-05-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material.

  4. Pyrolytic transformation from polydihydrosilane to hydrogenated amorphous silicon film

    International Nuclear Information System (INIS)

    The fabrication of thin film silicon devices based on solution processes rather than on conventional vacuum processes is of substantial interest since cost reductions may result. Using a solution process, we coated substrates with polydihydrosilane solution and studied the pyrolytic transformation of the material into hydrogenated amorphous silicon (a-Si:H). From thermal gravimetry and differential thermal analysis data a significant reduction in weight of the material and a construction of Si-Si bonds are concluded for the pyrolysis temperature Tp = 270 to 360 °C. The appearance of amorphous silicon phonon bands in Raman spectra for films prepared at Tp ≥ 330 °C suggests the construction of a three-dimensional amorphous silicon network. Films prepared at Tp ≥ 360 °C exhibit a hydrogen content near 10 at.% and an optical gap near 1.6 eV similar to device-grade vacuum processed a-Si:H. However, the infrared microstructure factor, the spin density, and the photosensitivity require significant improvements. - Highlights: ► We fabricate hydrogenated amorphous silicon (a-Si:H) films by a solution process. ► The a-Si:H films are prepared by pyrolytic transformation in polysilane solution. ► We investigate basic properties in relation to the pyrolysis temperature. ► Raman spectra, hydrogen content, and optical gap are similar to device-grade a-Si:H. ► Microstructure factor, spin density, and photoconductivity show poor quality.

  5. Nanocrystalline silicon based thin film solar cells

    Science.gov (United States)

    Ray, Swati

    2012-06-01

    Amorphous silicon solar cells and panels on glass and flexible substrate are commercially available. Since last few years nanocrystalline silicon thin film has attracted remarkable attention due to its stability under light and ability to absorb longer wavelength portion of solar spectrum. For amorphous silicon/ nanocrystalline silicon double junction solar cell 14.7% efficiency has been achieved in small area and 13.5% for large area modules internationally. The device quality nanocrystalline silicon films have been fabricated by RF and VHF PECVD methods at IACS. Detailed characterizations of the materials have been done. Nanocrystalline films with low defect density and high stability have been developed and used as absorber layer of solar cells.

  6. Amorphous Silicon: Flexible Backplane and Display Application

    Science.gov (United States)

    Sarma, Kalluri R.

    Advances in the science and technology of hydrogenated amorphous silicon (a-Si:H, also referred to as a-Si) and the associated devices including thin-film transistors (TFT) during the past three decades have had a profound impact on the development and commercialization of major applications such as thin-film solar cells, digital image scanners and X-ray imagers and active matrix liquid crystal displays (AMLCDs). Particularly, during approximately the past 15 years, a-Si TFT-based flat panel AMLCDs have been a huge commercial success. a-Si TFT-LCD has enabled the note book PCs, and is now rapidly replacing the venerable CRT in the desktop monitor and home TV applications. a-Si TFT-LCD is now the dominant technology in use for applications ranging from small displays such as in mobile phones to large displays such as in home TV, as well-specialized applications such as industrial and avionics displays.

  7. Amorphous silicon detectors in positron emission tomography

    International Nuclear Information System (INIS)

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters ε2τ's are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs

  8. Amorphous silicon detectors in positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Conti, M. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy) Lawrence Berkeley Lab., CA (USA)); Perez-Mendez, V. (Lawrence Berkeley Lab., CA (USA))

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  9. Simulation and Experimental Study of Photogeneration and Recombination in Amorphous-Like Silicon Thin Films Deposited by 27.12 MHz Plasma-Enhanced Chemical Vapor Deposition

    OpenAIRE

    Chia-Hsun Hsu; In-Cha Hsieh; Chia-Chi Tsou; Shui-Yang Lien

    2013-01-01

    Amorphous-like silicon (a-Si:H-like) thin films are prepared by 27.12 MHz plasma-enhanced chemical vapor deposition technique. The films are applied to p-i-n single junction thin film solar cells with varying i-layer thickness to observe the effects on the short-circuit current density, as well as the open-circuit voltage, fill factor, and conversion efficiency. The most significant experimental result is that Jsc has two different behaviors with increasing the i-layer thickness, which can be...

  10. Near single-crystalline, high-carrier-mobility silicon thin film on a polycrystalline/amorphous substrate

    Energy Technology Data Exchange (ETDEWEB)

    Findikoglu, Alp T. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Arendt, Paul N. (Los Alamos, NM); Matias, Vladimir (Santa Fe, NM); Choi, Woong (Los Alamos, NM)

    2009-10-27

    A template article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material; is provided, together with a semiconductor article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material, and, a top-layer of semiconductor material upon the buffer material layer.

  11. Transverse and longitudinal vibrations in amorphous silicon

    Science.gov (United States)

    Beltukov, Y. M.; Fusco, C.; Tanguy, A.; Parshin, D. A.

    2015-12-01

    We show that harmonic vibrations in amorphous silicon can be decomposed to transverse and longitudinal components in all frequency range even in the absence of the well defined wave vector q. For this purpose we define the transverse component of the eigenvector with given ω as a component, which does not change the volumes of Voronoi cells around atoms. The longitudinal component is the remaining orthogonal component. We have found the longitudinal and transverse components of the vibrational density of states for numerical model of amorphous silicon. The vibrations are mostly transverse below 7 THz and above 15 THz. In the frequency interval in between the vibrations have a longitudinal nature. Just this sudden transformation of vibrations at 7 THz from almost transverse to almost longitudinal ones explains the prominent peak in the diffusivity of the amorphous silicon just above 7 THz.

  12. DEFECTS IN AMORPHOUS CHALCOGENIDES AND SILICON

    OpenAIRE

    Adler, D.

    1981-01-01

    Our comprehension of the physical properties of amorphous semiconductors has improved considerably over the past few years, but many puzzles remain. From our present perspective, the major features of chalcogenide glasses appear to be well understood, and some of the fine points which have arisen recently have been explained within the same general model. On the other hand, there are a grear number of unresolved mysteries with regard to amorphous silicon-based alloys. In this paper, the valen...

  13. Atomic-scale disproportionation in amorphous silicon monoxide

    OpenAIRE

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphou...

  14. Excimer laser crystallization of amorphous silicon on metallic substrate

    Science.gov (United States)

    Delachat, F.; Antoni, F.; Slaoui, A.; Cayron, C.; Ducros, C.; Lerat, J.-F.; Emeraud, T.; Negru, R.; Huet, K.; Reydet, P.-L.

    2013-06-01

    An attempt has been made to achieve the crystallization of silicon thin film on metallic foils by long pulse duration excimer laser processing. Amorphous silicon thin films (100 nm) were deposited by radiofrequency magnetron sputtering on a commercial metallic alloy (N42-FeNi made of 41 % of Ni) coated by a tantalum nitride (TaN) layer. The TaN coating acts as a barrier layer, preventing the diffusion of metallic impurities in the silicon thin film during the laser annealing. An energy density threshold of 0.3 J cm-2, necessary for surface melting and crystallization of the amorphous silicon, was predicted by a numerical simulation of laser-induced phase transitions and witnessed by Raman analysis. Beyond this fluence, the melt depth increases with the intensification of energy density. A complete crystallization of the layer is achieved for an energy density of 0.9 J cm-2. Scanning electron microscopy unveils the nanostructuring of the silicon after laser irradiation, while cross-sectional transmission electron microscopy reveals the crystallites' columnar growth.

  15. Neutron irradiation induced amorphization of silicon carbide

    International Nuclear Information System (INIS)

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 x 1025 n/m2. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C

  16. Neutron irradiation induced amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Hay, J.C. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  17. Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell backed by a metallic surface-relief grating.

    Science.gov (United States)

    Solano, Manuel; Faryad, Muhammad; Hall, Anthony S; Mallouk, Thomas E; Monk, Peter B; Lakhtakia, Akhlesh

    2013-02-10

    The rigorous coupled-wave approach was used to compute the plane-wave absorptance of a thin-film tandem solar cell with a metallic surface-relief grating as its back reflector. The absorptance is a function of the angle of incidence and the polarization state of incident light; the free-space wavelength; and the period, duty cycle, the corrugation height, and the shape of the unit cell of the surface-relief grating. The solar cell was assumed to be made of hydrogenated amorphous-silicon alloys and the back reflector of bulk aluminum. The incidence and the grating planes were taken to be identical. The AM1.5 solar irradiance spectrum was used for computations in the 400-1100 nm wavelength range. Inspection of parametric plots of the solar-spectrum-integrated (SSI) absorption efficiency and numerical optimization using the differential evolution algorithm were employed to determine the optimal surface-relief grating. For direct insolation, the SSI absorption efficiency is maximizable by appropriate choices of the period, the duty cycle, and the corrugation height, regardless of the shape of the corrugation in each unit cell of the grating. A similar conclusion also holds for diffuse insolation, but the maximum efficiency for diffuse insolation is about 20% smaller than for direct insolation. Although a tin-doped indium-oxide layer at the front and an aluminum-doped zinc-oxide layer between the semiconductor material and the backing metallic layer change the optimal depth of the periodic corrugations, the optimal period of the corrugations does not significantly change. PMID:23400058

  18. Preparation of hydrogenated amorphous silicon tin alloys

    OpenAIRE

    Vergnat, M.; Marchal, G.; Piecuch, M.

    1987-01-01

    This paper describes a new method to obtain hydrogenated amorphous semiconductor alloys. The method is reactive co-evaporation. Silicon tin hydrogenated alloys are prepared under atomic hydrogen atmosphere. We discuss the influence of various parameters of preparation (hydrogen pressure, tungsten tube temperature, substrate temperature, annealing...) on electrical properties of samples.

  19. On the use of a charged tunnel layer as a hole collector to improve the efficiency of amorphous silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Cangming; Sahraei, Nasim; Aberle, Armin G. [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore 117574 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Stangl, Rolf [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore 117574 (Singapore); Peters, Ian Marius

    2015-06-28

    A new concept, using a negatively charged tunnel layer as a hole collector, is proposed and theoretically investigated for application in amorphous silicon thin-film solar cells. The concept features a glass/transparent conductive oxide/ultra-thin negatively charged tunnel layer/intrinsic a-Si:H/n-doped a-Si:H/metal structure. The key feature of this so called t{sup +}-i-n structure is the introduction of a negatively charged tunnel layer (attracting holes from the intrinsic absorber layer), which substitutes the highly recombination active p-doped a-Si:H layer in a conventional p-i-n configuration. Atomic layer deposited aluminum oxide (ALD AlO{sub x}) is suggested as a potential candidate for such a tunnel layer. Using typical ALD AlO{sub x} parameters, a 27% relative efficiency increase (i.e., from 9.7% to 12.3%) is predicted theoretically for a single-junction a-Si:H solar cell on a textured superstrate. This prediction is based on parameters that reproduce the experimentally obtained external quantum efficiency and current-voltage characteristics of a conventional processed p-i-n a-Si:H solar cell, reaching 9.7% efficiency and serving as a reference. Subsequently, the p-doped a-Si:H layer is replaced by the tunnel layer (studied by means of numerical device simulation). Using a t{sup +}-i-n configuration instead of a conventional p-i-n configuration will not only increase the short-circuit current density (from 14.4 to 14.9 mA/cm{sup 2}, according to our simulations), it also enhances the open-circuit voltage and the fill factor (from 917 mV to 1.0 V and from 74% to 83%, respectively). For this concept to work efficiently, a high work function front electrode material or a high interface charge is needed.

  20. Design and noise analysis of charge sensitive amplifier for readout of pixelized thin film amorphous silicon sensors

    CERN Document Server

    Poltorak, K; Jarron, P; Kaplon, J; 10.1109/NSSMIC.2008.4774982

    2009-01-01

    Future high-energy physics experiments entail the need to improve the existing detection technologies, as well as develop new ones. Larger luminosities of the new accelerators require greater granularity of tracking detectors, which will be exposed to much higher doses of radiation. One of the newly-investigated solutions for tracking detectors is the Thin Film on ASIC (TFA) technology, which allows combining advantages of Monolithic Active Pixel and Hybrid Pixel technologies. In the paper we present noise analysis of a front-end circuit for readout of a TFA sensor. The circuit is based on a charge sensitive preamplifier built around an un-buffered cascode stage with active reset circuit. The feedback capacitance is reset through a transistor biased with a constant current instead of a voltage controlled reset transistor in order to limit parasitic charge injection into a very small feedback capacitance. Detailed analysis of noise in the reset and the readout phase and design optimization based on the Enz-Kru...

  1. Internal electric field profile in thin film hydrogenated amorphous silicon diodes studied by the transient-null-current method

    Energy Technology Data Exchange (ETDEWEB)

    Han, D.; Yeh, C.; Wang, K.; Wang, Q.

    1997-07-01

    The authors demonstrate that the internal field of a thin a-Si:H pin solar cells can be measured using the transient-null-current method. This method was previously developed to measure the internal field profile in a-Si alloy Schottky barrier. The internal electric field profile was determined by measuring the forward-bias voltages that tune the transient photocurrents generated by a pulsed laser at various wavelengths to zero. They adopt the same technique to a-Si:H p-i-n solar cells. In the case of p-i-n structure, they need to consider both space charge contributed by photogenerated carriers and carrier recombination which disturb the internal field. They use two critical conditions to minimize these effects. (1) To limit the contribution of photocarriers to space-charge distribution, the total charge collected is less than 10{sup {minus}10} C per pulse, and a repetition rate 1 Hz is used to ensure that the diode remains close to its equilibrium state, (2) The measuring time window is about 1--6 {micro}s following the displacement current. Typically the RC constant of diode is <1 {micro}s and the rise time of the forward-bias recombination current is 6.0 x {micro}s. They apply the signal average to process the forward-bias voltage. The error is within {+-}0.05 V. With this technique they can study the effect of variety of structure design or processing on the device performance.

  2. Generation of correlated photons in hydrogenated amorphous-silicon waveguides

    OpenAIRE

    Clemmen, S.; Perret, A; Selvaraja, Shankar Kumar; Bogaerts, Wim; Van Thourhout, Dries; Baets, Roel; Emplit, Ph.; Massar, S.

    2011-01-01

    We report the first (to our knowledge) observation of correlated photon emission in hydrogenated amorphous- silicon waveguides. We compare this to photon generation in crystalline silicon waveguides with the same geome- try. In particular, we show that amorphous silicon has a higher nonlinearity and competes with crystalline silicon in spite of higher loss.

  3. Development of Tandem Amorphous/Microcrystalline Silicon Thin-Film Large-Area See-Through Color Solar Panels with Reflective Layer and 4-Step Laser Scribing for Building-Integrated Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2014-01-01

    Full Text Available In this work, tandem amorphous/microcrystalline silicon thin-film large-area see-through color solar modules were successfully designed and developed for building-integrated photovoltaic applications. Novel and key technologies of reflective layers and 4-step laser scribing were researched, developed, and introduced into the production line to produce solar panels with various colors, such as purple, dark blue, light blue, silver, golden, orange, red wine, and coffee. The highest module power is 105 W and the highest visible light transmittance is near 20%.

  4. Pyrolytic transformation from polydihydrosilane to hydrogenated amorphous silicon film

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takashi, E-mail: mtakashi@jaist.ac.jp [Japan Science and Technology Agency, ERATO, Shimoda Nano-Liquid Process Project, 2-13 Asahidai, Nomi, Ishikawa, 923-1211 (Japan); Matsuki, Yasuo [Japan Science and Technology Agency, ERATO, Shimoda Nano-Liquid Process Project, 2-13 Asahidai, Nomi, Ishikawa, 923-1211 (Japan); Yokkaichi Research Center, JSR Corporation, 100 Kawajiri-cho, Yokkaichi, Mie, 510-8552 (Japan); Shimoda, Tatsuya [Japan Science and Technology Agency, ERATO, Shimoda Nano-Liquid Process Project, 2-13 Asahidai, Nomi, Ishikawa, 923-1211 (Japan); School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292 (Japan)

    2012-08-31

    The fabrication of thin film silicon devices based on solution processes rather than on conventional vacuum processes is of substantial interest since cost reductions may result. Using a solution process, we coated substrates with polydihydrosilane solution and studied the pyrolytic transformation of the material into hydrogenated amorphous silicon (a-Si:H). From thermal gravimetry and differential thermal analysis data a significant reduction in weight of the material and a construction of Si-Si bonds are concluded for the pyrolysis temperature T{sub p} = 270 to 360 Degree-Sign C. The appearance of amorphous silicon phonon bands in Raman spectra for films prepared at T{sub p} {>=} 330 Degree-Sign C suggests the construction of a three-dimensional amorphous silicon network. Films prepared at T{sub p} {>=} 360 Degree-Sign C exhibit a hydrogen content near 10 at.% and an optical gap near 1.6 eV similar to device-grade vacuum processed a-Si:H. However, the infrared microstructure factor, the spin density, and the photosensitivity require significant improvements. - Highlights: Black-Right-Pointing-Pointer We fabricate hydrogenated amorphous silicon (a-Si:H) films by a solution process. Black-Right-Pointing-Pointer The a-Si:H films are prepared by pyrolytic transformation in polysilane solution. Black-Right-Pointing-Pointer We investigate basic properties in relation to the pyrolysis temperature. Black-Right-Pointing-Pointer Raman spectra, hydrogen content, and optical gap are similar to device-grade a-Si:H. Black-Right-Pointing-Pointer Microstructure factor, spin density, and photoconductivity show poor quality.

  5. A buffer-layer/a-SiOx:H(p) window-layer optimization for thin film amorphous silicon based solar cells

    International Nuclear Information System (INIS)

    Amorphous silicon based (a-Si:H-based) solar cells with a buffer-layer/boron doped hydrogenated amorphous silicon oxide (a-SiOx:H(p)) window-layer were fabricated and investigated. In the first part, in order to reduce the Schottky barrier height at the fluorine doped tin oxide (FTO)/a-SiOx:H(p) window-layer heterointerface, we have used buffer-layer/a-SiOx:H(p) for the window-layer, in which boron doped hydrogenated amorphous silicon (a-Si:H(p)) or boron doped microcrystalline silicon (μc-Si:H(p)) is introduced as a buffer layer between the a-SiOx:H(p) and FTO of the a-Si:H-based solar cells. The a-Si:H-based solar cell using a μc-Si:H(p) buffer-layer shows the highest efficiency compared to the optimized bufferless, and a-Si:H(p) buffer-layer in the a-Si:H-based solar cells. This highest performance was attributed not only to the lower absorption of the μc-Si:H(p) buffer-layer but also to the lower Schottky barrier height at the FTO/window-layer interface. Then, we present the dependence of the built-in potential (Vbi) and blue response of the devices on the inversion of activation energy (ξ) of the a-SiOx:H(p), in the μc-Si:H(p)/a-SiOx:H(p) window-layer. The enhancement of both Vbi and blue response is observed, by increasing the value of ξ. The improvement of Vbi and blue response can be ascribed to the enlargement of the optical gap of a-SiOx:H(p) films in the μc-Si:H(p)/a-SiOx:H(p) window-layer. Finally, the conversion efficiency was increased by 22.0%, by employing μc-Si:H(p) as a buffer-layer and raising the ξ of the a-SiOx:H(p), compared to the optimized bufferless case, with a 10 nm-thick a-SiOx:H(p) window-layer. - Highlights: • Low Schottky barrier height benefits fill factor, and open-circuit voltage (Voc). • High band gap is beneficial for short-circuit current density (Jsc). • Boron doped microcrystalline silicon is a suitable buffer-layer for cell performance. • The Voc and Jsc increase with an increasing inversion of activation

  6. Self-Diffusion in Amorphous Silicon.

    Science.gov (United States)

    Strauß, Florian; Dörrer, Lars; Geue, Thomas; Stahn, Jochen; Koutsioubas, Alexandros; Mattauch, Stefan; Schmidt, Harald

    2016-01-15

    The present Letter reports on self-diffusion in amorphous silicon. Experiments were done on ^{29}Si/^{nat}Si heterostructures using neutron reflectometry and secondary ion mass spectrometry. The diffusivities follow the Arrhenius law in the temperature range between 550 and 700 °C with an activation energy of (4.4±0.3)  eV. In comparison with single crystalline silicon the diffusivities are tremendously higher by 5 orders of magnitude at about 700 °C, which can be interpreted as the consequence of a high diffusion entropy. PMID:26824552

  7. PHYSICAL PROPERTIES OF AMORPHOUS CVD SILICON

    OpenAIRE

    Hirose, M.

    1981-01-01

    Amorphous silicon produced from the chemical vapor decomposition of silane at ~600 °C offers a pure silicon network containing no bonded-hydrogen and involving native defects of the order of 1 x 1019 cm-3. Doped phosphorus or boron atoms in the CVD a-Si interact with the defects to reduce the gap states and the spin density as well. The mechanism of the defect compensation has been interpreted in terms of complex-defect formation through the reaction between three-fold dopant atoms and divaca...

  8. Transverse and longitudinal vibrations in amorphous silicon

    OpenAIRE

    Beltukov, Y. M.; De Fusco, C; Tanguy, A.; Parshin, D. A.

    2015-01-01

    We show that harmonic vibrations in amorphous silicon can be decomposed to transverse and longitudinal components in all frequency range even in the absence of the well defined wave vector ${\\bf q}$. For this purpose we define the transverse component of the eigenvector with given $\\omega$ as a component, which does not change the volumes of Voronoi cells around atoms. The longitudinal component is the remaining orthogonal component. We have found the longitudinal and transverse components of...

  9. Polymeric amorphous carbon as p-type window within amorphous silicon solar cells

    NARCIS (Netherlands)

    Khan, R.U.A.; Silva, S.R.P.; Van Swaaij, R.A.C.M.M.

    2003-01-01

    Amorphous carbon (a-C) has been shown to be intrinsically p-type, and polymeric a-C (PAC) possesses a wide Tauc band gap of 2.6 eV. We have replaced the p-type amorphous silicon carbide layer of a standard amorphous silicon solar cell with an intrinsic ultrathin layer of PAC. The thickness of the p

  10. Development of Amorphous/Microcrystalline Silicon Tandem Thin-Film Solar Modules with Low Output Voltage, High Energy Yield, Low Light-Induced Degradation, and High Damp-Heat Reliability

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2014-01-01

    Full Text Available In this work, tandem amorphous/microcrystalline silicon thin-film solar modules with low output voltage, high energy yield, low light-induced degradation, and high damp-heat reliability were successfully designed and developed. Several key technologies of passivation, transparent-conducting-oxide films, and cell and segment laser scribing were researched, developed, and introduced into the production line to enhance the performance of these low-voltage modules. A 900 kWp photovoltaic system with these low-voltage panels was installed and its performance ratio has been simulated and projected to be 92.1%, which is 20% more than the crystalline silicon and CdTe counterparts.

  11. Flexible amorphous silicon PIN diode x-ray detectors

    Science.gov (United States)

    Marrs, Michael; Bawolek, Edward; Smith, Joseph T.; Raupp, Gregory B.; Morton, David

    2013-05-01

    A low temperature amorphous silicon (a-Si) thin film transistor (TFT) and amorphous silicon PIN photodiode technology for flexible passive pixel detector arrays has been developed using active matrix display technology. The flexible detector arrays can be conformed to non-planar surfaces with the potential to detect x-rays or other radiation with an appropriate conversion layer. The thin, lightweight, and robust backplanes may enable the use of highly portable x-ray detectors for use in the battlefield or in remote locations. We have fabricated detector arrays up to 200 millimeters along the diagonal on a Gen II (370 mm x 470 mm rectangular substrate) using plasma enhanced chemical vapor deposition (PECVD) a-Si as the active layer and PECVD silicon nitride (SiN) as the gate dielectric and passivation. The a-Si based TFTs exhibited an effective saturation mobility of 0.7 cm2/V-s, which is adequate for most sensing applications. The PIN diode material was fabricated using a low stress amorphous silicon (a-Si) PECVD process. The PIN diode dark current was 1.7 pA/mm2, the diode ideality factor was 1.36, and the diode fill factor was 0.73. We report on the critical steps in the evolution of the backplane process from qualification of the low temperature (180°C) TFT and PIN diode process on the 150 mm pilot line, the transfer of the process to flexible plastic substrates, and finally a discussion and demonstration of the scale-up to the Gen II (370 x 470 mm) panel scale pilot line.

  12. Recent developments in amorphous silicon-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Beneking, C.; Rech, B.; Foelsch, J.; Wagner, H. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Schicht- und Ionentechnik

    1996-03-01

    Two examples of recent advances in the field of thin-film, amorphous hydrogenated silicon (a-Si:H) pin solar cells are described: the improved understanding and control of the p/i interface, and the improvement of wide-bandgap a-Si:H material deposited at low substrate temperature as absorber layer for cells with high stabilized open-circuit voltage. Stacked a-Si:H/a-Si:H cells incorporating these concepts exhibit less than 10% (relative) efficiency degradation and show stabilized efficiencies as high as 9 to 10% (modules 8 to 9%). The use of low-gap a-Si:H and its alloys like a-SiGe:H as bottom cell absorber materials in multi-bandgap stacked cells offers additional possibilities. The combination of a-Si:H based top cells with thin-film crystalline silicon-based bottom cells appears as a promising new trend. It offers the perspective to pass significantly beyond the present landmark of 10% module efficiency reached by the technology utilizing exclusively amorphous silicon-based absorber layers, while keeping its advantages of potentially low-cost production. (orig.) 47 refs.

  13. Study on the Laser Crystallization of Amorphous Silicon Thin Films with a 355 nm YAG Picosecond Pulsed Laser%355nm YAG皮秒脉冲激光晶化非晶硅薄膜的研究

    Institute of Scientific and Technical Information of China (English)

    赖键均; 段春艳; 艾斌; 曾学然; 邓幼俊; 刘超; 沈辉

    2012-01-01

    250 nm amorphous silicon thin films were crystallized by a 355 nm YAG picosecond pulsed laser, then the crystallized samples were investigated by metallurgical microscope, Raman spectrometer and X-ray spectrometer. The results show that with increasing laser energy the width of completely molten zone and partially molten zone increases remarkably. In the energy range from 15 uj to 860 uj, neither characteristic peak of amorphous silicon nor characteristic peak of crystalline silicon appears in Raman spectra of the completely molten zones in all samples, while Raman spectra of the partially molten zone exhibit the sharp characteristic peak of crystalline silicon, it might be because that the energy flux density received by completely molten zone was so big that the most of the amorphous silicon in this region was e-vaporated. This assumption was further reconfirmed by EDS (energy dispersive spectrometer) analysis results, which shows that the composition of the completely molten zone are mainly silicide produced by reaction between glass and silicon, and its surface are covered by silicon dioxide layer.%使用355 nm YAG皮秒脉冲激光对250 nm厚的非晶硅薄膜进行激光晶化的研究,并利用金相显微镜、拉曼光谱和X射线能谱(EDS:energy dispersive spectrometer)等对晶化样品进行了分析.结果表明:随着激光脉冲能量的增加,完全熔区和部分熔区的宽度均明显增大.在所研究的脉冲能量范围内(15μl-860μl),所有样品的完全熔区的拉曼光谱均无非晶硅或晶体硅的特征峰,而位于完全熔区边缘的部分熔区的拉曼光谱却显示出晶体硅的特征峰,这可能是因为完全熔区接受到的激光能流密度过大,造成区内绝大部分非晶硅薄膜气化蒸发.这个推测进一步得到了X射线能谱分析结果的证实.X射线能谱分析结果表明,完全熔区的成份主要是玻璃与硅反应生成的硅化物,其表面被二氧化硅层所覆盖.

  14. Modelling the light induced metastable effects in amorphous silicon

    OpenAIRE

    Munyeme, G.; Chinyama, G.K.; Zeman, M.; R. E. I. Schropp; Weg, W

    2008-01-01

    We present results of computer simulations of the light induced degradation of amorphous silicon solar cells. It is now well established that when amorphous silicon is illuminated the density of dangling bond states increases. Dangling bond states produce amphoteric electronic mid-gap states which act as efficient charge trapping and recombination centres. The increase in dangling bond states causes a decrease in the performance of amorphous silicon solar cells. To show this effect, a modelli...

  15. Thin-film silicon solar cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A.V.; Meier, J.; Kroll, U.; Droz, C.; Bailat, J. [University of Neuchatel (Switzerland). Inst. of Microtechnology; Schade, H. [RWE Schott Solar GmbH, Putzbrunn (Germany); Vanecek, M. [Academy of Sciences, Prague (Czech Republic). Inst. of Physics; Vallat Sauvain, E.; Wyrsch, N. [University of Neuchatel (Switzerland). Inst. of Microtechnology; Unaxis SPTec S A, Neuchatel (Switzerland)

    2004-07-01

    This paper describes the use, within p-i-n- and n-i-p-type solar cells, of hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon ({mu}c-Si:H) thin films (layers), both deposited at low temperatures (200{sup o}C) by plasma-assisted chemical vapour deposition (PECVD), from a mixture of silane and hydrogen. Optical and electrical properties of the i-layers are described. These properties are linked to the microstructure and hence to the i-layer deposition rate, that in turn, affects throughput in production. The importance of contact and reflection layers in achieving low electrical and optical losses is explained, particularly for the superstrate case. Especially the required properties for the transparent conductive oxide (TCO) need to be well balanced in order to provide, at the same time, for high electrical conductivity (preferably by high electron mobility), low optical absorption and surface texture (for low optical losses and pronounced light trapping). Single-junction amorphous and microcrystalline p-i-n-type solar cells, as fabricated so far, are compared in their key parameters (J{sub sc},FF,V{sub oc}) with the [theoretical] limiting values. Tandem and multijunction cells are introduced; the {mu}c-Si: H/a-Si: H or [micromorph] tandem solar cell concept is explained in detail, and recent results obtained here are listed and commented. Factors governing the mass-production of thin-film silicon modules are determined both by inherent technical reasons, described in detail, and by economic considerations. The cumulative effect of these factors results in distinct efficiency reductions from values of record laboratory cells to statistical averages of production modules. Finally, applications of thin-film silicon PV modules, especially in building-integrated PV (BIPV) are shown. In this context, the energy yields of thin-film silicon modules emerge as a valuable gauge for module performance, and compare very favourably with those of

  16. Three-Terminal Amorphous Silicon Solar Cells

    OpenAIRE

    Cheng-Hung Tai; Chu-Hsuan Lin; Chih-Ming Wang; Chun-Chieh Lin

    2011-01-01

    Many defects exist within amorphous silicon since it is not crystalline. This provides recombination centers, thus reducing the efficiency of a typical a-Si solar cell. A new structure is presented in this paper: a three-terminal a-Si solar cell. The new back-to-back p-i-n/n-i-p structure increased the average electric field in a solar cell. A typical a-Si p-i-n solar cell was also simulated for comparison using the same thickness and material parameters. The 0.28 μm-thick three-terminal a-Si...

  17. Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells

    OpenAIRE

    Seif, Johannes Peter; Descoeudres, Antoine; Filipic, Miha; Smole, Franc; Topic, Marko; Holman, Zachary Charles; De Wolf, Stefaan; Ballif, Christophe

    2014-01-01

    In amorphous/crystalline silicon heterojunction solar cells, optical losses can be mitigated by replacing the amorphous silicon films by wider bandgap amorphous silicon oxide layers. In this article, we use stacks of intrinsic amorphous silicon and amorphous silicon oxide as front intrinsic buffer layers and show that this increases the short-circuit current density by up to 0.43 mA/cm2 due to less reflection and a higher transparency at short wavelengths. Additionally, high open-circuit volt...

  18. Electrochromism of amorphous ruthenium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Se-Hee; Liu, Ping; Tracy, C. Edwin; Deb, Satyen K. [National Renewable Energy Laboratory, Center for Basic Sciences, 1617 Cole Boulevard, Golden, CO 80401 (United States); Cheong, Hyeonsik M. [Sogang University, Shinsoo-Dong, Seoul 121-742 (Korea, Republic of)

    2003-12-01

    We report on the electrochromic behavior of amorphous ruthenium oxide thin films and their electrochemical characteristics for use as counterelectrodes for electrochromic devices. Hydrous ruthenium oxide thin films were prepared by cyclic voltammetry on ITO coated glass substrates from an aqueous ruthenium chloride solution. The cyclic voltammograms of this material show the capacitive behavior including two redox reaction peaks in each cathodic and anodic scan. The ruthenium oxide thin film electrode exhibits a 50% modulation of optical transmittance at 670 nm wavelength with capacitor charge/discharge.

  19. Indium tin oxide-silicon thin film solar cell

    International Nuclear Information System (INIS)

    Heterojunction solar cells consisting of amorphous indium tin oxide (ITO) thin films on silicon films have been fabricated and studied. The results show that the devices give a photovoltaic effect and rectifying characteristics. One of the main characteristics of amorphous ITO thin films is better transparency (>85%) over the complete useful window of the solar spectrum. The polarity observed is found to be consistent with V/sub oc/ = 0.34 volt, I/sub sc/ = 22mA/cm/sup 2/ and fill factor = 0.48. An attempt has been made to understand the conduction mechanism of indium tin oxide - silicon heterojunction

  20. Endurance Tests Of Amorphous-Silicon Photovoltaic Modules

    Science.gov (United States)

    Ross, Ronald G., Jr.; Sugimura, Russell S.

    1989-01-01

    Failure mechanisms in high-power service studied. Report discusses factors affecting endurance of amorphous-silicon solar cells. Based on field tests and accelerated aging of photovoltaic modules. Concludes that aggressive research needed if amorphous-silicon modules to attain 10-year life - value U.S. Department of Energy established as goal for photovoltaic modules in commercial energy-generating plants.

  1. Modelling the light induced metastable effects in amorphous silicon

    NARCIS (Netherlands)

    Munyeme, G.; Chinyama, G.K.; Zeman, M.; Schropp, R.E.I.; van der Weg, W.

    2008-01-01

    We present results of computer simulations of the light induced degradation of amorphous silicon solar cells. It is now well established that when amorphous silicon is illuminated the density of dangling bond states increases. Dangling bond states produce amphoteric electronic mid-gap states which a

  2. Thin film silicon photovoltaics: Architectural perspectives and technological issues

    Energy Technology Data Exchange (ETDEWEB)

    Mercaldo, Lucia Vittoria; Addonizio, Maria Luisa; Noce, Marco Della; Veneri, Paola Delli; Scognamiglio, Alessandra; Privato, Carlo [ENEA, Portici Research Center, Piazzale E. Fermi, 80055 Portici (Napoli) (Italy)

    2009-10-15

    Thin film photovoltaics is a particularly attractive technology for building integration. In this paper, we present our analysis on architectural issues and technological developments of thin film silicon photovoltaics. In particular, we focus on our activities related to transparent and conductive oxide (TCO) and thin film amorphous and microcrystalline silicon solar cells. The research on TCO films is mainly dedicated to large-area deposition of zinc oxide (ZnO) by low pressure-metallorganic chemical vapor deposition. ZnO material, with a low sheet resistance (<8 {omega}/sq) and with an excellent transmittance (>82%) in the whole wavelength range of photovoltaic interest, has been obtained. ''Micromorph'' tandem devices, consisting of an amorphous silicon top cell and a microcrystalline silicon bottom cell, are fabricated by using the very high frequency plasma enhanced chemical vapor deposition technique. An initial efficiency of 11.1% (>10% stabilized) has been obtained. (author)

  3. A STUDY OF TIN IMPURITY ATOMS IN AMORPHOUS SILICON

    OpenAIRE

    Rabchanova, Tatiana

    2013-01-01

    Using the Mössbauer spectroscopy method for the 119 Sn isotope the state of tin impurity atoms in amorphous a-Si silicon is studied. The electrical and optical properties of tin doped films of thermally spray-coated amorphous silicon have been studied. It is shown that in contrast to the crystalline silicon where tin is an electrically inactive substitution impurity, in vacuum deposited amorphous silicon it produces an acceptor band near the valence band and a fraction of the tin atoms become...

  4. Light trapping effects in thin film silicon solar cells

    OpenAIRE

    Haug, FJ; Söderström, T; Dominé, D.; Ballif, C.

    2009-01-01

    We present advanced light trapping concepts for thin film silicon solar cells. When an amorphous and a microcrystalline absorber layers are combined into a micromorph tandem cell, light trapping becomes a challenge because it should combine the spectral region from 600 to 750 nm for the amorphous top cell and from 800 to 1100 for the microcrystalline bottom cell. Because light trapping is typically achieved by growing on textured substrates, the effect of interface textures on the material an...

  5. Three-Terminal Amorphous Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Hung Tai

    2011-01-01

    Full Text Available Many defects exist within amorphous silicon since it is not crystalline. This provides recombination centers, thus reducing the efficiency of a typical a-Si solar cell. A new structure is presented in this paper: a three-terminal a-Si solar cell. The new back-to-back p-i-n/n-i-p structure increased the average electric field in a solar cell. A typical a-Si p-i-n solar cell was also simulated for comparison using the same thickness and material parameters. The 0.28 μm-thick three-terminal a-Si solar cell achieved an efficiency of 11.4%, while the efficiency of a typical a-Si p-i-n solar cell was 9.0%. Furthermore, an efficiency of 11.7% was achieved by thickness optimization of the three-terminal solar cell.

  6. Dynamics of hydrogen in hydrogenated amorphous silicon

    Indian Academy of Sciences (India)

    Ranber Singh; S Prakash

    2003-07-01

    The problem of hydrogen diffusion in hydrogenated amorphous silicon (a-Si:H) is studied semiclassically. It is found that the local hydrogen concentration fluctuations-induced extra potential wells, if intense enough, lead to the localized electronic states in a-Si:H. These localized states are metastable. The trapping of electrons and holes in these states leads to the electrical degradation of the material. These states also act as recombination centers for photo-generated carriers (electrons and holes) which in turn may excite a hydrogen atom from a nearby Si–H bond and breaks the weak (strained) Si–Si bond thereby apparently enhancing the hydrogen diffusion and increasing the light-induced dangling bonds.

  7. RF Sputtering for preparing substantially pure amorphous silicon monohydride

    Science.gov (United States)

    Jeffrey, Frank R.; Shanks, Howard R.

    1982-10-12

    A process for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicon produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous silicon hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  8. Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Guy Beaucarne

    2007-01-01

    with plasma-enhanced chemical vapor deposition (PECVD. In spite of the fundamental limitation of this material due to its disorder and metastability, the technology is now gaining industrial momentum thanks to the entry of equipment manufacturers with experience with large-area PECVD. Microcrystalline Si (also called nanocrystalline Si is a material with crystallites in the nanometer range in an amorphous matrix, and which contains less defects than amorphous silicon. Its lower bandgap makes it particularly appropriate as active material for the bottom cell in tandem and triple junction devices. The combination of an amorphous silicon top cell and a microcrystalline bottom cell has yielded promising results, but much work is needed to implement it on large-area and to limit light-induced degradation. Finally thin-film polysilicon solar cells, with grain size in the micrometer range, has recently emerged as an alternative photovoltaic technology. The layers have a grain size ranging from 1 μm to several tens of microns, and are formed at a temperature ranging from 600 to more than 1000∘C. Solid Phase Crystallization has yielded the best results so far but there has recently been fast progress with seed layer approaches, particularly those using the aluminum-induced crystallization technique.

  9. 2H-SiC Dendritic Nanocrystals In Situ Formation from Amorphous Silicon Carbide under Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Under electron beam irradiation, the in-situ formation of 2H-SiC dentritic nanocrystals from amorphous silicon carbide at room temperature was observed. The homogenous transition mainly occurs at the thin edge and on the surface of specimen where the energy obtained from electron beam irradiation is high enough to cause the amorphous crystallizing into 2H-SiC.

  10. Proton irradiation effects of amorphous silicon solar cell for solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yousuke; Oshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Sasaki, Susumu; Kuroda, Hideo; Ushirokawa, Akio

    1997-03-01

    Flexible amorphous silicon(fa-Si) solar cell module, a thin film type, is regarded as a realistic power generator for solar power satellite. The radiation resistance of fa-Si cells was investigated by the irradiations of 3,4 and 10 MeV protons. The hydrogen gas treatment of the irradiated fa-Si cells was also studied. The fa-Si cell shows high radiation resistance for proton irradiations, compared with a crystalline silicon solar cell. (author)

  11. Amorphous Dielectric Thin Films with Extremely Low Mechanical Loss

    OpenAIRE

    Liu X; Queen D.R.; Metcalf T.H.; Karel J.E.; Hellman F.

    2015-01-01

    The ubiquitous low-energy excitations are one of the universal phenomena of amorphous solids. These excitations dominate the acoustic, dielectric, and thermal properties of structurally disordered solids. One exception has been a type of hydrogenated amorphous silicon (a-Si:H) with 1 at.% H. Using low temperature elastic and thermal measurements of electron-beam evap-orated amorphous silicon (a-Si), we show that TLS can be eliminated in this system as the films become denser and more structur...

  12. Light-induced Voc increase and decrease in high-efficiency amorphous silicon solar cells

    OpenAIRE

    Stuckelberger, Michael; Riesen, Yannick Samuel; Despeisse, Matthieu; Schüttauf, Jan-Willem Alexander; Haug, Franz-Josef; Ballif, Christophe

    2014-01-01

    High-efficiency amorphous silicon (a-Si:H) solar cells were deposited with different thicknesses of the p-type amorphous silicon carbide layer on substrates of varying roughness. We observed a light-induced open-circuit voltage (Voc) increase upon light soaking for thin p-layers, but a decrease for thick p-layers. Further, the Voc increase is enhanced with increasing substrate roughness. After correction of the p-layer thickness for the increased surface area of rough substrates, we can exclu...

  13. Research on amorphous-silicon-based thin-film photovoltaic devices: Semiannual subcontract report, 1 July 1987--31 December 1987

    Energy Technology Data Exchange (ETDEWEB)

    Bottenberg, W.; Mitchell, K.; Wieting, R.

    1988-05-01

    The objective of this work is to develop 13% (aperture area) efficient, 850-cm/sup 2/ four-terminal hybrid tandem submodules. The module design consists of a copper-indium-diselenide (CIS)-based bottom circuit and a semitransparent, thin-film silicon-hydrogen (TFS)-based top circuit. High-performance, semitransparent TFS devices and submodules were fabricated in which ZnO was used in the front and rear transparent conductors. High-performance CIS devices and submodules were also fabricated; however, the location and nature of the junction are not yet understood. Representative four-terminal hybrid tandem devices and submodules were fabricated from TFS and CIS component circuits. Optical coupling between the circuits was lower than expected, because of reflection losses at key interfaces. Efficiencies obtained for these devices and modules include 14.17% for a four-terminal, 4-cm/sup 2/ tandem cell and 12.3% for a four-terminal, tandem module. 7 refs., 90 figs.

  14. Si-H bond dynamics in hydrogenated amorphous silicon

    Science.gov (United States)

    Scharff, R. Jason; McGrane, Shawn D.

    2007-08-01

    The ultrafast structural dynamics of the Si-H bond in the rigid solvent environment of an amorphous silicon thin film is investigated using two-dimensional infrared four-wave mixing techniques. The two-dimensional infrared (2DIR) vibrational correlation spectrum resolves the homogeneous line shapes ( 4ps waiting times. The Si-H stretching mode anharmonic shift is determined to be 84cm-1 and decreases slightly with vibrational frequency. The 1→2 linewidth increases with vibrational frequency. Frequency dependent vibrational population times measured by transient grating spectroscopy are also reported. The narrow homogeneous line shape, large inhomogeneous broadening, and lack of spectral diffusion reported here present the ideal backdrop for using a 2DIR probe following electronic pumping to measure the transient structural dynamics implicated in the Staebler-Wronski degradation [Appl. Phys. Lett. 31, 292 (1977)] in a-Si:H based solar cells.

  15. Simulation and Experimental Study of Photogeneration and Recombination in Amorphous-Like Silicon Thin Films Deposited by 27.12 MHz Plasma-Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Chia-Hsun Hsu

    2013-01-01

    Full Text Available Amorphous-like silicon (a-Si:H-like thin films are prepared by 27.12 MHz plasma-enhanced chemical vapor deposition technique. The films are applied to p-i-n single junction thin film solar cells with varying i-layer thickness to observe the effects on the short-circuit current density, as well as the open-circuit voltage, fill factor, and conversion efficiency. The most significant experimental result is that Jsc has two different behaviors with increasing the i-layer thickness, which can be related to carrier collection efficiency in the long wavelength region. Furthermore, technology computer-aided design simulation software is used to gain better insight into carrier generation and recombination of the solar cells, showing that for the i-layer thickness of 200 to 300 nm the generation dominates the carrier density and thus Jsc, whereas for the i-layer thickness of 300 to 400 nm the recombination becomes the leading factor. The simulation results of cell performances are in good agreement with experimental data, indicating that our simulation has great reliability. In addition, the a-Si:H-like solar cells have low light-induced degradation, which in turn can have a great potential to be used for stable and high-efficiency solar cells.

  16. Laser annealing of amorphous silicon core optical fibers

    OpenAIRE

    Healy, N; Mailis, S.; Day, T. D.; Sazio, P.J.A.; Badding, J. V.; A.C. Peacock

    2012-01-01

    Laser annealing of an optical fiber with an amorphous silicon core is demonstrated. The annealing process produces a fiber that has a highly crystalline core, whilst reducing the optical transmission losses by ~3 orders of magnitude.

  17. Nanocavity Shrinkage and Preferential Amorphization during Irradiation in Silicon

    Institute of Scientific and Technical Information of China (English)

    ZHU Xian-Fang; WANG Zhan-Guo

    2005-01-01

    @@ We model the recent experimental results and demonstrate that the internal shrinkage of nanocavities in silicon is intrinsically associated with preferential amorphization as induced by self-ion irradiation.

  18. PHOTOEMISSION STUDIES OF THE TRANSITION FROM AMORPHOUS TO MICROCRYSTALLINE SILICON

    OpenAIRE

    Richter, H.; Ley, L.

    1981-01-01

    We have studied a series of samples spanning the range from purely amorphous to microcrystalline silicon prepared by chemical transport in a hydrogen plasma or by sputtering in a H2/Ar mixture. The first order Raman spectra show a superposition of amorphous and crystalline contribution, showing some features of wurtzite-silicon. The electronic density of states, as deduced from X-ray photoelectron-spectroscopy, shows a gradual change from microcrystalline structure for samples prepared by che...

  19. Experimentally Constrained Molecular Relaxation: The case of hydrogenated amorphous silicon

    OpenAIRE

    Biswas, Parthapratim; Atta-Fynn, Raymond; Drabold, David A.

    2007-01-01

    We have extended our experimentally constrained molecular relaxation technique (P. Biswas {\\it et al}, Phys. Rev. B {\\bf 71} 54204 (2005)) to hydrogenated amorphous silicon: a 540-atom model with 7.4 % hydrogen and a 611-atom model with 22 % hydrogen were constructed. Starting from a random configuration, using physically relevant constraints, {\\it ab initio} interactions and the experimental static structure factor, we construct realistic models of hydrogenated amorphous silicon. Our models ...

  20. Transmission Electron Microscopy of Amorphous Tandem Thin-Film Silicon Modules Produced by A Roll-to-Roll Process on Plastic Foil

    DEFF Research Database (Denmark)

    Couty, P.; Duchamp, Martial; Söderström, K.;

    2011-01-01

    . At first, we present the systematic study where amorphous cells are grown on ZnO based textures. For varying the texture, the same original master LPCVD ZnO was successively transferred to nickel molds and finally transferred to the plastic foil by roll-to-roll process. From TEM images, we show how...... a control-lost of shape fidelity is used to smooth the texture and make it compatible with subsequent layer growth. Then, we present the electrical performances of the most promising reference solar cell single junction which was obtained on a roll-to-roll foil. Finally, a tandem amorphous/amorphous Si...

  1. Polarization effects in femtosecond laser induced amorphization of monocrystalline silicon

    Science.gov (United States)

    Bai, Feng; Li, Hong-Jin; Huang, Yuan-Yuan; Fan, Wen-Zhong; Pan, Huai-Hai; Wang, Zhuo; Wang, Cheng-Wei; Qian, Jing; Li, Yang-Bo; Zhao, Quan-Zhong

    2016-10-01

    We have used femtosecond laser pulses to ablate monocrystalline silicon wafer. Raman spectroscopy and X-ray diffraction analysis of ablation surface indicates horizontally polarized laser beam shows an enhancement in amorphization efficiency by a factor of 1.6-1.7 over the circularly polarized laser ablation. This demonstrates that one can tune the amorphization efficiency through the polarization of irradiation laser.

  2. Flexible Protocrystalline Silicon Solar Cells with Amorphous Buffer Layer

    Science.gov (United States)

    Ishikawa, Yasuaki; Schubert, Markus B.

    2006-09-01

    A low deposition temperature of 110 °C is mandatory for directly growing amorphous-silicon-based solar cells on plastic foil. The optimum absorber material at this low temperature is protocrystalline, i.e., right at the transition between amorphous and crystalline silicon. Polyethylene terephtalate foil of 50 μm thickness form the substrate of our flexible p-i-n single-junction cells. We discuss three peculiar processing techniques for achieving the maximum photovoltaic conversion efficiency of flexible low-temperature solar cells. First, we employ an optimized microcrystalline silicon p-type window layer; second, we use protocrystalline silicon for the i-layer; third, we insert an undoped amorphous silicon buffer layer at the p/i interface. The best flexible cells attain power conversion efficiencies of up to 4.9%.

  3. Understanding the Structure of Amorphous Thin Film Hafnia - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Andre [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    Hafnium Oxide (HfO2) amorphous thin films are being used as gate oxides in transistors because of their high dielectric constant (κ) over Silicon Dioxide. The present study looks to find the atomic structure of HfO2 thin films which hasn’t been done with the technique of this study. In this study, two HfO2 samples were studied. One sample was made with thermal atomic layer deposition (ALD) on top of a Chromium and Gold layer on a silicon wafer. The second sample was made with plasma ALD on top of a Chromium and Gold layer on a Silicon wafer. Both films were deposited at a thickness of 50nm. To obtain atomic structure information, Grazing Incidence X-ray diffraction (GIXRD) was carried out on the HfO2 samples. Because of this, absorption, footprint, polarization, and dead time corrections were applied to the scattering intensity data collected. The scattering curves displayed a difference in structure between the ALD processes. The plasma ALD sample showed the broad peak characteristic of an amorphous structure whereas the thermal ALD sample showed an amorphous structure with characteristics of crystalline materials. This appears to suggest that the thermal process results in a mostly amorphous material with crystallites within. Further, the scattering intensity data was used to calculate a pair distribution function (PDF) to show more atomic structure. The PDF showed atom distances in the plasma ALD sample had structure up to 10 Å, while the thermal ALD sample showed the same structure below 10 Å. This structure that shows up below 10 Å matches the bond distances of HfO2 published in literature. The PDF for the thermal ALD sample also showed peaks up to 20 Å, suggesting repeating atomic spacing outside the HfO2 molecule in the sample. This appears to suggest that there is some crystalline structure within the thermal ALD sample.

  4. Physics and technology of amorphous-crystalline heterostructure silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sark, Wilfried G.J.H.M. van [Utrecht Univ. (Netherlands). Copernicus Institute, Science Technology and Society; Roca, Francesco [Unita Tecnologie Portici, Napoli (Italy). ENEA - Agenzia Nazionale per le Nuove Tecnologie, l' Energia e lo Sviluppo Economico Sostenibile; Korte, Lars [Helmholtz-Zentrum Berlin fuer Materialien und Energie (Germany). Inst. Silizium-Photovoltaik

    2012-07-01

    The challenge of developing photovoltaic (PV) technology to a cost-competitive alternative for established energy sources can be achieved using simple, high-throughput mass-production compatible processes. Issues to be addressed for large scale PV deployment in large power plants or in building integrated applications are enhancing the performance of solar energy systems by increasing solar cell efficiency, using low amounts of materials which are durable, stable, and abundant on earth, and reducing manufacturing and installation cost. Today's solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si:H) constitutes both ''emitter'' and ''base-contact/back surface field'' on both sides of a thin crystalline silicon wafer-base (c-Si) where the photogenerated electrons and holes are generated; at the same time, a Si:H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells. In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells. (orig.)

  5. Light-Induced Degradation of Thin Film Silicon Solar Cells

    Science.gov (United States)

    Hamelmann, F. U.; Weicht, J. A.; Behrens, G.

    2016-02-01

    Silicon-wafer based solar cells are still domination the market for photovoltaic energy conversion. However, most of the silicon is used only for mechanical stability, while only a small percentage of the material is needed for the light absorption. Thin film silicon technology reduces the material demand to just some hundred nanometer thickness. But even in a tandem stack (amorphous and microcrystalline silicon) the efficiencies are lower, and light-induced degradation is an important issue. The established standard tests for characterisation are not precise enough to predict the performance of thin film silicon solar cells under real conditions, since many factors do have an influence on the degradation. We will show some results of laboratory and outdoor measurements that we are going to use as a base for advanced modelling and simulation methods.

  6. Anharmonic Decay of Vibrational States in Amorphous Silicon

    OpenAIRE

    Fabian, Jaroslav; Allen, Philip B.

    1996-01-01

    Anharmonic decay rates are calculated for a realistic atomic model of amorphous silicon. The results show that the vibrational states decay on picosecond timescales and follow the two-mode density of states, similar to crystalline silicon, but somewhat faster. Surprisingly little change occurs for localized states. These results disagree with a recent experiment.

  7. Nickel-disilicide-assisted excimer laser crystallization of amorphous silicon

    Institute of Scientific and Technical Information of China (English)

    Liao Yan-Ping; Shao Xi-Bin; Gao Feng-Li; Luo Wen-Sheng; Wu Yuan; Fu Guo-Zhu; Jing Hai; Ma Kai

    2006-01-01

    Polycrystalline silicon (poly-Si) thin film has been prepared by means of nickel-disilicide (NiSi2) assisted excimer laser crystallization (ELC). The process to prepare a sample includes two steps. One step consists of the formation of NiSi2 precipitates by heat-treating the dehydrogenated amorphous silicon (a-Si) coated with a thin layer of Ni. And the other step consists of the formation of poly-Si grains by means of ELC. According to the test results of scanning electron microscopy (SEM), another grain growth model named two-interface grain growth has been proposed to contrast with the conventional Ni-metal-induced lateral crystallization (Ni-MILC) model and the ELC model. That is, an additional grain growth interface other than that in conventional ELC is formed, which consists of NiSi2 precipitates and a-Si.The processes for grain growth according to various excimer laser energy densities delivered to the a-Si film have been discussed. It is discovered that grains with needle shape and most of a uniform orientation are formed which grow up with NiSi2 precipitates as seeds. The reason for the formation of such grains which are different from that of Ni-MILCwithout migration of Ni atoms is not clear. Our model and analysis point out a method to prepare grains with needle shape and mostly of a uniform orientation. If such grains are utilized to make thin-film transistor, its characteristics may be improved.

  8. Polymeric amorphous carbon as p-type window within amorphous silicon solar cells

    OpenAIRE

    Khan, R U A; Silva, S. R. P.; Van Swaaij, R.A.C.M.M.

    2003-01-01

    Amorphous carbon (a-C) has been shown to be intrinsically p-type, and polymeric a-C (PAC) possesses a wide Tauc band gap of 2.6 eV. We have replaced the p-type amorphous silicon carbide layer of a standard amorphous silicon solar cell with an intrinsic ultrathin layer of PAC. The thickness of the p layer had to be reduced from 9 to 2.5 nm in order to ensure sufficient conduction through the PAC film. Although the resulting external parameters suggest a decrease in the device efficiency from 9...

  9. Preparation and Characterization of Amorphous Silicon Oxide Nanowires

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Large-scale amorphous silicon nanowires (SiNWs) with a diameter about 100 nm and a length of dozens of micrometers on silicon wafers were synthesized by thermal evaporation of silicon monoxide (SiO).Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations show that the silicon nanowires are smooth.Selected area electron diffraction (SAED) shows that the silicon nanowires are amorphous and energy-dispersive X-ray spectroscopy (EDS) indicates that the nanowires have the composition of Si and O elements in an atomic ratio of 1:2, their composition approximates that of SiO2.SiO is considered to be used as a Si sources to produce SiNWs.We conclude that the growth mechanism is closely related to the defect structure and silicon monoxide followed by growth through an oxide-assisted vapor-solid reaction.

  10. Electrical characteristics of amorphous iron-tungsten contacts on silicon

    OpenAIRE

    Finetti, M.; Pan, E. T-S.; Suni, I.; Nicolet, M-A.

    1983-01-01

    The electrical characteristics of amorphous Fe-W contacts have been determined on both p-type and n-type silicon. The amorphous films were obtained by cosputtering from a composite target. Contact resistivities, pc=1×10^−7 and pc=2.8×10^−6, were measured on n+ and p+ silicon, respectively. These values remain constant after thermal treatment up to at least 500°C. A barrier height, φBn=0.61 V, was measured on n-type silicon.

  11. Electrical characteristics of amorphous iron-tungsten contacts on silicon

    Science.gov (United States)

    Finetti, M.; Pan, E. T.-S.; Nicolet, M.-A.; Suni, I.

    1983-01-01

    The electrical characteristics of amorphous Fe-W contacts have been determined on both p-type and n-type silicon. The amorphous films were obtained by cosputtering from a composite target. Contact resistivities of 1 x 10 to the -7th and 2.8 x 10 to the -6th were measured on n(+) and p(+) silicon, respectively. These values remain constant after thermal treatment up to at least 500 C. A barrier height of 0.61 V was measured on n-type silicon.

  12. Hydrogenated amorphous silicon deposited by ion-beam sputtering

    Science.gov (United States)

    Lowe, V. E.; Henin, N.; Tu, C.-W.; Tavakolian, H.; Sites, J. R.

    1981-01-01

    Hydrogenated amorphous silicon films 1/2 to 1 micron thick were deposited on metal and glass substrates using ion-beam sputtering techniques. The 800 eV, 2 mA/sq cm beam was a mixture of argon and hydrogen ions. The argon sputtered silicon from a pure (7.6 cm) single crystal wafer, while the hydrogen combined with the sputtered material during the deposition. Hydrogen to argon pressure ratios and substrate temperatures were varied to minimize the defect state density in the amorphous silicon. Characterization was done by electrical resistivity, index of refraction and optical absorption of the films.

  13. CURRENT PATH IN AMORPHOUS-SILICON FIELD EFFECT TRANSISTORS

    OpenAIRE

    M. MATSUMURA; Kuno, S.; Uchida, Y.

    1981-01-01

    On-resistance of amorphous-silicon field effect transistors with staggered electrodes was investigated. It was found that dependences of the on-resistance on geometrical parameters were classified into two groups. The origin was attributed to the residual resistance between the n+ electrode and the channel which was formed at the silicon-silicon dioxide interface. The resistance was analyzed by taking space charge effect into account, and we found that it changes in accordance with sample pre...

  14. Research and developments in thin-film silicon photovoltaics

    Science.gov (United States)

    Despeisse, M.; Ballif, C.; Feltrin, A.; Meillaud, F.; Fay, S.; Haug, F.-J.; Dominé, D.; Python, M.; Soderstrom, T.; Buehlmann, P.; Bugnon, G.

    2009-08-01

    The increasing demand for photovoltaic devices and the associated crystalline silicon feedstock demand scenario have led in the past years to the fast growth of the thin film silicon industry. The high potential for cost reduction and the suitability for building integration have initiated both industrial and research laboratories dynamisms for amorphous silicon and micro-crystalline silicon based photovoltaic technologies. The recent progress towards higher efficiencies thin film silicon solar cells obtained at the IMT-EPFL in Neuchatel in small-area laboratory and semi-large-area industrial Plasma Enhanced Chemical Vapor Deposition (PE-CVD) systems are reviewed. Advanced light trapping schemes are fundamental to reach high conversion efficiency and the potential of advanced Transparent Conductive Oxides (TCO) is presented, together with issues associated to the impact of the substrate morphology onto the growth of the silicon films. The recent improvements realized in amorphous-microcrystalline tandem solar cells on glass substrate are then presented, and the latest results on 1 cm2 cells are reported with up to 13.3 % initial efficiency for small-area reactors and up to 12.3 % initial for large-area industrial reactors. Finally, the different strategies to reach an improved light confinement in a thin film solar cell deposited on a flexible substrate are discussed, with the incorporation of asymmetric intermediate reflectors. Results of micromorph solar cells in the n-i-p configuration with up to 9.8 % stabilized efficiency are reported.

  15. Power change in amorphous silicon technology by low temperature annealing

    Directory of Open Access Journals (Sweden)

    Mittal Ankit

    2015-01-01

    Full Text Available Amorphous silicon (a-Si is one of the best established thin-film solar-cell technologies. Despite its long history of research, it still has many critical issues because of its defect rich material and its susceptibility to degrade under light also called as Staebler-Wronski effect (SWE. This leads to an increase in the defect density of a-Si, but as a metastable effect it can be completely healed at temperatures above 170 °C. Our study is focused on investigating the behavior of annealing of different a-Si modules under low temperature conditions below 80 °C indicated by successive change of module power. These conditions reflect the environmental temperature impact of the modules in the field, or integrated in buildings as well. The power changes were followed by STC power rating and investigation of module-power evolution under low irradiance conditions at 50 W/m2. Our samples were recovered close to their initial state of power, reaching as high as 99% from its degraded value. This shows the influence of low temperature annealing and light on metastable module behavior in a-Si thin-film modules.

  16. Deployable aerospace PV array based on amorphous silicon alloys

    Science.gov (United States)

    Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey

    1989-01-01

    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.

  17. Optimization design of hydrogenated amorphous silicon germanium thin film solar cell with graded band gap profile%渐变带隙氢化非晶硅锗薄膜太阳能电池的优化设计

    Institute of Scientific and Technical Information of China (English)

    柯少颖; 王茺; 潘涛; 何鹏; 杨杰; 杨宇

    2014-01-01

    The simulation program AMPS-1D (analysis of microelectronic and photonic structures) employed to simulate and compare the performances of hydrogenated amorphous silicon germanium (a-SiGe : H) thin film solar cell with and without band gap grading at a radiation of AM1.5G (100 mW/cm2) and room temperature by introducing energy band engineering. The simulation results show that the efficiency of the solar cell with band gap grading is 0.477%higher than that without band gap grading due to the higher open circuit voltage (Voc) and better fill factor (F F ). Subsequently, a-SiGe : H thin film solar cells with three different window layers such as hydrogenated amorphous silicon (a-Si : H), hydrogenated amorphous silicon carbide (a-SiC:H) and hydrogenated nanocrystalline silicon (nc-Si:H) are simulated, respectively. The numeric calculation results indicate that the fermi level EF of the a-SiGe:H thin film solar cell crosses the valence band when nc-Si:H window layer is employed in the simulation. This will improve the conductivity and the open circuit voltage of the solar cell. In addition, the electric field at front contact interface is reduced due to the lower contact barrier height. This may be more beneficial to the carrier collection by front contact. On the other hand, thanks to the wider band-gap difference between the window layer and the intrinsic layer, a potential barrier is built at the valence-band p/i interface due to the band offset. This will hinder the hole migration and collection. Thus, an nc-Si:H buffer layer, which can relax the valence-band offset and be more beneficial to the carrier migration and collection, is introduced at p/i interface. Finally, the optimum conversion efficiency of the a-SiGe:H thin film solar cell with graded band gap is achieved to be 9.104%.%利用一维微电子-光电子结构分析软件(AMPS-1D)在AM1.5G (100 mW/cm2)、室温条件下模拟和比较了有、无渐变带隙氢化非晶硅锗(a-SiGe:H)薄膜太阳能

  18. GHz-rate optical parametric amplifier in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    We demonstrate optical parametric amplification operating at GHz-rates at telecommunications wavelengths using a hydrogenated amorphous silicon waveguide through the nonlinear optical process of four-wave mixing. We investigate how the parametric amplification scales with repetition rate. The ability to achieve amplification at GHz-repetition rates shows hydrogenated amorphous silicon’s potential for telecommunication applications and a GHz-rate optical parametric oscillator. (paper)

  19. Carbon nanotube-amorphous silicon hybrid solar cell with improved conversion efficiency

    Science.gov (United States)

    Funde, Adinath M.; Nasibulin, Albert G.; Gufran Syed, Hashmi; Anisimov, Anton S.; Tsapenko, Alexey; Lund, Peter; Santos, J. D.; Torres, I.; Gandía, J. J.; Cárabe, J.; Rozenberg, A. D.; Levitsky, Igor A.

    2016-05-01

    We report a hybrid solar cell based on single walled carbon nanotubes (SWNTs) interfaced with amorphous silicon (a-Si). The high quality carbon nanotube network was dry transferred onto intrinsic a-Si forming Schottky junction for metallic SWNT bundles and heterojunctions for semiconducting SWNT bundles. The nanotube chemical doping and a-Si surface treatment minimized the hysteresis effect in current-voltage characteristics allowing an increase in the conversion efficiency to 1.5% under an air mass 1.5 solar spectrum simulator. We demonstrated that the thin SWNT film is able to replace a simultaneously p-doped a-Si layer and transparent conductive electrode in conventional amorphous silicon thin film photovoltaics.

  20. Carbon nanotube-amorphous silicon hybrid solar cell with improved conversion efficiency.

    Science.gov (United States)

    Funde, Adinath M; Nasibulin, Albert G; Syed, Hashmi Gufran; Anisimov, Anton S; Tsapenko, Alexey; Lund, Peter; Santos, J D; Torres, I; Gandía, J J; Cárabe, J; Rozenberg, A D; Levitsky, Igor A

    2016-05-01

    We report a hybrid solar cell based on single walled carbon nanotubes (SWNTs) interfaced with amorphous silicon (a-Si). The high quality carbon nanotube network was dry transferred onto intrinsic a-Si forming Schottky junction for metallic SWNT bundles and heterojunctions for semiconducting SWNT bundles. The nanotube chemical doping and a-Si surface treatment minimized the hysteresis effect in current-voltage characteristics allowing an increase in the conversion efficiency to 1.5% under an air mass 1.5 solar spectrum simulator. We demonstrated that the thin SWNT film is able to replace a simultaneously p-doped a-Si layer and transparent conductive electrode in conventional amorphous silicon thin film photovoltaics. PMID:27005494

  1. Temperature dependence of hydrogenated amorphous silicon solar cell performances

    Science.gov (United States)

    Riesen, Y.; Stuckelberger, M.; Haug, F.-J.; Ballif, C.; Wyrsch, N.

    2016-01-01

    Thin-film hydrogenated amorphous silicon solar (a-Si:H) cells are known to have better temperature coefficients than crystalline silicon cells. To investigate whether a-Si:H cells that are optimized for standard conditions (STC) also have the highest energy yield, we measured the temperature and irradiance dependence of the maximum power output (Pmpp), the fill factor (FF), the short-circuit current density (Jsc), and the open-circuit voltage (Voc) for four series of cells fabricated with different deposition conditions. The parameters varied during plasma-enhanced chemical vapor deposition (PE-CVD) were the power and frequency of the PE-CVD generator, the hydrogen-to-silane dilution during deposition of the intrinsic absorber layer (i-layer), and the thicknesses of the a-Si:H i-layer and p-type hydrogenated amorphous silicon carbide layer. The results show that the temperature coefficient of the Voc generally varies linearly with the Voc value. The Jsc increases linearly with temperature mainly due to temperature-induced bandgap reduction and reduced recombination. The FF temperature dependence is not linear and reaches a maximum at temperatures between 15 °C and 80 °C. Numerical simulations show that this behavior is due to a more positive space-charge induced by the photogenerated holes in the p-layer and to a recombination decrease with temperature. Due to the FF(T) behavior, the Pmpp (T) curves also have a maximum, but at a lower temperature. Moreover, for most series, the cells with the highest power output at STC also have the best energy yield. However, the Pmpp (T) curves of two cells with different i-layer thicknesses cross each other in the operating cell temperature range, indicating that the cell with the highest power output could, for instance, have a lower energy yield than the other cell. A simple energy-yield simulation for the light-soaked and annealed states shows that for Neuchâtel (Switzerland) the best cell at STC also has the best energy

  2. Adopting a customer-focused team approach to amorphous silicon multijunction module R ampersand D

    International Nuclear Information System (INIS)

    Informed observers of energy markets now generally believe that photovoltaics (PV) will not significantly penetrate the utility bulk-power sector before price and performance approach $50/m2 for 15% efficient modules in flat-plate systems. Recent progress toward such ''utility grade'' modules using amorphous thin films has been slow. The important amorphous thin-film research issues have been well known for some years. These have not been promptly and conclusively addressed, at least in part, because of inadequate PV industry involvement in academic research. In view of this situation, the authors recently modified their research programs seeking to improve the efficiency of amorphous silicon PV research, conclusively address the key issues, and accelerate commercial introduction of utility-grade products. They began this by seeking ''customer'' (PV industry) specification of research priorities and forming mission-oriented teams to pursue the high-priority issues (customer requirements). This paper describes the process and results to date

  3. Surface orientation effects in crystalline-amorphous silicon interfaces

    OpenAIRE

    Nolan, Michael; Legesse, Merid; Fagas, Giorgos

    2012-01-01

    In this paper we present the results of empirical potential and density functional theory (DFT) studies of models of interfaces between amorphous silicon (a-Si) or hydrogenated amorphous Si (a-Si:H) and crystalline Si (c-Si) on three unreconstructed silicon surfaces, namely (100), (110) and (111). In preparing models of a-Si on c-Si, melting simulations are run with classical molecular dynamics (MD) at 3000 K for 10 ps to melt part of the crystalline surface and the structure is quenched to 3...

  4. Mechanism of Germanium-Induced Perimeter Crystallization of Amorphous Silicon

    OpenAIRE

    Hakim, M. M. A.; Ashburn, P.

    2007-01-01

    We report a study aimed at highlighting the mechanism of a new amorphous silicon crystallization phenomenon that originates from the perimeter of a germanium layer during low-temperature annealing (500°C). Results are reported on doped and undoped amorphous silicon films, with thicknesses in the range 40–200 nm, annealed at a temperature of 500 or 550°C. A comparison is made of crystallization arising from Ge and SiGe layers and the role of damage from a high-dose fluorine implant is investig...

  5. Potential of amorphous and microcrystalline silicon solar cells

    OpenAIRE

    Meier, Johannes; Spitznagel, J.; Kroll, U.; Bucher, C.; Faÿ Sylvie; Moriarty, T.; Shah, Arvind

    2008-01-01

    Low pressure chemical vapour deposition (LP-CVD) ZnO as front transparent conductive oxide (TCO), developed at IMT, has excellent light-trapping properties for a-Si:H p-i-n single-junction and ‘micromorph’ (amorphous/microcrystalline silicon) tandem solar cells. A stabilized record efficiency of 9.47% has independently been confirmed by NREL for an amorphous silicon single-junction p-i-n cell (~1 cm2) deposited on LP-CVD ZnO coated glass. Micromorph tandem cells with an initial efficiency of ...

  6. Improved stability of hydrogenated amorphous-silicon photosensitivity by ultraviolet illumination

    Science.gov (United States)

    Branz, Howard M.; Xu, Yueqin; Heck, Stephan; Gao, Wei

    2002-10-01

    Postdeposition ultraviolet (UV) illumination, followed by etching, improves the stability of hydrogenated amorphous-silicon thin films against subsequent light-induced degradation of photosensitivity. The etch removes a heavily damaged layer extending about 100 nm below the surface, but beneath the damage, the UV has improved the stability of 200 to 300 nm of bulk film. The open-circuit voltage of Schottky solar cells is also stabilized by UV-etch treatment. Possible mechanisms are discussed.

  7. Relationship between defect density and charge carrier transport in amorphous and microcrystalline silicon

    OpenAIRE

    Astakhov, O.; Carius, R.; F. Finger; Petrusenko, Y.; Borysenko, V.; Barankov, D.

    2009-01-01

    The influence of dangling-bond defects and the position of the Fermi level on the charge carrier transport properties in undoped and phosphorous doped thin-film silicon with structure compositions all the way from highly crystalline to amorphous is investigated. The dangling-bond density is varied reproducibly over several orders of magnitude by electron bombardment and subsequent annealing. The defects are investigated by electron-spin-resonance and photoconductivity spectroscopies. Comparin...

  8. Thin-film silicon for flexible metal-air batteries.

    Science.gov (United States)

    Garamoun, Ahmed; Schubert, Markus B; Werner, Jürgen H

    2014-12-01

    Due to its high energy density, theoretical studies propose silicon as a promising candidate material for metal-air batteries. Herein, for the first time, experimental results detail the use of n-type doped amorphous silicon and silicon carbide as fuel in Si-air batteries. Thin-film silicon is particularly interesting for flexible and rolled batteries with high specific energies. Our Si-air batteries exhibit a specific capacity of 269 Ah kg(-1) and an average cell voltage of 0.85 V at a discharge current density of 7.9 μA cm(-2) , corresponding to a specific energy of 229 Wh kg(-1) . Favorably in terms of safety, low concentrated alkaline solution serves as electrolyte. Discharging of the Si-air cells continues as long as there is silicon available for oxidation. PMID:25251223

  9. Fabrication, characterization and modeling of microcrystalline silicon-carbon alloys thin films

    OpenAIRE

    Gaiaschi, Sofia,

    2014-01-01

    Despite continuous effort, thin-film silicon multi-junction solar cells are still limited by the light-induced degradation of amorphous materials that they employ − hydrogenated amorphous silicon layers (a-Si:H) or amorphous silicon-germanium (a-SiGe:H) layers. To survive, this technology must fully benefit from the ease with which it allows multi-band gap photovoltaic (PV) devices to be assembled. To this end, materials that are stable under light soaking and have an electronic band gap betw...

  10. Preparation and Characterisation of Amorphous-silicon Photovoltaic Devices Having Microcrystalline Emitters

    International Nuclear Information System (INIS)

    The present work summarises the essential aspects of the research carried out so far at CIEMAT on amorphous-silicon solar cells. The experience accumulated on the preparation and characterisation of amorphous and microcrystalline silicon has allowed to start from intrinsic (absorbent) and p- and n-type (emitters) materials not only having excellent optoelectronic properties, but enjoying certain technological advantages with respect to those developed by other groups. Among these are absorbent-layer growth rates between 5 and 10 times as fast as conventional ones and microcrystalline emitters prepared without using hydrogen. The preparation of amorphous-silicon cells has required the solution of a number of problems, such as those related to pinholes, edge leak currents and diffusion of metals into the semiconductor. Once such constraints have been overcome, it has been demonstrated not only that the amorphous-silicon technology developed at CIEMAT is valid for making solar cells, but also that the quality of the semiconductor material is good for the application according to the partial results obtained. The development of thin-film laser-scribing technology is considered essential. Additionally it has been concluded that cross contamination, originated by the fact of using a single-chamber reactor, is the basic factor limiting the quality of the cells developed at CIEMAT. The present research activity is highly focused on the solution of this problem. (Author)23 refs

  11. Polycystalline silicon thin films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Christian Claus

    2012-01-15

    For the thin polycrystalline Si films fabricated with the aluminium-induced-layer-exchange (ALILE) process a good structural quality up to a layer-thickness value of 10 nm was determined. For 5 nm thick layers however after the layer exchange no closes poly-silicon film was present. In this case the substrate was covered with spherically arranged semiconductor material. Furthermore amorphous contributions in the layer could be determined. The electrical characterization of the samples at room temperature proved a high hole concentration in the range 10{sup 18} cm{sup -3} up to 9.10{sup 19} cm{sup -3}, which is influenced by the process temperature and the layer thickness. Hereby higher hole concentrations at higher process temperatures and thinner films were observed. Furthermore above 150-200 K a thermically activated behaviour of the electrical conductivity was observed. At lower temperatures a deviation of the measured characteristic from the exponential Arrhenius behaviour was determined. For low temperatures (below 20 K) the conductivity follows the behaviour {sigma}{proportional_to}[-(T{sub 0}/T){sup 1/4}]. The hole mobility in the layers was lowered by a passivation step, which can be explained by defect states at the grain boundaries. The for these very thin layers present situation was simulated in the framework of the model of Seto, whereby both the defect states at the grain boundaries (with an area density Q{sub t}) and the defect states at the interfaces (with an area density Q{sub it}) were regarded. By this the values Q{sub t}{approx}(3-4).10{sup 12} cm{sup -2} and Q{sub it}{approx}(2-5).10{sup 12} cm{sup -2} could be determined for these thin ALILE layers on quartz substrates. Additionally th R-ALILE process was studied, which uses the reverse precursor-layer sequence substrate/amorphous silicon/oxide/aluminium. Hereby two steps in the crystallization process of the R-ALILE process were found. First a substrate/Al-Si mixture/poly-Si layer structure

  12. Threshold irradiation dose for amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be {approximately}0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10{sup {minus}3} dpa/s and with fission neutrons irradiated at 1 x 10{sup {minus}6} dpa/s irradiated to 15 dpa in the temperature range of {approximately}340 {+-} 10K.

  13. Nanoindentation-induced amorphization in silicon carbide

    Science.gov (United States)

    Szlufarska, Izabela; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2004-07-01

    The nanoindentation-induced amorphization in SiC is studied using molecular dynamics simulations. The load-displacement response shows an elastic shoulder followed by a plastic regime consisting of a series of load drops. Analyses of bond angles, local pressure, and shear stress, and shortest-path rings show that these drops are related to dislocation activities under the indenter. We show that amorphization is driven by coalescence of dislocation loops and that there is a strong correlation between load-displacement response and ring distribution.

  14. Formation of thin-film crystalline silicon on glass observed by in-situ XRD

    NARCIS (Netherlands)

    Westra, J.M.; Vavrunkova, V.; Sutta, P.; Van Swaaij, R.A.C.M.M.; Zeman, M.

    2010-01-01

    Thin-film poly-crystalline silicon (poly c-Si) on glass obtained by crystallization of an amorphous silicon (a-Si) film is a promising material for low cost, high efficiency solar cells. Our approach to obtain this material is to crystallize a-Si films on glass by solid phase crystallization (SPC).

  15. Silicon-based thin-film transistors with a high stability

    NARCIS (Netherlands)

    Stannowski, Bernd

    2002-01-01

    Thin-Film Transistors (TFTs) are widely applied as pixel-addressing devices in large-area electronics, such as active-matrix liquid-crystal displays (AMLCDs) or sensor arrays. Hydrogenated amorphous silicon (a-Si:H) and silicon nitride (a-SiNx:H) are generally used as the semiconductor and the insul

  16. Laser annealing of thin film polycrystalline silicon solar cell

    Directory of Open Access Journals (Sweden)

    Chowdhury A.

    2013-11-01

    Full Text Available Performances of thin film polycrystalline silicon solar cell grown on glass substrate, using solid phase crystallization of amorphous silicon can be limited by low dopant activation and high density of defects. Here, we investigate line shaped laser induced thermal annealing to passivate some of these defects in the sub-melt regime. Effect of laser power and scan speed on the open circuit voltage of the polysilicon solar cells is reported. The processing temperature was measured by thermal imaging camera. Enhancement of the open circuit voltage as high as 210% is achieved using this method. The results are discussed.

  17. First-principles study of hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Jarolimek, K.; Groot, R.A. de; Wijs, G.A. de; Zeman, M.

    2009-01-01

    We use a molecular-dynamics simulation within density-functional theory to prepare realistic structures of hydrogenated amorphous silicon. The procedure consists of heating a crystalline structure of Si64H8 to 2370 K, creating a liquid and subsequently cooling it down to room temperature. The effect

  18. Photocurrent images of amorphous-silicon solar-cell modules

    Science.gov (United States)

    Kim, Q.; Shumka, A.; Trask, J.

    1985-01-01

    Results obtained in applying the unique characteristics of the solar cell laser scanner to investigate the defects and quality of amorphous silicon cells are presented. It is concluded that solar cell laser scanners can be effectively used to nondestructively test not only active defects but also the cell quality and integrity of electrical contacts.

  19. Long-term stability of amorphous-silicon modules

    Science.gov (United States)

    Ross, R. G., Jr.

    1986-01-01

    The Jet Propulsion Laboratory (JPL) program of developing qualification tests necessary for amorphous silicon modules, including appropriate accelerated environmental tests reveal degradation due to illumination. Data were given which showed the results of temperature-controlled field tests and accelerated tests in an environmental chamber.

  20. Atomistic models of hydrogenated amorphous silicon nitride from first principles

    NARCIS (Netherlands)

    Jarolimek, K.; De Groot, R.A.; De Wijs, G.A.; Zeman, M.

    2010-01-01

    We present a theoretical study of hydrogenated amorphous silicon nitride (a-SiNx:H), with equal concentrations of Si and N atoms (x=1), for two considerably different densities (2.0 and 3.0 g/cm3). Densities and hydrogen concentration were chosen according to experimental data. Using first-principle

  1. Atomistic models of hydrogenated amorphous silicon nitride from first principles

    NARCIS (Netherlands)

    Jarolimek, K.; Groot, R.A. de; Wijs, G.A. de; Zeman, M.

    2010-01-01

    We present a theoretical study of hydrogenated amorphous silicon nitride (a-SiNx:H), with equal concentrations of Si and N atoms (x=1), for two considerably different densities (2.0 and 3.0 g/cm3). Densities and hydrogen concentration were chosen according to experimental data. Using first-principle

  2. Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths.

    Science.gov (United States)

    Safioui, Jassem; Leo, François; Kuyken, Bart; Gorza, Simon-Pierre; Selvaraja, Shankar Kumar; Baets, Roel; Emplit, Philippe; Roelkens, Gunther; Massar, Serge

    2014-02-10

    We report supercontinuum (SC) generation centered on the telecommunication C-band (1550 nm) in CMOS compatible hydrogenated amorphous silicon waveguides. A broadening of more than 550 nm is obtained in 1cm long waveguides of different widths using as pump picosecond pulses with on chip peak power as low as 4 W.

  3. Amorphous silicon carbide coatings for extreme ultraviolet optics

    Science.gov (United States)

    Kortright, J. B.; Windt, David L.

    1988-01-01

    Amorphous silicon carbide films formed by sputtering techniques are shown to have high reflectance in the extreme ultraviolet spectral region. X-ray scattering verifies that the atomic arrangements in these films are amorphous, while Auger electron spectroscopy and Rutherford backscattering spectroscopy show that the films have composition close to stoichiometric SiC, although slightly C-rich, with low impurity levels. Reflectance vs incidence angle measurements from 24 to 1216 A were used to derive optical constants of this material, which are presented here. Additionally, the measured extreme ultraviolet efficiency of a diffraction grating overcoated with sputtered amorphous silicon carbide is presented, demonstrating the feasibility of using these films as coatings for EUV optics.

  4. Electron microscopy study of Ni induced crystallization in amorphous Si thin films

    Energy Technology Data Exchange (ETDEWEB)

    Radnóczi, G. Z.; Battistig, G.; Pécz, B., E-mail: pecz.bela@ttk.mta.hu [Institute for Technical Physics and Matl. Sci., Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1121 Budapest, Konkoly-Thege u. 29-33 (Hungary); Dodony, E. [Institute for Technical Physics and Matl. Sci., Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1121 Budapest, Konkoly-Thege u. 29-33, Hungary and Doctoral School of Physics at Eötvös Loránd University, 1117 (Hungary); Vouroutzis, N.; Stoemenos, J.; Frangis, N. [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Kovács, A. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 (Germany)

    2015-02-17

    The crystallization of amorphous silicon is studied by transmission electron microscopy. The effect of Ni on the crystallization is studied in a wide temperature range heating thinned samples in-situ inside the microscope. Two cases of limited Ni source and unlimited Ni source are studied and compared. NiSi{sub 2} phase started to form at a temperature as low as 250°C in the limited Ni source case. In-situ observation gives a clear view on the crystallization of silicon through small NiSi{sub 2} grain formation. The same phase is observed at the crystallization front in the unlimited Ni source case, where a second region is also observed with large grains of Ni{sub 3}Si{sub 2}. Low temperature experiments show, that long annealing of amorphous silicon at 410 °C already results in large crystallized Si regions due to the Ni induced crystallization.

  5. Hydrogen-free amorphous silicon with no tunneling states.

    Science.gov (United States)

    Liu, Xiao; Queen, Daniel R; Metcalf, Thomas H; Karel, Julie E; Hellman, Frances

    2014-07-11

    The ubiquitous low-energy excitations, known as two-level tunneling systems (TLSs), are one of the universal phenomena of amorphous solids. Low temperature elastic measurements show that e-beam amorphous silicon (a-Si) contains a variable density of TLSs which diminishes as the growth temperature reaches 400 °C. Structural analyses show that these a-Si films become denser and more structurally ordered. We conclude that the enhanced surface energetics at a high growth temperature improved the amorphous structural network of e-beam a-Si and removed TLSs. This work obviates the role hydrogen was previously thought to play in removing TLSs in the hydrogenated form of a-Si and suggests it is possible to prepare "perfect" amorphous solids with "crystal-like" properties for applications. PMID:25062205

  6. Solution growth of microcrystalline silicon on amorphous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Heimburger, Robert

    2010-07-05

    This work deals with low-temperature solution growth of micro-crystalline silicon on glass. The task is motivated by the application in low-cost solar cells. As glass is an amorphous material, conventional epitaxy is not applicable. Therefore, growth is conducted in a two-step process. The first step aims at the spatial arrangement of silicon seed crystals on conductive coated glass substrates, which is realized by means of vapor-liquid-solid processing using indium as the solvent. Seed crystals are afterwards enlarged by applying a specially developed steady-state solution growth apparatus. This laboratory prototype mainly consists of a vertical stack of a silicon feeding source and the solvent (indium). The growth substrate can be dipped into the solution from the top. The system can be heated to a temperature below the softening point of the utilized glass substrate. A temperature gradient between feeding source and growth substrate promotes both, supersaturation and material transport by solvent convection. This setup offers advantages over conventional liquid phase epitaxy at low temperatures in terms of achievable layer thickness and required growth times. The need for convective solute transport to gain the desired thickness of at least 50 {mu}m is emphasized by equilibrium calculations in the binary system indium-silicon. Material transport and supersaturation conditions inside the utilized solution growth crucible are analyzed. It results that the solute can be transported from the lower feeding source to the growth substrate by applying an appropriate heating regime. These findings are interpreted by means of a hydrodynamic analysis of fluid flow and supporting FEM simulation. To ensure thermodynamic stability of all materials involved during steady-state solution growth, the ternary phase equilibrium between molybdenum, indium and silicon at 600 C was considered. Based on the obtained results, the use of molybdenum disilicide as conductive coating

  7. Solid-phase Crystallization of Hydrogenated Amorphous Silicon on Glass Substrates

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Amorphous silicon films prepared by PECVD on glass substrate have been crystallized by conventional furnace annealing and rapid thermal annealing(RTA), respectively. From the Raman spectra, X-ray diffraction and scanning electron microscope, it is found that the grain size is crystallized at 850℃ in both techniques. The thin film made by RTA is smooth and of perfect structure, the thin film annealed by FA has a highly structural disorder. An average grain size of about 30nm is obtained by both techniques.

  8. High quality crystalline silicon surface passivation by combined intrinsic and n-type hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Schuttauf, J.A.; van der Werf, C.H.M.; Kielen, I.M.; van Sark, W.G.J.H.M.; Rath, J.K.

    2011-01-01

    We investigate the influence of thermal annealing on the passivation quality of crystalline silicon (c-Si) surfaces by intrinsic and n-type hydrogenated amorphous silicon (a-Si:H) films. For temperatures up to 255 C, we find an increase in surface passivation quality, corresponding to a decreased da

  9. Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics

    DEFF Research Database (Denmark)

    Philipp, Hugh T.; Andersen, Karin Nordström; Svendsen, Winnie Edith;

    2004-01-01

    Amorphous silicon rich silicon nitride optical waveguides clad in silica are presented as a high-index contrast platform for high density integrated optics. Performance of different cross-sectional geometries have been measured and are presented with regards to bending loss and insertion loss. A ...

  10. Role of amorphous silicon domains on Er3+ emission in the Er-doped hydrogenated amorphous silicon suboxide film

    Institute of Scientific and Technical Information of China (English)

    陈长勇; 陈维德; 李国华; 宋淑芳; 丁琨; 许振嘉

    2003-01-01

    An investigation on the correlation between amorphous Si (a-Si) domains and Er3+ emission in the Er-doped hydrogenated amorphous silicon suboxide (a-Si:O:H) film is presented. On one hand, a-Si domains provide sufficient carriers for Er3+ carrier-mediated excitation which has been proved to be the highest excitation path for Er3+ ion; on the other hand, hydrogen diffusion from a-Si domains to amorphous silicon oxide (a-SiOx) matrix during annealing has been found and this possibly decreases the number of nonradiative centres around Er3+ ions. This study provides a better understanding of the role of a-Si domains on Er3+ emission in a-Si:O:Hfilms.

  11. Role of amorphous silicon domains of Er3+ emission in the Er—doped hydrogenated amorphous silicon suboxide film

    Institute of Scientific and Technical Information of China (English)

    ChenChang-Yong; ChenWei-De; LeGuo-Hua; SongShu-Fang; DingKun; XuZhen-Jia

    2003-01-01

    An investigation on the correlation between amorphous Si(a-Si) domains and Er3+ emission in the Er-doped hydrogenated amorphous silicon suboxide (a-Si:O:H) film is presented. On one hand, a-Si domains provide sufficient carrlers for Er3+ carrier-mediated excitation which has been proved to be the highest excitation path for Er3+ ion; on the other hand, hydrogen diffusion from a-Si domains to amorphous silicon oxide (a-SiOx) matrix during annealing has been found and this possibly decreases the number of nonradiative centres around Er3+ ions. This study provides a better understanding of the role of a-Si domains on Er3+ emission in a-Si:O:H films.

  12. Study about continuous Ar+Kr +laser crystallization of amorphous silicon thin film%连续氩氪离子激光晶化非晶硅薄膜的研究

    Institute of Scientific and Technical Information of China (English)

    周德让; 段国平; 陈俊岭; 韩俊鹤; 黄明举

    2013-01-01

      为了研究连续激光晶化非晶硅薄膜中激光功率密度对晶化效果的影响,利用磁控溅射法制备非晶硅薄膜,采用连续氩氪混合离子激光器对薄膜进行退火晶化,用显微喇曼光谱测试技术和场发射扫描电子显微镜研究了薄膜在5 ms固定时间下不同激光功率密度对晶化效果的影响,并对比了普通玻璃片和石英玻璃两种衬底上薄膜晶化过程的差异。结果表明,在一定激光功率密度范围内(0kW/cm2~27.1kW/cm2),当激光功率密度大于15.1kW/cm2时,普通玻璃衬底沉积的非晶硅薄膜开始实现晶化;随着激光功率密度的增大,晶化效果先逐渐变好,之后变差;激光功率密度增大到24.9kW/cm2时,薄膜表面呈现大面积散落的苹果状多晶硅颗粒,晶粒截面尺寸高达478nm;激光功率密度存在一个中间值,使得晶化效果达到最佳;石英衬底上沉积的非晶硅薄膜则呈现与前者不同的结晶生长过程,当激光功率密度为19.7kW/cm2时,薄膜表面呈现大晶粒尺寸的球形多晶硅颗粒,并且晶粒尺寸随着激光功率密度的增大而增大,在27.1kW/cm2处晶粒尺寸达到最大5.38μm。研究结果对用连续激光晶化法制备多晶硅薄膜的研究具有积极意义。%In order to study the influence of laser power density on crystallization effect in continuous laser crystallization of amorphous silicon thin film , amorphous silicon thin films were prepared by means of magnetron sputtering and then crystallized by continuous Ar +Kr+laser.Crystallization effect was studied by means of micro-Raman spectroscopic measurement and field emission scanning electron microscope under the fixed time 5ms and different laser power density . The difference of crystal growth process on two different substrates-common glass substrate and quartz substrate was compared.It was shown that within the limit of 27.1kW/cm2 the amorphous Si films were

  13. Multi-band silicon quantum dots embedded in an amorphous matrix of silicon carbide

    Science.gov (United States)

    Chang, Geng-rong; Ma, Fei; Ma, Da-yan; Xu, Ke-wei

    2010-11-01

    Silicon quantum dots embedded in an amorphous matrix of silicon carbide were realized by a magnetron co-sputtering process and post-annealing. X-ray photoelectron spectroscopy, glancing x-ray diffraction, Raman spectroscopy and high-resolution transmission electron microscopy were used to characterize the chemical composition and the microstructural properties. The results show that the sizes and size distribution of silicon quantum dots can be tuned by changing the annealing atmosphere and the atom ratio of silicon and carbon in the matrix. A physicochemical mechanism is proposed to demonstrate this formation process. Photoluminescence measurements indicate a multi-band configuration due to the quantum confinement effect of silicon quantum dots with different sizes. The PL spectra are further widened as a result of the existence of amorphous silicon quantum dots. This multi-band configuration would be extremely advantageous in improving the photoelectric conversion efficiency of photovoltaic solar cells.

  14. Spectral selectivity constraints in fluorescence detection of biomolecules using amorphous silicon based detectors

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.P. [INESC Microsistemas e Nanotecnologias and IN- Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Department of Chemical and Biological Engineering, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1000-049 Lisbon (Portugal); Joskowiak, A.; Pimentel, A.; Santos, M.; Chu, V. [INESC Microsistemas e Nanotecnologias and IN- Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Lipovsek, B.; Krc, J.; Topic, M. [Laboratory of Photovoltaics and Optoelectronics, Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, 1000 Ljubljana (Slovenia); Pereira, A.T. [INESC Microsistemas e Nanotecnologias and IN- Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1000-049 Lisbon (Portugal); Prazeres, D.M.F. [Department of Chemical and Biological Engineering, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1000-049 Lisbon (Portugal); IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1000-049 Lisbon (Portugal)

    2010-04-15

    A microdevice based on a thin-film hydrogenated amorphous silicon (a -Si:H) p-i-n photodiode is used to quantify the density of DNA oligonucleotides labelled with a fluorophore and the density of E. coli cells expressing GFP (green fluorescent protein) by fluorescence. An absorption filter is integrated in the device which filters the excitation light and transmits the emitted light to the photodetector. This filter is an amorphous silicon carbon (a-SiC:H) alloy in which the bandgap can be selected according to the excitation and emission wavelengths of the fluorophores used by varying the carbon content of the film. Control of the thickness of the a-SiC:H film allows the modulation of the transmission ratio between the excitation wavelength and the emission wavelength. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. A fast method to diagnose phase transition from amorphous to microcrystalline silicon

    Institute of Scientific and Technical Information of China (English)

    HOU; GuoFu

    2007-01-01

    A series of hydrogenated silicon thin films were prepared by the radio frequency plasma enhanced chemical vapor deposition method (RF-PECVD) with various silane concentrations. The influence of silane concentration on structural and electrical characteristics of these films was investigated to study the phase transition region from amorphous to microcrystalline phase. At the same time, optical emission spectra (OES) from the plasma during the deposition process were monitored to get information about the plasma properties, Raman spectra were measured to study the structural characteristics of the deposited films. The combinatorial analysis of OES and Raman spectra results demonstrated that the OES can be used as a fast method to diagnose phase transition from amorphous to microcrystalline silicon. At last the physical mechanism, why both OES and Raman can be used to diagnose the phase transition, was analyzed theoretically.……

  16. A fast method to diagnose phase transition from amorphous to microcrystalline silicon

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ A series of hydrogenated silicon thin films were prepared by the radio frequency plasma enhanced chemical vapor deposition method (RF-PECVD) with various silane concentrations. The influence of silane concentration on structural and electrical characteristics of these films was investigated to study the phase transition region from amorphous to microcrystalline phase. At the same time, optical emission spectra (OES) from the plasma during the deposition process were monitored to get information about the plasma properties, Raman spectra were measured to study the structural characteristics of the deposited films. The combinatorial analysis of OES and Raman spectra results demonstrated that the OES can be used as a fast method to diagnose phase transition from amorphous to microcrystalline silicon. At last the physical mechanism, why both OES and Raman can be used to diagnose the phase transition, was analyzed theoretically.

  17. Amorphous and 'micromorph' silicon tandem cells with high open-circuit voltage

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, J.; Gordijn, A.; Stolk, R.L.; Li, H.; Rath, J.K.; Schropp, R.E.I. [Utrecht University (Netherlands). Debye Inst.

    2005-05-01

    For amorphous and 'micromorph' silicon multi-junction solar cells, we have developed tunnel recombination junctions consisting of two microcrystalline doped layers with a defect-rich interface. While the solar cells performed reasonably well under AM 1.5 light, we found in spectral response measurements that the first deposited cell of tandem structures in nip and pin configuration was apparently leaking under low light conditions. Insertion of a thin protection layer of n-type amorphous silicon solved this issue, and led to an increase in open-circuit voltage. Voltages as high as 1.76 V have been obtained for a-Si/a-Si pinpin tandem cells. (author)

  18. Development of laser-fired contacts for amorphous silicon layers obtained by Hot-Wire CVD

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, D. [XaRMAE-Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Diagonal 647, Barcelona 08028 (Spain)], E-mail: delfina@eel.upc.edu; Voz, C.; Blanque, S. [Universitat Politecnica de Catalunya, Grup de Recerca en Micro i Nanotecnologies, Jordi Girona 1-3, Barcelona 08034 (Spain); Ibarz, D.; Bertomeu, J. [XaRMAE-Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Diagonal 647, Barcelona 08028 (Spain); Alcubilla, R. [Universitat Politecnica de Catalunya, Grup de Recerca en Micro i Nanotecnologies, Jordi Girona 1-3, Barcelona 08034 (Spain)

    2009-03-15

    In this work we study aluminium laser-fired contacts for intrinsic amorphous silicon layers deposited by Hot-Wire CVD. This structure could be used as an alternative low temperature back contact for rear passivated heterojunction solar cells. An infrared Nd:YAG laser (1064 nm) has been used to locally fire the aluminium through the thin amorphous silicon layers. Under optimized laser firing parameters, very low specific contact resistances ({rho}{sub c} {approx} 10 m{omega} cm{sup 2}) have been obtained on 2.8 {omega} cm p-type c-Si wafers. This investigation focuses on maintaining the passivation quality of the interface without an excessive increase in the series resistance of the device.

  19. Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition

    OpenAIRE

    Alpuim, P.; Chu, Virginia; Conde, João Pedro

    1999-01-01

    The effect of hydrogen dilution on the optical, transport, and structural properties of amorphous and microcrystalline silicon thin films deposited by hot-wire (HW) chemical vapor deposition and radio-frequency (rf) plasma-enhanced chemical vapor deposition using substrate temperatures (T-sub) of 100 and 25 degrees C is reported. Microcrystalline silicon (mu c-Si:H) is obtained using HW with a large crystalline fraction and a crystallite size of similar to 30 nm for hydrogen dilutions above 8...

  20. Plasma Deposition of Doped Amorphous Silicon

    Science.gov (United States)

    Calcote, H. F.

    1985-01-01

    Pair of reports present further experimental details of investigation of plasma deposition of films of phosphorous-doped amosphous silicon. Probe measurements of electrical resistance of deposited films indicated films not uniform. In general, it appeared that resistance decreased with film thickness.

  1. Kirchhoff?s generalised law applied to amorphous silicon / crystalline silicon heterostructures

    OpenAIRE

    Brüggemann, Rudolf

    2009-01-01

    Abstract The electro- and photoluminescence spectra of amorphous silicon / crystalline silicon heterostructures and solar cells are determined by emission from the crystalline-silicon layer and are computed with Kirchhoff?s generalised law. The interface defect density strongly influences the luminescence yield which may be used to monitor the interface quality. Based on a comparison between numerical and analytically determined spectra, the temperature dependence of experimental e...

  2. Amorphous silicon materials and solar cells - Progress and directions

    Science.gov (United States)

    Sabisky, E.; Mahan, H.; McMahon, T.

    In 1978, the U.S. Department of Energy initiated government sponsored research in amorphous materials and thin film solar cells. The program was subsequently transferred to the Solar Energy Research Institute for program management. The program grew into a major program for the development of high efficiency (greater than 10 percent), cost effective (15-40 cents per peak watt) thin film amorphous solar cells. The present international interest, the substantial progress made in the device area (2 percent PIN cell in 1976 to 10 percent PIN cell in 1982), and the marketing of the first consumer products using thin film solar cells are to a large ducts using thin film solar cells are to a large extent a consequence of this goal-oriented program.

  3. Angular magnetoresistance in semiconducting undoped amorphous carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, Rizwan Ur Rehman; Saleemi, Awais Siddique; Zhang, Xiaozhong, E-mail: xzzhang@tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People' s Republic of China and Beijing National Center for Electron Microscopy, Beijing 100084 (China)

    2015-05-07

    Thin films of undoped amorphous carbon thin film were fabricated by using Chemical Vapor Deposition and their structure was investigated by using High Resolution Transmission Electron Microscopy and Raman Spectroscopy. Angular magnetoresistance (MR) has been observed for the first time in these undoped amorphous carbon thin films in temperature range of 2 ∼ 40 K. The maximum magnitude of angular MR was in the range of 9.5% ∼ 1.5% in 2 ∼ 40 K. The origin of this angular MR was also discussed.

  4. Light-induced metastable structural changes in hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, H. [Univ. of Chicago, IL (United States)

    1996-09-01

    Light-induced defects (LID) in hydrogenated amorphous silicon (a-Si:H) and its alloys limit the ultimate efficiency of solar panels made with these materials. This paper reviews a variety of attempts to find the origin of and to eliminate the processes that give rise to LIDs. These attempts include novel deposition processes and the reduction of impurities. Material improvements achieved over the past decade are associated more with the material`s microstructure than with eliminating LIDs. We conclude that metastable LIDs are a natural by-product of structural changes which are generally associated with non-radiative electron-hole recombination in amorphous semiconductors.

  5. Thin-film crystalline silicon solar cells

    CERN Document Server

    Brendel, Rolf

    2011-01-01

    This introduction to the physics of silicon solar cells focuses on thin cells, while reviewing and discussing the current status of the important technology. An analysis of the spectral quantum efficiency of thin solar cells is given as well as a full set of analytical models. This is the first comprehensive treatment of light trapping techniques for the enhancement of the optical absorption in thin silicon films.

  6. Amorphous Hydrogenated Carbon-Nitrogen Alloy Thin Films for Solar Cell Application

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-Bin; DING Zheng-Ming; PANG Qian-Jun; CUI Rong-Qiang

    2001-01-01

    Amorphous hydrogenated carbon-nitrogen alloy (a-CNx :H) thin films have been deposited on silicon substratesby improved dc magnetron sputtering from a graphite target in nitrogen and hydrogen gas discharging. Thefilms are investigated by using Raman spectroscopy, x-ray photoelectron spectroscopy, spectral ellipsometer and electron spin resonance techniques. The optimized process condition for solar cell application is discussed. Thephotovoltaic property of a-CNx:H/silicon heterojunctions can be improved by the adjustment of the pressureratio of hydrogen to nitrogen and unbalanced magnetic field intensity. Open-circuit voltage and short-circuitcurrent reach 300mV and 5.52 Ma/cm2, respectively.

  7. On the Effect of the Amorphous Silicon Microstructure on the Grain Size of Solid Phase Crystallized Polycrystalline Silicon

    NARCIS (Netherlands)

    Sharma, K.; Branca, A.; Illiberi, A.; Tichelaar, F. D.; Creatore, M.; M. C. M. van de Sanden,

    2011-01-01

    In this paper the effect of the microstructure of remote plasma-deposited amorphous silicon films on the grain size development in polycrystalline silicon upon solid-phase crystallization is reported. The hydrogenated amorphous silicon films are deposited at different microstructure parameter values

  8. Hydrogen, microstructure and defect density in hydrogenated amorphous silicon

    OpenAIRE

    Roca I Cabarrocas, Pere; Djebbour, Z.; Kleider, J.; Longeaud, C.; Mencaraglia, D.; Sib, J.; Bouizem, Y.; Thèye, M.; Sardin, G.; Stoquert, J.

    1992-01-01

    It is well established that by bonding with the dangling bonds of silicon, hydrogen reduces the density of states of amorphous silicon and renders this material suitable to electronic applications. For so-called “standard” a-Si : H films deposited by the RF glow discharge decomposition of silane at low deposition rates (≈1 Å/s) and over a large range of deposition temperatures, we observed the usual correlation between the hydrogen bonding and the defect density in the as-deposited material o...

  9. Dynamics of hydrogenated amorphous silicon flexural resonators for enhanced performance

    Science.gov (United States)

    Mouro, J.; Chu, V.; Conde, J. P.

    2016-04-01

    Hydrogenated amorphous silicon thin-film flexural resonators with sub-micron actuation gaps are fabricated by surface micromachining on glass substrates. Experimentally, the resonators are electrostatically actuated and their motion is optically detected. Three different configurations for the electrostatic excitation force are used to study the dynamics of the resonators. In the first case, a dc voltage (Vdc) is added to an ac voltage with variable excitation frequency (Vac(ω)) and harmonic, superharmonic, and subharmonic resonances of different orders are observed. The second case consists on mixing the dc voltage (Vdc) with an ac voltage applied at a fixed frequency of twice the natural frequency of the resonator (V(2ω0)). High-amplitude parametric resonance is excited at the natural frequency of the system, ω0. This configuration allows a separation between the frequencies of the excitation and the mechanical motion. Finally, in the third case, the dc voltage (Vdc) is combined with both ac voltages, Vac(ω) and V(2ω0), and parametric resonance is excited and emerges from the fundamental harmonic resonance peak. The single-degree-of-freedom equation of motion is modeled and discussed for each case. The nonlinearity inherent to the electrostatic force is responsible for modulating the spring constant of the system at different frequencies, giving rise to parametric resonance. These equations of motion are simulated in the time and frequency domains, providing a consistent explanation of the experimentally observed phenomena. A wide variety of possible resonance modes with different characteristics can be used advantageously in MEMS device design.

  10. Amorphous silicon based large format uncooled FPA microbolometer technology

    Science.gov (United States)

    Schimert, T.; Brady, J.; Fagan, T.; Taylor, M.; McCardel, W.; Gooch, R.; Ajmera, S.; Hanson, C.; Syllaios, A. J.

    2008-04-01

    This paper presents recent developments in next generation microbolometer Focal Plane Array (FPA) technology at L-3 Communications Infrared Products (L-3 CIP). Infrared detector technology at L-3 CIP is based on hydrogenated amorphous silicon (a-Si:H) and amorphous silicon germanium(a-SiGe:H). Large format high performance, fast, and compact IR FPAs are enabled by a low thermal mass pixel design; favorable material properties; an advanced ROIC design; and wafer level packaging. Currently at L-3 CIP, 17 micron pixel FPA array technology including 320x240, 640 x 480 and 1024 x768 arrays is under development. Applications of these FPAs range from low power microsensors to high resolution near-megapixel imager systems.

  11. Spherical silicon photonic microcavities: From amorphous to polycrystalline

    Science.gov (United States)

    Fenollosa, R.; Garín, M.; Meseguer, F.

    2016-06-01

    Shaping silicon as a spherical object is not an obvious task, especially when the object size is in the micrometer range. This has the important consequence of transforming bare silicon material in a microcavity, so it is able to confine light efficiently. Here, we have explored the inside volume of such microcavities, both in their amorphous and in their polycrystalline versions. The synthesis method, which is based on chemical vapor deposition, causes amorphous microspheres to have a high content of hydrogen that produces an onionlike distributed porous core when the microspheres are crystallized by a fast annealing regime. This substantially influences the resonant modes. However, a slow crystallization regime does not yield pores, and produces higher-quality-factor resonances that could be fitted to the Mie theory. This allows the establishment of a procedure for obtaining size calibration standards with relative errors of the order of 0.1%.

  12. Electrochemical degradation of amorphous-silicon photovoltaic modules

    Science.gov (United States)

    Mon, G. R.; Ross, R. G., Jr.

    1985-01-01

    Techniques of module electrochemical corrosion research, developed during reliability studies of crystalline-silicon modules (C-Si), have been applied to this new investigation into amorphous-silicon (a-Si) module reliability. Amorphous-Si cells, encapsulated in the polymers polyvinyl butyral (PVB) and ethylene vinyl acetate (EVA), were exposed for more than 1200 hours in a controlled 85 C/85 percent RH environment, with a constant 500 volts applied between the cells and an aluminum frame. Plotting power output reduction versus charge transferred reveals that about 50 percent a-Si cell failures can be expected with the passage of 0.1 to 1.0 Coulomb/cm of cell-frame edge length; this threshold is somewhat less than that determined for C-Si modules.

  13. Photo stability Assessment in Amorphous-Silicon Solar Cells

    International Nuclear Information System (INIS)

    The present status of amorphous-silicon-solar-cell research and development at CIEMAT requires the possibility to characterise the devices prepared from the point of view of their stability against sunlight exposure. Therefore a set of tools providing such a capacity has been developed. Together with an introduction to photovoltaic applications of amorphous silicon and to the photodegradation problem, the present work describes the process of setting up these tools. An indoor controlled photodegradation facility has been designed and built, and a procedure has been developed for the measurement of J-V characterisation in well established conditions. This method is suitable for all kinds of solar cells, even for those for which no model is still available. The photodegradation and characterisation of some cells has allowed to validate both the new testing facility and method. (Author) 14 refs

  14. The reliability and stability of multijunction amorphous silicon PV modules

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, D.E. [Solarex, Newtown, PA (United States)

    1995-11-01

    Solarex is developing a manufacturing process for the commercial production of 8 ft{sup 2} multijunction amorphous silicon (a-Si) PV modules starting in 1996. The device structure used in these multijunction modules is: glass/textured tin oxide/p-i-n/p-i-n/ZnO/Al/EVA/Tedlar where the back junction of the tandem structure contains an amorphous silicon germanium alloy. As an interim step, 4 ft{sup 2} multijunction modules have been fabricated in a pilot production mode over the last several months. The distribution of initial conversion efficiencies for an engineering run of 67 modules (4 ft{sup 2}) is shown. Measurements recently performed at NREL indicate that the actual efficiencies are about 5% higher than those shown, and thus exhibit an average initial conversion efficiency of about 9.5%. The data indicates that the process is relatively robust since there were no modules with initial efficiencies less than 7.5%.

  15. Infrared electroabsorption spectra in amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lyou, J.H.; Schiff, E.A.; Hegedus, S.S.; Guha, S.; Yang, J.

    1999-07-01

    The authors report measurements of the infrared spectrum detected by modulating the reverse-bias voltage across amorphous silicon pin solar cells and Schottky barrier diodes. They find a band with a peak energy of 0.8 eV. The existence of this band has not, to their knowledge, been reported previously. The strength of the infrared band depends linearly upon applied bias, as opposed to the quadratic dependence for interband electroabsorption in amorphous silicon. The band's peak energy agrees fairly well with the known optical transition energies for dangling bond defects, but the linear dependence on bias and the magnitude of the signal are surprising if interpreted using an analogy to interband electroabsorption. A model based on absorption by defects near the n/i interface of the diodes accounts well for the infrared spectrum.

  16. Amorphous Silicon 16—bit Array Photodetector①

    Institute of Scientific and Technical Information of China (English)

    ZHANGShaoqiang; XUZhongyang; 等

    1997-01-01

    An amorphous silicon 16-bit array photodetector with the a-SiC/a-Si heterojunction diode is presented.The fabrication processes of the device were studied systematically.By the optimum of the diode structure and the preparation procedures,the diode with Id<10-12A/mm2 and photocurrentIp≥0.35A/W has been obtained at the wavelength of 632nm.

  17. Corrosion In Amorphous-Silicon Solar Cells And Modules

    Science.gov (United States)

    Mon, Gordon R.; Wen, Liang-Chi; Ross, Ronald G., Jr.

    1988-01-01

    Paper reports on corrosion in amorphous-silicon solar cells and modules. Based on field and laboratory tests, discusses causes of corrosion, ways of mitigating effects, and consequences for modules already in field. Suggests sealing of edges as way of reducing entry of moisture. Cell-free perimeters or sacrificial electrodes suggested to mitigate effects of sorbed moisture. Development of truly watertight module proves to be more cost-effective than attempting to mitigate effects of moisture.

  18. Thermally stimulated H emission and diffusion in hydrogenated amorphous silicon

    OpenAIRE

    Abtew, T. A.; Inam, F.; Drabold, D. A.

    2006-01-01

    We report first principles ab initio density functional calculations of hydrogen dynam- ics in hydrogenated amorphous silicon. Thermal motion of the host Si atoms drives H diffusion, as we demonstrate by direct simulation and explain with simple models. Si-Si bond centers and Si ring centers are local energy minima as expected. We also describe a new mechanism for break- ing Si-H bonds to release free atomic H into the network: a fluctuation bond center detachment (FBCD) assisted diffusion. H...

  19. Crystallization of amorphous silicon induced by mechanical shear deformations

    OpenAIRE

    Kerrache, Ali; Mousseau, Normand; Lewis, Laurent J.

    2011-01-01

    We have investigated the response of amorphous silicon (a-Si), in particular crystallization, to external mechanical shear deformations using classical molecular dynamics (MD) simulations and the empirical Environment Dependent Inter-atomic Potential (EDIP) [Phys. Rev. B 56, 8542 (1997)]. In agreement with previous results we find that, at low shear velocity and low temperature, shear deformations increase disorder and defect density. At high temperatures, however, the deformations are found ...

  20. Deposition-induced defect profiles in amorphous hydrogenated silicon

    OpenAIRE

    Hata, N.; Wagner, S.; Roca i Cabarrocas, P.; Favre, M.

    2008-01-01

    The thickness dependence of the subgap optical absorption in plasma-deposited hydrogenated amorphous silicon is carefully studied by photothermal deflection spectroscopy. The deep-level defect concentration decays from the top surface into the bulk where it approaches the thermal equilibrium defect density. This defect profile is interpreted in terms of the annealing, during growth, of growth-induced surface defects. It is also shown that this defect profile is compatible with the known growt...

  1. First-principles study of hydrogenated amorphous silicon

    OpenAIRE

    Jarolimek, K.; de Groot, R. A.; de Wijs, G. A.; Zeman, M.

    2009-01-01

    We use a molecular-dynamics simulation within density-functional theory to prepare realistic structures of hydrogenated amorphous silicon. The procedure consists of heating a crystalline structure of Si64H8 to 2370 K, creating a liquid and subsequently cooling it down to room temperature. The effect of the cooling rate is examined. We prepared a total of five structures which compare well to experimental data obtained by neutron-scattering experiments. Two structures do not contain any struct...

  2. Interface Study on Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using High-k Gate Dielectric Materials

    OpenAIRE

    Yu-Hsien Lin; Jay-Chi Chou

    2015-01-01

    We investigated amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs) using different high-k gate dielectric materials such as silicon nitride (Si3N4) and aluminum oxide (Al2O3) at low temperature process (

  3. Properties of hydrogenated amorphous silicon (a-Si:H) deposited using a microwave Ecr plasma

    International Nuclear Information System (INIS)

    Hydrogenated amorphous silicon (a-Si:H) films have been widely applied to semiconductor devices, such as thin film transistors, solar cells and photosensitive devices. In this work, the first Si-H-Cl alloys (obtained at the National Institute for Nuclear Research of Mexico) were formed by a microwave electron cyclotron resonance (Ecr) plasma CVD method. Gaseous mixtures of silicon tetrachloride (Si Cl4), hydrogen and argon were used. The Ecr plasma was generated by microwaves at 2.45 GHz and a magnetic field of 670 G was applied to maintain the discharge after resonance condition (occurring at 875 G). Si and Cl contents were analyzed by Rutherford Backscattering Spectrometry (RBS). It was found that, increasing proportion of Si Cl4 in the mixture or decreasing pressure, the silicon and chlorine percentages decrease. Optical gaps were obtained by spectrophotometry. Decreasing temperature, optical gap values increase from 1.4 to 1.5 eV. (Author)

  4. Development of a high voltage top cell for silicon thin-film solar cells

    OpenAIRE

    Walder , Cordula

    2015-01-01

    he development of multijunction solar cells is a promising approach to increase the efficiency of silicon thin-film photovoltaics. The objective of this work is to investigate how to optimise a high bandgap top cell and if the use of hydrogenated amorphous silicon alloys (a-SiO:H, a-SiC:H) as absorber materials is reasonable. According to the simulation results of this work, hydrogenated amorphous silicon (a-Si:H) is the preferable top cell absorber material for a triple cell. However, for a ...

  5. Stability of thin films of microcrystalline silicon under light soaking

    Institute of Scientific and Technical Information of China (English)

    HAN Xiao-yan; Wang Yan; XUE Jun-ming; ZHAO Shu-wen; REN Hui-zhi; ZHAO Ying; LI Yang-xian; GENG Xin-hua

    2006-01-01

    Silicon thin films with different crystalline ratio(Xc) have been deposited by varying silane content(SC) of reactive gases in the RF-PECVD process.The effects of silane content on performance of the materials and the relationship between microstructure and opto-electronic properties were studied by means of Raman measurements,photoconductivity(σph),and dark conductivity(σd),followed by the measurements of light absorption coefficient(α),the product of quantum efficiency,mobility and lifetime (ημτ),before,during and after light soaking,respectively.The results indicate that the microcrystalline silicon near the transition region is suitable to prepare microcrystalline silicon of device grade,and that the amorphous region of the material is responsible to the light induced degradation.

  6. Surface bioactivity of plasma implanted silicon and amorphous carbon

    Institute of Scientific and Technical Information of China (English)

    Paul K CHU

    2004-01-01

    Plasma immersion ion implantation and deposition (PⅢ&D) has been shown to be an effective technique to enhance the surface bioactivity of materials. In this paper, recent progress made in our laboratory on plasma surface modification single-crystal silicon and amorphous carbon is reviewed. Silicon is the most important material in the integrated circuit industry but its surface biocompatibility has not been investigated in details. We have recently performed hydrogen PⅢ into silicon and observed the biomimetic growth of apatite on its surface in simulated body fluid. Diamond-like carbon (DLC) is widely used in the industry due to its excellent mechanical properties and chemical inertness. The use of this material in biomedical engineering has also attracted much attention. It has been observed in our laboratory that doping DLC with nitrogen by means of PⅢ can improve the surface blood compatibility. The properties as well as in vitro biological test results will be discussed in this article.

  7. Growth model of lantern-like amorphous silicon oxide nanowires

    Science.gov (United States)

    Wu, Ping; Zou, Xingquan; Chi, Lingfei; Li, Qiang; Xiao, Tan

    2007-03-01

    Silicon oxide nanowire assemblies with lantern-like morphology were synthesized by thermal evaporation of the mixed powder of SnO2 and active carbon at 1000 °C and using the silicon wafer as substrate and source. The nano-lanterns were characterized by a scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), energy-dispersive spectroscope (EDS) and selective area electron diffraction (SAED). The results show that the nano-lantern has symmetrical morphology, with one end connecting with the silicon wafer and the other end being the tin ball. The diameter of the nano-lantern is about 1.5-3.0 µm. Arc silicon oxide nanowire assemblies between the two ends have diameters ranging from 70 to 150 nm. One single catalyst tin ball catalyzes more than one amorphous nanowires' growth. In addition, the growth mechanism of the nano-lantern is discussed and a growth model is proposed. The multi-nucleation sites round the Sn droplet's perimeter are responsible for the formation of many SiOx nanowires. The growing direction of the nanowires is not in the same direction of the movement of the catalyst tin ball, resulting in the bending of the nanowires and forming the lantern-like silicon oxide morphology. The controllable synthesis of the lantern-like silicon oxide nanostructure may have potential applications in the photoelectronic devices field.

  8. Growth model of lantern-like amorphous silicon oxide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wu Ping; Zou Xingquan; Chi Lingfei; Li Qiang; Xiao Tan [Department of Physics, Shantou University, Shantou 515063 (China)

    2007-03-28

    Silicon oxide nanowire assemblies with lantern-like morphology were synthesized by thermal evaporation of the mixed powder of SnO{sub 2} and active carbon at 1000 deg. C and using the silicon wafer as substrate and source. The nano-lanterns were characterized by a scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), energy-dispersive spectroscope (EDS) and selective area electron diffraction (SAED). The results show that the nano-lantern has symmetrical morphology, with one end connecting with the silicon wafer and the other end being the tin ball. The diameter of the nano-lantern is about 1.5-3.0 {mu}m. Arc silicon oxide nanowire assemblies between the two ends have diameters ranging from 70 to 150 nm. One single catalyst tin ball catalyzes more than one amorphous nanowires' growth. In addition, the growth mechanism of the nano-lantern is discussed and a growth model is proposed. The multi-nucleation sites round the Sn droplet's perimeter are responsible for the formation of many SiO{sub x} nanowires. The growing direction of the nanowires is not in the same direction of the movement of the catalyst tin ball, resulting in the bending of the nanowires and forming the lantern-like silicon oxide morphology. The controllable synthesis of the lantern-like silicon oxide nanostructure may have potential applications in the photoelectronic devices field.

  9. Amorphous Dielectric Thin Films with Extremely Low Mechanical Loss

    Directory of Open Access Journals (Sweden)

    Liu X.

    2015-04-01

    Full Text Available The ubiquitous low-energy excitations are one of the universal phenomena of amorphous solids. These excitations dominate the acoustic, dielectric, and thermal properties of structurally disordered solids. One exception has been a type of hydrogenated amorphous silicon (a-Si:H with 1 at.% H. Using low temperature elastic and thermal measurements of electron-beam evap-orated amorphous silicon (a-Si, we show that TLS can be eliminated in this system as the films become denser and more structurally ordered under certain deposition conditions. Our results demonstrate that TLS are not intrinsic to the glassy state but instead reside in low density regions of the amorphous network. This work obviates the role hydrogen was previously thought to play in removing TLS in a-Si:H and favors an ideal four-fold covalently bonded amorphous structure as the cause for the disappearance of TLS. Our result supports the notion that a-Si can be made a “perfect glass” with “crystal-like” properties, thus offering an encouraging opportunity to use it as a simple crystal dielectric alternative in applications, such as in modern quantum devices where TLS are the source of dissipation, decoherence and 1/f noise.

  10. Al-induced Lateral Crystallization of Amorphous Si Thin Films by Microwave Annealing

    Institute of Scientific and Technical Information of China (English)

    RAO Rui; XU Zhong-yang; ZENG Xiang-bing

    2002-01-01

    Al-induced lateral crystallization of amorphous silicon thin films by microwave annealing is investigated. The crystallized Si films are examined by optical microscopy , Raman spectroscopy, transmission electron microscopy and transmission electron diffraction micrography. After microwave annealing at 480 ℃ for 50 min,the amorphous Si is completely crystallized with large grains of main ( 111 ) orientation. The rate of lateral crystallization is 0.04μm/min. This process, labeled MILC-MA, not only lowers the temperature but also reduces the time of crystallization. The crystallization mechanism during microwave annealing and the electrical properties of polycrystalline Si thin films are analyzed. This MILC-MA process has potential applications in large area electronics.

  11. Hydrogenated Amorphous Silicon Sensor Deposited on Integrated Circuit for Radiation Detection

    OpenAIRE

    Despeisse, M; Anelli, G.; Jarron, P.; Kaplon, J; Moraes, D.; A. Nardulli(Institute for Particle Physics, ETH Zurich, Zurich, Switzerland); Powolny, F; Wyrsch, N

    2008-01-01

    Radiation detectors based on the deposition of a 10 to 30 μm thick hydrogenated amorphous silicon (a-Si:H) sensor directly on top of integrated circuits have been developed. The performance of this detector technology has been assessed for the first time in the context of particle detectors. Three different circuits were designed in a quarter micron CMOS technology for these studies. The so-called TFA (Thin-Film on ASIC) detectors obtained after deposition of a-Si:H sensors on the developed c...

  12. Amorphous silicon based p-i-i-n photodetectors for point-of-care testing

    Energy Technology Data Exchange (ETDEWEB)

    Furin, Dominik; Proll, Guenther; Gauglitz, Guenther [Universitaet Tuebingen, Institut fuer Physikalische und Theoretische Chemie, Auf der Morgenstelle 8, 72076 Tuebingen (Germany); Thielmann, Johannes; Harendt, Christine [Institut fuer Mikroelektronik Stuttgart, Allmandring 30a, 70569 Stuttgart (Germany); Pfaefflin, Albrecht; Schleicher, Erwin [Universitaetsklinikum und Medizinische Fakultaet, Universitaetsklinikum Tuebingen, Geissweg 3, 72076 Tuebingen (Germany); Schubert, Markus B. [Institut fuer Physikalische Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart (Germany); Saemann, Marc

    2010-04-15

    Modern medical diagnostics demands point-of-care testing (POCT) systems for quick tests in clinical or out-patient environments. This investigation combines the Reflectometric Interference Spectroscopy (RIfS) with thin film technology for a highly sensitive, direct optical and label-free detection of proteins, e.g. inflammation or cardiovascular markers. Amorphous silicon (a-Si) based thin film photodetectors replace the so far needed spectrometer and permit downsizing of the POCT system. Photodetectors with p-i-i-n structure adjust their spectral sensitivity according to the applied read-out voltage. The use of amorphous silicon carbide in the p-type and the first intrinsic layer enhances the sensitivity through very low dark currents of the photodetectors and enables the adjustment of their absorption characteristics. Integrating the thin film photodetectors on the rear side of the RIfS substrate eliminates optical losses and distortions, as compared to the standard RIfS setup. An integrated Application Specific Integrated Circuit (ASIC) chip performs a current-frequency conversion to accurately detect the photocurrent of up to eight parallel photodetector channels. In addition to the optimization of the photo-detectors, this contribution presents first successful direct optical and label-free RIfS measurements of C-reactive protein (CRP) and D-dimer in buffer solution in physiological relevant concentrations. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Electroless chemical grafting of nitrophenyl groups on n-doped hydrogenated amorphous silicon surfaces.

    Science.gov (United States)

    Kim, Chulki; Oh, Kiwon; Han, Seunghee; Kim, Kyungkon; Kim, Il Won; Kim, Heesuk

    2014-08-01

    The direct spontaneous grafting of 4-nitrophenyl molecules onto n-doped hydrogenated amorphous silicon (a-Si:H) surfaces without external ultraviolet, thermal, or electrochemical energy was invegtigated. Clean n-doped a-Si:H thin films were dipped in a solution of 4-nitrobenzenediazonium salts (PNBD) in acetonitrile. After the modified surfaces were rinsed, they were analyzed qualitatively and quantitatively by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). XPS and AFM results show that the reaction of an n-doped a-Si:H thin film with PNBD self-terminates without polymerization, after 5 h, and the surface number density of 4-nitrophenyl molecules is 4.2 x 10(15)/cm2. These results demonstrate that the spontaneous grafting of nitrophenyl layers onto n-doped a-Si:H thin films is an attractive pathway toward forming interfaces between a-Si:H and organic layers under ambient conditions. PMID:25936109

  14. Grain boundary resistance to amorphization of nanocrystalline silicon carbide

    Science.gov (United States)

    Chen, Dong; Gao, Fei; Liu, Bo

    2015-11-01

    Under the C displacement condition, we have used molecular dynamics simulation to examine the effects of grain boundaries (GBs) on the amorphization of nanocrystalline silicon carbide (nc-SiC) by point defect accumulation. The results show that the interstitials are preferentially absorbed and accumulated at GBs that provide the sinks for defect annihilation at low doses, but also driving force to initiate amorphization in the nc-SiC at higher doses. The majority of surviving defects are C interstitials, as either C-Si or C-C dumbbells. The concentration of defect clusters increases with increasing dose, and their distributions are mainly observed along the GBs. Especially these small clusters can subsequently coalesce and form amorphous domains at the GBs during the accumulation of carbon defects. A comparison between displacement amorphized nc-SiC and melt-quenched single crystal SiC shows the similar topological features. At a dose of 0.55 displacements per atom (dpa), the pair correlation function lacks long range order, demonstrating that the nc-SiC is fully amorphilized.

  15. The "Micromorph" cell: a New Way to High-Efficiency-Low-Temperature Crystalline Silicon Thin-Film Cell Manufacturing ?

    OpenAIRE

    Keppner, H.; Kroll, U.; Torres, P.; J. Meier; Platz, R.; Fischer, D.; Beck, N; Dubail, S.; Anna Selvan, J. A.; Pellaton Vaucher, N.; Goerlitzer, M.; Ziegler, Y.; Tscharner, R.; Hof, Ch.; Goetz, M

    1997-01-01

    Hydrogenated microcrystalline Silicon (µc-Si:H) produced by the VHF-GD (Very High Frequency Glow Discharge) process can be considered to be a new base material for thin-film crystalline silicon solar cells. The most striking feature of such cells, in contrast to conventional amorphous silicon technology, is their stability under light-soaking. With respect to crystalline silicon technology, their most striking advantage is their low process temperature (220 °C). The so called “micromorph” cel...

  16. Effect of light trapping in an amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Iftiquar, S.M., E-mail: iftiquar@skku.edu [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jung, Juyeon; Park, Hyeongsik [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Cho, Jaehyun; Shin, Chonghoon [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Park, Jinjoo [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jung, Junhee [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Bong, Sungjae [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Sunbo [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.kr [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-07-31

    Light trapping in amorphous silicon based solar cell has been investigated theoretically. The substrate for these cells can be textured, including pyramidally textured c-Si wafer, to improve capture of incident light. A thin silver layer, deposited on the substrate of an n–i–p cell, ultimately goes at the back of the cell structure and can act a back reflector to improve light trapping. The two physical solar cells we investigated had open circuit voltages (V{sub oc}) of 0.87, 0.90 V, short circuit current densities (J{sub sc}) of 14.2, 15.36 mA/cm{sup 2} respectively. The first cell was investigated for the effect on its performance while having and not having light trapping scheme (LT), when thickness of the active layer (d{sub i}) was changed in the range of 100 nm to 800 nm. In both the approaches, for having or not having LT, the short circuit current density increases with d{sub i} while the V{sub oc} and fill factor, decreases steadily. However, maximum cell efficiency can be obtained when d{sub i} = 400 nm, and hence it was considered optimized thickness of the active layer, that was used for further investigation. With the introduction of light trapping to the second cell, it shows a further enhancement in J{sub sc} and red response of the external quantum efficiency to 16.6 mA/cm{sup 2} and by 11.1% respectively. Considering multiple passages of light inside the cell, we obtained an improvement in cell efficiency from 9.7% to 10.6%. - Highlights: • A theoretical analysis of light trapping in p–i–n and n–i–p type solar cells • J{sub sc} increases and V{sub oc} decreases with the increase in i-layer thickness. • Observed optimized thickness of i-layer as 400 nm • J{sub sc} improved from 15.4 mA/cm{sup 2} to 16.6 mA/cm{sup 2} due to the light trapping. • Efficiency (η) improved from 9.7% to 10.6% due to better red response of the EQE.

  17. Effect of light trapping in an amorphous silicon solar cell

    International Nuclear Information System (INIS)

    Light trapping in amorphous silicon based solar cell has been investigated theoretically. The substrate for these cells can be textured, including pyramidally textured c-Si wafer, to improve capture of incident light. A thin silver layer, deposited on the substrate of an n–i–p cell, ultimately goes at the back of the cell structure and can act a back reflector to improve light trapping. The two physical solar cells we investigated had open circuit voltages (Voc) of 0.87, 0.90 V, short circuit current densities (Jsc) of 14.2, 15.36 mA/cm2 respectively. The first cell was investigated for the effect on its performance while having and not having light trapping scheme (LT), when thickness of the active layer (di) was changed in the range of 100 nm to 800 nm. In both the approaches, for having or not having LT, the short circuit current density increases with di while the Voc and fill factor, decreases steadily. However, maximum cell efficiency can be obtained when di = 400 nm, and hence it was considered optimized thickness of the active layer, that was used for further investigation. With the introduction of light trapping to the second cell, it shows a further enhancement in Jsc and red response of the external quantum efficiency to 16.6 mA/cm2 and by 11.1% respectively. Considering multiple passages of light inside the cell, we obtained an improvement in cell efficiency from 9.7% to 10.6%. - Highlights: • A theoretical analysis of light trapping in p–i–n and n–i–p type solar cells • Jsc increases and Voc decreases with the increase in i-layer thickness. • Observed optimized thickness of i-layer as 400 nm • Jsc improved from 15.4 mA/cm2 to 16.6 mA/cm2 due to the light trapping. • Efficiency (η) improved from 9.7% to 10.6% due to better red response of the EQE

  18. Ultralight amorphous silicon alloy photovoltaic modules for space applications

    Science.gov (United States)

    Hanak, J. J.; Chen, Englade; Fulton, C.; Myatt, A.; Woodyard, J. R.

    1987-01-01

    Ultralight and ultrathin, flexible, rollup monolithic PV modules have been developed consisting of multijunction, amorphous silicon alloys for either terrestrial or aerospace applications. The rate of progress in increasing conversion efficiency of stable multijunction and multigap PV cells indicates that arrays of these modules can be available for NASA's high power systems in the 1990's. Because of the extremely light module weight and the highly automated process of manufacture, the monolithic a-Si alloy arrays are expected to be strongly competitive with other systems for use in NASA's space station or in other large aerospace applications.

  19. Radiation damage and annealing of amorphous silicon solar cells

    Science.gov (United States)

    Byvik, C. E.; Slemp, W. S.; Smith, B. T.; Buoncristiani, A. M.

    1984-01-01

    Amorphous silicon solar cells were irradiated with 1 MeV electrons at the Space Environmental Effects Laboratory of the NASA Langley Research Center. The cells accumulated a total fluence of 10 to the 14th, 10 to the 15th, and 10 to the 16th electrons per square centimeter and exhibited increasing degradation with each irradiation. This degradation was tracked by evaluating the I-V curves for AM0 illumination and the relative spectral response. The observed radiation damage was reversed following an anneal of the cells under vacuum at 200 C for 2 hours.

  20. Study on stability of hydrogenated amorphous silicon films

    Institute of Scientific and Technical Information of China (English)

    Zhu Xiu-Hong; Chen Guang-Hua; Zhang Wen-Li; Ding Yi; Ma Zhan-Jie; Hu Yue-Hui; He Bin; Rong Yan-Dong

    2005-01-01

    Hydrogenated amorphous silicon (a-Si:H) films with high and same order of magnitude photosensitivity (~105) but different stability were prepared by using microwave electron cyclotron resonance chemical vapour deposition system under the different deposition conditions. It was proposed that there was no direct correlation between the photosensitivity and the hydrogen content (CH) as well as H-Si bonding configurations, but for the stability, they were the critical factors. The experimental results indicated that higher substrate temperature, hydrogen dilution ratio and lower deposition rate played an important role in improving the microstructure of a-Si:H films. We used hydrogen elimination model to explain our experimental results.

  1. Atomistic models of hydrogenated amorphous silicon nitride from first principles

    OpenAIRE

    Jarolimek, K.; de Groot, R. A.; de Wijs, G. A.; Zeman, M.

    2010-01-01

    We present a theoretical study of hydrogenated amorphous silicon nitride (a-SiNx:H), with equal concentrations of Si and N atoms (x=1), for two considerably different densities (2.0 and 3.0 g/cm3). Densities and hydrogen concentration were chosen according to experimental data. Using first-principles molecular-dynamics within density-functional theory the models were generated by cooling from the liquid. Where both models have a short-range order resembling that of crystalline Si3N4 because o...

  2. Two-Level Systems in Evaporated Amorphous Silicon

    OpenAIRE

    Queen, D. R.; Liu, X.; Karel, J.; Jacks, H. C.; Metcalf, T. H.; Hellman, F.

    2015-01-01

    In $e$-beam evaporated amorphous silicon ($a$-Si), the densities of two-level systems (TLS), $n_{0}$ and $\\overline{P}$, determined from specific heat $C$ and internal friction $Q^{-1}$ measurements, respectively, have been shown to vary by over three orders of magnitude. Here we show that $n_{0}$ and $\\overline{P}$ are proportional to each other with a constant of proportionality that is consistent with the measurement time dependence proposed by Black and Halperin and does not require the i...

  3. Eigenmode Splitting in all Hydrogenated Amorphous Silicon Nitride Coupled Microcavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-Gao; HUANG Xin-Fan; CHEN Kun-Ji; QIAN Bo; CHEN San; DING Hong-Lin; LIU Sui; WANG Xiang; XU Jun; LI Wei

    2008-01-01

    Hydrogenated amorphous silicon nitride based coupled optical microcavity is investigated theoretically and experimentally. The theoretical calculation of the transmittance spectra of optical microcavity with one cavity and coupled microcavity with two-cavity is performed.The optical eigenmode splitting for coupled microcavity is found due to the interaction between the neighbouring localized cavities.Experimentally,the coupled cavity samples are prepared by plasma enhanced chemical vapour deposition and characterized by photoluminescence measurements.It is found that the photoluminescence peak wavelength agrees well with the cavity mode in the calculated transmittance spectra.This eigenmode splitting is analogous to the electron state energy splitting in diatom molecules.

  4. INFRARED VIBRATIONAL SPECTRA OF CHLORINATED AND HYDROGENATED AMORPHOUS SILICON

    OpenAIRE

    Kalem, S; Chevallier, J.; Al Dallal, S.; Bourneix, J.

    1981-01-01

    The infrared spectra of chlorinated and hydrogenated amorphous silicon have been measured. In addition to the hydrogen induced bands at 2110, 1990, 885, 840 and 640 cm-1, we observe two new modes at 545 cm-1 (Si-Cl stretching) and 500 cm-1 ( Si TO modes induced by chlorine). Observation of the 545 cm-1 band proves that chlorine acts as a dangling bond terminator. Upon annealing, some of the Si-Cl groups transform into SiCl4 molecules (SiCl4 stretching at 615 cm-1). A good agreement is found b...

  5. Experiment and Simulation Study on the Amorphous Silicon Photovoltaic Walls

    OpenAIRE

    Wenjie Zhang; Bin Hao; Nianping Li

    2014-01-01

    Based on comparative study on two amorphous silicon photovoltaic walls (a-Si PV walls), the temperature distribution and the instant power were tested; and with EnergyPlus software, similar models of the walls were built to simulate annual power generation and air conditioning load. On typical sunshine day, the corresponding position temperature of nonventilated PV wall was generally 0.5~1.5°C higher than that of ventilated one, while the power generation was 0.2%~0.4% lower, which was consis...

  6. Lithium concentration dependent structure and mechanics of amorphous silicon

    Science.gov (United States)

    Sitinamaluwa, H. S.; Wang, M. C.; Will, G.; Senadeera, W.; Zhang, S.; Yan, C.

    2016-06-01

    A better understanding of lithium-silicon alloying mechanisms and associated mechanical behavior is essential for the design of Si-based electrodes for Li-ion batteries. Unfortunately, the relationship between the dynamic mechanical response and microstructure evolution during lithiation and delithiation has not been well understood. We use molecular dynamic simulations to investigate lithiated amorphous silicon with a focus to the evolution of its microstructure, phase composition, and stress generation. The results show that the formation of LixSi alloy phase is via different mechanisms, depending on Li concentration. In these alloy phases, the increase in Li concentration results in reduction of modulus of elasticity and fracture strength but increase in ductility in tension. For a LixSi system with uniform Li distribution, volume change induced stress is well below the fracture strength in tension.

  7. Elimination of residual stress in hydrogenated amorphous silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Jones, P.L.; Korhonen, A.S.; Dimmey, L.J.; Cocks, F.H.; Pollock, J.T.A.

    1982-02-01

    Residual stresses were measured in hydrogenated amorphous silicon films produced by glow discharge decomposition of silane and deposited onto aluminium, Invar (36Ni-64Fe), copper and nickel substrates. The substrate temperatures were in the range 54-295/sup 0/C during deposition. For low deposition temperatures, all films irrespective of substrate exhibited compressive room temperature residual stresses ranging from -60 to -120 mPa. A major fraction of this residual stress is found to come from the intrinsic deposition stress, which has complex origins relating to deposition and substrate conditions. With aluminium substrates, increasing the deposition temperature increased the compressive residual stress, primarily because of the difference between the thermal expansion coefficients of silicon and aluminium. However, with Invar substrates, films deposited at 225/sup 0/C exhibited a zero residual stress at room temperature because of a balancing of the compressive intrinsic deposition stress with the tensile stress produced during cooling by the low thermal expansion of the Invar.

  8. Elastic properties of amorphous thin films studied by Rayleigh waves

    International Nuclear Information System (INIS)

    Physical vapor deposition in ultra-high vacuum was used to co-deposit nickel and zirconium onto quartz single crystals and grow amorphous Ni1-xZrx (0.1 < x < 0.87) thin film. A high-resolution surface acoustic wave technique was developed for in situ measurement of film shear moduli. The modulus has narrow maxima at x = 0. 17, 0.22, 0.43, 0.5, 0.63, and 0.72, reflecting short-range ordering and formation of aggregates in amorphous phase. It is proposed that the aggregates correspond to polytetrahedral atom arrangements limited in size by geometrical frustration

  9. The Synthesis and Structural Properties of Crystalline Silicon Quantum Dots upon Thermal Annealing of Hydrogenated Amorphous Si-Rich Silicon Carbide Films

    Science.gov (United States)

    Wen, Guozhi; Zeng, Xiangbin; Li, Xianghu

    2016-08-01

    Silicon quantum dots (QDs) embedded in non-stoichiometric hydrogenated silicon carbide (SiC:H) thin films have been successfully synthesized by plasma-enhanced chemical vapor deposition and post-annealing. The chemical composition analyses have been carried out by x-ray photoelectron spectroscopy (XPS). The bonding configurations have been deduced from Fourier transform infrared absorption measurements (FTIR). The evolution of microstructure with temperature has been characterized by glancing incident x-ray diffraction (XRD) and Raman diffraction spectroscopy. XPS and FTIR show that it is in Si-rich feature and there are a few hydrogenated silicon clusters in the as-grown sample. XRD and Raman diffraction spectroscopy show that it is in amorphous for the as-grown sample, while crystalline silicon QDs have been synthesized in the 900°C annealed sample. Silicon atoms precipitation from the SiC matrix or silicon phase transition from amorphous SiC is enhanced with annealing temperature increase. The average sizes of silicon QDs are about 5.1 nm and 5.6 nm, the number densities are as high as 1.7 × 1012 cm-2 and 3.2 × 1012 cm-2, and the crystalline volume fractions are about 58.3% and 61.3% for the 900°C and 1050°C annealed samples, respectively. These structural properties analyses provide an understanding about the synthesis of silicon QDs upon thermal annealing for applications in next generation optoelectronic and photovoltaic devices.

  10. Effect of surface irradiation during the photo-CVD deposition of a-Si:H thin films. Hikari CVD ho ni yoru amorphous silicon sakuseiji no kiban hikari reiki koka

    Energy Technology Data Exchange (ETDEWEB)

    Tasaka, K.; Doering, H.; Hashimoto, K.; Fujishima, A. (The University of Tokyo, Tokyo (Japan))

    1990-12-06

    This paper shows the impact of the irradiation from an additional light source during the deposition of hydrogenated amorphous silicon by photo-CVD deposition. Using a mercury sensitized photo-CVD process from Disilan (Si {sub 2} H {sub 6}) and hydrogen, silicon was deposited. A 40W low pressure mercury lamp was applied as the light source. A portion of the substrate was in addition irradiated using an Xg-He lamp through a thermal filter. Irradiation of the substrate using only Xg-He lamp produced no deposition, since this light has a wavelength which is too long to produce the SiH {sub 3}-radicals needed for Si deposition. The additional Xg-He light source was discovered to cause an increased thickness of deposited a-Si:H film and a transmission of the band structure. The reasons of these are considered that the influence of irradiation is not limited to film thickness, but that irradiation also impacts the composition of the a-Si:H film so as to cause a reduction in the hydrogen content. 10 figs., 1 tab.

  11. High-stability transparent amorphous oxide TFT with a silicon-doped back-channel layer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung-Rae; Park, Jea-Gun [Hanyang University, Seoul (Korea, Republic of)

    2014-10-15

    We significantly reduced various electrical instabilities of amorphous indium gallium zinc oxide thin-film transistors (TFTs) by using the co-deposition of silicon on an a-IGZO back channel. This process showed improved stability of the threshold voltage (V{sub th}) under high temperature and humidity and negative gate-bias illumination stress (NBIS) without any reduction of IDS. The enhanced stability was achieved with silicon, which has higher metal-oxide bonding strengths than gallium does. Additionally, SiO{sub x} distributed on the a-IGZO surface reduced the adsorption and the desorption of H{sub 2}O and O{sub 2}. This process is applicable to the TFT manufacturing process with a variable sputtering target.

  12. Study of electron-irradiated silicon thin films using transient photocurrent spectroscopy

    OpenAIRE

    Reynolds, S; Astakhov, O.; Smirnov, V.(Joint Institute for Nuclear Research, Dubna, Russia)

    2014-01-01

    Electron irradiation of silicon thin films creates localised states, which degrade theiropto-electronic properties. We present a series of transient photocurrent spectroscopy (TPC)measurements on electron-irradiated amorphous and microcrystalline silicon films, annealed atprogressively increasing temperatures. This has enabled localised states associated with bothdangling bonds and conduction band tails to be examined over a wide energy range.Trends inthe evolution of the DOS following electr...

  13. Depth profile study on Raman spectra of high-energy-electron-irradiated hydrogenated amorphous silicon films

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    According to the different penetration depths for the incident lights of 472 nm and 532 nm in hydrogenated amorphous silicon (a-Si:H) thin films, the depth profile study on Raman spectra of a-Si:H films was carried out. The network ordering evolution in the near surface and interior region of the unirradiated and irradiated a-Si:H films was investigated. The results show that there is a structural improvement in the shortand intermediate-range order towards the surface of the unirradiated a-Si:H films. The amorphous silicon network in the near and interior region becomes more disordered on the shortand intermediate-range scales after being irradiated with high energy electrons. However, the surface of the irradiated films becomes more disordered in comparison with their interior region, indicating that the created defects caused by electron irradiation are concentrated in the near surface of the irradiated films. Annealing eliminates the irradiation effects on a-Si:H thin films and the structural order of the irradiated films is similar to that of the unirradiated ones after being annealed. There exists a structural improvement in the shortand intermediate-range order towards the surface of the irradiated a-Si:H films after being annealed.

  14. Aluminium-induced crystallization of amorphous silicon films deposited by DC magnetron sputtering on glasses

    International Nuclear Information System (INIS)

    Amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) films were deposited by DC magnetron sputtering technique with argon and hydrogen plasma mixture on Al deposited by thermal evaporation on glass substrates. The a-Si/Al and a-Si:H/Al thin films were annealed at different temperatures ranging from 250 to 550 deg. C during 4 h in vacuum-sealed bulb. The effects of annealing temperature on optical, structural and morphological properties of as-grown as well as the vacuum-annealed a-Si/Al and a-Si:H/Al thin films are presented in this contribution. The averaged transmittance of a-Si:H/Al film increases upon increasing the annealing temperature. XRD measurements clearly evidence that crystallization is initiated at 450 deg. C. The number and intensity of diffraction peaks appearing in the diffraction patterns are more important in a-Si:H/Al than that in a-Si/Al layers. Results show that a-Si:H films deposited on Al/glass crystallize above 450 deg. C and present better crystallization than the a-Si layers. The presence of hydrogen induces an improvement of structural properties of poly-Si prepared by aluminium-induced crystallization (AIC).

  15. Aluminium-induced crystallization of amorphous silicon films deposited by DC magnetron sputtering on glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kezzoula, F., E-mail: kezzoula@usa.com [UDTS 2Bd Frantz Fanon 7 merveilles Algiers (Algeria); Laboratory of Materials, Mineral and Composite (LMMC), Boumerdes University (Algeria); Hammouda, A. [UPR CNRS 3079 CEMHTI - 1D Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2 (France); Equipe Couches Minces, Laboratoire de Physique des Materiaux, Faculte de Physique, USTHB, Algiers (Algeria); Universite d' Orleans, 45067 Orleans Cedex 2 (France); Kechouane, M. [Equipe Couches Minces, Laboratoire de Physique des Materiaux, Faculte de Physique, USTHB, Algiers (Algeria); Simon, P. [UPR CNRS 3079 CEMHTI - 1D Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2 (France); Universite d' Orleans, 45067 Orleans Cedex 2 (France); Abaidia, S.E.H. [Laboratory of Materials, Mineral and Composite (LMMC), Boumerdes University (Algeria); Keffous, A. [UDTS 2Bd Frantz Fanon 7 merveilles Algiers (Algeria); Cherfi, R. [Equipe Couches Minces, Laboratoire de Physique des Materiaux, Faculte de Physique, USTHB, Algiers (Algeria); Menari, H.; Manseri, A. [UDTS 2Bd Frantz Fanon 7 merveilles Algiers (Algeria)

    2011-09-15

    Amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) films were deposited by DC magnetron sputtering technique with argon and hydrogen plasma mixture on Al deposited by thermal evaporation on glass substrates. The a-Si/Al and a-Si:H/Al thin films were annealed at different temperatures ranging from 250 to 550 deg. C during 4 h in vacuum-sealed bulb. The effects of annealing temperature on optical, structural and morphological properties of as-grown as well as the vacuum-annealed a-Si/Al and a-Si:H/Al thin films are presented in this contribution. The averaged transmittance of a-Si:H/Al film increases upon increasing the annealing temperature. XRD measurements clearly evidence that crystallization is initiated at 450 deg. C. The number and intensity of diffraction peaks appearing in the diffraction patterns are more important in a-Si:H/Al than that in a-Si/Al layers. Results show that a-Si:H films deposited on Al/glass crystallize above 450 deg. C and present better crystallization than the a-Si layers. The presence of hydrogen induces an improvement of structural properties of poly-Si prepared by aluminium-induced crystallization (AIC).

  16. Electrical characteristics of amorphous molybdenum-nickel contacts to silicon

    Science.gov (United States)

    Kung, K. T.-Y.; Nicolet, M.-A.; Suni, I.

    1984-01-01

    The electrical characteristics of sputtered, amorphous Mo-Ni contacts have been measured on both p- and n-type Si, as functions of composition (30, 54, and 58 at. percent Mo). The contact resistivity on both p(+) and n(+) Si is in the 0.00000 ohm sq cm range. The barrier height for as-deposited samples varies between phi-bp = 0.47-0.42 V on p-type Si and between phi-bn = 0.63-0.68 V on n-type Si, as the composition of the amorphous layer goes from Ni-rich to Mo-rich. The sum phi-bp + phi-bn always equals 1.12 V, within experimental error. After thermal treatment at 500 C for 1/2 h, the contact resistivity changes by a factor of two or less, while the barrier height changes by at most approximately 0.05 V. In light of these results, the amorphous Mo-Ni film makes good ohmic contacts to silicon.

  17. Theory of structural transformation in lithiated amorphous silicon.

    Science.gov (United States)

    Cubuk, Ekin D; Kaxiras, Efthimios

    2014-07-01

    Determining structural transformations in amorphous solids is challenging due to the paucity of structural signatures. The effect of the transitions on the properties of the solid can be significant and important for applications. Moreover, such transitions may not be discernible in the behavior of the total energy or the volume of the solid as a function of the variables that identify its phases. These issues arise in the context of lithiation of amorphous silicon (a-Si), a promising anode material for high-energy density batteries based on lithium ions. Recent experiments suggest the surprising result that the lithiation of a-Si is a two-phase process. Here, we present first-principles calculations of the structure of a-Si at different lithiation levels. Through a detailed analysis of the short and medium-range properties of the amorphous network, using Voronoi-Delaunay methods and ring statistics, we show that a-LixSi has a fundamentally different structure below and above a lithiation level corresponding to x ∼ 2. PMID:24911996

  18. Experimental and Computer Modelling Studies of Metastability of Amorphous Silicon Based Solar Cells

    NARCIS (Netherlands)

    Munyeme, Geoffrey

    2003-01-01

    We present a combination of experimental and computer modelling studies of the light induced degradation in the performance of amorphous silicon based single junction solar cells. Of particular interest in this study is the degradation kinetics of different types of amorphous silicon single junction

  19. Laser annealing of amorphous/poly: Silicon solar cell material flight experiment

    Science.gov (United States)

    Cole, Eric E.

    1990-01-01

    The preliminary design proposed for the microelectronics materials processing equipment is presented. An overall mission profile, description of all processing steps, analysis methods and measurement techniques, data acquisition and storage, and a preview of the experimental hardware are included. The goal of the project is to investigate the viability of material processing of semiconductor microelectronics materials in a micro-gravity environment. The two key processes are examined: (1) Rapid Thermal Annealing (RTA) of semiconductor thin films and damaged solar cells, and (2) thin film deposition using a filament evaporator. The RTA process will be used to obtain higher quality crystalline properties from amorphous/poly-silicon films. RTA methods can also be used to repair radiation-damaged solar cells. On earth this technique is commonly used to anneal semiconductor films after ion-implantation. The damage to the crystal lattice is similar to the defects found in solar cells which have been exposed to high-energy particle bombardment.

  20. Amorphous Hafnium-Indium-Zinc Oxide Semiconductor Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang

    2012-01-01

    Full Text Available We reported on the performance and electrical properties of co-sputtering-processed amorphous hafnium-indium-zinc oxide (α-HfIZO thin film transistors (TFTs. Co-sputtering-processed α-HfIZO thin films have shown an amorphous phase in nature. We could modulate the In, Hf, and Zn components by changing the co-sputtering power. Additionally, the chemical composition of α-HfIZO had a significant effect on reliability, hysteresis, field-effect mobility (μFE, carrier concentration, and subthreshold swing (S of the device. Our results indicated that we could successfully and easily fabricate α-HfIZO TFTs with excellent performance by the co-sputtering process. Co-sputtering-processed α-HfIZO TFTs were fabricated with an on/off current ratio of ~106, higher mobility, and a subthreshold slope as steep as 0.55 V/dec.

  1. Understanding the thickness-dependent effective lifetime of crystalline silicon passivated with a thin layer of intrinsic hydrogenated amorphous silicon using a nanometer-accurate wet-etching method

    Science.gov (United States)

    Deligiannis, Dimitrios; Marioleas, Vasileios; Vasudevan, Ravi; Visser, Cassan C. G.; van Swaaij, René A. C. M. M.; Zeman, Miro

    2016-06-01

    This work studies the dependency of the effective lifetime on the a-Si:H layer thickness of c-Si substrates passivated with intrinsic a-Si:H. This is experimentally investigated by using a soft wet-etching method that enables accurate control of the a-Si:H layer thickness. In this way, variations in the effective lifetime down to thicknesses of a few nanometers are studied, while excluding effects originating from the deposition conditions of a-Si:H when samples of different thicknesses are fabricated. For thin passivation layers, results show a strong thickness dependency of the effective lifetime, which is mainly influenced by the recombination at the external a-Si:H surfaces. For thicker passivation layers, the effective lifetime is predominantly determined by the bulk a-Si:H and/or c-Si defect density. During the etching of the a-Si:H passivation layers, a gradient in the Cody gap for our samples is observed. This gradient is accompanied by a stronger decrease in the effective lifetime and is attributed to a decrease in the a-Si:H band gap and valence band offset. The observed changes in lifetime with a-Si:H layer thickness are supported with AFORS-HET simulations. When a gradient in the a-Si:H passivation layer band gap is used, simulations can reproduce the experimental results.

  2. Studies of silicon carbide and silicon carbide nitride thin films

    Science.gov (United States)

    Alizadeh, Zhila

    Silicon carbide semiconductor technology is continuing to advance rapidly. The excellent physical and electronic properties of silicon carbide recently take itself to be the main focused power device material for high temperature, high power, and high frequency electronic devices because of its large band gap, high thermal conductivity, and high electron saturation drift velocity. SiC is more stable than Si because of its high melting point and mechanical strength. Also the understanding of the structure and properties of semiconducting thin film alloys is one of the fundamental steps toward their successful application in technologies requiring materials with tunable energy gaps, such as solar cells, flat panel displays, optical memories and anti-reflecting coatings. Silicon carbide and silicon nitrides are promising materials for novel semiconductor applications because of their band gaps. In addition, they are "hard" materials in the sense of having high elastic constants and large cohesive energies and are generally resistant to harsh environment, including radiation. In this research, thin films of silicon carbide and silicon carbide nitride were deposited in a r.f magnetron sputtering system using a SiC target. A detailed analysis of the surface chemistry of the deposited films was performed using x-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy whereas structure and morphology was studied atomic force microscopy (AFM), and nonoindentation.

  3. Amorphous thin film growth: theory compared with experiment

    OpenAIRE

    Raible, M.; Mayr, S. G.; Linz, S. J.; Moske, M.; Hänggi, P.; Samwer, K.

    1999-01-01

    Experimental results on amorphous ZrAlCu thin film growth and the dynamics of the surface morphology as predicted from a minimal nonlinear stochastic deposition equation are analysed and compared. Key points of this study are (i) an estimation procedure for coefficients entering into the growth equation and (ii) a detailed analysis and interpretation of the time evolution of the correlation length and the surface roughness. The results corroborate the usefulness of the deposition equation as ...

  4. The Urbach focus and optical properties of amorphous hydrogenated SiC thin films

    Science.gov (United States)

    Guerra, J. A.; Angulo, J. R.; Gomez, S.; Llamoza, J.; Montañez, L. M.; Tejada, A.; Töfflinger, J. A.; Winnacker, A.; Weingärtner, R.

    2016-05-01

    We report on the optical bandgap engineering of sputtered hydrogenated amorphous silicon carbide (a-SiC:H) thin films under different hydrogen dilution conditions during the deposition process and after post-deposition annealing treatments. The Tauc-gap and Urbach energy are calculated from ultraviolet-visible optical transmittance measurements. Additionally, the effect of the thermal annealing temperature on the hydrogen out-diffusion is assessed through infra-red absorption spectroscopy. A new model for the optical absorption of amorphous semiconductors is presented and employed to determine the bandgap as well as the Urbach energy from a single fit of the absorption coefficient. This model allowed the discrimination of the Urbach tail from the Tauc region without any external bias. Finally, the effect of the hydrogen dilution on the band-edge and the Urbach focus is discussed.

  5. Material Properties of Laser-Welded Thin Silicon Foils

    OpenAIRE

    Brabec, C.J.; Auer, R.; A. Bochmann; Christiansen, S.; Schmidt, M.; K. Cvecek; Voigt, M.; Hessmann, M. T.; Kunz, T.

    2013-01-01

    An extended monocrystalline silicon base foil offers a great opportunity to combine low-cost production with high efficiency silicon solar cells on a large scale. By overcoming the area restriction of ingot-based monocrystalline silicon wafer production, costs could be decreased to thin film solar cell range. The extended monocrystalline silicon base foil consists of several individual thin silicon wafers which are welded together. A comparison of three different approaches to weld 50 μm thin...

  6. Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide

    Directory of Open Access Journals (Sweden)

    Jia Ge

    2014-01-01

    Full Text Available We present an alternative method of depositing a high-quality passivation film for heterojunction silicon wafer solar cells, in this paper. The deposition of hydrogenated intrinsic amorphous silicon suboxide is accomplished by decomposing hydrogen, silane, and carbon dioxide in an industrial remote inductively coupled plasma platform. Through the investigation on CO2 partial pressure and process temperature, excellent surface passivation quality and optical properties are achieved. It is found that the hydrogen content in the film is much higher than what is commonly reported in intrinsic amorphous silicon due to oxygen incorporation. The observed slow depletion of hydrogen with increasing temperature greatly enhances its process window as well. The effective lifetime of symmetrically passivated samples under the optimal condition exceeds 4.7 ms on planar n-type Czochralski silicon wafers with a resistivity of 1 Ωcm, which is equivalent to an effective surface recombination velocity of less than 1.7 cms−1 and an implied open-circuit voltage (Voc of 741 mV. A comparison with several high quality passivation schemes for solar cells reveals that the developed inductively coupled plasma deposited films show excellent passivation quality. The excellent optical property and resistance to degradation make it an excellent substitute for industrial heterojunction silicon solar cell production.

  7. Similarities in the electrical conduction processes in hydrogenated amorphous silicon oxynitride and silicon nitride

    CERN Document Server

    Kato, H; Ohki, Y; Seol, K S; Noma, T

    2003-01-01

    Electrical conduction at high fields was examined in a series of hydrogenated amorphous silicon oxynitride and silicon nitride films with different nitrogen contents deposited by plasma-enhanced chemical vapour deposition. It was shown that the conduction is attributable to the Poole-Frenkel (PF) emission in the two materials. The energy depths of the PF sites and the dependences on the sample's chemical composition are quite similar for the two samples. It is considered that the PF sites in the two materials are identical.

  8. Modelling structure and properties of amorphous silicon boron nitride ceramics

    Directory of Open Access Journals (Sweden)

    Johann Christian Schön

    2011-06-01

    Full Text Available Silicon boron nitride is the parent compound of a new class of high-temperature stable amorphous ceramics constituted of silicon, boron, nitrogen, and carbon, featuring a set of properties that is without precedent, and represents a prototypical random network based on chemical bonds of predominantly covalent character. In contrast to many other amorphous materials of technological interest, a-Si3B3N7 is not produced via glass formation, i.e. by quenching from a melt, the reason being that the binary components, BN and Si3N4, melt incongruently under standard conditions. Neither has it been possible to employ sintering of μm-size powders consisting of binary nitrides BN and Si3N4. Instead, one employs the so-called sol-gel route starting from single component precursors such as TADB ((SiCl3NH(BCl2. In order to determine the atomic structure of this material, it has proven necessary to simulate the actual synthesis route.Many of the exciting properties of these ceramics are closely connected to the details of their amorphous structure. To clarify this structure, it is necessary to employ not only experimental probes on many length scales (X-ray, neutron- and electron scattering; complex NMR experiments; IR- and Raman scattering, but also theoretical approaches. These address the actual synthesis route to a-Si3B3N7, the structural properties, the elastic and vibrational properties, aging and coarsening behaviour, thermal conductivity and the metastable phase diagram both for a-Si3B3N7 and possible silicon boron nitride phases with compositions different from Si3N4: BN = 1 : 3. Here, we present a short comprehensive overview over the insights gained using molecular dynamics and Monte Carlo simulations to explore the energy landscape of a-Si3B3N7, model the actual synthesis route and compute static and transport properties of a-Si3BN7.

  9. Calorimetry of dehydrogenation and dangling-bond recombination in several hydrogenated amorphous silicon materials

    OpenAIRE

    Roura Grabulosa, Pere; Farjas Silva, Jordi; Rath, Chandana; Serra-Miralles, J.; Bertrán Serra, Enric; Roca I Cabarrocas, Pere

    2006-01-01

    Differential scanning calorimetry (DSC) was used to study the dehydrogenation processes that take place in three hydrogenated amorphous silicon materials: nanoparticles, polymorphous silicon, and conventional device-quality amorphous silicon. Comparison of DSC thermograms with evolved gas analysis (EGA) has led to the identification of four dehydrogenation processes arising from polymeric chains (A), SiH groups at the surfaces of internal voids (A'), SiH groups at interfaces (B), and in the b...

  10. The influence of post-deposition annealing upon amorphous silicon/crystalline silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mikolášek, Miroslav, E-mail: miroslav.mikolasek@stuba.sk [Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, Ilkovičova 3, 812 19 Bratislava (Slovakia); Nemec, Michal; Kováč, Jaroslav [Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, Ilkovičova 3, 812 19 Bratislava (Slovakia); Foti, Marina; Gerardi, Cosimo [IMS-R and D, STMicroelectronics, Stradale Primosole, 50, 95121 Catania (Italy); Mannino, Giovanni; Valenti, Luca; Lombardo, Salvatore [CNR-IMM, Zona Industriale, Ottava Strada, 5, 95121 Catania (Italy)

    2014-11-15

    Highlights: • We studied the impact of the thermal annealing on the silicon heterojunction solar cells. • Compared were samples deposited by ICP-CVD and PE-CVD methods. • Annealing up to 250 °C improves output performance of both solar cells. • Annealing above 250 °C increases defect states density at the interface and in the amorphous emitter. • Samples deposited by ICP-CVD shows better resistance against annealing. - Abstract: This paper presents a comparative study of the influence of post-deposition annealing on amorphous silicon/crystalline silicon heterojunction solar cells deposited by ICP-CVD and PE-CVD techniques. Two major effects on the solar cell efficiency occur caused by thermal annealing. The first effect is a slight improvement of the performance on annealing up to 250 °C. The second effect, for annealing temperatures above 250 °C, reveals deterioration of the solar cell performance. It is suggested that both effects are related to thermally activated diffusion of hydrogen. For low annealing temperatures, diffusion of weakly bonded hydrogen allows to passivate the defects in the amorphous emitter and at the heterointerface. In the high temperature annealing region, outdiffusion of hydrogen is assumed to be responsible for an increase of defect states in the structures. The results indicate a better stability after high temperature treatment for the sample prepared by ICP-CVD technology.

  11. Magnetostriction measurements of amorphous ribbons and thin films

    Science.gov (United States)

    Ouyang, Chien

    The theme of the present work is to measure the saturation magnetostriction constants of amorphous ribbons and thin films. The saturation magnetostriction constants of amorphous ribbons, and thin films of Cosb{39}Nisb{31}Fesb8Sisb8Bsb{14}, CoZrY, and CoZrTb have been measured either by the Small Angle Magnetization Rotation (SAMR) method or by the initial susceptibility method. The SAMR method is used for the soft materials. It is found that the amorphous Cosb{39}Nisb{31}Fesb8Sisb8Bsb{14} prepared by ion beam deposition from an alloy target shows very soft magnetic properties and has a very small negative saturation magnetostriction, lambdasb{s}, of about {-}1×10sp{-7}. Sputtered films of CoZrTb show a strong perpendicular anisotropy when the Tb content is high. We have found that the SAMR method can be applied to CoZrTb films when the Tb content is low. The saturation magnetostriction constant of a sputtered film of Cosb{78.4}Zrsb{20.8}Tbsb{0.8} is 2×10sp{-6}. When the material is not magnetically soft or has a strong perpendicular anisotropy, the initial susceptibility method is used. The saturation magnetostriction constants of amorphous Cosb{77.2}Zrsb{20.4}Tbsb{2.4} and Cosb{72.2}Zrsb{14.6}Ysb{13.2} thin films are 6×10sp{-6}, and (2{˜}6)×10sp{-7}, respectively. The two methods, the SAMR and the initial susceptibility, utilize the same measurement setup making it a very convenient technique which is applicable for a range of materials.

  12. Effect of Hydrogen Dilution on Growth of Silicon Nanocrystals Embedded in Silicon Nitride Thin Film bv Plasma-Enhanced CVD

    Institute of Scientific and Technical Information of China (English)

    DING Wenge; ZHEN Lanfang; ZHANG Jiangyong; LI Yachao; YU Wei; FU Guangsheng

    2007-01-01

    An investigation was conducted into the effect of hydrogen dilution on the mi-crostructure and optical properties of silicon nanograins embedded in silicon nitride (Si/SiNx) thin film deposited by the helicon wave plasma-enhanced chemical vapour deposition technique. With Ar-diluted SiH4 and N2 as the reactant gas sources in the fabrication of thin film, the film was formed at a high deposition rate. There was a high density of defect at the amorphous silicon (a-Si)/SiNx interface and a relative low optical gap in the film. An addition of hydrogen into the reactant gas reduced the film deposition rate sharply. The silicon nanograins in the SiNx matrix were in a crystalline state, and the density of defects at the silicon nanocrystals (nc-Si)/SiNx interface decreased significantly and the optical gap of the films widened. These results suggested that hydrogen activated by the plasma could not only eliminate in the defects between the interface of silicon nanograins and SiNx matrix, but also helped the nanograins transform from the amorphous into crystalline state. By changing the hydrogen dilution ratio in the reactant gas sources, a tunable band gap from 1.87 eV to 3.32 eV was obtained in the Si/SiNx film.

  13. Light-induced metastability in pure and hydrogenated amorphous silicon

    Science.gov (United States)

    Queen, D. R.; Liu, X.; Karel, J.; Wang, Q.; Crandall, R. S.; Metcalf, T. H.; Hellman, F.

    2015-10-01

    Light soaking is found to increase the specific heat C and internal friction Q-1 of pure (a-Si) and hydrogenated (a-Si:H) amorphous silicon. At the lowest temperatures, the increases in C and Q-1 are consistent with an increased density of two-level systems (TLS). The light-induced increase in C persists to room temperature. Neither the sound velocity nor shear modulus change with light soaking indicating that the Debye specific heat is unchanged which suggests that light soaking creates localized vibrational modes in addition to TLS. The increase can be reversibly added and removed by light soaking and annealing, respectively, suggesting that it is related to the Staebler-Wronski effect (SWE), even in a-Si without H, and involves a reversible nanoscale structural rearrangement that is facilitated by, but does not require, H to occur.

  14. Radiation Resistance Studies of Amorphous Silicon Alloy Photovoltaic Materials

    Science.gov (United States)

    Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys was investigated. A number of different device structures were irradiated with 1.0 MeV protons. The cells were insensitive to proton fluences below 1E12 sq cm. The parameters of the irradiated cells were restored with annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below lE14 sq cm require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed in dark I-V measurements. The current mechanisms were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  15. Atomistic simulations of material damping in amorphous silicon nanoresonators

    Science.gov (United States)

    Mukherjee, Sankha; Song, Jun; Vengallatore, Srikar

    2016-06-01

    Atomistic simulations using molecular dynamics (MD) are emerging as a valuable tool for exploring dissipation and material damping in nanomechanical resonators. In this study, we used isothermal MD to simulate the dynamics of the longitudinal-mode oscillations of an amorphous silicon nanoresonator as a function of frequency (2 GHz–50 GHz) and temperature (15 K–300 K). Damping was characterized by computing the loss tangent with an estimated uncertainty of 7%. The dissipation spectrum displays a sharp peak at 50 K and a broad peak at around 160 K. Damping is a weak function of frequency at room temperature, and the loss tangent has a remarkably high value of ~0.01. In contrast, at low temperatures (15 K), the loss tangent increases monotonically from 4× {{10}-4} to 4× {{10}-3} as the frequency increases from 2 GHz to 50 GHz. The mechanisms of dissipation are discussed.

  16. Rapid Thermal annealing of silicon layers amorphized by ion implantation

    International Nuclear Information System (INIS)

    The recrystallization behavior and the supression mechanisms of the residual defects of silicon layers amorphized by ion implantation, were investigated. The samples were annealed with the aid of a rapid thermal annealing (RTA) system at temperature range from 850 to 12000C, and annealing time up to 120 s. Random and aligned Rutherford backscattering spectroscopy were used to analyse the samples. Similarities in the recrystallization behavior for layers implanted with ions of the same chemical groups such as As or Sb; Ge, Sn or Pb, In or Ga, are observed. The results show that the effective supression of resisual defects of the recrystallired layers is vinculated to the redistribution of impurities via thermal diffusion. (author)

  17. Oxygen measurements in thin ribbon silicon

    Science.gov (United States)

    Hyland, S. L.; Ast, D. G.; Baghdadi, A.

    1987-03-01

    The oxygen content of thin silicon ribbons grown by the dendritic web technique was measured using a modification of the ASTM method based on Fourier transform infrared spectroscopy. Web silicon was found to have a high oxygen content, ranging from 13 to 19 ppma, calculated from the absorption peak associated with interstitial oxygen and using the new ASTM conversion coefficient. The oxygen concentration changed by about 10 percent along the growth direction of the ribbon. In some samples, a shoulder was detected on the absorption peak. A similar shoulder in Czochralski grown material has been variously interpreted in the literature as due to a complex of silicon, oxygen, and vacancies, or to a phase of SiO2 developed along dislocations in the material. In the case of web silicon, it is not clear which is the correct interpretation.

  18. Model of the recrystallization mechanism of amorphous silicon layers created by ion implantation

    International Nuclear Information System (INIS)

    The recrystallization behavior during annealing of thin films of amorphous (α) silicon, in contact with a single crystal silicon substrate (referred to as C), has been studied in the transmission electron microscope (TEM). The amorphous film is created during high dose phosphorus ion implantation at 100 keV. It was found that the crystal substrate orientation and the implantation temperature have dramatic effects on the recrystallizaton rate, and the defect microstructure produced during annealing. Specifically, (100) wafers implanted at 770K contain only a low density of dislocation loops, but when the same wafer is implanted at room temperature the dislocation density is increased drastically. (111) wafers, when implanted at 770K show a high density of microtwins, but as the implantation temperature is increased a gradual increase in the density of dislocation loops is observed along with a reduction of the microtwins. At an implantation temperature of about 1000C both orientations give an identical defect microstructure when annealed, which is a dense tangle of dislocations

  19. Mixed-phase p-type silicon oxide containing silicon nanocrystals and its role in thin-film silicon solar cells

    Science.gov (United States)

    Cuony, P.; Marending, M.; Alexander, D. T. L.; Boccard, M.; Bugnon, G.; Despeisse, M.; Ballif, C.

    2010-11-01

    Lower absorption, lower refractive index, and tunable resistance are three advantages of amorphous silicon oxide containing nanocrystalline silicon grains (nc-SiOx) compared to microcrystalline silicon (μc-Si), when used as a p-type layer in μc-Si thin-film solar cells. We show that p-nc-SiOx with its particular nanostructure increases μc-Si cell efficiency by reducing reflection and parasitic absorption losses depending on the roughness of the front electrode. Furthermore, we demonstrate that the p-nc-SiOx reduces the detrimental effects of the roughness on the electrical characteristics, and significantly increases μc-Si and Micromorph cell efficiency on substrates until now considered too rough for thin-film silicon solar cells.

  20. PREPARATION AND CHARACTERIZATION OF POLY-CRYSTALLINE SILICON THIN FILM

    Institute of Scientific and Technical Information of China (English)

    Y.F. Hu; H. Shen; Z.Y. Liu; L.S. Wen

    2003-01-01

    Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells.In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film is discussed. On the film we developed poly-crystalline silicon thin film solar cells with efficiency up to 6. 05% without anti-reflection coating.

  1. Excellent crystalline silicon surface passivation by amorphous silicon irrespective of the technique used for chemical vapor deposition

    OpenAIRE

    Schuttauf, J.A.; van der Werf, C.H.M.; Kielen, I.M.; Sark, W.G.J.H.M. van; Rath, J.K.; R. E. I. Schropp

    2011-01-01

    Crystalline silicon surface passivation by amorphous silicon deposited by three different chemical vapor deposition (CVD) techniques at low (T ∼ 130 °C) temperatures is compared. For all three techniques, surface recombination velocities (SRVs) are reduced by two orders of magnitude after prolonged thermal annealing at 200 °C. This reduction correlates with a decreased dangling bond density at the amorphous-crystalline interface, indicating that dangling bond saturation is the predominant mec...

  2. Crystallization kinetics of amorphous aluminum-tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    Car, T.; Radic, N. [Rugjer Boskovic Inst., Zagreb (Croatia). Div. of Mater. Sci.; Ivkov, J. [Institute of Physics, Bijenicka 46, P.O.B. 304, HR-10000 Zagreb (Croatia); Babic, E.; Tonejc, A. [Faculty of Sciences, Physics Department, Bijenicka 32, P.O.B. 162, HR-10000 Zagreb (Croatia)

    1999-01-01

    Crystallization kinetics of the amorphous Al-W thin films under non-isothermal conditions was examined by continuous in situ electrical resistance measurements in vacuum. The estimated crystallization temperature of amorphous films in the composition series of the Al{sub 82}W{sub 18} to Al{sub 62}W{sub 38} compounds ranged from 800 K to 920 K. The activation energy for the crystallization and the Avrami exponent were determined. The results indicated that the crystallization mechanism in films with higher tungsten content was a diffusion-controlled process, whereas in films with the composition similar to the stoichiometric compound (Al{sub 4}W), the interface-controlled crystallization probably occurred. (orig.) With 4 figs., 1 tab., 26 refs.

  3. Electronic properties of intrinsic and doped amorphous silicon carbide films

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, M. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain)]. E-mail: mvetter@eel.upc.edu; Voz, C. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Ferre, R. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Martin, I. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Orpella, A. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Puigdollers, J. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Andreu, J. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, E-08028 Barcelona (Spain); Alcubilla, R. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain)

    2006-07-26

    Hydrogenated amorphous silicon carbide (a-SiC{sub x} : H) films have shown excellent surface passivation of crystalline silicon. With the aim of large area deposition of these films the influence of the rf plasma power was investigated. It is found that homogenous deposition with effective surface recombination velocity lower than 100 cms{sup -1} is possible up to 6'' diameter in a simple parallel plate reactor by optimizing deposition parameters. For application in solar cell processes the conductivity of these a-SiC{sub x} : H films might become of importance since good surface passivation results from field-effect passivation which needs an insulating dielectric layer. Therefore, the temperature dependence of the dark dc conductivity of these films was investigated in the temperature range from - 20 to 260 deg. C. Two transition temperatures, T {sub s}{approx}80 deg. C and T {sub s}{approx}170 deg. C, were found where conductivity increases, resp. decreases over-exponential. From Arrhenius plots activation energy (E {sub a}) and conductivity pre-factor ({sigma} {sub 0}) were calculated for a large number of samples with different composition. A correlation between E {sub a} and {sigma} {sub 0} was found giving a Meyer-Neldel relation with a slope of 59 mV, corresponding to a material characteristic temperature T {sub m} = 400 deg. C, and an intercept at {sigma} {sub 00} = 0.1 {omega}{sup -1}cm{sup -1}.

  4. Pulsed Excimer (KrF) Laser Melting of Amorphous and Crystalline Silicon Layers

    OpenAIRE

    Walthuis, A.; Stritzker, B.; White, C. W.; J. Narayan; Aziz, Michael

    1985-01-01

    We have investigated depth of melting as a function of pulse energy density in amorphous and crystalline silicon layers. The melting threshold for KrF laser pulses (lambda=0.249 µm, tau=24×10−9 s) in amorphous (7660-Å-thick) and crystalline silicon layers were determined to be 0.16±0.02 and 0.75±0.05 J cm−2, respectively. The formation of fine- and large-polycrystalline regions was clearly identified in the amorphous silicon layers for energy densities below that needed for complete annealing...

  5. Nano structures of amorphous silicon: localization and energy gap

    Directory of Open Access Journals (Sweden)

    Z Nourbakhsh

    2013-10-01

    Full Text Available Renewable energy research has created a push for new materials; one of the most attractive material in this field is quantum confined hybrid silicon nano-structures (nc-Si:H embedded in hydrogenated amorphous silicon (a-Si:H. The essential step for this investigation is studying a-Si and its ability to produce quantum confinement (QC in nc-Si: H. Increasing the gap of a-Si system causes solar cell efficiency to increase. By computational calculations based on Density Functional Theory (DFT, we calculated a special localization factor, [G Allan et al., Phys. Rev. B 57 (1997 6933.], for the states close to HOMO and LUMO in a-Si, and found most weak-bond Si atoms. By removing these silicon atoms and passivating the system with hydrogen, we were able to increase the gap in the a-Si system. As more than 8% hydrogenate was not experimentally available, we removed about 2% of the most localized Si atoms in the almost tetrahedral a-Si system. After removing localized Si atoms in the system with 1000 Si atoms, and adding 8% H, the gap increased about 0.24 eV. Variation of the gap as a function of hydrogen percentage was in good agreement with the Tight –Binding results, but about 2 times more than its experimental value. This might come from the fact that in the experimental conditions, it does not have the chance to remove the most localized states. However, by improving the experimental conditions and technology, this value can be improved.

  6. 柔性衬底非晶硅薄膜太阳电池界面处理的研究%Interface treatment of amorphous silicon thin film solar cells on flexible substrate

    Institute of Scientific and Technical Information of China (English)

    蔡宏琨; 陶科; 王林申; 赵敬芳; 隋妍萍; 张德贤

    2009-01-01

    The experiment and AMPS modeling have been used to analyze the characteristics of a-Si solar cells on flexible substrate with different buffer layers at the i/p interface. Combining with technology parameters, this paper uses different band gap and the defect density of states of the interface layer to simulate the characteristics of solar ceils. The modeling results show that the solar cells are deteriorated by the interface layer with a big band gap and large defect density of states. By optimizing treatment of i/p interface, the amorphous silicon solar cell on polyimide substrate has been achieved with an efficiency of 7.09%.%通过实验和模拟计算对比分析了i/p界面过渡层对太阳电池性能的影响.结合具体实验工艺参数,模拟计算了不同带隙和缺陷态密度的过渡层对太阳电池的影响,同时结合实验情况重现了宽带隙高缺陷态密度过渡层对太阳电池的损伤,为实验结果提供了理论依据.通过优化调整i/p界面过渡层的制备方法得到了转换效率为7.09%的聚酰亚胺衬底非晶硅薄膜太阳电池.

  7. Photothermal deflection spectroscopy as characterisation method for thin film solar cells on the basis of amorphous silicon; Photothermische Deflexions-Spektroskopie als Charakterisierungsmethode fuer Duennschichtsolarzellen auf der Basis von amorphem Silizium

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, N.

    1997-09-01

    The potential of photothermal deflection spectroscopy (PDS) as a method to characterise solar cells based on amorphous silicon was studied in this thesis. It was demonstrated, how the proportions of the loss mechanisms of a solar cell under operating conditions can be obtained from PDS measurements as a function of the wavelength of the incident light. In addition, significant movement of heat sources in the layer system of the solar cell, such as the transition from absorption in the layers to absorption in the glass substrate can be detected using the phase of the PDS signal. However, detection of a change of the heat source distribution within the deposited layers of the solar cell was restricted by insufficient experimental resolution of the method. In particular, for the comparison with the experimental results, the dynamic heat transport within a layer system was simulated starting from a given heat source distribution and the expected amplitude and phase of the PDS signal was calculated. Experimental conditions were established to reach a high signal stability (1% in amplitude, 0.1 in phase) in order to resolve small phase shifts. Calibration experiments and theoretical calculations predict a phase shift of 0.35{+-}0.15 , if the heats source moves 0.4 {mu}m within the i-layer of a-Si:H PIN solar cell. However, phase shifts as a result of changes in the applied voltages, which are expected to be even smaller, could not be resolved experimentally. From PDS spectra at different voltages, the proportions of the loss mechanisms as a function of the wavelength were derived. 22 refs.

  8. On the effect of the amorphous silicon microstructure on the grain size of solid phase crystallized polycrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Kashish; Branca, Annalisa; Illiberi, Andrea; Creatore, Mariadriana; Sanden, Mauritius C.M. van de [Department of Applied Physics, Eindhoven University of Technology (Netherlands); Tichelaar, Frans D. [Kavli Institute of Nanoscience, Delft University of Technology (Netherlands)

    2011-05-15

    In this paper the effect of the microstructure of remote plasma-deposited amorphous silicon films on the grain size development in polycrystalline silicon upon solid-phase crystallization is reported. The hydrogenated amorphous silicon films are deposited at different microstructure parameter values R* (which represents the distribution of SiH{sub x} bonds in amorphous silicon), at constant hydrogen content. Amorphous silicon films undergo a phase transformation during solid-phase crystallization and the process results in fully (poly-)crystallized films. An increase in amorphous film structural disorder (i.e., an increase in R*), leads to the development of larger grain sizes (in the range of 700-1100 nm). When the microstructure parameter is reduced, the grain size ranges between 100 and 450 nm. These results point to the microstructure parameter having a key role in controlling the grain size of the polycrystalline silicon films and thus the performance of polycrystalline silicon solar cells. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. High-Sensitivity X-ray Polarimetry with Amorphous Silicon Active-Matrix Pixel Proportional Counters

    Science.gov (United States)

    Black, J. K.; Deines-Jones, P.; Jahoda, K.; Ready, S. E.; Street, R. A.

    2003-01-01

    Photoelectric X-ray polarimeters based on pixel micropattern gas detectors (MPGDs) offer order-of-magnitude improvement in sensitivity over more traditional techniques based on X-ray scattering. This new technique places some of the most interesting astronomical observations within reach of even a small, dedicated mission. The most sensitive instrument would be a photoelectric polarimeter at the focus of 2 a very large mirror, such as the planned XEUS. Our efforts are focused on a smaller pathfinder mission, which would achieve its greatest sensitivity with large-area, low-background, collimated polarimeters. We have recently demonstrated a MPGD polarimeter using amorphous silicon thin-film transistor (TFT) readout suitable for the focal plane of an X-ray telescope. All the technologies used in the demonstration polarimeter are scalable to the areas required for a high-sensitivity collimated polarimeter. Leywords: X-ray polarimetry, particle tracking, proportional counter, GEM, pixel readout

  10. Electroless plating of thin gold films directly onto silicon nitride thin films and into micropores.

    Science.gov (United States)

    Whelan, Julie C; Karawdeniya, Buddini Iroshika; Bandara, Y M Nuwan D Y; Velleco, Brian D; Masterson, Caitlin M; Dwyer, Jason R

    2014-07-23

    A method to directly electrolessly plate silicon-rich silicon nitride with thin gold films was developed and characterized. Films with thicknesses coating planar, curved, and line-of-sight-obscured silicon nitride surfaces. PMID:24999923

  11. Understanding the hydrogen and oxygen gas pressure dependence of the tribological properties of silicon oxide-doped hydrogenated amorphous carbon coatings

    OpenAIRE

    Koshigan, KD; Mangolini, F; McClimon, JB; Vacher, B.; Bec, S; Carpick, RW; Fontaine, J

    2015-01-01

    Silicon oxide-doped hydrogenated amorphous carbons (a–C:H:Si:O) are amorphous thin films used as solid lubricants in a range of commercial applications, thanks to its increased stability in extreme environments, relative to amorphous hydrogenated carbons (a–C:H). This work aims to develop a fundamental understanding of the environmental impact on the tribology of a–C:H:Si:O. Upon sliding an a–C:H:Si:O film against a steel counterbody, two friction regimes develop: high friction in high vacuum...

  12. Fabrication of solution-processed hydrogenated amorphous silicon single junction solar cells

    OpenAIRE

    Masuda, Takashi; Sotani, Naoya; Hamada, Hiroki; Matsuki, Yasuo; Shimoda, Tatsuya

    2012-01-01

    Hydrogenated amorphous silicon solar cells were fabricated using solution-based processes. All silicon layers of the p-i-n junction were stacked by a spin-cast method using doped and non-doped polydihydrosilane solutions. Further, a hydrogen-radical treatment under vacuum conditions was employed to reduce spin density in the silicon films. Following this treatment, the electric properties of the silicon films were improved, and the power conversion efficiency of the solar cells was also incre...

  13. EBSD analysis of polysilicon films formed by aluminium induced crystallization of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Tuezuen, O. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France)], E-mail: Ozge.Tuzun@iness.c-strasbourg.fr; Auger, J.M. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France); SMS Centre, UMR CNRS 5146, Ecole des Mines de Saint Etienne, 158 Cours Fauriel, 42023 Saint Etienne Cedex 2 (France); Gordon, I. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Focsa, A.; Montgomery, P.C. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France); Maurice, C. [SMS Centre, UMR CNRS 5146, Ecole des Mines de Saint Etienne, 158 Cours Fauriel, 42023 Saint Etienne Cedex 2 (France); Slaoui, A. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France); Beaucarne, G.; Poortmans, J. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2008-08-30

    Among the methods for enlarging the grain size of polycrystalline silicon (poly-Si) thin films, aluminium induced crystallization (AIC) of amorphous silicon is considered to be a very promising approach. In the AIC process, a thin a-Si layer on top of an aluminium layer crystallizes at temperatures well below the eutectic temperature of the Al/Si system (T{sub eu} = 577 deg. C). By means of electron backscattering diffraction (EBSD), we have mainly studied the effect of the aluminium layer quality varying the deposition system on the grain size, the defects and the preferential crystallographic orientation. We have found a strong correlation between the mean grain size and the size distribution with the Al deposition system and the surface quality. Furthermore, we show for the first time that more than 50% of the surface of the AIC films grown on alumina substrates are (103) preferentially oriented, instead of the commonly observed (100) preferential orientation. This may have important consequences for epitaxial thickening of the AIC layer into polysilicon absorber layers for solar cells.

  14. Thin-film silicon detectors for particle detection

    International Nuclear Information System (INIS)

    Integrated particle sensors have been developed using thin-film on ASIC technology. For this purpose, hydrogenated amorphous silicon diodes, in various configurations, have been optimized for particle detection. These devices were first deposited on glass substrates to optimize the material properties and the dark current of very thick diodes (with thickness up to 50 μm). Corresponding diodes were later directly deposited on CMOS readout chips. These integrated particle sensors have been characterized using light pulse illumination and beta particle irradiation from 63Ni and 90Sr sources. Direct detection of single low- and high-energy beta particles have been demonstrated. The application of this new integrated particle sensor concept for medical imaging is also discussed. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Excellent crystalline silicon surface passivation by amorphous silicon irrespective of the technique used for chemical vapor deposition

    NARCIS (Netherlands)

    Schuttauf, J.A.; van der Werf, C.H.M.; Kielen, I.M.; van Sark, W.G.J.H.M.; Rath, J.K.; Schropp, R.E.I.

    2011-01-01

    Crystalline silicon surface passivation by amorphous silicon deposited by three different chemical vapor deposition (CVD) techniques at low (T ∼ 130 °C) temperatures is compared. For all three techniques, surface recombination velocities (SRVs) are reduced by two orders of magnitude after prolonged

  16. Temperature-dependent minority carrier lifetime of crystalline silicon wafers passivated by high quality amorphous silicon oxide

    Science.gov (United States)

    Inaba, Masahiro; Todoroki, Soichiro; Nakada, Kazuyoshi; Miyajima, Shinsuke

    2016-04-01

    We investigated the effects of annealing on the temperature-dependent minority carrier lifetime of a crystalline silicon wafer passivated by hydrogenated amorphous silicon oxide. The annealing significantly affects the lifetime and its temperature dependence. Our device simulations clearly indicate that valence band offset significantly affects the temperature dependence. We also found a slight increase in the interface defect density after annealing.

  17. Environmental life cycle assessment of roof-integrated flexible amorphous silicon/nanocrystalline silicon solar cell laminate

    NARCIS (Netherlands)

    N.J. Mohr; A. Meijer; M.A.J. Huijbregts; L. Reijnders

    2013-01-01

    This paper presents an environmental life cycle assessment of a roof-integrated flexible solar cell laminate with tandem solar cells composed of amorphous silicon/nanocrystalline silicon (a-Si/nc-Si). The a-Si/nc-Si cells are considered to have 10% conversion efficiency. Their expected service life

  18. Femtosecond Laser Crystallization of Boron-doped Amorphous Hydrogenated Silicon Films

    Directory of Open Access Journals (Sweden)

    P.D. Rybalko

    2016-10-01

    Full Text Available Crystallization of amorphous hydrogenated silicon films with femtosecond laser pulses is one of the promising ways to produce nanocrystalline silicon for photovoltaics. The structure of laser treated films is the most important factor determining materials' electric and photoelectric properties. In this work we investigated the effect of femtosecond laser irradiation of boron doped amorphous hydrogenated silicon films with different fluences on crystalline volume fraction and electrical properties of this material. A sharp increase of conductivity and essential decrease of activation energy of conductivity temperature dependences accompany the crystallization process. The results obtained are explained by increase of boron doping efficiency in crystalline phase of modified silicon film.

  19. Nonlinear Optical Functions in Crystalline and Amorphous Silicon-on-Insulator Nanowires

    DEFF Research Database (Denmark)

    Baets, R.; Kuyken, B.; Liu, X.;

    2012-01-01

    Silicon-on-Insulator nanowires provide an excellent platform for nonlinear optical functions in spite of the two-photon absorption at telecom wavelengths. Work on both crystalline and amorphous silicon nanowires is reviewed, in the wavelength range of 1.5 to 2.5 µm.......Silicon-on-Insulator nanowires provide an excellent platform for nonlinear optical functions in spite of the two-photon absorption at telecom wavelengths. Work on both crystalline and amorphous silicon nanowires is reviewed, in the wavelength range of 1.5 to 2.5 µm....

  20. RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride

    Science.gov (United States)

    Jeffery, F.R.; Shanks, H.R.

    1980-08-26

    A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  1. Anomalous interaction of longitudinal electric field with hydrogenated amorphous silicon films

    OpenAIRE

    Zhang, J.; Gecevičius, M.; Beresna, M; Kazanskii, A.G.; Kazansky, P. G.

    2013-01-01

    Cylindrically polarized beams produced by femtosecond laser written S-waveplate are used to modify amorphous silicon films. Paradoxically, no crystallization is observed in the maximum of longitudinal electric field despite the strongest light intensity

  2. Accuracy and long-term stability of amorphous-silicon measurements

    Science.gov (United States)

    Mueller, R.

    1986-01-01

    The measurement system requirements to obtain accurate electrical performance measurements of amorphous silicon cells and modules were described. The progress achieved in modifying the Jet Propulsion Laboratory (JPL) system toward that objective were reviewed.

  3. Structural and electrical properties of metastable defects in hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Melskens, J.; Schnegg, A.; Baldansuren, A.; Lips, K.; Plokker, M.P.; Eijt, S.W.H.; Schut, H.; Fischer, M.; Zeman, M.; Smets, A.H.M.

    2015-01-01

    The structural and electrical properties of metastable defects in various types of hydrogenated amorphous silicon have been studied using a powerful combination of continuous wave electron-paramagnetic resonance spectroscopy, electron spin echo (ESE) decay measurements, and Doppler broadening positr

  4. A fax-machine amorphous silicon sensor for X-ray detection

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J. [Association EURATOM/CIEMAT, Madrid (Spain); Barcala, J.M. [Association EURATOM/CIEMAT, Madrid (Spain); Chvatchkine, V. [Association EURATOM/CIEMAT, Madrid (Spain); Ioudine, I. [Association EURATOM/CIEMAT, Madrid (Spain); Molinero, A. [Association EURATOM/CIEMAT, Madrid (Spain); Navarrete, J.J. [Association EURATOM/CIEMAT, Madrid (Spain); Yuste, C. [Association EURATOM/CIEMAT, Madrid (Spain)

    1996-10-01

    Amorphous silicon detectors have been used, basically, as solar cells for energetics applications. As light detectors, linear sensors are used in fax and photocopier machines because they can be built with a large size, low price and have a high radiation hardness. Due to these performances, amorphous silicon detectors have been used as radiation detectors, and, presently, some groups are developing matrix amorphous silicon detectors with built-in electronics for medical X-ray applications. Our group has been working on the design and development of an X-ray image system based on a commercial fax linear amorphous silicon detector. The sensor scans the selected area and detects light produced by the X-ray in a scintillator placed on the sensor. Image-processing software produces a final image with better resolution and definition. (orig.).

  5. Optical determination of the mass density of amorphous and microcrystalline silicon layers with different hydrogen contents

    OpenAIRE

    Remeš, Z.; Vaněček, Milan; Torres, Pedro; Kroll, U.; Mahan, A. H.; Crandall, R. S.

    2008-01-01

    We have measured the density of amorphous and microcrystalline silicon films using an optical method. The mass density decreases with increasing hydrogen content, consistent with a hydrogenated di-vacancy model that fits the data for amorphous silicon. Material produced by hot wire assisted chemical vapour deposition, with low hydrogen content, has a higher density and is structurally different from glow discharge material with hydrogen content around 10 at.%. The lower density microcrystalli...

  6. Electronic Structure of Dangling Bonds in Amorphous Silicon Studied via a Density-Matrix Functional Method

    OpenAIRE

    Hennig, R. G.; Fedders, P. A.; Carlsson, A. E.

    2002-01-01

    A structural model of hydrogenated amorphous silicon containing an isolated dangling bond is used to investigate the effects of electron interactions on the electronic level splittings, localization of charge and spin, and fluctuations in charge and spin. These properties are calculated with a recently developed density-matrix correlation-energy functional applied to a generalized Anderson Hamiltonian, consisting of tight-binding one-electron terms parametrizing hydrogenated amorphous silicon...

  7. Experimental and Computer Modelling Studies of Metastability of Amorphous Silicon Based Solar Cells

    OpenAIRE

    Munyeme, Geoffrey

    2003-01-01

    We present a combination of experimental and computer modelling studies of the light induced degradation in the performance of amorphous silicon based single junction solar cells. Of particular interest in this study is the degradation kinetics of different types of amorphous silicon single junction solar cells and the role of dangling bond states in mediating or driving the degradation mechanism. The approach taken in this study has enabled has to examine how light induced degradation is aff...

  8. Label-Free Direct Electronic Detection of Biomolecules with Amorphous Silicon Nanostructures

    OpenAIRE

    Lund, John; Mehta, Ranjana; Parviz, Babak A.

    2006-01-01

    We present the fabrication and characterization of a nano-scale sensor made of amorphous silicon for the label-free, electronic detection of three classes of biologically important molecules: ions, oligonucleotides, and proteins. The sensor structure has an active element which is a 50 nm wide amorphous silicon semicircle and has a total footprint of less than 4 μm2. We demonstrate the functionalization of the sensor with receptor molecules and the electronic detection of three targets: H+ io...

  9. In situ ultraviolet treatment in an Ar ambient upon p-type hydrogenated amorphous silicon-carbide windows of hydrogenated amorphous silicon based solar cells

    International Nuclear Information System (INIS)

    We proposed an in situ postdeposition ultraviolet treatment in an Ar ambient (UTA) to improve the p/i interface of amorphous silicon based solar cell. We have increased the conversion efficiency by ∼16% by improving the built-in potential and reducing recombination at the p/i interface. Through spectroscopic ellipsometry and Fourier-transform infrared measurements, it is concluded that the UTA process induces structural modification of the p-type hydrogenated amorphous silicon-carbide (p-a-SiC:H) window layer. An ultrathin p-a-SiC:H contamination layer formed during the UTA process acts as a buffer layer at the interface

  10. Electonic properties of hydrogenated amorphous silicon-germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bullot, J.; Galin, M.; Gauthier, M. (Universite de Paris-Sud, Orsay (France)); Bourdon, B. (CIT-Alcatel Transmission, Marcoussis (France))

    1983-06-01

    The electronic properties of some binary hydrogenated amorphous silicon-germanium alloys a-Sisub(x)Gesub(1-x):H in the silicon rich region (x > 0.6) are investigated. Experimental evidence is presented of photo-induced effects similar to those described in Si:H (Staebler-Wronski effect). The electronic properties are then studied from the dual point of view of the germanium content dependence and of the photo and thermal histories of the films. The dark conductivity changes between the annealed state and the light-soaked state are interpreted in terms of the variation of the temperature coefficient of the Fermi level. The photoconductivity efficiency is shown to remain close to that of a-Si:H for 1 > x >= 0.9 and to strongly decrease when the germanium content is further increased: the photoresponse of the Sisub(0.62)Gesub(0.38) alloy is 10/sup 4/ times smaller than that of a-Si:H. This deterioration of the photoconductive properties is explained in terms of the increase of the density of gap states following Ge substitution. This conclusion is based on the study of the width of the exponential absorption edge and on the results of photoconductivity time response studies. The latter data are interpreted by means of the model of Rose of trapping and recombination kinetics and it is found that for x approximately 0.6 the density of states at 0.4-0.5 eV below the mobility edge is 7 x 10/sup 17/ eV/sup -1/ cm/sup -3/ as compared to 2.4 x 10/sup 16/ eV/sup -1/ cm/sup -3/ for x = 0.97.

  11. Evaluation of Bonding Orbitals in Amorphous Silicon by Means of the Chemical Pseudopotential Method

    OpenAIRE

    Grado Caffaro, M. A.; Grado Caffaro, M.

    1994-01-01

    The chemical pseudopotential method has been used by a number of workers in order to study the valence bands of amorphous tetrahedrally bonded semiconductors. However, various problems related to this method are unsolved. In this paper, a theoretical formulation tending to clarify some of these. problems is presented. This formulation concerns bonding orbitals and is valid, in principle, for amorphous silicon.

  12. Size modulation of nanocrystalline silicon embedded in amorphous silicon oxide by Cat-CVD

    International Nuclear Information System (INIS)

    Different issues related to controlling size of nanocrystalline silicon (nc-Si) embedded in hydrogenated amorphous silicon oxide (a-SiOx:H) deposited by catalytic chemical vapor deposition (Cat-CVD) have been reported. Films were deposited using tantalum (Ta) and tungsten (W) filaments and it is observed that films deposited using tantalum filament resulted in good control on the properties. The parameters which can affect the size of nc-Si domains have been studied which include hydrogen flow rate, catalyst and substrate temperatures. The deposited samples are characterized by X-ray diffraction, HRTEM and micro-Raman spectroscopy, for determining the size of the deposited nc-Si. The crystallite formation starts for Ta-catalyst around the temperature of 1700 oC.

  13. Quantitative assessment of molecular dynamics-grown amorphous silicon and germanium films on silicon (111)

    Science.gov (United States)

    Käshammer, Peter; Borgardt, Nikolai I.; Seibt, Michael; Sinno, Talid

    2016-09-01

    Molecular dynamics based on the empirical Tersoff potential was used to simulate the deposition of amorphous silicon and germanium on silicon(111) at various deposition rates and temperatures. The resulting films were analyzed quantitatively by comparing one-dimensional atomic density profiles to experimental measurements. It is found that the simulations are able to capture well the structural features of the deposited films, which exhibit a gradual loss of crystalline order over several monolayers. A simple mechanistic model is used to demonstrate that the simulation temperature may be used to effectively accelerate the surface relaxation processes during deposition, leading to films that are consistent with experimental samples grown at deposition rates many orders-of-magnitude slower than possible in a molecular dynamics simulation.

  14. 488nm连续激光晶化本征非晶硅薄膜的喇曼光谱研究%Raman Spectroscopic Study of the Crystallization of Intrinsic Amorphous Silicon Thin Films with a 488 nm Continuous-wave Laser

    Institute of Scientific and Technical Information of China (English)

    段国平; 陈俊领; 韩俊鹤; 黄明举

    2011-01-01

    Intrinsic amorphous silicon thin films were prepared by plasma enhanced chemical vapor deposition method,and the crystallization of the films by 488 nm and 514 nm continuous-wave laser under different power densities and irradiation time were studied by micro-Raman spectroscopic measurements. It is shown that intrinsic amorphous silicon films are able to be crystallized within 60 s at laser power densities is above 1. 575×105 W/cm2. When the power density reaches to 2. 756×105 W/cm2, there is transformation from amorphous silicon to single-crystalline silicon. With the increase of the laser power density, it is still single-crystalline silicon. At the laser power density of 2. 362 X 10° W/cm, 60 s irradiation time crystallized the effect is better; and at the power density of 2. 756×105 W/cm2, the effect of crystallization with 488 nm wavelength is better than that of with 514 nm in 60 s, and they are all single-crystalline silicon.%利用等离子增强化学气相沉积系统制备了本征非晶硅薄膜,并选用488 nm波长的连续激光进行晶化.采用喇曼测试技术对本征非晶硅薄膜在不同激光功率密度和扫描时间下的晶化状态进行了表征,并用514 nm波长与488 nm波长对样品的晶化效果进行了比较.测试结果显示:激光照射时间60 s,激光功率密度在1.57×105 W/cm2时,能实现非晶硅向多晶硅的转变,在功率密度达到2.7 56×105 W/cm2时,有非晶开始向单晶转变,随着激光功率密度的继续增加,晶化结果仍为单晶;在功率密度为2.362×105 W/cm2下,60 s照射时间晶化效果较好;在功率密度为2.756×105 W/cm2和照射时间为60 s的条件下,用488 nm波长比514 nm波长的激光晶化本征非晶硅薄膜效果较好,并均为单晶态.

  15. Inprovement of Field Emission Properties of PBS Thin Films by Amorphous Carbon Coating

    Directory of Open Access Journals (Sweden)

    S. Jana

    2011-01-01

    Full Text Available Lead sulfide (PbS nanocrystalline thin films were synthesized at room temperature via chemical bath deposition on both silicon and glass substrates and coated with amorphous carbon of different thickness by varying deposition time in plasma enhanced chemical vapor deposition technique. The as prepared samples were characterized by X-ray diffraction (XRD, field emission scanning electron microscope (FESEM and atomic force microscope (AFM. XRD study reveals that coating of amorphous carbon does not change the crystal structure of PbS. From FESEM images it is seen that the average size of PbS nanoparticle does not exceed 100 nm, though sometomes small cubic particles agglomerated to form bigger particles. The coating of amorphous carbon can be clearly visible by the FESEM as well as from AFM micrographs. Field emission study show a significant betterment for the carbon coated sample as compared to the pure PbS. The effect of inter-electrode distance on the field emission characteristics of best field emitting sample has been studied for three different inter-electrode distances.

  16. Efficient visible luminescence of nanocrystalline silicon prepared from amorphous silicon films by thermal annealing and stain etching

    Directory of Open Access Journals (Sweden)

    Nikulin Valery

    2011-01-01

    Full Text Available Abstract Films of nanocrystalline silicon (nc-Si were prepared from hydrogenated amorphous silicon (a-Si:H by using rapid thermal annealing. The formed nc-Si films were subjected to stain etching in hydrofluoric acid solutions in order to passivate surfaces of nc-Si. The optical reflectance spectroscopy revealed the nc-Si formation as well as the high optical quality of the formed films. The Raman scattering spectroscopy was used to estimate the mean size and volume fraction of nc-Si in the annealed films, which were about 4 to 8 nm and 44 to 90%, respectively, depending on the annealing regime. In contrast to as-deposited a-Si:H films, the nc-Si films after stain etching exhibited efficient photoluminescence in the spectral range of 600 to 950 nm at room temperature. The photoluminescence intensity and lifetimes of the stain etched nc-Si films were similar to those for conventional porous Si formed by electrochemical etching. The obtained results indicate new possibilities to prepare luminescent thin films for Si-based optoelectronics.

  17. Nanohole Structuring for Improved Performance of Hydrogenated Amorphous Silicon Photovoltaics.

    Science.gov (United States)

    Johlin, Eric; Al-Obeidi, Ahmed; Nogay, Gizem; Stuckelberger, Michael; Buonassisi, Tonio; Grossman, Jeffrey C

    2016-06-22

    While low hole mobilities limit the current collection and efficiency of hydrogenated amorphous silicon (a-Si:H) photovoltaic devices, attempts to improve mobility of the material directly have stagnated. Herein, we explore a method of utilizing nanostructuring of a-Si:H devices to allow for improved hole collection in thick absorber layers. This is achieved by etching an array of 150 nm diameter holes into intrinsic a-Si:H and then coating the structured material with p-type a-Si:H and a conformal zinc oxide transparent conducting layer. The inclusion of these nanoholes yields relative power conversion efficiency (PCE) increases of ∼45%, from 7.2 to 10.4% PCE for small area devices. Comparisons of optical properties, time-of-flight mobility measurements, and internal quantum efficiency spectra indicate this efficiency is indeed likely occurring from an improved collection pathway provided by the nanostructuring of the devices. Finally, we estimate that through modest optimizations of the design and fabrication, PCEs of beyond 13% should be obtainable for similar devices.

  18. Diffusion of Gold and Platinum in Amorphous Silicon

    CERN Multimedia

    Voss, T L

    2002-01-01

    By means of radiotracer experiments the diffusion of Au and Pt in radio-frequency-sputtered amorphous silicon (a-Si) was investigated. Specimens of a-Si with homogeneous doping concentrations of Au or Pt in the range 0$\\, - \\,$1,7~at.\\% were produced by co-sputtering of Si and Au or Pt, respectively. An additional tiny concentration of radioactive $^{195}$Au or $^{188}$Pt, about 10~at.ppm, was implanted at ISOLDE. The resulting Gaussian distribution of the implanted atoms served as a probe for measuring diffusion coefficients at various doping concentrations. It was found that for a given doping concentration the diffusion coefficients show Arrhenius-type temperature dependences, where the diffusion enthalpy and the pre-exponential factor depend on the doping concentration. From these results it was concluded that in a-Si Au and Pt undergo direct, interstitial-like diffusion that is retarded by temporary trapping of the radiotracer atoms at vacancy-type defects with different binding enthalpies. In the case o...

  19. Nanohole Structuring for Improved Performance of Hydrogenated Amorphous Silicon Photovoltaics.

    Science.gov (United States)

    Johlin, Eric; Al-Obeidi, Ahmed; Nogay, Gizem; Stuckelberger, Michael; Buonassisi, Tonio; Grossman, Jeffrey C

    2016-06-22

    While low hole mobilities limit the current collection and efficiency of hydrogenated amorphous silicon (a-Si:H) photovoltaic devices, attempts to improve mobility of the material directly have stagnated. Herein, we explore a method of utilizing nanostructuring of a-Si:H devices to allow for improved hole collection in thick absorber layers. This is achieved by etching an array of 150 nm diameter holes into intrinsic a-Si:H and then coating the structured material with p-type a-Si:H and a conformal zinc oxide transparent conducting layer. The inclusion of these nanoholes yields relative power conversion efficiency (PCE) increases of ∼45%, from 7.2 to 10.4% PCE for small area devices. Comparisons of optical properties, time-of-flight mobility measurements, and internal quantum efficiency spectra indicate this efficiency is indeed likely occurring from an improved collection pathway provided by the nanostructuring of the devices. Finally, we estimate that through modest optimizations of the design and fabrication, PCEs of beyond 13% should be obtainable for similar devices. PMID:27227369

  20. Hot wire deposited hydrogenated amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mahan, A.H.; Iwaniczko, E.; Nelson, B.P.; Reedy, R.C. Jr.; Crandall, R.S. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    This paper details the results of a study in which low H content, high deposition rate hot wire (HW) deposited amorphous silicon (a-Si:H) has been incorporated into a substrate solar cell. The authors find that the treatment of the top surface of the HW i layer while it is being cooled from its high deposition temperature is crucial to device performance. They present data concerning these surface treatments, and correlate these treatments with Schottky device performance. The authors also present first generation HW n-i-p solar cell efficiency data, where a glow discharge (GD) {mu}c-Si(p) layer was added to complete the partial devices. No light trapping layer was used to increase the device Jsc. Their preliminary investigations have yielded efficiencies of up to 6.8% for a cell with a 4000 {Angstrom} thick HW i-layer, which degrade less than 10% after a 900 hour light soak. The authors suggest avenues for further improvement of their devices.

  1. Experiment and Simulation Study on the Amorphous Silicon Photovoltaic Walls

    Directory of Open Access Journals (Sweden)

    Wenjie Zhang

    2014-01-01

    Full Text Available Based on comparative study on two amorphous silicon photovoltaic walls (a-Si PV walls, the temperature distribution and the instant power were tested; and with EnergyPlus software, similar models of the walls were built to simulate annual power generation and air conditioning load. On typical sunshine day, the corresponding position temperature of nonventilated PV wall was generally 0.5~1.5°C higher than that of ventilated one, while the power generation was 0.2%~0.4% lower, which was consistent with the simulation results with a difference of 0.41% in annual energy output. As simulation results, in summer, comparing the PV walls with normal wall, the heat per unit area of these two photovoltaic walls was 5.25 kWh/m2 (nonventilated and 0.67 kWh/m2 (ventilated higher, respectively. But in winter the heat loss of nonventilated one was smaller, while ventilated PV wall was similar to normal wall. To annual energy consumption of heating and cooling, the building with ventilated PV wall and normal wall was also similar but slightly better than nonventilated one. Therefore, it is inferred that, at low latitudes, such as Zhuhai, China, air gap ventilation is suitable, while the length to thickness ratio of the air gap needs to be taken into account.

  2. Carrier transport in amorphous silicon utilizing picosecond photoconductivity

    Science.gov (United States)

    Johnson, A. M.

    1981-08-01

    The development of a high-speed electronic measurement capability permitted the direct observation of the transient photoresponse of amorphous silicon (a-Si) with a time resolution of approximately 10ps. This technique was used to measure the initial mobility of photogenerated (2.1eV) free carriers in three types of a-Si having widely different densities of structural defects (i.e., as prepared by: (1) RF glow discharge (a-Si:H); (2) chemical vapor deposition; and (3) evaporation in ultra-high vacuum). In all three types of a-Si, the same initial mobility of approximately 1 cu cm/Vs at room temperature was found. This result tends to confirm the often-made suggestion that the free carrier mobility is determined by the influence of shallow states associated with the disorder in the random atomic network, and is an intrinsic property of a-Si which is unaffected by the method of preparation. The rate of decay of the photocurrent correlates with the density of structural defects and varies from 4ps to 200ps for the three types of a-Si investigated. The initial mobility of a-Si:H was found to be thermally activated. The possible application of extended state transport controlled by multiple trapping and small polaron formation is discussed.

  3. Raman spectroscopy of PIN hydrogenated amorphous silicon solar cells

    Science.gov (United States)

    Keya, Kimitaka; Torigoe, Yoshihiro; Toko, Susumu; Yamashita, Daisuke; Seo, Hyunwoong; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Light-induced degradation of hydrogenated amorphous silicon (a-Si:H) is a key issue for enhancing competitiveness in solar cell market. A-Si:H films with a lower density of Si-H2 bonds shows higher stability. Here we identified Si-H2 bonds in PIN a-Si:H solar cells fabricated by plasma CVD using Raman spectroscopy. A-Si:H solar cell has a structure of B-doped μc-SiC:H (12.5 nm)/ non-doped a-Si:H (250nm)/ P-doped μc-Si:H (40 nm) on glass substrates (Asahi-VU). By irradiating HeNe laser light from N-layer, peaks correspond to Si-H2 bonds (2100 cm-1) and Si-H bonds (2000 cm-1) have been identified in Raman scattering spectra. The intensity ratio of Si-H2 and Si-H ISiH2/ISiH is found to correlate well to light induced degradation of the cells Therefore, Raman spectroscopy is a promising method for studying origin of light-induced degradation of PIN solar cells.

  4. Progress in amorphous silicon solar cells produced by reactive sputtering

    Science.gov (United States)

    Moustakas, T. D.

    The photovoltaic properties of reactively sputtered amorphous silicon are reviewed and it is shown that efficient PIN solar cells can be fabricated by the method of sputtering. The photovoltaic properties of the intrinsic films correlate with their structural and compositional inhomogeneities. Hydrogen incorporation and small levels of phosphorus and boron impurities also affect the photovoltaic properties through reduction of residual dangling bond related defects and modification of their occupation. The optical and transport properties of the doped P and N-films were found to depend sensitively on the amount of hydrogen and boron or phosphorus incorporation into the films as well as on their degree of crystallinity. Combination of the best intrinsic and doped films leads to PIN solar cell structures generating J(sc) of 13 mA/sq cm and V(oc) of between 0.85 to 0.95 volts. The efficiency of these devices, 5 to 6 percent, is limited by the low FF, typically about 50 percent. As a further test to the potential of this technology efficient tandem solar cell structures were fabricated, and device design concepts, such as the incorporation of optically reflective back contacts were tested.

  5. Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride

    Science.gov (United States)

    Wan, Yimao; Yan, Di; Bullock, James; Zhang, Xinyu; Cuevas, Andres

    2015-12-01

    A sub-nm hydrogenated amorphous silicon (a-Si:H) film capped with silicon nitride (SiNx) is shown to provide a high level passivation to crystalline silicon (c-Si) surfaces. When passivated by a 0.8 nm a-Si:H/75 nm SiNx stack, recombination current density J0 values of 9, 11, 47, and 87 fA/cm2 are obtained on 10 Ω.cm n-type, 0.8 Ω.cm p-type, 160 Ω/sq phosphorus-diffused, and 120 Ω/sq boron-diffused silicon surfaces, respectively. The J0 on n-type 10 Ω.cm wafers is further reduced to 2.5 ± 0.5 fA/cm2 when the a-Si:H film thickness exceeds 2.5 nm. The passivation by the sub-nm a-Si:H/SiNx stack is thermally stable at 400 °C in N2 for 60 min on all four c-Si surfaces. Capacitance-voltage measurements reveal a reduction in interface defect density and film charge density with an increase in a-Si:H thickness. The nearly transparent sub-nm a-Si:H/SiNx stack is thus demonstrated to be a promising surface passivation and antireflection coating suitable for all types of surfaces encountered in high efficiency c-Si solar cells.

  6. Effect of structural variations in amorphous silicon based single and multi-junction solar cells from numerical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, M.I. [Department of Electrical, Electronic and System Engineering, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600 (Malaysia); Ibrahim, Zahari; Sopian, Kamaruzzaman [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600 (Malaysia); Amin, Nowshad [Department of Electrical, Electronic and System Engineering, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600 (Malaysia); Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600 (Malaysia); Center of Excellence for Research in Engineering Materials (CEREM), College of Engineering, King Saud University, Riyadh 11421 (Saudi Arabia)

    2010-09-15

    In this paper, single and multi-junction solar cells based on hydrogenated amorphous silicon (a-Si:H) and its alloy amorphous silicon carbide (a-SiC:H) are analyzed using one dimensional simulator AMPS-1D (Analysis of Microelectronic and Photonic Structures). Effects of thickness and doping concentration of different layers as well as the operating temperature on cell efficiency have been investigated with a view to find a more efficient and stable cell. For the single junction cell, the maximum efficiency of 19.62% has been achieved for a thickness of 500 nm of i-layer, which further improved to 20.8% after the optimization of the doping concentration. In case of double junction cell, the highest efficiency of 20.19% was found for top i-layer thickness of 700 nm after optimizing the bottom cell parameters. For the triple junction cell, parameters of the bottom cell and middle cell were optimized and the maximum efficiency of 21.89% was found with the top i-layer thickness of 600 nm. As regards the operating temperature, the double junction and the triple junction tandem cells showed better stability, with temperature gradient of 0.17% and 0.18%/C, respectively, than the single junction cell of 0.23%/C. The overall investigation on amorphous silicon solar cells as done here gives potential parametric suggestion that may lead to the fabrication of the high efficiency and stabilized a-Si thin film solar cells. (author)

  7. Feasibility of using thin crystalline silicon films epitaxially grown at 165 °C in solar cells: A computer simulation study

    OpenAIRE

    Roca i Cabarrocas P.; Labrune M.; Cariou R.; Chakraborty S.; Chatterjee P

    2013-01-01

    We have previously reported on the successful deposition of heterojunction solar cells whose thin intrinsic crystalline absorber layer is grown using the standard radio frequency plasma enhanced chemical vapour deposition process at 165 °C on highly doped P-type (100) crystalline silicon substrates. The structure had an N-doped hydrogenated amorphous silicon emitter deposited on top of the intrinsic epitaxial silicon layer. However to form the basis of a solar cell, the epitaxial silicon film...

  8. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  9. Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells

    OpenAIRE

    Söderström, T; Haug, F.-J.; Niquille, X.; Terrazzoni, V; Ballif, C.

    2009-01-01

    The micromorph solar cell (stack of amorphous and microcrystalline cells) concept is the key for achieving high efficiency stabilized thin film silicon solar cells. We introduce a device structure that allows a better control of the light in-coupling into the two subcell components. It is based on an asymmetric intermediate reflector, which increases the effective thickness of the a-Si:H by a factor of more than three. Hence, the a- Si:H thickness reduction dimi...

  10. Hydrogenated Amorphous Silicon Sensor Deposited on Integrated Circuit for Radiation Detection

    CERN Document Server

    Despeisse, M; Jarron, P; Kaplon, J; Moraes, D; Nardulli, A; Powolny, F; Wyrsch, N

    2008-01-01

    Radiation detectors based on the deposition of a 10 to 30 mum thick hydrogenated amorphous silicon (a-Si:H) sensor directly on top of integrated circuits have been developed. The performance of this detector technology has been assessed for the first time in the context of particle detectors. Three different circuits were designed in a quarter micron CMOS technology for these studies. The so-called TFA (Thin-Film on ASIC) detectors obtained after deposition of a-Si:H sensors on the developed circuits are presented. High internal electric fields (104 to 105 V/cm) can be built in the a-Si:H sensor and overcome the low mobility of electrons and holes in this amorphous material. However, the deposited sensor's leakage current at such fields turns out to be an important parameter which limits the performance of a TFA detector. Its detailed study is presented as well as the detector's pixel segmentation. Signal induction by generated free carrier motion in the a-Si:H sensor has been characterized using a 660 nm pul...

  11. Light management in thin-film silicon solar cells

    OpenAIRE

    Isabella, O.

    2013-01-01

    Solar energy can fulfil mankind’s energy needs and secure a more balanced distribution of primary sources of energy. Wafer-based and thin-film silicon solar cells dominate todays’ photovoltaic market because silicon is a non-toxic and abundant material and high conversion efficiencies are achieved with silicon-based solar cells. To stay competitive with bulk crystalline silicon and other thin-film solar cell technologies, thin-film silicon solar cells have to achieve a conversion efficiency l...

  12. Effect of Si additions on thermal stability and the phase transition sequence of sputtered amorphous alumina thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bolvardi, H.; Baben, M. to; Nahif, F.; Music, D., E-mail: music@mch.rwth-aachen.de; Schnabel, V.; Shaha, K. P.; Mráz, S.; Schneider, J. M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Bednarcik, J.; Michalikova, J. [Deutsches Elektronen Synchrotron DESY, FS-PE group, Notkestrasse 85, D-22607 Hamburg (Germany)

    2015-01-14

    Si-alloyed amorphous alumina coatings having a silicon concentration of 0 to 2.7 at. % were deposited by combinatorial reactive pulsed DC magnetron sputtering of Al and Al-Si (90-10 at. %) split segments in Ar/O{sub 2} atmosphere. The effect of Si alloying on thermal stability of the as-deposited amorphous alumina thin films and the phase formation sequence was evaluated by using differential scanning calorimetry and X-ray diffraction. The thermal stability window of the amorphous phase containing 2.7 at. % of Si was increased by more than 100 °C compared to that of the unalloyed phase. A similar retarding effect of Si alloying was also observed for the α-Al{sub 2}O{sub 3} formation temperature, which increased by more than 120 °C. While for the latter retardation, the evidence for the presence of SiO{sub 2} at the grain boundaries was presented previously, this obviously cannot explain the stability enhancement reported here for the amorphous phase. Based on density functional theory molecular dynamics simulations and synchrotron X-ray diffraction experiments for amorphous Al{sub 2}O{sub 3} with and without Si incorporation, we suggest that the experimentally identified enhanced thermal stability of amorphous alumina with addition of Si is due to the formation of shorter and stronger Si–O bonds as compared to Al–O bonds.

  13. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ou-Yang, Wei, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Gao, Xu; Lin, Meng-Fang; Tsukagoshi, Kazuhito, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp [International Center for Materials Nanoarchitectronics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nabatame, Toshihide [MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-10-20

    To avoid the problem of air sensitive and wet-etched Zn and/or Ga contained amorphous oxide transistors, we propose an alternative amorphous semiconductor of indium silicon tungsten oxide as the channel material for thin film transistors. In this study, we employ the material to reveal the relation between the active thin film and the transistor performance with aid of x-ray reflectivity study. By adjusting the pre-annealing temperature, we find that the film densification and interface flatness between the film and gate insulator are crucial for achieving controllable high-performance transistors. The material and findings in the study are believed helpful for realizing controllable high-performance stable transistors.

  14. Spin precession by pulsed inductive magnetometry in thin amorphous plates

    Science.gov (United States)

    Magni, Alessandro; Bottauscio, Oriano; Caprile, Ambra; Celegato, Federica; Ferrara, Enzo; Fiorillo, Fausto

    2014-05-01

    Broadband magnetic loss and damping behavior of Co-based amorphous ribbons and thin films have been investigated. The permeability and loss response of the transverse anisotropy ribbon samples in the frequency range DC to 1 GHz is interpreted in terms of combined and distinguishable contributions to the magnetization process by domain wall displacements and magnetization rotations. The latter alone are shown to survive at the highest frequencies, where the losses are calculated via coupled Maxwell and Landau-Lifshitz-Gilbert (LLG) equations. Remarkably high values of the LLG damping coefficient α = 0.1-0.2 are invoked in this theoretical prediction. Direct measurements of α by pulsed inductive microwave magnetometry are thus performed, both in these laminae and in amorphous films of identical composition, obtaining about one order of magnitude increase of the α value upon the 100 nm÷10 μm thickness range. This confirms that dissipation by eddy currents enters the LLG equation via large increase of the damping coefficient.

  15. EFFECTS OF ARGON ON THE PROPERTIES OF RF SPUTTERED AMORPHOUS SILICON

    OpenAIRE

    Shao-Qi, Peng; Qai, Yu; Xian, Zhang; Jing, Ye

    1981-01-01

    The Effects of argon on the properties of rf sputtered amorphous silicon film have been investigated. As the sputtering argon pressure is increased from 2 to 20 mTorr, the content of argon in the amorphous silicon film increases apparently (Argon/Silicon : from 10-2 to 5 x 10-2). The other properties measured as a function of argon pressure PAr show that as the PAr is increased, the photoconductivity, resistivity (300K), conductivity activation energy and optical gap increase also, while the ...

  16. Plasmonic effects in ultrathin amorphous silicon solar cells: performance improvements with Ag nanoparticles on the front, the back, and both.

    Science.gov (United States)

    Winans, Joshua D; Hungerford, Chanse; Shome, Krishanu; Rothberg, Lewis J; Fauchet, Philippe M

    2015-02-01

    Thin-film hydrogenated amorphous silicon (a-Si:H) solar cells that are free-standing over a 2x2 mm area have been fabricated with thicknesses of 150 nm, 100 nm, and 60 nm. Silver nanoparticles (NPs) created on the front and/or back surfaces of the solar cells led to improvement in performance measures such as current density, overall efficiency, and external quantum efficiency. The effect of changing silver nanoparticle size and incident light angle was tested. Finite-Difference Time-Domain simulations are presented as a way to understand the experimental results as well as guide future research efforts. PMID:25836257

  17. C-AFM and X-TEM: studies of mixed-phase silicon thin films : correlative microscopy

    NARCIS (Netherlands)

    Mates, T.; Fejfar, A.; Rezek, B.; Kocka, J.; Bronsveld, P.C.P.; Rath, J.K.; Schropp, R.E.I.

    2008-01-01

    Thin intrinsic silicon films containing microcrystalline grains embedded in amorphous tissue were studied by two complementary microscopy techniques. The conductive atomic force microscopy was performed in standard ambient conditions with very sensitive (pA) current detection. The cross-sectional tr

  18. Amorphous IZO-based transparent thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Paine, David C. [Division of Engineering, Brown University, Providence, RI 02912 (United States)], E-mail: David_Paine@Brown.edu; Yaglioglu, Burag; Beiley, Zach; Lee, Sunghwan [Division of Engineering, Brown University, Providence, RI 02912 (United States)

    2008-07-01

    Active electronics implemented on cheap flexible polymer substrates offer the promise of novel display technologies, wearable electronics, large area memory, and a multitude of other, as-yet-unthought-of applications that require low cost and high volume manufacturing. Thin film transistors (TFT's) fabricated on temperature-sensitive plastic substrates at low temperatures are the key to this technology. TFT's that use metal (In, Zn, Sn, Ga) oxide channels offer both high mobility (relative to amorphous Si) and the advantage of optical transparency in the visible regime. We report on the fabrication and performance of amorphous oxide transparent thin film transistors that use dc-magnetron sputter techniques to deposit IZO (In{sub 2}O{sub 3} - 10 wt.% ZnO) at low oxygen potential (0 vol.% O{sub 2}) for the source, drain, and gate-contact metallization and, at higher oxygen partial pressures (10 vol.% O{sub 2}), for the semi-conducting channel. The devices in this study were processed at room temperature except for a single 280 {sup o}C PECVD deposition step to deposit a 230 nm-thick SiO{sub x} gate dielectric. The devices are optically transparent and operate in depletion mode with a threshold voltage of - 5 V, mobility of 15 cm{sup 2}/V s, an on-off ratio of > 10{sup 6} and, a sub-threshold slope of 1.2 V/decade. In addition, we report persistent photo-conductivity in the channel region of these devices when exposed to UV illumination.

  19. Fiber Optic Excitation of Silicon Microspheres in Amorphous and Crystalline Fluids

    Science.gov (United States)

    Yılmaz, Huzeyfe; Yılmaz, Hasan; Sharif Murib, Mohammed; Serpengüzel, Ali

    2016-03-01

    This study investigates the optical resonance spectra of free-standing monolithic single crystal silicon microspheres immersed in various amorphous fluids, such as air, water, ethylene glycol, and 4-Cyano-4'-pentylbiphenyl nematic liquid crystal. For the various amorphous fluids, morphology-dependent resonances with quality factors on the order of 105 are observed at 1428 nm. The mode spacing is always on the order of 0.23 nm. The immersion in various amorphous fluids affects the spectral response of the silicon microsphere and heralds this technique for use in novel optofluidics applications. Even though the nematic liquid crystal is a highly birefringent, scattering, and high-index optical medium, morphology-dependent resonances with quality factors on the order of 105 are observed at 1300 nm in the elastic scattering spectra of the silicon microsphere, realizing a liquid-crystal-on-silicon geometry. The relative refractive index and the size parameter of the silicon microsphere are the parameters that affect the resonance structure. The more 4-Cyano-4'-pentylbiphenyl interacting with the silicon microsphere, the lower the quality factor of the resonances is. The more 4-Cyano-4'-pentylbiphenyl is interacting with the silicon microsphere, the lower the mode spacing Δλ of the resonances is. The silicon microspheres wetted with nematic liquid crystal can be used for optically addressed liquid-crystal-on-silicon displays, light valve applications, or reconfigurable optical networks.

  20. Laser annealed HWCVD and PECVD thin silicon films. Electron field emission

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, K.A. [Carnegie Laboratory of Physics, University of Dundee, DD1 4HN (United Kingdom)]. E-mail: k.a.oneill@dundee.ac.uk; Shaikh, M.Z. [Carnegie Laboratory of Physics, University of Dundee, DD1 4HN (United Kingdom); Lyttle, G. [Carnegie Laboratory of Physics, University of Dundee, DD1 4HN (United Kingdom); Anthony, S. [Carnegie Laboratory of Physics, University of Dundee, DD1 4HN (United Kingdom); Fan, Y.C. [Carnegie Laboratory of Physics, University of Dundee, DD1 4HN (United Kingdom); Persheyev, S.K. [Carnegie Laboratory of Physics, University of Dundee, DD1 4HN (United Kingdom); Rose, M.J. [Carnegie Laboratory of Physics, University of Dundee, DD1 4HN (United Kingdom)

    2006-04-20

    Electron Field Emission (FE) properties of various laser annealed thin silicon films on different substrates were investigated. HWCVD microcrystalline and PECVD amorphous silicon films were irradiated with Nd : YAG and XeCl Excimer lasers at varying energy densities. Encouraging FE results were mainly from XeCl Excimer laser processed PECVD and HWCVD films on metal backplanes. FE measurements were complemented by the study of film surface morphology. Geometric field enhancement factors from surface measurements and Fowler-Nordheim Theory (FNT) were compared. FE properties of the films were also found to be particularly influenced by the backplane material.

  1. Amorphous-silicon module hot-spot testing

    Science.gov (United States)

    Gonzalez, C. C.

    1985-01-01

    Hot spot heating occurs when cell short-circuit current is lower than string operating current. Amorphous cell hot spot are tested to develop the techniques required for performing reverse bias testing of amorphous cells. Also, to quantify the response of amorphous cells to reverse biasing. Guidelines are developed from testing for reducing hot spot susceptibility of amorphous modules and to develop a qualification test for hot spot testing of amorphous modules. It is concluded that amorphous cells undergo hot spot heating similarly to crystalline cells. Comparison of results obtained with submodules versus actual modules indicate heating levels lower in actual modules. Module design must address hot spot testing and hot spot qualification test conducted on modules showed no instabilities and minor cell erosion.

  2. Formation of amorphous silicon by light ion damage

    International Nuclear Information System (INIS)

    Amorphization by implantation of boron ions (which is the lightest element generally used in I.C. fabrication processes) has been systematically studied for various temperatures, various voltages and various dose rates. Based on theoretical considerations and experimental results, a new amorphization model for light and intermediate mass ion damage is proposed consisting of two stages. The role of interstitial type point defects or clusters in amorphization is emphasized. Due to the higher mobility of interstitials out-diffusion to the surface particularly during amorphization with low energy can be significant. From a review of the idealized amorphous structure, diinterstitial-divacancy pairs are suggested to be the embryos of amorphous zones formed during room temperature implantation. The stacking fault loops found in specimens implanted with boron at room temperature are considered to be the origin of secondary defects formed during annealing

  3. Memory effect under pressure in low density amorphous silicon

    OpenAIRE

    Garg, Nandini; Pandey, K. K.; K. V. Shanavas; Betty, C. A.; Sharma, Surinder M

    2010-01-01

    Our investigations on porous Si show that on increase of pressure it undergoes crystalline phase transitions instead of pressure induced amorphization - claimed earlier, and the amorphous phase appears only on release of pressure. This amorphous phase, when subjected to higher pressures, transforms reversibly to a higher coordinated primitive hexagonal phase showing a kind of memory effect which may be the only example of its kind in the elemental solids. First principles calculations and the...

  4. Reaction of amorphous Ni-W and Ni-N-W films with substrate silicon

    Science.gov (United States)

    Zhu, M. F.; Suni, I.; Nicolet, M.-A.; Sands, T.

    1984-01-01

    Wiley et al. (1982) have studied sputtered amorphous films of Nb-Ni, Mo-Ni, Si-W, and Si-Mo. Kung et al. (1984) have found that amorphous Ni-Mo films as diffusion barriers between multilayer metallizations on silicon demonstrate good electrical and thermal stability. In the present investigation, the Ni-W system was selected because it is similar to the Ni-Mo system. However, W has a higher silicide formation temperature than Mo. Attention is given to aspects of sample preparation, sample characterization, the interaction between amorphous Ni-W films and Si, the crystallization of amorphous Ni(36)W(64) films on SiO2, amorphous Ni-N-W films, silicide formation and phase separation, and the crystallization of amorphous Ni(36)W(64) and Ni(30)N(21)W(49) layers.

  5. Transparent conductive oxides for thin-film silicon solar cells

    Science.gov (United States)

    Löffler, J.

    2005-04-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses, the front TCO plays an important role for the light enhancement of thin-film silicon pin type solar cells. If the TCO is rough, light scattering at rough interfaces in the solar cell in combination with a highly reflective back contact leads to an increase in optical path length of the light. Multiple (total) internal reflectance leads to virtual 'trapping' of the light in the solar cell structure, allowing a further decrease in absorber thickness and thus thin-film silicon solar cell devices with higher and more stable efficiency. Here, the optical mechanisms involved in the light trapping in thin-film silicon solar cells have been studied, and two types of front TCO materials have been investigated with respect to their suitability as front TCO in thin-film silicon pin type solar cells. Undoped and aluminum doped zinc oxide layers have been fabricated for the first time by the expanding thermal plasma chemical vapour deposition (ETP CVD) technique at substrate temperatures between 150 º C and 350 º C, and successfully implemented as a front electrode material for amorphous silicon pin superstrate type solar cells. Solar cells with efficiencies comparable to cells on Asahi U-type reference TCO have been reproducibly obtained. A higher haze is needed for the ZnO samples studied here than for Asahi U-type TCO in order to achieve comparable long wavelength response of the solar cells. This is attributed to the different angular distribution of the scattered light, showing higher scattering intensities at large angles for the Asahi U-type TCO. A barrier at the TCO/p interface and minor collection problems may explain the slightly lower fill factors obtained for the cells

  6. Transparent Conductive Oxides for Thin-Film Silicon Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, J.

    2005-04-25

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses, the front TCO plays an important role for the light enhancement of thin-film silicon pin type solar cells. If the TCO is rough, light scattering at rough interfaces in the solar cell in combination with a highly reflective back contact leads to an increase in optical path length of the light. Multiple (total) internal reflectance leads to virtual 'trapping' of the light in the solar cell structure, allowing a further decrease in absorber thickness and thus thin-film silicon solar cell devices with higher and more stable efficiency. Here, the optical mechanisms involved in the light trapping in thin-film silicon solar cells have been studied, and two types of front TCO materials have been investigated with respect to their suitability as front TCO in thin-film silicon pin type solar cells. Undoped and aluminum doped zinc oxide layers have been fabricated for the first time by the expanding thermal plasma chemical vapour deposition (ETP CVD) technique at substrate temperatures between 150C and 350C, and successfully implemented as a front electrode material for amorphous silicon pin superstrate type solar cells. Solar cells with efficiencies comparable to cells on Asahi U-type reference TCO have been reproducibly obtained. A higher haze is needed for the ZnO samples studied here than for Asahi U-type TCO in order to achieve comparable long wavelength response of the solar cells. This is attributed to the different angular distribution of the scattered light, showing higher scattering intensities at large angles for the Asahi U-type TCO. A barrier at the TCO/p interface and minor collection problems may explain the slightly lower fill factors obtained for the

  7. 3D photonic crystal interlayers for micromorph thin film silicon tandem cell

    Energy Technology Data Exchange (ETDEWEB)

    Uepping, Johannes; Bielawny, Andreas; Otto, Martin; Wehrspohn, Ralf B. [Institute of Physics, University of Halle, Wittenberg (Germany); Steidl, Lorenz; Zentel, Rudolf [Dept. of Chemistry, University of Mainz (Germany); Lee, Seung-Mo; Knez, Mato [Max Planck Institute of Microstructure Physics, Halle (Germany); Beckers, Thomas; Carius, Reinhard [Institute of Energy Research, IEF-5 Photovoltaics, Forschungszentrum Juelich GmbH (Germany)

    2010-07-01

    A 3D photonic intermediate reflector for textured micromorph silicon tandem solar cells has been investigated. In thin-film silicon tandem solar cells consisting of amorphous and microcrystalline silicon with two junctions of a-Si/{mu}c-Si, efficiency enhancements can be achieved by increasing the current density in the a-Si top cell. It is one goal to provide an optimized current matching at high current densities. For an ideal photon-management between top and bottom cell, a spectrally selective intermediate reflective layer (IRL) is necessary. We show results toward the first fully integrated 3D photonic thin-film IRL device incorporated in a state-of-the-art textured tandem solar cell. The design and the preparation of a 3D self organized inverted opal photonic crystal structure in a textured micromorph tandem solar cell is presented.

  8. Morphological, luminescence and structural properties of nanocrystalline silicon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Atif Mossad, E-mail: atifali@kku.edu.sa [Physics Department, Faculty of Science, King Khalid University, Abha (Saudi Arabia); Physics Department, Faculty of Science, Assiut University, Assiut (Egypt); Kobayashi, Hikaru [Institute of Scientific and Industrial Research, Osaka University (Japan); Inokuma, Takao [Graduate School of Natural Science and Technology, Kanazawa University (Japan); Al-Hajry, Ali [Physics Department, College of Science and Arts, Najran University (Saudi Arabia)

    2013-03-15

    Highlights: ► The PL spectra showed two stronger peaks and one weaker peak. ► The PL peak energies and optical band-gap values were found higher than 1.12 eV. ► The structural change from an amorphous to nanocrystalline with increasing [SiH{sub 4}]. - Abstract: Nanocrystalline silicon (nc-Si) thin films deposited by plasma-enhanced chemical vapor deposition at various silane flow rates ([SiH{sub 4}]) are studied. The characterization of these films by high-resolution transmission electron microscopy, Raman spectroscopy and X-ray diffraction reveals that no film and very thin film is deposited at [SiH{sub 4}] = 0.0 and 0.1 sccm, respectively. In addition, the structural change from an amorphous to a nanocrystalline phase occurs at around [SiH{sub 4}] = 0.2 sccm. In this study, the importance of arriving species at surfaces and precursors is clearly demonstrated by the effect of a small addition of SiH{sub 4} on the frequency and width of a Raman peak and the structure of the grown film. The infrared spectroscopic analysis shows no hydrogen incorporation in the nc-Si film deposited at the low value of [SiH{sub 4}]. However, the intensity of the peak around 2100 cm{sup −1} due to SiH decreases with increasing [SiH{sub 4}]. All fabricated films give photoluminescence in the range between 1.7 and 2.4 eV at room temperature, indicating enlargement of the band-gap energy. The presence of very small crystallites leads to the appearance of quantum confinement effects. The variations of the photoluminescence energy and spectral width are well correlated with the structural properties of the films such as crystallite size, crystalline volume fraction, and the density of Si-H bonds.

  9. Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Yimao, E-mail: yimao.wan@anu.edu.au; Yan, Di; Bullock, James; Zhang, Xinyu; Cuevas, Andres [Research School of Engineering, The Australian National University, Canberra, Australian Capital Territory 0200 (Australia)

    2015-12-07

    A sub-nm hydrogenated amorphous silicon (a-Si:H) film capped with silicon nitride (SiN{sub x}) is shown to provide a high level passivation to crystalline silicon (c-Si) surfaces. When passivated by a 0.8 nm a-Si:H/75 nm SiN{sub x} stack, recombination current density J{sub 0} values of 9, 11, 47, and 87 fA/cm{sup 2} are obtained on 10 Ω·cm n-type, 0.8 Ω·cm p-type, 160 Ω/sq phosphorus-diffused, and 120 Ω/sq boron-diffused silicon surfaces, respectively. The J{sub 0} on n-type 10 Ω·cm wafers is further reduced to 2.5 ± 0.5 fA/cm{sup 2} when the a-Si:H film thickness exceeds 2.5 nm. The passivation by the sub-nm a-Si:H/SiN{sub x} stack is thermally stable at 400 °C in N{sub 2} for 60 min on all four c-Si surfaces. Capacitance–voltage measurements reveal a reduction in interface defect density and film charge density with an increase in a-Si:H thickness. The nearly transparent sub-nm a-Si:H/SiN{sub x} stack is thus demonstrated to be a promising surface passivation and antireflection coating suitable for all types of surfaces encountered in high efficiency c-Si solar cells.

  10. Amorphous silicon photovoltaic modules and test devices design, fabrication and testing

    Science.gov (United States)

    Vanleeuwen, M.

    1985-01-01

    In July of 1984, Hughes and JPL initiated a contract for Hughes to design, fabricate and test 10 thin film Amorphous Silicon (a-Si) photovoltaic power modules. These modules were to be 1 ft x 4 ft in size. They were to be preceded by the delivery of 10 a-Si 4 in. square test devices. This effort is very timely since thin film PV development has progressed to the point where intermediate load power applications are on the horizon. It is important to know if current a-Si submodule design and manufacturing processes yield a product that is compatible with the packaging needed to meet a 20 to 30 year life span expectancy. The term submodule is assigned to an interconnected assembly of 28 a-Si cells deposited on a 1 foot square glass superstrate. These assemblies are equipped with electrical terminations, i.e., copper tabs at the four corners of the inverted submodules. It is these submodules that are to be interconnected and packaged into power modules, as opposed to the interconnected individual crystalline cells packaged into todays PV modules. A discussion of the fabrication methods and results follows.

  11. The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells

    NARCIS (Netherlands)

    Demontis, V.; Sanna, C.; Melskens, J.; Santbergen, R.; Smets, A.H.M.; Damiano, A.; Zeman, M.

    2013-01-01

    Thin oxide interlayers are commonly added to the back reflector of thin-film silicon solar cells to increase their current. To gain more insight in the enhancement mechanism, we tested different back reflector designs consisting of aluminium-doped zinc oxide (ZnO:Al) and/or hydrogenated silicon oxid

  12. Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries

    Science.gov (United States)

    Sourice, Julien; Bordes, Arnaud; Boulineau, Adrien; Alper, John P.; Franger, Sylvain; Quinsac, Axelle; Habert, Aurélie; Leconte, Yann; De Vito, Eric; Porcher, Willy; Reynaud, Cécile; Herlin-Boime, Nathalie; Haon, Cédric

    2016-10-01

    Core-shell silicon-carbon nanoparticles are attractive candidates as active material to increase the capacity of Li-ion batteries while mitigating the detrimental effects of volume expansion upon lithiation. However crystalline silicon suffers from amorphization upon the first charge/discharge cycle and improved stability is expected in starting with amorphous silicon. Here we report the synthesis, in a single-step process, of amorphous silicon nanoparticles coated with a carbon shell (a-Si@C), via a two-stage laser pyrolysis where decomposition of silane and ethylene are conducted in two successive reaction zones. Control of experimental conditions mitigates silicon core crystallization as well as formation of silicon carbide. Auger electron spectroscopy and scanning transmission electron microscopy show a carbon shell about 1 nm in thickness, which prevents detrimental oxidation of the a-Si cores. Cyclic voltammetry demonstrates that the core-shell composite reaches its maximal lithiation during the first sweep, thanks to its amorphous core. After 500 charge/discharge cycles, it retains a capacity of 1250 mAh.g-1 at a C/5 rate and 800 mAh.g-1 at 2C, with an outstanding coulombic efficiency of 99.95%. Moreover, post-mortem observations show an electrode volume expansion of less than 20% and preservation of the nanostructuration.

  13. Silicon thin-film transistor backplanes on flexible substrates

    Science.gov (United States)

    Kattamis, Alexis Z.

    Flexible large area electronics, especially for displays, is a rapidly growing field. Since hydrogenated amorphous silicon thin-film transistors (a-Si:H TFTs) have become the industry standard for liquid crystal displays, it makes sense that they be used in any transition from glass substrates to flexible substrates. The goal of this thesis work was to implement a-Si:H backplane technology on stainless steel and clear plastic substrates, with minimal recipe changes to ensure high device quality. When fabricating TFTs on flexible substrates many new issues arise, from thin-film fracture to overlay alignment errors. Our approach was to maintain elevated deposition temperatures (˜300°C) and engineer methods to minimize these problems, rather than reducing deposition temperatures. The resulting TFTs exhibit more stable operation than their low temperature counterparts and are therefore similar to the TFTs produced on glass. Two display projects using a-Si:H TFTs will be discussed in detail. They are an active-matrix organic light emitting display (AMOLED) on stainless steel and an active-matrix electrophoretic display (AMEPD) on clear plastic, with TFTs deposited at 250°C-280°C. Achieving quality a-Si:H TFTs on these substrates required addressing a host of technical challenges, including surface roughness and feature misalignment. Nanocrystalline silicon (nc-Si) was also implemented on a clear plastic substrate as a possible alternative to a-Si:H. nc-Si:H TFTs can be deposited using the same techniques as a-Si:H but yield carrier mobilities one order of magnitude greater. Their large mobilities could enable high resolution OLED displays and system-on-panel electronics.

  14. Silicon Light: a European FP7 project aiming at high efficiency thin film silicon solar cells on foil. Monolithic series interconnection of flexible thin-film PV devices

    Energy Technology Data Exchange (ETDEWEB)

    Soppe, W. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Haug, F.J. [Ecole Polytechnique Federale de Lausanne EPFL, Photovoltaics and Thin Film Electronics Laboratory, Rue A.-L. Breguet 2, 2000 Neuchatel (Switzerland); Couty, P. [VHFTechnologies SA, Rue Edouard-Verdan 2, CH-1400 Yverdon-les-Bains (Switzerland); Duchamp, M. [Technical University of Denmark, Center for Electron Nanoscopy, DK-2800 Kongens Lyngby (Denmark); Schipper, W. [Nanoptics GmbH, Innungstr.5, 21244 Buchholz (Germany); Krc, J. [University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana (Slovenia); Sanchez, G. [Universidad Politecnica de Valencia, I.U.I. Centro de Tecnologia Nanofotonica, 46022 Valencia (Spain); Leitner, K. [Umicore Thin Film Products AG, Balzers (Liechtenstein); Wang, Q. [Shanghai Jiaotong University, Research Institute of Micro/Nanometer Science and Technology, 800 Dongchuan Road, Min Hang, 200240 Shanghai (China)

    2011-09-15

    Silicon-Light is a European FP7 project, which started January 1st, 2010 and aims at development of low cost, high-efficiency thin film silicon solar cells on foil. Three main routes are explored to achieve these goals: (a) advanced light trapping by implementing nanotexturization through UV Nano Imprinting Lithography (UV-NIL); (b) growth of crack-free silicon absorber layers on highly textured substrates; (c) development of new TCOs which should combine the best properties of presently available materials like ITO and AZO. The paper presents the midterm status of the project results, showing model calculations of ideal nanotextures for light trapping in thin film silicon solar cells; the fabrication of masters and the replication and roll-to-roll fabrication of these nanotextures. Further, results on ITO variants with improved work function are presented. Finally, the status of cell fabrication on foils with nanotexture is shown. Microcrystalline and amorphous silicon single junction cells with stable efficiencies with more than 8% have been made, paving the way towards a-Si/{mu}c-Si tandem cells with more than 11% efficiency.

  15. Ultrafast carrier dynamics and the role of grain boundaries in polycrystalline silicon thin films grown by molecular beam epitaxy

    Science.gov (United States)

    Titova, Lyubov V.; Cocker, Tyler L.; Xu, Sijia; Baribeau, Jean-Marc; Wu, Xiaohua; Lockwood, David J.; Hegmann, Frank A.

    2016-10-01

    We have used time-resolved terahertz spectroscopy to study microscopic photoconductivity and ultrafast photoexcited carrier dynamics in thin, pure, non-hydrogenated silicon films grown by molecular beam epitaxy on quartz substrates at temperatures ranging from 335 °C to 572 °C. By controlling the growth temperature, thin silicon films ranging from completely amorphous to polycrystalline with minimal amorphous phase can be achieved. Film morphology, in turn, determines its photoconductive properties: in the amorphous phase, carriers are trapped in bandtail states on sub-picosecond time scales, while the carriers excited in crystalline grains remain free for tens of picoseconds. We also find that in polycrystalline silicon the photoexcited carrier mobility is carrier-density-dependent, with higher carrier densities mitigating the effects of grain boundaries on inter-grain transport. In a film grown at the highest temperature of 572 °C, the morphology changes along the growth direction from polycrystalline with needles of single crystals in the bulk of the film to small crystallites interspersed with amorphous silicon at the top of the film. Depth profiling using different excitation wavelengths shows corresponding differences in the photoconductivity: the photoexcited carrier lifetime and mobility are higher in the first 100-150 nm from the substrate, suggesting that thinner, low-temperature grown polycrystalline silicon films are preferable for photovoltaic applications.

  16. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors.

    Science.gov (United States)

    Marrs, Michael A; Raupp, Gregory B

    2016-01-01

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm² and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate. PMID:27472329

  17. Stable, high-efficiency amorphous silicon solar cells with low hydrogen content

    Science.gov (United States)

    Fortmann, C. M.; Hegedus, S. S.

    1992-12-01

    Results and conclusions obtained during the investigation of amorphous silicon, amorphous silicon based alloy materials, and solar cells fabricated by photo-chemical vapor and glow discharge depositions are reported. Investigation of the effects of the hydrogen content in a-Si:H i-layers in amorphous silicon solar cells show that cells with lowered hydrogen content i-layers are more stable. A classical thermodynamic formulation of the Staebler-Wronski effect has been developed for standard solar cell operating temperatures and illuminations. Methods have been developed to extract a lumped equivalent circuit from the current voltage characteristic of a single junction solar cell in order to predict its behavior in a multijunction device.

  18. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors

    Directory of Open Access Journals (Sweden)

    Michael A. Marrs

    2016-07-01

    Full Text Available Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm2 and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate.

  19. Stable, high-efficiency amorphous silicon solar cells with low hydrogen content

    Energy Technology Data Exchange (ETDEWEB)

    Fortmann, C.M.; Hegedus, S.S. (Institute of Energy Conversion, Newark, DE (United States))

    1992-12-01

    Results and conclusions obtained during a research program of the investigation of amorphous silicon and amorphous silicon based alloy materials and solar cells fabricated by photo-chemical vapor and glow discharge depositions are reported. Investigation of the effects of the hydrogen content in a-si:H i-layers in amorphous silicon solar cells show that cells with lowered hydrogen content i-layers are more stable. A classical thermodynamic formulation of the Staebler-Wronski effect has been developed for standard solar cell operating temperatures and illuminations. Methods have been developed to extract a lumped equivalent circuit from the current voltage characteristic of a single junction solar cell in order to predict its behavior in a multijunction device.

  20. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors

    Science.gov (United States)

    Marrs, Michael A.; Raupp, Gregory B.

    2016-01-01

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm2 and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate. PMID:27472329

  1. Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics.

    Science.gov (United States)

    Dmitriev, P A; Makarov, S V; Milichko, V A; Mukhin, I S; Gudovskikh, A S; Sitnikova, A A; Samusev, A K; Krasnok, A E; Belov, P A

    2016-03-01

    The concept of high refractive index subwavelength dielectric nanoresonators, supporting electric and magnetic optical resonance, is a promising platform for waveguiding, sensing, and nonlinear nanophotonic devices. However, high concentration of defects in the nanoresonators diminishes their resonant properties, which are crucially dependent on their internal losses. Therefore, it seems to be inevitable to use initially crystalline materials for fabrication of the nanoresonators. Here, we show that the fabrication of crystalline (low-loss) resonant silicon nanoparticles by femtosecond laser ablation of amorphous (high-loss) silicon thin films is possible. We apply two conceptually different approaches: recently proposed laser-induced transfer and a novel laser writing technique for large-scale fabrication of the crystalline nanoparticles. The crystallinity of the fabricated nanoparticles is proven by Raman spectroscopy and electron transmission microscopy, whereas optical resonant properties of the nanoparticles are studied using dark-field optical spectroscopy and full-wave electromagnetic simulations. PMID:26864805

  2. Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics

    CERN Document Server

    Dmitriev, P A; Milichko, V A; Mukhin, I S; Gudovskikh, A S; Sitnikova, A A; Samusev, A K; Krasnok, A E; Belov, P A

    2015-01-01

    The concept of high refractive index subwavelength dielectric nanoresonators, supporting electric and magnetic optical resonances, is a promising platform for waveguiding, sensing, and nonlinear nanophotonic devices. However, high concentration of defects in the nanoresonators diminishes their resonant properties, which are crucially dependent on their internal losses. Therefore, it seems to be inevitable to use initially crystalline materials for fabrication of the nanoresonators. Here, we show that the fabrication of crystalline (low-loss) resonant silicon nanoparticles by femtosecond laser ablation of amorphous (high-loss) silicon thin films is possible. We apply two conceptually different approaches: recently proposed laser-induced transfer and a novel laser writing technique for large-scale fabrication of the crystalline nanoparticles. The crystallinity of the fabricated nanoparticles is proven by Raman spectroscopy and electron transmission microscopy, whereas optical resonant properties of the nanopart...

  3. Characterization of 13 and 30 mum thick hydrogenated amorphous silicon diodes deposited over CMOS integrated circuits for particle detection application

    CERN Document Server

    Despeisse, M; Commichau, S C; Dissertori, G; Garrigos, A; Jarron, P; Miazza, C; Moraes, D; Shah, A; Wyrsch, N; Viertel, Gert M

    2004-01-01

    We present the experimental results obtained with a novel monolithic silicon pixel detector which consists in depositing a n-i-p hydrogenated amorphous silicon (a-Si:H) diode straight above the readout ASIC (this technology is called Thin Film on ASIC, TFA). The characterization has been performed on 13 and 30mum thick a-Si:H films deposited on top of an ASIC containing a linear array of high- speed low-noise transimpedance amplifiers designed in a 0.25mum CMOS technology. Experimental results presented have been obtained with a 600nm pulsed laser. The results of charge collection efficiency and charge collection speed of these structures are discussed.

  4. Preparation of microcrystalline single junction and amorphous-microcrystalline tandem silicon solar cells entirely by hot-wire CVD

    Energy Technology Data Exchange (ETDEWEB)

    Kupich, M.; Grunsky, D.; Kumar, P.; Schroeder, B. [University of Kaiserslautern (Germany). Department of Physics

    2004-01-25

    The hot-wire chemical vapour deposition (HWCVD) has been used to prepare highly conducting p- and n-doped microcrystalline silicon thin layers as well as highly photoconducting, low defect density intrinsic microcrystalline silicon films. These films were incorporated in all-HWCVD, all-microcrystalline nip and pin solar cells, achieving conversion efficiencies of {eta}=5.4% and 4.5%, respectively. At present, only the nip-structures are found to be stable against light-induced degradation. Furthermore, microcrystalline nip and pin structures have been successfully incorporated as bottom cells in all-hot-wire amorphous-microcrystalline nipnip- and pinpin-tandem solar cells for the first time. So far, the highest conversion efficiencies of the 'micromorph' tandem structures are {eta}=5.7% for pinpin-solar cells and 7.0% for nipnip solar cells. (author)

  5. Programmable SERS active substrates for chemical and biosensing applications using amorphous/crystalline hybrid silicon nanomaterial

    OpenAIRE

    Jeffery Alexander Powell; Krishnan Venkatakrishnan; Bo Tan

    2016-01-01

    We present the creation of a unique nanostructured amorphous/crystalline hybrid silicon material that exhibits surface enhanced Raman scattering (SERS) activity. This nanomaterial is an interconnected network of amorphous/crystalline nanospheroids which form a nanoweb structure; to our knowledge this material has not been previously observed nor has it been applied for use as a SERS sensing material. This material is formed using a femtosecond synthesis technique which facilitates a laser plu...

  6. Electrical properties of amorphous chalcogenide/silicon heterojunctions modified by ion implantation

    OpenAIRE

    Fedorenko, Yanina G.; Hughes, Mark A.; Colaux, Julien L.; Jeynes, C.; Gwilliam, Russell M.; Homewood, Kevin P.; Yao, Jin; Hewak, Dan W.; Lee, Tae-Hoon; Elliott, Stephen R; Gholipour, B.; Curry, Richard J.

    2014-01-01

    Doping of amorphous chalcogenide films of rather dissimilar bonding type and resistivity, namely, Ga-La-S, GeTe, and Ge-Sb-Te by means of ion implantation of bismuth is considered. To characterize defects induced by ion-beam implantation space-charge-limited conduction and capacitance-voltage characteristics of amorphous chalcogenide/silicon heterojunctions are investigated. It is shown that ion implantation introduces substantial defect densities in the films and their interfaces with silico...

  7. Direct simulation of ion beam induced stressing and amorphization of silicon

    OpenAIRE

    Beardmore, Keith M.; Gronbech-Jensen, Niels

    1999-01-01

    Using molecular dynamics (MD) simulation, we investigate the mechanical response of silicon to high dose ion-irradiation. We employ a realistic and efficient model to directly simulate ion beam induced amorphization. Structural properties of the amorphized sample are compared with experimental data and results of other simulation studies. We find the behavior of the irradiated material is related to the rate at which it can relax. Depending upon the ability to deform, we observe either the ge...

  8. Roof-integrated amorphous silicon photovoltaic installation at the Institute for Micro-Technology; Installation photovoltaique IMT Neuchatel silicium amorphe integre dans toiture

    Energy Technology Data Exchange (ETDEWEB)

    Tscharner, R.; Shah, A.V.

    2003-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the 6.44 kW grid-connected photovoltaic (PV) power plant that has been in operation since 1996 at the Institute for Micro-Technology in Neuchatel, Switzerland. The PV plant, which features large-area, fully integrated modules using amorphous silicon cells was the first of its kind in Switzerland. Experience gained with the installation, which has been fully operational since its construction, as well as the power produced and efficiencies measured are presented and commented. The role of the installation as the forerunner of new, so-called 'micro-morph' thin-film solar cell technology developed at the institute is stressed. Technical details of the plant and its performance are given.

  9. Investigation of hydrogen plasma treatment for reducing defects in silicon quantum dot superlattice structure with amorphous silicon carbide matrix.

    Science.gov (United States)

    Yamada, Shigeru; Kurokawa, Yasuyoshi; Miyajima, Shinsuke; Konagai, Makoto

    2014-01-01

    We investigate the effects of hydrogen plasma treatment (HPT) on the properties of silicon quantum dot superlattice films. Hydrogen introduced in the films efficiently passivates silicon and carbon dangling bonds at a treatment temperature of approximately 400°C. The total dangling bond density decreases from 1.1 × 1019 cm-3 to 3.7 × 1017 cm-3, which is comparable to the defect density of typical hydrogenated amorphous silicon carbide films. A damaged layer is found to form on the surface by HPT; this layer can be easily removed by reactive ion etching. PMID:24521208

  10. Investigation of hydrogen plasma treatment for reducing defects in silicon quantum dot superlattice structure with amorphous silicon carbide matrix

    OpenAIRE

    Yamada, Shigeru; Kurokawa, Yasuyoshi; Miyajima, Shinsuke; KONAGAI, MAKOTO

    2014-01-01

    We investigate the effects of hydrogen plasma treatment (HPT) on the properties of silicon quantum dot superlattice films. Hydrogen introduced in the films efficiently passivates silicon and carbon dangling bonds at a treatment temperature of approximately 400°C. The total dangling bond density decreases from 1.1 × 1019 cm-3 to 3.7 × 1017 cm-3, which is comparable to the defect density of typical hydrogenated amorphous silicon carbide films. A damaged layer is found to form on the surface by ...

  11. Amorphous thin films for solar cell application. Final technical report, March 15, 1979-February 29, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Jonath, A D; Anderson, W W; Crowley, J L; MacMillan, H F; Junga, F A; Knudsen, J F; Monahan, K M; Thornton, J A

    1980-03-01

    Magnetron sputtering, a deposition method in which magnetic confinement of a plasma encourages high deposition rates at low working gas partial pressures, is under investigation in this program as a candidate production technology for large-scale manufacture of high-efficiency, thin-film amorphous silicon solar photovoltaic cells. The approach uses two dc magnetron geometries: (1) a low-cost planar magnetron (PM) system for exploratory and detailed examination of deposition parameter space; and (2) a cylindrical magnetron (CM) system, scalable to production sizes, for deposition of homogeneous films over large areas. Detailed descriptions of these two systems are included. During this first-year effort, amorphous silicon films and device structures were sputtered in both PM and CM systems under a wide range of deposition conditions (i.e., T/sub s/, P/sub Ar/, P/sub H/sub 2//) using both doped and undoped sputter targets. Measured electrical and optical film properties indicate that control over a wide range of conductivity, photoconductivity, conductivity activation energy, and optical and infrared absorption behavior is achievable. Multiple depositions to fabricate simple MIS device structures and simultaneously to deposit monitor samples of individual constituent layers have been successful. Other program highlights are: (1) deposition rates as great as 1500 A/min were achieved in high-power dc magnetron operation at practical substrate-target spacings; (2) p-type and n-type a-Si:H consistently deposited from p- and n-type targets, respectively; (3) demonstrated correlation of argon and hydrogen partial pressure variations with optical, electronic, and structural properties of magnetron-sputtered a-Si:H films; and (4) initial depositions have achieved properties comparable to those in films made by rf sputtering and glow-discharge methods.

  12. Rare-earth Doped Amorphous Silicon Microdisk and Microstadium Resonators with Emission at 1550nm

    CERN Document Server

    Figueira, D S L

    2007-01-01

    Microdisks and microstadium resonators were fabricated on erbium doped amorphous hydrogenated silicon (a-Si:H) layers sandwiched in air and native SiO2 on Si substrates. Annealing condition is optimized to allow large emission at 1550 nm for samples with erbium concentrations as high as 1.02x10^20 atoms/cm3. Near field scanning optical microscopy shows evidences of the simultaneous presence of bow-tie and diamond scars. These modes indicate the high quality of the resonators and the potentiality for achieving amorphous silicon microcavity lasers.

  13. Energy investments and production costs of amorphous silicon PV modules

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, K.S. (Neuchatel Univ., Inst. de Microtechnique, Neuchatel (Switzerland))

    1991-10-01

    Viability of large scale applications of photovoltaic technology will ultimately depend upon the economics of energy payback and production costs associated with it. For the potential options among the various PV technologies this aspect has been analysed to a considerable extent for crystalline silicon (mono- and poly-) modules. No systematic study, based on practical aspects of A-Si PV module production has yet been reported. In this study the energy investments and production costs of A-Si PV module production have been analysed based on factual data from two manufacturing units. Each process step involved in the manufacture of A-Si modules is analysed for the process electrical energy and the hidden energy content in the various materials associated with that step. Energy payback period and the production costs have been calculated on the basis of prevailing levels of conversion efficiency (5%) and production yield ([approx equal]80%). The report also covers salient features of A-Si technology, the current status of PV industry in respect of production, R+D and cost status of competing PV technologies. A review of earlier studies on energy investments and production costs of A-Si modules and a comparison of their findings with that of the present study are also discussed. Certain details which could not be included in the main text to maintain the continuity of thoughts, are presented as annexes. A short note on 'criteria for choice of technology for large scale PV production' and a brief description of the status of other thin-film technologies (CIS,CdTe) are included as Appendices at the end. figs., tabs., 18 refs.

  14. Study on the substrate-induced crystallisation of amorphous SiC-precursor ceramics. TIB/A; Untersuchungen zur substratinduzierten Kristallisation amorpher SiC-Precursorkeramiken

    Energy Technology Data Exchange (ETDEWEB)

    Rau, C.

    2000-12-01

    In the present thesis the crystallization behaviour of amorphous silicon-carbon materials (SiC{sub x}) was studied. The main topic of the experimental studies formed thereby the epitactical crystallization of thin silicon carbide layers on monocrystalline substrates of silicon carbides or silicon. Furthermore by thermolysis of the polymer amorphous SiC{sub x}-powder was obtained.

  15. Temperature dependence of the thermal conductivity of thin silicon nanowires.

    Science.gov (United States)

    Donadio, Davide; Galli, Giulia

    2010-03-10

    We compute the lattice thermal conductivity (kappa) of silicon nanowires as a function of temperature by molecular dynamics simulations. In wires with amorphous surfaces kappa may reach values close to that of amorphous silicon and is nearly constant between 200 and 600 K; this behavior is determined by the presence of a majority of nonpropagating vibrational modes. We develop a parameter-free model that accounts for the temperature dependence observed in our simulations and provides a qualitative explanation of recent experiments. PMID:20163124

  16. Hydrogenated amorphous silicon radiation detectors: Material parameters, radiation hardness, charge collection

    International Nuclear Information System (INIS)

    For nearly two decades now hydrogenated amorphous silicon has generated considerable interest for its potential use in various device applications namely, solar cells, electrolithography, large-area electronics etc. The development of efficient and economic solar cells has been on the forefront of this research. This interest in hydrogenated amorphous silicon has been motivated by the fact that amorphous silicon can be deposited over a large area at relatively low cost compared to crystalline silicon. Hydrogenated amorphous silicon, frequently abbreviated as a-Si:H, used in solar-cell applications is a micron or less thick. The basic device structure is a p-i-n diode where the i layer is the active layer for radiation to interact. This is so because intrinsic a-Si:H has superior electrical properties in comparison to doped a-Si:H which serves the purpose of forming a potential barrier on either end of the i layer. The research presented in this dissertation was undertaken to study the properties of a-Si:H for radiation detection applications in physics and medicine

  17. Preparation and Characterisation of Amorphous-silicon Photovoltaic Devices Having Microcrystalline Emitters; Preparacion y Caracterizacion de Dispositivos Fotovoltaicos de Silicio Amorfo con Emisiones Microcristalinos

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, M. T.; Gandia, J. J.; Carabe, J. [CIEMAT. Madrid (Spain)

    1999-11-01

    The present work summarises the essential aspects of the research carried out so far at CIEMAT on amorphous-silicon solar cells. The experience accumulated on the preparation and characterisation of amorphous and microcrystalline silicon has allowed to start from intrinsic (absorbent) and p-and n-type (emitters) materials not only having excellent optoelectronic properties, but enjoying certain technological advantages with respect to those developed by other groups. Among these are absorbent-layer growth rates between 5 and 10 times as fast as conventional ones and microcrystalline emitters prepared without using hydrogen. The preparation of amorphous-silicon cells has required the solution of a number of problems, such as those related to pinholes, edge leak currents and diffusion of metals into the semiconductor. Once such constraints have been overcome, it has been demonstrated not only that the amorphous-silicon technology developed at CIEMAT is valid for making solar cells, but also that the quality of the semiconductor material is good for the application according to the partial results obtained. The development of thin-film laser-scribing technology is considered essential. Additionally it has been concluded that cross contamination, originated by the fact of using a single-chamber reactor, is the basic factor limiting the quality of the cells developed at CIEMAT. The present research activity is highly focused on the solution of this problem. (Author)

  18. Anode properties of silicon-rich amorphous silicon suboxide films in all-solid-state lithium batteries

    Science.gov (United States)

    Miyazaki, Reona; Ohta, Narumi; Ohnishi, Tsuyoshi; Takada, Kazunori

    2016-10-01

    This paper reports the effects of introducing oxygen into amorphous silicon films on their anode properties in all-solid-state lithium batteries. Although poor cycling performance is a critical issue in silicon anodes, it has been effectively improved by introducing even a small amount of oxygen, that is, even in Si-rich amorphous silicon suboxide (a-SiOx) films. Because of the small amount of oxygen in the films, high cycling performance has been achieved without lowering the capacity and power density: an a-Si film delivers discharge capacity of 2500 mAh g-1 under high discharge current density of 10 mA cm-2 (35 C). These results demonstrate that a-SiOx is a promising candidate for high-capacity anode materials in solid-state batteries.

  19. Nanovoid formation by change in amorphous structure through the annealing of amorphous Al2O3 thin films

    International Nuclear Information System (INIS)

    The formation mechanism of a high density of nanovoids by annealing amorphous Al2O3 thin films prepared by an electron beam deposition method was investigated. Transmission electron microscopy observations revealed that nanovoids ∼1-2 nm in size were formed by annealing amorphous Al2O3 thin films at 973 K for 1-12 h, where the amorphous state was retained. The elastic stiffness, measured by a picosecond laser ultrasound method, and the density, measured by X-ray reflectivity, increased drastically after the annealing process, despite nanovoid formation. These increases indicate a change in the amorphous structure during the annealing process. Molecular dynamics simulations indicated that an increase in stable AlO6 basic units and the change in the ring distribution lead to a drastic increase in both the elastic stiffness and the density. It is probable that a pre-annealed Al2O3 amorphous film consists of unstable low-density regions containing a low fraction of stable AlO6 units and stable high-density regions containing a high fraction of stable AlO6 units. Thus, local density growth in the unstable low-density regions during annealing leads to nanovoid formation (i.e., local volume shrinkage).

  20. Computational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries

    OpenAIRE

    Jeongwoon Hwang; Jisoon Ihm; Kwang-Ryeol Lee; Seungchul Kim

    2015-01-01

    We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulations of atomic carbon deposition with low incident energies (1–16 eV). As the incident energy decrease...

  1. Optical Layers for Thin-film Silicon Solar Cells

    OpenAIRE

    Cuony, Peter

    2011-01-01

    In this work we develop and analyze optical layers for use in Micromorph solar cells, a tandem configuration with an amorphous silicon top cell and a microcrystalline silicon bottom cell. The morphology of the front electrode has a decisive role in maximizing the efficiency of a solar cell. To reach a better understanding of the requirements for the front electrode surface, we present a wide range of morphologies that can be obtained with as-grown rou...

  2. Field Emission from Amorphous carbon Nitride Films Deposited on silicon Tip Arrays

    Institute of Scientific and Technical Information of China (English)

    李俊杰; 郑伟涛; 孙龙; 卞海蛟; 金曾孙; 赵海峰; 宋航; 孟松鹤; 赫晓东; 韩杰才

    2003-01-01

    Amorphous carbon nitride films (a-CNx) were deposited on silicon tip arrays by rf magnetron sputtering in pure nitrogen atmosphere. The field emission property of carbon nitride films on Si tips was compared with that of carbon nitride on silicon wafer. The results show that field emission property of carbon nitride films deposited on silicon tips can be improved significantly in contrast with that on wafer. It can be explained that field emission is sensitive to the local curvature and geometry, thus silicon tips can effectively promote field emission property of a-CNx films. In addition, the films deposited on silicon tips have a smaller effective work function ( F = 0.024 eV)of electron field emission than that on silicon wafer ( F = 0.060 e V), which indicates a significant enhancement of the ability of electron field emission from a-CNx films.

  3. Variation in the structure and optical properties of polymorphous silicon thin films using dichlorosilane as silicon precursor

    Energy Technology Data Exchange (ETDEWEB)

    Remolina, A.; Hamui, L.; Monroy, B.M.; Garcia-Sanchez, M.F.; Santana, G. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, AP 70-360, Cd. Universitaria, Coyoacan, C. P. 04510, Mexico D. F. (Mexico); Ponce, A. [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna Hermosillo 140, C. P. 25290, Saltillo, Coahuila (Mexico); Picquart, M. [Departamento de Fisica, Universidad Autonoma Metropolitana, AP 55-534, Av. Sn Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, Mexico D. F. (Mexico)

    2011-03-15

    Polymorphous silicon thin films were obtained by plasma enhanced chemical vapor deposition using dichlorosilane as silicon precursor. The RF power and the dichlorosilane to hydrogen flow rate ratio were varied to obtain different crystalline fractions and average sizes of silicon nanocrystals embedded in the amorphous silicon matrix. Microscopy images confirmed the existence of nanocrystallites with averages sizes between 2 and 6 nm. Broader size distributions were obtained with increasing RF power. Raman results confirmed that different nanocrystalline fractions (from 12% to 54%) can be achieved in these films by regulating the selected growth parameters. The optical band gap calculated by the Tauc model from UV-visible transmittance measurements varies between 1.8 to 2.3 eV. The relationship between the optical properties is discussed in terms of the different nanostructures of the samples. Depending on their absorption properties and effective band gap, these materials can be suitable for application in thin film solar cell devices (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Amorphous Silicon p-i-n Structure Acting as Light and Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Giampiero de Cesare

    2015-05-01

    Full Text Available In this work, we propose a multi-parametric sensor able to measure both temperature and radiation intensity, suitable to increase the level of integration and miniaturization in Lab-on-Chip applications. The device is based on amorphous silicon p-doped/intrinsic/n-doped thin film junction. The device is first characterized as radiation and temperature sensor independently. We found a maximum value of responsivity equal to 350 mA/W at 510 nm and temperature sensitivity equal to 3.2 mV/K. We then investigated the effects of the temperature variation on light intensity measurement and of the light intensity variation on the accuracy of the temperature measurement. We found that the temperature variation induces an error lower than 0.55 pW/K in the light intensity measurement at 550 nm when the diode is biased in short circuit condition, while an error below 1 K/µW results in the temperature measurement when a forward bias current higher than 25 µA/cm2 is applied.

  5. Light trapping in amorphous silicon solar cells with periodic grating structures

    Energy Technology Data Exchange (ETDEWEB)

    Lia, Haihua; Wang, Qingkang; Chen, Jian [National Key Laboratory of Micro /Nano Fabrication Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Krc, J. [University of Ljubljana, Faculty of Electrical Engineering, Trzaska25, 1000 Ljubljana (Slovenia); Soppe, W.J. [Energy research Center of the Netherlands ECN, P. O. Box 1, 1755 ZG Pettern (Netherlands)

    2012-03-15

    We report on the design of amorphous silicon solar cells with the periodic grating structures. It is a combination of an anti-reflection structure and the metallic reflection grating. Optical coupling and light trapping in thin-film solar cells are studied numerically using the Rigorous Coupled Wave Analysis enhanced by the Modal Transmission Line theory. The impact of the structure parameters of the gratings is investigated. The results revealed that within the incident angles of - 40{sup 0} to + 40{sup 0} the reflectivity of the cell with a period of 0.5 {mu}m, a filling factor of 0.1 and a groove depth of 0.4 {mu}m is 4%-22.7% in the wavelength range of 0.3-0.6 {mu}m and 1%-20.8% in the wavelength range of 0.6-0.84 {mu}m, the absorption enhancement of the a-Si layer is 0.4%-10.8% and 20%-385%, respectively.

  6. Effective interface state effects in hydrogenated amorphous-crystalline silicon heterostructures using ultraviolet laser photocarrier radiometry

    Science.gov (United States)

    Melnikov, A.; Mandelis, A.; Halliop, B.; Kherani, N. P.

    2013-12-01

    Ultraviolet photocarrier radiometry (UV-PCR) was used for the characterization of thin-film (nanolayer) intrinsic hydrogenated amorphous silicon (i-a-Si:H) on c-Si. The small absorption depth (approximately 10 nm at 355 nm laser excitation) leads to strong influence of the nanolayer parameters on the propagation and recombination of the photocarrier density wave (CDW) within the layer and the substrate. A theoretical PCR model including the presence of effective interface carrier traps was developed and used to evaluate the transport parameters of the substrate c-Si as well as those of the i-a-Si:H nanolayer. Unlike conventional optoelectronic characterization methods such as photoconductance, photovoltage, and photoluminescence, UV-PCR can be applied to more complete quantitative characterization of a-Si:H/c-Si heterojunction solar cells, including transport properties and defect structures. The quantitative results elucidate the strong effect of a front-surface passivating nanolayer on the transport properties of the entire structure as the result of effective a-Si:H/c-Si interface trap neutralization through occupation. A further dramatic improvement of those properties with the addition of a back-surface passivating nanolayer is observed and interpreted as the result of the interaction of the increased excess bulk CDW with, and more complete occupation and neutralization of, effective front interface traps.

  7. Room Temperature Growth of Hydrogenated Amorphous Silicon Films by Dielectric Barrier Discharge Enhanced CVD

    Institute of Scientific and Technical Information of China (English)

    GUO Yu; ZHANG Xiwen; HAN Gaorong

    2007-01-01

    Hydrogenated amorphous silicon (a-Si:H) films were deposited on Si (100) and glass substrates by dielectric barrier discharge enhanced chemical vapour deposition (DBD-CVD)in (SiH4+H2) atmosphere at room temperature.Results of the thickness measurement,SEM (scanning electron microscope),Raman,and FTIR (Fourier transform infrared spectroscopy) show that with the increase in the applied peak voltage,the deposition rate and network order of the films increase,and the hydrogen bonding configurations mainly in di-hydrogen (Si-H2) and poly hydrogen (SiH2)n are introduced into the films.The UV-visible transmission spectra show that with the decrease in Sill4/ (SiH4+H2) the thin films'band gap shifts from 1.92 eV to 2.17 eV.These experimental results are in agreement with the theoretic analysis of the DBD discharge.The deposition of a-Si:H films by the DBD-CVD method as reported here for the first time is attractive because it allows fast deposition of a-Si:H films on large-area low-melting-point substrates and requires only a low cost of production without additional heating or pumping equipment.

  8. Effective interface state effects in hydrogenated amorphous-crystalline silicon heterostructures using ultraviolet laser photocarrier radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, A. [Center for Advanced Diffusion-Wave Technologies (CADIFT), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8 (Canada); Mandelis, A. [Center for Advanced Diffusion-Wave Technologies (CADIFT), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8 (Canada); Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4 (Canada); Halliop, B.; Kherani, N. P. [Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4 (Canada)

    2013-12-28

    Ultraviolet photocarrier radiometry (UV-PCR) was used for the characterization of thin-film (nanolayer) intrinsic hydrogenated amorphous silicon (i-a-Si:H) on c-Si. The small absorption depth (approximately 10 nm at 355 nm laser excitation) leads to strong influence of the nanolayer parameters on the propagation and recombination of the photocarrier density wave (CDW) within the layer and the substrate. A theoretical PCR model including the presence of effective interface carrier traps was developed and used to evaluate the transport parameters of the substrate c-Si as well as those of the i-a-Si:H nanolayer. Unlike conventional optoelectronic characterization methods such as photoconductance, photovoltage, and photoluminescence, UV-PCR can be applied to more complete quantitative characterization of a-Si:H/c-Si heterojunction solar cells, including transport properties and defect structures. The quantitative results elucidate the strong effect of a front-surface passivating nanolayer on the transport properties of the entire structure as the result of effective a-Si:H/c-Si interface trap neutralization through occupation. A further dramatic improvement of those properties with the addition of a back-surface passivating nanolayer is observed and interpreted as the result of the interaction of the increased excess bulk CDW with, and more complete occupation and neutralization of, effective front interface traps.

  9. Charging/discharging behavior and mechanism of silicon quantum dots embedded in amorphous silicon carbide films

    International Nuclear Information System (INIS)

    The charging/discharging behavior of Si quantum dots (QDs) embedded in amorphous silicon carbide (a-SiCx) was investigated based on the Al/insulating layer/Si QDs embedded in a-SiCx/SiO2/p-Si (metal-insulator-quantum dots-oxide-silicon) multilayer structure by capacitance-voltage (C-V) and conductance-voltage (G-V) measurements. Transmission electron microscopy and Raman scattering spectroscopy measurements reveal the microstructure and distribution of Si QDs. The occurrence and shift of conductance peaks indicate the carrier transfer and the charging/discharging behavior of Si QDs. The multilayer structure shows a large memory window of 5.2 eV at ±8 V sweeping voltage. Analysis of the C-V and G-V results allows a quantification of the Coulomb charging energy and the trapped charge density associated with the charging/discharging behavior. It is found that the memory window is related to the size effect, and Si QDs with large size or low Coulomb charging energy can trap two or more electrons by changing the charging voltage. Meanwhile, the estimated lower potential barrier height between Si QD and a-SiCx, and the lower Coulomb charging energy of Si QDs could enhance the charging and discharging effect of Si QDs and lead to an enlarged memory window. Further studies of the charging/discharging mechanism of Si QDs embedded in a-SiCx can promote the application of Si QDs in low-power consumption semiconductor memory devices

  10. Ultra-Light Amorphous Silicon Cell for Space Applications

    OpenAIRE

    Wyrsch, Nicolas; Dominé, Didier; F Freitas; Feitknecht, Luc; Bailat, Julien; Ballif, Christophe; Poe, G.; Bates, K.; Reed, K.

    2008-01-01

    For space applications, solar cells should be optimized for highest power density rather than for highest efficiency. In this context, relatively low efficiency thin-film solar cell may well surpass multi-junction III-V based solar cells if they can be made thin enough. In thin-film solar cells the power density is mostly limited by the substrate. The introduction of ultra-thin polymeric substrates is the key for decreasing the cell mass. In this work, a very thin polyimide film LaRCtrade-CP1...

  11. A comparison of degradation in three amorphous silicon PV module technologies

    Energy Technology Data Exchange (ETDEWEB)

    Radue, C.; van Dyk, E.E. [Physics Department, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2010-03-15

    Three commercial amorphous silicon modules manufactured by monolithic integration and consisting of three technology types were analysed in this study. These modules were deployed outdoors for 14 months and underwent degradation. All three modules experienced the typical light-induced degradation (LID) described by the Staebler-Wronski effect, and this was followed by further degradation. A 14 W single junction amorphous silicon module degraded by about 45% of the initial measured maximum power output (P{sub MAX}) at the end of the study. A maximum of 30% of this has been attributed to LID and the further 15% to cell mismatch and cell degradation. The other two modules, a 64 W triple junction amorphous silicon module, and a 68 W flexible triple junction amorphous silicon module, exhibited LID followed by seasonal variation in the degraded P{sub MAX}. The 64 W module showed a maximum degradation in P{sub MAX} of about 22%. This is approximately 4% more than the manufacturer allowed for the initial LID. However, the seasonal variation in P{sub MAX} seems to be centred around the manufacturer's rating ({+-}4%). The 68 W flexible module has shown a maximum decrease in P{sub MAX} of about 27%. This decrease is about 17% greater than the manufacturer allowed for the initial LID. (author)

  12. Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides

    DEFF Research Database (Denmark)

    Kuyken, B.; Ji, Hua; Clemmen, S.;

    2011-01-01

    We propose hydrogenated amorphous silicon nanowires as a platform for nonlinear optics in the telecommunication wavelength range. Extraction of the nonlinear parameter of these photonic nanowires reveals a figure of merit larger than 2. It is observed that the nonlinear optical properties of these...

  13. Light Entrapping, Modeling & Effect of Passivation on Amorphous Silicon Based PV Cell

    Directory of Open Access Journals (Sweden)

    Md. Mostafizur Rahman

    2016-07-01

    Full Text Available This research paper present efforts to enhance the performance of amorphous silicon p-i-n type solar cell using sidewall passivation. For sidewall passivation, MEMS insulation material Al2O3 was used. The main objective of this paper is to observe the effect of sidewall passivation in amorphous silicon solar cell and increase the conversion efficiency of the solar cell. Passivation of Al2O3 is found effective to subdue reverse leakage. It increases the electric potential generated in the designed solar cell. It also increases the current density generated in the solar cell by suppressing the leakage. Enhancement in J-V curve was observed after adding sidewall passivation. The short circuit current density (Jsc increased from 14.7 mA/cm2 to 18.5 mA/cm2, open circuit voltage (Voc improved from 0.87 V to 0.89 V, and the fill factor also slightly increased. Due to the sidewall of passivation of Al2O3, conversion efficiency of amorphous silicon solar cell increased by 29.07%. At the end, this research was a success to improve the efficiency of the amorphous silicon solar cell by adding sidewall passivation.

  14. Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells

    NARCIS (Netherlands)

    Kind, R.; Van Swaaij, R.A.C.M.M.; Rubinelli, F.A.; Solntsev, S.; Zeman, M.

    2011-01-01

    The performance of hydrogenated amorphous silicon (a-Si:H) p-i-n solar cells is limited, as they contain a relatively high concentration of defects. The dark current voltage (JV) characteristics at low forward voltages of these devices are dominated by recombination processes. The recombination rate

  15. Results from multipoint alignment monitoring using the new generation of amorphous silicon position detectors

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E. [CIEMAT, 28040 Madrid (Spain); Ferrando, A. [CIEMAT, 28040 Madrid (Spain)], E-mail: antonio.ferrando@ciemat.es; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C. [CIEMAT, 28040 Madrid (Spain); Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Sobron, M.; Vila, I.; Virto, A.L. [Instituto de Fisica de Cantabria (IFCA), CSIC-University of Cantabria Santander (Spain)] (and others)

    2008-08-11

    We present the measured performance of a new generation of large sensitive area (28x28 mm{sup 2}) semitransparent amorphous silicon position detector sensors. More than 100 units have been characterized. They show a very high performance. To illustrate a multipoint application, we present results from the monitoring of five sensors placed in a 5.5-m-long light path.

  16. Multipoint alignment monitoring with amorphous silicon position detectors in a complex light path

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E. [CIEMAT, Madrid (Spain); Ferrando, A., E-mail: antonio.ferrando@ciemat.e [CIEMAT, Madrid (Spain); Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C. [CIEMAT, Madrid (Spain); Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Sobron, M.; Vila, I.; Virto, A.L. [Instituto de Fisica de Cantabria. CSIC-University of Cantabria, Santander (Spain)

    2010-12-01

    This document presents an application of the new generation of amorphous silicon position detecting (ASPD) sensors to multipoint alignment. Twelve units are monitored along a 20 m long laser beam, where the light path is deflected by 90{sup o} using a pentaprism.

  17. Amorphous Silicon Position Detectors for the Link Alignment System of the CMS Detector: Users Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.

    2007-07-01

    We present the general characteristics, calibration procedures and measured performance of the Amorphous Silicon Position Detectors installed in the Link Alignment System of the CMS Detector for laser beam detection and reconstruction and give the Data Base to be used as a Handbook during CMS operation. (Author) 10 refs.

  18. Construction process and read-out electronics of amorphous silicon position detectors for multipoint alignment monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, C.; Schubert, M.B.; Lutz, B.; Werner, J.H. [Steinbeis-Transferzentrum fuer Angewandte Photovoltaik und Duennschichttechnik, Stuttgart (Germany); Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E. [CIEMAT, Madrid (Spain); Ferrando, A. [CIEMAT, Madrid (Spain)], E-mail: antonio.ferrando@ciemat.es; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C. [CIEMAT, Madrid (Spain); Calderon, A.; Fernandez, M.G.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F. [Instituto de Fisica de Cantabria IFCA/CSIC-University of Cantabria, Santander (Spain)] (and others)

    2009-09-01

    We describe the construction process of large-area high-performance transparent amorphous silicon position detecting sensors. Details about the characteristics of the associated local electronic board (LEB), specially designed for these sensors, are given. In addition we report on the performance of a multipoint alignment monitoring application of 12 sensors in a 13 m long light path.

  19. Method of forming semiconducting amorphous silicon films from the thermal decomposition of fluorohydridodisilanes

    Science.gov (United States)

    Sharp, Kenneth G.; D'Errico, John J.

    1988-01-01

    The invention relates to a method of forming amorphous, photoconductive, and semiconductive silicon films on a substrate by the vapor phase thermal decomposition of a fluorohydridodisilane or a mixture of fluorohydridodisilanes. The invention is useful for the protection of surfaces including electronic devices.

  20. Amorphous silicon research. Annual subcontract report, October 1, 1994--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Arya, R R; Bennett, M; Bradley, D [and others

    1996-02-01

    The major effort in this program is to develop cost-effective processes which satisfy efficiency, yield, and material usage criteria for mass production of amorphous silicon-based multijunction modules. New and improved processes were developed for the component cells and a more robust rear contact was developed for better long term stability.

  1. Amorphous silicon solar cells on natively textured ZnO grown by PECVD

    NARCIS (Netherlands)

    Löffler, J.; Groenen, R.; Linden, J.L.; Sanden, M.C.M. van de; Schropp, R.E.I.

    2001-01-01

    Natively textured ZnO layers deposited by the expanding thermal plasma CVD technique between 150 and 350°C at a deposition rate between 0.65 and 0.75 nm/s have been investigated with respect to their suitability as front electrode material for amorphous silicon pin solar cells in comparison to refer

  2. Exchange bias and bistable magneto-resistance states in amorphous TbFeCo thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaopu, E-mail: xl6ba@virginia.edu; Ma, Chung T.; Poon, S. Joseph, E-mail: sjp9x@virginia.edu [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Lu, Jiwei [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Devaraj, Arun [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Spurgeon, Steven R.; Comes, Ryan B. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2016-01-04

    Amorphous TbFeCo thin films sputter deposited at room temperature on thermally oxidized Si substrate are found to exhibit strong perpendicular magnetic anisotropy. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb atomic percentages distributed within the amorphous film. Exchange bias accompanied by bistable magneto-resistance states has been uncovered near room temperature by magnetization and magneto-transport measurements. The exchange anisotropy originates from the exchange interaction between the ferrimagnetic and ferromagnetic components corresponding to the two amorphous phases. This study provides a platform for exchange bias and magneto-resistance switching using single-layer amorphous ferrimagnetic thin films that require no epitaxial growth.

  3. Transmission electron microscopy study on ion-beam-synthesized amorphous Fe-Si thin layers

    Science.gov (United States)

    Naito, Muneyuki; Ishimaru, Manabu; Hirotsu, Yoshihiko; Valdez, James A.; Sickafus, Kurt E.

    2005-12-01

    Ion-beam-synthesized amorphous Fe-Si thin layers have been characterized using transmission electron microscopy (TEM) in combination with imaging plate techniques. Si single crystals with a (111) orientation were irradiated with 120keV Fe+ ions to a fluence of 4.0×1017cm-2 at cryogenic temperature (120K). Cross-sectional TEM observations indicated the formation of an amorphous bilayer on the topmost layer of the Si substrate. It was found that the upper layer is an amorphous Fe-Si with the composition, in terms of atomic ratio, of Fe /Si ˜1/2, while the lower one is an amorphous Si. Atomic pair-distribution functions extracted from microbeam electron diffraction patterns revealed that the nature of short-range order in amorphous Fe-Si thin layer can be well described by the atomic arrangements of crystalline iron silicides.

  4. A preliminary investigation into hybrid photovoltaic cells with organic phthalocyanines and amorphous silicon heterojunction

    International Nuclear Information System (INIS)

    Hybrid photovoltaic cells take the advantages of silicon in charge carrier separation and transport and organic dyes in strong complementary light absorption. Photovoltaic responses from a set of hybrid solar cells based on amorphous silicon and phthalocyanine dyes of double- or triple-layer heterojunction structures were investigated, which were found to have thickness dependence with the organic active layers. It was found that the photocurrent contributions from organic layers are limited, although they are strong light absorbers. The main photocurrent contributions are from the silicon counterpart. (paper)

  5. Recent advances and remaining challenges in thin-film silicon photovoltaic technology

    Directory of Open Access Journals (Sweden)

    F. Meillaud

    2015-09-01

    Full Text Available This contribution reviews some of the latest achievements and challenges in thin-film silicon photovoltaic (PV technology based on amorphous and nanocrystalline silicon and their alloys. We address material and device developments, including (i improved plasma deposition processes to achieve high-quality dense absorber materials; (ii absorber layers based on silicon tetrafluoride, which lead to enhanced absorption in the near-infrared and yield outstanding short-circuit current densities; (iii dedicated optimization of the interfaces and device architecture, as well as (iv enhanced light harvesting by means of multi-scale textured substrates and reduced parasitic absorption in the non-active layers. This paper will describe how, by combining all of these advances along with precise control of plasmas over large areas, key results have been achieved in recent years, at both the cell and large-area module level, with stabilized efficiencies of over 13 and 12%, respectively.

  6. Structural,Optical and Electrical Properties of Hydrogen-Doped Amorphous GaAs Thin Films

    Institute of Scientific and Technical Information of China (English)

    YAO Yan-Ping; LIU Chun-Ling; QIAO Zhong-Liang; LI Mei; GAO Xin; BO Bao-Xue

    2008-01-01

    @@ Amorphous GaAs films are deposited on substrates of quartz glass and silicon by rf magnetron sputtering technique in different gas ambient.First,the amorphous structure of the prepared samples is identified by x-ray diffraction.Second,analysis by radial distribution function and pair correlation function method is established to characterize the microstructure of the samples.Then,the content and bond type of hydrogen are analysed using Fourier transform infrared absorption spectroscopy.

  7. High spatial resolution radiation detectors based on hydrogenated amorphous silicon and scintillator

    International Nuclear Information System (INIS)

    Hydrogenated amorphous silicon (a-Si:H) as a large-area thin film semiconductor with ease of doping and low-cost fabrication capability has given a new impetus to the field of imaging sensors; its high radiation resistance also makes it a good material for radiation detectors. In addition, large-area microelectronics based on a-Si:H or polysilicon can be made with full integration of peripheral circuits, including readout switches and shift registers on the same substrate. Thin a-Si:H p-i-n photodiodes coupled to suitable scintillators are shown to be suitable for detecting charged particles, electrons, and X-rays. The response speed of CsI/a-Si:H diode combinations to individual particulate radiation is limited by the scintillation light decay since the charge collection time of the diode is very short (< 10ns). The reverse current of the detector is analyzed in term of contact injection, thermal generation, field enhanced emission (Poole-Frenkel effect), and edge leakage. A good collection efficiency for a diode is obtained by optimizing the p layer of the diode thickness and composition. The CsI(Tl) scintillator coupled to an a-Si:H photodiode detector shows a capability for detecting minimum ionizing particles with S/N ∼20. In such an arrangement a p-i-n diode is operated in a photovoltaic mode (reverse bias). In addition, a p-i-n diode can also work as a photoconductor under forward bias and produces a gain yield of 3--8 for shaping times of 1 micros. The mechanism of the formation of structured CsI scintillator layers is analyzed. Initial nucleation in the deposited layer is sensitive to the type of substrate medium, with imperfections generally catalyzing nucleation. Therefore, the microgeometry of a patterned substrate has a significant effect on the structure of the CsI growth

  8. Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes

    KAUST Repository

    Cui, Li-Feng

    2009-01-14

    Silicon is an attractive alloy-type anode material for lithium ion batteries because of its highest known capacity (4200 mAh/g). However silicon\\'s large volume change upon lithium insertion and extraction, which causes pulverization and capacity fading, has limited its applications. Designing nanoscale hierarchical structures is a novel approach to address the issues associated with the large volume changes. In this letter, we introduce a core-shell design of silicon nanowires for highpower and long-life lithium battery electrodes. Silicon crystalline- amorphous core-shell nanowires were grown directly on stainless steel current collectors by a simple one-step synthesis. Amorphous Si shells instead of crystalline Si cores can be selected to be electrochemically active due to the difference of their lithiation potentials. Therefore, crystalline Si cores function as a stable mechanical support and an efficient electrical conducting pathway while amorphous shells store Li ions. We demonstrate here that these core-shell nanowires have high charge storage capacity (̃1000 mAh/g, 3 times of carbon) with ̃90% capacity retention over 100 cycles. They also show excellent electrochemical performance at high rate charging and discharging (6.8 A/g, ̃20 times of carbon at 1 h rate). © 2009 American Chemical Society.

  9. Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material

    Science.gov (United States)

    Ramadan, Khaled S.; Nasr, Tarek; Foulds, Ian G.

    2013-03-01

    This work presents an SU-8 surface micromachining process using amorphous silicon as a sacrificial material, which also incorporates two metal layers for electrical excitation. SU-8 is a photo-patternable polymer that is used as a structural layer for MEMS and microfluidic applications due to its mechanical properties, biocompatibility and low cost. Amorphous silicon is used as a sacrificial layer in MEMS applications because it can be deposited in large thicknesses, and can be released in a dry method using XeF2, which alleviates release-based stiction problems related to MEMS applications. In this work, an SU-8 MEMS process was developed using α-Si as a sacrificial layer. Two conductive metal electrodes were integrated in this process to allow out-of-plane electrostatic actuation for applications like MEMS switches and variable capacitors. In order to facilitate more flexibility for MEMS designers, the process can fabricate dimples that can be conductive or nonconductive. Additionally, this SU-8 process can fabricate SU-8 MEMS structures of a single layer of two different thicknesses. Process parameters were optimized for two sets of thicknesses: thin (5-10 µm) and thick (130 µm). The process was tested fabricating MEMS switches, capacitors and thermal actuators.

  10. Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material

    KAUST Repository

    Ramadan, Khaled S.

    2013-02-08

    This work presents an SU-8 surface micromachining process using amorphous silicon as a sacrificial material, which also incorporates two metal layers for electrical excitation. SU-8 is a photo-patternable polymer that is used as a structural layer for MEMS and microfluidic applications due to its mechanical properties, biocompatibility and low cost. Amorphous silicon is used as a sacrificial layer in MEMS applications because it can be deposited in large thicknesses, and can be released in a dry method using XeF2, which alleviates release-based stiction problems related to MEMS applications. In this work, an SU-8 MEMS process was developed using ;-Si as a sacrificial layer. Two conductive metal electrodes were integrated in this process to allow out-of-plane electrostatic actuation for applications like MEMS switches and variable capacitors. In order to facilitate more flexibility for MEMS designers, the process can fabricate dimples that can be conductive or nonconductive. Additionally, this SU-8 process can fabricate SU-8 MEMS structures of a single layer of two different thicknesses. Process parameters were optimized for two sets of thicknesses: thin (5-10 m) and thick (130 m). The process was tested fabricating MEMS switches, capacitors and thermal actuators. © 2013 IOP Publishing Ltd.

  11. Laser process for extended silicon thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hessmann, M.T., E-mail: hessmann@zae.uni-erlangen.de [Bavarian Center for Applied Energy Research, Am Weichselgarten 7, 91058 Erlangen (Germany); Kunz, T.; Burkert, I.; Gawehns, N. [Bavarian Center for Applied Energy Research, Am Weichselgarten 7, 91058 Erlangen (Germany); Schaefer, L.; Frick, T.; Schmidt, M. [Bayerisches Laserzentrum, Konrad-Zuse-Str 2-6, 91052 Erlangen (Germany); Meidel, B. [Schott Solar AG, Carl-Zeiss-Strasse 4, 63755 Alzenau (Germany); Auer, R. [Bavarian Center for Applied Energy Research, Am Weichselgarten 7, 91058 Erlangen (Germany); Brabec, C.J. [Bavarian Center for Applied Energy Research, Am Weichselgarten 7, 91058 Erlangen (Germany); Chair VI - Materials for Electronics and Energy Technology, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen (Germany)

    2011-10-31

    We present a large area thin film base substrate for the epitaxy of crystalline silicon. The concept of epitaxial growth of silicon on large area thin film substrates overcomes the area restrictions of an ingot based monocrystalline silicon process. Further it opens the possibility for a roll to roll process for crystalline silicon production. This concept suggests a technical pathway to overcome the limitations of silicon ingot production in terms of costs, throughput and completely prevents any sawing losses. The core idea behind these thin film substrates is a laser welding process of individual, thin silicon wafers. In this manuscript we investigate the properties of laser welded monocrystalline silicon foils (100) by micro-Raman mapping and spectroscopy. It is shown that the laser beam changes the crystalline structure of float zone grown silicon along the welding seam. This is illustrated by Raman mapping which visualizes compressive stress as well as tensile stress in a range of - 147.5 to 32.5 MPa along the welding area.

  12. Light management in thin-film silicon solar cells

    NARCIS (Netherlands)

    Isabella, O.

    2013-01-01

    Solar energy can fulfil mankind’s energy needs and secure a more balanced distribution of primary sources of energy. Wafer-based and thin-film silicon solar cells dominate todays’ photovoltaic market because silicon is a non-toxic and abundant material and high conversion efficiencies are achieved

  13. Molecular dynamics studies of the bonding properties of amorphous silicon nitride coatings on crystalline silicon

    OpenAIRE

    Butler, K.T.; Lamers, M.P.W.E.; Weeber, A. W.; Harding, J. H.

    2011-01-01

    In this paper we present molecular dynamics simulations of silicon nitride, both in bulk and as an interface to crystalline silicon. We investigate, in particular, the bonding structure of the silicon nitride and analyze the simulations to search for de- fective geometries which have been identified as potential charge carrier traps when silicon nitride forms an interface with silicon semiconductors. The simulations reveal how the bonding patterns in silicon nitride are dependent upon the sto...

  14. Room-temperature fabrication of light-emitting thin films based on amorphous oxide semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junghwan, E-mail: JH.KIM@lucid.msl.titech.ac.jp; Miyokawa, Norihiko; Ide, Keisuke [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Toda, Yoshitake [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan)

    2016-01-15

    We propose a light-emitting thin film using an amorphous oxide semiconductor (AOS) because AOS has low defect density even fabricated at room temperature. Eu-doped amorphous In-Ga-Zn-O thin films fabricated at room temperature emitted intense red emission at 614 nm. It is achieved by precise control of oxygen pressure so as to suppress oxygen-deficiency/excess-related defects and free carriers. An electronic structure model is proposed, suggesting that non-radiative process is enhanced mainly by defects near the excited states. AOS would be a promising host for a thin film phosphor applicable to flexible displays as well as to light-emitting transistors.

  15. Reactive Infiltration of Silicon Melt Through Microporous Amorphous Carbon Preforms

    Science.gov (United States)

    Sangsuwan, P.; Tewari, S. N.; Gatica, J. E.; Singh, M.; Dickerson, R.

    1999-01-01

    The kinetics of unidirectional capillary infiltration of silicon melt into microporous carbon preforms have been investigated as a function of the pore morphology and melt temperature. The infiltrated specimens showed alternating bands of dark and bright regions, which corresponded to the unreacted free carbon and free silicon regions, respectively. The decrease in the infiltration front velocity for increasing infiltration distances, is in qualitative agreement with the closed-form solution of capillarity driven fluid flow through constant cross section cylindrical pores. However, drastic changes in the thermal response and infiltration front morphologies were observed for minute differences in the preforms microstructure. This suggests the need for a dynamic percolation model that would account for the exothermic nature of the silicon-carbon chemical reaction and the associated pore closing phenomenon.

  16. An amorphous phase formation at palladium / silicon oxide (Pd/SiOx) interface through electron irradiation - electronic excitation process

    International Nuclear Information System (INIS)

    A Pd-Si amorphous phase was formed at a palladium/silicon oxide (Pd/SiOx) interface at room temperature by electron irradiation at acceleration voltages ranging between 25 kV and 200 kV. Solid-state amorphization was stimulated without the electron knock-on effects. The total dose required for the solid-state amorphization decreases with decreasing acceleration voltage. This is the first report on electron irradiation induced metallic amorphous formation caused by the electronic excitation at metal/silicon oxide interface

  17. Induced growth of high quality ZnO thin films by crystallized amorphous ZnO

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Jun; Song Li-Jun; Li Shou-Chun; Lu You-Ming; Tian Yun-Xia; Liu Jia-Yi; Wang Lian-Yuan

    2006-01-01

    This paper reports the induced growth of high quality ZnO thin film by crystallized amorphous ZnO. Firstly amorphous ZnO was prepared by solid-state pyrolytic reaction, then by taking crystallized amorphous ZnO as seeds (buffer layer), ZnO thin films have been grown in diethyene glycol solution of zinc acetate at 80℃. X-ray Diffraction curve indicates that the films were preferentially oriented [001] out-of-plane direction of the ZnO. Atomic force microscopy and scanning electron microscopy were used to evaluate the surface morphology of the ZnO thin film. Photoluminescence spectrum exhibits a strong ultraviolet emission while the visible emission is very weak. The results indicate that high quality ZnO thin film was obtained.

  18. An overview of uncooled infrared sensors technology based on amorphous silicon and silicon germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Roberto; Mireles, Jose Jr. [Technology and Engineering Institute, Ciudad Juarez University UACJ, Av. Del Charro 450N, 32310 Chihuahua (Mexico); Moreno, Mario; Torres, Alfonso; Kosarev, Andrey [National Institute for Astrophysics Optics and Electronics INAOE, Luis E. Erro 1, PO Box 51 and 216, 7200 Puebla (Mexico); Heredia, Aurelio [Universidad Popular Autonoma del Estado de Puebla, 21 sur 1103 Col. Santiago, 72160 Puebla (Mexico)

    2010-04-15

    At the present time there are commercially available large un-cooled micro-bolometer arrays (as large as 1024 x 768 pixels) for a variety of thermal imaging applications. Different thermo-sensing materials have been employed as thermo sensing elements as Vanadium Oxide (VO{sub x}), metals, and amorphous and polycrystalline semiconductors. Those materials present good characteristics but also have some disadvantages. As a consequence none of the commercially available arrays contain optimum pixels with an optimum thermo-sensing material. This paper reviews the development of the un-cooled bolometer technology and the research achievements on this area, with special attention on the key factors that would lead to improve the pixels performance characteristics. The work considers the R and D of microbolometer arrays and the integration with MEMS and IC technologies. A comparative study with the state of the art and data reported in literature is presented. Finally, further directions of uncooled bolometer based in thin films materials are also discussed in this paper. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Present status of amorphous In–Ga–Zn–O thin-film transistors

    Directory of Open Access Journals (Sweden)

    Toshio Kamiya, Kenji Nomura and Hideo Hosono

    2010-01-01

    Full Text Available The present status and recent research results on amorphous oxide semiconductors (AOSs and their thin-film transistors (TFTs are reviewed. AOSs represented by amorphous In–Ga–Zn–O (a-IGZO are expected to be the channel material of TFTs in next-generation flat-panel displays because a-IGZO TFTs satisfy almost all the requirements for organic light-emitting-diode displays, large and fast liquid crystal and three-dimensional (3D displays, which cannot be satisfied using conventional silicon and organic TFTs. The major insights of this review are summarized as follows. (i Most device issues, such as uniformity, long-term stability against bias stress and TFT performance, are solved for a-IGZO TFTs. (ii A sixth-generation (6G process is demonstrated for 32'' and 37'' displays. (iii An 8G sputtering apparatus and a sputtering target have been developed. (iv The important effect of deep subgap states on illumination instability is revealed. (v Illumination instability under negative bias has been intensively studied, and some mechanisms are proposed. (vi Degradation mechanisms are classified into back-channel effects, the creation of traps at an interface and in the gate insulator, and the creation of donor states in annealed a-IGZO TFTs by the Joule heating; the creation of bulk defects should also be considered in the case of unannealed a-IGZO TFTs. (vii Dense passivation layers improve the stability and photoresponse and are necessary for practical applications. (viii Sufficient knowledge of electronic structures and electron transport in a-IGZO has been accumulated to construct device simulation models.

  20. Microstructural tuning of polycrystalline silicon films from hydrogen diluted amorphous silicon films by AIC

    Energy Technology Data Exchange (ETDEWEB)

    Prathap, P.; Tuzun, O.; Roques, S.; Schmitt, S.; Slaoui, A. [InESS, CNRS-UdS, Strasbourg Cedex-2 (France); Maurice, C. [SMS Centre, UMR CNRS 5146, Ecole des Mines de Saint Etienne, 158 Cours Fauriel, 42023 Saint Etienne Cedex 2 (France)

    2011-03-15

    In the present study, the effect of hydrogen dilution in amorphous silicon on its crystallization kinetics and defect distribution using AIC has been studied. The a -Si films were deposited at different ratios of H{sub 2}/(H{sub 2}+SiH{sub 4}) using plasma enhanced chemical vapour deposition (ECR-PECVD) on glass-ceramic substrates. The thicknesses of aluminium and a -Si:H films were 0.20 {mu}m and 0. 37 {mu}m, respectively. The bi-layer structures were annealed in a tube furnace at 475 C for 8 hours in a nitrogen atmosphere. The results indicated that as the hydrogen dilution for a -Si:H films increased from 0% to 85%, the AIC grown poly-Si films were more stressed compressively, while the Raman peak broadened from 6.7 cm{sup -1} to 8.6 cm{sup -1}. It was found that the initiation of crystallization temperature as well as microstructure of poly-Si films was dramatically influenced by the hydrogen content in precursor a -Si films. The distribution of microstructural defects analysed by Electron Back Scattering Diffraction (EBSD) method indicated that frequency of low angle grain boundaries (LAGB) were more at higher hydrogen dilution ratios while coincident site lattice boundaries (CSL) of first order ({sigma}3), second order ({sigma}9) and third order ({sigma}27) were less sensitive to the hydrogen dilutions/content (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. AuPd CATALYTIC NANOPARTICLE SIZE EFFECT ON THE FORMATION OF AMORPHOUS SILICON NANOWIRES

    Institute of Scientific and Technical Information of China (English)

    LIU ZU-QIN; SUN LIAN-FENG; TANG DONG-SHENG; ZHOU WEI-YA; LI YU-BAO; Zou XIAO-PING

    2000-01-01

    Amorphous silicon (a-Si) nanowires have been prepared on SiO2/Si substrates by AuPd nanoparticles / silane reaction method. Field-emission scanning electron microscopy and transmission electron microscopy were used to characterize the samples. The typical a-Si nanowires we obtained are of a uniform diameter about 20 nm and length up to several micrometers. The growth mechanism of the nanowires seems to be the vapor-liquid-solid mechanism. The catalytic particle size effect on the formation of the nanowires and the cause of forming amorphous state Si nanowires are discussed.

  2. Material Properties of Laser-Welded Thin Silicon Foils

    Directory of Open Access Journals (Sweden)

    M. T. Hessmann

    2013-01-01

    Full Text Available An extended monocrystalline silicon base foil offers a great opportunity to combine low-cost production with high efficiency silicon solar cells on a large scale. By overcoming the area restriction of ingot-based monocrystalline silicon wafer production, costs could be decreased to thin film solar cell range. The extended monocrystalline silicon base foil consists of several individual thin silicon wafers which are welded together. A comparison of three different approaches to weld 50 μm thin silicon foils is investigated here: (1 laser spot welding with low constant feed speed, (2 laser line welding, and (3 keyhole welding. Cross-sections are prepared and analyzed by electron backscatter diffraction (EBSD to reveal changes in the crystal structure at the welding side after laser irradiation. The treatment leads to the appearance of new grains and boundaries. The induced internal stress, using the three different laser welding processes, was investigated by micro-Raman analysis. We conclude that the keyhole welding process is the most favorable to produce thin silicon foils.

  3. Solar cell fabricated on welded thin flexible silicon

    Directory of Open Access Journals (Sweden)

    Hessmann Maik Thomas

    2015-01-01

    Full Text Available We present a thin-film crystalline silicon solar cell with an AM1.5 efficiency of 11.5% fabricated on welded 50 μm thin silicon foils. The aperture area of the cell is 1.00 cm2. The cell has an open-circuit voltage of 570 mV, a short-circuit current density of 29.9 mA cm-2 and a fill factor of 67.6%. These are the first results ever presented for solar cells on welded silicon foils. The foils were welded together in order to create the first thin flexible monocrystalline band substrate. A flexible band substrate offers the possibility to overcome the area restriction of ingot-based monocrystalline silicon wafers and the feasibility of a roll-to-roll manufacturing. In combination with an epitaxial and layer transfer process a decrease in production costs can be achieved.

  4. Analysis of the silicon market: Will thin films profit?

    Energy Technology Data Exchange (ETDEWEB)

    Sark, W.G.J.H.M. van; Brandsen, G.W. [Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Utrecht (Netherlands). Department of Science, Technology and Society; Fleuster, M. [Solland Solar Energy, Heerlen (Netherlands); Hekkert, M.P. [Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Utrecht (Netherlands). Department of Innovation Studies

    2007-06-15

    The photovoltaic industry has been growing with astonishing rates over the past years. The supply of silicon to the wafer-based industry has recently become a problem. This paper presents a thorough analysis of the PV industry and quantifies the silicon shortage. It is expected that this leads to a decrease in production in 2006 rather than the usual increase. Due to a mismatch in expansion plans of silicon feedstock manufacturers and solar cell manufacturers, a large cell overcapacity will persist up to 2010. The thin-film PV market is expected to profit from the silicon shortage problem; its market share may substantially increase to about 25% in 2010. (author)

  5. A study of the chemical, mechanical, and surface properties of thin films of hydrogenated amorphous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Vandentop, G.J.

    1990-07-01

    Amorphous hydrogenated carbon (a-C:H) films were studied with the objective of elucidating the nucleation and growth mechanisms, and the origin of their unique physical properties. The films were deposited onto Si(100) substrates both on the powered (negatively self-biased) and on the grounded electrodes from methane in an rf plasma (13.56 MHz) at 65 mTorr and 300 to 370 K. The films produced at the powered electrode exhibited superior mechanical properties, such as high hardness. A mass spectrometer was used to identify neutral species and positive ions incident on the electrodes from the plasma, and also to measure ion energies. The effect of varying ion energy flux on the properties of a-C:H films was investigated using a novel pulsed biasing technique. It was demonstrated that ions were not the dominant deposition species as the total ion flux measured was insufficient to account for the observed deposition rate. The interface between thin films of a-C:H and silicon substrates was investigated using angle resolved x-ray photoelectron spectroscopy. A silicon carbide layer was detected at the interface of a hard a-C:H film formed at the powered electrode. At the grounded electrode, where the kinetic energy is low, no interfacial carbide layer was observed. Scanning tunneling microscopy and high energy electron energy loss spectroscopy was used to investigate the initial stages of growth of a-C:H films. On graphite substrates, films formed at the powered electrode were observed to nucleate in clusters approximately 50 {Angstrom} in diameter, while at the grounded electrode no cluster formation was observed. 58 figs.

  6. The ``Micromorph'' cell: a new way to high-efficiency-low-temperature crystalline silicon thin-film cell manufacturing?

    Science.gov (United States)

    Keppner, H.; Kroll, U.; Torres, P.; Meier, J.; Platz, R.; Fischer, D.; Beck, N.; Dubail, S.; Anna Selvan, J. A.; Pellaton Vaucher, N.; Goerlitzer, M.; Ziegler, Y.; Tscharner, R.; Hof, Ch.; Goetz, M.; Pernet, P.; Wyrsch, N.; Vuille, J.; Cuperus, J.; Shah, A.; Pohl, J.

    1997-02-01

    Hydrogenated microcrystalline Silicon (μc-Si:H) produced by the VHF-GD (Very High Frequency Glow Discharge) process can be considered to be a new base material for thin-film crystalline silicon solar cells. The most striking feature of such cells, in contrast to conventional amorphous silicon technology, is their stability under light-soaking. With respect to crystalline silicon technology, their most striking advantage is their low process temperature (220 °C). The so called "micromorph" cell contains such a μc-Si:H based cell as bottom cell, whereas the top-cell consists of amorphous silicon. A stable efficiency of 10.7% (confirmed by ISE Freiburg) is reported in this paper. At present, all solar cell concepts based on thin-film crystalline silicon have a common problem to overcome: namely, too long manufacturing times. In order to help in solving this problem for the particular case of plasma-deposited μc-Si:H, results on combined argon/hydrogen dilution of the feedgas (silane) are presented. It is shown that rates as high as 9.4 Å/s can be obtained: furthermore, a first solar cell deposited with 8.7 Å/s resulted in an efficiency of 3.1%.

  7. Enhanced Multiple Exciton Generation in Amorphous Silicon Nanoparticles

    OpenAIRE

    Kryjevski, Andrei; Kilin, Dmitri

    2014-01-01

    Multiple exciton generation (MEG) in nanometer-sized hydrogen-passivated silicon nanowires (NWs), and quasi two-dimensional nanofilms strongly depends on the degree of the core structural disorder as shown by the many-body perturbation theory (MBPT) calculations based on the density functional theory (DFT) simulations. Working to the second order in the electron-photon coupling and in the screened Coulomb interaction we calculate quantum efficiency (QE), the average number of excitons created...

  8. Band offsets between amorphous La2Hf2O7 and silicon

    Institute of Scientific and Technical Information of China (English)

    CHENG Xuerui; WANG Yongqiang; QI Zeming; ZHANG Guobin; WANG Yuyin; SHAO Tao; ZHANG Wenhua

    2012-01-01

    Amorphous La2Hf2O7 films were grown on Si(100) by pulsed laser deposition method.The valence and conduction band offsets between amorphous La2Hf2O7 film and silicon were determined by using synchrotron radiation photoemission spectroscopy.The energy band gap of amorphous La2Hf2O7 film was measured from the energy-loss spectra of O 1s photoelectrons.The band gap of amorphous La2Hf2O7 film was determined to be 5.4±0.2 eV.The valence and the conduction-band offsets of amorphous La2Hf2O7 film to Si were obtained to be 2.7±0.2 and 1.6±0.2 eV,respectively.These results indicated that the amorphous La2Hf2O7 film could be one promising candidate for high-k gate dielectrics.

  9. Effect of crystalline/amorphous interfaces on thermal transport across confined thin films and superlattices

    Science.gov (United States)

    Giri, Ashutosh; Braun, Jeffrey L.; Hopkins, Patrick E.

    2016-06-01

    We report on the thermal boundary resistances across crystalline and amorphous confined thin films and the thermal conductivities of amorphous/crystalline superlattices for Si/Ge systems as determined via non-equilibrium molecular dynamics simulations. Thermal resistances across disordered Si or Ge thin films increase with increasing length of the interfacial thin films and in general demonstrate higher thermal boundary resistances in comparison to ordered films. However, for films ≲3 nm, the resistances are highly dependent on the spectral overlap of the density of states between the film and leads. Furthermore, the resistances at a single amorphous/crystalline interface in these structures are much lower than those at interfaces between the corresponding crystalline materials, suggesting that diffusive scattering at an interface could result in higher energy transmissions in these systems. We use these findings, together with the fact that high mass ratios between amorphous and crystalline materials can lead to higher thermal resistances across thin films, to design amorphous/crystalline superlattices with very low thermal conductivities. In this regard, we study the thermal conductivities of amorphous/crystalline superlattices and show that the thermal conductivities decrease monotonically with increasing interface densities above 0.1 nm-1. These thermal conductivities are lower than that of the homogeneous amorphous counterparts, which alludes to the fact that interfaces non-negligibly contribute to thermal resistance in these superlattices. Our results suggest that the thermal conductivity of superlattices can be reduced below the amorphous limit of its material constituent even when one of the materials remains crystalline.

  10. In situ probing of surface hydrides on hydrogenated amorphous silicon using attenuated total reflection infrared spectroscopy

    CERN Document Server

    Kessels, W M M; Sanden, M C M; Aydil, E S

    2002-01-01

    An in situ method based on attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) is presented for detecting surface silicon hydrides on plasma deposited hydrogenated amorphous silicon (a-Si:H) films and for determining their surface concentrations. Surface silicon hydrides are desorbed by exposing the a-Si:H films to low energy ions from a low density Ar plasma and by comparing the infrared spectrum before and after this low energy ion bombardment, the absorptions by surface hydrides can sensitively be separated from absorptions by bulk hydrides incorporated into the film. An experimental comparison with other methods that utilize isotope exchange of the surface hydrogen with deuterium showed good agreement and the advantages and disadvantages of the different methods are discussed. Furthermore, the determination of the composition of the surface hydrogen bondings on the basis of the literature data on hydrogenated crystalline silicon surfaces is presented, and quantification of the h...

  11. Approaching Defect-free Amorphous Silicon Nitride by Plasma-assisted Atomic Beam Deposition for High Performance Gate Dielectric.

    Science.gov (United States)

    Tsai, Shu-Ju; Wang, Chiang-Lun; Lee, Hung-Chun; Lin, Chun-Yeh; Chen, Jhih-Wei; Shiu, Hong-Wei; Chang, Lo-Yueh; Hsueh, Han-Ting; Chen, Hung-Ying; Tsai, Jyun-Yu; Lu, Ying-Hsin; Chang, Ting-Chang; Tu, Li-Wei; Teng, Hsisheng; Chen, Yi-Chun; Chen, Chia-Hao; Wu, Chung-Lin

    2016-01-01

    In the past few decades, gate insulators with a high dielectric constant (high-k dielectric) enabling a physically thick but dielectrically thin insulating layer, have been used to replace traditional SiOx insulator and to ensure continuous downscaling of Si-based transistor technology. However, due to the non-silicon derivative natures of the high-k metal oxides, transport properties in these dielectrics are still limited by various structural defects on the hetero-interfaces and inside the dielectrics. Here, we show that another insulating silicon compound, amorphous silicon nitride (a-Si3N4), is a promising candidate of effective electrical insulator for use as a high-k dielectric. We have examined a-Si3N4 deposited using the plasma-assisted atomic beam deposition (PA-ABD) technique in an ultra-high vacuum (UHV) environment and demonstrated the absence of defect-related luminescence; it was also found that the electronic structure across the a-Si3N4/Si heterojunction approaches the intrinsic limit, which exhibits large band gap energy and valence band offset. We demonstrate that charge transport properties in the metal/a-Si3N4/Si (MNS) structures approach defect-free limits with a large breakdown field and a low leakage current. Using PA-ABD, our results suggest a general strategy to markedly improve the performance of gate dielectric using a nearly defect-free insulator. PMID:27325155

  12. Approaching Defect-free Amorphous Silicon Nitride by Plasma-assisted Atomic Beam Deposition for High Performance Gate Dielectric

    Science.gov (United States)

    Tsai, Shu-Ju; Wang, Chiang-Lun; Lee, Hung-Chun; Lin, Chun-Yeh; Chen, Jhih-Wei; Shiu, Hong-Wei; Chang, Lo-Yueh; Hsueh, Han-Ting; Chen, Hung-Ying; Tsai, Jyun-Yu; Lu, Ying-Hsin; Chang, Ting-Chang; Tu, Li-Wei; Teng, Hsisheng; Chen, Yi-Chun; Chen, Chia-Hao; Wu, Chung-Lin

    2016-06-01

    In the past few decades, gate insulators with a high dielectric constant (high-k dielectric) enabling a physically thick but dielectrically thin insulating layer, have been used to replace traditional SiOx insulator and to ensure continuous downscaling of Si-based transistor technology. However, due to the non-silicon derivative natures of the high-k metal oxides, transport properties in these dielectrics are still limited by various structural defects on the hetero-interfaces and inside the dielectrics. Here, we show that another insulating silicon compound, amorphous silicon nitride (a-Si3N4), is a promising candidate of effective electrical insulator for use as a high-k dielectric. We have examined a-Si3N4 deposited using the plasma-assisted atomic beam deposition (PA-ABD) technique in an ultra-high vacuum (UHV) environment and demonstrated the absence of defect-related luminescence; it was also found that the electronic structure across the a-Si3N4/Si heterojunction approaches the intrinsic limit, which exhibits large band gap energy and valence band offset. We demonstrate that charge transport properties in the metal/a-Si3N4/Si (MNS) structures approach defect-free limits with a large breakdown field and a low leakage current. Using PA-ABD, our results suggest a general strategy to markedly improve the performance of gate dielectric using a nearly defect-free insulator.

  13. Property change during nanosecond pulse laser annealing of amorphous NiTi thin film

    Indian Academy of Sciences (India)

    S K Sadrnezhaad; Noushin Yasavol; Mansoureh Ganjali; Sohrab Sanjabi

    2012-06-01

    Nanosecond lasers of different intensities were pulsed into sputter-deposited amorphous thin films of near equiatomic Ni/Ti composition to produce partially crystallized highly sensitive -phase spots surrounded by amorphous regions. Scanning electron microscopy having secondary and back-scattered electrons, field emission scanning electron microscopy, optical microscopy and X-ray diffraction patterns were used to characterize the laser treated spots. Effect of nanosecond pulse lasering on microstructure, morphology, thermal diffusion and inclusion formation was investigated. Increasing beam intensity and laser pulse-number promoted amorphous to -phase transition. Lowering duration of the pulse incidence reduced local film oxidation and film/substrate interference.

  14. Plasma-initiated rehydrogenation of amorphous silicon to increase the temperature processing window of silicon heterojunction solar cells

    Science.gov (United States)

    Shi, Jianwei; Boccard, Mathieu; Holman, Zachary

    2016-07-01

    The dehydrogenation of intrinsic hydrogenated amorphous silicon (a-Si:H) at temperatures above approximately 300 °C degrades its ability to passivate silicon wafer surfaces. This limits the temperature of post-passivation processing steps during the fabrication of advanced silicon heterojunction or silicon-based tandem solar cells. We demonstrate that a hydrogen plasma can rehydrogenate intrinsic a-Si:H passivation layers that have been dehydrogenated by annealing. The hydrogen plasma treatment fully restores the effective carrier lifetime to several milliseconds in textured crystalline silicon wafers coated with 8-nm-thick intrinsic a-Si:H layers after annealing at temperatures of up to 450 °C. Plasma-initiated rehydrogenation also translates to complete solar cells: A silicon heterojunction solar cell subjected to annealing at 450 °C (following intrinsic a-Si:H deposition) had an open-circuit voltage of less than 600 mV, but an identical cell that received hydrogen plasma treatment reached a voltage of over 710 mV and an efficiency of over 19%.

  15. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation

    Science.gov (United States)

    Gerbig, Y. B.; Michaels, C. A.; Bradby, J. E.; Haberl, B.; Cook, R. F.

    2015-12-01

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique. Quantitative analyses of the generated in situ Raman maps provide unique insight into the phase behavior of as-implanted a-Si. In particular, the occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were measured. The experimental results are linked with previously published papers on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a sequence for the development of deformation of a-Si under indentation loading. The sequence involves three distinct deformation mechanisms of a-Si: (1) reversible deformation, (2) increase in coordination defects (onset of plastic deformation), and (3) phase transformation. Estimated conditions for the occurrence of these mechanisms are given with respect to relevant intrinsic and extrinsic parameters, such as indentation stress, volumetric strain, and bond angle distribution (a measure for the structural order of the amorphous network). The induced volumetric strains are accommodated solely by reversible deformation of the tetrahedral network when exposed to small indentation stresses. At greater indentation stresses, the increased volumetric strains in the tetrahedral network lead to the formation of predominately fivefold coordination defects, which seems to mark the onset of irreversible or plastic deformation of the a-Si thin film. Further increase in the indentation stress appears to initiate the formation of sixfold coordinated atomic arrangements. These sixfold coordinated arrangements may maintain their amorphous tetrahedral structure with a high density of coordination defects or nucleate as a new crystalline

  16. Preparation and Surface Analysis of a Fluorinated Amorphous Silicon for Photo-voltaic Device Application

    Science.gov (United States)

    McWhinney, Hylton G.; Burton, Dawn; Fogarty, Thomas N.

    1998-01-01

    Amorphous silicon films (a-Si:H) have been routinely deposited on a variety of substrates. Surface and interfacial studies were carried out with a PHI 5600 X-ray photo electron spectrometer. Co-deposition with fluorine yielded films having oxygen present as bulk oxide. The higher the fluorine content, the greater the amount of bulk oxygen observed. The presence of oxygen may be a contributing factor to inconsistent film properties of fluorine doped silicon materials, reported else where. A definite chemical interface between a layer containing fluorine and a layer made from pure silane has been delineated.

  17. Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators

    CERN Document Server

    Pelc, Jason S; Vo, Sonny; Santori, Charles; Fattal, David A; Beausoleil, Raymond G

    2014-01-01

    We utilize cross-phase modulation to observe all-optical switching in microring resonators fabricated with hydrogenated amorphous silicon (a-Si:H). Using 2.7-ps pulses from a mode-locked fiber laser in the telecom C-band, we observe optical switching of a cw telecom-band probe with full-width at half-maximum switching times of 14.8 ps, using approximately 720 fJ of energy deposited in the microring. In comparison with telecom-band optical switching in crystalline silicon microrings, a-Si:H exhibits substantially higher switching speeds due to reduced impact of free-carrier processes.

  18. Efficient nanorod-based amorphous silicon solar cells with advanced light trapping

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Y. [Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, High Tech Campus, Building 21, 5656 AE Eindhoven (Netherlands); Department of Applied Physics, Plasma & Materials Processing, Eindhoven University of Technology (TUE), P.O. Box 513, 5600 MB Eindhoven (Netherlands); Lare, M. C. van; Polman, A. [Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); Veldhuizen, L. W.; Schropp, R. E. I., E-mail: r.e.i.schropp@tue.nl [Department of Applied Physics, Plasma & Materials Processing, Eindhoven University of Technology (TUE), P.O. Box 513, 5600 MB Eindhoven (Netherlands); Rath, J. K. [Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, High Tech Campus, Building 21, 5656 AE Eindhoven (Netherlands)

    2015-11-14

    We present a simple, low-cost, and scalable approach for the fabrication of efficient nanorod-based solar cells. Templates with arrays of self-assembled ZnO nanorods with tunable morphology are synthesized by chemical bath deposition using a low process temperature at 80 °C. The nanorod templates are conformally coated with hydrogenated amorphous silicon light absorber layers of 100 nm and 200 nm thickness. An initial efficiency of up to 9.0% is achieved for the optimized design. External quantum efficiency measurements on the nanorod cells show a substantial photocurrent enhancement both in the red and the blue parts of the solar spectrum. Key insights in the light trapping mechanisms in these arrays are obtained via a combination of three-dimensional finite-difference time-domain simulations, optical absorption, and external quantum efficiency measurements. Front surface patterns enhance the light incoupling in the blue, while rear side patterns lead to enhanced light trapping in the red. The red response in the nanorod cells is limited by absorption in the patterned Ag back contact. With these findings, we develop and experimentally realize a further advanced design with patterned front and back sides while keeping the Ag reflector flat, showing significantly enhanced scattering from the back reflector with reduced parasitic absorption in the Ag and thus higher photocurrent generation. Many of the findings in this work can serve to provide insights for further optimization of nanostructures for thin-film solar cells in a broad range of materials.

  19. Efficient nanorod-based amorphous silicon solar cells with advanced light trapping

    International Nuclear Information System (INIS)

    We present a simple, low-cost, and scalable approach for the fabrication of efficient nanorod-based solar cells. Templates with arrays of self-assembled ZnO nanorods with tunable morphology are synthesized by chemical bath deposition using a low process temperature at 80 °C. The nanorod templates are conformally coated with hydrogenated amorphous silicon light absorber layers of 100 nm and 200 nm thickness. An initial efficiency of up to 9.0% is achieved for the optimized design. External quantum efficiency measurements on the nanorod cells show a substantial photocurrent enhancement both in the red and the blue parts of the solar spectrum. Key insights in the light trapping mechanisms in these arrays are obtained via a combination of three-dimensional finite-difference time-domain simulations, optical absorption, and external quantum efficiency measurements. Front surface patterns enhance the light incoupling in the blue, while rear side patterns lead to enhanced light trapping in the red. The red response in the nanorod cells is limited by absorption in the patterned Ag back contact. With these findings, we develop and experimentally realize a further advanced design with patterned front and back sides while keeping the Ag reflector flat, showing significantly enhanced scattering from the back reflector with reduced parasitic absorption in the Ag and thus higher photocurrent generation. Many of the findings in this work can serve to provide insights for further optimization of nanostructures for thin-film solar cells in a broad range of materials

  20. Development of radiation detectors based on hydrogenated amorphous silicon and its alloys

    International Nuclear Information System (INIS)

    Hydrogenated amorphous silicon and related materials have been applied to radiation detectors, utilizing their good radiation resistance and the feasibility of making deposits over a large area at low cost. Effects of deposition parameters on various material properties of a-Si:H have been studied to produce a material satisfying the requirements for specific detection application. Thick(-∼50 μm), device quality a-Si:H p-i-n diodes for direct detection of minimum ionizing particles have been prepared with low internal stress by a combination of low temperature growth, He-dilution of silane, and post annealing. The structure of the new film contained voids and tiny crystalline inclusions and was different from the one observed in conventional a-Si:H. Deposition on patterned substrates was attempted as an alternative to controlling deposition parameters to minimize substrate bending and delamination of thick a-Si:H films. Growth on an inversed-pyramid pattern reduced the substrate bending by a factor of 3∼4 for the same thickness film. Thin (0.1 ∼ 0.2 μm) films of a-Si:H and a-SiC:H have been applied to microstrip gas chambers to control gain instabilities due to charges on the substrate. Light sensitivity of the a-Si:H sheet resistance was minimized and the surface resistivity was successfully' controlled in the range of 1012 ∼ 1017 Ω/□ by carbon alloying and boron doping. Performance of the detectors with boron-doped a-Si:C:H layers was comparable to that of electronic-conducting glass. Hydrogen dilution of silane has been explored to improve electrical transport properties of a-Si:H material for high speed photo-detectors and TFT applications

  1. Measurement of the quantum efficiency of CsI, amorphous silicon and organometallic reflective photocathodes

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, G. (LPNHE, Ecole Polytechnique, IN2P3-CNRS, 91128 Palaiseau (France)); Mine, P. (LPNHE, Ecole Polytechnique, IN2P3-CNRS, 91128 Palaiseau (France)); Vartsky, D. (LPNHE, Ecole Polytechnique, IN2P3-CNRS, 91128 Palaiseau (France)); Equer, B. (PICM, Ecole Polytechnique, CNRS (UPR258), 91128 Palaiseau (France)); Besson, P. (CE Saclay, DAPNIA/SED, 91191 Gif-sur-Yvette Cedex (France)); Bourgeois, P. (CE Saclay, DAPNIA/SED, 91191 Gif-sur-Yvette Cedex (France)); Breskin, A. (LPNHE, Ecole Polytechnique, IN2P3-CNRS, 91128 Palaiseau (France)); Chechik, R. (The Weizmann Institute of Science, 76100 Rehovot (Israel))

    1994-09-01

    We performed a systematic investigation of the quantum efficiency of some solid reflective photocathodes in the spectral range 140-240 nm. The measurements were made without gaseous amplification in vacuum and in methane. No significant difference was found among CsI photocathodes prepared by vacuum deposition at different institutes, either from powders or from crystals of different origins, and measured either in vacuum or in methane. Amorphous silicon photocathodes were prepared by the plasma enhanced chemical vapor deposition technique. We present the results for several doping conditions of amorphous silicon and for p-n junctions. Some organometallic photocathodes, containing iron or other transition metals (cerium), were evaporated and measured. Among them decamethylferrocene exhibits the highest quantum efficiency in the range 190-240 nm. ((orig.))

  2. Highly efficient ultrathin-film amorphous silicon solar cells on top of imprinted periodic nanodot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wensheng, E-mail: yws118@gmail.com; Gu, Min, E-mail: mgu@swin.edu.au [Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Tao, Zhikuo [College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Ong, Thiam Min Brian [Plasma Sources and Application Center, NIE, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)

    2015-03-02

    The addressing of the light absorption and conversion efficiency is critical to the ultrathin-film hydrogenated amorphous silicon (a-Si:H) solar cells. We systematically investigate ultrathin a-Si:H solar cells with a 100 nm absorber on top of imprinted hexagonal nanodot arrays. Experimental evidences are demonstrated for not only notable silver nanodot arrays but also lower-cost ITO and Al:ZnO nanodot arrays. The measured external quantum efficiency is explained by the simulation results. The J{sub sc} values are 12.1, 13.0, and 14.3 mA/cm{sup 2} and efficiencies are 6.6%, 7.5%, and 8.3% for ITO, Al:ZnO, and silver nanodot arrays, respectively. Simulated optical absorption distribution shows high light trapping within amorphous silicon layer.

  3. Amorphous Silicon-Germanium Films with Embedded Nanocrystals for Thermal Detectors with Very High Sensitivity

    Directory of Open Access Journals (Sweden)

    Cesar Calleja

    2016-01-01

    Full Text Available We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nanocrystals in a plasma enhanced chemical vapor deposition (PECVD reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR, which is a signature of the sensitivity in thermal detectors (microbolometers. Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9% K−1. Our results show that amorphous silicon-germanium films with embedded nanocrystals can be used as thermosensitive films in high performance infrared focal plane arrays (IRFPAs used in commercial thermal cameras.

  4. Optical Waveform Sampling of a 320 Gbit/s Serial Data Signal using a Hydrogenated Amorphous Silicon Waveguide

    DEFF Research Database (Denmark)

    Ji, Hua; Hu, Hao; Pu, Minhao;

    2011-01-01

    We propose using a hydrogenated amorphous silicon waveguide for ultra-high-speed serial data waveform sampling. 320 Gbit/s serial optical data sampling is experimentally demonstrated with +12 dB intrinsic four wave mixing conversion efficiency.......We propose using a hydrogenated amorphous silicon waveguide for ultra-high-speed serial data waveform sampling. 320 Gbit/s serial optical data sampling is experimentally demonstrated with +12 dB intrinsic four wave mixing conversion efficiency....

  5. Magneto-optical switch with amorphous silicon waveguides on magneto-optical garnet

    Science.gov (United States)

    Ishida, Eiichi; Miura, Kengo; Shoji, Yuya; Mizumoto, Tetsuya; Nishiyama, Nobuhiko; Arai, Shigehisa

    2016-08-01

    We fabricated a magneto-optical (MO) switch with a hydrogenated amorphous silicon waveguide on an MO garnet. The switch is composed of a 2 × 2 Mach-Zehnder interferometer (MZI). The switch state is controlled by an MO phase shift through a magnetic field generated by a current flowing in an electrode located on the MZI. The switching operation was successfully demonstrated with an extinction ratio of 11.7 dB at a wavelength of 1550 nm.

  6. High Kerr nonlinearity hydrogenated amorphous silicon nanowires with low two photon absorption and high optical stability

    CERN Document Server

    Grillet, C; Monat, C; Grosse, P; Bakir, B Ben; Menezo, S; Fedeli, J M; Moss, David J

    2014-01-01

    We demonstrate optically stable amorphous silicon nanowires with both high nonlinear figure of merit (FOM) of ~5 and high nonlinearity Re({\\gamma}) = 1200W-1m-1. We observe no degradation in these parameters over the entire course of our experiments including systematic study under operation at 2 W coupled peak power (i.e. ~2GW/cm2) over timescales of at least an hour.

  7. Highly Efficient Hybrid Polymer and Amorphous Silicon Multijunction Solar Cells with Effective Optical Management.

    Science.gov (United States)

    Tan, Hairen; Furlan, Alice; Li, Weiwei; Arapov, Kirill; Santbergen, Rudi; Wienk, Martijn M; Zeman, Miro; Smets, Arno H M; Janssen, René A J

    2016-03-16

    Highly efficient hybrid multijunction solar cells are constructed with a wide-bandgap amorphous silicon for the front subcell and a low-bandgap polymer for the back subcell. Power conversion efficiencies of 11.6% and 13.2% are achieved in tandem and triple-junction configurations, respectively. The high efficiencies are enabled by deploying effective optical management and by using photoactive materials with complementary absorption. PMID:26780260

  8. Stable, highly nonlinear amorphous silicon nanowires with very low nonlinear absorption

    CERN Document Server

    Carletti, Luca; Grossec, Phillipe; Ben-Bakir, Badhise; Menezoc, Sylvie; Fedelic, Jean-Marc; Moss, David J; Monat, Christelle

    2014-01-01

    The nonlinear characteristics of hydrogenated amorphous silicon nanowires are experimentally demonstrated. A high nonlinear refractive index, n2=1.19 x 10-17 m2/W, combined with a low two-photon absorption, 0.14 x 10-11 m/W, resulted in a high nonlinear FOM of 5.5. Furthermore, systematic studies over hours of operational time under 2.2W of pulse peak power revealed no degradation of the optical response.

  9. CORRELATION BETWEEN ELECTRICAL AND VIBRATIONAL PROPERTIES OF CHLORINATED AND HYDROGENATED AMORPHOUS SILICON PREPARED BY GLOW DISCHARGE

    OpenAIRE

    Al Dallal, S.; Chevallier, J.; Kalem, S; Bourneix, J.

    1982-01-01

    Electrical conductivity and infrared transmission measurements have been carried out on chlorinated and hydrogenated amorphous silicon films prepared by glow discharge. Upon increasing the plasma power, we observed a change of transport mechanism, accompanied by an evolution of hydrogen and chlorine related bands. From this correlation between the transport and the infrared data we suggest that the evolution of SiCl2 species with the plasma power is mainly responsible for the change in bandga...

  10. HEATING OF CRYSTALLINE AND AMORPHOUS SILICON BY C-SWITCHED LASER RADIATION

    OpenAIRE

    Meyer, J.; Bartoli, F.; Kruer, M.

    1980-01-01

    A theory for optical heating in semiconductors has been formulated in terms of the coupled diffusion equations for heat and excess carriers. Closed-form solutions for the region near the surface of the material have been obtained in the general case where the optical and transport parameters of the semiconductor are allowed to depend in an arbitrary way on temperature and laser-generated carrier density. The theory is applied here to heating of crystalline and amorphous silicon by Q-switched ...

  11. Activated mechanisms in amorphous silicon: an activation-relaxation-technique study

    OpenAIRE

    Mousseau, N.; Barkema, G. T.

    1999-01-01

    At low temperatures, dynamics in amorphous silicon occurs through a sequence of discrete activated events that locally reorganize the topological network. Using the activation-relaxation technique, a data base containing over 8000 such events is generated, and the events are analyzed with respect to their energy barrier and asymmetry, displacement and volume expansion/contraction. Special attention is paid to those events corresponding to diffusing coordination defects. The energetics is not ...

  12. Vibrational properties of amorphous silicon from tight-binding O(N) calculation

    OpenAIRE

    Biswas, Parthapratim

    2001-01-01

    We present an O(N) algorithm to study the vibrational properties of amorphous silicon within the framework of tight-binding approach. The dynamical matrix elements have been evaluated numerically in the harmonic approximation exploiting the short-range nature of the density matrix to calculate the vibrational density of states which is then compared with the same obtained from a standard O($N^4$) algorithm. For the purpose of illustration, an 1000-atom model is studied to calculate the locali...

  13. Results on photon and neutron irradiation of semitransparent amorphous-silicon sensors

    CERN Document Server

    Carabe, J; Ferrando, A; Fuentes, J; Gandia, J J; Josa-Mutuberria, I; Molinero, A; Oller, J C; Arce, P; Calvo, E; Figueroa, C F; García, N; Matorras, F; Rodrigo, T; Vila, I; Virto, A L; Fenyvesi, A; Molnár, J; Sohler, D

    2000-01-01

    Semitransparent amorphous-silicon sensors are basic elements for laser 2D position reconstruction in the CMS multipoint alignment link system. Some of the sensors have to work in a very hard radiation environment. Two different sensor types have been irradiated with /sup 60/Co photons (up to 100 kGy) and fast neutrons (up to 10/sup 15 / cm/sup -2/), and the subsequent change in their performance has been measured. (13 refs).

  14. Investigation of an amorphous silicon flat-panel detector for ion radiography

    OpenAIRE

    Telsemeyer, Julia

    2012-01-01

    Using heavy ions in radiotherapy offers a good potential for targeted radiation of tumors and the ability to spare healthy tissue. Their characteristic interaction with matter holds the potential to employ ions for high-contrast radiographic imaging at a decreased dose in comparison to conventional X-ray imaging; however, it lacks simple detectors suitable for this purpose. In this study the performance of an amorphous silicon flat-panel detector, originally designed for photon imaging, was i...

  15. The Interplay of Quantum Confinement and Hydrogenation in Amorphous Silicon Quantum Dots

    OpenAIRE

    Askari, Sadegh; Svrcek, Vladmir; Maguire, Paul; Mariotti, Davide

    2015-01-01

    Hydrogenation in amorphous silicon quantum dots (QDs) has a dramatic impact on the corresponding optical properties and band energy structure, leading to a quantum‐confined composite material with unique characteristics. The synthesis of a‐Si:H QDs is demonstrated with an atmospheric‐pressure plasma process, which allows for accurate control of a highly chemically reactive non‐equilibrium environment with temperatures well below the crystallization temperature of Si QDs.

  16. The Interplay of Quantum Confinement and Hydrogenation in Amorphous Silicon Quantum Dots.

    Science.gov (United States)

    Askari, Sadegh; Svrcek, Vladmir; Maguire, Paul; Mariotti, Davide

    2015-12-22

    Hydrogenation in amorphous silicon quantum dots (QDs) has a dramatic impact on the corresponding optical properties and band energy structure, leading to a quantum-confined composite material with unique characteristics. The synthesis of a-Si:H QDs is demonstrated with an atmospheric-pressure plasma process, which allows for accurate control of a highly chemically reactive non-equilibrium environment with temperatures well below the crystallization temperature of Si QDs. PMID:26523743

  17. First Measurements of the Performance of New Semitransparent Amorphous Silicon Sensor Prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A.; Calvo, E.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J. M.; Ferrando, A.; Josa, M. I.; Luque, J. M.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.

    2004-07-01

    We present first results on the performance of a new generation of semitransparent amorphous silicon position detectors having good properties such as an intrinsic position resolution better than 5{mu}m, an spatial point reconstruction precision better than 10 {mu}m, deflection angles smaller than 10{mu}rad and transmission in the visible and NIR higher than 70%. In addition the sensitive area is very large: 30x30 cm''3. (Author) 10 refs.

  18. The boron-tailing myth in hydrogenated amorphous silicon solar cells

    OpenAIRE

    Stuckelberger, M.; Park, B.-S.; Bugnon, G.; Despeisse, M; Schüttauf, J.-W.; Haug, F.-J.; Ballif, C.

    2015-01-01

    The boron-tailing effect in hydrogenated amorphous silicon (a-Si:H) solar cells describes the reduced charge collection specifically in the blue part of the spectrum for absorber layers deposited above a critical temperature. This effect limits the device performance of state-of-the art solar cells: For enhanced current density (reduced bandgap), the deposition temperature should be as high as possible, but boron tailing gets detrimental above 200°C. To investigate this limitation and to show...

  19. Light trapping regimes in thin-film silicon solar cells with a photonic pattern.

    Science.gov (United States)

    Zanotto, Simone; Liscidini, Marco; Andreani, Lucio Claudio

    2010-03-01

    We present a theoretical study of crystalline and amorphous silicon thin-film solar cells with a periodic pattern on a sub-micron scale realized in the silicon layer and filled with silicon dioxide right below a properly designed antireflection (AR) coating. The study and optimization of the structure as a function of all the photonic lattice parameters, together with the calculation of the absorption in a single layer, allows to identify the different roles of the periodic pattern in determining an increase of the absorbance. From one side, the photonic crystal and the AR coating act as impedance matching layers, thus minimizing reflection of incident light over a particularly wide range of frequencies. Moreover a strong absorption enhancement is observed when the incident light is coupled into the quasi guided modes of the photonic slab. We found a substantial increase of the short-circuit current when the parameters are properly optimized, demonstrating the advantage of a wavelength-scale, photonic crystal based approach for patterning of thin-film silicon solar cells. PMID:20389438

  20. Amorphous silicon image sensors for x-ray detection in NDT

    International Nuclear Information System (INIS)

    Acquiring radiographic images in a digital format offers significant advantages over film. Besides eliminating the need for chemical processing, a digital image can be easily stored for more convenient retrieval, transmitted to remote locations for interpretation, and image processed to provide enhanced interpretation and greater latitude in exposure. Amorphous silicon image sensors, developed by dpiX, a Xerox Company, offer an improved method of acquiring digital x-ray images. Amorphous silicon image sensor technology provides the opportunity to have large format size similar to x-ray film, high resolution, and a compact package for ease of use in NDT applications. This technology can also be used to replace x-ray image intensifier tubes to provide real-time fluoroscopic imaging for capturing time related events such as x-ray examination of objects on a conveyor belt. This paper presents a description of amorphous silicon image sensor technology and provides examples of the performance that can be achieved using a system that has an 8 x 10 inch x-ray image acquisition area and 127 micron pixels for 4 lp/mm resolution