WorldWideScience

Sample records for amoebal map kinase

  1. Map kinases in fungal pathogens.

    Science.gov (United States)

    Xu, J R

    2000-12-01

    MAP kinases in eukaryotic cells are well known for transducing a variety of extracellular signals to regulate cell growth and differentiation. Recently, MAP kinases homologous to the yeast Fus3/Kss1 MAP kinases have been identified in several fungal pathogens and found to be important for appressorium formation, invasive hyphal growth, and fungal pathogenesis. This MAP kinase pathway also controls diverse growth or differentiation processes, including conidiation, conidial germination, and female fertility. MAP kinases homologous to yeast Slt2 and Hog1 have also been characterized in Candida albicans and Magnaporthe grisea. Mutants disrupted of the Slt2 homologues have weak cell walls, altered hyphal growth, and reduced virulence. The Hog1 homologues are dispensable for growth but are essential for regulating responses to hyperosmotic stress in C. albicans and M. grisea. Overall, recent studies have indicated that MAP kinase pathways may play important roles in regulating growth, differentiation, survival, and pathogenesis in fungal pathogens. PMID:11273677

  2. MAP Kinases in Immune Responses

    Institute of Scientific and Technical Information of China (English)

    Yongliang Zhang; Chen Dong

    2005-01-01

    MAP kinases are evolutionarily conserved signaling regulators from budding yeast to mammals and play essential roles in both innate and adaptive immune responses. There are three main families of MAPKs in mammals. Each of them has its own activators, inactivators, substrates and scaffolds, which altogether form a fine signaling network in response to different extracellular or intracellular stimulation. In this review, we summarize recent advances in understanding of the regulation of MAP kinases and the roles of MAP kinases in innate and adaptive immune responses.

  3. MAP Kinases in Immune Responses

    Institute of Scientific and Technical Information of China (English)

    YongliangZhang; ChenDong

    2005-01-01

    MAP kinases are evolutionarily conserved signaling regulators from budding yeast to mammals and play essential roles in both innate and adaptive immune responses. There are three main families of MAPKs in mammals. Each of them has its own activators, inactivators, substrates and scaffolds, which altogether form a fine signaling network in response to different extracellular or intracellular stimulation. In this review, we summarize recent advances in understanding of the regulation of MAP kinases and the roles of MAP kinases in innate and adaptive immune responses. Cellular & Molecular Immunology. 2005;2(1):20-27.

  4. MAP kinases and histone modification

    Institute of Scientific and Technical Information of China (English)

    Tamaki Suganuma; Jerry L. Workman

    2012-01-01

    Signal transduction pathways alter the gene expression program in response to extracellular or intracellular cues.Mitogen-activated protein kinases (MAPKs) govern numerous cellular processes including cell growth,stress response,apoptosis,and differentiation.In the past decade,MAPKs have been shown to regulate the transcription machinery and associate with chromatin-modifying complexes.Moreover,recent studies demonstrate that several MAPKs bind directly to chromatin at target genes.This review highlights the recent discoveries of MAPK signaling in regard to histone modifications and chromatin regulation.Evidence suggesting that further unknown mechanisms integrate signal transduction with chromatin biology is discussed.

  5. Selective regulation of MAP kinase signaling by an endomembrane phosphatidylinositol 4-kinase.

    Science.gov (United States)

    Cappell, Steven D; Dohlman, Henrik G

    2011-04-29

    Multiple MAP kinase pathways share components yet initiate distinct biological processes. Signaling fidelity can be maintained by scaffold proteins and restriction of signaling complexes to discreet subcellular locations. For example, the yeast MAP kinase scaffold Ste5 binds to phospholipids produced at the plasma membrane and promotes selective MAP kinase activation. Here we show that Pik1, a phosphatidylinositol 4-kinase that localizes primarily to the Golgi, also regulates MAP kinase specificity but does so independently of Ste5. Pik1 is required for full activation of the MAP kinases Fus3 and Hog1 and represses activation of Kss1. Further, we show by genetic epistasis analysis that Pik1 likely regulates Ste11 and Ste50, components shared by all three MAP kinase pathways, through their interaction with the scaffold protein Opy2. These findings reveal a new regulator of signaling specificity functioning at endomembranes rather than at the plasma membrane. PMID:21388955

  6. Measuring MAP kinase activity in immune complex assays.

    Science.gov (United States)

    Cherkasova, Vera A

    2006-11-01

    I present an overview of published methods for measuring mitogen activated protein (MAP) kinase activity on endogenous associated substrates, exogenously added substrates as well as determination of activation loop phosphorylation as a read-out of kinase activity in vivo. Detailed procedures for these assays are given for two MAP kinases (MAPKs) Fus3 and Kss1 and compared with other published protocols, including the protocols for Hog1 and Mpk1 MAPKs. Measuring kinase activity in immune complex assays can serve as an approach for identification of potential substrates of protein kinases as well as for detecting other kinase-associated proteins. PMID:16890454

  7. Regulation of the MAP kinase cascade in PC12 cells: B-Raf activates MEK-1 (MAP kinase or ERK kinase) and is inhibited by cAMP

    DEFF Research Database (Denmark)

    Peraldi, P; Frödin, M; Barnier, J V;

    1995-01-01

    In PC12 cells, cAMP stimulates the MAP kinase pathway by an unknown mechanism. Firstly, we examined the role of calcium ion mobilization and of protein kinase C in cAMP-stimulated MAP kinase activation. We show that cAMP stimulates p44mapk independently of these events. Secondly, we studied the r...

  8. Regulation and function of TPL-2,an IκB kinase-regulated MAP kinase kinase kinase

    Institute of Scientific and Technical Information of China (English)

    Thorsten Gantke; Srividya Sriskantharajah; Steven C Ley

    2011-01-01

    The IκB kinase(IKK)complex plays a well-documented role in innate and adaptive immunity.This function has been widely attributed to its role as the central activator of the NF-κB family of transcription factors.However,another important consequence of IKK activation is the regulation of TPL-2,a MEK kinase that is required for activation of ERK-1/2 MAP kinases in myeioid cells following Toll-like receptor and TNF receptor stimulation.In unstimulated cells,TPL-2 is stoichiometrically complexed with the NF-κB inhibitory protein NF-κB1 p105,which blocks TPL-2 access to its substrate MEK,and the ubiquitin-binding protein ABIN-2(A20-binding inhibitor of NF-κB 2),both of which are required to maintain TPL-2 protein stability.Following agonist stimulation,the IKK complex phosphorylates p105,triggering its K48-1inked ubiquitination and degradation by the proteasome.This releases TPL-2 from p105-mediated inhibition,facilitating activation of MEK,in addition to modulating NF-κB activation by liberating associated Rel subunits for translocation into the nucleus.IKK-induced proteolysis of 0105,therefore,can directly regulate both NF-κB and ERK MAP kinase activation via NF-κB1 p105.TPL-2 is critical for production of the proinflammatory cytokine TNF during inflammatory responses.Consequently,there has been considerable interest in the pharmaceutical industry to develop selective TPL-2 inhibitors as drugs for the treatment of TNF-dependent inflammatory,diseases,such as rheumatoid arthritis and inflammatory bowel disease.This review summarizes our current understanding of the regulation of TPL-2 signaling function,and also the complex positive and negative roles of TPL-2 in immune and inflammatory responses.

  9. Importance of MAP kinases during protoperithecial morphogenesis in Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Alexander Lichius

    Full Text Available In order to produce multicellular structures filamentous fungi combine various morphogenetic programs that are fundamentally different from those used by plants and animals. The perithecium, the female sexual fruitbody of Neurospora crassa, differentiates from the vegetative mycelium in distinct morphological stages, and represents one of the more complex multicellular structures produced by fungi. In this study we defined the stages of protoperithecial morphogenesis in the N. crassa wild type in greater detail than has previously been described; compared protoperithecial morphogenesis in gene-deletion mutants of all nine mitogen-activated protein (MAP kinases conserved in N. crassa; confirmed that all three MAP kinase cascades are required for sexual development; and showed that the three different cascades each have distinctly different functions during this process. However, only MAP kinases equivalent to the budding yeast pheromone response and cell wall integrity pathways, but not the osmoregulatory pathway, were essential for vegetative cell fusion. Evidence was obtained for MAP kinase signaling cascades performing roles in extracellular matrix deposition, hyphal adhesion, and envelopment during the construction of fertilizable protoperithecia.

  10. MAP Kinase Cascades in Plant Innate Immunity

    Directory of Open Access Journals (Sweden)

    Magnus Wohlfahrt Rasmussen

    2012-07-01

    Full Text Available Plant mitogen-activated protein kinase (MAPK cascades generally transduce extracellular stimuli into cellular responses. These stimuli include the perception of pathogen-associated molecular patterns (PAMPs by host transmembrane pattern recognition receptors (PRRs which trigger MAPK-dependent innate immune responses. In the model Arabidopsis, molecular genetic evidence implicates a number of MAPK cascade components in PAMP signaling, and in responses to immunity-related phytohormones such as ethylene, jasmonate and salicylate. In a few cases, cascade components have been directly linked to the transcription of target genes or to the regulation of phytohormone synthesis. Thus MAPKs are obvious targets for bacterial effector proteins and are likely guardees of resistance (R proteins, which mediate defense signaling in response to the action of effectors, or effector-triggered immunity (ETI. This mini-review discusses recent progress in this field with a focus on the Arabidopsis MAPKs MPK3, 4, 6 and 11 in their apparent pathways.

  11. Activation and signaling of the p38 MAP kinase pathway

    Institute of Scientific and Technical Information of China (English)

    Tyler ZARUBIN; Jiahuai HAN

    2005-01-01

    The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.

  12. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance

    DEFF Research Database (Denmark)

    Brodersen, P; Johansen, Bo; Petersen, M;

    2000-01-01

    Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) levels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern...... of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid-responsive gene expression....

  13. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance

    DEFF Research Database (Denmark)

    Petersen, M.; Brodersen, P.; Naested, H.;

    2000-01-01

    Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) revels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern...... of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid-responsive gene expression....

  14. Bacterial Alkaloids Prevent Amoebal Predation.

    Science.gov (United States)

    Klapper, Martin; Götze, Sebastian; Barnett, Robert; Willing, Karsten; Stallforth, Pierre

    2016-07-25

    Bacterial defense mechanisms have evolved to protect bacteria against predation by nematodes, predatory bacteria, or amoebae. We identified novel bacterial alkaloids (pyreudiones A-D) that protect the producer, Pseudomonas fluorescens HKI0770, against amoebal predation. Isolation, structure elucidation, total synthesis, and a proposed biosynthetic pathway for these structures are presented. The generation of P. fluorescens gene-deletion mutants unable to produce pyreudiones rendered the bacterium edible to a variety of soil-dwelling amoebae. PMID:27294402

  15. Modulation of the MAP kinase signaling cascade by Raf kinase inhibitory protein

    Institute of Scientific and Technical Information of China (English)

    Nicholas TRAKUL; Marsha R. ROSNER

    2005-01-01

    Proteins like Raf kinase inhibitory protein (RKIP) that serve as modulators of signaling pathways, either by promoting or inhibiting the formation of productive signaling complexes through protein-protein interactions, have been demonstrated to play an increasingly important role in a number of cell types and organisms. These proteins have been implicated in development as well as the progression of cancer. RKIP is a particularly interesting regulator, as it is a highly conserved, ubiquitously expressed protein that has been shown to play a role in growth and differentiation in a number of organisms and can regulate multiple signaling pathways. RKIP is also the first MAP kinase signaling modulator to be identified as playing a role in cancer metastasis, and identification of the mechanism by which it regulates Raf-1 activation provides new targets for therapeutic intervention.

  16. The NDR kinase scaffold HYM1/MO25 is essential for MAK2 map kinase signaling in Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Anne Dettmann

    2012-09-01

    Full Text Available Cell communication is essential for eukaryotic development, but our knowledge of molecules and mechanisms required for intercellular communication is fragmentary. In particular, the connection between signal sensing and regulation of cell polarity is poorly understood. In the filamentous ascomycete Neurospora crassa, germinating spores mutually attract each other and subsequently fuse. During these tropic interactions, the two communicating cells rapidly alternate between two different physiological states, probably associated with signal delivery and response. The MAK2 MAP kinase cascade mediates cell-cell signaling. Here, we show that the conserved scaffolding protein HYM1/MO25 controls the cell shape-regulating NDR kinase module as well as the signal-receiving MAP kinase cascade. HYM1 functions as an integral part of the COT1 NDR kinase complex to regulate the interaction with its upstream kinase POD6 and thereby COT1 activity. In addition, HYM1 interacts with NRC1, MEK2, and MAK2, the three kinases of the MAK2 MAP kinase cascade, and co-localizes with MAK2 at the apex of growing cells. During cell fusion, the three kinases of the MAP kinase module as well as HYM1 are recruited to the point of cell-cell contact. hym-1 mutants phenocopy all defects observed for MAK2 pathway mutants by abolishing MAK2 activity. An NRC1-MEK2 fusion protein reconstitutes MAK2 signaling in hym-1, while constitutive activation of NRC1 and MEK2 does not. These data identify HYM1 as a novel regulator of the NRC1-MEK2-MAK2 pathway, which may coordinate NDR and MAP kinase signaling during cell polarity and intercellular communication.

  17. INHIBITING MAP KINASE ACTIVITY PREVENTS CALCIUM TRANSIENTS AND MITOSIS ENTRY IN EARLY SEA URCHIN EMBRYOS

    OpenAIRE

    Philipova, Rada; Larman, Mark G.; Leckie, Calum P.; Harrison, Patrick K.; Groigno, Laurence; Whitaker, Michael

    2005-01-01

    A transient calcium increase triggers nuclear envelope breakdown (mitosis entry) in sea urchin embryos. Cdk1/cyclin B kinase activation is also known to be required for mitosis entry. More recently MAP kinase activity has also been shown to increase during mitosis. In sea urchin embryos both kinases show a similar activation profile, peaking at the time of mitosis entry.

  18. Insulin signaling inhibits the 5-HT2C receptor in choroid plexus via MAP kinase

    Directory of Open Access Journals (Sweden)

    Guan Kunliang

    2003-06-01

    Full Text Available Abstract Background G protein-coupled receptors (GPCRs interact with heterotrimeric GTP-binding proteins (G proteins to modulate acute changes in intracellular messenger levels and ion channel activity. In contrast, long-term changes in cellular growth, proliferation and differentiation are often mediated by tyrosine kinase receptors and certain GPCRs by activation of mitogen-activated protein (MAP kinases. Complex interactions occur between these signaling pathways, but the specific mechanisms of such regulatory events are not well-understood. In particular it is not clear whether GPCRs are modulated by tyrosine kinase receptor-MAP kinase pathways. Results Here we describe tyrosine kinase receptor regulation of a GPCR via MAP kinase. Insulin reduced the activity of the 5-HT2C receptor in choroid plexus cells which was blocked by the MAP kinase kinase (MEK inhibitor, PD 098059. We demonstrate that the inhibitory effect of insulin and insulin-like growth factor type 1 (IGF-1 on the 5-HT2C receptor is dependent on tyrosine kinase, RAS and MAP kinase. The effect may be receptor-specific: insulin had no effect on another GPCR that shares the same G protein signaling pathway as the 5-HT2C receptor. This effect is also direct: activated MAP kinase mimicked the effect of insulin, and removing a putative MAP kinase site from the 5-HT2C receptor abolished the effect of insulin. Conclusion These results show that insulin signaling can inhibit 5-HT2C receptor activity and suggest that MAP kinase may play a direct role in regulating the function of a specific GPCR.

  19. MAP KinaseCascades Responding to Environmental Stress in Plants

    Institute of Scientific and Technical Information of China (English)

    YUShun—Wu; TANGKe—Xuan

    2004-01-01

    Plant mitogen-activated protein kinases(MAPKs) are involved in growth,evelopment and responses to endogenous and environmental cues.which link stimuli that areactivated by external sensors to cellular responses.In Arabidopsis,as amodel,all of MAP kinase genes have been listed and classified.Based on the Arabidopsis MAPK families.a number of MAPk inase genes in other plant species have been recently isolated and classified.Most of the cloned MAPk inase genes can be activated by avariety of stresss timuli including pathogen infection.wounding.temperature,drought.salinity.osmolarity.UV irradiation.ozone and reactive oxygen species.Some tools and strategies are used to investigate their functions and signal pathways under different environmental stresses.indicating complexity and crosstalk of plant MAPk inase signaling pathways.It is still necessary to explore more novel tools and strategies to clarify MAPK signaling pathways,and how to apply the MAPK cascade to improve the resistance of crop to abiotic and biotic stress

  20. The cAMP Signaling and MAP Kinase Pathways in Plant Pathogenic Fungi

    NARCIS (Netherlands)

    Mehrabi, R.; Zhao, X.; Kim, Y.; Xu, J.R.

    2009-01-01

    The key components of the well conserved cyclic AMP signaling and MAP kinase pathways have been functionally characterized in the corn smut Ustilago maydis, rice blast fungus Magnaporthe grisea, and a few other fungal pathogens. In general, the cAMP signaling and the MAP kinase cascade homologous to

  1. Crystal Structure of the MAP3K TAO2 Kinase Domain Bound by an Inhibitor Staurosporine

    Institute of Scientific and Technical Information of China (English)

    Tian-Jun ZHOU; Li-Guang SUN; Yan GAO; Elizabeth J. GOLDSMITH

    2006-01-01

    Mitogen-activated protein kinase (MAPK) signal transduction pathways are ubiquitous in eukaryotic cells, which transfer signals from the cell surface to the nucleus, controlling multiple cellular programs. MAPKs are activated by MAPK kinases [MAP2Ks or MAP/extracellular signal-regulated kinase (ERK) kinases (MEK)], which in turn are activated by MAPK kinase kinases (MAP3Ks). TAO2 is a MAP3K level kinase that activates the MAP2Ks MEK3 and MEK6 to activate p38 MAPKs. Because p38 MAPKs are key regulators of expression of inflammatory cytokines, they appear to be involved in human diseases such as asthma and autoimmunity. As an upstream activator of p38s, TAO2 represents a potential drug target. Here we report the crystal structure of active TAO2 kinase domain in complex with staurosporine, a broadrange protein kinase inhibitor that inhibits TAO2 with an IC50 of 3 μM. The structure reveals that staurosporine occupies the position where the adenosine of ATP binds in TAO2, and the binding of the inhibitor mimics many features of ATP binding. Both polar and nonpolar interactions contribute to the enzyme-inhibitor recognition. Staurosporine induces conformational changes in TAO2 residues that surround the inhibitor molecule, but causes very limited global changes in the kinase. The structure provides atomic details for TAO2-staurosporine interactions, and explains the relatively low potency of staurosporine against TAO2. The structure presented here should aid in the design of inhibitors specific to TAO2 and related kinases.

  2. Finding a missing link in MAP kinase cascade

    OpenAIRE

    Chung, Kwi-Mi; Sano, Hiroshi

    2008-01-01

    Mitogen-activated protein kinase (MAPK) cascade is one of the major signaling systems in eukaryotes. External signals are tranduced through three protein kinases, which successively relay phosphorylation to finally activate target genes/proteins. However, few information on targets of MAPK have so far been available. In this study, we identified a novel transcription factor, NtWIF, which is directly phosphorylated by a wound-induced protein kinase (WIPK), a typical MAPK from tobacco plants. P...

  3. Roles of MAP kinase signaling pathway in oocyte meiosis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Mitogen-activated protein kinase (MAPK) is a family of Ser/Thr protein kinases expressed widely in eukaryotic cells. MAPK is activated by a cascade of protein kinase phosphorylation and plays pivotal roles in regulating meiosis process in oocytes. As an important physical substrate of MAPK, p90rsk mediates numerous MAPK functions. MAPK was activated at G2/M transition during meiosis. Its activity reached the peak at MⅠ stage and maintained at this level until the time before the pronuclear formation after fertilization. There is complex interplay between MAPK and MPF in the meiosis regulation. Furthermore, other intracellular signal transducers, such as cAMP, protein kinase C and protein phosphotase, ect., also regulated the activity of MAPK at different stages during meiosis in oocytes. In the present article, the roles of MAPK signaling pathway in oocyte meiosis are reviewed and discussed.

  4. The role of p38 MAP kinase and c-Jun N-terminal protein kinase signaling in the differentiation and apoptosis of immortalized neural stem cells

    International Nuclear Information System (INIS)

    The two distinct members of the mitogen-activated protein (MAP) kinase family c-Jun N-terminal protein kinase (JNK) and p38 MAP kinase, play an important role in central nervous system (CNS) development and differentiation. However, their role and functions are not completely understood in CNS. To facilitate in vitro study, we have established an immortal stem cell line using SV40 from fetal rat embryonic day 17. In these cells, MAP kinase inhibitors (SP600125, SB202190, and PD98059) were treated for 1, 24, 48, and 72 h to examine the roles of protein kinases. Early inhibition of JNK did not alter phenotypic or morphological changes of immortalized cells, however overexpression of Bax and decrease of phosphorylated AKT was observed. The prolonged inhibition of JNK induced polyploidization of immortalized cells, and resulted in differentiation and inhibition of cell proliferation. Moreover, JNK and p38 MAP kinase but not ERK1/2 was activated, and p21, p53, and Bax were overexpressed by prolonged inhibition of JNK. These results indicate that JNK and p38 MAP kinase could play dual roles on cell survival and apoptosis. Furthermore, this established cell line could facilitate study of the role of JNK and p38 MAP kinase on CNS development or differentiation/apoptosis

  5. Acetaldehyde alters MAP kinase signalling and epigenetic histone modifications in hepatocytes.

    Science.gov (United States)

    Shukla, Shivendra D; Lee, Youn Ju; Park, Pil-hoon; Aroor, Annayya R

    2007-01-01

    Although both oxidative and non-oxidative metabolites of ethanol are involved in generating ethanol matabolic stress (Emess), the oxidative metabolite acetaldehyde plays a critical role in the cellular actions of ethanol. We have investigated the effects of acetaldehyde on p42/44 MAP kinase, p46/p54 c-jun N-terminal kinase (JNK1/JNK2) and p38 MAP kinase in hepatocytes. Acetaldehyde caused temporal activation of p42/44 MAPK followed by JNK, but the activation of the p42/44 MAPK was not a prerequisite for the JNK activation. Activation ofJNK1 by acetaldehyde was greater than JNK2. Ethanol and acetaldehyde activatedJNK have opposing roles; ethanol-induced JNK activation increased apoptosis whereas that by acetaldehyde decreased apoptosis. Acetaldehyde also caused histone H3 acetylation at Lys9 and phosphorylation of histone H3 at Serl0 and 28, the latter being dependent on p38 MAP kinase. Phosphorylation at Ser28 was higher than at Serl0. Thus acetaldehyde distinctively alters MAP kinase signalling and histone modifications, processes involved in transcriptional activation. PMID:17590997

  6. Brf1 posttranscriptionally regulates pluripotency and differentiation responses downstream of Erk MAP kinase

    OpenAIRE

    Tan, Frederick E.; Elowitz, Michael B.

    2014-01-01

    AU-rich element mRNA-binding proteins (AUBPs) are key regulators of development, but how they are controlled and what functional roles they play depends on cellular context. Here, we show that Brf1 (zfp36l1), an AUBP from the Zfp36 protein family, operates downstream of FGF/Erk MAP kinase signaling to regulate pluripotency and cell fate decision making in mouse embryonic stem cells (mESCs). FGF/Erk MAP kinase signaling up-regulates Brf1, which disrupts the expression of core pluripotency-asso...

  7. Specificity of MAP Kinase Signaling in Yeast Differentiation Involves Transient versus Sustained MAPK Activation

    OpenAIRE

    Sabbagh, Walid; Flatauer, Laura J.; Bardwell, A. Jane; Bardwell, Lee

    2001-01-01

    Signals transmitted by common components often elicit distinct (yet appropriate) outcomes. In yeast, two developmental options—mating and invasive growth—are both regulated by the same MAP kinase cascade. Specificity has been thought to result from specialized roles for the two MAP kinases, Kss1 and Fus3, and because Fus3 prevents Kss1 from gaining access to the mating pathway. Kss1 has been thought to participate in mating only when Fus3 is absent. Instead, we show that Kss1 is rapidly phosp...

  8. MAP kinase phosphatase 2 regulates macrophage-adipocyte interaction.

    Directory of Open Access Journals (Sweden)

    Huipeng Jiao

    Full Text Available Inflammation is critical for the development of obesity-associated metabolic disorders. This study aims to investigate the role of mitogen-activated protein kinase phosphatase 2 (MKP-2 in inflammation during macrophage-adipocyte interaction.White adipose tissues (WAT from mice either on a high-fat diet (HFD or normal chow (NC were isolated to examine the expression of MKP-2. Murine macrophage cell line RAW264.7 stably expressing MKP-2 was used to study the regulation of MKP-2 in macrophages in response to saturated free fatty acid (FFA and its role in macrophage M1/M2 activation. Macrophage-adipocyte co-culture system was employed to investigate the role of MKP-2 in regulating inflammation during adipocyte-macrophage interaction. c-Jun N-terminal kinase (JNK- and p38-specific inhibitors were used to examine the mechanisms by which MKP-2 regulates macrophage activation and macrophage-adipocytes interaction.HFD changed the expression of MKP-2 in WAT, and MKP-2 was highly expressed in the stromal vascular cells (SVCs. MKP-2 inhibited the production of proinflammatory cytokines in response to FFA stimulation in macrophages. MKP-2 inhibited macrophage M1 activation through JNK and p38. In addition, overexpression of MKP-2 in macrophages suppressed inflammation during macrophage-adipocyte interaction.MKP-2 is a negative regulator of macrophage M1 activation through JNK and p38 and inhibits inflammation during macrophage-adipocyte interaction.

  9. MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation.

    Science.gov (United States)

    Madhani, H D; Styles, C A; Fink, G R

    1997-11-28

    Filamentous invasive growth of S. cerevisiae requires multiple elements of the mitogen-activated protein kinase (MAPK) signaling cascade that are also components of the mating pheromone response pathway. Here we show that, despite sharing several constituents, the two pathways use different MAP kinases. The Fus3 MAPK regulates mating, whereas the Kss1 MAPK regulates filamentation and invasion. Remarkably, in addition to their kinase-dependent activation functions, Kss1 and Fus3 each have a distinct kinase-independent inhibitory function. Kss1 inhibits the filamentation pathway by interacting with its target transcription factor Ste12. Fus3 has a different inhibitory activity that prevents the inappropriate activation of invasion by the pheromone response pathway. In the absence of Fus3, there is erroneous crosstalk in which mating pheromone now activates filamentation-specific gene expression using the Kss1 MAPK. PMID:9393860

  10. Granulomatous Amoebic Encephalitis: Clinical Diagnosis and Management

    OpenAIRE

    Khan, Naveed A.

    2005-01-01

    Granulomatous amoebic encephalitis (GAE) is a serious human disease with fatal consequences. With the mortality rate of more than 90%, it is not surprising that the majority of GAE infections are identified at the post-mortem stage. The most distressing aspect is that the high level of mortality is attributed to lack of awareness. Early diagnosis with aggressive treatment can lead to successful prognosis for the patient. Here, we describe a brief overview of the current understanding of the p...

  11. Discovery and Characterization of Non-ATP Site Inhibitors of the Mitogen Activated Protein (MAP) Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Comess, Kenneth M.; Sun, Chaohong; Abad-Zapatero, Cele; Goedken, Eric R.; Gum, Rebecca J.; Borhani, David W.; Argiriadi, Maria; Groebe, Duncan R.; Jia, Yong; Clampit, Jill E.; Haasch, Deanna L.; Smith, Harriet T.; Wang, Sanyi; Song, Danying; Coen, Michael L.; Cloutier, Timothy E.; Tang, Hua; Cheng, Xueheng; Quinn, Christopher; Liu, Bo; Xin, Zhili; Liu, Gang; Fry, Elizabeth H.; Stoll, Vincent; Ng, Teresa I.; Banach, David; Marcotte, Doug; Burns, David J.; Calderwood, David J.; Hajduk, Philip J. (Abbott)

    2012-03-02

    Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites on the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38{alpha} (involved in the formation of TNF{alpha} and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional {sup 1}H/{sup 13}C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38{alpha} both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in

  12. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus.

    Science.gov (United States)

    Qiu, Jin-Long; Fiil, Berthe Katrine; Petersen, Klaus; Nielsen, Henrik Bjørn; Botanga, Christopher J; Thorgrimsen, Stephan; Palma, Kristoffer; Suarez-Rodriguez, Maria Cristina; Sandbech-Clausen, Signe; Lichota, Jacek; Brodersen, Peter; Grasser, Klaus D; Mattsson, Ole; Glazebrook, Jane; Mundy, John; Petersen, Morten

    2008-08-20

    Plant and animal perception of microbes through pathogen surveillance proteins leads to MAP kinase signalling and the expression of defence genes. However, little is known about how plant MAP kinases regulate specific gene expression. We report that, in the absence of pathogens, Arabidopsis MAP kinase 4 (MPK4) exists in nuclear complexes with the WRKY33 transcription factor. This complex depends on the MPK4 substrate MKS1. Challenge with Pseudomonas syringae or flagellin leads to the activation of MPK4 and phosphorylation of MKS1. Subsequently, complexes with MKS1 and WRKY33 are released from MPK4, and WRKY33 targets the promoter of PHYTOALEXIN DEFICIENT3 (PAD3) encoding an enzyme required for the synthesis of antimicrobial camalexin. Hence, wrky33 mutants are impaired in the accumulation of PAD3 mRNA and camalexin production upon infection. That WRKY33 is an effector of MPK4 is further supported by the suppression of PAD3 expression in mpk4-wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation.

  13. Feedback phosphorylation of an RGS protein by MAP kinase in yeast.

    Science.gov (United States)

    Garrison, T R; Zhang, Y; Pausch, M; Apanovitch, D; Aebersold, R; Dohlman, H G

    1999-12-17

    Regulators of G protein signaling (RGS proteins) are well known to accelerate G protein GTPase activity in vitro and to promote G protein desensitization in vivo. Less is known about how RGS proteins are themselves regulated. To address this question we purified the RGS in yeast, Sst2, and used electrospray ionization mass spectrometry to identify post-translational modifications. This analysis revealed that Sst2 is phosphorylated at Ser-539 and that phosphorylation occurs in response to pheromone stimulation. Ser-539 lies within a consensus mitogen-activated protein (MAP) kinase phosphorylation site, Pro-X-Ser-Pro. Phosphorylation is blocked by mutations in the MAP kinase genes (FUS3, KSS1), as well as by mutations in components needed for MAP kinase activation (STE11, STE7, STE4, STE18). Phosphorylation is also blocked by replacing Ser-539 with Ala, Asp, or Glu (but not Thr). These point mutations do not alter pheromone sensitivity, as determined by growth arrest and reporter transcription assays. However, phosphorylation appears to slow the rate of Sst2 degradation. These findings indicate that the G protein-regulated MAP kinase in yeast can act as a feedback regulator of Sst2, itself a regulator of G protein signaling. PMID:10593933

  14. The MAP kinase substrate MKS1 is a regulator of plant defense responses

    DEFF Research Database (Denmark)

    Andreasson, E.; Jenkins, T.; Brodersen, P.;

    2005-01-01

    Arabidopsis MAP kinase 4 (MPK4) functions as a regulator of pathogen defense responses, because it is required for both repression of salicylic acid (SA)-dependent resistance and for activation of jasmonate (JA)-dependent defense gene expression. To understand MPK4 signaling mechanisms, we used...

  15. Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4 reveals a requirement for MAPK signalling in mouse sex determination.

    Directory of Open Access Journals (Sweden)

    Debora Bogani

    2009-09-01

    Full Text Available Sex determination in mammals is controlled by the presence or absence of the Y-linked gene SRY. In the developing male (XY gonad, sex-determining region of the Y (SRY protein acts to up-regulate expression of the related gene, SOX9, a transcriptional regulator that in turn initiates a downstream pathway of testis development, whilst also suppressing ovary development. Despite the requirement for a number of transcription factors and secreted signalling molecules in sex determination, intracellular signalling components functioning in this process have not been defined. Here we report a role for the phylogenetically ancient mitogen-activated protein kinase (MAPK signalling pathway in mouse sex determination. Using a forward genetic screen, we identified the recessive boygirl (byg mutation. On the C57BL/6J background, embryos homozygous for byg exhibit consistent XY gonadal sex reversal. The byg mutation is an A to T transversion causing a premature stop codon in the gene encoding MAP3K4 (also known as MEKK4, a mitogen-activated protein kinase kinase kinase. Analysis of XY byg/byg gonads at 11.5 d post coitum reveals a growth deficit and a failure to support mesonephric cell migration, both early cellular processes normally associated with testis development. Expression analysis of mutant XY gonads at the same stage also reveals a dramatic reduction in Sox9 and, crucially, Sry at the transcript and protein levels. Moreover, we describe experiments showing the presence of activated MKK4, a direct target of MAP3K4, and activated p38 in the coelomic region of the XY gonad at 11.5 d post coitum, establishing a link between MAPK signalling in proliferating gonadal somatic cells and regulation of Sry expression. Finally, we provide evidence that haploinsufficiency for Map3k4 accounts for T-associated sex reversal (Tas. These data demonstrate that MAP3K4-dependent signalling events are required for normal expression of Sry during testis development, and

  16. How can yeast cells decide between three activated MAP kinase pathways? A model approach.

    Science.gov (United States)

    Rensing, Ludger; Ruoff, Peter

    2009-04-21

    In yeast (Saccharomyces cerevisiae), the regulation of three MAP kinase pathways responding to pheromones (Fus3 pathway), carbon/nitrogen starvation (Kss1 pathway), and high osmolarity/osmotic stress (Hog1 pathway) is the subject of intensive research. We were interested in the question how yeast cells would respond when more than one of the MAP kinase pathways are activated simultaneously. Here, we give a brief overview over the regulatory mechanisms of the yeast MAP kinase pathways and investigate a kinetic model based on presently known molecular interactions and feedbacks within and between the three mitogen-activated protein kinases (MAPK) pathways. When two pathways are activated simultaneously with the osmotic stress response as one of them, the model predicts that the osmotic stress response (Hog1 pathway) is turned on first. The same is true when all three pathways are activated at the same time. When testing simultaneous stimulations by low nitrogen and pheromones through the Kss1 and Fus3 pathways, respectively, the low nitrogen response dominates over the pheromone response. Due to its autocatalytic activation mechanism, the pheromone response (Fus3 pathway) shows typical sigmoid response kinetics and excitability. In the presence of a small but sufficient amount of activated Fus3, a stimulation by pheromones will lead to a rapid self-amplification of the pheromone response. This 'excitability' appears to be a feature of the pheromone pathway that has specific biological significance. PMID:19322936

  17. [COMPLICATED AMOEBIC APENDICITIS.REPORT OF A CASE

    Science.gov (United States)

    Casavilca Zambrano, Sandro; Gomez Anchante, Victor; Cisneros Gallegos, Eduardo

    2000-01-01

    We report a case of acute abdomen that is operated with the presumptive diagnosis of complicated acute appendicitis. In the histologic examination we make the diagnosis of complicated amoebic appendicitis. We discuss clinical manifestations and histopathologic findings of this unusual presentation of amoebic infection.

  18. RKIP regulates MAP kinase signaling in cells with defective B-Raf activity.

    Science.gov (United States)

    Zeng, Lingchun; Ehrenreiter, Karin; Menon, Jyotsana; Menard, Ray; Kern, Florian; Nakazawa, Yoko; Bevilacqua, Elena; Imamoto, Akira; Baccarini, Manuela; Rosner, Marsha Rich

    2013-05-01

    MAP kinase (MAPK) signaling results from activation of Raf kinases in response to external or internal stimuli. Here, we demonstrate that Raf kinase inhibitory protein (RKIP) regulates the activation of MAPK when B-Raf signaling is defective. We used multiple models including mouse embryonic fibroblasts (MEFs) and primary keratinocytes from RKIP- or Raf-deficient mice as well as allografts in mice to investigate the mechanism. Loss of B-Raf protein or activity significantly reduces MAPK activation in these cells. We show that RKIP depletion can rescue the compromised ERK activation and promote proliferation, and this rescue occurs through a Raf-1 dependent mechanism. These results provide formal evidence that RKIP is a bona fide regulator of Raf-1. We propose a new model in which RKIP plays a key role in regulating the ability of cells to signal through Raf-1 to ERK in B-Raf compromised cells.

  19. NMR Characterization of Information Flow and Allosteric Communities in the MAP Kinase p38γ.

    Science.gov (United States)

    Aoto, Phillip C; Martin, Bryan T; Wright, Peter E

    2016-01-01

    The intramolecular network structure of a protein provides valuable insights into allosteric sites and communication pathways. However, a straightforward method to comprehensively map and characterize these pathways is not currently available. Here we present an approach to characterize intramolecular network structure using NMR chemical shift perturbations. We apply the method to the mitogen activated protein kinase (MAPK) p38γ. p38γ contains allosteric sites that are conserved among eukaryotic kinases as well as unique to the MAPK family. How these regulatory sites communicate with catalytic residues is not well understood. Using our method, we observe and characterize for the first time information flux between regulatory sites through a conserved kinase infrastructure. This network is accessed, reinforced, and broken in various states of p38γ, reflecting the functional state of the protein. We demonstrate that the approach detects critical junctions in the network corresponding to biologically significant allosteric sites and pathways. PMID:27353957

  20. Granulomatous Amoebic Encephalitis: Clinical Diagnosis and Management

    Directory of Open Access Journals (Sweden)

    Naveed A. Khan

    2005-01-01

    Full Text Available Granulomatous amoebic encephalitis (GAE is a serious human disease with fatal consequences. With the mortality rate of more than 90%, it is not surprising that the majority of GAE infections are identified at the post-mortem stage. The most distressing aspect is that the high level of mortality is attributed to lack of awareness. Early diagnosis with aggressive treatment can lead to successful prognosis for the patient. Here, we describe a brief overview of the current understanding of the pathophysiology of GAE, available diagnostic methods, possible therapeutic interventions and the causative agents.

  1. HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Wilfried Jonkers

    2014-11-01

    Full Text Available Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC-1, MEK-2 and MAK-2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT tips every ∼8 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a recently identified scaffold for the MAK-1 MAP kinase pathway in Sordaria macrospora. How the MAK-2 oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G that can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK-2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM-5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM-5-GFP co-localized with NRC-1, MEK-2 and MAK-2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM-5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK-2 activity influences HAM-5 function/localization. However, MAK-2-GFP showed cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta. Via co-immunoprecipitation experiments, HAM-5 was shown to physically interact with NRC-1, MEK-2 and MAK-2, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members for oscillation and chemotropic interactions during germling and hyphal fusion in N. crassa. The identification of HAM-5 as a scaffold-like protein will help to link the activation of MAK-2 cascade to upstream factors and proteins involved in this

  2. Interdomain allosteric regulation of Polo kinase by Aurora B and Map205 is required for cytokinesis.

    Science.gov (United States)

    Kachaner, David; Pinson, Xavier; El Kadhi, Khaled Ben; Normandin, Karine; Talje, Lama; Lavoie, Hugo; Lépine, Guillaume; Carréno, Sébastien; Kwok, Benjamin H; Hickson, Gilles R; Archambault, Vincent

    2014-10-27

    Drosophila melanogaster Polo and its human orthologue Polo-like kinase 1 fulfill essential roles during cell division. Members of the Polo-like kinase (Plk) family contain an N-terminal kinase domain (KD) and a C-terminal Polo-Box domain (PBD), which mediates protein interactions. How Plks are regulated in cytokinesis is poorly understood. Here we show that phosphorylation of Polo by Aurora B is required for cytokinesis. This phosphorylation in the activation loop of the KD promotes the dissociation of Polo from the PBD-bound microtubule-associated protein Map205, which acts as an allosteric inhibitor of Polo kinase activity. This mechanism allows the release of active Polo from microtubules of the central spindle and its recruitment to the site of cytokinesis. Failure in Polo phosphorylation results in both early and late cytokinesis defects. Importantly, the antagonistic regulation of Polo by Aurora B and Map205 in cytokinesis reveals that interdomain allosteric mechanisms can play important roles in controlling the cellular functions of Plks.

  3. Specificity of MAP kinase signaling in yeast differentiation involves transient versus sustained MAPK activation.

    Science.gov (United States)

    Sabbagh, W; Flatauer, L J; Bardwell, A J; Bardwell, L

    2001-09-01

    Signals transmitted by common components often elicit distinct (yet appropriate) outcomes. In yeast, two developmental options-mating and invasive growth-are both regulated by the same MAP kinase cascade. Specificity has been thought to result from specialized roles for the two MAP kinases, Kss1 and Fus3, and because Fus3 prevents Kss1 from gaining access to the mating pathway. Kss1 has been thought to participate in mating only when Fus3 is absent. Instead, we show that Kss1 is rapidly phosphorylated and potently activated by mating pheromone in wild-type cells, and that this is required for normal pheromone-induced gene expression. Signal identity is apparently maintained because active Fus3 limits the extent of Kss1 activation, thereby preventing inappropriate signal crossover. PMID:11583629

  4. The Potential for Signal Integration and Processing in Interacting Map Kinase Cascades

    OpenAIRE

    John H Schwacke; Voit, Eberhard O.

    2007-01-01

    The cellular response to environmental stimuli requires biochemical information processing through which sensory inputs and cellular status are integrated and translated into appropriate responses by way of interacting networks of enzymes. One such network, the Mitogen Activated Protein (MAP) kinase cascade is a highly conserved signal transduction module that propagates signals from cell surface receptors to various cytosolic and nuclear targets by way of a phosphorylation cascade. We have i...

  5. Exploitation of latent protein allostery enables the evolution of novel and divergent MAP kinase regulation

    Science.gov (United States)

    Coyle, Scott M.; Flores, Jonathan; Lim, Wendell A.

    2013-01-01

    SUMMARY Allosteric interactions provide precise spatiotemporal control over signaling proteins, but how allosteric activators and their targets co-evolve is poorly understood. Here, we trace the evolution of two allosteric activator motifs within the yeast scaffold protein Ste5 that specifically target the mating MAP kinase Fus3. One activator (Ste5-VWA) provides pathway insulation and dates to the divergence of Fus3 from its paralog, Kss1; a second activator (Ste5-FBD) that tunes mating behavior is, in contrast, not conserved in most lineages. Surprisingly, both Ste5 activator motifs could regulate MAP kinases that diverged from Fus3 prior to the emergence of Ste5, suggesting that Ste5 activators arose by exploiting latent regulatory features already present in the MAPK ancestor. The magnitude of this latent allosteric potential drifts widely among pre-Ste5 MAP kinases, providing a pool of hidden phenotypic diversity that, when revealed by new activators, could lead to functional divergence and the evolution of distinct signaling behaviors. PMID:23953117

  6. Exploitation of latent allostery enables the evolution of new modes of MAP kinase regulation.

    Science.gov (United States)

    Coyle, Scott M; Flores, Jonathan; Lim, Wendell A

    2013-08-15

    Allosteric interactions provide precise spatiotemporal control over signaling proteins, but how allosteric activators and their targets coevolve is poorly understood. Here, we trace the evolution of two allosteric activator motifs within the yeast scaffold protein Ste5 that specifically target the mating MAP kinase Fus3. One activator (Ste5-VWA) provides pathway insulation and dates to the divergence of Fus3 from its paralog, Kss1; a second activator (Ste5-FBD) that tunes mating behavior is, in contrast, not conserved in most lineages. Surprisingly, both Ste5 activator motifs could regulate MAP kinases that diverged from Fus3 prior to the emergence of Ste5, suggesting that Ste5 activators arose by exploiting latent regulatory features already present in the MAPK ancestor. The magnitude of this latent allosteric potential drifts widely among pre-Ste5 MAP kinases, providing a pool of hidden phenotypic diversity that, when revealed by new activators, could lead to functional divergence and to the evolution of distinct signaling behaviors. PMID:23953117

  7. Combinatory action of VEGFR2 and MAP kinase pathways maintains endothelial-cell integrity

    Institute of Scientific and Technical Information of China (English)

    Hanbing Zhong; Danyang Wang; Nan Wang; Yesenia Rios; Haigen Huang; Song Li; Xinrong Wu; Shuo Lin

    2011-01-01

    Blood vessels normally maintain stereotyped lumen diameters and their stable structures are crucial for vascular function. However, very little is known about the molecular mechanisms controlling the maintenance of vessel diameters and the integrity of endothelial cells. We investigated this issue in zebrafish embryos by a chemical genetics approach. Small molecule libraries were screened using live Tg(kdrl:GRCFP)zn1 transgenic embryos in which endothelial cells are specifically labeled with GFP. By analyzing the effects of compounds on the morphology and function of embryonic blood vessels after lumen formation, PP1, a putative Src kinase inhibitor, was identified as capable of specifically reducing vascular lumen size by interrupting endothelial-cell integrity. The inhibitory effect is not due to Src or general VEGF signaling inhibition because another Src inhibitor and Src morpholino as well as several VEGFR inhibitors failed to produce a similar phenotype. After profiling a panel of 22 representative mammalian kinases and surveying published data, we selected a few possible new candidates. Combinational analysis of these candidate kinase inhibitors established that PP1 induced endothelial collapse by inhibiting both the VEGFR2 and MAP kinase pathways. More importantly, combinatory use of two clinically approved drugs Dasatinib and Sunitinib produced the same phenotype. This is the first study to elucidate the pathways controlling maintenance of endothelial integrity using a chemical genetics approach, indicating that endothelial integrity is controlled by the combined action of the VEGFR2 and MAP kinase pathways. Our results also suggest the possible side effect of the combination of two anticancer drugs on the circulatory system.

  8. Fulminant amoebic colitis during chemotherapy for advanced gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Noboru Hanaoka; Katsuhiko Higuchi; Satoshi Tanabe; Tohru Sasaki; Kenji Ishido; Takako Ae; Wasaburo Koizumi; Katsunori Saigenji

    2009-01-01

    A 52-year-old man had bloody stools during chemotherapy for gastric cancer. A colonoscopy revealed necrotizing ulcer-like changes. A biopsy confirmed the presence of amoebic trophozoites. Subsequently,peritonitis with intestinal perforation developed, and emergency peritoneal lavage and colostomy were performed. After surgery, endotoxin adsorption therapy was performed and metronidazole was given. Symptoms of peritonitis and colonitis resolved.with the progression of gastric cancer. The patient died 50 d after surgery. Fulminant amoebic colitis is very rarely associated with chemotherapy. Amoebic colitis should be considered in the differential diagnosis of patients who have bloody stools during chemotherapy.

  9. Mapping dynamic protein interactions in MAP kinase signaling using live-cell fluorescence fluctuation spectroscopy and imaging.

    Science.gov (United States)

    Slaughter, Brian D; Schwartz, Joel W; Li, Rong

    2007-12-18

    Fluorescence correlation spectroscopy (FCS), fluorescence cross-correlation spectroscopy (FCCS), and photon counting histograms (PCH) are fluctuation methods that emerged recently as potentially useful tools for obtaining parameters of molecular dynamics, interactions, and oligomerization in vivo. Here, we report the successful implementation of FCS, FCCS, and PCH in live yeast cells using fluorescent protein-tagged proteins expressed from their native chromosomal loci, examining cytosolic dynamics and interactions among components of the mitogen activated protein kinase (MAPK) cascade, a widely occurring signaling motif, in response to mating pheromone. FCS analysis detailed the diffusion characteristics and mobile concentrations of MAPK proteins. FCCS analysis using EGFP and mCherry-tagged protein pairs observed the interactions of Ste7 (MAPK kinase) with the MAPKs, Fus3 or Kss1, and of the scaffold protein, Ste5, with Ste7 and Ste11 (MAPK kinase kinase) in the cytosol, providing in vivo constants of their binding equilibrium. The interaction of Ste5 with Fus3 in the cytosol was below the limit of detection, suggesting a weak interaction, if it exists, with K(d) >400-500 nM. Using PCH, we show that cytosolic Ste5 were mostly monomers. Artificial dimerization of Ste5, as confirmed by PCH, using a dimerizing tag, stimulated the interaction between Ste5 and Fus3. Native Ste5 was found to bind Fus3 preferentially at the cortex in pheromone-treated cells, as detected by fluorescence resonance energy transfer (FRET). These results provide a quantitative spatial map of MAPK complexes in vivo and directly support the model that membrane association and regulation of the Ste5 scaffold are critical steps in MAPK activation. PMID:18077328

  10. Arabidopsis MAP Kinase 4 regulates gene expression via transcription factor release in the nucleus

    DEFF Research Database (Denmark)

    Qiu, Jin-Long; Fiil, Berthe Katrine; Petersen, Klaus;

    2008-01-01

    kinase 4 (MPK4) exists in nuclear complexes with the WRKY33 transcription factor. This complex depends on the MPK4 substrate MKS1. Challenge with Pseudomonas syringae or flagellin leads to the activation of MPK4 and phosphorylation of MKS1. Subsequently, complexes with MKS1 and WRKY33 are released from...... MPK4, and WRKY33 targets the promoter of PHYTOALEXIN DEFICIENT3 (PAD3) encoding an enzyme required for the synthesis of antimicrobial camalexin. Hence, wrky33 mutants are impaired in the accumulation of PAD3 mRNA and camalexin production upon infection. That WRKY33 is an effector of MPK4 is further...... supported by the suppression of PAD3 expression in mpk4-wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation....

  11. Primary Amoebic Meningoencephalitis in an Iranian Infant

    Directory of Open Access Journals (Sweden)

    Zahra Movahedi

    2012-01-01

    Full Text Available Introduction. Naegleria fowleri, a free living amoeba, can cause devastating and deadly diseases in humans. This is the first report of primary amoebic meningoencephalitis from Iran. Case report. A five-month-old male infant presented with the history of fever and eye gaze for three days, after beginning of bacterial meningitis, a plain and contrast CT revealed communicated hydrocephalus. In the repeat of CSF analysis on microscopic examination of wet preparation of CSF, Naegleria Fowleri was seen. Then, Amphotericin B and Rifampin were started. On followup, two months later, the patient was totally asymptomatic. Conclusion. Though occurrence of PAM is rare, this unusual disease has grave prognosis, so infection with free living amoebas must be considered in differential diagnosis of pediatric patients of purulent meningitis without evidence of bacteria on Gram’s stain and imaging findings, nonspecific brain edema on CT or hydrocephalus even without history of contact.

  12. Involvement of the mitogen-activated protein (MAP kinase signalling pathway in host cell invasion by Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Robert-Gangneux F.

    2000-06-01

    Full Text Available Little is known about signalling in Toxoplasma gondii, but it is likely that protein kinases might play a key role in the parasite proliferation, differentiation and probably invasion. We previously characterized Mitogen-Activated Protein (MAP kinases in T. gondii lysates. In this study, cultured cells were tested for their susceptibility to Toxoplasma gondii infection after tachyzoite pretreatment with drugs interfering with AMP kinase activation pathways. Protein kinases inhibitors, i.e. genistein, R031-8220 and PD098059, reduced tachyzoite infectivity by 38 ± 4.5 %, 85.5 ± 9 % and 56 ± 10 %, respectively. Conversely, protein kinases activators, i.e. bombesin and PMA, markedly increased infectivity (by 202 ± 37 % and 258 ± 14 %, respectively. These results suggest that signalling pathways involving PKC and AAAP kinases play a role in host cell invasion by Toxoplasma.

  13. Amoebic ulcer of the male genitala: A rare case report

    Directory of Open Access Journals (Sweden)

    Mohanty Indrani

    2010-01-01

    Full Text Available Amoebic ulcer of the penis is a very rare clinical entity. We report a case of amoebic ulcer of the glans penis in a 47-year-old male homosexual, symptomatic with severe pain and foul-smelling hemopurulent discharge of acute onset. He had received systemic antibiotics like ciprofloxacin and azithromycin prior to presentation with no improvement. Diagnosis was confirmed by wet mount microscopic examination of the discharge. The patient responded well to a course of metronidazole.

  14. Gene expression related to synaptogenesis, neuritogenesis, and MAP kinase in behavioral sensitization to psychostimulants.

    Science.gov (United States)

    Ujike, Hiroshi; Takaki, Manabu; Kodama, Masafumi; Kuroda, Shigetoshi

    2002-06-01

    The most important characteristic of behavioral sensitization to psychostimulants, such as amphetamine and cocaine, is the very long-lasting hypersensitivity to the drug after cessation of exposure. Rearrangement and structural modification of neural networks in CNS must be involved in behavioral sensitization. Previous microscopic studies have shown that the length of dendrites and density of dendritic spines increased in the nucleus accumbens and frontal cortex after repeated exposure to amphetamine and cocaine, but the molecular mechanisms responsible are not well understood. We investigated a set of genes related to synaptogenesis, neuritogenesis, and mitogen-activated protein (MAP) kinase after exposure to methamphetamine. Synaptophysin mRNA, but not VAMP2 (synaptobrevin 2) mRNA, which are considered as synaptogenesis markers, increased in the accumbens, striatum, hippocampus, and several cortices, including the medial frontal cortex, after a single dose of 4 mg/kg methamphetamine. Stathmin mRNA, but not neuritin or narp mRNA, which are markers for neuritic sprouting, increased in the striatum, hippocampus, and cortices after a single dose of methamphetamine. The mRNA of arc, an activity-regulated protein associated with cytoskeleton, but not of alpha-tubulin, as markers for neuritic elongation, showed robust increases in the striatum, hippocampus, and cortices after a single dose of methamphetamine. The mRNAs of MAP kinase phosphatase-1 (MKP-1), MKP-3, and rheb, a ras homologue abundant in brain, were investigated to assess the MAP kinase cascades. MKP-1 and MKP-3 mRNAs, but not rheb mRNA, increased in the striatum, thalamus, and cortices, and in the striatum, hippocampus, and cortices, respectively, after a single methamphetamine. Synaptophysin and stathmin mRNAs did not increase again after chronic methamphetamine administration, whereas the increases in arc, MKP-1, and MKP-3 mRNAs persisted in the brain regions after chronic methamphetamine administration

  15. Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways.

    Science.gov (United States)

    Qiao, Xiaoyong; Yong Qiao, Xiao; Nie, Ying; Ma, Yaxian; Xian Ma, Ya; Chen, Yan; Cheng, Ran; Yin, Weiyao; Yao Yinrg, Wei; Hu, Ying; Xu, Wenming; Ming Xu, Wen; Xu, Liangzhi; Zhi Xu, Liang

    2016-01-01

    Physical exercise is able to improve skeletal health. However, the mechanisms are poorly known. Irisin, a novel exercise-induced myokine, secreted by skeletal muscle in response to exercise, have been shown to mediate beneficial effects of exercise in many disorders. In the current study, we demonstrated that irisin promotes osteoblast proliferation, and increases the expression of osteoblastic transcription regulators, such as Runt-related transcription factor-2, osterix/sp7; and osteoblast differentiation markers, including alkaline phosphatase, collagen type 1 alpha-1, osteocalcin, and osteopontin in vitro. Irisin also increase ALP activity and calcium deposition in cultured osteoblast. These osteogenic effects were mediated by activating the p38 mitogen-activated protein kinase (p-p38 MAPK) and extracellular signal-regulated kinase (ERK). Inhibition of p38 MAPK by SB023580 or pERK by U0126 abolished the proliferation and up-regulatory effects of irisin on Runx2 expression and ALP activity. Together our observation suggest that irisin directly targets osteoblast, promoting osteoblast proliferation and differentiation via activating P38/ERK MAP kinase signaling cascades in vitro. Whether irisin can be utilized as the therapeutic agents for osteopenia and osteoporosis is worth to be further pursued. PMID:26738434

  16. Rapamycin induces mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) expression through activation of protein kinase B and mitogen-activated protein kinase kinase pathways.

    Science.gov (United States)

    Rastogi, Ruchi; Jiang, Zhongliang; Ahmad, Nisar; Rosati, Rita; Liu, Yusen; Beuret, Laurent; Monks, Robert; Charron, Jean; Birnbaum, Morris J; Samavati, Lobelia

    2013-11-22

    Mitogen-activated protein kinase phosphatase-1 (MKP-1), also known as dual specificity phosphatase-1 (DUSP-1), plays a crucial role in the deactivation of MAPKs. Several drugs with immune-suppressive properties modulate MKP-1 expression as part of their mechanism of action. We investigated the effect of mTOR inhibition through rapamycin and a dual mTOR inhibitor (AZD2014) on MKP-1 expression. Low dose rapamycin led to a rapid activation of both AKT and ERK pathways with a subsequent increase in MKP-1 expression. Rapamycin treatment led to phosphorylation of CREB, transcription factor 1 (ATF1), and ATF2, three transcription factors that bind to the cyclic AMP-responsive elements on the Mkp-1 promoter. Inhibition of either the MEK/ERK or the AKT pathway attenuated rapamycin-mediated MKP-1 induction. AZD2014 did not activate AKT but activated the ERK pathway, leading to a moderate MKP-1 induction. Using bone marrow-derived macrophages (BMDMs) derived from wild-type (WT) mice or mice deficient in AKT1 and AKT2 isoforms or BMDM from targeted deficiency in MEK1 and MEK2, we show that rapamycin treatment led to an increased MKP1 expression in BMDM from WT but failed to do so in BMDMs lacking the AKT1 isoform or MEK1 and MEK2. Importantly, rapamycin pretreatment inhibited LPS-mediated p38 activation and decreased nitric oxide and IL-6 production. Our work provides a conceptual framework for the observed immune modulatory effect of mTOR inhibition.

  17. P34^ Kinase and MAP Kinase Activities and Parthenogenetic Activation in Porcine Oocytes after Injection of Miniature Pig Sperm Extracts

    OpenAIRE

    Matsuura, Daizou; Maeda, Teruo

    2008-01-01

    The aim of the present study was to examine the rate of activation and time-dependent changes in p34cdc2 kinase and MAP kinase activities in porcine oocytes after injection of sperm extracts (SE) or treatment with Ca2+ ionophore to clarify whether SE injection is useful for porcine oocyte activation. SE was prepared from miniature pig sperm by non-ionic surfactant. Oocytes that were treated with Ca2+ ionophore and injected with SE were activated at rates of 41% and 46%, respectively. The acti...

  18. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana

    KAUST Repository

    Danquah, Agyemang

    2015-04-01

    Summary Abscisic acid (ABA) is a major phytohormone involved in important stress-related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA-triggered phosphoproteins as putative mitogen-activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA-activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3-1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA-dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR-SnRK2-PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA-induced MAPK pathway in plant stress signalling. Significance Statement We report in this article the identification of a complete MAPK module, composed of MAP3K17/18, MKK3 and MPK1/2/7/14, which is activated by ABA through the ABA core signalling complex. We showed that the activation of this module requires the MAP3K protein synthesis which occurs after hours of stress treatment, suggesting that the pathway is involved in a delayed wave of cellular responses to ABA and drought. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  19. Valproate inhibits MAP kinase signalling and cell cycle progression in S. cerevisiae

    Science.gov (United States)

    Desfossés-Baron, Kristelle; Hammond-Martel, Ian; Simoneau, Antoine; Sellam, Adnane; Roberts, Stephen; Wurtele, Hugo

    2016-01-01

    The mechanism of action of valproate (VPA), a widely prescribed short chain fatty acid with anticonvulsant and anticancer properties, remains poorly understood. Here, the yeast Saccharomyces cerevisiae was used as model to investigate the biological consequences of VPA exposure. We found that low pH strongly potentiates VPA-induced growth inhibition. Transcriptional profiling revealed that under these conditions, VPA modulates the expression of genes involved in diverse cellular processes including protein folding, cell wall organisation, sexual reproduction, and cell cycle progression. We further investigated the impact of VPA on selected processes and found that this drug: i) activates markers of the unfolded protein stress response such as Hac1 mRNA splicing; ii) modulates the cell wall integrity pathway by inhibiting the activation of the Slt2 MAP kinase, and synergizes with cell wall stressors such as micafungin and calcofluor white in preventing yeast growth; iii) prevents activation of the Kss1 and Fus3 MAP kinases of the mating pheromone pathway, which in turn abolishes cellular responses to alpha factor; and iv) blocks cell cycle progression and DNA replication. Overall, our data identify heretofore unknown biological responses to VPA in budding yeast, and highlight the broad spectrum of cellular pathways influenced by this chemical in eukaryotes. PMID:27782169

  20. Entamoeba histolytica antigenic protein detected in pus aspirates from patients with amoebic liver abscess.

    Science.gov (United States)

    Othman, Nurulhasanah; Mohamed, Zeehaida; Yahya, Maya Mazuwin; Leow, Voon Meng; Lim, Boon Huat; Noordin, Rahmah

    2013-08-01

    Entamoeba histolytica is a causative agent of amoebic liver abscess (ALA) and is endemic in many underdeveloped countries. We investigated antigenic E. histolytica proteins in liver abscess aspirates using proteomics approach. Pus samples were first tested by real-time PCR to confirm the presence of E. histolytica DNA and the corresponding serum samples tested for E. histolytica-specific IgG by a commercial ELISA. Proteins were extracted from three and one pool(s) of pus samples from ALA and PLA (pyogenic liver abscess) patients respectively, followed by analysis using isoelectric focussing, SDS-PAGE and Western blot. Unpurified pooled serum samples from infected hamsters and pooled human amoebic-specific IgG were used as primary antibodies. The antigenic protein band was excised from the gel, digested and analysed by MALDI-TOF/TOF and LC-MS/MS. The results using both primary antibodies showed an antigenic protein band of ∼14kDa. Based on the mass spectrum analysis, putative tyrosine kinase is the most probable identification of the antigenic band.

  1. Entamoeba histolytica antigenic protein detected in pus aspirates from patients with amoebic liver abscess.

    Science.gov (United States)

    Othman, Nurulhasanah; Mohamed, Zeehaida; Yahya, Maya Mazuwin; Leow, Voon Meng; Lim, Boon Huat; Noordin, Rahmah

    2013-08-01

    Entamoeba histolytica is a causative agent of amoebic liver abscess (ALA) and is endemic in many underdeveloped countries. We investigated antigenic E. histolytica proteins in liver abscess aspirates using proteomics approach. Pus samples were first tested by real-time PCR to confirm the presence of E. histolytica DNA and the corresponding serum samples tested for E. histolytica-specific IgG by a commercial ELISA. Proteins were extracted from three and one pool(s) of pus samples from ALA and PLA (pyogenic liver abscess) patients respectively, followed by analysis using isoelectric focussing, SDS-PAGE and Western blot. Unpurified pooled serum samples from infected hamsters and pooled human amoebic-specific IgG were used as primary antibodies. The antigenic protein band was excised from the gel, digested and analysed by MALDI-TOF/TOF and LC-MS/MS. The results using both primary antibodies showed an antigenic protein band of ∼14kDa. Based on the mass spectrum analysis, putative tyrosine kinase is the most probable identification of the antigenic band. PMID:23680184

  2. Functional Redundancy of ERK1 and ERK2 MAP Kinases during Development

    Directory of Open Access Journals (Sweden)

    Christophe Frémin

    2015-08-01

    Full Text Available ERK1 and ERK2 are the effector kinases of the ERK1/2 MAP-kinase signaling pathway, which plays a central role in transducing signals controlling cell proliferation, differentiation, and survival. Deregulated activity of the ERK1/2 pathway is linked to a group of developmental syndromes and contributes to the pathogenesis of various human diseases. One fundamental question that remains unaddressed is whether ERK1 and ERK2 have evolved unique physiological functions or whether they are used redundantly to reach a threshold of global ERK activity. Here, we show that the extent of development of the mouse placenta and embryo bearing different combinations of Erk1 and Erk2 alleles is strictly correlated with total ERK1/2 activity. We further demonstrate that transgenic expression of ERK1 fully rescues the embryonic and placental developmental defects associated with the loss of ERK2. We conclude that ERK1 and ERK2 exert redundant functions in mouse development.

  3. The MAP kinase substrate MKS1 is a regulator of plant defense responses.

    Science.gov (United States)

    Andreasson, Erik; Jenkins, Thomas; Brodersen, Peter; Thorgrimsen, Stephan; Petersen, Nikolaj H T; Zhu, Shijiang; Qiu, Jin-Long; Micheelsen, Pernille; Rocher, Anne; Petersen, Morten; Newman, Mari-Anne; Bjørn Nielsen, Henrik; Hirt, Heribert; Somssich, Imre; Mattsson, Ole; Mundy, John

    2005-07-20

    Arabidopsis MAP kinase 4 (MPK4) functions as a regulator of pathogen defense responses, because it is required for both repression of salicylic acid (SA)-dependent resistance and for activation of jasmonate (JA)-dependent defense gene expression. To understand MPK4 signaling mechanisms, we used yeast two-hybrid screening to identify the MPK4 substrate MKS1. Analyses of transgenic plants and genome-wide transcript profiling indicated that MKS1 is required for full SA-dependent resistance in mpk4 mutants, and that overexpression of MKS1 in wild-type plants is sufficient to activate SA-dependent resistance, but does not interfere with induction of a defense gene by JA. Further yeast two-hybrid screening revealed that MKS1 interacts with the WRKY transcription factors WRKY25 and WRKY33. WRKY25 and WRKY33 were shown to be in vitro substrates of MPK4, and a wrky33 knockout mutant was found to exhibit increased expression of the SA-related defense gene PR1. MKS1 may therefore contribute to MPK4-regulated defense activation by coupling the kinase to specific WRKY transcription factors.

  4. Purification of reversibly oxidized proteins (PROP reveals a redox switch controlling p38 MAP kinase activity.

    Directory of Open Access Journals (Sweden)

    Dennis J Templeton

    Full Text Available Oxidation of cysteine residues of proteins is emerging as an important means of regulation of signal transduction, particularly of protein kinase function. Tools to detect and quantify cysteine oxidation of proteins have been a limiting factor in understanding the role of cysteine oxidation in signal transduction. As an example, the p38 MAP kinase is activated by several stress-related stimuli that are often accompanied by in vitro generation of hydrogen peroxide. We noted that hydrogen peroxide inhibited p38 activity despite paradoxically increasing the activating phosphorylation of p38. To address the possibility that cysteine oxidation may provide a negative regulatory effect on p38 activity, we developed a biochemical assay to detect reversible cysteine oxidation in intact cells. This procedure, PROP, demonstrated in vivo oxidation of p38 in response to hydrogen peroxide and also to the natural inflammatory lipid prostaglandin J2. Mutagenesis of the potential target cysteines showed that oxidation occurred preferentially on residues near the surface of the p38 molecule. Cysteine oxidation thus controls a functional redox switch regulating the intensity or duration of p38 activity that would not be revealed by immunodetection of phosphoprotein commonly interpreted as reflective of p38 activity.

  5. Mapping C-terminal transactivation domains of the nuclear HER family receptor tyrosine kinase HER3.

    Directory of Open Access Journals (Sweden)

    Toni M Brand

    Full Text Available Nuclear localized HER family receptor tyrosine kinases (RTKs have been observed in primary tumor specimens and cancer cell lines for nearly two decades. Inside the nucleus, HER family members (EGFR, HER2, and HER3 have been shown to function as co-transcriptional activators for various cancer-promoting genes. However, the regions of each receptor that confer transcriptional potential remain poorly defined. The current study aimed to map the putative transactivation domains (TADs of the HER3 receptor. To accomplish this goal, various intracellular regions of HER3 were fused to the DNA binding domain of the yeast transcription factor Gal4 (Gal4DBD and tested for their ability to transactivate Gal4 UAS-luciferase. Results from these analyses demonstrated that the C-terminal domain of HER3 (CTD, amino acids distal to the tyrosine kinase domain contained potent transactivation potential. Next, nine HER3-CTD truncation mutants were constructed to map minimal regions of transactivation potential using the Gal4 UAS-luciferase based system. These analyses identified a bipartite region of 34 (B₁ and 27 (B₂ amino acids in length that conferred the majority of HER3's transactivation potential. Next, we identified full-length nuclear HER3 association and regulation of a 122 bp region of the cyclin D1 promoter. To understand how the B₁ and B₂ regions influenced the transcriptional functions of nuclear HER3, we performed cyclin D1 promoter-luciferase assays in which HER3 deleted of the B₁ and B₂ regions was severely hindered in regulating this promoter. Further, the overexpression of HER3 enhanced cyclin D1 mRNA expression, while HER3 deleted of its identified TADs was hindered at doing so. Thus, the ability for HER3 to function as a transcriptional co-activator may be dependent on specific C-terminal TADs.

  6. Imported amoebic liver abscess in France.

    Directory of Open Access Journals (Sweden)

    Hugues Cordel

    Full Text Available BACKGROUND: Worldwide, amoebic liver abscess (ALA can be found in individuals in non-endemic areas, especially in foreign-born travelers. METHODS: We performed a retrospective analysis of ALA in patients admitted to French hospitals between 2002 and 2006. We compared imported ALA cases in European and foreign-born patients and assessed the factors associated with abscess size using a logistic regression model. RESULTS: We investigated 90 ALA cases. Patient median age was 41. The male:female ratio was 3.5:1. We were able to determine the origin for 75 patients: 38 were European-born and 37 foreign-born. With respect to clinical characteristics, no significant difference was observed between European and foreign-born patients except a longer lag time between the return to France after traveling abroad and the onset of symptoms for foreign-born. Factors associated with an abscess size of more than 69 mm were being male (OR = 11.25, p<0.01, aged more than 41 years old (OR = 3.63, p = 0.02 and being an immigrant (OR = 11.56, p = 0.03. Percutaneous aspiration was not based on initial abscess size but was carried out significantly more often on patients who were admitted to surgical units (OR = 10, p<0.01. The median time to abscess disappearance for 24 ALA was 7.5 months. CONCLUSIONS/SIGNIFICANCE: In this study on imported ALA was one of the largest worldwide in terms of the number of cases included males, older patients and foreign-born patients presented with larger abscesses, suggesting that hormonal and immunological factors may be involved in ALA physiopathology. The long lag time before developing ALA after returning to a non-endemic area must be highlighted to clinicians so that they will consider Entamoeba histolytica as a possible pathogen of liver abscesses more often.

  7. Primary Amoebic Meningoencephalitis in an Infant due to Naegleria fowleri

    Directory of Open Access Journals (Sweden)

    Vinay Khanna

    2011-01-01

    Full Text Available Primary amoebic meningoencephalitis (PAM caused by free-living amebae Naegleria fowleri is a rare and fatal condition. A fatal case of primary amoebic meningoencephalitis was diagnosed in a 5-month-old infant who presented with the history of decrease breast feeding, fever, vomiting, and abnormal body movements. Trophozoites of Naegleria fowleri were detected in the direct microscopic examination of CSF and infant was put on amphotericin B and ceftazidime. Patient condition deteriorated, and he was discharged against medical advice and subsequently expired. We also reviewed previously reported 8 Indian cases of primary amoebic meningoencephalitis (PAM and observed that for the last 5 years, none of the patients responded to amphotericin B. Has an era of amphotericin B-resistant Naegleria fowleri been emerged? Management strategy of PAM needs to be reviewed further.

  8. Fulminant amoebic enteritis that developed in the perinatal period.

    Science.gov (United States)

    Goto, Mayako; Mizushima, Yasuaki; Matsuoka, Tetsuya

    2015-06-25

    We present a case of a 30-year-old postpartum woman who delivered by caesarean section at 34 weeks. On postoperative day 9, she was admitted to our hospital in shock. Emergency abdominal surgery was performed. Massive purulent ascites collected in the abdominal cavity and was associated with intestinal necrosis, which extended from the ascending colon to one-third of the descending colon. The necrotic lesion was excised, and an artificial anus was constructed at the ileum end. A histological finding on the 15th day indicated the possibility of amoebic enteritis, and the patient was started on metronidazole therapy. The diarrhoea improved dramatically after metronidazole treatment was started. The patient was able to walk unassisted on the 45th day and was subsequently discharged. Amoebic enteritis has been thought to be epidemic in developing countries, but today, the incidence of amoebic enteritis as a sexually transmitted disease is increasing in developed countries.

  9. Scattering of MCF7 cells by heregulin ß-1 depends on the MEK and p38 MAP kinase pathway.

    Directory of Open Access Journals (Sweden)

    Rintaro Okoshi

    Full Text Available Heregulin (HRG β1 signaling promotes scattering of MCF7 cells by inducing breakdown of adherens and tight junctions. Here, we show that stimulation with HRG-β1 causes the F-actin backbone of junctions to destabilize prior to the loss of adherent proteins and scattering of the cells. The adherent proteins dissociate and translocate from cell-cell junctions to the cytosol. Moreover, using inhibitors we show that the MEK1 pathway is required for the disappearance of F-actin from junctions and p38 MAP kinase activity is essential for scattering of the cells. Upon treatment with a p38 MAP kinase inhibitor, adherens junction complexes immediately reassemble, most likely in the cytoplasm, and move to the plasma membrane in cells dissociated by HRG-β1 stimulation. Subsequently, tight junction complexes form, most likely in the cytoplasm, and move to the plasma membrane. Thus, the p38 MAP kinase inhibitor causes a re-aggregation of scattered cells, even in the presence of HRG-β1. These results suggest that p38 MAP kinase signaling to adherens junction proteins regulates cell aggregation, providing a novel understanding of the regulation of cell-cell adhesion.

  10. Protein kinase D stabilizes aldosterone-induced ERK1/2 MAP kinase activation in M1 renal cortical collecting duct cells to promote cell proliferation.

    LENUS (Irish Health Repository)

    McEneaney, Victoria

    2010-01-01

    Aldosterone elicits transcriptional responses in target tissues and also rapidly stimulates the activation of protein kinase signalling cascades independently of de novo protein synthesis. Here we investigated aldosterone-induced cell proliferation and extra-cellular regulated kinase 1 and 2 (ERK1\\/2) mitogen activated protein (MAP) kinase signalling in the M1 cortical collecting duct cell line (M1-CCD). Aldosterone promoted the proliferative growth of M1-CCD cells, an effect that was protein kinase D1 (PKD1), PKCdelta and ERK1\\/2-dependent. Aldosterone induced the rapid activation of ERK1\\/2 with peaks of activation at 2 and 10 to 30 min after hormone treatment followed by sustained activation lasting beyond 120 min. M1-CCD cells suppressed in PKD1 expression exhibited only the early, transient peaks in ERK1\\/2 activation without the sustained phase. Aldosterone stimulated the physical association of PKD1 with ERK1\\/2 within 2 min of treatment. The mineralocorticoid receptor (MR) antagonist RU28318 inhibited the early and late phases of aldosterone-induced ERK1\\/2 activation, and also aldosterone-induced proliferative cell growth. Aldosterone induced the sub-cellular redistribution of ERK1\\/2 to the nuclei at 2 min and to cytoplasmic sites, proximal to the nuclei after 30 min. This sub-cellular distribution of ERK1\\/2 was inhibited in cells suppressed in the expression of PKD1.

  11. First report of Entamoeba histolytica infection from Timor-Leste--acute amoebic colitis and concurrent late development of amoebic liver abscess in returned travellers to Australia.

    Science.gov (United States)

    Nourse, Clare B; Robson, Jennifer M; Whitby, Michael R; Francis, Josh R

    2016-02-01

    This communication reports invasive amoebic colitis and late onset amoebic liver abscess in three members of a group of 12 Australian travellers to Timor-Leste (TL). This is the first report of Entamoeba histolytica infection from TL. Clinicians in Australia need to consider amoebiasis in the differential diagnosis in travellers returning with colitis, abdominal pain and fever. Presentation with amoebic liver abscess months after exposure is rare but should be suspected in symptomatic individuals with a relevant history of travel. PMID:26858275

  12. Mapping and characterization of antigenic epitopes of arginine kinase of Scylla paramamosain.

    Science.gov (United States)

    Yang, Yang; Cao, Min-Jie; Alcocer, Marcos; Liu, Qing-Mei; Fei, Dan-Xia; Mao, Hai-Yan; Liu, Guang-Ming

    2015-06-01

    Arginine kinase (AK) is a panallergen present in crustaceans, which can induce an immunoglobulin (Ig) E-mediated immune response in humans. The aim of this work was to map and characterize the antigenic epitopes of Scylla paramamosain AK. Specific-protein-A-enriched IgG raised in rabbits against purified S. paramamosain AK was used to screen a phage display random peptide library. Five AK mimotope clones were identified among 20 random clones after biopanning. Four conformational epitopes D3A4K43M1A5T49T44I7, L31K33V35T32E11E18F14S34D37, V177G172M173D176Q178T174L181K175L187, and R202L170Y203E190P205W204L187T206Y145 were identified with the program LocaPep, and mapped to S. paramamosain AK. The key amino acids of these conformational epitopes were D3, K33, T174, and W204, respectively. On the basis of biopanning, six IgE-specific peptides were mapped with synthetic overlapping peptides using the sera from crab-allergic patients, and four seropositive peptides (amino acids 113-127, 127-141, 141-155, and 204-218) were confirmed as linear epitopes in a degranulation assay in RBL-2H3 cells. Stability experiments showed that the structural integrity of AK is essential for its allergenicity, and the intramolecular disulfide bond at Cys201-Cys271 is essential for its structural stability. PMID:25728640

  13. Dual role for membrane localization in yeast MAP kinase cascade activation and its contribution to signaling fidelity.

    Science.gov (United States)

    Lamson, Rachel E; Takahashi, Satoe; Winters, Matthew J; Pryciak, Peter M

    2006-03-21

    Distinct MAP kinase pathways in yeast share several signaling components , including the PAK Ste20 and the MAPKKK Ste11, yet signaling is specific. Mating pheromones trigger an initial step in which Ste20 activates Ste11 , and this requires plasma membrane recruitment of the MAP kinase cascade scaffold protein, Ste5 . Here, we demonstrate an additional role for Ste5 membrane localization. Once Ste11 is activated, signaling through the mating pathway remains minimal but is substantially amplified when Ste5 is recruited to the membrane either by the Gbetagamma dimer or by direct membrane targeting, even to internal membranes. Ste11 signaling is also amplified by Ste5 oligomerization and by a hyperactivating mutation in the Ste7 binding region of Ste5. We suggest a model in which membrane recruitment of Ste5 concentrates its binding partners and thereby amplifies signaling through the kinase cascade. We find similar behavior in the osmotically responsive HOG pathway. Remarkably, while both pheromone and hyperosmotic stimuli amplify signaling from constitutively active Ste11, the resulting signaling output remains pathway specific. These findings suggest a common mode of regulation in which pathway stimuli both initiate and amplify MAP kinase cascade signaling. The regulation of rate-limiting steps that lie after a branchpoint from shared components helps ensure signaling specificity.

  14. Phosphorylation of MAP kinase-like proteins mediate the response of the halotolerant alga Dunaliella viridis to hypertonic shock.

    Science.gov (United States)

    Jiménez, Carlos; Berl, Tomas; Rivard, Christopher J; Edelstein, Charles L; Capasso, Juan M

    2004-02-01

    The microalga Dunaliella viridis has the ability to adapt to a variety of environmental stresses including osmotic and thermal shocks, UV irradiation and nitrogen starvation. Lacking a rigid cell wall, Dunaliella provides an excellent model to study stress signaling in eukaryotic unicellular organisms. When exposed to hyperosmotic stress, UV irradiation or high temperature, a 57-kDa protein is recognized by antibodies specific to mammalian p38, to its yeast homologue Hog1, and to the phospho-p38 MAP kinase motif. This 57-kDa protein appears to be both up-regulated and phosphorylated. Three other proteins (50, 45, 43 kDa) were transiently phosphorylated under stress conditions as detected with an antibody specific to the mammalian phospho c-Jun N-terminal kinase (JNK) motif. Treatment with specific inhibitors of p38 MAP kinase (SB203580) and JNK (SP600125) activities markedly impaired the adaptation of Dunaliella to osmotic stress. From an evolutionary standpoint, these data strongly suggest that MAP kinase signaling pathways, other than ERK, were already operating in the common ancestor of plant and animal kingdoms, probably as early as 1400 million years ago. PMID:14741745

  15. Sorbic acid stress activates the Candida glabrata high osmolarity glycerol MAP kinase pathway

    Directory of Open Access Journals (Sweden)

    Zeljkica eJandric

    2013-11-01

    Full Text Available Weak organic acids such as sorbic acid are important food preservatives and powerful fungistatic agents. These compounds accumulate in the cytosol and disturb the cellular pH and energy homeostasis. Candida glabrata is in many aspects similar to Saccharomyces cerevisiae. However, with regard to confrontation to sorbic acid, two of the principal response pathways behave differently in Candida glabrata. In yeast, sorbic acid stress causes activation of many genes via the transcription factors Msn2 and Msn4. The C. glabrata homologues CgMsn2 and CgMsn4 are apparently not activated by sorbic acid. In contrast, in C. glabrata the high osmolarity glycerol (HOG pathway is activated by sorbic acid. Here we show that the MAP kinase of the HOG pathway, CgHog1, becomes phosphorylated and has a function for weak acid stress resistance. Transcript profiling of weak acid treated C. glabrata cells suggests a broad and very similar response pattern of cells lacking CgHog1 compared to wild type which is over lapping with but distinct from S. cerevisiae. The PDR12 gene was the highest induced gene in both species, and required CgHog1 for full expression. Our results support flexibility of the response cues for general stress signaling pathways, even between closely related yeasts, and functional extension of a specific response pathway.

  16. The MADD-3 LAMMER Kinase Interacts with a p38 MAP Kinase Pathway to Regulate the Display of the EVA-1 Guidance Receptor in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Serena A D'Souza

    2016-04-01

    Full Text Available The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle's plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue.

  17. The MADD-3 LAMMER Kinase Interacts with a p38 MAP Kinase Pathway to Regulate the Display of the EVA-1 Guidance Receptor in Caenorhabditis elegans

    Science.gov (United States)

    D’Souza, Serena A.; Rajendran, Luckshika; Bagg, Rachel; van Pel, Derek M.; Moshiri, Houtan; Roy, Peter J.

    2016-01-01

    The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle’s plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue. PMID:27123983

  18. The MADD-3 LAMMER Kinase Interacts with a p38 MAP Kinase Pathway to Regulate the Display of the EVA-1 Guidance Receptor in Caenorhabditis elegans.

    Science.gov (United States)

    D'Souza, Serena A; Rajendran, Luckshika; Bagg, Rachel; Barbier, Louis; van Pel, Derek M; Moshiri, Houtan; Roy, Peter J

    2016-04-01

    The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle's plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue.

  19. Lck is involved in interleukin-2 induced proliferation but not cell survival in human T cells through a MAP kinase-independent pathway

    DEFF Research Database (Denmark)

    Brockdorff, J; Nielsen, M; Kaltoft, K;

    2000-01-01

    found that an IL-2-sensitive, human mycosis fungoides-derived tumor T cell line is Lck negative, and that the IL-2-induced MAP kinase activation is comparable to non-cancerous T cells, although a little delayed in kinetics. An Lck expressing clone was established by transfecting Lck into mycosis...... fungoides tumor T cells, but Lck had no influence on the delayed kinetics of MAP kinase activation, indicating that Lck is not essential for MAP kinase activation in mycosis fungoides tumor T cells or in non-cancerous T cells. Taken together, this indicates that Lck is involved in IL-2-induced proliferation...

  20. A fungal cell wall integrity-associated MAP kinase cascade in Coniothyrium minitans is required for conidiation and mycoparasitism.

    Science.gov (United States)

    Zeng, Fanyun; Gong, Xiaoyan; Hamid, Mahammad Imran; Fu, Yanping; Jiatao, Xie; Cheng, Jiasen; Li, Guoqing; Jiang, Daohong

    2012-05-01

    Coniothyrium minitans is an important biocontrol agent against Sclerotinia diseases. Previously, a conidiation-deficient mutant ZS-1T1000 was screened out from a T-DNA insertional library of C. minitans. CmBCK1, encoding MAP kinase kinase kinase and homologous to BCK1 of Saccharomyces cerevisiae, was disrupted by T-DNA insertion in this mutant. Targeted disruption of CmBCK1 led to the mutants undergoing autolysis and displaying hypersensitivity to the cell wall-degrading enzymes. The △CmBCK1 mutants lost the ability to produce pycnidia and conidia compared to the wild-type strain ZS-1. △CmBCK1 mutants could grow on the surface of sclerotia of Sclerotinia sclerotiorum but not form conidia, which resulted in much lower ability to reduce the viability of sclerotia of S. sclerotiorum. Furthermore, CmSlt2, a homolog of Slt2 encoding cell wall integrity-related MAP kinase and up-regulated by BCK1 in S. cerevisiae, was identified and targeted disrupted. The △CmSlt2 mutants had a similar phenotype to the △CmBCK1 mutants. The △CmSlt2 mutants also had autolytic aerial hyphae, hypersensitivity to cell wall-degrading enzymes, lack of conidiation and reduction of sclerotial mycoparasitism. Taken together, our results suggest that CmBCK1 and CmSlt2 are involved in conidiation and the hyperparasitic activities of C. minitans. PMID:22426009

  1. Mycosporine-Like Amino Acids Promote Wound Healing through Focal Adhesion Kinase (FAK and Mitogen-Activated Protein Kinases (MAP Kinases Signaling Pathway in Keratinocytes

    Directory of Open Access Journals (Sweden)

    Yun-Hee Choi

    2015-11-01

    Full Text Available Mycosporine-like amino acids (MAAs are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS. In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH, Mycosporine-glycine (M-Gly, and Porphyra (P334 were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK, extracellular signal-regulated kinases (ERK, and c-Jun N-terminal kinases (JNK. These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies.

  2. Amoebic PI3K and PKC is required for Jurkat T cell death induced by Entamoeba histolytica.

    Science.gov (United States)

    Lee, Young Ah; Kim, Kyeong Ah; Min, Arim; Shin, Myeong Heon

    2014-08-01

    The enteric protozoan parasite Entamoeba histolytica is the causative agent of human amebiasis. During infection, adherence of E. histolytica through Gal/GalNAc lectin on the surface of the amoeba can induce caspase-3-dependent or -independent host cell death. Phosphorylinositol 3-kinase (PI3K) and protein kinase C (PKC) in E. histolytica play an important function in the adhesion, killing, or phagocytosis of target cells. In this study, we examined the role of amoebic PI3K and PKC in amoeba-induced apoptotic cell death in Jurkat T cells. When Jurkat T cells were incubated with E. histolytica trophozoites, phosphatidylserine (PS) externalization and DNA fragmentation in Jurkat cells were markedly increased compared to those of cells incubated with medium alone. However, when amoebae were pretreated with a PI3K inhibitor, wortmannin before being incubated with E. histolytica, E. histolytica-induced PS externalization and DNA fragmentation in Jurkat cells were significantly reduced compared to results for amoebae pretreated with DMSO. In addition, pretreatment of amoebae with a PKC inhibitor, staurosporine strongly inhibited Jurkat T cell death. However, E. histolytica-induced cleavage of caspase-3, -6, and -7 were not inhibited by pretreatment of amoebae with wortmannin or staurosporin. In addition, we found that amoebic PI3K and PKC have an important role on amoeba adhesion to host compartment. These results suggest that amebic PI3K and PKC activation may play an important role in caspase-independent cell death in Entamoeba-induced apoptosis.

  3. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans.

    Science.gov (United States)

    Andrusiak, Matthew G; Jin, Yishi

    2016-04-01

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundwormCaenorhabditis eleganswas developed as a system to study genes required for development and nervous system function. The powerful genetics ofC. elegansin combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components inC. elegans.

  4. The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea.

    Science.gov (United States)

    Schamber, Astrid; Leroch, Michaela; Diwo, Janine; Mendgen, Kurt; Hahn, Matthias

    2010-01-01

    In all fungi studied so far, mitogen-activated protein (MAP) kinase cascades serve as central signalling complexes that are involved in various aspects of growth, stress response and infection. In this work, putative components of the yeast Fus3/Kss1-type MAP kinase cascade and the putative downstream transcription factor Ste12 were analysed in the grey mould fungus Botrytis cinerea. Deletion mutants of the MAP triple kinase Ste11, the MAP kinase kinase Ste7 and the MAP kinase adaptor protein Ste50 all resulted in phenotypes similar to that of the previously described BMP1 MAP kinase mutant, namely defects in germination, delayed vegetative growth, reduced size of conidia, lack of sclerotia formation and loss of pathogenicity. Mutants lacking Ste12 showed normal germination, but delayed infection as a result of low penetration efficiency. Two differently spliced ste12 transcripts were detected, and both were able to complement the ste12 mutant, except for a defect in sclerotium formation, which was only corrected by the full-sized transcript. Overexpression of the smaller ste12 transcript resulted in delayed germination and strongly reduced infection. Bc-Gas2, a homologue of Magnaporthe grisea Gas2 that is required for appressorial function, was found to be non-essential for growth and infection, but its expression was under the control of both Bmp1 and Ste12. In summary, the role and regulatory connections of the Fus3/Kss1-type MAP kinase cascade in B. cinerea revealed both common and unique properties compared with those of other plant pathogenic fungi, and provide evidence for a regulatory link between the BMP1 MAP kinase cascade and Ste12. PMID:20078780

  5. Platelet-derived growth factor (PDGF)-induced activation of Erk5 MAP-kinase is dependent on Mekk2, Mek1/2, PKC and PI3-kinase, and affects BMP signaling.

    Science.gov (United States)

    Tsioumpekou, Maria; Papadopoulos, Natalia; Burovic, Fatima; Heldin, Carl-Henrik; Lennartsson, Johan

    2016-09-01

    Platelet-derived growth factor-BB (PDGF-BB) binds to its tyrosine kinase receptors (PDGFRs) and stimulates mitogenicity and survival of cells of mesenchymal origin. Activation of PDGFRs initiates a number of downstream signaling pathways, including phosphatidyl 3'-inositol kinase (PI3-kinase), phospholipase Cγ and MAP kinase pathways. In this report, we show that Erk5 MAP kinase is activated in response to PDGF-BB in the smooth muscle cell line MOVAS in a manner dependent on Mekk2, Mek1/2, Mek5, PI3-kinase and protein kinase C (PKC). The co-operation of Mek1/2 and Mekk2 in the activation of Erk5, suggests a close co-regulation between the Erk1/2 and Erk5 MAP kinase pathways. Furthermore, we found that classical PKCs are important for Erk5 activation. In addition, we found that PKCζ interacts with Erk5 and may exert a negative feed-back effect. We observed no nuclear accumulation of Erk5 in response to PDGF-BB stimulation, however, we identified a mechanism by which cytoplasmic Erk5 influences gene expression; Erk5 was essential for PDGF-BB-mediated Smad1/5/8 signaling by stimulating release and/or activation of bone morphogenetic protein(s) (BMPs). Thus, PDGF-BB-induced Erk5 activation involves parallel stimulatory and inhibitory pathways and promotes Smad1/5/8 signaling. PMID:27339033

  6. Fluoride Induces a Volume Reduction in CA1 Hippocampal Slices Via MAP Kinase Pathway Through Volume Regulated Anion Channels.

    Science.gov (United States)

    Lee, Jaekwang; Han, Young-Eun; Favorov, Oleg; Tommerdahl, Mark; Whitsel, Barry; Lee, C Justin

    2016-04-01

    Regulation of cell volume is an important aspect of cellular homeostasis during neural activity. This volume regulation is thought to be mediated by activation of specific transporters, aquaporin, and volume regulated anion channels (VRAC). In cultured astrocytes, it was reported that swelling-induced mitogen-activated protein (MAP) kinase activation is required to open VRAC, which are thought to be important in regulatory volume decrease and in the response of CNS to trauma and excitotoxicity. It has been also described that sodium fluoride (NaF), a recognized G-protein activator and protein phosphatase inhibitor, leads to a significant MAP kinase activation in endothelial cells. However, NaF's effect in volume regulation in the brain is not known yet. Here, we investigated the mechanism of NaF-induced volume change in rat and mouse hippocampal slices using intrinsic optical signal (IOS) recording, in which we measured relative changes in intracellular and extracellular volume as changes in light transmittance through brain slices. We found that NaF (1~5 mM) application induced a reduction in light transmittance (decreased volume) in CA1 hippocampus, which was completely reversed by MAP kinase inhibitor U0126 (10 µM). We also observed that NaF-induced volume reduction was blocked by anion channel blockers, suggesting that NaF-induced volume reduction could be mediated by VRAC. Overall, our results propose a novel molecular mechanism of NaF-induced volume reduction via MAP kinase signaling pathway by activation of VRAC. PMID:27122993

  7. Fluoride Induces a Volume Reduction in CA1 Hippocampal Slices Via MAP Kinase Pathway Through Volume Regulated Anion Channels

    Science.gov (United States)

    Lee, Jaekwang; Han, Young-Eun; Favorov, Oleg; Tommerdahl, Mark; Whitsel, Barry

    2016-01-01

    Regulation of cell volume is an important aspect of cellular homeostasis during neural activity. This volume regulation is thought to be mediated by activation of specific transporters, aquaporin, and volume regulated anion channels (VRAC). In cultured astrocytes, it was reported that swelling-induced mitogen-activated protein (MAP) kinase activation is required to open VRAC, which are thought to be important in regulatory volume decrease and in the response of CNS to trauma and excitotoxicity. It has been also described that sodium fluoride (NaF), a recognized G-protein activator and protein phosphatase inhibitor, leads to a significant MAP kinase activation in endothelial cells. However, NaF's effect in volume regulation in the brain is not known yet. Here, we investigated the mechanism of NaF-induced volume change in rat and mouse hippocampal slices using intrinsic optical signal (IOS) recording, in which we measured relative changes in intracellular and extracellular volume as changes in light transmittance through brain slices. We found that NaF (1~5 mM) application induced a reduction in light transmittance (decreased volume) in CA1 hippocampus, which was completely reversed by MAP kinase inhibitor U0126 (10 µM). We also observed that NaF-induced volume reduction was blocked by anion channel blockers, suggesting that NaF-induced volume reduction could be mediated by VRAC. Overall, our results propose a novel molecular mechanism of NaF-induced volume reduction via MAP kinase signaling pathway by activation of VRAC. PMID:27122993

  8. Regulating Global Sumoylation by a MAP Kinase Hog1 and Its Potential Role in Osmo-Tolerance in Yeast

    OpenAIRE

    Abu Irqeba, Ameair; Li, Yang; Panahi, Mahmoud; Zhu, Ming; Wang, Yuqi

    2014-01-01

    Sumoylation, a post-translational protein modification by small ubiquitin-like modifier (SUMO), has been implicated in many stress responses. Here we analyzed the potential role of sumoylation in osmo-response in yeast. We find that osmotic stress induces rapid accumulation of sumoylated species in normal yeast cells. Interestingly, disruption of MAP kinase Hog1 leads to a much higher level of accumulation of sumoylated conjugates that are independent of new protein synthesis. We also find th...

  9. Genetic analysis of the Arabidopsis protein kinases MAP3Kε1 and MAP3Kε2 indicates roles in cell expansion and embryo development.

    Science.gov (United States)

    Chaiwongsar, Suraphon; Strohm, Allison K; Su, Shih-Heng; Krysan, Patrick J

    2012-01-01

    MAP3Kε1 and MAP3Kε2 are a pair of Arabidopsis thaliana genes that encode protein kinases related to cdc7p from Saccharomyces cerevisiae. We have previously shown that the map3kε1;map3kε2 double-mutant combination causes pollen lethality. In this study, we have used an ethanol-inducible promoter construct to rescue this lethal phenotype and create map3kε1(-/-);map3kε2(-/-) double-mutant plants in order to examine the function of these genes in the sporophyte. These rescued double-mutant plants carry a yellow fluorescent protein (YFP)-MAP3Kε1 transgene under the control of the alcohol-inducible AlcA promoter from Aspergillus nidulans. The double-mutant plants were significantly smaller and had shorter roots than wild-type when grown in the absence of ethanol treatment. Microscopic analysis indicated that cell elongation was reduced in the roots of the double-mutant plants and cell expansion was reduced in rosette leaves. Treatment with ethanol to induce expression of YFP-MAP3Kε1 largely rescued the leaf phenotypes. The double-mutant combination also caused embryos to arrest in the early stages of development. Through the use of YFP reporter constructs we determined that MAP3Kε1 and MAP3Kε2 are expressed during embryo development, and also in root tissue. Our results indicate that MAP3Kε1 and MAP3Kε2 have roles outside of pollen development and that these genes affect several aspects of sporophyte development.

  10. FvBck1, a component of cell wall integrity MAP kinase pathway, is required for virulence and oxidative stress response in sugarcane Pokkah Boeng pathogen

    OpenAIRE

    Zhang, Chengkang; Wang, Jianqiang; Tao, Hong; Dang, Xie; Wang, Yang; Chen, Miaoping; Zhai, Zhenzhen; Yu, Wenying; Xu, Liping; Shim, Won-Bo; Lu, Guodong; Wang, Zonghua

    2015-01-01

    Fusarium verticillioides (formerly F. moniliforme) is suggested as one of the causal agents of Pokkah Boeng, a serious disease of sugarcane worldwide. Currently, detailed molecular and physiological mechanism of pathogenesis is unknown. In this study, we focused on cell wall integrity MAPK pathway as one of the potential signaling mechanisms associated with Pokkah Boeng pathogenesis. We identified FvBCK1 gene that encodes a MAP kinase kinase kinase homolog and determined that it is not only r...

  11. FvBck1, a Component of Cell Wall Integrity MAP Kinase Pathway, is Required for Virulence and Oxidative Stress Response in Sugarcane Pokkah Boeng Pathogen

    OpenAIRE

    Chengkang eZhang; Jianqiang eWang; Hong eTao; Xie eDang; Yang eWang; Miaoping eChen; Zhenzhen eZhai; Wenying eYu; Liping eXu; Won-Bo eShim; Guodong eLu; Zonghua eWang

    2015-01-01

    Fusarium verticillioides (formerly F. moniliforme) is suggested as one of the causal agents of Pokkah Boeng, a serious disease of sugarcane worldwide. Currently, detailed molecular and physiological mechanism of pathogenesis is unknown. In this study, we focused on cell wall integrity MAPK pathway as one of the potential signaling mechanisms associated with Pokkah Boeng pathogenesis. We identified FvBCK1 gene that encodes a MAP kinase kinase kinase homolog and determined that it is not only r...

  12. Stimulation of MAP kinase pathways after maternal IL-1β exposure induces fetal lung fluid absorption in guinea pigs

    Directory of Open Access Journals (Sweden)

    Carter Ethan P

    2007-03-01

    Full Text Available Abstract Background We tested the hypothesis that maternal interleukin-1β (IL-1β pretreatment and induction of fetal cortisol synthesis activates MAP kinases and thereby affects lung fluid absorption in preterm guinea pigs. Methods IL-1β was administered subcutaneously daily to timed-pregnant guinea pigs for three days. Fetuses were obtained by abdominal hysterotomy and instilled with isosmolar 5% albumin into the lungs and lung fluid movement was measured over 1 h by mass balance. MAP kinase expression was measured by western blot. Results Lung fluid absorption was induced at 61 days (D gestation and stimulated at 68D gestation by IL-1β. Maternal IL-1β pretreatment upregulated ERK and upstream MEK expression at both 61 and 68D gestation, albeit being much more pronounced at 61D gestation. U0126 instillation completely blocked IL-1β-induced lung fluid absorption as well as IL-1β-induced/stimulated ERK expression. Cortisol synthesis inhibition by metyrapone attenuated ERK expression and lung fluid absorption in IL-1β-pretreated fetal lungs. JNK expression after maternal IL-1β pretreatment remained unaffected at either gestation age. Conclusion These data implicate the ERK MAP kinase pathway as being important for IL-1β induction/stimulation of lung fluid absorption in fetal guinea pigs.

  13. Taking a bite: Amoebic trogocytosis in Entamoeba histolytica and beyond.

    Science.gov (United States)

    Ralston, Katherine S

    2015-12-01

    Entamoeba histolytica is a diarrheal pathogen with the ability to cause profound host tissue damage. This organism possesses contact-dependent cell killing activity, which is likely to be a major contributor to tissue damage. E. histolytica trophozoites were recently shown to ingest fragments of living human cells. It was demonstrated that this process, termed amoebic trogocytosis, contributes to cell killing. Recent advances in ex vivo and 3-D cell culture approaches have shed light on mechanisms for tissue destruction by E. histolytica, allowing amoebic trogocytosis to be placed in the context of additional host and pathogen mediators of tissue damage. In addition to its relevance to pathogenesis of amoebiasis, an appreciation is emerging that intercellular nibbling occurs in many organisms, from protozoa to mammals.

  14. Activation of the Cph1-dependent MAP kinase signaling pathway induces white-opaque switching in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Bernardo Ramírez-Zavala

    Full Text Available Depending on the environmental conditions, the pathogenic yeast Candida albicans can undergo different developmental programs, which are controlled by dedicated transcription factors and upstream signaling pathways. C. albicans strains that are homozygous at the mating type locus can switch from the normal yeast form (white to an elongated cell type (opaque, which is the mating-competent form of this fungus. Both white and opaque cells use the Ste11-Hst7-Cek1/Cek2 MAP kinase signaling pathway to react to the presence of mating pheromone. However, while opaque cells employ the transcription factor Cph1 to induce the mating response, white cells recruit a different downstream transcription factor, Tec1, to promote the formation of a biofilm that facilitates mating of opaque cells in the population. The switch from the white to the opaque cell form is itself induced by environmental signals that result in the upregulation of the transcription factor Wor1, the master regulator of white-opaque switching. To get insight into the upstream signaling pathways controlling the switch, we expressed all C. albicans protein kinases from a tetracycline-inducible promoter in a switching-competent strain. Screening of this library of strains showed that a hyperactive form of Ste11 lacking its N-terminal domain (Ste11(ΔN467 efficiently stimulated white cells to switch to the opaque phase, a behavior that did not occur in response to pheromone. Ste11(ΔN467-induced switching specifically required the downstream MAP kinase Cek1 and its target transcription factor Cph1, but not Cek2 and Tec1, and forced expression of Cph1 also promoted white-opaque switching in a Wor1-dependent manner. Therefore, depending on the activation mechanism, components of the pheromone-responsive MAP kinase pathway can be reconnected to stimulate an alternative developmental program, switching of white cells to the mating-competent opaque phase.

  15. Isolation of amoebic-bacterial consortia capable of degrading trichloroethylene

    International Nuclear Information System (INIS)

    Groundwater from a waste disposal site contaminated with chlorinated alkenes was examined for the presence of amoebic-bacterial consortia capable of degrading the suspected carcinogen, trichloroethylene (TCE). Consortia were readily isolated from all of four test wells. They contained free-living amoebae, and heterotrophic and methylotrophic bacteria. Electron microscopic examination showed bacteria localized throughout the amoebic cytoplasm and an abundance of hyphomicrobium, but not Type I methanotrophs. The presence of Type II methanotrophs was indirectly indicated by lipid analysis of one consortium. The consortia have been passaged for over two years on mineral salts media in a methane atmosphere, which would not be expected to maintain the heterotrophs or amoebae separately. The methanotrophic bacteria apparently provided a stable nutrient source, allowing the persistence of the various genera. By use of 14C-radiotracer techniques, the degradation of TCE by the consortia was observed with 14C eventuating predominantly in CO2 and water-soluble products. In a more detailed examination of one consortia, the amoebae and heterotrohic components did not degrade TCE, while a mixed culture of heterotrophs and methanotrophs did degrade TCE, suggesting the latter component was the primary cause for the consortium's ability to degrade TCE. Amoebic-bacterial consortia may play a role in stabilizing and preserving methylotrophic bacteria in hostile environments

  16. Translational control of myelin basic protein expression by ERK2 MAP kinase regulates timely remyelination in the adult brain.

    Science.gov (United States)

    Michel, Kelly; Zhao, Tianna; Karl, Molly; Lewis, Katherine; Fyffe-Maricich, Sharyl L

    2015-05-20

    Successful myelin repair in the adult CNS requires the robust and timely production of myelin proteins to generate new myelin sheaths. The underlying regulatory mechanisms and complex molecular basis of myelin regeneration, however, remain poorly understood. Here, we investigate the role of ERK MAP kinase signaling in this process. Conditional deletion of Erk2 from cells of the oligodendrocyte lineage resulted in delayed remyelination following demyelinating injury to the adult mouse corpus callosum. The delayed repair occurred as a result of a specific deficit in the translation of the major myelin protein, MBP. In the absence of ERK2, activation of the ribosomal protein S6 kinase (p70S6K) and its downstream target, ribosomal protein S6 (S6RP), was impaired at a critical time when premyelinating oligodendrocytes were transitioning to mature cells capable of generating new myelin sheaths. Thus, we have described an important link between the ERK MAP kinase signaling cascade and the translational machinery specifically in remyelinating oligodendrocytes in vivo. These results suggest an important role for ERK2 in the translational control of MBP, a myelin protein that appears critical for ensuring the timely generation of new myelin sheaths following demyelinating injury in the adult CNS.

  17. Translational control of myelin basic protein expression by ERK2 MAP kinase regulates timely remyelination in the adult brain.

    Science.gov (United States)

    Michel, Kelly; Zhao, Tianna; Karl, Molly; Lewis, Katherine; Fyffe-Maricich, Sharyl L

    2015-05-20

    Successful myelin repair in the adult CNS requires the robust and timely production of myelin proteins to generate new myelin sheaths. The underlying regulatory mechanisms and complex molecular basis of myelin regeneration, however, remain poorly understood. Here, we investigate the role of ERK MAP kinase signaling in this process. Conditional deletion of Erk2 from cells of the oligodendrocyte lineage resulted in delayed remyelination following demyelinating injury to the adult mouse corpus callosum. The delayed repair occurred as a result of a specific deficit in the translation of the major myelin protein, MBP. In the absence of ERK2, activation of the ribosomal protein S6 kinase (p70S6K) and its downstream target, ribosomal protein S6 (S6RP), was impaired at a critical time when premyelinating oligodendrocytes were transitioning to mature cells capable of generating new myelin sheaths. Thus, we have described an important link between the ERK MAP kinase signaling cascade and the translational machinery specifically in remyelinating oligodendrocytes in vivo. These results suggest an important role for ERK2 in the translational control of MBP, a myelin protein that appears critical for ensuring the timely generation of new myelin sheaths following demyelinating injury in the adult CNS. PMID:25995471

  18. Induction of Macrophage Function in Human THP-1 Cells is Associated with MAPK Signaling and Activation of MAP3K7 (TAK1 Protein Kinase

    Directory of Open Access Journals (Sweden)

    Erik eRichter

    2016-03-01

    Full Text Available Macrophages represent the primary human host response to pathogen infection and link the immediate defense to the adaptive immune system. Mature tissue macrophages convert from circulating monocyte precursor cells by terminal differentiation in a process that is not fully understood. Here, we analyzed the protein kinases of the human monocytic cell line THP-1 before and after induction of macrophage differentiation by using kinomics and phosphoproteomics. When comparing the macrophage-like state with the monocytic precursor, 50% of the kinome was altered in expression and even 71% of covered kinase phosphorylation sites were affected. Kinome rearrangements are for example characterized by a shift of overrepresented cycline-dependent kinases associated with cell cycle control in monocytes to calmodulin-dependent kinases and kinases involved in proinflammatory signaling. Eventually, we show that monocyte-to-macrophage differentiation is associated with major rewiring of mitogen-activated protein kinase signaling networks and demonstrate that protein kinase MAP3K7 (TAK1 acts as the key signaling hub in bacterial killing, chemokine production and differentiation. Our study proves the fundamental role of protein kinases and cellular signaling as major drivers of macrophage differentiation and function. The finding that MAP3K7 is central to macrophage function suggests MAP3K7 and its networking partners as promising targets in host-directed therapy for macrophage-associated disease.

  19. STATE OF JNK AND P38 MAP-KINASE SYSTEM IN BLOOD monon uclea r le ucocytes DUR ING INFLAMMATION

    Directory of Open Access Journals (Sweden)

    N. Y. Chasovskih

    2009-01-01

    Full Text Available Abstract. Pogrammed cell death of peripheral blood mononuclear leucocytes from patients with acute inflammatory diseases (non-nosocomial pneumonia, acute appendicitis was investigated under ex vivo conditions, upon cultivation of the cells with selective inhibitors of JNK (SP600125 and р38 МАРК (ML3403. In vitro addition of SP600125 and ML3403 under oxidative stress conditions prevents increase of annexinpositive mononuclear cells numbers, thus suggesting JNK and р38 МАР-kinases to be involved into oxidative mechanisms of apoptosis deregulation. A role of JNK in IL-8 production by mononuclear leucocytes was revealed in cases of acute inflammation. Regulatory effect of JNK and p38 MAP-kinases can be mediated through activation of redox-sensitive apoptogenic signal transduction systems, as well as due to changes in cellular cytokine-producing function.

  20. The Role of MAP Kinase Cascade in Neonatal Brain Response to Hypoxia-Ischemic Insult

    OpenAIRE

    Thei, L. J.

    2014-01-01

    Babies that are born more than 8 weeks premature or those deprived of Oxygen during the perinatal period are susceptible to brain injury, particularly in conjunction with maternal or fetal infection, leading to neurological deficits later in life. Multiple studies have shown that even brief exposure to hypoxic conditions will cause rapid and selective increase in specific mitogen-activated protein kinases including extracellular signal - related kinase 1 and 2 (ERK1/2) and C-Jun N-te...

  1. Heterozygous Mutations in MAP3K7, Encoding TGF-β-Activated Kinase 1, Cause Cardiospondylocarpofacial Syndrome.

    Science.gov (United States)

    Le Goff, Carine; Rogers, Curtis; Le Goff, Wilfried; Pinto, Graziella; Bonnet, Damien; Chrabieh, Maya; Alibeu, Olivier; Nistchke, Patrick; Munnich, Arnold; Picard, Capucine; Cormier-Daire, Valérie

    2016-08-01

    Cardiospondylocarpofacial (CSCF) syndrome is characterized by growth retardation, dysmorphic facial features, brachydactyly with carpal-tarsal fusion and extensive posterior cervical vertebral synostosis, cardiac septal defects with valve dysplasia, and deafness with inner ear malformations. Whole-exome sequencing identified heterozygous MAP3K7 mutations in six distinct CSCF-affected individuals from four families and ranging in age from 5 to 37 years. MAP3K7 encodes transforming growth factor β (TGF-β)-activated kinase 1 (TAK1), which is involved in the mitogen-activated protein kinase (MAPK)-p38 signaling pathway. MAPK-p38 signaling was markedly altered when expression of non-canonical TGF-β-driven target genes was impaired. These findings support the loss of transcriptional control of the TGF-β-MAPK-p38 pathway in fibroblasts obtained from affected individuals. Surprisingly, although TAK1 is located at the crossroad of inflammation, immunity, and cancer, this study reports MAP3K7 mutations in a developmental disorder affecting mainly cartilage, bone, and heart. PMID:27426734

  2. Gene for the catalytic subunit of mouse DNA-dependent protein kinase maps to the scid locus.

    Science.gov (United States)

    Miller, R D; Hogg, J; Ozaki, J H; Gell, D; Jackson, S P; Riblet, R

    1995-01-01

    The gene encoding the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) has been proposed recently as a candidate gene for the mouse severe combined immune deficiency (scid) locus. We have used a partial cDNA clone for human DNA-PKcs to map the mouse homologue using a large interspecific backcross panel. We found that the mouse gene for DNA-PKcs does not recombine with scid, consistent with the hypothesis that scid is a mutation in the mouse gene for DNA-PKcs. Images Fig. 3 PMID:7479885

  3. Substituted N-aryl-6-pyrimidinones: A new class of potent, selective, and orally active p38 MAP kinase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Devadas, Balekudru; Selness, Shaun R.; Xing, Li; Madsen, Heather M.; Marrufo, Laura D.; Shieh, Huey; Messing, Dean M.; Yang, Jerry Z.; Morgan, Heidi M.; Anderson, Gary D.; Webb, Elizabeth G.; Zhang, Jian; Devraj, Rajesh V.; Monahan, Joseph B. (Pfizer)

    2012-02-28

    A novel series of highly potent and selective p38 MAP kinase inhibitors was developed originating from a substituted N-aryl-6-pyrimidinone scaffold. SAR studies coupled with in vivo evaluations in rat arthritis model culminated in the identification of 10 with excellent oral efficacy. Compound 10 exhibited a significantly enhanced dissolution rate compared to 1, translating to a high oral bioavailability (>90%) in rat. In animal studies 10 inhibited LPS-stimulated production of tumor necrosis factor-{alpha} in a dose-dependent manner and demonstrated robust efficacy comparable to dexamethasone in a rat streptococcal cell wall-induced arthritis model.

  4. Rewiring MAP kinases in Saccharomyces cerevisiae to regulate novel targets through ubiquitination.

    Science.gov (United States)

    Groves, Benjamin; Khakhar, Arjun; Nadel, Cory M; Gardner, Richard G; Seelig, Georg

    2016-01-01

    Evolution has often copied and repurposed the mitogen-activated protein kinase (MAPK) signaling module. Understanding how connections form during evolution, in disease and across individuals requires knowledge of the basic tenets that govern kinase-substrate interactions. We identify criteria sufficient for establishing regulatory links between a MAPK and a non-native substrate. The yeast MAPK Fus3 and human MAPK ERK2 can be functionally redirected if only two conditions are met: the kinase and substrate contain matching interaction domains and the substrate includes a phospho-motif that can be phosphorylated by the kinase and recruit a downstream effector. We used a panel of interaction domains and phosphorylation-activated degradation motifs to demonstrate modular and scalable retargeting. We applied our approach to reshape the signaling behavior of an existing kinase pathway. Together, our results demonstrate that a MAPK can be largely defined by its interaction domains and compatible phospho-motifs and provide insight into how MAPK-substrate connections form.

  5. A conserved protein interaction network involving the yeast MAP kinases Fus3 and Kss1

    OpenAIRE

    Kusari, A B; D. M. Molina; W Sabbagh; Lau, C S; Bardwell, Lee

    2004-01-01

    The Saccharomyces cerevisiae mitogen-activated protein kinases (MAPKs) Fus3 and Kss1 bind to multiple regulators and substrates. We show that mutations in a conserved docking site in these MAPKs (the CD/7rn region) disrupt binding to an important subset of their binding partners, including the Ste7 MAPK kinase, the Ste5 adaptor/scaffold protein, and the Dig1 and Dig2 transcriptional repressors. Supporting the possibility that Ste5 and Ste7 bind to the same region of the MAPKs, they partially ...

  6. Phosphorylation and localization of Kss1, a MAP kinase of the Saccharomyces cerevisiae pheromone response pathway.

    OpenAIRE

    Ma, D; Cook, J G; Thorner, J

    1995-01-01

    Kss1 protein kinase, and the homologous Fus3 kinase, are required for pheromone signal transduction in Saccharomyces cerevisiae. In MATa haploids exposed to alpha-factor, Kss1 was rapidly phosphorylated on both Thr183 and Tyr185, and both sites were required for Kss1 function in vivo. De novo protein synthesis was required for sustained pheromone-induced phosphorylation of Kss1. Catalytically inactive Kss1 mutants displayed alpha-factor-induced phosphorylation on both residues, even in kss1 d...

  7. FAK acts as a suppressor of RTK-MAP kinase signalling in Drosophila melanogaster epithelia and human cancer cells.

    Directory of Open Access Journals (Sweden)

    Juan Pablo Macagno

    2014-03-01

    Full Text Available Receptor Tyrosine Kinases (RTKs and Focal Adhesion Kinase (FAK regulate multiple signalling pathways, including mitogen-activated protein (MAP kinase pathway. FAK interacts with several RTKs but little is known about how FAK regulates their downstream signalling. Here we investigated how FAK regulates signalling resulting from the overexpression of the RTKs RET and EGFR. FAK suppressed RTKs signalling in Drosophila melanogaster epithelia by impairing MAPK pathway. This regulation was also observed in MDA-MB-231 human breast cancer cells, suggesting it is a conserved phenomenon in humans. Mechanistically, FAK reduced receptor recycling into the plasma membrane, which resulted in lower MAPK activation. Conversely, increasing the membrane pool of the receptor increased MAPK pathway signalling. FAK is widely considered as a therapeutic target in cancer biology; however, it also has tumour suppressor properties in some contexts. Therefore, the FAK-mediated negative regulation of RTK/MAPK signalling described here may have potential implications in the designing of therapy strategies for RTK-driven tumours.

  8. Signaling in the yeast pheromone response pathway: specific and high-affinity interaction of the mitogen-activated protein (MAP) kinases Kss1 and Fus3 with the upstream MAP kinase kinase Ste7.

    OpenAIRE

    Bardwell, L; Cook, J G; E. C. Chang; Cairns, B R; Thorner, J

    1996-01-01

    Kss1 and Fus3 are mitogen-activated protein kinases (MAPKs or ERKs), and Ste7 is their activating MAPK/ERK kinase (MEK), in the pheromone response pathway of Saccharomyces cerevisiae. To investigate the potential role of specific interactions between these enzymes during signaling, their ability to associate with each other was examined both in solution and in vivo. When synthesized by in vitro translation, Kss1 and Fus3 could each form a tight complex (Kd of approximately 5 nM) with Ste7 in ...

  9. Residual amoebic liver abscess in a prospective renal transplant recipient

    Directory of Open Access Journals (Sweden)

    Ashish V Choudhrie

    2012-01-01

    Full Text Available Amoebic liver abscess (ALA is by far the most common extraintestinal manifestation of invasive amoebiasis. The vast majority of these resolve with treatment; however, a small percentage of the treated ALAs are known to persist asymptomatically. Herein, we present a prospective renal allograft recipient with a residual liver abscess who had a successful renal transplant after treatment. In our opinion, persistence of a radiological finding of residual abscess in the absence of clinical disease does not appear to be a contraindication to renal transplantation.

  10. Mapping the residues of protein kinase CK2 implicated in substrate recognition

    DEFF Research Database (Denmark)

    Sarno, S; Boldyreff, B; Marin, O;

    1995-01-01

    Six mutants of protein kinase CK2 alpha subunit in which basic residues have been mutated into alanines were assayed for their capability to phosphorylate the peptide RRRADDSDDDDD. Two mutants (R228A and R278K279R280A) behaved more or less as alpha wild type and one (H160,166A) was nearly inactive...

  11. Activation of the MAP Kinase Cascade by Exogenous Calcium-Sensing Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Hobson, Susan A.; Wright, Jay W.; Lee, Fred; Mcneil, Scott; Bilderback, Tim R.; Rodland, Karin D.

    2003-02-01

    In Rat-1 fibroblasts and ovarian surface epithelial cells, extracellular calcium induces a proliferative response which appears to be mediated by the G-protein coupled Calcium-sensing Receptor (CaR), as expression of the non-functional CaR-R795W mutant inhibits both thymidine incorporation and activation of the extracellular-regulated kinase (ERK) in response to calcium. In this report we utilized CaR-transfected HEK293 cells to demonstrate that functional CaR is necessary and sufficient for calcium-induced ERK activation. CaR-dependent ERK activation was blocked by co-expression of the Ras dominant-negative mutant, Ras N17, and by exposure to the phosphatidyl inositol 3' kinase inhibitors wortmannin and LY294002. In contrast to Rat-1 fibroblasts, CaR-mediated in vitro kinase activity of ERK2 was unaffected by tyrosine kinase inhibitor herbimycin in CaR-transfected HEK293 cells. These results suggest that usage of distinct pathways downstream of the CaR varies in a cell-type specific manner, suggesting a potential mechanism by which activation of the CaR could couple to distinct calcium-dependent responses.

  12. Mapping the residues of protein kinase CK2 alpha subunit responsible for responsiveness to polyanionic inhibitors

    DEFF Research Database (Denmark)

    Vaglio, P; Sarno, S; Marin, O;

    1996-01-01

    The quadruple mutation of the whole basic cluster, K74KKK77 conserved in the catalytic subunits of protein kinase CK2 and implicated in substrate recognition, not only abolishes inhibition by heparin but even induces with some peptide substrates an up to 5-fold stimulation by heparin in the 0...

  13. QSAR Analysis of Some Antagonists for p38 map kinase Using Combination of Principal Component Analysis and Artificial Intelligence.

    Science.gov (United States)

    Doosti, Elham; Shahlaei, Mohsen

    2015-01-01

    Quantitative relationships between structures of a set of p38 map kinase inhibitors and their activities were investigated by principal component regression (PCR) and principal componentartificial neural network (PC-ANN). Latent variables (called components) generated by principal component analysis procedure were applied as the input of developed Quantitative structure- activity relationships (QSAR) models. An exact study of predictability of PCR and PC-ANN showed that the later model has much higher ability to calculate the biological activity of the investigated molecules. Also, experimental and estimated biological activities of compounds used in model development step have indicated a good correlation. Obtained results show that a non-linear model explaining the relationship between the pIC50s and the calculated principal components (that extract from structural descriptors of the studied molecules) is superior than linear model. Some typical figures of merit for QSAR studies explaining the accuracy and predictability of the suggested models were calculated. Therefore, to design novel inhibitors of p38 map kinase with high potency and low undesired effects the developed QSAR models were used to estimate biological pIC50 of the studied compounds.

  14. A genome-wide RNAi screen reveals MAP kinase phosphatases as key ERK pathway regulators during embryonic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shen-Hsi Yang

    Full Text Available Embryonic stem cells and induced pluripotent stem cells represent potentially important therapeutic agents in regenerative medicine. Complex interlinked transcriptional and signaling networks control the fate of these cells towards maintenance of pluripotency or differentiation. In this study we have focused on how mouse embryonic stem cells begin to differentiate and lose pluripotency and, in particular, the role that the ERK MAP kinase and GSK3 signaling pathways play in this process. Through a genome-wide siRNA screen we have identified more than 400 genes involved in loss of pluripotency and promoting the onset of differentiation. These genes were functionally associated with the ERK and/or GSK3 pathways, providing an important resource for studying the roles of these pathways in controlling escape from the pluripotent ground state. More detailed analysis identified MAP kinase phosphatases as a focal point of regulation and demonstrated an important role for these enzymes in controlling ERK activation kinetics and subsequently determining early embryonic stem cell fate decisions.

  15. A Myb transcription factor of Phytophthora sojae, regulated by MAP kinase PsSAK1, is required for zoospore development.

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    Full Text Available PsSAK1, a mitogen-activated protein (MAP kinase from Phytophthora sojae, plays an important role in host infection and zoospore viability. However, the downstream mechanism of PsSAK1 remains unclear. In this study, the 3'-tag digital gene expression (DGE profiling method was applied to sequence the global transcriptional sequence of PsSAK1-silenced mutants during the cysts stage and 1.5 h after inoculation onto susceptible soybean leaf tissues. Compared with the gene expression levels of the recipient P. sojae strain, several candidates of Myb family were differentially expressed (up or down in response to the loss of PsSAK1, including of a R2R3-type Myb transcription factor, PsMYB1. qRT-PCR indicated that the transcriptional level of PsMYB1 decreased due to PsSAK1 silencing. The transcriptional level of PsMYB1 increased during sporulating hyphae, in germinated cysts, and early infection. Silencing of PsMYB1 results in three phenotypes: a no cleavage of the cytoplasm into uninucleate zoospores or release of normal zoospores, b direct germination of sporangia, and c afunction in zoospore-mediated plant infection. Our data indicate that the PsMYB1 transcription factor functions downstream of MAP kinase PsSAK1 and is required for zoospore development of P. sojae.

  16. Nuclear Localization of the ERK MAP Kinase Mediated by Drosophila αPS2βPS Integrin and Importin-7

    OpenAIRE

    James, Brian P.; Bunch, Thomas A.; Krishnamoorthy, Srinivasan; Perkins, Lizabeth A.; Brower, Danny L.

    2007-01-01

    The control of gene expression by the mitogen-activated protein (MAP) kinase extracellular signal-regulated kinase (ERK) requires its translocation into the nucleus. In Drosophila S2 cells nuclear accumulation of diphospho-ERK (dpERK) is greatly reduced by interfering double-stranded RNA against Drosophila importin-7 (DIM-7) or by the expression of integrin mutants, either during active cell spreading or after stimulation by insulin. In both cases, total ERK phosphorylation (on Westerns) is n...

  17. Extracellular simian virus 40 induces an ERK/MAP kinase-independent signalling pathway that activates primary response genes and promotes virus entry.

    Science.gov (United States)

    Dangoria, N S; Breau, W C; Anderson, H A; Cishek, D M; Norkin, L C

    1996-09-01

    Simian virus 40 (SV40) binding to growth-arrested cells activated an intracellular signalling pathway that induced the up-regulation of the primary response genes c-myc, c-jun and c-sis within 30 min and of JE within 90 min. The up-regulation of the primary response genes occurred in the presence of cycloheximide and when UV-inactivated SV40 was adsorbed to cells. SV40 binding did not activate Raf or mitogen-activated protein kinase (MAP/ERK1), or mobilize intracellular Ca2+. The SV40-induced up-regulation of c-myc and c-jun was blocked by the tyrosine kinase inhibitor, genistein, and by the protein kinase C (PKC) inhibitor, calphostin C, but not by expression of the MAP kinase-specific phosphatase, MKP-1. These results suggest that the SV40-induced signalling pathway includes the activities of a tyrosine kinase and a Ca(2+)-independent isoform of PKC, but not of Raf or MAP kinase. Finally, SV40 infectious entry into cells was specifically and reversibly blocked by genistein.

  18. Pan-Genome Analysis of Brazilian Lineage A Amoebal Mimiviruses

    Directory of Open Access Journals (Sweden)

    Felipe L. Assis

    2015-06-01

    Full Text Available Since the recent discovery of Samba virus, the first representative of the family Mimiviridae from Brazil, prospecting for mimiviruses has been conducted in different environmental conditions in Brazil. Recently, we isolated using Acanthamoeba sp. three new mimiviruses, all of lineage A of amoebal mimiviruses: Kroon virus from urban lake water; Amazonia virus from the Brazilian Amazon river; and Oyster virus from farmed oysters. The aims of this work were to sequence and analyze the genome of these new Brazilian mimiviruses (mimi-BR and update the analysis of the Samba virus genome. The genomes of Samba virus, Amazonia virus and Oyster virus were 97%–99% similar, whereas Kroon virus had a low similarity (90%–91% with other mimi-BR. A total of 3877 proteins encoded by mimi-BR were grouped into 974 orthologous clusters. In addition, we identified three new ORFans in the Kroon virus genome. Additional work is needed to expand our knowledge of the diversity of mimiviruses from Brazil, including if and why among amoebal mimiviruses those of lineage A predominate in the Brazilian environment.

  19. Primary Amoebic Meningoencephalitis: Neurochemotaxis and Neurotropic Preferences of Naegleria fowleri.

    Science.gov (United States)

    Baig, Abdul Mannan

    2016-08-17

    Naegleria fowleri causes one of the most devastating necrotic meningoencephalitis in humans. The infection caused by this free-living amoeba is universally fatal within a week of onset of the signs and symptoms of the disease called primary amoebic meningoencephalitis (PAM). In all the affected patients, there is always a history of entry of water into the nose. Even though the diagnostic and treatment protocols have been revised and improved, the obstinate nature of the disease can be gauged by the fact that the mortality rate has persisted around ∼95% over the past 60 years. Some of the unanswered questions regarding PAM are is there a neurochemical basis of the chemotaxis of N. fowleri to the brain? What immune evasion means occurs preceding the neurotropic invasion? What is the contribution of the acute inflammatory response in the fatal cases? Can a combination of anti-amoebic drugs with antagonism of the acute inflammation help save the patient's life? As prevention remains the most valuable safeguard against N. fowleri, a quicker diagnosis, better understanding of the pathogenesis of PAM coupled with testing of newer and safer drugs could improve the chances of survival in patients affected with PAM.

  20. Mitogen activated protein kinase kinase kinase 3 (MAP3K3/MEKK3) overexpression is an early event in esophageal tumorigenesis and is a predictor of poor disease prognosis

    International Nuclear Information System (INIS)

    Mitogen-activated protein kinase kinase kinase3 (MAP3K3/MEKK3) was identified to be differentially expressed in esophageal squamous cell carcinoma (ESCC) using cDNA microarrays by our laboratory. Here in we determined the clinical significance of MEKK3 in ESCC. Immunohistochemical analysis of MEKK3 expression was carried out in archived tissue sections from 93 ESCCs, 47 histologically normal and 61 dysplastic esophageal tissues and correlated with clinicopathological parameters and disease prognosis over up to 7.5 years for ESCC patients. MEKK3 expression was significantly increased in esophageal dysplasia and ESCC in comparison with normal mucosa (ptrend < 0.001). Kaplan Meier survival analysis showed significantly reduced median disease free survival median DFS = 10 months in patients with MEKK3 positive ESCCs compared to patients with no immunopositivity (median DFS = 19 months, p = 0.04). ESCC patients with MEKK3 positive and lymph node positive tumors had median DFS = 9 months, as compared to median DFS = 21 months in patients who did not show the alterations (p = 0.01). In multivariate Cox regression analysis, combination of MEKK3 overexpression and node positivity [p = 0.015, hazard ratio (HR) = 2.082, 95% CI = 1.154 - 3.756] emerged as important predictor of reduced disease free survival and poor prognosticator for ESCC patients. Alterations in MEKK3 expression occur in early stages of development of ESCC and are sustained during disease progression; MEKK3 in combination with lymph node positivity has the potential to serve as adverse prognosticator in ESCC

  1. Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases.

    Science.gov (United States)

    Zeke, András; Bastys, Tomas; Alexa, Anita; Garai, Ágnes; Mészáros, Bálint; Kirsch, Klára; Dosztányi, Zsuzsanna; Kalinina, Olga V; Reményi, Attila

    2015-11-01

    Mitogen-activated protein kinases (MAPK) are broadly used regulators of cellular signaling. However, how these enzymes can be involved in such a broad spectrum of physiological functions is not understood. Systematic discovery of MAPK networks both experimentally and in silico has been hindered because MAPKs bind to other proteins with low affinity and mostly in less-characterized disordered regions. We used a structurally consistent model on kinase-docking motif interactions to facilitate the discovery of short functional sites in the structurally flexible and functionally under-explored part of the human proteome and applied experimental tools specifically tailored to detect low-affinity protein-protein interactions for their validation in vitro and in cell-based assays. The combined computational and experimental approach enabled the identification of many novel MAPK-docking motifs that were elusive for other large-scale protein-protein interaction screens. The analysis produced an extensive list of independently evolved linear binding motifs from a functionally diverse set of proteins. These all target, with characteristic binding specificity, an ancient protein interaction surface on evolutionarily related but physiologically clearly distinct three MAPKs (JNK, ERK, and p38). This inventory of human protein kinase binding sites was compared with that of other organisms to examine how kinase-mediated partnerships evolved over time. The analysis suggests that most human MAPK-binding motifs are surprisingly new evolutionarily inventions and newly found links highlight (previously hidden) roles of MAPKs. We propose that short MAPK-binding stretches are created in disordered protein segments through a variety of ways and they represent a major resource for ancient signaling enzymes to acquire new regulatory roles. PMID:26538579

  2. Corticosterone Regulates pERK1/2 Map Kinase in a Chronic Depression Model

    OpenAIRE

    Gourley, Shannon L.; Wu, Florence J.; Taylor, Jane R.

    2008-01-01

    Neurotransmitter- or neurotrophin-regulated intracellular signaling in the hippocampus is hypothesized to contribute to depression and antidepressant (ADT) efficacy. Extracellular signal-regulated kinase 1/2 (ERK1/2) is downstream of several receptor types and regulates transcriptional activity of many targets; ERK1/2 may thereby influence mood and affect. Using a novel, ADT-sensitive depression model in mice, we show that prior corticosterone exposure decreases motivated behavior, sucrose co...

  3. Regulation of MAP kinase signaling cascade by microRNAs in Oryza sativa

    OpenAIRE

    Raghuram, Badmi; Sheikh, Arsheed Hussain; Sinha, Alok Krishna

    2014-01-01

    Mitogen activated protein kinase (MAPK) pathway is one of the most conserved signaling cascade in plants regulating a plethora of cellular processes including normal growth and development, abiotic and biotic stress responses. The perception of external cues triggers the phosphorylation of three tier MAPKKK-MAPKK-MAPK cascade which finally modifies a downstream substrate thereby regulating the cellular processes. Whereas, the transcription regulation by MAPKs, mediated through their substrate...

  4. A MAP kinase dependent feedback mechanism controls Rho1 GTPase and actin distribution in yeast.

    Directory of Open Access Journals (Sweden)

    Shuguang Guo

    Full Text Available In the yeast Saccharomyces cerevisiae the guanosine triphosphatase (GTPase Rho1 controls actin polarization and cell wall expansion. When cells are exposed to various environmental stresses that perturb the cell wall, Rho1 activates Pkc1, a mammalian Protein Kinase C homologue, and Mpk1, a mitogen activated protein kinase (MAPK, resulting in actin depolarization and cell wall remodeling. In this study, we demonstrate a novel feedback loop in this Rho1-mediated Pkc1-MAPK pathway that involves regulation of Rom2, the guanine nucleotide exchange factor of Rho1, by Mpk1, the end kinase of the pathway. This previously unrecognized Mpk1-dependent feedback is a critical step in regulating Rho1 function. Activation of this feedback mechanism is responsible for redistribution of Rom2 and cell wall synthesis activity from the bud to cell periphery under stress conditions. It is also required for terminating Rho1 activity toward the Pkc1-MAPK pathway and for repolarizing actin cytoskeleton and restoring growth after the stressed cells become adapted.

  5. Systems Analysis of Adaptive Responses to MAP Kinase Pathway Blockade in BRAF Mutant Melanoma.

    Directory of Open Access Journals (Sweden)

    Brian J Capaldo

    Full Text Available Fifty percent of cutaneous melanomas are driven by activated BRAFV600E, but tumors treated with RAF inhibitors, even when they respond dramatically, rapidly adapt and develop resistance. Thus, there is a pressing need to identify the major mechanisms of intrinsic and adaptive resistance and develop drug combinations that target these resistance mechanisms. In a combinatorial drug screen on a panel of 12 treatment-naïve BRAFV600E mutant melanoma cell lines of varying levels of resistance to mitogen-activated protein kinase (MAPK pathway inhibition, we identified the combination of PLX4720, a targeted inhibitor of mutated BRaf, and lapatinib, an inhibitor of the ErbB family of receptor tyrosine kinases, as synergistically cytotoxic in the subset of cell lines that displayed the most resistance to PLX4720. To identify potential mechanisms of resistance to PLX4720 treatment and synergy with lapatinib treatment, we performed a multi-platform functional genomics analysis to profile the genome as well as the transcriptional and proteomic responses of these cell lines to treatment with PLX4720. We found modest levels of resistance correlated with the zygosity of the BRAF V600E allele and receptor tyrosine kinase (RTK mutational status. Layered over base-line resistance was substantial upregulation of many ErbB pathway genes in response to BRaf inhibition, thus generating the vulnerability to combination with lapatinib. The transcriptional responses of ErbB pathway genes are associated with a number of transcription factors, including ETS2 and its associated cofactors that represent a convergent regulatory mechanism conferring synergistic drug susceptibility in the context of diverse mutational landscapes.

  6. The mitogen-activated protein (MAP) kinase ERK induces tRNA synthesis by phosphorylating TFIIIB

    OpenAIRE

    Felton-Edkins, Zoe A.; Fairley, Jennifer A.; Graham, Emma L.; Johnston, Imogen M.; White, Robert J.; Scott, Pamela H.

    2003-01-01

    RNA polymerase (pol) III transcription increases within minutes of serum addition to growth-arrested fibroblasts. We show that ERK mitogen-activated protein kinases regulate pol III output by directly binding and phosphorylating the BRF1 subunit of transcription factor TFIIIB. Blocking the ERK signalling cascade inhibits TFIIIB binding to pol III and to transcription factor TFIIIC2. Chromatin immunoprecipitation shows that the association of BRF1 and pol III with tRNALeu genes in cells decrea...

  7. Regulation of endothelial protein C receptor shedding by cytokines is mediated through differential activation of MAP kinase signaling pathways

    International Nuclear Information System (INIS)

    The endothelial protein C receptor (EPCR) plays a pivotal role in coagulation, inflammation, cell proliferation, and cancer, but its activity is markedly changed by ectodomain cleavage and release as the soluble protein (sEPCR). In this study we examined the mechanisms involved in the regulation of EPCR shedding in human umbilical endothelial cells (HUVEC). Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), but not interferon-γ and interleukin-6, suppressed EPCR mRNA transcription and cell-associated EPCR expression in HUVEC. The release of sEPCR induced by IL-1β and TNF-α correlated with activation of p38 MAPK and c-Jun N-terminal kinase (JNK). EPCR shedding was also induced by phorbol 12-myristate 13-acetate, ionomycin, anisomycin, thiol oxidants or alkylators, thrombin, and disruptors of lipid rafts. Both basal and induced shedding of EPCR was blocked by the metalloproteinase inhibitors, TAPI-0 and GM6001, and by the reduced non-protein thiols, glutathione, dihydrolipoic acid, dithiothreitol, and N-acetyl-L-cysteine. Because other antioxidants and scavengers of reactive oxygen species failed to block the cleavage of EPCR, a direct suppression of metalloproteinase activity seems responsible for the observed effects of reduced thiols. In summary, the shedding of EPCR in HUVEC is effectively regulated by IL-1β and TNF-α, and downstream by MAP kinase signaling pathways and metalloproteinases.

  8. Regulation of endothelial protein C receptor shedding by cytokines is mediated through differential activation of MAP kinase signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Menschikowski, Mario, E-mail: Mario.Menschikowski@uniklinikum-dresden.de [Institute of Clinical Chemistry and Laboratory Medicine, Technical University of Dresden, Medical Faculty ' Carl Gustav Carus' , Fetscherstrasse 74, D-01307 Dresden (Germany); Hagelgans, Albert; Eisenhofer, Graeme; Siegert, Gabriele [Institute of Clinical Chemistry and Laboratory Medicine, Technical University of Dresden, Medical Faculty ' Carl Gustav Carus' , Fetscherstrasse 74, D-01307 Dresden (Germany)

    2009-09-10

    The endothelial protein C receptor (EPCR) plays a pivotal role in coagulation, inflammation, cell proliferation, and cancer, but its activity is markedly changed by ectodomain cleavage and release as the soluble protein (sEPCR). In this study we examined the mechanisms involved in the regulation of EPCR shedding in human umbilical endothelial cells (HUVEC). Interleukin-1{beta} (IL-1{beta}) and tumor necrosis factor-{alpha} (TNF-{alpha}), but not interferon-{gamma} and interleukin-6, suppressed EPCR mRNA transcription and cell-associated EPCR expression in HUVEC. The release of sEPCR induced by IL-1{beta} and TNF-{alpha} correlated with activation of p38 MAPK and c-Jun N-terminal kinase (JNK). EPCR shedding was also induced by phorbol 12-myristate 13-acetate, ionomycin, anisomycin, thiol oxidants or alkylators, thrombin, and disruptors of lipid rafts. Both basal and induced shedding of EPCR was blocked by the metalloproteinase inhibitors, TAPI-0 and GM6001, and by the reduced non-protein thiols, glutathione, dihydrolipoic acid, dithiothreitol, and N-acetyl-L-cysteine. Because other antioxidants and scavengers of reactive oxygen species failed to block the cleavage of EPCR, a direct suppression of metalloproteinase activity seems responsible for the observed effects of reduced thiols. In summary, the shedding of EPCR in HUVEC is effectively regulated by IL-1{beta} and TNF-{alpha}, and downstream by MAP kinase signaling pathways and metalloproteinases.

  9. Cell-permeable p38 MAP kinase promotes migration of adult neural stem/progenitor cells

    Science.gov (United States)

    Hamanoue, Makoto; Morioka, Kazuhito; Ohsawa, Ikuroh; Ohsawa, Keiko; Kobayashi, Masaaki; Tsuburaya, Kayo; Akasaka, Yoshikiyo; Mikami, Tetsuo; Ogata, Toru; Takamatsu, Ken

    2016-01-01

    Endogenous neural stem/progenitor cells (NPCs) can migrate toward sites of injury, but the migration activity of NPCs is insufficient to regenerate damaged brain tissue. In this study, we showed that p38 MAP kinase (p38) is expressed in doublecortin-positive adult NPCs. Experiments using the p38 inhibitor SB203580 revealed that endogenous p38 participates in NPC migration. To enhance NPC migration, we generated a cell-permeable wild-type p38 protein (PTD-p38WT) in which the HIV protein transduction domain (PTD) was fused to the N-terminus of p38. Treatment with PTD-p38WT significantly promoted the random migration of adult NPCs without affecting cell survival or differentiation; this effect depended on the cell permeability and kinase activity of the fusion protein. These findings indicate that PTD-p38WT is a novel and useful tool for unraveling the roles of p38, and that this protein provides a reasonable approach for regenerating the injured brain by enhancing NPC migration. PMID:27067799

  10. Inflammatory and catabolic signalling in intervertebral discs: The roles of NF-B and MAP Kinases

    Directory of Open Access Journals (Sweden)

    K Wuertz

    2012-02-01

    Full Text Available Painful intervertebral disc disease is characterised not only by an imbalance between anabolic (i.e., matrix synthesis and catabolic (i.e., matrix degradation processes, but also by inflammatory mechanisms. The increased expression and synthesis of matrix metalloproteinases and inflammatory factors is mediated by specific signal transduction, in particular the nuclear factor-kappaB (NF-kB and mitogen-activated protein kinase (MAPK-mediated pathways. NF-kB and MAPK have been identified as the master regulators of inflammation and catabolism in several musculoskeletal disorders (e.g., osteoarthritis, and recently growing evidence supports the importance of these signalling pathways in painful disc disease. With continuing research exploiting in vitro and in vivo model systems to elucidate the roles of these pathways in disc degeneration, it may be possible in the near future to specifically target these major inflammatory / catabolic signalling pathways to treat painful degenerative disc disease. In this perspective, we aim to summarise the current state of knowledge concerning the inflammatory and catabolic molecular pathways of intervertebral disc disease (IDD, with a detailed description of NF-kB and MAP kinase-mediated signal transduction in disc cells. Furthermore, we will discuss the emerging novel molecular treatment modalities for IDD using pharmacological inhibitors targeting these pathways.

  11. Mechanisms of cell signaling by nitric oxide and peroxynitrite: from mitochondria to MAP kinases

    Science.gov (United States)

    Levonen, A. L.; Patel, R. P.; Brookes, P.; Go, Y. M.; Jo, H.; Parthasarathy, S.; Anderson, P. G.; Darley-Usmar, V. M.

    2001-01-01

    Many of the biological and pathological effects of nitric oxide (NO) are mediated through cell signaling pathways that are initiated by NO reacting with metalloproteins. More recently, it has been recognized that the reaction of NO with free radicals such as superoxide and the lipid peroxyl radical also has the potential to modulate redox signaling. Although it is clear that NO can exert both cytotoxic and cytoprotective actions, the focus of this overview are those reactions that could lead to protection of the cell against oxidative stress in the vasculature. This will include the induction of antioxidant defenses such as glutathione, activation of mitogen-activated protein kinases in response to blood flow, and modulation of mitochondrial function and its impact on apoptosis. Models are presented that show the increased synthesis of glutathione in response to shear stress and inhibition of cytochrome c release from mitochondria. It appears that in the vasculature NO-dependent signaling pathways are of three types: (i) those involving NO itself, leading to modulation of mitochondrial respiration and soluble guanylate cyclase; (ii) those that involve S-nitrosation, including inhibition of caspases; and (iii) autocrine signaling that involves the intracellular formation of peroxynitrite and the activation of the mitogen-activated protein kinases. Taken together, NO plays a major role in the modulation of redox cell signaling through a number of distinct pathways in a cellular setting.

  12. A conserved protein interaction network involving the yeast MAP kinases Fus3 and Kss1.

    Science.gov (United States)

    Kusari, Anasua B; Molina, Douglas M; Sabbagh, Walid; Lau, Chang S; Bardwell, Lee

    2004-01-19

    The Saccharomyces cerevisiae mitogen-activated protein kinases (MAPKs) Fus3 and Kss1 bind to multiple regulators and substrates. We show that mutations in a conserved docking site in these MAPKs (the CD/7m region) disrupt binding to an important subset of their binding partners, including the Ste7 MAPK kinase, the Ste5 adaptor/scaffold protein, and the Dig1 and Dig2 transcriptional repressors. Supporting the possibility that Ste5 and Ste7 bind to the same region of the MAPKs, they partially competed for Fus3 binding. In vivo, some of the MAPK mutants displayed reduced Ste7-dependent phosphorylation, and all of them exhibited multiple defects in mating and pheromone response. The Kss1 mutants were also defective in Kss1-imposed repression of Ste12. We conclude that MAPKs contain a structurally and functionally conserved docking site that mediates an overall positively acting network of interactions with cognate docking sites on their regulators and substrates. Key features of this interaction network appear to have been conserved from yeast to humans. PMID:14734536

  13. The Pelargonium sidoides Extract EPs 7630 Drives the Innate Immune Defense by Activating Selected MAP Kinase Pathways in Human Monocytes.

    Science.gov (United States)

    Witte, Katrin; Koch, Egon; Volk, Hans-Dieter; Wolk, Kerstin; Sabat, Robert

    2015-01-01

    Pelargonium sidoides is a medical herb and respective extracts are used very frequently for the treatment of respiratory tract infections. However, the effects of Pelargonium sidoides and a special extract prepared from its roots (EPs 7630) on human immune cells are not fully understood. Here we demonstrate that EPs 7630 induced a rapid and dose-dependent production of TNF-α, IL-6, and IL-10 by human blood immune cells. This EPs 7630-induced cytokine profile was more pro-inflammatory in comparison with the profile induced by viral or bacterial infection-mimicking agents. The search for EPs 7630 target cells revealed that T-cells did not respond to EPs 7630 stimulation by production of TNF-α, IL-6, or IL-10. Furthermore, pretreatment of T-cells with EPs 7630 did not modulate their TNF-α, IL-6, and IL-10 secretion during subsequent activation. In contrast to lymphocytes, monocytes showed clear intracellular TNF-α staining after EPs 7630 treatment. Accordingly, EPs 7630 predominantly provoked activation of MAP kinases and inhibition of p38 strongly reduced the monocyte TNF-α production. The pretreatment of blood immune cells with EPs 7630 lowered their secretion of TNF-α and IL-10 and caused an IL-6 dominant response during second stimulation with viral or bacterial infection-mimicking agents. In summary, we demonstrate that EPs 7630 activates human monocytes, induces MAP kinase-dependent pro-inflammatory cytokines in these cells, and specifically modulates their production capacity of mediators known to lead to an increase of acute phase protein production in the liver, neutrophil generation in the bone marrow, and the generation of adaptive Th17 and Th22 cells. PMID:26406906

  14. The Pelargonium sidoides Extract EPs 7630 Drives the Innate Immune Defense by Activating Selected MAP Kinase Pathways in Human Monocytes.

    Science.gov (United States)

    Witte, Katrin; Koch, Egon; Volk, Hans-Dieter; Wolk, Kerstin; Sabat, Robert

    2015-01-01

    Pelargonium sidoides is a medical herb and respective extracts are used very frequently for the treatment of respiratory tract infections. However, the effects of Pelargonium sidoides and a special extract prepared from its roots (EPs 7630) on human immune cells are not fully understood. Here we demonstrate that EPs 7630 induced a rapid and dose-dependent production of TNF-α, IL-6, and IL-10 by human blood immune cells. This EPs 7630-induced cytokine profile was more pro-inflammatory in comparison with the profile induced by viral or bacterial infection-mimicking agents. The search for EPs 7630 target cells revealed that T-cells did not respond to EPs 7630 stimulation by production of TNF-α, IL-6, or IL-10. Furthermore, pretreatment of T-cells with EPs 7630 did not modulate their TNF-α, IL-6, and IL-10 secretion during subsequent activation. In contrast to lymphocytes, monocytes showed clear intracellular TNF-α staining after EPs 7630 treatment. Accordingly, EPs 7630 predominantly provoked activation of MAP kinases and inhibition of p38 strongly reduced the monocyte TNF-α production. The pretreatment of blood immune cells with EPs 7630 lowered their secretion of TNF-α and IL-10 and caused an IL-6 dominant response during second stimulation with viral or bacterial infection-mimicking agents. In summary, we demonstrate that EPs 7630 activates human monocytes, induces MAP kinase-dependent pro-inflammatory cytokines in these cells, and specifically modulates their production capacity of mediators known to lead to an increase of acute phase protein production in the liver, neutrophil generation in the bone marrow, and the generation of adaptive Th17 and Th22 cells.

  15. The Pelargonium sidoides Extract EPs 7630 Drives the Innate Immune Defense by Activating Selected MAP Kinase Pathways in Human Monocytes.

    Directory of Open Access Journals (Sweden)

    Katrin Witte

    Full Text Available Pelargonium sidoides is a medical herb and respective extracts are used very frequently for the treatment of respiratory tract infections. However, the effects of Pelargonium sidoides and a special extract prepared from its roots (EPs 7630 on human immune cells are not fully understood. Here we demonstrate that EPs 7630 induced a rapid and dose-dependent production of TNF-α, IL-6, and IL-10 by human blood immune cells. This EPs 7630-induced cytokine profile was more pro-inflammatory in comparison with the profile induced by viral or bacterial infection-mimicking agents. The search for EPs 7630 target cells revealed that T-cells did not respond to EPs 7630 stimulation by production of TNF-α, IL-6, or IL-10. Furthermore, pretreatment of T-cells with EPs 7630 did not modulate their TNF-α, IL-6, and IL-10 secretion during subsequent activation. In contrast to lymphocytes, monocytes showed clear intracellular TNF-α staining after EPs 7630 treatment. Accordingly, EPs 7630 predominantly provoked activation of MAP kinases and inhibition of p38 strongly reduced the monocyte TNF-α production. The pretreatment of blood immune cells with EPs 7630 lowered their secretion of TNF-α and IL-10 and caused an IL-6 dominant response during second stimulation with viral or bacterial infection-mimicking agents. In summary, we demonstrate that EPs 7630 activates human monocytes, induces MAP kinase-dependent pro-inflammatory cytokines in these cells, and specifically modulates their production capacity of mediators known to lead to an increase of acute phase protein production in the liver, neutrophil generation in the bone marrow, and the generation of adaptive Th17 and Th22 cells.

  16. Investigating amoebic pathogenesis using Entamoeba histolytica DNA microarrays

    Indian Academy of Sciences (India)

    Upinder Singh; Preetam Shah

    2002-11-01

    Entamoeba histolytica, a protozoan parasite, causes diarrhea and liver abscesses resulting in 50 million cases of infection worldwide annually. Elucidation of parasite virulence determinants has recently been investigated using genetic approaches. We have undertaken a genomics approach to identify novel virulence determinants in the parasite. A DNA microarray of E. histolytica is being developed based on sequenced genomic clones from the genome sequencing efforts of The Institute of Genomic Research (TIGR) and the Sanger Center. Hybridization of the slides with samples labelled differentially using fluorescent dyes allows the characterization of transcriptional profiles of genes under the biological conditions tested. Additionally, a genome-wide comparison of E. histolytica and E. dispar can be undertaken. The development of an E. histolytica microarray will be outlined and its uses in identifying novel virulence determinants and characterizing amoebic biology will be discussed.

  17. Primary amoebic meningoencephalitis: first reported case from Rohtak, North India

    Directory of Open Access Journals (Sweden)

    Naveen Gupta

    2009-06-01

    Full Text Available A fatal case of primary amoebic encephalitis (PAM in a 20 year old boy, a proven case of acute leukemic leukemia (ALL type L2, in remission is described. No history of swimming could be elicited. The clinical presentation, the isolation of the amoeba from the cerebrospinal fluid (CSF, the poor response to amphotericin B, and the ultimately fatal outcome are all consistent with the diagnosis of PAM. On the basis of its ability to grow at temperature 42ºC and 45ºC, morphology of trophozoite, and the presence of flagellate forms in CSF, the amoeba was identified as Naegleria fowleri. Other drugs used in combination with amphotericin B are tetracycline, rifampicin, and miconazole. A possibility of PAM should always be considered in all cases of acute purulent meningoencephalitis in which no bacteria or fungus are found.

  18. Primary amoebic meningoencephalitis: first reported case from Rohtak, North India.

    Science.gov (United States)

    Gupta, Naveen; Bhaskar, Hemlata; Duggal, Shalini; Ghalaut, Pratap S; Kundra, Shailja; Arora, Des R

    2009-06-01

    A fatal case of primary amoebic encephalitis (PAM) in a 20 year old boy, a proven case of acute leukemic leukemia (ALL) type L2, in remission is described. No history of swimming could be elicited. The clinical presentation, the isolation of the amoeba from the cerebrospinal fluid (CSF), the poor response to amphotericin B, and the ultimately fatal outcome are all consistent with the diagnosis of PAM. On the basis of its ability to grow at temperature 42 degrees C and 45 degrees C, morphology of trophozoite, and the presence of flagellate forms in CSF, the amoeba was identified as Naegleria fowleri. Other drugs used in combination with amphotericin B are tetracycline, rifampicin, and miconazole. A possibility of PAM should always be considered in all cases of acute purulent meningoencephalitis in which no bacteria or fungus are found.

  19. Transgenic Analysis of the Leishmania MAP Kinase MPK10 Reveals an Auto-inhibitory Mechanism Crucial for Stage-Regulated Activity and Parasite Viability

    DEFF Research Database (Denmark)

    Cayla, M.; Rachidi, N.; Leclercq, O.;

    2014-01-01

    Protozoan pathogens of the genus Leishmania have evolved unique signaling mechanisms that can sense changes in the host environment and trigger adaptive stage differentiation essential for host cell infection. The signaling mechanisms underlying parasite development remain largely elusive even...... though Leishmania mitogen-activated protein kinases (MAPKs) have been linked previously to environmentally induced differentiation and virulence. Here, we unravel highly unusual regulatory mechanisms for Leishmania MAP kinase 10 (MPK10). Using a transgenic approach, we demonstrate that MPK10 is stage...... at position 395 that could be implicated in kinase regulation. Finally, we uncovered a feedback loop that limits MPK10 activity through dephosphorylation of the tyrosine residue of the TxY motif. Together our data reveal novel aspects of protein kinase regulation in Leishmania, and propose MPK10...

  20. The p38 MAP kinase inhibitor SB203580 enhances nuclear factor-kappa B transcriptional activity by a non-specific effect upon the ERK pathway

    NARCIS (Netherlands)

    Birkenkamp, KU; Tuyt, LML; Lummen, C; Wierenga, LTJ; Kruijer, W; Vellenga, E

    2000-01-01

    1 In the present study we investigated a possible role for the p38 mitogen-activated protein (MAP) kinase pathway in mediating nuclear factor-kappa B (NF-kappa B) transcriptional activity in the erythroleukaemic cell line TF-1. 2 TF-1 cells stimulated with the phosphatase inhibitor okadaic acid (OA)

  1. Synergistic effect of vasoactive intestinal peptides on TNF-alpha-induced IL-6 synthesis in osteoblasts: amplification of p44/p42 MAP kinase activation.

    Science.gov (United States)

    Natsume, Hideo; Tokuda, Haruhiko; Mizutani, Jun; Adachi, Seiji; Matsushima-Nishiwaki, Rie; Minamitani, Chiho; Kato, Kenji; Kozawa, Osamu; Otsuka, Takanobu

    2010-05-01

    We previously showed that tumor necrosis factor-alpha (TNF-alpha) stimulates synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, via p44/p42 mitogen-activated protein (MAP) kinase and phosphatidylinositol 3-kinase/Akt in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of vasoactive intestinal peptide (VIP) on TNF-alpha-induced IL-6 synthesis in these cells. VIP, which by itself slightly stimulated IL-6 synthesis, synergistically enhanced the TNF-alpha-induced IL-6 synthesis in MC3T3-E1 cells. The synergistic effect of VIP on the TNF-alpha-induced IL-6 synthesis was concentration-dependent in the range between 1 and 70 nM. We previously reported that VIP stimulated cAMP production in MC3T3-E1 cells. Forskolin, a direct activator of adenylyl cyclase, or 8-bromoadenosine-3',5'-cyclic monophosphate (8bromo-cAMP), a plasma membrane-permeable cAMP analogue, markedly enhanced the TNF-alpha-induced IL-6 synthesis as well as VIP. VIP markedly up-regulated the TNF-alpha-induced p44/p42 MAP kinase phosphorylation. The Akt phosphorylation stimulated by TNF-alpha was only slightly affected by VIP. PD98059, a specific inhibitor of MEK1/2, significantly suppressed the enhancement of TNF-alpha-induced IL-6 synthesis by VIP. The synergistic effect of a combination of VIP and TNF-alpha on the phosphorylation of p44/p42 MAP kinase was diminished by H-89, an inhibitor of cAMP-dependent protein kinase. These results strongly suggest that VIP synergistically enhances TNF-alpha-stimulated IL-6 synthesis via up-regulating p44/p42 MAP kinase through the adenylyl cyclase-cAMP system in osteoblasts.

  2. Amoebic liver abscess: ultrasonographic characteristics and results of different therapeutic approaches.

    Science.gov (United States)

    Widjaya, P; Bilić, A; Babić, Z; Ljubicić, N; Bakula, B; Pilas, V

    1991-01-01

    This prospective study was carried out on 33 patients with clinically, serologically and ultrasonographically confirmed amoebic liver abscess. All patients were randomly treated with metronidazole and chlorochin or a combination of medicamentous therapy and percutaneous drainage. Ultrasonographic characteristics of amoebic liver abscesses were rotound or oval shape, usually hypoechogenic content with specific dorsal sonic enhancement, and in the majority of cases, location near liver capsule. Shorter duration of amoebic liver abscess resolution time in the group of patients treated with the combined therapy was observed particularly in the first four weeks of the treatment. The authors concluded that percutaneous drainage in combination with medicamentous therapy represents a successful therapeutic approach in the treatment of amoebic liver abscesses. PMID:2035339

  3. UVB-irradiated human keratinocytes and interleukin-1αindirectly increase MAP kinase/AP-1 activation and MMP-1 production in UVA-irradiated dermal fibroblasts

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-yong; BI Zhi-gang

    2006-01-01

    Background Solar ultraviolet (UV) irradiation induces the production of matrix metalloproteinases (MMPs) by activating cellular signalling transduction pathways. MMPs are responsible for the degradation and/or inhibition of synthesis of collagenous extracellular matrix in connective tissues. We mimicked the action of environmental ultraviolet on skin and investigated the effects of UVB-irradiated human keratinocytes HaCaT and IL-1α on mitogen activated protein (MAP) kinase activation, c-Jun and c-Fos (AP-1 is composed of Jun and Fos proteins)mRNA expression and MMP-1 production in UVA-irradiated dermal fibroblasts.Methods Following UVA irradiation, the culture medium of fibroblasts was replaced by culture medium from UVB-irradiated HaCaT, or replaced by the complete culture medium with interleukin (IL)-1α. MAP kinase activity expression in fibroblasts was detected by Western blot. c-Jun and c-Fos mRNA expressions were determined by reverse transcriptional polymerase chain reaction (RT-PCR); MMP-1 production in culture medium was detected by enzyme-linked immunosorbent assay (ELISA).Results Culture medium from UVB-irradiated keratinocytes increased MAP kinase activity and c-Jun mRNA expression in UVA-irradiated fibroblasts. IL-1α increased MAP kinase activity and c-Jun mRNA expression,IL-1 α also increased c-Fos mRNA expression. Both culture media from UVB-irradiated human keratinocytes and externally applied IL-1 α increased MMP-1 production in UVA-irradiated fibroblasts.Conclusions UVB-irradiated keratinocytes and IL-1α indirectly promote MMP-1 production in UVA-irradiated fibroblasts by increasing MAP kinase/AP-1 activity. IL-1 may play an important role in the paracrine activation and dermal collagen excessive degradation leading to skin photoaging.

  4. Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation.

    OpenAIRE

    Bunone, G; Briand, P A; Miksicek, R J; Picard, D.

    1996-01-01

    The estrogen receptor (ER) can be activated as a transcription factor either by binding of cognate estrogenic ligand or, indirectly, by a variety of other extracellular signals. As a first step towards elucidating the mechanism of 'steroid-independent activation' of the ER by the epidermal growth factor (EGF), we have mapped the ER target domain and determined the signaling pathway. We show that the N-terminal transcriptional activation function AF-1, but not the C-terminal AF-2, is necessary...

  5. ERK1/2 map kinase metabolic pathway is responsible for phosphorylation of translation initiation factor eIF4E during in vitro maturation of pig oocytes.

    Science.gov (United States)

    Ellederová, Zdenka; Cais, Ondrej; Susor, Andrej; Uhlírová, Katka; Kovárová, Hana; Jelínková, Lucie; Tomek, Wolfgang; Kubelka, Michal

    2008-02-01

    Eukaryotic initiation factor 4E (eIF4E) plays an important role in mRNA translation by binding the 5'-cap structure of the mRNA and facilitating the recruitment to the mRNA of other translation factors and the 40S ribosomal subunit. eIF4E undergoes regulated phosphorylation on Ser-209 and this phosphorylation is believed to be important for its binding to mRNA and to other initiation factors. The findings showing that the translation initiation factor eIF4E becomes gradually phosphorylated during in vitro maturation (IVM) of pig oocytes with a maximum in metaphase II (M II) stage oocytes have been documented by us recently (Ellederova et al., 2006). The aim of this work was to study in details the metabolic pathways involved in this process. Using inhibitors of cyclin-dependent kinases, Butyrolactone I (BL I) and protein phosphatases, okadaic acid (OA) we show that ERK1/2 MAP kinase pathway is involved in this phosphorylation. We also demonstrate that activation and phosphorylation of ERK1/2 MAP kinase and eIF4E is associated with the activating phosphorylation of Mnk1 kinase, one of the two main kinases phosphorylating eIF4E in somatic cells.

  6. Mapping of protein-protein interactions within the DNA-dependent protein kinase complex.

    Science.gov (United States)

    Gell, D; Jackson, S P

    1999-01-01

    In mammalian cells, the Ku and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) proteins are required for the correct and efficient repair of DNA double-strand breaks. Ku comprises two tightly-associated subunits of approximately 69 and approximately 83 kDa, which are termed Ku70 and Ku80 (or Ku86), respectively. Previously, a number of regions of both Ku subunits have been demonstrated to be involved in their interaction, but the molecular mechanism of this interaction remains unknown. We have identified a region in Ku70 (amino acid residues 449-578) and a region in Ku80 (residues 439-592) that participate in Ku subunit interaction. Sequence analysis reveals that these interaction regions share sequence homology and suggests that the Ku subunits are structurally related. On binding to a DNA double-strand break, Ku is able to interact with DNA-PKcs, but how this interaction is mediated has not been defined. We show that the extreme C-terminus of Ku80, specifically the final 12 amino acid residues, mediates a highly specific interaction with DNA-PKcs. Strikingly, these residues appear to be conserved only in Ku80 sequences from vertebrate organisms. These data suggest that Ku has evolved to become part of the DNA-PK holo-enzyme by acquisition of a protein-protein interaction motif at the C-terminus of Ku80. PMID:10446239

  7. Therapeutic potential of p38 MAP kinase inhibition in the management of cardiovascular disease.

    Science.gov (United States)

    Fisk, Marie; Gajendragadkar, Parag R; Mäki-Petäjä, Kaisa M; Wilkinson, Ian B; Cheriyan, Joseph

    2014-06-01

    p38 mitogen-activated protein kinases (p38 MAPKs) are key signalling molecules that regulate cellular behavior in response to environmental stresses. They regulate pro-inflammatory cytokines and therefore p38 MAPKs are implicated in the pathogenesis of many inflammatory-driven conditions, including atherosclerosis. Therapeutic inhibition of p38 MAPKs to attenuate inflammation has been the focus of comprehensive research in the last 2 decades, following the discovery of p38α as the molecular target of pyrindinyl imidazole compounds, which suppress the cytokines tumor necrosis factor-α and interleukin-1. The potential of p38 MAPK inhibitors was initially explored within archetypal inflammatory conditions such as rheumatoid arthritis and Crohn's disease, but early studies demonstrated poor clinical efficacy and unacceptable side effects. Subsequent clinical trials evaluating different p38 MAPK inhibitor compounds in disease models such as chronic obstructive pulmonary disease (COPD) and atherosclerosis have shown potential clinical efficacy. This review aims to provide succinct background information regarding the p38 MAPK signaling pathway, a focus of p38 MAPKs in disease, and a brief summary of relevant pre-clinical studies. An update of human clinical trial experience encompassing a clinically orientated approach, dedicated to cardiovascular disease follows. It provides a current perspective of the therapeutic potential of p38 MAPK inhibitors in the cardiovascular domain, including safety, tolerability, and pharmacokinetics.

  8. The wheat MAP kinase phosphatase 1 alleviates salt stress and increases antioxidant activities in Arabidopsis.

    Science.gov (United States)

    Zaidi, Ikram; Ebel, Chantal; Belgaroui, Nibras; Ghorbel, Mouna; Amara, Imène; Hanin, Moez

    2016-04-01

    Mitogen-activated protein kinase phosphatases (MKPs) are important negative regulators in the MAPK signaling pathways, which play crucial roles in plant growth, development and stress responses. We have previously shown that the heterologous expression of a durum wheat MKP, TMKP1, results in increased tolerance to salt stress in yeast but its particular contribution in salt stress tolerance in plants was not investigated. Here, TMKP1 was overexpressed in Arabidopsis thaliana and physiological changes were assessed in transgenic plants exposed to stress conditions. Under salt stress and especially LiCl, the TMKP1 overexpressors displayed higher germination rates in comparison to wild type plants. The enhancement of salt stress tolerance was accompanied by increased antioxidant enzyme activities, namely superoxide dismutase, catalase and peroxydases. Such increases in antioxidant activities were concomitant with lower malondialdehyde, superoxide anion O2(-) and hydrogen peroxide levels in the TMKP1 transgenic seedlings. Moreover, we provide evidence that, in contrast to the Arabidopsis ortholog AtMKP1, TMKP1 acts as a positive regulator of salt stress tolerance via its ectopic expression in the Arabidopsis mkp1 mutant. PMID:26927025

  9. Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses.

    Science.gov (United States)

    Igbaria, Aeid; Lev, Sophie; Rose, Mark S; Lee, Bee Na; Hadar, Ruthi; Degani, Ofir; Horwitz, Benjamin A

    2008-06-01

    Pathogenicity mitogen-activated protein kinases (MAPKs), related to yeast FUS3/KSS1, are essential for virulence in fungi, including Cochliobolus heterostrophus, a necrotrophic pathogen causing Southern corn leaf blight. We compared the phenotypes of mutants in three MAPK genes: HOG1, MPS1, and CHK1. The chk1 and mps1 mutants show autolytic appearance, light pigmentation, and dramatic reduction in virulence and conidiation. Similarity of mps1 and chk1 mutants is reflected by coregulation by these two MAPKs of several genes. Unlike chk1, mps1 mutants are female-fertile and form normal-looking appressoria. HOG1 mediates resistance to hyperosmotic and, to a lesser extent, oxidative stress, and is required for stress upregulation of glycerol-3-phosphate phosphatase, transaldolase, and a monosaccharide transporter. Hog1, but not Mps1 or Chk1, was rapidly phosphorylated in response to increased osmolarity. The hog1 mutants have smaller appressoria and cause decreased disease symptoms on maize leaves. Surprisingly, loss of MPS1 in a wild-type or hog1 background improved resistance to some stresses. All three MAPKs contribute to the regulation of central developmental functions under normal and stress conditions, and full virulence cannot be achieved without appropriate input from all three pathways. PMID:18473669

  10. Topical alpha-selective p38 MAP kinase inhibition reduces acute skin inflammation in guinea pig

    Directory of Open Access Journals (Sweden)

    Satyanarayana Medicherla

    2010-02-01

    Full Text Available Satyanarayana Medicherla, Jing Ying Ma, Mamtha Reddy, Irina Esikova, Irene Kerr, Fabiola Movius, Linda S Higgins, Andrew A ProtterScios Inc, Fremont, CA , USAAbstract: Certain skin pathologies, including psoriasis, are thought to be immune-mediated inflammatory diseases. Available literature clearly indicates the involvement of inflammatory cells (neutrophils, T cells, and macrophages, their cytokines, and the p38 mitogen-activated protein kinase (MAPK signaling pathway in the pathophysiology of psoriasis. Neutrophils play an important role in the formation of acute inflammatory changes in psoriasis. Acute inflammation or acute flares in psoriasis remain poorly addressed in clinical medicine. In this communication, we first establish a simple and reproducible model for studying neutrophil-mediated acute skin inflammation. Using the hairless guinea pig, due to the similarity of skin architecture to that of human, acute inflammation was induced with an intradermal injection of 50 μg/mL lipopolysaccharide (LPS in 50 μL solution. Myeloperoxidase (MPO activity was measured by MPO-positive neutrophils and shown to increase for 24-hours post-injection. Simultaneously, the level of phosphorylated p38 MAPK was documented for 48-hours post-LPS injection in the skin. Next, we used this model to examine the therapeutic potential of an α-selective p38 MAPK inhibitor, SCIO-469. A comparison of topical application of SCIO-469 at 5 mg/mL or 15 mg/mL to vehicle revealed that SCIO-469 dose-dependently reduces acute skin inflammation and that this effect is statistically significant at the higher dose. Further examination of tissues that received this dose also revealed statistically significant reduction of MPO activity, phosphorylated p38 MAPK, interleukin-6, and cyclooxygenase-2. These data suggest that the α-selective p38 MAPK inhibitor, SCIO-469, acts as a topical anti-inflammatory agent via the p38 MAPK pathway to reduce neutrophil induced acute

  11. The ERK MAP kinase-PEA3/ETV4-MMP-1 axis is operative in oesophageal adenocarcinoma

    LENUS (Irish Health Repository)

    Keld, Richard

    2010-12-09

    Abstract Background Many members of the ETS-domain transcription factor family are important drivers of tumourigenesis. In this context, their activation by Ras-ERK pathway signaling is particularly relevant to the tumourigenic properties of many ETS-domain transcription factors. The PEA3 subfamily of ETS-domain transcription factors have been implicated in tumour metastasis in several different cancers. Results Here, we have studied the expression of the PEA3 subfamily members PEA3\\/ETV4 and ER81\\/ETV1 in oesophageal adenocarcinomas and determined their role in oesophageal adenocarcinoma cell function. PEA3 plays an important role in controlling both the proliferation and invasive properties of OE33 oesophageal adenocarcinoma cells. A key target gene is MMP-1. The ERK MAP kinase pathway activates PEA3 subfamily members and also plays a role in these PEA3 controlled events, establishing the ERK-PEA3-MMP-1 axis as important in OE33 cells. PEA3 subfamily members are upregulated in human adenocarcinomas and expression correlates with MMP-1 expression and late stage metastatic disease. Enhanced ERK signaling is also more prevalent in late stage oesophageal adenocarcinomas. Conclusions This study shows that the ERK-PEA3-MMP-1 axis is upregulated in oesophageal adenocarcinoma cells and is a potentially important driver of the metastatic progression of oesophageal adenocarcinomas.

  12. Rck1 up-regulates pseudohyphal growth by activating the Ras2 and MAP kinase pathways independently in Saccharomyces cerevisiae.

    Science.gov (United States)

    Chang, Miwha; Kang, Chang-Min; Park, Yong-Sung; Yun, Cheol-Won

    2014-02-21

    Previously, we reported that Rck1 regulates Hog1 and Slt2 activities and affects MAP kinase activity in Saccharomyces cerevisiae. Recently, we found that Rck1 up-regulates phospho-Kss1 and phospho-Fus3. Kss1 has been known as a component in the pseudohyphal growth pathway, and we attempted to identify the function of Rck1 in pseudohyphal growth. Rck1 up-regulated Ras2 at the protein level, not the transcriptional level. Additionally, FLO11 transcription was up-regulated by RCK1 over-expression. RCK1 expression was up-regulated during growth on SLAD+1% butanol medium. On nitrogen starvation agar plates, RCK1 over-expression induced pseudohyphal growth of colonies, and cells over-expressing RCK1 showed a filamentous morphology when grown in SLAD medium. Furthermore, 1-butanol greatly induced filamentous growth when RCK1 was over-expressed. Moreover, invasive growth was activated in haploid cells when RCK1 was over-expressed. The growth defect of cells observed on 1-butanol medium was recovered when RCK1 was over-expressed. Interestingly, Ras2 and phospho-Kss1 were up-regulated by Rck1 independently. Together, these results suggest that Rck1 promotes pseudohyphal growth by activating Ras2 and Kss1 via independent pathways in S. cerevisiae. PMID:24491552

  13. Cryptococcal 3-Hydroxy Fatty Acids Protect Cells Against Amoebal Phagocytosis.

    Science.gov (United States)

    Madu, Uju L; Ogundeji, Adepemi O; Mochochoko, Bonang M; Pohl, Carolina H; Albertyn, Jacobus; Swart, Chantel W; Allwood, J William; Southam, Andrew D; Dunn, Warwick B; May, Robin C; Sebolai, Olihile M

    2015-01-01

    We previously reported on a 3-hydroxy fatty acid that is secreted via cryptococcal capsular protuberances - possibly to promote pathogenesis and survival. Thus, we investigated the role of this molecule in mediating the fate of Cryptococcus (C.) neoformans and the related species C. gattii when predated upon by amoebae. We show that this molecule protects cells against the phagocytic effects of amoebae. C. neoformans UOFS Y-1378 (which produces 3-hydroxy fatty acids) was less sensitive toward amoebae compared to C. neoformans LMPE 046 and C. gattii R265 (both do not produce 3-hydroxy fatty acids) and addition of 3-hydroxy fatty acids to C. neoformans LMPE 046 and C. gattii R265 culture media, causes these strains to become more resistant to amoebal predation. Conversely, addition of aspirin (a 3-hydroxy fatty acid inhibitor) to C. neoformans UOFS Y-1378 culture media made cells more susceptible to amoebae. Our data suggest that this molecule is secreted at a high enough concentration to effect intracellular signaling within amoeba, which in turn, promotes fungal survival.

  14. Cryptococcal 3-hydroxy fatty acids protect cells against amoebal phagocytosis

    Directory of Open Access Journals (Sweden)

    Uju Lynda Madu

    2015-12-01

    Full Text Available We previously reported on a 3-hydroxy fatty acid that is secreted via cryptococcal capsular protuberances - possibly to promote pathogenesis and survival. Thus, we investigated the role of this molecule in mediating the fate of Cryptococcus (C. neoformans and the related species C. gattii when predated upon by amoebae. We show that this molecule protects cells against the phagocytic effects of amoebae. C. neoformans UOFS Y-1378 (which produces 3-hydroxy fatty acids was less sensitive towards amoebae compared to C. neoformans LMPE 046 and C. gattii R265 (both do not produce 3-hydroxy fatty acids and addition of 3-hydroxy fatty acids to C. neoformans LMPE 046 and C. gattii R265 culture media, causes these strains to become more resistant to amoebal predation. Conversely, addition of aspirin (a 3-hydroxy fatty acid inhibitor to C. neoformans UOFS Y-1378 culture media made cells more susceptible to amoebae. Our data suggest that this molecule is secreted at a high enough concentration to effect intracellular signalling within amoeba, which in turn, promotes fungal survival.

  15. Surviving within the amoebal exocyst: the Mycobacterium avium complex paradigm

    Directory of Open Access Journals (Sweden)

    Drancourt Michel

    2010-04-01

    Full Text Available Abstract Background Most of environmental mycobacteria have been previously demonstrated to resist free-living amoeba with subsequent increased virulence and resistance to antibiotics and biocides. The Mycobacterium avium complex (MAC comprises of environmental organisms that inhabit a wide variety of ecological niches and exhibit a significant degree of genetic variability. We herein studied the intra-ameobal location of all members of the MAC as model organisms for environmental mycobacteria. Results Type strains for M. avium, Mycobacterium intracellulare, Mycobacterium chimaera, Mycobacterium colombiense, Mycobacterium arosiense, Mycobacterium marseillense, Mycobacterium timonense and Mycobacterium bouchedurhonense were co-cultivated with the free-living amoeba Acanthamoeba polyphaga strain Linc-AP1. Microscopic analyses demonstrated the engulfment and replication of mycobacteria into vacuoles of A. polyphaga trophozoites. Mycobacteria were further entrapped within amoebal cysts, and survived encystment as demonstrated by subculturing. Electron microscopy observations show that, three days after entrapment into A. polyphaga cysts, all MAC members typically resided within the exocyst. Conclusions Combined with published data, these observations indicate that mycobacteria are unique among amoeba-resistant bacteria, in residing within the exocyst.

  16. Characterization of brain inflammation during primary amoebic meningoencephalitis.

    Science.gov (United States)

    Cervantes-Sandoval, Isaac; Serrano-Luna, José de Jesús; García-Latorre, Ethel; Tsutsumi, Víctor; Shibayama, Mineko

    2008-09-01

    Naegleria fowleri is a free-living amoeba and the etiologic agent of primary amoebic meningoencephalitis (PAM). Trophozoites reach the brain by penetrating the olfactory epithelium, and invasion of the olfactory bulbs results in an intense inflammatory reaction. The contribution of the inflammatory response to brain damage in experimental PAM has not been delineated. Using both optical and electron microscopy, we analyzed the morphologic changes in the brain parenchyma due to inflammation during experimental PAM. Several N. fowleri trophozoites were observed in the olfactory bulbs 72 h post-inoculation, and the number of amoebae increased rapidly over the next 24 h. Eosinophils and neutrophils surrounding the amoebae were then noted at later times during infection. Electron microscopic examination of the increased numbers of neutrophils and the interactions with trophozoites indicated an active attempt to eliminate the amoebae. The extent of inflammation increased over time, with a predominant neutrophil response indicating important signs of damage and necrosis of the parenchyma. These data suggest a probable role of inflammation in tissue damage. To test the former hypothesis, we used CD38-/- knockout mice with deficiencies in chemotaxis to compare the rate of mortality with the parental strain, C57BL/6J. The results showed that inflammation and mortality were delayed in the knockout mice. Based on these results, we suggest that the host inflammatory response and polymorphonuclear cell lysis contribute to a great extent to the central nervous system tissue damage.

  17. [Roles of the cross talk between MAP kinases and Keap1-Nrf2-ARE signaling pathways in chronic obstructive pulmonary disease].

    Science.gov (United States)

    Wang, Shu-Jun; Chen, Ya-Jun; Wang, Shan-Shan; Wang, Dian-Lei; Wang, Chen-Yin; Yang, Li-Li; Chen, Jin-Pei

    2015-02-01

    Chronic obstructive pulmonary disease (COPD), a common preventable and treatable disease, is characterized by airflow limitation that is usually progressive and associated with an enhanced chronic inflammatory response in the airways. Its main pathological manifestations include airway inflammation, mucus hypersecretion, oxidative stress and apoptotic epithelial cells. Recent research suggests that MAP kinases and Keap1-Nrf2-ARE signaling pathway are involved in the pathological process of inflammation and oxidative stress. This review explores the potential role of the cross talk of these signaling pathways in airway inflammation, mucus hypersecretion, oxidative stress and apoptotic epithelial cells. To clarify the roles of cross talk between MAP kinases and Keap1-Nrf2-ARE signaling pathway, we also focus on the drugs related to that in the treatment of COPD, and it provides ideas for more drug research in the treatment of COPD.

  18. Localization of the human stress responsive MAP kinase-like CSAIDs binding protein (CSBP) gene to chromosome 6p21.3/21.2

    Energy Technology Data Exchange (ETDEWEB)

    McDonnell, P.C.; Young, P.R.; DiLella, A.G. [SmithKline Beecham Pharmaceuticals, King of Prussia, PA (United States)] [and others

    1995-09-01

    The proinflammatory cytokines interleukin 1 (IL-1) and tumor necrosis factor (TNF) play a pivotal role in the initiation of inflammatory responses. Soluble protein antagonists of IL-1 and TNF, such as IL-1ra, sTNFR-Fc fusion, and monoclonal antibodies to TNF have proven to be effective at blocking acute and chronic responses in a number of animal models of inflammatory diseases such as rheumatoid arthritis, septic shock, and inflammatory bowel disease. Consequently, there has been considerable interest in discovering compounds that could inhibit the production of these cytokines and might therefore become treatments. Recently, a structurally related series of pyridinyl imidazoles was found to block IL-1 and TNF production from LPS-stimulated human monocytes and to ameliorate inflammatory diseases significantly in vivo, leading to their being named CSAIDs (cytokine suppressive anti-inflammatory drugs). The protein target of these compounds, termed CSBP (CSAID binding protein), was discovered to be a new member of the MAP kinase family of serine-threonine protein kinases whose kinase activity is activated by LPS in human monocytes. Independently, the same kinase, or its rodent homologues, was found to respond also to chemical, thermal, and osmotic stress and IL-1 treatment. Inhibition of this kinase correlated with reduction in inflammatory cytokine production from LPS-activated monocytes. 15 refs., 1 fig.

  19. Mutation of the MAP kinase DYF-5 affects docking and undocking of kinesin-2 motors and reduces their speed in the cilia of Caenorhabditis elegans

    OpenAIRE

    Burghoorn, Jan; Dekkers, Martijn P. J.; Rademakers, Suzanne; De Jong, Ton; Willemsen, Rob; Jansen, Gert

    2007-01-01

    In the cilia of the nematode Caenorhabditis elegans, anterograde intraflagellar transport (IFT) is mediated by two kinesin-2 complexes, kinesin II and OSM-3 kinesin. These complexes function together in the cilia middle segments, whereas OSM-3 alone mediates transport in the distal segments. Not much is known about the mechanisms that compartmentalize the kinesin-2 complexes or how transport by both kinesins is coordinated. Here, we identify DYF-5, a conserved MAP kinase that plays a role in ...

  20. Amoebic liver abscess in the medical emergency of a North Indian hospital

    Directory of Open Access Journals (Sweden)

    Lal Anupam

    2010-01-01

    Full Text Available Abstract Background Amoebic Liver abscess although fairly common in developing countries, yet, there is limited data on the clinical presentation to the emergency department. A retrospective analysis of 86 indoor cases of Amoebic Liver Abscess presenting to the emergency department over a 5-year period was carried out. Findings The mean age of patients was 40.5 ± 2.1 years (male-female ratio = 7:1. Fever, pain abdomen and diarrhea were seen in 94%, 90% and 10.5% respectively. Duration of symptoms less than 2 weeks was seen in 48% cases. Hepatomegaly was present in 16% cases only, a right sided pleural effusion in 14% cases and ascites in 5.7%. On ultrasound, a right lobe abscess was seen in 65%, a left lobe abscess in 13% and multiple abscesses in both the lobes in 22% cases. Seventy one cases underwent per-cutaneous pigtail catheter drainage for a mean period of 13.4 ± 0.8 days. The mortality rate was 5.8%. On multivariate regression and correlation analysis, a higher number of inserted pigtail catheters correlated to mortality. Conclusions Amoebic liver abscess presents commonly to the emergency department and should be suspected in persons with prolonged fever and pain abdomen. Conservative management for uncomplicated amoebic liver abscess and insertion of single per-cutaneous pigtail catheter drainage for complicated amoebic liver abscess are efficacious as treatment modalities.

  1. The Fus3/Kss1 MAP kinase homolog Amk1 regulates the expression of genes encoding hydrolytic enzymes in Alternaria brassicicola.

    Science.gov (United States)

    Cho, Yangrae; Cramer, Robert A; Kim, Kwang-Hyung; Davis, Josh; Mitchell, Thomas K; Figuli, Patricia; Pryor, Barry M; Lemasters, Emily; Lawrence, Christopher B

    2007-06-01

    Mitogen-activated protein (MAP) kinases have been shown to be required for virulence in diverse phytopathogenic fungi. To study its role in pathogenicity, we disrupted the Amk1 MAP kinase gene, a homolog of the Fus3/Kss1 MAP kinases in Saccharomyces cerevisiae, in the necrotrophic Brassica pathogen, Alternaria brassicicola. The amk1 disruption mutants showed null pathogenicity on intact host plants. However, amk1 mutants were able to colonize host plants when they were inoculated on a physically damaged host surface, or when they were inoculated along with nutrient supplements. On intact plants, mutants expressed extremely low amounts of several hydrolytic enzyme genes that were induced over 10-fold in the wild-type during infection. These genes were also dramatically induced in the mutants on wounded plants. These results imply a correlation between virulence and the expression level of specific hydrolytic enzyme genes plus the presence of an unidentified pathway controlling these genes in addition to or in conjunction with the Amk1 pathway. PMID:17280842

  2. A superoxide anion-scavenger, 1,3-selenazolidin-4-one suppresses serum deprivation-induced apoptosis in PC12 cells by activating MAP kinase

    Energy Technology Data Exchange (ETDEWEB)

    Nishina, Atsuyoshi, E-mail: nishina@yone.ac.jp [Yonezawa Women' s Junior College, 6-15-1 Tohrimachi, Yonezawa, Yamagata 992-0025 (Japan); Kimura, Hirokazu; Kozawa, Kunihisa [Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki, Maebashi, Gunma 371-0052 (Japan); Sommen, Geoffroy [Lonza Braine SA, Chaussee de Tubize 297, B-1420 Braine l' Alleud (Belgium); Nakamura, Takao [Department of Biomedical Information Engineering, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585 (Japan); Heimgartner, Heinz [University of Zuerich, Institut of Organic Chemistry, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland); Koketsu, Mamoru [Department of Materials Science and Technology, Faculty of Engineering, Gifu University, Gifu 501-1193 (Japan); Furukawa, Shoei [Laboratory of Molecular Biology, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585 (Japan)

    2011-12-15

    Synthetic organic selenium compounds, such as ebselen, may show glutathione peroxidase-like antioxidant activity and have a neurotrophic effect. We synthesized 1,3-selenazolidin-4-ones, new types of synthetic organic selenium compounds (five-member ring compounds), to study their possible applications as antioxidants or neurotrophic-like molecules. Their superoxide radical scavenging effects were assessed using the quantitative, highly sensitive method of real-time kinetic chemiluminescence. At 166 {mu}M, the O{sub 2}{sup -} scavenging activity of 1,3-selenazolidin-4-ones ranged from 0 to 66.2%. 2-[3-(4-Methoxyphenyl)-4-oxo-1,3-selenazolidin-2-ylidene]malononitrile (compound b) showed the strongest superoxide anion-scavenging activity among the 6 kinds of 2-methylene-1,3-selenazolidin-4-ones examined. Compound b had a 50% inhibitory concentration (IC{sub 50}) at 92.4 {mu}M and acted as an effective and potentially useful O{sub 2}{sup -} scavenger in vitro. The effect of compound b on rat pheochromocytome cell line PC12 cells was compared with that of ebselen or nerve growth factor (NGF) by use of the MTT [3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] assay. When ebselen was added at 100 {mu}M or more, toxicity toward PC12 cells was evident. On the contrary, compound b suppressed serum deprivation-induced apoptosis in PC12 cells more effectively at a concentration of 100 {mu}M. The activity of compound b to phosphorylate mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) 1/2 (MAP kinase) in PC12 cells was higher than that of ebselen, and the former at 100 {mu}M induced the phosphorylation of MAP kinase to a degree similar to that induced by NGF. From these results, we conclude that this superoxide anion-scavenger, compound b, suppressed serum deprivation-induced apoptosis by promoting the phosphorylation of MAP kinase. -- Highlights: Black-Right-Pointing-Pointer We newly synthesized 1,3-selenazolidin-4-ones to

  3. DLK-1/p38 MAP Kinase Signaling Controls Cilium Length by Regulating RAB-5 Mediated Endocytosis in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Aniek van der Vaart

    2015-12-01

    Full Text Available Cilia are sensory organelles present on almost all vertebrate cells. Cilium length is constant, but varies between cell types, indicating that cilium length is regulated. How this is achieved is unclear, but protein transport in cilia (intraflagellar transport, IFT plays an important role. Several studies indicate that cilium length and function can be modulated by environmental cues. As a model, we study a C. elegans mutant that carries a dominant active G protein α subunit (gpa-3QL, resulting in altered IFT and short cilia. In a screen for suppressors of the gpa-3QL short cilium phenotype, we identified uev-3, which encodes an E2 ubiquitin-conjugating enzyme variant that acts in a MAP kinase pathway. Mutation of two other components of this pathway, dual leucine zipper-bearing MAPKKK DLK-1 and p38 MAPK PMK-3, also suppress the gpa-3QL short cilium phenotype. However, this suppression seems not to be caused by changes in IFT. The DLK-1/p38 pathway regulates several processes, including microtubule stability and endocytosis. We found that reducing endocytosis by mutating rabx-5 or rme-6, RAB-5 GEFs, or the clathrin heavy chain, suppresses gpa-3QL. In addition, gpa-3QL animals showed reduced levels of two GFP-tagged proteins involved in endocytosis, RAB-5 and DPY-23, whereas pmk-3 mutant animals showed accumulation of GFP-tagged RAB-5. Together our results reveal a new role for the DLK-1/p38 MAPK pathway in control of cilium length by regulating RAB-5 mediated endocytosis.

  4. Microglial Signaling in Chronic Pain with a Special Focus on Caspase 6, p38 MAP Kinase, and Sex Dependence.

    Science.gov (United States)

    Berta, T; Qadri, Y J; Chen, G; Ji, R R

    2016-09-01

    Microglia are the resident immune cells in the spinal cord and brain. Mounting evidence suggests that activation of microglia plays an important role in the pathogenesis of chronic pain, including chronic orofacial pain. In particular, microglia contribute to the transition from acute pain to chronic pain, as inhibition of microglial signaling reduces pathologic pain after inflammation, nerve injury, and cancer but not baseline pain. As compared with inflammation, nerve injury induces much more robust morphologic activation of microglia, termed microgliosis, as shown by increased expression of microglial markers, such as CD11b and IBA1. However, microglial signaling inhibitors effectively reduce inflammatory pain and neuropathic pain, arguing against the importance of morphologic activation of microglia in chronic pain sensitization. Importantly, microglia enhance pain states via secretion of proinflammatory and pronociceptive mediators, such as tumor necrosis factor α, interleukins 1β and 18, and brain-derived growth factor. Mechanistically, these mediators have been shown to enhance excitatory synaptic transmission and suppress inhibitory synaptic transmission in the pain circuits. While early studies suggested a predominant role of microglia in the induction of chronic pain, further studies have supported a role of microglia in the maintenance of chronic pain. Intriguingly, recent studies show male-dominant microglial signaling in some neuropathic pain and inflammatory pain states, although both sexes show identical morphologic activation of microglia after nerve injury. In this critical review, we provide evidence to show that caspase 6-a secreted protease that is expressed in primary afferent axonal terminals surrounding microglia-is a robust activator of microglia and induces profound release of tumor necrosis factor α from microglia via activation of p38 MAP kinase. The authors also show that microglial caspase 6/p38 signaling is male dominant in some

  5. DLK-1/p38 MAP Kinase Signaling Controls Cilium Length by Regulating RAB-5 Mediated Endocytosis in Caenorhabditis elegans.

    Science.gov (United States)

    van der Vaart, Aniek; Rademakers, Suzanne; Jansen, Gert

    2015-12-01

    Cilia are sensory organelles present on almost all vertebrate cells. Cilium length is constant, but varies between cell types, indicating that cilium length is regulated. How this is achieved is unclear, but protein transport in cilia (intraflagellar transport, IFT) plays an important role. Several studies indicate that cilium length and function can be modulated by environmental cues. As a model, we study a C. elegans mutant that carries a dominant active G protein α subunit (gpa-3QL), resulting in altered IFT and short cilia. In a screen for suppressors of the gpa-3QL short cilium phenotype, we identified uev-3, which encodes an E2 ubiquitin-conjugating enzyme variant that acts in a MAP kinase pathway. Mutation of two other components of this pathway, dual leucine zipper-bearing MAPKKK DLK-1 and p38 MAPK PMK-3, also suppress the gpa-3QL short cilium phenotype. However, this suppression seems not to be caused by changes in IFT. The DLK-1/p38 pathway regulates several processes, including microtubule stability and endocytosis. We found that reducing endocytosis by mutating rabx-5 or rme-6, RAB-5 GEFs, or the clathrin heavy chain, suppresses gpa-3QL. In addition, gpa-3QL animals showed reduced levels of two GFP-tagged proteins involved in endocytosis, RAB-5 and DPY-23, whereas pmk-3 mutant animals showed accumulation of GFP-tagged RAB-5. Together our results reveal a new role for the DLK-1/p38 MAPK pathway in control of cilium length by regulating RAB-5 mediated endocytosis.

  6. Inducible and targeted deletion of the ERK5 MAP kinase in adult neurogenic regions impairs adult neurogenesis in the olfactory bulb and several forms of olfactory behavior.

    Directory of Open Access Journals (Sweden)

    Yung-Wei Pan

    Full Text Available Although adult-born neurons in the subventricular zone (SVZ and olfactory bulb (OB have been extensively characterized at the cellular level, their functional impact on olfactory behavior is still highly controversial with many conflicting results reported in the literature. Furthermore, signaling mechanisms regulating adult SVZ/OB neurogenesis are not well defined. Here we report that inducible and targeted deletion of erk5, a MAP kinase selectively expressed in the adult neurogenic regions of the adult brain, impairs adult neurogenesis in the SVZ and OB of transgenic mice. Although erk5 deletion had no effect on olfactory discrimination among discrete odorants in the habituation/dishabituation assay, it reduced short-term olfactory memory as well as detection sensitivity to odorants and pheromones including those evoking aggression and fear. Furthermore, these mice show impaired acquisition of odor-cued associative olfactory learning, a novel phenotype that had not been previously linked to adult neurogenesis. These data suggest that ERK5 MAP kinase is a critical kinase signaling pathway regulating adult neurogenesis in the SVZ/OB, and provide strong evidence supporting a functional role for adult neurogenesis in several distinct forms of olfactory behavior.

  7. p42/p44 MAP kinase activation is localized to caveolae-free membrane domains in airway smooth muscle

    NARCIS (Netherlands)

    Gosens, Reinoud; Dueck, Gordon; Gerthoffer, William T; Unruh, Helmut; Zaagsma, Johan; Meurs, Herman; Halayko, Andrew J

    2007-01-01

    Caveolae are abundant plasma membrane invaginations in airway smooth muscle that may function as preorganized signalosomes by sequestering and regulating proteins that control cell proliferation, including receptor tyrosine kinases (RTKs) and their signaling effectors. We previously demonstrated, ho

  8. Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway

    DEFF Research Database (Denmark)

    Migliaccio, E; Mele, S; Salcini, A E;

    1997-01-01

    66shc expression varies from cell type to cell type. p66shc differs from p52shc/p46shc in its inability to transform mouse fibroblasts in vitro. Like p52shc/p46shc, p66shc is tyrosine-phosphorylated upon epidermal growth factor (EGF) stimulation, binds to activated EGF receptors (EGFRs) and forms...... on the EGFR-MAP kinase and other signalling pathways that control fos promoter activity. Regulation of p66shc expression might, therefore, influence the cellular response to growth factors.......Shc proteins are targets of activated tyrosine kinases and are implicated in the transmission of activation signals to Ras. The p46shc and p52shc isoforms share a C-terminal SH2 domain, a proline- and glycine-rich region (collagen homologous region 1; CH1) and a N-terminal PTB domain. We have...

  9. Ca(2+ permeable AMPA receptor induced long-term potentiation requires PI3/MAP kinases but not Ca/CaM-dependent kinase II.

    Directory of Open Access Journals (Sweden)

    Suhail Asrar

    Full Text Available Ca(2+ influx via GluR2-lacking Ca(2+-permeable AMPA glutamate receptors (CP-AMPARs can trigger changes in synaptic efficacy in both interneurons and principle neurons, but the underlying mechanisms remain unknown. We took advantage of genetically altered mice with no or reduced GluR2, thus allowing the expression of synaptic CP-AMPARs, to investigate the molecular signaling process during CP-AMPAR-induced synaptic plasticity at CA1 synapses in the hippocampus. Utilizing electrophysiological techniques, we demonstrated that these receptors were capable of inducing numerous forms of long-term potentiation (referred to as CP-AMPAR dependent LTP through a number of different induction protocols, including high-frequency stimulation (HFS and theta-burst stimulation (TBS. This included a previously undemonstrated form of protein-synthesis dependent late-LTP (L-LTP at CA1 synapses that is NMDA-receptor independent. This form of plasticity was completely blocked by the selective CP-AMPAR inhibitor IEM-1460, and found to be dependent on postsynaptic Ca(2+ ions through calcium chelator (BAPTA studies. Surprisingly, Ca/CaM-dependent kinase II (CaMKII, the key protein kinase that is indispensable for NMDA-receptor dependent LTP at CA1 synapses appeared to be not required for the induction of CP-AMPAR dependent LTP due to the lack of effect of two separate pharmacological inhibitors (KN-62 and staurosporine on this form of potentiation. Both KN-62 and staurosporine strongly inhibited NMDA-receptor dependent LTP in control studies. In contrast, inhibitors for PI3-kinase (LY294002 and wortmannin or the MAPK cascade (PD98059 and U0126 significantly attenuated this CP-AMPAR-dependent LTP. Similarly, postsynaptic infusion of tetanus toxin (TeTx light chain, an inhibitor of exocytosis, also had a significant inhibitory effect on this form of LTP. These results suggest that distinct synaptic signaling underlies GluR2-lacking CP-AMPAR-dependent LTP, and reinforces

  10. Entamoeba histolytica acetyl–CoA synthetase: biomarker of acute amoebic liver abscess

    Directory of Open Access Journals (Sweden)

    Lim Boon Huat

    2014-06-01

    Conclusions: This finding suggested the significant role of EhACS as a biomarker for moribund hamsters with acute amoebic liver abscess (ALA infection. It is deemed pertinent that future studies explore the potential roles of EhACS in better understanding the pathogenesis of ALA; and in the development of vaccine and diagnostic tests to control ALA in human populations.

  11. Development of perianal ulcer as a result of acute fulminant amoebic colitis

    Institute of Scientific and Technical Information of China (English)

    Takayuki Torigoe; Yoshifumi Nakayama; Koji Yamaguchi

    2012-01-01

    We report a case of acute fulminant amoebic colitis that resulted in the development of a perianal ulcer in a 29-year-old Japanese homosexual man with acquired immunodeficiency syndrome (AIDS).The patient was admitted to our hospital with a persistent perianal abscess that was refractory to antibiotic therapy administered at another hospital.On admission,we observed a giant ulcer in the perianal region.At first,cytomegalovirus colitis was suspected by blood investigations.Ganciclovir therapy was initiated; however,the patient developed necrosis of the skin around the anus during therapy.We only performed end-sigmoidostomy and necrotomy to avoid excessive surgical invasion.Histopathological examination of the surgical specimen revealed the presence of trophozoite amoebae,indicating a final diagnosis of acute fulminant amoebic colitis.The patient's postoperative course was favorable,and proctectomy of the residual rectum was performed 11 mo later.Amoebic colitis is one of the most severe complications affecting patients with AIDS.Particularly,acute fulminant amoebic colitis may result in a poor prognosis; therefore,staged surgical therapy as a less invasive procedure should be considered as one of the treatment options for these patients.

  12. Transgenic analysis of the Leishmania MAP kinase MPK10 reveals an auto-inhibitory mechanism crucial for stage-regulated activity and parasite viability.

    Directory of Open Access Journals (Sweden)

    Mathieu Cayla

    2014-09-01

    Full Text Available Protozoan pathogens of the genus Leishmania have evolved unique signaling mechanisms that can sense changes in the host environment and trigger adaptive stage differentiation essential for host cell infection. The signaling mechanisms underlying parasite development remain largely elusive even though Leishmania mitogen-activated protein kinases (MAPKs have been linked previously to environmentally induced differentiation and virulence. Here, we unravel highly unusual regulatory mechanisms for Leishmania MAP kinase 10 (MPK10. Using a transgenic approach, we demonstrate that MPK10 is stage-specifically regulated, as its kinase activity increases during the promastigote to amastigote conversion. However, unlike canonical MAPKs that are activated by dual phosphorylation of the regulatory TxY motif in the activation loop, MPK10 activation is independent from the phosphorylation of the tyrosine residue, which is largely constitutive. Removal of the last 46 amino acids resulted in significantly enhanced MPK10 activity both for the recombinant and transgenic protein, revealing that MPK10 is regulated by an auto-inhibitory mechanism. Over-expression of this hyperactive mutant in transgenic parasites led to a dominant negative effect causing massive cell death during amastigote differentiation, demonstrating the essential nature of MPK10 auto-inhibition for parasite viability. Moreover, phosphoproteomics analyses identified a novel regulatory phospho-serine residue in the C-terminal auto-inhibitory domain at position 395 that could be implicated in kinase regulation. Finally, we uncovered a feedback loop that limits MPK10 activity through dephosphorylation of the tyrosine residue of the TxY motif. Together our data reveal novel aspects of protein kinase regulation in Leishmania, and propose MPK10 as a potential signal sensor of the mammalian host environment, whose intrinsic pre-activated conformation is regulated by auto-inhibition.

  13. Staphylococcus aureus α-toxin-mediated cation entry depolarizes membrane potential and activates p38 MAP kinase in airway epithelial cells.

    Science.gov (United States)

    Eiffler, Ina; Behnke, Jane; Ziesemer, Sabine; Müller, Christian; Hildebrandt, Jan-Peter

    2016-09-01

    Membrane potential (Vm)-, Na(+)-, or Ca(2+)-sensitive fluorescent dyes were used to analyze changes in Vm or intracellular ion concentrations in airway epithelial cells treated with Staphylococcus aureus α-toxin (Hla), a major virulence factor of pathogenic strains of these bacteria. Gramicidin, a channel-forming peptide causing membrane permeability to monovalent cations, a mutated form of Hla, rHla-H35L, which forms oligomers in the plasma membranes of eukaryotic cells but fails to form functional transmembrane pores, or the cyclodextrin-derivative IB201, a blocker of the Hla pore, were used to investigate the permeability of the pore. Na(+) as well as Ca(2+) ions were able to pass the Hla pore and accumulated in the cytosol. The pore-mediated influx of calcium ions was blocked by IB201. Treatment of cells with recombinant Hla resulted in plasma membrane depolarization as well as in increases in the phosphorylation levels of paxillin (signaling pathway mediating disruption of the actin cytoskeleton) and p38 MAP kinase (signaling pathway resulting in defensive actions). p38 MAP kinase phosphorylation, but not paxillin phosphorylation, was elicited by treatment of cells with gramicidin. Although treatment of cells with rHla-H35L resulted in the formation of membrane-associated heptamers, none of these cellular effects were observed in our experiments. This indicates that formation of functional Hla-transmembrane pores is required to induce the cell physiological changes mediated by α-toxin. Specifically, the changes in ion equilibria and plasma membrane potential are important activators of p38 MAP kinase, a signal transduction module involved in host cell defense.

  14. The transcription factor Ste12 mediates the regulatory role of the Tmk1 MAP kinase in mycoparasitism and vegetative hyphal fusion in the filamentous fungus Trichoderma atroviride.

    Science.gov (United States)

    Gruber, Sabine; Zeilinger, Susanne

    2014-01-01

    Mycoparasitic species of the fungal genus Trichoderma are potent antagonists able to combat plant pathogenic fungi by direct parasitism. An essential step in this mycoparasitic fungus-fungus interaction is the detection of the fungal host followed by activation of molecular weapons in the mycoparasite by host-derived signals. The Trichoderma atroviride MAP kinase Tmk1, a homolog of yeast Fus3/Kss1, plays an essential role in regulating the mycoparasitic host attack, aerial hyphae formation and conidiation. However, the transcription factors acting downstream of Tmk1 are hitherto unknown. Here we analyzed the functions of the T. atroviride Ste12 transcription factor whose orthologue in yeast is targeted by the Fus3 and Kss1 MAP kinases. Deletion of the ste12 gene in T. atroviride not only resulted in reduced mycoparasitic overgrowth and lysis of host fungi but also led to loss of hyphal avoidance in the colony periphery and a severe reduction in conidial anastomosis tube formation and vegetative hyphal fusion events. The transcription of several orthologues of Neurospora crassa hyphal fusion genes was reduced upon ste12 deletion; however, the Δste12 mutant showed enhanced expression of mycoparasitism-relevant chitinolytic and proteolytic enzymes and of the cell wall integrity MAP kinase Tmk2. Based on the comparative analyses of Δste12 and Δtmk1 mutants, an essential role of the Ste12 transcriptional regulator in mediating outcomes of the Tmk1 MAPK pathway such as regulation of the mycoparasitic activity, hyphal fusion and carbon source-dependent vegetative growth is suggested. Aerial hyphae formation and conidiation, in contrast, were found to be independent of Ste12.

  15. Histamine activates p38 MAP kinase and alters local lamellipodia dynamics, reducing endothelial barrier integrity and eliciting central movement of actin fibers.

    Science.gov (United States)

    Adderley, Shaquria P; Lawrence, Curtis; Madonia, Eyong; Olubadewo, Joseph O; Breslin, Jerome W

    2015-07-01

    The role of the actin cytoskeleton in endothelial barrier function has been debated for nearly four decades. Our previous investigation revealed spontaneous local lamellipodia in confluent endothelial monolayers that appear to increase overlap at intercellular junctions. We tested the hypothesis that the barrier-disrupting agent histamine would reduce local lamellipodia protrusions and investigated the potential involvement of p38 mitogen-activated protein (MAP) kinase activation and actin stress fiber formation. Confluent monolayers of human umbilical vein endothelial cells (HUVEC) expressing green fluorescent protein-actin were studied using time-lapse fluorescence microscopy. The protrusion and withdrawal characteristics of local lamellipodia were assessed before and after addition of histamine. Changes in barrier function were determined using electrical cell-substrate impedance sensing. Histamine initially decreased barrier function, lamellipodia protrusion frequency, and lamellipodia protrusion distance. A longer time for lamellipodia withdrawal and reduced withdrawal distance and velocity accompanied barrier recovery. After barrier recovery, a significant number of cortical fibers migrated centrally, eventually resembling actin stress fibers. The p38 MAP kinase inhibitor SB203580 attenuated the histamine-induced decreases in barrier function and lamellipodia protrusion frequency. SB203580 also inhibited the histamine-induced decreases in withdrawal distance and velocity, and the subsequent actin fiber migration. These data suggest that histamine can reduce local lamellipodia protrusion activity through activation of p38 MAP kinase. The findings also suggest that local lamellipodia have a role in maintaining endothelial barrier integrity. Furthermore, we provide evidence that actin stress fiber formation may be a reaction to, rather than a cause of, reduced endothelial barrier integrity. PMID:25948734

  16. N-cadherin mediated distribution of beta-catenin alters MAP kinase and BMP-2 signaling on chondrogenesis-related gene expression.

    Science.gov (United States)

    Modarresi, Rozbeh; Lafond, Toulouse; Roman-Blas, Jorge A; Danielson, Keith G; Tuan, Rocky S; Seghatoleslami, M Reza

    2005-05-01

    We have examined the effect of calcium-dependent adhesion, mediated by N-cadherin, on cell signaling during chondrogenesis of multipotential embryonic mouse C3H10T1/2 cells. The activity of chondrogenic genes, type II collagen, aggrecan, and Sox9 were examined in monolayer (non-chondrogenic), and micromass (chondrogenic) cultures of parental C3H10T1/2 cells and altered C3H10T1/2 cell lines that express a dominant negative form of N-cadherin (delta390-T1/2) or overexpress normal N-cadherin (MNCD2-T1/2). Our findings show that missexpression or inhibition of N-cadherin in C3H10T1/2 cells results in temporal and spatial changes in expression of the chondrogenic genes Sox9, aggrecan, and collagen type II. We have also analyzed activity of the serum response factor (SRF), a nuclear target of MAP kinase signaling implicated in chondrogenesis. In semi-confluent monolayer cultures (minimum cell-cell contact) of C3H10T1/2, MNCD2-T1/2, or delta390-T1/2 cells, there was no significant change in the pattern of MAP kinase or bone morphogenetic protein-2 (BMP-2) regulation of SRF. However, in micromass cultures, the effect of MAP kinase and BMP-2 on SRF activity was proportional to the nuclear localization of beta-catenin, a Wnt stabilized cytoplasmic factor that can associate with lymphoid enhancer-binding factor (LEF) to serve as a transcription factor. Our findings suggest that the extent of adherens junction formation mediated by N-cadherin can modulate the potential Wnt-induced nuclear activity of beta-catenin. PMID:15723280

  17. The transcription factor Ste12 mediates the regulatory role of the Tmk1 MAP kinase in mycoparasitism and vegetative hyphal fusion in the filamentous fungus Trichoderma atroviride.

    Science.gov (United States)

    Gruber, Sabine; Zeilinger, Susanne

    2014-01-01

    Mycoparasitic species of the fungal genus Trichoderma are potent antagonists able to combat plant pathogenic fungi by direct parasitism. An essential step in this mycoparasitic fungus-fungus interaction is the detection of the fungal host followed by activation of molecular weapons in the mycoparasite by host-derived signals. The Trichoderma atroviride MAP kinase Tmk1, a homolog of yeast Fus3/Kss1, plays an essential role in regulating the mycoparasitic host attack, aerial hyphae formation and conidiation. However, the transcription factors acting downstream of Tmk1 are hitherto unknown. Here we analyzed the functions of the T. atroviride Ste12 transcription factor whose orthologue in yeast is targeted by the Fus3 and Kss1 MAP kinases. Deletion of the ste12 gene in T. atroviride not only resulted in reduced mycoparasitic overgrowth and lysis of host fungi but also led to loss of hyphal avoidance in the colony periphery and a severe reduction in conidial anastomosis tube formation and vegetative hyphal fusion events. The transcription of several orthologues of Neurospora crassa hyphal fusion genes was reduced upon ste12 deletion; however, the Δste12 mutant showed enhanced expression of mycoparasitism-relevant chitinolytic and proteolytic enzymes and of the cell wall integrity MAP kinase Tmk2. Based on the comparative analyses of Δste12 and Δtmk1 mutants, an essential role of the Ste12 transcriptional regulator in mediating outcomes of the Tmk1 MAPK pathway such as regulation of the mycoparasitic activity, hyphal fusion and carbon source-dependent vegetative growth is suggested. Aerial hyphae formation and conidiation, in contrast, were found to be independent of Ste12. PMID:25356841

  18. The transcription factor Ste12 mediates the regulatory role of the Tmk1 MAP kinase in mycoparasitism and vegetative hyphal fusion in the filamentous fungus Trichoderma atroviride.

    Directory of Open Access Journals (Sweden)

    Sabine Gruber

    Full Text Available Mycoparasitic species of the fungal genus Trichoderma are potent antagonists able to combat plant pathogenic fungi by direct parasitism. An essential step in this mycoparasitic fungus-fungus interaction is the detection of the fungal host followed by activation of molecular weapons in the mycoparasite by host-derived signals. The Trichoderma atroviride MAP kinase Tmk1, a homolog of yeast Fus3/Kss1, plays an essential role in regulating the mycoparasitic host attack, aerial hyphae formation and conidiation. However, the transcription factors acting downstream of Tmk1 are hitherto unknown. Here we analyzed the functions of the T. atroviride Ste12 transcription factor whose orthologue in yeast is targeted by the Fus3 and Kss1 MAP kinases. Deletion of the ste12 gene in T. atroviride not only resulted in reduced mycoparasitic overgrowth and lysis of host fungi but also led to loss of hyphal avoidance in the colony periphery and a severe reduction in conidial anastomosis tube formation and vegetative hyphal fusion events. The transcription of several orthologues of Neurospora crassa hyphal fusion genes was reduced upon ste12 deletion; however, the Δste12 mutant showed enhanced expression of mycoparasitism-relevant chitinolytic and proteolytic enzymes and of the cell wall integrity MAP kinase Tmk2. Based on the comparative analyses of Δste12 and Δtmk1 mutants, an essential role of the Ste12 transcriptional regulator in mediating outcomes of the Tmk1 MAPK pathway such as regulation of the mycoparasitic activity, hyphal fusion and carbon source-dependent vegetative growth is suggested. Aerial hyphae formation and conidiation, in contrast, were found to be independent of Ste12.

  19. FvBck1, a component of cell wall integrity MAP kinase pathway, is required for virulence and oxidative stress response in sugarcane Pokkah Boeng pathogen.

    Science.gov (United States)

    Zhang, Chengkang; Wang, Jianqiang; Tao, Hong; Dang, Xie; Wang, Yang; Chen, Miaoping; Zhai, Zhenzhen; Yu, Wenying; Xu, Liping; Shim, Won-Bo; Lu, Guodong; Wang, Zonghua

    2015-01-01

    Fusarium verticillioides (formerly F. moniliforme) is suggested as one of the causal agents of Pokkah Boeng, a serious disease of sugarcane worldwide. Currently, detailed molecular and physiological mechanism of pathogenesis is unknown. In this study, we focused on cell wall integrity MAPK pathway as one of the potential signaling mechanisms associated with Pokkah Boeng pathogenesis. We identified FvBCK1 gene that encodes a MAP kinase kinase kinase homolog and determined that it is not only required for growth, micro- and macro-conidia production, and cell wall integrity but also for response to osmotic and oxidative stresses. The deletion of FvBCK1 caused a significant reduction in virulence and FB1 production, a possibly carcinogenic mycotoxin produced by the fungus. Moreover, we found the expression levels of three genes, which are known to be involved in superoxide scavenging, were down regulated in the mutant. We hypothesized that the loss of superoxide scavenging capacity was one of the reasons for reduced virulence, but overexpression of catalase or peroxidase gene failed to restore the virulence defect in the deletion mutant. When we introduced Magnaporthe oryzae MCK1 into the FvBck1 deletion mutant, while certain phenotypes were restored, the complemented strain failed to gain full virulence. In summary, FvBck1 plays a diverse role in F. verticillioides, and detailed investigation of downstream signaling pathways will lead to a better understanding of how this MAPK pathway regulates Pokkah Boeng on sugarcane. PMID:26500635

  20. FvBck1, a Component of Cell Wall Integrity MAP Kinase Pathway, is Required for Virulence and Oxidative Stress Response in Sugarcane Pokkah Boeng Pathogen

    Directory of Open Access Journals (Sweden)

    Chengkang eZhang

    2015-10-01

    Full Text Available Fusarium verticillioides (formerly F. moniliforme is suggested as one of the causal agents of Pokkah Boeng, a serious disease of sugarcane worldwide. Currently, detailed molecular and physiological mechanism of pathogenesis is unknown. In this study, we focused on cell wall integrity MAPK pathway as one of the potential signaling mechanisms associated with Pokkah Boeng pathogenesis. We identified FvBCK1 gene that encodes a MAP kinase kinase kinase homolog and determined that it is not only required for growth, micro- and macro-conidia production, and cell wall integrity but also for response to osmotic and oxidative stresses. The deletion of FvBCK1 caused a significant reduction in virulence and FB1 production, a carcinogenic mycotoxin produced by the fungus. Moreover, we found the expression levels of three genes, which are known to be involved in superoxide scavenging, were down regulated in the mutant. We hypothesized that the loss of superoxide scavenging capacity was one of the reasons for reduced virulence, but overexpression of catalase or peroxidase gene failed to restore the virulence defect in the deletion mutant. When we introduced Magnaporthe oryzae MCK1 into the FvBck1 deletion mutant, while certain phenotypes were restored, the complemented strain failed to gain full virulence. In summary, FvBck1 plays a diverse role in F. verticillioides, and detailed investigation of downstream signaling pathways will lead to a better understanding of how this MAPK pathway regulates Pokkah Boeng on sugarcane.

  1. Saucerneol F, a New Lignan Isolated from Saururus chinensis, Attenuates Degranulation via Phospholipase Cγ 1 Inhibition and Eicosanoid Generation by Suppressing MAP Kinases in Mast Cells.

    Science.gov (United States)

    Lu, Yue; Son, Jong-Keun; Chang, Hyeun Wook

    2012-11-01

    During our on-going studies to identify bioactive compounds in medicinal herbs, we found that saucerneol F (SF), a naturally occurring sesquilignan isolated from Saururus chinensis (S. chinensis), showed in vitro anti-inflammatory activity. In this study, we examined the effects of SF on the generation of 5-lipoxygenase (5-LO) dependent leukotriene C4 (LTC4), cyclooxygenase-2 (COX-2) dependent prostaglandin D2 (PGD2), and on phospholipase Cγ1 (PLCγ1)-mediated degranulation in SCF-induced mouse bone marrow-derived mast cells (BMMCs). SF inhibited eicosanoid (PGD2 and LTC4) generation and degranulation dose-dependently. To identify the molecular mechanisms underlying the inhibition of eicosanoid generation and degranulation by SF, we examined the effects of SF on the phosphorylation of PLCγ1, intracellular Ca(2+) influx, the translocation of cytosolic phospholipase A2 (cPLA2) and 5-LO, and on the phosphorylation of MAP kinases (MAPKs). SF was found to reduce intracellular Ca(2+) influx by inhibiting PLCγ1 phosphorylation and suppressing the nuclear translocations of cPLA2 and 5-LO via the phosphorylations of MAPKs, including extracellular signal-regulated protein kinase-1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Taken together, these results suggest that SF may be useful for regulating mast cell-mediated inflammatory responses by inhibiting degranulation and eicosanoid generation. PMID:24009845

  2. Accurate calculation of mutational effects on the thermodynamics of inhibitor binding to p38α MAP kinase: a combined computational and experimental study.

    Science.gov (United States)

    Zhu, Shun; Travis, Sue M; Elcock, Adrian H

    2013-07-01

    A major current challenge for drug design efforts focused on protein kinases is the development of drug resistance caused by spontaneous mutations in the kinase catalytic domain. The ubiquity of this problem means that it would be advantageous to develop fast, effective computational methods that could be used to determine the effects of potential resistance-causing mutations before they arise in a clinical setting. With this long-term goal in mind, we have conducted a combined experimental and computational study of the thermodynamic effects of active-site mutations on a well-characterized and high-affinity interaction between a protein kinase and a small-molecule inhibitor. Specifically, we developed a fluorescence-based assay to measure the binding free energy of the small-molecule inhibitor, SB203580, to the p38α MAP kinase and used it measure the inhibitor's affinity for five different kinase mutants involving two residues (Val38 and Ala51) that contact the inhibitor in the crystal structure of the inhibitor-kinase complex. We then conducted long, explicit-solvent thermodynamic integration (TI) simulations in an attempt to reproduce the experimental relative binding affinities of the inhibitor for the five mutants; in total, a combined simulation time of 18.5 μs was obtained. Two widely used force fields - OPLS-AA/L and Amber ff99SB-ILDN - were tested in the TI simulations. Both force fields produced excellent agreement with experiment for three of the five mutants; simulations performed with the OPLS-AA/L force field, however, produced qualitatively incorrect results for the constructs that contained an A51V mutation. Interestingly, the discrepancies with the OPLS-AA/L force field could be rectified by the imposition of position restraints on the atoms of the protein backbone and the inhibitor without destroying the agreement for other mutations; the ability to reproduce experiment depended, however, upon the strength of the restraints' force constant

  3. Specific MAP-kinase blockade protects against renal damage in homozygous TGR(mRen2)27 rats

    NARCIS (Netherlands)

    de Borst, MH; Navis, G; de Boer, RA; Vis, LM; van Gilst, WH; van Goor, H

    2003-01-01

    Angiotensin II (AngII) plays an important role in renal damage by acting on hemodynamics, cell-growth, proliferation, and fibrosis, mainly by effects on the AngII type 1 (AT,) receptor. The AT, receptor activates several intracellular signaling molecules such as mitogen-activated protein kinases ext

  4. Mechanical stress triggers cardiomyocyte autophagy through angiotensin II type 1 receptor-mediated p38MAP kinase independently of angiotensin II.

    Directory of Open Access Journals (Sweden)

    Li Lin

    Full Text Available Angiotensin II (Ang II type 1 (AT1 receptor is known to mediate a variety of physiological actions of Ang II including autophagy. However, the role of AT1 receptor in cardiomyocyte autophagy triggered by mechanical stress still remains elusive. The aim of this study was therefore to examine whether and how AT1 receptor participates in cardiomyocyte autophagy induced by mechanical stresses. A 48-hour mechanical stretch and a 4-week transverse aorta constriction (TAC were imposed to cultured cardiomyocytes of neonatal rats and adult male C57B/L6 mice, respectively, to induce cardiomyocyte hypertrophy prior to the assessment of cardiomyocyte autophagy using LC3b-II. Losartan, an AT1 receptor blocker, but not PD123319, the AT2 inhibitor, was found to significantly reduce mechanical stretch-induced LC3b-II upregulation. Moreover, inhibition of p38MAP kinase attenuated not only mechanical stretch-induced cardiomyocyte hypertrophy but also autophagy. To the contrary, inhibition of ERK and JNK suppressed cardiac hypertrophy but not autophagy. Intriguingly, mechanical stretch-induced autophagy was significantly inhibited by Losartan in the absence of Ang II. Taken together, our results indicate that mechanical stress triggers cardiomyocyte autophagy through AT1 receptor-mediated activation of p38MAP kinase independently of Ang II.

  5. Fungal Communication Requires the MAK-2 Pathway Elements STE-20 and RAS-2, the NRC-1 Adapter STE-50 and the MAP Kinase Scaffold HAM-5

    Science.gov (United States)

    Dettmann, Anne; Heilig, Yvonne; Valerius, Oliver; Ludwig, Sarah; Seiler, Stephan

    2014-01-01

    Intercellular communication is critical for the survival of unicellular organisms as well as for the development and function of multicellular tissues. Cell-to-cell signaling is also required to develop the interconnected mycelial network characteristic of filamentous fungi and is a prerequisite for symbiotic and pathogenic host colonization achieved by molds. Somatic cell–cell communication and subsequent cell fusion is governed by the MAK-2 mitogen activated protein kinase (MAPK) cascade in the filamentous ascomycete model Neurospora crassa, yet the composition and mode of regulation of the MAK-2 pathway are currently unclear. In order to identify additional components involved in MAK-2 signaling we performed affinity purification experiments coupled to mass spectrometry with strains expressing functional GFP-fusion proteins of the MAPK cascade. This approach identified STE-50 as a regulatory subunit of the Ste11p homolog NRC-1 and HAM-5 as cell-communication-specific scaffold protein of the MAPK cascade. Moreover, we defined a network of proteins consisting of two Ste20-related kinases, the small GTPase RAS-2 and the adenylate cyclase capping protein CAP-1 that function upstream of the MAK-2 pathway and whose signals converge on the NRC-1/STE-50 MAP3K complex and the HAM-5 scaffold. Finally, our data suggest an involvement of the striatin interacting phosphatase and kinase (STRIPAK) complex, the casein kinase 2 heterodimer, the phospholipid flippase modulators YPK-1 and NRC-2 and motor protein-dependent vesicle trafficking in the regulation of MAK-2 pathway activity and function. Taken together, these data will have significant implications for our mechanistic understanding of MAPK signaling and for homotypic cell–cell communication in fungi and higher eukaryotes. PMID:25411845

  6. A MAP kinase gene, BMK1, is required for conidiation and pathogenicity in the rice leaf spot pathogen Bipolaris oryzae.

    Science.gov (United States)

    Moriwaki, Akihiro; Kihara, Junichi; Mori, Chie; Arase, Sakae

    2007-01-01

    We isolated and characterized BMK1, a gene encoding a mitogen-activated protein kinase (MAPK), from the rice leaf spot pathogen Bipolaris oryzae. The deduced amino acid sequence showed significant homology with Fus3/Kss1 MAPK homologues from other phytopathogenic fungi. The BMK1 disruptants showed impaired hyphal growth, no conidial production, and loss of virulence against rice leaves, indicating that the BMK1 is essential for conidiation and pathogenicity in B. oryzae. PMID:16546358

  7. Bakuchiol suppresses proliferation of skin cancer cells by directly targeting Hck, Blk, and p38 MAP kinase.

    Science.gov (United States)

    Kim, Jong-Eun; Kim, Jae Hwan; Lee, Younghyun; Yang, Hee; Heo, Yong-Seok; Bode, Ann M; Lee, Ki Won; Dong, Zigang

    2016-03-22

    Bakuchiol is a meroterpene present in the medicinal plant Psoralea corylifolia, which has been traditionally used in China, India, Japan and Korea for the treatment of premature ejaculation, knee pain, alopecia spermatorrhea, enuresis, backache, pollakiuria, vitiligo, callus, and psoriasis. Here, we report the chemopreventive properties of bakuchiol, which acts by inhibiting epidermal growth factor (EGF)-induced neoplastic cell transformation. Bakuchiol also decreased viability and inhibited anchorage-independent growth of A431 human epithelial carcinoma cells. Bakuchiol reduced A431 xenograft tumor growth in an in vivo mouse model. Using kinase profiling, we identified Hck, Blk and p38 mitogen activated protein kinase (MAPK) as targets of bakuchiol, which directly bound to each kinase in an ATP-competitive manner. Bakuchiol also inhibited EGF-induced signaling pathways downstream of Hck, Blk and p38 MAPK, including the MEK/ERKs, p38 MAPK/MSK1 and AKT/p70S6K pathways. This report is the first mechanistic study identifying molecular targets for the anticancer activity of bakuchiol and our findings indicate that bakuchiol exhibits potent anticancer activity by targeting Hck, Blk and p38 MAPK. PMID:26910280

  8. Mapping the Hydrogen Bond Networks in the Catalytic Subunit of Protein Kinase A Using H/D Fractionation Factors.

    Science.gov (United States)

    Li, Geoffrey C; Srivastava, Atul K; Kim, Jonggul; Taylor, Susan S; Veglia, Gianluigi

    2015-07-01

    Protein kinase A is a prototypical phosphoryl transferase, sharing its catalytic core (PKA-C) with the entire kinase family. PKA-C substrate recognition, active site organization, and product release depend on the enzyme's conformational transitions from the open to the closed state, which regulate its allosteric cooperativity. Here, we used equilibrium nuclear magnetic resonance hydrogen/deuterium (H/D) fractionation factors (φ) to probe the changes in the strength of hydrogen bonds within the kinase upon binding the nucleotide and a pseudosubstrate peptide (PKI5-24). We found that the φ values decrease upon binding both ligands, suggesting that the overall hydrogen bond networks in both the small and large lobes of PKA-C become stronger. However, we observed several important exceptions, with residues displaying higher φ values upon ligand binding. Notably, the changes in φ values are not localized near the ligand binding pockets; rather, they are radiated throughout the entire enzyme. We conclude that, upon ligand and pseudosubstrate binding, the hydrogen bond networks undergo extensive reorganization, revealing that the open-to-closed transitions require global rearrangements of the internal forces that stabilize the enzyme's fold. PMID:26030372

  9. Primary amoebic meningoencephalitis caused by Naegleria fowleri: an old enemy presenting new challenges.

    Science.gov (United States)

    Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2014-08-01

    First discovered in 1899, Naegleria fowleri is a protist pathogen, known to infect the central nervous system and produce primary amoebic meningoencephalitis. The most distressing aspect is that the fatality rate has remained more than 95%, despite our advances in antimicrobial chemotherapy and supportive care. Although rare worldwide, most cases have been reported in the United States, Australia, and Europe (France). A large number of cases in developing countries go unnoticed. In particular, religious, recreational, and cultural practices such as ritual ablution and/or purifications, Ayurveda, and the use of neti pots for nasal irrigation can contribute to this devastating infection. With increasing water scarcity and public reliance on water storage, here we debate the need for increased awareness of primary amoebic meningoencephalitis and the associated risk factors, particularly in developing countries.

  10. Primary amoebic meningoencephalitis caused by Naegleria fowleri: an old enemy presenting new challenges.

    Directory of Open Access Journals (Sweden)

    Ruqaiyyah Siddiqui

    2014-08-01

    Full Text Available First discovered in 1899, Naegleria fowleri is a protist pathogen, known to infect the central nervous system and produce primary amoebic meningoencephalitis. The most distressing aspect is that the fatality rate has remained more than 95%, despite our advances in antimicrobial chemotherapy and supportive care. Although rare worldwide, most cases have been reported in the United States, Australia, and Europe (France. A large number of cases in developing countries go unnoticed. In particular, religious, recreational, and cultural practices such as ritual ablution and/or purifications, Ayurveda, and the use of neti pots for nasal irrigation can contribute to this devastating infection. With increasing water scarcity and public reliance on water storage, here we debate the need for increased awareness of primary amoebic meningoencephalitis and the associated risk factors, particularly in developing countries.

  11. Primary Amoebic Meningoencephalitis Caused by Naegleria fowleri: An Old Enemy Presenting New Challenges

    Science.gov (United States)

    Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2014-01-01

    First discovered in 1899, Naegleria fowleri is a protist pathogen, known to infect the central nervous system and produce primary amoebic meningoencephalitis. The most distressing aspect is that the fatality rate has remained more than 95%, despite our advances in antimicrobial chemotherapy and supportive care. Although rare worldwide, most cases have been reported in the United States, Australia, and Europe (France). A large number of cases in developing countries go unnoticed. In particular, religious, recreational, and cultural practices such as ritual ablution and/or purifications, Ayurveda, and the use of neti pots for nasal irrigation can contribute to this devastating infection. With increasing water scarcity and public reliance on water storage, here we debate the need for increased awareness of primary amoebic meningoencephalitis and the associated risk factors, particularly in developing countries. PMID:25121759

  12. Precision-cut hamster liver slices as an ex vivo model to study amoebic liver abscess.

    Science.gov (United States)

    Carranza-Rosales, Pilar; Santiago-Mauricio, María Guadalupe; Guzmán-Delgado, Nancy Elena; Vargas-Villarreal, Javier; Lozano-Garza, Gerardo; Ventura-Juárez, Javier; Balderas-Rentería, Isaías; Morán-Martínez, Javier; Gandolfi, A Jay

    2010-10-01

    Entamoeba histolytica is the etiological agent of amoebiasis, the second cause of global morbidity and mortality due to parasitic diseases in humans. In approximately 1% of the cases, amoebas penetrate the intestinal mucosa and spread to other organs, producing extra-intestinal lesions, among which amoebic liver abscess (ALA) is the most common. To study ALA, in vivo and in vitro models are used. However, animal models may pose ethical issues, and are time-consuming and costly; and cell cultures represent isolated cellular lineages. The present study reports the infection of precision-cut hamster liver slices with Entamoeba histolytica trophozoites. The infection time-course, including tissue damage, parallels findings previously reported in the animal model. At the same time amoebic virulence factors were detected in the infected slices. This new model to study ALA is simple and reproducible, and employs less than 1/3 of the hamsters required for in vivo analyses.

  13. Evidence that the intra-amoebal Legionella drancourtii acquired a sterol reductase gene from eukaryotes

    Directory of Open Access Journals (Sweden)

    Fournier Pierre-Edouard

    2009-03-01

    Full Text Available Abstract Background Free-living amoebae serve as a natural reservoir for some bacteria that have evolved into «amoeba-resistant» bacteria. Among these, some are strictly intra-amoebal, such as Candidatus "Protochlamydia amoebophila" (Candidatus "P. amoebophila", whose genomic sequence is available. We sequenced the genome of Legionella drancourtii (L. drancourtii, another recently described intra-amoebal bacterium. By comparing these two genomes with those of their closely related species, we were able to study the genetic characteristics specific to their amoebal lifestyle. Findings We identified a sterol delta-7 reductase-encoding gene common to these two bacteria and absent in their relatives. This gene encodes an enzyme which catalyses the last step of cholesterol biosynthesis in eukaryotes, and is probably functional within L. drancourtii since it is transcribed. The phylogenetic analysis of this protein suggests that it was acquired horizontally by a few bacteria from viridiplantae. This gene was also found in the Acanthamoeba polyphaga Mimivirus genome, a virus that grows in amoebae and possesses the largest viral genome known to date. Conclusion L. drancourtii acquired a sterol delta-7 reductase-encoding gene of viridiplantae origin. The most parsimonious hypothesis is that this gene was initially acquired by a Chlamydiales ancestor parasite of plants. Subsequently, its descendents transmitted this gene in amoebae to other intra-amoebal microorganisms, including L. drancourtii and Coxiella burnetii. The role of the sterol delta-7 reductase in prokaryotes is as yet unknown but we speculate that it is involved in host cholesterol parasitism.

  14. Primary amoebic meningoencephalitis caused by Naegleria fowleri: an old enemy presenting new challenges.

    OpenAIRE

    Ruqaiyyah Siddiqui; Naveed Ahmed Khan

    2014-01-01

    First discovered in 1899, Naegleria fowleri is a protist pathogen, known to infect the central nervous system and produce primary amoebic meningoencephalitis. The most distressing aspect is that the fatality rate has remained more than 95%, despite our advances in antimicrobial chemotherapy and supportive care. Although rare worldwide, most cases have been reported in the United States, Australia, and Europe (France). A large number of cases in developing countries go unnoticed. In particular...

  15. Huge amoebic liver abscess presented with massive right empyema: a case report.

    Directory of Open Access Journals (Sweden)

    Mostafa El-Shamy

    2014-03-01

    Full Text Available Amoebic liver abscess is a complication of amoebiasis that needs early diagnosis and proper treatment before further complications occur. We report a-35 year old female presented by fever and dyspnea due to huge liver abscess complicated by massive right side empyema. The patient was effectively treated by percutaneous drainage for both the right lobe abscess and empyema together with pharmacologic agents.

  16. Concurrent amoebic and histoplasma colitis:A rare cause of massive lower gastrointestinal bleeding

    Institute of Scientific and Technical Information of China (English)

    Peng; Soon; Koh; April; Camilla; Roslani; Kumar; Vasudeavan; Vimal; Mohd; Shariman; Ramasamy; Umasangar; Rajkumar; Lewellyn

    2010-01-01

    Infective colitis can be a cause of massive lower gastrointestinal bleeding requiring acute surgical intervention. Causative organisms include entamoeba and histoplasma species. However, concurrent colonic infection with both these organisms is very rare, and the in vivo consequences are not known. A 58-year-old male presented initially to the physicians with pyrexia of unknown origin and bloody diarrhea. Amoebic colitis was diagnosed based on biopsies, and he was treated with metronidazole. Five days later...

  17. Detection of Entamoeba histolytica in experimentally induced amoebic liver abscess:comparison of three staining methods

    Institute of Scientific and Technical Information of China (English)

    Tan Zi Ning; Wong Weng Kin; Shaymoli Mustafa; Arefuddin Ahmed; Rahmah Noordin; Tan Gim Cheong; Olivos-Garcia Alfonso; Lim Boon Huat

    2012-01-01

    Objective: To compare the efficacy of three different tissue stains, namely haematoxylin and eosin (H&E), periodic-acid Schiff (PAS) and immunohistochemical (IHC) stains for detection of Entamoeba histolytica (E. histolytica) trophozoites in abscessed liver tissues of hamster.Methods:Amoebic liver abscess was experimentally induced in a hamster by injecting 1 × 106 of axenically cultured virulent E. histolytica trophozoites (HM1-IMSS strain) into the portal vein. After a week post-inoculation, the hamster was sacrificed and the liver tissue sections were stained with H&E, PAS and IHC stains to detect the amoebic trophozoite. Results: The three stains revealed tissue necrosis and amoebic trophozoites, but with varying clarity. H&E and PAS stained the trophozoites pink and magenta, respectively, however it was difficult to differentiate the stained trophozoites from the macrophages because of their similarity in size and morphology. On the other hand, IHC stain revealed distinct brown appearance of the trophozoites in the infected liver tissues. Conclusions: It can be concluded that out of the three stains, IHC is the best for identification of E. histolytica trophozoites in tissue sections.

  18. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signaling pathways in SKH-1 hairless mice skin

    Energy Technology Data Exchange (ETDEWEB)

    Pratheeshkumar, Poyil; Son, Young-Ok; Wang, Xin; Divya, Sasidharan Padmaja [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Joseph, Binoy [Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky, Lexington, KY 40536-0509 (United States); Hitron, John Andrew; Wang, Lei [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Kim, Donghern [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Yin, Yuanqin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Cancer Institute, The First Affiliated Hospital, China Medical University, Shenyang (China); Roy, Ram Vinod [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Lu, Jian [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Zhang, Zhuo [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Wang, Yitao [State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau (China); and others

    2014-10-01

    Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicate that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE{sub 2} and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2′-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways. - Highlights: • C3G inhibited UVB-induced oxidative damage and inflammation. • C3G inhibited UVB-induced COX-2, iNOS and PGE{sub 2} production. • C3G

  19. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signaling pathways in SKH-1 hairless mice skin

    International Nuclear Information System (INIS)

    Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicate that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE2 and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2′-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways. - Highlights: • C3G inhibited UVB-induced oxidative damage and inflammation. • C3G inhibited UVB-induced COX-2, iNOS and PGE2 production. • C3G inhibited UVB

  20. Single Muscle Immobilization Decreases Single-Fibre Myosin Heavy Chain Polymorphism: Possible Involvement of p38 and JNK MAP Kinases

    Science.gov (United States)

    Derbré, Frédéric; Droguet, Mickaël; Léon, Karelle; Troadec, Samuel; Pennec, Jean-Pierre; Giroux-Metges, Marie-Agnès; Rannou, Fabrice

    2016-01-01

    Purpose Muscle contractile phenotype is affected during immobilization. Myosin heavy chain (MHC) isoforms are the major determinant of the muscle contractile phenotype. We therefore sought to evaluate the effects of muscle immobilization on both the MHC composition at single-fibre level and the mitogen-activated protein kinases (MAPK), a family of intracellular signaling pathways involved in the stress-induced muscle plasticity. Methods The distal tendon of female Wistar rat Peroneus Longus (PL) was cut and fixed to the adjacent bone at neutral muscle length. Four weeks after the surgery, immobilized and contralateral PL were dissociated and the isolated fibres were sampled to determine MHC composition. Protein kinase 38 (p38), extracellular signal-regulated kinases (ERK1/2), and c-Jun- NH2-terminal kinase (JNK) phosphorylations were measured in 6- and 15-day immobilized and contralateral PL. Results MHC distribution in immobilized PL was as follows: I = 0%, IIa = 11.8 ± 2.8%, IIx = 53.0 ± 6.1%, IIb = 35.3 ± 7.3% and I = 6.1 ± 3.9%, IIa = 22.1 ± 3.4%, IIx = 46.6 ± 4.5%, IIb = 25.2 ± 6.6% in contralateral muscle. The MHC composition in immobilized muscle is consistent with a faster contractile phenotype according to the Hill’s model of the force-velocity relationship. Immobilized and contralateral muscles displayed a polymorphism index of 31.1% (95% CI 26.1–36.0) and 39.3% (95% CI 37.0–41.5), respectively. Significant increases in p38 and JNK phosphorylation were observed following 6 and 15 days of immobilization. Conclusions Single muscle immobilization at neutral length induces a shift of MHC composition toward a faster contractile phenotype and decreases the polymorphic profile of single fibres. Activation of p38 and JNK could be a potential mechanism involved in these contractile phenotype modifications during muscle immobilization. PMID:27383612

  1. Analysis of Activated Platelet-Derived Growth Factor β Receptor and Ras-MAP Kinase Pathway in Equine Sarcoid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Gennaro Altamura

    2013-01-01

    Full Text Available Equine sarcoids are skin tumours of fibroblastic origin affecting equids worldwide. Bovine papillomavirus type-1 (BPV-1 and, less commonly, type-2 are recognized as etiological factors of sarcoids. The transforming activity of BPV is related to the functions of its major oncoprotein E5 which binds to the platelet-derived growth factor β receptor (PDGFβR causing its phosphorylation and activation. In this study, we demonstrate, by coimmunoprecipitation and immunoblotting, that in equine sarcoid derived cell lines PDGFβR is phosphorylated and binds downstream molecules related to Ras-mitogen-activated protein kinase-ERK pathway thus resulting in Ras activation. Imatinib mesylate is a tyrosine kinase receptors inhibitor which selectively inhibits the activation of PDGFβR in the treatment of several human and animal cancers. Here we show that imatinib inhibits receptor phosphorylation, and cell viability assays demonstrate that this drug decreases sarcoid fibroblasts viability in a dose-dependent manner. This study contributes to a better understanding of the molecular mechanisms involved in the pathology of sarcoids and paves the way to a new therapeutic approach for the treatment of this common equine skin neoplasm.

  2. Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning.

    Science.gov (United States)

    Schafe, G E; Atkins, C M; Swank, M W; Bauer, E P; Sweatt, J D; LeDoux, J E

    2000-11-01

    Although much has been learned about the neurobiological mechanisms underlying Pavlovian fear conditioning at the systems and cellular levels, relatively little is known about the molecular mechanisms underlying fear memory consolidation. The present experiments evaluated the role of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling cascade in the amygdala during Pavlovian fear conditioning. We first show that ERK/MAPK is transiently activated-phosphorylated in the amygdala, specifically the lateral nucleus (LA), at 60 min, but not 15, 30, or 180 min, after conditioning, and that this activation is attributable to paired presentations of tone and shock rather than to nonassociative auditory stimulation, foot shock sensitization, or unpaired tone-shock presentations. We next show that infusions of U0126, an inhibitor of ERK/MAPK activation, aimed at the LA, dose-dependently impair long-term memory of Pavlovian fear conditioning but leaves short-term memory intact. Finally, we show that bath application of U0126 impairs long-term potentiation in the LA in vitro. Collectively, these results demonstrate that ERK/MAPK activation is necessary for both memory consolidation of Pavlovian fear conditioning and synaptic plasticity in the amygdala.

  3. Cloning and molecular characterization of a gene encoding MAP kinase from maize and its expression in E. coli

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A new MAPK gene, ZmSIMK1 (Zea mays L. salt-induced mitogen-activated protein kinase 1), is isolated from a maize cDNA library. The full-length ZmSIMK1 gene contains 1636 bp and an open reading frame of 1122 nucleotides capable of encoding 373 amino acid polypeptides with a predicted molecular mass of 42.3 kda and pI of 6.01. The putative ZmSIMK1 protein contains all 11 conserved subdomains that are characteristics of serine/threonine protein kinases and the TEY motif, which is the putative phosphorylation site. Northern blot analysis shows that ZmSIMK1 is ubiquitously expressed in roots, stems, and leaves of maize seedlings and its mRNA accumulation is observed in maize seedlings treated with 30 mmol/L PEG-6000 and 137 mmol/L NaCl, but the expression of ZmSIMK1 is not significantly affected by 4℃ treatment. The expression vector pET-ZmSIMK1 is constructed by inserting the coding region of ZmSIMK1 cDNA into pET-42a(+), and transformed into E. coli strain BL21(DE3). A 77kda fusion protein is induced by the further culture at 37℃ after addition of 1mmol/L IPTG.

  4. IL-12 and IL-18 induce MAP kinase-dependent adhesion of T cells to extracellular matrix components.

    Science.gov (United States)

    Ariel, Amiram; Novick, Daniela; Rubinstein, Menachem; Dinarello, Charles A; Lider, Ofer; Hershkoviz, Rami

    2002-07-01

    Cytokines and chemokines play an essential role in recruiting leukocytes from the circulation to the peripheral sites of inflammation by modulating cellular interactions with endothelial cell ligands and extracellular matrix (ECM). Herein, we examined regulation of T cell adhesion to ECM ligands by two major proinflammatory cytokines, interleukin (IL)-12 and IL-18. IL-12 and IL-18 induced T cell adhesion to fibronectin (FN) and hyaluronic acid at low (pM) concentrations that were mediated by specific adhesion molecules expressed on the T cell surface, namely, beta(1) integrins and CD44, respectively. The induction of adhesion by IL-12 and IL-18 was inhibited by extracellular signal-regulated kinase and p38 mitogen-activated protein kinase inhibitors (PD098059 and SB203580, respectively). In contrast, IL-12- and IL-18-induced interferon-gamma (INF-gamma) secretion from T cells was inhibited by SB203580, but not by PD098059. It is interesting that low concentrations of IL-12 and IL-18 induced T cell adhesion to FN in a synergistic manner. Thus, in addition to the regulation of late inflammatory functions such as INF-gamma production, IL-12 and IL-18, alone or in combination, regulate early inflammatory events such as T cell adhesion to inflamed sites. PMID:12101280

  5. A novel functional link between MAP kinase cascades and the Ras/cAMP pathway that regulates survival.

    Science.gov (United States)

    Cherkasova, Vera A; McCully, Ryan; Wang, Yunmei; Hinnebusch, Alan; Elion, Elaine A

    2003-07-15

    In mammalian cells, Ras regulates multiple effectors, including activators of mitogen-activated protein kinase (MAPK) cascades, phosphatidylinositol-3-kinase, and guanine nucleotide exchange factors (GEFs) for RalGTPases. In S. cerevisiae, Ras regulates the Kss1 MAPK cascade that promotes filamentous growth and cell integrity, but its major function is to activate adenylyl cyclase and control proliferation and survival ([; see Figure S1 in the Supplemental Data available with this article online). Previous work hints that the mating Fus3/Kss1 MAPK cascade cross-regulates the Ras/cAMP pathway during growth and mating, but direct evidence is lacking. Here, we report that Kss1 and Fus3 act upstream of the Ras/cAMP pathway to regulate survival. Loss of Fus3 increases cAMP and causes poor long-term survival and resistance to stress. These effects are dependent on Kss1 and Ras2. Activation of Kss1 by a hyperactive Ste11 MAPKKK also increases cAMP, but mating receptor/scaffold activation has little effect and may therefore insulate the MAPKs from cross-regulation. Catalytically inactive Fus3 represses cAMP by blocking accumulation of active Kss1 and by another function also shared by Kss1. The conserved RasGEF Cdc25 is a likely control point, because Kss1 and Fus3 complexes associate with and phosphorylate Cdc25. Cross-regulation of Cdc25 may be a general way that MAPKs control Ras signaling networks. PMID:12867033

  6. The Ste5 scaffold directs mating signaling by catalytically unlocking the Fus3 MAP kinase for activation.

    Science.gov (United States)

    Good, Matthew; Tang, Grace; Singleton, Julie; Reményi, Attila; Lim, Wendell A

    2009-03-20

    The scaffold protein Ste5 is required to properly direct signaling through the yeast mating pathway to the mitogen-activated protein kinase (MAPK), Fus3. Scaffolds are thought to function by tethering kinase and substrate in proximity. We find, however, that the previously identified Fus3-binding site on Ste5 is not required for signaling, suggesting an alternative mechanism controls Fus3's activation by the MAPKK Ste7. Reconstituting MAPK signaling in vitro, we find that Fus3 is an intrinsically poor substrate for Ste7, although the related filamentation MAPK, Kss1, is an excellent substrate. We identify and structurally characterize a domain in Ste5 that catalytically unlocks Fus3 for phosphorylation by Ste7. This domain selectively increases the k(cat) of Ste7-->Fus3 phosphorylation but has no effect on Ste7-->Kss1 phosphorylation. The dual requirement for both Ste7 and this Ste5 domain in Fus3 activation explains why Fus3 is selectively activated by the mating pathway and not by other pathways that also utilize Ste7. PMID:19303851

  7. 22(R)-hydroxycholesterol induces HuR-dependent MAP kinase phosphatase-1 expression via mGluR5-mediated Ca(2+)/PKCα signaling.

    Science.gov (United States)

    Kim, Hyunmi; Woo, Joo Hong; Lee, Jee Hoon; Joe, Eun-Hye; Jou, Ilo

    2016-08-01

    MAP kinase phosphatase (MKP)-1 plays a pivotal role in controlling MAP kinase (MAPK)-dependent (patho) physiological processes. Although MKP-1 gene expression is tightly regulated at multiple levels, the underlying mechanistic details remain largely unknown. In this study, we demonstrate that MKP-1 expression is regulated at the post-transcriptional level by 22(R)-hydroxycholesterol [22(R)-HC] through a novel mechanism. 22(R)-HC induces Hu antigen R (HuR) phosphorylation, cytoplasmic translocation and binding to MKP-1 mRNA, resulting in stabilization of MKP-1 mRNA. The resulting increase in MKP-1 leads to suppression of JNK-mediated inflammatory responses in brain astrocytes. We further demonstrate that 22(R)-HC-induced phosphorylation of nuclear HuR is mediated by PKCα, which is activated in the cytosol by increases in intracellular Ca(2+) levels mediated by the phospholipase C/inositol 1,4,5-triphosphate receptor (PLC/IP3R) pathway and translocates from cytoplasm to nucleus. In addition, pharmacological interventions reveal that metabotropic glutamate receptor5 (mGluR5) is responsible for the increases in intracellular Ca(2+) that underlie these actions of 22(R)-HC. Collectively, our findings identify a novel anti-inflammatory mechanism of 22(R)-HC, which acts through PKCα-mediated cytoplasmic shuttling of HuR to post-transcriptionally regulate MKP-1 expression. These findings provide an experimental basis for the development of a RNA-targeted therapeutic agent to control MAPK-dependent inflammatory responses. PMID:27206966

  8. Gamma-linolenic and stearidonic acids are required for basal immunity in Caenorhabditis elegans through their effects on p38 MAP kinase activity.

    Directory of Open Access Journals (Sweden)

    Madhumitha Nandakumar

    2008-11-01

    Full Text Available Polyunsaturated fatty acids (PUFAs form a class of essential micronutrients that play a vital role in development, cardiovascular health, and immunity. The influence of lipids on the immune response is both complex and diverse, with multiple studies pointing to the beneficial effects of long-chain fatty acids in immunity. However, the mechanisms through which PUFAs modulate innate immunity and the effects of PUFA deficiencies on innate immune functions remain to be clarified. Using the Caenorhabditis elegans-Pseudomonas aeruginosa host-pathogen system, we present genetic evidence that a Delta6-desaturase FAT-3, through its two 18-carbon products--gamma-linolenic acid (GLA, 18:3n6 and stearidonic acid (SDA, 18:4n3, but not the 20-carbon PUFAs arachidonic acid (AA, 20:4n6 and eicosapentaenoic acid (EPA, 20:5n3--is required for basal innate immunity in vivo. Deficiencies in GLA and SDA result in increased susceptibility to bacterial infection, which is associated with reduced basal expression of a number of immune-specific genes--including spp-1, lys-7, and lys-2--that encode antimicrobial peptides. GLA and SDA are required to maintain basal activity of the p38 MAP kinase pathway, which plays important roles in protecting metazoan animals from infections and oxidative stress. Transcriptional and functional analyses of fat-3-regulated genes revealed that fat-3 is required in the intestine to regulate the expression of infection- and stress-response genes, and that distinct sets of genes are specifically required for immune function and oxidative stress response. Our study thus uncovers a mechanism by which these 18-carbon PUFAs affect basal innate immune function and, consequently, the ability of an organism to defend itself against bacterial infections. The conservation of p38 MAP kinase signaling in both stress and immune responses further encourages exploring the function of GLA and SDA in humans.

  9. Role of MAP kinases in regulating expression of antioxidants and inflammatory mediators in mouse keratinocytes following exposure to the half mustard, 2-chloroethyl ethyl sulfide

    International Nuclear Information System (INIS)

    Dermal exposure to sulfur mustard causes inflammation and tissue injury. This is associated with changes in expression of antioxidants and eicosanoids which contribute to oxidative stress and toxicity. In the present studies we analyzed mechanisms regulating expression of these mediators using an in vitro skin construct model in which mouse keratinocytes were grown at an air-liquid interface and exposed directly to 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. CEES (100-1000 μM) was found to cause marked increases in keratinocyte protein carbonyls, a marker of oxidative stress. This was correlated with increases in expression of Cu,Zn superoxide dismutase, catalase, thioredoxin reductase and the glutathione S-transferases, GSTA1-2, GSTP1 and mGST2. CEES also upregulated several enzymes important in the synthesis of prostaglandins and leukotrienes including cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-2 (mPGES-2), prostaglandin D synthase (PGDS), 5-lipoxygenase (5-LOX), leukotriene A4 (LTA4) hydrolase and leukotriene C4 (LTC4) synthase. CEES readily activated keratinocyte JNK and p38 MAP kinases, signaling pathways which are known to regulate expression of antioxidants, as well as prostaglandin and leukotriene synthases. Inhibition of p38 MAP kinase suppressed CEES-induced expression of GSTA1-2, COX-2, mPGES-2, PGDS, 5-LOX, LTA4 hydrolase and LTC4 synthase, while JNK inhibition blocked PGDS and GSTP1. These data indicate that CEES modulates expression of antioxidants and enzymes producing inflammatory mediators by distinct mechanisms. Increases in antioxidants may be an adaptive process to limit tissue damage. Inhibiting the capacity of keratinocytes to generate eicosanoids may be important in limiting inflammation and protecting the skin from vesicant-induced oxidative stress and injury.

  10. Pharmacological profile of AW-814141, a novel, potent, selective and orally active inhibitor of p38 MAP kinase

    DEFF Research Database (Denmark)

    Chopra, Puneet; Kulkarni, Onkar; Gupta, Shashank;

    2010-01-01

    The p38 mitogen activated protein kinase (MAPK) is a key signaling molecule that plays a crucial role in the progression of various inflammatory diseases such as rheumatoid arthritis (RA), asthma and chronic obstructive pulmonary disease. The objective of the present study was to evaluate the anti...... and it displays promising in vitro and in vivo anti-inflammatory activities and can be used for the treatment of rheumatoid arthritis....... and collagen-induced arthritis model (CIA), AW-814141 dose dependently inhibited paw swelling. In different in vivo efficacy models, efficacy of AW-814141 was found to be better as compared to the reference compounds (Vx-745 and BIRB-796). This study demonstrated that AW-814141 is a novel p38 MAPK inhibitor...

  11. p38 MAP Kinase Links CAR Activation and Inactivation in the Nucleus via Phosphorylation at Threonine 38

    Science.gov (United States)

    Hori, Takeshi; Moore, Rick

    2016-01-01

    Nuclear receptor constitutive androstane receptor (CAR, NR1I3), which regulates hepatic drug and energy metabolisms as well as cell growth and death, is sequestered in the cytoplasm as its inactive form phosphorylated at threonine 38. CAR activators elicit dephosphorylation, and nonphosphorylated CAR translocates into the nucleus to activate its target genes. CAR was previously found to require p38 mitogen-activated protein kinase (MAPK) to transactivate the cytochrome P450 2B (CYP2B) genes. Here we have demonstrated that p38 MAPK forms a complex with CAR, enables it to bind to the response sequence, phenobarbital-responsive enhancer module (PBREM), within the CYP2B promoter, and thus recruits RNA polymerase II to activate transcription. Subsequently, p38 MAPK elicited rephosphorylation of threonine 38 to inactivate CAR and exclude it from the nucleus. Thus, nuclear p38 MAPK exerted dual regulation by sequentially activating and inactivating CAR-mediated transcription through phosphorylation of threonine 38. PMID:27074912

  12. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi.

    Science.gov (United States)

    Rispail, Nicolas; Soanes, Darren M; Ant, Cemile; Czajkowski, Robert; Grünler, Anke; Huguet, Romain; Perez-Nadales, Elena; Poli, Anna; Sartorel, Elodie; Valiante, Vito; Yang, Meng; Beffa, Roland; Brakhage, Axel A; Gow, Neil A R; Kahmann, Regine; Lebrun, Marc-Henri; Lenasi, Helena; Perez-Martin, José; Talbot, Nicholas J; Wendland, Jürgen; Di Pietro, Antonio

    2009-04-01

    Mitogen-activated protein kinase (MAPK) cascades and the calcium-calcineurin pathway control fundamental aspects of fungal growth, development and reproduction. Core elements of these signalling pathways are required for virulence in a wide array of fungal pathogens of plants and mammals. In this review, we have used the available genome databases to explore the structural conservation of three MAPK cascades and the calcium-calcineurin pathway in ten different fungal species, including model organisms, plant pathogens and human pathogens. While most known pathway components from the model yeast Saccharomyces cerevisiae appear to be widely conserved among taxonomically and biologically diverse fungi, some of them were found to be restricted to the Saccharomycotina. The presence of multiple paralogues in certain species such as the zygomycete Rhizopus oryzae and the incorporation of new functional domains that are lacking in S. cerevisiae signalling proteins, most likely reflect functional diversification or adaptation as filamentous fungi have evolved to occupy distinct ecological niches. PMID:19570501

  13. Phosphodiesterase MoPdeH targets MoMck1 of the conserved mitogen-activated protein (MAP) kinase signalling pathway to regulate cell wall integrity in rice blast fungus Magnaporthe oryzae.

    Science.gov (United States)

    Yin, Ziyi; Tang, Wei; Wang, Jingzhen; Liu, Xinyu; Yang, Lina; Gao, Chuyun; Zhang, Jinlong; Zhang, Haifeng; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang

    2016-06-01

    In the rice blast fungus Magnaporthe oryzae, the high-affinity cyclic adenosine monophosphate (cAMP) phosphodiesterase MoPdeH is important not only for cAMP signalling and pathogenicity, but also for cell wall integrity (CWI) maintenance through an unknown mechanism. By utilizing affinity purification, we found that MoPdeH interacts with MoMck1, one of the components of the mitogen-activated protein (MAP) kinase cascade that regulates CWI. Overexpression of MoMCK1 suppressed defects in autolysis and pathogenicity of the ΔMopdeH mutant, although partially, suggesting that MoPdeH plays a critical role in CWI maintenance mediated by the MAP kinase pathway. We found that MoMck1 and two other MAP kinase cascade components, MoMkk1 and MoMps1, modulate intracellular cAMP levels by regulating the expression of MoPDEH through a feedback loop. In addition, disruption of MoMKK1 resulted in less aerial hyphal formation, defective asexual development and attenuated pathogenicity. Moreover, MoMkk1 plays a role in the response to osmotic stress via regulation of MoOsm1 phosphorylation levels, whereas endoplasmic reticulum (ER) stress enhances MoMps1 phosphorylation and loss of the MAP kinase cascade component affects the unfolded protein response (UPR) pathway. Taken together, our findings demonstrate that MoPdeH functions upstream of the MoMck1-MoMkk1-MoMps1 MAP kinase pathway to regulate CWI, and that MoPdeH also mediates crosstalk between the cAMP signalling pathway, the osmotic sensing high osmolarity glycerol (HOG) pathway and the dithiothreitol (DTT)-induced UPR pathway in M. oryzae. PMID:27193947

  14. P38 MAP kinase inhibitors as potential therapeutics for the treatment of joint degeneration and pain associated with osteoarthritis

    Directory of Open Access Journals (Sweden)

    Taiwo Yetunde O

    2008-12-01

    Full Text Available Abstract Background Evaluate the potential role of p38 inhibitors for the treatment of osteoarthritis using an animal model of joint degeneration (iodoacetate-induced arthritis and a pain model (Hargraeves assay. Methods P38 kinase activity was evaluated in a kinase assay by measuring the amount of phosphorylated substrate ATF2 using a phosphoATF2 (Thr71 specific primary antibody and an alkaline phosphate coupled secondary antibody and measuring the OD at 405 nm. TNFα and IL-1β secretion from LPS stimulated THP-1 monocytic cells and human peripheral blood mononuclear cells were measured by ELISA. Rats treated with vehicle or p38 inhibitor were injected intra-articularly in one knee with iodoacetate and damage to the tibial plateau was assessed from digitized images captured using an image analyzer. The effect of p38 inhibitors on hyperalgesia was evaluated in rats given an intraplantar injection of carrageenan and 4 h later the paw withdrawal time to a radiant heat source was measured. Results SB-203580 and VX-745 are both potent inhibitors of p38 with IC50s of 136 ± 64 nM and 35 ± 14 nM (mean ± S.D., respectively. Similarly, SB-203580 and VX-745 potently inhibited TNF release from LPS stimulated human THP-1 cells with IC50s of 72 ± 15 nM; and 29 ± 14 nM (mean ± S.D. respectively. TNF release from LPS stimulated human peripheral blood mononuclear cells was inhibited with IC50s 16 ± 6 nM and 14 ± 8 nM, (mean ± S.D. for SB-203580 and VX-745 and IL-1 was inhibited with IC50s of 20 ± 8 nM and 15 ± 4 nM (mean ± S.D., respectively. SB-203580 and VX-745 administered orally at a dose of 50 mg/kg resulted in the significant (p Conclusion SB203580 and VX-745 demonstrated attenuation of both cartilage degeneration and pain in animal models and suggest that p38 inhibitors may be a useful approach for the treatment of osteoarthritis.

  15. Shock Waves Increase T-cell Proliferation or IL-2 Expression by Activating p38 MAP Kinase

    Institute of Scientific and Technical Information of China (English)

    Tie-Cheng YU; Yi LIU; Yan TAN; Yanfang JIANG; Xueqing ZHENG; Xinxiang XU

    2004-01-01

    Shock waves were elicited by transient pressure disturbances, which could be used to treat musculoskeletal disorders. In present studies, we i. nvestigated whether the low-density shock waves (LDSWs), which are able to damage plasma membrane without impairing the vimentin or other organelles, might augment T-cell proliferation as well as IL-2 expression, and if mitogen activated protein kinase p38 (p38 MAPK)might be an underlying mechanism through which the LDSWs enhanced T-cell function. We found that the LDSWs increased activation of p38 MAPK in Jurkat T cells. The LDSWs alone didn't result in the T-cell proliferation and IL-2 expression. However, in combination with other stimuli, LDSWs could augment the T-cell proliferation and IL-2 expression. Inhibition of p38 MAPK using SB203580 reduced the stimulatory effects of the LDSWs, which indicated that the LDSWs enhanced IL-2 expression through a mechanism that involved p38 MAPK activation. We concluded that the p38 MAPK activation played a key role in the regulation of T cell function by the LDSWs.

  16. Triptolide (PG-490) induces apoptosis of dendritic cells through sequential p38 MAP kinase phosphorylation and caspase 3 activation

    Institute of Scientific and Technical Information of China (English)

    Liu Q; Chen T; Chen H; Zhang M; Li N; Lu Z; Ma P; Cao X

    2004-01-01

    Dendritic cells (DCs) are the most potent antigen-presenting cells that play crucial roles in the regulation of immune response. Triptolide, an active component purified from the medicinal plant Tripterygium wilfordii Hook F. , has been demonstrated to act as a potent immunosuppressive drug capable of inhibiting T cell activation and proliferation. However, little is known about the effects of triptolide on DCs. The present study shows that triptolide does not affect phenotypic differentiation and LPS-induced maturation of murine DCs. But triptolide can dramatically reduce cell recovery by inducing apoptosis of DCs at concentration as low as 10 ng/ml, as demonstrated by phosphatidylserine exposure, mitochondria potential decrease, and nuclear DNA condensation. Triptolide induces activation of p38 in DCs, which precedes the activation of caspase 3. SB203580, a specific kinase inhibitor for p38, can block the activation of caspase 3 and inhibit the resultant apoptosis of DCs. Our results suggest that the anti-inflammatory and immunosuppressive activities of triptolide may be due, in part,to its apoptosis-inducing effects on DCs.

  17. Delayed Turnover of Unphosphorylated Ssk1 during Carbon Stress Activates the Yeast Hog1 Map Kinase Pathway.

    Directory of Open Access Journals (Sweden)

    Milene Carmes Vallejo

    Full Text Available In Saccharomyces cerevisiae, the Hog1 mitogen-activated protein kinase (MAPK pathway coordinates the adaptation to osmotic stress and was recently reported to respond to acute changes in glucose levels. Similarly as in osmotic stress, glucose starvation leads to a transient accumulation of Hog1 in the nucleus. However, the kinetics and the mechanism of Hog1 activation are different for these stress conditions. During osmotic shock the activation of Hog1 can be transduced by either the Sho1 or the Sln1/Ypd1/Ssk1 branch. During glucose starvation the phosphorylation of Hog1 is slower and is completely dependent on Ssk1, but independent of Sho1. To characterize the mechanism of activation of Hog1 during carbon stress, we examined the turnover of Ssk1 protein levels upon glucose starvation in the presence of cycloheximide and monitored protein levels by western blotting. Our data demonstrate that unphosphorylated Ssk1 was quickly degraded during exponential growth and after osmotic stress but remained remarkably stable during glucose limitation. We conclude that glucose starvation induces a delay in the turnover of unphosphorylated Ssk1, which is sufficient to activate the Hog1 MAPK pathway. Although unphosphorylated Ssk1 is known to be degraded by the proteasome, its stabilization is apparently not due to changes in cellular localization or decrease in ubiquitination levels during glucose limitation.

  18. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4.

    Science.gov (United States)

    Brodersen, Peter; Petersen, Morten; Bjørn Nielsen, Henrik; Zhu, Shijiang; Newman, Mari-Anne; Shokat, Kevan M; Rietz, Steffen; Parker, Jane; Mundy, John

    2006-08-01

    Arabidopsis MPK4 has been implicated in plant defense regulation because mpk4 knockout plants exhibit constitutive activation of salicylic acid (SA)-dependent defenses, but fail to induce jasmonic acid (JA) defense marker genes in response to JA. We show here that mpk4 mutants are also defective in defense gene induction in response to ethylene (ET), and that they are more susceptible than wild-type (WT) to Alternaria brassicicola that induces the ET/JA defense pathway(s). Both SA-repressing and ET/JA-(co)activating functions depend on MPK4 kinase activity and involve the defense regulators EDS1 and PAD4, as mutations in these genes suppress de-repression of the SA pathway and suppress the block of the ET/JA pathway in mpk4. EDS1/PAD4 thus affect SA-ET/JA signal antagonism as activators of SA but as repressors of ET/JA defenses, and MPK4 negatively regulates both of these functions. We also show that the MPK4-EDS1/PAD4 branch of ET defense signaling is independent of the ERF1 transcription factor, and use comparative microarray analysis of ctr1, ctr1/mpk4, mpk4 and WT to show that MPK4 is required for induction of a small subset of ET-regulated genes. The regulation of some, but not all, of these genes involves EDS1 and PAD4.

  19. Stenotrophomonas maltophilia and Vermamoeba vermiformis relationships: bacterial multiplication and protection in amoebal-derived structures.

    Science.gov (United States)

    Cateau, Estelle; Maisonneuve, Elodie; Peguilhan, Samuel; Quellard, Nathalie; Hechard, Yann; Rodier, Marie-Helene

    2014-12-01

    Stenotrophomonas maltophilia, a bacteria involved in healthcare-associated infections, can be found in hospital water systems. Other microorganisms, such as Free Living amoebae (FLA), are also at times recovered in the same environment. Amongst these protozoa, many authors have reported the presence of Vermamoeba vermiformis. We show here that this amoeba enhances S. maltophilia growth and harbors the bacteria in amoebal-derived structures after 28 days in harsh conditions. These results highlight the fact that particular attention should be paid to the presence of FLA in hospital water systems, because of their potential implication in survival and growth of pathogenic bacterial species.

  20. Modulation of endogenous Cysteine Protease Inhibitor (ICP) 1 expression in Entamoeba histolytica affects amoebic adhesion to Extracellular Matrix proteins.

    Science.gov (United States)

    Lee, Young Ah; Saito-Nakano, Yumiko; Kim, Kyeong Ah; Min, Arim; Nozaki, Tomoyoshi; Shin, Myeong Heon

    2015-02-01

    Entamoeba histolytica is an enteric tissue-invading protozoan parasite that causes amoebic colitis and occasionally liver abscess in humans. During tissue invasion, amoebic adhesion to host components is an important event for host cell death leading to successful invasion and infection. Among amoebic virulence factors, Gal/GalNAc lectin is known to be major adhesion factor to host cells. In this study, we investigated the role of amoebic secreted CP (Cysteine Proteases) in amoebic adhesion to extracellular matrix (ECM) protein using CP inhibitor and E. histolytica strains in which the endogenous inhibitor of cysteine protease (ICP) 1 gene was overexpressed (ICP1(+)) or repressed by antisense small RNA-mediated gene silencing (ICP1(-)). We found that pretreatment of wild-type amoebae with CP inhibitor E64, or thiol-group modifiers such as diamide and N-Ethylmaleimide resulted in a significant decrease in adhesion to laminin and collagen ECM proteins. Furthermore, ICP1(+) strain, with a reduction of secreted CP activity, exhibited reduced ability by 40% to adhere to laminin. In contrast, ICP1(-) strain, with a 1.9-fold increase of secreted CP activity, showed a two-fold increase in amoebic adherence to laminin compared to the control strain. In addition, total amount of secreted CP5 was decreased in ICP1(+) amoeba. Conversely, total amount of secreted CP1 and mature-form CP5 were increased in ICP1(-) amoeba. We also found that ICP1 was secreted into extracellular milieu. These results suggest that secreted CP activity by E. histolytica may be an important factor affecting adhesion to host proteins, and regulation of CP secretion by ICP plays a major role in pathogenesis. This study provides insight into the CP-mediated tissue pathogenesis in amoeba-invaded lesions during human amoebiasis.

  1. Aristolochic acid-induced apoptosis and G2 cell cycle arrest depends on ROS generation and MAP kinases activation.

    Science.gov (United States)

    Romanov, Victor; Whyard, Terry C; Waltzer, Wayne C; Grollman, Arthur P; Rosenquist, Thomas

    2015-01-01

    Ingestion of aristolochic acids (AAs) contained in herbal remedies results in a renal disease and, frequently, urothelial malignancy. The genotoxicity of AA in renal cells, including mutagenic DNA adducts formation, is well documented. However, the mechanisms of AA-induced tubular atrophy and renal fibrosis are largely unknown. To better elucidate some aspects of this process, we studied cell cycle distribution and cell survival of renal epithelial cells treated with AAI at low and high doses. A low dose of AA induces cell cycle arrest in G2/M phase via activation of DNA damage checkpoint pathway ATM-Chk2-p53-p21. DNA damage signaling pathway is activated more likely via increased production of reactive oxygen species (ROS) caused by AA treatment then via DNA damage induced directly by AA. Higher AA concentration induced cell death partly via apoptosis. Since mitogen-activated protein kinases play an important role in cell survival, death and cell cycle progression, we assayed their function in AA-treated renal tubular epithelial cells. ERK1/2 and p38 but not JNK were activated in cells treated with AA. In addition, pharmacological inhibition of ERK1/2 and p38 as well as suppression of ROS generation with N-acetyl-L-cysteine resulted in the partial relief of cells from G2/M checkpoint and a decline of apoptosis level. Cell cycle arrest may be a mechanism for DNA repair, cell survival and reprogramming of epithelial cells to the fibroblast type. An apoptosis of renal epithelial cells at higher AA dose might be necessary to provide space for newly reprogrammed fibrotic cells. PMID:24792323

  2. Regulation of IκBα expression involves both NF-κB and the MAP kinase signaling pathways

    Directory of Open Access Journals (Sweden)

    Sambucetti Lidia C

    2005-10-01

    Full Text Available Abstract IκBα is an inhibitor of the nuclear transcription factor NF-κB. Binding of IκBα to NF-κB inactivates the transcriptional activity of NF-κB. Expression of IκBα itself is regulated by NF-κB, which provides auto-regulation of this signaling pathway. Here we present a mouse model for monitoring in vivo IκBα expression by imaging IκBα-luc transgenic mice for IκBα promoter driven luciferase activity. We demonstrated a rapid and systemic induction of IκBα expression in the transgenic mice following treatment with LPS. The induction was high in liver, spleen, lung and intestine and lower in the kidney, heart and brain. The luciferase induction in the liver correlated with increased IκBα mRNA level. Pre-treatment with proteasome inhibitor bortezomib dramatically suppressed LPS-induced luciferase activity. The p38 kinase inhibitor SB203580 also showed moderate inhibition of LPS-induced luciferase activity. Analysis of IκBα mRNA in the liver tissue showed a surprising increase of the IκBα mRNA after bortezomib and SB203580 treatments, which could be due to increased IκBα mRNA stability. Our data demonstrate that regulation of IκBα expression involves both the NF-κB and the p38 signaling pathways. The IκBα-luc transgenic mice are useful for analyzing IκBα expression and the NF-κB transcriptional activity in vivo.

  3. Mapping the Hsp90 Genetic Network Reveals Ergosterol Biosynthesis and Phosphatidylinositol-4-Kinase Signaling as Core Circuitry Governing Cellular Stress

    Science.gov (United States)

    O’Meara, Teresa R.; Valaei, Seyedeh Fereshteh; Diezmann, Stephanie; Cowen, Leah E.

    2016-01-01

    Candida albicans is a leading human fungal pathogen that causes life-threatening systemic infections. A key regulator of C. albicans stress response, drug resistance, morphogenesis, and virulence is the molecular chaperone Hsp90. Targeting Hsp90 provides a powerful strategy to treat fungal infections, however, the therapeutic utility of current inhibitors is compromised by toxicity due to inhibition of host Hsp90. To identify components of the Hsp90-dependent circuitry governing virulence and drug resistance that are sufficiently divergent for selective targeting in the pathogen, we pioneered chemical genomic profiling of the Hsp90 genetic network in C. albicans. Here, we screen mutant collections covering ~10% of the genome for hypersensitivity to Hsp90 inhibition in multiple environmental conditions. We identify 158 HSP90 chemical genetic interactors, most of which are important for growth only in specific environments. We discovered that the sterol C-22 desaturase gene ERG5 and the phosphatidylinositol-4-kinase (PI4K) gene STT4 are HSP90 genetic interactors under multiple conditions, suggesting a function upstream of Hsp90. By systematic analysis of the ergosterol biosynthetic cascade, we demonstrate that defects in ergosterol biosynthesis induce cellular stress that overwhelms Hsp90’s functional capacity. By analysis of the phosphatidylinositol pathway, we demonstrate that there is a genetic interaction between the PI4K Stt4 and Hsp90. We also establish that Stt4 is required for normal actin polarization through regulation of Wal1, and suggest a model in which defects in actin remodeling induces stress that creates a cellular demand for Hsp90 that exceeds its functional capacity. Consistent with this model, actin inhibitors are synergistic with Hsp90 inhibitors. We highlight new connections between Hsp90 and virulence traits, demonstrating that Erg5 and Stt4 enable activation of macrophage pyroptosis. This work uncovers novel circuitry regulating Hsp90

  4. Cyclic stretch enhances the expression of Toll-like Receptor 4 gene in cultured cardiomyocytes via p38 MAP kinase and NF-κB pathway

    Directory of Open Access Journals (Sweden)

    Wang Bao-Wei

    2010-03-01

    Full Text Available Abstract Background Toll-like receptor 4 (TLR4 plays an important role in innate immunity. The role of TLR4 in stretched cardiomyocytes is not known. We sought to investigate whether mechanical stretch could regulate TLR4 expression, as well as the possible molecular mechanisms and signal pathways mediating the expression of TLR4 by cyclic mechanical stretch in cardiomyocytes. Methods Neonatal Wistar rat cardiomyocytes grown on a flexible membrane base were stretched by vacuum to 20% of maximum elongation at 60 cycles/min. Western blot, real-time polymerase chain reaction, and promoter activity assay were performed. In vitro monocyte adhesion to stretched myocyte was detected. Results Cyclic stretch significantly increased TLR4 protein and mRNA expression after 2 h to 24 h of stretch. Addition of SB203580, TNF-α antibody, and p38α MAP kinase siRNA 30 min before stretch inhibited the induction of TLR4 protein. Cyclic stretch increased, while SB203580 abolished the phosphorylated p38 protein. Gel shifting assay showed significant increase of DNA-protein binding activity of NF-κB after stretch and SB203580 abolished the DNA-protein binding activity induced by cyclic stretch. DNA-binding complexes induced by cyclic stretch could be supershifted by p65 monoclonal antibody. Cyclic stretch increased TLR4 promoter activity while SB203580 and NF-κB siRNA decreased TLR4 promoter activity. Cyclic stretch increased adhesion of monocyte to cardiomyocytes while SB203580, TNF-α antibody, and TLR4 siRNA attenuated the adherence of monocyte. TNF-α and Ang II significantly increased TLR4 protein expression. Addition of losartan, TNF-α antibody, or p38α siRNA 30 min before Ang II and TNF-α stimulation significantly blocked the increase of TLR4 protein by AngII and TNF-α. Conclusions Cyclic mechanical stretch enhances TLR4 expression in cultured rat neonatal cardiomyocytes. The stretch-induced TLR4 is mediated through activation of p38 MAP kinase and NF

  5. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin

    Energy Technology Data Exchange (ETDEWEB)

    Divya, Sasidharan Padmaja; Wang, Xin; Pratheeshkumar, Poyil; Son, Young-Ok; Roy, Ram Vinod [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Kim, Donghern; Dai, Jin [Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Hitron, John Andrew; Wang, Lei [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Asha, Padmaja [National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin (India); Shi, Xianglin [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States)

    2015-04-01

    Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm{sup 2}) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasia and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (PGE{sub 2}), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways. - Highlights: • Blackberry extract inhibits UVB-induced glutathione depletion.

  6. The role of EGFR/ERK/ELK-1 MAP kinase pathway in the underlying damage to diabetic rat skin

    Directory of Open Access Journals (Sweden)

    Xinhong Ge

    2013-01-01

    Full Text Available Background: Diabetes mellitus (DM is a highly prevalent disease. Atrophy and spontaneous ulcers are the most common cutaneous manifestation of diabetic dermopathy (DD. Before spontaneous ulcers, we believe there is an underlying damage stage although the mechanism is unknown. Aims: To explore the expression of extracellular signal-regulated kinase1/2 (ERK1/2, its correlated upstream protein epidermal growth factor receptor (EGFR and its downstream transcription factor E twenty-six (ETS-like 1(ELK-1in the damage of the diabetic rat skin, and to explore the role of ERK1/2 on the recessive damage to diabetic rat skin. Materials and Methods: Eighty Sprague-Dawley (SD rats weighing 260-300 g were randomly divided into control and streptozotocin (STZ-induced diabetes groups. After 0.5, 2, 4, and 8 weeks, the shaved skin specimens from the back of rats in both groups were collected to observe the histological characteristics of the skin, to measure the thickness of the epidermis and the dermis, and to observe the ultrastructure. Immunohistochemistry (IHC and Western blot techniques were used to detect the expression and activation of ERK1/2, EGFR, ELK-1 in the skin of the rats. Results: There are ultrastructural changes in the DM skin. With the continuance of the diabetes course, the thicknesses of the epidermis and dermis decreased, and the expression of phospho-ERK1/2 (P-ERK1/2, EGFR, and ELK-1 was decreased gradually in the back skin of the diabetes rats. It was significantly lower in 4 and 8 week DM than that of the normal control ( P < 0.05. The expression of P-EGFR and P-ERK1/2 in the back skin of the diabetes rats was positively correlated ( r = 0.572 P < 0.05, and the positive correlation was also obtained between P-ERK1/2 and P-ELK-1 ( r = 0.715, P < 0.05. Conclusion: The phenomenon of recessive damage exists in the skin of diabetes rats, which probably may relate to the weakness of the signal transduction: P-EGFR → ERK1/2 → ELK-1.

  7. Diagnostic tests for amoebic liver abscess: comparison of enzyme - linked immunosorbent assay (Elisa and counterimmunoelectrophoresis (CIE

    Directory of Open Access Journals (Sweden)

    Marcos I. Restrepo

    1996-02-01

    Full Text Available The liver abscess is the most frequent extraintestinal complication of intestinal amoebiasis: its diagnosis is suggested by the clinical picture but it must be confirmed by paraclinic tests. Themost stringent diagnosis requires identification of E. histolytica. But this is possible only in a few cases. Serological tests greatly improve the diagnosis of this severe complication of amoebiasis. We compared the Enzyme Linfed Immunosorbent Assay and the Counterimmunoeletrophoresis techniques. Both techniques were used to detect amoebic antibodies in 50 control patients, 30 patients with liver abscess and 30 patients with intestinal amoebiasis. All the sera from control patients gave negative results iin both techniques. When analysing the sera from patients with intestinal amoebiasis, 10% of them were positive by ELISA but non by CIE. The sera of patients with liver abscess, we found that 90% were positive by the ELISA method and 66.6% by the CIE technique. In patients with amoebic liver abscess, the results showed that the ELISA was more sensitive than the CIE, as it presented a higher sensitivity (100% than that of the CIE technique (66%.

  8. ANTI-MICROBIAL AND ANTI-AMOEBIC ACTIVITY SOME AZOMETHINES - POTENTIAL TEXTILE DYESTUFFS

    Directory of Open Access Journals (Sweden)

    DJORDJEVIC Dragan

    2016-05-01

    Full Text Available In this paper, new synthesized three azomethine derivatives applied in dyeing textiles checking the anti-microbial properties of active components, at the same time [1-3]. The emphasis is thrown on the verification of anti-microbial properties that are important for obtaining textile with significantly improved performance. All compounds were characterized and evaluated for their anti-microbial activity against 7 pathogenic bacteria, 1 parasitic protozoan and 1 fungus. It estimated anti-bacterial activity in vitro against the following microorganisms Staphylococcus aureus, Bacillus anthracis, Streptococcus faecalis, Enterobacter sp., Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, and Candida albicans. The anti-amoebic activity in vitro was evaluated against the HM1: IMSS strain of Entamoeba histolytica and the results were compared with the standard drug, metronidazole. The synthesized azomethines, showed very good substantivity for wool fibers, gave fine coloring, with good degree of exhaustion after dyeing. The combination of extended synthetic analogues of natural molecules leads to discovery of chemical entities which might be excellent anti-microbial and anti-amoebic compounds as depicted in our results. Being highly the effects this compound can be explored in future as an option for decreasing pathogenic potential of infecting from different sources. Azomethines containing hydrazone (dyestuff 1 and phenylhydrazone (dyestuff 2 as moiety show average yield and moderate inhibition activity while azomethines containing thiosemicarbazone (dyestuff 3 as moiety show higher yield and greater inhibition activity towards gram-negative and gram-positive bacteria as well as a fungus.

  9. Another case of canine amoebic meningoencephalitis--the challenges of reaching a rapid diagnosis.

    Science.gov (United States)

    Hodge, Priscilla J; Kelers, Kylie; Gasser, Robin B; Visvesvara, Govinda S; Martig, Sandra; Long, Sam N

    2011-04-01

    A case of granulomatous amoebic meningoencephalitis in a previously healthy, mature, apparently immunocompetent dog, with a history of exposure to stagnant water, is reported. The case presented with ataxia and a tendency to fall to the left side. A computed tomography (CT) showed a ring-enhancing lesion within the cerebellum; an examination of cerebrospinal fluid (CSF) revealed nonspecific mixed-cell pleocytosis. Despite antibiotic and anti-inflammatory therapy, clinical signs progressed rapidly to decerebellate rigidity over 4 days, and the dog was euthanased. Significant post-mortem findings were restricted to the brain, with a localised lytic lesion in the deep cerebellar white matter. Histopathological examination of the brain showed focally extensive cavitation of the white matter and communication of the lesion with the fourth ventricle. The affected area contained structures consistent with amoebae and was infiltrated by neutrophils mixed with lower numbers of macrophages, plasma cells and lymphocytes. The amoebae were identified as Balamuthia mandrillaris, based on specific immunofluorescence detection. Amoebic meningoencephalitis should be considered in dogs with evidence of focal cavitary lesions in the brain, particularly in cases with a history of swimming in stagnant water. PMID:21161275

  10. Bacterial-type oxygen detoxification and iron-sulfur cluster assembly in amoebal relict mitochondria.

    Science.gov (United States)

    Maralikova, Barbora; Ali, Vahab; Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi; van der Giezen, Mark; Henze, Katrin; Tovar, Jorge

    2010-03-01

    The assembly of vital reactive iron-sulfur (Fe-S) cofactors in eukaryotes is mediated by proteins inherited from the original mitochondrial endosymbiont. Uniquely among eukaryotes, however, Entamoeba and Mastigamoeba lack such mitochondrial-type Fe-S cluster assembly proteins and possess instead an analogous bacterial-type system acquired by lateral gene transfer. Here we demonstrate, using immunomicroscopy and biochemical methods, that beyond their predicted cytosolic distribution the bacterial-type Fe-S cluster assembly proteins NifS and NifU have been recruited to function within the relict mitochondrial organelles (mitosomes) of Entamoeba histolytica. Both Nif proteins are 10-fold more concentrated within mitosomes compared with their cytosolic distribution suggesting that active Fe-S protein maturation occurs in these organelles. Quantitative immunoelectron microscopy showed that amoebal mitosomes are minute but highly abundant cellular structures that occupy up to 2% of the total cell volume. In addition, protein colocalization studies allowed identification of the amoebal hydroperoxide detoxification enzyme rubrerythrin as a mitosomal protein. This protein contains functional Fe-S centres and exhibits peroxidase activity in vitro. Our findings demonstrate the role of analogous protein replacement in mitochondrial organelle evolution and suggest that the relict mitochondrial organelles of Entamoeba are important sites of metabolic activity that function in Fe-S protein-mediated oxygen detoxification. PMID:19888992

  11. Entamoeba histolytica acetyl-CoA synthetase:biomarker of acute amoebic liver abscess

    Institute of Scientific and Technical Information of China (English)

    Lim Boon Huat; Pim Chau Dam; Alfonso Olivos Garcia; Tan Zi Ning; Wong Weng Kin; Rahmah Noordin; Siti Shafiqah Anaqi Azham; Lee Zhi Jie; Guee Cher Ching; Foo Phiaw Chong

    2014-01-01

    Objective: To characterize the Entamoeba histolytica (E. histolytica) antigen(s) recognized by moribound amoebic liver abscess hamsters.Methods:in 1D- and 2D-Western blot analyses. The antigenic protein was then sent for tandem mass spectrometry analysis. The corresponding gene was cloned and expressed in Escherichia coli BL21-AI to produce the recombinant E. histolytica ADP-forming acetyl-CoA synthetase (EhACS) protein. A customised ELISA was developed to evaluate the sensitivity and specificity of the recombinant protein.Results:Crude soluble antigen of E. histolytica was probed with sera of moribund hamsters detected by sera of hamsters in the control group. Tandem mass spectrometry analysis revealed the protein to be the 77 kDa E. histolytica ADP-forming acetyl-CoA synthetase (EhACS). The customised ELISA results revealed 100% sensitivity and 100% specificity when tested against infected (n=31) and control group hamsters (n=5) serum samples, respectively.Conclusions:This finding suggested the significant role of EhACS as a biomarker for moribund A ~75 kDa protein band with a pI value of 5.91-6.5 was found to be antigenic; and not hamsters with acute amoebic liver abscess (ALA) infection. It is deemed pertinent that future studies explore the potential roles of EhACS in better understanding the pathogenesis of ALA; and in the development of vaccine and diagnostic tests to control ALA in human populations.

  12. Are free energy calculations useful in practice? A comparison with rapid scoring functions for the p38 MAP kinase protein system.

    Science.gov (United States)

    Pearlman, D A; Charifson, P S

    2001-10-11

    Precise thermodynamic integration free energy simulations have been applied to a congeneric series of 16 inhibitors to the p38 MAP kinase protein for which the experimental binding data (IC(50)) is known. The relative free energy of binding for each compound has been determined. For comparison, the same series of compounds have also scored using the best rapid scoring functions used in database screening. From the results of these calculations, we find (1) that precise free energy simulations allow predictions that are reliable and in good agreement with experiment; (2) that predictions of lower reliability, but still in good qualitative agreement with experiment, can be obtained using the OWFEG free energy grid method, at a much lower computational cost; (3) and that other methods, not based on free energy simulations yield results in much poorer agreement with experiment. A new predictive index, which measures the reliability of a prediction method in the context of normal use, is defined and calculated for each scoring method. Predictive indices of 0.84, 0.56, 0.04, -0.05, and 0.25 are calculated for thermodynamic integration, OWFEG, ChemScore, PLPScore, and Dock Energy Score, respectively, where +1.0 is perfect correct prediction, -1.0 is perfect incorrect prediction, and 0.0 is random.

  13. Mutation of the MAP kinase DYF-5 affects docking and undocking of kinesin-2 motors and reduces their speed in the cilia of Caenorhabditis elegans.

    Science.gov (United States)

    Burghoorn, Jan; Dekkers, Martijn P J; Rademakers, Suzanne; de Jong, Ton; Willemsen, Rob; Jansen, Gert

    2007-04-24

    In the cilia of the nematode Caenorhabditis elegans, anterograde intraflagellar transport (IFT) is mediated by two kinesin-2 complexes, kinesin II and OSM-3 kinesin. These complexes function together in the cilia middle segments, whereas OSM-3 alone mediates transport in the distal segments. Not much is known about the mechanisms that compartmentalize the kinesin-2 complexes or how transport by both kinesins is coordinated. Here, we identify DYF-5, a conserved MAP kinase that plays a role in these processes. Fluorescence microscopy and EM revealed that the cilia of dyf-5 loss-of-function (lf) animals are elongated and are not properly aligned into the amphid channel. Some cilia do enter the amphid channel, but the distal ends of these cilia show accumulation of proteins. Consistent with these observations, we found that six IFT proteins accumulate in the cilia of dyf-5(lf) mutants. In addition, using genetic analyses and live imaging to measure the motility of IFT proteins, we show that dyf-5 is required to restrict kinesin II to the cilia middle segments. Finally, we show that, in dyf-5(lf) mutants, OSM-3 moves at a reduced speed and is not attached to IFT particles. We propose that DYF-5 plays a role in the undocking of kinesin II from IFT particles and in the docking of OSM-3 onto IFT particles. PMID:17420466

  14. Involvement of the H1 histamine receptor, p38 MAP kinase, MLCK, and Rho/ROCK in histamine-induced endothelial barrier dysfunction

    Science.gov (United States)

    Adderley, Shaquria P.; Zhang, Xun E.; Breslin, Jerome W.

    2015-01-01

    Objective The mechanisms by which histamine increases microvascular permeability remain poorly understood. We tested the hypothesis that H1 receptor activation disrupts the endothelial barrier and investigated potential downstream signals. Methods We used confluent endothelial cell (EC) monolayers, assessing transendothelial electrical resistance (TER) as an index of barrier function. Human umbilical vein EC (HUVEC), cardiac microvascular EC (HCMEC), and dermal microvascular EC (HDMEC) were compared. Receptor expression was investigated using Western blotting, immunofluorescence (IF) confocal microscopy and RT-PCR. Receptor function and downstream signaling pathways were tested using pharmacologic antagonists and inhibitors, respectively. Results We identified H1-H4 receptors on all three EC types. H1 antagonists did not affect basal TER but prevented the histamine-induced decrease in TER. Blockade of H2 or H3 attenuated the histamine response only in HDMEC, while inhibition of H4 attenuated the response only in HUVEC. Combined inhibition of both PKC and PI3K caused exaggerated histamine-induced barrier dysfunction in HDMEC, whereas inhibition of p38 MAP kinase attenuated the histamine response in all three EC types. Inhibition of RhoA, ROCK, or MLCK also prevented the histamine-induced decrease in TER in HDMEC. Conclusion The data suggest that multiple signaling pathways contribute to histamine-induced endothelial barrier dysfunction via the H1 receptor. PMID:25582918

  15. Isoflavonoid-Rich Flemingia macrophylla Extract Attenuates UVB-Induced Skin Damage by Scavenging Reactive Oxygen Species and Inhibiting MAP Kinase and MMP Expression

    Directory of Open Access Journals (Sweden)

    Hsiu-Mei Chiang

    2013-01-01

    Full Text Available In this study, we investigated the antioxidant activity and anti-photoaging properties of an extract of Flemingia macrophylla, a plant rich in isoflavonoid content. Pretreatment of fibroblasts with Flemingia macrophylla extract (FME inhibited elastase activity, promoted the protein expression of type I procollagen, and attenuated the phosphorylation of mitogen-activated protein (MAP kinase and the protein expression of matrix-metalloproteinase- (MMP- 1, 3, and 9. The IC50 values were 2.1 μg/mL for DPPH radical scavenging ability, 366.8 μg/mL for superoxide anion scavenging ability, 178.9 μg/mL for hydrogen peroxide scavenging ability, and 230.9 μg/mL for hydroxyl radical scavenging ability. Also, exposure of erythrocytes to various concentrations of FME (50–500 μg/mL resulted in a dose- and time-dependent inhibition of AAPH-induced hemolysis. In human fibroblasts, FME at 10 μg/mL was shown to be a potent scavenger of UV-induced reactive oxygen species (ROS. The antioxidant and anti-photoaging properties of FME make it an ideal anti-intrinsic aging and anti-photoaging agent.

  16. The FUS3/KSS1-type MAP kinase gene FPK1 is involved in hyphal growth, conidiation and plant infection of Fusarium proliferatum.

    Science.gov (United States)

    Zhao, Pei-Bao; Ren, Ai-Zhi; Li, Duo-Chuan

    2011-01-01

    Fusarium proliferatum is an important pathogen of maize that is responsible for ear rots, stalk rots and seeding blight worldwide. During the past decade, F. proliferatum has caused several severe epidemics of maize seedling blight in many areas of China, which led to significant losses in maize. To understand the molecular mechanisms in the fungal developmental regulation and pathogenicity, we isolated and characterized the FPK1 gene (GenBank accession No. HQ844224) encoding a MAP kinase homolog of FUS3/KSS1 in yeast. The gene includes a 1,242-bp DNA sequence from ATG to TAA, with a coding region of 1,068 bp, 3 introns (58 bp, 56 bp and 60 bp) and a predicted protein of 355 aa.The mutant ΔFPK1, which has a disruption of the FPK1 gene, showed reduced vegetative growth, fewer and shorter aerial mycelia, strongly impaired conidiation and spore germination, as well as deviant germ tube outgrowth. When the strain was inoculated in susceptible maize varieties, the infection of the mutant ΔFPK1 was delayed, and the infection efficiency was reduced compared to the wild-type strain. Complementation of the disruptions within the FPK1 open reading frame restored wild-type levels of conidiation, growth rate and virulence to maize seedlings. Our results indicated that the FPK1 gene functioned in hyphal growth, conidiation, spore germination and virulence in F. proliferatum. PMID:22286038

  17. Dynamic control of yeast MAP kinase network by induced association and dissociation between the Ste50 scaffold and the Opy2 membrane anchor.

    Science.gov (United States)

    Yamamoto, Katsuyoshi; Tatebayashi, Kazuo; Tanaka, Keiichiro; Saito, Haruo

    2010-10-01

    Membrane localization of the Ste11 MAPKKK is essential for activation of both the filamentous growth/invasive growth (FG/IG) MAP kinase (MAPK) pathway and the SHO1 branch of the osmoregulatory HOG MAPK pathway, and is mediated by binding of the Ste50 scaffold protein to the Opy2 membrane anchor. We found that Opy2 has two major (CR-A and CR-B), and one minor (CR-D), binding sites for Ste50. CR-A binds Ste50 constitutively and can transmit signals to both the Hog1 and Fus3/Kss1 MAPKs. CR-B, in contrast, binds Ste50 only when Opy2 is phosphorylated by Yck1/Yck2 under glucose-rich conditions and transmits the signal preferentially to the Hog1 MAPK. Ste50 phosphorylation by activated Hog1/Fus3/Kss1 MAPKs downregulates the HOG MAPK pathway by dissociating Ste50 from Opy2. Furthermore, Ste50 phosphorylation, together with MAPK-specific protein phosphatases, reduces the basal activity of the HOG and the mating MAPK pathways. Thus, dynamic regulation of Ste50-Opy2 interaction fine-tunes the MAPK signaling network. PMID:20932477

  18. Cardiac myosin binding protein C and MAP-kinase activating death domain-containing gene polymorphisms and diastolic heart failure.

    Directory of Open Access Journals (Sweden)

    Cho-Kai Wu

    Full Text Available OBJECTIVE: Myosin binding protein C (MYBPC3 plays a role in ventricular relaxation. The aim of the study was to investigate the association between cardiac myosin binding protein C (MYBPC3 gene polymorphisms and diastolic heart failure (DHF in a human case-control study. METHODS: A total of 352 participants of 1752 consecutive patients from the National Taiwan University Hospital and its affiliated hospital were enrolled. 176 patients diagnosed with DHF confirmed by echocardiography were recruited. Controls were matched 1-to-1 by age, sex, hypertension, diabetes, renal function and medication use. We genotyped 12 single nucleotide polymorphisms (SNPs according to HapMap Han Chinese Beijing databank across a 40 kb genetic region containing the MYBPC3 gene and the neighboring DNA sequences to capture 100% of haplotype variance in all SNPs with minor allele frequencies ≥ 5%. We also analyzed associations of these tagging SNPs and haplotypes with DHF and linkage disequilibrium (LD structure of the MYBPC3 gene. RESULTS: In a single locus analysis, SNP rs2290149 was associated with DHF (allele-specific p = 0.004; permuted p = 0.031. The SNP with a minor allele frequency of 9.4%, had an odds ratio 2.14 (95% CI 1.25-3.66; p = 0.004 for the additive model and 2.06 for the autosomal dominant model (GG+GA : AA, 95% CI 1.17-3.63; p = 0.013, corresponding to a population attributable risk fraction of 12.02%. The haplotypes in a LD block of rs2290149 (C-C-G-C was also significantly associated with DHF (odds ratio 2.10 (1.53-2.89; permuted p = 0.029. CONCLUSIONS: We identified a SNP (rs2290149 among the tagging SNP set that was significantly associated with early DHF in a Chinese population.

  19. Risk assessment of bioaccumulation in the food webs of two marine AMOEBE species: common tern and harbor seal

    NARCIS (Netherlands)

    Jongbloed RH; Mensink BJWG; Vethaak AD; Luttik R; Rijksinstituut voor Kust en Zee; ACT; RIKZ

    1995-01-01

    A model has been developed for calculating Maximum Permissible Concentrations (MPCs) in water for chemicals accumulating in food webs of sea birds and mammals. Calculations are carried out for two marine AMOEBE species: common tern (Sterna hirundo) and harbor seal (Phoca vitulina), and five chemical

  20. Risk assessment of bioaccumulation in the food webs of two marine AMOEBE species: common tern and harbor seal

    NARCIS (Netherlands)

    Jongbloed RH; Mensink BJWG; Vethaak AD; Luttik R; ACT; RIKZ

    1995-01-01

    Een model is ontwikkeld voor de berekening van Maximaal Toelaatbare Risiconiveau's (MTR's) in water voor stoffen die accumuleren in voedselketens van zeevogels en zeezoogdieren. Berekeningen zijn uitgevoerd voor twee zoutwater AMOEBE soorten: visdief (Sterna hirundo) en zeehond (Phoca vit

  1. Acquisition of contextual discrimination involves the appearance of a RAS-GRF1/p38 mitogen-activated protein (MAP) kinase-mediated signaling pathway that promotes long term potentiation (LTP).

    Science.gov (United States)

    Jin, Shan-Xue; Arai, Junko; Tian, Xuejun; Kumar-Singh, Rajendra; Feig, Larry A

    2013-07-26

    RAS-GRF1 is a guanine nucleotide exchange factor with the ability to activate RAS and RAC GTPases in response to elevated calcium levels. We previously showed that beginning at 1 month of age, RAS-GRF1 mediates NMDA-type glutamate receptor (NMDAR)-induction of long term depression in the CA1 region of the hippocampus of mice. Here we show that beginning at 2 months of age, when mice first acquire the ability to discriminate between closely related contexts, RAS-GRF1 begins to contribute to the induction of long term potentiation (LTP) in the CA1 hippocampus by mediating the action of calcium-permeable, AMPA-type glutamate receptors (CP-AMPARs). Surprisingly, LTP induction by CP-AMPARs through RAS-GRF1 occurs via activation of p38 MAP kinase rather than ERK MAP kinase, which has more frequently been linked to LTP. Moreover, contextual discrimination is blocked by knockdown of Ras-Grf1 expression specifically in the CA1 hippocampus, infusion of a p38 MAP kinase inhibitor into the CA1 hippocampus, or the injection of an inhibitor of CP-AMPARs. These findings implicate the CA1 hippocampus in the developmentally dependent capacity to distinguish closely related contexts through the appearance of a novel LTP-supporting signaling pathway.

  2. Isolation of the etiological agent of primary amoebic meningoencephalitis from artificially heated waters

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, A.R.; Tyndall, R.L.; Coutant, C.C.; Willaert, E.

    1977-12-01

    To determine whether artificial heating of water by power plant discharges facilitates proliferation of the pathogenic free-living amoebae that cause primary amoebic meningoencephalitis, water samples (250 ml) were taken from discharges within 3,000 feet (ca. 914.4 m) of power plants and were processed for amoeba culture. Pathogenic Naegleria fowleri grew out of water samples from two of five lakes and rivers in Florida and from one of eight man-made lakes in Texas. Pathogenic N. fowleri did not grow from water samples taken from cooling towers and control lakes, the latter of which had no associated power plants. The identification of N. fowleri was confirmed by pathogenicity in mice and by indirect immunofluorescence analyses, by using a specific antiserum.

  3. p38 MAP kinase-mediated NMDA receptor-dependent suppression of hippocampal hypersynchronicity in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Ittner, Arne A; Gladbach, Amadeus; Bertz, Josefine; Suh, Lisa S; Ittner, Lars M

    2014-01-01

    Hypersynchronicity of neuronal brain circuits is a feature of Alzheimer's disease (AD). Mouse models of AD expressing mutated forms of the amyloid-β precursor protein (APP), a central protein involved in AD pathology, show cortical hypersynchronicity. We studied hippocampal circuitry in APP23 transgenic mice using telemetric electroencephalography (EEG), at the age of onset of memory deficits. APP23 mice display spontaneous hypersynchronicity in the hippocampus including epileptiform spike trains. Furthermore, spectral contributions of hippocampal theta and gamma oscillations are compromised in APP23 mice, compared to non-transgenic controls. Using cross-frequency coupling analysis, we show that hippocampal gamma amplitude modulation by theta phase is markedly impaired in APP23 mice. Hippocampal hypersynchronicity and waveforms are differentially modulated by injection of riluzole and the non-competitive N-methyl-D-aspartate (NMDA) receptor inhibitor MK801, suggesting specific involvement of voltage-gated sodium channels and NMDA receptors in hypersynchronicity thresholds in APP23 mice. Furthermore, APP23 mice show marked activation of p38 mitogen-activated protein (MAP) kinase in hippocampus, and injection of MK801 but not riluzole reduces activation of p38 in the hippocampus. A p38 inhibitor induces hypersynchronicity in APP23 mice to a similar extent as MK801, thus supporting suppression of hypersynchronicity involves NMDA receptors-mediated p38 activity. In summary, we characterize components of hippocampal hypersynchronicity, waveform patterns and cross-frequency coupling in the APP23 mouse model by pharmacological modulation, furthering the understanding of epileptiform brain activity in AD.

  4. Inhibition of lipid phosphate phosphatase activity by VPC32183 suppresses the ability of diacylglycerol pyrophosphate to activate ERK(1/2) MAP kinases.

    Science.gov (United States)

    Violet, Pierre-Christian; Billon-Denis, Emmanuelle; Robin, Philippe

    2012-11-01

    The lipidic metabolite, diacylglycerol pyrophosphate (DGPP), in its dioctanoyl form (DGPP 8:0), has been described as an antagonist for mammalian lysophosphatidic acid (LPA) receptors LPA1 and LPA3. In this study we show that DGPP 8:0 does not antagonize LPA dependent activation of ERK(1/2) MAP kinases but strongly stimulated them in various mammalian cell lines. LPA and DGPP 8:0 stimulation of ERK(1/2) occurred through different pathways. The DGPP 8:0 effect appeared to be dependent on PKC, Raf and MEK but was insensitive to pertussis toxin and did not involve G protein activation. Finally we showed that DGPP 8:0 effect on ERK(1/2) was dependent on its dephosphorylation by a phosphatase activity sharing lipid phosphate phosphatase properties. The inhibition of this phosphatase activity by VPC32183, a previously characterized LPA receptor antagonist, blocked the DGPP 8:0 effect on ERK(1/2) activation. Moreover, down-regulation of lipid phosphate phosphatase 1 (LPP1) expression by RNA interference technique also reduced DGPP 8:0-induced ERK(1/2) activation. Consistently, over expression of LPP1 in HEK293 cells increases DGPP 8:0 hydrolysis and this increased activity was inhibited by VPC32183. In conclusion, DGPP 8:0 does not exert its effect by acting on a G protein coupled receptor, but through its dephosphorylation by LPP1, generating dioctanoyl phosphatidic acid which in turn activates PKC. These results suggest that LPP1 could have a positive regulatory function on cellular signaling processes such as ERK(1/2) activation.

  5. Phosphorylation of ERK/MAP Kinase Is Required for Long-Term Potentiation in Anatomically Restricted Regions of the Lateral Amygdala in Vivo

    Science.gov (United States)

    Schafe, Glenn E.; Swank, Michael W.; Rodriguez, Sarina M.; Debiec, Jacek; Doyere, Valerie

    2008-01-01

    We have previously shown that the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/ MAPK) is transiently activated in anatomically restricted regions of the lateral amygdala (LA) following Pavlovian fear conditioning and that blockade of ERK/MAPK activation in the LA impairs both fear memory consolidation and long-term…

  6. Mutations in Novel Lipopolysaccharide Biogenesis Genes Confer Resistance to Amoebal Grazing in Synechococcus elongatus.

    Science.gov (United States)

    Simkovsky, Ryan; Effner, Emily E; Iglesias-Sánchez, Maria José; Golden, Susan S

    2016-05-01

    In natural and artificial aquatic environments, population structures and dynamics of photosynthetic microbes are heavily influenced by the grazing activity of protistan predators. Understanding the molecular factors that affect predation is critical for controlling toxic cyanobacterial blooms and maintaining cyanobacterial biomass production ponds for generating biofuels and other bioproducts. We previously demonstrated that impairment of the synthesis or transport of the O-antigen component of lipopolysaccharide (LPS) enables resistance to amoebal grazing in the model predator-prey system consisting of the heterolobosean amoeba HGG1 and the cyanobacteriumSynechococcus elongatusPCC 7942 (R. S. Simkovsky et al., Proc Natl Acad Sci U S A 109:16678-16683, 2012,http://dx.doi.org/10.1073/pnas.1214904109). In this study, we used this model system to identify additional gene products involved in the synthesis of O antigen, the ligation of O antigen to the lipid A-core conjugated molecule (including a novel ligase gene), the generation of GDP-fucose, and the incorporation of sugars into the lipid A core oligosaccharide ofS. elongatus Knockout of any of these genes enables resistance to HGG1, and of these, only disruption of the genes involved in synthesis or incorporation of GDP-fucose into the lipid A-core molecule impairs growth. Because these LPS synthesis genes are well conserved across the diverse range of cyanobacteria, they enable a broader understanding of the structure and synthesis of cyanobacterial LPS and represent mutational targets for generating resistance to amoebal grazers in novel biomass production strains. PMID:26921432

  7. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods

    Directory of Open Access Journals (Sweden)

    Akiko Edagawa

    2015-10-01

    Full Text Available We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR, and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%. Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%. In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8% compared with real-time qPCR alone (46/68, 67.6%. Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1% compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%. Legionella was not detected in the remaining six samples (6/68, 8.8%, irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples.

  8. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods

    Science.gov (United States)

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-01-01

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples. PMID:26492259

  9. Acanthamoeba castellanii Induces Host Cell Death via a Phosphatidylinositol 3-Kinase-Dependent Mechanism

    Science.gov (United States)

    Sissons, James; Kim, Kwang Sik; Stins, Monique; Jayasekera, Samantha; Alsam, Selwa; Khan, Naveed Ahmed

    2005-01-01

    Granulomatous amoebic encephalitis due to Acanthamoeba castellanii is a serious human infection with fatal consequences, but it is not clear how the circulating amoebae interact with the blood-brain barrier and transmigrate into the central nervous system. We studied the effects of an Acanthamoeba encephalitis isolate belonging to the T1 genotype on human brain microvascular endothelial cells, which constitute the blood-brain barrier. Using an apoptosis-specific enzyme-linked immunosorbent assay, we showed that Acanthamoeba induces programmed cell death in brain microvascular endothelial cells. Next, we observed that Acanthamoeba specifically activates phosphatidylinositol 3-kinase. Acanthamoeba-mediated brain endothelial cell death was abolished using LY294002, a phosphatidylinositol 3-kinase inhibitor. These results were further confirmed using brain microvascular endothelial cells expressing dominant negative forms of phosphatidylinositol 3-kinase. This is the first demonstration that Acanthamoeba-mediated brain microvascular endothelial cell death is dependent on phosphatidylinositol 3-kinase. PMID:15845472

  10. Immunization with a tetramer derivative of an anti-inflammatory pentapeptide produced by Entamoeba histolytica protects gerbils (Meriones unguiculatus) against experimental amoebic abscess of the liver.

    Science.gov (United States)

    Giménez-Scherer, Juan Antonio; Cárdenas, Guadalupe; López-Osuna, Martha; Velázquez, Juan Raymundo; Rico, Guadalupe; Isibasi, Armando; Maldonado, María del Carmen; Morales, María Esther; Fernández-Diez, Jorge; Kretschmer, Roberto R

    2004-01-01

    Axenically grown Entamoeba histolytica produces a pentapeptide (Met-Gln-Cys-Asn-Ser) with several anti-inflammatory properties, including the inhibition of human monocyte locomotion (Monocyte Locomotion Inhibitory Factor (MLIF)). A construct displays the same effects as the native material. It remains to be seen if MLIF is used, or even produced in vivo by the tissue-invading parasite. If MLIF were to be relevant in invasive amoebiasis, immunizing against it could diminish this parasite advantage and prevent lesions. KLH-linked MLIF mixed with Freund's adjuvant was too aggressive an immunizing material to answer this question. However, immunization with a tetramer of MLIF (but not a scrambled version of MLIF) around a lysine core (MLIF-MAPS), that displays increased antigenicity, yet lacks excessive innate immunity activation, completely protects gerbils against amoebic abscess of the liver caused by the intraportal injection of virulent E. histolytica. Liver abscesses caused by Listeria monocytogenes were not prevented. Invasive E. histolytica may produce the parent protein of MLIF in vivo, and if appropriately cleaved, it may play a role in invasive amoebiasis. MLIF may join new vaccination strategies against amoebiasis.

  11. Tobacco-specific Carcinogen 4-(Methylnitrosoamino)-1-(3-pyridyl )-1-butanone(NNK) Activating ERK1/2 MAP Kinases and Stimulating Proliferation of Hmnan Mammary Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Cigarette smoking is correlated with the development of various cancers. 4 - (Methylnitrosoamino) -1 - ( 3 -pyridyl) -1-butanone (NNK) is one of the major tobacco-specific carcinogens in the cigarette smoke, which increases the risk of breast cancer. In the present study, it was demonstrated that NNK rapidly activated ERK1 and ERK2 MAP kinases in human normal mammary epithelial cells. It was found that there are two different routes for the activation of ERK1/2with NNK. One is from nicotinic receptor nAchR to MEK1/2, and the other is from tyrosine kinase containing receptor to MEK1/2. The tobacco-specific carcinogen NNK shows a strong proliferative effect on normal human mammary epithelial cells and cancer mammary epithelial cells.

  12. In vivo Evaluation of Two Thiazolidin-4-one Derivatives in High Sucrose Diet Fed Pre-diabetic Mice and Their Modulatory Effect on AMPK, Akt and p38 MAP Kinase in L6 Cells

    Science.gov (United States)

    Mudgal, Jayesh; Shetty, Priya; Reddy, Neetinkumar D.; Akhila, H. S.; Gourishetti, Karthik; Mathew, Geetha; Nayak, Pawan G.; Kumar, Nitesh; Kishore, Anoop; Kutty, Nampurath G.; Nandakumar, Krishnadas; Shenoy, Rekha R.; Rao, Chamallamudi M.; Joseph, Alex

    2016-01-01

    We had previously demonstrated the anti-diabetic potential and pancreatic protection of two thiazolidin-4-one derivatives containing nicotinamide moiety (NAT-1 and NAT-2) in STZ-induced diabetic mice. However, due to the limitations of the STZ model, we decided to undertake a detailed evaluation of anti-diabetic potential of the molecules on a high sucrose diet (HSD) fed diabetic mouse model. Further, in vitro mechanistic studies on the phosphorylation of AMPK, Akt and p38 MAP kinase in L6 myotubes and anti-inflammatory studies in RAW264.7 mouse monocyte macrophage cells were performed. 15 months of HSD induced fasting hyperglycaemia and impaired glucose tolerance in mice. Treatment with NAT-1 and NAT-2 (100 mg/kg) for 45 days significantly improved the glucose tolerance and lowered fasting blood glucose levels compared to untreated control. An improvement in the elevated triglycerides and total cholesterol levels, and favorable rise in HDL cholesterol were also observed with test drug treatment. Also, no major changes were observed in the liver (albumin, AST and ALT) and kidney (creatinine and urea) parameters. This was further confirmed in their respective histology profiles which revealed no gross morphological changes. In L6 cells, significant phosphorylation of Akt and p38 MAP kinase proteins were observed with 100 μM of NAT-1 and NAT-2 with no significant changes in phosphorylation of AMPK. The molecules failed to exhibit anti-inflammatory activity as observed by their effect on the generation of ROS and nitrite, and nuclear levels of NF-κB in LPS-stimulated RAW264.7 cells. In summary, the molecules activated Akt and p38 MAP kinase which could have partly contributed to their anti-hyperglycaemic and hypolipidemic activities in vivo. PMID:27790148

  13. Differential expression profiles of poplar MAP kinase kinases in response to abiotic stresses and plant hormones, and overexpression of PtMKK4 improves the drought tolerance of poplar.

    Science.gov (United States)

    Wang, Lei; Su, Hongyan; Han, Liya; Wang, Chuanqi; Sun, Yanlin; Liu, Fenghong

    2014-07-15

    Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules that play essential roles in plant growth, development and stress response. MAPK kinases (MAPKKs), which link MAPKs and MAPKK kinases (MAPKKKs), are integral in mediating various stress responses in plants. However, to date few data about the roles of poplar MAPKKs in stress signal transduction are available. In this study, we performed a systemic analysis of poplar MAPKK gene family expression profiles in response to several abiotic stresses and stress-associated hormones. Furthermore, Populus trichocarpa MAPKK4 (PtMKK4) was chosen for functional characterization. Transgenic analysis showed that overexpression of the PtMKK4 gene remarkably enhanced drought stress tolerance in the transgenic poplar plants. The PtMKK4-overexpressing plants also exhibited much lower levels of H2O2 and higher antioxidant enzyme activity after exposure to drought stress compared to the wide type lines. Besides, some drought marker genes including PtP5CS, PtSUS3, PtLTP3 and PtDREB8 exhibited higher expression levels in the transgenic lines than in the wide type under drought conditions. This study provided valuable information for understanding the putative functions of poplar MAPKKs involved in important signaling pathways under different stress conditions.

  14. Switch control pocket inhibitors of p38-MAP kinase. Durable type II inhibitors that do not require binding into the canonical ATP hinge region

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yu Mi; Clare, Michael; Ensinger, Carol L.; Hood, Molly M.; Lord, John W.; Lu, Wei-Ping; Miller, David F.; Patt, William C.; Smith, Bryan D.; Vogeti, Lakshminarayana; Kaufman, Michael D.; Petillo, Peter A.; Wise, Scott C.; Abendroth, Jan; Chun, Lawrence; Clark, Robin; Feese, Michael; Kim, Hidong; Stewart, Lance; Flynn, Daniel L. (Deciphera); (Emerald); (Cocrystal)

    2012-01-20

    Switch control pocket inhibitors of p38-alpha kinase are described. Durable type II inhibitors were designed which bind to arginines (Arg67 or Arg70) that function as key residues for mediating phospho-threonine 180 dependant conformational fluxing of p38-alpha from an inactive type II state to an active type I state. Binding to Arg70 in particular led to potent inhibitors, exemplified by DP-802, which also exhibited high kinase selectivity. Binding to Arg70 obviated the requirement for binding into the ATP Hinge region. X-ray crystallography revealed that DP-802 and analogs induce an enhanced type II conformation upon binding to either the unphosphorylated or the doubly phosphorylated form of p38-alpha kinase.

  15. Switch control pocket inhibitors of p38-MAP kinase. Durable type II inhibitors that do not require binding into the canonical ATP hinge region.

    Science.gov (United States)

    Ahn, Yu Mi; Clare, Michael; Ensinger, Carol L; Hood, Molly M; Lord, John W; Lu, Wei-Ping; Miller, David F; Patt, William C; Smith, Bryan D; Vogeti, Lakshminarayana; Kaufman, Michael D; Petillo, Peter A; Wise, Scott C; Abendroth, Jan; Chun, Lawrence; Clark, Robin; Feese, Michael; Kim, Hidong; Stewart, Lance; Flynn, Daniel L

    2010-10-01

    Switch control pocket inhibitors of p38-alpha kinase are described. Durable type II inhibitors were designed which bind to arginines (Arg67 or Arg70) that function as key residues for mediating phospho-threonine 180 dependant conformational fluxing of p38-alpha from an inactive type II state to an active type I state. Binding to Arg70 in particular led to potent inhibitors, exemplified by DP-802, which also exhibited high kinase selectivity. Binding to Arg70 obviated the requirement for binding into the ATP Hinge region. X-ray crystallography revealed that DP-802 and analogs induce an enhanced type II conformation upon binding to either the unphosphorylated or the doubly phosphorylated form of p38-alpha kinase.

  16. Morphological Findings in Trophozoites during Amoebic Abscess Development in Misoprostol-Treated BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Andrés Aceves-Cano

    2015-01-01

    Full Text Available During amoebic liver abscess (ALA formation in susceptible animals, immune response is regulated by prostaglandin E2 (PGE2 dependent mechanisms. The aim of this study was to analyze the effect of misoprostol (MPL, a PGE1 analogue, on ALA formation in BALB/c mice. Male mice from BALB/c strain were intrahepatically infected with 7.5×105 trophozoites of E. histolytica strain HM1:IMSS and treated with 10−4 M of MPL daily until sacrifice at 2, 4, and 7 days postinfection (p.i.. ALA formation was evaluated at 2, 4, and 7 days postinfection; trophozoite morphology was analyzed using immunohistochemistry and image analysis. Results showed an increase in frequency of ALA formation in infected and MPL-treated mice only at 2 days p.i. (P=0.03. A significant diminution in the size of trophozoites was detected in abscesses from mice independently of MPL treatment (from 5.8±1.1 µm at 2 days p.i. to 2.7±1.9 µm at 7 days p.i. compared with trophozoites dimensions observed in susceptible hamsters (9.6±2.7 µm (P<0.01. These results suggest that MPL treatment may modify the adequate control of inflammatory process to allow the persistence of trophozoites in the liver; however, natural resistance mechanisms cannot be discarded.

  17. Characterization of Naegleria fowleri strains isolated from human cases of primary amoebic meningoencephalitis in Mexico.

    Science.gov (United States)

    Cervantes-Sandoval, Isaac; de Serrano-Luna, José Jesús; Tapia-Malagón, José Luis; Pacheco-Yépez, Judith; Silva-Olivares, Angélica; Galindo-Gómez, Silvia; Tsutsumi, Victor; Shibayama, Mineko

    2007-01-01

    The protozoon Naegleria fowleri (N. fowleri) is a free-living amoeba that produces primary amoebic meningoencephalitis (PAM), which is an acute and frequently fatal infection of the central nervous system. We characterized the strains of N. fowleri isolated from the cerebrospinal fluid (CSF) of two cases presented in northwestern Mexico. The strains were isolated and cultured in 2% bactocasitone medium. Enflagellation assays, ultrastructural analysis, protein and protease electrophoresis patterns, and PCR were performed as confirmatory tests. Virulence tests were done using in Balb/c mice. Light microscopy analysis of brain tissue showed amoebae with abundant inflammatory reaction and extensive necrotic and hemorrhagic areas. The enflagellation assay was positive and the electron microscopy showed trophozoites with morphologic features typical of the genus. Protein and protease profiles of the isolated strains were identical to the reference strain. Finally, a 1500-bp PCR product was found in all three strains. Based on all the analyses performed, we concluded that the etiologic agent of both PAM cases was N. fowleri. The need for better epidemiological information and educational programs about basic clinical and pathological aspects of free-living amoebae provided by the health authorities are emphasized.

  18. Lipid composition of multilamellar bodies secreted by Dictyostelium discoideum reveals their amoebal origin.

    Science.gov (United States)

    Paquet, Valérie E; Lessire, René; Domergue, Frédéric; Fouillen, Laetitia; Filion, Geneviève; Sedighi, Ahmadreza; Charette, Steve J

    2013-10-01

    When they are fed with bacteria, Dictyostelium discoideum amoebae produce and secrete multilamellar bodies (MLBs), which are composed of membranous material. It has been proposed that MLBs are a waste disposal system that allows D. discoideum to eliminate undigested bacterial remains. However, the real function of MLBs remains unknown. Determination of the biochemical composition of MLBs, especially lipids, represents a way to gain information about the role of these structures. To allow these analyses, a protocol involving various centrifugation procedures has been developed to purify secreted MLBs from amoeba-bacterium cocultures. The purity of the MLB preparation was confirmed by transmission electron microscopy and by immunofluorescence using H36, an antibody that binds to MLBs. The lipid and fatty acid compositions of pure MLBs were then analyzed by high-performance thin-layer chromatography (HPTLC) and gas chromatography (GC), respectively, and compared to those of amoebae as well as bacteria used as a food source. While the bacteria were devoid of phosphatidylcholine (PC) and phosphatidylinositol (PI), these two polar lipid species were major classes of lipids in MLBs and amoebae. Similarly, the fatty acid composition of MLBs and amoebae was characterized by the presence of polyunsaturated fatty acids, while cyclic fatty acids were found only in bacteria. These results strongly suggest that the lipids constituting the MLBs originate from the amoebal metabolism rather than from undigested bacterial membranes. This opens the possibility that MLBs, instead of being a waste disposal system, have unsuspected roles in D. discoideum physiology.

  19. Chromosomal mapping and mutational analysis of the coding region of the glycogen synthase kinase-3alpha and beta isoforms in patients with NIDDM

    DEFF Research Database (Denmark)

    Hansen, L; Arden, K C; Rasmussen, S B;

    1997-01-01

    Activation of glycogen synthesis in skeletal muscle in response to insulin results from the combined inactivation of glycogen synthase kinase-3 (GSK-3) and activation of the protein phosphatase-1, changing the ratio between the inactive phosphorylated state of the glycogen synthase to the active ...

  20. The NO-cGMP-PKG Signaling Pathway Regulates Synaptic Plasticity and Fear Memory Consolidation in the Lateral Amygdala via Activation of ERK/MAP Kinase

    Science.gov (United States)

    Ota, Kristie T.; Pierre, Vicki J.; Ploski, Jonathan E.; Queen, Kaila; Schafe, Glenn E.

    2008-01-01

    Recent studies have shown that nitric oxide (NO) signaling plays a crucial role in memory consolidation of Pavlovian fear conditioning and in synaptic plasticity in the lateral amygdala (LA). In the present experiments, we examined the role of the cGMP-dependent protein kinase (PKG), a downstream effector of NO, in fear memory consolidation and…

  1. Pseudomonas aeruginosa pyocyanin activates NRF2-ARE-mediated transcriptional response via the ROS-EGFR-PI3K-AKT/MEK-ERK MAP kinase signaling in pulmonary epithelial cells.

    Science.gov (United States)

    Xu, Ying; Duan, Chaohui; Kuang, Zhizhou; Hao, Yonghua; Jeffries, Jayme L; Lau, Gee W

    2013-01-01

    The redox-active pyocyanin (PCN) secreted by the respiratory pathogen Pseudomonas aeruginosa generates reactive oxygen species (ROS) and causes oxidative stress to pulmonary epithelial cells. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) confers protection against ROS-mediated cell death by inducing the expression of detoxifying enzymes and proteins via its binding to the cis-acting antioxidant response element (ARE). However, a clear relationship between NRF2 and PCN-mediated oxidative stress has not been established experimentally. In this study, we investigated the induction of NRF2-ARE response by PCN in the pulmonary epithelial cells. We analyzed the effect of PCN on NRF2 expression and nuclear translocation in cultured human airway epithelial cells, and in a mouse model of chronic PCN exposure. NRF2-dependent transcription of antioxidative enzymes was also assessed. Furthermore, we used inhibitors to examine the involvement of EGFR and its downstream signaling components that mediate NRF2-ARE-activation in response to PCN. PCN enhances the nuclear NRF2 accumulation and activates the transcription of ARE-mediated antioxidant genes. Furthermore, PCN activates NRF2 by inducing the EGFR-phosphoinositide-3-kinase (PI3K) signaling pathway and its main downstream effectors, AKT and MEK1/2-ERK1/2 MAP kinases. Inhibition of the EGFR-PI3K signaling markedly attenuates PCN-stimulated NRF2 accumulation in the nucleus. We demonstrate for the first time that PCN-mediated oxidative stress activates the EGFR-PI3K-AKT/MEK1/2-ERK1/2 MAP kinase signaling pathway, leading to nuclear NRF2 translocation and ARE responsiveness in pulmonary epithelial cells.

  2. Long-term survival and virulence of Mycobacterium leprae in amoebal cysts.

    Directory of Open Access Journals (Sweden)

    William H Wheat

    2014-12-01

    Full Text Available Leprosy is a curable neglected disease of humans caused by Mycobacterium leprae that affects the skin and peripheral nerves and manifests clinically in various forms ranging from self-resolving, tuberculoid leprosy to lepromatous leprosy having significant pathology with ensuing disfiguration disability and social stigma. Despite the global success of multi-drug therapy (MDT, incidences of clinical leprosy have been observed in individuals with no apparent exposure to other cases, suggestive of possible non-human sources of the bacteria. In this study we show that common free-living amoebae (FLA can phagocytose M. leprae, and allow the bacillus to remain viable for up to 8 months within amoebic cysts. Viable bacilli were extracted from separate encysted cocultures comprising three common Acanthamoeba spp.: A. lenticulata, A. castellanii, and A. polyphaga and two strains of Hartmannella vermiformis. Trophozoites of these common FLA take up M. leprae by phagocytosis. M. leprae from infected trophozoites induced to encyst for long-term storage of the bacilli emerged viable by assessment of membrane integrity. The majority (80% of mice that were injected with bacilli extracted from 35 day cocultures of encysted/excysted A. castellanii and A. polyphaga showed lesion development that was similar to mice challenged with fresh M. leprae from passage mice albeit at a slower initial rate. Mice challenged with coculture-extracted bacilli showed evidence of acid-fast bacteria and positive PCR signal for M. leprae. These data support the conclusion that M. leprae can remain viable long-term in environmentally ubiquitous FLA and retain virulence as assessed in the nu/nu mouse model. Additionally, this work supports the idea that M. leprae might be sustained in the environment between hosts in FLA and such residence in FLA may provide a macrophage-like niche contributing to the higher-than-expected rate of leprosy transmission despite a significant decrease in

  3. Nuclease Activity of Legionella pneumophila Cas2 Promotes Intracellular Infection of Amoebal Host Cells

    Science.gov (United States)

    Gunderson, Felizza F.; Mallama, Celeste A.; Fairbairn, Stephanie G.

    2014-01-01

    Legionella pneumophila, the primary agent of Legionnaires' disease, flourishes in both natural and man-made environments by growing in a wide variety of aquatic amoebae. Recently, we determined that the Cas2 protein of L. pneumophila promotes intracellular infection of Acanthamoeba castellanii and Hartmannella vermiformis, the two amoebae most commonly linked to cases of disease. The Cas2 family of proteins is best known for its role in the bacterial and archeal clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) system that constitutes a form of adaptive immunity against phage and plasmid. However, the infection event mediated by L. pneumophila Cas2 appeared to be distinct from this function, because cas2 mutants exhibited infectivity defects in the absence of added phage or plasmid and since mutants lacking the CRISPR array or any one of the other cas genes were not impaired in infection ability. We now report that the Cas2 protein of L. pneumophila has both RNase and DNase activities, with the RNase activity being more pronounced. By characterizing a catalytically deficient version of Cas2, we determined that nuclease activity is critical for promoting infection of amoebae. Also, introduction of Cas2, but not its catalytic mutant form, into a strain of L. pneumophila that naturally lacks a CRISPR-Cas locus caused that strain to be 40- to 80-fold more infective for amoebae, unequivocally demonstrating that Cas2 facilitates the infection process independently of any other component encoded within the CRISPR-Cas locus. Finally, a cas2 mutant was impaired for infection of Willaertia magna but not Naegleria lovaniensis, suggesting that Cas2 promotes infection of most but not all amoebal hosts. PMID:25547789

  4. Experimental amoebic liver abscess in hamsters caused by trophozoites of a Brazilian strain of Entamoeba dispar.

    Science.gov (United States)

    Guzmán-Silva, Maria Angélica; Santos, Helena Lúcia Carneiro; Peralta, Regina Saramago; Peralta, José Mauro; de Macedo, Heloisa Werneck

    2013-05-01

    It has been claimed that amoebic molecules such as amoebapore, galactose/N-acetyl galactosamine inhibitable lectin, and cysteine proteases are responsible for host tissue destruction and are present in both pathogenic Entamoeba histolytica and non-pathogenic Entamoeba dispar. Some reports have provided evidence that after infection with E. dispar, pathological changes may occur in some humans. The aim of this study was to evaluate E. dispar pathogenicity by comparing it to the pathogenicity of E. histolytica through liver abscesses induced in hamsters. Syrian golden hamsters were challenged by intrahepatic inoculation with the 03C E. dispar strain or with two strains of E. histolytica (HM1:IMSS and EGG) to compare their virulence grades. As control groups, we used bacterial flora and Pavlova's modified medium. Lesions were verified at 1, 3 and 6 days after inoculation. Multiplex Polymerase Chain Reaction was performed to characterize each strain using EdP1/EdP2 and EhP1/EhP2 primers. The EGG and HM1:IMSS E. histolytica strains and 03C E. dispar were able to cause liver lesions. The EGG strain caused extensive hepatic abscesses, and trophozoites were found in the lesions throughout the three periods of study. The HM1:IMSS strain caused smaller abscesses when compared to EGG lesions; however, trophozoites were observed at 1 and 3 days after inoculation. The 03C E. dispar strain caused intermediate abscesses when compared to the others; trophozoites were observed in all periods analyzed. The EGG strain caused progressive evolution of the injury, which differed from the HM1:IMSS and 03C strains. These results strongly suggest that the 03C E. dispar strain is pathogenic in the experimental hamster model. Additional studies are necessary to identify potential factors that regulate the manifestation of virulence of this strain and others.

  5. Reevaluation of an Acanthamoeba Molecular Diagnostic Algorithm following an Atypical Case of Amoebic Keratitis.

    Science.gov (United States)

    Lau, Rachel; Cunanan, Marlou; Jackson, Jonathan; Ali, Ibne Karim M; Chong-Kit, Ann; Gasgas, Jason; Tian, Jinfang; Ralevski, Filip; Boggild, Andrea K

    2015-10-01

    Amoebic keratitis (AK) is a potentially blinding infection, the prompt diagnosis of which is essential for limiting ocular morbidity. We undertook a quality improvement initiative with respect to the molecular detection of acanthamoebae in our laboratory because of an unusual case of discordance. Nine ATCC strains of Acanthamoeba and 40 delinked, biobanked, surplus corneal scraping specimens were analyzed for the presence of acanthamoebae with four separate real-time PCR assays. The assay used by the Free-Living and Intestinal Amebas Laboratory of the CDC was considered the reference standard, and the performance characteristics of each individual assay and pairs of assays were calculated. Outcome measures were sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Of 49 included specimens, 14 (28.6%) were positive by the gold standard assay, and 35 (71.4%) were negative. The sensitivities of the individual assays ranged from 64.3% to 92.9%, compared to the gold standard, while the specificities ranged from 88.6% to 91.4%. The PPVs and NPVs ranged from 69.2% to 78.6% and from 86.1% to 96.9%, respectively. Combinations of assay pairs led to improved performance, with sensitivities ranging from 92.9% to 100% and specificities ranging from 97.1% to 100%. ATCC and clinical strains of Acanthamoeba that failed to be detected by certain individual assays included Acanthamoeba castellanii, Acanthamoeba culbertsoni, and Acanthamoeba lenticulata. For three clinical specimens, false negativity of the gold standard assay could not be excluded. Molecular diagnostic approaches, especially combinations of highly sensitive and specific assays, offer a reasonably performing, operator-independent, rapid strategy for the detection of acanthamoebae in clinical specimens and are likely to be more practical than either culture or direct microscopic detection.

  6. Entamoeba histolytica calreticulin: an endoplasmic reticulum protein expressed by trophozoites into experimentally induced amoebic liver abscesses.

    Science.gov (United States)

    González, Enrique; de Leon, Maria del Carmen García; Meza, Isaura; Ocadiz-Delgado, Rodolfo; Gariglio, Patricio; Silva-Olivares, Angelica; Galindo-Gómez, Silvia; Shibayama, Mineko; Morán, Patricia; Valadez, Alicia; Limón, Angelica; Rojas, Liliana; Hernández, Eric G; Cerritos, René; Ximenez, Cecilia

    2011-02-01

    Entamoeba histolytica calreticulin (EhCRT) is remarkably immunogenic in humans (90-100% of invasive amoebiasis patients). Nevertheless, the study of calreticulin in this protozoan is still in its early stages. The exact location, biological functions, and its role in pathogenesis are yet to be fully understood. The aim of the present work is to determine the location of EhCRT in virulent trophozoites in vivo and the expression of the Ehcrt gene during the development of experimentally induced amoebic liver abscesses (ALA) in hamsters. Antibodies against recombinant EhCRT were used for the immunolocalization of EhCRT in trophozoites through confocal microscopy; immunohistochemical assays were also performed on tissue sections of ALAs at different times after intrahepatic inoculation. The expression of the Ehcrt gene during the development of ALA was estimated through both in situ RT-PCR and real-time RT-PCR. Confocal assays of virulent trophozoites showed a distribution of EhCRT in the cytoplasmic vesicles of different sizes. Apparently, EhCRT is not exported into the hepatic tissue. Real-time RT-PCR demonstrated an over-expression of the Ehcrt gene at 30 min after trophozoite inoculation, reaching a peak at 1-2 h; thereafter, the expression fell sharply to its original levels. These results demonstrate for the first time in an in vivo model of ALA, the expression of Ehcrt gene in E. histolytica trophozoites and add evidence that support CRT as a resident protein of the ER in E. histolytica species. The in vivo experiments suggest that CRT may play an important role during the early stages of the host-parasite relationship, when the parasite is adapting to a new environment, although the protein seems to be constitutively synthesized. Moreover, trophozoites apparently do not export EhCRT into the hepatic tissue in ALA.

  7. Pathogenesis of amoebic encephalitis: Are the amoebae being credited to an 'inside job' done by the host immune response?

    Science.gov (United States)

    Baig, Abdul Mannan

    2015-08-01

    Pathogenic free living amoeba like Naegleria fowleri, Acanthamoeba spp., and Balamuthia mandrillaris are known to cause fatal "amoebic meningoencephalitis" by acquiring different route of entries to the brain. The host immune response to these protist pathogens differs from each another, as evidenced by the postmortem gross and microscopic findings from the brains of the affected patients. Cited with the expression of 'brain eating amoeba' when the infection is caused by N. fowleri, this expression is making its way into parasitology journals and books. The impression that it imparts is, as if the brain damage is substantially due to the enzymes and toxins produced by this amoeba. A detailed review of the literature, analysis of archived specimens and with our experimental assays, here we establish that with N. fowleri, Acanthamoeba and Balamuthia spp., the infections result in an extensive brain damage that in fact is substantially caused by the host immune response rather than the amoeba. Due to the comparatively larger sizes of these pathogens and the prior exposure of the amoebal antigen to the human body, the host immune system launches an amplified response that not only breaches the blood brain barrier (BBB), but also becomes the major cause of brain damage in Amoebic meningoencephalitis. It is our understanding that for N. fowleri the host immune response is dominated by acute inflammatory cytokines and that, in cases of Acanthamoeba and Balamuthia spp., it is the type IV hypersensitivity reaction that fundamentally not only contributes to disruption and leakiness of the blood brain barrier (BBB) but also causes the neuronal damage. The further intensification of brain damage is done by toxins and enzymes secreted by the amoeba, which causes the irreversible brain damage.

  8. Design, synthesis, and characterization of a highly effective Hog1 inhibitor: a powerful tool for analyzing MAP kinase signaling in yeast.

    Directory of Open Access Journals (Sweden)

    Peter Dinér

    Full Text Available The Saccharomyces cerevisiae High-Osmolarity Glycerol (HOG pathway is a conserved mitogen-activated protein kinase (MAPK signal transduction system that often serves as a model to analyze systems level properties of MAPK signaling. Hog1, the MAPK of the HOG-pathway, can be activated by various environmental cues and it controls transcription, translation, transport, and cell cycle adaptations in response to stress conditions. A powerful means to study signaling in living cells is to use kinase inhibitors; however, no inhibitor targeting wild-type Hog1 exists to date. Herein, we describe the design, synthesis, and biological application of small molecule inhibitors that are cell-permeable, fast-acting, and highly efficient against wild-type Hog1. These compounds are potent inhibitors of Hog1 kinase activity both in vitro and in vivo. Next, we use these novel inhibitors to pinpoint the time of Hog1 action during recovery from G(1 checkpoint arrest, providing further evidence for a specific role of Hog1 in regulating cell cycle resumption during arsenite stress. Hence, we describe a novel tool for chemical genetic analysis of MAPK signaling and provide novel insights into Hog1 action.

  9. Paroxetine-induced apoptosis in human osteosarcoma cells: Activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca2+]i elevation

    International Nuclear Information System (INIS)

    Selective serotonin reuptake inhibitors (SSRIs), a group of antidepressants, are generally used for treatment of various mood and anxiety disorders. There has been much research showing the anti-tumor and cytotoxic activities of some antidepressants; but the detailed mechanisms were unclear. In cultured human osteosarcoma cells (MG63), paroxetine reduced cell viability in a concentration- and time-dependent manner. Paroxetine caused apoptosis as assessed by propidium iodide-stained cells and increased caspase-3 activation. Although immunoblotting data revealed that paroxetine could activate the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), only SB203580 (a p38 MAPK inhibitor) partially prevented cells from apoptosis. Paroxetine also induced [Ca2+]i increases which involved the mobilization of intracellular Ca2+ stored in the endoplasmic reticulum and Ca2+ influx from extracellular medium. However, pretreatment with BAPTA/AM, a Ca2+ chelator, to prevent paroxetine-induced [Ca2+]i increases did not protect cells from death. The results suggest that in MG63 cells, paroxetine caused Ca2+-independent apoptosis via inducing p38 MAPK-associated caspase-3 activation

  10. Detection of Entamoeba histolytica DNA in the Saliva of Amoebic Liver Abscess Patients Who Received Prior Treatment with Metronidazole

    OpenAIRE

    Khairnar, Krishna; Parija, Subhash Chandra

    2008-01-01

    Saliva is an easily-accessible and a non-invasive clinical specimen alternate to blood and liver pus. An attempt was made to detect Entamoeba histolytica DNA released in the saliva of amoebic liver abscess (ALA) patients by applying 16S-like rRNA gene-based nested multiplex polymerase chain reaction (NM-PCR). The NM-PCR detected E. histolytica DNA in the saliva of eight (28.6%) of 28 ALA patients. The NM-PCR result was negative for E. histolytica DNA in the saliva of all the eight ALA patient...

  11. Casein kinases

    DEFF Research Database (Denmark)

    Issinger, O G

    1993-01-01

    , no genetic changes are necessarily involved; the observed changes may be entirely due to a signal transduction pathway where CK-2 could be phosphorylated by another kinase(s). CK-2 cDNAs from various organisms have been isolated and characterized. From the deduced amino acid sequence it turns out that CK-2......-specific expression of CK-2 at the mRNA and at the protein level has also been given attention. The fact that the enzyme activity is surprisingly high in brain and low in heart and lung may be indicative of involvement of CK-2 in processes other than proliferation.(ABSTRACT TRUNCATED AT 400 WORDS)...

  12. The wavy Mutation Maps to the Inositol 1,4,5-Trisphosphate 3-Kinase 2 (IP3K2) Gene of Drosophila and Interacts with IP3R to Affect Wing Development.

    Science.gov (United States)

    Dean, Derek M; Maroja, Luana S; Cottrill, Sarah; Bomkamp, Brent E; Westervelt, Kathleen A; Deitcher, David L

    2016-02-01

    Inositol 1,4,5-trisphosphate (IP3) regulates a host of biological processes from egg activation to cell death. When IP3-specific receptors (IP3Rs) bind to IP3, they release calcium from the ER into the cytoplasm, triggering a variety of cell type- and developmental stage-specific responses. Alternatively, inositol polyphosphate kinases can phosphorylate IP3; this limits IP3R activation by reducing IP3 levels, and also generates new signaling molecules altogether. These divergent pathways draw from the same IP3 pool yet cause very different cellular responses. Therefore, controlling the relative rates of IP3R activation vs. phosphorylation of IP3 is essential for proper cell functioning. Establishing a model system that sensitively reports the net output of IP3 signaling is crucial for identifying the controlling genes. Here we report that mutant alleles of wavy (wy), a classic locus of the fruit fly Drosophila melanogaster, map to IP3 3-kinase 2 (IP3K2), a member of the inositol polyphosphate kinase gene family. Mutations in wy disrupt wing structure in a highly specific pattern. RNAi experiments using GAL4 and GAL80(ts) indicated that IP3K2 function is required in the wing discs of early pupae for normal wing development. Gradations in the severity of the wy phenotype provide high-resolution readouts of IP3K2 function and of overall IP3 signaling, giving this system strong potential as a model for further study of the IP3 signaling network. In proof of concept, a dominant modifier screen revealed that mutations in IP3R strongly suppress the wy phenotype, suggesting that the wy phenotype results from reduced IP4 levels, and/or excessive IP3R signaling. PMID:26613949

  13. Inhibitory effects of pentosan polysulfate sodium on MAP-kinase pathway and NF-κB nuclear translocation in canine chondrocytes in vitro.

    Science.gov (United States)

    Sunaga, Takafumi; Oh, Namgil; Hosoya, Kenji; Takagi, Satoshi; Okumura, Masahiro

    2012-06-01

    Pentosan polysulfate sodium (PPS) has a heparin-like structure and is purificated from the plant of European beech wood. PPS has been used for the treatment of interstitial cystitis for human patients. Recent years, it was newly recognised that PPS reduce pain and inflammation of OA. The molecular biological mechanism of PPS to express its clinical effects is not fully understood. The purpose of the present study is to investigate a mechanism of action of PPS on inflammatory reaction of chondrocytes in vitro. It was evaluated that effects of PPS on interleukin (IL)-1β-induced phosphorylation of mitogen-actiated protein kinases (MAPKs), such as p38, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), nuclear translocation of nuclear factor-kappa B (NF-κB), and matrix metalloproteinase (MMP)-3 production in cultured articular chondrocytes. As a result, in the presence of PPS existence, IL-1β-induced phosphorylation of p38 and ERK were certainly inhibited, while JNK phosphorylation was not affected. Nuclear translocation of NF-κB and MMP-3 production were suppressed by PPS pretreatment prior to IL-1β stimulation. In conclusion, it is strongly suggested that PPS treatment prevents inflammatory intracellular responses induced by IL-1 β through inhibition of phosphorylation of certain MAPKs, p38 and ERK and then nuclear translocation of NF-κB in cultured chondrocytes. These PPS properties may contribute to suppressive consequence of catabolic MMP-3 synthesis. These data might translate the clinical efficacy as PPS treatment could inhibit the cartilage catabolism and related clinical symptoms of OA in dogs.

  14. Detection of Entamoeba histolytica DNA in the saliva of amoebic liver abscess patients who received prior treatment with metronidazole.

    Science.gov (United States)

    Khairnar, Krishna; Parija, Subhash Chandra

    2008-12-01

    Saliva is an easily-accessible and a non-invasive clinical specimen alternate to blood and liver pus. An attempt was made to detect Entamoeba histolytica DNA released in the saliva of amoebic liver abscess (ALA) patients by applying 16S-like rRNA gene-based nested multiplex polymerase chain reaction (NM-PCR). The NM-PCR detected E. histolytica DNA in the saliva of eight (28.6%) of 28 ALA patients. The NM-PCR result was negative for E. histolytica DNA in the saliva of all the eight ALA patients who were tested prior to treatment with metronidazole but was positive in the saliva of eight (40%) of 20 ALA patient who were tested after therapy with metronidazole. The NM-PCR detected E. histolytica DNA in liver abscess pus of all 28 (100%) patients with ALA. The TechLab E. histolytica II enzyme-linked immunosorbent assay was positive for E. histolytica Gal/GalNAc lectin antigen in the liver abscess pus of 13 (46.4%) of the 28 ALA patients. The indirect haemagglutination (IHA) test was positive for anti-amoebic antibodies in the serum of 22 (78.6%) of the 28 ALA patients and 2 (5.7%) of 35 healthy controls. The present study, for the first time, demonstrates the release of E. histolytica DNA in the saliva of ALA patients by applying NM-PCR. PMID:19069620

  15. The mitochondrial genome and a 60-kb nuclear DNA segment from Naegleria fowleri, the causative agent of primary amoebic meningoencephalitis.

    Science.gov (United States)

    Herman, Emily K; Greninger, Alexander L; Visvesvara, Govinda S; Marciano-Cabral, Francine; Dacks, Joel B; Chiu, Charles Y

    2013-01-01

    Naegleria fowleri is a unicellular eukaryote causing primary amoebic meningoencephalitis, a neuropathic disease killing 99% of those infected, usually within 7-14 days. Naegleria fowleri is found globally in regions including the US and Australia. The genome of the related nonpathogenic species Naegleria gruberi has been sequenced, but the genetic basis for N. fowleri pathogenicity is unclear. To generate such insight, we sequenced and assembled the mitochondrial genome and a 60-kb segment of nuclear genome from N. fowleri. The mitochondrial genome is highly similar to its counterpart in N. gruberi in gene complement and organization, while distinct lack of synteny is observed for the nuclear segments. Even in this short (60-kb) segment, we identified examples of potential factors for pathogenesis, including ten novel N. fowleri-specific genes. We also identified a homolog of cathepsin B; proteases proposed to be involved in the pathogenesis of diverse eukaryotic pathogens, including N. fowleri. Finally, we demonstrate a likely case of horizontal gene transfer between N. fowleri and two unrelated amoebae, one of which causes granulomatous amoebic encephalitis. This initial look into the N. fowleri nuclear genome has revealed several examples of potential pathogenesis factors, improving our understanding of a neglected pathogen of increasing global importance.

  16. Detection of Free-Living Amoebae Using Amoebal Enrichment in a Wastewater Treatment Plant of Gauteng Province, South Africa

    Directory of Open Access Journals (Sweden)

    P. Muchesa

    2014-01-01

    Full Text Available Free-living amoebae pose a potential health risk in water systems as they may be pathogenic and harbor potential pathogenic bacteria known as amoebae resistant bacteria. Free-living amoebae were observed in 150 (87.2% of the environmental water samples. In particular, Acanthamoeba sp. was identified in 22 (12.8% using amoebal enrichment and confirmed by molecular analysis. FLA were isolated in all 8 stages of the wastewater treatment plant using the amoebal enrichment technique. A total of 16 (9.3% samples were positive for FLA from influent, 20 (11.6% from bioreactor feed, 16 (9.3% from anaerobic zone, 16 (9.3% from anoxic zone, 32 (18.6% from aerators, 16 (9.3% from bioreactor effluent, 11 (6.4% from bioreactor final effluent, and 45 (26.2% from maturation pond. This study provides baseline information on the occurrence of amoebae in wastewater treatment plant. This has health implications on receiving water bodies as some FLA are pathogenic and are also involved in the transmission and dissemination of pathogenic bacteria.

  17. Detection of free-living amoebae using amoebal enrichment in a wastewater treatment plant of Gauteng Province, South Africa.

    Science.gov (United States)

    Muchesa, P; Mwamba, O; Barnard, T G; Bartie, C

    2014-01-01

    Free-living amoebae pose a potential health risk in water systems as they may be pathogenic and harbor potential pathogenic bacteria known as amoebae resistant bacteria. Free-living amoebae were observed in 150 (87.2%) of the environmental water samples. In particular, Acanthamoeba sp. was identified in 22 (12.8%) using amoebal enrichment and confirmed by molecular analysis. FLA were isolated in all 8 stages of the wastewater treatment plant using the amoebal enrichment technique. A total of 16 (9.3%) samples were positive for FLA from influent, 20 (11.6%) from bioreactor feed, 16 (9.3%) from anaerobic zone, 16 (9.3%) from anoxic zone, 32 (18.6%) from aerators, 16 (9.3%) from bioreactor effluent, 11 (6.4%) from bioreactor final effluent, and 45 (26.2%) from maturation pond. This study provides baseline information on the occurrence of amoebae in wastewater treatment plant. This has health implications on receiving water bodies as some FLA are pathogenic and are also involved in the transmission and dissemination of pathogenic bacteria.

  18. Growth of Entamoeba invadens in sediments with metabolically repressed bacteria leads to multicellularity and redefinition of the amoebic cell system.

    Science.gov (United States)

    Niculescu, Vladimir F

    2013-01-01

    Extracellular signaling and mechanisms of cell differentiation in Entamoeba are misunderstood. The main reason is the popular use of axenic media, which do not correspond to the natural habitats of Entamoeba. The axenic environment lacks the exogenous activators and repressors provided by natural habitats. Absent bacterial commensals understanding of the development of the amoebic cell system remains deficient. The present Aa(Sm) culture method using mixed sediments of antibiotically repressed Aerobacter aerogens and amoebae was developed to model in vitro extracellular signaling that induce multicellularity in cultures of E. invadens. Repressed oxygen consuming sediment bacteria supply E. invadens the hypoxic environment needed for differentiation and development. The amoebae themselves alter the environment by consuming the bacteria by phagocytosis thus reversing hypoxia. Exogenous activators are in this manner down regulated and suppressed. This feedback effect controls amoebic development and differentiation. Co-existing cell types and cell fractions with different life spans and cell cycle length could be identified. Aa(Sm) long term cultures contain continuous and non-continuous self renewing cell lines producing quiescent and terminally differentiated daughter cells (precysts) by asymmetric division. This culturing method helps to understand the intimate relationship between hypoxic environments and the multicellular behaviour of E. invadens and the interrelations existing between the distinct cell types.

  19. Discovery of 4-(5-(Cyclopropylcarbamoyl)-2-methylphenylamino)-5-methyl-N-propylpyrrolo[1,2-f][1,2,4]triazine-6-carboxamide (BMS-582949), a Clinical p38[alpha] MAP Kinase Inhibitor for the Treatment of Inflammatory Diseases

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chunjian; Lin, James; Wrobleski, Stephen T.; Lin, Shuqun; Hynes, Jr., John; Wu, Hong; Dyckman, Alaric J.; Li, Tianle; Wityak, John; Gillooly, Kathleen M.; Pitt, Sidney; Shen, Ding Ren; Zhang, Rosemary F.; McIntyre, Kim W.; Salter-Cid, Luisa; Shuster, David J.; Zhang, Hongjian; Marathe, Punit H.; Doweyko, Arthur M.; Sack, John S.; Kiefer, Susan E.; Kish, Kevin F.; Newitt, John A.; McKinnon, Murray; Dodd, John H.; Barrish, Joel C.; Schieven, Gary L.; Leftheris, Katerina (BMS)

    2013-11-20

    The discovery and characterization of 7k (BMS-582949), a highly selective p38{alpha} MAP kinase inhibitor that is currently in phase II clinical trials for the treatment of rheumatoid arthritis, is described. A key to the discovery was the rational substitution of N-cyclopropyl for N-methoxy in 1a, a previously reported clinical candidate p38{alpha} inhibitor. Unlike alkyl and other cycloalkyls, the sp{sup 2} character of the cyclopropyl group can confer improved H-bonding characteristics to the directly substituted amide NH. Inhibitor 7k is slightly less active than 1a in the p38{alpha} enzymatic assay but displays a superior pharmacokinetic profile and, as such, was more effective in both the acute murine model of inflammation and pseudoestablished rat AA model. The binding mode of 7k with p38{alpha} was confirmed by X-ray crystallographic analysis.

  20. A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission.

    Science.gov (United States)

    Bardwell, A J; Flatauer, L J; Matsukuma, K; Thorner, J; Bardwell, L

    2001-03-30

    The recognition of mitogen-activated protein kinases (MAPKs) by their upstream activators, MAPK/ERK kinases (MEKs), is crucial for the effective and accurate transmission of many signals. We demonstrated previously that the yeast MAPKs Kss1 and Fus3 bind with high affinity to the N terminus of the MEK Ste7, and proposed that a conserved motif in Ste7, the MAPK-docking site, mediates this interaction. Here we show that the corresponding sequences in human MEK1 and MEK2 are necessary and sufficient for the direct binding of the MAPKs ERK1 and ERK2. Mutations in MEK1, MEK2, or Ste7 that altered conserved residues in the docking site diminished binding of the cognate MAPKs. Furthermore, short peptides corresponding to the docking sites in these MEKs inhibited MEK1-mediated phosphorylation of ERK2 in vitro. In yeast cells, docking-defective alleles of Ste7 were modestly compromised in their ability to transmit the mating pheromone signal. This deficiency was dramatically enhanced when the ability of the Ste5 scaffold protein to associate with components of the MAPK cascade was also compromised. Thus, both the MEK-MAPK docking interaction and binding to the Ste5 scaffold make mutually reinforcing contributions to the efficiency of signaling by this MAPK cascade in vivo. PMID:11134045

  1. Efficacy of hand held, inexpensive UV light sources on Acanthamoeba, causative organism in amoebic keratitis

    Directory of Open Access Journals (Sweden)

    Ivan Cometa

    2010-01-01

    /protocols might capitalize on this synergistic action.Keywords: UV light sources, amoebic keratitis, MPS

  2. Fluoride-induced IL-8 release in human epithelial lung cells: Relationship to EGF-receptor-, SRC- and MAP-kinase activation

    International Nuclear Information System (INIS)

    Exposure of human epithelial lung cells to fluorides is known to induce a marked increase in the release of interleukin (IL)-8, a chemokine involved in neutrophil recruitment. In the present study, the involvement of mitogen-activating protein kinases (MAPKs), the role of upstream activation of Src family kinases (SFKs), epidermal growth factor receptor (EGFR) activation and the interrelationships between these pathways in fluoride-induced IL-8 were examined in a human epithelial lung cell line (A549). Sodium fluoride strongly activated MAPK, in particular JNK1/2 and p38. The ERK1/2-inhibitor PD98059, the p38-inhibitor SB202190 and the JNK1/2-inhibitor SP600125 partially inhibited the fluoride-induced IL-8 response. Combinations of these inhibitors reduced the responses nearly to basal levels. Treatment with siRNA against JNK2 also reduced the IL-8 response to fluoride. Furthermore, fluoride activated SFKs, which was abolished by the SFK-inhibitor PP2. PP2 substantially inhibited the increased levels of IL-8, and partially reduced the fluoride-induced activation of ERK1/2, p38 and JNK1/2. Fluoride exposure also led to a phosphorylation of the EGFR, that was partially inhibited by PP2. AG1478, an EGFR-inhibitor, partially reduced the fluoride-induced IL-8 response and the phosphorylation of JNK1/2 and ERK1/2, but less the phosphorylation of p38. The effects of AG1478 were less than that of PP2. In conclusion, our findings suggest that the fluoride-induced IL-8 release involves the combined activation of ERK1/2, JNK1/2 and p38, and that the phosphorylation of these kinases, and in particular JNK1/2 and ERK1/2, partly, is mediated via a SFK-dependent EGFR-linked pathway. SFK-dependent, but EGFR-independent mechanisms seem important, and especially for phosphorylation of p38

  3. The Role of Mitogen-Activated Protein (MAP Kinase Signaling Components in the Fungal Development, Stress Response and Virulence of the Fungal Cereal Pathogen Bipolaris sorokiniana.

    Directory of Open Access Journals (Sweden)

    Yueqiang Leng

    Full Text Available Mitogen-activated protein kinases (MAPKs have been demonstrated to be involved in fungal development, sexual reproduction, pathogenicity and/or virulence in many filamentous plant pathogenic fungi, but genes for MAPKs in the fungal cereal pathogen Bipolaris sorokiniana have not been characterized. In this study, orthologues of three MAPK genes (CsSLT2, CsHOG1 and CsFUS3 and one MAPK kinase kinase (MAPKKK gene (CsSTE11 were identified in the whole genome sequence of the B. sorokiniana isolate ND90Pr, and knockout mutants were generated for each of them. The ∆Csfus3 and ∆Csste11 mutants were defective in conidiation and formation of appressoria-like structures, showed hypersensitivity to oxidative stress and lost pathogenicity on non-wounded leaves of barley cv. Bowman. When inoculated on wounded leaves of Bowman, the ∆Csfus3 and ∆Csste11 mutants were reduced in virulence compared to the wild type. No morphological changes were observed in the ∆Cshog1 mutants in comparison with the wild type; however, they were slightly reduced in growth under oxidative stress and were hypersensitive to hyperosmotic stress. The ∆Cshog1 mutants formed normal appressoria-like structures but were reduced in virulence when inoculated on Bowman leaves. The ∆Csslt2 mutants produced more vegetative hyphae, had lighter pigmentation, were more sensitive to cell wall degrading enzymes, and were reduced in virulence on Bowman leaves, although they formed normal appressoria like the wild type. Root infection assays indicated that the ∆Cshog1 and ∆Csslt2 mutants were able to infect barley roots while the ∆Csfus3 and ∆Csste11 failed to cause any symptoms. However, no significant difference in virulence was observed for ∆Cshog1 mutants while ∆Csslt2 mutants showed significantly reduced virulence on barley roots in comparison with the wild type. Our results indicated that all of these MAPK and MAPKKK genes are involved in the regulation of fungal

  4. The Role of Mitogen-Activated Protein (MAP) Kinase Signaling Components in the Fungal Development, Stress Response and Virulence of the Fungal Cereal Pathogen Bipolaris sorokiniana.

    Science.gov (United States)

    Leng, Yueqiang; Zhong, Shaobin

    2015-01-01

    Mitogen-activated protein kinases (MAPKs) have been demonstrated to be involved in fungal development, sexual reproduction, pathogenicity and/or virulence in many filamentous plant pathogenic fungi, but genes for MAPKs in the fungal cereal pathogen Bipolaris sorokiniana have not been characterized. In this study, orthologues of three MAPK genes (CsSLT2, CsHOG1 and CsFUS3) and one MAPK kinase kinase (MAPKKK) gene (CsSTE11) were identified in the whole genome sequence of the B. sorokiniana isolate ND90Pr, and knockout mutants were generated for each of them. The ∆Csfus3 and ∆Csste11 mutants were defective in conidiation and formation of appressoria-like structures, showed hypersensitivity to oxidative stress and lost pathogenicity on non-wounded leaves of barley cv. Bowman. When inoculated on wounded leaves of Bowman, the ∆Csfus3 and ∆Csste11 mutants were reduced in virulence compared to the wild type. No morphological changes were observed in the ∆Cshog1 mutants in comparison with the wild type; however, they were slightly reduced in growth under oxidative stress and were hypersensitive to hyperosmotic stress. The ∆Cshog1 mutants formed normal appressoria-like structures but were reduced in virulence when inoculated on Bowman leaves. The ∆Csslt2 mutants produced more vegetative hyphae, had lighter pigmentation, were more sensitive to cell wall degrading enzymes, and were reduced in virulence on Bowman leaves, although they formed normal appressoria like the wild type. Root infection assays indicated that the ∆Cshog1 and ∆Csslt2 mutants were able to infect barley roots while the ∆Csfus3 and ∆Csste11 failed to cause any symptoms. However, no significant difference in virulence was observed for ∆Cshog1 mutants while ∆Csslt2 mutants showed significantly reduced virulence on barley roots in comparison with the wild type. Our results indicated that all of these MAPK and MAPKKK genes are involved in the regulation of fungal development under

  5. Isoquercitrin suppresses the expression of histamine and pro-inflammatory cytokines by inhibiting the activation of MAP Kinases and NF-κB in human KU812 cells.

    Science.gov (United States)

    Li, Li; Zhang, Xiao-Hui; Liu, Guang-Rong; Liu, Chang; Dong, Yin-Mao

    2016-06-01

    Mast cells and basophils are multifunctional effector cells that contain abundant secretory granules in their cytoplasm. Both cell types are involved in a variety of inflammatory and immune events, producing an array of inflammatory mediators, such as cytokines. The aim of the study was to examine whether isoquercitrin modulates allergic and inflammatory reactions in the human basophilic KU812 cells and to elucidate its influence on the phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB activation. The KU812 cells were stimulated with phorbol-12-myristate 13-acetate plus the calcium ionophore A23187 (PMACI). The inhibitory effects of isoquercitrin on the productions of histamine and pro-inflammatory cytokines in the stimulated KU812 cells were measured using cytokine-specific enzyme-linked immunosorbent (ELISA) assays. Western blotting analysis was used to assess the effects of isoquercitrin on the MAPKs and NF-κB protein levels. Our results indicated that the isoquercitrin treatment of PMACI-stimulated KU812 cells significantly reduced the production of histamine and the pro-inflammatory cytokines, such as interleukin (IL)-6, IL-8, IL-1β, and tumor necrosis factor (TNF)-α. The treated cells exhibited decreased phosphorylation of extracellular signal-regulated kinase (ERK), revealing the role of ERK MAPK in isoquercitrin-mediated allergy inhibition. Furthermore, isoquercitrin suppressed the PMACI-mediated activation of NF-κB in the human basophil cells. In conclusion, the results from the present study provide insights into the potential therapeutic use of isoquercitrin for the treatment of inflammatory and allergic reactions. PMID:27473957

  6. Differential regulation of iron chelator-induced IL-8 synthesis via MAP kinase and NF-κB in immortalized and malignant oral keratinocytes

    Directory of Open Access Journals (Sweden)

    Lee Suk-Keun

    2007-09-01

    Full Text Available Abstract Background Interleukin-8 (IL-8 is a cytokine that plays an important role in tumor progression in a variety of cancer types; however, its regulation is not well understood in oral cancer cells. In the present study, we examined the expression and mechanism of IL-8 in which it is involved by treating immortalized (IHOK and malignant human oral keratinocytes (HN12 cells with deferoxamine (DFO. Methods IL-8 production was measured by an enzyme-linked immunoabsorbent assay and reverse transcriptase-polymerase chain reaction (RT-PCR analysis. Electrophoretic mobility shift assays was used to determine NF-κB binding activity. Phosphorylation and degradation of the I-κB were analyized by Western blot. Results IHOK cells incubated with DFO showed increased expression of IL-8 mRNA, as well as higher release of the IL-8 protein. The up-regulation of DFO-induced IL-8 expression was higher in IHOK cells than in HN12 cells and was concentration-dependent. DFO acted additively with IL-1β to strongly up-regulate IL-8 in IHOK cells but not in HN12 cells. Accordingly, selective p38 and ERK1/2 inhibitors for both kinases abolished DFO-induced IL-8 expression in both IHOK and HN12 cells. Furthermore, DFO induced the degradation and phosphorylation of IκB, and activation of NF-κB. The IL-8 inducing effects of DFO were mediated by a nitric oxide donor (S-nitrosoglutathione, and by pyrrolidine dithiocarbamate, an inhibitor of NF-κB, as well as by wortmannin, which inhibits the phosphatidylinositol 3-kinase-dependent activation of NAD(PH oxidase. Conclusion This results demonstrate that DFO-induced IL-8 acts via multiple signaling pathways in immortalized and malignant oral keratinocytes, and that the control of IL-8 may be an important target for immunotheraphy against human oral premalignant lesions.

  7. Isoquercitrin suppresses the expression of histamine and pro-inflammatory cytokines by inhibiting the activation of MAP Kinases and NF-κB in human KU812 cells

    Institute of Scientific and Technical Information of China (English)

    LI Li; ZHANG Xiao-Hui; LIU Guang-Rong; LIU Chang; DONG Yin-Mao

    2016-01-01

    Mast cells and basophils are multifunctional effector cells that contain abundant secretory granules in their cytoplasm.Both cell types are involved in a variety of inflammatory and immune events,producing an array of inflammatory mediators,such as cytokines.The aim of the study was to examine whether isoquercitrin modulates allergic and inflammatory reactions in the human basophilic KU812 cells and to elucidate its influence on the phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB activation.The KU812 cells were stimulated with phorbol-12-myristate 13-acetate plus the calcium ionophore A23187 (PMACI).The inhibitory effects of isoquercitrin on the productions of histamine and pro-inflammatory cytokines in the stimulated KU812 cells were measured using cytokine-specific enzyme-linked immunosorbent (ELISA) assays.Western blotting analysis was used to assess the effects of isoquercitrin on the MAPKs and NF-κB protein levels.Our results indicated that the isoquercitrin treatment of PMACI-stimulated KU812 cells significantly reduced the production of histamine and the pro-inflammatory cytokines,such as interleukin (IL)-6,IL-8,IL-1β,and tumor necrosis factor (TNF)-α.The treated cells exhibited decreased phosphorylation of extracellular signal-regulated kinase (ERK),revealing the role of ERK MAPK in isoquercitrin-mediated allergy inhibition.Furthermore,isoquercitrin suppressed the PMACI-mediated activation of NF-κB in the human basophil cells.In conclusion,the results from the present study provide insights into the potential therapeutic use of isoquercitrin for the treatment of inflammatory and allergic reactions.

  8. Differential regulation of iron chelator-induced IL-8 synthesis via MAP kinase and NF-κB in immortalized and malignant oral keratinocytes

    International Nuclear Information System (INIS)

    Interleukin-8 (IL-8) is a cytokine that plays an important role in tumor progression in a variety of cancer types; however, its regulation is not well understood in oral cancer cells. In the present study, we examined the expression and mechanism of IL-8 in which it is involved by treating immortalized (IHOK) and malignant human oral keratinocytes (HN12) cells with deferoxamine (DFO). IL-8 production was measured by an enzyme-linked immunoabsorbent assay and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Electrophoretic mobility shift assays was used to determine NF-κB binding activity. Phosphorylation and degradation of the I-κB were analyized by Western blot. IHOK cells incubated with DFO showed increased expression of IL-8 mRNA, as well as higher release of the IL-8 protein. The up-regulation of DFO-induced IL-8 expression was higher in IHOK cells than in HN12 cells and was concentration-dependent. DFO acted additively with IL-1β to strongly up-regulate IL-8 in IHOK cells but not in HN12 cells. Accordingly, selective p38 and ERK1/2 inhibitors for both kinases abolished DFO-induced IL-8 expression in both IHOK and HN12 cells. Furthermore, DFO induced the degradation and phosphorylation of IκB, and activation of NF-κB. The IL-8 inducing effects of DFO were mediated by a nitric oxide donor (S-nitrosoglutathione), and by pyrrolidine dithiocarbamate, an inhibitor of NF-κB, as well as by wortmannin, which inhibits the phosphatidylinositol 3-kinase-dependent activation of NAD(P)H oxidase. This results demonstrate that DFO-induced IL-8 acts via multiple signaling pathways in immortalized and malignant oral keratinocytes, and that the control of IL-8 may be an important target for immunotheraphy against human oral premalignant lesions

  9. Mitogen-activated protein kinases in atherosclerosis

    Directory of Open Access Journals (Sweden)

    Dorota Bryk

    2014-01-01

    Full Text Available Intracellular signalling cascades, in which MAPK (mitogen-activated protein kinases intermediate, are responsible for a biological response of a cell to an external stimulus. MAP kinases, which include ERK1/2 (extracellular signalling-regulated kinase, JNK (c-Jun N-terminal kinase and p 38 MAPK, regulate the activity of many proteins, enzymes and transcription factors and thus have a wide spectrum of biological effects. Many basic scientific studies have defined numerous details of their pathway organization and activation. There are also more and more studies suggesting that individual MAP kinases probably play an important role in the pathogenesis of atherosclerosis. They may mediate inflammatory processes, endothelial cell activation, monocyte/macrophage recruitment and activation, smooth muscle cell proliferation and T-lymphocyte differentiation, all of which represent crucial mechanisms involved in pathogenesis of atherosclerosis. The specific inhibition of an activity of the respective MAP kinases may prove a new therapeutic approach to attenuate atherosclerotic plaque formation in the future. In this paper, we review the current state of knowledge concerning MAP kinase-dependent cellular and molecular mechanisms underlying atherosclerosis.

  10. Basic fibroblast growth factor induces matrix metalloproteinase-13 via ERK MAP kinase-altered phosphorylation and sumoylation of Elk-1 in human adult articular chondrocytes

    Directory of Open Access Journals (Sweden)

    Hee-Jeong Im

    2009-10-01

    Full Text Available Hee-Jeong Im,1–4 Andrew D Sharrocks,5 Xia Lin,6 Dongyao Yan,1 Jaesung Kim,1 Andre J van Wijnen,7 Robert A Hipskind81Departments of Biochemistry, 2Internal Medicine, 3Section of Rheumatology, Orthopedic Surgery, 4Rush University Medical Center, and Department of Bioengineering; University of Illinois at Chicago, IL USA; 5Faculty of Life Sciences, University of Manchester, Oxford Rd, Manchester, UK; 6Michael D DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA; 7Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA, USA; 8Institute De Genetique Moleculaire de Montpellier, FranceAbstract: Degradation of the extracellular matrix (ECM by matrix metalloproteinases (MMPs and release of basic fibroblast growth factor (bFGF are principal aspects of the pathology of osteoarthritis (OA. ECM disruption leads to bFGF release, which activates the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK pathway and its downstream target the Ets-like transcription factor Elk-1. Previously we demonstrated that the bFGF-ERK-Elk-1 signaling axis is responsible for the potent induction of MMP-13 in human primary articular chondrocytes. Here we report that, in addition to phosphorylation of Elk-1, dynamic posttranslational modification of Elk-1 by small ubiquitin-related modifier (SUMO serves as an important mechanism through which MMP-13 gene expression is regulated. We show that bFGF activates Elk-1 mainly through the ERK pathway and that increased phosphorylation of Elk-1 is accompanied by decreased conjugation of SUMO to Elk-1. Reporter gene assays reveal that phosphorylation renders Elk-1 competent for induction of MMP-13 gene transcription, while sumoylation has the opposite effect. Furthermore, we demonstrate that the SUMO-conjugase Ubc9 acts as a key mediator for Elk-1 sumoylation. Taken together, our results suggest that sumoylation antagonizes the phosphorylation

  11. N-Formyl peptides drive mitochondrial damage associated molecular pattern induced neutrophil activation through ERK1/2 and P38 MAP kinase signalling pathways.

    Science.gov (United States)

    Hazeldine, Jon; Hampson, Peter; Opoku, Francis Adusei; Foster, Mark; Lord, Janet M

    2015-01-01

    Traumatic injury results in a systemic inflammatory response syndrome (SIRS), a phenomenon characterised by the release of pro-inflammatory cytokines into the circulation and immune cell activation. Released from necrotic cells as a result of tissue damage, damage associated molecular patterns (DAMPs) are thought to initiate the SIRS response by activating circulating immune cells through surface expressed pathogen recognition receptors. Neutrophils, the most abundant leucocyte in human circulation, are heavily implicated in the initial immune response to traumatic injury and have been shown to elicit a robust functional response to DAMP stimulation. Here, we confirm that mitochondrial DAMPs (mtDAMPs) are potent activators of human neutrophils and show for the first time that signalling through the mitogen-activated-protein-kinases p38 and extracellular-signal-related-kinase 1/2 (ERK1/2) is essential for this response. At 40 and/or 100 μg/ml, mtDAMPs activated human neutrophils, indicated by a significant reduction in the surface expression of L-selectin, and triggered a number of functional responses from both resting and tumour necrosis factor-α primed neutrophils, which included reactive oxygen species (ROS) generation, degranulation, secretion of interleukin-8 and activation of p38 and ERK1/2 MAPKs. Pre-treatment of neutrophils with Cyclosporin H, a selective inhibitor of formyl peptide receptor-1 (FPR-1), significantly inhibited mtDAMP-induced L-selectin shedding as well as p38 and ERK1/2 activation, suggesting that N-formyl peptides are the main constituents driving mtDAMP-induced neutrophil activation. Indeed, no evidence of L-selectin shedding or p38 and ERK1/2 activation was observed in neutrophils challenged with mitochondrial DNA alone. Interestingly, pharmacological inhibition of p38 or ERK1/2 either alone or in combination significantly inhibited L-selectin shedding and IL-8 secretion by mtDAMP-challenged neutrophils, revealing for the first time

  12. Protein Kinase D family kinases

    OpenAIRE

    Wille, Christoph; Seufferlein, Thomas; Eiseler, Tim

    2014-01-01

    Highly invasive pancreatic tumors are often recognized in late stages due to a lack of clear symptoms and pose major challenges for treatment and disease management. Broad-band Protein Kinase D (PKD) inhibitors have recently been proposed as additional treatment option for this disease. PKDs are implicated in the control of cancer cell motility, angiogenesis, proliferation and metastasis. In particular, PKD2 expression is elevated in pancreatic cancer, whereas PKD1 expression is comparably lo...

  13. Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation.

    Science.gov (United States)

    Agrawal, Ganesh K; Agrawal, Shyam K; Shibato, Junko; Iwahashi, Hitoshi; Rakwal, Randeep

    2003-01-17

    We report isolation of two novel rice (Oryza sativa L.) mitogen-activated protein kinases (MAPKs), OsMSRMK3 (multiple stress responsive) and OsWJUMK1 (wound- and JA-uninducible) that most likely exist as single copy genes in its genome. OsMSRMK3 and OsWJUMK1 encode 369 and 569 amino acid polypeptides having the MAPK family signature and phosphorylation activation motifs TEY and TDY, respectively. Steady state mRNA analyses of these MAPKs with constitutive expression in leaves of two-week-old seedlings revealed that OsMSRMK3 was up-regulated upon wounding (by cut), jasmonic acid (JA), salicylic acid (SA), ethylene, abscisic acid, hydrogen peroxide (H(2)O(2)), protein phosphatase inhibitors, chitosan, high salt/sugar, and heavy metals, whereas OsWJUMK1 not induced by either wounding, JA or SA, showed up-regulation only by H(2)O(2), heavy metals, and cold stress (12 degrees C). Moreover, these MAPKs were developmentally regulated. These results strongly suggest a role for OsMSRMK3 and OsWJUMK1 in both stress-signalling pathways and development in rice. PMID:12507518

  14. Inhibition of MAP kinase promotes the recruitment of corepressor SMRT by tamoxifen-bound estrogen receptor alpha and potentiates tamoxifen action in MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Wei, E-mail: hongwei@tijmu.edu.cn [Department of Immunology, Tianjin Medical University, 300070 Tianjin (China); Department of Laboratory Medicine, Tianjin Medical University, 300070 Tianjin (China); Chen, Linfeng [Department of Medical Oncology, Harvard Medical School, Dana Farber Cancer Institute, Boston, 02115 MA (United States); Li, Juan [Department of Laboratory Medicine, Tianjin Medical University, 300070 Tianjin (China); Yao, Zhi [Department of Immunology, Tianjin Medical University, 300070 Tianjin (China)

    2010-05-28

    Estrogen receptor alpha (ER{alpha}), a ligand controlled transcription factor, plays an important role in breast cancer growth and endocrine therapy. Tamoxifen (TAM) antagonizes ER{alpha} activity and has been applied in breast cancer treatment. TAM-bound ER{alpha} associates with nuclear receptor-corepressors. Mitogen-activated protein kinase (MAPK) has been elucidated to result in cross-talk between growth factor and ER{alpha} mediated signaling. We show that activated MAPK represses interaction of TAM-bound ER{alpha} with silencing mediator for retinoid and thyroid hormone receptors (SMRT) and inhibits the recruitment of SMRT by ER{alpha} to certain estrogen target genes. Blockade of MAPK signaling cascade with MEK inhibitor U0126 promotes the interaction and subsequently inhibits ER{alpha} activity via enhanced recruitment of SMRT, leading to reduced expression of ER{alpha} target genes. The growth rate of MCF-7 cells was decelerated when treated with both TAM and U0126. Moreover, the growth of MCF-7 cells stably expressing SMRT showed a robust repression in the presence of TAM and U0126. These results suggest that activated MAPK signaling cascade attenuates antagonist-induced recruitment of SMRT to ER{alpha}, suggesting corepressor mediates inhibition of ER{alpha} transactivation and breast cancer cell growth by antagonist. Taken together, our finding indicates combination of antagonist and MAPK inhibitor could be a helpful approach for breast cancer therapy.

  15. Deoxycholic acid and selenium metabolite methylselenol exert common and distinct effects on cell cycle, apoptosis, and MAP kinase pathway in HCT116 human colon cancer cells.

    Science.gov (United States)

    Zeng, Huawei; Botnen, James H; Briske-Anderson, Mary

    2010-01-01

    The cell growth inhibition induced by bile acid deoxycholic acid (DCA) may cause compensatory hyperproliferation of colonic epithelial cells and consequently increase colon cancer risk. On the other hand, there is increasing evidence for the efficacy of certain forms of selenium (Se) as anticancer nutrients. Methylselenol has been hypothesized to be a critical Se metabolite for anticancer activity in vivo. In this study, we demonstrated that both DCA (75-300 micromol/l) and submicromolar methylselenol inhibited colon cancer cell proliferation by up to 64% and 63%, respectively. In addition, DCA and methylselenol each increased colon cancer cell apoptosis rate by up to twofold. Cell cycle analyses revealed that DCA induced an increase in only the G1 fraction with a concomitant drop in G2 and S-phase; in contrast, methylselenol led to an increase in the G1 and G2 fractions with a concomitant drop only in the S-phase. Although both DCA and methylselenol significantly promoted apoptosis and inhibited cell growth, examination of mitogen-activated protein kinase (MAPK) pathway activation showed that DCA, but not methylselenol, induced SAPK/JNK1/2, p38 MAPK, ERK1/2 activation. Thus, our data provide, for the first time, the molecular basis for opposite effects of methylselenol and DCA on colon tumorigenesis.

  16. Novel Function of Serine Protease HTRA1 in Inhibiting Adipogenic Differentiation of Human Mesenchymal Stem Cells via MAP Kinase-Mediated MMP Upregulation.

    Science.gov (United States)

    Tiaden, André N; Bahrenberg, Gregor; Mirsaidi, Ali; Glanz, Stephan; Blüher, Matthias; Richards, Peter J

    2016-06-01

    Adipogenesis is the process by which mesenchymal stem cells (MSCs) develop into lipid-laden adipocytes. Being the dominant cell type within adipose tissue, adipocytes play a central role in regulating circulating fatty acid levels, which is considered to be of critical importance in maintaining insulin sensitivity. High temperature requirement protease A1 (HTRA1) is a newly recognized regulator of MSC differentiation, although its role as a mediator of adipogenesis has not yet been defined. The aim of this work was therefore to evaluate HTRA1's influence on human MSC (hMSC) adipogenesis and to establish a potential mode of action. We report that the addition of exogenous HTRA1 to hMSCs undergoing adipogenesis suppressed their ability to develop into lipid laden adipocytes. These effects were demonstrated as being reliant on both its protease and PDZ domain, and were mediated through the actions of c-Jun N-terminal kinase and matrix metalloproteinases (MMPs). The relevance of such findings with regards to HTRA1's potential influence on adipocyte function in vivo is made evident by the fact that HTRA1 and MMP-13 were readily identifiable within crown-like structures present in visceral adipose tissue samples from insulin resistant obese human subjects. These data therefore implicate HTRA1 as a negative regulator of MSC adipogenesis and are suggestive of its potential involvement in adipose tissue remodeling under pathological conditions. Stem Cells 2016;34:1601-1614. PMID:26864869

  17. Biochemical and pharmacological assessment of MAP-kinase signaling along pain pathways in experimental rodent models: a potential tool for the discovery of novel antinociceptive therapeutics.

    Science.gov (United States)

    Edelmayer, Rebecca M; Brederson, Jill-Desiree; Jarvis, Michael F; Bitner, Robert S

    2014-02-01

    Injury to the peripheral or central nervous system can induce changes within the nervous tissues that promote a state of sensitization that may underlie conditions of pathological chronic pain. A key biochemical event in the initiation and maintenance of peripheral and central neuronal sensitization associated with chronic pain is the phosphorylation and subsequent activation of mitogen-activated protein kinases (MAPKs) and immediate early gene transcription factors, in particular cAMP-response element binding protein (CREB). In this commentary we review the preclinical data that describe anatomical and mechanistic aspects of nociceptive-induced signaling along nociceptive pathways including peripheral cutaneous axons, the dorsal root ganglia, spinal cord dorsal horn and cerebral cortex. In addition to the regional manifestation of nociceptive signaling, investigations have attempted to elucidate the cellular origin of biochemical nociceptive processing in which communication, i.e. cross-talk between neurons and glia is viewed as an essential component of pathogenic pain development. Here, we outline a research strategy by which nociceptive-induced cellular signaling in experimental pain models, specifically MAPK and CREB phosphorylation can be utilized to provide mechanistic insight into drug-target interaction along the nociceptive pathways. We describe a series of studies using nociceptive inflammatory and neuropathic pain models to investigate the effects of known pain therapeutics on nociceptive-induced biochemical signaling and present this as a complementary research strategy for assessing antinociceptive activity useful in the preclinical development of novel pain therapeutics.

  18. Entamoeba histolytica: inflammatory process during amoebic liver abscess formation involves cyclooxygenase-2 expression in macrophages and trophozoites.

    Science.gov (United States)

    Gutiérrez-Alarcón, A; Moguel-Torres, M; Mata-Leyva, O; Cuellar-Nevárez, G; Siqueiros-Cendón, T; Erosa, G; Ramos-Martínez, E; Talamás-Rohana, P; Sánchez-Ramírez, B

    2006-11-01

    It has been demonstrated that expression of cyclooxygenase-2 (COX-2) isoform is induced by Entamoeba histolytica in macrophages and polymorphonuclear cells during amoebic liver abscess (ALA) formation in hamsters. Trophozoites present in the lesion were also positive for COX-2 signal. However, no cross reactivity of the anti-COX-2 antibody with protein extract of cultivated trophozoites was found. To clarify if trophozoites are involved in PGE(2) production during ALA development, COX-2 expression was detected by in situ hybridization and RT-PCR in liver tissue from intrahepatically infected hamsters. COX-2 mRNA was in polymorphonuclear cells since 4h postinfection, and subsequently, local macrophages expressed COX-2 mRNA in a similar way. Additionally, a positive signal for COX-2 mRNA expression was detected in E. histolytica trophozoites, suggesting that, in vivo, parasite COX expression may be an important mechanism to promote inflammation.

  19. A RARE CASE REPORT OF SITUS INVERSUS TOTALIS WITH RUPTURED AMOEBIC LIVER ABSCESS IN A PATIENT SUFFERING FROM SERUM HEPATITIS

    Directory of Open Access Journals (Sweden)

    Suraj Kumar

    2015-05-01

    Full Text Available SITUS INVERSUS VISCERUM : The literal meaning of: Inverted position of internal organs is a rare autosomal recessive disorder with incidence of 0.001% to 0.01% with male: female ratio of 3:2 . (1 It can be either total or partial. Total situsinversus is characterized by mirror image dextrocardia where the heart and stomach is present on right side of midline and liver and gall bladder on left side. Generally this rare genetic anomaly is discovered/diagnosed incidentally during thoracic and abdominal imaging. Here we are presenting yo u a case of situsinversustotalis with ruptured amoebic liver abscess in a patient of serum hepatitis which is a rare clinical entity.

  20. Amoebic meningoencephalitis and disseminated infection caused by Balamuthia mandrillaris in a Western lowland gorilla (Gorilla gorilla gorilla).

    Science.gov (United States)

    Gjeltema, Jenessa L; Troan, Brigid; Muehlenbachs, Atis; Liu, Lindy; Da Silva, Alexandre J; Qvarnstrom, Yvonne; Tobias, Jeremy R; Loomis, Michael R; De Voe, Ryan S

    2016-02-01

    CASE DESCRIPTION A 22-year-old male gorilla (Gorilla gorilla gorilla) housed in a zoo was evaluated for signs of lethargy, head-holding, and cervical stiffness followed by development of neurologic abnormalities including signs of depression, lip droop, and tremors. CLINICAL FINDINGS Physical examination under general anesthesia revealed a tooth root abscess and suboptimal body condition. A CBC and serum biochemical analysis revealed mild anemia, neutrophilia and eosinopenia consistent with a stress leukogram, and signs consistent with dehydration. Subsequent CSF analysis revealed lymphocytic pleocytosis and markedly increased total protein concentration. TREATMENT AND OUTCOME Despite treatment with antimicrobials, steroids, and additional supportive care measures, the gorilla's condition progressed to an obtunded mentation with grand mal seizures over the course of 10 days. Therefore, the animal was euthanized and necropsy was performed. Multifocal areas of malacia and hemorrhage were scattered throughout the brain; on histologic examination, these areas consisted of necrosis and hemorrhage associated with mixed inflammation, vascular necrosis, and intralesional amoebic trophozoites. Tan foci were also present in the kidneys and pancreas. Immunohistochemical testing positively labeled free-living amoebae within the brain, kidneys, eyes, pancreas, heart, and pulmonary capillaries. Subsequent PCR assay of CSF and frozen kidney samples identified the organism as Balamuthia mandrillaris, confirming a diagnosis of amoebic meningoencephalitis. CLINICAL RELEVANCE Infection with B mandrillaris has been reported to account for 2.8% of captive gorilla deaths in North America over the past 19 years. Clinicians working with gorillas should have a high index of suspicion for this diagnosis when evaluating and treating animals with signs of centrally localized neurologic disease. PMID:26799111

  1. Intranasal Coadministration of the Cry1Ac Protoxin with Amoebal Lysates Increases Protection against Naegleria fowleri Meningoencephalitis

    Science.gov (United States)

    Rojas-Hernández, Saúl; Rodríguez-Monroy, Marco A.; López-Revilla, Rubén; Reséndiz-Albor, Aldo A.; Moreno-Fierros, Leticia

    2004-01-01

    Cry1Ac protoxin has potent mucosal and systemic adjuvant effects on antibody responses to proteins or polysaccharides. In this work, we examined whether Cry1Ac increased protective immunity against fatal Naegleria fowleri infection in mice, which resembles human primary amoebic meningoencephalitis. Higher immunoglobulin G (IgG) than IgA anti-N. fowleri responses were elicited in the serum and tracheopulmonary fluids of mice immunized by the intranasal or intraperitoneal route with N. fowleri lysates either alone or with Cry1Ac or cholera toxin. Superior protection against a lethal challenge with 5 × 104 live N. fowleri trophozoites was achieved for immunization by the intranasal route. Intranasal immunization of N. fowleri lysates coadministered with Cry1Ac increased survival to 100%; interestingly, immunization with Cry1Ac alone conferred similar protection to that achieved with amoebal lysates alone (60%). When mice intranasally immunized with Cry1Ac plus lysates were challenged with amoebae, both IgG and IgA mucosal responses were rapidly increased, but only the increased IgG response persisted until day 60 in surviving mice. The brief rise in the level of specific mucosal IgA does not exclude the role that this isotype may play in the early defense against this parasite, since higher IgA responses were detected in nasal fluids of mice intranasally immunized with lysates plus either Cry1Ac or cholera toxin, which, indeed, were the treatments that provided the major protection levels. In contrast, serum antibody responses do not seem to be related to the protection level achieved. Both acquired and innate immune systems seem to play a role in host defense against N. fowleri infection, but further studies are required to elucidate the mechanisms involved in protective effects conferred by Cry1Ac, which may be a valuable tool to improve mucosal vaccines. PMID:15271892

  2. Role of the HaHOG1 MAP kinase in response of the conifer root and butt rot pathogen (heterobasidion annosum to osmotic and oxidative stress [corrected].

    Directory of Open Access Journals (Sweden)

    Tommaso Raffaello

    Full Text Available The basidiomycete Heterobasidion annosum (Fr. Bref. s.l. is a filamentous white rot fungus, considered to be the most economically important pathogen of conifer trees. Despite the severity of the tree infection, very little is known about the molecular and biochemical aspects related to adaptation to abiotic stresses. In this study, the osmotic and oxidative tolerance as well as the role of the HaHOG1 Mitogen Activated Protein Kinase (MAPK gene were investigated. The transcript levels of the yeast orthologues GPD1, HSP78, STL1, GRE2 and the ATPase pumps ENA1, PMR1, PMC1 known to have an important role in osmotolerance were also quantified under salt osmotic conditions. The HaHOG1 gene was used for a heterologous expression and functional study in the Saccharomyces cerevisiae Δhog1 strain. Moreover, the phosphorylation level of HaHog1p was studied under salt osmotic and oxidative stress. The result showed that H. annosum displayed a decreased growth when exposed to an increased concentration of osmotic and oxidative stressors. GPD1, HSP78, STL1 and GRE2 showed an induction already at 10 min after exposure to salt stress. Among the ATPase pumps studied, PMC1 was highly induced when the fungus was exposed to 0.2 M CaCl₂ for 60 min. The heterologous expression of the HaHOG1 sequence in yeast confirmed that the gene is able to restore the osmotolerance and oxidative tolerance in the S. cerevisiae hog1Δ mutant strain. The HaHog1p was strongly phosphorylated in the presence of NaCl, KCl, H₂O₂ but not in the presence of CaCl₂ and MgCl₂. The GFP-HaHog1p fusion protein accumulated in the nuclei of the S. cerevisiae hog1Δ cells when exposed to high osmotic conditions but not under oxidative stress. These results provide the first insights about the response of H. annosum to osmotic and oxidative stress and elucidate the role of the HaHOG1 gene in such conditions.

  3. Skepinone-L, a Novel Potent and Highly Selective Inhibitor of p38 MAP Kinase, Effectively Impairs Platelet Activation and Thrombus Formation

    Directory of Open Access Journals (Sweden)

    Oliver Borst

    2013-06-01

    Full Text Available Background/Aims: Platelets are critically important for primary haemostasis and the major players in thrombotic vascular occlusion. Platelets are activated by agonists, such as thrombin and collagen-related peptide as well as second-wave mediators including thromboxane A2 via different intracellular signaling pathways resulting in degranulation, aggregation and thrombus formation. Platelet activation is paralleled by phosphorylation and activation of p38 MAPK. The limited specificity of hitherto known p38 MAPK inhibitors precluded safe conclusions on the precise role of p38 MAPK in the regulation of platelet function. The present study examined the impact of Skepinone-L, a novel and highly selective inhibitor of p38 mitogen-activated protein kinase (p38 MAPK, on platelet activation and thrombus formation. Methods: Experiments were performed in freshly isolated human platelets. Protein phosphorylation was quantified by Western blotting, thromboxane B2 synthesis by enzyme immunoassay, ATP release by ChronoLume luciferin assay, cytosolic Ca2+ concentration by Fura-2 fluorescence-measurements, platelet aggregation by a light transmissions measurement and in vitro thrombus formation by a flow chamber. Results: Skepinone-L (1 μM virtually abrogated the phosphorylation of platelet p38 MAPK substrate Hsp27 following stimulation with CRP (1 μg/ml, thrombin (5 mU/ml or thromboxane A2 analogue U-46619 (1 μM. Furthermore, Skepinone-L significantly blunted activation-dependent platelet secretion and aggregation following threshold concentrations of CRP, thrombin and thromboxane A2 analogue U-46619. Skepinone-L did not impair platelet Ca2+ signaling but prevented agonist-induced thromboxane A2 synthesis through abrogation of p38 MAPK-dependent phosphorylation of platelet cytosolic phospholipase A2 (cPLA2. Skepinone-L further markedly blunted thrombus formation under low (500-s and high (1700-s arterial shear rates. Conclusions: The present study discloses

  4. The Cek1‑mediated MAP kinase pathway regulates exposure of α‑1,2 and β‑1,2‑mannosides in the cell wall of Candida albicans modulating immune recognition.

    Science.gov (United States)

    Román, E; Correia, I; Salazin, A; Fradin, C; Jouault, T; Poulain, D; Liu, F-T; Pla, J

    2016-07-01

    The Cek1 MAP kinase (MAPK) mediates vegetative growth and cell wall biogenesis in the fungal pathogen Candida albicans. Alterations in the fungal cell wall caused by a defective Cek1‑mediated signaling pathway leads to increased β‑1,3‑glucan exposure influencing dectin‑1 fungal recognition by immune cells. We show here that cek1 cells also display an increased exposure of α‑1,2 and β‑1,2‑mannosides (α‑M and β‑M), a phenotype shared by strains defective in the activating MAPKK Hst7, suggesting a general defect in cell wall assembly. cek1 cells display walls with loosely bound material as revealed by transmission electron microscopy and are sensitive to tunicamycin, an inhibitor of N‑glycosylation. Transcriptomal analysis of tunicamycin treated cells revealed a differential pattern between cek1 and wild type cells which involved mainly cell wall and stress related genes. Mapping α‑M and β‑M epitopes in the mannoproteins of different cell wall fractions (CWMP) revealed an important shift in the molecular weight of the mannan derived from mutants defective in this MAPK pathway. We have also assessed the role of galectin‑3, a member of a β‑galactoside‑binding protein family shown to bind to and kill C. albicans through β‑M recognition, in the infection caused by cek1 mutants. Increased binding of cek1 to murine macrophages was shown to be partially blocked by lactose. Galectin-3(-/-) mice showed increased resistance to fungal infection, although galectin-3 did not account for the reduced virulence of cek1 mutants in a mouse model of systemic infection. All these data support a role for the Cek1‑mediated pathway in fungal cell wall maintenance, virulence and antifungal discovery. PMID:27191378

  5. The Trend in Distribution of Q223R Mutation of Leptin Receptor Gene in Amoebic Liver Abscess Patients from North India: A Prospective Study

    Directory of Open Access Journals (Sweden)

    Anil Kumar Verma

    2014-01-01

    Full Text Available Host genetic susceptibility is an important risk factor in infectious diseases. We explored the distribution of Q223R mutation in leptin receptor gene of amoebic liver abscess (ALA patients of North India. A total of 55 ALA samples along with 102 controls were subjected to PCR-RFLP analysis. The frequency of allele “G” (coding for arginine was in general high in Indian population irrespective of the disease. Our results of Fisher exact test shows that heterozygous mutant (QQ versus QR, P=0.049 and homozygous mutant (QQ versus RR, P=0.004 were significantly associated with amoebic liver abscess when compared with homozygous wild (QQ.

  6. Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase

    Science.gov (United States)

    Shimizu, M.; Wang, W.; Walch, E. T.; Dunne, P. W.; Epstein, H. F.

    2000-01-01

    Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.

  7. Mucosal Delivery of ACNPV Baculovirus Driving Expression of the Gal-Lectin LC3 Fragment Confers Protection against Amoebic Liver Abscess in Hamster

    Directory of Open Access Journals (Sweden)

    DM Meneses-Ruiz, JP Laclette, H Aguilar-Díaz, J Hernández-Ruiz, A Luz-Madrigal, A Sampieri, L Vaca, JC Carrero

    2011-01-01

    Full Text Available Mucosal vaccination against amoebiasis using the Gal-lectin of E. histolytica has been proposed as one of the leading strategies for controlling this human disease. However, most mucosal adjuvants used are toxic and the identification of safe delivery systems is necessary. Here, we evaluate the potential of a recombinant Autographa californica baculovirus driving the expression of the LC3 fragment of the Gal-lectin to confer protection against amoebic liver abscess (ALA in hamsters following oral or nasal immunization. Hamsters immunized by oral route showed complete absence (57.9% or partial development (21% of ALA, resulting in some protection in 78.9% of animals when compared with the wild type baculovirus and sham control groups. In contrast, nasal immunization conferred only 21% of protection efficacy. Levels of ALA protection showed lineal correlation with the development of an anti-amoebic cellular immune response evaluated in spleens, but not with the induction of seric IgG anti-amoeba antibodies. These results suggest that baculovirus driving the expression of E. histolytica vaccine candidate antigens is useful for inducing protective cellular and humoral immune responses following oral immunization, and therefore it could be used as a system for mucosal delivery of an anti-amoebic vaccine.

  8. Mucosal delivery of ACNPV baculovirus driving expression of the Gal-lectin LC3 fragment confers protection against amoebic liver abscess in hamster.

    Science.gov (United States)

    Meneses-Ruiz, D M; Laclette, J P; Aguilar-Díaz, H; Hernández-Ruiz, J; Luz-Madrigal, A; Sampieri, A; Vaca, L; Carrero, J C

    2011-01-01

    Mucosal vaccination against amoebiasis using the Gal-lectin of E. histolytica has been proposed as one of the leading strategies for controlling this human disease. However, most mucosal adjuvants used are toxic and the identification of safe delivery systems is necessary. Here, we evaluate the potential of a recombinant Autographa californica baculovirus driving the expression of the LC3 fragment of the Gal-lectin to confer protection against amoebic liver abscess (ALA) in hamsters following oral or nasal immunization. Hamsters immunized by oral route showed complete absence (57.9%) or partial development (21%) of ALA, resulting in some protection in 78.9% of animals when compared with the wild type baculovirus and sham control groups. In contrast, nasal immunization conferred only 21% of protection efficacy. Levels of ALA protection showed lineal correlation with the development of an anti-amoebic cellular immune response evaluated in spleens, but not with the induction of seric IgG anti-amoeba antibodies. These results suggest that baculovirus driving the expression of E. histolytica vaccine candidate antigens is useful for inducing protective cellular and humoral immune responses following oral immunization, and therefore it could be used as a system for mucosal delivery of an anti-amoebic vaccine.

  9. Mucosal Delivery of ACNPV Baculovirus Driving Expression of the Gal-Lectin LC3 Fragment Confers Protection against Amoebic Liver Abscess in Hamster

    Science.gov (United States)

    Meneses-Ruiz, DM; Laclette, JP; Aguilar-Díaz, H; Hernández-Ruiz, J; Luz-Madrigal, A; Sampieri, A; Vaca, L; Carrero, JC

    2011-01-01

    Mucosal vaccination against amoebiasis using the Gal-lectin of E. histolytica has been proposed as one of the leading strategies for controlling this human disease. However, most mucosal adjuvants used are toxic and the identification of safe delivery systems is necessary. Here, we evaluate the potential of a recombinant Autographa californica baculovirus driving the expression of the LC3 fragment of the Gal-lectin to confer protection against amoebic liver abscess (ALA) in hamsters following oral or nasal immunization. Hamsters immunized by oral route showed complete absence (57.9%) or partial development (21%) of ALA, resulting in some protection in 78.9% of animals when compared with the wild type baculovirus and sham control groups. In contrast, nasal immunization conferred only 21% of protection efficacy. Levels of ALA protection showed lineal correlation with the development of an anti-amoebic cellular immune response evaluated in spleens, but not with the induction of seric IgG anti-amoeba antibodies. These results suggest that baculovirus driving the expression of E. histolytica vaccine candidate antigens is useful for inducing protective cellular and humoral immune responses following oral immunization, and therefore it could be used as a system for mucosal delivery of an anti-amoebic vaccine. PMID:22110386

  10. PDK2: the missing piece in the receptor tyrosine kinase signaling pathway puzzle.

    Science.gov (United States)

    Dong, Lily Q; Liu, Feng

    2005-08-01

    Activation of members of the protein kinase AGC (cAMP dependent, cGMP dependent, and protein kinase C) family is regulated primarily by phosphorylation at two sites: a conserved threonine residue in the activation loop and a serine/threonine residue in a hydrophobic motif (HM) near the COOH terminus. Although phosphorylation of these kinases in the activation loop has been found to be mediated by phosphoinositide-dependent protein kinase-1 (PDK1), the kinase(s) that catalyzes AGC kinase phosphorylation in the HM remains uncharacterized. So far, at least 10 kinases have been suggested to function as an HM kinase or the so-called "PDK2," including mitogen-activated protein (MAP) kinase-activated protein kinase-2 (MK2), integrin-linked kinase (ILK), p38 MAP kinase, protein kinase Calpha (PKCalpha), PKCbeta, the NIMA-related kinase-6 (NEK6), the mammalian target of rapamycin (mTOR), the double-stranded DNA-dependent protein kinase (DNK-PK), and the ataxia telangiectasia mutated (ATM) gene product. However, whether any or all of these kinases act as a physiological HM kinase remains to be established. Nonetheless, available data suggest that multiple systems may be used in cells to regulate the activation of the AGC family kinases. It is possible that, unlike activation loop phosphorylation, phosphorylation of the HM site in the different AGC family kinases is mediated by distinct kinases. In addition, phosphorylation of the AGC family kinase at the HM site could be cell type, signaling pathway, and substrate specific. Identification and characterization of the bonafide HM kinase(s) will be essential to verify these hypotheses. PMID:16014356

  11. In vivo programmed cell death of Entamoeba histolytica trophozoites in a hamster model of amoebic liver abscess.

    Science.gov (United States)

    Villalba-Magdaleno, José D'Artagnan; Pérez-Ishiwara, Guillermo; Serrano-Luna, Jesús; Tsutsumi, Víctor; Shibayama, Mineko

    2011-05-01

    Entamoeba histolytica trophozoites can induce host cell apoptosis, which correlates with the virulence of the parasite. This phenomenon has been seen during the resolution of an inflammatory response and the survival of the parasites. Other studies have shown that E. histolytica trophozoites undergo programmed cell death (PCD) in vitro, but how this process occurs within the mammalian host cell remains unclear. Here, we studied the PCD of E. histolytica trophozoites as part of an in vivo event related to the inflammatory reaction and the host-parasite interaction. Morphological study of amoebic liver abscesses showed only a few E. histolytica trophozoites with peroxidase-positive nuclei identified by terminal deoxynucleotidyltransferase enzyme-mediated dUTP nick end labelling (TUNEL). To better understand PCD following the interaction between amoebae and inflammatory cells, we designed a novel in vivo model using a dialysis bag containing E. histolytica trophozoites, which was surgically placed inside the peritoneal cavity of a hamster and left to interact with the host's exudate components. Amoebae collected from bags were then examined by TUNEL assay, fluorescence-activated cell sorting (FACS) and transmission electron microscopy. Nuclear condensation and DNA fragmentation of E. histolytica trophozoites were observed after exposure to peritoneal exudates, which were mainly composed of neutrophils and macrophages. Our results suggest that production of nitric oxide by inflammatory cells could be involved in PCD of trophozoites. In this modified in vivo system, PCD appears to play a prominent role in the host-parasite interaction and parasite cell death.

  12. Amoebicidal Activity of Essential Oil of Dysphania ambrosioides (L. Mosyakin & Clemants in an Amoebic Liver Abscess Hamster Model

    Directory of Open Access Journals (Sweden)

    Manuel Enrique Ávila-Blanco

    2014-01-01

    Full Text Available Amebiasis is a parasitic disease that extends worldwide and is a public health problem in developing countries. Metronidazole is the drug recommended in the treatment of amebiasis, but its contralateral effects and lack of continuity of treatment induce low efficiency, coupled with the appearance of resistant amoebic strains. Therefore, the search of new compounds with amoebicidal activity is urgent and important. In this study, we evaluated the in vitro and in vivo antiamoebic activity of the essential oil Dysphania ambrosioides (L. Mosyakin & Clemants. It exhibited an IC50 = 0.7 mg/mL against trophozoites. The oral administration of essential oil (8 mg/kg and 80 mg/kg to hamster infected with Entamoeba histolytica reverted the infection. Ascaridole was identified as the main component of essential oil of D. ambrosioides. The identification of amoebicidal activity of Ascaridole gives support to the traditional use. Further studies with Ascaridole will be carried out to understand the mechanism involved.

  13. Plant protein kinase genes induced by drought, high salt and cold stresses

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Drought, high salt and cold are three different kinds of environment stresses that severely influence the growth, development and productivity of crops. They all decrease the water state of plant cells, and consequently result in the harm of plant from water deficit. Several genes encoding protein kinases and induced by drought, high salt and low temperature have been isolated from Arabidopsis. These protein kinases include receptor protein kinase (RPK), MAP kinases, ribosomal-protein kinases and transcription-regulation protein kinase. The expression features of these genes and the regulatory roles of these protein kinases in stress response and signal transduction are discussed.

  14. The Crystal Structure of Cancer Osaka Thyroid Kinase Reveals an Unexpected Kinase Domain Fold*

    Science.gov (United States)

    Gutmann, Sascha; Hinniger, Alexandra; Fendrich, Gabriele; Drückes, Peter; Antz, Sylvie; Mattes, Henri; Möbitz, Henrik; Ofner, Silvio; Schmiedeberg, Niko; Stojanovic, Aleksandar; Rieffel, Sebastien; Strauss, André; Troxler, Thomas; Glatthar, Ralf; Sparrer, Helmut

    2015-01-01

    Macrophages are important cellular effectors in innate immune responses and play a major role in autoimmune diseases such as rheumatoid arthritis. Cancer Osaka thyroid (COT) kinase, also known as mitogen-activated protein kinase kinase kinase 8 (MAP3K8) and tumor progression locus 2 (Tpl-2), is a serine-threonine (ST) kinase and is a key regulator in the production of pro-inflammatory cytokines in macrophages. Due to its pivotal role in immune biology, COT kinase has been identified as an attractive target for pharmaceutical research that is directed at the discovery of orally available, selective, and potent inhibitors for the treatment of autoimmune disorders and cancer. The production of monomeric, recombinant COT kinase has proven to be very difficult, and issues with solubility and stability of the enzyme have hampered the discovery and optimization of potent and selective inhibitors. We developed a protocol for the production of recombinant human COT kinase that yields pure and highly active enzyme in sufficient yields for biochemical and structural studies. The quality of the enzyme allowed us to establish a robust in vitro phosphorylation assay for the efficient biochemical characterization of COT kinase inhibitors and to determine the x-ray co-crystal structures of the COT kinase domain in complex with two ATP-binding site inhibitors. The structures presented in this study reveal two distinct ligand binding modes and a unique kinase domain architecture that has not been observed previously. The structurally versatile active site significantly impacts the design of potent, low molecular weight COT kinase inhibitors. PMID:25918157

  15. Kinase-specific prediction of protein phosphorylation sites

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Blom, Nikolaj

    2009-01-01

    As extensive mass spectrometry-based mapping of the phosphoproteome progresses, computational analysis of phosphorylation-dependent signaling becomes increasingly important. The linear sequence motifs that surround phosphorylated residues have successfully been used to characterize kinase...

  16. MAP kinases in inflammatory bowel disease

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Olsen, Jørgen; Seidelin, Jakob Benedict;

    2011-01-01

    of cellular activities and have been implicated in the pathogenesis of several diseases, including inflammatory bowel disease (IBD). This review summarizes recent findings on the regulatory mechanism of MAPK signaling pathways, focusing on nuclear targets and their role in IBD. Finally, it summarizes how...... these signaling pathways have been exploited for the development of therapeutics and discuss the current knowledge of potential MAPK inhibitors and their anti-inflammatory effects in clinical trials related to IBD....

  17. CK (Creatine Kinase) Test

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Creatine Kinase Share this page: Was this page helpful? Also known as: CK; Total CK; Creatine Phosphokinase; CPK Formal name: Creatine Kinase Related tests: ...

  18. Protection against Naegleria fowleri infection in mice immunized with Cry1Ac plus amoebic lysates is dependent on the STAT6 Th2 response.

    Science.gov (United States)

    Carrasco-Yepez, M; Rojas-Hernandez, S; Rodriguez-Monroy, M A; Terrazas, L I; Moreno-Fierros, L

    2010-01-01

    We previously reported that intranasal administration of Cry1Ac protoxin alone or in combination with amoebic lysates increases protection against Naegleria fowleri meningoencephalitis in mice. Those results suggested that both antibody responses and innate immune mechanisms may be participating in the protective effects observed. The present study was aimed to investigate whether the STAT6-induced Th2 immune response is essential for the resistance to N. fowleri infection, conferred by immunization with amoebic lysates plus Cry1Ac. STAT6-deficient (STAT6-/-) and wild-type (STAT6+/+) BALB/c mice were immunized by the intranasal route with a combination of N. fowleri lysates plus Cry1Ac, and subsequently challenged with lethal doses of N. fowleri trophozoites. STAT6+/+ mice displayed 100% protection, while no protection was observed in STAT6-/- mice. Significantly higher titres of Th2-associated IgG1 as well as interleukin-4 (IL-4) were found in STAT6+/+ mice, whereas in STAT6-/- mice significantly more IL-12 and IFN-gamma as well as significantly higher titres of Th1-associated IgG2a were detected. Thus, whereas protected STAT6+/+-immunized mice elicited a Th-2 type inclined immune response that produced predominantly humoral immunity, unprotected STAT6-/- mice exhibited a polarized Th1 type cellular response. These findings suggest that the STAT6-signalling pathway is critical for defence against N. fowleri infection.

  19. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Sayed, M; Kim, S O; Salh, B S;

    2000-01-01

    Protein kinase CK2 has been implicated in the regulation of a wide range of proteins that are important in cell proliferation and differentiation. Here we demonstrate that the stress signaling agents anisomycin, arsenite, and tumor necrosis factor-alpha stimulate the specific enzyme activity of CK2...... to be an allosteric mechanism. Furthermore, we demonstrate that anisomycin- and tumor necrosis factor-alpha-induced phosphorylation of p53 at Ser-392, which is important for the transcriptional activity of this growth suppressor protein, requires p38 MAP kinase and CK2 activities....... in the human cervical carcinoma HeLa cells by up to 8-fold, and this could be blocked by the p38 MAP kinase inhibitor SB203580. We show that p38alpha MAP kinase, in a phosphorylation-dependent manner, can directly interact with the alpha and beta subunits of CK2 to activate the holoenzyme through what appears...

  20. Thymidine kinases in archaea

    DEFF Research Database (Denmark)

    Clausen, A.R.; Matakos, A.; Sandrini, Michael;

    2006-01-01

    Twenty-six fully sequenced archaeal genomes were searched for genes coding for putative deoxyribonucleoside kinases (dNKs). We identified only 5 human-like thymidine kinase 1 genes (TK1s) and none for non-TK1 kinases. Four TK1s were identified in the Euryarchaea and one was found in the Crenarchaea...... that a functional deoxyribonucleoside salvage pathway is not crucial for the archaeal cell....

  1. Association of Common Genetic Variants in Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 with Type 2 Diabetes Mellitus in a Chinese Han Population

    Institute of Scientific and Technical Information of China (English)

    Ting-Ting Li; Hong Qiao; Hui-Xin Tong; Tian-Wei Zhuang; Tong-Tong Wang

    2016-01-01

    Background:A study has identified several novel susceptibility variants of the mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) gene for type 2 diabetes mellitus (T2DM) within the German population.Among the variants,five single nucleotide polymorphisms (SNPs) of MAP4K4 (rs1003376,rs11674694,rs2236935,rs2236936,and rs6543087) showed significant association with T2DM or diabetes-related quantitative traits.We aimed to evaluate whether common SNPs in the MAP4K4 gene were associated with T2DM in the Chinese population.Methods:Five candidate SNPs were genotyped in 996 patients newly diagnosed with T2DM and in 976 control subjects,using the SNPscanTM method.All subjects were recruited from the Second Affiliated Hospital,Harbin Medical University from October 2010 to September 2013.We evaluated the T2DM risk conferred by individual SNPs and haplotypes using logistic analysis,and the association between the five SNPs and metabolic traits in the subgroups.Results:Of the five variants,SNP rs2236935T/C was significantly associated with T2DM in this study population (odds ratio =1.293;95% confidence interval:1.034-1.619,P =0.025).In addition,among the controls,rs 1003376 was significantly associated with an increased body mass index (P =0.045) and homeostatic model assessment-insulin resistance (P =0.037).Conclusions:MAP4K4 gene is associated with T2DM in a Chinese Han population,and MAP4K4 gene variants may contribute to the risk toward the development of T2DM.

  2. Combined computational and experimental analysis reveals mitogen-activated protein kinase-mediated feedback phosphorylation as a mechanism for signaling specificity.

    Science.gov (United States)

    Hao, Nan; Yildirim, Necmettin; Nagiec, Michal J; Parnell, Stephen C; Errede, Beverly; Dohlman, Henrik G; Elston, Timothy C

    2012-10-01

    Different environmental stimuli often use the same set of signaling proteins to achieve very different physiological outcomes. The mating and invasive growth pathways in yeast each employ a mitogen-activated protein (MAP) kinase cascade that includes Ste20, Ste11, and Ste7. Whereas proper mating requires Ste7 activation of the MAP kinase Fus3, invasive growth requires activation of the alternate MAP kinase Kss1. To determine how MAP kinase specificity is achieved, we used a series of mathematical models to quantitatively characterize pheromone-stimulated kinase activation. In accordance with the computational analysis, MAP kinase feedback phosphorylation of Ste7 results in diminished activation of Kss1, but not Fus3. These findings reveal how feedback phosphorylation of a common pathway component can limit the activity of a competing MAP kinase through feedback phosphorylation of a common activator, and thereby promote signal fidelity. PMID:22875986

  3. Protein kinase A signalling in Schistosoma mansoni cercariae and schistosomules.

    Science.gov (United States)

    Hirst, Natasha L; Lawton, Scott P; Walker, Anthony J

    2016-06-01

    Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A regulates multiple processes in eukaryotes by phosphorylating diverse cellular substrates, including metabolic and signalling enzymes, ion channels and transcription factors. Here we provide insight into protein kinase A signalling in cercariae and 24h in vitro cultured somules of the blood parasite, Schistosoma mansoni, which causes human intestinal schistosomiasis. Functional mapping of activated protein kinase A using anti-phospho protein kinase A antibodies and confocal laser scanning microscopy revealed activated protein kinase A in the central and peripheral nervous system, oral-tip sensory papillae, oesophagus and excretory system of intact cercariae. Cultured 24h somules, which biologically represent the skin-resident stage of the parasite, exhibited similar activation patterns in oesophageal and nerve tissues but also displayed striking activation at the tegument and activation in a region resembling the germinal 'stem' cell cluster. The adenylyl cyclase activator, forskolin, stimulated somule protein kinase A activation and produced a hyperkinesia phenotype. The biogenic amines, serotonin and dopamine known to be present in skin also induced protein kinase A activation in somules, whereas neuropeptide Y or [Leu(31),Pro(34)]-neuropeptide Y attenuated protein kinase A activation. However, neuropeptide Y did not block the forskolin-induced somule hyperkinesia. Bioinformatic investigation of potential protein associations revealed 193 medium confidence and 59 high confidence protein kinase A interacting partners in S. mansoni, many of which possess putative protein kinase A phosphorylation sites. These data provide valuable insight into the intricacies of protein kinase A signalling in S. mansoni and a framework for further physiological investigations into the roles of protein kinase A in schistosomes, particularly in the context of interactions between the parasite and the host. PMID:26777870

  4. Muscle phosphorylase kinase deficiency

    DEFF Research Database (Denmark)

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A;

    2012-01-01

    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  5. Mixed - Lineage Protein kinases (MLKs) in inflammation, metabolism, and other disease states.

    Science.gov (United States)

    Craige, Siobhan M; Reif, Michaella M; Kant, Shashi

    2016-09-01

    Mixed lineage kinases, or MLKs, are members of the MAP kinase kinase kinase (MAP3K) family, which were originally identified among the activators of the major stress-dependent mitogen activated protein kinases (MAPKs), JNK and p38. During stress, the activation of JNK and p38 kinases targets several essential downstream substrates that react in a specific manner to the unique stressor and thus determine the fate of the cell in response to a particular challenge. Recently, the MLK family was identified as a specific modulator of JNK and p38 signaling in metabolic syndrome. Moreover, the MLK family of kinases appears to be involved in a very wide spectrum of disorders. This review discusses the newly identified functions of MLKs in multiple diseases including metabolic disorders, inflammation, cancer, and neurological diseases. PMID:27259981

  6. Naegleria fowleri That Induces Primary Amoebic Meningoencephalitis: Rapid Diagnosis and Rare Case of Survival in a 12-Year-Old Caucasian Girl.

    Science.gov (United States)

    Dunn, Andrew L; Reed, Tameika; Stewart, Charlotte; Levy, Rebecca A

    2016-05-01

    Primary amoebic meningoencephalitis (PAM) is a rare and almost always fatal disease that is caused by Naegleria fowleri, a freshwater thermophilic amoeba. Our case involves an adolescent female who presented with fever of unknown origin. A lumbar puncture was performed, and the Wright-Giemsa and Gram stained cerebrospinal fluid (CSF) cytospin slides showed numerous organisms. Experienced medical technologists in the microbiology and hematology laboratories identified the organisms as morphologically consistent with Naegleria species. The laboratory made a rapid diagnosis and alerted emergency department care providers within 75 minutes. The patient was treated for PAM with amphotericin, rifampin, azithromycin, fluconazole and aggressive supportive therapy including dexamethasone. The Centers for Disease Control and Prevention (CDC) was contacted, and miltefosine, an investigational medication, was started. Additional treatment included an intraventricular shunt and controlled hypothermia in order to mitigate potential cerebral edema. Our patient is a rare success story, as she was diagnosed swiftly, successfully treated, and survived PAM. PMID:26984830

  7. Naegleria fowleri That Induces Primary Amoebic Meningoencephalitis: Rapid Diagnosis and Rare Case of Survival in a 12-Year-Old Caucasian Girl.

    Science.gov (United States)

    Dunn, Andrew L; Reed, Tameika; Stewart, Charlotte; Levy, Rebecca A

    2016-05-01

    Primary amoebic meningoencephalitis (PAM) is a rare and almost always fatal disease that is caused by Naegleria fowleri, a freshwater thermophilic amoeba. Our case involves an adolescent female who presented with fever of unknown origin. A lumbar puncture was performed, and the Wright-Giemsa and Gram stained cerebrospinal fluid (CSF) cytospin slides showed numerous organisms. Experienced medical technologists in the microbiology and hematology laboratories identified the organisms as morphologically consistent with Naegleria species. The laboratory made a rapid diagnosis and alerted emergency department care providers within 75 minutes. The patient was treated for PAM with amphotericin, rifampin, azithromycin, fluconazole and aggressive supportive therapy including dexamethasone. The Centers for Disease Control and Prevention (CDC) was contacted, and miltefosine, an investigational medication, was started. Additional treatment included an intraventricular shunt and controlled hypothermia in order to mitigate potential cerebral edema. Our patient is a rare success story, as she was diagnosed swiftly, successfully treated, and survived PAM.

  8. Mapping out Map Libraries

    Directory of Open Access Journals (Sweden)

    Ferjan Ormeling

    2008-09-01

    Full Text Available Discussing the requirements for map data quality, map users and their library/archives environment, the paper focuses on the metadata the user would need for a correct and efficient interpretation of the map data. For such a correct interpretation, knowledge of the rules and guidelines according to which the topographers/cartographers work (such as the kind of data categories to be collected, and the degree to which these rules and guidelines were indeed followed are essential. This is not only valid for the old maps stored in our libraries and archives, but perhaps even more so for the new digital files as the format in which we now have to access our geospatial data. As this would be too much to ask from map librarians/curators, some sort of web 2.0 environment is sought where comments about data quality, completeness and up-to-dateness from knowledgeable map users regarding the specific maps or map series studied can be collected and tagged to scanned versions of these maps on the web. In order not to be subject to the same disadvantages as Wikipedia, where the ‘communis opinio’ rather than scholarship, seems to be decisive, some checking by map curators of this tagged map use information would still be needed. Cooperation between map curators and the International Cartographic Association ( ICA map and spatial data use commission to this end is suggested.

  9. Mapping of p140Cap phosphorylation sites: the EPLYA and EGLYA motifs have a key role in tyrosine phosphorylation and Csk binding, and are substrates of the Abl kinase.

    Directory of Open Access Journals (Sweden)

    Daniele Repetto

    Full Text Available Protein phosphorylation tightly regulates specific binding of effector proteins that control many diverse biological functions of cells (e. g. signaling, migration and proliferation. p140Cap is an adaptor protein, specifically expressed in brain, testis and epithelial cells, that undergoes phosphorylation and tunes its interactions with other regulatory molecules via post-translation modification. In this work, using mass spectrometry, we found that p140Cap is in vivo phosphorylated on tyrosine (Y within the peptide GEGLpYADPYGLLHEGR (from now on referred to as EGLYA as well as on three serine residues. Consistently, EGLYA has the highest score of in silico prediction of p140Cap phosphorylation. To further investigate the p140Cap function, we performed site specific mutagenesis on tyrosines inserted in EGLYA and EPLYA, a second sequence with the same highest score of phosphorylation. The mutant protein, in which both EPLYA/EGLYA tyrosines were converted to phenylalanine, was no longer tyrosine phosphorylated, despite the presence of other tyrosine residues in p140Cap sequence. Moreover, this mutant lost its ability to bind the C-terminal Src kinase (Csk, previously shown to interact with p140Cap by Far Western analysis. In addition, we found that in vitro and in HEK-293 cells, the Abelson kinase is the major kinase involved in p140Cap tyrosine phosphorylation on the EPLYA and EGLYA sequences. Overall, these data represent an original attempt to in vivo characterise phosphorylated residues of p140Cap. Elucidating the function of p140Cap will provide novel insights into its biological activity not only in normal cells, but also in tumors.

  10. Mapping of the receptor protein-tyrosine kinase 10 to human chromosome 1q21-q23 and mouse chromosome 1H1-5 by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Edelhoff, S.; Disteche, C.M. [Univ. of Washington School of Medicine, Seattle, WA (United States); Lai, C. [Scripps Research Inst., LaJolla, CA (United States)

    1995-01-01

    Receptor protein-tyrosine kinases (PTKs) play a critical role in the transduction of signals important to cell growth, differentiation, and survival. Mutations affecting the expression of receptor PTK genes have been associated with a number of vertebrate and invertebrate developmental abnormalities, and the aberrant regulation of tyrosine phosphorylation is implicated in a variety of neoplasias. One estimate suggests that approximately 100 receptor PTK genes exist in the mammalian genome, about half of which have been identified. The tyro-10 receptor protein-tyrosine kinase, first identified in a PCR-based survey for novel tyrosine kinases in the rat nervous system, defines a new subfamily of PTKs. It exhibits a catalytic domain most closely related to those found in the trk PTK receptor subfamily, which transduces signals for nerve growth factor and the related molecules brain-derived neurotrophic factor (BDNF), neurotrophin-3, and neurotrophin-4 (NT-3 and NT-4). Trk and the related PTK receptors trkB and trkC play a critical role in the neurotrophin-dependent survival of subsets of sensory and motor neurons. The predicted tyro-10 extracellular region is, however, distinct from that of the trk subfamily and is unique except for a domain shared with the blood coagulation factors V and VIII, thought to be involved in phospholipid binding. Although tyro-10 RNA is most abundant in heart and skeletal muscle in the adult rat, it is expressed in a wide variety of tissues, including the developing and mature brain. Tyro-10 appears identical to the murine TKT sequence reported by Karn et al. and exhibits a high degree of similarity with the CaK, DDR, and Nep PTKs. A ligand for tyro-10 has not yet been identified. 10 refs., 1 fig.

  11. SRC protein tyrosine kinase, c-Jun N-terminal kinase (JNK), and NF-kappaBp65 signaling in commercial and wild-type turkey leukocytes

    Science.gov (United States)

    Studies comparing signaling in wild-type turkey (WT) leukocytes and commercial turkey (CT) leukocytes found that the activity of protein tyrosine kinases (PTK) and MAP kinases, ERK 1/2 and p38, were significantly higher in WT leukocytes compared to CT lines upon exposure to both SE and OPSE on days...

  12. Induction of interleukin-8 by Naegleria fowleri lysates requires activation of extracellular signal-regulated kinase in human astroglial cells.

    Science.gov (United States)

    Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Sang-Hee; Kwon, Daeho; Shin, Ho-Joon

    2012-08-01

    Naegleria fowleri is a pathogenic free-living amoeba which causes primary amoebic meningoencephalitis in humans and experimental animals. To investigate the mechanisms of such inflammatory diseases, potential chemokine gene activation in human astroglial cells was investigated following treatment with N. fowleri lysates. We demonstrated that N. fowleri are potent inducers for the expression of interleukin-8 (IL-8) genes in human astroglial cells which was preceded by activation of extracellular signal-regulated kinase (ERK). In addition, N. fowleri lysates induces the DNA binding activity of activator protein-1 (AP-1), an important transcription factor for IL-8 induction. The specific mitogen-activated protein kinase kinase/ERK inhibitor, U0126, blocks N. fowleri-mediated AP-1 activation and subsequent IL-8 induction. N. fowleri-induced IL-8 expression requires activation of ERK in human astroglial cells. These findings indicate that treatment of N. fowleri on human astroglial cells leads to the activation of AP-1 and subsequent expression of IL-8 which are dependent on ERK activation. These results may help understand the N. fowleri-mediated upregulation of chemokine and cytokine expression in the astroglial cells.

  13. Detection of excretory Entamoeba histolytica DNA in the urine, and detection of E. histolytica DNA and lectin antigen in the liver abscess pus for the diagnosis of amoebic liver abscess

    OpenAIRE

    Khairnar Krishna; Parija Subhash C

    2007-01-01

    Abstract Background Amoebic liver abscess (ALA) and pyogenic liver abscesses (PLA) appear identical by ultrasound and other imaging techniques. Collection of blood or liver abscess pus for diagnosis of liver abscesses is an invasive procedure, and the procedure requires technical expertise and disposable syringes. Collection of urine is a noninvasive procedure. Therefore, there has been much interest shown towards the use of urine as an alternative clinical specimen for the diagnosis of some ...

  14. From Phosphosites to Kinases

    DEFF Research Database (Denmark)

    Munk, Stephanie; Refsgaard, Jan C; Olsen, Jesper V;

    2016-01-01

    Kinases play a pivotal role in propagating the phosphorylation-mediated signaling networks in living cells. With the overwhelming quantities of phosphoproteomics data being generated, the number of identified phosphorylation sites (phosphosites) is ever increasing. Often, proteomics investigations...... sequence motifs, mostly based on large scale in vivo and in vitro experiments. The context of the kinase and the phosphorylated proteins in a biological system is equally important for predicting association between the enzymes and substrates, an aspect that is also being tackled with available...

  15. Phosphatidylinositol kinase from rabbit reticulocytes

    International Nuclear Information System (INIS)

    Phosphatidylinositol (PI) kinase was isolated from the postribosomal supernatant of rabbit reticulocytes. This activity was identified by the formation of a product that comigrated with phosphatidylinositol-4-phosphate (PIP) when purified PI was phosphorylated in the presence of [32P]ATP and Mg2+. Three major peaks of PI kinase activity were resolved by chromatography on DEAE-cellulose. The first peak eluted at 50-100 mM NaCl together with several serine protein kinases, casein kinase (CK) I and protease activated kinase (PAK) I and II. The PI kinase was subsequently separated from the protein kinases by chromatography on phosphocellulose. The second peak eluted at 125-160 mM NaCl and contained another lipid kinase activity that produced a product which comigrated with phosphatidic acid on thin layer chromatography. The third peak, which eluted at 165-200 mM NaCl, partly comigrated with casein kinase (CK) II and an active protein kinase(s) which phosphorylated mixed histone and histone I. CK II and the histone kinase activities were also separated by chromatography on phosphocelluslose. The different forms of PI kinase were characterized and compared with respect to substrate and salt requirements

  16. Participación del óxido nítrico durante el desarrollo del absceso hepático amebiano Nitric oxide participation during amoebic liver abscess development

    Directory of Open Access Journals (Sweden)

    Joel Ramírez-Emiliano

    2007-04-01

    Full Text Available El óxido nítrico participa en funciones fisiológicas y fisiopatológicas, así como en el mecanismo de defensa del sistema inmunológico de mamíferos contra parásitos, virus y bacterias. La Entamoeba histolytica es un parásito protozoario causante de la amebiasis, la cual se caracteriza por el daño intestinal y la formación del absceso hepático amebiano (AHA. El desarrollo del absceso hepático amebiano en el hámster es similar al que desarrolla el humano, mientras que el ratón es resistente a la formación de este absceso, debido a un incremento en la producción de óxido nítrico. A diferencia del ratón, el desarrollo del absceso hepático amebiano en el hámster es debido a un exceso en la producción de óxido nítrico o posiblemente a una mayor susceptibilidad del hámster al daño producido por el óxido nítrico. Por lo tanto, sería importante realizar más estudios para determinar si en el humano, un exceso en la producción de óxido nítrico favorece la formación del absceso hepático amebiano.Nitric oxide participates in both physiological and pathophysiological functions, and it plays an important role in the mammalian immune system in killing or inhibiting the growth of many pathogens, including parasites, viruses and bacteria. Entamoeba histolytica is a protozoan parasite that causes amoebiasis, which is characterized by intestinal damage and amoebic liver abscess development. The development of amoebic liver abscess in hamsters is similar to that in humans, whereas mice are resistant to amoebic liver abscess development due to an increase in nitric oxide production. Unlike in mice, amoebic liver abscess development in hamsters is due to an excess in nitric oxide production or possibly to a greater susceptibility of the hamster to damage caused by nitric oxide. Therefore, it could be important to elucidate if, in humans, an excess in nitric oxide production favors amoebic liver abscess development.

  17. Kinase Inhibitors from Marine Sponges

    Directory of Open Access Journals (Sweden)

    Ana Zivanovic

    2011-10-01

    Full Text Available Protein kinases play a critical role in cell regulation and their deregulation is a contributing factor in an increasing list of diseases including cancer. Marine sponges have yielded over 70 novel compounds to date that exhibit significant inhibitory activity towards a range of protein kinases. These compounds, which belong to diverse structural classes, are reviewed herein, and ordered based upon the kinase that they inhibit. Relevant synthetic studies on the marine natural product kinase inhibitors have also been included.

  18. Rho-kinase limits FGF-2-stimulated VEGF release in osteoblasts.

    Science.gov (United States)

    Natsume, Hideo; Tokuda, Haruhiko; Adachi, Seiji; Takai, Shinji; Matsushima-Nishiwaki, Rie; Kato, Kenji; Minamitani, Chiho; Niida, Shunpei; Mizutani, Jun; Kozawa, Osamu; Otsuka, Takanobu

    2010-04-01

    We previously reported that basic fibroblast growth factor (FGF-2) stimulates the release of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in osteoblast-like MC3T3-E1 cells and that FGF-2-activated p38 MAP kinase negatively regulates the VEGF release in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether Rho-kinase is involved in FGF-2-stimulated VEGF release in MC3T3-E1 cells. FGF-2 induced the phosphorylation of myosin phosphatase targeting subunit (MYPT-1), a substrate of Rho-kinase. Y27632, a specific inhibitor of Rho-kinase, which attenuated the MYPT-1 phosphorylation, significantly enhanced the FGF-2-stimulated VEGF release. Fasudil, another Rho-kinase inhibitor, also amplified the VEGF release. FGF-2 significantly stimulated VEGF accumulation and fasudil enhanced FGF-2-stimulated VEGF accumulation also in whole cell lysates. Neither Y27632 nor fasudil affected the phosphorylation levels of p44/p42 MAP kinase or p38 MAP kinase. Y27632 and fasudil markedly strengthened the FGF-2-induced phosphorylation of SAPK/JNK. Y27632 as well as fasudil enhanced FGF-2-stimulated VEGF release and Y27632 enhanced the FGF-2-induced phosphorylation levels of SAPK/JNK also in human osteoblasts. These results strongly suggest that Rho-kinase negatively regulates FGF-2-stimulated VEGF release in osteoblasts.

  19. IL-1β activates p44/42 and p38 mitogen-activated protein kinases via different pathways in cat esophageal smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Tai Sang Lee; Hyun Ju Song; Ji Hoon Jeong; Young Sil Min; Chang Yell Shin; Uy Dong Sohn

    2006-01-01

    AIM: To examine the pathway related to the IL-1β-induced activation of mitogen-activated protein (MAP)kinases in cat esophageal smooth muscle cells.METHODS: Culture of the esophageal smooth muscle cells from cat was prepared. Specific inhibitors were treated before applying the IL-1β. Western blot analysis was performed to detect the expressions of COX, iNOS and MAP kinases.RESULTS: In the primary cultured cells, although IL-1βfailed to upregulate the COX and iNOS levels, the levels of the phosphorylated forms of p44/42 MAP kinase and p38 MAP klnase increased in both concentration- and time-dependent manner, of which the level of activation reached a maximum within 3 and 18 h, respectively.The pertussis toxin reduced the level of p44/42 MAP kinase phosphorylation. Tyrphostin 51 and genistein also inhibited this activation. Neomycin decreased the density of the p44/42 MAP kinase band to the basal level.Phosphokinase C (PKC) was found to play a mediating role in the IL-1β-induced p44/42 MAP kinase activity.In contrast, the activation of p38 MAP kinase was inhibited only by a pretreatment with forskolin, and was unaffected by the other compounds.CONCLUSION: Based on these results, IL-1β-Induced p44/42 MAP kinase activation is mediated by the Gi protein, tyrosine kinase, phospholipase C (PLC) and PKC. The pathway for p38 MAP kinase phosphorylation is different from that of p44/42 MAP kinase, suggesting that it plays a different role in the cellular response to IL-1β.

  20. Tyrosine kinases in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Kobayashi Akiko

    2011-08-01

    Full Text Available Abstract Rheumatoid arthritis (RA is an inflammatory, polyarticular joint disease. A number of cellular responses are involved in the pathogenesis of rheumatoid arthritis, including activation of inflammatory cells and cytokine expression. The cellular responses involved in each of these processes depends on the specific signaling pathways that are activated; many of which include protein tyrosine kinases. These pathways include the mitogen-activated protein kinase pathway, Janus kinases/signal transducers and activators transcription pathway, spleen tyrosine kinase signaling, and the nuclear factor κ-light-chain-enhancer of activated B cells pathway. Many drugs are in development to target tyrosine kinases for the treatment of RA. Based on the number of recently published studies, this manuscript reviews the role of tyrosine kinases in the pathogenesis of RA and the potential role of kinase inhibitors as new therapeutic strategies of RA.

  1. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1

    DEFF Research Database (Denmark)

    Frödin, M; Sekine, N; Roche, E;

    1995-01-01

    converge to activate 44-kDa mitogen-activated protein (MAP) kinase. Thus, glucose-induced insulin secretion was found to be associated with a small stimulatory effect on 44-kDa MAP kinase, which was synergistically enhanced by increased levels of intracellular cAMP and by the hormonal secretagogues...... glucagon-like peptide-1 and pituitary adenylate cyclase-activating polypeptide. Activation of 44-kDa MAP kinase by glucose was dependent on Ca2+ influx and may in part be mediated by MEK-1, a MAP kinase kinase. Stimulation of Ca2+ influx by KCl was in itself sufficient to activate 44-kDa MAP kinase and MEK......-1. Phorbol ester, an activator of protein kinase C, stimulated 44-kDa MAP kinase by both Ca(2+)-dependent and -independent pathways. Nerve growth factor, independently of changes in cytosolic Ca2+, efficiently stimulated 44-kDa MAP kinase without causing insulin release, indicating that activation...

  2. Pyruvate Dehydrogenase Kinase 4

    OpenAIRE

    Cadoudal, Thomas; Distel, Emilie; Durant, Sylvie; Fouque, Françoise; Blouin, Jean-Marc; Collinet, Martine; Bortoli, Sylvie; Forest, Claude; Benelli, Chantal

    2008-01-01

    OBJECTIVE—Pyruvate dehydrogenase complex (PDC) serves as the metabolic switch between glucose and fatty acid utilization. PDC activity is inhibited by PDC kinase (PDK). PDC shares the same substrate, i.e., pyruvate, as glyceroneogenesis, a pathway controlling fatty acid release from white adipose tissue (WAT). Thiazolidinediones activate glyceroneogenesis. We studied the regulation by rosiglitazone of PDK2 and PDK4 isoforms and tested the hypothesis that glyceroneogenesis could be controlled ...

  3. Oncoprotein protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Karin, Michael (San Diego, CA); Hibi, Masahiko (San Diego, CA); Lin, Anning (La Jolla, CA); Davis, Roger (Princeton, MA); Derijard, Benoit (Shrewsbury, MA)

    2003-02-04

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  4. Planetary maps

    Science.gov (United States)

    ,

    1992-01-01

    An important goal of the USGS planetary mapping program is to systematically map the geology of the Moon, Mars, Venus, and Mercury, and the satellites of the outer planets. These geologic maps are published in the USGS Miscellaneous Investigations (I) Series. Planetary maps on sale at the USGS include shaded-relief maps, topographic maps, geologic maps, and controlled photomosaics. Controlled photomosaics are assembled from two or more photographs or images using a network of points of known latitude and longitude. The images used for most of these planetary maps are electronic images, obtained from orbiting television cameras, various optical-mechanical systems. Photographic film was only used to map Earth's Moon.

  5. Cyclin-dependent kinases.

    Science.gov (United States)

    Malumbres, Marcos

    2014-01-01

    Cyclin-dependent kinases (CDKs) are protein kinases characterized by needing a separate subunit - a cyclin - that provides domains essential for enzymatic activity. CDKs play important roles in the control of cell division and modulate transcription in response to several extra- and intracellular cues. The evolutionary expansion of the CDK family in mammals led to the division of CDKs into three cell-cycle-related subfamilies (Cdk1, Cdk4 and Cdk5) and five transcriptional subfamilies (Cdk7, Cdk8, Cdk9, Cdk11 and Cdk20). Unlike the prototypical Cdc28 kinase of budding yeast, most of these CDKs bind one or a few cyclins, consistent with functional specialization during evolution. This review summarizes how, although CDKs are traditionally separated into cell-cycle or transcriptional CDKs, these activities are frequently combined in many family members. Not surprisingly, deregulation of this family of proteins is a hallmark of several diseases, including cancer, and drug-targeted inhibition of specific members has generated very encouraging results in clinical trials. PMID:25180339

  6. The MEKK1-MKK1/MKK2-MPK4 Kinase Cascade Negatively Regulates Immunity Mediated by a Mitogen-Activated Protein Kinase Kinase Kinase in Arabidopsis[C][W

    Science.gov (United States)

    Kong, Qing; Qu, Na; Gao, Minghui; Zhang, Zhibin; Ding, Xiaojun; Yang, Fan; Li, Yingzhong; Dong, Oliver X.; Chen, She; Li, Xin; Zhang, Yuelin

    2012-01-01

    In Arabidopsis thaliana, the MEKK1-MKK1/MKK2-MPK4 mitogen-activated protein (MAP) kinase cascade represses cell death and immune responses. In mekk1, mkk1 mkk2, and mpk4 mutants, programmed cell death and defense responses are constitutively activated, but the mechanism by which MEKK1, MKK1/MKK2, and MPK4 negatively regulate cell death and immunity was unknown. From a screen for suppressors of mkk1 mkk2, we found that mutations in suppressor of mkk1 mkk2 1 (summ1) suppress the cell death and defense responses not only in mkk1 mkk2 but also in mekk1 and mpk4. SUMM1 encodes the MAP kinase kinase kinase MEKK2. It interacts with MPK4 and is phosphorylated by MPK4 in vitro. Overexpression of SUMM1 activates cell death and defense responses that are dependent on the nucleotide binding–leucine-rich repeat protein SUMM2. Taken together, our data suggest that the MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates MEKK2 and activation of MEKK2 triggers SUMM2-mediated immune responses. PMID:22643122

  7. Function and interaction of maturation-promoting factor and mitogen-activated protein kinase during meiotic maturation and fertilization of oocyte

    Institute of Scientific and Technical Information of China (English)

    HUO Lijun; FAN Hengyu; CHEN Dayuan; SUN Qingyuan

    2004-01-01

    Mitogen-activated protein kinase (MAP kinase) cascade and maturation-promoting factor (MPF) play very important roles during meiotic maturation and fertilization of oocyte. Interaction between MAP kinase and MPF influences meiotic maturation and fertilization of oocyte throughout the animal kingdom, including stimulation of germinal vesicle breakdown (GVBD), suppression of DNA replication, control of meiotic chromosome segregation, maintenance of metaphase II arrest, and resumption and completion of second meiosis. This review focuses on the function and interaction of MAP kinase and MPF during meiotic maturation and fertilization of oocyte.

  8. Different roles for non-receptor tyrosine kinases in arachidonate release induced by zymosan and Staphylococcus aureus in macrophages

    Directory of Open Access Journals (Sweden)

    Sundler Roger

    2006-05-01

    Full Text Available Abstract Background Yeast and bacteria elicit arachidonate release in macrophages, leading to the formation of leukotrienes and prostaglandins, important mediators of inflammation. Receptors recognising various microbes have been identified, but the signalling pathways are not entirely understood. Cytosolic phospholipase A2 is a major down-stream target and this enzyme is regulated by both phosphorylation and an increase in intracellular Ca2+. Potential signal components are MAP kinases, phosphatidylinositol 3-kinase and phospholipase Cγ2. The latter can undergo tyrosine phosphorylation, and Src family kinases might carry out this phosphorylation. Btk, a Tec family kinase, could also be important. Our aim was to further elucidate the role of Src family kinases and Btk. Methods Arachidonate release from murine peritoneal macrophages was measured by prior radiolabeling. Furthermore, immunoprecipitation and Western blotting were used to monitor changes in activity/phosphorylation of intermediate signal components. To determine the role of Src family kinases two different inhibitors with broad specificity (PP2 and the Src kinase inhibitor 1, SKI-1 were used as well as the Btk inhibitor LFM-A13. Results Arachidonate release initiated by either Staphylococcus aureus or yeast-derived zymosan beads was shown to depend on members of the Src kinase family as well as Btk. Src kinases were found to act upstream of Btk, phosphatidylinositol 3-kinase, phospholipase Cγ2 and the MAP kinases ERK and p38, thereby affecting all branches of the signalling investigated. In contrast, Btk was not involved in the activation of the MAP-kinases. Since the cytosolic phospholipase A2 in macrophages is regulated by both phosphorylation (via ERK and p38 and an increase in intracellular Ca2+, we propose that members of the Src kinase family are involved in both types of regulation, while the role of Btk may be restricted to the latter type. Conclusion Arachidonate release

  9. Regulation of Autophagy by Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda, E-mail: alakananda.basu@unthsc.edu [Department of Molecular Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-06-09

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  10. Rapid Identification of Protein Kinase Phosphorylation Site Motifs Using Combinatorial Peptide Libraries.

    Science.gov (United States)

    Miller, Chad J; Turk, Benjamin E

    2016-01-01

    Eukaryotic protein kinases phosphorylate substrates at serine, threonine, and tyrosine residues that fall within the context of short sequence motifs. Knowing the phosphorylation site motif for a protein kinase facilitates designing substrates for kinase assays and mapping phosphorylation sites in protein substrates. Here, we describe an arrayed peptide library protocol for rapidly determining kinase phosphorylation consensus sequences. This method uses a set of peptide mixtures in which each of the 20 amino acid residues is systematically substituted at nine positions surrounding a central site of phosphorylation. Peptide mixtures are arrayed in multiwell plates and analyzed by radiolabel assay with the kinase of interest. The preferred sequence is determined from the relative rate of phosphorylation of each peptide in the array. Consensus peptides based on these sequences typically serve as efficient and specific kinase substrates for high-throughput screening or incorporation into biosensors.

  11. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation.

    Science.gov (United States)

    Meyer, Martin; Fehling, Helena; Matthiesen, Jenny; Lorenzen, Stephan; Schuldt, Kathrin; Bernin, Hannah; Zaruba, Mareen; Lender, Corinna; Ernst, Thomas; Ittrich, Harald; Roeder, Thomas; Tannich, Egbert; Lotter, Hannelore; Bruchhaus, Iris

    2016-08-01

    We here compared pathogenic (p) and non-pathogenic (np) isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA)-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1-A12) derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1-B12) derived from a pathogenic isolate HM-1:IMSS-B. "Non-pathogenicity" included the induction of small and quickly resolved lesions while "pathogenicity" comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP) activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica. PMID:27575775

  12. Production and characterization of monoclonal antibodies against a highly immunogenic fraction of Entamoeba histolytica (NIH:200) and their application in the detection of current amoebic infection.

    Science.gov (United States)

    Sengupta, K; Das, P; Johnson, T M; Chaudhuri, P P; Das, D; Nair, G B

    1993-01-01

    Six monoclonal antibodies (MAbs) were produced against a highly immunogenic fraction derived by the chromatographic separation of the soluble preparation of axenic Entamoeba histolytica (strain NIH:200) trophozoites. Isotype characterization of the six MAbs revealed that four belonged to the IgM class and one each to the IgG1 and the IgG2a subclasses. The immunoreactivity patterns and the specificity of the MAbs with homologous and heterologous antigens were analyzed by the enzyme-linked immunotransfer blot technique and by the enzyme-linked immunosorbent assay. The MAbs reacted intensely with isolates of E. histolytica (strain NIH:200 as well as a local isolate MX1) but showed no reactivity with Entamoeba coli, Iodamoeba butschlii, Endolimax nana, Entamoeba hartmanni, free-living amoeba (Acanthamoeba harticolus) and other enteric parasites. Using the IgG1 MAb as a detecting antibody, a polyclonal-monoclonal antibody-based enzyme-linked immunosorbent assay was developed for the detection of E. histolytica antigens in stool samples of infected patients. The detection limit of the assay was 8 ng of amoebic antigen. This test was found to be specific and sensitive and yielded 100% positive results in cases with amoebiasis but did not react with controls included in the evaluation. The MAb-based enzyme-linked immunosorbent assay developed in this study will be an important test for the diagnosis of E. histolytica in the feces of infected humans; however, the limitation of the test is the inability to discriminate the pathogenic status of the amoeba detected in the stool. PMID:8292992

  13. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation

    Science.gov (United States)

    Lorenzen, Stephan; Schuldt, Kathrin; Bernin, Hannah; Zaruba, Mareen; Lender, Corinna; Ittrich, Harald; Roeder, Thomas; Tannich, Egbert; Lotter, Hannelore; Bruchhaus, Iris

    2016-01-01

    We here compared pathogenic (p) and non-pathogenic (np) isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA)-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1–A12) derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1–B12) derived from a pathogenic isolate HM-1:IMSS-B. “Non-pathogenicity” included the induction of small and quickly resolved lesions while “pathogenicity” comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP) activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica. PMID:27575775

  14. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten;

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  15. Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2.

    Science.gov (United States)

    Saruhashi, Masashi; Kumar Ghosh, Totan; Arai, Kenta; Ishizaki, Yumiko; Hagiwara, Kazuya; Komatsu, Kenji; Shiwa, Yuh; Izumikawa, Keiichi; Yoshikawa, Harunori; Umezawa, Taishi; Sakata, Yoichi; Takezawa, Daisuke

    2015-11-17

    Plant response to drought and hyperosmosis is mediated by the phytohormone abscisic acid (ABA), a sesquiterpene compound widely distributed in various embryophyte groups. Exogenous ABA as well as hyperosmosis activates the sucrose nonfermenting 1 (SNF1)-related protein kinase2 (SnRK2), which plays a central role in cellular responses against drought and dehydration, although the details of the activation mechanism are not understood. Analysis of a mutant of the moss Physcomitrella patens with reduced ABA sensitivity and reduced hyperosmosis tolerance revealed that a protein kinase designated "ARK" (for "ABA and abiotic stress-responsive Raf-like kinase") plays an essential role in the activation of SnRK2. ARK encoded by a single gene in P. patens belongs to the family of group B3 Raf-like MAP kinase kinase kinases (B3-MAPKKKs) mediating ethylene, disease resistance, and salt and sugar responses in angiosperms. Our findings indicate that ARK, as a novel regulatory component integrating ABA and hyperosmosis signals, represents the ancestral B3-MAPKKKs, which multiplied, diversified, and came to have specific functions in angiosperms. PMID:26540727

  16. Therapeutic targeting of Janus kinases

    OpenAIRE

    Pesu, Marko; Laurence, Arian; Kishore, Nandini; Zwillich, Sam; Chan, Gary; O’Shea, John J.

    2008-01-01

    Cytokines play pivotal roles in immunity and inflammation, and targeting cytokines and their receptors is an effective means of treating such disorders. Type I and II cytokine receptors associate with Janus family kinases (JAKs) to effect intracellular signaling. These structurally unique protein kinases play essential and specific roles in immune cell development and function. One JAK, JAK3, has particularly selective functions. Mutations of this kinase underlie severe combined immunodeficie...

  17. Visualizing autophosphorylation in histidine kinases

    OpenAIRE

    Casino, Patricia; Miguel-Romero, Laura; Marina, Alberto

    2014-01-01

    Reversible protein phosphorylation is the most widespread regulatory mechanism in signal transduction. Autophosphorylation in a dimeric sensor histidine kinase is the first step in two-component signalling, the predominant signal-transduction device in bacteria. Despite being the most abundant sensor kinases in nature, the molecular bases of the histidine kinase autophosphorylation mechanism are still unknown. Furthermore, it has been demonstrated that autophosphorylation can occur in two dir...

  18. Phosphatidylinositol 3-kinase in myogenesis.

    Science.gov (United States)

    Kaliman, P; Zorzano, A

    1997-08-01

    Phosphatidylinositol 3-kinase (PI 3-kinase) has been cloned and characterized in a wide range of organisms. PI 3-kinases are activated by a diversity of extracellular stimuli and are involved in multiple cell processes such as cell proliferation, protein trafficking, cell motility, differentiation, regulation of cytoskeletal structure, and apoptosis. It has recently been shown that PI 3-kinase is a crucial second messenger in the signaling of myogenesis. Two structurally unrelated highly specific inhibitors of PI 3-kinase-wortmannin and LY294002-block the morphological and biochemical differentiation program of different skeletal-muscle cell models. Moreover, L6E9 myoblasts overexpressing a dominant-negative mutant of PI 3-kinase p85 regulatory subunit (Δp85) are unable to differentiate. Furthermore, PI 3-kinase is specifically involved in the insulinlike growth factor (IGF)-dependent myogenic pathway. Indeed, the ability of IGF-I, des-1,3-IGF-I, and IGF-II to promote cell fusion and muscle-specific protein expression is impaired after treatment with PI 3-kinase inhibitors or in cells overexpressing Δp85. The identification of additional key downstream elements of the IGF/PI 3-kinase myogenic cascade is crucial to a detailed understanding of the process of muscle differentiation and may generate new tools for skeletal and cardiac muscle regeneration therapies. (Trends Cardiovasc Med 1997;7:198-202). © 1997, Elsevier Science Inc. PMID:21235885

  19. Tyrosines 868, 966, and 972 in the Kinase Domain of JAK2 Are Autophosphorylated and Required for Maximal JAK2 Kinase Activity

    OpenAIRE

    Argetsinger, Lawrence S.; Stuckey, Jeanne A.; Robertson, Scott A.; Koleva, Rositsa I.; Cline, Joel M.; Marto, Jarrod A.; Myers, Martin G.; Carter-Su, Christin

    2010-01-01

    Janus kinase 2 (JAK2) is activated by a majority of cytokine family receptors including receptors for GH, leptin, and erythropoietin. To identify novel JAK2-regulatory and/or -binding sites, we set out to identify autophosphorylation sites in the kinase domain of JAK2. Two-dimensional phosphopeptide mapping of in vitro autophosphorylated JAK2 identified tyrosines 868, 966, and 972 as sites of autophosphorylation. Phosphorylated tyrosines 868 and 972 were also identified by mass spectrometry a...

  20. LmxMPK4, an essential mitogen-activated protein kinase of Leishmania mexicana is phosphorylated and activated by the STE7-like protein kinase LmxMKK5

    DEFF Research Database (Denmark)

    John von Freyend, Simona; Rosenqvist, Heidi; Fink, Annette;

    2010-01-01

    The essential mitogen-activated protein kinase (MAP kinase), LmxMPK4, of Leishmania mexicana is minimally active when purified following recombinant expression in Escherichia coli and was therefore unsuitable for drug screening until now. Using an E. coli protein co-expression system we identifie...... for new therapeutic drugs against leishmaniasis....

  1. Salmonella induces SRC protein tyrosine kinase, c-Jun N-terminal kinase (JNK), and NF-kappaBp65 signaling pathways in commercial and wild-type turkey leukocytes

    Science.gov (United States)

    Previous studies comparing signaling in wild-type turkey (WT) leukocytes and commercial turkey (CT) leukocytes found that the activity of protein tyrosine kinases and MAP kinases, ERK 1/2 and p38, were significantly higher in WT leukocytes compared to CT lines upon exposure to both SE and OPSE on d...

  2. Eotaxin induces degranulation and chemotaxis of eosinophils through the activation of ERK2 and p38 mitogen-activated protein kinases

    DEFF Research Database (Denmark)

    Kampen, G T; Stafford, S; Adachi, T;

    2000-01-01

    Eotaxin and other CC chemokines acting via CC chemokine receptor-3 (CCR3) are believed to play an integral role in the development of eosinophilic inflammation in asthma and allergic inflammatory diseases. However, little is known about the intracellular events following agonist binding to CCR3...... and the relationship of these events to the functional response of the cell. The objectives of this study were to investigate CCR3-mediated activation of the mitogen-activated protein (MAP) kinases extracellular signal-regulated kinase-2 (ERK2), p38, and c-jun N-terminal kinase (JNK) in eosinophils and to assess...... the requirement for MAP kinases in eotaxin-induced eosinophil cationic protein (ECP) release and chemotaxis. MAP kinase activation was studied in eotaxin-stimulated eosinophils (more than 97% purity) by Western blotting and immune-complex kinase assays. ECP release was measured by radioimmunoassay. Chemotaxis...

  3. A genomic island present along the bacterial chromosome of the Parachlamydiaceae UWE25, an obligate amoebal endosymbiont, encodes a potentially functional F-like conjugative DNA transfer system

    Directory of Open Access Journals (Sweden)

    Guy Lionel

    2004-12-01

    Parachlamydiaceae and Chlamydiaceae, when the Parachlamydia-related symbiont was an intracellular bacteria. It suggests that this heterologous DNA was acquired from a phylogenetically-distant bacteria sharing an amoebal vacuole. Since Parachlamydiaceae are emerging agents of pneumonia, this GI might be involved in pathogenicity. In future, conjugative systems might be developed as genetic tools for Chlamydiales.

  4. P38促细胞分裂蛋白酶活性抑制剂的分子对接及3D-QSAR研究%Docking and 3D-QSAR study on p38α MAP kinase inhibitors

    Institute of Scientific and Technical Information of China (English)

    沈勇; 王源丰; 吴景恒; 肖利民

    2012-01-01

    运用分子对接方法研究了26个以嘧啶基咪唑环为基底的一系列同源化合物与p38促细胞分裂蛋白酶晶体结构的结合模式.采用比较分子力场分析法(CoMFA)对选取的对接优势构象进行三维定量构效关系(3D-QSAR)研究.建立了3D-QSAR的CoMFA模型,其非交叉验证系数r2为0.986,交叉验证相关系数q2为0.755,外部验证的标准偏差(SD)为0.13,表明该模型合理、可信,并具有良好的预测能力.有趣的是, 配体与活性周围氨基酸残基4个距离之和与其活性之间具有良好的线性关系(R2=0.752),揭示了配体分子大小及与氨基酸残基结合的紧密程度对化合物的抑制活性起着主要的作用.最后,根据研究总结的规律设计了4个具有潜在高活性的嘧啶基咪唑衍生物.研究结果可为实验工作者合成新药提供理论有意义的理论参考.%A series of 26 pyridinylimidazole derivatives were docked to the X-ray structure of p38α MAP kinase,and their best docking conformations were analyzed by three-dimensional quantitative structure-activity relationship (3D-QSAR) studies.A robust 3D-QSAR model with high correlation coefficient (r2=0.986) and cross-validation coefficient (q2=0.755) has been established by comparative molecular field analysis (CoMFA).An external validation by the compounds with high activities shows the standard deviation (SD) between experimental and predicted pIC50 values is 0.13.Docking results show that different binding modes of pyridinylimidazole derivatives have a great impact on the inhibitory activity of inhibitors.Interestingly,the summation of the four distances measuring the interaction between the ligands and the protein show a good linear relation (R2 =0.752) with the inhibitory activity of the compounds.Finally,four new pyridinylimidazole derivatives with potent high p38α MAP kinase inhibitory activity have been theoretically designed.

  5. A conserved mitogen-activated protein kinase pathway is required for mating in Candida albicans.

    Science.gov (United States)

    Chen, Jiangye; Chen, Jing; Lane, Shelley; Liu, Haoping

    2002-12-01

    Candida albicans had been thought to lack a mating process until the recent discovery of a mating type-like locus and mating between MTLa and MTL(alpha) strains. To elucidate the molecular mechanisms that regulate mating in C. albicans, we examined the function of Cph1 and its upstream mitogen-activated protein (MAP) kinase pathway in mating, as they are homologues of the pheromone-responsive MAP kinase pathway in Saccharomyces cerevisiae. We found that overexpressing CPH1 in MTLa, but not in MTLa/alpha strains, induced the transcription of orthologues of S. cerevisiae pheromone-induced genes and also increased mating efficiency. Furthermore, cph1 and hst7 mutants were completely defective in mating, and cst20 and cek1 mutants showed reduced mating efficiency, as in S. cerevisiae. The partial mating defect in cek1 results from the presence of a functionally redundant MAP kinase, Cek2. CEK2 complemented the mating defect of a fus3 kss1 mutant of S. cerevisiae and was expressed only in MTLa or MTL(alpha), but not in MTLa/alpha cell types. Moreover, a cek1 cek2 double mutant was completely defective in mating. Our data suggest that the conserved MAP kinase pathway regulates mating in C. albicans. We also observed that C. albicans mating efficiency was greatly affected by medium composition, indicating the potential involvement of nutrient-sensing pathways in mating in addition to the MAP kinase pathway. PMID:12453219

  6. Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    2009-08-01

    Full Text Available Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition

  7. Identification of Differentially Expressed Kinase and Screening Potential Anticancer Drugs in Papillary Thyroid Carcinoma

    Science.gov (United States)

    Zhang, Huairong

    2016-01-01

    Aim. We aim to identify protein kinases involved in the pathophysiology of papillary thyroid carcinoma (PTC) in order to provide potential therapeutic targets for kinase inhibitors and unfold possible molecular mechanisms. Materials and Methods. The gene expression profile of GSE27155 was analyzed to identify differentially expressed genes and mapped onto human protein kinases database. Correlation of kinases with PTC was addressed by systematic literature search, GO and KEGG pathway analysis. Results. The functional enrichment analysis indicated that “mitogen-activated protein kinases pathway” expression was extremely enriched, followed by “neurotrophin signaling pathway,” “focal adhesion,” and “GnRH signaling pathway.” MAPK, SRC, PDGFRa, ErbB, and EGFR were significantly regulated to correct these pathways. Kinases investigated by the literature on carcinoma were considered to be potential novel molecular therapeutic target in PTC and application of corresponding kinase inhibitors could be possible therapeutic tool. Conclusion. SRC, MAPK, and EGFR were the most important differentially expressed kinases in PTC. Combined inhibitors may have high efficacy in PTC treatment by targeting these kinases. PMID:27703281

  8. Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity

    DEFF Research Database (Denmark)

    Köpper, Frederik; Bierwirth, Cathrin; Schön, Margarete;

    2013-01-01

    knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation......DNA damage can obstruct replication forks, resulting in replicative stress. By siRNA screening, we identified kinases involved in the accumulation of phosphohistone 2AX (γH2AX) upon UV irradiation-induced replication stress. Surprisingly, the strongest reduction of phosphohistone 2AX followed....... Moreover, MK2 activity was required for damage response, accumulation of ssDNA, and decreased survival when cells were treated with the nucleoside analogue gemcitabine or when the checkpoint kinase Chk1 was antagonized. By using DNA fiber assays, we found that MK2 inhibition or knockdown rescued DNA...

  9. RhoA/phosphatidylinositol 3-kinase/protein kinase B/mitogen-activated protein kinase signaling after growth arrest-specific protein 6/mer receptor tyrosine kinase engagement promotes epithelial cell growth and wound repair via upregulation of hepatocyte growth factor in macrophages.

    Science.gov (United States)

    Lee, Ye-Ji; Park, Hyun-Jung; Woo, So-Youn; Park, Eun-Mi; Kang, Jihee Lee

    2014-09-01

    Growth arrest-specific protein 6 (Gas6)/Mer receptor tyrosine kinase (Mer) signaling modulates cytokine secretion and helps to regulate the immune response and apoptotic cell clearance. Signaling pathways that activate an epithelial growth program in macrophages are still poorly defined. We report that Gas6/Mer/RhoA signaling can induce the production of epithelial growth factor hepatic growth factor (HGF) in macrophages, which ultimately promotes epithelial cell proliferation and wound repair. The RhoA/protein kinase B (Akt)/mitogen-activated protein (MAP) kinases, including p38 MAP kinase, extracellular signal-regulated protein kinase, and Jun NH2-terminal kinase axis in RAW 264.7 cells, was identified as Gas6/Mer downstream signaling pathway for the upregulation of HGF mRNA and protein. Conditioned medium from RAW 264.7 cells that had been exposed to Gas6 or apoptotic cells enhanced epithelial cell proliferation of the epithelial cell line LA-4 and wound closure. Cotreatment with an HGF receptor-blocking antibody or c-Met antagonist downregulated this enhancement. Inhibition of Mer with small interfering RNA (siRNA) or the RhoA/Rho kinase pathway by RhoA siRNA or Rho kinase pharmacologic inhibitor suppressed Gas6-induced HGF mRNA and protein expression in macrophages and blocked epithelial cell proliferation and wound closure induced by the conditioned medium. Our data provide evidence that macrophages can be reprogrammed by Gas6 to promote epithelial proliferation and wound repair via HGF, which is induced by the Mer/RhoA/Akt/MAP kinase pathway. Thus, defects in Gas6/Mer/RhoA signaling in macrophages may delay tissue repair after injury to the alveolar epithelium.

  10. Map Projection

    CERN Document Server

    Ghaderpour, Ebrahim

    2014-01-01

    In this paper, we introduce some known map projections from a model of the Earth to a flat sheet of paper or map and derive the plotting equations for these projections. The first fundamental form and the Gaussian fundamental quantities are defined and applied to obtain the plotting equations and distortions in length, shape and size for some of these map projections.

  11. Harmonic Maps and Biharmonic Maps

    OpenAIRE

    Hajime Urakawa

    2015-01-01

    This is a survey on harmonic maps and biharmonic maps into (1) Riemannian manifolds of non-positive curvature, (2) compact Lie groups or (3) compact symmetric spaces, based mainly on my recent works on these topics.

  12. Experimental and computational tools useful for (re)construction of dynamic kinase-substrate networks

    DEFF Research Database (Denmark)

    Tan, Chris Soon Heng; Linding, Rune

    2009-01-01

    kinases. This is important for (re)constructing transient kinase-substrate interaction networks that are essential for mechanistic understanding of cellular behaviors and therapeutic intervention, but has largely eluded high-throughput protein-interaction studies due to their transient nature and strong...... dependencies on cellular context. Here, we surveyed some of the computational approaches developed to dissect phosphorylation data detected in systematic proteomic experiments and reviewed some experimental and computational approaches used to map phosphorylation sites to their effector kinases in efforts...... aimed at reconstructing biological signaling networks....

  13. Protein Crystals of Raf Kinase

    Science.gov (United States)

    1995-01-01

    This image shows crystals of the protein raf kinase grown on Earth (photo a) and on USML-2 (photo b). The space-grown crystals are an order of magnitude larger. Principal Investigator: Dan Carter of New Century Pharmaceuticals

  14. MAP Kinase 4 Substrates and Plant Innate Immunity

    DEFF Research Database (Denmark)

    Rasmussen, Magnus Wohlfahrt

    . For example, Arabidopsis MPK4 regulates the expression of a subset of defense genes via at least one WRKY transcription factor. We report here that MPK4 is found in complexes in vivo with (i) PAT1, component of the mRNA decapping machinery, (ii) AOC3, a component in the biosynthesis pathway of JA and (iii) e......IF4E, a component in the translational initiation protein complex. For PAT1 and eIF4E we show that MPK4 phosphorylates specific Ser and Thr residues in vitro, and that MPK4 also phosphorylates AOC3 at an unmapped residue. Specific in vivo phosphorylation for PAT1 is shown in response to pathogen...... recognition, which also induce its localization to cytoplasmic processing bodies. All three proteins; PAT1, AOC3 and eIF4E also interacts with MPK4 in vivo although the functional outcome of these interactions are still elusive. The thesis comprise a general introduction to plant innate immunity followed...

  15. Targeting Mitogen-Activated Protein Kinase Signaling in Mouse Models of Cardiomyopathy Caused by Lamin A/C Gene Mutations.

    Science.gov (United States)

    Muchir, Antoine; Worman, Howard J

    2016-01-01

    The most frequently occurring mutations in the gene encoding nuclear lamin A and nuclear lamin C cause striated muscle diseases virtually always involving the heart. In this review, we describe the approaches and methods used to discover that cardiomyopathy-causing lamin A/C gene mutations increase MAP kinase signaling in the heart and that this plays a role in disease pathogenesis. We review different mouse models of cardiomyopathy caused by lamin A/C gene mutations and how transcriptomic analysis of one model identified increased cardiac activity of the ERK1/2, JNK, and p38α MAP kinases. We describe methods used to measure the activity of these MAP kinases in mouse hearts and then discuss preclinical treatment protocols using pharmacological inhibitors to demonstrate their role in pathogenesis. Several of these kinase inhibitors are in clinical development and could potentially be used to treat human subjects with cardiomyopathy caused by lamin A/C gene mutations.

  16. MOLECULAR MODELING AND DRUG DISCOVERY OF POTENTIAL INHIBITORS FOR ANTICANCER TARGET GENE MELK (MATERNAL EMBRYONIC LEUCINE ZIPPER KINASE

    Directory of Open Access Journals (Sweden)

    Sabitha. K

    2011-12-01

    Full Text Available Maternal embryonic leucine zipper kinase (MELK, a member of the AMP serine/threonine kinase family, exhibits multiple features consistent with the potential utility of this gene as an anticancer target. Reports show that MELK functions as a cancer-specific protein kinase, and that down-regulation of MELK results in growth suppression of breast cancer cells. There are many inhibitors which bind to kinases and are in clinical trials too. In our study we have taken a library of different inhibitors and docked those using GLIDE Induced Fit. From docking result we can conclude that Syk inhibitor II, Rho kinase inhibitor IV, p38 MAP Kinase Inhibitor III, HA 1004, Dihydrochloride and IKK -2 inhibitor VI have good binding affinity towards MELK and may have anticancer activity.

  17. Checkpoint Kinases Regulate a Global Network of Transcription Factors in Response to DNA Damage

    Directory of Open Access Journals (Sweden)

    Eric J. Jaehnig

    2013-07-01

    Full Text Available DNA damage activates checkpoint kinases that induce several downstream events, including widespread changes in transcription. However, the specific connections between the checkpoint kinases and downstream transcription factors (TFs are not well understood. Here, we integrate kinase mutant expression profiles, transcriptional regulatory interactions, and phosphoproteomics to map kinases and downstream TFs to transcriptional regulatory networks. Specifically, we investigate the role of the Saccharomyces cerevisiae checkpoint kinases (Mec1, Tel1, Chk1, Rad53, and Dun1 in the transcriptional response to DNA damage caused by methyl methanesulfonate. The result is a global kinase-TF regulatory network in which Mec1 and Tel1 signal through Rad53 to synergistically regulate the expression of more than 600 genes. This network involves at least nine TFs, many of which have Rad53-dependent phosphorylation sites, as regulators of checkpoint-kinase-dependent genes. We also identify a major DNA damage-induced transcriptional network that regulates stress response genes independently of the checkpoint kinases.

  18. Causal mapping

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard

    2006-01-01

    The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method......The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method...

  19. Elevated transforming growth factor β and mitogen-activated protein kinase pathways mediate fibrotic traits of Dupuytren's disease fibroblasts

    Directory of Open Access Journals (Sweden)

    Krause Carola

    2011-06-01

    Full Text Available Abstract Background Dupuytren's disease is a fibroproliferative disorder of the palmar fascia. The treatment used to date has mostly been surgery, but there is a high recurrence rate. Transforming growth factor β (TGF-β has been implicated as a key stimulator of myofibroblast activity and fascial contraction in Dupuytren's disease. Results We studied Dupuytren's fibroblasts in tissues ex vivo and in cells cultured in vitro and found increased TGF-β expression compared to control fibroblasts. This correlated not only with elevated expression and activation of downstream Smad effectors but also with overactive extracellular signal-regulated kinase 1/2 (ERK1/2/mitogen-activated protein (MAP kinase signalling. Treatment with the TGF-β type I receptor kinase inhibitor SB-431542 and bone morphogenetic protein 6 (BMP6 led to inhibition of elevated Smad and ERK1/2/MAP kinase signalling as well as to inhibition of the increased contractility of Dupuytren's fibroblasts. BMP6 attenuated TGF-β expression in Dupuytren's fibroblasts, but not in control fibroblasts. Platelet-derived growth factor (PDGF expression was strongly promoted by TGF-β in Dupuytren's fibroblasts and was curbed by SB-431542 or BMP6 treatment. High basal expression of phosphorylated ERK1/2 MAP kinase and fibroproliferative markers was attenuated in Dupuytren's fibroblasts by a selective PDGF receptor kinase inhibitor. Cotreatment of Dupuytren's fibroblasts with SB-431542 and the mitogen-activated protein kinase kinase 1 inhibitor PD98059 was sufficient to abrogate proliferation and contraction of Dupuytren's fibroblasts. Conclusions Both TGF-β and ERK1/2 MAP kinase pathways cooperated in mediating the enhanced proliferation and high spontaneous contraction of Dupuytren's fibroblasts. Our data indicate that both signalling pathways are prime targets for the development of nonsurgical intervention strategies to treat Dupuytren's disease.

  20. Protein kinase C and extracellular signal-regulated kinase regulate movement, attachment, pairing and egg release in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Margarida Ressurreição

    2014-06-01

    Full Text Available Protein kinases C (PKCs and extracellular signal-regulated kinases (ERKs are evolutionary conserved cell signalling enzymes that coordinate cell function. Here we have employed biochemical approaches using 'smart' antibodies and functional screening to unravel the importance of these enzymes to Schistosoma mansoni physiology. Various PKC and ERK isotypes were detected, and were differentially phosphorylated (activated throughout the various S. mansoni life stages, suggesting isotype-specific roles and differences in signalling complexity during parasite development. Functional kinase mapping in adult worms revealed that activated PKC and ERK were particularly associated with the adult male tegument, musculature and oesophagus and occasionally with the oesophageal gland; other structures possessing detectable activated PKC and/or ERK included the Mehlis' gland, ootype, lumen of the vitellaria, seminal receptacle and excretory ducts. Pharmacological modulation of PKC and ERK activity in adult worms using GF109203X, U0126, or PMA, resulted in significant physiological disturbance commensurate with these proteins occupying a central position in signalling pathways associated with schistosome muscular activity, neuromuscular coordination, reproductive function, attachment and pairing. Increased activation of ERK and PKC was also detected in worms following praziquantel treatment, with increased signalling associated with the tegument and excretory system and activated ERK localizing to previously unseen structures, including the cephalic ganglia. These findings support roles for PKC and ERK in S. mansoni homeostasis, and identify these kinase groups as potential targets for chemotherapeutic treatments against human schistosomiasis, a neglected tropical disease of enormous public health significance.

  1. The frequencies and clinical implications of mutations in 33 kinase-related genes in locally advanced rectal cancer: a pilot study.

    LENUS (Irish Health Repository)

    Abdul-Jalil, Khairun I

    2014-08-01

    Locally advanced rectal cancer (LARC: T3\\/4 and\\/or node-positive) is treated with preoperative\\/neoadjuvant chemoradiotherapy (CRT), but responses are not uniform. The phosphatidylinositol 3-kinase (PI3K), MAP kinase (MAPK), and related pathways are implicated in rectal cancer tumorigenesis. Here, we investigated the association between genetic mutations in these pathways and LARC clinical outcomes.

  2. Interleukin-6-induced STAT3 transactivation and Ser(727) phosphorylation involves Vav, Rac-1 and the kinase SEK-1/MKK-4 as signal transduction components

    NARCIS (Netherlands)

    Schuringa, JJ; Jonk, LJC; Dokter, WHA; Vellenga, E; Kruijer, W

    2000-01-01

    In the present study, signal transducer and activator of transcription 3 (STAT3) Ser(727) phosphorylation and transactivation was investigated in relation to activation of mitogen-activated protein (MAP) kinase family members including extracellular-signal-regulated protein kinase (ERK)-1, c-Jun N-t

  3. Repulsive axon guidance by Draxin is mediated by protein Kinase B (Akt), glycogen synthase kinase-3β (GSK-3β) and microtubule-associated protein 1B.

    Science.gov (United States)

    Meli, Rajeshwari; Weisová, Petronela; Propst, Friedrich

    2015-01-01

    Draxin is an important axon guidance cue necessary for the formation of forebrain commissures including the corpus callosum, but the molecular details of draxin signaling are unknown. To unravel how draxin signals are propagated we used murine cortical neurons and genetic and pharmacological approaches. We found that draxin-induced growth cone collapse critically depends on draxin receptors (deleted in colorectal cancer, DCC), inhibition of protein kinase B/Akt, activation of GSK-3β (glycogen synthase kinase-3β) and the presence of microtubule-associated protein MAP1B. This study, for the first time elucidates molecular events in draxin repulsion, links draxin and DCC to MAP1B and identifies a novel MAP1B-depenent GSK-3β pathway essential for chemo-repulsive axon guidance cue signaling.

  4. Affective Maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    . In particular, mapping environmental damage, endangered species, and human made disasters has become one of the focal point of affective knowledge production. These ‘more-than-humangeographies’ practices include notions of species, space and territory, and movement towards a new political ecology. This type...... of environmental knowledge production. It uses InfoAmazonia, the databased platform on Amazon rainforests, as an example of affective geo-visualization within information mapping that enhances embodiment in the experience of the information. Amazonia is defined as a digitally created affective (map)space within...

  5. Conformational Dynamics and Allostery in Pyruvate Kinase.

    Science.gov (United States)

    Donovan, Katherine A; Zhu, Shaolong; Liuni, Peter; Peng, Fen; Kessans, Sarah A; Wilson, Derek J; Dobson, Renwick C J

    2016-04-22

    Pyruvate kinase catalyzes the final step in glycolysis and is allosterically regulated to control flux through the pathway. Two models are proposed to explain how Escherichia coli pyruvate kinase type 1 is allosterically regulated: the "domain rotation model" suggests that both the domains within the monomer and the monomers within the tetramer reorient with respect to one another; the "rigid body reorientation model" proposes only a reorientation of the monomers within the tetramer causing rigidification of the active site. To test these hypotheses and elucidate the conformational and dynamic changes that drive allostery, we performed time-resolved electrospray ionization mass spectrometry coupled to hydrogen-deuterium exchange studies followed by mutagenic analysis to test the activation mechanism. Global exchange experiments, supported by thermostability studies, demonstrate that fructose 1,6-bisphosphate binding to the allosteric domain causes a shift toward a globally more dynamic ensemble of conformations. Mapping deuterium exchange to peptides within the enzyme highlight site-specific regions with altered conformational dynamics, many of which increase in conformational flexibility. Based upon these and mutagenic studies, we propose an allosteric mechanism whereby the binding of fructose 1,6-bisphosphate destabilizes an α-helix that bridges the allosteric and active site domains within the monomeric unit. This destabilizes the β-strands within the (β/α)8-barrel domain and the linked active site loops that are responsible for substrate binding. Our data are consistent with the domain rotation model but inconsistent with the rigid body reorientation model given the increased flexibility at the interdomain interface, and we can for the first time explain how fructose 1,6-bisphosphate affects the active site. PMID:26879751

  6. A multisubstrate deoxyribonucleoside kinase from plants

    DEFF Research Database (Denmark)

    Clausen, Anders R.; Girandon, Lenart; Knecht, Wolfgang;

    2008-01-01

    Deoxyribonucleoside kinases catalyze the rate limiting step during the salvage of deoxyribonucleosides and convert them into the corresponding monophosphate compounds. We have identified and characterized a unique multisubstrate deoxyribonucleoside kinase from plants. The phylogenetic relationship...... in anti-cancer therapy....

  7. Protein kinase CK2 in human diseases

    DEFF Research Database (Denmark)

    Guerra, Barbara; Issinger, Olaf-Georg

    2008-01-01

    Protein kinase CK2 (formerly referred to as casein kinase II) is an evolutionary conserved, ubiquitous protein kinase. There are two paralog catalytic subunits, i.e. alpha (A1) and alpha' (A2). The alpha and alpha' subunits are linked to two beta subunits to produce a heterotetrameric structure....... The catalytic alpha subunits are distantly related to the CMGC subfamily of kinases, such as the Cdk kinases. There are some peculiarities associated with protein kinase CK2, which are not found with most other protein kinases: (i) the enzyme is constitutively active, (ii) it can use ATP and GTP and...... specifically target this protein kinase [10]. Since not all the aspects of what has been published on CK2 can be covered in this review, we would like to recommend the following reviews; (i) for general information on CK2 [11-18] and (ii) with a focus on aberrant CK2 [19-22]....

  8. Crystal Structure of the N-Acetylmannosamine Kinase Domain of GNE

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yufeng; Tempel, Wolfram; Nedyalkova, Lyudmila; MacKenzie, Farrell; Park, Hee-Won; (Toronto)

    2010-08-17

    UDP-GlcNAc 2-epimerase/ManNAc 6-kinase, GNE, is a bi-functional enzyme that plays a key role in sialic acid biosynthesis. Mutations of the GNE protein cause sialurea or autosomal recessive inclusion body myopathy/Nonaka myopathy. GNE is the only human protein that contains a kinase domain belonging to the ROK (repressor, ORF, kinase) family. We solved the structure of the GNE kinase domain in the ligand-free state. The protein exists predominantly as a dimer in solution, with small populations of monomer and higher-order oligomer in equilibrium with the dimer. Crystal packing analysis reveals the existence of a crystallographic hexamer, and that the kinase domain dimerizes through the C-lobe subdomain. Mapping of disease-related missense mutations onto the kinase domain structure revealed that the mutation sites could be classified into four different groups based on the location - dimer interface, interlobar helices, protein surface, or within other secondary structural elements. The crystal structure of the kinase domain of GNE provides a structural basis for understanding disease-causing mutations and a model of hexameric wild type full length enzyme.

  9. Acetylation of cyclin-dependent kinase 5 is mediated by GCN5

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juhyung; Yun, Nuri; Kim, Chiho [Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749 (Korea, Republic of); Song, Min-Young; Park, Kang-Sik [Department of Physiology and Biomedical Science Institute, Kyung Hee University School of Medicine, Seoul 130-701 (Korea, Republic of); Oh, Young J., E-mail: yjoh@yonsei.ac.kr [Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749 (Korea, Republic of)

    2014-04-25

    Highlights: • Cyclin-dependent kinase 5 (CDK5) is present as an acetylated form. • CDK5 is acetylated by GCN5. • CDK5’s acetylation site is mapped at Lys33. • Its acetylation may affect CDK5’s kinase activity. - Abstract: Cyclin-dependent kinase 5 (CDK5), a member of atypical serine/threonine cyclin-dependent kinase family, plays a crucial role in pathophysiology of neurodegenerative disorders. Its kinase activity and substrate specificity are regulated by several independent pathways including binding with its activator, phosphorylation and S-nitrosylation. In the present study, we report that acetylation of CDK5 comprises an additional posttranslational modification within the cells. Among many candidates, we confirmed that its acetylation is enhanced by GCN5, a member of the GCN5-related N-acetyl-transferase family of histone acetyltransferase. Co-immunoprecipitation assay and fluorescent localization study indicated that GCN5 physically interacts with CDK5 and they are co-localized at the specific nuclear foci. Furthermore, liquid chromatography in conjunction with a mass spectrometry indicated that CDK5 is acetylated at Lys33 residue of ATP binding domain. Considering this lysine site is conserved among a wide range of species and other related cyclin-dependent kinases, therefore, we speculate that acetylation may alter the kinase activity of CDK5 via affecting efficacy of ATP coordination.

  10. Mapping Biodiversity.

    Science.gov (United States)

    World Wildlife Fund, Washington, DC.

    This document features a lesson plan that examines how maps help scientists protect biodiversity and how plants and animals are adapted to specific ecoregions by comparing biome, ecoregion, and habitat. Samples of instruction and assessment are included. (KHR)

  11. Renal targeting of kinase inhibitors

    NARCIS (Netherlands)

    Dolman, M. E. M.; Fretz, M. M.; Segers, Gj. W.; Lacombe, M.; Prakash, J.; Storm, G.; Hennink, W. E.; Kok, R. J.

    2008-01-01

    Activation of proximal tubular cells by fibrotic and inflammatory mediators is an important hallmark of chronic kidney disease. We have developed a novel strategy to intervene in renal fibrosis, by means of locally delivered kinase inhibitors. Such compounds will display enhanced activity within tub

  12. Inhibitors of protein kinase C

    Institute of Scientific and Technical Information of China (English)

    LIU Shiying; JIANG Yuyang; CAO Jian; LIU Feng; MA Li; ZHAO Yufen

    2005-01-01

    Protein kinase catalyzes the transfer of the γ-phosphoryl group from ATP to the hydroxyl groups of protein side chains, which plays critical roles in signal transduction pathways by transmitting extracellular signals across the plasma membrane and nuclear membrane to the destination sites in the cytoplasm and the nucleus. Protein kinase C (PKC) is a superfamily of phospholipid-dependent Ser/Thr kinase. There are at least 12 isozymes in PKC family. They are distributed in different tissues and play different roles in physiological processes. On account of their concern with a variety of pathophysiologic states, such as cancer, inflammatory conditions, autoimmune disorder, and cardiac diseases, the inhibitors, which can inhibit the activity of PKC and the interaction of cytokine with receptor, and interfere signal transduction pathway, may be candidates of therapeutic drugs. Therefore, intense efforts have been made to develop specific protein kinase inhibitors as biological tools and therapeutic agents. This article reviews the recent development of some of PKC inhibitors based on their interaction with different conserved domains and different inhibition mechanisms.

  13. Rethinking maps

    OpenAIRE

    Kitchin, Rob; Dodge, Martin

    2007-01-01

    In this paper we argue that cartography is profitably conceived as a processual, rather than representational, science. Building on recent analysis concerning the philosophical underpinnings of cartography we question the ontological security of maps, contending that it is productive to rethink cartography as ontogenetic in nature; that is maps emerge through practices and have no secure ontological status. Drawing on the concepts of transduction and technicity we contend that ...

  14. Degradation of Activated Protein Kinases by Ubiquitination

    OpenAIRE

    Lu, Zhimin; Hunter, Tony

    2009-01-01

    Protein kinases are important regulators of intracellular signal transduction pathways and play critical roles in diverse cellular functions. Once a protein kinase is activated, its activity is subsequently downregulated through a variety of mechanisms. Accumulating evidence indicates that the activation of protein kinases commonly initiates their downregulation via the ubiquitin/proteasome pathway. Failure to regulate protein kinase activity or expression levels can cause human diseases.

  15. Determinants of homodimerization specificity in histidine kinases

    OpenAIRE

    Ashenberg, Orr; Rozen-Gagnon, Kathryn; Laub, Michael T; Keating, Amy E.

    2011-01-01

    Two-component signal transduction pathways consisting of a histidine kinase and a response regulator are used by prokaryotes to respond to diverse environmental and intracellular stimuli. Most species encode numerous paralogous histidine kinases that exhibit significant structural similarity. Yet in almost all known examples, histidine kinases are thought to function as homodimers. We investigated the molecular basis of dimerization specificity, focusing on the model histidine kinase EnvZ and...

  16. Protein kinase A signaling during bidirectional axenic differentiation in Leishmania.

    Science.gov (United States)

    Bachmaier, Sabine; Witztum, Ronit; Tsigankov, Polina; Koren, Roni; Boshart, Michael; Zilberstein, Dan

    2016-02-01

    Parasitic protozoa of the genus Leishmania are obligatory intracellular parasites that cycle between the phagolysosome of mammalian macrophages, where they proliferate as intracellular amastigotes, and the midgut of female sand flies, where they proliferate as extracellular promastigotes. Shifting between the two environments induces signaling pathway-mediated developmental processes that enable adaptation to both host and vector. Developmentally regulated expression and phosphorylation of protein kinase A subunits in Leishmania and in Trypanosoma brucei point to an involvement of protein kinase A in parasite development. To assess this hypothesis in Leishmania donovani, we determined proteome-wide changes in phosphorylation of the conserved protein kinase A phosphorylation motifs RXXS and RXXT, using a phospho-specific antibody. Rapid dephosphorylation of these motifs was observed upon initiation of promastigote to amastigote differentiation in culture. No phosphorylated sites were detected in axenic amastigotes. To analyse the kinetics of (re)phosphorylation during axenic reverse differentiation from L. donovani amastigotes to promastigotes, we first established a map of this process with morphological and molecular markers. Upon initiation, the parasites rested for 6-12 h before proliferation of an asynchronous population resumed. After early changes in cell shape, the major changes in molecular marker expression and flagella biogenesis occurred between 24 and 33 h after initiation. RXXS/T re-phosphorylation and expression of the regulatory subunit PKAR1 correlated with promastigote maturation, indicating a promastigote-specific function of protein kinase A signaling. This is supported by the localization of PKAR1 to the flagellum, an organelle reduced to a remnant in amastigote forms. We conclude that a significant increase in protein kinase A-mediated phosphorylation is part of the ordered changes that characterise the amastigote to promastigote

  17. Cyclic AMP activates the mitogen-activated protein kinase cascade in PC12 cells

    DEFF Research Database (Denmark)

    Frödin, M; Peraldi, P; Van Obberghen, E

    1994-01-01

    Mitogen-activated protein (MAP) kinases are activated in response to a large variety of extracellular signals, including growth factors, hormones, and neurotransmitters, which activate distinct intracellular signaling pathways. Their activation by the cAMP-dependent pathway, however, has not been...

  18. Biochemical Screening of Five Protein Kinases from Plasmodium falciparum against 14,000 Cell-Active Compounds.

    Directory of Open Access Journals (Sweden)

    Gregory J Crowther

    Full Text Available In 2010 the identities of thousands of anti-Plasmodium compounds were released publicly to facilitate malaria drug development. Understanding these compounds' mechanisms of action--i.e., the specific molecular targets by which they kill the parasite--would further facilitate the drug development process. Given that kinases are promising anti-malaria targets, we screened ~14,000 cell-active compounds for activity against five different protein kinases. Collections of cell-active compounds from GlaxoSmithKline (the ~13,000-compound Tres Cantos Antimalarial Set, or TCAMS, St. Jude Children's Research Hospital (260 compounds, and the Medicines for Malaria Venture (the 400-compound Malaria Box were screened in biochemical assays of Plasmodium falciparum calcium-dependent protein kinases 1 and 4 (CDPK1 and CDPK4, mitogen-associated protein kinase 2 (MAPK2/MAP2, protein kinase 6 (PK6, and protein kinase 7 (PK7. Novel potent inhibitors (IC50 < 1 μM were discovered for three of the kinases: CDPK1, CDPK4, and PK6. The PK6 inhibitors are the most potent yet discovered for this enzyme and deserve further scrutiny. Additionally, kinome-wide competition assays revealed a compound that inhibits CDPK4 with few effects on ~150 human kinases, and several related compounds that inhibit CDPK1 and CDPK4 yet have limited cytotoxicity to human (HepG2 cells. Our data suggest that inhibiting multiple Plasmodium kinase targets without harming human cells is challenging but feasible.

  19. Role of guanosine kinase in the utilization of guanosine for nucleotide synthesis in Escherichia coli

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Nygaard, Per

    1989-01-01

    Using purine auxotrophic strains of Escherichia coli with additional genetic lesions in the pathways of interconversion and salvage of purine compounds, we demonstrated the in vivo function of guanosine kinase and inosine kinase. Mutants with increased ability to utilize guanosine were isolated b...... a purF, a purL or a purM mutation. A revised map location of the gsk gene is presented and the gene order established as proC-acrA-apt-adk-gsk-purE....

  20. Genetic and pharmacologic inhibition of Tpl2 kinase is protective in a mouse model of ventilator-induced lung injury

    OpenAIRE

    Kaniaris, Evangelos; Vaporidi, Katerina; Vergadi, Eleni; Theodorakis, Emmanuel E; Kondili, Eumorfia; Lagoudaki, Eleni; Tsatsanis, Christos; Georgopoulos, Dimitris

    2014-01-01

    Background Mechanical stress induced by injurious ventilation leads to pro-inflammatory cytokine production and lung injury. The extracellular-signal-regulated-kinase, ERK1/2, participates in the signaling pathways activated upon mechanical stress in the lungs to promote the inflammatory response. Tumor progression locus 2 (Tpl2) is a MAP3kinase that activates ERK1/2 upon cytokine or TLR signaling, to induce pro-inflammatory cytokine production. The role of Tpl2 in lung inflammation, and spec...

  1. Mapping Deeply

    Directory of Open Access Journals (Sweden)

    Denis Wood

    2015-08-01

    Full Text Available This is a description of an avant la lettre deep mapping project carried out by a geographer and a number of landscape architecture students in the early 1980s. Although humanists seem to take the “mapping” in deep mapping more metaphorically than cartographically, in this neighborhood mapping project, the mapmaking was taken literally, with the goal of producing an atlas of the neighborhood. In this, the neighborhood was construed as a transformer, turning the stuff of the world (gas, water, electricity into the stuff of individual lives (sidewalk graffiti, wind chimes, barking dogs, and vice versa. Maps in the central transformer section of the atlas were to have charted this process in action, as in one showing the route of an individual newspaper into the neighborhood, then through the neighborhood to a home, and finally, as trash, out of the neighborhood in a garbage truck; though few of these had been completed when the project concluded in 1986. Resurrected in 1998 in an episode on Ira Glass’ This American Life, the atlas was finally published, as Everything Sings: Maps for a Narrative Atlas, in 2010 (and an expanded edition in 2013.

  2. Cln3-associated kinase activity in Saccharomyces cerevisiae is regulated by the mating factor pathway.

    Science.gov (United States)

    Jeoung, D I; Oehlen, L J; Cross, F R

    1998-01-01

    The Saccharomyces cerevisiae cell cycle is arrested in G1 phase by the mating factor pathway. Genetic evidence has suggested that the G1 cyclins Cln1, Cln2, and Cln3 are targets of this pathway whose inhibition results in G1 arrest. Inhibition of Cln1- and Cln2-associated kinase activity by the mating factor pathway acting through Far1 has been described. Here we report that Cln3-associated kinase activity is inhibited by mating factor treatment, with dose response and timing consistent with involvement in cell cycle arrest. No regulation of Cln3-associated kinase was observed in a fus3 kss1 strain deficient in mating factor pathway mitogen-activated protein (MAP) kinases. Inhibition occurs mainly at the level of specific activity of Cln3-Cdc28 complexes. Inhibition of the C-terminally truncated Cln3-1-associated kinase is not observed; such truncations were previously identified genetically as causing resistance to mating factor-induced cell cycle arrest. Regulation of Cln3-associated kinase specific activity by mating factor treatment requires Far1. Overexpression of Far1 restores inhibition of C-terminally truncated Cln3-1-associated kinase activity. G2/M-arrested cells are unable to regulate Cln3-associated kinase, possibly because of cell cycle regulation of Far1 abundance. Inhibition of Cln3-associated kinase activity by the mating factor pathway may allow this pathway to block the earliest step in normal cell cycle initiation, since Cln3 functions as the most upstream G1-acting cyclin, activating transcription of the G1 cyclins CLN1 and CLN2 as well as of the S-phase cyclins CLB5 and CLB6. PMID:9418890

  3. Detection of excretory Entamoeba histolytica DNA in the urine, and detection of E. histolytica DNA and lectin antigen in the liver abscess pus for the diagnosis of amoebic liver abscess

    Directory of Open Access Journals (Sweden)

    Khairnar Krishna

    2007-05-01

    Full Text Available Abstract Background Amoebic liver abscess (ALA and pyogenic liver abscesses (PLA appear identical by ultrasound and other imaging techniques. Collection of blood or liver abscess pus for diagnosis of liver abscesses is an invasive procedure, and the procedure requires technical expertise and disposable syringes. Collection of urine is a noninvasive procedure. Therefore, there has been much interest shown towards the use of urine as an alternative clinical specimen for the diagnosis of some parasitic infections. Here, we report for the first time the detection of E. histolytica DNA excreted in the urine for diagnosis of the cases of ALA. Results E. histolytica DNA was detected in liver abscess pus specimen of 80.4% of ALA patients by a nested multiplex polymerase chain reaction (PCR targeting 16S-like r RNA gene. The nested PCR detected E. histolytica DNA in all 37 (100% liver abscess pus specimens collected prior to metronidazole treatment, but were detected in only 53 of 75 (70.6% pus specimens collected after therapy with metronidazole. Similarly, the PCR detected E. histolytica DNA in 21 of 53 (39.6% urine specimens of ALA patients. The test detected E. histolytica DNA in only 4 of 23 (17.4% urine specimens collected prior to metronidazole treatment, but were detected in 17 of 30 (56.7% urine specimens collected after treatment with metronidazole. The enzyme-linked immunosorbent assay (ELISA for the detection of lectin E. histolytica antigen in the liver abscess pus showed a sensitivity of 50% and the indirect haemagglutination (IHA test for detection of amoebic antibodies in the serum showed a sensitivity of 76.8% for the diagnosis of the ALA. Conclusion The present study for the first time shows that the kidney barrier in ALA patients is permeable to E. histolytica DNA molecule resulting in excretion of E. histolytica DNA in urine which can be detected by PCR. The study also shows that the PCR for detection of E. histolytica DNA in urine of

  4. DMPD: Bruton's tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signalling? [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15081522 Bruton's tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signall...ruton's tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signalling? PubmedID 15081522 Title Bruton...'s tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signalling? Authors

  5. Parametric mapping

    Science.gov (United States)

    Branch, Allan C.

    1998-01-01

    Parametric mapping (PM) lies midway between older and proven artificial landmark based guidance systems and yet to be realized vision based guidance systems. It is a simple yet effective natural landmark recognition system offering freedom from the need for enhancements to the environment. Development of PM systems can be inexpensive and rapid and they are starting to appear in commercial and industrial applications. Together with a description of the structural framework developed to generically describe robot mobility, this paper illustrates clearly the parts of any mobile robot navigation and guidance system and their interrelationships. Among other things, the importance of the richness of the reference map, and not necessarily the sensor map, is introduced, the benefits of dynamic path planners to alleviate the need for separate object avoidance, and the independence of the PM system to the type of sensor input is shown.

  6. CALS Mapping

    DEFF Research Database (Denmark)

    Collin, Ib; Nielsen, Povl Holm; Larsen, Michael Holm

    1998-01-01

    To enhance the industrial applications of CALS, CALS Center Danmark has developed a cost efficient and transparent assessment, CALS Mapping, to uncover the potential of CALS - primarily dedicated to small and medium sized enterprises. The idea behind CALS Mapping is that the CALS State...... of the enterprise is compared with a Reference Enterprise Model (REM). The REM is a CALS idealised enterprise providing full product support throughout the extended enterprise and containing different manufacturing aspects, e.g. component industry, process industry, and one-piece production. This CALS idealised...... enterprise is, when applied in a given organisation modified with respect to the industry regarded, hence irrelevant measure parameters are eliminated to avoid redundancy. This assessment of CALS Mapping, quantify the CALS potential of an organisation with the purpose of providing decision support to the top...

  7. Endocytosis of Receptor Tyrosine Kinases

    Science.gov (United States)

    Goh, Lai Kuan

    2013-01-01

    Endocytosis is the major regulator of signaling from receptor tyrosine kinases (RTKs). The canonical model of RTK endocytosis involves rapid internalization of an RTK activated by ligand binding at the cell surface and subsequent sorting of internalized ligand-RTK complexes to lysosomes for degradation. Activation of the intrinsic tyrosine kinase activity of RTKs results in autophosphorylation, which is mechanistically coupled to the recruitment of adaptor proteins and conjugation of ubiquitin to RTKs. Ubiquitination serves to mediate interactions of RTKs with sorting machineries both at the cell surface and on endosomes. The pathways and kinetics of RTK endocytic trafficking, molecular mechanisms underlying sorting processes, and examples of deviations from the standard trafficking itinerary in the RTK family are discussed in this work. PMID:23637288

  8. RIP Kinases Initiate Programmed Necrosis

    Institute of Scientific and Technical Information of China (English)

    Lorenzo Galluzzi; Oliver Kepp; Guido Kroemer

    2009-01-01

    Some lethal stimuli can induce either apoptosis or necrosis, depending on the cell type and/or experimental setting. Until recently,the molecular bases of this phenomenon were largely unknown. Now, two members of the receptor-interacting serine-threonine kinase (RIP) family, RIP1 and RIP3, have been demonstrated to control the switch between apoptotic and necrotic cell death.Some mechanistic details, however, remain controversial.

  9. Thymidine kinase diversity in bacteria

    DEFF Research Database (Denmark)

    Sandrini, Michael; Clausen, A.R.; Munch-Petersen, B.;

    2006-01-01

    Thymidine kinases (TKs) appear to be almost ubiquitous and are found in nearly all prokaryotes, eukaryotes, and several viruses. They are the key enzymes in thymidine salvage and activation of several anti-cancer and antiviral drugs. We show that bacterial TKs can be subdivided into 2 groups. The....... The TKs from Gram-positive bacteria are more closely related to the eukaryotic TK1 enzymes than are TKs from Gram-negative bacteria....

  10. Pantothenate Kinase-Associated Neurodegeneration

    OpenAIRE

    Meitinger, Thomas; Prokisch, Holger; Hartig, Monika B.; Klopstock, Thomas

    2012-01-01

    Pantothenate kinase-associated neurodegeneration (PKAN) is a hereditary progressive disorder and the most frequent form of neurodegeneration with brain iron accumulation (NBIA). PKAN patients present with a progressive movement disorder, dysarthria, cognitive impairment and retinitis pigmentosa. In magnetic resonance imaging, PKAN patients exhibit the pathognonomic "eye of the tiger" sign in the globus pallidus which corresponds to iron accumulation and gliosis as shown in neuropathological e...

  11. A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase.

    Directory of Open Access Journals (Sweden)

    Mutsuki Amano

    Full Text Available BACKGROUND: Protein kinases are major components of signal transduction pathways in multiple cellular processes. Kinases directly interact with and phosphorylate downstream substrates, thus modulating their functions. Despite the importance of identifying substrates in order to more fully understand the signaling network of respective kinases, efficient methods to search for substrates remain poorly explored. METHODOLOGY/PRINCIPAL FINDINGS: We combined mass spectrometry and affinity column chromatography of the catalytic domain of protein kinases to screen potential substrates. Using the active catalytic fragment of Rho-kinase/ROCK/ROK as the model bait, we obtained about 300 interacting proteins from the rat brain cytosol fraction, which included the proteins previously reported as Rho-kinase substrates. Several novel interacting proteins, including doublecortin, were phosphorylated by Rho-kinase both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: This method would enable identification of novel specific substrates for kinases such as Rho-kinase with high sensitivity.

  12. Mapping Resilience

    DEFF Research Database (Denmark)

    Carruth, Susan

    2015-01-01

    relationship between resilience and energy planning, suggesting that planning in, and with, time is a core necessity in this domain. It then reviews four examples of graphically mapping with time, highlighting some of the key challenges, before tentatively proposing a graphical language to be employed by...

  13. Mole Mapping.

    Science.gov (United States)

    Crippen, Kent J.; Curtright, Robert D.; Brooks, David W.

    2000-01-01

    The abstract nature of the mole and its applications to problem solving make learning the concept difficult for students, and teaching the concept challenging for teachers. Presents activities that use concept maps and graphing calculators as tools for solving mole problems. (ASK)

  14. Mapping filmmaking

    DEFF Research Database (Denmark)

    Gilje, Øystein; Frølunde, Lisbeth; Lindstrand, Fredrik;

    2010-01-01

    This chapter concerns mapping patterns in regards to how young filmmakers (age 15 – 20) in the Scandinavian countries learn about filmmaking. To uncover the patterns, we present portraits of four young filmmakers who participated in the Scandinavian research project Making a filmmaker. The focus ...

  15. Participatory maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    looks at computer-assisted cartography as part of environmental knowledge production. It uses InfoAmazonia, the databased platform on Amazon rainforests, as an example of affective geo-visualization within information mapping that enhances embodiment in the experience of the information. Amazonia...

  16. Energetic map

    International Nuclear Information System (INIS)

    This report explains the energetic map of Uruguay as well as the different systems that delimits political frontiers in the region. The electrical system importance is due to the electricity, oil and derived , natural gas, potential study, biofuels, wind and solar energy

  17. Immunochemical characterization of rat brain protein kinase

    International Nuclear Information System (INIS)

    Polyclonal antibodies against rat brain protein kinase C (the Ca2+/phospholipid-dependent enzyme) were raised in goat. These antibodies can neutralize completely the kinase activity in purified enzyme preparation as well as that in the crude homogenate. Immunoblot analysis of the purified and the crude protein kinase C preparations revealed a major immunoreactive band of 80 kDa. The antibodies also recognize the same enzyme from other rat tissues. Neuronal tissues (cerebral cortex, cerebellum, hypothalamus, and retina) and lymphoid organs (thymus and spleen) were found to be enriched in protein kinase C, whereas lung, kidney, liver, heart, and skeletal muscle contained relatively low amounts of this kinase. Limited proteolysis of the purified rat brain protein kinase C with trypsin results in an initial degradation of the kinase into two major fragments of 48 and 38 kDa. Both fragments are recognized by the antibodies. However, further digestion of the 48-kDa fragment to 45 kDa and the 38-kDa fragment to 33 kDa causes a loss of the immunoreactivity. Upon incubation of the cerebellar extract with Ca2+, the 48-kDa fragment was also identified as a major proteolytic product of protein kinase C. Proteolytic degradation of protein kinase C converts the Ca2+/phospholipid-dependent kinase to an independent form without causing a large impairment of the binding of [3H]phorbol 12,13-dibutyrate. The two major proteolytic fragments were separated by ion exchange chromatography and one of them (45-48 kDa) was identified as a protein kinase and the other (33-38 kDa) as a phorbol ester-binding protein. These results demonstrate that rat brain protein kinase C is composed of two functionally distinct units, namely, a protein kinase and a Ca2+-independent/phospholipid-dependent phorbol ester-binding protein

  18. Role of guanosine kinase in the utilization of guanosine for nucleotide synthesis in Escherichia coli

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Nygaard, Per

    1989-01-01

    plating cells on medium with guanosine as the sole purine source. These mutants had altered guanosine kinase activity and the mutations were mapped in the gene encoding guanosine kinase, gsk. Some of the mutants had acquired an additional genetic lesion in the purine de novo biosynthetic pathway, namely a...... purF, a purL or a purM mutation. A revised map location of the gsk gene is presented and the gene order established as proC-acrA-apt-adk-gsk-purE....

  19. Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Pan, Cuiping; Olsen, Jesper V; Daub, Henrik;

    2009-01-01

    to identify the direct targets of kinase inhibitors upon affinity purification from cellular extracts. Here we introduce a complementary approach to evaluate the effects of kinase inhibitors on the entire cell signaling network. We used triple labeling SILAC (stable isotope labeling by amino acids in cell......-ABL, which is the cause of chronic myelogenous leukemia, affected nearly 1,000 phosphopeptides. In addition to the proximal effects on ABL and its immediate targets, dasatinib broadly affected the downstream MAPK pathways. Pathway mapping of regulated sites implicated a variety of cellular functions...

  20. Regulation of the interaction between protein kinase C-related protein kinase 2 (PRK2) and its upstream kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1)

    DEFF Research Database (Denmark)

    Dettori, Rosalia; Sonzogni, Silvina; Meyer, Lucas;

    2009-01-01

    The members of the AGC kinase family frequently exhibit three conserved phosphorylation sites: the activation loop, the hydrophobic motif (HM), and the zipper (Z)/turn-motif (TM) phosphorylation site. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates the activation loop of...... numerous AGC kinases, including the protein kinase C-related protein kinases (PRKs). Here we studied the docking interaction between PDK1 and PRK2 and analyzed the mechanisms that regulate this interaction. In vivo labeling of recombinant PRK2 by (32)P(i) revealed phosphorylation at two sites, the...... the mechanism that negatively regulates the docking interaction of PRK2 to the upstream kinase PDK1 is directly linked to the activation mechanism of PRK2 itself. Finally, our results indicate that the mechanisms underlying the regulation of the interaction between PRK2 and PDK1 are specific for PRK2...

  1. MAPPING INNOVATION

    DEFF Research Database (Denmark)

    Thuesen, Christian Langhoff; Koch, Christian

    2011-01-01

    By adopting a theoretical framework from strategic niche management research (SNM) this paper presents an analysis of the innovation system of the Danish Construction industry. The analysis shows a multifaceted landscape of innovation around an existing regime, built around existing ways of working...... and developed over generations. The regime is challenged from various niches and the socio-technical landscape through trends as globalization. Three niches (Lean Construction, BIM and System Deliveries) are subject to a detailed analysis showing partly incompatible rationales and various degrees of innovation...... potential. The paper further discusses how existing policymaking operates in a number of tensions one being between government and governance. Based on the concepts from SNM the paper introduces an innovation map in order to support the development of meta-governance policymaking. By mapping some...

  2. Cognitive maps

    DEFF Research Database (Denmark)

    Minder, Bettina; Laursen, Linda Nhu; Lassen, Astrid Heidemann

    2014-01-01

    This paper identifies three different perspectives on the relationship between design and innovation and explains implication of these different world-views of the interrelations between innovation and design. The study is based on empirical data from a series of semi-structured expert interviews...... of the interrelation becomes increasingly important. This paper seeks to clarify this interrelation and discuss how design is used in innovation.......This paper identifies three different perspectives on the relationship between design and innovation and explains implication of these different world-views of the interrelations between innovation and design. The study is based on empirical data from a series of semi-structured expert interviews....... Conceptual clustering is used to analyse and order information according to concepts or variables from within the data. The cognitive maps identified are validated through the comments of some of the same experts. The study presents three cognitive maps and respective world-views explaining how the design...

  3. 4-hydroxy-2, 3-nonenal activates activator protein-1 and mitogen-activated protein kinases in rat pancreatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Kazuhiro Kikuta; Atsushi Masamune; Masahiro Satoh; Noriaki Suzuki; Tooru Shimosegawa

    2004-01-01

    AIM: Activated pancreatic stellate cells (PSCs) are implicated in the pathogenesis of pancreatic inflammation and fibrosis,where oxidative stress is thought to play a key role. 4-hydroxy2,3-nonenal (HNE) is generated endogenously during the process of lipid peroxidation, and has been accepted as a mediator of oxidative stress. The aim of this study was to clarify the effects of HNE on the activation of signal transduction pathways and cellular functions in PSCs.METHODS: PSCs were isolated from the pancreas of male Wistar rats after perfusion with collagenase P, and used in their culture-activated, myofibroblast-like phenotype unless otherwise stated. PSCs were treated with physiologically relevant and non-cytotoxic concentrations (up to 5 μmol/L)of HNE. Activation of transcription factors was examined by electrophoretic mobility shift assay and luciferase assay.Activation of mitogen-activated protein (MAP) kinases was assessed by Western blotting using anti-phosphospecific antibodies. Cell proliferation was assessed by measuring the incorporation of 5-bromo-2'-deoxyuridine. Production of type Ⅰ collagen and monocyte chemoattractant protein-1was determined by enzyme-linked immunosorbent assay.The effect of HNE on the transformation of freshly isolated PSCs in culture was also assessed.RESULTS: HNE activated activator protein-1, but not nuclear factor κB. In addition, HNE activated three classes of MAP kinases: extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAP kinase. HNE increased type Ⅰ collagen production through the activation of p38 MAP kinase and c-Jun N-terminal kinase. HNE did not alter the proliferation,or monocyte chemoattractant protein-1 production. HNE did not initiate the transformation of freshly isolated PSCs to myofibroblast-like phenotype.CONCLUSION: Specific activation of these signal transduction pathways and altered cell functions such as collagen production by HNE may play a role in the pathogenesis of pancreatic

  4. Protein Kinase D family kinases: roads start to segregate.

    Science.gov (United States)

    Wille, Christoph; Seufferlein, Thomas; Eiseler, Tim

    2014-01-01

    Highly invasive pancreatic tumors are often recognized in late stages due to a lack of clear symptoms and pose major challenges for treatment and disease management. Broad-band Protein Kinase D (PKD) inhibitors have recently been proposed as additional treatment option for this disease. PKDs are implicated in the control of cancer cell motility, angiogenesis, proliferation and metastasis. In particular, PKD2 expression is elevated in pancreatic cancer, whereas PKD1 expression is comparably lower. In our recent study we report that both kinases control PDAC cell invasive properties in an isoform-specific, but opposing manner. PKD1 selectively mediates anti-migratory/anti-invasive features by preferential regulation of the actin-regulatory Cofilin-phosphatase Slingshot1L (SSH1L). PKD2, on the other hand enhances invasion and angiogenesis of PDAC cells in 3D-ECM cultures and chorioallantois tumor models by stimulating expression and secretion of matrix-metalloproteinase 7 and 9 (MMP7/9). MMP9 also enhances PKD2-mediated tumor angiogenesis releasing extracellular matrix-bound VEGF-A. We thus suggest high PKD2 expression and loss of PKD1 may be beneficial for tumor cells to enhance their matrix-invading abilities. In our recent study we demonstrate for the first time PKD1 and 2 isoform-selective effects on pancreatic cancer cell invasion, in-vitro and in-vivo, defining isoform-specific regulation of PKDs as a major future issue. PMID:24847910

  5. Diacylglycerol Kinase Inhibition and Vascular Function

    OpenAIRE

    Choi, Hyehun; Allahdadi, Kyan J.; Tostes, Rita C A; Webb, R. Clinton

    2009-01-01

    Diacylglycerol kinases (DGKs), a family of lipid kinases, convert diacylglycerol (DG) to phosphatidic acid (PA). Acting as a second messenger, DG activates protein kinase C (PKC). PA, a signaling lipid, regulates diverse functions involved in physiological responses. Since DGK modulates two lipid second messengers, DG and PA, regulation of DGK could induce related cellular responses. Currently, there are 10 mammalian isoforms of DGK that are categorized into five groups based on their structu...

  6. MST kinases in development and disease

    OpenAIRE

    Thompson, Barry J.; Sahai, Erik

    2015-01-01

    The mammalian MST kinase family, which is related to the Hippo kinase in Drosophila melanogaster, includes five related proteins: MST1 (also called STK4), MST2 (also called STK3), MST3 (also called STK24), MST4, and YSK1 (also called STK25 or SOK1). MST kinases are emerging as key signaling molecules that influence cell proliferation, organ size, cell migration, and cell polarity. Here we review the regulation and function of these kinases in normal physiology and pathologies, including cance...

  7. Protein kinase profiling assays: a technology review.

    Science.gov (United States)

    Wang, Yuren; Ma, Haiching

    2015-11-01

    Protein kinases have become one of the most intensively pursued classes of drug targets for many diseases such as cancers and inflammatory diseases. Kinase profiling work seeks to understand general selectivity trends of lead compounds across the kinome, which help with target selection, compound prioritization, and potential implications in toxicity. Under the current drug discovery process, screening of compounds against comprehensive panels of kinases and their mutants has become the standard approach. Many screening assays and technologies which are compatible for high-throughput screening (HTS) against kinases have been extensively pursued and developed.

  8. Sensitive kinase assay linked with phosphoproteomics for identifying direct kinase substrates.

    Science.gov (United States)

    Xue, Liang; Wang, Wen-Horng; Iliuk, Anton; Hu, Lianghai; Galan, Jacob A; Yu, Shuai; Hans, Michael; Geahlen, Robert L; Tao, W Andy

    2012-04-10

    Our understanding of the molecular control of many disease pathologies requires the identification of direct substrates targeted by specific protein kinases. Here we describe an integrated proteomic strategy, termed kinase assay linked with phosphoproteomics, which combines a sensitive kinase reaction with endogenous kinase-dependent phosphoproteomics to identify direct substrates of protein kinases. The unique in vitro kinase reaction is carried out in a highly efficient manner using a pool of peptides derived directly from cellular kinase substrates and then dephosphorylated as substrate candidates. The resulting newly phosphorylated peptides are then isolated and identified by mass spectrometry. A further comparison of these in vitro phosphorylated peptides with phosphopeptides derived from endogenous proteins isolated from cells in which the kinase is either active or inhibited reveals new candidate protein substrates. The kinase assay linked with phosphoproteomics strategy was applied to identify unique substrates of spleen tyrosine kinase (Syk), a protein-tyrosine kinase with duel properties of an oncogene and a tumor suppressor in distinctive cell types. We identified 64 and 23 direct substrates of Syk specific to B cells and breast cancer cells, respectively. Both known and unique substrates, including multiple centrosomal substrates for Syk, were identified, supporting a unique mechanism that Syk negatively affects cell division through its centrosomal kinase activity. PMID:22451900

  9. Comparison of Peptide Array Substrate Phosphorylation of c-Raf and Mitogen Activated Protein Kinase Kinase Kinase 8

    NARCIS (Netherlands)

    Parikh, Kaushal; Diks, Sander H.; Tuynman, Jurriaan H. B.; Verhaar, Auke; Lowenberg, Mark; Hommes, Daan W.; Joore, Jos; Pandey, Akhilesh; Peppelenbosch, Maikel P.

    2009-01-01

    Kinases are pivotal regulators of cellular physiology. The human genome contains more than 500 putative kinases, which exert their action via the phosphorylation of specific substrates. The determinants of this specificity are still only partly understood and as a consequence it is difficult to pred

  10. Association between mitogen-activated protein kinase kinase kinase 1 polymorphisms and breast cancer susceptibility: a meta-analysis of 20 case-control studies.

    Directory of Open Access Journals (Sweden)

    Qiaoli Zheng

    Full Text Available BACKGROUND: The genome-wide single-nucleotide polymorphisms (SNPs profiles can be used as diagnostic markers for human cancers. The associations between mitogen-activated protein kinase kinase kinase 1 (MAP3K1 SNPs rs889312 A>C, rs16886165 T>G and breast cancer risk have been widely evaluated, but the results were inconsistent. To derive a conclusive assessment of the associations, we performed a meta-analysis by combining data from all eligible case-control studies up to date. METHODS: By searching PubMed, ISI web of knowledge, Embase and Cochrane databases, we identified all eligible studies published before September 2013. Odds ratios (ORs with 95% confidence intervals (CIs were used to assess the strength of associations in fixed-effect or random-effect model. False-positive report probability (FPRP was calculated to confirm the significance of the results. RESULTS: A total of 59670 cases in 20 case-control studies were included in this meta-analysis. Significant associations with breast cancer risk were observed for SNPs rs889312 and rs16886165 polymorphisms with a per-allele OR of 1.11 (95% CI: 1.09-1.13 and 1.14 (95% CI: 1.09-1.20 respectively. For rs889312, in subgroup analysis by ethnicity, significant associations were identified in Europeans and Asians, but not in Africans. When stratified by estrogen receptor (ER expression status, rs889312 was associated with both ER-positive and ER-negative breast cancers. Results from the FPRP analyses were consistent with and supportive to the above results. CONCLUSIONS: The present meta-analysis suggests that rs889312-C allele and rs16886165-G allele might be risk factors for breast cancer, especially in Europeans and Asians.

  11. Novel Library of Selenocompounds as Kinase Modulators

    Directory of Open Access Journals (Sweden)

    Carmen Sanmartín

    2011-07-01

    Full Text Available Although the causes of cancer lie in mutations or epigenic changes at the genetic level, their molecular manifestation is the dysfunction of biochemical pathways at the protein level. The 518 protein kinases encoded by the human genome play a central role in various diseases, a fact that has encouraged extensive investigations on their biological function and three dimensional structures. Selenium (Se is an important nutritional trace element involved in different physiological functions with antioxidative, antitumoral and chemopreventive properties. The mechanisms of action for selenocompounds as anticancer agents are not fully understood, but kinase modulation seems to be a possible pathway. Various organosulfur compounds have shown antitumoral and kinase inhibition effects but, in many cases, the replacement of sulfur by selenium improves the antitumoral effect of compounds. Although Se atom possesses a larger atomic volume and nucleophilic character than sulfur, Se can also formed interactions with aminoacids of the catalytic centers of proteins. So, we propose a novel chemical library that includes organoselenium compounds as kinase modulators. In this study thirteen selenocompounds have been evaluated at a concentration of 3 or 10 µM in a 24 kinase panel using a Caliper LabChip 3000 Drug Discover Platform. Several receptor (EGFR, IGFR1, FGFR1… and non-receptor (Abl kinases have been selected, as well as serine/threonine/lipid kinases (AurA, Akt, CDKs, MAPKs… implicated in main cancer pathways: cell cycle regulation, signal transduction, angiogenesis regulation among them. The obtained results showed that two compounds presented inhibition values higher than 50% in at least four kinases and seven derivatives selectively inhibited one or two kinases. Furthermore, three compounds selectively activated IGF-1R kinase with values ranging from −98% to −211%. In conclusion, we propose that the replacement of sulfur by selenium seems to be

  12. Discovery of a novel allosteric inhibitor-binding site in ERK5: comparison with the canonical kinase hinge ATP-binding site.

    Science.gov (United States)

    Chen, Hongming; Tucker, Julie; Wang, Xiaotao; Gavine, Paul R; Phillips, Chris; Augustin, Martin A; Schreiner, Patrick; Steinbacher, Stefan; Preston, Marian; Ogg, Derek

    2016-05-01

    MAP kinases act as an integration point for multiple biochemical signals and are involved in a wide variety of cellular processes such as proliferation, differentiation, regulation of transcription and development. As a member of the MAP kinase family, ERK5 (MAPK7) is involved in the downstream signalling pathways of various cell-surface receptors, including receptor tyrosine kinases and G protein-coupled receptors. In the current study, five structures of the ERK5 kinase domain co-crystallized with ERK5 inhibitors are reported. Interestingly, three of the compounds bind at a novel allosteric binding site in ERK5, while the other two bind at the typical ATP-binding site. Binding of inhibitors at the allosteric site is accompanied by displacement of the P-loop into the ATP-binding site and is shown to be ATP-competitive in an enzymatic assay of ERK5 kinase activity. Kinase selectivity data show that the most potent allosteric inhibitor exhibits superior kinase selectivity compared with the two inhibitors that bind at the canonical ATP-binding site. An analysis of these structures and comparison with both a previously published ERK5-inhibitor complex structure (PDB entry 4b99) and the structures of three other kinases (CDK2, ITK and MEK) in complex with allosteric inhibitors are presented.

  13. Interactions of protein kinase CK2beta subunit within the holoenzyme and with other proteins

    DEFF Research Database (Denmark)

    Kusk, M; Ahmed, R; Thomsen, B;

    1999-01-01

    Protein kinase CK2 is a ubiquitous, highly conserved protein kinase with a tetrameric alpha2beta2 structure. For the formation of this tetrameric complex a beta-alpha dimer seems to be a prerequisite. Using the two-hybrid system and a series of CK2beta deletion mutants, we mapped domains involved...... in alpha-beta and beta-beta interactions. We also detected an intramolecular beta interaction within the amino acid stretch 132-165. Using CK2beta as a bait in a two-hybrid library screening several new putative cellular partners have been identified, among them the S6 kinase p90rsk, the putative tumor...... suppressor protein Doc-1, the Fas-associated protein FAF1, the mitochondrial translational initiation factor 2 and propionyl CoA carboxylase beta subunit....

  14. A novel viral thymidylate kinase with dual kinase activity.

    Science.gov (United States)

    Guevara-Hernandez, Eduardo; Arvizu-Flores, Aldo A; Lugo-Sanchez, Maria E; Velazquez-Contreras, Enrique F; Castillo-Yañez, Francisco J; Brieba, Luis G; Sotelo-Mundo, Rogerio R

    2015-10-01

    Nucleotide phosphorylation is a key step in DNA replication and viral infections, since suitable levels of nucleotide triphosphates pool are required for this process. Deoxythymidine monophosphate (dTMP) is produced either by de novo or salvage pathways, which is further phosphorylated to deoxythymidine triphosphate (dTTP). Thymidyne monophosphate kinase (TMK) is the enzyme in the junction of both pathways, which phosphorylates dTMP to yield deoxythymidine diphosphate (dTDP) using adenosine triphosphate (ATP) as a phosphate donor. White spot syndrome virus (WSSV) genome contains an open reading frame (ORF454) that encodes a thymidine kinase and TMK domains in a single polypeptide. We overexpressed the TMK ORF454 domain (TMKwssv) and its specific activity was measured with dTMP and dTDP as phosphate acceptors. We found that TMKwssv can phosphorylate dTMP to yield dTDP and also is able to use dTDP as a substrate to produce dTTP. Kinetic parameters K M and k cat were calculated for dTMP (110 μM, 3.6 s(-1)), dTDP (251 μM, 0.9 s(-1)) and ATP (92 μM, 3.2 s(-1)) substrates, and TMKwssv showed a sequential ordered bi-bi reaction mechanism. The binding constants K d for dTMP (1.9 μM) and dTDP (10 μM) to TMKwssv were determined by Isothermal Titration Calorimetry. The affinity of the nucleotidic analog stavudine monophosphate was in the same order of magnitude (K d 3.6 μM) to the canonical substrate dTMP. These results suggest that nucleotide analogues such as stavudine could be a suitable antiviral strategy for the WSSV-associated disease.

  15. Genetics Home Reference: pyruvate kinase deficiency

    Science.gov (United States)

    ... National (UK) Information Centre for Metabolic Diseases National Organization for Rare Disorders (NORD): Pyruvate Kinase Deficiency Genetic Testing Registry (1 link) Pyruvate kinase deficiency of red cells Scientific articles on PubMed (1 link) PubMed OMIM (1 link) ...

  16. An Integrated Map of Soybean Physical Map and Genetic Map

    Institute of Scientific and Technical Information of China (English)

    QI Zhaoming; LI Hui; WU Qiong; SUN Yanan; LIU Chunyan; HU Guohua; CHEN Qingshan

    2009-01-01

    Soybean is a major crop in the world, and it is a main source of plant proteins and oil. A lot of soybean genetic maps and physical maps have been constructed, but there are no integrated map between soybean physical map and genetic map. In this study, soybean genome sequence data, released by JGI (US Department of Energy's Joint Genome Institute), had been downloaded. With the software Blast 2.2.16, a total of 161 super sequences were mapped on the soybean public genetic map to construct an integrated map. The length of these super sequences accounted for 73.08% of all the genome sequence. This integrated map could be used for gene cloning, gene mining, and comparative genome of legume.

  17. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation.

    Science.gov (United States)

    Li, Yanping; Takahashi, Maho; Stork, Philip J S

    2013-09-20

    The small G protein Ras regulates proliferation through activation of the mitogen-activated protein (MAP) kinase (ERK) cascade. The first step of Ras-dependent activation of ERK signaling is Ras binding to members of the Raf family of MAP kinase kinase kinases, C-Raf and B-Raf. Recently, it has been reported that in melanoma cells harboring oncogenic Ras mutations, B-Raf does not bind to Ras and does not contribute to basal ERK activation. For other types of Ras-mutant tumors, the relative contributions of C-Raf and B-Raf are not known. We examined non-melanoma cancer cell lines containing oncogenic Ras mutations and express both C-Raf and B-Raf isoforms, including the lung cancer cell line H1299 cells. Both B-Raf and C-Raf were constitutively bound to oncogenic Ras and contributed to Ras-dependent ERK activation. Ras binding to B-Raf and C-Raf were both subject to inhibition by the cAMP-dependent protein kinase PKA. cAMP inhibited the growth of H1299 cells and Ras-dependent ERK activation via PKA. PKA inhibited the binding of Ras to both C-Raf and B-Raf through phosphorylations of C-Raf at Ser-259 and B-Raf at Ser-365, respectively. These studies demonstrate that in non-melanocytic Ras-mutant cancer cells, Ras signaling to B-Raf is a significant contributor to ERK activation and that the B-Raf pathway, like that of C-Raf, is a target for inhibition by PKA. We suggest that cAMP and hormones coupled to cAMP may prove useful in dampening the effects of oncogenic Ras in non-melanocytic cancer cells through PKA-dependent actions on B-Raf as well as C-Raf.

  18. Aurora kinase inhibitors: current status and outlook

    Directory of Open Access Journals (Sweden)

    Vassilios eBavetsias

    2015-12-01

    Full Text Available The Aurora kinase family comprises of cell cycle-regulated serine/threonine kinases important for mitosis. Their activity and protein expression are cell cycle regulated, peaking during mitosis to orchestrate important mitotic processes including centrosome maturation, chromosome alignment, chromosome segregation and cytokinesis. In humans, the Aurora kinase family consists of three members; Aurora-A, Aurora-B and Aurora-C, that each share a conserved C-terminal catalytic domain but differ in their sub-cellular localization, substrate specificity and function during mitosis. In addition, Aurora-A and Aurora-B have been found to be overexpressed in a wide variety of human tumors. These observations led to a number of programs among academic and pharmaceutical organizations to discovering small molecule Aurora kinase inhibitors as anti-cancer drugs. This review will summarize the known Aurora kinase inhibitors currently in the clinic and the current and future directions.

  19. Hydrogen peroxide activates activator protein-1 and mitogen-activated protein kinases in pancreatic stellate cells.

    Science.gov (United States)

    Kikuta, Kazuhiro; Masamune, Atsushi; Satoh, Masahiro; Suzuki, Noriaki; Satoh, Kennichi; Shimosegawa, Tooru

    2006-10-01

    Activated pancreatic stellate cells (PSCs) are implicated in the pathogenesis of pancreatic inflammation and fibrosis, where oxidative stress is thought to play a key role. Reactive oxygen species such as hydrogen peroxide (H(2)O(2)) may act as a second messenger to mediate the actions of growth factors and cytokines. But the role of reactive oxygen species in the activation and regulation of cell functions in PSCs remains largely unknown. We here examined the effects of H(2)O(2) on the activation of signal transduction pathways and cell functions in PSCs. PSCs were isolated from the pancreas of male Wistar rats, and used in their culture-activated, myofibroblast-like phenotype unless otherwise stated. Activation of transcription factors was examined by electrophoretic mobility shift assay and luciferase assay. Activation of mitogen-activated protein (MAP) kinases was assessed by Western blotting using anti-phosphospecific antibodies. The effects of H(2)O(2) on proliferation, alpha(1)(I)procollagen gene expression, and monocyte chemoattractant protein-1 production were evaluated. The effect of H(2)O(2) on the transformation of freshly isolated PSCs in culture was also assessed. H(2)O(2) at non-cytotoxic concentrations (up to 100 microM) induced oxidative stress in PSCs. H(2)O(2) activated activator protein-1, but not nuclear factor kappaB. In addition, H(2)O(2) activated three classes of MAP kinases: extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAP kinase. H(2)O(2) induced alpha(1)(I)procollagen gene expression but did not induce proliferation or monocyte chemoattractant protein-1 production. H(2)O(2) did not initiate the transformation of freshly isolated PSCs to myofibroblast-like phenotype. Specific activation of these signal transduction pathways and collagen gene expression by H(2)O(2) may play a role in the pathogenesis of pancreatic fibrosis.

  20. Rapid Capture Next-Generation Sequencing in Clinical Diagnostics of Kinase Pathway Aberrations in B-Cell Precursor ALL.

    Science.gov (United States)

    Stadt, Udo Zur; Escherich, Gabriele; Indenbirken, Daniela; Alawi, Malik; Adao, Manuela; Horstmann, Martin A

    2016-07-01

    Comprehensive next-generation sequencing (NGS) applications have recently identified various recurrent kinase and cytokine receptor rearrangements in Ph-like B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) amenable to tyrosin kinase inhibitor treatment. For rapid diagnostics of kinase pathway aberrations in minimal residual disease (MRD) high-risk BCP-ALL, we developed a PCR-independent NGS custom enrichment capture panel targeting recurrent genomic alterations, which allows for the identification of unknown 5' fusion partner genes and precise mapping of variable genomic breakpoints. Using a standardized bioinformatics algorithm, we identified kinase and cytokine receptor rearrangements in the majority of ALL patients with high burden of postinduction MRD and enrichment of IKZF1 mutation or deletion (IKZF1(del) ). PMID:27007619

  1. Activation of the cellular mitogen-activated protein kinase pathways ERK, P38 and JNK during Toxoplasma gondii invasion

    Directory of Open Access Journals (Sweden)

    Valère A.

    2003-03-01

    Full Text Available Host cell invasion is essential for the pathogenicity of the obligate intracellular protozoan parasite Toxoplasma gondii. In the present study, we evaluated the ability of T. gondii tachyzoites to trigger phosphorylation of the different mitogen-activated protein kinases (MAPK in human monocytic cells THP1. Kinetic experiments show that the peak of extracellular-signal-regulated kinase (ERK 1/2, P38 and cjun-NH2 terminal kinase (JNKs phosphorylation occurs between 10 and 60 min. The use of specific inhibitors of ERK1/2, P38 and JNK1/2 phosphorylation indicates the specificity of MAPKs phosphorylation during invasion. Signaling through cellular and parasite mitogen-activated protein (MAP kinase pathways appears to be critical for T. gondii invasion.

  2. Projective mapping

    DEFF Research Database (Denmark)

    Dehlholm, Christian; Brockhoff, Per B.; Bredie, Wender Laurentius Petrus

    2012-01-01

    the applied framework, semantic restrictions, the choice of type of assessors and the validation of product separations. The applied framework concerns the response surface as presented to the assessor in different shapes, e.g. rectangular, square or round. Semantic restrictions are a part of the assessor...... instructions and influence heavily the product placements and the descriptive vocabulary (Dehlholm et.al., 2012b). The type of assessors performing the method influences results with an extra aspect in Projective Mapping compared to more analytical tests, as the given spontaneous perceptions are much dependent...... on the assessor’s way of thinking. Furthermore, a suggestion for validating product separations is proposed for the case where Multiple Factor Analysis is chosen for data analysis (Dehlholm, Brockhoff & Bredie, 2012a)....

  3. Identification and analysis of a novel protein-tyrosine kinase from bovine thymus

    International Nuclear Information System (INIS)

    A cytosolic protein-tyrosine kinase has been identified and purified to near homogeneity from calf thymus by using the phosphorylation of the tyrosine-containing peptide angiotensin I as an assay. Specific peptide phosphorylating activity was enhanced by carrying out the assay at high ionic strength (2M NaCl). The inclusion of NaCl at this concentration acts to stimulate endogenous protein-tyrosine kinase activity while simultaneously inhibiting other endogenous kinases. The purification procedure involved extraction of the enzyme from calf-thymus and sequential chromatography on columns of DEAE-cellulose, heparin-agarose, casein-sepharose, butylagarose, and Sephadex G-75. Analysis of the most highly purified preparations by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single Coomassie blue-stained band of 41 KDa. This molecular weight was consistent with results obtained from gel filtration, indicating that the enzyme exists as a monomer. The enzyme has also been found to catalyze an autophosphorylation reaction. Incubation of the enzyme with Mn2+ and [γ-32P]ATP led to its modification on a tyrosine residue. Phosphopeptide mapping experiments indicated that the 41 KDa kinase was distinct from p56, the major membrane-associated protein-tyrosine kinase in T lymphocytes

  4. Atheroprotective effects of antioxidants through inhibition of mitogen-activated protein kinases

    Institute of Scientific and Technical Information of China (English)

    Moe KYAW; Masanori YOSHIZUMI; Koichiro TSUCHIYA; Yuki IZAWA; Yasuhisa KANEMATSU; Toshiaki TAMAKI

    2004-01-01

    Reactive oxygen species (ROS) have been known to play an important role in the pathogenesis of atherosclerosis and several other cardiovascular diseases. It is now apparent that ROS induce endothelial cell damage and vascular smooth muscle cell (VSMC) growth and cardiac remodeling, which are associated with hypertension,atherosclerosis, heart failure, and restenosis. Several lines of evidence have indicated that ROS and mitogenactivated protein (MAP) kinases were involved in vascular remodeling under various pathological conditions. Recenfiy,it was also reported that MAP kinases were sensitive to oxidative stress. MAP kinases play an important role in cell differentiation, growth, apoptosis, and the regulation of a variety of transcription factors and gene expressions.Bioflavonoids and polyphenolic compounds are believed to be beneficial for the prevention and treatment of atherosclerosis and cardiovascular diseases. One of the most widely distributed bioflavonoids, 3,3',4',5,7-pentahydroxyflavone (quercetin) and its metabolite quercetin 3-O-β-D-glucuronide (Q3GA) inhibited Angiotensin Ⅱstimulated JNK activation and resultant hypertrophy of VSMC. Several studies have suggested that various antioxidants including probucol, N-acetyl-L-cysteine, diphenylene iodonium, Trolox C (vitamin E analogue), and vitamin C inhibit VSMC growth, which is associated with pathogenesis of cardiovascular diseases. Therefore, inhibition of MAP kinases by antioxidant treatment may prove to be a therapeutic strategy for cardiovascular diseases. In contrast, some clinical studies have reported that antioxidant vitamins did not show beneficial effects in coronary artery disease or in a number of high-risk people. Thus, further studies are needed to clarify why antioxidants showed beneficial effects in vitro, whereas less satisfactory results were obtained in some clinical conditions.

  5. Crystal Structure of Pyridoxal Kinase from the Escherichia coli pdxK Gene: Implications for the Classification of Pyridoxal Kinases

    OpenAIRE

    Safo, Martin K.; Musayev, Faik N.; di Salvo, Martino L.; Hunt, Sharyn; Claude, Jean-Baptiste; Schirch, Verne

    2006-01-01

    The pdxK and pdxY genes have been found to code for pyridoxal kinases, enzymes involved in the pyridoxal phosphate salvage pathway. Two pyridoxal kinase structures have recently been published, including Escherichia coli pyridoxal kinase 2 (ePL kinase 2) and sheep pyridoxal kinase, products of the pdxY and pdxK genes, respectively. We now report the crystal structure of E. coli pyridoxal kinase 1 (ePL kinase 1), encoded by a pdxK gene, and an isoform of ePL kinase 2. The structures were deter...

  6. Physiological roles of mitogen-activated-protein-kinase-activated p38-regulated/activated protein kinase

    Institute of Scientific and Technical Information of China (English)

    Sergiy; Kostenko; Gianina; Dumitriu; Kari; Jenssen; Lgreid; Ugo; Moens

    2011-01-01

    Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.

  7. The complement of protein kinases of the microsporidium Encephalitozoon cuniculi in relation to those of Saccharomyces cerevisiae and Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Vivares Christian P

    2007-09-01

    Full Text Available Abstract Background Microsporidia, parasitic fungi-related eukaryotes infecting many cell types in a wide range of animals (including humans, represent a serious health threat in immunocompromised patients. The 2.9 Mb genome of the microsporidium Encephalitozoon cuniculi is the smallest known of any eukaryote. Eukaryotic protein kinases are a large superfamily of enzymes with crucial roles in most cellular processes, and therefore represent potential drug targets. We report here an exhaustive analysis of the E. cuniculi genomic database aimed at identifying and classifying all protein kinases of this organism with reference to the kinomes of two highly-divergent yeast species, Saccharomyces cerevisiae and Schizosaccharomyces pombe. Results A database search with a multi-level protein kinase family hidden Markov model library led to the identification of 29 conventional protein kinase sequences in the E. cuniculi genome, as well as 3 genes encoding atypical protein kinases. The microsporidian kinome presents striking differences from those of other eukaryotes, and this minimal kinome underscores the importance of conserved protein kinases involved in essential cellular processes. ~30% of its kinases are predicted to regulate cell cycle progression while another ~28% have no identifiable homologues in model eukaryotes and are likely to reflect parasitic adaptations. E. cuniculi lacks MAP kinase cascades and almost all protein kinases that are involved in stress responses, ion homeostasis and nutrient signalling in the model fungi S. cerevisiae and S. pombe, including AMPactivated protein kinase (Snf1, previously thought to be ubiquitous in eukaryotes. A detailed database search and phylogenetic analysis of the kinomes of the two model fungi showed that the degree of homology between their kinomes of ~85% is much higher than that previously reported. Conclusion The E. cuniculi kinome is by far the smallest eukaryotic kinome characterised to date

  8. Proteolytic Inhibition of Salmonella enterica Serovar Typhimurium-Induced Activation of the Mitogen-Activated Protein Kinases ERK and JNK in Cultured Human Intestinal Cells

    OpenAIRE

    Mynott, Tracey L.; Crossett, Ben; Prathalingam, S. Radhika

    2002-01-01

    Bromelain, a mixture of cysteine proteases from pineapple stems, blocks signaling by the mitogen-activated protein (MAP) kinases extracellular regulated kinase 1 (ERK-1) and ERK-2, inhibits inflammation, and protects against enterotoxigenic Escherichia coli infection. In this study, we examined the effect of bromelain on Salmonella enterica serovar Typhimurium infection, since an important feature of its pathogenesis is its ability to induce activation of ERK-1 and ERK-2, which leads to inter...

  9. Effects of estrogens and bladder inflammation on mitogen-activated protein kinases in lumbosacral dorsal root ganglia from adult female rats

    OpenAIRE

    Keast Janet R; Cheng Ying

    2009-01-01

    Abstract Background Interstitial cystitis is a chronic condition associated with bladder inflammation and, like a number of other chronic pain states, symptoms associated with interstitial cystitis are more common in females and fluctuate during the menstrual cycle. The aim of this study was to determine if estrogens could directly modulate signalling pathways within bladder sensory neurons, such as extracellular signal-related kinase (ERK) and p38 mitogen-activated protein (MAP) kinases. The...

  10. The mechanism of protein kinase C regulation

    Institute of Scientific and Technical Information of China (English)

    Julhash U. KAZI

    2011-01-01

    Protein kinase C (PKC) is a family ofserine/threonine protein kinases that plays a central role in transducing extracellular signals into a variety of intracellular responses ranging from cell proliferation to apoptosis.Nine PKC genes have been identified in the human genome,which encode 10 proteins.Each member of this protein kinase family displays distinct biochemical characteristics and is enriched in different cellular and subcellular locations.Activation of PKC has been implicated in the regulation of cell growth and differentiation.This review summarizes works of the past years in the field of PKC biochemistry that covers regulation and activation mechanism of different PKC isoforms.

  11. Differential AMP-activated Protein Kinase (AMPK) Recognition Mechanism of Ca2+/Calmodulin-dependent Protein Kinase Kinase Isoforms.

    Science.gov (United States)

    Fujiwara, Yuya; Kawaguchi, Yoshinori; Fujimoto, Tomohito; Kanayama, Naoki; Magari, Masaki; Tokumitsu, Hiroshi

    2016-06-24

    Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) is a known activating kinase for AMP-activated protein kinase (AMPK). In vitro, CaMKKβ phosphorylates Thr(172) in the AMPKα subunit more efficiently than CaMKKα, with a lower Km (∼2 μm) for AMPK, whereas the CaMKIα phosphorylation efficiencies by both CaMKKs are indistinguishable. Here we found that subdomain VIII of CaMKK is involved in the discrimination of AMPK as a native substrate by measuring the activities of various CaMKKα/CaMKKβ chimera mutants. Site-directed mutagenesis analysis revealed that Leu(358) in CaMKKβ/Ile(322) in CaMKKα confer, at least in part, a distinct recognition of AMPK but not of CaMKIα. PMID:27151216

  12. Human Mind Maps

    Science.gov (United States)

    Glass, Tom

    2016-01-01

    When students generate mind maps, or concept maps, the maps are usually on paper, computer screens, or a blackboard. Human Mind Maps require few resources and little preparation. The main requirements are space where students can move around and a little creativity and imagination. Mind maps can be used for a variety of purposes, and Human Mind…

  13. Src family protein tyrosine kinases induce autoactivation of Bruton's tyrosine kinase.

    OpenAIRE

    Mahajan, S.; Fargnoli, J.; Burkhardt, A L; Kut, S A; Saouaf, S J; Bolen, J B

    1995-01-01

    Bruton's tyrosine kinase (Btk) is tyrosine phosphorylated and enzymatically activated following ligation of the B-cell antigen receptor. These events are temporally regulated, and Btk activation follows that of various members of the Src family of protein tyrosine kinases, thus raising the possibility that Src kinases participate in the Btk activation process. We have evaluated the mechanism underlying Btk enzyme activation and have explored the potential regulatory relationship between Btk a...

  14. Pantothenate kinase-associated neurodegeneration.

    Science.gov (United States)

    Hartig, Monika B; Prokisch, Holger; Meitinger, Thomas; Klopstock, Thomas

    2012-08-01

    Pantothenate kinase-associated neurodegeneration (PKAN) is a hereditary progressive disorder and the most frequent form of neurodegeneration with brain iron accumulation (NBIA). PKAN patients present with a progressive movement disorder, dysarthria, cognitive impairment and retinitis pigmentosa. In magnetic resonance imaging, PKAN patients exhibit the pathognonomic "eye of the tiger" sign in the globus pallidus which corresponds to iron accumulation and gliosis as shown in neuropathological examinations. The discovery of the disease causing mutations in PANK2 has linked the disorder to coenzyme A (CoA) metabolism. PANK2 is the only one out of four PANK genes encoding an isoform which localizes to mitochondria. At least two other NBIA genes (PLA2G6, C19orf12) encode proteins that share with PANK2 a mitochondrial localization and all are suggested to play a role in lipid homeostasis. With no causal therapy available for PKAN until now, only symptomatic treatment is possible. A multi-centre retrospective study with bilateral pallidal deep brain stimulation in patients with NBIA revealed a significant improvement of dystonia. Recently, studies in the PANK Drosophila model "fumble" revealed improvement by the compound pantethine which is hypothesized to feed an alternate CoA biosynthesis pathway. In addition, pilot studies with the iron chelator deferiprone that crosses the blood brain barrier showed a good safety profile and some indication of efficacy. An adequately powered randomized clinical trial will start in 2012. This review summarizes clinical presentation, neuropathology and pathogenesis of PKAN. PMID:22515741

  15. Kinase inhibitors for advanced medullary thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Martin Schlumberger

    2012-01-01

    Full Text Available The recent availability of molecular targeted therapies leads to a reconsideration of the treatment strategy for patients with distant metastases from medullary thyroid carcinoma. In patients with progressive disease, treatment with kinase inhibitors should be offered.

  16. Genetics Home Reference: deoxyguanosine kinase deficiency

    Science.gov (United States)

    ... or mtDNA, which is essential for the normal function of these structures. Deoxyguanosine kinase is involved in producing and maintaining the ... DNA (known as mitochondrial DNA depletion) impairs mitochondrial function ... deficiency . Learn more about the gene associated ...

  17. Genetics Home Reference: phosphoglycerate kinase deficiency

    Science.gov (United States)

    ... Children Living with Inherited Metabolic Diseases (CLIMB) (UK) Muscular Dystrophy Association National Organization for Rare Disorders (NORD) Resource list from the University of Kansas Medical Center: Metabolic Conditions Genetic Testing Registry (2 links) Deficiency of phosphoglycerate kinase ...

  18. Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling.

    Science.gov (United States)

    Friedman, Adam A; Tucker, George; Singh, Rohit; Yan, Dong; Vinayagam, Arunachalam; Hu, Yanhui; Binari, Richard; Hong, Pengyu; Sun, Xiaoyun; Porto, Maura; Pacifico, Svetlana; Murali, Thilakam; Finley, Russell L; Asara, John M; Berger, Bonnie; Perrimon, Norbert

    2011-10-25

    Characterizing the extent and logic of signaling networks is essential to understanding specificity in such physiological and pathophysiological contexts as cell fate decisions and mechanisms of oncogenesis and resistance to chemotherapy. Cell-based RNA interference (RNAi) screens enable the inference of large numbers of genes that regulate signaling pathways, but these screens cannot provide network structure directly. We describe an integrated network around the canonical receptor tyrosine kinase (RTK)-Ras-extracellular signal-regulated kinase (ERK) signaling pathway, generated by combining parallel genome-wide RNAi screens with protein-protein interaction (PPI) mapping by tandem affinity purification-mass spectrometry. We found that only a small fraction of the total number of PPI or RNAi screen hits was isolated under all conditions tested and that most of these represented the known canonical pathway components, suggesting that much of the core canonical ERK pathway is known. Because most of the newly identified regulators are likely cell type- and RTK-specific, our analysis provides a resource for understanding how output through this clinically relevant pathway is regulated in different contexts. We report in vivo roles for several of the previously unknown regulators, including CG10289 and PpV, the Drosophila orthologs of two components of the serine/threonine-protein phosphatase 6 complex; the Drosophila ortholog of TepIV, a glycophosphatidylinositol-linked protein mutated in human cancers; CG6453, a noncatalytic subunit of glucosidase II; and Rtf1, a histone methyltransferase.

  19. Kinome profiling of Arabidopsis using arrays of kinase consensus substrates

    NARCIS (Netherlands)

    Ritsema, T.; Joore, J.; Workum, W. van; Pieterse, C.M.J.

    2007-01-01

    Background: Kinome profiling aims at the parallel analysis of kinase activities in a cell. Novel developed arrays containing consensus substrates for kinases are used to assess those kinase activities. The arrays described in this paper were already used to determine kinase activities in mammalian s

  20. A Molecular Brake in the Kinase Hinge Region Regulates the Activity of Receptor Tyrosine Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Chen,H.; Ma, J.; Li, W.; Eliseenkova, A.; Xu, C.; Neubert, T.; Miller, W.; Mohammadi, M.

    2007-01-01

    Activating mutations in the tyrosine kinase domain of receptor tyrosine kinases (RTKs) cause cancer and skeletal disorders. Comparison of the crystal structures of unphosphorylated and phosphorylated wild-type FGFR2 kinase domains with those of seven unphosphorylated pathogenic mutants reveals an autoinhibitory 'molecular brake' mediated by a triad of residues in the kinase hinge region of all FGFRs. Structural analysis shows that many other RTKs, including PDGFRs, VEGFRs, KIT, CSF1R, FLT3, TEK, and TIE, are also subject to regulation by this brake. Pathogenic mutations activate FGFRs and other RTKs by disengaging the brake either directly or indirectly.

  1. Protein kinase domain of twitchin has protein kinase activity and an autoinhibitory region.

    Science.gov (United States)

    Lei, J; Tang, X; Chambers, T C; Pohl, J; Benian, G M

    1994-08-19

    Twitchin is a 753-kDa polypeptide located in the muscle A-bands of the nematode, Caenorhabditis elegans. It consists of multiple copies of both fibronectin III and immunoglobulin C2 domains and, near the C terminus, a protein kinase domain with greatest homology to the catalytic domains of myosin light chain kinases. We have expressed and purified from Escherichia coli twitchin's protein kinase catalytic core and flanking sequences that do not include fibronectin III and immunoglobulin C2 domains. The protein was shown to phosphorylate a model substrate and to undergo autophosphorylation. The autophosphorylation occurs at a slow rate, attaining a maximum at 3 h with a stoichiometry of about 1.0 mol of phosphate/mol of protein, probably through an intramolecular mechanism. Sequence analysis of proteolytically derived phosphopeptides revealed that autophosphorylation occurred N-terminal to the catalytic core, predominantly at Thr-5910, with possible minor sites at Ser5912 and/or Ser-5913. This portion of twitchin (residues 5890-6268) was also phosphorylated in vitro by protein kinase C in the absence of calcium and phosphotidylserine, but not by cAMP-dependent protein kinase. By comparing the activities of three twitchin segments, the enzyme appears to be inhibited by the 60-amino acid residues lying just C-terminal to the kinase catalytic core. Thus, like a number of other protein kinases including myosin light chain kinases, the twitchin kinase appears to be autoregulated. PMID:8063727

  2. Maps & minds : mapping through the ages

    Science.gov (United States)

    U.S. Geological Survey

    1984-01-01

    Throughout time, maps have expressed our understanding of our world. Human affairs have been influenced strongly by the quality of maps available to us at the major turning points in our history. "Maps & Minds" traces the ebb and flow of a few central ideas in the mainstream of mapping. Our expanding knowledge of our cosmic neighborhood stems largely from a small number of simple but grand ideas, vigorously pursued.

  3. Janus kinases in immune cell signaling

    OpenAIRE

    Ghoreschi, Kamran; Laurence, Arian; O’Shea, John J.

    2009-01-01

    The Janus family kinases (Jaks), Jak1, Jak2, Jak3, and Tyk2, form one subgroup of the non-receptor protein tyrosine kinases. They are involved in cell growth, survival, development, and differentiation of a variety of cells but are critically important for immune cells and hematopoietic cells. Data from experimental mice and clinical observations have unraveled multiple signaling events mediated by Jak in innate and adaptive immunity. Deficiency of Jak3 or Tyk2 results in defined clinical dis...

  4. Non-degradative Ubiquitination of Protein Kinases.

    OpenAIRE

    K Aurelia Ball; Johnson, Jeffrey R.; Lewinski, Mary K; John Guatelli; Erik Verschueren; Krogan, Nevan J.; Matthew P Jacobson

    2016-01-01

    Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichm...

  5. Lunar Map Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Map Catalog includes various maps of the moon's surface, including Apollo landing sites; earthside, farside, and polar charts; photography index maps;...

  6. Mapping with the Masses: Google Map Maker

    Science.gov (United States)

    Pfund, J.

    2008-12-01

    After some 15,000 years of map making, which saw the innovations of cardinal directions, map projections for a spherical earth, and GIS analysis, many parts of the world still appear as the "Dark Continent" on modern maps. Google Map Maker intends to shine a light on these areas by tapping into the power of the GeoWeb. Google Map Maker is a website which allows you to collaborate with others on one unified map to add, edit, locate, describe, and moderate map features, such as roads, cities, businesses, parks, schools and more, for certain regions of the world using Google Maps imagery. In this session, we will show some examples of how people are mapping with this powerful tool as well as what they are doing with the data. With Google Map Maker, you can become a citizen cartographer and join the global network of users helping to improve the quality of maps and local information in your region of interest. You are invited to map the world with us!

  7. Tyrosine kinase inhibitors in hematological malignancies

    Directory of Open Access Journals (Sweden)

    Kamila Kosior

    2011-12-01

    Full Text Available Recently novel treatment modalities has focused on targeted therapies. Tyrosine kinases represent a good target for cancer treatment since they are involved in transferring phosphate groups from ATP to tyrosine residues in specific substrate proteins transducing intracellular signals engaged in the many mechanisms, playing an important role in the modulation of growth factors signaling that are strongly related to carcinogenesis. Deregulation of tyrosine kinases activity was also found in hematological malignancies, particularly overexpression of tyrosine kinases was observed in chronic myeloid leukemia or acute lymphoblastic leukemia. Herein we show that tyrosine kinase inhibitors have revolutionized hematology malignancies therapy in a very short period of time and they still remain one of the most interesting anticancer compounds that could give a hope for cure and not only long-lasting complete remission. This manuscript summarizes current view on the first generation tyrosine kinase inhibititor – imatinib, second generation – dasatinib, nilotinib and bosutnib as well as new generation tyrosine kinase inhibititors – ponatinib and danusertib in hematooncology.

  8. Fibronectin phosphorylation by ecto-protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Imada, Sumi; Sugiyama, Yayoi; Imada, Masaru (Meiji Institute of Health Science, Odawara (Japan))

    1988-12-01

    The presence of membrane-associated, extracellular protein kinase (ecto-protein kinase) and its substrate proteins was examined with serum-free cultures of Swiss 3T3 fibroblast. When cells were incubated with ({gamma}-{sup 32})ATP for 10 min at 37{degree}C, four proteins with apparent molecular weights between 150 and 220 kDa were prominently phosphorylated. These proteins were also radiolabeled by lactoperoxidase catalyzed iodination and were sensitive to mild tryptic digestion, suggesting that they localized on the cell surface or in the extracellular matrix. Phosphorylation of extracellular proteins with ({gamma}-{sup 32}P)ATP in intact cell culture is consistent with the existence of ecto-protein kinase. Anti-fibronectin antibody immunoprecipitated one of the phosphoproteins which comigrated with a monomer and a dimer form of fibronectin under reducing and nonreducing conditions of electrophoresis, respectively. The protein had affinity for gelatin as demonstrated by retention with gelatin-conjugated agarose. This protein substrate of ecto-protein kinase was thus concluded to be fibronectin. The sites of phosphorylation by ecto-protein kinase were compared with those of intracellularly phosphorylated fibronectin by the analysis of radiolabeled amino acids and peptides. Ecto-protein kinase phosphorylated fibronectin at serine and threonine residues which were distinct from the sites of intracellular fibronectin phosphorylation.

  9. AKT (protein kinase B) is implicated in meiotic maturation of porcine oocytes.

    Science.gov (United States)

    Kalous, Jaroslav; Kubelka, Michal; Solc, Petr; Susor, Andrej; Motlík, Jan

    2009-10-01

    The aim of this study was to investigate the involvement of the serine/threonine protein kinase AKT (also called protein kinase B) in the control of meiosis of porcine denuded oocytes (DOs) matured in vitro. Western blot analysis revealed that the two principal AKT phosphorylation sites, Ser473 and Thr308, are phosphorylated at different stages of meiosis. In freshly isolated germinal vesicle (GV)-stage DOs, Ser473 was already phosphorylated. After the onset of oocyte maturation, the intensity of the Ser473 phosphorylation increased, however, which declined sharply when DOs underwent GV breakdown (GVBD) and remained at low levels in metaphase I- and II-stage (MI- and MII-stage). In contrast, phosphorylation of Thr308 was increased by the time of GVBD and reached maximum at MI-stage. A peak of AKT activity was noticed around GVBD and activity of AKT declined at MI-stage. To assess the role of AKT during meiosis, porcine DOs were cultured in 50 microM SH-6, a specific inhibitor of AKT. In SH-6-treated DOs, GVBD was not inhibited; on the contrary, a significant acceleration of meiosis resumption was observed. The dynamics of the Ser473 phosphorylation was not affected; however, phosphorylation of Thr308 was reduced, AKT activity was diminished at the time of GVBD, and meiotic progression was arrested in early MI-stage. Moreover, the activity of the cyclin-dependent kinase 1 (CDK1) and MAP kinase declined when SH-6-treated DOs underwent GVBD, indicating that AKT activity is involved in the regulation of CDK1 and MAP kinase. These results suggest that activity of AKT is not essential for induction of GVBD in porcine oocytes but plays a substantial role during progression of meiosis to MI/MII-stage.

  10. Concept mapping in lectures.

    OpenAIRE

    Lavery, Janet; Low, Adam

    2008-01-01

    Concept maps are an aid to a deep learning strategy. Developing concept maps would help students understand the relationships between concepts both within a domain and across related domains. To encourage students to explore the use of concept maps, we have integrated concept maps into a module’s lectures. We have trialled: a concept map developed by experts and given to students; another concept map developed collaboratively by the students in an interactive lecture supported by a free-tex...

  11. Activation of brain B-Raf protein kinase by Rap1B small GTP-binding protein.

    Science.gov (United States)

    Ohtsuka, T; Shimizu, K; Yamamori, B; Kuroda, S; Takai, Y

    1996-01-19

    Rap1 small GTP-binding protein has the same amino acid sequence at its effector domain as that of Ras. Rap1 has been shown to antagonize the Ras functions, such as the Ras-induced transformation of NIH 3T3 cells and the Ras-induced activation of the c-Raf-1 protein kinase-dependent mitogen-activated protein (MAP) kinase cascade in Rat-1 cells, whereas we have shown that Rap1 as well as Ras stimulates DNA synthesis in Swiss 3T3 cells. We have established a cell-free assay system in which Ras activates bovine brain B-Raf protein kinase. Here we have used this assay system and examined the effect of Rap1 on the B-Raf activity to phosphorylate recombinant MAP kinase kinase (MEK). Recombinant Rap1B stimulated the activity of B-Raf, which was partially purified from bovine brain and immunoprecipitated by an anti-B-Raf antibody. The GTP-bound form was active, but the GDP-bound form was inactive. The fully post-translationally lipid-modified form was active, but the unmodified form was nearly inactive. The maximum B-Raf activity stimulated by Rap1B was nearly the same as that stimulated by Ki-Ras. Rap1B enhanced the Ki-Ras-stimulated B-Raf activity in an additive manner. These results indicate that not only Ras but also Rap1 is involved in the activation of the B-Raf-dependent MAP kinase cascade.

  12. Structural basis for substrate specificities of cellular deoxyribonucleoside kinases

    DEFF Research Database (Denmark)

    Johansson, K.; Ramaswamy, S.; Ljungcrantz, C.;

    2001-01-01

    kinase with ATP at the nucleoside substrate binding site. Compared to the human kinase, the Drosophila kinase has a wider substrate cleft, which may be responsible for the broad substrate specificity of this enzyme. The human deoxyguanosine kinase is highly specific for purine substrates......; this is apparently due to the presence of Arg 118, which provides favorable hydrogen bonding interactions with the substrate. The two new structures provide an explanation for the substrate specificity of cellular deoxyribonucleoside kinases....

  13. Evolutionary Reconstruction and Population Genetics Analysis of Aurora Kinases

    OpenAIRE

    Balu Kamaraj; Ambuj Kumar; Rituraj Purohit

    2013-01-01

    BACKGROUND: Aurora kinases belong to the highly conserved kinase family and play a vital role in cell cycle regulation. The structure and function of these kinases are inter-related and sometimes they also act as substitutes in case of knockdown of other aurora kinases. METHOD: In this work we carried out the evolutionary reconstruction and population genetic studies of aurora kinase proteins. Substitution saturation test, CAI (Codon adaptation index), gene expression and RSCU (Relative synon...

  14. Progress on the research of protein kinase MEKK3%MEKK3蛋白激酶的研究进展

    Institute of Scientific and Technical Information of China (English)

    赵爽

    2010-01-01

    有丝分裂原活化蛋白激酶激酶激酶(mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 3,MEKK3)是MAP3K(mitogen-activated protein kinase kinase kinase)家族的丝氨酸/苏氨酸蛋白激酶,它在哺乳类动物的各种组织中广泛表达.该蛋白激酶能够有效激活有丝分裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)和NF-kB信号通路,与多种肿瘤的发生与发展密切相关.本文将从其结构、蛋白磷酸化、信号传导、免疫调节及与肿瘤的关系等方面对MEKK3的研究进行相关综述.

  15. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea.

    Science.gov (United States)

    Li, Lei; Xue, Chaoyang; Bruno, Kenneth; Nishimura, Marie; Xu, Jin-Rong

    2004-05-01

    In the rice blast fungus Magnaporthe grisea, the Pmk1 mitogen-activated protein (MAP) kinase is essential for appressorium formation and infectious growth. PMK1 is homologous to yeast Fus3 and Kss1 MAP kinases that are known to be regulated by the Ste20 PAK kinase for activating the pheromone response and filamentation pathways. In this study, we isolated and characterized two PAK genes, CHM1 and MST20, in M. grisea. Mutants disrupted in MST20 were reduced in aerial hyphae growth and conidiation, but normal in growth rate, appressorium formation, penetration, and plant infection. In chm1 deletion mutants, growth, conidiation, and appressorium formation were reduced significantly. Even though appressoria formed by chm1 mutants were defective in penetration, chm1 mutants were able to grow invasively on rice leaves and colonize through wounds. The chm1 mutants were altered in conidiogenesis and produced conidia with abnormal morphology. Hyphae of chm1 mutants had normal septation, but the length of hyphal compartments was reduced. On nutritionally poor oatmeal agar, chm1 mutants were unstable and produced sectors that differed from original chm1 mutants in growth rate, conidiation, or colony morphology. However, none of the monoconidial cultures derived from these spontaneous sectors were normal in appressorial penetration and fungal pathogenesis. These data suggest that MST20 is dispensable for plant infection in M. grisea, but CHM1 plays a critical role in appressorium formation and penetration. Both mst20 and chm1 deletion mutants were phenotypically different from the pmk1 mutant that is defective in appressorium formation and infectious hyphae growth. It is likely that MST20 and CHM1 individually play no critical role in activating the PMK1 MAP kinase pathway during appressorium formation and infectious hyphae growth. However, CHM1 appears to be essential for appressorial penetration and CHM1 and MST20 may have redundant functions in M. grisea. PMID:15141959

  16. Intracellular Theileria annulata promote invasive cell motility through kinase regulation of the host actin cytoskeleton.

    Directory of Open Access Journals (Sweden)

    Min Ma

    2014-03-01

    Full Text Available The intracellular, protozoan Theileria species parasites are the only eukaryotes known to transform another eukaryotic cell. One consequence of this parasite-dependent transformation is the acquisition of motile and invasive properties of parasitized cells in vitro and their metastatic dissemination in the animal, which causes East Coast Fever (T. parva or Tropical Theileriosis (T. annulata. These motile and invasive properties of infected host cells are enabled by parasite-dependent, poorly understood F-actin dynamics that control host cell membrane protrusions. Herein, we dissected functional and structural alterations that cause acquired motility and invasiveness of T. annulata-infected cells, to understand the molecular basis driving cell dissemination in Tropical Theileriosis. We found that chronic induction of TNFα by the parasite contributes to motility and invasiveness of parasitized host cells. We show that TNFα does so by specifically targeting expression and function of the host proto-oncogenic ser/thr kinase MAP4K4. Blocking either TNFα secretion or MAP4K4 expression dampens the formation of polar, F-actin-rich invasion structures and impairs cell motility in 3D. We identified the F-actin binding ERM family proteins as MAP4K4 downstream effectors in this process because TNFα-induced ERM activation and cell invasiveness are sensitive to MAP4K4 depletion. MAP4K4 expression in infected cells is induced by TNFα-JNK signalling and maintained by the inhibition of translational repression, whereby both effects are parasite dependent. Thus, parasite-induced TNFα promotes invasive motility of infected cells through the activation of MAP4K4, an evolutionary conserved kinase that controls cytoskeleton dynamics and cell motility. Hence, MAP4K4 couples inflammatory signaling to morphodynamic processes and cell motility, a process exploited by the intracellular Theileria parasite to increase its host cell's dissemination capabilities.

  17. The role of MAP4K3 in lifespan regulation of Caenorhabditiselegans

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Maruf H. [Barshop Institute for Longevity and Aging Studies, Department of Physiology, University of Texas Health Science Center, San Antonio, TX 78240 (United States); Hart, Matthew J., E-mail: HartMJ@uthscsa.edu [Barshop Institute for Longevity and Aging Studies, Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78240 (United States); Rea, Shane L., E-mail: reas3@uthscsa.edu [Barshop Institute for Longevity and Aging Studies, Department of Physiology, University of Texas Health Science Center, San Antonio, TX 78240 (United States)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Inhibition of MAP4K3 by RNAi leads to increased mean lifespan in Caenorhabditis elegans. Black-Right-Pointing-Pointer Mutation in the citron homology domain of MAP4K3 leads to increased mean lifespan. Black-Right-Pointing-Pointer Mutation in the kinase domain of MAP4K3 has no significant effect on mean lifespan. -- Abstract: The TOR pathway is a kinase signaling pathway that regulates cellular growth and proliferation in response to nutrients and growth factors. TOR signaling is also important in lifespan regulation - when this pathway is inhibited, either naturally, by genetic mutation, or by pharmacological means, lifespan is extended. MAP4K3 is a Ser/Thr kinase that has recently been found to be involved in TOR activation. Unexpectedly, the effect of this protein is not mediated via Rheb, the more widely known TOR activation pathway. Given the role of TOR in growth and lifespan control, we looked at how inhibiting MAP4K3 in Caenorhabditiselegans affects lifespan. We used both feeding RNAi and genetic mutants to look at the effect of MAP4K3 deficiency. Our results show a small but significant increase in mean lifespan in MAP4K3 deficient worms. MAP4K3 thus represents a new target in the TOR pathway that can be targeted for pharmacological intervention to control lifespan.

  18. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity

    OpenAIRE

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-01-01

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser696 and Ser698 in the JM (juxtamembrane) region and probably Ser886 and/or Ser893 in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser717 in the JM, and at Ser733, Thr752, Ser783, Ser864, Ser911, Ser958 and Thr9...

  19. Non-degradative Ubiquitination of Protein Kinases.

    Directory of Open Access Journals (Sweden)

    K Aurelia Ball

    2016-06-01

    Full Text Available Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.

  20. Crystal structure of Cryptosporidium parvum pyruvate kinase.

    Directory of Open Access Journals (Sweden)

    William J Cook

    Full Text Available Pyruvate kinase plays a critical role in cellular metabolism of glucose by serving as a major regulator of glycolysis. This tetrameric enzyme is allosterically regulated by different effector molecules, mainly phosphosugars. In response to binding of effector molecules and substrates, significant structural changes have been identified in various pyruvate kinase structures. Pyruvate kinase of Cryptosporidium parvum is exceptional among known enzymes of protozoan origin in that it exhibits no allosteric property in the presence of commonly known effector molecules. The crystal structure of pyruvate kinase from C. parvum has been solved by molecular replacement techniques and refined to 2.5 Å resolution. In the active site a glycerol molecule is located near the γ-phosphate site of ATP, and the protein structure displays a partially closed active site. However, unlike other structures where the active site is closed, the α6' helix in C. parvum pyruvate kinase unwinds and assumes an extended conformation. In the crystal structure a sulfate ion is found at a site that is occupied by a phosphate of the effector molecule in many pyruvate kinase structures. A new feature of the C. parvum pyruvate kinase structure is the presence of a disulfide bond cross-linking the two monomers in the asymmetric unit. The disulfide bond is formed between cysteine residue 26 in the short N-helix of one monomer with cysteine residue 312 in a long helix (residues 303-320 of the second monomer at the interface of these monomers. Both cysteine residues are unique to C. parvum, and the disulfide bond remained intact in a reduced environment. However, the significance of this bond, if any, remains unknown at this time.

  1. Non-degradative Ubiquitination of Protein Kinases.

    Science.gov (United States)

    Ball, K Aurelia; Johnson, Jeffrey R; Lewinski, Mary K; Guatelli, John; Verschueren, Erik; Krogan, Nevan J; Jacobson, Matthew P

    2016-06-01

    Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.

  2. Src family protein tyrosine kinases induce autoactivation of Bruton's tyrosine kinase.

    Science.gov (United States)

    Mahajan, S; Fargnoli, J; Burkhardt, A L; Kut, S A; Saouaf, S J; Bolen, J B

    1995-10-01

    Bruton's tyrosine kinase (Btk) is tyrosine phosphorylated and enzymatically activated following ligation of the B-cell antigen receptor. These events are temporally regulated, and Btk activation follows that of various members of the Src family of protein tyrosine kinases, thus raising the possibility that Src kinases participate in the Btk activation process. We have evaluated the mechanism underlying Btk enzyme activation and have explored the potential regulatory relationship between Btk and Src protein kinases. We demonstrate in COS transient-expression assays that Btk can be activated through intramolecular autophosphorylation at tyrosine 551 and that Btk autophosphorylation is required for Btk catalytic functions. Coexpression of Btk with members of the Src family of protein tyrosine kinases, but not Syk, led to Btk tyrosine phosphorylation and activation. Using a series of point mutations in Blk (a representative Src protein kinase) and Btk, we show that Src kinases activate Btk through an indirect mechanism that requires membrane association of the Src enzymes as well as functional Btk SH3 and SH2 domains. Our results are compatible with the idea that Src protein tyrosine kinases contribute to Btk activation by indirectly stimulating Btk intramolecular autophosphorylation. PMID:7565679

  3. Phospho-kinase profile of colorectal tumors guides in the selection of multi-kinase inhibitors.

    Science.gov (United States)

    Serrano-Heras, Gemma; Cuenca-López, María Dolores; Montero, Juan Carlos; Corrales-Sanchez, Verónica; Morales, Jorge Carlos; Núñez, Luz-Elena; Morís, Francisco; Pandiella, Atanasio; Ocaña, Alberto

    2015-10-13

    Protein kinases play a central role in the oncogenesis of colorectal tumors and are attractive druggable targets. Detection of activated kinases within a tumor could open avenues for drug selection and optimization of new kinase inhibitors. By using a phosphokinase arrays with human colorectal tumors we identified activated kinases, including the Epidermal Growth Factor Receptor (EGFR), components of the PI3K/mTOR pathway (AKT and S6), and STAT, among others. A pharmacological screening with kinase inhibitors against these proteins helped us to identify a new kinase inhibitor, termed EC-70124 that showed the highest anti-proliferative activity in cell lines. EC-70124 also inhibited cell migration and biochemical experiments demonstrated its effect targeting the PI3K/mTOR pathway. This drug also arrested cells at G2/M and induced apoptosis. Experiments in combination with standard chemotherapy used in the clinical setting indicated a synergistic effect. EC-70124 also reduced tumor growth in vivo and inhibited pS6 in the implanted tumors. In conclusion, by studying the kinase profile of colorectal tumors, we identified relevant activated pathways, and a new multi-kinase compound with significant antitumor properties. PMID:26418718

  4. KinasePA: Phosphoproteomics data annotation using hypothesis driven kinase perturbation analysis

    Science.gov (United States)

    Yang, Pengyi; Patrick, Ellis; Humphrey, Sean J.; Ghazanfar, Shila; James, David E.; Jothi, Raja; Yang, Jean Yee Hwa

    2016-01-01

    Mass spectrometry (MS)-based quantitative phosphoproteomics has become a key approach for proteome-wide profiling of phosphorylation in tissues and cells. Traditional experimental design often compares a single treatment with a control, whereas increasingly more experiments are designed to compare multiple treatments with respect to a control. To this end, the development of bioinformatic tools that can integrate multiple treatments and visualise kinases and substrates under combinatorial perturbations is vital for dissecting concordant and/or independent effects of each treatment. Here, we propose a hypothesis driven kinase perturbation analysis (KinasePA) to annotate and visualise kinases and their substrates that are perturbed by various combinatorial effects of treatments in phosphoproteomics experiments. We demonstrate the utility of KinasePA through its application to two large-scale phosphoproteomics datasets and show its effectiveness in dissecting kinases and substrates within signalling pathways driven by unique combinations of cellular stimuli and inhibitors. We implemented and incorporated KinasePA as part of the “directPA” R package available from the comprehensive R archive network (CRAN). Furthermore, KinasePA also has an interactive web interface that can be readily applied to annotate user provided phosphoproteomics data (http://kinasepa.pengyiyang.org). PMID:27145998

  5. KinasePA: Phosphoproteomics data annotation using hypothesis driven kinase perturbation analysis.

    Science.gov (United States)

    Yang, Pengyi; Patrick, Ellis; Humphrey, Sean J; Ghazanfar, Shila; James, David E; Jothi, Raja; Yang, Jean Yee Hwa

    2016-07-01

    Mass spectrometry (MS)-based quantitative phosphoproteomics has become a key approach for proteome-wide profiling of phosphorylation in tissues and cells. Traditional experimental design often compares a single treatment with a control, whereas increasingly more experiments are designed to compare multiple treatments with respect to a control. To this end, the development of bioinformatic tools that can integrate multiple treatments and visualise kinases and substrates under combinatorial perturbations is vital for dissecting concordant and/or independent effects of each treatment. Here, we propose a hypothesis driven kinase perturbation analysis (KinasePA) to annotate and visualise kinases and their substrates that are perturbed by various combinatorial effects of treatments in phosphoproteomics experiments. We demonstrate the utility of KinasePA through its application to two large-scale phosphoproteomics datasets and show its effectiveness in dissecting kinases and substrates within signalling pathways driven by unique combinations of cellular stimuli and inhibitors. We implemented and incorporated KinasePA as part of the "directPA" R package available from the comprehensive R archive network (CRAN). Furthermore, KinasePA also has an interactive web interface that can be readily applied to annotate user provided phosphoproteomics data (http://kinasepa.pengyiyang.org). PMID:27145998

  6. CDPKs are dual-specificity protein kinases and tyrosine autophosphorylation attenuates kinase activity

    Science.gov (United States)

    Calcium-dependent protein kinases (CDPKs or CPKs) are classified as serine/threonine protein kinases but we made the surprising observation that soybean CDPK' and several Arabidopsis isoforms (AtCPK4 and AtCPK34) could also autophosphorylate on tyrosine residues. In studies with His6-GmCDPK', we ide...

  7. Phosphorylation of nm23/nucleoside diphosphate kinase by casein kinase 2 in vitro

    DEFF Research Database (Denmark)

    Engel, M; Issinger, O G; Lascu, I;

    1994-01-01

    We have investigated phosphorylation of human nucleoside diphosphate kinase (NDPK) and of homologous NDPK from different species by human casein kinase 2 (CK-2). The human NDPK isotypes A and B were phosphorylated by CK-2 in vitro both when the purified proteins and total lysate of HL-60 leukemia...

  8. A systematic evaluation of protein kinase A-A-kinase anchoring protein interaction motifs

    NARCIS (Netherlands)

    Burgers, Pepijn P; van der Heyden, MAG; Kok, Bart; Heck, Albert J R; Scholten, Arjen

    2015-01-01

    Protein kinase A (PKA) in vertebrates is localized to specific locations in the cell via A-kinase anchoring proteins (AKAPs). The regulatory subunits of the four PKA isoforms (RIα, RIβ, RIIα, and RIIβ) each form a homodimer, and their dimerization domain interacts with a small helical region present

  9. The Secretome of Endothelial Progenitor Cells Promotes Brain Endothelial Cell Activity through PI3-Kinase and MAP-Kinase

    Science.gov (United States)

    Di Santo, Stefano; Seiler, Stefanie; Fuchs, Anna-Lena; Staudigl, Jennifer; Widmer, Hans Rudolf

    2014-01-01

    Background Angiogenesis and vascular remodelling are crucial events in tissue repair mechanisms promoted by cell transplantation. Current evidence underscores the importance of the soluble factors secreted by stem cells in tissue regeneration. In the present study we investigated the effects of paracrine factors derived from cultured endothelial progenitor cells (EPC) on rat brain endothelial cell properties and addressed the signaling pathways involved. Methods Endothelial cells derived from rat brain (rBCEC4) were incubated with EPC-derived conditioned medium (EPC-CM). The angiogenic response of rBCEC4 to EPC-CM was assessed as effect on cell number, migration and tubular network formation. In addition, we have compared the outcome of the in vitro experiments with the effects on capillary sprouting from rat aortic rings. The specific PI3K/AKT inhibitor LY294002 and the MEK/ERK inhibitor PD98059 were used to study the involvement of these two signaling pathways in the transduction of the angiogenic effects of EPC-CM. Results Viable cell number, migration and tubule network formation were significantly augmented upon incubation with EPC-CM. Similar findings were observed for aortic ring outgrowth with significantly longer sprouts. The EPC-CM-induced activities were significantly reduced by the blockage of the PI3K/AKT and MEK/ERK signaling pathways. Similarly to the outcome of the rBCEC4 experiments, inhibition of the PI3K/AKT and MEK/ERK pathways significantly interfered with capillary sprouting induced by EPC-CM. Conclusion The present study demonstrates that EPC-derived paracrine factors substantially promote the angiogenic response of brain microvascular endothelial cells. In addition, our findings identified the PI3K/AKT and MEK/ERK pathways to play a central role in mediating these effects. PMID:24755675

  10. Mapping the Heart

    Science.gov (United States)

    Hulse, Grace

    2012-01-01

    In this article, the author describes how her fourth graders made ceramic heart maps. The impetus for this project came from reading "My Map Book" by Sara Fanelli. This book is a collection of quirky, hand-drawn and collaged maps that diagram a child's world. There are maps of her stomach, her day, her family, and her heart, among others. The…

  11. USGS Map Indices Overlay Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Map Indices service from The National Map (TNM) consists of 1x1 Degree, 30x60 Minute (100K), 15 Minute (63K), 7.5 Minute (24K), and 3.75 Minute grid...

  12. Pro-life role for c-Jun N-terminal kinase and p38 mitogen-activated protein kinase at rostral ventrolateral medulla in experimental brain stem death

    Directory of Open Access Journals (Sweden)

    Chang Alice YW

    2012-11-01

    Full Text Available Abstract Background Based on an experimental brain stem death model, we demonstrated previously that activation of the mitogen-activated protein kinase kinase 1/2 (MEK1/2/extracellular signal-regulated kinase 1/2 (ERK1/2/mitogen-activated protein kinase signal-interacting kinase 1/2 (MNK1/2 cascade plays a pro-life role in the rostral ventrolateral medulla (RVLM, the origin of a life-and-death signal detected from systemic arterial pressure, which sequentially increases (pro-life and decreases (pro-death to reflect progressive dysfunction of central cardiovascular regulation during the advancement towards brain stem death in critically ill patients. The present study assessed the hypothesis that, in addition to ERK1/2, c-Jun NH2-terminal kinase (JNK and p38 mitogen-activated protein kinase (p38MAPK, the other two mammalian members of MAPKs that are originally identified as stress-activated protein kinases, are activated specifically by MAPK kinase 4 (MAP2K4 or MAP2K6 and play a pro-life role in RVLM during experimental brain stem death. We further delineated the participation of phosphorylating activating transcriptional factor-2 (ATF-2 and c-Jun, the classical transcription factor activated by JNK or p38MAPK, in this process. Results An experimental model of brain stem death that employed microinjection of the organophosphate insecticide mevinphos (Mev; 10 nmol bilaterally into RVLM of Sprague–Dawley rats was used, alongside cardiovascular, pharmacological and biochemical evaluations. Results from ELISA showed that whereas the total JNK, p38MAPK, MAP2K4 and MAP2K6 were not affected, augmented phosphorylation of JNK at Thr183 and Tyr185 and p38MAPK at Thr180 and Tyr182, accompanied by phosphorylation of their upstream activators MAP2K4 at Ser257 and Thr261 and MAP2K6 at Ser207 and Thr211 in RVLM occurred preferentially during the pro-life phase of experimental brain stem death. Moreover, the activity of transcription factors ATF-2 at Thr71 and

  13. Janus kinase inhibitors: jackpot or potluck?

    Directory of Open Access Journals (Sweden)

    Pavithran Keechilat

    2012-06-01

    Full Text Available The reports of a unique mutation in the Janus kinase-2 gene (JAK2 in polycythemia vera by several independent groups in 2005 quickly spurred the development of the Janus kinase inhibitors. In one of the great victories of translational research in recent times, the first smallmolecule Janus kinase inhibitor ruxolitinib entered a phase I trial in 2007. With the approval of ruxolitinib by the US Federal Drug Administration in November 2011 for high-risk and intermediate-2 risk myelofibrosis, a change in paradigm has occurred in the management of a subset of myeloproliferative neoplasms (MPN: primary myelofibrosis, post-polycythemia vera myelofibrosis, and post-essential thrombocythemia myelofibrosis. Whereas the current evidence for ruxolitinib only covers high-risk and intermediate-2 risk myelofibrosis, inhibitors with greater potency are likely to offer better disease control and survival advantage in patients belonging to these categories, and possibly to the low-risk and intermediate-1 risk categories of MPN as well. But use of the Janus kinase inhibitors also probably has certain disadvantages, such as toxicity, resistance, withdrawal phenomenon, non-reversal of histology, and an implausible goal of disease clone eradication, some of which could offset the gains. In spite of this, Janus kinase inhibitors are here to stay, and for use in more than just myeloproliferative neoplasms.

  14. Mechanism of polyphosphate kinase from Propionibacterium shermanii

    International Nuclear Information System (INIS)

    Polyphosphate kinase, which catalyzes the reaction shown below, is one of two enzymes which have been reported to catalyze the synthesis of polyphosphate. Purification performed by ammonium sulfate precipitation (0-40% fraction) was followed by chromatography. The enzyme represents 70% of the protein in the hydroxylapatite pool and is stable at this level of purity. The subunit molecular weight was determined by SDS polyacrylamide gel analysis, (83,000 +/- 3000), nondenaturing polyacrylamide gel electrophoresis, (80,000 and 86,000 daltons), gel filtration (Biogel A 0.5m column was 85,000 +/- 4000.) Polyphosphate kinase appears to be a monomeric enzyme of ∼83,000 daltons. Four assays were developed for polyphosphate kinase. Basic proteins such as polylysine stimulate the synthesis of polyphosphate, these proteins cause precipitation of polyphosphate kinase from relatively impure enzyme extracts: Synthesized polyphosphate interacts noncovalently with the basic protein-enzyme precipitate. Efficient synthesis of polyphosphate requires the addition of either phosphate or short chain polyphosphate. Synthesis did occur at 1/10 the rate when neither of these two compounds were included. Initiation, elongation, and termination events of polyphosphate synthesis were examined. Short chain polyphosphate acts as a primer, with [32P] short-chain polyphosphate incorporation into long chain polyphosphate by the kinase

  15. Raf kinase inhibitory protein: a signal transduction modulator and metastasis suppressor

    Institute of Scientific and Technical Information of China (English)

    Alexey E Granovsky; Marsha Rich Rosner

    2008-01-01

    Cells have a multitude of controls to maintain their integrity and prevent random switching from one biological state to another. Raf Kinase Inhibitory Protein (RKIP), a member of the phosphatidylethanolamine binding protein (PEBP) family, is representative of a new class of modulators of signaling cascades that function to maintain the "yin yang" or balance of biological systems. RKIP inhibits MAP kinase (Raf-MEK-ERK), G protein-coupled receptor (GPCR) kinase and NFkB signaling cascades. Because RKIP targets different kinases dependent upon its state of phosphorylation, RKIP also acts to integrate crosstalk initiated by multiple environmental stimuli. Loss or depletion of RKIP results in disruption of the normal cellular stasis and can lead to chromosomal abnormalities and disease states such as cancer. Since RKIP and the PEBP family have been reviewed previously, the goal of this analysis is to provide an update and highlight some of the unique features of RKIP that make it a critical player in the regulation of cellular signaling processes.

  16. -Deformed nonlinear maps

    Indian Academy of Sciences (India)

    Ramaswamy Jaganathan; Sudeshna Sinha

    2005-03-01

    Motivated by studies on -deformed physical systems related to quantum group structures, and by the elements of Tsallis statistical mechanics, the concept of -deformed nonlinear maps is introduced. As a specific example, a -deformation procedure is applied to the logistic map. Compared to the canonical logistic map, the resulting family of -logistic maps is shown to have a wider spectrum of interesting behaviours, including the co-existence of attractors – a phenomenon rare in one-dimensional maps.

  17. VEGETATION MAPPING IN WETLANDS

    Directory of Open Access Journals (Sweden)

    F. PEDROTTI

    2004-01-01

    Full Text Available The current work examines the main aspects of wetland vegetation mapping, which can be summarized as analysis of the ecological-vegetational (ecotone gradients; vegetation complexes; relationships between vegetation distribution and geomorphology; vegetation of the hydrographic basin lo which the wetland in question belongs; vegetation monitoring with help of four vegetation maps: phytosociological map of the real and potential vegetation, map of vegetation dynamical tendencies, map of vegetation series.

  18. Map Projection Transitions

    OpenAIRE

    Nedjeljko Frančula; Miljenko Lapaine

    2013-01-01

    Map Projection Transitions is a very successful web application about map projections. The web page (http://www.jasondavies.com/maps/transition) pre­sents a world map with graticule and country borders in the oblique Aitoff projection, with the South Pole. The map is not static, but animated. The South Pole moves toward the bottom and Earth rotates around its poles. The animation lasts five seconds, after which the projection changes and movement continues for five seconds, after which the pr...

  19. Google Maps: You Are Here

    Science.gov (United States)

    Jacobsen, Mikael

    2008-01-01

    Librarians use online mapping services such as Google Maps, MapQuest, Yahoo Maps, and others to check traffic conditions, find local businesses, and provide directions. However, few libraries are using one of Google Maps most outstanding applications, My Maps, for the creation of enhanced and interactive multimedia maps. My Maps is a simple and…

  20. Web Mapping Using Logo on Map

    OpenAIRE

    Ximing Hou; Hao Shi

    2013-01-01

    The newly proposed Logo on Map (LoM) system consists of three modules: picture extraction module (PEM), logo matching module (LMM) and web mapping module (WMM). Since the first two modules were covered in our previous paper, the third module WMM is described here to present a complete LoM system. Current research is focused on geo-location distribution of brands on Google Maps. Pictures taken by ordinary people are extracted using Picture Extraction Module (PEM). The pictures cont...