WorldWideScience

Sample records for ammonium oxidizing bacteria

  1. Cultivation, detection, and ecophysiology of anaerobic ammonium-oxidizing bacteria.

    Science.gov (United States)

    Kartal, Boran; Geerts, Wim; Jetten, Mike S M

    2011-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria oxidize ammonium with nitrite under anoxic conditions. The anammox process is currently used to remove ammonium from wastewater and contributes significantly to the loss of fixed nitrogen from the oceans. In this chapter, we focus on the ecophysiology of anammox bacteria and describe new methodologies to grow these microorganisms. Now, it is possible to enrich anammox bacteria up to 95% with a membrane bioreactor that removes forces of selection for fast settling aggregates and facilitates the growth of planktonic cells. The biomass from this system has a high anaerobic ammonium oxidation rate (50 fmol NH(4)(+) · cell(-1) day(-1)) and is suitable for many ecophysiological and molecular experiments. A high throughput Percoll density gradient centrifugation protocol may be applied on this biomass for further enrichment (>99.5%) of anammox bacteria. Furthermore, we provide an up-to-date list of commonly used primers and introduce protocols for quantification and detection of functional genes of anammox bacteria in their natural environment. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Cell biology of anaerobic ammonium-oxidizing bacteria

    NARCIS (Netherlands)

    Niftrik, L.A.M.P. van

    2008-01-01

    Anammox bacteria perform anaerobic ammonium oxidation to dinitrogen gas and belong to the phylum Planctomycetes. Whereas most Prokaryotes consist of one compartment, the cytoplasm bounded by the cytoplasmic membrane and cell wall, the species within this phylum are compartmentalized by intracellular

  3. Anaerobic Ammonium-Oxidizing Bacteria in Cow Manure Composting.

    Science.gov (United States)

    Wang, Tingting; Cheng, Lijun; Zhang, Wenhao; Xu, Xiuhong; Meng, Qingxin; Sun, Xuewei; Liu, Huajing; Li, Hongtao; Sun, Yu

    2017-07-28

    Composting is widely used to transform waste into valuable agricultural organic fertilizer. Anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the global nitrogen cycle, but their role in composting remains poorly understood. In the present study, the community structure, diversity, and abundance of anammox bacteria were analyzed using cloning and sequencing methods by targeting the 16S rRNA gene and the hydrazine oxidase gene ( hzo ) in samples isolated from compost produced from cow manure and rice straw. A total of 25 operational taxonomic units were classified based on 16S rRNA gene clone libraries, and 14 operational taxonomic units were classified based on hzo gene clone libraries. The phylogenetic tree analysis of the 16S rRNA gene and deduced HZO protein sequences from the corresponding encoding genes indicated that the majority of the obtained clones were related to the known anammox bacteria Candidatus "Brocadia," Candidatus "Kuenenia," and Candidatus "Scalindua." The abundances of anammox bacteria were determined by quantitative PCR, and between 2.13 × 10 5 and 1.15 × 10 6 16S rRNA gene copies per gram of compost were found. This study provides the first demonstration of the existence of anammox bacteria with limited diversity in cow manure composting.

  4. Anaerobic Ammonium-Oxidizing Bacteria: Unique Microorganisms with Exceptional Properties

    Science.gov (United States)

    Jetten, Mike S. M.

    2012-01-01

    Summary: Anaerobic ammonium-oxidizing (anammox) bacteria defy many microbiological concepts and share numerous properties with both eukaryotes and archaea. Among their most intriguing characteristics are their compartmentalized cell plan and archaeon-like cell wall. Here we review our current knowledge about anammox cell biology. The anammox cell is divided into three separate compartments by bilayer membranes. The anammox cell consists of (from outside to inside) the cell wall, paryphoplasm, riboplasm, and anammoxosome. Not much is known about the composition or function of both the anammox cell wall and the paryphoplasm compartment. The cell wall is proposed to be proteinaceous and to lack both peptidoglycan and an outer membrane typical of Gram-negative bacteria. The function of the paryphoplasm is unknown, but it contains the cell division ring. The riboplasm resembles the standard cytoplasmic compartment of other bacteria; it contains ribosomes and the nucleoid. The anammoxosome occupies most of the cell volume and is a so-called “prokaryotic organelle” analogous to the eukaryotic mitochondrion. This is the site where the anammox reaction takes place, coupled over the curved anammoxosome membrane, possibly giving rise to a proton motive force and subsequent ATP synthesis. With these unique properties, anammox bacteria are food for thought concerning the early evolution of the domains Bacteria, Archaea, and Eukarya. PMID:22933561

  5. Anaerobic ammonium oxidation by Anammox bacteria in the Black Sea

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Kuypers, M.M.M.; Sliekers, O.; Lavik, G.; Schmid, M.; Jørgensen, B.B.; Kuenen, J.G.; Strous, M.; Jetten, M.S.M.

    2003-01-01

    The availability of fixed inorganic nitrogen (nitrate, nitrite and ammonium) limits primary productivity in many oceanic regions1. The conversion of nitrate to N2 by heterotrophic bacteria (denitrification) is believed to be the only important sink for fixed inorganic nitrogen in the ocean2. Here we

  6. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria.

    Science.gov (United States)

    Güven, Didem; Dapena, Ana; Kartal, Boran; Schmid, Markus C; Maas, Bart; van de Pas-Schoonen, Katinka; Sozen, Seval; Mendez, Ramon; Op den Camp, Huub J M; Jetten, Mike S M; Strous, Marc; Schmidt, Ingo

    2005-02-01

    Anaerobic ammonium oxidation (anammox) is a recently discovered microbial pathway and a cost-effective way to remove ammonium from wastewater. Anammox bacteria have been described as obligate chemolithoautotrophs. However, many chemolithoautotrophs (i.e., nitrifiers) can use organic compounds as a supplementary carbon source. In this study, the effect of organic compounds on anammox bacteria was investigated. It was shown that alcohols inhibited anammox bacteria, while organic acids were converted by them. Methanol was the most potent inhibitor, leading to complete and irreversible loss of activity at concentrations as low as 0.5 mM. Of the organic acids acetate and propionate, propionate was consumed at a higher rate (0.8 nmol min(-1) mg of protein(-1)) by Percoll-purified anammox cells. Glucose, formate, and alanine had no effect on the anammox process. It was shown that propionate was oxidized mainly to CO(2), with nitrate and/or nitrite as the electron acceptor. The anammox bacteria carried out propionate oxidation simultaneously with anaerobic ammonium oxidation. In an anammox enrichment culture fed with propionate for 150 days, the relative amounts of anammox cells and denitrifiers did not change significantly over time, indicating that anammox bacteria could compete successfully with heterotrophic denitrifiers for propionate. In conclusion, this study shows that anammox bacteria have a more versatile metabolism than previously assumed.

  7. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea RID B-8834-2011

    DEFF Research Database (Denmark)

    Kuypers, MMM; Sliekers, AO; Lavik, G.

    2003-01-01

    The availability of fixed inorganic nitrogen (nitrate, nitrite and ammonium) limits primary productivity in many oceanic regions(1). The conversion of nitrate to N(2) by heterotrophic bacteria (denitrification) is believed to be the only important sink for fixed inorganic nitrogen in the ocean(2......). Here we provide evidence for bacteria that anaerobically oxidize ammonium with nitrite to N(2) in the world's largest anoxic basin, the Black Sea. Phylogenetic analysis of 16S ribosomal RNA gene sequences shows that these bacteria are related to members of the order Planctomycetales performing...... the anammox (anaerobic ammonium oxidation) process in ammonium-removing bioreactors(3). Nutrient profiles, fluorescently labelled RNA probes, (15)N tracer experiments and the distribution of specific 'ladderane' membrane lipids(4) indicate that ammonium diffusing upwards from the anoxic deep water is consumed...

  8. Continuous culture enrichments of ammonia-oxidizing bacteria at low ammonium concentrations

    NARCIS (Netherlands)

    Bollmann, A.; Laanbroek, H.J.

    2001-01-01

    Until now enrichments of ammonia-oxidizing bacteria from natural ammonium-limited environments have been performed mainly in the presence of much higher ammonia concentrations than those present in the natural environment and many have resulted in the enrichment and isolation of environmentally less

  9. Continuous culture enrichments of ammonia-oxidizing bacteria at low ammonium concentrations

    NARCIS (Netherlands)

    Bollmann, A.; Laanbroek, H.J.

    2001-01-01

    Until now enrichments of ammonia-oxidizing bacteria from natural ammonium-limited environments have been performed mainly in the presence of much higher ammonia concentrations than those present in the natural environment and many have resulted in the enrichment and isolation of environmentally

  10. Diversity and distribution of planktonic anaerobic ammonium-oxidizing bacteria in the Dongjiang River, China.

    Science.gov (United States)

    Sun, Wei; Xia, Chunyu; Xu, Meiying; Guo, Jun; Wang, Aijie; Sun, Guoping

    2014-12-01

    Anaerobic ammonium-oxidizing (anammox) process has recently been recognized as an important pathway for removing fixed nitrogen (N) from aquatic ecosystems. Anammox organisms are widely distributed in freshwater environments. However, little is known about their presence in the water column of riverine ecosystems. Here, the existence of a diverse anammox community was revealed in the water column of the Dongjiang River by analyzing 16S rRNA and hydrazine oxidation (hzo) genes of anammox bacteria. Phylogenetic analyses of hzo genes showed that Candidatus Jettenia related clades of anammox bacteria were dominant in the river, suggesting the ecological microniche distinction from freshwater/estuary and marine anammox bacteria with Ca. Brocadia and Kuenenia genera mainly detected in freshwater/estuary ecosystems, and Ca. Scalindua genus mainly detected in marine ecosystems. The abundance and diversity of anammox bacteria along the river were both significantly correlated with concentrations of NH4(+)-N based on Pearson and partial correlation analyses. Redundancy analyses showed the contents of NH4(+)-N, NO3(-)-N and the ratio of NH4(+)-N to NO2(-)-N significantly influenced the spatial distributions of anammox bacteria in the water column of the Dongjiang River. These results expanded our understanding of the distribution and potential roles of anammox bacteria in the water column of the river ecosystem. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria.

    Science.gov (United States)

    Li, Meng; Gu, Ji-Dong

    2011-05-01

    Anaerobic ammonium oxidation (anammox), the biochemical process oxidizing ammonium into dinitrogen gas using nitrite as an electron acceptor, has only been recognized for its significant role in the global nitrogen cycle not long ago, and its ubiquitous distribution in a wide range of environments has changed our knowledge about the contributors to the global nitrogen cycle. Currently, several groups of methods are used in detection of anammox bacteria based on their physiological and biochemical characteristics, cellular chemical composition, and both 16S rRNA gene and selective functional genes as biomarkers, including hydrazine oxidoreductase and nitrite reductase encoding genes hzo and nirS, respectively. Results from these methods coupling with advances in quantitative PCR, reverse transcription of mRNA genes and stable isotope labeling have improved our understanding on the distribution, diversity, and activity of anammox bacteria in different environments both natural and engineered ones. In this review, we summarize these methods used in detection of anammox bacteria from various environments, highlight the strengths and weakness of these methods, and also discuss the new development potentials on the existing and new techniques in the future.

  12. Anaerobic ammonium-oxidizing bacteria gain antibiotic resistance during long-term acclimatization.

    Science.gov (United States)

    Zhang, Zheng-Zhe; Zhang, Qian-Qian; Guo, Qiong; Chen, Qian-Qian; Jiang, Xiao-Yan; Jin, Ren-Cun

    2015-09-01

    Three broad-spectrum antibiotics, amoxicillin (AMX), florfenicol (FF) and sulfamethazine (SMZ), that inhibit bacteria via different target sites, were selected to evaluate the acute toxicity and long-term effects on anaerobic ammonium oxidation (anammox) granules. The specific anammox activity (SAA) levels reduced by approximately half within the first 3 days in the presence of antibiotics but no nitrite accumulation was observed in continuous-flow experiments. However, the SAA levels and heme c content gradually recovered as the antibiotic concentrations increased. Extracellular polymeric substances (EPS) analysis suggested that anaerobic ammonium-oxidizing bacteria gradually developed a better survival strategy during long-term acclimatization, which reduced the antibiotic stress via increased EPS secretion that provided a protective 'cocoon.' In terms of nitrogen removal efficiency, anammox granules could resist 60 mg-AMX L(-1), 10 mg-FF L(-1) and 100 mg-SMZ L(-1). This study supported the feasibility of using anammox granules to treat antibiotic-containing wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process.

    Science.gov (United States)

    Fu, Liang; Ding, Jing; Lu, Yong-Ze; Ding, Zhao-Wei; Zeng, Raymond J

    2017-05-01

    The co-culture system of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) has a potential application in wastewater treatment plant. This study explored the effects of permutation and combination of nitrate, nitrite, and ammonium on the culture enrichment from freshwater sediments. The co-existence of NO 3 - , NO 2 - , and NH 4 + shortened the enrichment time from 75 to 30 days and achieved a total nitrogen removal rate of 106.5 mg/L/day on day 132. Even though ammonium addition led to Anammox bacteria increase and a higher nitrogen removal rate, DAMO bacteria still dominated in different reactors with the highest proportion of 64.7% and the maximum abundance was 3.07 ± 0.25 × 10 8 copies/L (increased by five orders of magnitude) in the nitrite reactor. DAMO bacteria showed greater diversity in the nitrate reactor, and one was similar to M. oxyfera; DAMO bacteria in the nitrite reactor were relatively unified and similar to M. sinica. Interestingly, no DAMO archaea were found in the nitrate reactor. This study will improve the understanding of the impact of nitrogen source on DAMO and Anammox co-culture enrichment.

  14. A mathematical model of bacteria capable of complete oxidation of ammonium predicts improved nitrogen removal and reduced production of nitrous oxide

    OpenAIRE

    Pokhilko, Alexandra; Ebenhöh, Oliver

    2017-01-01

    The removal of excess nutrients\\ud from water ecosystems requires oxidation of toxic\\ud ammonium by two types of bacteria; one oxidizes\\ud ammonium to nitrite and the other oxidizes nitrite\\ud to nitrate. The oxidation of ammonium is often\\ud incomplete and nitrite accumulates. Nitrite is also\\ud toxic, and is converted by the ammoniumoxidizing\\ud bacteria to nitrous oxide, a powerful\\ud greenhouse gas. Here we use mathematical\\ud modeling to analyze a potential solution to the\\ud problems re...

  15. Molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in high-temperature petroleum reservoirs.

    Science.gov (United States)

    Li, Hui; Chen, Shuo; Mu, Bo-Zhong; Gu, Ji-Dong

    2010-11-01

    Anaerobic ammonium-oxidizing (anammox) process plays an important role in the nitrogen cycle of the worldwide anoxic and mesophilic habitats. Recently, the existence and activity of anammox bacteria have been detected in some thermophilic environments, but their existence in the geothermal subterranean oil reservoirs is still not reported. This study investigated the abundance, distribution and functional diversity of anammox bacteria in nine out of 17 high-temperature oil reservoirs by molecular ecology analysis. High concentration (5.31-39.2 mg l(-1)) of ammonium was detected in the production water from these oilfields with temperatures between 55°C and 75°C. Both 16S rRNA and hzo molecular biomarkers indicated the occurrence of anammox bacteria in nine out of 17 samples. Most of 16S rRNA gene phylotypes are closely related to the known anammox bacterial genera Candidatus Brocadia, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia, while hzo gene phylotypes are closely related to the genera Candidatus Anammoxoglobus, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia. The total bacterial and anammox bacterial densities were 6.4 ± 0.5 × 10(3) to 2.0 ± 0.18 × 10(6) cells ml(-1) and 6.6 ± 0.51 × 10(2) to 4.9 ± 0.36 × 10(4) cell ml(-1), respectively. The cluster I of 16S rRNA gene sequences showed distant identity (<92%) to the known Candidatus Scalindua species, inferring this cluster of anammox bacteria to be a new species, and a tentative name Candidatus "Scalindua sinooilfield" was proposed. The results extended the existence of anammox bacteria to the high-temperature oil reservoirs.

  16. [Distribution and Diversity of Ammonium-oxidizing Archaea and Ammonium-oxidizing Bacteria in Surface Sediments of Oujiang River].

    Science.gov (United States)

    Li, Hu; Huang, Fu-yi; Su, Jian-qiang; Hong, You-wei; Yu, Shen

    2015-12-01

    Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) play important roles in the biogeochemical nitrogen cycle. Rivers are important ecosystems containing a large number of functional microbes in nitrogen cycle. In this study, denaturing gradient gel electrophoresis (DGGE ) and real-time quantitative PCR (qPCR) technology were used to analyze the distribution and diversity of AOA and AOB in sediments from Oujiang. The results showed that the AOA community structure was similar among various sites, while the AOB community structure was significantly different, in which all detected AOB sequences were classified into Nitrosospira and Nitrosomonas, and 90% affiliated to Nitrosospira. The community composition of AOA was influenced by NH₄⁺ and TS, in addition, the AOB composition was affected by NH₄⁺, EC, pH, NO₃⁻, TC and TN. Total sulfur (TS) and electrical conductivity (EC) were the major factors influencing the diversity of AOA and AOB, respectively. AOA abundance was significantly higher than that of AOB. EC, NH₄⁺-N and NO₃⁻-N were the main environmental factors affecting the abundance of AOA and AOB. This study indicated that the community composition and diversity of AOA and AOB were significantly influenced by environmental factors, and AOA might be dominant drivers in the ammonia oxidation process in Oujiang surface sediment.

  17. Temporal and Spatial Dynamics of Sediment Anaerobic Ammonium Oxidation (Anammox) Bacteria in Freshwater Lakes.

    Science.gov (United States)

    Yang, Yuyin; Dai, Yu; Li, Ningning; Li, Bingxin; Xie, Shuguang; Liu, Yong

    2017-02-01

    Anaerobic ammonium-oxidizing (anammox) process can play an important role in freshwater nitrogen cycle. However, the distribution of anammox bacteria in freshwater lake and the associated environmental factors remain essentially unclear. The present study investigated the temporal and spatial dynamics of sediment anammox bacterial populations in eutrotrophic Dianchi Lake and mesotrophic Erhai Lake on the Yunnan Plateau (southwestern China). The remarkable spatial change of anammox bacterial abundance was found in Dianchi Lake, while the relatively slight spatial shift occurred in Erhai Lake. Dianchi Lake had greater anammox bacterial abundance than Erhai Lake. In both Dianchi Lake and Erhai Lake, anammox bacteria were much more abundant in summer than in spring. Anammox bacterial community richness, diversity, and structure in these two freshwater lakes were subjected to temporal and spatial variations. Sediment anammox bacterial communities in Dianchi Lake and Erhai Lake were dominated by Candidatus Brocadia and a novel phylotype followed by Candidatus Kuenenia; however, these two lakes had distinct anammox bacterial community structure. In addition, trophic status determined sediment anammox bacterial community structure.

  18. Co-existence of Anaerobic Ammonium Oxidation Bacteria and Denitrifying Anaerobic Methane Oxidation Bacteria in Sewage Sludge: Community Diversity and Seasonal Dynamics

    DEFF Research Database (Denmark)

    Xu, Sai; Lu, Wenjing; Mustafa, Muhammad Farooq

    2017-01-01

    Anaerobic ammonium oxidation (ANAMMOX) and denitrifying anaerobic methane oxidation (DAMO) have been recently discovered as relevant processes in the carbon and nitrogen cycles of wastewater treatment plants. In this study, the seasonal dynamics of ANAMMOX and DAMO bacterial community structures......, and an unknown cluster was primarily detected in autumn and winter. Similar patterns of seasonal variation in the community structure of DAMO bacteria were also observed. Group B was the dominant in spring and summer, whereas in autumn and winter, group A and group B presented almost the same proportion...

  19. Co-existence of Anaerobic Ammonium Oxidation Bacteria and Denitrifying Anaerobic Methane Oxidation Bacteria in Sewage Sludge: Community Diversity and Seasonal Dynamics.

    Science.gov (United States)

    Xu, Sai; Lu, Wenjing; Mustafa, Muhammad Farooq; Caicedo, Luis Miguel; Guo, Hanwen; Fu, Xindi; Wang, Hongtao

    2017-11-01

    Anaerobic ammonium oxidation (ANAMMOX) and denitrifying anaerobic methane oxidation (DAMO) have been recently discovered as relevant processes in the carbon and nitrogen cycles of wastewater treatment plants. In this study, the seasonal dynamics of ANAMMOX and DAMO bacterial community structures and their abundance in sewage sludge collected from wastewater treatment plants were analysed. Results indicated that ANAMMOX and DAMO bacteria co-existed in sewage sludge in different seasons and their abundance was positively correlated (P bacteria in autumn and winter indicated that these seasons were the preferred time to favour the growth of ANAMMOX and DAMO bacteria. The community structure of ANNAMOX and DAMO bacteria could also shift with seasonal changes. The "Candidatus Brocadia" genus of ANAMMOX bacteria was mainly recovered in spring and summer, and an unknown cluster was primarily detected in autumn and winter. Similar patterns of seasonal variation in the community structure of DAMO bacteria were also observed. Group B was the dominant in spring and summer, whereas in autumn and winter, group A and group B presented almost the same proportion. The redundancy analysis revealed that pH and nitrate were the most significant factors affecting community structures of these two groups (P < 0.01). This study reported the diversity of ANAMMOX and DAMO in wastewater treatment plants that may be the basis for new nitrogen removal technologies.

  20. Optimization of three FISH procedures for in situ detection of anaerobic ammonium oxidizing bacteria in biological wastewater treatment.

    Science.gov (United States)

    Pavlekovic, Marko; Schmid, Markus C; Schmider-Poignee, Nadja; Spring, Stefan; Pilhofer, Martin; Gaul, Tobias; Fiandaca, Mark; Löffler, Frank E; Jetten, Mike; Schleifer, K-H; Lee, Natuschka M

    2009-08-01

    Fluorescence in situ hybridization (FISH) using fluorochrome-labeled DNA oligonucleotide probes has been successfully applied for in situ detection of anaerobic ammonium oxidizing (anammox) bacteria. However, application of the standard FISH protocols to visualize anammox bacteria in biofilms from a laboratory-scale wastewater reactor produced only weak signals. Increased signal intensity was achieved either by modifying the standard FISH protocol, using peptide nucleic acid probes (PNA FISH), or applying horse radish peroxidase- (HRP-) labeled probes and subsequent catalyzed reporter deposition (CARD-FISH). A comparative analysis using anammox biofilm samples and suspended anammox biomass from different laboratory wastewater bioreactors revealed that the modified standard FISH protocol and the PNA FISH probes produced equally strong fluorescence signals on suspended biomass, but only weak signals were obtained with the biofilm samples. The probe signal intensities in the biofilm samples could be enhanced by enzymatic pre-treatment of fixed cells, and by increasing the hybridization time of the PNA FISH protocol. CARD-FISH always produced up to four-fold stronger fluorescent signals but unspecific fluorescence signals, likely caused by endogenous peroxidases as reported in several previous studies, compromised the results. Interference of the development of fluorescence intensity with endogenous peroxidases was also observed in cells of aerobic ammonium oxidizers like Nitrosomonas europea, and sulfate-reducers like Desulfobacter postgatei. Interestingly, no interference was observed with other peroxidase-positive microorganisms, suggesting that CARD-FISH is not only compromised by the mere presence of peroxidases. Pre-treatment of cells to inactivate peroxidase with HCl or autoclavation/pasteurization failed to inactive peroxidases, but H(2)O(2) significantly reduced endogenous peroxidase activity. However, for optimal inactivation, different H(2)O(2

  1. Community composition and activity of anaerobic ammonium oxidation bacteria in the rhizosphere of salt-marsh grass Spartina alterniflora.

    Science.gov (United States)

    Zheng, Yanling; Hou, Lijun; Liu, Min; Yin, Guoyu; Gao, Juan; Jiang, Xiaofen; Lin, Xianbiao; Li, Xiaofei; Yu, Chendi; Wang, Rong

    2016-09-01

    Anaerobic ammonium oxidation (anammox) as an important nitrogen removal pathway has been investigated in intertidal marshes. However, the rhizosphere-driven anammox process in these ecosystems is largely overlooked so far. In this study, the community dynamics and activities of anammox bacteria in the rhizosphere and non-rhizosphere sediments of salt-marsh grass Spartina alterniflora (a widely distributed plant in estuaries and intertidal ecosystems) were investigated using clone library analysis, quantitative PCR assay, and isotope-tracing technique. Phylogenetic analysis showed that anammox bacterial diversity was higher in the non-rhizosphere sediments (Scalindua and Kuenenia) compared with the rhizosphere zone (only Scalindua genus). Higher abundance of anammox bacteria was detected in the rhizosphere (6.46 × 10(6)-1.56 × 10(7) copies g(-1)), which was about 1.5-fold higher in comparison with that in the non-rhizosphere zone (4.22 × 10(6)-1.12 × 10(7) copies g(-1)). Nitrogen isotope-tracing experiments indicated that the anammox process in the rhizosphere contributed to 12-14 % N2 generation with rates of 0.43-1.58 nmol N g(-1) h(-1), while anammox activity in the non-rhizosphere zone contributed to only 4-7 % N2 production with significantly lower activities (0.28-0.83 nmol N g(-1) h(-1)). Overall, we propose that the rhizosphere microenvironment in intertidal marshes might provide a favorable niche for anammox bacteria and thus plays an important role in nitrogen cycling.

  2. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production

    Science.gov (United States)

    Venterea, R. T.; Sadowsky, M.; Breuillin-Sessoms, F.; Wang, P.; Clough, T. J.; Coulter, J. A.

    2015-12-01

    Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted 'hot spots' and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and genes associated with nitrification in two soils ('L' and 'W') having similar texture, pH, C, and C/N ratio. Solution-phase ammonia (slNH3) was also calculated accounting for non-linear ammonium (NH4+) sorption capacities (ASC). Soil W displayed greater nitrification rates and nitrate (NO3-) levels than soil L, but was more resistant to nitrite (NO2-) accumulation and produced two to ten times less N2O than soil L. Genes associated with NO2- oxidation (nxrA) increased substantially in soil W but remained static in soil L. Soil NO2- was strongly correlated with N2O production, and cumulative (c-) slNH3 explained 87% of the variance in c-NO2-. Differences between soils were explained by greater slNH3 in soil L which inhibited NO2- oxidization leading to greater NO2- levels and N2O production. This is the first study to correlate the dynamics of soil slNH3, NO2-, N2O and nitrifier genes, and the first to show how ASC can regulate NO2- levels and N2O production.

  3. Enriquecimento de bactérias anaeróbias oxidadoras de amônia - anammox Enrichment of anaerobic ammonium oxidizing bacteria - anammox

    Directory of Open Access Journals (Sweden)

    Juliana Calábria de Araújo

    2010-06-01

    Full Text Available Bactérias anaeróbias oxidadoras de amônia (bactérias Anammox, do inglês anaerobic ammonium oxidizing bacteria foram enriquecidas em reator em batelada sequencial (RBS, a partir de lodo proveniente de um sistema convencional de lodos ativados tratando esgoto doméstico de Belo Horizonte (MG. Após três meses de cultivo, atividade Anammox foi detectada no sistema pelo consumo de quantidades estequiométricas de NO2- e NH4+. Análises de hibridação in situ fluorescente (FISH, do inglês fluorescent in situ hybridization confirmaram a presença de bactérias Anammox, provavelmente Candidatus Brocadia anammoxidans, e revelaram que estas representavam 53% do total de células (após 6 meses de cultivo. O desempenho do reator ao longo dos sete meses de operação demonstrou remoção quase que total de nitrito, baseada em concentração afluente de 61 a 95 mg N-NO2-/L. A eficiência máxima de remoção de amônia alcançada foi de 95%, a partir de concentração afluente de 55 a 82 mg N-NH4+/L.Anaerobic ammonium-oxidizing (Anammox bacteria were enriched from sludge collected at a conventional activated sludge system treating domestic wastewater of Belo Horizonte(MG, Brazil, employing a sequencing batch reactor (SBR. After three months of cultivation, Anammox activity was detected in the system by the consumption of stoichiometric amounts of NO2- and NH4+. Fluorescent in situ hybridization (FISH results revealed the presence of Anammox bacteria (probably Candidatus Brocadia anammoxidans and showed that they accounted for 53% of the total bacterial population (after 6 months of cultivation. The reactor performance during the seven months of operation showed a near perfect removal of nitrite, based on the influent NO2--N concentration of 61-95 mg/L. The maximum ammonia removal efficiency was 95% from the influent N-NH4+ concentration of 55-82 mg/L.

  4. Comparison of nitrogen removal rates and nitrous oxide production from enriched anaerobic ammonium oxidizing bacteria in suspended and attached growth reactors.

    Science.gov (United States)

    Panwivia, Supaporn; Sirvithayapakorn, Sanya; Wantawin, Chalermraj; Noophan, Pongsak Lek; Munakata-Marr, Junko

    2014-01-01

    Attached growth-systems for the anaerobic ammonium oxidation (anammox) process have been postulated for implementation in the field. However, information about the anammox process in attached growth-systems is limited. This study compared nitrogen removal rates and nitrous oxide (N2O) production of enriched anammox cultures in both suspended and attached growth sequencing batch reactors (SBRs). Suspended growth reactors (SBR-S) and attached growth reactors using polystyrene sponge as a medium (SBR-A) were used in these experiments. After inoculation with an enriched anammox culture, significant nitrogen removals of ammonium (NH4 (+)) and nitrite (NO2 (-)) were observed under NH4 (+):NO2 (-) ratios ranging from 1:1 to 1:2 in both types of SBRs. The specific rates of total nitrogen removal in SBR-S and SBR-A were 0.52 mg N/mg VSS-d and 0.44 mg N/mg VSS-d, respectively, at an NH4 (+):NO2 (-) ratio of 1:2. N2O production by the enriched anammox culture in both SBR-S and SBR-A was significantly higher at NH4 (+):NO2 (-) ratio of 1:2 than at NH4 (+):NO2 (-) ratios of 1:1 and 1:1.32. In addition, N2O production was higher at a pH of 6.8 than at pH 7.3, 7.8, and 8.3 in both SBR-S and SBR-A. The results of this investigation demonstrate that the anammox process may avoid N2O emission by maintaining an NH4 (+):NO2 (-) ratio of less than 1:2 and pH higher than 6.8.

  5. Potential coupling effects of ammonia-oxidizing and anaerobic ammonium-oxidizing bacteria on completely autotrophic nitrogen removal over nitrite biofilm formation induced by the second messenger cyclic diguanylate.

    Science.gov (United States)

    Wang, Chao; Liu, Sitong; Xu, Xiaochen; Zhao, Chuanqi; Yang, Fenglin; Wang, Dong

    2017-05-01

    The objective of this study was to investigate the influence of extracellular polymeric substance (EPS) on the coupling effects between ammonia-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (anammox) bacteria for the completely autotrophic nitrogen removal over nitrite (CANON) biofilm formation in a moving bed biofilm reactor (MBBR). Analysis of the quantity of EPS and cyclic diguanylate (c-di-GMP) confirmed that the contents of polysaccharides and c-di-GMP were correlated in the AOB sludge, anammox sludge, and CANON biofilm. The anammox sludge secreted more EPS (especially polysaccharides) than AOB with a markedly higher c-di-GMP content, which could be used by the bacteria to regulate the synthesis of exopolysaccharides that are ultimately used as a fixation matrix, for the adhesion of biomass. Indeed, increased intracellular c-di-GMP concentrations in the anammox sludge enhanced the regulation of polysaccharides to promote the adhesion of AOB and formation of the CANON biofilm. Overall, the results of this study provide new comprehensive information regarding the coupling effects of AOB and anammox bacteria for the nitrogen removal process.

  6. Potential rates of ammonium oxidation, nitrite oxidation, nitrate reduction and denitrification in the young barley rhizosphere

    DEFF Research Database (Denmark)

    Højberg, Ole; Binnerup, S. J.; Sørensen, Jan

    1996-01-01

    Potential activities (enzyme contents) of ammonium (NH4+) oxidizing, nitrite (NO2-) oxidizing, nitrate (NO3-) reducing and denitrifying bacteria were measured in bulk and rhizosphere soil obtained from young barley plants in the field. The activities as well as pools of inorganic N (NH4+, NO2...

  7. Anaerobic oxidation of methane and ammonium.

    NARCIS (Netherlands)

    Strous, M.; Jetten, M.S.M.

    2004-01-01

    Anaerobic oxidation of methane and ammonium are two different processes catalyzed by completely unrelated microorganisms. Still, the two processes do have many interesting aspects in common. First, both of them were once deemed biochemically impossible and nonexistent in nature, but have now been

  8. Electrodes as Terminal Electron Acceptors in Anaerobic Ammonium Oxidation

    Science.gov (United States)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2017-12-01

    Anaerobic ammonium (NH4+) oxidation under iron (Fe) reducing conditions is a microbial- mediated process known as Feammox. This is a novel pathway in the nitrogen cycle, and a key process for alleviating NH4+ accumulation in anoxic soils, wetlands, and wastewater. Acidimicrobiaceae-bacterium A6, phylum Actinobacteria, are one type of autotrophic bacteria linked to this process. The Feammox-bacteria obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, iron oxides are the TEAs. However, in this study we show that electrodes in Microbial Electrolysis Cells (MECs) or electrodes set in the field can be used as TEAs by Feammox-bacteria. The potential difference between electrodes is the driving force for electron transfer, making the reaction energetically feasible. Our results show that MECs containing Feammox cultures can remove NH4+ up to 3.5 mg/L in less than 4 hours, compared to an average of 9 mg/L in 2 weeks when cultured under traditional conditions. Concomitantly, MECs produce an average current of 30.5 A/m3 whilst dead bacteria produced low (Actinobacteria when compared to bulk soil. Electrodes as TEAs enhance electrogenic bacteria recovery and culturing. The use of MECs for the productions of Feammox-bacteria eliminates the dependence of Fe, a finite electron acceptor, therefore, allowing for continuous NH4+ removal. Finally, Fe-free Feammox-bacteria can be applied to reduce other metals of environmental concern; therefore, opening the range of possible application of Feammox-bacteria.

  9. Ammonium removal using algae-bacteria consortia: the effect of ammonium concentration, algae biomass, and light.

    Science.gov (United States)

    Jia, Huijun; Yuan, Qiuyan

    2018-04-01

    In this study, the effects of ammonium nitrogen concentration, algae biomass concentration, and light conditions (wavelength and intensity) on the ammonium removal efficiency of algae-bacteria consortia from wastewater were investigated. The results indicated that ammonium concentration and light intensity had a significant impact on nitrification. It was found that the highest ammonia concentration (430 mg N/L) in the influent resulted in the highest ammonia removal rate of 108 ± 3.6 mg N/L/days, which was two times higher than the influent with low ammonia concentration (40 mg N/L). At the lowest light intensity of 1000 Lux, algae biomass concentration, light wavelength, and light cycle did not show a significant effect on the performance of algal-bacterial consortium. Furthermore, the ammonia removal rate was approximately 83 ± 1.0 mg N/L/days, which was up to 40% faster than at the light intensity of 2500 Lux. It was concluded that the algae-bacteria consortia can effectively remove nitrogen from wastewater and the removal performance can be stabilized and enhanced using the low light intensity of 1000 Lux that is also a cost-effective strategy.

  10. Oxidation of ammonium sulfite in aqueous solutions using ozone technology

    Science.gov (United States)

    Li, Yue; Shang, Kefeng; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    How to deal with unstable ammonium sulfite, the byproduct of flue gas desulfuration by ammonia absorption methods, has been a difficult problem in recent years. Oxidation of ammonium sulfite in aqueous solutions using ozone produced by a surface discharge system was investigated in the paper. The oxidation efficiency of ammonium sulfite by ozone and traditional air aeration were compared, and the factors including ozone concentration, gas flow rate, initial concentration of ammonium sulfite solution and reaction temperature were discussed. The results show that the oxidation efficiency of ammonium sulfite by ozone technology reached nearly 100% under the optimum conditions, which had a significant increase compared with that by air aeration.

  11. Cytochrome cd1-containing nitrite reductase encoding gene nirS as a new functional biomarker for detection of anaerobic ammonium oxidizing (Anammox) bacteria.

    Science.gov (United States)

    Li, Meng; Ford, Tim; Li, Xiaoyan; Gu, Ji-Dong

    2011-04-15

    A newly designed primer set (AnnirS), together with a previously published primer set (ScnirS), was used to detect anammox bacterial nirS genes from sediments collected from three marine environments. Phylogenetic analysis demonstrated that all retrieved sequences were clearly different from typical denitrifiers' nirS, but do group together with the known anammox bacterial nirS. Sequences targeted by ScnirS are closely related to Scalindua nirS genes recovered from the Peruvian oxygen minimum zone (OMZ), whereas sequences targeted by AnnirS are more closely affiliated with the nirS of Candidatus 'Kuenenia stuttgartiensis' and even form a new phylogenetic nirS clade, which might be related to other genera of the anammox bacteria. Analysis demonstrated that retrieved sequences had higher sequence identities (>60%) with known anammox bacterial nirS genes than with denitrifiers' nirS, on both nucleotide and amino acid levels. Compared to the 16S rRNA and hydrazine oxidoreductase (hzo) genes, the anammox bacterial nirS not only showed consistent phylogenetic relationships but also demonstrated more reliable quantification of anammox bacteria because of the single copy of the nirS gene in the anammox bacterial genome and the specificity of PCR primers for different genera of anammox bacteria, thus providing a suitable functional biomarker for investigation of anammox bacteria.

  12. Distribution and activity of anaerobic ammonium-oxidising bacteria in natural freshwater wetland soils.

    Science.gov (United States)

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Cheng, Hai-xiang; Li, Ji; Liu, Xu; Ren, Qian-qi

    2016-04-01

    Anaerobic ammonium oxidation (anammox) process plays a significant role in the marine nitrogen cycle. However, the quantitative importance of this process in nitrogen removal in wetland systems, particularly in natural freshwater wetlands, is still not determined. In the present study, we provided the evidence of the distribution and activity of anammox bacteria in a natural freshwater wetland, located in southeastern China, by using (15)N stable isotope measurements, quantitative PCR assays and 16S rRNA gene clone library analysis. The potential anammox rates measured in this wetland system ranged between 2.5 and 25.5 nmol N2 g(-1) soil day(-1), and up to 20% soil dinitrogen gas production could be attributed to the anammox process. Phylogenetic analysis of 16S rRNA genes showed that anammox bacteria related to Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and two novel anammox clusters coexisted in the collected soil cores, with Candidatus Brocadia and Candidatus Kuenenia being the dominant anammox genera. Quantitative PCR of hydrazine synthase genes showed that the abundance of anammox bacteria varied from 2.3 × 10(5) to 2.2 × 10(6) copies g(-1) soil in the examined soil cores. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity of anammox bacteria. On the basis of (15)N tracing technology, it is estimated that a total loss of 31.1 g N m(-2) per year could be linked the anammox process in the examined wetland.

  13. Environmental Factors Affecting Ammonium Oxidation Under Iron Reducing Conditions

    Science.gov (United States)

    Jaffe, P. R.; Huang, S.; Ruiz-Urigüen, M.

    2014-12-01

    Ammonium (NH4+) oxidation coupled to iron (Fe) reduction in the absence of oxygen and nitrate/nitrite (NO3-/NO2-) has been reported by several investigators and referred to as Feammox. Feammox is a biological reaction, where Fe(III) is the electron acceptor, which is reduced to Fe(II), and NH4+ is the electron donor, which is oxidized to NO2-. Through a 180-day anaerobic incubation experiment, and using PCR-DGGE, 454-pyosequecing and qPCR analysis, we have shown that an Acidimicrobiaceae bacterium A6, a previously unreported species in the Acidimicrobiaceae family, might be either responsible or plays a key role in the Feammox process, We have enriched these Feammox bacteria (65.8% in terms of cell numbers) in a membrane reactor, and isolated the pure Acidimicrobiaceae bacterium A6 strain in an autotrophic medium. In samples collected and then incubated from a series of local wetland-, upland-, as well as storm-water detention pond-sediments, Feammox activity was only detected in acidic soil environments that contain Fe oxides. Using primers we developed for this purpose, Acidimicrobiaceae bacterium A6 was detected in all incubations where Feammox was observed. Anaerobic incubations of Feammox enrichment cultures adjusted to different pH, revealed that the optimal pH for Feammox is 4 ~ 5, and the reaction does not proceed when pH > 7. Feammox was still proceeding at pH as low as 2. In Feammox culture amended with different Fe(III) sources, Feammox reaction proceeded only when Fe oxides (ferrihydrite or goethite ) were supplied, whereas samples incubated with ferric chloride or ferric citrate showed no measurable NH4+ oxidation. Furthermore, we have also determined from incubation experiments conducted with a temperature gradient (10 ~ 35℃), that the Feammox process was active when the temperature is above 15℃, and the optimal temperature is 20℃. Incubations of enrichment culture with 79% Feammox bacteria appeared to remove circa 8% more NH4+ at 20ºC than at

  14. The kinetics for ammonium and nitrite oxidation under the effect of hydroxylamine.

    Science.gov (United States)

    Wan, Xinyu; Xiao, Pengying; Zhang, Daijun; Lu, Peili; Yao, Zongbao; He, Qiang

    2016-01-01

    The kinetics for ammonium (NH4(+)) oxidation and nitrite (NO2(-)) oxidation under the effect of hydroxylamine (NH2OH) were studied by respirometry using the nitrifying sludge from a laboratory-scale sequencing batch reactor. Modified models were used to estimate kinetics parameters of ammonia and nitrite oxidation under the effect of hydroxylamine. An inhibition effect of hydroxylamine on the ammonia oxidation was observed under different hydroxylamine concentration levels. The self-inhibition coefficient of hydroxylamine oxidation and noncompetitive inhibition coefficient of hydroxylamine for nitrite oxidation was estimated by simulating exogenous oxygen-uptake rate profiles, respectively. The inhibitive effect of NH2OH on nitrite-oxidizing bacteria was stronger than on ammonia-oxidizing bacteria. This work could provide fundamental data for the kinetic investigation of the nitrification process.

  15. Occurrence and importance of anaerobic ammonium-oxidising bacteria in vegetable soils.

    Science.gov (United States)

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Xu, Xiang-hua; Chen, Tie-xi; Liu, Shuai; Cheng, Hai-xiang

    2015-07-01

    The quantitative importance of anaerobic ammonium oxidation (anammox) has been described in paddy fields, while the presence and importance of anammox in subsurface soil from vegetable fields have not been determined yet. Here, we investigated the occurrence and activity of anammox bacteria in five different types of vegetable fields located in Jiangsu Province, China. Stable isotope experiments confirmed the anammox activity in the examined soils, with the potential rates of 2.1 and 23.2 nmol N2 g(-1) dry soil day(-1), and the anammox accounted for 5.9-20.5% of total soil dinitrogen gas production. It is estimated that a total loss of 7.1-78.2 g N m(-2) year(-1) could be linked to the anammox process in the examined vegetable fields. Phylogenetic analyses showed that multiple co-occurring anammox genera were present in the examined soils, including Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and Candidatus Jettenia, and Candidatus Brocadia appeared to be the most common anammox genus. Quantitative PCR further confirmed the presence of anammox bacteria in the examined soils, with the abundance varying from 2.8 × 10(5) to 3.0 × 10(6) copies g(-1) dry soil. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity and abundance of anammox bacteria in the examined soils. The results of our study showed the presence of diverse anammox bacteria and indicated that the anammox process could serve as an important nitrogen loss pathway in vegetable fields.

  16. Weakened activity of starved ammonia-oxidizing bacteria by the presence of pre-activated Nitrobacter winogradskyi

    NARCIS (Netherlands)

    Laanbroek, H.J.; Bär-Gilissen, M.J.

    2002-01-01

    Ammonia-oxidizing bacteria are able to maintain a high oxidizing potential during starvation. nitrite has a short-lasting stimulatory effect on the oxidation of ammonia after starvation when supplied simultaneously with fresh ammonium. To examine whether nitrite-oxidizing bacteria as partners in

  17. Weakened activity of starved ammonia-oxidizing bacteria by the presence of pre-activated Nitrobacter winogradskyi

    NARCIS (Netherlands)

    Laanbroek, H.J.; Bär-Gilissen, M.J.

    2002-01-01

    Ammonia-oxidizing bacteria are able to maintain a high oxidizing potential during starvation. Nitrite has a short-lasting stimulatory effect on the oxidation of ammonia after starvation when supplied simultaneously with fresh ammonium9). To examine whether nitrite-oxidizing bacteria as partners in

  18. Electrochemical oxidation of quaternary ammonium electrolytes : Unexpected side reactions in organic electrochemistry

    NARCIS (Netherlands)

    Nouri Nigjeh, Eslam; de Vries, Marcel; Bruins, Andries P.; Bischoff, Rainer; Permentier, Hjalmar P.

    Quaternary ammonium salts are among the most widely used electrolytes in organic electrochemistry, but there is little known about their unwanted side oxidation reactions. We have, therefore, studied the constant potential oxidation products of quaternary ammonium electrolytes using mass

  19. Modeling of simultaneous anaerobic methane and ammonium oxidation in a membrane biofilm reactor.

    Science.gov (United States)

    Chen, Xueming; Guo, Jianhua; Shi, Ying; Hu, Shihu; Yuan, Zhiguo; Ni, Bing-Jie

    2014-08-19

    Nitrogen removal by using the synergy of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) microorganisms in a membrane biofilm reactor (MBfR) has previously been demonstrated experimentally. In this work, a mathematical model is developed to describe the simultaneous anaerobic methane and ammonium oxidation by DAMO and Anammox microorganisms in an MBfR for the first time. In this model, DAMO archaea convert nitrate, both externally fed and/or produced by Anammox, to nitrite, with methane as the electron donor. Anammox and DAMO bacteria jointly remove the nitrite fed/produced, with ammonium and methane as the electron donor, respectively. The model is successfully calibrated and validated using the long-term (over 400 days) dynamic experimental data from the MBfR, as well as two independent batch tests at different operational stages of the MBfR. The model satisfactorily describes the methane oxidation and nitrogen conversion data from the system. Modeling results show the concentration gradients of methane and nitrogen would cause stratification of the biofilm, where Anammox bacteria mainly grow in the biofilm layer close to the bulk liquid and DAMO organisms attach close to the membrane surface. The low surface methane loadings result in a low fraction of DAMO microorganisms, but the high surface methane loadings would lead to overgrowth of DAMO bacteria, which would compete with Anammox for nitrite and decrease the fraction of Anammox bacteria. The results suggest an optimal methane supply under the given condition should be applied not only to benefit the nitrogen removal but also to avoid potential methane emissions.

  20. Treatment performance, nitrous oxide production and microbial community under low-ammonium wastewater in a CANON process.

    Science.gov (United States)

    Mi, Weixing; Zhao, Jianqiang; Ding, Xiaoqian; Ge, Guanghuan; Zhao, Rixiang

    2017-12-01

    To investigate the characteristics of anaerobic ammonia oxidation for treating low-ammonium wastewater, a continuous-flow completely autotrophic nitrogen removal over nitrite (CANON) biofilm reactor was studied. At a temperature of 32 ± 1 °C and a pH between 7.5 and 8.2, two operational experiments were performed: the first one fixed the hydraulic retention time (HRT) at 10 h and gradually reduced the influent ammonium concentrations from 210 to 50 mg L -1 ; the second one fixed the influent ammonium concentration at 30 mg L -1 and gradually decreased the HRT from 10 to 3 h. The results revealed that the total nitrogen removal efficiency exceeded 80%, with a corresponding total nitrogen removal rate of 0.26 ± 0.01 kg N m -3 d -1 at the final low ammonium concentration of 30 mg L -1 . Small amounts of nitrous oxide (N 2 O) up to 0.015 ± 0.004 kg m -3 d -1 at the ammonium concentration of 210 mg L -1 were produced in the CANON process and decreased with the decrease in the influent ammonium loads. High-throughput pyrosequencing analysis indicated that the dominant functional bacteria 'Candidatus Kuenenia' under high influent ammonium levels were gradually succeeded by Armatimonadetes_gp5 under low influent ammonium levels.

  1. Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile.

    Science.gov (United States)

    Höfferle, Špela; Nicol, Graeme W; Pal, Levin; Hacin, Janez; Prosser, James I; Mandić-Mulec, Ines

    2010-11-01

    Oxidation of ammonia, the first step in nitrification, is carried out in soil by bacterial and archaeal ammonia oxidizers and recent studies suggest possible selection for the latter in low-ammonium environments. In this study, we investigated the selection of ammonia-oxidizing archaea and bacteria in wetland soil vertical profiles at two sites differing in terms of the ammonium supply rate, but not significantly in terms of the groundwater level. One site received ammonium through decomposition of organic matter, while the second, polluted site received a greater supply, through constant leakage of an underground septic tank. Soil nitrification potential was significantly greater at the polluted site. Quantification of amoA genes demonstrated greater abundance of bacterial than archaeal amoA genes throughout the soil profile at the polluted site, whereas bacterial amoA genes at the unpolluted site were below the detection limit. At both sites, archaeal, but not the bacterial community structure was clearly stratified with depth, with regard to the soil redox potential imposed by groundwater level. However, depth-related changes in the archaeal community structure may also be associated with physiological functions other than ammonia oxidation. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  2. Activity, Microenvironments, and Community Structure of Aerobic and Anaerobic Ammonium Oxidizing Prokaryotes in Estuarine Sediment (Randers Fjord, DK)

    DEFF Research Database (Denmark)

    Schramm, Andreas; Revsbech, Niels Peter; Dalsgaard, Tage

    2006-01-01

    ACTIVITY, MICROENVIRONMENTS, AND COMMUNITY STRUCTURE OF AEROBIC AND ANAEROBIC AMMONIUM OXIDIZING PROKARYOTES IN ESTUARINE SEDIMENT (RANDERS FJORD, DK) A. Schramm 1, N.P. Revsbech 1, T. Dalsgaard 2, E. Piña-Ochoa 3, J. de la Torré 4, D.A. Stahl 4, N. Risgaard-Petersen 2 1 Department of Biological...... conversion of ammonium with nitrite to N2, is increasingly recognized as link in the aquatic nitrogen cycle. However, factors regulating the occurrence and activity of anammox bacteria are still poorly understood. Besides the influence of abiotic factors, anammox might be controlled by either aerobic ammonia...... oxidizing bacteria and archaea (AOB and AOA) or nitrate-reducing/denitrifying bacteria via their supply of nitrite. Along the Randers Fjord estuary (Denmark), gradients of salinity, nutrients, and organic loading can be observed, and anammox has been detected previously at some sites. The aim of this study...

  3. Effect of the kinetics of ammonium and nitrite oxidation on nitritation success or failure for different biofilm reactor geometries

    DEFF Research Database (Denmark)

    Lackner, Susanne; Smets, Barth F.

    2012-01-01

    was on the influence of key biokinetic parameters (maximum specific growth rates, oxygen and nitrogen affinity constants of AOB (ammonium oxidizing bacteria) and NOB (nitrite oxidizing bacteria)) and their ratios on nitritation efficiency in these geometries. This exhaustive simulation study revealed that nitritation...... strongly depends on the chosen kinetic parameters of AOB and NOB. The maximum specific growth rates (μmax,AOB and μmax,NOB) had the strongest impact on nitritation efficiency (NE). In comparison, the counter-diffusion geometry yielded more parameter combinations (27.5%) that resulted in high NE than the co...

  4. Nitrogen loss from anaerobic ammonium oxidation coupled to Iron(III) reduction in a riparian zone.

    Science.gov (United States)

    Ding, Bangjing; Li, Zhengkui; Qin, Yunbin

    2017-12-01

    Anaerobic ammonium oxidation coupled to iron(III) reduction (termed Feammox) is a recently discovered pathway of nitrogen cycling. However, little is known about the pathways of N transformation via Feammox process in riparian zones. In this study, evidence for Feammox in riparian zones with or without vegetation cover was demonstrated using isotope tracing technique and high-throughput sequencing technology. The results showed that Feammox could occur in riparian zones, and demonstrated that N 2 directly from Feammox was dominant Feammox pathway. The Feammox rates in vegetated soil samples was 0.32-0.37 mg N kg -1 d -1 , which is higher than that in un-vegetated soil samples (0.20 mg N kg -1 d -1 ). Moreover, the growth of vegetation led to a 4.99-6.41% increase in the abundance of iron reducing bacteria (Anaeromyxobacter, Pseudomonas and Geobacter) and iron reducing bacteria play an essential role in Feammox process. An estimated loss of 23.7-43.9 kg N ha -1 year -1 was associated with Feammox in the examined riparian zone. Overall, the co-occurrence of ammonium oxidation and iron reduction suggest that Feammox can play an essential role in the pathway of nitrogen removal in riparian zones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems.

    Science.gov (United States)

    Zhu, Guibing; Jetten, Mike S M; Kuschk, Peter; Ettwig, Katharina F; Yin, Chengqing

    2010-04-01

    Anaerobic ammonium oxidation (anammox) and anaerobic methane oxidation (ANME coupled to denitrification) with nitrite as electron acceptor are two of the most recent discoveries in the microbial nitrogen cycle. Currently the anammox process has been relatively well investigated in a number of natural and man-made ecosystems, while ANME coupled to denitrification has only been observed in a limited number of freshwater ecosystems. The ubiquitous presence of anammox bacteria in marine ecosystems has changed our knowledge of the global nitrogen cycle. Up to 50% of N(2) production in marine sediments and oxygen-depleted zones may be attributed to anammox bacteria. However, there are only few indications of anammox in natural and constructed freshwater wetlands. In this paper, the potential role of anammox and denitrifying methanotrophic bacteria in natural and artificial wetlands is discussed in relation to global warming. The focus of the review is to explore and analyze if suitable environmental conditions exist for anammox and denitrifying methanotrophic bacteria in nitrogen-rich freshwater wetlands.

  6. Engineering application of anaerobic ammonium oxidation process in wastewater treatment.

    Science.gov (United States)

    Mao, Nianjia; Ren, Hongqiang; Geng, Jinju; Ding, Lili; Xu, Ke

    2017-08-01

    Anaerobic ammonium oxidation (Anammox), a promising biological nitrogen removal process, has been verified as an efficient, sustainable and cost-effective alternative to conventional nitrification and denitrification processes. To date, more than 110 full-scale anammox plants have been installed and are in operation, treating industrial NH 4 + -rich wastewater worldwide, and anammox-based technologies are flourishing. This review the current state of the art for engineering applications of the anammox process, including various anammox-based technologies, reactor selection and attempts to apply it at different wastewater plants. Process control and implementation for stable performance are discussed as well as some remaining issues concerning engineering application are exposed, including the start-up period, process disturbances, greenhouse gas emissions and especially mainstream anammox applications. Finally, further development of the anammox engineering application is proposed in this review.

  7. Anaerobic ammonium oxidation and its contribution to nitrogen removal in China’s coastal wetlands

    Science.gov (United States)

    Hou, Lijun; Zheng, Yanling; Liu, Min; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Deng, Fengyu; Chen, Fei; Jiang, Xiaofen

    2015-01-01

    Over the past several decades, human activities have caused substantial enrichment of reactive nitrogen in China’s coastal wetlands. Although anaerobic ammonium oxidation (anammox), the process of oxidizing ammonium into dinitrogen gas through the reduction of nitrite, is identified as an important process for removing reactive nitrogen, little is known about the dynamics of anammox and its contribution to nitrogen removal in nitrogen-enriched environments. Here, we examine potential rates of anammox and associate them with bacterial diversity and abundance across the coastal wetlands of China using molecular and isotope tracing techniques. High anammox bacterial diversity was detected in China’s coastal wetlands and included Candidatus Scalindua, Kuenenia, Brocadia, and Jettenia. Potential anammox rates were more closely associated with the abundance of anammox bacteria than to their diversity. Among all measured environmental variables, temperature was a key environmental factor, causing a latitudinal distribution of the anammox bacterial community composition, biodiversity and activity along the coastal wetlands of China. Based on nitrogen isotope tracing experiments, anammox was estimated to account for approximately 3.8–10.7% of the total reactive nitrogen removal in the study area. Combined with denitrification, anammox can remove 20.7% of the total external terrigenous inorganic nitrogen annually transported into China’s coastal wetland ecosystems. PMID:26494435

  8. Study of antimicrobial effect of novel Quaternary Ammonium Compounds on bacteria and fungi

    Directory of Open Access Journals (Sweden)

    Maryam Sadrnia

    2014-10-01

    Full Text Available Background: Quarterly Ammonium Compounds (QuAC are the more effective antimicrobial agents in medicine and industry. It needs to produce the new compounds with the wider spectrum and less toxicity, because of microbial resistance. Aim of this study was microbiological Evaluation of the new Quarterly Ammonium Compounds produced by Structural modifications on some bacteria, yeast and fungi. Material and Methods: 16 Quat salts were designed and made in Ethanol or Aceto Nitril. Minimum Inhibitory Concentration (MIC was determined by standard method on Nutrient Broth and Minimal agar culture media for bacteria , Potato Dextrose Agar (PDA for fungi and Nutrient Agar and Saboro Dextrose Agar (SDA for yeasts . Results: Compounds 2,7,8,9,12,13 has the more antimicrobial effect ( minimum of MIC. Furthermore, it was shown that MIC was unrelated to culture compounds. In yeast culture it must to increases the concentration in enriched media. Compounds 9,12 and 13 has the more antibacterial effect as well as antifungal effect. Conclusion: In comparison of structure of produced compounds and results of the study, it was revealed that radical R3 has the most important role in antimicrobial properties of Quats and it could to be substitute any suitable group related to increasing anti microbial effects.

  9. Copolymerization of poly (ethylene oxide) and poly (methyl methacrylate) initiated by ceric ammonium nitrate

    International Nuclear Information System (INIS)

    Gomes, A.S.; Ferreira, A.A.; Coutinho, F.M.B.; Marinho, J.R.D.

    1984-01-01

    Cerium (IV) salts such as the ceric ammonium nitrate and ceric ammonium sulfate in aqueous acid solution with reducing agents such as alcohols, thiols, glycols, aldehydes and amines are well known initiators of vinyl polymerization. In this work, the polymerization of methyl methacrylate initiated by ceric ammonium nitrate/HNO 3 -poly(ethylene oxide) with hydroxyl end group system was studied in aqueous solution at 25 0 C to obtain block copolymers. (Author) [pt

  10. Halophilic and haloalkaliphilic sulfur-oxidizing bacteria

    NARCIS (Netherlands)

    Sorokin, D.Y.; Banciu, H.; Robertson, L.A.; Kuenen, J.G.; Muntyan, M.S.; Muyzer, G.; Rosenberg, E.; DeLong, F.; Delong, E.; Lory, S.; Stackebrandt, E.; Thompson, F.

    2013-01-01

    Chemotrophic sulfur-oxidizing bacteria (SOB) represent an important functional group of microorganisms responsible for the dark oxidation of reduced sulfur compounds generated by sulfidogens. Until recently, only a single genus of halophilic SOB (Halothiobacillus) has been described, and nothing was

  11. Hydroxylamine-dependent Anaerobic Ammonium Oxidation (Anammox) by “ Candidatus Brocadia sinica”

    KAUST Repository

    Oshiki, Mamoru; Ali, Muhammad; Shinyako-Hata, Kaori; Satoh, Hisashi; Okabe, Satoshi

    2016-01-01

    Although metabolic pathways and associated enzymes of anaerobic ammonium oxidation (anammox) of “Ca. Kuenenia stuttgartiensis” have been studied, those of other anammox bacteria are still poorly understood. NO2- reduction to NO is considered to be the first step in the anammox metabolism of “Ca. K. stuttgartiensis”, however, “Ca. Brocadia” lacks the genes that encode canonical NO-forming nitrite reductases (NirS or NirK) in its genome, which is different from “Ca. K. stuttgartiensis”. Here, we studied the anammox metabolism of “Ca. Brocadia sinica”. 15N-tracer experiments demonstrated that “Ca. B. sinica” cells could reduce NO2- to NH2OH, instead of NO, with as yet unidentified nitrite reductase(s). Furthermore, N2H4 synthesis, downstream reaction of NO2- reduction, was investigated using a purified “Ca. B. sinica” hydrazine synthase (Hzs) and intact cells. Both the “Ca. B. sinica” Hzs and cells utilized NH2OH and NH4+, but not NO and NH4+, for N2H4 synthesis and further oxidized N2H4 to N2 gas. Taken together, the metabolic pathway of “Ca. B. sinica” is NH2OH-dependent and different from the one of “Ca. K. stuttgartiensis”, indicating metabolic diversity of anammox bacteria. This article is protected by copyright. All rights reserved.

  12. Hydroxylamine-dependent anaerobic ammonium oxidation (anammox) by "Candidatus Brocadia sinica".

    Science.gov (United States)

    Oshiki, Mamoru; Ali, Muhammad; Shinyako-Hata, Kaori; Satoh, Hisashi; Okabe, Satoshi

    2016-09-01

    Although metabolic pathways and associated enzymes of anaerobic ammonium oxidation (anammox) of 'Ca. Kuenenia stuttgartiensis' have been studied, those of other anammox bacteria are still poorly understood. NO2- reduction to NO is considered to be the first step in the anammox metabolism of 'Ca. K. stuttgartiensis', however, 'Ca. Brocadia' lacks the genes that encode canonical NO-forming nitrite reductases (NirS or NirK) in its genome, which is different from 'Ca. K. stuttgartiensis'. Here, we studied the anammox metabolism of 'Ca. Brocadia sinica'. (15) N-tracer experiments demonstrated that 'Ca. B. sinica' cells could reduce NO2- to NH2 OH, instead of NO, with as yet unidentified nitrite reductase(s). Furthermore, N2 H4 synthesis, downstream reaction of NO2- reduction, was investigated using a purified 'Ca. B. sinica' hydrazine synthase (Hzs) and intact cells. Both the 'Ca. B. sinica' Hzs and cells utilized NH2 OH and NH4+, but not NO and NH4+, for N2 H4 synthesis and further oxidized N2 H4 to N2 gas. Taken together, the metabolic pathway of 'Ca. B. sinica' is NH2 OH-dependent and different from the one of 'Ca. K. stuttgartiensis', indicating metabolic diversity of anammox bacteria. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Hydroxylamine-dependent Anaerobic Ammonium Oxidation (Anammox) by “ Candidatus Brocadia sinica”

    KAUST Repository

    Oshiki, Mamoru

    2016-04-26

    Although metabolic pathways and associated enzymes of anaerobic ammonium oxidation (anammox) of “Ca. Kuenenia stuttgartiensis” have been studied, those of other anammox bacteria are still poorly understood. NO2- reduction to NO is considered to be the first step in the anammox metabolism of “Ca. K. stuttgartiensis”, however, “Ca. Brocadia” lacks the genes that encode canonical NO-forming nitrite reductases (NirS or NirK) in its genome, which is different from “Ca. K. stuttgartiensis”. Here, we studied the anammox metabolism of “Ca. Brocadia sinica”. 15N-tracer experiments demonstrated that “Ca. B. sinica” cells could reduce NO2- to NH2OH, instead of NO, with as yet unidentified nitrite reductase(s). Furthermore, N2H4 synthesis, downstream reaction of NO2- reduction, was investigated using a purified “Ca. B. sinica” hydrazine synthase (Hzs) and intact cells. Both the “Ca. B. sinica” Hzs and cells utilized NH2OH and NH4+, but not NO and NH4+, for N2H4 synthesis and further oxidized N2H4 to N2 gas. Taken together, the metabolic pathway of “Ca. B. sinica” is NH2OH-dependent and different from the one of “Ca. K. stuttgartiensis”, indicating metabolic diversity of anammox bacteria. This article is protected by copyright. All rights reserved.

  14. Population diversity of ammonium oxidizers investigated by specific PCR amplification

    Science.gov (United States)

    Ward, B.B.; Voytek, M.A.; Witzel, K.-P.

    1997-01-01

    The species composition of ammonia-oxidizing bacteria in aquatic environments was investigated using PCR primers for 16S rRNA genes to amplify specific subsets of the total ammonia-oxidizer population. The specificity of the amplification reactions was determined using total genomic DNA from known nitrifying strains and non-nitrifying strains identified as having similar rDNA sequences. Specificity of amplification was determined both for direct amplification, using the nitrifier specific primers, and with nested amplification, in which the nitrifier primers were used to reamplify a fragment obtained from direct amplification with Eubacterial universal primers. The present level of specificity allows the distinction between Nitrosomonas europaea, Nitrosomonas sp. (marine) and the other known ammonia-oxidizers in the beta subclass of the Proteobacteria. Using total DNA extracted from natural samples, we used direct amplification to determine presence/absence of different species groups. Species composition was found to differ among depths in vertical profiles of lake samples and among samples and enrichments from various other aquatic environments. Nested PCR yielded several more positive reactions, which implies that nitrifier DNA was present in most samples, but often at very low levels.

  15. Efflux pump induction by quaternary ammonium compounds and fluoroquinolone resistance in bacteria.

    Science.gov (United States)

    Buffet-Bataillon, Sylvie; Tattevin, Pierre; Maillard, Jean-Yves; Bonnaure-Mallet, Martine; Jolivet-Gougeon, Anne

    2016-01-01

    Biocides, primarily those containing quaternary ammonium compounds (QAC), are heavily used in hospital environments and various industries (e.g., food, water, cosmetic). To date, little attention has been paid to potential implications of QAC use in the emergence of antibiotic resistance, especially fluoroquinolone-resistant bacteria in patients and in the environment. QAC-induced overexpression of efflux pumps can lead to: cross resistance with fluoroquinolones mediated by multidrug efflux pumps; stress response facilitating mutation in the Quinolone Resistance Determining Region; and biofilm formation increasing the risk of transfer of mobile genetic elements carrying fluoroquinolone or QAC resistance determinants. By following the European Biocidal Product Regulation, manufacturers of QAC are required to ensure that their QAC-based biocidal products are safe and will not contribute to emerging bacterial resistance.

  16. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation RID B-8834-2011

    DEFF Research Database (Denmark)

    Kuypers, MMM; Lavik, G.; Woebken, D.

    2005-01-01

    ) and is commonly attributed to denitrification (reduction of nitrate to N-2 by heterotrophic bacteria). Here, we show that instead, the anammox process (the anaerobic oxidation of ammonium by nitrite to yield N-2) is mainly responsible for nitrogen loss in the OMZ waters of one of the most productive regions......In many oceanic regions, growth of phytoplankton is nitrogen-limited because fixation of N-2 cannot make up for the removal of fixed inorganic nitrogen (NH4+, NO2-, and NO3-) by anaerobic microbial processes. Globally, 30-50% of the total nitrogen loss occurs in oxygen-minimum zones (OMZs...... that anammox bacteria are responsible for massive losses of fixed nitrogen. We have identified and directly linked anammox bacteria to the removal of fixed inorganic nitrogen in the OMZ waters of an open-ocean setting. We hypothesize that anammox could also be responsible for substantial nitrogen loss from...

  17. Effect of ion exchange on the rate of aerobic microbial oxidation of ammonium in hyporheic zone sediments.

    Science.gov (United States)

    Yan, Ailan; Liu, Chongxuan; Liu, Yuanyuan; Xu, Fen

    2018-03-01

    Microbially mediated ammonium oxidation is a major process affecting nitrogen transformation and cycling in natural environments. This study investigated whether ion exchange process can affect microbially mediated aerobic oxidation of ammonium in a hyporheic zone (HZ) sediments from the Columbia River at US Department of Energy's Hanford site, Washington State. Experiments were conducted using synthetic groundwater and river water to investigate their effect on ammonium oxidation. Results indicated that ammonium sorption through ion exchange reactions decreased the rate of ammonium oxidation, apparently resulting from the influence of the ion exchange on dissolved ammonium concentration, thus decreasing the bioavailability of ammonium for microbial oxidation. However, with the decrease in dissolved ammonium concentration, the sorbed ammonium released back to aqueous phase, and became bioavailable so that all the ammonium in the suspensions were oxidized. Our results implied a dynamic change in ammonium oxidation rates in an environment such as at HZ where river water and groundwater with different chemical compositions exchange frequently that can affect ammonium sorption and desorption through ion exchange reactions.

  18. Thermal and chemical analysis of ammonium uranates and intermediate oxides

    International Nuclear Information System (INIS)

    Farah, M.Y.; El-Fekey, S.A.

    1977-01-01

    NH + 4 /U ratio, in ammonium uranate, decreases markedly with lower pH of precipitation, dilution of ammonia used for washing as also rinsing by acetone, methanol, or boiling water and it varies between 0.23 and 0.54. Thermogravimetric plots indicated that variation in percentage loss of weight between 220 deg and 660 deg C was seriously influenced by washing mode. Storing UO 3 under ammonium nitrate solution revealed, that a fraction could have been introduced from aqueous media by cation exchange mechanism. The percentage decreases in weight between 220 deg and 660 deg C. increased from 1.9% for nuclear pure UO 3 , to 3,2% for the trioixde immersed in ammonium nitrate, indicating some uptake of ammonia, amounting to a value of 0.053 to NH + 4 /U. To elucidate the type of binding, the behavior during uranate calcination at various temperatures, durations and depth of calcined layers in tray, was investigated in function of NH + 4 /U ratio. Finally, the study suggested an analytical method for determination of uranium in pure ammonium uranate powders, applicable for both routine and academic works

  19. Removal of organic substances and oxidation of ammonium nitrogen by a down-flow hanging sponge (DHS) reactor under high salinity conditions.

    Science.gov (United States)

    Uemura, Shigeki; Suzuki, Saori; Abe, Kenichi; Kubota, Keiichi; Yamaguchi, Takashi; Ohashi, Akiyoshi; Takemura, Yasuyuki; Harada, Hideki

    2010-07-01

    A down-flow hanging sponge (DHS) reactor, constructed by connecting three identical treatment units in series, was fed with highly saline artificial coke-plant wastewater containing 1400 mg L(-1) of phenol in terms of chemical oxygen demand (COD) and 500 mg-NL(-1) of ammonium nitrogen. The COD was removed by the 1st unit, achieving 92% removal at an average COD loading rate of 3.0 kg-COD m(-3)d(-1) for all units, with oxidation of ammonium nitrogen occurring primarily in the two downstream units. Microbial assays of the different units of the reactor revealed greater numbers of nitrifying bacteria in the 2nd and 3rd units than in the 1st unit, corresponding with the observed ammonium oxidation pattern of the reactor. These findings suggest that a succession of microflora was successfully established along the DHS. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Ecophysiology of the Anammox Bacteria

    NARCIS (Netherlands)

    Kartal, M.B.

    2008-01-01

    Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium to dinitrogen gas with nitrite as the electron acceptor. These bacteria are the key players in the global nitrogen cycle, responsible for the most of nitrogen production in natural ecosystems. The anammox process is also a

  1. Infrared absorption study of ammonium uranates and uranium oxide powders formed during their thermal decomposition

    International Nuclear Information System (INIS)

    Rofail, N.H.; ELfekey, S.A.

    1992-01-01

    Ammonium uranates (AU) were precipitated from a nuclear-pure uranyl nitrate solution using different precipitating agents. IR spectra of the obtained uranates and oxides formed during their thermal decomposition have been studied. The results indicated that the precipitating agent, mode of stirring, washing and calcining temperature are important factors for a specific oxide formation.4 FIG., 3 TAB

  2. Using Iron-Manganese Co-Oxide Filter Film to Remove Ammonium from Surface Water.

    Science.gov (United States)

    Zhang, Ruifeng; Huang, Tinglin; Wen, Gang; Chen, Yongpan; Cao, Xin; Zhang, Beibei

    2017-07-19

    An iron-manganese co-oxide filter film (MeO x ) has been proven to be a good catalyst for the chemical catalytic oxidation of ammonium in groundwater. Compared with groundwater, surface water is generally used more widely and has characteristics that make ammonium removal more difficult. In this study, MeO x was used to remove ammonium from surface water. It indicated that the average ammonium removal efficiency of MeO x was greater than 90%, even though the water quality changed dramatically and the water temperature was reduced to about 6-8 °C. Then, through inactivating microorganisms, it showed that the removal capability of MeO x included both biological (accounted for about 41.05%) and chemical catalytic oxidation and chemical catalytic oxidation (accounted for about 58.95%). The investigation of the characterizations suggested that MeO x was formed by abiotic ways and the main elements on the surface of MeO x were distributed homogenously. The analysis of the catalytic oxidation process indicated that ammonia nitrogen may interact with MeO x as both ammonia molecules and ammonium ions and the active species of O₂ were possibly • O and O₂ - .

  3. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, Abbas, E-mail: eslami@umz.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Juibari, Nafise Modanlou [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Hosseini, Seyed Ghorban [Department of Chemistry, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of)

    2016-09-15

    The ammonium perchlorate/Cu(II)-Cr(III)-oxides(AP/Cu-Cr-O) core-shell nanocomposites were in-situ prepared by deposition of copper and chromium oxides on suspended ammonium perchlorate particles in ethyl acetate as solvent. The results of differential scanning calorimetery (DSC) and thermal gravimetric analysis (TGA) experiments showed that the nanocomposites have excellent catalytic effect on the thermal decomposition of AP, so that the released heat increases up to about 3-fold over initial values, changing from 450 J/g for pure AP to 1510 J/g for most appropriate mixture. For better comparison, single metal oxide/AP core-shell nanocomposite have also been prepared and the results showed that they have less catalytic effect respect to mixed metal oxides system. Scanning electron microscopy (SEM) results revealed homogenous deposition of nanoparticles on the surface of AP and fabrication of core-shell structures. The kinetic parameters of thermal decomposition of both pure AP and AP/Cu-Cr-O samples have been calculated by Kissinger method and the results showed that the values of pre-exponential factor and activation energy are higher for AP/Cu-Cr-O nanocomposite. The better catalytic effect of Cu-Cr-O nanocomposites is probably attributed to the synergistic effect between Cu{sup 2+} and Cr{sup 3+} in the nanocomposites, smaller particle size and more crystal defect. - Highlights: • The Cu-Cr-O nanoparticles were synthesized by chemical liquid deposition method. • Then, the AP/Cu-Cr-O core-shell nanocomposites were prepared. • The core-shell samples showed high catalytic activity for AP decomposition. • Thermal decomposition of samples occurs at lower temperature range.

  4. Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens.

    Science.gov (United States)

    Samuelsson, M O

    1985-10-01

    The influence of redox potential on dissimilatory nitrate reduction to ammonium was investigated on a marine bacterium, Pseudomonas putrefaciens. Nitrate was consumed (3.1 mmol liter-1), and ammonium was produced in cultures with glucose and without sodium thioglycolate. When sodium thioglycolate was added, nitrate was consumed at a lower rate (1.1 mmol liter-1), and no significant amounts of nitrite or ammonium were produced. No growth was detected in glucose media either with or without sodium thioglycolate. When grown on tryptic soy broth, the production of nitrous oxide paralleled growth. In the same medium, but with sodium thioglycolate, nitrous oxide was first produced during growth and then consumed. Acetylene caused the nitrous oxide to accumulate. These results and the mass balance calculations for different nitrogen components indicate that P. putrefaciens has the capacity to dissimilate nitrate to ammonium as well as to dinitrogen gas and nitrous oxide (denitrification). The dissimilatory pathway to ammonium dominates except when sodium thioglycolate is added to the medium.

  5. Thermally Reduced Graphene Oxide Electrochemically Activated by Bis-Spiro Quaternary Alkyl Ammonium for Capacitors.

    Science.gov (United States)

    He, Tieshi; Meng, Xiangling; Nie, Junping; Tong, Yujin; Cai, Kedi

    2016-06-08

    Thermally reduced graphene oxide (RGO) electrochemically activated by a quaternary alkyl ammonium-based organic electrolytes/activated carbon (AC) electrode asymmetric capacitor is proposed. The electrochemical activation process includes adsorption of anions into the pores of AC in the positive electrode and the interlayer intercalation of cations into RGO in the negative electrode under high potential (4.0 V). The EA process of RGO by quaternary alkyl ammonium was investigated by X-ray diffraction and electrochemical measurements, and the effects of cation size and structure were extensively evaluated. Intercalation by quaternary alkyl ammonium demonstrates a small degree of expansion of the whole crystal lattice (d002) and a large degree of expansion of the partial crystal lattice (d002) of RGO. RGO electrochemically activated by bis-spiro quaternary alkyl ammonium in propylene carbonate/AC asymmetric capacitor exhibits good activated efficiency, high specific capacity, and stable cyclability.

  6. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium ‘ Candidatus Brocadia sapporoensis’

    KAUST Repository

    Narita, Yuko; Zhang, Lei; Kimura, Zen-ichiro; Ali, Muhammad; Fujii, Takao; Okabe, Satoshi

    2017-01-01

    Anaerobic ammonium-oxidation (anammox) is recognized as an important microbial process in the global nitrogen cycle and wastewater treatment. In this study, we successfully enriched a novel anammox bacterium affiliated with the genus ‘Candidatus Brocadia’ with high purity (>90%) in a membrane bioreactor (MBR). The enriched bacterium was distantly related to the hitherto characterized ‘Ca. Brocadia fulgida’ and ‘Ca. Brocadia sinica’ with 96% and 93% of 16S ribosomal RNA gene sequence identity, respectively. The bacterium exhibited the common structural features of anammox bacteria and the production of hydrazine in the presence of hydroxylamine under anoxic conditions. The temperature range of anammox activity was 20 − 45°C with a maximum activity at 37°C. The maximum specific growth rate (μmax) was determined to be 0.0082h−1 at 37°C, corresponding to a doubling time of 3.5 days. The half-saturation constant (KS) for nitrite was 5±2.5μM. The anammox activity was inhibited by nitrite with 11.6mM representing the 50% inhibitory concentration (IC50) but no significant inhibition was observed in the presence of formate and acetate. The major respiratory quinone was identified to be menaquinone-7 (MK-7). Comparative genome analysis revealed that the anammox bacterium enriched in present study shared nearly half of genes with ‘Ca. Brocadia sinica’ and ‘Ca. Brocadia fulgida’. The bacterium enriched in this study showed all known physiological characteristics of anammox bacteria and can be distinguished from the close relatives by its rRNA gene sequences. Therefore, we proposed the name ‘Ca. Brocadia sapporoensis’ sp. nov.

  7. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium ‘ Candidatus Brocadia sapporoensis’

    KAUST Repository

    Narita, Yuko

    2017-08-18

    Anaerobic ammonium-oxidation (anammox) is recognized as an important microbial process in the global nitrogen cycle and wastewater treatment. In this study, we successfully enriched a novel anammox bacterium affiliated with the genus ‘Candidatus Brocadia’ with high purity (>90%) in a membrane bioreactor (MBR). The enriched bacterium was distantly related to the hitherto characterized ‘Ca. Brocadia fulgida’ and ‘Ca. Brocadia sinica’ with 96% and 93% of 16S ribosomal RNA gene sequence identity, respectively. The bacterium exhibited the common structural features of anammox bacteria and the production of hydrazine in the presence of hydroxylamine under anoxic conditions. The temperature range of anammox activity was 20 − 45°C with a maximum activity at 37°C. The maximum specific growth rate (μmax) was determined to be 0.0082h−1 at 37°C, corresponding to a doubling time of 3.5 days. The half-saturation constant (KS) for nitrite was 5±2.5μM. The anammox activity was inhibited by nitrite with 11.6mM representing the 50% inhibitory concentration (IC50) but no significant inhibition was observed in the presence of formate and acetate. The major respiratory quinone was identified to be menaquinone-7 (MK-7). Comparative genome analysis revealed that the anammox bacterium enriched in present study shared nearly half of genes with ‘Ca. Brocadia sinica’ and ‘Ca. Brocadia fulgida’. The bacterium enriched in this study showed all known physiological characteristics of anammox bacteria and can be distinguished from the close relatives by its rRNA gene sequences. Therefore, we proposed the name ‘Ca. Brocadia sapporoensis’ sp. nov.

  8. Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic up-flow bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhiquan [College of Environmental Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006 (China); Zhou Shaoqi, E-mail: fesqzhou@scut.edu.cn [College of Environmental Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006 (China); State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, Guangdong 510640 (China); Sun Yanbo [College of Environmental Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006 (China)

    2009-09-30

    A laboratory testing of simultaneous removal of ammonium and sulfate (SRAS) was studied from an anammox process in an anaerobic bioreactor filled with granular activated carbon. Two different phases of experiment were investigated to start up the SRAS process, and final batch tests were performed to analyze the SRAS process. The experiment included an anammox process and an SRAS process. During the anammox process, the highest removal efficiency of ammonium and nitrite was up to 97 and 98%, respectively. After 160 days in the stationary phase of anammox process, the ratio of ammonium to nitrite consumption was approximately 1:1.15, which is much higher than 1:1.32 in the traditional anammox process. The extra electron acceptor, such as sulfate, was thought to react with ammonium by bacteria. Synthetic wastewater containing ammonium chlorine and sodium sulfate was used as the feed for the bioreactor in the second phase of experiment. During the SRAS process, the influent concentrations of ammonium and sulfate were controlled to be 50-60 and 210-240 mg L{sup -1} respectively. After start-up and acclimatization of this process for 60 days, the average effluent concentrations of ammonium and sulfate were 30 and 160 mg L{sup -1}, respectively. The simultaneous ammonium and sulfate removal was detected in the reactor. In order to further validate the biochemical interaction between ammonium and sulfate, batch tests was carried out. Abiotic tests were carried out to demonstrate that the pure chemical action between ammonium and sulfate without microorganism was not possible. Biotic assays with different ammonium and sulfate concentrations were further investigated that high concentrations of ammonium and sulfate could promote simultaneous removal of ammonium and sulfate. And elemental sulfur and nitrogen gas as the products measured in the SRAS process helped to demonstrate the occurrence of new interaction between nitrogen and sulfur. The new process of SRAS in the

  9. Start-up of simultaneous removal of ammonium and sulfate from an anaerobic ammonium oxidation (anammox) process in an anaerobic up-flow bioreactor

    International Nuclear Information System (INIS)

    Yang Zhiquan; Zhou Shaoqi; Sun Yanbo

    2009-01-01

    A laboratory testing of simultaneous removal of ammonium and sulfate (SRAS) was studied from an anammox process in an anaerobic bioreactor filled with granular activated carbon. Two different phases of experiment were investigated to start up the SRAS process, and final batch tests were performed to analyze the SRAS process. The experiment included an anammox process and an SRAS process. During the anammox process, the highest removal efficiency of ammonium and nitrite was up to 97 and 98%, respectively. After 160 days in the stationary phase of anammox process, the ratio of ammonium to nitrite consumption was approximately 1:1.15, which is much higher than 1:1.32 in the traditional anammox process. The extra electron acceptor, such as sulfate, was thought to react with ammonium by bacteria. Synthetic wastewater containing ammonium chlorine and sodium sulfate was used as the feed for the bioreactor in the second phase of experiment. During the SRAS process, the influent concentrations of ammonium and sulfate were controlled to be 50-60 and 210-240 mg L -1 respectively. After start-up and acclimatization of this process for 60 days, the average effluent concentrations of ammonium and sulfate were 30 and 160 mg L -1 , respectively. The simultaneous ammonium and sulfate removal was detected in the reactor. In order to further validate the biochemical interaction between ammonium and sulfate, batch tests was carried out. Abiotic tests were carried out to demonstrate that the pure chemical action between ammonium and sulfate without microorganism was not possible. Biotic assays with different ammonium and sulfate concentrations were further investigated that high concentrations of ammonium and sulfate could promote simultaneous removal of ammonium and sulfate. And elemental sulfur and nitrogen gas as the products measured in the SRAS process helped to demonstrate the occurrence of new interaction between nitrogen and sulfur. The new process of SRAS in the inorganic

  10. Anaerobic sulfide-oxidation in marine colorless sulfur-oxidizing bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    Colorless sulfur-oxidizing bacteria are ubiquitous in Indian waters and have the ability to oxidize sulfide under anaerobic conditions. These bacteria can not only mediate the sulfur cycle oxidatively but also the nitrogen cycle reductively without...

  11. Ammonium Oxidation Under Iron Reducing Conditions: Environmental Factors Characterization and Process Optimization

    Science.gov (United States)

    Huang, Shan; Ruiz, Melany; Jaffe, Peter

    2015-04-01

    Ammonium (NH4+) oxidation coupled to iron (Fe) reduction in the absence of oxygen and nitrate/nitrite (NO3-/NO2-) has been reported by several investigators and is referred to as Feammox. Feammox is a biological reaction, where Fe(III) is the electron acceptor, which is reduced to Fe(II), and NH4+ is the electron donor, which is oxidized to NO2-. An Acidimicrobiaceae bacterium named A6, a previously unreported species in the Acidimicrobiaceae family, has been identified as being responsible for the Feammox process(1, 2) Feammox process was noted in riparian wetland soils in New Jersey(1,3), in tropical rainforest soils in Puerto Rico (4) and in paddy soils in China (5). In addition to these published locations, Feammox process was also found in samples collected from a series of local wetland-, upland-, as well as storm-water detention pond-sediments in New Jersey, river sediments from South Carolina, and forested soils near an acid mine drainage (Dabaoshan, Guangdong province) in China. Using primers acm342f - 439r (2), Acidimicrobiaceae bacterium A6 was detected in samples where Feammox was observed, after strictly anaerobic incubations. According to a canonical correspondence analysis with environmental characteristics and soil microbial communities, the species-environment relationship indicated that pH and Fe oxides content were the primary factors controlling Feammox process. Anaerobic incubations of Feammox enrichment cultures adjusted to different pH, revealed that the optimal pH for Feammox is 4 ~ 5, and the reaction does not proceed when pH > 7. No correlation was found between the distributions of Feammox bacteria and other NH4+ oxidation bacteria. Pure Acidimicrobiaceae bacterium A6 strain was isolated in an autotrophic medium, from an active Feammox membrane reactor (A6 was enriched to 65.8% of the total bacteria). A 13C labeled CO2 amendment was conducted, and the 13C in cells of A6 increased from 1.80% to 10.3% after 14 days incubation. In a separate

  12. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters.

    Science.gov (United States)

    Bristow, Laura A; Dalsgaard, Tage; Tiano, Laura; Mills, Daniel B; Bertagnolli, Anthony D; Wright, Jody J; Hallam, Steven J; Ulloa, Osvaldo; Canfield, Donald E; Revsbech, Niels Peter; Thamdrup, Bo

    2016-09-20

    A major percentage of fixed nitrogen (N) loss in the oceans occurs within nitrite-rich oxygen minimum zones (OMZs) via denitrification and anammox. It remains unclear to what extent ammonium and nitrite oxidation co-occur, either supplying or competing for substrates involved in nitrogen loss in the OMZ core. Assessment of the oxygen (O2) sensitivity of these processes down to the O2 concentrations present in the OMZ core (Chile at manipulated O2 levels between 5 nmol⋅L(-1) and 20 μmol⋅L(-1) Rates of both processes were detectable in the low nanomolar range (5-33 nmol⋅L(-1) O2), but demonstrated a strong dependence on O2 concentrations with apparent half-saturation constants (Kms) of 333 ± 130 nmol⋅L(-1) O2 for ammonium oxidation and 778 ± 168 nmol⋅L(-1) O2 for nitrite oxidation assuming one-component Michaelis-Menten kinetics. Nitrite oxidation rates, however, were better described with a two-component Michaelis-Menten model, indicating a high-affinity component with a Km of just a few nanomolar. As the communities of ammonium and nitrite oxidizers were similar to other OMZs, these kinetics should apply across OMZ systems. The high O2 affinities imply that ammonium and nitrite oxidation can occur within the OMZ core whenever O2 is supplied, for example, by episodic intrusions. These processes therefore compete with anammox and denitrification for ammonium and nitrite, thereby exerting an important control over nitrogen loss.

  13. Determination of Ammonia Oxidizing Bacteria and Nitrate Oxidizing Bacteria in Wastewater and Bioreactors

    Science.gov (United States)

    Francis, Somilez Asya

    2014-01-01

    The process of water purification has many different physical, chemical, and biological processes. One part of the biological process is the task of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Both play critical roles in the treatment of wastewater by oxidizing toxic compounds. The broad term is nitrification, a naturally occurring process that is carried out by AOB and NOB by using oxidation to convert ammonia to nitrite and nitrite to nitrate. To monitor this biological activity, bacterial staining was performed on wastewater contained in inoculum tanks and biofilm samples from bioreactors. Using microscopy and qPCR, the purpose of this experiment was to determine if the population of AOB and NOB in wastewater and membrane bioreactors changed depending on temperature and hibernation conditions to determine the optimal parameters for AOB/NOB culture to effectively clean wastewater.

  14. Preparation of ammonium sulfate, calcium oxide and rare earth concentrate from phospho-gypsum

    International Nuclear Information System (INIS)

    Andrianov, A.M.; Rusin, N.F.; Dejneka, G.F.; Zinchenko, T.A.; Burova, T.I.

    1978-01-01

    A technological scheme is proposed which gives ammonium sulfate, purified (from admixtures of silicon, iron, titanium, aluminium) calcium oxide with direct yield of calcium 91% and rare-earth concentrate, containing 5.6% of Ln 2 O 3 with direct yield of 99.5%

  15. Anaerobic ammonium oxidation mediated by Mn-oxides: from sediment to strain level.

    Science.gov (United States)

    Javanaud, Cedric; Michotey, Valerie; Guasco, Sophie; Garcia, Nicole; Anschutz, Pierre; Canton, Mathieu; Bonin, Patricia

    2011-11-01

    Nitrite and (29)N(2) productions in slurry incubations of anaerobically sediment after (15)NO(3) or (15)NH(4) labelling in the presence of Mn-oxides suggested that anaerobic Mn-oxides mediated nitrification coupled with denitrification in muddy intertidal sediments of Arcachon Bay (SW Atlantic French coast). From this sediment, bacterial strains were isolated and physiologically characterized in terms of Mn-oxides and nitrate reduction as well as potential anaerobic nitrification. One of the isolated strain, identified as Marinobacter daepoensis strain M4AY14, was a denitrifier. Nitrous oxide production by this strain was demonstrated in the absence of nitrate and with Mn-oxides and NH(4) amendment, giving indirect proof of anaerobic nitrate or nitrite production. Anaerobic Mn-oxide-mediated nitrification was confirmed by (29)N(2) production in the presence of (15)NO(3) and (14)NH(4) under denitrifying conditions. Anaerobic nitrification by M4AY14 seemed to occur only in the absence of nitrate, or at nitrate levels lower than that of Mn-oxides. Most of the other isolates were affiliated with the Shewanella genus and were able to use both nitrate and Mn-oxides as electron acceptors. When both electron acceptors were present, whatever their concentrations, nitrate and Mn-oxide reduction co-occurred. These data indicate that bacterial Mn-oxide reduction could be an important process in marine sediments with low oxygen concentrations, and demonstrate for the first time the role of bacteria in anaerobic Mn-mediated nitrification. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Influence of substrates on nitrogen removal performance and microbiology of anaerobic ammonium oxidation by operating two UASB reactors fed with different substrate levels

    International Nuclear Information System (INIS)

    Tang Chongjian; Zheng Ping; Hu Baolan; Chen Jianwei; Wang Caihua

    2010-01-01

    Both ammonium and nitrite act as substrates as well as potential inhibitors of anoxic ammonium-oxidizing (Anammox) bacteria. To satisfy demand of substrates for Anammox bacteria and to prevent substrate inhibition simultaneously; two strategies, namely high or low substrate concentration, were carefully compared in the operation of two Anammox upflow anaerobic sludge blanket (UASB) reactors fed with different substrate concentrations. The reactor working at relatively low influent substrate concentration (NO 2 - N, 240 mg-N L -1 ) was shown to avoid the inhibition caused by nitrite and free ammonia. Using the strategy of low substrate concentration, a record super high volumetric nitrogen removal rate of 45.24 kg-N m -3 day -1 was noted after the operation of 230 days. To our knowledge, such a high value has not been reported previously. The evidence from transmission electron microscopy (TEM) showed that the morphology and ultrastructure of the Anammox cells in both the reactor enrichments was different.

  17. Effect of communities of ammonia-oxidizing bacteria on degradation of 17-alpha-ethynylestradiol by nitrifying activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Limpiyakorn, T.; Sermwaraphan, P.; Kurisu, F.

    2009-07-01

    An endocrine disrupting compound, 17-alpha-ethynylestradiol (EE2), is a synthetic estrogen used as a key ingredient in oral contraceptives pill. this persistent organic pollutant, no biodegradable by most microorganisms, is discharged via municipal waste streams to natural receiving waters. Recently, it was found that ammonia-oxidizing bacteria (AOB) in nitrifying activated sludge (NAS) enriched with high ammonium loads can degrade EE2 via co-metabolism during ammonia oxidation. (Author)

  18. Oxidative desulfurization of diesel fuel using amphiphilic quaternary ammonium phosphomolybdate catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jianghua; Wang, Guanghui; Zeng, Danlin; Tang, Yan [College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Wang, Meng; Li, Yanjun [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2009-12-15

    Phosphomolybdic acid (HPMo) modified respectively with tetramethyl ammonium chloride (TMAC), dodecyl trimethyl ammonium chloride (DTAC) and hexadecyl trimethyl ammonium chloride (HTAC) as the catalysts were prepared and characterized by FT-IR, XRD and SEM. The catalysts were evaluated for the oxidative desulfurization of benzothiophene (BT), dibenzothiophene (DBT) and straight-run diesel using hydrogen peroxide as an oxidant. Results show that all of the catalysts keep the Keggin structures and are finely dispersed with mixing of quaternary ammonium salts. Hexadecyl chains are more favorable to wrap up DBT to the catalytic center and form stable emulsion system with higher conversion rates of DBT. The shorter dodecyl chains can wrap up BT more suitably and bring smaller steric hindrance, which display higher conversion rates of BT. The oxidative reactions fit apparent first-order kinetics, and the apparent activation energies of DBT are much lower than those of BT. The desulfurization rate of straight-run diesel can be up to 84.4% with the recovery rate of 98.1% catalyzed by [HPMo][HTAC]{sub 2} in 2 h. When increasing the extraction times, the desulfurization rates increase, but the recovery rates of diesel decrease significantly. (author)

  19. Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps

    Directory of Open Access Journals (Sweden)

    Friedrich Wolfgang Gerbl

    2014-05-01

    Full Text Available Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ, a slightly radioactive thermal mineral spring with a temperature of 43.6 - 47oC near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40oC, respectively were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with 15NH4Cl or (15NH42SO4 as sole energy sources revealed incorporation of 15N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA, nitrite oxidoreductase subunits A and B (nxrA and nxrB, nitrate reductase (narG, nitrite reductase (nirS, nitric oxide reductases (cnorB and qnorB, nitrous oxide reductase (nosZ. Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD was not detected. However, a geological origin of NH4+ in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ.

  20. Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps.

    Science.gov (United States)

    Gerbl, Friedrich W; Weidler, Gerhard W; Wanek, Wolfgang; Erhardt, Angelika; Stan-Lotter, Helga

    2014-01-01

    Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6-47°C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40°C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with (15)NH4Cl or ((15)NH4)2SO4as sole energy sources revealed incorporation of (15)N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH(+) 4 in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ.

  1. Glufosinate ammonium stimulates nitric oxide production through N-methyl D-aspartate receptors in rat cerebellum.

    Science.gov (United States)

    Nakaki, T; Mishima, A; Suzuki, E; Shintani, F; Fujii, T

    2000-09-01

    Glufosinate ammonium, a structural analogue of glutamate, is an active herbicidal ingredient. The neuronal activities of this compound were investigated by use of a microdialysis system that allowed us to measure nitric oxide production in the rat cerebellum in vivo. Kainate (0.3-30 nmol/10 microliter), N-methyl-D-aspartate (NMDA) (3-300 nmol/10 microliter) and glufosinate ammonium (30-3000 nmol/10 microliter), which were administered through the microdialysis probe at a rate of 1 microliter/min for 10 min, stimulated nitric oxide production. The glufosinate ammonium-elicited increase in nitric oxide production was suppressed by an inhibitor of nitric oxide synthase and was antagonized by NMDA receptor antagonists, but not by a kainate/(+/-)-alphaamino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist. These results suggest that glufosinate ammonium stimulates nitric oxide production through NMDA receptors.

  2. Oxidative Pressure Leaching of Silver from Flotation Concentrates with Ammonium Thiocyanate Solution

    Science.gov (United States)

    Yang, Sheng-Hai; Yang, Jian-Guang; Liu, Wei; Chen, Geng-Tao; Tang, Mo-Tang; Qiu, Guan-Zhou

    2010-02-01

    The thermodynamics and technologies of the selective pressure leaching of silver from flotation concentrates were investigated in an ammonium thiocyanate medium. Thermodynamic analyses, which include silver solubility in NH4SCN solution and Eh-pH diagrams of the Me-MeS-NH4SCN-H2O system at 25 °C, were discussed. The effects of several factors, such as temperature, leaching time, oxidant, pH value, flotation concentrates concentration, surfactant concentration, and so on, on the extraction percentages of silver and zinc were investigated. The following optimal leaching conditions were obtained: NH4SCN concentration 1.5 M, lignin concentration 0.5 g/L, Fe3+ concentration 2 g/L, flotation concentrates addition 200 g/L, and oxygen pressure 1.2 MPa at 130 °C for 3 hours. Under these optimum conditions, the average extraction percentage of silver exceeded 94 pct, whereas the average extraction percentage of zinc was less than 3 pct. Only 7 pct of ammonium thiocyanate was consumed after 4 cycles, which indicated that ammonium thiocyanate hardly was oxidized under these oxidative pressure leaching conditions.

  3. Effects of some anaesthetics on honeybees: nitrous oxide, carbon dioxide, ammonium nitrate smoker fumes

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J

    1954-08-01

    Honeybees were apparently unaffected by atmospheric oxygen concentrations between 7% and 100%, and only became motionless when the oxygen concentration was less than 2%. The effects of nitrous oxide-oxygen mixtures differed little, if at all, from those nitrogen-oxygen mixtures. Bees were not visibly affected by carbon dioxide concentrations up to 10-15% but they became motionless if the concentration exceeded 40-45%. Fumes produced by adding ammonium nitrate to the fuel in a beekeeper's smoker were found to contain hydrogen cyanide or cyanogen. Their effectiveness as an anaesthetic may be due to this or to some unidentified component, but not to nitrous oxide. All three anaesthetics caused foraging bees to stop collecting pollen, and accelerated the retrogression of the pharyngeal glands of young bees. Anaesthesia of a few bees in a colony with nitrous oxide, carbon dioxide, or ammonium nitrate smoker fumes did not appear to inhibit their drift back to the original site when their hive was moved, nor was any reduction in drifting observed when a whole colony was moved while anaesthetized with ammonium nitrate smoker fumes. 4 tables.

  4. Manganese Oxidation by Bacteria: Biogeochemical Aspects

    Digital Repository Service at National Institute of Oceanography (India)

    Sujith, P.P.; LokaBharathi, P.A.

    Manganese is an essential trace metal that is not as readily oxidizable like iron. Several bacterial groups posses the ability to oxidize Mn effectively competing with chemical oxidation. The oxides of Mn are the strongest of the oxidants, next...

  5. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions

    Science.gov (United States)

    Huang, S.; Jaffé, P. R.

    2015-02-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron was measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454 pyrosequencing, and real-time quantitative PCR analysis. We be Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  6. Physiology of alkaliphilic sulfur-oxidizing bacteria from soda lakes

    NARCIS (Netherlands)

    Banciu, H.L.

    2004-01-01

    The inorganic sulfur oxidation by obligate haloalkaliphilic chemolithoautotrophs was only recently discovered and investigated. These autotrophic sulfur oxidizing bacteria (SOB), capable of oxidation of inorganic sulfur compounds at moderate to high salt concentration and at high pH, can be divided

  7. Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: a model-based study.

    Science.gov (United States)

    Pérez, Julio; Lotti, Tommaso; Kleerebezem, Robbert; Picioreanu, Cristian; van Loosdrecht, Mark C M

    2014-12-01

    This model-based study investigated the mechanisms and operational window for efficient repression of nitrite oxidizing bacteria (NOB) in an autotrophic nitrogen removal process. The operation of a continuous single-stage granular sludge process was simulated for nitrogen removal from pretreated sewage at 10 °C. The effects of the residual ammonium concentration were explicitly analyzed with the model. Competition for oxygen between ammonia-oxidizing bacteria (AOB) and NOB was found to be essential for NOB repression even when the suppression of nitrite oxidation is assisted by nitrite reduction by anammox (AMX). The nitrite half-saturation coefficient of NOB and AMX proved non-sensitive for the model output. The maximum specific growth rate of AMX bacteria proved a sensitive process parameter, because higher rates would provide a competitive advantage for AMX. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Ammonium carbonate and/or bicarbonate plus alkaline chlorate oxidant for recovery of uranium values

    International Nuclear Information System (INIS)

    Stapp, P.R.

    1983-01-01

    In accordance with the present invention, uranium values are extracted from materials containing uranium in valence states lower than its hexavalent state by contacting the materials containing uranium with an aqueous alkaline leach solution containing an alkaline chlorate in an amount sufficient to oxidize at least a portion of the uranium in valence states lower than its hexavalent state to its hexavalent state. In a further embodiment of the present invention, the alkaline leach solution is an aqueous solution of a carbonate selected from the group consisting of ammonium carbonate, ammonium bicarbonate and mixtures thereof. In yet another embodiment of the present invention, at least one catalytic compound of a metal selected from the group consisting of copper, cobalt, iron, nickel, chromium and mixtures thereof adapted to assure the presence of the ionic species Cu ++ , Co ++ , Fe +++ , Ni ++ , Cr +++ and mixtures thereof, respectively, during the contacting of the material containing uranium with the alkaline leach solution and in an amount sufficient to catalyze the oxidation of at least a portion of the uranium in its lower valence states to its hexavalent state, is present

  9. Nanocrystalline transition metal oxides as catalysts in the thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Inder Pal Singh; Srivastava, Pratibha; Singh, Gurdip [Department of Chemistry, DDU Gorakhpur University, Gorakhpur (India)

    2009-08-15

    Nanocrystalline transition metal oxides (NTMOs) have been successfully prepared by three different methods: novel quick precipitation method (Cr{sub 2}O{sub 3} and Fe{sub 2}O{sub 3}); surfactant mediated method (CuO), and reduction of metal complexes with hydrazine as reducing agent (Mn{sub 2}O{sub 3}). The nano particles have been characterized by X-ray diffraction (XRD) which shows an average particle diameter of 35-54 nm. Their catalytic activity was measured in the thermal decomposition of ammonium perchlorate (AP). AP decomposition undergoes a two step process where the addition of metal oxide nanocrystals led to a shifting of the high temperature decomposition peak toward lower temperature. The kinetics of the thermal decomposition of AP and catalyzed AP has also been evaluated using model fitting and isoconversional method. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  10. Interactions among sulfide-oxidizing bacteria

    Science.gov (United States)

    Poplawski, R.

    1985-01-01

    The responses of different phototrophic bacteria in a competitive experimental system are studied, one in which primary factors such as H2S or light limited photometabolism. Two different types of bacteria shared one limited source of sulfide under specific conditions of light. The selection of a purple and a green sulfur bacteria and the cyanobacterium was based on their physiological similarity and also on the fact that they occur together in microbial mats. They all share anoxygenic photosynthesis, and are thus probably part of an evolutionary continuum of phototrophic organisms that runs from, strictly anaerobic physiology to the ability of some cyanobacteria to shift between anoxygenic bacterial style photosynthesis and the oxygenic kind typical of eukaryotes.

  11. Oxidation of ammonium sulfite by a multi-needle-to-plate gas phase pulsed corona discharge reactor

    Science.gov (United States)

    Ren, Hua; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-03-01

    The oxidation of ammonium sulfite in the ammonia-based flue gas desulfurization (FGD) process was investigated in a multi-needle-to-plate gas phase pulsed corona discharge reactor in this paper. The effect of several parameters, including capacitance and peak pulse voltage of discharge system, electrode gap and bubbling gas flow rate on the oxidation rate of ammonium sulfite was reviewed. The oxidation rate of ammonium sulfite could reach 47.2% at the capacitance, the peak pulse voltage, electrode gap and bubbling gas flow rate equal to 2 nF, -24.6 k V, 35 mm and 4 L min-1 within treatment time of 40 min The experimental results indicate that the gas phase pulsed discharge system with a multi-needle-to-plate electrode can oxide the ammonium sulfite. The oxidation rate increased with the applied capacitance and peak pulse voltage and decreased with the electrode gap. As the bubbling gas flow rate increased, the oxidation rate increased first and then tended to reach a stationary value. These results would be important for the process optimization of the (NH4)2SO3 to (NH4)2SO4 oxidation.

  12. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    DEFF Research Database (Denmark)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume

    2009-01-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent ......Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate...... precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria...... and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All...

  13. Quaternary ammonium salts with tetrafluoroborate anion: Phytotoxicity and oxidative stress in terrestrial plants

    Energy Technology Data Exchange (ETDEWEB)

    Biczak, Robert, E-mail: r.biczak@ajd.czest.pl

    2016-03-05

    Highlights: • The level of oxidative stress in mono- and dicotyledonous plants was comparable. • Chlorophyll content in the plants was correlated with QAS concentration in the soil. • POD activity increased in plants cultivated in soil with high QAS content. - Abstract: This paper discusses the impact of four quaternary ammonium salts (QAS) such as tetraethylammonium tetrafluoroborate [TEA][BF{sub 4}], tetrabutylammonium tetrafluoroborate [TBA][BF{sub 4}], tetrahexylammonium tetrafluoroborate [THA][BF{sub 4}], and tetraoctylammonium tetrafluoroborate [TOA][BF{sub 4}] on the growth and development of spring barley and common radish. Analogous tests were performed with the inorganic salt ammonium tetrafluoroborate [A][BF{sub 4}] for comparison purposes. Results indicated that the phytotoxicity of the QAS applied is dependent on the concentration of the substance and their number of carbon atoms. The most toxic compound was [TBA][BF{sub 4}], causing the greatest drop in fresh weight of both study plants, similar to the phytotoxic effects of [A][BF{sub 4}]. All the tested compounds caused oxidative stress in spring barley and common radish seedlings due to a drop in the chlorophyll content. Stress was also observed in plants, which was indicated by the increased level of ROS (reactive oxygen species) such as H{sub 2}O{sub 2} and lipid peroxidation of MDA (malondialdehyde). Due to the stress, both plants displayed changes in the activity of antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). Based on the results of the study, it was concluded that changes in chlorophyll levels and peroxidase activity are the best biomarkers to determine oxidative stress in plants.

  14. Destruction of organic wastes by ammonium peroxydisulfate with electrolytic regeneration of the oxidant

    International Nuclear Information System (INIS)

    Cooper, J.F.; Wang, J.F.; Krueger, R.; King, K.

    1997-01-01

    Research is reported concerning a new aqueous process for oxidative destruction of solid- and liquid organic wastes. This process uses acidified ammonium peroxydisulfate and operates at ambient pressure and at 80- to 100 degrees C. The oxidant may be efficiently regenerated by electrolysis of the sulfate by-product at Pt anodes, even in the presence of organic and inorganic contaminants expected to be entrained in the cycle. Integral rate constants were determined for the oxidation of 25 diverse organic compounds at low (50 ppm) concentrations through fixed-time experiments with excess oxidant and a Pt wire catalyst. For high initial concentrations, uncatalyzed mineralization rates were measured for waste surrogates including kerosene, triethylamine, ion exchange resin, oxalic acid, trinitrotoluene, and cellulose. A packed bed reactor was tested with ethylene glycol, with offgas analysis by mass spectroscopy. Rate data extrapolate to throughputs of approximately 200 kg/m 3 -day. The process may benefit the destruction of highly toxic or specialized industrial wastes as well as the organic fraction of mixed wastes

  15. On bacteria oxidizing enlargement scale test for uranium in-situ leaching at. 381 mine

    International Nuclear Information System (INIS)

    Hu Kaiguang; Wang Qingliang; Liu Yingjiu; Shi Wenge; Hu Shihe; Hu Yincai; Fang Qiu

    1999-01-01

    The results of enlarged scale test of bacteria as oxidizer for uranium in-situ leaching at No 381 mine showed that redox potential of the oxidized absorbed tailing water by bacteria is more than 510 mV, without any effects on after treatments by using bacteria as oxidizer and reduce oxidizer costs 70% compared with H 2 O 2 as oxidizer

  16. Efficacies of sodium hypochlorite and quaternary ammonium sanitizers for reduction of norovirus and selected bacteria during ware-washing operations.

    Directory of Open Access Journals (Sweden)

    Lizanel Feliciano

    Full Text Available Cross-contamination of ready-to-eat (RTE foods with pathogens on contaminated tableware and food preparation utensils is an important factor associated with foodborne illnesses. To prevent this, restaurants and food service establishments are required to achieve a minimum microbial reduction of 5 logs from these surfaces. This study evaluated the sanitization efficacies of ware-washing protocols (manual and mechanical used in restaurants to clean tableware items. Ceramic plates, drinking glasses and stainless steel forks were used as the food contact surfaces. These were contaminated with cream cheese and reduced-fat milk inoculated with murine norovirus (MNV-1, Escherichia coli K-12 and Listeria innocua. The sanitizing solutions tested were sodium hypochlorite (chlorine, quaternary ammonium (QAC and tap water (control. During the study, the survivability and response to the experimental conditions of the bacterial species was compared with that of MNV-1. The results showed that current ware-washing protocols used to remove bacteria from tableware items were not sufficient to achieve a 5 log reduction in MNV-1 titer. After washing, a maximum of 3 log reduction in the virus were obtained. It was concluded that MNV-1 appeared to be more resistant to both the washing process and the sanitizers when compared with E. coli K-12 and L. innocua.

  17. Mechanisms of Persistence of the Ammonia-Oxidizing Bacteria Nitrosomonas to the Biocide Free Nitrous Acid.

    Science.gov (United States)

    Laloo, Andrew E; Wei, Justin; Wang, Dongbo; Narayanasamy, Shaman; Vanwonterghem, Inka; Waite, David; Steen, Jason; Kaysen, Anne; Heintz-Buschart, Anna; Wang, Qilin; Schulz, Benjamin; Nouwens, Amanda; Wilmes, Paul; Hugenholtz, Philip; Yuan, Zhiguo; Bond, Philip L

    2018-05-01

    Free nitrous acid (FNA) exerts a broad range of antimicrobial effects on bacteria, although susceptibility varies considerably among microorganisms. Among nitrifiers found in activated sludge of wastewater treatment processes (WWTPs), nitrite-oxidizing bacteria (NOB) are more susceptible to FNA compared to ammonia-oxidizing bacteria (AOB). This selective inhibition of NOB over AOB in WWTPs bypasses nitrate production and improves the efficiency and costs of the nitrogen removal process in both the activated sludge and anaerobic ammonium oxidation (Anammox) system. However, the molecular mechanisms governing this atypical tolerance of AOB to FNA have yet to be understood. Herein we investigate the varying effects of the antimicrobial FNA on activated sludge containing AOB and NOB using an integrated metagenomics and label-free quantitative sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) metaproteomic approach. The Nitrosomonas genus of AOB, on exposure to FNA, maintains internal homeostasis by upregulating a number of known oxidative stress enzymes, such as pteridine reductase and dihydrolipoyl dehydrogenase. Denitrifying enzymes were upregulated on exposure to FNA, suggesting the detoxification of nitrite to nitric oxide. Interestingly, proteins involved in stress response mechanisms, such as DNA and protein repair enzymes, phage prevention proteins, and iron transport proteins, were upregulated on exposure to FNA. In addition enzymes involved in energy generation were also upregulated on exposure to FNA. The total proteins specifically derived from the NOB genus Nitrobacter was low and, as such, did not allow for the elucidation of the response mechanism to FNA exposure. These findings give us an understanding of the adaptive mechanisms of tolerance within the AOB Nitrosomonas to the biocidal agent FNA.

  18. Nitrated graphene oxide and its catalytic activity in thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenwen; Luo, Qingping; Duan, Xiaohui [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Zhou, Yong [Eco-materials and Renewable Energy Research Center (ERERC), School of Physics, National Lab of Solid State Microstructure, ERERC, Nanjing University, Nanjing 210093 (China); Pei, Chonghua, E-mail: peichonghua@swust.edu.cn [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China)

    2014-02-01

    Highlights: • The NGO was synthesized by nitrifying homemade GO. • The N content of resulted NGO is up to 1.45 wt.%. • The NGO can facilitate the decomposition of AP and release much heat. - Abstract: Nitrated graphene oxide (NGO) was synthesized by nitrifying homemade GO with nitro-sulfuric acid. Fourier transform infrared spectroscopy (FTIR), laser Raman spectroscopy, CP/MAS {sup 13}C NMR spectra and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure of NGO. The thickness and the compositions of GO and NGO were analyzed by atomic force microscopy (AFM) and elemental analysis (EA), respectively. The catalytic effect of the NGO for the thermal decomposition of ammonium perchlorate (AP) was investigated by differential scanning calorimetry (DSC). Adding 10% of NGO to AP decreases the decomposition temperature by 106 °C and increases the apparent decomposition heat from 875 to 3236 J/g.

  19. Nitrated graphene oxide and its catalytic activity in thermal decomposition of ammonium perchlorate

    International Nuclear Information System (INIS)

    Zhang, Wenwen; Luo, Qingping; Duan, Xiaohui; Zhou, Yong; Pei, Chonghua

    2014-01-01

    Highlights: • The NGO was synthesized by nitrifying homemade GO. • The N content of resulted NGO is up to 1.45 wt.%. • The NGO can facilitate the decomposition of AP and release much heat. - Abstract: Nitrated graphene oxide (NGO) was synthesized by nitrifying homemade GO with nitro-sulfuric acid. Fourier transform infrared spectroscopy (FTIR), laser Raman spectroscopy, CP/MAS 13 C NMR spectra and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure of NGO. The thickness and the compositions of GO and NGO were analyzed by atomic force microscopy (AFM) and elemental analysis (EA), respectively. The catalytic effect of the NGO for the thermal decomposition of ammonium perchlorate (AP) was investigated by differential scanning calorimetry (DSC). Adding 10% of NGO to AP decreases the decomposition temperature by 106 °C and increases the apparent decomposition heat from 875 to 3236 J/g

  20. Influence of substrates on nitrogen removal performance and microbiology of anaerobic ammonium oxidation by operating two UASB reactors fed with different substrate levels

    Energy Technology Data Exchange (ETDEWEB)

    Tang Chongjian [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Zheng Ping, E-mail: pzheng@zju.edu.cn [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Hu Baolan; Chen Jianwei; Wang Caihua [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)

    2010-09-15

    Both ammonium and nitrite act as substrates as well as potential inhibitors of anoxic ammonium-oxidizing (Anammox) bacteria. To satisfy demand of substrates for Anammox bacteria and to prevent substrate inhibition simultaneously; two strategies, namely high or low substrate concentration, were carefully compared in the operation of two Anammox upflow anaerobic sludge blanket (UASB) reactors fed with different substrate concentrations. The reactor working at relatively low influent substrate concentration (NO{sub 2}{sup -}N, 240 mg-N L{sup -1}) was shown to avoid the inhibition caused by nitrite and free ammonia. Using the strategy of low substrate concentration, a record super high volumetric nitrogen removal rate of 45.24 kg-N m{sup -3} day{sup -1} was noted after the operation of 230 days. To our knowledge, such a high value has not been reported previously. The evidence from transmission electron microscopy (TEM) showed that the morphology and ultrastructure of the Anammox cells in both the reactor enrichments was different.

  1. Physiology and genetics of sulfur-oxidizing bacteria.

    Science.gov (United States)

    Friedrich, C G

    1998-01-01

    Reduced inorganic sulfur compounds are oxidized by members of the domains Archaea and Bacteria. These compounds are used as electron donors for anaerobic phototrophic and aerobic chemotrophic growth, and are mostly oxidized to sulfate. Different enzymes mediate the conversion of various reduced sulfur compounds. Their physiological function in sulfur oxidation is considered (i) mostly from the biochemical characterization of the enzymatic reaction, (ii) rarely from the regulation of their formation, and (iii) only in a few cases from the mutational gene inactivation and characterization of the resulting mutant phenotype. In this review the sulfur-metabolizing reactions of selected phototrophic and of chemotrophic prokaryotes are discussed. These comprise an archaeon, a cyanobacterium, green sulfur bacteria, and selected phototrophic and chemotrophic proteobacteria. The genetic systems are summarized which are presently available for these organisms, and which can be used to study the molecular basis of their dissimilatory sulfur metabolism. Two groups of thiobacteria can be distinguished: those able to grow with tetrathionate and other reduced sulfur compounds, and those unable to do so. This distinction can be made irrespective of their phototrophic or chemotrophic metabolism, neutrophilic or acidophilic nature, and may indicate a mechanism different from that of thiosulfate oxidation. However, the core enzyme for tetrathionate oxidation has not been identified so far. Several phototrophic bacteria utilize hydrogen sulfide, which is considered to be oxidized by flavocytochrome c owing to its in vitro activity. However, the function of flavocytochrome c in vivo may be different, because it is missing in other hydrogen sulfide-oxidizing bacteria, but is present in most thiosulfate-oxidizing bacteria. A possible function of flavocytochrome c is discussed based on biophysical studies, and the identification of a flavocytochrome in the operon encoding enzymes involved

  2. Selective removal and inactivation of bacteria by nanoparticle composites prepared by surface modification of montmorillonite with quaternary ammonium compounds.

    Science.gov (United States)

    Khalil, Rowaida K S

    2013-10-01

    The purpose of the present study was to prepare new nanocomposites with antibacterial activities by surface modification of montmorillonite using quaternary ammonium compounds that are widely applied as disinfectants and antiseptics in food-processing environments. The intercalation of four quaternary ammonium compounds namely benzalkonium chloride, cetylpyridinium chloride monohydrate, hexadecyltrimethylammonium bromide, tetraethylammonium chloride hydrate into montmorillonite layers was confirmed by X-ray diffraction. The antibacterial influences of the modified clay variants against important foodborne pathogens differed based on modifiers quantities, microbial cell densities, and length of contact. Elution experiments through 0.1 g of the studied montmorillonite variants indicated that Staphylococcus aureus, Pseudomonas aeroginosa, and Listeria monocytogenes were the most sensitive strains. 1 g of hexadecyltrimethylammonium bromide intercalated montmorillonites demonstrated maximum inactivation of L. monocytogenes populations, with 4.5 log c.f.u./ml units of reduction. In adsorption experiments, 0.1 g of tetraethylammonium chloride hydrate montmorillonite variants significantly reduced the growth of Escherichia coli O157:H7, L. monocytogenes, and S. aureus populations by 5.77, 6.33, and 7.38 log units respectively. Growth of wide variety of microorganisms was strongly inhibited to undetectable levels (benzalkonium chloride montmorillonite variants. This investigation highlights that reduction in counts of microbial populations adsorbed to the new nanocomposites was substantially different from that in elution experiments, where interactions of nanocomposites with bacteria were specific and more complex than simple ability to inactivate. Treatment columns packed with modified variants maintained their inactivation capacity to the growth of Salmonella Tennessee and S. aureus populations after 48 h of incubation at room temperature with maximum reductions

  3. A multi-proxy study of anaerobic ammonium oxidation in marine sediments of the Gullmar Fjord, Sweden

    NARCIS (Netherlands)

    Brandsma, J.; van de Vossenberg, J.; Risgaard-Petersen, N.; Schmid, M.C.; Engstrom, P.; Eurenius, K.; Hulth, S.; Jaeschke, A.; Abbas, B.; Hopmans, E.C.; Strous, M.; Schouten, S.; Jetten, M.S.M.; Sinninghe Damsté, J.S.

    2011-01-01

    Anaerobic ammonium oxidation (anammox) is an important process for nitrogen removal in marine pelagic and benthic environments and represents a major sink in the global nitrogen cycle. We applied a suite of complementary methods for the detection and enumeration of anammox activity and anammox

  4. A multi-proxy study of anaerobic ammonium oxidation in marine sediments of the Gullmar Fjord, Sweden

    DEFF Research Database (Denmark)

    Brandsma, Joost; van de Vossenberg; Risgaard-Petersen, Nils

    2011-01-01

    Anaerobic ammonium oxidation (anammox) is an important process for nitrogen removal in marine pelagic and benthic environments and represents a major sink in the global nitrogen cycle. We applied a suite of complementary methods for the detection and enumeration of anammox activity and anammox...

  5. Energy-mediated versus ammonium-regulated gene expression in the obligate ammonia-oxidizing bacterium, Nitrosococcus oceani

    Directory of Open Access Journals (Sweden)

    Lisa Y Stein

    2013-09-01

    Full Text Available Ammonia serves as the source of energy and reductant and as a signaling molecule that regulates gene expression in obligate ammonia-oxidizing chemolithotrophic microorganisms. The gammaproteobacterium, Nitrosococcus oceani, was the first obligate ammonia-oxidizer isolated from seawater and is one of the model systems for ammonia chemolithotrophy. We compared global transcriptional responses to ammonium and the catabolic intermediate, hydroxylamine, in ammonium-starved and non-starved cultures of N. oceani to discriminate transcriptional effects of ammonium from a change in overall energy and redox status upon catabolite availability. The most highly expressed genes from ammonium- or hydroxylamine-treated relative to starved cells are implicated in catabolic electron flow, carbon fixation, nitrogen assimilation, ribosome structure and stress tolerance. Catabolic inventory-encoding genes, including electron flow-terminating Complexes IV, FoF1 ATPase, transporters, and transcriptional regulators were among the most highly expressed genes in cells exposed only to ammonium relative to starved cells, although the differences compared to steady-state transcript levels were less pronounced. Reduction in steady-state mRNA levels from hydroxylamine-treated relative to starved-cells were less than five-fold. In contrast, several transcripts from ammonium-treated relative to starved cells were significantly less abundant including those for forward Complex I and a gene cluster of cytochrome c encoding proteins. Identified uneven steady-state transcript levels of co-expressed clustered genes support previously reported differential regulation at the levels of transcription and transcript stability. Our results differentiated between rapid regulation of core genes upon a change in cellular redox status versus those responsive to ammonium as a signaling molecule in N. oceani, both confirming and extending our knowledge of metabolic modules involved in ammonia

  6. Growth of thermal oxide layers on GaAs and InP in the presence of ammonium heptamolybdate

    International Nuclear Information System (INIS)

    Mittova, I.Ya.; Lavrushina, S.S.; Afonchikova, A.V.

    2004-01-01

    Processes of thermal oxidation of GaAs and InP in the presence of ammonium heptamolybdate were studied using the methods of X-ray fluorescence analysis and IR spectroscopy at temperatures 480-580 Deg C. It was ascertained that introduction of the activator into the system results in accelerated growth of layers on semiconductors due to participation of anionic component of the chemostimulator in oxidation processes. The activator is integrated into the salts formed [ru

  7. Bio-dissolution of Ni, V and Mo from spent petroleum catalyst using iron oxidizing bacteria.

    Science.gov (United States)

    Pradhan, Debabrata; Kim, Dong J; Roychaudhury, Gautam; Lee, Seoung W

    2010-01-01

    Bioleaching studies of spent petroleum catalyst containing Ni, V and Mo were carried out using iron oxidizing bacteria. Various leaching parameters such as Fe(II) concentration, pulp density, pH, temperature and particle size were studied to evaluate their effects on the leaching efficiency as well as the kinetics of dissolution. The percentage of leaching of Ni and V were higher than Mo. The leaching process followed a diffusion controlled model and the product layer was observed to be impervious due to formation of ammonium jarosite (NH(4))Fe(3)(SO(4))(2)(OH)(6). Apart from this, the lower leaching efficiency of Mo was due to a hydrophobic coating of elemental sulfur over Mo matrix in the spent catalyst. The diffusivities of the attacking species for Ni, V and Mo were also calculated.

  8. Ammonia-oxidizing bacteria: A model for molecular microbial ecology

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Stephen, J.R.

    2001-01-01

    The eutrophication of many ecosystems in recent decades has led to an increased interest in the ecology of nitrogen transformation. Chemolitho-autotrophic ammonia-oxidizing bacteria are responsible for the rate-limiting step of nitrification in a wide variety of environments, making them important

  9. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    DEFF Research Database (Denmark)

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    Substrates that contain high ammonia levels can cause inhibition on anaerobic digestion process and unstable biogas production. The aim of the current study was to assess the effects of different ammonia levels on pure strains of (syntrophic acetate oxidizing) SAO bacteria and hydrogenotrophic...... methanogens. Two pure strains of hydrogenotrophic methanogens (i.e: Methanoculleus bourgensis and Methanoculleus thermophiles) and two pure strains of SAO bacteria (i.e: Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) were inoculated under four different ammonia (0.26, 3, 5 and 7g NH4+-N......, the total incubation periods of hydrogenotrophic methanogens were significantly shorter compared to the SAO bacteria incubation periods. Thus, it seems that hydrogenotrophic methanogens could be equally, if not more, tolerant to high ammonia levels compared to SAO bacteria....

  10. Abiotic mechanism for the formation of atmospheric nitrous oxide from ammonium nitrate.

    Science.gov (United States)

    Rubasinghege, Gayan; Spak, Scott N; Stanier, Charles O; Carmichael, Gregory R; Grassian, Vicki H

    2011-04-01

    Nitrous oxide (N2O) is an important greenhouse gas and a primary cause of stratospheric ozone destruction. Despite its importance, there remain missing sources in the N2O budget. Here we report the formation of atmospheric nitrous oxide from the decomposition of ammonium nitrate via an abiotic mechanism that is favorable in the presence of light, relative humidity and a surface. This source of N2O is not currently accounted for in the global N2O budget. Annual production of N2O from atmospheric aerosols and surface fertilizer application over the continental United States from this abiotic pathway is estimated from results of an annual chemical transport simulation with the Community Multiscale Air Quality model (CMAQ). This pathway is projected to produce 9.3(+0.7/-5.3) Gg N2O annually over North America. N2O production by this mechanism is expected globally from both megacities and agricultural areas and may become more important under future projected changes in anthropogenic emissions.

  11. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron reducing conditions

    Science.gov (United States)

    Huang, S.; Jaffé, P. R.

    2014-08-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron were measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454-pyrosequencing, and real-time quantitative PCR analysis. We believe that one of the dominant microbial species in our system (an uncultured Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  12. Simultaneous enrichment of denitrifying anaerobic methane-oxidizing microorganisms and anammox bacteria in a hollow-fiber membrane biofilm reactor.

    Science.gov (United States)

    Ding, Zhao-Wei; Lu, Yong-Ze; Fu, Liang; Ding, Jing; Zeng, Raymond J

    2017-01-01

    In this study, the coculture system of denitrifying anaerobic methane oxidation (DAMO) microbes and anaerobic ammonium oxidation (anammox) bacteria was successfully enriched in a hollow-fiber membrane biofilm reactor (HfMBR) using freshwater sediment as the inoculum. The maximal removal rates of nitrate and ammonium were 78 mg N/L/day (131 mg N/m 2 /day) and 26 mg N/L/day (43 mg N/m 2 /day), respectively. Due to the high rate of methane mass transfer in HfMBR, the activity of DAMO archaea continued to increase during the enrichment period, indicating that HfMBR could be a powerful tool to enrich DAMO microorganisms. Effects of partial methane pressure, temperature, and pH on the cocultures were obvious. However, the microbial activity in HfMBR could be recovered quickly after the shock change of environmental factors. Furthermore, the result also found that DAMO bacteria likely had a stronger competitive advantage than anammox bacteria under the operating conditions in this study. High-throughput sequencing 16S rRNA genes illustrated that the dominant microbes were NC10, Euryarchaeota, Proteobacteria, Planctomycetes, and Chlorobi with relative abundance of 38.8, 26.2, 13.78, 6.2, and 3.6 %, respectively.

  13. Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens.

    OpenAIRE

    Samuelsson, M O

    1985-01-01

    The influence of redox potential on dissimilatory nitrate reduction to ammonium was investigated on a marine bacterium, Pseudomonas putrefaciens. Nitrate was consumed (3.1 mmol liter-1), and ammonium was produced in cultures with glucose and without sodium thioglycolate. When sodium thioglycolate was added, nitrate was consumed at a lower rate (1.1 mmol liter-1), and no significant amounts of nitrite or ammonium were produced. No growth was detected in glucose media either with or without sod...

  14. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions.

    Directory of Open Access Journals (Sweden)

    Mauro Tiso

    Full Text Available The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in

  15. Nitrate Reduction to Nitrite, Nitric Oxide and Ammonia by Gut Bacteria under Physiological Conditions

    Science.gov (United States)

    Tiso, Mauro; Schechter, Alan N.

    2015-01-01

    The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome

  16. Microbial Anaerobic Ammonium Oxidation Under Iron Reducing Conditions, Alternative Electron Acceptors

    Science.gov (United States)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2015-12-01

    Autotrophic Acidimicrobiaceae-bacterium named A6 (A6), part of the Actinobacteria phylum have been linked to anaerobic ammonium (NH4+) oxidation under iron reducing conditions. These organisms obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, the TEAs are iron oxides [Fe(III)], which are reduced to Fe(II), this process is known as Feammox. Our studies indicate that alternative forms of TEAs can be used by A6, e.g. iron rich clays (i.e. nontronite) and electrodes in bioelectrochemical systems such as Microbial Electrolysis Cells (MECs), which can sustain NH4+removal and A6 biomass production. Our results show that nontronite can support Feammox and promote bacterial cell production. A6 biomass increased from 4.7 x 104 to 3.9 x 105 cells/ml in 10 days. Incubations of A6 in nontronite resulted in up to 10 times more NH4+ removal and 3 times more biomass production than when ferrihydrite is used as the Fe(III) source. Additionally, Fe in nontronite can be reoxidized by aeration and A6 can reutilize it; however, Fe is still finite in the clay. In contrast, in MECs, A6 harvest electrons from NH4+ and use an anode as an unlimited TEA, as a result current is produced. We operated multiple MECs in parallel using a single external power source, as described by Call & Logan (2011). MECs were run with an applied voltage of 0.7V and different growing mediums always containing initial 5mM NH4+. Results show that current production is favored when anthraquinone-2,6-disulfonate (AQDS), an electron shuttled, is present in the medium as it facilitates the transfer of electrons from the bacterial cell to the anode. Additionally, A6 biomass increased from 1 x 104 to 9.77 x 105cells/ml in 14 days of operation. Due to Acidimicrobiaceae-bacterium A6's ability to use various TEAs, MECs represent an alternative, iron-free form, for optimized biomass production of A6 and its application in NH4

  17. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Bollmann, Annette [Miami University, Oxford, OH; Sedlacek, Christopher J [Miami University, Oxford, OH; Laanbroek, Hendrikus J [Netherlands Institute of Ecology (NIOO-KNAW); Suwa, Yuichi [Chuo University, Tokyo, Japan; Stein, Lisa Y [University of California, Riverside; Klotz, Martin G [University of Louisville, Louisville; Arp, D J [Oregon State University; Sayavedra-Soto, LA [Oregon State University; Lu, Megan [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Pennacchio, Len [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Szeto, Ernest [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL)

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006.

  18. [Effects of transgenic Bt + CpTI cotton on rhizosphere bacteria and ammonia oxidizing bacteria population].

    Science.gov (United States)

    Dong, Lianhua; Meng, Ying; Wang, Jing

    2014-03-04

    The effect of transgenic cotton on the rhizosphere bacteria can be important to the risk assessment for the genetically modified crops. We studied the rhizosphere microbial community with cultivating genetically modified cotton. The effects of transgenic Bt + CpTI Cotton (SGK321) and its receptor cotton (SY321) on rhizosphere total bacteria and ammonia oxidizing bacteria population size were studied by using droplet digital PCR. We collected rhizosphere soil before cotton planting and along with the cotton growth stage (squaring stage, flowering stage, belling stage and boll opening stage). There was no significant change on the total bacterial population between the transgenic cotton and the receptor cotton along with the growth stage. However, the abundance of ammonia oxidizing bacteria (AOB) in both type of cottons showed significant difference between different growth stages, and the variation tendency was different. In squaring stage, the numbers of AOB in rhizosphere of SY321 and SGK321 increased 4 and 2 times, respectively. In flowering stage, AOB number in rhizosphere of SY321 significantly decreased to be 5.96 x 10(5) copies/g dry soil, however, that of SGK321 increased to be 1.25 x 10(6) copies/g dry soil. In belling stage, AOB number of SY321 greatly increased to be 1.49 x 10(6) copies/g dry soil, but no significant change was observed for AOB number of SGK321. In boll opening stage, both AOB number of SY321 and SGK321 clearly decreased and they were significantly different from each other. Compared to the non-genetically modified cotton, the change in abundance of ammonia oxidizing bacteria was slightly smooth in the transgenic cotton. Not only the cotton growth stage but also the cotton type caused this difference. The transgenic cotton can slow down the speed of ammonia transformation through impacting the number of AOB, which is advantageous for plant growth.

  19. Oxide growth on aluminium alloys in the presence of ammonium fluoborate

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, J.; Paterson, P.; Flavell, T. [Royal Melbourne Inst. of Tech., VIC (Australia); Biddle, G. [Alcoa Rolled Products (Australia)

    1996-12-31

    The aim of this study as to determine the mechanisms involved in using ammonium fluoborate as a reducing atmosphere when preheating a high magnesium content aluminium alloy. Rutherford Backscattering (RBS) has been the major technique used in the analysis of samples, it revealed significant reduction in both the diffusion of magnesium to the surface and the calculated oxide thickness in the presence of NH{sub 4}BF{sub 4}. At temperatures above 500 deg C in air, SEM images revealed depressions and voids due to incipient melting at various stages, around the grain boundaries. Grain boundaries effectively acted as pipes aiding the diffusion of magnesium to the surface. These results have been verified through compositional analysis with both RBS and auger electron spectroscopy (AES). Results from NH{sub 4}BF{sub 4} atmosphere preheat conditions showed significant improvements. It was verified experimentally that above 500 deg C , AA5182 alloys undergo incipient melting at the grain boundaries with magnesium diffusing through to the surface. 5 refs., 1 fig.

  20. Oxide growth on aluminium alloys in the presence of ammonium fluoborate

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, J; Paterson, P; Flavell, T [Royal Melbourne Inst. of Tech., VIC (Australia); Biddle, G [Alcoa Rolled Products (Australia)

    1997-12-31

    The aim of this study as to determine the mechanisms involved in using ammonium fluoborate as a reducing atmosphere when preheating a high magnesium content aluminium alloy. Rutherford Backscattering (RBS) has been the major technique used in the analysis of samples, it revealed significant reduction in both the diffusion of magnesium to the surface and the calculated oxide thickness in the presence of NH{sub 4}BF{sub 4}. At temperatures above 500 deg C in air, SEM images revealed depressions and voids due to incipient melting at various stages, around the grain boundaries. Grain boundaries effectively acted as pipes aiding the diffusion of magnesium to the surface. These results have been verified through compositional analysis with both RBS and auger electron spectroscopy (AES). Results from NH{sub 4}BF{sub 4} atmosphere preheat conditions showed significant improvements. It was verified experimentally that above 500 deg C , AA5182 alloys undergo incipient melting at the grain boundaries with magnesium diffusing through to the surface. 5 refs., 1 fig.

  1. Oxide growth on aluminium alloys in the presence of ammonium fluoborate

    International Nuclear Information System (INIS)

    Oliver, J.; Paterson, P.; Flavell, T.; Biddle, G.

    1996-01-01

    The aim of this study as to determine the mechanisms involved in using ammonium fluoborate as a reducing atmosphere when preheating a high magnesium content aluminium alloy. Rutherford Backscattering (RBS) has been the major technique used in the analysis of samples, it revealed significant reduction in both the diffusion of magnesium to the surface and the calculated oxide thickness in the presence of NH 4 BF 4 . At temperatures above 500 deg C in air, SEM images revealed depressions and voids due to incipient melting at various stages, around the grain boundaries. Grain boundaries effectively acted as pipes aiding the diffusion of magnesium to the surface. These results have been verified through compositional analysis with both RBS and auger electron spectroscopy (AES). Results from NH 4 BF 4 atmosphere preheat conditions showed significant improvements. It was verified experimentally that above 500 deg C , AA5182 alloys undergo incipient melting at the grain boundaries with magnesium diffusing through to the surface. 5 refs., 1 fig

  2. Integral approaches to wastewater treatment plant upgrading for odor prevention: Activated Sludge and Oxidized Ammonium Recycling.

    Science.gov (United States)

    Estrada, José M; Kraakman, N J R; Lebrero, R; Muñoz, R

    2015-11-01

    Traditional physical/chemical end-of-the-pipe technologies for odor abatement are relatively expensive and present high environmental impacts. On the other hand, biotechnologies have recently emerged as cost-effective and environmentally friendly alternatives but are still limited by their investment costs and land requirements. A more desirable approach to odor control is the prevention of odorant formation before being released to the atmosphere, but limited information is available beyond good design and operational practices of the wastewater treatment process. The present paper reviews two widely applicable and economic alternatives for odor control, Activated Sludge Recycling (ASR) and Oxidized Ammonium Recycling (OAR), by discussing their fundamentals, key operating parameters and experience from the available pilot and field studies. Both technologies present high application potential using readily available plant by-products with a minimum plant upgrading, and low investment and operating costs, contributing to the sustainability and economic efficiency of odor control at wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Evaluation of granular anaerobic ammonium oxidation process for the disposal of pre-treated swine manure

    Directory of Open Access Journals (Sweden)

    Shou-Qing Ni

    2014-04-01

    Full Text Available With rising environmental concerns on potable water safety and eutrophication, increased media attention and tighter environmental regulations, managing animal waste in an environmentally responsible and economically feasible way can be a challenge. In this study, the possibility of using granular anammox process for ammonia removal from swine waste treatment water was investigated. A rapid decrease of NO2−–N and NH4+–N was observed during incubation with wastewater from an activated sludge deodorization reactor and anaerobic digestion-partial oxidation treatment process treating swine manure and its corresponding control artificial wastewaters. Ammonium removal dropped from 98.0 ± 0.6% to 66.9 ± 2.7% and nearly absent when the organic load in the feeding increased from 232 mg COD/L to 1160 mg COD/L and 2320 mg COD/L. The presence of organic carbon had limited effect on nitrite and total nitrogen removal. At a COD to N ratio of 0.9, COD inhibitory organic load threshold concentration was 727 mg COD/L. Mass balance indicated that denitrifiers played an important role in nitrite, nitrate and organic carbon removal. These results demonstrated that anammox system had the potential to effectively treat swine manure that can achieve high nitrogen standards at reduced costs.

  4. Ammonium addition inhibits 13C-methane incorporation into methanotroph membrane lipids in a freshwater sediment

    NARCIS (Netherlands)

    Nold, s.c.; Boschker, H.T.S.; Pel, R.; Laanbroek, H.J.

    1999-01-01

    To investigate the effect of ammonium addition on the species composition and activity of freshwater methane oxidizing bacteria, intact sediment cores were labeled with (CH4)-C-13 and incubated under ambient and elevated ammonium concentrations. After 7 days, methanotroph activity was assessed by

  5. Ammonium addition inhibits 13C-methane incorporation into methanotroph membrane lipids in a freshwater sediment

    NARCIS (Netherlands)

    Nold, S.C.; Boschker, H.T.S.; Pel, R.; Laanbroek, H.J.

    1999-01-01

    To investigate the effect of ammonium addition on the species composition and activity of freshwater methane oxidizing bacteria, intact sediment cores were labeled with 13CH4 and incubated under ambient and elevated ammonium concentrations. After 7 days, methanotroph activity was assessed by

  6. The anammoxosome: an intracytoplasmic compartment in anammox bacteria

    NARCIS (Netherlands)

    Niftrik, L.A.M.P. van; Fuerst, J.A.; Damste, J.S.S.; Kuenen, J.G.; Jetten, M.S.M.; Strous, M.

    2004-01-01

    Anammox bacteria belong to the phylum Planctomycetes and perform anaerobic ammonium oxidation (anammox); they oxidize ammonium with nitrite as the electron acceptor to yield dinitrogen gas. The anammox reaction takes place inside the anammoxosome: an intracytoplasmic compartment bounded by a single

  7. The anammoxosome : An intracytoplasmic compartment in anammox bacteria

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Niftrik, L.A. van; Fuerst, J.A.; Kuenen, J.G.; Jetten, M.S.M.; Strous, M.

    2004-01-01

    Anammox bacteria belong to the phylum Planctomycetes and perform anaerobic ammonium oxidation (anammox); they oxidize ammonium with nitrite as the electron acceptor to yield dinitrogen gas. The anammox reaction takes place inside the anammoxosome: an intracytoplasmic compartment bounded by a single

  8. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms.

    Science.gov (United States)

    Torres, M J; Simon, J; Rowley, G; Bedmar, E J; Richardson, D J; Gates, A J; Delgado, M J

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation. © 2016 Elsevier Ltd. All rights reserved.

  9. Role of copper oxides in contact killing of bacteria.

    Science.gov (United States)

    Hans, Michael; Erbe, Andreas; Mathews, Salima; Chen, Ying; Solioz, Marc; Mücklich, Frank

    2013-12-31

    The potential of metallic copper as an intrinsically antibacterial material is gaining increasing attention in the face of growing antibiotics resistance of bacteria. However, the mechanism of the so-called "contact killing" of bacteria by copper surfaces is poorly understood and requires further investigation. In particular, the influences of bacteria-metal interaction, media composition, and copper surface chemistry on contact killing are not fully understood. In this study, copper oxide formation on copper during standard antimicrobial testing was measured in situ by spectroscopic ellipsometry. In parallel, contact killing under these conditions was assessed with bacteria in phosphate buffered saline (PBS) or Tris-Cl. For comparison, defined Cu2O and CuO layers were thermally generated and characterized by grazing incidence X-ray diffraction. The antibacterial properties of these copper oxides were tested under the conditions used above. Finally, copper ion release was recorded for both buffer systems by inductively coupled plasma atomic absorption spectroscopy, and exposed copper samples were analyzed for topographical surface alterations. It was found that there was a fairly even growth of CuO under wet plating conditions, reaching 4-10 nm in 300 min, but no measurable Cu2O was formed during this time. CuO was found to significantly inhibit contact killing, compared to pure copper. In contrast, thermally generated Cu2O was essentially as effective in contact killing as pure copper. Copper ion release from the different surfaces roughly correlated with their antibacterial efficacy and was highest for pure copper, followed by Cu2O and CuO. Tris-Cl induced a 10-50-fold faster copper ion release compared to PBS. Since the Cu2O that primarily forms on copper under ambient conditions is as active in contact killing as pure copper, antimicrobial objects will retain their antimicrobial properties even after oxide formation.

  10. Oxidation of inorganic compounds of sulphur by various sulphur bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Parker, C D; Prisk, J

    1953-01-01

    Cultures of thiobacillus thiooxidans, Th. thioparus, Th. novellus, Thiobacillus b strains t and kand Th. concretivorus, Thiobacillus x and the m strains, organisms isolated from concrete were examined to elucidate the mode of oxidation and to establish the identity of the organisms recently isolated from corroded concrete. Thiosulphate was oxidized by all these bacteria. Th. thiooxidans, Th. concretivorus and Thiobacillus x first converted it to tetrathionate and sulphate and then oxidized the tetrathionate to sulphate and free sulphuric acid. Thiobaciullus x differed from the other two in that, owing to a lesser acid tolerance, some tetrathionate was found in the final products of oxidation. Th. Thioparus converted thiosulphate to sulphate and sulphur, followed by partial oxidation of the sulphur to sulphuric acid. Th. novellus produced sulphate and sulphuric acid. Thiobacillus b, the t and k strains and the m strains formed sulphate and tetrathionate with temporary increase in pH value; only Thiobacillus x oxidized tetrationate, yielding sulphate and sulphuric acid. Elementary sulphur was oxidized by Th. thiooxidans, th. Concretivorus, thiobacillus x and Th. thioparus; the rates of oxidation decreased in that order, and the only product was sulphuric acid. Hydrogen sulphide was oxidized only at low concentrations and only by th. Concretivorus and Thiobacillus x; sulphuric acid was the end-product, and elementary sulphur may have been an intermediate. Thiobacillus x differed from Th. thiooxidans in pH range for growth and from Th. thioparus in its method of oxidation of thiosulphate, tetrathionate and H/sub 2/S. The m strains were similar to thiobacillus b and the t and k strains of trautwein.

  11. The potential of methane-oxidizing bacteria for applications in environmental biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Wendlandt, Karin-Dagmar; Stottmeister, Ulrich; Jechorek, Mirko [Helmholtz-Center for Environmental Research UFZ, Leipzig (Germany); Helm, Jana [School of Physics and Astronomy, The University of Edinburgh, Edinburgh (United Kingdom); Soltmann, Bettina [Institute for Materials Science, Dresden University of Technology, Dresden (Germany); Beck, Matthias [Oncotec, Pharma Production GmbH, Dessau-Rosslau (Germany)

    2010-04-15

    Methanotrophic bacteria possess a unique set of enzymes enabling them to oxidize, degrade and transform organic molecules and synthesize new compounds. Therefore, they have great potential in environmental biotechnology. The application of these unique properties was demonstrated in three case studies: (i) Methane escaping from leaky gas pipes may lead to massive mortality of trees in urban areas. Lack of oxygen within the soil surrounding tree roots caused by methanotrophic activity was identified as one of the reasons for this phenomenon. The similarity between metabolic reactions performed by the key enzymes of methanotrophs (methane monooxygenase) and ammonium oxidizers (ammonium monooxygenase) might offer a solution to this problem by applying commercially available nitrification and urease inhibitors. (ii) Methanotrophs are able to co-metabolically degrade contaminants such as low-molecular-weight-chlorinated hydrocarbons in soil and water in the presence of methane. Batch and continuous trichloroethylene degradation experiments in laboratory-scale reactors using Methylocystis sp. GB 14 were performed, partly with cells entrapped in a polymer matrix. (iii) Using a short, two-stage pilot-scale process, the intracellular polymer accumulation of poly-{beta}-hydroxybutyrate (PHB) in methanotrophs reached a maximum of 52%. Interestingly, an ultra-high-molecular-weight PHB of 3.1 MDa was accumulated under potassium deficiency. Under strictly controlled conditions (temperature, pH and methane supply) this process can be nonsterile because of the establishment of a stable microbial community (dominant species Methylocystis sp. GB 25 {>=}86% by biomass). The possibility to substitute methane with biogas from renewable sources facilitates the development of a methane-based PHB production process that yields a high-quality biopolymer at competitive costs. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Evaluating primers for profiling anaerobic ammonia oxidizing bacteria within freshwater environments.

    Directory of Open Access Journals (Sweden)

    Puntipar Sonthiphand

    Full Text Available Anaerobic ammonia oxidizing (anammox bacteria play an important role in transforming ammonium to nitrogen gas and contribute to fixed nitrogen losses in freshwater environments. Understanding the diversity and abundance of anammox bacteria requires reliable molecular tools, and these are not yet well established for these important Planctomycetes. To help validate PCR primers for the detection of anammox bacteria within freshwater ecosystems, we analyzed representative positive controls and selected samples from Grand River and groundwater sites, both from Ontario, Canada. The objectives of this study were to identify a suitable anammox denaturing gradient gel electrophoresis (DGGE fingerprint method by using GC-clamp modifications to existing primers, and to verify the specificity of anammox-specific primers used for DGGE, cloning and qPCR methods. Six primer combinations were tested from four published primer sets (i.e. A438f/A684r, Amx368f/Amx820r, An7f/An1388r, and Pla46/1392r for both direct and nested PCR amplifications. All PCR products were run subsequently on DGGE gels to compare the resulting patterns. Two anammox-specific primer combinations were also used to generate clone libraries and quantify anammox bacterial 16S rRNA genes with qPCR. The primer set A438f/A684r was highly specific to anammox bacteria, provided reliable DGGE fingerprints and generated a high proportion of anammox-related clones. A second primer set (Amx368f/Amx820r was anammox specific, based on clone library analysis, but PCR products from different candidate species of anammox bacteria resolved poorly using DGGE analysis. Both DGGE and cloning results revealed that Ca. Brocadia and an uncharacterized anammox bacterial cluster represented the majority of anammox bacteria found in Grand River sediment and groundwater samples, respectively. Together, our results demonstrate that although Amx368f/Amx820r was useful for anammox-specific qPCR and clone library

  13. The fate of arsenic adsorbed on iron oxides in the presence of arsenite-oxidizing bacteria.

    Science.gov (United States)

    Zhang, Zhennan; Yin, Naiyi; Du, Huili; Cai, Xiaolin; Cui, Yanshan

    2016-05-01

    Arsenic (As) is a redox-active metalloid whose toxicity and mobility in soil depend on its oxidation state. Arsenite [As(III)] can be oxidized by microbes and adsorbed by minerals in the soil. However, the combined effects of these abiotic and biotic processes are not well understood. In this study, the fate of arsenic in the presence of an isolated As(III)-oxidizing bacterium (Pseudomonas sp. HN-1, 10(9) colony-forming units (CFUs)·ml(-1)) and three iron oxides (goethite, hematite, and magnetite at 1.6 g L(-1)) was determined using batch experiments. The total As adsorption by iron oxides was lower with bacteria present and was higher with iron oxides alone. The total As adsorption decreased by 78.6%, 36.0% and 79.7% for goethite, hematite and magnetite, respectively, due to the presence of bacteria. As(III) adsorbed on iron oxides could also be oxidized by Pseudomonas sp. HN-1, but the oxidation rate (1.3 μmol h(-1)) was much slower than the rate in the aqueous phase (96.2 μmol h(-1)). Therefore, the results of other studies with minerals only might overestimate the adsorptive capacity of solids in natural systems; the presence of minerals might hinder As(III) oxidation by microbes. Under aerobic conditions, in the presence of iron oxides and As(III)-oxidizing bacteria, arsenic is adsorbed onto iron oxides within the adsorption capacity, and As(V) is the primary form in the solid and aqueous phases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. [Rapid startup and nitrogen removal characteristic of anaerobic ammonium oxidation reactor in packed bed biofilm reactor with suspended carrier].

    Science.gov (United States)

    Chen, Sheng; Sun, De-zhi; Yu, Guang-lu

    2010-03-01

    Packed bed biofilm reactor with suspended carrier was used to cultivate ANAMMOX bacteria with sludge inoculums from WWTP secondary settler. The startup of ANAMMOX reactor was comparatively studied using high nitrogen loading method and low nitrogen loading method with aerobically biofilmed on the carrier, and the nitrogen removal characteristic was further investigated. The results showed that the reactor could be started up successfully within 90 days using low nitrogen loading method, the removal efficiencies of ammonium and nitrite were nearly 100% and the TN removal efficiencywas over 75% , however, the high nitrogen loading method was proved unsuccessfully for startup of ANAMMOX reactor probably because of the inhibition effect of high concentration of ammonium and nitrite. The pH value of effluent was slightly higher than the influent and the pH value can be used as an indicator for the process of ANAMMOX reaction. The packed bed ANAMMOX reactor with suspended carrier showed good characteristics of high nitrogen loading and high removal efficiency, 100% of removal efficiency could be achieved when the influent ammonium and nitrite concentration was lower than 800 mg/L.

  15. Effects of Sodium Citrate on the Ammonium Sulfate Recycled Leaching of Low-Grade Zinc Oxide Ores

    Science.gov (United States)

    Yang, Kun; Li, Shi-wei; Zhang, Li-bo; Peng, Jin-hui; Ma, Ai-yuan; Wang, Bao-bao

    2016-03-01

    The effects of sodium citrate on ammonium sulfate recycled leaching of low-grade zinc oxide ores were studied. By applying various kinds of detection and analysis techniques such as chemical composition analysis, chemical phase method, scanning electron microscopy and energy dispersive spectrum (SEM/EDS), X-ray diffraction (XRD) and Fourier-transforming infrared spectrum (FT-IR), zinc raw ore, its leaching slag and the functional mechanism of sodium citrate were investigated. Based on a comprehensive analysis, it can be concluded that in contrast to hemimorphite (Zn4Si2O7(OH)2 · H2O), amorphous smithsonite (ZnCO3) and zinc silicate (Zn2SiO4) prove to be refractory phases under ammonium sulfate leaching, while sodium citrate has a better chelating action with the refractory phases, resulting in a higher zinc leaching rate. Under conditions of [NH3]/[NH3]T molar ratio being 0.5, [NH3]T being 7.5 mol/L, [Na3C6H5O7] being 0.2 mol/L, S/L ratio being 1:5, temperature being 303 K, holding time being 1 h in each of the two stages, and stirring rate being 300 rpm, the leaching rate of zinc reached 93.4%. In this article, sulfate ammonium recycled technology also reveals its unique advantage in processing low-grade zinc oxide ores accompanied by high silicon and high alkaline gangue.

  16. Production and consumption of nitric oxide by three methanotrophic bacteria.

    Science.gov (United States)

    Ren, T; Roy, R; Knowles, R

    2000-09-01

    We studied nitrogen oxide production and consumption by methanotrophs Methylobacter luteus (group I), Methylosinus trichosporium OB3b (group II), and an isolate from a hardwood swamp soil, here identified by 16S ribosomal DNA sequencing as Methylobacter sp. strain T20 (group I). All could consume nitric oxide (nitrogen monoxide, NO), and produce small amounts of nitrous oxide (N(2)O). Only Methylobacter strain T20 produced large amounts of NO (>250 parts per million by volume [ppmv] in the headspace) at specific activities of up to 2.0 x 10(-17) mol of NO cell(-1) day(-1), mostly after a culture became O(2) limited. Production of NO by strain T20 occurred mostly in nitrate-containing medium under anaerobic or nearly anaerobic conditions, was inhibited by chlorate, tungstate, and O(2), and required CH(4). Denitrification (methanol-supported N(2)O production from nitrate in the presence of acetylene) could not be detected and thus did not appear to be involved in the production of NO. Furthermore, cd(1) and Cu nitrite reductases, NO reductase, and N(2)O reductase could not be detected by PCR amplification of the nirS, nirK, norB, and nosZ genes, respectively. M. luteus and M. trichosporium produced some NO in ammonium-containing medium under aerobic conditions, likely as a result of methanotrophic nitrification and chemical decomposition of nitrite. For Methylobacter strain T20, arginine did not stimulate NO production under aerobiosis, suggesting that NO synthase was not involved. We conclude that strain T20 causes assimilatory reduction of nitrate to nitrite, which then decomposes chemically to NO. The production of NO by methanotrophs such as Methylobacter strain T20 could be of ecological significance in habitats near aerobic-anaerobic interfaces where fluctuating O(2) and nitrate availability occur.

  17. Isotopologue signatures of nitrous oxide produced by nitrate-ammonifying bacteria isolated from soil

    Science.gov (United States)

    Behrendt, Undine; Well, Reinhard; Giesemann, Anette; Ulrich, Andreas; Augustin, Jürgen

    2015-04-01

    Agricultural soils are the largest single source of anthropogenic N2O to the atmosphere, primarily driven by microbiological processes such as denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Both processes occur under similar conditions of low oxygen concentration and therefore, source partitioning of emitted N2O is difficult. Understanding what controls the dynamics and reaction equilibrium of denitrification and DNRA is important and may allow the development of more effective mitigation strategies. 15N site preference (SP), i.e. the difference between 15N of the central and peripheral N-position of the asymmetric N2O molecule, differs depending on processes involved in N2O formation. Hence investigation of the isotopomer ratios of formed N2O potentially presents a reliable mean to identify its source. In this study, bacterial isolates obtained from organic soils were screened for their ability to reduce nitrate/nitrite to ammonium and to release N2O to the atmosphere. Taxonomic characterisation of the strains revealed that N2O formation was only detected in ammonifying strains affiliated to several genera of the family Enterobacteriaceae and strains belonging to the genus Bacillus and Paenibacillus. Sampling of N2O was conducted by incubation of strains under oxic and anoxic conditions. Investigation of the 15N site preference showed SP values in the range of 39 to 57 o . Incubation conditions had no influence on the SP. The lowest values were achieved by a strain of the species Escherichia coli which was included in this study as a DNRA reference bacterium harbouring the NrfA gene that is coding the nitrite reductase, associated with respiratory nitrite ammonification. Soil isolates showed SP-values higher than 40 o . Comparison of these results with SP-values of N2O produced by denitrifying bacteria in pure cultures (-5 to 0 o )^[1, 2]revealedsignificantdifferences.Incontrast,N_2OproducedbydenitrifyingfungidisplayedSP - valuesinarangeof

  18. Development of anaerobic ammonium oxidation (anammox) for biological nitrogen removal in domestic wastewater treatment (Case study: Surabaya City, Indonesia)

    Science.gov (United States)

    Wijaya, I. Made Wahyu; Soedjono, Eddy Setiadi; Fitriani, Nurina

    2017-11-01

    Domestic wastewater effluent is the main contributor to diverse water pollution problems. The contaminants contained in the wastewater lead the low quality of water. The presence of ammonium and nitrate along with phosphorus are potentially cause eutrophication and endanger aquatic life. Excess nutrients, mostly N and P is the main cause of eutrophication which is result in oxygen depletion, biodiversity reduction, fish kills, odor and increased toxicity. Most of the domestic wastewater in Surabaya City still contains nitrogen that exceeded the threshold. The range of ammonium and orthophosphate concentration in the domestic wastewater is between 6.29 mg/L - 38.91 mg/L and 0.44 mg/L - 1.86 mg/L, respectively. An advance biological nitrogen removal process called anammox is a sustainable and cost effective alternative to the basic method of nitrogen removal, such as nitrification and denitrification. Many research have been conducted through anammox and resulted promisingly way to remove nitrogen. In this process, ammonium will be oxidized with nitrite as an electron acceptor to produce nitrogen gas and low nitrate in anoxic condition. Anammox requires less oxygen demand, no needs external carbon source, and low operational cost. Based on its advantages, anammox is possible to apply in domestic wastewater treatment in Surabaya with many further studies.

  19. Influence of tropical leaf litter on nitrogen mineralization and community structure of ammonia-oxidizing bacteria

    Directory of Open Access Journals (Sweden)

    Diallo, MD.

    2015-01-01

    increased inorganic N in soil after 140 days of incubation while A. gayanus and C. equisetifolia litter immobilized N. Azadirachta indica and E. tremula amendments had no significant effects in N mineralization. The results show that the addition of six phenolic acids significantly reduced NH4+ and NO3- compared to the control soil but had no significant effect on N mineralization. For the community of ammonium-oxidizing bacteria, a litter quality effect was noted, but the incubation time effect was more pronounced, except for C. equisetifolia litter. Conclusions. Results confirmed that the N mineralization changed with litter type under controlled conditions and the genetic structure of AOB is highly dependent on litter quality.

  20. The inhibitory effects of free ammonia on ammonia oxidizing bacteria and nitrite oxidizing bacteria under anaerobic condition.

    Science.gov (United States)

    Qian, Wenting; Peng, Yongzhen; Li, Xiyao; Zhang, Qiong; Ma, Bin

    2017-11-01

    The free ammonia (FA) inhibition on ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) under anaerobic condition was investigated in this study. The results indicated that NOB was more sensitive to the FA anaerobic treatment than AOB. The FA anaerobic inhibition on nitrifier gradually heightened with the increase of FA concentration. Accompanied with FA concentration increase from 0 to 16.82mgNH 3 -N·L -1 (the highest concentration adopted in this study), the activity of AOB reduced by 15.9%, while NOB decreased by 29.2%. After FA anaerobic treatment, nitrite was accumulated during nitrification. However, the nitrite accumulation disappeared on the sixth cycle of activity recovery tests with excessive aeration. Based on this result, a novel strategy for achieving nitritation is proposed, which involves recirculating a portion of the activated sludge through a side-line sludge treatment unit, where the sludge is subjected to treatment with FA under anaerobic condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Enhancing the Process of Anaerobic Ammonium Oxidation Coupled to Iron Reduction in Constructed Wetland Mesocosms with Supplementation of Ferric Iron Hydroxides

    Science.gov (United States)

    Shuai, W.; Jaffe, P. R.

    2017-12-01

    Effective ammonium (NH4+) removal has been a challenge in wastewater treatment processes. Aeration, which is required for the conventional NH4+ removal approach by ammonium oxidizing bacteria, is an energy intensive process during the operation of wastewater treatment plant. The efficiency of NH4+ oxidation in natural systems is also limited by oxygen transfer in water and sediments. The objective of this study is to enhance NH4+ removal by applying a novel microbial process, anaerobic NH4+ oxidation coupled to iron (Fe) reduction (also known as Feammox), in constructed wetlands (CW). Our studies have shown that an Acidimicrobiaceae bacterium named A6 can carry out the Feammox process using ferric Fe (Fe(III)) minerals like ferrihydrite as their electron acceptor. To investigate the properties of the Feammox process in CW as well as the influence of electrodes, Feammox bacterium A6 was inoculated in planted CW mesocosms with electrodes installed at multiple depths. CW mesocosms were operated using high NH4+ nutrient solution as inflow under high or low sediment Fe(III) level. During the operation, NH4+ and ferrous Fe concentration, pore water pH, voltages between electrodes, oxidation reduction potential and dissolved oxygen were measured. At the end of the experiment, CW sediment samples at different depths were taken, DNAs were extracted and quantitative polymerase chain reaction and pyrosequencing were performed to analyze the microbial communities. The results show that the high Fe level CW mesocosm has much higher NH4+ removal ability than the low Fe level CW mesocosm after Fe-reducing conditions are developed. This indicates the enhanced NH4+ removal can be attributed to elevated Feammox activity in high Fe level CW mesocosm. The microbial community structures are different in high or low Fe level CW mesocosms and on or away from the installed electrodes. The voltages between cathode and anode increased after the injection of A6 enrichment culture in low Fe

  2. Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Qian Xin, E-mail: qx3023@nimte.ac.cn [National Engineering Laboratory of Carbon Fiber Preparation Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang Xuefei; Ouyang Qin; Chen Yousi; Yan Qing [National Engineering Laboratory of Carbon Fiber Preparation Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Longitudinal grooves on the fiber surface became more well-defined and much deeper after surface treatment. Black-Right-Pointing-Pointer The concentration of oxygen and nitrogen on the fiber surface increased after surface treatment. Black-Right-Pointing-Pointer The intensity of oxidative reaction varied with the change of ammonium-salt solutions. Black-Right-Pointing-Pointer The higher the concentration of OH{sup -} ions in the electrolytes, the violent the oxidative reaction happened. - Abstract: The surfaces of polyacrylonitrile-based carbon fibers were treated by an electrochemical anodic method. Three different kinds of ammonium-salt solutions namely NH{sub 4}HCO{sub 3}, (NH{sub 4}){sub 2}CO{sub 3} and (NH{sub 4}){sub 3}PO{sub 4} were respectively chosen as the electrolytes. The effect of these electrolytes on the surface structure was studied by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The results showed that longitudinal grooves on the fiber surface became more well-defined and much deeper after surface treatment, and the root mean square roughness (RMS) of carbon fiber surface increased from 4.6 nm for untreated fibers to 13.5 nm for treated fibers in (NH{sub 4}){sub 3}PO{sub 4} electrolytes. The concentration of oxygen and nitrogen atomic on the fiber surface increased after surface treatment. The tensile strength of oxidized fibers had an obvious decrease, whereas the interlaminar shear strength (ILSS) value of corresponding carbon fiber reinforced polymers (CFRPs) increased in a large extent. The intensity of oxidative reaction varied with the change of ammonium-salt solutions and electrochemical oxidation in (NH{sub 4}){sub 3}PO{sub 4} electrolyte was of the most violence. The corresponding mechanism was also discussed and the result showed that the higher the concentration of OH{sup -} ions in the electrolytes, the violent the oxidative

  3. Oxidation of ferrocene by thiocyanic acid in the presence of ammonium oxalate

    Science.gov (United States)

    Ruslin, Farah bt; Yamin, Bohari M.

    2014-09-01

    A flake-like crystalline salt was obtained from the reaction of ferrocene, oxalic acid and ammonium thiocyanate in ethanol The elemental analysis and spectroscopic data were in agreement with the preliminary X-ray molecular structure. The compound consists of four ferrocenium moieties and a counter anion consisting of two (tetraisothiocyanato)iron(III) linked by an oxalato bridging group in such a way that both iron central atoms adopt octahedral geometries.

  4. Aerobic ammonium oxidation in the oxycline and oxygen minimum zone of the eastern tropical South Pacific off northern Chile (˜20°S)

    Science.gov (United States)

    Molina, Verónica; Farías, Laura

    2009-07-01

    Aerobic NH 4+ oxidation rates were measured along the strong oxygen gradient associated with the oxygen minimum zone (OMZ) of the eastern tropical South Pacific off northern Chile (˜20°S) during 2000, 2003, and 2004. This process was examined by comparing NH 4+ rates of change during dark incubations, with and without the addition of allylthiourea, a classical inhibitor of the ammonia monooxygenase enzyme of ammonium-oxidizing bacteria. The contribution of aerobic NH 4+ oxidation in dark carbon fixation and NO 2- rates of change were also explored. Thirteen samples were retrieved from the oxycline (252 to ⩽5 μM O 2; 15 to ˜65 m depth) and three from the oxygen minimum core (⩽5 μM O 2; 100-200 m depth). Aerobic NH 4+ oxidation rates were mainly detected in the upper part (15-30 m depth) of the oxycline, with rates ranging from 0.16 to 0.79 μM d -1, but not towards the oxycline base (40-65 m depth). In the oxygen minimum core, aerobic NH 4+ oxidation was in the upper range and higher than in the upper part of the oxycline (0.70 and 1.0 μM d -1). Carbon fixation rates through aerobic NH 4+ oxidation ranged from 0.18 to 0.43 μg C L -1 d -1 and contributed between 33% and 57% of the total dark carbon fixation, mainly towards the oxycline base and, in a single experiment, in the upper part of the oxycline. NO 2- consumption was high (up to 10 μM d -1) towards the oxycline base and OMZ core, but was significantly reduced in experiments amended with allylthiourea, indicating that aerobic NH 4+ oxidation could contribute between 8% and 76% of NO 2- production, which in turn could be available for denitrifiers. Overall, these results support the important role of aerobic NH 4+ oxidizers in the nitrogen and carbon cycling in the OMZ and at its upper boundary.

  5. Monitoring the nitrification and identifying the endpoint of ammonium oxidation by using a novel system of titrimetry.

    Science.gov (United States)

    Zhang, Xin; Zhang, Daijun; Lu, Peili; Bai, Cui; Xiao, Pengying

    2011-01-01

    Based on the structure of the hybrid respirometer previously developed in our group, a novel implementation for titrimetry was developed, in which two pH electrodes were installed at the inlet and outlet of the measuring cell. The software capable of digital filtering and titration time delay correction was developed in LabVIEW. The hardware and software of the titrimeter and the respirometer were integrated to construct a novel system of respirometry-titrimetry. The system was applied to monitor a batch nitrification process. The obtained profiles of oxygen uptake rate (OUR) and hydrogen ion production rate (HPR) are consistent with each other and agree with the principle of the biological nitrification reaction. According to the OUR and HPR measurements, the oxidized ammonium concentrations were estimated accurately. Furthermore, the endpoint of ammonium oxidation was identified with much higher sensitivity by the HPR measurement. The system could be potentially used for on-line monitoring of biochemical reactions occurring in any kind of bioreactors because its measuring cell is completely independent of the bioreactor.

  6. Nitrite oxidizing bacteria for water treatment in coastal aquaculture system

    Science.gov (United States)

    Noorak, S.; Rakkhiaw, S.; Limjirakhajornt, K.; Uppabullung, A.; Keawtawee, T.; Sangnoi, Y.

    2018-04-01

    This research aimed to isolate and characterize nitrite oxidizing bacteria and to study their capability for water quality improvement. Fourteen strains of bacteria with nitrite-oxidizing character were isolated after 21 days of enrichment in Pep-Beef-NOB medium contained NaNO2. Two strains, SF-1 and SF-5, showed highest nitrite removal rate for 42.42% and 37.2%, respectively. These strains were determined an efficiency of open-system wastewater treatment for 14 days. The results showed that control, SF-1 and SF-5 had remove ammonia from day 1 to day 6. At the end of the study, ammonia was removed by the control, SF-1 and SF-5 for 81.27%, 70.1% and 69.82%, respectively. Nitrite concentration was lowest at day 8 with removal rate of 98.73%, 98.3% and 97.24% from control, SF-1 and SF-5, respectively. However, nitrite concentration in control experiment was increased again at day 11 whereas in SF-1 and SF-5 were increased at day 13. Chemical Oxygen Demand (COD) was decreased by 77.78%, 73.50% and 78.63% in the control, SF-1 and SF-5, respectively. Biological Oxygen Demand (BOD) in the control, SF-1 and SF-5 were reduced by 85.92%, 79.53% and 82.09%, respectively. Based on 16S rRNA gene, SF-1 and SF-5 were identified as Bacillus vietnamensis and B. firmus, respectively.

  7. Intermittent Aeration Suppresses Nitrite-Oxidizing Bacteria in Membrane-Aerated Biofilms: A Model-Based Explanation

    DEFF Research Database (Denmark)

    Ma, Yunjie; Domingo Felez, Carlos; Plósz, Benedek G.

    2017-01-01

    . On the basis of dissolved oxygen (DO), ammonium, nitrite, and nitrate profiles within the biofilm and in the bulk, a 1-dimensional nitrifying biofilm model was developed and calibrated. The model was utilized to explore the potential mechanisms of NOB suppression associated with intermittent aeration...... nitritation, strategies to suppress nitrite-oxidizing bacteria (NOB) are needed, which are ideally grounded on an understanding of underlying mechanisms. In this study, a nitrifying MABR was operated under intermittent aeration. During eight months of operation, AOB dominated, while NOB were suppressed...... during intermittent aeration was mostly explained by periodic inhibition caused by free ammonia due to periodic transient pH upshifts. Dissolved oxygen limitation did not govern NOB suppression. Different intermittent aeration strategies were then evaluated for nitritation success in intermittently...

  8. Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification

    DEFF Research Database (Denmark)

    Chamchoi, N.; Nitisoravut, S.; Schmidt, Jens Ejbye

    2008-01-01

    of Amx 820 and EUB 338 mixed. Denitrification was observed through the reductions of both COD and nitrate–nitrite concentrations under anaerobic/anoxic conditions. By providing a stoichiometric ratio of nitrite to ammonium nitrogen with addition nitrate nitrogen, a gradual reduction of ANAMMOX activity...... was found with an increase of COD concentration in a range of 100–400 mg l−1. This is equivalent to the COD to N ratio of 0.9–2.0. The COD concentration was found to be a control variable for process selection between ANAMMOX reaction and denitrification. A reduction of COD and nitrite–nitrate...

  9. Application of Ammonium Persulfate for Selective Oxidation of Guanines for Nucleic Acid Sequencing

    Directory of Open Access Journals (Sweden)

    Yafen Wang

    2017-07-01

    Full Text Available Nucleic acids can be sequenced by a chemical procedure that partially damages the nucleotide positions at their base repetition. Many methods have been reported for the selective recognition of guanine. The accurate identification of guanine in both single and double regions of DNA and RNA remains a challenging task. Herein, we present a new, non-toxic and simple method for the selective recognition of guanine in both DNA and RNA sequences via ammonium persulfate modification. This strategy can be further successfully applied to the detection of 5-methylcytosine by using PCR.

  10. Regulation of adrenomedullin and nitric oxide production by periodontal bacteria.

    Science.gov (United States)

    Hussain, Q A; McKay, I J; Gonzales-Marin, C; Allaker, R P

    2015-10-01

    In periodontitis the host response to bacterial challenge includes activity of the multifunctional molecules adrenomedullin (AM) and nitric oxide (NO). The aim of this study was to investigate the role of periodontal bacteria in regulating the production of these molecules from cultured cells. Regulation of AM and NO production from oral keratinocytes when challenged with culture supernatants from Aggregatibacter actinomycetemcomitans, Campylobacter rectus, Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, Veillonella atypica, Streptococcus salivarius and Candida albicans was examined. AM and NO were measured in cell culture supernatants using an enzyme-linked immunosorbent assay and the nitrate/nitrite (NO metabolites) Griess assay respectively. Cellular production of AM and inducible NO synthase was also analysed in target cells by immunofluorescence and Western blot analysis. The inter-relationship of AM and NO production were further investigated with macrophages. A. actinomycetemcomitans and C. rectus induced maximal levels of both AM and NO after 6 and 48 h respectively from oral keratinocytes. AM production in macrophages was upregulated in response to the NO donor S-nitrosoglutathione and partially blocked by the inducible NO synthase inhibitor, N(ω) -Nitro-l-arginine methyl ester hydrochloride. Likewise, NO production was increased upon exposure to AM, while the AM receptor antagonist AM 22-52 reduced the release of NO. Pathogens associated with aggressive periodontitis, A. actinomycetemcomitans and C. rectus, were more effective than those associated with chronic periodontitis, P. gingivalis and Prev. intermedia, and commensals, S. salivarius and V. atypica, as regards the upregulation of AM and NO production from oral keratinocytes. Interaction between these molecules was also demonstrated with macrophages. Understanding the coordinated regulation of AM and NO production in response to periodontal bacteria may identify

  11. Evaluation on the microbial interactions of anaerobic ammonium oxidizers and heterotrophs in Anammox biofilm

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Mael; Smets, Barth F.

    2012-01-01

    and the affecting factors were evaluated with both experimental and modeling approaches. Fluorescent in situ hybridization (FISH) analysis illustrated that Anammox bacteria and heterotrophs accounted for 77% and 23% of the total bacteria, respectively, even without addition of an external carbon source....... Experimental results showed the heterotrophs could grow both on SMP and decay released substrate from the metabolism of the Anammox bacteria. However, heterotrophic growth in Anammox biofilm (23%) was significantly lower than that of nitrifying biofilm (30–50%). The model predictions matched well...... with the experimental observations of the bacterial distribution, as well as the nitrogenous transformations in batch and continuous experiments. The modeling results showed that low nitrogen surface loading resulted in a lower availability of SMP leading to low heterotrophic growth in Anammox biofilm, but high...

  12. Growth of ammonia-oxidizing archaea and bacteria in cattle manure compost under various temperatures and ammonia concentrations.

    Science.gov (United States)

    Oishi, Ryu; Tada, Chika; Asano, Ryoki; Yamamoto, Nozomi; Suyama, Yoshihisa; Nakai, Yutaka

    2012-05-01

    A recent study showed that ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) coexist in the process of cattle manure composting. To investigate their physiological characteristics, liquid cultures seeded with fermenting cattle manure compost were incubated at various temperatures (37°C, 46°C, or 60°C) and ammonium concentrations (0.5, 1, 4, or 10 mM NH (4) (+) -N). The growth rates of the AOB and AOA were monitored using real-time polymerase chain reaction analysis targeting the bacterial and archaeal ammonia monooxygenase subunit A genes. AOB grew at 37°C and 4 or 10 mM NH (4) (+) -N, whereas AOA grew at 46°C and 10 mM NH (4) (+) -N. Incubation with allylthiourea indicated that the AOB and AOA grew by oxidizing ammonia. Denaturing gradient gel electrophoresis and subsequent sequencing analyses revealed that a bacterium related to Nitrosomonas halophila and an archaeon related to Candidatus Nitrososphaera gargensis were the predominant AOB and AOA, respectively, in the seed compost and in cultures after incubation. This is the first report to demonstrate that the predominant AOA in cattle manure compost can grow and can probably oxidize ammonia under moderately thermophilic conditions.

  13. Oxidation of methane in biotrickling filters inoculated with methanotrophic bacteria.

    Science.gov (United States)

    Cáceres, Manuel; Dorado, Antonio D; Gentina, Juan C; Aroca, Germán

    2017-11-01

    The oxidation of methane (CH 4 ) using biofilters has been proposed as an alternative to mitigate anthropogenic greenhouse gas emissions with a low concentration of CH 4 that cannot be used as a source of energy. However, conventional biofilters utilize organic packing materials that have a short lifespan, clogging problems, and are commonly inoculated with non-specific microorganisms leading to unpredictable CH 4 elimination capacities (EC) and removal efficiencies (RE). The main objective of this work was to characterize the oxidation of CH 4 in two biotrickling filters (BTFs) packed with polyethylene rings and inoculated with two methanotrophic bacteria, Methylomicrobium album and Methylocystis sp., in order to determine EC and CO 2 production (pCO 2 ) when using a specific inoculum. The repeatability of the results in both BTFs was determined when they operated at the same inlet load of CH 4 . A dynamic mathematical model that describes the CH 4 abatement in the BTFs was developed and validated using mass transfer and kinetic parameters estimated independently. The results showed that EC and pCO 2 of the BTFs are not identical but very similar for all the conditions tested. The use of specific inoculum has shown a faster startup and higher EC per unit area (0.019 gCH 4  m -2  h -1 ) in comparison to most of the previous studies at the same CH 4 load rate (23.2 gCH 4  m -3  h -1 ). Global mass balance showed that the maximum reduction of CO 2 equivalents was 98.5 gCO 2eq  m -3  h -1 . The developed model satisfactorily described CH 4 abatement in BTFs for a wide range of conditions.

  14. Biophysical properties of membrane lipids of anammox bacteria : I. Ladderane phospholipids form highly organized fluid membranes

    NARCIS (Netherlands)

    Boumann, Henry A.; Longo, Marjorie L.; Stroeve, Pieter; Poolman, Bert; Hopmans, Ellen C.; Stuart, Marc C. A.; Damste, Jaap S. Sinninghe; Schouten, Stefan

    Anammox bacteria that are capable of anaerobically oxidizing ammonium (anammox) with nitrite to nitrogen gas produce unique membrane phospholipids that comprise hydrocarbon chains with three or five linearly condensed cyclobutane rings. To gain insight into the biophysical properties of these

  15. Biochemical and chemical characterization of pink-pigmented oxidative bacteria.

    Science.gov (United States)

    Wallace, P L; Hollis, D G; Weaver, R E; Moss, C W

    1990-04-01

    The biochemical and chemical characteristics were determined for 156 clinical isolates of pink-pigmented bacteria that are similar to but distinct from Methylobacterium extorquens (synonymous with Pseudomonas mesophilica). These isolates were gram-negative, nonfermentative, usually nonvacuolated, coccoid rods; all grew at 35 degrees C and were catalase and urease positive; the majority grew on MacConkey agar and were variable for oxidase production and motility. On the basis of oxidation of xylose and mannitol and hydrolysis of esculin, these 156 strains were subdivided into four groups that were designated "pink coccoid" groups I, II, III, and IV. Groups I, II, and III are similar to an unnamed taxon described by Gilardi and Faur in 1984; only strains of group IV hydrolyze esculin. The cellular fatty acid compositions of strains of groups I, II, and III were essentially identical and differed from strains of group IV by the absence of 3-OH-C14:0 and the presence of C19:0 delta and 2-OH-C19:0 delta. The fatty acid composition of group IV strains was most similar to that of M. extorquens but differed by the presence of small amounts of two C17:1 acids, 3-OH-C16:0, and 2-OH-C18:1.

  16. Ammonium-induced inhibition of ammonium-starved Nitrosomonas europaea cells in soil and sand slurries

    NARCIS (Netherlands)

    Gerards, S.; Duyts, H.; Laanbroek, H.J.

    1998-01-01

    Ammonia-oxidising bacteria are poor competitors for limiting amounts of ammonium. Hence, starvation for ammonium seems to be the regular condition for these bacteria in natural environments. Long-term survival in the absence of ammonium will be dependent on the ability to maintain large population

  17. Toxicity and transformation of graphene oxide and reduced graphene oxide in bacteria biofilm.

    Science.gov (United States)

    Guo, Zhiling; Xie, Changjian; Zhang, Peng; Zhang, Junzhe; Wang, Guohua; He, Xiao; Ma, Yuhui; Zhao, Bin; Zhang, Zhiyong

    2017-02-15

    Impact of graphene based material (GNMs) on bacteria biofilm has not been well understood yet. In this study, we compared the impact of graphene oxide (GO) and reduced graphene oxide (rGO) on biofilm formation and development in Luria-Bertani (LB) medium using Escherichia coli and Staphylococcus aureus as models. GO significantly enhanced the cell growth, biofilm formation, and biofilm development even up to a concentration of 500mg/L. In contrast, rGO (≥50mg/L) strongly inhibited cell growth and biofilm formation. However, the inhibitory effects of rGO (50mg/L and 100mg/L) were attenuated in the mature phase (>24h) and eliminated at 48h. GO at 250mg/L decreased the reactive oxygen species (ROS) levels in biofilm and extracellular region at mature phase. ROS levels were significantly increased by rGO at early phase, while they returned to the same levels as control at mature phase. These results suggest that oxidative stress contributed to the inhibitory effect of rGO on bacterial biofilm. We further found that supplement of extracellular polymeric substances (EPS) in the growth medium attenuated the inhibitory effect of rGO on the growth of developed biofilm. XPS results showed that rGO were oxidized to GO which can enhance the bacterial growth. We deduced that the elimination of the toxicity of rGO at mature phase was contributed by EPS protection and the oxidation of rGO. This study provides new insights into the interaction of GNMs with bacteria biofilm. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Application of hierarchical oligonucleotide primer extension (HOPE) to assess relative abundances of ammonia- and nitrite-oxidizing bacteria

    KAUST Repository

    Scarascia, Giantommaso

    2017-04-04

    Background: Establishing an optimal proportion of nitrifying microbial populations, including ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), complete nitrite oxidizers (comammox) and ammonia-oxidizing archaea (AOA), is important for ensuring the efficiency of nitrification in water treatment systems. Hierarchical oligonucleotide primer extension (HOPE), previously developed to rapidly quantify relative abundances of specific microbial groups of interest, was applied in this study to track the abundances of the important nitrifying bacterial populations. Results: The method was tested against biomass obtained from a laboratory-scale biofilm-based trickling reactor, and the findings were validated against those obtained by 16S rRNA gene-based amplicon sequencing. Our findings indicated a good correlation between the relative abundance of nitrifying bacterial populations obtained using both HOPE and amplicon sequencing. HOPE showed a significant increase in the relative abundance of AOB, specifically Nitrosomonas, with increasing ammonium content and shock loading (p < 0.001). In contrast, Nitrosospira remained stable in its relative abundance against the total community throughout the operational phases. There was a corresponding significant decrease in the relative abundance of NOB, specifically Nitrospira and those affiliated to comammox, during the shock loading. Based on the relative abundance of AOB and NOB (including commamox) obtained from HOPE, it was determined that the optimal ratio of AOB against NOB ranged from 0.2 to 2.5 during stable reactor performance. Conclusions: Overall, the HOPE method was developed and validated against 16S rRNA gene-based amplicon sequencing for the purpose of performing simultaneous monitoring of relative abundance of nitrifying populations. Quantitative measurements of these nitrifying populations obtained via HOPE would be indicative of reactor performance and nitrification functionality.

  19. Substrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil

    Science.gov (United States)

    J.S. Norman; J.E. Barrett

    2014-01-01

    Ammonia-oxidizing microbes control the rate-limiting step of nitrification, a critical ecosystem process, which affects retention and mobility of nitrogen in soil ecosystems. This study investigated substrate (NH4þ) and nutrient (K and P) limitation of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in temperate forest soils at Coweeta Hydrologic...

  20. Relating dynamic conditions to the performance of biological rapid sand filters used to remove ammonium, iron, and manganese from drinking water

    DEFF Research Database (Denmark)

    Lee, Carson; Albrechtsen, Hans-Jørgen; Smets, Barth F.

    consistently meeting regulatory guidelines for compounds like ammonium and reduced forms of iron and manganese. These compounds can cause biological instability in the distribution system and can lead to many problems including the growth of pathogens and aesthetic problems (taste, odor, and color...... and media samples were collected throughout the depth of the column and over the operational cycle of the columns. Substrate analysis included ammonium, nitrite, nitrate, iron, and manganese. Qpcr analysis were also performed to quantify ammonium oxidizing bacteria (AOBs), ammonium oxidizing archea ( AOAs...

  1. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor

    Science.gov (United States)

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-01-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously. PMID:27112502

  2. Effect of Copper Oxide, Titanium Dioxide, and Lithium Fluoride on the Thermal Behavior and Decomposition Kinetics of Ammonium Nitrate

    Science.gov (United States)

    Vargeese, Anuj A.; Mija, S. J.; Muralidharan, Krishnamurthi

    2014-07-01

    Ammonium nitrate (AN) is crystallized along with copper oxide, titanium dioxide, and lithium fluoride. Thermal kinetic constants for the decomposition reaction of the samples were calculated by model-free (Friedman's differential and Vyzovkins nonlinear integral) and model-fitting (Coats-Redfern) methods. To determine the decomposition mechanisms, 12 solid-state mechanisms were tested using the Coats-Redfern method. The results of the Coats-Redfern method show that the decomposition mechanism for all samples is the contracting cylinder mechanism. The phase behavior of the obtained samples was evaluated by differential scanning calorimetry (DSC), and structural properties were determined by X-ray powder diffraction (XRPD). The results indicate that copper oxide modifies the phase transition behavior and can catalyze AN decomposition, whereas LiF inhibits AN decomposition, and TiO2 shows no influence on the rate of decomposition. Possible explanations for these results are discussed. Supplementary materials are available for this article. Go to the publisher's online edition of the Journal of Energetic Materials to view the free supplemental file.

  3. Immobilization of ammonia-oxidizing bacteria by polyvinyl alcohol and sodium alginate.

    Science.gov (United States)

    Dong, Yuwei; Zhang, Yanqiu; Tu, Baojun

    Ammonia-oxidizing bacteria were immobilized by polyvinyl alcohol (PVA) and sodium alginate. The immobilization conditions and ammonia oxidation ability of the immobilized bacteria were investigated. The following immobilization conditions were observed to be optimal: PVA, 12%; sodium alginate, 1.1%; calcium chloride, 1.0%; inoculum concentration, 1.3 immobilized balls/mL of immobilized medium; pH, 10; and temperature, 30°C. The immobilized ammonia-oxidizing bacteria exhibited strong ammonia oxidation ability even after being recycled four times. The ammonia nitrogen removal rate of the immobilized ammonia-oxidizing bacteria reached 90.30% under the optimal immobilization conditions. When compared with ammonia-oxidizing bacteria immobilized by sodium alginate alone, the bacteria immobilized by PVA and sodium alginate were superior with respect to pH resistance, the number of reuses, material cost, heat resistance, and ammonia oxidation ability. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. The reaction of monochloramine and hydroxylamine: implications for ammonia–oxidizing bacteria in chloraminated drinking water

    Science.gov (United States)

    Drinking water chloramine use may promote ammonia–oxidizing bacteria (AOB) growth because of naturally occurring ammonia, residual ammonia remaining from chloramine formation, and ammonia released from chloramine decay and demand. A rapid chloramine residual loss is often associa...

  5. Different Abilities of Eight Mixed Cultures of Methane-oxidizing Bacteria to Degrade TCE

    DEFF Research Database (Denmark)

    Broholm, Kim; Christensen, Thomas Højlund; Jensen, Bjørn K.

    1993-01-01

    The ability of eight mixed cultures of methane-oxidizing bacteria to degrade trichloroethylene (TCE) was examined in laboratory batch experiments. This is one of the first reported works studying TCE degradation by mixed cultures of methane-oxidizing bacteria at 10°C, a common temperature for soils...... methanol, but only for a limited time period of about 5 days. Several explanations for the discontinued degradation of TCE are given. An experiment carried out to re-activate the methane-oxidizing bacteria after 8 days of growth on methanol by adding methane did not immediately result in degradation...... of methane and TCE. During the first 10–15 days after the addition of methane a significant degradation of methane and a minor degradation of TCE were observed. This experiment revealed that the ability of mixed cultures of methane-oxidizing bacteria to degrade TCE varied significantly even though...

  6. Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria

    DEFF Research Database (Denmark)

    Gregersen, Lea Haarup; Bryant, Donald A.; Frigaard, Niels-Ulrik

    2011-01-01

    Green sulfur bacteria (GSB) constitute a closely related group of photoautotrophic and thiotrophic bacteria with limited phenotypic variation. They typically oxidize sulfide and thiosulfate to sulfate with sulfur globules as an intermediate. Based on genome sequence information from 15 strains...... product is further oxidized to sulfite by the dissimilatory sulfite reductase (DSR) system. This system consists of components horizontally acquired partly from sulfide-oxidizing and partly from sulfate-reducing bacteria. Depending on the strain, the sulfite is probably oxidized to sulfate by one of two...... in sulfate formation in other bacteria has been replaced by the DSR system in GSB. Sequence analyses suggested that the conserved soxJXYZAKBW gene cluster was horizontally acquired by Chlorobium phaeovibrioides DSM 265 from the Chlorobaculum lineage and that this acquisition was mediated by a mobile genetic...

  7. Detection, phylogeny and population dynamics of syntrophic propionate - oxidizing bacteria in anaerobic granular sludge

    NARCIS (Netherlands)

    Harmsen, H.J.M.

    1996-01-01


    The research described this thesis concerns the diversity and phylogeny of syntrophic propionate-oxidizing bacteria and their ecology in granular sludge, from which they were obtained. 16S rRNA was used as a molecular marker to study both the phylogeny and the ecology of these bacteria.

  8. Influence of the conditions for the preparation and thermal destruction of ammonium tetravanadate on the composition of oxide-vanadic electro-functional materials

    Directory of Open Access Journals (Sweden)

    Luskan К. V.

    2017-09-01

    Full Text Available The work represents the investigation of the influence of technological stages of ammonium tetravanadate preparation on the final composition of vanadium oxide products. The purpose of experimental studies is to determine the technological parameters for the production of highly dispersed vanadium oxides with different degrees of oxidation (V2O3, VO2, V2O5. The synthesis of ammonium tetravanadate comprises three main steps: the reaction of 3 g of V2O5 and 8.32 g of H2C2O4 ∙ 2H2O dissolving in 100 ml of water, followed by product precipitation with 30 % ammonium hydroxide, separation of the precipitate by centrifugation or sublimation. Vanadium oxides are formed in the fourth stage of thermal decomposition of ammonium tetravanadate. X-ray diffraction analysis samples was performed on “DRON-3”. Differential thermal analysis (DTA samples was carried out on a derivatograph “Q-150”. The influence of separation conditions and thermal decomposition of the sediment on the composition of the final products (V2O3, VO2, V2O5 was studied. With the X-ray analysis it was determined that when using the centrifugation the final product of thermodestruction in an inert atmosphere is VO2, while sublimation drying leads to V2O3, and highly dispersed V2O5 is formed in an oxygen atmosphere. Highly dispersed vanadium oxides with different degrees of oxidation can be synthesized according to the introduced manufacturing scheme.

  9. Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin

    NARCIS (Netherlands)

    Russ, L.; Kartal, B.; Op den Camp, H.J.M.; Sollai, M.; Le Bruchec, J.; Caprais, J.-C.; Godfroy, A.; Sinninghe Damsté, J.S.; Jetten, M.S.M.

    2013-01-01

    Hydrothermally active sediments are highly productive, chemosynthetic areas which are characterized by the rapid turnover of particulate organic matter under extreme conditions in which ammonia is liberated. These systems might be suitable habitats for anaerobic ammonium oxidizing (anammox) bacteria

  10. Modeling of nitrous oxide production by autotrophic ammonia-oxidizing bacteria with multiple production pathways.

    Science.gov (United States)

    Ni, Bing-Jie; Peng, Lai; Law, Yingyu; Guo, Jianhua; Yuan, Zhiguo

    2014-04-01

    Autotrophic ammonia oxidizing bacteria (AOB) have been recognized as a major contributor to N2O production in wastewater treatment systems. However, so far N2O models have been proposed based on a single N2O production pathway by AOB, and there is still a lack of effective approach for the integration of these models. In this work, an integrated mathematical model that considers multiple production pathways is developed to describe N2O production by AOB. The pathways considered include the nitrifier denitrification pathway (N2O as the final product of AOB denitrification with NO2(-) as the terminal electron acceptor) and the hydroxylamine (NH2OH) pathway (N2O as a byproduct of incomplete oxidation of NH2OH to NO2(-)). In this model, the oxidation and reduction processes are modeled separately, with intracellular electron carriers introduced to link the two types of processes. The model is calibrated and validated using experimental data obtained with two independent nitrifying cultures. The model satisfactorily describes the N2O data from both systems. The model also predicts shifts of the dominating pathway at various dissolved oxygen (DO) and nitrite levels, consistent with previous hypotheses. This unified model is expected to enhance our ability to predict N2O production by AOB in wastewater treatment systems under varying operational conditions.

  11. Photoluminescence properties of anodic aluminum oxide formed in a mixture of ammonium fluoride and oxalic acid

    Science.gov (United States)

    Li, Shou-Yi; Wang, Jian; Li, Yan

    2017-06-01

    Highly ordered anodic aluminum oxide (AAO) membranes are fabricated electrochemically in an electrolyte mixture with various concentrations of C2H2O4 or NH4F. Photoluminescence (PL) properties of AAO membranes have been investigated before and after annealing in the range from 300°C to 650°C. X-ray diffraction reveals the amorphous nature of AAO membranes. Energy dispersive spectroscopy indicates the presence of fluorine species incorporated in oxide membranes during the anodizing. PL measurements show a strong PL band in the wavelength range of 350 to 550 nm. With the increase of the concentration of the NH4F or C2H2O4 in the electrolyte mixture, the peak positions of the PL bands have a blueshift or redshift and the intensities have a maximum value. As indicated by the PL excitation spectra, there are two excitation peaks of 285 and 330 nm, which can account for the PL emission band. We have proposed that the PL originates from optical transitions in two kinds of centers that are related to oxygen vacancies, F+ (285 nm) and F (330 nm). This work is not only beneficial to further understanding of the light-emitting property of AAO membranes but also enlarges the application scope.

  12. A comparison study of the start-up of a MnOx filter for catalytic oxidative removal of ammonium from groundwater and surface water.

    Science.gov (United States)

    Cheng, Ya; Li, Ye; Huang, Tinglin; Sun, Yuankui; Shi, Xinxin; Shao, Yuezong

    2018-03-01

    As an efficient method for ammonium (NH 4 + ) removal, contact catalytic oxidation technology has drawn much attention recently, due to its good low temperature resistance and short start-up period. Two identical filters were employed to compare the process for ammonium removal during the start-up period for ammonium removal in groundwater (Filter-N) and surface water (Filter-S) treatment. Two types of source water (groundwater and surface water) were used as the feed waters for the filtration trials. Although the same initiating method was used, Filter-N exhibited much better ammonium removal performance than Filter-S. The differences in catalytic activity among these two filters were probed using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and compositional analysis. XRD results indicated that different manganese oxide species were formed in Filter-N and Filter-S. Furthermore, the Mn3p XPS spectra taken on the surface of the filter films revealed that the average manganese valence of the inactive manganese oxide film collected from Filter-S (FS-MnO x ) was higher than in the film collected from Filter-N (FN-MnO x ). Mn(IV) was identified as the predominant oxidation state in FS-MnO x and Mn(III) was identified as the predominant oxidation state in FN-MnO x . The results of compositional analyses suggested that polyaluminum ferric chloride (PAFC) used during the surface water treatment was an important factor in the mineralogy and reactivity of MnO x . This study provides the theoretical basis for promoting the wide application of the technology and has great practical significance. Copyright © 2017. Published by Elsevier B.V.

  13. Influence of ammonium nitrate on kinetics and mechanism of thermal decomposition of ammonium polyuranates

    International Nuclear Information System (INIS)

    Karelin, A.I.; Lobas, O.P.; Zhiganov, A.N.; Vasil'ev, K.F.; Zhiganova, A.A.

    1988-01-01

    The influence of ammonium nitrate on the mechanism and kinetics of dehydration and thermal decomposition of ammonium polyuranates was studied. An appreciable influence of the nitrate ion content in the samples of ammonium polyuranates on the development of thermal stability has been noted. The kinetic parameters of the thermal decomposition of ammonium polyuranates have been evaluated. A mechanism of the dehydration and thermal decomposition of ammonium polyuranates in the presence of ammonium nitrate has been proposed. It was shown that increase in the content of ammonium nitrate in the precipitate of ammonium polyuranates leads to a decrease in the specific surface of uranoso-uranic oxide

  14. Investigation of ammonium nitrate effect on kinetics and mechanism of thermal decomposition of ammonium polyuranates

    International Nuclear Information System (INIS)

    Karelin, A.I.; Lobas, O.P.; Zhiganov, A.N.; Vasil'ev, K.F.; Zhiganova, A.A.

    1987-01-01

    A study was made on ammonium nitrate effect on the mechanism and kinetics of dehydration and thermal decomposition of ammonium polyuranates. Sufficient effect of nitrate ion content in ammonium polyuranate samples on their thermal stability was noted. Kinetic parameters of thermal decomposition of ammonium polyuranates were evaluated. Mechanism of dehydration and thermal decomposition of ammonium polyuranates in the presence of ammonium nitrate was suggested. It was shown that increase of ammonium nitrate content in ammonium polyuranate precipitate resulted to reduction of the specific surface of prepared uranium mixed oxide

  15. Nitrous oxide production pathways in a partial nitritation-anammox reactor: Isotopic evidence for nitrous oxide production associated anaerobic ammonium oxidation?

    Science.gov (United States)

    Wunderlin, P.; Harris, E. J.; Joss, A.; Emmenegger, L.; Kipf, M.; Mohn, J.; Siegrist, H.

    2014-12-01

    Nitrous oxide (N2O) is a strong greenhouse gas and a major sink for stratospheric ozone. In biological wastewater treatment N2O can be produced via several pathways. This study investigates the dynamics of N2O emissions from a nitritation-anammox reactor, and links its interpretation to the nitrogen and oxygen isotopic signature of the emitted N2O. A 400-litre single-stage nitritation-anammox reactor was operated and continuously fed with digester liquid. The isotopic composition of N2O emissions was monitored online with quantum cascade laser absorption spectroscopy (QCLAS; Aerodyne Research, Inc.; Waechter et al., 2008). Dissolved ammonium and nitrate were monitored online (ISEmax, Endress + Hauser), while nitrite was measured with test strips (Nitrite-test 0-24mgN/l, Merck). Table 1. Summary of experiments conducted to understand N2O emissions Experimental conditions O2[mgO2/L] NO2-[mgN/L] NH4+[mgN/L] N2O/NH4+[%] Normal operation production pathway, which is hypothesized to be mediated by anammox activity (Figure 1). A less likely explanation is that the SP of N2O was increased by partial N2O reduction by heterotrophic denitrification. Various experiments were conducted to further investigate N2O formation pathways in the reactor. Our data reveal that N2O emissions increased when reactor operation was not ideal, for example when dissolved oxygen was too high (Table 1). SP measurements confirmed that these N2O peaks were due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor (Figure 1; Table 1). Overall, process control via online N2O monitoring was confirmed to be an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N2O emissions. ReferencesWaechter H. et al. (2008) Optics Express, 16: 9239-9244. Wunderlin, P et al. (2013) Environmental Science & Technology 47: 1339-1348.

  16. Contributions of ammonia-oxidizing archaea and bacteria to nitrification in Oregon forest soils

    Science.gov (United States)

    Xinda Lu; Peter J. Bottomley; David D. Myrold

    2015-01-01

    Ammonia oxidation, the first step of nitrification, is mediated by both ammonia-oxidizing archaea (AOA) and bacteria (AOB); however, the relative contributions of AOA and AOB to soil nitrification are not well understood. In this study we used 1-octyne to discriminate between AOA-and AOB-supported nitrifi-cation determined both in soil-water slurries and in unsaturated...

  17. Metallurgical treatment of Waelz oxides by alkaline leaching using ammonium carbonate; Tratamiento metalurgico de los oxidos Waelz mediante lixiviacion alcalina utilizando carbonato amonico

    Energy Technology Data Exchange (ETDEWEB)

    Meseguer, V.; Lozano, L.J.; Juan, D. de [Dpto. Ingenieria Quimica Cartagena. Universidad de Murcia, Murcia (Spain)

    1997-09-01

    A method to carry out the treatment of the Waelz oxides is proposed, and the principal stages implicated are studied laboratory-scale. The process consists of the oxides leaching with an ammonium carbonate/ammonia solution, followed the recovery of the zinc leached by means of its precipitation as zinc basic carbonate. The process stages that have been studied are: Waelz oxides leaching, loaded leach purification, zinc precipitation, zinc basic carbonate washing and zinc basic carbonate transformation. The designed treatment presents a null environmental impact, and more than 90% of the zinc contained in the Waelz oxides, as well as 80% of the copper and cadmium contents could be recovered. Also, the process presents great flexibility as soon as zinc could be recovered in the most convenient form (zinc metal, oxide or salt). (Author) 14 refs.

  18. Oxidative Stress Parameters in Saliva and Its Association with Periodontal Disease and Types of Bacteria.

    Science.gov (United States)

    Almerich-Silla, Jose Manuel; Montiel-Company, Jose María; Pastor, Sara; Serrano, Felipe; Puig-Silla, Miriam; Dasí, Francisco

    2015-01-01

    To determine the association between oxidative stress parameters with periodontal disease, bleeding, and the presence of different periodontal bacteria. A cross-sectional study in a sample of eighty-six patients, divided into three groups depending on their periodontal status. Thirty-three with chronic periodontitis, sixteen with gingivitis, and thirty-seven with periodontal healthy as control. Oxidative stress biomarkers (8-OHdG and MDA), total antioxidant capacity (TAOC), and the activity of two antioxidant enzymes (GPx and SOD) were determined in saliva. Subgingival plaque samples were obtained from the deepest periodontal pocket and PCR was used to determine the presence of the 6 fimA genotypes of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia, and Treponema denticola. Periodontal disease was found to be associated with increased oxidative stress parameter levels. These levels rose according to the number and type of different periodontal bacteria found in the periodontal pockets. The presence of different types of periodontal bacteria is predictive independent variables in linear regresion models of oxidative stress parameters as dependent variable, above all 8-OHdG. Oxidative stress parameter levels are correlated with the presence of different types of bacteria. Determination of these levels and periodontal bacteria could be a potent tool for controlling periodontal disease development.

  19. A FUNDAMENTAL STUDY ON SOLUBILITY OF HEAVY METAL OXIDES IN AMMONIUM AND PHOSPHONIUM BASED DEEP EUTECTIC SOLVENTS

    Directory of Open Access Journals (Sweden)

    SHANGGARY RAJENDRAN

    2016-02-01

    Full Text Available Water pollution has become increasingly prevalent in our daily lives and has caused a serious threat at a global level. Among the various pollutants that exist,heavy metal pollution has become an issue of great concern due to their high toxicity, greater bioaccumulation in human body and food chain, nonbiodegradability nature, and carcinogenic effects to humans. This study aims to address the heavy metal ion contamination in wastewater by providing a low cost and efficient removal technique using DESs. In this investigation, the solubility of CuO and ZnO heavy metal oxide ions with concentration of 20g/L was studied in ammonium and phosphonium based DESs. The samples were left to stir at 250 rpm at 28, 45 and 65°C respectively for four hours in an incubator orbital shaker and the solubility of the heavy metal ions were analysed using Atomic Absorption Spectrometer (AAS using serial dilution technique. Phosphonium based DES which contain Methyl Triphenyl Phosphonium Bromide (MTPB showed higher solubility of CuO and ZnO ions. Based on the results obtained, DES 6 (MTPB: Glycerol has the highest solubility of CuO, 0.197 mg/L at 65°C and the solubility of ZnO was found to be the highest in DES 7 (MTPB: Glycerol, 1.225 mg/L at 65°C. Higher solubility was observed in samples containing ZnO as they are more ionic compared to CuO.

  20. Iron oxide deposits associated with the ectosymbiotic bacteria in the hydrothermal vent shrimp Rimicaris exoculata

    Directory of Open Access Journals (Sweden)

    P. Compère

    2008-09-01

    Full Text Available The Rimicaris exoculata shrimp is considered as a primary consumer that dominates the fauna of most Mid-Atlantic Ridge (MAR hydrothermal ecosystems. These shrimps harbour in their gill chambers an important ectosymbiotic community of chemoautotrophic bacteria associated with iron oxide deposits. The structure and elemental composition of the mineral concretions associated with these bacteria have been investigated by using LM, ESEM, TEM STEM and EDX microanalyses. The nature of the iron oxides in shrimps obtained from the Rainbow vent field has also been determined by Mössbauer spectroscopy. This multidisciplinary approach has revealed that the three layers of mineral crust in the Rimicaris exoculata shrimps consist of large concretions formed by aggregated nanoparticles of two-line ferrihydrite and include other minor elements as Si, Ca, Mg, S and P, probably present as silicates cations, sulphates or phosphates respectively that may contribute to stabilise the ferrihydrite form of iron oxides. TEM-observations on the bacteria have revealed their close interactions with these minerals. Abiotic and biotic precipitation could occur within the gill chamber of Rimicaris exoculata, suggesting the biologically-mediated formation of the iron oxide deposits. The difference of the bacterial density in the three-mineral crust layers could be correlated to the importance of the iron oxide concretions and suggest that the first mineral particles precipitates on the lower layer which could be considered as the most likely location of iron-oxidizing bacteria.

  1. The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering

    International Nuclear Information System (INIS)

    Sasaki, K.; Tsunekawa, M.; Ohtsuka, T.; Konno, H.

    1998-01-01

    The paper investigates the role of the sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering in order to clarify the effects of the bacteria on the dissolution behavior of pyrite and the formation of secondary minerals using Raman spectroscopy and powder X-ray diffraction (XRD) in addition to solution analysis. It was found that T. thiooxidans, when present with the iron-oxidizing bacteria Thiobacillus ferrooxidans, enhanced the dissolution of Fe and S species for pyrite, whereas T. thiooxidans alone did not oxidize pyrite. Enhancement of the consumption of elemental sulfur and regeneration of Fe(II) ions were also observed with T. thiooxidans together with T. ferrooxidans, while this did not occur with T. ferrooxidans alone

  2. Electron uptake by iron-oxidizing phototrophic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Bose, A; Gardel, EJ; Vidoudez, C; Parra, EA; Girguis, PR

    2014-02-26

    Oxidation-reduction reactions underlie energy generation in nearly all life forms. Although most organisms use soluble oxidants and reductants, some microbes can access solid-phase materials as electron-acceptors or -donors via extracellular electron transfer. Many studies have focused on the reduction of solid-phase oxidants. Far less is known about electron uptake via microbial extracellular electron transfer, and almost nothing is known about the associated mechanisms. Here we show that the iron-oxidizing photoautotroph Rhodopseudomonas palustris TIE-1 accepts electrons from a poised electrode, with carbon dioxide as the sole carbon source/electron acceptor. Both electron uptake and ruBisCo form I expression are stimulated by light. Electron uptake also occurs in the dark, uncoupled from photosynthesis. Notably, the pioABC operon, which encodes a protein system essential for photoautotrophic growth by ferrous iron oxidation, influences electron uptake. These data reveal a previously unknown metabolic versatility of photoferrotrophs to use extracellular electron transfer for electron uptake.

  3. Evaluating four mathematical models for nitrous oxide production by autotrophic ammonia-oxidizing bacteria.

    Science.gov (United States)

    Ni, Bing-Jie; Yuan, Zhiguo; Chandran, Kartik; Vanrolleghem, Peter A; Murthy, Sudhir

    2013-01-01

    There is increasing evidence showing that ammonia-oxidizing bacteria (AOB) are major contributors to N(2)O emissions from wastewater treatment plants (WWTPs). Although the fundamental metabolic pathways for N(2)O production by AOB are now coming to light, the mechanisms responsible for N(2)O production by AOB in WWTP are not fully understood. Mathematical modeling provides a means for testing hypotheses related to mechanisms and triggers for N(2)O emissions in WWTP, and can then also become a tool to support the development of mitigation strategies. This study examined the ability of four mathematical model structures to describe two distinct mechanisms of N(2)O production by AOB. The production mechanisms evaluated are (1) N(2)O as the final product of nitrifier denitrification with NO(2)- as the terminal electron acceptor and (2) N(2)O as a byproduct of incomplete oxidation of hydroxylamine (NH(2)OH) to NO(2)-. The four models were compared based on their ability to predict N(2)O dynamics observed in three mixed culture studies. Short-term batch experimental data were employed to examine model assumptions related to the effects of (1) NH4+ concentration variations, (2) dissolved oxygen (DO) variations, (3) NO(2)- accumulations and (4) NH(2OH as an externally provided substrate. The modeling results demonstrate that all these models can generally describe the NH4+, NO(2)-, and NO(3)- data. However, none of these models were able to reproduce all measured N(2)O data. The results suggest that both the denitrification and NH(2)OH pathways may be involved in N(2)O production and could be kinetically linked by a competition for intracellular reducing equivalents. A unified model capturing both mechanisms and their potential interactions needs to be developed with consideration of physiological complexity. Copyright © 2012 Wiley Periodicals, Inc.

  4. Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea.

    Science.gov (United States)

    Dodsworth, Jeremy A; Hungate, Bruce A; Hedlund, Brian P

    2011-08-01

    Many thermophiles catalyse free energy-yielding redox reactions involving nitrogenous compounds; however, little is known about these processes in natural thermal environments. Rates of ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were measured in source water and sediments of two ≈ 80°C springs in the US Great Basin. Ammonia oxidation and denitrification occurred mainly in sediments. Ammonia oxidation rates measured using (15)N-NO(3)(-) pool dilution ranged from 5.5 ± 0.8 to 8.6 ± 0.9 nmol N g(-1) h(-1) and were unaffected or only mildly stimulated by amendment with NH(4) Cl. Denitrification rates measured using acetylene block ranged from 15.8 ± 0.7 to 51 ± 12 nmol N g(-1) h(-1) and were stimulated by amendment with NO(3)(-) and complex organic compounds. The DNRA rate in one spring sediment measured using an (15)N-NO(3)(-) tracer was 315 ± 48 nmol N g(-1) h(-1). Both springs harboured distinct planktonic and sediment microbial communities. Close relatives of the autotrophic, ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus yellowstonii' represented the most abundant OTU in both spring sediments by 16S rRNA gene pyrotag analysis. Quantitative PCR (qPCR) indicated that 'Ca. N. yellowstonii'amoA and 16S rRNA genes were present at 3.5-3.9 × 10(8) and 6.4-9.0 × 10(8) copies g(-1) sediment. Potential denitrifiers included members of the Aquificales and Thermales. Thermus spp. comprised <1% of 16S rRNA gene pyrotags in both sediments and qPCR for T. thermophilus narG revealed sediment populations of 1.3-1.7 × 10(6) copies g(-1) sediment. These data indicate a highly active nitrogen cycle (N-cycle) in these springs and suggest that ammonia oxidation may be a major source of energy fuelling primary production. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Neutrophilic iron-oxidizing bacteria: occurrence and relevance in biological drinking water treatment

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen

    2013-01-01

    Rapid sand filtration (RSF) is an economical way to treat anoxic groundwater around the world. It consists of groundwater aeration followed by passage through a sand filter. The oxidation and removal of ferrous iron, which is commonly found in anoxic groundwaters, is often believed to be a fully...... role of FeOB in iron removal at waterworks using RSF technologies....... physicochemical process. However, persistently low temperatures in RSF across Denmark may negatively affect the kinetics of chemical oxidation. The slower chemical oxidation of ferrous iron may increase the chances for iron bioconversion by neutrophilic iron-oxidizing bacteria (FeOB), which are found naturally...

  6. Influence of land use intensity on the diversity of ammonia oxidizing bacteria and archaea in soils from grassland ecosystems.

    Science.gov (United States)

    Meyer, Annabel; Focks, Andreas; Radl, Viviane; Welzl, Gerhard; Schöning, Ingo; Schloter, Michael

    2014-01-01

    In the present study, the influence of the land use intensity on the diversity of ammonia oxidizing bacteria (AOB) and archaea (AOA) in soils from different grassland ecosystems has been investigated in spring and summer of the season (April and July). Diversity of AOA and AOB was studied by TRFLP fingerprinting of amoA amplicons. The diversity from AOB was low and dominated by a peak that could be assigned to Nitrosospira. The obtained profiles for AOB were very stable and neither influenced by the land use intensity nor by the time point of sampling. In contrast, the obtained patterns for AOA were more complex although one peak that could be assigned to Nitrosopumilus was dominating all profiles independent from the land use intensity and the sampling time point. Overall, the AOA profiles were much more dynamic than those of AOB and responded clearly to the land use intensity. An influence of the sampling time point was again not visible. Whereas AOB profiles were clearly linked to potential nitrification rates in soil, major TRFs from AOA were negatively correlated to DOC and ammonium availability and not related to potential nitrification rates.

  7. Solubilization of plutonium hydrous oxide by iron-reducing bacteria

    International Nuclear Information System (INIS)

    Rusin, P.A.; Quintana, L.; Brainard, J.R.; Strietelmeler, B.A.; Tait, C.D.; Ekberg, S.A.; Palmer, P.D.; Newton, T.W.; Clark, D.L.

    1994-01-01

    The removal of plutonium from soils id challenging because of its strong sorption to soils and limited solubility, Microbial reduction of metals is known to affect the speciation and solubility of sparingly soluble metals in the environment, notably iron and manganese. The similarity in reduction potential for α-FeOOH(s) and hydrous PuO 2 (s) suggests that iron-reducing bacteria may also reduce and solubilize plutonium. Bacillus strains were used to demonstrate that iron-reducing bacteria mediate the solubilization of hydrous PuO 2 (s) under anaerobic conditions. Up to ∼90% of the PuO 2 was biosolubilized in the presence of nitrilotriacetic acid (NTA) within 6-7 days. Biosolubilization occurred to a lesser extent (∼ 40%) in the absence of NTA. Little PuO 2 solubilization occurred in sterile culture media or in the presence of a non-iron-reducing Escherichia coli. These observations suggest a potentially attractive, environmentally benign strategy for the remediation of Pu-contaminated soils. 26 refs., 5 figs., 2 tabs

  8. FORMALDEHYDE DISMUTASE ACTIVITIES IN GRAM-POSITIVE BACTERIA OXIDIZING METHANOL

    NARCIS (Netherlands)

    BYSTRYKH, LV; GOVORUKHINA, NI; VANOPHEM, PW; HEKTOR, HJ; DIJKHUIZEN, L; DUINE, JA; Govorukhina, Natalya; Ophem, Peter W. van; Duine, Johannis A.

    Extracts of methanol-grown cells of Amycolatopsis methanolica and Mycobacterium gastri oxidized methanol and ethanol with concomitant reduction of N,N'-dimethyl-4-nitrosoaniline (NDMA). Anion-exchange chromatography revealed the presence of a single enzyme able to catalyse this activity in methanol-

  9. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.

    Science.gov (United States)

    Hyde, Embriette R; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K; Torregrossa, Ashley C; Tribble, Gena; Kaplan, Heidi B; Petrosino, Joseph F; Bryan, Nathan S

    2014-01-01

    The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria.

  10. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.

    Directory of Open Access Journals (Sweden)

    Embriette R Hyde

    Full Text Available The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria.

  11. Enrichment of Thermophilic Propionate-Oxidizing Bacteria in Syntrophy with Methanobacterium thermoautotrophicum or Methanobacterium thermoformicicum

    OpenAIRE

    Stams, Alfons J. M.; Grolle, Katja C. F.; Frijters, Carla T. M.; Van Lier, Jules B.

    1992-01-01

    Thermophilic propionate-oxidizing, proton-reducing bacteria were enriched from the granular methanogenic sludge of a bench-scale upflow anaerobic sludge bed reactor operated at 55°C with a mixture of volatile fatty acids as feed. Thermophilic hydrogenotrophic methanogens had a high decay rate. Therefore, stable, thermophilic propionate-oxidizing cultures could not be obtained by using the usual enrichment procedures. Stable and reproducible cultivation was possible by enrichment in hydrogen-p...

  12. Oxidative Stress Parameters in Saliva and Its Association with Periodontal Disease and Types of Bacteria

    OpenAIRE

    Almerich-Silla, Jose Manuel; Montiel-Company, Jose María; Pastor, Sara; Serrano, Felipe; Puig-Silla, Miriam; Dasí, Francisco

    2015-01-01

    Objective. To determine the association between oxidative stress parameters with periodontal disease, bleeding, and the presence of different periodontal bacteria. Methods. A cross-sectional study in a sample of eighty-six patients, divided into three groups depending on their periodontal status. Thirty-three with chronic periodontitis, sixteen with gingivitis, and thirty-seven with periodontal healthy as control. Oxidative stress biomarkers (8-OHdG and MDA), total antioxidant capacity (TAOC)...

  13. Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers

    International Nuclear Information System (INIS)

    Jensen, Henriette Stokbro; Lens, Piet N.L.; Nielsen, Jeppe L.; Bester, Kai; Nielsen, Asbjorn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2011-01-01

    Hydrogen sulfide oxidation by microbes present on concrete surfaces of sewer pipes is a key process in sewer corrosion. The growth of aerobic sulfur oxidizing bacteria from corroded concrete surfaces was studied in a batch reactor. Samples of corrosion products, containing sulfur oxidizing bacteria, were suspended in aqueous solution at pH similar to that of corroded concrete. Hydrogen sulfide was supplied to the reactor to provide the source of reduced sulfur. The removal of hydrogen sulfide and oxygen was monitored. The utilization rates of both hydrogen sulfide and oxygen suggested exponential bacterial growth with median growth rates of 1.25 d -1 and 1.33 d -1 as determined from the utilization rates of hydrogen sulfide and oxygen, respectively. Elemental sulfur was found to be the immediate product of the hydrogen sulfide oxidation. When exponential growth had been achieved, the addition of hydrogen sulfide was terminated leading to elemental sulfur oxidation. The ratio of consumed sulfur to consumed oxygen suggested that sulfuric acid was the ultimate oxidation product. To the knowledge of the authors, this is the first study to determine the growth rate of bacteria involved in concrete corrosion with hydrogen sulfide as source of reduced sulfur.

  14. Bacteria-mediated arsenic oxidation and reduction in the growth media of arsenic hyperaccumulator Pteris vittata.

    Science.gov (United States)

    Wang, Xin; Rathinasabapathi, Bala; de Oliveira, Letuzia Maria; Guilherme, Luiz R G; Ma, Lena Q

    2012-10-16

    Microbes play an important role in arsenic transformation and cycling in the environment. Microbial arsenic oxidation and reduction were demonstrated in the growth media of arsenic hyperaccumulator Pteris vittata L. All arsenite (AsIII) at 0.1 mM in the media was oxidized after 48 h incubation. Oxidation was largely inhibited by antibiotics, indicating that bacteria played a dominant role. To identify AsIII oxidizing bacteria, degenerate primers were used to amplify ∼500 bp of the AsIII oxidase gene aioA (aroA) using DNA extracted from the media. One aioA (aroA)-like sequence (MG-1, tentatively identified as Acinetobacter sp.) was amplified, exhibiting 82% and 91% identity in terms of gene and deduced protein sequence to those from Acinetobacter sp. 33. In addition, four bacterial strains with different arsenic tolerance were isolated and identified as Comamonas sp.C-1, Flavobacterium sp. C-2, Staphylococcus sp. C-3, and Pseudomonas sp. C-4 using carbon utilization, fatty acid profiles, and/or sequencing 16s rRNA gene. These isolates exhibited dual capacity for both AsV reduction and AsIII oxidation under ambient conditions. Arsenic-resistant bacteria with strong AsIII oxidizing ability may have potential to improve bioremediation of AsIII-contaminated water using P. vittata and/or other biochemical strategies.

  15. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation

    NARCIS (Netherlands)

    Pachiadaki, M.G.; Sintes, E.; Bergauer, K.; Brown, J.M.; Record, N.R.; Swan, B.K.; Mathyer, M.E.; Hallam, S.J.; López-Garcìa, P.; Takaki, Y.; Nunoura, T.; Woyke, T.; Herndl, G.J.; Stepanauskas, R.

    2017-01-01

    Carbon fixation by chemoautotrophic microorganisms in the dark ocean has a major impact on global carbon cycling and ecological relationships in the ocean’s interior, but the relevant taxa and energy sources remain enigmatic.We show evidence that nitrite-oxidizing bacteria affiliated with the

  16. Characterization of sulfur-oxidizing bacteria isolated from acid mine drainage and black shale samples

    International Nuclear Information System (INIS)

    Sajjad, W.; Bhatti, T. M.; Hasan, F.; Khan, S.; Badshah, M.

    2016-01-01

    Acid mine drainage (AMD) and black shale (BS) are the main habitats of sulfur-oxidizing bacteria. The aim of this study was to isolate and characterize sulfur-oxidizing bacteria from extreme acidic habitats (AMD and BS). Concentration of metals in samples from AMD and BS varied significantly from the reference samples and exceeded the acceptable limits set by the Environmental Protection Agency (EPA) and the World Health Organization (WHO). A total of 24 bacteria were isolated from these samples that were characterized both morphologically as well as through biochemical tests. All the bacteria were gram-negative rods that could efficiently oxidize sulfur into sulfate ions (SO/sub 4/-2), resulted into decrease in pH up to 1.0 when grown in thiosulfate medium with initial pH 4.0. Out of 24, only 06 isolates were selected for phylogenetic analysis through 16S rRNA sequencing, on the basis of maximum sulfur-oxidizing efficiency. The isolates were identified as the species from different genera such as Alcaligenes, Pseudomonas, Bordetella, and Stenotrophomonas on the basis of maximum similarity index. The concentration of sulfate ions produced was estimated in the range of 179-272 mg/L. These acidophiles might have various potential applications such as biological leaching of metals from low-grade ores, alkali soil reclamation and to minimize the use of chemical S-fertilizers and minimize environmental pollution. (author)

  17. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials

    NARCIS (Netherlands)

    Ganendra, G; De Muynck, W; Ho, A.; Hoefman, S.; De Vos, P.; Boeckx, P.; Boon, N.

    2014-01-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (similar to 20 % (v/v)) and low (similar to 100 ppmv) methane

  18. Differential oxidative and antioxidative response of duckweed Lemna minor toward plant growth promoting/inhibiting bacteria.

    Science.gov (United States)

    Ishizawa, Hidehiro; Kuroda, Masashi; Morikawa, Masaaki; Ike, Michihiko

    2017-09-01

    Bacteria colonizing the plant rhizosphere are believed to positively or negatively affect the host plant productivity. This feature has inspired researchers to engineer such interactions to enhance crop production. However, it remains to be elucidated whether rhizobacteria influences plant oxidative stress vis-a-vis other environmental stressors, and whether such influence is associated with their growth promoting/inhibiting ability. In this study, two plant growth-promoting bacteria (PGPB) and two plant growth-inhibiting bacteria (PGIB) were separately inoculated into axenic duckweed (Lemna minor) culture under laboratory conditions for 4 and 8 days in order to investigate their effects on plant oxidative stress and antioxidant activities. As previously characterized, the inoculation of PGPB and PGIB strains accelerated and reduced the growth of L. minor, respectively. After 4 and 8 days of cultivation, compared to the PGPB strains, the PGIB strains induced larger amounts of O 2 •- , H 2 O 2 , and malondialdehyde (MDA) in duckweed, although all bacterial strains consistently increased O 2 •- content by two times more than that in the aseptic control plants. Activities of five antioxidant enzymes were also elevated by the inoculation of PGIB, confirming the severe oxidative stress condition in plants. These results suggest that the surface attached bacteria affect differently on host oxidative stress and its response, which degree correlates negatively to their effects on plant growth. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Anaerobic Oxidization of Methane in a Minerotrophic Peatland: Enrichment of Nitrite-Dependent Methane-Oxidizing Bacteria

    Science.gov (United States)

    Zhu, Baoli; van Dijk, Gijs; Fritz, Christian; Smolders, Alfons J. P.; Pol, Arjan; Jetten, Mike S. M.

    2012-01-01

    The importance of anaerobic oxidation of methane (AOM) as a methane sink in freshwater systems is largely unexplored, particularly in peat ecosystems. Nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and reported to be catalyzed by the bacterium “Candidatus Methylomirabilis oxyfera,” which is affiliated with the NC10 phylum. So far, several “Ca. Methylomirabilis oxyfera” enrichment cultures have been obtained using a limited number of freshwater sediments or wastewater treatment sludge as the inoculum. In this study, using stable isotope measurements and porewater profiles, we investigated the potential of n-damo in a minerotrophic peatland in the south of the Netherlands that is infiltrated by nitrate-rich ground water. Methane and nitrate profiles suggested that all methane produced was oxidized before reaching the oxic layer, and NC10 bacteria could be active in the transition zone where countergradients of methane and nitrate occur. Quantitative PCR showed high NC10 bacterial cell numbers at this methane-nitrate transition zone. This soil section was used to enrich the prevalent NC10 bacteria in a continuous culture supplied with methane and nitrite at an in situ pH of 6.2. An enrichment of nitrite-reducing methanotrophic NC10 bacteria was successfully obtained. Phylogenetic analysis of retrieved 16S rRNA and pmoA genes showed that the enriched bacteria were very similar to the ones found in situ and constituted a new branch of NC10 bacteria with an identity of less than 96 and 90% to the 16S rRNA and pmoA genes of “Ca. Methylomirabilis oxyfera,” respectively. The results of this study expand our knowledge of the diversity and distribution of NC10 bacteria in the environment and highlight their potential contribution to nitrogen and methane cycles. PMID:23042166

  20. New molecular method to detect denitrifying anaerobic methane oxidation bacteria from different environmental niches.

    Science.gov (United States)

    Xu, Sai; Lu, Wenjing; Muhammad, Farooq Mustafa; Liu, Yanting; Guo, Hanwen; Meng, Ruihong; Wang, Hongtao

    2018-03-01

    The denitrifying anaerobic methane oxidation is an ecologically important process for reducing the potential methane emission into the atmosphere. The responsible bacterium for this process was Candidatus Methylomirabilis oxyfera belonging to the bacterial phylum of NC10. In this study, a new pair of primers targeting all the five groups of NC10 bacteria was designed to amplify NC10 bacteria from different environmental niches. The results showed that the group A was the dominant NC10 phylum bacteria from the sludges and food waste digestate while in paddy soil samples, group A and group B had nearly the same proportion. Our results also indicated that NC10 bacteria could exist in a high pH environment (pH9.24) from the food waste treatment facility. The Pearson relationship analysis showed that the pH had a significant positive relationship with the NC10 bacterial diversity (pbacteria. Copyright © 2017. Published by Elsevier B.V.

  1. Polyethylene Glycols as Efficient Catalysts for the Oxidation of Xanthine Alkaloids by Ceric Ammonium Nitrate in Acetonitrile: A Kinetic and Mechanistic Approach

    Directory of Open Access Journals (Sweden)

    S. Shylaja

    2013-01-01

    Full Text Available Kinetics of oxidation of xanthine alkaloids, such as Xanthine (XAN, hypoxanthine (HXAN, caffeine (CAF, theophylline (TPL, and theobromine (TBR, have been studied with ceric ammonium nitrate (CAN using poly ethylene glycols (PEG as catalysts. Reaction obeyed first order kinetics in both [CAN] and [Xanthine alkaloid]. Highly sluggish CAN-xanthine alkaloid reactions (in acetonitrile media even at elevated temperatures are enhanced in presence PEGs (PEG-200, -300, -400, -600. An increase in [PEG] increased the rate of oxidation linearly. This observation coupled with a change in absorption of CAN in presence of PEG, [H–(OCH2–CH2n–O–NH4Ce(NO34(CH3CN] (PEG bound CAN species, is considered to be more reactive than CAN. The mechanism of oxidation in PEG media has been explained by Menger-Portnoy’s enzymatic model.

  2. Modeling the competitive effect of ammonium oxidizers and heterotrophs on the degradation of MTBE in a packed bed reactor

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2008-01-01

    A mathematical model was used to study effects on the degradation of methyl tert-butyl ether (MTBE) in a packed bed reactor due to the presence of contaminants such as ammonium, and the mix of benzene, toluene, ethylbenzene and xylenes (BTEX). It was shown that competition between the slower...

  3. Enhance wastewater biological treatment through the bacteria induced graphene oxide hydrogel.

    Science.gov (United States)

    Shen, Liang; Jin, Ziheng; Wang, Dian; Wang, Yuanpeng; Lu, Yinghua

    2018-01-01

    The interaction between bacteria and graphene-family materials like pristine graphene, graphene oxide (GO) and reduced graphene oxide (rGO) is such an elusive issue that its implication in environmental biotechnology is unclear. Herein, two kinds of self-assembled bio-rGO-hydrogels (BGHs) were prepared by cultivating specific Shewanella sp. strains with GO solution for the first time. The microscopic examination by SEM, TEM and CLSM indicated a porous 3D structure of BGHs, in which live bacteria firmly anchored and extracellular polymeric substances (EPS) abundantly distributed. Spectra of XRD, FTIR, XPS and Raman further proved that GO was reduced to rGO by bacteria along with the gelation process, which suggests a potential green technique to produce graphene. Based on the characterization results, four mechanisms for the BGH formation were proposed, i.e., stacking, bridging, rolling and cross-linking of rGO sheets, through the synergistic effect of activities and EPS from special bacteria. More importantly, the BGHs obtained in this study were found able to achieve unique cleanup performance that the counterpart free bacteria could not fulfill, as exemplified in Congo red decolorization and Cr(VI) bioreduction. These findings therefore enlighten a prospective application of graphene materials for the biological treatment of wastewaters in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Oxidative Damage Caused by Common Foodborne Pathogenic Bacteria in Egg Yolk

    Directory of Open Access Journals (Sweden)

    Reyhaneh Afshordi

    2016-02-01

    Full Text Available Background: Bacteria in foodstuff are the most important agent of foodborne disease. Aside from their infectious effects, obligate aerobes have a respiratory metabolism with oxygen as the terminal electron acceptor. Therefore, they can produce reactive oxygen species and free radicals in contaminated food. Malondialdehyde (MDA is a product of lipid peroxidation used as an indicator of oxidative stress. Objectives: This study aimed to evaluate the oxidative damage produced by two common food pathogenic bacteria in foodstuff. Materials and Methods: The egg yolks were incubated with different dilutions (105,106, and 107 of Staphylococcus aureus and Salmonella enteritidis at 37°C for 20 hours. The level of MDA in egg yolk was measured by fast and simple enzymatic or colorimetric methods, such as the thiobarbituric acid reactive species method. Results: The high group (107 had a higher MDA level of 1.97 ± 0.11 (μg MDA/g in S. aureus and 1.65 ± 0.27 (mg MDA/L in S. enteritidis than the control (0.90 ± 0.13 mg MDA/L. Conclusions: We concluded that common food pathogenic bacteria can induce oxidative damage in foodstuff aside from other common problems. Heating or sterilization methods cannot protect foodstuff from the damage caused by the presence of pathogenic bacteria.

  5. Anaerobic Oxidation of Methane Coupled to Nitrite Reduction by Halophilic Marine NC10 Bacteria.

    Science.gov (United States)

    He, Zhanfei; Geng, Sha; Cai, Chaoyang; Liu, Shuai; Liu, Yan; Pan, Yawei; Lou, Liping; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-08-15

    Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 μM for methane and 8.7 ± 1.5 μM for nitrite. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Neutrophilic Iron Oxidizing Bacteria: Occurrence and Relevance in Biological Drinking Water Treatment

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen

    Rapid sand filtration (RSF) is an economical way to treat anoxic groundwater around the world. It consists of groundwater aeration followed by passage through a sand filter. The oxidation and removal of ferrous iron, which is commonly found in anoxic groundwaters, is often believed to be a fully......, neutrophilic iron oxidizers were present at the level of up to 7 105 cells per gram sediment. The spatial abundance and diversity of FeOB inferred by DGGE fingerprinting differed greatly both between and within individual sand filters. The results suggest a larger than assumed role of FeOB in iron removal...... physicochemical process. However, persistently low temperatures in RSF across Denmark may negatively affect the kinetics of chemical oxidation. The slower chemical oxidation of ferrous iron may increase the chances for iron bioconversion by neutrophilic iron-oxidizing bacteria (FeOB), which are found naturally...

  7. Pseudomonas mesophilica and an unnamed taxon, clinical isolates of pink-pigmented oxidative bacteria.

    Science.gov (United States)

    Gilardi, G L; Faur, Y C

    1984-10-01

    Twenty-one strains of pink-pigmented bacteria, isolated from human clinical specimens and an environmental source, were compared with Pseudomonas mesophilica ATCC 29983 and Protaminobacter ruber ATCC 8457. These isolates were gram-negative, oxidative rods which were motile by means of a single polar flagellum; gave positive catalase, indophenol oxidase, urease, and amylase reactions; and grew slowly at 30 degrees C. Fourteen isolates conformed to the designated type strains Pseudomonas mesophilica ATCC 29983 and Protaminobacter ruber ATCC 8457. The remaining seven strains represented an undescribed taxon. These pink bacteria appear to be invaders of debilitated patients with an underlying chronic disease.

  8. Reverse-transcriptional gene expression of anammox and ammonia-oxidizing archaea and bacteria in soybean and rice paddy soils of Northeast China.

    Science.gov (United States)

    Wang, Jing; Dong, Hailiang; Wang, Weidong; Gu, Ji-Dong

    2014-03-01

    The relative gene expression of hydrazine oxidoreductase encoding gene (hzo) for anaerobic ammonium oxidizing bacteria (anammox) and ammonia monooxygenase encoding gene (amoA) for both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in Sanjiang Plain soybean and rice paddy soils of Northeast China was investigated by using real-time reverse-transcriptional quantitative PCR. Metabolically active populations of anammox, AOA, and AOB in rice paddy soils were evident by the presence and successful quantification of hzo mRNA and amoA mRNA genes. The expression ratio of amoA gene for both AOA and AOB varied between soybean soils and different rice paddy soils while the expression of hzo gene for anammox was detectable only in rice paddy soils by showing a diverse relative expression ratio in each soil sample. Gene expression of both archaeal and bacterial amoA genes in rice paddy soils differed among the three sampling depths, but that of hzo was not. Both archaeal and bacterial amoA genes showed an increase trend of expression level with continuation of rice paddy cultivation, but the low expression ratio of hzo gene indicated a relatively small contribution of anammox in overall removal of inorganic nitrogen through N2 even under anoxic and high nitrogen input in agriculture. Bacterial amoA gene from two soybean fields and three rice paddy fields were also analyzed for community composition by denaturing gradient gel electrophoresis fingerprint. Community shift was observed between soybean and paddy fields and within each of them. The consistent occurrence of three bands 5, 6, and 7 in all samples showed their high adaptability for both arid cultivation and continuous rice paddy cultivation. Our data suggest that AOA and AOB are playing a more important role in nitrogen transformation in agricultural soils in oxic or anoxic environment and anammox bacteria may also contribute but in a less extent to N transformation in these agricultural soils

  9. Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors.

    Science.gov (United States)

    Zhang, Haiming; Yu, Xinzhi; Guo, Di; Qu, Baihua; Zhang, Ming; Li, Qiuhong; Wang, Taihong

    2013-08-14

    Supercapacitors with potential high power are useful and have attracted much attention recently. Graphene-based composites have been demonstrated to be promising electrode materials for supercapacitors with enhanced properties. To improve the performance of graphene-based composites further and realize their synthesis with large scale, we report a green approach to synthesize bacteria-reduced graphene oxide-nickel sulfide (BGNS) networks. By using Bacillus subtilis as spacers, we deposited reduced graphene oxide/Ni3S2 nanoparticle composites with submillimeter pores directly onto substrate by a binder-free electrostatic spray approach to form BGNS networks. Their electrochemical capacitor performance was evaluated. Compared with stacked reduced graphene oxide-nickel sulfide (GNS) prepared without the aid of bacteria, BGNS with unique nm-μm structure exhibited a higher specific capacitance of about 1424 F g(-1) at a current density of 0.75 A g(-1). About 67.5% of the capacitance was retained as the current density increased from 0.75 to 15 A g(-1). At a current density of 75 A g(-1), a specific capacitance of 406 F g(-1) could still remain. The results indicate that the reduced graphene oxide-nickel sulfide network promoted by bacteria is a promising electrode material for supercapacitors.

  10. Ammonia-Oxidizing Archaea Show More Distinct Biogeographic Distribution Patterns than Ammonia-Oxidizing Bacteria across the Black Soil Zone of Northeast China.

    Science.gov (United States)

    Liu, Junjie; Yu, Zhenhua; Yao, Qin; Sui, Yueyu; Shi, Yu; Chu, Haiyan; Tang, Caixian; Franks, Ashley E; Jin, Jian; Liu, Xiaobing; Wang, Guanghua

    2018-01-01

    Black soils (Mollisols) of northeast China are highly productive and agriculturally important for food production. Ammonia-oxidizing microbes play an important role in N cycling in the black soils. However, the information related to the composition and distribution of ammonia-oxidizing microbes in the black soils has not yet been addressed. In this study, we used the amoA gene to quantify the abundance and community composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) across the black soil zone. The amoA abundance of AOA was remarkably larger than that of AOB, with ratios of AOA/AOB in the range from 3.1 to 91.0 across all soil samples. The abundance of AOA amoA was positively correlated with total soil C content ( p 0.05). In contrast, the abundance of AOB amoA positively correlated with soil pH ( p = 0.009) but not with total soil C. Alpha diversity of AOA did not correlate with any soil parameter, however, alpha diversity of AOB was affected by multiple soil factors, such as soil pH, total P, N, and C, available K content, and soil water content. Canonical correspondence analysis indicated that the AOA community was mainly affected by the sampling latitude, followed by soil pH, total P and C; while the AOB community was mainly determined by soil pH, as well as total P, C and N, water content, and sampling latitude, which highlighted that the AOA community was more geographically distributed in the black soil zone of northeast China than AOB community. In addition, the pairwise analyses showed that the potential nitrification rate (PNR) was not correlated with alpha diversity but weakly positively with the abundance of the AOA community ( p = 0.048), whereas PNR significantly correlated positively with the richness ( p = 0.003), diversity ( p = 0.001) and abundance ( p < 0.001) of the AOB community, which suggested that AOB community might make a greater contribution to nitrification than AOA community in the black soils when

  11. Treatment of high-salinity chemical wastewater by indigenous bacteria--bioaugmented contact oxidation.

    Science.gov (United States)

    Li, Qiang; Wang, Mengdi; Feng, Jun; Zhang, Wei; Wang, Yuanyuan; Gu, Yanyan; Song, Cunjiang; Wang, Shufang

    2013-09-01

    A 90 m(3) biological contact oxidation system in chemical factory was bioaugmented with three strains of indigenous salt-tolerant bacteria. These three strains were screened from contaminative soil in situ. Their activity of growth and degradation was investigated with lab-scale experiments. Their salt-tolerant mechanism was confirmed to be compatible-solutes strategy for moderately halophilic bacteria, with amino acid and betaine playing important roles. The running conditions of the system were recorded for 150 days. The indigenous bacteria had such high suitability that the reactor got steady rapidly and the removal of COD maintained above 90%. It was introduced that biofilm fragments in sedimentation tank were inversely flowed to each reaction tank, and quantitative PCR demonstrated that this process could successfully maintain the bacterial abundance in the reaction tanks. In addition, the T-RFLP revealed that bioaugmented strains dominated over others in the biofilm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Fossilization of Iron-Oxidizing Bacteria at Hydrothermal Vents: a Useful Biosignature on Mars?

    Science.gov (United States)

    Leveille, R. J.; Lui, S.

    2009-05-01

    Iron oxidizing bacteria are ubiquitous in marine and terrestrial environments on Earth, where they often display distinctive cell morphologies and are commonly encrusted by minerals, especially bacteriogenic iron oxides and silica. Putative microfossils of iron oxidizing bacteria have been found in jaspers as old as 490Ma and microbial iron oxidation may be an ancient metabolic pathway. In order to investigate the usefulness of mineralized iron oxidizing bacteria as a biosignature, we have examined mineral samples collected from relict hydrothermal systems along Explorer Ridge, NE Pacific Ocean. In addition, microaerophilic, neutrophilic iron oxidizing bacteria, isolated from Pacific hydrothermal vents, were grown in a Fe-enriched seawater medium at constant pH (6.5) and oxygen concentration (5 percent) in a controlled bioreactor system. Both natural samples and experimental products were examined with a combination of variable pressure scanning electron microscopy (SEM), field emission gun SEM, and in some cases by preparing samples with a focused ion beam (FIB) milling system. Natural seafloor samples display abundant filamentous forms often resembling, in both size and shape, the twisted stalks of Gallionella and the elongated filaments of Leptothrix. Generally, these filamentous features are 1-5 microns in diameter and up to several microns in length. Some samples consist entirely of low- density, porous masses of silica encrusted filamentous forms. Presumably, these masses were formed by a rapid precipitation by the influx of silica-rich fluids into a microbial mat dominated by bacteria with filamentous morphologies. The presence of rare, amorphous (unmineralized) filamentous matter rich in C and Fe suggests that these bacteria were iron oxidizers. There is no evidence that sulfur oxidizers were present. Filamentous features sectioned by FIB milling show internal material within semi-hollow tubular-like features. Silica encrustations also show pseudo

  13. Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems.

    Science.gov (United States)

    Chandran, Kartik; Stein, Lisa Y; Klotz, Martin G; van Loosdrecht, Mark C M

    2011-12-01

    Chemolithoautotrophic AOB (ammonia-oxidizing bacteria) form a crucial component in microbial nitrogen cycling in both natural and engineered systems. Under specific conditions, including transitions from anoxic to oxic conditions and/or excessive ammonia loading, and the presence of high nitrite (NO₂⁻) concentrations, these bacteria are also documented to produce nitric oxide (NO) and nitrous oxide (N₂O) gases. Essentially, ammonia oxidation in the presence of non-limiting substrate concentrations (ammonia and O₂) is associated with N₂O production. An exceptional scenario that leads to such conditions is the periodical switch between anoxic and oxic conditions, which is rather common in engineered nitrogen-removal systems. In particular, the recovery from, rather than imposition of, anoxic conditions has been demonstrated to result in N₂O production. However, applied engineering perspectives, so far, have largely ignored the contribution of nitrification to N₂O emissions in greenhouse gas inventories from wastewater-treatment plants. Recent field-scale measurements have revealed that nitrification-related N₂O emissions are generally far higher than emissions assigned to heterotrophic denitrification. In the present paper, the metabolic pathways, which could potentially contribute to NO and N₂O production by AOB have been conceptually reconstructed under conditions especially relevant to engineered nitrogen-removal systems. Taken together, the reconstructed pathways, field- and laboratory-scale results suggest that engineering designs that achieve low effluent aqueous nitrogen concentrations also minimize gaseous nitrogen emissions.

  14. Prevention by lactic acid bacteria of the oxidation of human LDL.

    Science.gov (United States)

    Terahara, M; Kurama, S; Takemoto, N

    2001-08-01

    Ether extracts of lactic acid bacteria were analyzed for prevention of the oxidation of erythrocyte membrane and human low-density lipoprotein in vivo. Streptococcus thermophilus 1131 and Lactobacillus delbrueckii subsp. bulgaricus 2038, yogurt starters, were chosen as test-strains, and ether extracts of these cultures were used as samples. Both strain 1131 and strain 2038 produced radical scavengers and inhibited oxidation of erythrocyte membranes and low-density lipoproteins. The antioxidative activity of strain 2038 was higher than that of strain 1131.

  15. Bacteria dominate ammonia oxidation in soils used for outdoor cattle overwintering

    Czech Academy of Sciences Publication Activity Database

    Radl, V.; Chroňáková, Alica; Čuhel, Jiří; Šimek, Miloslav; Elhottová, Dana; Welzl, G.; Schloter, M.

    2014-01-01

    Roč. 77, May (2014), s. 68-71 ISSN 0929-1393 R&D Projects: GA MŠk LC06066 Grant - others:Akademie věd ČR(CZ) D-CZ 45:05/06 Institutional support: RVO:60077344 Keywords : ammonia oxidation * bacteria * archaea * amoA diversity * urea * pasture Subject RIV: EH - Ecology, Behaviour Impact factor: 2.644, year: 2014

  16. Pseudomonas mesophilica and an unnamed taxon, clinical isolates of pink-pigmented oxidative bacteria.

    OpenAIRE

    Gilardi, G L; Faur, Y C

    1984-01-01

    Twenty-one strains of pink-pigmented bacteria, isolated from human clinical specimens and an environmental source, were compared with Pseudomonas mesophilica ATCC 29983 and Protaminobacter ruber ATCC 8457. These isolates were gram-negative, oxidative rods which were motile by means of a single polar flagellum; gave positive catalase, indophenol oxidase, urease, and amylase reactions; and grew slowly at 30 degrees C. Fourteen isolates conformed to the designated type strains Pseudomonas mesoph...

  17. Development of hydrogen oxidizing bacteria using hydrogen from radiolysis or metal corrosion

    International Nuclear Information System (INIS)

    Libert, M.F.; Sellier, R.; Marty, V.; Camaro, S.

    2000-01-01

    The effect of many parameters need to be studied to characterize the long term behavior of nuclear waste in a deep repository. These parameters concern the chemical effects, radiolytic effects, mechanical properties, water composition, and microbiological activity. To evaluate microbial activity in such an environment, work was focused on an inventory of key nutrients (C, H, 0, N, P, S) and energy sources required for bacterial growth. The production of hydrogen in the nuclear waste environment leads to the growth of hydrogen oxidizing bacteria, which modify the gas production balance. A deep repository containing bituminized waste drums implies several sources of hydrogen: - water radiolysis; -corrosion of metal containers; - radiolysis of the embedding matrix (bitumen). Two deep geological disposal conditions leading to H 2 production in a bituminized nuclear waste environment were simulated in the present study: - H 2 production by iron corrosion under anaerobic conditions was simulated by adding 10% of H 2 in the atmosphere; - H 2 production by radiolysis of bitumen matrix was approached by subjecting this material to external gamma irradiation with a dose rate near real conditions (6 Gy/h). The presence of dissolved H 2 in water allows the growth of hydrogen oxidizing bacteria leading to: - CO 2 and N 2 production; - H 2 consumption; - lower NO 3 - concentration caused by reduction to nitrogen. In the first case, hydrogen consumption is limited by the NO 3 - release rate from the bitumen matrix. In the second case, however, under gamma radiation at a low dose rate, hydrogen production is weak, and the hydrogen is completely consumed by microorganisms. Knowledge about these hydrogen oxidizing bacteria is just beginning to emerge. Heterotrophic denitrifying bacteria adapt well to hydrogen metabolism (autotrophic metabolism) by oxidizing H 2 instead of hydrocarbons. (authors)

  18. Influence of tropical leaf litter on nitrogen mineralization and community structure of ammonia-oxidizing bacteria

    OpenAIRE

    Diallo, M. D.; Guisse, A.; Sall, S. N.; Dick, R. P.; Assigbetsé, Komi; Dieng, A. L.; Chotte, Jean-Luc

    2015-01-01

    Description of the subject. The present study concerns the relationships among leaf litter decomposition, substrate quality, ammonia-oxidizing bacteria (AOB) community composition and nitrogen (N) availability. Decomposition of organic matter affects the biogeochemical cycling of carbon (C) and N. Since the composition of the soil microbial community can alter the physiological capacity of the community, it is timely to study the litter quality effect on N dynamic in ecosystems. Objectives. T...

  19. Life on the energetic edge: Iron oxidation by circumneutral lithotrophic bacteria in the wetland plant rhizosphere

    Science.gov (United States)

    Neubauer, S. C.; Emerson, D.; Megonigal, J. P.; Weiss, J. V.

    2002-05-01

    We have discovered a phylogenetically and genotypically coherent group of obligately lithotrophic Fe-oxidizing bacteria that grow at neutral pH and are globally distributed in a range of habitats, from the rhizosphere of freshwater wetlands to deep-sea hydrothermal vents. We have initiated bioreactor studies using pure cultures of these organisms to determine the significance of microbial Fe(II) oxidation at circumneutral pH and identify the biotic and abiotic variables that affect the partitioning between microbial and chemical oxidation. These studies have focused on strain BrT, which was isolated from an iron oxide precipitate in rhizosphere of a wetland plant. In one set of experiments, Fe(II) oxidation rates were measured before and after cultures of strain BrT were poisoned with sodium azide. These experiments indicated that 18 to 53 % of total iron oxidation was due to microbial metabolism. In a second set of experiments, Fe(II) was constantly added to bioreactors inoculated with live cells, killed cells, or no cells. A statistical model fit to the experimental data demonstrated that metabolic Fe(II) oxidation accounted for up to 62 % of total oxidation. Total Fe(II) oxidation rates in these experiments were strongly limited by the rate of Fe(II) delivery to the system, and were also influenced by O2 and total iron concentrations. Additionally, the model suggested that the microbes inhibited rates of abiotic Fe(II) oxidation, perhaps by binding Fe(II) to bacterial exopolymers. The net effect of strain BrT was to accelerate total oxidation rates by up to 18 % versus cell-free treatments. Using two independent techniques, we demonstrated that strain BrT actively metabolizes Fe(II) and can account for up to 50 to 60 % of total Fe(II) oxidation in laboratory cultures. These results suggest that neutrophilic Fe(II)-oxidizing bacteria may compete for limited O2 in the rhizosphere and influence the biogeochemistry of other elements including carbon, phosphorus, and

  20. High abundances of potentially active ammonia-oxidizing bacteria and archaea in oligotrophic, high-altitude lakes of the Sierra Nevada, California, USA.

    Directory of Open Access Journals (Sweden)

    Curtis J Hayden

    Full Text Available Nitrification plays a central role in the nitrogen cycle by determining the oxidation state of nitrogen and its subsequent bioavailability and cycling. However, relatively little is known about the underlying ecology of the microbial communities that carry out nitrification in freshwater ecosystems--and particularly within high-altitude oligotrophic lakes, where nitrogen is frequently a limiting nutrient. We quantified ammonia-oxidizing archaea (AOA and bacteria (AOB in 9 high-altitude lakes (2289-3160 m in the Sierra Nevada, California, USA, in relation to spatial and biogeochemical data. Based on their ammonia monooxygenase (amoA genes, AOB and AOA were frequently detected. AOB were present in 88% of samples and were more abundant than AOA in all samples. Both groups showed >100 fold variation in abundance between different lakes, and were also variable through time within individual lakes. Nutrient concentrations (ammonium, nitrite, nitrate, and phosphate were generally low but also varied across and within lakes, suggestive of active internal nutrient cycling; AOB abundance was significantly correlated with phosphate (r(2 = 0.32, p<0.1, whereas AOA abundance was inversely correlated with lake elevation (r(2 = 0.43, p<0.05. We also measured low rates of ammonia oxidation--indicating that AOB, AOA, or both, may be biogeochemically active in these oligotrophic ecosystems. Our data indicate that dynamic populations of AOB and AOA are found in oligotrophic, high-altitude, freshwater lakes.

  1. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.

    Science.gov (United States)

    Miot, J; Benzerara, K; Morin, G; Bernard, S; Beyssac, O; Larquet, E; Kappler, A; Guyot, F

    2009-06-01

    In phosphate-rich environments, vivianite (Fe(II)(3)(PO(4))(2), 8H(2)O) is an important sink for dissolved Fe(II) and is considered as a very stable mineral due to its low solubility at neutral pH. In the present study, we report the mineralogical transformation of vivianite in cultures of the nitrate-reducing iron-oxidizing bacterial strain BoFeN1 in the presence of dissolved Fe(II). Vivianite was first transformed into a greenish phase consisting mostly of an amorphous mixed valence Fe-phosphate. This precipitate became progressively orange and the final product of iron oxidation consisted of an amorphous Fe(III)-phosphate. The sub-micrometer analysis by scanning transmission X-ray microscopy of the iron redox state in samples collected at different stages of the culture indicated that iron was progressively oxidized at the contact of the bacteria and at a distance from the cells in extracellular minerals. Iron oxidation in the extracellular minerals was delayed by a few days compared with cell-associated Fe-minerals. This led to strong differences of Fe redox in between these two types of minerals and finally to local heterogeneities of redox within the sample. In the absence of dissolved Fe(II), vivianite was not significantly transformed by BoFeN1. Whereas Fe(II) oxidation at the cell contact is most probably directly catalyzed by the bacteria, vivianite transformation at a distance from the cells might result from oxidation by nitrite. In addition, processes leading to the export of Fe(III) from bacterial oxidation sites to extracellular minerals are discussed including some involving colloids observed by cryo-transmission electron microscopy in the culture medium.

  2. Identification of Antimony- and Arsenic-Oxidizing Bacteria Associated with Antimony Mine Tailing

    Science.gov (United States)

    Hamamura, Natsuko; Fukushima, Koh; Itai, Takaaki

    2013-01-01

    Antimony (Sb) is a naturally occurring toxic element commonly associated with arsenic (As) in the environment and both elements have similar chemistry and toxicity. Increasing numbers of studies have focused on microbial As transformations, while microbial Sb interactions are still not well understood. To gain insight into microbial roles in the geochemical cycling of Sb and As, soils from Sb mine tailing were examined for the presence of Sb- and As-oxidizing bacteria. After aerobic enrichment culturing with AsIII (10 mM) or SbIII (100 μM), pure cultures of Pseudomonas- and Stenotrophomonas-related isolates with SbIII oxidation activities and a Sinorhizobium-related isolate capable of AsIII oxidation were obtained. The AsIII-oxidizing Sinorhizobium isolate possessed the aerobic arsenite oxidase gene (aioA), the expression of which was induced in the presence of AsIII or SbIII. However, no SbIII oxidation activity was detected from the Sinorhizobium-related isolate, suggesting the involvement of different mechanisms for Sb and As oxidation. These results demonstrate that indigenous microorganisms associated with Sb mine soils are capable of Sb and As oxidation, and potentially contribute to the speciation and mobility of Sb and As in situ. PMID:23666539

  3. Archaea produce lower yields of N2 O than bacteria during aerobic ammonia oxidation in soil.

    Science.gov (United States)

    Hink, Linda; Nicol, Graeme W; Prosser, James I

    2017-12-01

    Nitrogen fertilisation of agricultural soil contributes significantly to emissions of the potent greenhouse gas nitrous oxide (N 2 O), which is generated during denitrification and, in oxic soils, mainly by ammonia oxidisers. Although laboratory cultures of ammonia oxidising bacteria (AOB) and archaea (AOA) produce N 2 O, their relative activities in soil are unknown. This work tested the hypothesis that AOB dominate ammonia oxidation and N 2 O production under conditions of high inorganic ammonia (NH 3 ) input, but result mainly from the activity of AOA when NH 3 is derived from mineralisation. 1-octyne, a recently discovered inhibitor of AOB, was used to distinguish N 2 O production resulting from archaeal and bacterial ammonia oxidation in soil microcosms, and specifically inhibited AOB growth, activity and N 2 O production. In unamended soils, ammonia oxidation and N 2 O production were lower and resulted mainly from ammonia oxidation by AOA. The AOA N 2 O yield relative to nitrite produced was half that of AOB, likely due to additional enzymatic mechanisms in the latter, but ammonia oxidation and N 2 O production were directly linked in all treatments. Relative contributions of AOA and AOB to N 2 O production, therefore, reflect their respective contributions to ammonia oxidation. These results suggest potential mitigation strategies for N 2 O emissions from fertilised agricultural soils. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. The impact of ammonium and nitrate impurities on the formation of uranium oxides, in thecomposition range UO3-U3O8-z during thermal decomposition of ammonium uranates

    International Nuclear Information System (INIS)

    El-Mamoon Yahai, M.; El-Fekey, S.A.; Abd El-Razek, A.M.

    1996-01-01

    Ammonium uranates (AU) were precipitated from a nuclear-pure uranyl nitrate solution using ammonia liquor. Unwashed and washed uranate samples were heated at temperatures varying between 400 and 800 C and analysed thermally and by X-ray diffraction analysis. The results indicated that amorphous uranium trioxide (A-UO 3 ) is mainly formed in absence of carried ammonium and nitrate ions, whereas deamination of the retained ammonia leads to β-UO 3 formation. The retained ammonium ions in the AU structure increased with the pH of precipitation and these ions lead to formation of two polymorphs of uranium octoxides. (orig.)

  5. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan

    Science.gov (United States)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

    2011-04-01

    Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater.

  6. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations

    NARCIS (Netherlands)

    Bollmann, A.; Sedlacek, C.J.; Norton, J.; Laanbroek, H.J.; Suwa, Y.; Stein, L.Y.; Klotz, M.G.; Arp, D.; Sayavedra-Soto, L.; Lu, M.; Bruce, D.; Detter, C.; Tapia, R.; Han, J.; Woyke, T.; Lucas, S.; Pitluck, S.; Pennacchio, L.; Nolan, M.; Land, M.L.; Huntemann, M.; Deshpande, S.; Han, C.; Chen, A.; Kyrpides, N.; Mavromatis, K.; Markowitz, V.; Szeto, E.; Ivanova, N.; Mikhailova, N.; Pagani, I.; Pati, A.; Peters, L.; Ovchinnikova, G.; Goodwin, L.

    2013-01-01

    Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production

  7. Quantification of syntrophic fatty acid-beta-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    DEFF Research Database (Denmark)

    Hansen, K.W.; Ahring, Birgitte Kiær; Raskin, L.

    1999-01-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-beta-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYE, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S, wolfei LYE was closely related...... fatty acid-beta-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria-and methanogens were compared to specific methanogenic activities...

  8. Ammonia-oxidizing Bacteria and Archaea in the Rhizosphere of Freshwater Macrophytes

    DEFF Research Database (Denmark)

    Herrmann, Martina; Schramm, Andreas

    2007-01-01

    AMMONIA-OXIDIZING ARCHAEA AND BACTERIA IN THE RHIZOSPHERE OF FRESHWATER MACROPHYTES Martina Herrmann and Andreas Schramm Department of Biological Sciences, Microbiology, University of Aarhus, Denmark Aquatic macrophytes such as Littorella uniflora and Lobelia dortmanna release oxygen from...... their roots and thereby stimulate nitrification and coupled nitrification-denitrification in their rhizosphere. However, oxygen release and inorganic nitrogen concentrations differ markedly between macrophyte species. We therefore propose (i) that the rhizosphere of freshwater macrophytes harbours a species......-specific microbial community distinct from that of unvegetated sediment and (ii) that aquatic macrophytes have an impact on abundance and activity of nitrifying and denitrifying bacteria in freshwater sediment. The goal of this study was to test these hypotheses for the key functional group for coupled nitrification...

  9. Identification and characterization of epoxide hydrolase activity of polycyclic aromatic hydrocarbon-degrading bacteria for biocatalytic resolution of racemic styrene oxide and styrene oxide derivatives.

    Science.gov (United States)

    Woo, Jung-Hee; Kwon, Tae-Hyung; Kim, Jun-Tae; Kim, Choong-Gon; Lee, Eun Yeol

    2013-04-01

    A novel epoxide hydrolase (EHase) from polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was identified and characterized. EHase activity was identified in four strains of PAH-degrading bacteria isolated from commercial gasoline and oil-contaminated sediment based on their growth on styrene oxide and its derivatives, such as 2,3- and 4-chlorostyrene oxides, as a sole carbon source. Gordonia sp. H37 exhibited high enantioselective hydrolysis activity for 4-chlorostyrene oxide with an enantiomeric ratio of 27. Gordonia sp. H37 preferentially hydrolyzed the (R)-enantiomer of styrene oxide derivatives resulting in the preparation of a (S)-enantiomer with enantiomeric excess greater than 99.9 %. The enantioselective EHase activity was identified and characterized in various PAH-degrading bacteria, and whole cell Gordonia sp. H37 was employed as a biocatalyst for preparing enantiopure (S)-styrene oxide derivatives.

  10. Ammonia oxidizing bacteria community dynamics in a pilot-scale wastewater treatment plant.

    Directory of Open Access Journals (Sweden)

    Xiaohui Wang

    Full Text Available BACKGROUND: Chemoautotrophic ammonia oxidizing bacteria (AOB have the metabolic ability to oxidize ammonia to nitrite aerobically. This metabolic feature has been widely used, in combination with denitrification, to remove nitrogen from wastewater in wastewater treatment plants (WWTPs. However, the relative influence of specific deterministic environmental factors to AOB community dynamics in WWTP is uncertain. The ecological principles underlying AOB community dynamics and nitrification stability and how they are related are also poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: The community dynamics of ammonia oxidizing bacteria (AOB in a pilot-scale WWTP were monitored over a one-year period by Terminal Restriction Fragment Length Polymorphism (T-RFLP. During the study period, the effluent ammonia concentrations were almost below 2 mg/L, except for the first 60 days, indicting stable nitrification. T-RFLP results showed that, during the test period with stable nitrification, the AOB community structures were not stable, and the average change rate (every 15 days of AOB community structures was 10% ± 8%. The correlations between T-RFLP profiles and 10 operational and environmental parameters were tested by Canonical Correlation Analysis (CCA and Mantel test. The results indicated that the dynamics of AOB community correlated most strongly with Dissolved Oxygen (DO, effluent ammonia, effluent Biochemical Oxygen Demand (BOD and temperature. CONCLUSIONS/SIGNIFICANCE: This study suggests that nitrification stability is not necessarily accompanied by a stable AOB community, and provides insight into parameters controlling the AOB community dynamics within bioreactors with stable nitrification.

  11. Population structure of manganese-oxidizing bacteria in stratified soils and properties of manganese oxide aggregates under manganese-complex medium enrichment.

    Directory of Open Access Journals (Sweden)

    Weihong Yang

    Full Text Available Manganese-oxidizing bacteria in the aquatic environment have been comprehensively investigated. However, little information is available about the distribution and biogeochemical significance of these bacteria in terrestrial soil environments. In this study, stratified soils were initially examined to investigate the community structure and diversity of manganese-oxidizing bacteria. Total 344 culturable bacterial isolates from all substrata exhibited Mn(II-oxidizing activities at the range of 1 µM to 240 µM of the equivalent MnO2. The high Mn(II-oxidizing isolates (>50 mM MnO2 were identified as the species of phyla Actinobacteria, Firmicutes and Proteobacteria. Seven novel Mn(II-oxidizing bacterial genera (species, namely, Escherichia, Agromyces, Cellulomonas, Cupriavidus, Microbacterium, Ralstonia, and Variovorax, were revealed via comparative phylogenetic analysis. Moreover, an increase in the diversity of soil bacterial community was observed after the combined enrichment of Mn(II and carbon-rich complex. The phylogenetic classification of the enriched bacteria represented by predominant denaturing gradient gel electrophoresis bands, was apparently similar to culturable Mn(II-oxidizing bacteria. The experiments were further undertaken to investigate the properties of the Mn oxide aggregates formed by the bacterial isolates with high Mn(II-oxidizing activity. Results showed that these bacteria were closely encrusted with their Mn oxides and formed regular microspherical aggregates under prolonged Mn(II and carbon-rich medium enrichment for three weeks. The biotic oxidation of Mn(II to Mn(III/IV by these isolates was confirmed by kinetic examinations. X-ray diffraction assays showed the characteristic peaks of several Mn oxides and rhodochrosite from these aggregates. Leucoberbelin blue tests also verified the Mn(II-oxidizing activity of these aggregates. These results demonstrated that Mn oxides were formed at certain amounts under the

  12. Comparison of Oxidation Kinetics of Nitrite-Oxidizing Bacteria: Nitrite Availability as a Key Factor in Niche Differentiation

    Science.gov (United States)

    Nowka, Boris; Daims, Holger

    2014-01-01

    Nitrification has an immense impact on nitrogen cycling in natural ecosystems and in wastewater treatment plants. Mathematical models function as tools to capture the complexity of these biological systems, but kinetic parameters especially of nitrite-oxidizing bacteria (NOB) are lacking because of a limited number of pure cultures until recently. In this study, we compared the nitrite oxidation kinetics of six pure cultures and one enrichment culture representing three genera of NOB (Nitrobacter, Nitrospira, Nitrotoga). With half-saturation constants (Km) between 9 and 27 μM nitrite, Nitrospira bacteria are adapted to live under significant substrate limitation. Nitrobacter showed a wide range of lower substrate affinities, with Km values between 49 and 544 μM nitrite. However, the advantage of Nitrobacter emerged under excess nitrite supply, sustaining high maximum specific activities (Vmax) of 64 to 164 μmol nitrite/mg protein/h, contrary to the lower activities of Nitrospira of 18 to 48 μmol nitrite/mg protein/h. The Vmax (26 μmol nitrite/mg protein/h) and Km (58 μM nitrite) of “Candidatus Nitrotoga arctica” measured at a low temperature of 17°C suggest that Nitrotoga can advantageously compete with other NOB, especially in cold habitats. The kinetic parameters determined represent improved basis values for nitrifying models and will support predictions of community structure and nitrification rates in natural and engineered ecosystems. PMID:25398863

  13. Impact of chemical oxidation on indigenous bacteria and mobilization of nutrients and subsequent bioremediation of crude oil-contaminated soil.

    Science.gov (United States)

    Xu, Jinlan; Deng, Xin; Cui, Yiwei; Kong, Fanxing

    2016-12-15

    Fenton pre-oxidation provides nutrients to promote bioremediation. However, the effects of the indigenous bacteria that remain following Fenton oxidation on nutrient mobilization and subsequent bioremediation remain unclear. Experiments were performed with inoculation with native bacteria and foreign bacteria or without inoculation after four regimens of stepwise pre-oxidations. The effects of the indigenous bacteria remaining after stepwise oxidation on nutrient mobilization and subsequent bioremediation over 80 days were investigated. After stepwise Fenton pre-oxidation at a low H 2 O 2 concentration (225×4), the remaining indigenous bacterial populations reached their peak (4.8±0.17×10 6 CFU/g), the nutrients were mobilized rapidly, and the subsequent bioremediation of crude oil was improved (biodegradation efficiency of 35%). However, after stepwise Fenton pre-oxidation at a high H 2 O 2 concentration (450×4), only 3.6±0.16×10 3 CFU/g of indigenous bacteria remained, and the indigenous bacteria that degrade C 15 -C 30 alkanes were inhibited. The nutrient mobilization was then highly limited, and only 19% of total petroleum hydrocarbon was degraded. Furthermore, the recovery period after the low H 2 O 2 concentration stepwise Fenton pre-oxidation (225×4) was less than 20 days, which was 20-30 days shorter than with the other pre-oxidation treatments. Therefore, stepwise Fenton pre-oxidation at a low H 2 O 2 concentration protects indigenous bacterial populations and improves the nutrient mobilization and subsequent bioremediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Toxic effects exerted on methanogenic, nitrifying and denitrifying bacteria by chemicals used in a milk analysis laboratory

    NARCIS (Netherlands)

    Lopez-Fiuza, J.; Buys, B.; Mosquera-Corral, A.; Omil, F.; Mendez, R.

    2002-01-01

    The toxic effects caused by the chemicals contained in wastewaters generated by laboratories involved in raw milk analyses were assessed using batch assays. These assays were carried out separately with methanogenic, ammonium-oxidizing, nitrite-oxidizing and denitrifying bacteria. Since sodium azide

  15. Linking Mn(II)-oxidizing bacteria to natural attenuation at a former U mining site

    Science.gov (United States)

    Akob, D.; Bohu, T.; Beyer, A.; Schäffner, F.; Händel, M.; Johnson, C.; Merten, D.; Büchel, G.; Totsche, K.; Küsel, K.

    2012-04-01

    Uranium mining near Ronneburg, Germany resulted in widespread environmental contamination with acid mine drainage (AMD) and high concentrations of heavy metals and radionuclides. Despite physical remediation of the area, groundwater is still a source of heavy metal contaminants, e.g., Cd, Ni, Co, Cu and Zn, to nearby ecosystems. However, natural attenuation of heavy metals is occurring in Mn oxide rich soils and sediments ranging in pH from 5 to 7. While microorganisms readily oxidize Mn(II) and precipitate Mn oxides at pH ~7 under oxic conditions, few studies describe Mn(II)-oxidizing bacteria (MOB) at pH ~5 and/or in the presence of heavy metals. In this study we (1) isolated MOB from the contaminated Ronneburg area at pH 5.5 and 7 and (2) evaluated the biological formation of Mn oxides. We isolated nine MOB strains at pH 7 (members of the Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla) and a single isolate at pH 5.5 (Oxalobacteraceae isolate AB_14, within the β-Proteobacteria). LA-ICP-MS showed that all isolates accumulated Mn and Fe in their biomass. However, the Oxalobacteraceae isolate AB_14 oxidizes more Mn without additional Fe in the medium. Preliminary FTIR analysis indicated that all isolates formed precipitates, which showed absorption bands that were characteristic for birnessite. High resolution TEM showed variable morphology of precipitates and EDS confirmed the presence of Mn oxides. Isolate AB_14 was not surrounded with precipitates whereas our Actinobacteria isolate AB_18 was encrusted with Mn oxides. Electron diffraction is currently being used to confirm the presence of birnessite and other Mn oxide phases. This, the first known report of any organism capable of Mn oxidation at low pH, demonstrated that MOB can be involved in the natural attenuation of both moderately acidic and neutral pH soils and sediments via the formation of biogenic Mn oxides. Future work will fully evaluate the minerals formed in this process as well

  16. Energy upcycle in anaerobic treatment: Ammonium, methane, and carbon dioxide reformation through a hybrid electrodeionization–solid oxide fuel cell system

    International Nuclear Information System (INIS)

    Xu, Linji; Dong, Feifei; Zhuang, Huichuan; He, Wei; Ni, Meng; Feng, Shien-Ping; Lee, Po-Heng

    2017-01-01

    Highlights: • EDI-SOFC integrated with AD is introduced for energy extraction from C and N pollutants. • NH_4"+ dissociation to NH_3 and H_2 in EDI avoids C deposition in SOFC. • EDI exhibits nutrient and heavy metal recovery. • SOFCs display its adaptability with NH_3, H_2, and biogas. • Energy balance ratio boosts from 1.11 to 1.75 by EDI-SOFC in a HK landfill plant. - Abstract: To create possibilities for a more sustainable wastewater management, a novel system consisting of electrodeionization (EDI) and solid oxide fuel cells (SOFCs) is proposed in this study. This system is integrated with anaerobic digestion/landfills to capture energy from carbonaceous and nitrogenous pollutants. Both EDI and SOFCs showed good performances. EDI removed 95% and 76% ammonium-nitrogen (NH_4"+-N) from diluted (0.025 M) to concentrated (0.5 M) synthetic ammonium wastewaters, respectively, accompanied by hydrogen production. SOFCs converted the recovered fuels, biogas mixtures of methane and carbon dioxide, to electricity. Under the optimal conditions of EDI (3.0 V applied voltage and 7.5 mm internal electrode distance (IED), and SOFCs (750 °C operating temperature), the system achieved 60% higher net energy output as compared to conventional systems. The estimated energy benefit of this proposed system showed that the net energy balance ratio is enhanced from 1.11 (existing system) to 1.75 (this study) for a local Hong Kong active landfill facility with 10.0 g L"−"1 chemical oxygen demand (COD) and 0.21 M NH_4"+-N. Additionally, an average of 80% inorganic ions (heavy metals and nutrient elements) can be removed from the raw landfill leachate by EDI cell. The results are successful demonstrations of the upgrades of anaerobic processes for energy extraction from wastewater streams.

  17. Quaternary ammonium oxidative demethylation: X-ray crystallographic, resonance Raman, and UV-visible spectroscopic analysis of a Rieske-type demethylase.

    Science.gov (United States)

    Daughtry, Kelly D; Xiao, Youli; Stoner-Ma, Deborah; Cho, Eunsun; Orville, Allen M; Liu, Pinghua; Allen, Karen N

    2012-02-08

    Herein, the structure resulting from in situ turnover in a chemically challenging quaternary ammonium oxidative demethylation reaction was captured via crystallographic analysis and analyzed via single-crystal spectroscopy. Crystal structures were determined for the Rieske-type monooxygenase, stachydrine demethylase, in the unliganded state (at 1.6 Å resolution) and in the product complex (at 2.2 Å resolution). The ligand complex was obtained from enzyme aerobically cocrystallized with the substrate stachydrine (N,N-dimethylproline). The ligand electron density in the complex was interpreted as proline, generated within the active site at 100 K by the absorption of X-ray photon energy and two consecutive demethylation cycles. The oxidation state of the Rieske iron-sulfur cluster was characterized by UV-visible spectroscopy throughout X-ray data collection in conjunction with resonance Raman spectra collected before and after diffraction data. Shifts in the absorption band wavelength and intensity as a function of absorbed X-ray dose demonstrated that the Rieske center was reduced by solvated electrons generated by X-ray photons; the kinetics of the reduction process differed dramatically for the liganded complex compared to unliganded demethylase, which may correspond to the observed turnover in the crystal.

  18. Spatial interaction of archaeal ammonia-oxidizers and nitrite-oxidizing bacteria in an unfertilized grassland soil

    Directory of Open Access Journals (Sweden)

    Barbara eStempfhuber

    2016-01-01

    Full Text Available Interrelated successive transformation steps of nitrification are performed by distinct microbial groups – the ammonia-oxidizers, comprising ammonia-oxidizing archaea (AOA and bacteria (AOB, and nitrite-oxidizers such as Nitrobacter and Nitrospira, which are the dominant genera in the investigated soils. Hence, not only their presence and activity in the investigated habitat is required for nitrification, but also their temporal and spatial interactions. To demonstrate the interdependence of both groups and to address factors promoting putative niche differentiation within each group, temporal and spatial changes in nitrifying organisms were monitored in an unfertilized grassland site over an entire vegetation period at the plot scale of 10 m². Nitrifying organisms were assessed by measuring the abundance of marker genes (amoA for AOA and AOB, nxrA for Nitrobacter, 16S rRNA gene for Nitrospira selected for the respective sub-processes. A positive correlation between numerically dominant AOA and Nitrospira, and their co-occurrence at the same spatial scale in August and October, suggests that the nitrification process is predominantly performed by these groups and is restricted to a limited timeframe. Amongst nitrite-oxidizers, niche differentiation was evident in observed seasonally varying patterns of co-occurrence and spatial separation. While their distributions were most likely driven by substrate concentrations, oxygen availability may also have played a role under substrate-limited conditions. Phylogenetic analysis revealed temporal shifts in Nitrospira community composition with an increasing relative abundance of OTU03 assigned to sublineage V from August onwards, indicating its important role in nitrite oxidation.

  19. Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress.

    Directory of Open Access Journals (Sweden)

    Des Raj Kashyap

    2014-07-01

    Full Text Available Mammalian Peptidoglycan Recognition Proteins (PGRPs are a family of evolutionary conserved bactericidal innate immunity proteins, but the mechanism through which they kill bacteria is unclear. We previously proposed that PGRPs are bactericidal due to induction of reactive oxygen species (ROS, a mechanism of killing that was also postulated, and later refuted, for several bactericidal antibiotics. Here, using whole genome expression arrays, qRT-PCR, and biochemical tests we show that in both Escherichia coli and Bacillus subtilis PGRPs induce a transcriptomic signature characteristic of oxidative stress, as well as correlated biochemical changes. However, induction of ROS was required, but not sufficient for PGRP killing. PGRPs also induced depletion of intracellular thiols and increased cytosolic concentrations of zinc and copper, as evidenced by transcriptome changes and supported by direct measurements. Depletion of thiols and elevated concentrations of metals were also required, but by themselves not sufficient, for bacterial killing. Chemical treatment studies demonstrated that efficient bacterial killing can be recapitulated only by the simultaneous addition of agents leading to production of ROS, depletion of thiols, and elevation of intracellular metal concentrations. These results identify a novel mechanism of bacterial killing by innate immunity proteins, which depends on synergistic effect of oxidative, thiol, and metal stress and differs from bacterial killing by antibiotics. These results offer potential targets for developing new antibacterial agents that would kill antibiotic-resistant bacteria.

  20. IDENTITY OF THE PINK-PIGMENTED METHANOL-OXIDIZING BACTERIA AS VIBRIO EXTORQUENS.

    Science.gov (United States)

    STOCKS, P K; MCCLESKEY, C S

    1964-10-01

    Stocks, Peter K. (Louisiana State University, Baton Rouge), and C. S. McCleskey. Identity of the pink-pigmented methanol-oxidizing bacteria as Vibrio extorquens. J. Bacteriol. 88:1065-1070. 1964.-Pink-pigmented bacteria isolated from enrichment cultures of methane oxidizers were found to possess similar morphological, cultural, and physiological characteristics. All the strains utilized methanol, formate, oxalate, succinate, glycerol, and benzene as sole carbon sources; methanol, formate, and glycerol afforded best growth. Most strains utilized fructose and ribose; other carbohydrates tested were not available as carbon and energy sources. There was strain variation in the use of hexane, heptane, n-propanol, n-butanol, acetate, and propionate. Methane, ethane, n-propane, and n-butane were not utilized. Our isolates, and Pseudomonas methanica of Harrington and Kallio (not the methane-dependent P. methanica of Dworkin and Foster), Pseudomonas AM1 of Peele and Quayle, Pseudomonas PRL-W4 of Kaneda and Roxburgh, and Protaminobacter ruber den Dooren de Jong are nearly identical with Vibrio extorquens (Bassalik) Bhat and Barker, and should be considered the same species.

  1. Effect of inoculum sources on the enrichment of nitrite-dependent anaerobic methane-oxidizing bacteria.

    Science.gov (United States)

    He, Zhanfei; Cai, Chen; Shen, Lidong; Lou, Liping; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is a newly discovered biological process that couples anaerobic oxidation of methane (AOM) to nitrite reduction. In this study, three different inocula, methanogenic sludge, paddy soil, and freshwater sediment were used to enrich n-damo bacteria in three sequencing batch reactors (SBRs), and three n-damo enrichment cultures, C1, C2 and C3, were obtained, respectively. After 500 days of incubation, Methylomirabilis oxyfera-like bacteria and n-damo activities were observed in cultures C1, C2, and C3, and the specific activities were 0.8 ± 0.1, 1.4 ± 0.1, and 1.0 ± 0.1 μmol CH4 h(-1) g(-1) VSS, respectively. The copy numbers of 16S rRNA genes from cultures C1, C2, and C3 were 5.0 ± 0.4 × 10(8), 6.1 ± 0.1 × 10(9), and 1.0 ± 0.2 × 10(9) copies g(-1) dry weight, respectively. The results indicated that paddy soil is an excellent inoculum for n-damo bacterial enrichment. This work expanded the alternative source of n-damo inoculum and benefited the further research of n-damo process.

  2. Antimicrobial Effect of Copper Oxide Nanoparticles on Some Oral Bacteria and Candida Species

    Directory of Open Access Journals (Sweden)

    Amiri M

    2017-03-01

    Full Text Available Statement of Problem: Acid producing bacteria including Streptococcus mutans and lactobacilli cause tooth demineralization and lead to tooth decay. Also, oral colonization of the species of Candida has been reported in many studies that are resistant to antifungal agents. Objectives: In this study, antibacterial and antifungal effects of nano-CuO were studied against some oral bacteria and yeast fungi. Materials and Methods: The minimum inhibitory concentrations (MICs of copper oxide nanoparticles (CuO NPs for oral bacterial and fungal test strains were determined in 96-well microtiter plate technique. The agar diffusion test (ADT was employed to assess the antifungal properties of nystatin. Results: The MIC50 value of CuO NPs was determined at the range of 1–10 µg/ml for S. mutans, < 1 µg/ml for L. acidophilus, and 10 µg/ml for L. casei. Higher concentrations of CuO NPs (100-1000 µg/ml were effective on the bacterial cell growth, resulting in 100% reduction in the optical density in TSB medium. The cells of Candida albicans, C. krusei and C. glabrata were treated with CuO NPs and the results showed a decrease in fungal growth at a concentration of 1-1000 µg/ml in TSB medium. The MIC50 value of CuO NPs was determined 1000 µg/ml for three species of Candida. The diameter of growth inhibition zones of 1100 µg/ml nystatin was obtained 15-21 mm for clinical isolates of three species of Candida. Conclusions: With respect to the potential bactericidal activity of CuO NPs on various cariogenic bacteria examined in this study, these NPs could be introduce as a candidate control agent for preventing dental caries or dental infections. In our study, on the other hand, Nano copper oxide had a weak effect on the candida species.

  3. Preparation of iron molybdate catalysts for methanol to formaldehyde oxidation based on ammonium molybdoferrate(II precursor

    Directory of Open Access Journals (Sweden)

    N.V. Nikolenko

    2018-03-01

    Full Text Available It was demonstrated that iron molybdate catalysts for methanol oxidation can be prepared using Fe(II as a precursor instead of Fe(III. This would allow for reduction of acidity of preparation solutions as well as elimination of Fe(III oxide impurities which are detrimental for the process selectivity. The system containing Fe(II and Mo(VI species in aqueous solution was investigated using UV–Vis spectroscopy. It was demonstrated that three types of chemical reactions occur in the Fe(II–Mo(VI system: (i formation of complexes between Fe(II and molybdate(VI ions, (ii inner sphere oxidation of coordinated Fe(II by Mo(VI and (iii decomposition of the Fe–Mo complexes to form scarcely soluble Fe(III molybdate, Mo(VI hydrous trioxide and molybdenum blue. Solid molybdoferrate(II prepared by interaction of Fe(II and Mo(VI in solution was characterized by EDXA, TGA, DTA and XRD and a scheme of its thermal evolution proposed. The iron molybdate catalyst prepared from Fe(II precursor was tested in methanol-to-formaldehyde oxidation in a continuous flow fixed-bed reactor to show similar activity and selectivity to the conventional catalyst prepared with the use of Fe(III.

  4. Electrochemical disinfection of bacteria-laden water using antimony-doped tin-tungsten-oxide electrodes.

    Science.gov (United States)

    Ghasemian, Saloumeh; Asadishad, Bahareh; Omanovic, Sasha; Tufenkji, Nathalie

    2017-12-01

    Electrochemical disinfection has been shown to be an efficient method with a shortrequired contact time for treatment of drinking water supplies, industrial raw water supplies, liquid foodstuffs, and wastewater effluents. In the present work, the electrochemical disinfection of saline water contaminated with bacteria was investigated in chloride-containing solutions using Sb-doped Sn 80% -W 20% -oxide anodes. The influence of current density, bacterial load, initial chloride concentration, solution pH, and the type of bacteria (E. coli D21, E. coli O157:H7, and E. faecalis) on disinfection efficacy was systematically examined. The impact of natural organic matter and a radical scavenger on the disinfection process was also examined. The electrochemical system was highly effective in bacterial inactivation for a 0.1 M NaCl solution contaminated with ∼10 7  CFU/mL bacteria by applying a current density ≥1 mA/cm 2 through the cell.100% inactivation of E. coli D21 was achieved with a contact time of less than 60 s and power consumption of 48 Wh/m 3 , by applying a current density of 6 mA/cm 2 in a 0.1 M NaCl solution contaminated with ∼10 7 CFU/mL. Reactive chlorine species as well as reactive oxygen species (e.g. hydroxyl radicals) generated in situ during the electrochemical process were determined to be responsible for inactivation of bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria.

    Science.gov (United States)

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-11-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments.

  6. Interactions between ammonia and nitrite oxidizing bacteria in co-cultures: Is there evidence for mutualism, commensalism, or competition?

    Energy Technology Data Exchange (ETDEWEB)

    Sayavedra-Soto, Luis [Oregon State Univ., Corvallis, OR (United States); Arp, Daniel [Oregon State Univ., Corvallis, OR (United States)

    2017-08-01

    Nitrification is a two-step environmental microbial process in the nitrogen cycle in which ammonia is oxidized to nitrate. Ammonia-oxidizing bacteria and archaea oxidize ammonia to nitrite and nitrite is oxidized to nitrate by nitrite-oxidizing bacteria. These microorganisms, which likely act in concert in a microbial community, play critical roles in the movement of inorganic N in soils, sediments and waters and are essential to the balance of the nitrogen cycle. Anthropogenic activity has altered the balance of the nitrogen cycle through agriculture practices and organic waste byproducts. Through their influence on available N for plant growth, nitrifying microorganisms influence plant productivity for food and fiber production and the associated carbon sequestration. N Fertilizer production, primarily as ammonia, requires large inputs of natural gas and hydrogen. In croplands fertilized with ammonia-based fertilizers, nitrifiers contribute to the mobilization of this N by producing nitrate (NO3-), wasting the energy used in the production and application of ammonia-based fertilizer. The resulting nitrate is readily leached from these soils, oxidized to gaseous N oxides (greenhouse gases), and denitrified to N2 (which is no longer available as a plant N source). Still, ammonia oxidizers are beneficial in the treatment of wastewater and they also show potential to contribute to microbial bioremediation strategies for clean up of environments contaminated with chlorinated hydrocarbons. Mitigation of the negative effects and exploitation of the beneficial effects of nitrifiers will be facilitated by a systems-level understanding of the interactions of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria with the environment and with each other.

  7. Temporal and Spatial Stability of Ammonia-Oxidizing Archaea and Bacteria in Aquarium Biofilters

    KAUST Repository

    Bagchi, Samik

    2014-12-05

    Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA), as opposed to ammonia-oxidizing bacteria (AOB), were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4–5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥81–86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR) for bacterial and thaumarchaeal ammonia monooxygenase (amoA) genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings) of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE) of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS) based on denaturing gradient gel electrophoresis (DGGE) fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater aquarium

  8. Temporal and Spatial Stability of Ammonia-Oxidizing Archaea and Bacteria in Aquarium Biofilters

    KAUST Repository

    Bagchi, Samik; Vlaeminck, Siegfried E.; Sauder, Laura A.; Mosquera, Mariela; Neufeld, Josh D.; Boon, Nico; Poulain, Alexandre

    2014-01-01

    Nitrifying biofilters are used in aquaria and aquaculture systems to prevent accumulation of ammonia by promoting rapid conversion to nitrate via nitrite. Ammonia-oxidizing archaea (AOA), as opposed to ammonia-oxidizing bacteria (AOB), were recently identified as the dominant ammonia oxidizers in most freshwater aquaria. This study investigated biofilms from fixed-bed aquarium biofilters to assess the temporal and spatial dynamics of AOA and AOB abundance and diversity. Over a period of four months, ammonia-oxidizing microorganisms from six freshwater and one marine aquarium were investigated at 4–5 time points. Nitrogen balances for three freshwater aquaria showed that active nitrification by aquarium biofilters accounted for ≥81–86% of total nitrogen conversion in the aquaria. Quantitative PCR (qPCR) for bacterial and thaumarchaeal ammonia monooxygenase (amoA) genes demonstrated that AOA were numerically dominant over AOB in all six freshwater aquaria tested, and contributed all detectable amoA genes in three aquarium biofilters. In the marine aquarium, however, AOB outnumbered AOA by three to five orders of magnitude based on amoA gene abundances. A comparison of AOA abundance in three carrier materials (fine sponge, rough sponge and sintered glass or ceramic rings) of two three-media freshwater biofilters revealed preferential growth of AOA on fine sponge. Denaturing gel gradient electrophoresis (DGGE) of thaumarchaeal 16S rRNA genes indicated that community composition within a given biofilter was stable across media types. In addition, DGGE of all aquarium biofilters revealed low AOA diversity, with few bands, which were stable over time. Nonmetric multidimensional scaling (NMDS) based on denaturing gradient gel electrophoresis (DGGE) fingerprints of thaumarchaeal 16S rRNA genes placed freshwater and marine aquaria communities in separate clusters. These results indicate that AOA are the dominant ammonia-oxidizing microorganisms in freshwater aquarium

  9. Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products.

    Science.gov (United States)

    Kassotaki, Elissavet; Buttiglieri, Gianluigi; Ferrando-Climent, Laura; Rodriguez-Roda, Ignasi; Pijuan, Maite

    2016-05-01

    The occurrence of the widely-used antibiotic sulfamethoxazole (SFX) in wastewaters and surface waters has been reported in a large number of studies. However, the results obtained up-to-date have pointed out disparities in its removal. This manuscript explores the enhanced biodegradation potential of an enriched culture of Ammonia Oxidizing Bacteria (AOB) towards SFX. Several sets of batch tests were conducted to establish a link between SFX degradation and specific ammonia oxidation rate. The occurrence, degradation and generation of SFX and some of its transformation products (4-Nitro SFX, Desamino-SFX and N(4)-Acetyl-SFX) was also monitored. A clear link between the degradation of SFX and the nitrification rate was found, resulting in an increased SFX removal at higher specific ammonia oxidation rates. Moreover, experiments conducted under the presence of allylthiourea (ATU) did not present any removal of SFX, suggesting a connection between the AMO enzyme and SFX degradation. Long term experiments (up to 10 weeks) were also conducted adding two different concentrations (10 and 100 μg/L) of SFX in the influent of a partial nitrification sequencing batch reactor, resulting in up to 98% removal. Finally, the formation of transformation products during SFX degradation represented up to 32%, being 4-Nitro-SFX the most abundant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Carbon isotope fractionation by sulfate-reducing bacteria using different pathways for the oxidation of acetate.

    Science.gov (United States)

    Goevert, Dennis; Conrad, Ralf

    2008-11-01

    Acetate is a key intermediate in the anaerobic degradation of organic matter. In anoxic environments, available acetate is a competitive substrate for sulfate-reducing bacteria (SRB) and methane-producing archaea. Little is known about the fractionation of carbon isotopes by sulfate reducers. Therefore, we determined carbon isotope compositions in cultures of three acetate-utilizing SRB, Desulfobacter postgatei, Desulfobacter hydrogenophilus, and Desulfobacca acetoxidans. We found that these species showed strong differences in their isotope enrichment factors (epsilon) of acetate. During the consumption of acetate and sulfate, acetate was enriched in 13C by 19.3% per hundred in Desulfobacca acetoxidans. By contrast, both D. postgatei and D. hydrogenophilus showed a slight depletion of 13C resulting in epsilon(ac)-values of 1.8 and 1.5% per hundred, respectively. We suggest that the different isotope fractionation is due to the different metabolic pathways for acetate oxidation. The strongly fractionating Desulfobacca acetoxidans uses the acetyl-CoA/carbon monoxide dehydrogenase pathway, which is also used by acetoclastic methanogens that show a similar fractionation of acetate (epsilon(ac) = -21 to -27% per hundred). In contrast, Desulfobacter spp. oxidize acetate to CO2 via the tricarboxylic acid (TCA) cycle and apparently did not discriminate against 13C. Our results suggestthat carbon isotope fractionation in environments with sulfate reduction will strongly depend on the composition of the sulfate-reducing bacterial community oxidizing acetate.

  11. amoA Gene abundances and nitrification potential rates suggest that benthic ammonia-oxidizing bacteria and not Archaea dominate N cycling in the Colne Estuary, United Kingdom.

    Science.gov (United States)

    Li, Jialin; Nedwell, David B; Beddow, Jessica; Dumbrell, Alex J; McKew, Boyd A; Thorpe, Emma L; Whitby, Corinne

    2015-01-01

    Nitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium. AOB and AOA communities were investigated by measuring ammonia monooxygenase (amoA) gene abundance and nitrification potentials both spatially and temporally. Nitrification potentials differed along the estuary and over time, with the greatest nitrification potentials occurring mid-estuary (8.2 μmol N grams dry weight [gdw](-1) day(-1) in June, increasing to 37.4 μmol N gdw(-1) day(-1) in January). At the estuary head, the nitrification potential was 4.3 μmol N gdw(-1) day(-1) in June, increasing to 11.7 μmol N gdw(-1) day(-1) in January. At the estuary head and mouth, nitrification potentials fluctuated throughout the year. AOB amoA gene abundances were significantly greater (by 100-fold) than those of AOA both spatially and temporally. Nitrosomonas spp. were detected along the estuary by denaturing gradient gel electrophoresis (DGGE) band sequence analysis. In conclusion, AOB dominated over AOA in the estuarine sediments, with the ratio of AOB/AOA amoA gene abundance increasing from the upper (freshwater) to lower (marine) regions of the Colne estuary. These findings suggest that in this nutrified estuary, AOB (possibly Nitrosomonas spp.) were of major significance in nitrification. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Community Structure of Ammonia-Oxidizing Archaea and Ammonia-Oxidizing Bacteria in Soil Treated with the Insecticide Imidacloprid

    Directory of Open Access Journals (Sweden)

    Mariusz Cycoń

    2015-01-01

    Full Text Available The purpose of this experiment was to assess the effect of imidacloprid on the community structure of ammonia-oxidizing archaea (AOA and ammonia-oxidizing bacteria (AOB in soil using the denaturing gradient gel electrophoresis (DGGE approach. Analysis showed that AOA and AOB community members were affected by the insecticide treatment. However, the calculation of the richness (S and the Shannon-Wiener index (H values for soil treated with the field rate (FR dosage of imidacloprid (1 mg/kg soil showed no changes in measured indices for the AOA and AOB community members. In turn, the 10*FR dosage of insecticide (10 mg/kg soil negatively affected the AOA community, which was confirmed by the decrease of the S and H values in comparison with the values obtained for the control soil. In the case of AOB community, an initial decline followed by the increase of the S and H values was obtained. Imidacloprid decreased the nitrification rate while the ammonification process was stimulated by the addition of imidacloprid. Changes in the community structure of AOA and AOB could be due to an increase in the concentration of N-NH4+, known as the most important factor which determines the contribution of these microorganisms to soil nitrification.

  13. Direct preparation of a graphene oxide modified monolith in a glass syringe as a solid-phase extraction cartridge for the extraction of quaternary ammonium alkaloids from Chinese patent medicine.

    Science.gov (United States)

    Liang, Xiaojing; Wang, Licheng; Wang, Shuai; Li, Yijing; Guo, Yong

    2017-11-01

    Packed cartridges have been widely used in solid-phase extraction. However, there are still some drawbacks, such as they are blocked easily and the method is time-consuming. In view of the advantages of monoliths, a monolithic extraction material has been directly synthesized in a glass syringe without any gap between the monolith and syringe inner wall. The monolithic syringe was modified with graphene oxide by loading graphene oxide dispersion onto it. The content of graphene oxide and the surface topography of the monolith have been evaluated by elemental analysis and scanning electron microscopy, respectively, which confirmed the successful modification. This prepared graphene oxide-modified monolithic syringe was directly used as a traditional solid-phase extraction cartridge. As expected, it shows good permeability and excellent capability for the extraction of quaternary ammonium alkaloids. The sample loading velocity (1-6 mL/min) does not affect the recovery. Under the optimal conditions, good linearities (R = 0.9992-0.9998) were obtained for five quaternary ammonium alkaloids, and the limits of detection and quantification were 0.5-1 and 1-2 μg/L, respectively. The proposed method was successfully applied for the analysis of quaternary ammonium alkaloids in Chinese patent medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of Tidal Cycling Rate on the Distribution and Abundance of Nitrogen-Oxidizing Bacteria in a Bench-Scale Fill-and-Drain Bioreactor

    Directory of Open Access Journals (Sweden)

    Joseph M. Battistelli

    2018-04-01

    Full Text Available Most domestic wastewater can be effectively treated for secondary uses by engineered biological systems. These systems rely on microbial activity to reduce nitrogen (N content of the reclaimed water. Such systems often employ a tidal-flow process to minimize space requirements for the coupling of aerobic and anaerobic metabolic processes. In this study, laboratory-scale tidal-flow treatment systems were studied to determine how the frequency and duration of tidal cycling may impact reactor performance. Fluorescent in situ hybridization and epifluorescence microscopy were used to enumerate the key functional groups of bacteria responsible for nitrification and anaerobic ammonium oxidation (anammox, and N-removal efficiency was calculated via a mass-balance approach. When water was cycled (i.e., reactors were filled and drained at high frequencies (16–24 cycles day−1, nitrate accumulated in the columns—presumably due to inadequate periods of anoxia that limited denitrification. At lower frequencies, such as 4 cycles day−1, nearly complete N removal was achieved (80–90%. These fill-and-drain systems enriched heavily for nitrifiers, with relatively few anammox-capable organisms. The microbial community produced was robust, surviving well through short (up to 3 h anaerobic periods and frequent system-wide perturbation.

  15. Changes in the ammonia-oxidizing bacteria community in response to operational parameters during the treatment of anaerobic sludge digester supernatant.

    Science.gov (United States)

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena; Bernat, Katarzyna; Kulikowska, Dorota; Wojnowska-Baryła, Irena

    2012-07-01

    The understanding of the relationship between ammoniaoxidizing bacteria (AOB) communities in activated sludge and the operational treatment parameters supports the control of the treatment of ammonia-rich wastewater. The modifications of treatment parameters by alteration of the number and length of aerobic and anaerobic stages in the sequencing batch reactor (SBR) working cycle may influence the efficiency of ammonium oxidation and induce changes in the AOB community. Therefore, in the research, the impact of an SBR cycle mode with alternating aeration/ mixing conditions (7 h/1 h vs. 4 h/5.5 h) and volumetric exchange rate (n) on AOB abundance and diversity in activated sludge during the treatment of anaerobic sludge digester supernatant at limited oxygen concentration in the aeration stage (0.7 mg O2/l) was assessed. AOB diversity expressed by the Shannon-Wiener index (H') was determined by the cycle mode. At aeration/mixing stage lengths of 7 h/1 h, H' averaged 2.48 +/- 0.17, while at 4 h/ 5.5 h it was 2.35 +/- 0.16. At the given mode, AOB diversity decreased with increasing n. The cycle mode did not affect AOB abundance; however, a higher AOB abundance in activated sludge was promoted by decreasing the volumetric exchange rate. The sequences clustering with Nitrosospira sp. NpAV revealed the uniqueness of the AOB community and the simultaneously lower ability of adaptation of Nitrosospira sp. to the operational parameters applied in comparison with Nitrosomonas sp.

  16. Copolymerization and terpolymerization of carbon dioxide/propylene oxide/phthalic anhydride using a (salenCo(III complex tethering four quaternary ammonium salts

    Directory of Open Access Journals (Sweden)

    Jong Yeob Jeon

    2014-08-01

    Full Text Available The (salenCo(III complex 1 tethering four quaternary ammonium salts, which is a highly active catalyst in CO2/epoxide copolymerizations, shows high activity for propylene oxide/phthalic anhydride (PO/PA copolymerizations and PO/CO2/PA terpolymerizations. In the PO/PA copolymerizations, full conversion of PA was achieved within 5 h, and strictly alternating copolymers of poly(1,2-propylene phthalates were afforded without any formation of ether linkages. In the PO/CO2/PA terpolymerizations, full conversion of PA was also achieved within 4 h. The resulting polymers were gradient poly(1,2-propylene carbonate-co-phthalates because of the drift in the PA concentration during the terpolymerization. Both polymerizations showed immortal polymerization character; therefore, the molecular weights were determined by the activity (g/mol-1 and the number of chain-growing sites per 1 [anions in 1 (5 + water (present as impurity + ethanol (deliberately fed], and the molecular weight distributions were narrow (Mw/Mn, 1.05–1.5. Because of the extremely high activity of 1, high-molecular-weight polymers were generated (Mn up to 170,000 and 350,000 for the PO/PA copolymerization and PO/CO2/PA terpolymerization, respectively. The terpolymers bearing a substantial number of PA units (fPA, 0.23 showed a higher glass-transition temperature (48 °C than the CO2/PO alternating copolymer (40 °C.

  17. Improved methane removal in exhaust gas from biogas upgrading process using immobilized methane-oxidizing bacteria.

    Science.gov (United States)

    Sun, Meng-Ting; Yang, Zhi-Man; Fu, Shan-Fei; Fan, Xiao-Lei; Guo, Rong-Bo

    2018-05-01

    Methane in exhaust gas from biogas upgrading process, which is a greenhouse gas, could cause global warming. The biofilter with immobilized methane-oxidizing bacteria (MOB) is a promising approach for methane removal, and the selections of inoculated MOB culture and support material are vital for the biofilter. In this work, five MOB consortia were enriched at different methane concentrations. The MOB-20 consortium enriched at the methane concentration of 20.0% (v/v) was then immobilized on sponge and two particle sizes of volcanic rock in biofilters to remove methane in exhaust gas from biogas upgrading process. Results showed that the immobilized MOB performed more admirable methane removal capacity than suspended cells. The immobilized MOB on sponge reached the highest methane removal efficiency (RE) of 35%. The rough surface, preferable hydroscopicity, appropriate pore size and particle size of support material might favor the MOB immobilization and accordingly methane removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. From bacteria to mollusks: the principles underlying the biomineralization of iron oxide materials.

    Science.gov (United States)

    Faivre, Damien; Godec, Tina Ukmar

    2015-04-13

    Various organisms possess a genetic program that enables the controlled formation of a mineral, a process termed biomineralization. The variety of biological material architectures is mind-boggling and arises from the ability of organisms to exert control over crystal nucleation and growth. The structure and composition of biominerals equip biomineralizing organisms with properties and functionalities that abiotically formed materials, made of the same mineral, usually lack. Therefore, elucidating the mechanisms underlying biomineralization and morphogenesis is of interdisciplinary interest to extract design principles that will enable the biomimetic formation of functional materials with similar capabilities. Herein, we summarize what is known about iron oxides formed by bacteria and mollusks for their magnetic and mechanical properties. We describe the chemical and biological machineries that are involved in controlling mineral precipitation and organization and show how these organisms are able to form highly complex structures under physiological conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Toxicity of graphene oxide on intestinal bacteria and Caco-2 cells.

    Science.gov (United States)

    Nguyen, Trang H D; Lin, Mengshi; Mustapha, Azlin

    2015-05-01

    In recent years, novel nanomaterials have received much attention due to their great potential for applications in agriculture, food safety, and food packaging. Among them, graphene and graphene oxide (GO) are emerging as promising nanomaterials that may have a profound impact on food packaging. However, there are some concerns from consumers and the scientific community about the potential toxicity and biocompatibility of nanomaterials. In this study, we investigated the antibacterial properties of GO against human intestinal bacteria. The cytotoxicity of GO was also studied in vitro using the Caco-2 cell line derived from a colon carcinoma. Electron microscopy was used to investigate the morphology of GO and the interaction between GO flakes and Caco-2 cells. GO at different concentrations (10 to 500 μg/ml) exhibited no toxicity against the selected bacteria and a mild cytotoxic action on Caco-2 cells after 24 h of exposure. The results show that weak adsorption of medium nutrients may contribute to GO's low toxicity. This study suggests that GO is biocompatible and has a potential to be used in agriculture and food science, indicating that more studies are needed to exploit its potential applications.

  20. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials.

    Science.gov (United States)

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Hoefman, Sven; De Vos, Paul; Boeckx, Pascal; Boon, Nico

    2014-04-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (~20 % (v/v)) and low (~100 ppmv) methane mixing ratios. Methylocystis parvus in autoclaved aerated concrete (AAC) exhibited the highest methane removal rate at high (28.5 ± 3.8 μg CH₄ g⁻¹ building material h⁻¹) and low (1.7 ± 0.4 μg CH₄ g⁻¹ building material h⁻¹) methane mixing ratio. Due to the higher volume of pores with diameter >5 μm compared to other materials tested, AAC was able to adsorb more bacteria which might explain for the higher methane removal observed. The total methane and carbon dioxide-carbon in the headspace was decreased for 65.2 ± 10.9 % when M. parvus in Ytong was incubated for 100 h. This study showed that immobilized MOB on building materials could be used to remove methane from the air and also act as carbon sink.

  1. Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available Bacterial response to nitric oxide (NO is of major importance since NO is an obligatory intermediate of the nitrogen cycle. Transcriptional regulation of the dissimilatory nitric oxides metabolism in bacteria is diverse and involves FNR-like transcription factors HcpR, DNR, and NnrR; two-component systems NarXL and NarQP; NO-responsive activator NorR; and nitrite-sensitive repressor NsrR. Using comparative genomics approaches, we predict DNA-binding motifs for these transcriptional factors and describe corresponding regulons in available bacterial genomes. Within the FNR family of regulators, we observed a correlation of two specificity-determining amino acids and contacting bases in corresponding DNA recognition motif. Highly conserved regulon HcpR for the hybrid cluster protein and some other redox enzymes is present in diverse anaerobic bacteria, including Clostridia, Thermotogales, and delta-proteobacteria. NnrR and DNR control denitrification in alpha- and beta-proteobacteria, respectively. Sigma-54-dependent NorR regulon found in some gamma- and beta-proteobacteria contains various enzymes involved in the NO detoxification. Repressor NsrR, which was previously known to control only nitrite reductase operon in Nitrosomonas spp., appears to be the master regulator of the nitric oxides' metabolism, not only in most gamma- and beta-proteobacteria (including well-studied species such as Escherichia coli, but also in Gram-positive Bacillus and Streptomyces species. Positional analysis and comparison of regulatory regions of NO detoxification genes allows us to propose the candidate NsrR-binding motif. The most conserved member of the predicted NsrR regulon is the NO-detoxifying flavohemoglobin Hmp. In enterobacteria, the regulon also includes two nitrite-responsive loci, nipAB (hcp-hcr and nipC (dnrN, thus confirming the identity of the effector, i.e. nitrite. The proposed NsrR regulons in Neisseria and some other species are extended to include

  2. Dissimilatory Metabolism of Nitrogen Oxides in Bacteria:Comparative Reconstruction of Transcriptional Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rodionov, Dmitry A.; Dubchak, Inna L.; Arkin, Adam P.; Alm, EricJ.; Gelfand, Mikhail S.

    2005-09-01

    Bacterial response to nitric oxide (NO) is of major importance since NO is an obligatory intermediate of the nitrogen cycle. Transcriptional regulation of the dissimilatory nitric oxides metabolism in bacteria is diverse and involves FNR-like transcription factors HcpR, DNR and NnrR, two-component systems NarXL and NarQP, NO-responsive activator NorR, and nitrite sensitive repressor NsrR. Using comparative genomics approaches we predict DNA-binding signals for these transcriptional factors and describe corresponding regulons in available bacterial genomes. Within the FNR family of regulators, we observed a correlation of two specificity-determining amino acids and contacting bases in corresponding DNA signal. Highly conserved regulon HcpR for the hybrid cluster protein and some other redox enzymes is present in diverse anaerobic bacteria including Clostridia, Thermotogales and delta-proteobacteria. NnrR and DNR control denitrification in alpha- and beta-proteobacteria, respectively. Sigma-54-dependent NorR regulon found in some gamma- and beta-proteobacteria contains various enzymes involved in the NO detoxification. Repressor NsrR, which was previously known to control only nitrite reductase operon in Nitrosomonas spp., appears to be the master regulator of the nitric oxides metabolism not only in most gamma- and beta-proteobacteria (including well-studied species like Escherichia coli), but also in Gram-positive Bacillus and Streptomyces species. Positional analysis and comparison of regulatory regions of NO detoxification genes allows us to propose the candidate NsrR-binding signal. The most conserved member of the predicted NsrR regulon is the NO-detoxifying flavohemoglobin Hmp. In enterobacteria, the regulon includes also two nitrite-responsive loci, nipAB (hcp-hcr) and nipC(dnrN), thus confirming the identity of the effector, i.e., nitrite. The proposed NsrR regulons in Neisseria and some other species are extended to include denitrification genes. As the

  3. Role of glutamate receptors and nitric oxide on the effects of glufosinate ammonium, an organophosphate pesticide, on in vivo dopamine release in rat striatum.

    Science.gov (United States)

    Faro, Lilian R F; Ferreira Nunes, Brenda V; Alfonso, Miguel; Ferreira, Vania M; Durán, Rafael

    2013-09-15

    The purpose of the present work was to assess the possible role of glutamatergic receptors and nitric oxide (NO) production on effects of glufosinate ammonium (GLA), an organophosphate pesticide structurally related to glutamate, on in vivo striatal dopamine release in awake and freely moving rats. For this, we used antagonists of NMDA (MK-801 and AP5) or AMPA/kainate (CNQX) receptors, or nitric oxide synthase (NOS) inhibitors (l-NAME and 7-NI), to study the effects of GLA on release of dopamine from rat striatum. So, intrastriatal infusion of 10mM GLA significantly increased dopamine levels (1035±140%, compared with basal levels) and administration of GLA to MK-801 (250μM) or AP5 (650μM) pretreated animals, produced increases in dopamine overflow that were ∼40% and ∼90% smaller than those observed in animals not pretreated with MK-801 or AP5. Administration of GLA to CNQX (500μM) pretreated animals produced an effect that was not significantly different from the one produced in animals not pretreated with CNQX. On the other hand, administration of GLA to l-NAME (100μM) or 7-NI (100μM) pretreated animals, produced increases in dopamine overflow that were ∼80% and ∼75% smaller than those observed in animals not pretreated with these inhibitors. In summary, GLA appears to act, at least in part, through an overstimulation of NMDA (and not AMPA/kainate) receptors with possible NO production to induce in vivo dopamine release. Administration of NMDA receptor antagonists and NOS inhibitors partially blocks the release of dopamine from rat striatum. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Clara S; Fakra, Sirine C; Emerson, David; Fleming, Emily J; Edwards, Katrina J

    2011-07-01

    Neutrophilic Fe-oxidizing bacteria (FeOB) are often identified by their distinctive morphologies, such as the extracellular twisted ribbon-like stalks formed by Gallionella ferruginea or Mariprofundus ferrooxydans. Similar filaments preserved in silica are often identified as FeOB fossils in rocks. Although it is assumed that twisted iron stalks are indicative of FeOB, the stalk's metabolic role has not been established. To this end, we studied the marine FeOB M. ferrooxydans by light, X-ray and electron microscopy. Using time-lapse light microscopy, we observed cells excreting stalks during growth (averaging 2.2 {micro}m h(-1)). Scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy show that stalks are Fe(III)-rich, whereas cells are low in Fe. Transmission electron microscopy reveals that stalks are composed of several fibrils, which contain few-nanometer-sized iron oxyhydroxide crystals. Lepidocrocite crystals that nucleated on the fibril surface are much larger ({approx}100 nm), suggesting that mineral growth within fibrils is retarded, relative to sites surrounding fibrils. C and N 1s NEXAFS spectroscopy and fluorescence probing show that stalks primarily contain carboxyl-rich polysaccharides. On the basis of these results, we suggest a physiological model for Fe oxidation in which cells excrete oxidized Fe bound to organic polymers. These organic molecules retard mineral growth, preventing cell encrustation. This model describes an essential role for stalk formation in FeOB growth. We suggest that stalk-like morphologies observed in modern and ancient samples may be correlated confidently with the Fe-oxidizing metabolism as a robust biosignature.

  5. Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine.

    Science.gov (United States)

    Akob, Denise M; Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten

    2014-08-01

    Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine

    Science.gov (United States)

    Akob, Denise M.; Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A.; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten

    2014-01-01

    Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments.

  7. Molecular Fingerprint and Dominant Environmental Factors of Nitrite-Dependent Anaerobic Methane-Oxidizing Bacteria in Sediments from the Yellow River Estuary, China.

    Directory of Open Access Journals (Sweden)

    Pengze Yan

    Full Text Available Nitrite-dependent anaerobic methane oxidation (n-damo is performed by "Candidatus Methylomirabilis oxyfera" (M. oxyfera, which connects the carbon and nitrogen global nutrient cycles. In the present study, M. oxyfera-like bacteria sequences were successfully recovered from Yellow River Estuary sediments using specific primers for 16S rRNA and pmoA genes. A M. oxyfera-like sequences analysis based on the 16S rRNA gene revealed greater diversity compared with the pmoA gene; the 16S rRNA gene sequences retrieved from the Yellow River Estuary sediments belong to groups A as well as B and were mainly found in freshwater habitats. Quantitative PCR showed that 16S rRNA gene abundance varied from 9.28±0.11×10(3 to 2.10±0.13×10(5 copies g(-1 (dry weight, and the pmoA gene abundance ranged from 8.63±0.50×10(3 to 1.83±0.18×10(5 copies g(-1 (dry weight. A correlation analysis showed that the total organic carbon (TOC and ammonium (NH4(+ as well as the ratio of total phosphorus to total nitrogen (TP/TN influenced the M. oxyfera-like bacteria distribution in the Yellow River Estuary sediments. These findings will aid in understanding the n-damo bacterial distribution pattern as well as their correlation with surrounding environmental factors in temperate estuarine ecosystems.

  8. Molecular Fingerprint and Dominant Environmental Factors of Nitrite-Dependent Anaerobic Methane-Oxidizing Bacteria in Sediments from the Yellow River Estuary, China.

    Science.gov (United States)

    Yan, Pengze; Li, Mingcong; Wei, Guangshan; Li, Han; Gao, Zheng

    2015-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is performed by "Candidatus Methylomirabilis oxyfera" (M. oxyfera), which connects the carbon and nitrogen global nutrient cycles. In the present study, M. oxyfera-like bacteria sequences were successfully recovered from Yellow River Estuary sediments using specific primers for 16S rRNA and pmoA genes. A M. oxyfera-like sequences analysis based on the 16S rRNA gene revealed greater diversity compared with the pmoA gene; the 16S rRNA gene sequences retrieved from the Yellow River Estuary sediments belong to groups A as well as B and were mainly found in freshwater habitats. Quantitative PCR showed that 16S rRNA gene abundance varied from 9.28±0.11×10(3) to 2.10±0.13×10(5) copies g(-1) (dry weight), and the pmoA gene abundance ranged from 8.63±0.50×10(3) to 1.83±0.18×10(5) copies g(-1) (dry weight). A correlation analysis showed that the total organic carbon (TOC) and ammonium (NH4(+)) as well as the ratio of total phosphorus to total nitrogen (TP/TN) influenced the M. oxyfera-like bacteria distribution in the Yellow River Estuary sediments. These findings will aid in understanding the n-damo bacterial distribution pattern as well as their correlation with surrounding environmental factors in temperate estuarine ecosystems.

  9. Behavior of Copper Oxide Nanoparticles in Soil Pore Waters as Influenced by Soil Characteristics, Bacteria, and Wheat Roots

    OpenAIRE

    Hortin, Joshua

    2017-01-01

    The goal of this project was to study the behavior of copper oxide nanoparticles in soil environments. Copper oxide nanoparticles have antimicrobial properties and may also be used in agricultural settings to provide a source of copper for plant health, but accidental or misapplication of these nanoparticles to soil may be damaging to the plant and its associated bacteria. Dissolved soil organic matter that is present in soil pore waters dissolved nanoparticles, but did not dissolve the ex...

  10. The transformation from anammox granules to deammonification granules in micro-aerobic system by facilitating indigenous ammonia oxidizing bacteria.

    Science.gov (United States)

    Wang, Xiaolong; Gao, Dawen

    2018-02-01

    Granular deammonification process is a good way to retain aerobic and anaerobic ammonia oxidizing bacteria (AOB and anammox bacteria) and exhaust flocculent nitrite oxidizing bacteria (NOB). In this study, to facilitate indigenous AOB growth on anammox granules, by stepwise reducing influent nitrite, anammox granules were effectively transformed into deammonification granules in a micro-aerobic EGSB in 100 days. Total nitrogen removal efficiency of 90% and nitrogen removal rate of 2.3 g N/L/d were reached at stable deammonification stage. High influent FA and limited oxygen supply contributed suppression for Nitrospira-like NOB. In transition stages, Proteobacteria and Chloroflexi were always dominated. Anammox abundance decreased, while AOB abundance grew fast. Anammox bacteria and AOB were dominated by Brocadia fulgida and Nitrosomonas europaea, respectively. Denitrification activity and bacteria existed although without influent organic. The final AOB abundance was about 4.55-13.8 times more than anammox bacteria abundance, with almost equal potential activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Diversity of ammonia-oxidizing bacteria in relation to soil environment in Ebinur Lake Wetland

    Directory of Open Access Journals (Sweden)

    Wenge Hu

    2016-03-01

    Full Text Available Ammonia oxidation is the first and rate-limiting step of nitrification and is carried out by ammonia-oxidizing bacteria (AOB. Ebinur Lake Wetland, the most representative temperate arid zone wetland ecosystem in China, is the centre of oasis and desertification of the northern slope of Tianshan conjugate. Soil samples were collected from three sites (Tamarix ramosissima, Halocnemum strobilaceum and Phragmites australis and different soil layers (0–5, 5–15, 15–25 and 25–35 cm in this wetland in spring, summer and autumn and were used to characterize the diversity of AOB based on the ammonia monooxygenase (amoA gene. Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE and bivariate correlation analysis were used to analyse the relationship between the diversity of AOB and soil environment factors. The PCR-DGGE indicated that the diversity of AOB was high in the entire sample and the Shannon diversity index varied from 1.369 to 2.471. The phylogenetic analysis showed that the amoA fragments were grouped into Nitrosospira sp. and Nitrosomonas sp. Most amoA gene sequences fell within the Nitrosospira sp. cluster, and only a few sequences were clustered with Nitrosomonas sp., indicating that Nitrosospira sp. may be more adaptable than Nitrosomonas sp. in this area. Bivariate correlation analysis showed that the diversity of AOB was significantly correlated with soil organic matter, conductivity, total phosphorus and nitrate in the Ebinur Lake Wetland in Xinjiang.

  12. Sulfur-oxidizing bacteria dominate the microbial diversity shift during the pyrite and low-grade pyrolusite bioleaching process.

    Science.gov (United States)

    Han, Yifan; Ma, Xiaomei; Zhao, Wei; Chang, Yunkang; Zhang, Xiaoxia; Wang, Xingbiao; Wang, Jingjing; Huang, Zhiyong

    2013-10-01

    The microbial ecology of the pyrite-pyrolusite bioleaching system and its interaction with ore has not been well-described. A 16S rRNA gene clone library was created to evaluate changes in the microbial community at different stages of the pyrite-pyrolusite bioleaching process in a shaken flask. The results revealed that the bacterial community was disturbed after 5 days of the reaction. Phylogenetic analysis of 16S rRNA sequences demonstrated that the predominant microorganisms were members of a genus of sulfur-oxidizing bacteria, Thiomonas sp., that subsequently remained dominant during the bioleaching process. Compared with iron-oxidizing bacteria, sulfur-oxidizing bacteria were more favorable to the pyrite-pyrolusite bioleaching system. Decreased pH due to microbial acid production was an important condition for bioleaching efficiency. Iron-oxidizing bacteria competed for pyrite reduction power with Mn(IV) in pyrolusite under specific conditions. These results extend our knowledge of microbial dynamics during pyrite-pyrolusite bioleaching, which is a key issue to improve commercial applications. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Influence of oxygen partial pressure and salinity on the community composition of ammonia-oxidizing bacteria in the Schelde estuary

    NARCIS (Netherlands)

    Bollmann, A.; Laanbroek, H.J.

    2002-01-01

    The influence of environmental factors on the community structure of ammonia-oxidizing bacteria (AOB) was investigated in the Schelde estuary. Simultaneously with the increase of oxygen and salinity, a shift of the dominant AOB was observed. Molecular analysis based on 16S rRNA genes showed that the

  14. Remarkable recovery and colonization behaviour of methane oxidizing bacteria in soil after disturbance is controlled by methane source only

    NARCIS (Netherlands)

    Pan, Y.; Abell, G.C.J.; Bodelier, P.L.E.; Meima-Franke, M.; Sessitsch, A.; Bodrossy, L.

    2014-01-01

    Little is understood about the relationship between microbial assemblage history, the composition and function of specific functional guilds and the ecosystem functions they provide. To learn more about this relationship we used methane oxidizing bacteria (MOB) as model organisms and performed soil

  15. Substrate availability drives spatial patterns in richness of ammonia-oxidizing bacteria and archaea in temperate forest soils

    Science.gov (United States)

    J.S. Norman; J.E. Barrett

    2016-01-01

    We sought to investigate the drivers of richness of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in temperate forest soils. We sampled soils across four experimental watersheds in the Coweeta Hydrologic Laboratory, North Carolina USA. These watersheds are geographically close, but vary in soil chemistry due to differences in land use history. While we...

  16. Response of ammonia oxidizing archaea and bacteria to decabromodiphenyl ether and copper contamination in river sediments.

    Science.gov (United States)

    Wang, Linqiong; Li, Yi; Niu, Lihua; Zhang, Wenlong; Zhang, Huanjun; Wang, Longfei; Wang, Peifang

    2018-01-01

    Ammonia oxidation plays a fundamental role in river nitrogen cycling ecosystems, which is normally governed by both ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB). Co-contamination of typical emerging pollutant Polybrominated diphenyl ethers (PBDEs) and heavy metal on AOA and AOB communities in river sediments remains unknown. In this study, multiple analytical tools, including high-throughput pyrosequencing and real-time quantitative PCR (qPCR), were used to reveal the ammonia monooxygenase (AMO) activity, subunit alpha (amoA) gene abundance, and community structures of AOA and AOB in river sediments. It was found that the inhibition of AMO activities was increased with the increase of decabromodiphenyl ether (BDE 209, 1-100 mg kg -1 ) and copper (Cu, 50-500 mg kg -1 ) concentrations. Moreover, the synergic effects of BDE 209 and Cu resulted in a higher AMO activity reduction than the individual pollutant BDE 209. The AOA amoA copy number declined by 75.9% and 83.2% and AOB amoA gene abundance declined 82.8% and 90.0% at 20 and 100 mg kg -1 BDE 209 with a 100 mg kg -1 Cu co-contamination, respectively. The pyrosequencing results showed that both AOB and AOA community structures were altered, with a higher change of AOB than that of AOA. The results demonstrated that the AOB microbial community may be better adapted to BDE 209 and Cu pollution, while AOA might possess a greater capacity for stress resistance. Our study provides a better understanding of the ecotoxicological effects of heavy metal and micropollutant combined exposure on AOA and AOB in river sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Elevated ammonium levels

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Novak, Ivana; MacAulay, Nanna

    2012-01-01

    was not enhanced. The ammonium-induced stimulation of EAAT3 increased with increasing extracellular pH, suggesting that the gaseous form NH(3) mediates the effect. An ammonium-induced intracellular alkalinization was excluded as the cause of the enhanced EAAT3 activity because 1) ammonium acidified the oocyte...

  18. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field.

    Science.gov (United States)

    Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2016-01-01

    The nitrate-dependent denitrifying anaerobic methane oxidation (DAMO) process, which is metabolized together by anaerobic methanotrophic archaea and NC10 phylum bacteria, is expected to be important for the global carbon and nitrogen cycles. However, there are little studies about the existence of this process and the functional microbes in environments. Therefore, the coexistence of DAMO archaea and bacteria in a paddy field was evaluated in this study. Next-generation sequencing showed that the two orders, Methanosarcinales and Nitrospirales, to which DAMO archaea and DAMO bacteria belong, were detected in the four soil samples. Then the in vitro experiments demonstrated both of nitrite- and nitrate-dependent DAMO activities, which confirmed the coexistence of DAMO archaea and DAMO bacteria. It was the first report about the coexistence of DAMO archaea and bacteria in a paddy field. Furthermore, anammox bacteria were detected in two of the four samples. The in vitro experiments did not show anammox activity in the initial period but showed low anammox activity after 20 days' enrichment. These results implicated that anammox bacteria may coexist with DAMO microorganisms in this field, but at a very low percentage.

  19. Iodine from bacterial iodide oxidization by Roseovarius spp. inhibits the growth of other bacteria.

    Science.gov (United States)

    Zhao, Dan; Lim, Choon-Ping; Miyanaga, Kazuhiko; Tanji, Yasunori

    2013-03-01

    Microbial activities in brine, seawater, or estuarine mud are involved in iodine cycle. To investigate the effects of the microbiologically induced iodine on other bacteria in the environment, a total of 13 bacteria that potentially participated in the iodide-oxidizing process were isolated from water or biofilm at a location containing 131 μg ml(-1) iodide. Three distinct strains were further identified as Roseovarius spp. based on 16 S rRNA gene sequences after being distinguished by restriction fragment length polymorphism analysis. Morphological characteristics of these three Roseovarius spp. varied considerably across and within strains. Iodine production increased with Roseovarius spp. growth when cultured in Marine Broth with 200 μg ml(-1) iodide (I(-)). When 10(6) CFU/ml Escherichia coli, Pseudomonas aeruginosa, and Bacillus pumilus were exposed to various concentrations of molecular iodine (I(2)), the minimum inhibitory concentrations (MICs) were 0.5, 1.0, and 1.0 μg ml(-1), respectively. However, fivefold increases in the MICs for Roseovarius spp. were obtained. In co-cultured Roseovarius sp. IOB-7 and E. coli in Marine Broth containing iodide (I(-)), the molecular iodine concentration was estimated to be 0.76 μg ml(-1) after 24 h and less than 50 % of E. coli was viable compared to that co-cultured without iodide. The growth inhibition of E. coli was also observed in co-cultures with the two other Roseovarius spp. strains when the molecular iodine concentration was assumed to be 0.52 μg ml(-1).

  20. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea.

    Science.gov (United States)

    Zumft, Walter G; Kroneck, Peter M H

    2007-01-01

    N2O is a potent greenhouse gas and stratospheric reactant that has been steadily on the rise since the beginning of industrialization. It is an obligatory inorganic metabolite of denitrifying bacteria, and some production of N2O is also found in nitrifying and methanotrophic bacteria. We focus this review on the respiratory aspect of N2O transformation catalysed by the multicopper enzyme nitrous oxide reductase (N2OR) that provides the bacterial cell with an electron sink for anaerobic growth. Two types of Cu centres discovered in N2OR were both novel structures among the Cu proteins: the mixed-valent dinuclear Cu(A) species at the electron entry site of the enzyme, and the tetranuclear Cu(Z) centre as the first catalytically active Cu-sulfur complex known. Several accessory proteins function as Cu chaperone and ABC transporter systems for the biogenesis of the catalytic centre. We describe here the paradigm of Z-type N2OR, whose characteristics have been studied in most detail in the genera Pseudomonas and Paracoccus. Sequenced bacterial genomes now provide an invaluable additional source of information. New strains harbouring nos genes and capability of N2O utilization are being uncovered. This reveals previously unknown relationships and allows pattern recognition and predictions. The core nos genes, nosZDFYL, share a common phylogeny. Most principal taxonomic lineages follow the same biochemical and genetic pattern and share the Z-type enzyme. A modified N2OR is found in Wolinella succinogenes, and circumstantial evidence also indicates for certain Archaea another type of N2OR. The current picture supports the view of evolution of N2O respiration prior to the separation of the domains Bacteria and Archaea. Lateral nos gene transfer from an epsilon-proteobacterium as donor is suggested for Magnetospirillum magnetotacticum and Dechloromonas aromatica. In a few cases, nos gene clusters are plasmid borne. Inorganic N2O metabolism is associated with a diversity of

  1. Ammonia-oxidizing bacteria in a chloraminated distribution system: seasonal occurrence, distribution and disinfection resistance.

    Science.gov (United States)

    Wolfe, R L; Lieu, N I; Izaguirre, G; Means, E G

    1990-02-01

    Nitrification in chloraminated drinking water can have a number of adverse effects on water quality, including a loss of total chlorine and ammonia-N and an increase in the concentration of heterotrophic plate count bacteria and nitrite. To understand how nitrification develops, a study was conducted to examine the factors that influence the occurrence of ammonia-oxidizing bacteria (AOB) in a chloraminated distribution system. Samples were collected over an 18-month period from a raw-water source, a conventional treatment plant effluent, and two covered, finished-water reservoirs that previously experienced nitrification episodes. Sediment and biofilm samples were collected from the interior wall surfaces of two finished-water pipelines and one of the covered reservoirs. The AOB were enumerated by a most-probable-number technique, and isolates were isolated and identified. The resistance of naturally occurring AOB to chloramines and free chlorine was also examined. The results of the monitoring program indicated that the levels of AOB, identified as members of the genus Nitrosomonas, were seasonally dependent in both source and finished waters, with the highest levels observed in the warm summer months. The concentrations of AOB in the two reservoirs, both of which have floating covers made of synthetic rubber (Hypalon; E.I. du Pont de Nemours & Co., Inc., Wilmington, Del.), had most probable numbers that ranged from less than 0.2 to greater than 300/ml and correlated significantly with temperature and levels of heterotrophic plate count bacteria. No AOB were detected in the chloraminated reservoirs when the water temperature was below 16 to 18 degrees C. The study indicated that nitrifiers occur throughout the chloraminated distribution system. Higher concentrations of AOB were found in the reservoir and pipe sediment materials than in the pipe biofilm samples. The AOB were approximately 13 times more resistant to monochloramine than to free chlorine. After 33 min

  2. Enrichment of marine anammox bacteria from seawater-related samples and bacterial community study.

    Science.gov (United States)

    Kawagoshi, Y; Nakamura, Y; Kawashima, H; Fujisaki, K; Furukawa, K; Fujimoto, A

    2010-01-01

    Anaerobic ammonium oxidation (anammox) is a novel nitrogen pathway catalyzed by anammox bacteria which are obligate anaerobic chemoautotrophs. In this study, enrichment culture of marine anammox bacteria (MAAOB) from the samples related to seawater was conducted. Simultaneous removal of ammonium and nitrite was confirmed in continuous culture inoculated with sediment of a sea-based waste disposal site within 50 days. However, no simultaneous nitrogen removal was observed in cultures inoculated with seawater-acclimated denitrifying sludge or with muddy sediment of tideland even during 200 days. Nitrogen removal rate of 0.13 kg/m(3)/day was achieved at nitrogen loading rate of 0.16 kg/m(3)/day after 320th days in the culture inoculated with the sediment of waste disposal site. The nitrogen removal ratio between ammonium nitrogen and nitrite nitrogen was 1:1.07. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that an abundance of the bacteria close to MAAOB and coexistence of ammonium oxidizing bacteria and denitrifying bacteria in the culture.

  3. Ammonium nitrate explosion hazards

    Directory of Open Access Journals (Sweden)

    Negovanović Milanka

    2015-01-01

    Full Text Available Ammonium nitrate (AN primarily is used as a fertilizer but it is also very important compound in the production of industrial explosives. The application of ammonium nitrate in the production of industrial explosives was related with the early era of Nobel dynamite and widely increased with the appearance of blasting agents such as ANFO and Slurry, in the middle of the last Century. Throughout the world millions of tons of ammonium nitrate are produced annually and handled without incident. Although ammonium nitrate generally is used safely, accidental explosions involving AN have high impact resulting in loss of lives and destruction of property. The paper presents the basic properties of ammonium nitrate as well as hazards in handling of ammonium nitrate in order to prevent accidents. Several accidents with explosions of ammonium nitrate resulted in catastrophic consequences are listed in the paper as examples of non-compliance with prescribed procedures.

  4. Quantification of syntrophic fatty acid-{beta}-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, K.H.; Ahring, B.K.; Raskin, L.

    1999-11-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-{beta}-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S.wolfei LYB was closely related to S.wolfei subsp. solfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid-{beta}-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature-of-dissociation and specificity studies. To demonstrate the usefulness of the probes for the detection and quantification of saturated fatty acid-{beta}-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria and methanogens were compared to specific methanogenic activities and microbial numbers determined with most-probable-number estimates. Most of the methanogenic rRNA was comprised of Methanomicrobiales rRNA, suggesting that members of this order served as the main hydrogen-utilizing microorganisms. Between 0.2 and 1% of the rRNA was attributed to the Syntrophomonadaceae, or which the majority was accounted for by the genus Syntrophomonas.

  5. Nitrification and ammonium dynamics in Taihu Lake, China: seasonal competition for ammonium between nitrifiers and cyanobacteria

    Science.gov (United States)

    Hampel, Justyna J.; McCarthy, Mark J.; Gardner, Wayne S.; Zhang, Lu; Xu, Hai; Zhu, Guangwei; Newell, Silvia E.

    2018-02-01

    Taihu Lake is hypereutrophic and experiences seasonal, cyanobacterial harmful algal blooms. These Microcystis blooms produce microcystin, a potent liver toxin, and are linked to anthropogenic nitrogen (N) and phosphorus (P) loads to lakes. Microcystis spp. cannot fix atmospheric N and must compete with ammonia-oxidizing and other organisms for ammonium (NH4+). We measured NH4+ regeneration and potential uptake rates and total nitrification using stable-isotope techniques. Nitrification studies included abundance of the functional gene for NH4+ oxidation, amoA, for ammonia-oxidizing archaea (AOA) and bacteria (AOB). Potential NH4+ uptake rates ranged from 0.02 to 6.80 µmol L-1 h-1 in the light and from 0.05 to 3.33 µmol L-1 h-1 in the dark, and NH4+ regeneration rates ranged from 0.03 to 2.37 µmol L-1 h-1. Nitrification rates exceeded previously reported rates in most freshwater systems. Total nitrification often exceeded 200 nmol L-1 d-1 and was > 1000 nmol L-1 d-1 at one station near a river discharge. AOA amoA gene copies were more abundant than AOB gene copies (p Internal NH4+ regeneration exceeded external N loading to the lake by a factor of 2 but was ultimately fueled by external N loads. Our results thus support the growing literature calling for watershed N loading reductions in concert with existing management of P loads.

  6. Potential Role of Nitrite for Abiotic Fe(II) Oxidation and Cell Encrustation during Nitrate Reduction by Denitrifying Bacteria

    Science.gov (United States)

    Klueglein, Nicole; Zeitvogel, Fabian; Stierhof, York-Dieter; Floetenmeyer, Matthias; Konhauser, Kurt O.; Obst, Martin

    2014-01-01

    Microorganisms have been observed to oxidize Fe(II) at neutral pH under anoxic and microoxic conditions. While most of the mixotrophic nitrate-reducing Fe(II)-oxidizing bacteria become encrusted with Fe(III)-rich minerals, photoautotrophic and microaerophilic Fe(II) oxidizers avoid cell encrustation. The Fe(II) oxidation mechanisms and the reasons for encrustation remain largely unresolved. Here we used cultivation-based methods and electron microscopy to compare two previously described nitrate-reducing Fe(II) oxidizers ( Acidovorax sp. strain BoFeN1 and Pseudogulbenkiania sp. strain 2002) and two heterotrophic nitrate reducers (Paracoccus denitrificans ATCC 19367 and P. denitrificans Pd 1222). All four strains oxidized ∼8 mM Fe(II) within 5 days in the presence of 5 mM acetate and accumulated nitrite (maximum concentrations of 0.8 to 1.0 mM) in the culture media. Iron(III) minerals, mainly goethite, formed and precipitated extracellularly in close proximity to the cell surface. Interestingly, mineral formation was also observed within the periplasm and cytoplasm; intracellular mineralization is expected to be physiologically disadvantageous, yet acetate consumption continued to be observed even at an advanced stage of Fe(II) oxidation. Extracellular polymeric substances (EPS) were detected by lectin staining with fluorescence microscopy, particularly in the presence of Fe(II), suggesting that EPS production is a response to Fe(II) toxicity or a strategy to decrease encrustation. Based on the data presented here, we propose a nitrite-driven, indirect mechanism of cell encrustation whereby nitrite forms during heterotrophic denitrification and abiotically oxidizes Fe(II). This work adds to the known assemblage of Fe(II)-oxidizing bacteria in nature and complicates our ability to delineate microbial Fe(II) oxidation in ancient microbes preserved as fossils in the geological record. PMID:24271182

  7. Mechanical properties of bio self-healing concrete containing immobilized bacteria with iron oxide nanoparticles.

    Science.gov (United States)

    Seifan, Mostafa; Sarmah, Ajit K; Samani, Ali Khajeh; Ebrahiminezhad, Alireza; Ghasemi, Younes; Berenjian, Aydin

    2018-05-01

    Concrete is arguably one of the most important and widely used materials in the world, responsible for the majority of the industrial revolution due to its unique properties. However, it is susceptible to cracking under internal and external stresses. The generated cracks result in a significant reduction in the concrete lifespan and an increase in maintenance and repair costs. In recent years, the implementation of bacterial-based healing agent in the concrete matrix has emerged as one of the most promising approaches to address the concrete cracking issue. However, the bacterial cells need to be protected from the high pH content of concrete as well as the exerted shear forces during preparation and hardening stages. To address these issues, we propose the magnetic immobilization of bacteria with iron oxide nanoparticles (IONs). In the present study, the effect of the designed bio-agent on mechanical properties of concrete (compressive strength and drying shrinkage) is investigated. The results indicate that the addition of immobilized Bacillus species with IONs in concrete matrix contributes to increasing the compressive strength. Moreover, the precipitates in the bio-concrete specimen were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). The characterization studies confirm that the precipitated crystals in bio-concrete specimen were CaCO 3 , while no precipitation was observed in the control sample.

  8. Isolation and Characterization of PHA-Producing Bacteria from Propylene Oxide Saponification Wastewater Residual Sludge.

    Science.gov (United States)

    Li, Ruirui; Gu, Pengfei; Fan, Xiangyu; Shen, Junyu; Wu, Yulian; Huang, Lixuan; Li, Qiang

    2018-03-21

    A polyhydroxyalkanoate (PHA)-producing strain was isolated from propylene oxide (PO) saponification wastewater activated sludge and was identified as Brevundimonas vesicularis UJN1 through 16S rDNA sequencing and Biolog microbiological identification. Single-factor and response surface methodology experiments were used to optimize the culture medium and conditions. The optimal C/N ratio was 100/1.04, and the optimal carbon and nitrogen sources were sucrose (10 g/L) and NH 4 Cl (0.104 g/L) respectively. The optimal culture conditions consisted of initial pH of 6.7 and an incubation temperature of 33.4 °C for 48 h, with 15% inoculum and 100 mL medium at an agitation rate of 180 rpm. The PHA concentration reached 34.1% of the cell dry weight and increased three times compared with that before optimization. The only report of PHA-producing bacteria by Brevundimonas vesicularis showed that the conversion rate of PHAs using glucose as the optimal carbon source was 1.67%. In our research, the conversion rate of PHAs with sucrose as the optimal carbon source was 3.05%, and PHA production using sucrose as the carbon source was much cheaper than that using glucose as the carbon source.

  9. Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria.

    Science.gov (United States)

    Wu, Ya-Min; Yang, Jing; Fan, Xiao-Lei; Fu, Shan-Fei; Sun, Meng-Ting; Guo, Rong-Bo

    2017-05-01

    Biogas upgrading is essential for the comprehensive utilization of biogas as substitute of natural gas. However, the methane in the biogas can be fully recovered during the upgrading process of biogas, and the exhaust gas produced during biogas upgrading may contain a very low concentration of methane. If the exhaust gas with low concentration methane releases to atmosphere, it will be harmful to environment. In addition, the utilization of large amounts of digestate produced from biogas plant is another important issue for the development of biogas industry. In this study, solid digestate was used to produce active carbon, which was subsequently used as immobilized material for methane-oxidizing bacteria (MOB) in biofilter. Biofilter with MOB immobilized on active carbon was used to eliminate the methane in exhaust gas from biogas upgrading process. Results showed porous active carbon was successfully made from solid digestate. The final methane elimination capacity of immobilized MOB reached about 13molh -1 m -3 , which was more 4 times higher than that of MOB without immobilization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. [Isolation and identification of hydrogen-oxidizing bacteria producing 1-aminocyclopropane-1-carboxylate deaminase and the determination of enzymatic activity].

    Science.gov (United States)

    Fu, Bo; Wang, Weiwei; Tang, Ming; Chen, Xingdu

    2009-03-01

    We used Medicago sativa rhizosphere in Shaanxi province of China to isolate and identify hydrogen-oxidizing bacteria that produced ACC (1-aminocyclopropane-1-carboxylate) deaminase, and then studied the mechanism why they can promote the growth of plants. Hydrogen-oxidizing bacteria were isolated by gas-cycle incubation system. We studied the morphological character, physiological characteristics, 16S rDNA sequence analysis and built the phylogenic tree. Thin layer chromatography was used to isolate the strain that produced ACC deaminase. Ninhydrin reaction was used to test the enzyme activity. In total 37 strains were isolated, 8 of which could oxidize H2 strongly and grow chemolithoautotrophically. We initially identified them as hydrogen-oxidizing bacteria. Only strain WMQ-7 produced ACC deaminase among these 8 strains. Morphological and physiological characteristics analysis showed that strain WMQ-7 was essentially consistent with Pseudomonas putida. The 16S rDNA sequence analysis (GenBank accession number EU807744) suggested that strain WMQ-7 was clustered together with Pseudomonas putida in phylogenetic tree, with the sequence identity of 99%. Based on all these results, strain WMQ-7 was identified as Pseudomonas putida. The enzyme activity of strain WMQ-7 was 0.671 U/microg. A strain producing ACC deaminase was identified and tested.

  11. Development of technology for ammonium nitrate dissociation process

    International Nuclear Information System (INIS)

    Zakharkin, B.S.; Varykhanov, V.P.; Kucherenko, V.S.; Solov'yeva, L.N.; Revyakin, V.V.

    2000-01-01

    Ammonia and ammonium carbonate are frequently used as reagents in fuel production and processing of liquid radioactive wastes. In particular, liquid radioactive wastes that contain ammonium nitrate are generated during operations of metal precipitation. In closed vessels at elevated temperature, for example in evaporators or deposits in tubing, ammonium nitrate may explode due to generation of gaseous nitrogen oxides [2]. In this connection, steps have to be taken to rule out conditions that result in explosion. To do that, ammonium nitrate should be removed even prior to the initial stage of its formation. This report gives results of development of a method of dissociating ammonium nitrate

  12. Decomposition of ammonium nitrate in homogeneous and catalytic denitration

    International Nuclear Information System (INIS)

    Anan'ev, A. V.; Tananaev, I. G.; Shilov, V. P.

    2005-01-01

    Ammonium nitrate is one of potentially explosive by-products of spent fuel reprocessing. Decomposition of ammonium nitrate in the HNO 3 -HCOOH system was studied in the presence or absence of Pt/SiO 2 catalyst. It was found that decomposition of ammonium nitrate is due to homogeneous noncatalytic oxidation of ammonium ion with nitrous acid generated in the HNO 3 -HCOOH system during denitration. The platinum catalyst initiates the reaction of HNO 3 with HCOOH to form HNO 2 . The regular trends were revealed and the optimal conditions of decomposition of ammonium nitrate in nitric acid solutions were found [ru

  13. The role of nitrifier denitrification in the production of nitrous oxide revisited

    NARCIS (Netherlands)

    Wrage-Mönnig, Nicole; Horn, Marcus A.; Well, Reinhard; Müller, Christoph; Velthof, Gerard; Oenema, Oene

    2018-01-01

    Nitrifier denitrification is the reduction of nitrite (NO2 −) by ammonia-oxidizing bacteria. This process may account for up to 100% of nitrous oxide (N2O) emissions from ammonium (NH4 +) in soils and is more significant than classical denitrification under some conditions. Investigations of

  14. Biokinetics and bacterial communities of propionate oxidizing bacteria in phased anaerobic sludge digestion systems.

    Science.gov (United States)

    Zamanzadeh, Mirzaman; Parker, Wayne J; Verastegui, Yris; Neufeld, Josh D

    2013-03-15

    Phased anaerobic digestion is a promising technology and may be a potential source of bio-energy production. Anaerobic digesters are widely used for sewage sludge stabilization and thus a better understanding of the microbial process and kinetics may allow increased volatile solids reduction and methane production through robust process operation. In this study, we analyzed the impact of phase separation and operational conditions on the bio-kinetic characteristics and communities of bacteria associated with four phased anaerobic digestion systems. In addition to significant differences between bacterial communities associated with different digester operating temperatures, our results also revealed that bacterial communities in the phased anaerobic digestion systems differed between the 1st and 2nd phase digesters and we identified strong community composition correlations with several measured physicochemical parameters. The maximum specific growth rates of propionate oxidizing bacteria (POB) in the mesophilic and thermophilic 1st phases were 11 and 23.7 mgCOD mgCOD(-1) d(-1), respectively, while those of the mesophilic and thermophilic 2nd-phase digesters were 6.7 and 18.6 mgCOD mgCOD(-1) d(-1), respectively. Hence, the biokinetic characteristics of the POB population were dependent on the digester loading. In addition, we observed that the temperature dependency factor (θ) values were higher for the less heavily loaded digesters as compared to the values obtained for the 1st-phase digesters. Our results suggested the appropriate application of two sets of POB bio-kinetic that reflect the differing growth responses as a function of propionate concentration (and/or organic loading rates). Also, modeling acetogenesis in phased anaerobic sludge digestion systems will be improved considering a population shift in separate phases. On the basis of the bio-kinetic values estimated in various digesters, high levels of propionate in the thermophilic digesters may be

  15. Evaluating the potential for dissimilatory nitrate reduction by anammox bacteria for municipal wastewater treatment.

    Science.gov (United States)

    Castro-Barros, Celia M; Jia, Mingsheng; van Loosdrecht, Mark C M; Volcke, Eveline I P; Winkler, Mari K H

    2017-06-01

    Anammox bacteria can perform dissimilatory nitrate reduction to ammonium (DNRA) with nitrite as intermediate coupled to the oxidation of volatile fatty acids (VFA). Batch tests with enriched anammox and a co-culture of anammox and heterotrophic bacteria showed the capacity of Candidatus 'Brocadia fulgida' to perform the DNRA coupled to the anammox reaction (DNRA-anammox) at a high rate although the culture was not previously adapted to VFA. From thermodynamic calculations it could be stated that low COD/N influent ratios favour the DNRA-anammox transformation over heterotrophic conversions since more free energy is gained. A process scheme is proposed for an innovative nitrogen removal system in which the nitrate produced by nitrite oxidizing bacteria and/or anammox bacteria is converted during DNRA-anammox pathway, resulting in a sustainable nitrogen removal from municipal wastewater while circumventing the troublesome out-selection of nitrite oxidizing bacteria encountered in mainstream applications. Copyright © 2017. Published by Elsevier Ltd.

  16. Nitrogen-removal performance and community structure of nitrifying bacteria under different aeration modes in an oxidation ditch.

    Science.gov (United States)

    Guo, Chang-Zi; Fu, Wei; Chen, Xue-Mei; Peng, Dang-Cong; Jin, Peng-Kang

    2013-07-01

    Oxidation-ditch operation modes were simulated using sequencing batch reactors (SBRs) with alternate stirring and aerating. The nitrogen-removal efficiencies and nitrifying characteristics of two aeration modes, point aeration and step aeration, were investigated. Under the same air-supply capacity, oxygen dissolved more efficiently in the system with point aeration, forming a larger aerobic zone. The nitrifying effects were similar in point aeration and step aeration, where the average removal efficiencies of NH4(+) N were 98% and 96%, respectively. When the proportion of anoxic and oxic zones was 1, the average removal efficiencies of total nitrogen (TN) were 45% and 66% under point aeration and step aeration, respectively. Step aeration was more beneficial to both anoxic denitrification and simultaneous nitrification and denitrification (SND). The maximum specific ammonia-uptake rates (AUR) of point aeration and step aeration were 4.7 and 4.9 mg NH4(+)/(gMLVSS h), respectively, while the maximum specific nitrite-uptake rates (NUR) of the two systems were 7.4 and 5.3 mg NO2(-)-N/(gMLVSS h), respectively. The proportions of ammonia-oxidizing bacteria (AOB) to all bacteria were 5.1% under point aeration and 7.0% under step aeration, and the proportions of nitrite-oxidizing bacteria (NOB) reached 6.5% and 9.0% under point and step aeration, respectively. The dominant genera of AOB and NOB were Nitrosococcus and Nitrospira, which accounted for 90% and 91%, respectively, under point aeration, and the diversity of nitrifying bacteria was lower than under step aeration. Point aeration was selective of nitrifying bacteria. The abundance of NOB was greater than that of AOB in both of the operation modes, and complete transformation of NH4(+) N to NO3(-)-N was observed without NO2(-)-N accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Preparation and characterization of vanadia-titania mixed oxide for immobilization of Serratia rubidaea CCT 5732 and Klebsiella marcescens bacteria

    International Nuclear Information System (INIS)

    Saragiotto Colpini, Leda Maria; Correia Goncalves, Regina A.; Goncalves, Jose Eduardo; Maieru Macedo Costa, Creusa

    2008-01-01

    Vanadia-titania mixed oxide was synthesized by sol-gel method and characterized by several techniques. Texturally, it is formed by mesopores and presents high-specific surface area and controlled porosity. Scanning electron microscopy revealed that vanadium is homogeneously distributed in the material. Structurally, it was possible to identify characteristic V=O stretching bands by IR. The analysis of X-ray diffraction showed that the material, particularly vanadium, is highly dispersed. Application experiments were carried out through the immobilization of Serratia rubidae CCT 5732 and Klebsiella marcescens bacteria by adsorption on the surface of mixed oxide. The micrographies revealed that the bacteria were adsorbed on the entire support, with average surface densities of 8.55 x 10 11 cells/m 2 (Serratia rubidae CCT 5732) and 3.40 x 10 11 cells/m 2 (K. marcescens)

  18. Mtr Extracellular Electron Transfer Pathways in Fe(III)-reducing or Fe(II)-oxidizing Bacteria: A Genomic Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Rosso, Kevin M.; Zachara, John M.; Fredrickson, Jim K.

    2012-12-01

    Originally discovered in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), the Mtr (i.e., metal-reducing) pathway exists in all characterized strains of metal-reducing Shewanella. The protein components identified to date for the Mtr pathway of MR-1 include four multi-heme c-type cytochromes (c-Cyts), CymA, MtrA, MtrC and OmcA, and a porin-like, outer membrane protein MtrB. They are strategically positioned along the width of the MR-1 cell envelope to mediate electron transfer from the quinone/quinol pool in the inner-membrane to the Fe(III)-containing minerals external to the bacterial cells. A survey of microbial genomes revealed homologues of the Mtr pathway in other dissimilatory Fe(III)-reducing bacteria, including Aeromonas hydrophila, Ferrimonas balearica and Rhodoferax ferrireducens, and in the Fe(II)-oxidizing bacteria Dechloromonas aromatica RCB, Gallionella capsiferriformans ES-2 and Sideroxydans lithotrophicus ES-1. The widespread distribution of Mtr pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria emphasizes the importance of this type of extracellular electron transfer pathway in microbial redox transformation of Fe. Their distribution in these two different functional groups of bacteria also emphasizes the bi-directional nature of electron transfer reactions carried out by the Mtr pathways. The characteristics of the Mtr pathways may be shared by other pathways used by microorganisms for exchanging electrons with their extracellular environments.

  19. In Situ Bioremediation of 1,4-Dioxane by Methane Oxidizing Bacteria in Coupled Anaerobic-Aerobic Zones

    Science.gov (United States)

    2016-02-11

    FINAL REPORT In Situ Bioremediation of 1,4-Dioxane by Methane Oxidizing Bacteria in Coupled Anaerobic-Aerobic Zones SERDP Project ER-2306...volatile organic compound (CVOCs), ethene and ethane in groundwater at Raritan Arsenal Area 18C after in situ bioremediation . 4 List of...aquifers, the bioremediation approach most commonly used for chlorinated solvents. The ability of methanotrophs to biodegrade 1,4-dioxane was

  20. Electro-responsive supramolecular graphene oxide hydrogels for active bacteria adsorption and removal

    Science.gov (United States)

    Xue, Bin; Cao, Yi; Wang, Wei

    Bacteria are major contaminations in drinking water and healthcare products. Bacteria contamination may cause severe health problems, including food poisoning and diseases. Currently water sterilization and purification methods to remove contaminated bacteria are mainly based on the size-exclusion mechanism. In order to completely remove all bacteria in water, the pore sizes of the membranes or cartilages should be comparable to the size of bacteria, which inevitable leads to high cross-membrane water pressure and slow purification speed. Moreover, the membranes can easily get clogged. Therefore it is highly demanded to develop efficient methods and novel materials for water purification. Recently, Cui and coworker have introduced a bacteria inactivation method with high efficiency and fast purification speed based on a kind of complex materials made of silver nanofibers, carbon nanotubes and cotton, operating in an electric field. With the help of electric field, the bacteria can be efficiently kill when passing through the membrance even the pore sizes are larger than bacteria. Inspired by their work, here we report a proof-of-principle demonstration of bacteria removal using electro-reponsive hydrogels. This work is funded by Six talent peaks project in Jiangsu Province, the National Natural Science Foundation of China (Nos. 11304156, 11334004, 31170813, 81421091 and 91127026), the 973 Program of China (No. 2012CB921801 and 2013CB834100), the Priority Ac.

  1. High abundance and diversity of nitrite-dependent anaerobic methane-oxidizing bacteria in a paddy field profile.

    Science.gov (United States)

    Zhou, Leiliu; Wang, Yu; Long, Xi-En; Guo, Jianhua; Zhu, Guibing

    2014-11-01

    The discovery of nitrite-dependent anaerobic methane oxidation (n-damo) mediated by 'Candidatus Methylomirabilis oxyfera' with nitrite and methane as substrates has connected biogeochemical carbon and nitrogen cycles in a new way. The paddy fields often carry substantial methane and nitrate, thus may be a favorable habitat for n-damo bacteria. In this paper, the vertical-temporal molecular fingerprints of M. oxyfera-like bacteria, including abundance and community composition, were investigated in a paddy soil core in Jiangyin, near the Yangtze River. Through qPCR investigation, high abundance of M. oxyfera-like bacteria up to 1.0 × 10(8) copies (g d.w.s.)(-1) in summer and 8.5 × 10(7) copies (g d.w.s.)(-1) in winter was observed in the ecotone of soil and groundwater in the paddy soil core, which was the highest in natural environments to our knowledge. In the ecotone, the ratio of M. oxyfera-like bacteria to total bacteria reached peak values of 2.80% in summer and 4.41% in winter. Phylogenetic analysis showed n-damo bacteria in the paddy soil were closely related to M. oxyfera and had high diversity in the soil/groundwater ecotone. All of the results indicated the soil/groundwater ecotone of the Jiangyin paddy field was a favorable environment for the growth of n-damo bacteria. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Activity and diversity of methane-oxidizing bacteria in glacier forefields on siliceous and calcareous bedrock

    Directory of Open Access Journals (Sweden)

    P. A. Nauer

    2012-06-01

    Full Text Available The global methane (CH4 cycle is largely driven by methanogenic archaea and methane-oxidizing bacteria (MOB, but little is known about their activity and diversity in pioneer ecosystems. We conducted a field survey in forefields of 13 receding Swiss glaciers on both siliceous and calcareous bedrock to investigate and quantify CH4 turnover based on soil-gas CH4 concentration profiles, and to characterize the MOB community by sequencing and terminal restriction fragment length polymorphism (T-RFLP analysis of pmoA. Methane turnover was fundamentally different in the two bedrock categories. Of the 36 CH4 concentration profiles from siliceous locations, 11 showed atmospheric CH4 consumption at concentrations of ~1–2 μL L−1 with soil-atmosphere CH4 fluxes of –0.14 to –1.1 mg m−2 d−1. Another 11 profiles showed no apparent activity, while the remaining 14 exhibited slightly increased CH4 concentrations of ~2–10 μL L−1 , most likely due to microsite methanogenesis. In contrast, all profiles from calcareous sites suggested a substantial, yet unknown CH4 source below our sampling zone, with soil-gas CH4 concentrations reaching up to 1400 μL L−1. Remarkably, most soils oxidized ~90 % of the deep-soil CH4, resulting in soil-atmosphere fluxes of 0.12 to 31 mg m−2 d−1. MOB showed limited diversity in both siliceous and calcareous forefields: all identified pmoA sequences formed only 5 operational taxonomic units (OTUs at the species level and, with one exception, could be assigned to either Methylocystis or the as-yet-uncultivated Upland Soil Cluster γ (USCγ. The latter dominated T-RFLP patterns of all siliceous and most calcareous samples, while Methylocystis dominated in 4 calcareous samples. Members of Upland Soil

  3. Understanding the effect of post-synthesis ammonium treatment on the catalytic activity of Au/Ti-SBA-15 catalysts for the oxidation of propene

    NARCIS (Netherlands)

    Sacaliuc-Parvulescu, E.; Friedrich, H.; Palkovits, R.; Weckhuysen, B.M.; Nijhuis, T.A.

    2008-01-01

    Postsynthesis ammonium treatment induces a substantial increase in the catalytic activity of Au/Ti- SBA-15 catalysts for the direct vapor-phase epoxidation of propylene using hydrogen and oxygen. The PO formation rate of a calcined Au/Ti-SBA-15 catalyst prepared by this method increased from 4.3

  4. Understanding the effect of postsynthesis ammonium treatment on the catalytic activity of Au/TI-SBA-15 catalysts for the oxidation of propene

    NARCIS (Netherlands)

    Sacaliuc, E.; Friedrich, H.; Palkovits, R.; Weckhuysen, B.M.; Nijhuis, T.A.

    2008-01-01

    Postsynthesis ammonium treatment induces a substantial increase in the catalytic activity of Au/Ti-SBA-15 catalysts for the direct vapor-phase epoxidation of propylene using hydrogen and oxygen. The PO formation rate of a calcined Au/Ti-SBA-15 catalyst prepared by this method increased from 4.3 mgPO

  5. Thermal decomposition of phase-stabilised ammonium nitrate (PSAM), HTPB based propellants. The effect of iron(III)oxide burning-rate catalyst

    NARCIS (Netherlands)

    Carvalheira, P.; Gadiot, G.M.H.J.L.; Klerk, W.P.C. de

    1995-01-01

    Phase-stabilised ammonium nitrate (PSAN) and hydroxyl-terminated polybutadiene (HTPB) are the main ingredients of propellants used with success in some pyrotechnic igniter components of the VULCAIN liquid rocket engine for the ARIANE 5. Small amounts of selected additives play an important role in

  6. Relative contributions of archaea and bacteria to microbial ammonia oxidation differ under different conditions during agricultural waste composting.

    Science.gov (United States)

    Zeng, Guangming; Zhang, Jiachao; Chen, Yaoning; Yu, Zhen; Yu, Man; Li, Hui; Liu, Zhifeng; Chen, Ming; Lu, Lunhui; Hu, Chunxiao

    2011-10-01

    The aim of this study was to compare the relative contribution of ammonia-oxidizing archaea (AOA) and bacteria (AOB) to nitrification during agricultural waste composting. The AOA and AOB amoA gene abundance and composition were determined by quantitative PCR and denaturing gradient gel electrophoresis (DGGE), respectively. The results showed that the archaeal amoA gene was abundant throughout the composting process, while the bacterial amoA gene abundance decreased to undetectable level during the thermophilic and cooling stages. DGGE showed more diverse archaeal amoA gene composition when the potential ammonia oxidation (PAO) rate reached peak values. A significant positive relationship was observed between the PAO rate and the archaeal amoA gene abundance (R²=0.554; Parchaea dominated ammonia oxidation during the thermophilic and cooling stages. Bacteria were also related to ammonia oxidation activity (R²=0.503; P=0.03) especially during the mesophilic and maturation stages. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Dynamics of nitrification and denitrification in root- oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Libochant, J.A.; Blom, C.W.P.M.; Laanbroek, H.J.

    1996-01-01

    Oxygen-releasing plants may provide aerobic niches in anoxic sediments and soils for ammonia-oxidizing bacteria, The oxygen- releasing, aerenchymatous emergent macrophyte Glycerin maxima had a strong positive effect on numbers and activities of the nitrifying bacteria in its root zone in spring and

  8. Dynamics of nitrification and denitrification in root- oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Libochant, J.A.; Blom, C.W.P.M.; Laanbroek, H.J.

    1996-01-01

    Oxygen-releasing plants may provide aerobic niches in anoxic sediments and soils for ammonia-oxidizing bacteria. The oxygen-releasing, aerenchymatous emergent macrophyte Glyceria maxima had a strong positive effect on numbers and activities of the nitrifying bacteria in its root zone in spring and

  9. Dissolved methane oxidation and competition for oxygen in down-flow hanging sponge reactor for post-treatment of anaerobic wastewater treatment.

    Science.gov (United States)

    Hatamoto, Masashi; Miyauchi, Tomo; Kindaichi, Tomonori; Ozaki, Noriatsu; Ohashi, Akiyoshi

    2011-11-01

    Post-treatment of anaerobic wastewater was undertaken to biologically oxidize dissolved methane, with the aim of preventing methane emission. The performance of dissolved methane oxidation and competition for oxygen among methane, ammonium, organic matter, and sulfide oxidizing bacteria were investigated using a lab-scale closed-type down-flow hanging sponge (DHS) reactor. Under the oxygen abundant condition of a hydraulic retention time of 2h and volumetric air supply rate of 12.95m(3)-airm(-3)day(-1), greater than 90% oxidation of dissolved methane, ammonium, sulfide, and organic matter was achieved. With reduction in the air supply rate, ammonium oxidation first ceased, after which methane oxidation deteriorated. Sulfide oxidation was disrupted in the final step, indicating that COD and sulfide oxidation occurred prior to methane oxidation. A microbial community analysis revealed that peculiar methanotrophic communities dominating the Methylocaldum species were formed in the DHS reactor operation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Hotspots of anaerobic ammonia oxidation in land - freshwater interfaces

    DEFF Research Database (Denmark)

    Zhu, Guibing; Wang, Shanyun; Wang, Weidong

    2013-01-01

    sampled fromlake riparian zones in North China. Laboratory incubations in the presence of ammonium or nitrate—at concentrations equivalent to no more than 10% of those detected in situ—yielded some of the highest potential anammox activities reported for natural environments to date. Potential rates......For decades, the conversion of organic nitrogen to dinitrogen gas by heterotrophic bacteria, termed heterotrophic denitrification, was assumed to be the main pathway of nitrogen loss in natural ecosystems. Recently, however, autotrophic bacteria have been shown to oxidize ammonium in the absence...

  11. Quantitative analysis of O-2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic Iron(II)-oxidizing bacteria

    DEFF Research Database (Denmark)

    Lueder, U.; Druschel, G.; Emerson, D.

    2018-01-01

    The classical approach for the cultivation of neutrophilic microaerophilic Fe(II)-oxidizing bacteria is agar-based gradient tubes where these bacteria find optimal growth conditions in opposing gradients of oxygen (O-2) and dissolved Fe(II) (Fe2+). The goals of this study were to quantify...... imply that transfer of cultures to fresh tubes within 48-72 h is crucial to provide optimal growth conditions for microaerophilic Fe(II)-oxidizers, particularly for the isolation of new strains....

  12. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia.

    Science.gov (United States)

    Hamamura, Natsuko; Itai, Takaaki; Liu, Yitai; Reysenbach, Anna-Louise; Damdinsuren, Narantuya; Inskeep, William P

    2014-10-01

    Microbial arsenic transformation pathways associated with a saline lake located in northern Mongolia were examined using molecular biological and culturing approaches. Bacterial 16S rRNA gene sequences recovered from saline lake sediments and soils were affiliated with haloalkaliphiles, including Bacillus and Halomonas spp. Diverse sequences of arsenate respiratory reductase (arrA) and a new group of arsenite oxidase (arxA) genes were also identified. Pure cultures of arsenate-reducing Nitrincola strain and anaerobic arsenite-oxidizing Halomonas strain were isolated. The chemoorganotrophic Halomonas strain contains arxA gene similar to that of a chemoautotrophic arsenite-oxidizing Alkalilimnicola ehrlichii strain MLHE-1. These results revealed the diversity of arsenic transformation pathways associated with a geographically distinct saline system and the potential contribution of arx-dependent arsenite oxidation by heterotrophic bacteria.

  13. Enrichment and cultivation of a sulfide-oxidizing bacteria consortium for its deploying in full-scale biogas desulfurization

    International Nuclear Information System (INIS)

    González Sánchez, Armando; Flores Márquez, Trinidad Eliseo; Revah, Sergio; Morgan Sagastume, Juan Manuel

    2014-01-01

    Operational experiences and strategies to get suitable chemolithoautotrophic sulfide-oxidizing biomass from activated sludge wastewater treatment plant for its deploying in a full-scale biogas desulfurization plant are described. An economic nutrient source was applied to foster microbial selection and rapid growth. Respirometry was implemented on full-scale installations to monitor the ability of the specialized bacteria consortium to oxidize reduced sulfur i.e. H 2 S. During the deployment in the full-scale desulfurization reactor, intermittent sulfide feed from biogas scrubbing was performed to accelerate the startup the desulfurization process. - Highlights: • A simple method for reaching high amounts of specialized sulfide-oxidizing bacterial consortium from activated sludge was developed. • The full-scale desulfurization process can be continuously monitored by respirometry allowing fast decision making if problems arise. • The dissolved sulfide concentration was estimated with an empirical correlation between measurements of ORP, dissolved oxygen and pH

  14. Dynamic transition of chemolithotrophic sulfur-oxidizing bacteria in response to amendment with nitrate in deposited marine sediments

    Directory of Open Access Journals (Sweden)

    Tomo eAoyagi

    2015-05-01

    Full Text Available Although environmental stimuli are known to affect the structure and function of microbial communities, their impact on the metabolic network of microorganisms has not been well investigated. Here, geochemical analyses, high-throughput sequencing of 16S rRNA genes and transcripts, and isolation of potentially relevant bacteria were carried out to elucidate the anaerobic respiration processes stimulated by nitrate (20 mM amendment of marine sediments. Marine sediments deposited by the Great East Japan Earthquake in 2011 were incubated anaerobically in the dark at 25°C for 5 days. Nitrate in slurry water decreased gradually for 2 days, then more rapidly until its complete depletion at day 5; production of N2O followed the same pattern. From day 2 to 5, the sulfate concentration increased and the sulfur content in solid-phase sediments significantly decreased. These results indicated that denitrification and sulfur oxidation occurred simultaneously. Illumina sequencing revealed the proliferation of known sulfur oxidizers, i.e., Sulfurimonas spp. and Chromatiales bacteria, which accounted for approximately 43.5% and 14.8% of the total population at day 5, respectively. They also expressed 16S rRNA to a considerable extent, whereas the other microorganisms, e.g., iron(III reducers and methanogens, became metabolically active at the end of the incubation. Extinction dilution culture in a basal-salts medium supplemented with sulfur compounds and nitrate successfully isolated the predominant sulfur oxidizers: Sulfurimonas sp. strain HDS01 and Thioalkalispira sp. strain HDS22. Their 16S rRNA genes showed 95.2−96.7% sequence similarity to the closest cultured relatives and they grew chemolithotrophically on nitrate and sulfur. Novel sulfur-oxidizing bacteria were thus directly involved in carbon fixation under nitrate-reducing conditions, activating anaerobic respiration processes and the reorganization of microbial communities in the deposited marine

  15. Molecular Analysis of Ammonia-Oxidizing Bacteria of the β Subdivision of the Class Proteobacteria in Compost and Composted Materials

    Science.gov (United States)

    Kowalchuk, George A.; Naoumenko, Zinaida S.; Derikx, Piet J. L.; Felske, Andreas; Stephen, John R.; Arkhipchenko, Irina A.

    1999-01-01

    Although the practice of composting animal wastes for use as biofertilizers has increased in recent years, little is known about the microorganisms responsible for the nitrogen transformations which occur in compost and during the composting process. Ammonia is the principle available nitrogenous compound in composting material, and the conversion of this compound to nitrite in the environment by chemolithotrophic ammonia-oxidizing bacteria is an essential step in nitrogen cycling. Therefore, the distribution of ammonia-oxidizing members of the β subdivision of the class Proteobacteria in a variety of composting materials was assessed by amplifying 16S ribosomal DNA (rDNA) and 16S rRNA by PCR and reverse transcriptase PCR (RT-PCR), respectively. The PCR and RT-PCR products were separated by denaturing gradient gel electrophoresis (DGGE) and were identified by hybridization with a hierarchical set of oligonucleotide probes designed to detect ammonia oxidizer-like sequence clusters in the genera Nitrosospira and Nitrosomonas. Ammonia oxidizer-like 16S rDNA was detected in almost all of the materials tested, including industrial and experimental composts, manure, and commercial biofertilizers. A comparison of the DGGE and hybridization results after specific PCR and RT-PCR suggested that not all of the different ammonia oxidizer groups detected in compost are equally active. amoA, the gene encoding the active-site-containing subunit of ammonia monooxygenase, was also targeted by PCR, and template concentrations were estimated by competitive PCR. Detection of ammonia-oxidizing bacteria in the composts tested suggested that such materials may not be biologically inert with respect to nitrification and that the fate of nitrogen during composting and compost storage may be affected by the presence of these organisms. PMID:9925559

  16. Response to UVB radiation and oxidative stress of marine bacteria isolated from South Pacific Ocean and Mediterranean Sea.

    Science.gov (United States)

    Matallana-Surget, S; Villette, C; Intertaglia, L; Joux, F; Bourrain, M; Lebaron, P

    2012-12-05

    Marine bacterial strains isolated from South Pacific and Mediterranean Sea were studied for their resistance to UVB radiation, their repair capacity under photoreactivating light, as well as their oxidative stress response using concentrated hydrogen peroxide (H(2)O(2)), as an oxidizer. A total of 30 marine bacteria were isolated from the hyper-oligotrophic waters of the South Pacific Gyre to the eutrophic waters of the Chilean coast during the BIOSOPE cruise (2004), and 10 strains from surface Mediterranean coastal waters. One third of bacteria presented a high resistance to UVB and almost all isolates presented an efficient post-irradiation recovery. Only few strains showed cell survival to high concentration of H(2)O(2). No correlation between the sampling sites and the bacterial UVB resistance was observed. Two marine bacteria, Erythrobacter flavus and Ruegeria mobilis, were of particular interest, presenting a good response to the three parameters (UVB and H(2)O(2) resistance/efficient repair). Unexpectedly, two resistant strains were again identified as Ruegeria species underlining that this geographically widespread genus, resist to UVB regardless the environment from which the isolates originate. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Microbiological oxidation of antimony(III) with oxygen or nitrate by bacteria isolated from contaminated mine sediments

    Science.gov (United States)

    Terry, Lee R.; Kulp, Thomas R.; Wiatrowski, Heather A.; Miller, Laurence G.; Oremland, Ronald S.

    2015-01-01

    Bacterial oxidation of arsenite [As(III)] is a well-studied and important biogeochemical pathway that directly influences the mobility and toxicity of arsenic in the environment. In contrast, little is known about microbiological oxidation of the chemically similar anion antimonite [Sb(III)]. In this study, two bacterial strains, designated IDSBO-1 and IDSBO-4, which grow on tartrate compounds and oxidize Sb(III) using either oxygen or nitrate, respectively, as a terminal electron acceptor, were isolated from contaminated mine sediments. Both isolates belonged to the Comamonadaceae family and were 99% similar to previously described species. We identify these novel strains as Hydrogenophagataeniospiralis strain IDSBO-1 and Variovorax paradoxus strain IDSBO-4. Both strains possess a gene with homology to the aioA gene, which encodes an As(III)-oxidase, and both oxidize As(III) aerobically, but only IDSBO-4 oxidized Sb(III) in the presence of air, while strain IDSBO-1 could achieve this via nitrate respiration. Our results suggest that expression of aioA is not induced by Sb(III) but may be involved in Sb(III) oxidation along with an Sb(III)-specific pathway. Phylogenetic analysis of proteins encoded by the aioA genes revealed a close sequence similarity (90%) among the two isolates and other known As(III)-oxidizing bacteria, particularly Acidovorax sp. strain NO1. Both isolates were capable of chemolithoautotrophic growth using As(III) as a primary electron donor, and strain IDSBO-4 exhibited incorporation of radiolabeled [14C]bicarbonate while oxidizing Sb(III) from Sb(III)-tartrate, suggesting possible Sb(III)-dependent autotrophy. Enrichment cultures produced the Sb(V) oxide mineral mopungite and lesser amounts of Sb(III)-bearing senarmontite as precipitates.

  18. A novel surface-enhanced Raman scattering (SERS) detection for natural gas exploration using methane-oxidizing bacteria.

    Science.gov (United States)

    Liang, Weiwei; Chen, Qiao; Peng, Fang; Shen, Aiguo; Hu, Jiming

    2018-07-01

    Methane-oxidizing bacteria (MOB), a unique group of Gram-negative bacteria utilizing methane as a sole source of carbon and energy, have been proved to be a biological indicator for gas prospecting. Field and cultivation-free detection of MOB is important but still challenging in current microbial prospecting of oil and gas (MPOG) system. Herein, SERS was used for the first time to our knowledge to investigate two species of methanotrophs and four closely relevant bacteria that universally coexisted in the upper soil of natural gas. A special but very simple approach was utilized to make silver nanoparticles (Ag NPs) sufficiently contact with every single bacterial cell, and highly strong and distinct Raman signals free from any native fluorescence have been obtained, and successfully utilized for distinguishing MOB from other species. A more convincing multi-Raman criterion based on single Raman bands, and further the entire Raman spectrum in combination with statistical analysis (e.g., principal component analysis (PCA)), which were found capable of classifying MOB related bacterial cells in soil with an accuracy of 100%. This study therefore demonstrated sensitive and rapid SERS measurement technique accompanied by complete Raman database of various gas reservoirs related bacteria could aid field exploration of natural gas reservoir. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Current advances in molecular methods for detection of nitrite-dependent anaerobic methane oxidizing bacteria in natural environments.

    Science.gov (United States)

    Chen, Jing; Dick, Richard; Lin, Jih-Gaw; Gu, Ji-Dong

    2016-12-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) process uniquely links microbial nitrogen and carbon cycles. Research on n-damo bacteria progresses quickly with experimental evidences through enrichment cultures. Polymerase chain reaction (PCR)-based methods for detecting them in various natural ecosystems and engineered systems play a very important role in the discovery of their distribution, abundance, and biodiversity in the ecosystems. Important characteristics of n-damo enrichments were obtained and their key significance in microbial nitrogen and carbon cycles was investigated. The molecular methods currently used in detecting n-damo bacteria were comprehensively reviewed and discussed for their strengths and limitations in applications with a wide range of samples. The pmoA gene-based PCR primers for n-damo bacterial detection were evaluated and, in particular, several incorrectly stated PCR primer nucleotide sequences in the published papers were also pointed out to allow correct applications of the PCR primers in current and future investigations. Furthermore, this review also offers the future perspectives of n-damo bacteria based on current information and methods available for a better acquisition of new knowledge about this group of bacteria.

  20. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria

    OpenAIRE

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-01-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the p...

  1. Mobilization of manganese by basalt associated Mn(II)-oxidizing bacteria from the Indian Ridge System

    Digital Repository Service at National Institute of Oceanography (India)

    Sujith, P.P.; Mourya, B.S.; Krishnamurthi, S.; Meena, R.M.; LokaBharathi, P.A.

    The Indian Ridge System basalt bearing Mn-oxide coatings had todorokite as the major and birnesite as the minor mineral. We posit that microorganisms associated with these basalts participate in the oxidation of Mn and contribute to mineral...

  2. Draft Genome of Scalindua rubra, Obtained from the Interface Above the Discovery Deep Brine in the Red Sea, Sheds Light on Potential Salt Adaptation Strategies in Anammox Bacteria

    NARCIS (Netherlands)

    Speth, Daan R.; Lagkouvardos, Ilias; Wang, Yong; Qian, Pei Yuan; Dutilh, Bas E.|info:eu-repo/dai/nl/304546313; Jetten, Mike S M

    2017-01-01

    Several recent studies have indicated that members of the phylum Planctomycetes are abundantly present at the brine-seawater interface (BSI) above multiple brine pools in the Red Sea. Planctomycetes include bacteria capable of anaerobic ammonium oxidation (anammox). Here, we investigated the

  3. Draft Genome of Scalindua rubra, Obtained from the Interface Above the Discovery Deep Brine in the Red Sea, Sheds Light on Potential Salt Adaptation Strategies in Anammox Bacteria

    NARCIS (Netherlands)

    Speth, Daan R.; Lagkouvardos, Ilias; Wang, Yong; Qian, Pei Yuan; Dutilh, Bas E.; Jetten, M.S.M.

    2017-01-01

    Several recent studies have indicated that members of the phylum Planctomycetes are abundantly present at the brine-seawater interface (BSI) above multiple brine pools in the Red Sea. Planctomycetes include bacteria capable of anaerobic ammonium oxidation (anammox). Here, we investigated the

  4. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide

    International Nuclear Information System (INIS)

    Li, F.B.; Li, X.M.; Zhou, S.G.; Zhuang, L.; Cao, F.; Huang, D.Y.; Xu, W.; Liu, T.X.; Feng, C.H.

    2010-01-01

    The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (α-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of α-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe 2+ + α-FeOOH and the system of DIRB + α-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of α-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments. - This is the first case reporting the reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.

  5. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.B., E-mail: cefbli@soil.gd.c [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Li, X.M. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Zhou, S.G.; Zhuang, L. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Cao, F. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Huang, D.Y.; Xu, W.; Liu, T.X. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Feng, C.H. [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China)

    2010-05-15

    The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (alpha-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of alpha-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe{sup 2+} + alpha-FeOOH and the system of DIRB + alpha-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of alpha-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments. - This is the first case reporting the reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.

  6. Spatial distribution of ammonia-oxidizing archaea and bacteria across eight freshwater lakes in sediments from Jiangsu of China

    Directory of Open Access Journals (Sweden)

    Xu Sun

    2014-03-01

    Full Text Available Ammonia-oxidizingarchaea (AOA and ammonia-oxidizing bacteria (AOB play an important role innitrogen transformation in freshwater sediments. However, it is still unclear towhat extent the distribution patterns of these microorganisms are affected bythe freshwater sediment across a large geographical scale. This study wasdesigned to gain insight into the heterogeneity distribution of AOA and AOB in32 freshwater sediments from a wide range of ecologic types. Real-time quantitative polymerasechain reaction PCR(qPCR combined with the terminal restrictionfragment length polymorphism(T-RFLP were employed to characterize the abundance, diversity, and communitystructure of the AOA and AOB in 32 freshwater sediments. AOA and AOB wereubiquitous in all sediments, and archaeal amoA far outnumbered bacterial amoA inmost sediments with lower organic matters. The abundance of AOA and AOB did notvary with the freshwater ecological type (macrophyte dominated region and algaedominated region. Based on  the T-RFLP of an amoA gene, this research found that organicmatters in pore water rather than other factors affect the AOA communitystructure in sediments, while the AOB were not significantly different in thefreshwater sediments. Phylogenetic analysis showed that all archaeal amoAsequences fell within either the Crenarchaeotal Group (CG I.1b or the CGI.1asubgroup, and all AOB clustered with genus Nitrosomonas or Nitrosospira. The data obtained inthis study elucidates the role of ammonia-oxidizing archaea andammonia-oxidizing bacteria in the nitrogen cycle of freshwater ecosystems.

  7. Quantitative analysis of ammonia-oxidizing bacteria in a combined system of MBR and worm reactors treating synthetic wastewater.

    Science.gov (United States)

    Liu, Jia; Tian, Yu; Wang, Dezhen; Lu, Yaobin; Zhang, Jun; Zuo, Wei

    2014-12-01

    The Static Sequencing Batch Worm Reactor (SSBWR) followed by the MBR (S-MBR) is one of the advanced excess sludge treatments. In this paper, the control MBR (C-MBR) and the SSBWR-MBR were operated in parallel to study the changes of NH3-N removal and ammonia oxidizing bacteria (AOB). The results showed that the capacity of NH3-N removal of the S-MBR was improved by the worm reactors along with the operation. The S-MBR was favorable because it selected for the higher activity of the ammonia oxidization and better cells appearance of the sludge. The five species (Nitrosomonas, Betaproteobacteria, Clostridium, Dechloromonas and Bacteria) were found to be significantly correlate with the ammonia oxidization functions and performance of NH3-N removal in the C-MBR and S-MBR. The Nitrosomonas, Betaproteobacteria and Dechloromonas remained and eventually enriched in the S-MBR played a primary role in the NH3-N removal of the S-MBR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Community Composition of Nitrous Oxide Consuming Bacteria in the Oxygen Minimum Zone of the Eastern Tropical South Pacific

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2017-06-01

    Full Text Available The ozone-depleting and greenhouse gas, nitrous oxide (N2O, is mainly consumed by the microbially mediated anaerobic process, denitrification. N2O consumption is the last step in canonical denitrification, and is also the least O2 tolerant step. Community composition of total and active N2O consuming bacteria was analyzed based on total (DNA and transcriptionally active (RNA nitrous oxide reductase (nosZ genes using a functional gene microarray. The total and active nosZ communities were dominated by a limited number of nosZ archetypes, affiliated with bacteria from marine, soil and marsh environments. In addition to nosZ genes related to those of known marine denitrifiers, atypical nosZ genes, related to those of soil bacteria that do not possess a complete denitrification pathway, were also detected, especially in surface waters. The community composition of the total nosZ assemblage was significantly different from the active assemblage. The community composition of the total nosZ assemblage was significantly different between coastal and off-shore stations. The low oxygen assemblages from both stations were similar to each other, while the higher oxygen assemblages were more variable. Community composition of the active nosZ assemblage was also significantly different between stations, and varied with N2O concentration but not O2. Notably, nosZ assemblages were not only present but also active in oxygenated seawater: the abundance of total and active nosZ bacteria from oxygenated surface water (indicated by nosZ gene copy number was similar to or even larger than in anoxic waters, implying the potential for N2O consumption even in the oxygenated surface water.

  9. Community Composition of Nitrous Oxide Consuming Bacteria in the Oxygen Minimum Zone of the Eastern Tropical South Pacific

    Science.gov (United States)

    Sun, Xin; Jayakumar, Amal; Ward, Bess B.

    2017-01-01

    The ozone-depleting and greenhouse gas, nitrous oxide (N2O), is mainly consumed by the microbially mediated anaerobic process, denitrification. N2O consumption is the last step in canonical denitrification, and is also the least O2 tolerant step. Community composition of total and active N2O consuming bacteria was analyzed based on total (DNA) and transcriptionally active (RNA) nitrous oxide reductase (nosZ) genes using a functional gene microarray. The total and active nosZ communities were dominated by a limited number of nosZ archetypes, affiliated with bacteria from marine, soil and marsh environments. In addition to nosZ genes related to those of known marine denitrifiers, atypical nosZ genes, related to those of soil bacteria that do not possess a complete denitrification pathway, were also detected, especially in surface waters. The community composition of the total nosZ assemblage was significantly different from the active assemblage. The community composition of the total nosZ assemblage was significantly different between coastal and off-shore stations. The low oxygen assemblages from both stations were similar to each other, while the higher oxygen assemblages were more variable. Community composition of the active nosZ assemblage was also significantly different between stations, and varied with N2O concentration but not O2. Notably, nosZ assemblages were not only present but also active in oxygenated seawater: the abundance of total and active nosZ bacteria from oxygenated surface water (indicated by nosZ gene copy number) was similar to or even larger than in anoxic waters, implying the potential for N2O consumption even in the oxygenated surface water. PMID:28702012

  10. Ammonium and hydroxylamine uptake and accumulation in Nitrosomonas

    NARCIS (Netherlands)

    Schmidt, I.; Look, C.; Bock, E.; Jetten, M.S.M.

    2004-01-01

    Starved cells of Nitrosomonas europaea and further ammonia oxidizers were able to rapidly accumulate ammonium and hydroxylamine to an internal concentration of about 1 and 0.8 M, respectively. In kinetic studies, the uptake/accumulation rates for ammonium [3.1 mmol (g protein)(-1) min(-1)] and

  11. Ginger-supplemented diet ameliorates ammonium nitrate-induced ...

    African Journals Online (AJOL)

    The present study was designed to evaluate the capacity of ginger to repair the oxidative stress induced by ammonium nitrate. 50 male rats were divided into 5 groups; they underwent an oral treatment of ammonium nitrate and/or ginger (N mg/kg body weight + G% in diet) during 30 days. Group I served as control (C); ...

  12. Ammonia oxidation driven by archaea rather than bacteria in the hot spring at Tengchong geothermal field, China.

    Science.gov (United States)

    Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Li, Jiwei; Ta, Kaiwen

    2015-04-01

    The occurrence of microbial mediated ammonia oxidation and these organisms are present in large numbers in natural environments indicated a potential biogeochemical role for them in the global nitrogen cycle. However, very little is understood about their role and contribution to nitrification in the high temperature extreme environments. Here we explore the ammonia oxidation rates and abundance of potential ammonia-oxidizing archaea (AOA) in upper and bottom sediments from Gongxiaoshe hot spring, Tengchong, Yunnan, China. The 15N-incorporating AOA cells and cell aggregated were detected with Fluorescence in situ hybridization (FISH) and Nano secondary ion mass spectrometry (Nano-SIMS). Ammonia oxidation rates measured using 15N-NO3- pool dilution in upper and bottom sediments (without NH4+ stimulated) were 4.8 and 5.3 nmol N g-1h-1, respectively. Close relatives of the autotrophic, ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus yellowstonii' represented the most abundant OTU in both of the two spring sediments by 16S rRNA gene analysis. Furthermore, it should be noted that no ammonia-oxidizing bacterial clones detected in this study. Quantitative PCR (qPCR) indicated that AOA and 16S rRNA genes were present at 2.75-9.80×105 and 0.128-1.96×108 gene copies g-1 sediment. Based on the reaction rates and AOA abundance, we estimated the cell-specific nitrification rates were 0.41 to 0.79 fmol N archaeal cell-1 h-1, which are comparable to those observed in estuary environment. We suggest that AOA have the responsibility in nitrification in this hot spring, and these archaea rather than bacteria may be considered as a driver in nitrogen cycling in terrestrial hot ecosystems. Key words: ammonia-oxidizing archaea (AOA); nitrification; ammonia-oxidizing rate; hot spring;

  13. Investigation of Combination Effect of Magnesium Oxide and Iron Oxide Nanoparticles on the Growth And Morphology of the Bacteria Staphylococcus Aureus and Escherichia Coli in Juice

    Directory of Open Access Journals (Sweden)

    mahdi torabi zarchi

    2017-02-01

    Full Text Available Introduction: Nanoparticles (NPs are one of the antibacterial substances, among them nanoparticles type MgO and Fe2O3 are less toxic to mammalian cells. So, the aim of this study was investigation of combination effects of iron oxide and magnesium oxide nanoparticles on the growth of Staphylococcus aureus and Escherichia coli (E.coli to achieve the optimum combination of nanoparticles inhibit the growth of Staphylococcus aureus and Escherichia coli in food (juice. Methods: In this experimental research, the effect of MgO and Fe2O3 Nanoparticles compound on Staphylococcus aureus and Escherichia coli bacteria in liquid environment was investigated, and then their effect was investigated separately in juices of carrot, pomegranate and apple via colony count approach. Also, scanning electron microscopy was used to characterize the morphological changes of Staphylococcus aureus and Escherichia coli after antimicrobial treatments. The results of the research were analyzed using one way ANNOVA. Results: The results of the research indicated that in liquid medium, these nanoparticles lead to reduce the growth of both bacteria. compound of 1.5Mg+0.5Fe2O3 was introduced as the most appropriate antibacterial compounds; Staphylococcus aureus sensitivity to Escherichia coli was higher against nanoparticles. The findings of research about the juices revealed that the combined effect of nanoparticles reduced the growth of both bacteria. the combined effect of Fe2o3 and MgO nanoparticles treatments distorted and damaged the cell membrane, resulting in a leakage of intracellular contents and eventually the death of bacterial cells. Conclusion: Nanoparticles in the allowed concentrations have significant effect on Staphylococcus aureus and Escherichia coli bacteria.

  14. The Response of Nitrifying Bacteria to Treatments of N-Serve and Roundup in Continuous-Flow Soil Columns

    Science.gov (United States)

    1988-07-15

    Science Society of America, Inc. Atlas , R. V. and R. Bartha . 1987. Microbial Ecology : Fundamentale and Applications, 2nd Edition. Benjamin/Cuynmings...Thompson and Troeh, 1978). However, many nutrient cycling pathways are mediated by only a few genera of bacteria ( Atlas and Bartha , 1987). So...mole of ammonium and nitrite oxidized, respectively ( Atlas and Bartha , 1987). Therefore, large amounts of substrate must be oxidized to provide

  15. Improved enrichment culture technique for methane-oxidizing bacteria from marine ecosystems: the effect of adhesion material and gas composition.

    Science.gov (United States)

    Vekeman, Bram; Dumolin, Charles; De Vos, Paul; Heylen, Kim

    2017-02-01

    Cultivation of microbial representatives of specific functional guilds from environmental samples depends largely on the suitability of the applied growth conditions. Especially the cultivation of marine methanotrophs has received little attention, resulting in only a limited number of ex situ cultures available. In this study we investigated the effect of adhesion material and headspace composition on the methane oxidation activity in methanotrophic enrichments obtained from marine sediment. Addition of sterilized natural sediment or alternatively the addition of acid-washed silicon dioxide significantly increased methane oxidation. This positive effect was attributed to bacterial adhesion on the particles via extracellular compounds, with a minimum amount of particles required for effect. As a result, the particles were immobilized, thus creating a stratified environment in which a limited diffusive gas gradients could build up and various microniches were formed. Such diffusive gas gradient might necessitate high headspace concentrations of CH 4 and CO 2 for sufficient concentrations to reach the methane-oxidizing bacteria in the enrichment culture technique. Therefore, high concentrations of methane and carbon dioxide, in addition to the addition of adhesion material, were tested and indeed further stimulated methane oxidation. Use of adhesion material in combination with high concentrations of methane and carbon dioxide might thus facilitate the cultivation and subsequent enrichment of environmentally important members of this functional guild. The exact mechanism of the observed positive effects on methane oxidation and the differential effect on methanotrophic diversity still needs to be explored.

  16. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study

    Directory of Open Access Journals (Sweden)

    Azam A

    2012-12-01

    Full Text Available Ameer Azam,1,2 Arham S Ahmed,2 Mohammad Oves,3 Mohammad S Khan,3 Sami S Habib,1 Adnan Memic11Centre of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia; 2Centre of Excellence in Materials Science (Nanomaterials, 3Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, IndiaBackground: Nanomaterials have unique properties compared to their bulk counterparts. For this reason, nanotechnology has attracted a great deal of attention from the scientific community. Metal oxide nanomaterials like ZnO and CuO have been used industrially for several purposes, including cosmetics, paints, plastics, and textiles. A common feature that these nanoparticles exhibit is their antimicrobial behavior against pathogenic bacteria. In this report, we demonstrate the antimicrobial activity of ZnO, CuO, and Fe2O3 nanoparticles against Gram-positive and Gram-negative bacteria.Methods and results: Nanosized particles of three metal oxides (ZnO, CuO, and Fe2O3 were synthesized by a sol–gel combustion route and characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, and transmission electron microscopy techniques. X-ray diffraction results confirmed the single-phase formation of all three nanomaterials. The particle sizes were observed to be 18, 22, and 28 nm for ZnO, CuO, and Fe2O3, respectively. We used these nanomaterials to evaluate their antibacterial activity against both Gram-negative (Escherichia coli and Pseudomonas aeruginosa and Gram-positive (Staphylococcus aureus and Bacillus subtilis bacteria.Conclusion: Among the three metal oxide nanomaterials, ZnO showed greatest antimicrobial activity against both Gram-positive and Gram-negative bacteria used in this study. It was observed that ZnO nanoparticles have excellent bactericidal potential, while Fe2O3 nanoparticles exhibited the least bactericidal activity. The order of antibacterial activity was demonstrated to be the following: ZnO > CuO > Fe2O3

  17. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Elvert, M.; Boetius, A.; Knittel, K.

    2003-01-01

    Membrane fatty acids were extracted from a sediment core above marine gas hydrates at Hydrate Ridge, NE Pacific. Anaerobic sediments from this environment are characterized by high sulfate reduction rates driven by the anaerobic oxidation of methane (AOM). The assimilation of methane carbon......-reducing bacteria (SRB) of the Desulfosarcina/Desulfococcus group, which are present in the aggregates of AOM consortia in extremely high numbers, these specific fatty acids appear to provide a phenotypic fingerprint indicative for SRB of this group. Correlating depth profiles of specific fatty acid content...

  18. Do freshwater macrophytes influence the community structure of ammonia-oxidizing and denitrifying bacteria in the rhizospere?

    DEFF Research Database (Denmark)

    Herrmann, Martina; Schramm, Andreas

    2006-01-01

    to unvegetated sediment, especially with respect to the availability of oxygen, organic carbon, and inorganic nitrogen. We hypothesize that macrophyte species create specific niches for ammonia oxidizing and nitrate-reducing bacteria in their rhizosphere, leading to plant-dependant differences in abundance...... dortmanna have been shown to release oxygen from their roots and to stimulate nitrification and coupled nitrification-denitrification in the rhizosphere. Together with the excretion of root exudates, this effect leads to strongly modified microenvironments at the root surface and in the rhizosphere compared......-denitrification using the 15N isotope pairing technique. Ammonia-oxidizing and nitrate-reducing populations are analyzed based on the ammonia monooxygenase gene (amoA) and the nitrate reductase gene (narG) as functional markers. Preliminary data indicate that there in fact exist differences in the community composition...

  19. Presence, distribution, and diversity of iron-oxidizing bacteria at a landfill leachate-impacted groundwater surface water interface

    DEFF Research Database (Denmark)

    Yu, R.; Gan, P.; Mackay, A.A.

    2010-01-01

    ) were dominated by members of the Bradyrhizobiaceae and Comamonadaceae; clones from the deeper sediments were phylogenetically more diverse, dominated by members of the Rhodocyclaceae. The iron deposition profiles indicated that active iron oxidation occurred only within the near-to-surface GSI......We examined the presence of iron-oxidizing bacteria (IOB) at a groundwater surface water interface (GSI) impacted by reduced groundwater originating as leachate from an upgradient landfill. IOB enrichments and quantifications were obtained, at high vertical resolution, by an iron/oxygen opposing...... site mirrored the IOB distribution. Clone libraries from two separate IOB enrichments indicated a stratified IOB community with clear differences at short vertical distances. Alpha- and Betaproteobacteria were the dominant phylotypes. Clones from the near-surface sediment (1-2 cm below ground surface...

  20. Bio-Reduction of Graphene Oxide Using Sulfate-Reducing Bacteria and Its Implication on Anti-Biocorrosion.

    Science.gov (United States)

    Song, Tian-Shun; Tan, Wei-Min; Xie, Jingjing

    2018-08-01

    In this paper, we developed an environmental friendly, cost effective, simple and green approach to reduce graphene oxide (GO) by a sulfate-reducing bacterium Desulfovibrio desulfuricans. The D. desulfuricans reduces exfoliated GO to reduced graphene oxide (rGO) at 25 °C in an aqueous solution without any toxic and environmentally harmful reducing agents. The rGO was characterized with X-ray Diffraction, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscope, X-ray Photoelectron Spectroscopy and Raman Spectroscopy. The analysis results showed that rGO had excellent properties and multi-layer graphene sheets structure. Furthermore, we demonstrated that D. desulfuricans, one of the primary bacteria responsible for the biocorrosion of various metals, might reduce GO to rGO on the surface of copper and prevented the corrosion of copper, which confirmed that electrophoretic deposition of GO on the surface of metals had great potential on the anti-biocorrosion applications.

  1. Effect of Gaseous Ozone Exposure on the Bacteria Counts and Oxidative Properties of Ground Hanwoo Beef at Refrigeration Temperature.

    Science.gov (United States)

    Cho, Youngjae; Muhlisin; Choi, Ji Hye; Hahn, Tae-Wook; Lee, Sung Ki

    2014-01-01

    This study was designed to elucidate the effect of ozone exposure on the bacteria counts and oxidative properties of ground Hanwoo beef contaminated with Escherichia coli O157:H7 at refrigeration temperature. Ground beef was inoculated with 7 Log CFU/g of E. coli O157:H7 isolated from domestic pigs and was then subjected to ozone exposure (10×10(-6) kg O3 h(-1)) at 4℃ for 3 d. E. coli O157:H7, total aerobic and anaerobic bacterial growth and oxidative properties including instrumental color changes, TBARS, catalase (CAT) and glutathione peroxidase (GPx) activity were evaluated. Ozone exposure significantly prohibited (pgenerator inside a refrigerator. Further studies regarding the ozone concentrations and exposure times are needed.

  2. Influences of Temperature on the Conversion of Ammonium Tungstate Pentahydrate to Tungsten Oxide Particles with Controllable Sizes, Crystallinities, and Physical Properties

    Directory of Open Access Journals (Sweden)

    Asep Bayu Dani Nandiyanto

    2016-08-01

    Full Text Available The purpose of this study was to investigate influences of temperature on the conversion of ammonium tungstate pentahydrate (ATP powder to tungsten trioxide (WO3 particles with controllable sizes, crystallinities, and physicochemical properties. In this study, we used a simple thermal decomposition method. In the experimental procedure, we explored the effect of temperature on the physicochemical properties of ATP by testing various heating temperatures (from 100 to 900 °C. The heated ATP samples were then characterized by a physical observation (i.e. color and various analysis methods (i.e. a thermal gravimetric and differential thermal analysis, infrared spectroscopy, an X-ray diffraction, and a scanning electron microscope. Experimental results showed that increases in temperature had an impact to the decreases in particle size, the change in material crystallinity, and the change in physical properties (e.g. change of color from white, orange, to yellowish green. The relationships between the reaction temperatures and the physicochemical properties of the ATP were also investigated in detail along with the theoretical consideration and the proposal of the WO3 particle formation mechanism. In simplification, the phenomena can be described into three zones of temperatures. (1 Below 250 °C (release of water molecules and some ammonium ions.; (2 At 250-400 °C (release of water molecules and ammonium ions, restructurization of tungsten and oxygen elements, and formation of amorphous tungsten trioxide. (3 At higher than 400 °C (crystallization of tungsten trioxide. Since ATP possessed reactivity on temperature, its physicochemical properties changing could be observed easily, and the experimental procedure could be done easily. The present study will benefit not only for “chemistry and material science” but also potentially to be used as a model material for explaining the thermal behavior of material to undergraduate students (suitable

  3. Comparison of different two-pathway models for describing the combined effect of DO and nitrite on the nitrous oxide production by ammonia-oxidizing bacteria.

    Science.gov (United States)

    Lang, Longqi; Pocquet, Mathieu; Ni, Bing-Jie; Yuan, Zhiguo; Spérandio, Mathieu

    2017-02-01

    The aim of this work is to compare the capability of two recently proposed two-pathway models for predicting nitrous oxide (N 2 O) production by ammonia-oxidizing bacteria (AOB) for varying ranges of dissolved oxygen (DO) and nitrite. The first model includes the electron carriers whereas the second model is based on direct coupling of electron donors and acceptors. Simulations are confronted to extensive sets of experiments (43 batches) from different studies with three different microbial systems. Despite their different mathematical structures, both models could well and similarly describe the combined effect of DO and nitrite on N 2 O production rate and emission factor. The model-predicted contributions for nitrifier denitrification pathway and hydroxylamine pathway also matched well with the available isotopic measurements. Based on sensitivity analysis, calibration procedures are described and discussed for facilitating the future use of those models.

  4. Nitrous oxide production in soil isolates of nitrate-ammonifying bacteria

    NARCIS (Netherlands)

    Streminska, M.A.; Felgate, H.; Rowley, G.; Richardson, D.J.; Baggs, E.M.

    2012-01-01

    Here we provide the first demonstration of the potential for N2O production by soil-isolated nitrate-ammonifying bacteria under different C and N availabilities, building on characterizations informed from model strains. The potential for soil-isolated Bacillus sp. and Citrobacter sp. to reduce

  5. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments

    Directory of Open Access Journals (Sweden)

    François eThomas

    2014-06-01

    Full Text Available Salt marshes are highly productive ecosystems hosting an intense sulfur (S cycle, yet little is known about S-oxidizing microorganisms in these ecosystems. Here, we studied the diversity and transcriptional activity of S-oxidizers in salt marsh sediments colonized by the plant Spartina alterniflora, and assessed variations with sediment depth and small-scale compartments within the rhizosphere. We combined next-generation amplicon sequencing of 16S rDNA and rRNA libraries with phylogenetic analyses of marker genes for two S-oxidation pathways (soxB and rdsrAB. Gene and transcript numbers of soxB and rdsrAB phylotypes were quantified simultaneously, using newly designed (RT-qPCR assays. We identified a diverse assemblage of S-oxidizers, with Chromatiales and Thiotrichales being dominant. The detection of transcripts from S-oxidizers was mostly confined to the upper 5 cm sediments, following the expected distribution of root biomass. A common pool of species dominated by Gammaproteobacteria transcribed S-oxidation genes across roots, rhizosphere, and surrounding sediment compartments, with rdsrAB transcripts prevailing over soxB. However, the root environment fine-tuned the abundance and transcriptional activity of the S-oxidizing community. In particular, the global transcription of soxB was higher on the roots compared to mix and rhizosphere samples. Furthermore, the contribution of Epsilonproteobacteria-related S-oxidizers tended to increase on Spartina roots compared to surrounding sediments. These data shed light on the under-studied oxidative part of the sulfur cycle in salt marsh sediments and indicate small-scale heterogeneities are important factors shaping abundance and potential activity of S-oxidizers in the rhizosphere.

  6. Effect of Different Filling Materials in Anammox Bacteria Enrichment

    Directory of Open Access Journals (Sweden)

    Dilek ÖZGÜN

    2012-12-01

    Full Text Available Purpose: Anaerobic ammonium oxidation (Anammox is a process that ammonium as electron donor is oxidized to nitrogen gas using nitrite as electron acceptor. Compared to conventional nitrification-denitrification processes, this process is used less oxygen and no organic material (methanol, glucose. However, the slow growth rate of Anammox bacteria (11-30 days is disadvantages. Therefore, batch reactors have been carried out in these bacteria enrichment. In this study continuously operated upflow anaerobic sludge reactor (UASB using different filling materials disposing of sensitive and slow-growing Anammox bacteria out of the system is purposed. Design and Methods: System is operated up-flow column reactor at 2 days hydraulic retention time (HRT in 45 days. In this study, ceramic stones and Linpor filling material are used. Using synthetic wastewater containing ammonium and nitrite, Ar/CO2 anaerobic conditions (95/5% supplied with gas. System is operated at a temperature 253 C in UASB. Temperature, pH, ammonia-nitrogen and nitrite nitrogen are measured. Results: Both filling material reactors are operated in 45 days. Ceramic stones filling reactor is observed quickly reaches 90% were used reactor ammonium removal. The ammonium nitrogen removal was slower in Linpor filling materials reactor. Nitrite removal is reached up to 90% in both the reactor. When compared to the stoichiometric equation in Linpor was composed of large amounts of nitrate. At the end of 25 days the results were similar to ceramic stone filling reactor with Linpor filling material reactors. Conclusions and Original Value: Anammox process as from nitrogen removal processes was discovered in 1995. Anammox bacteria that make up this process due to very low growth rates of microbial bacteria in the system must be kept in the system. Most of the studies in the literature, these bacteria enrichment stage is started instead of a continuous batch reactor system. In this study

  7. Novel Ammonium Metal Borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Jepsen, Lars Haahr; Cerny, Radovan

    Ammonium borohydride, NH4BH4, has a very high gravimetric (ρm = 24.5 wt% H2) and volumetric (157.3 g·H2/L) hydrogen content and releases 18.4 wt% H2 below 170 °C. However, NH4BH4 is metastable at RT and ambient pressure, with a half-life of ~6 h. The decomposition is strongly exothermic; therefore......, it cannot store hydrogen reversibly. Recently, the first ammonium metal borohydride, NH4Ca(BH4)3 was published, which may be considered as substitution of K+ by NH4+ in KCa(BH4)3, due to the similar sizes of NH4+ and K+[1]. This compound successfully stabilizes NH4BH4. In the present work, a series of novel...... halide-free ammonium metal borohydrides is presented, which have the chemical compositions (NH4)xM(BH4)n+x. The ammonium metal borohydrides are synthesized by cryomilling of NH4BH4 – M(BH4)n (M = Li, Na, K, Mg, Sr, Y, Mn, La, Gd) in different ratios. A new range of ammonium metal borohydrides is formed...

  8. Novel Ammonium Metal Borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Jepsen, Lars Haahr; Cerny, Radovan

    , it cannot store hydrogen reversibly. Recently, the first ammonium metal borohydride, NH4Ca(BH4)3 was published, which may be considered as substitution of K+ by NH4+ in KCa(BH4)3, due to the similar sizes of NH4+ and K+[1]. This compound successfully stabilizes NH4BH4. In the present work, a series of novel...... halide-free ammonium metal borohydrides is presented, which have the chemical compositions (NH4)xM(BH4)n+x. The ammonium metal borohydrides are synthesized by cryomilling of NH4BH4 – M(BH4)n (M = Li, Na, K, Mg, Sr, Y, Mn, La, Gd) in different ratios. A new range of ammonium metal borohydrides is formed......, and the crystal structures and thermal decompositions are investigated. Mixtures of NH4BH4 - NaBH4 do not react, while solid solutions, K1-x(NH4)xBH4, are formed for NH4BH4 - KBH4. For the other composites, novel ammonium metal borohydrides are formed. Several of these structures have been solved from high...

  9. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira

    DEFF Research Database (Denmark)

    Koch, Hanna; Lücker, Sebastian; Albertsen, Mads

    2015-01-01

    , we identified ecophysiological traits that contribute to the ecological success of Nitrospira. Unexpectedly, N. moscoviensis possesses genes coding for a urease and cleaves urea to ammonia and CO2. Ureolysis was not observed yet in nitrite oxidizers and enables N. moscoviensis to supply ammonia...... oxidizers lacking urease with ammonia from urea, which is fully nitrified by this consortium through reciprocal feeding. The presence of highly similar urease genes in Nitrospira lenta from activated sludge, in metagenomes from soils and freshwater habitats, and of other ureases in marine nitrite oxidizers...

  10. Evidence for involvement of gut-associated denitrifying bacteria in emission of nitrous oxide (N(2)O) by earthworms obtained from garden and forest soils.

    Science.gov (United States)

    Matthies, C; Griesshammer, A; Schmittroth, M; Drake, H L

    1999-08-01

    Earthworms (Aporrectodea caliginosa, Lumbricus rubellus, and Octolasion lacteum) obtained from nitrous oxide (N(2)O)-emitting garden soils emitted 0.14 to 0.87 nmol of N(2)O h(-1) g (fresh weight)(-1) under in vivo conditions. L. rubellus obtained from N(2)O-emitting forest soil also emitted N(2)O, which confirmed previous observations (G. R. Karsten and H. L. Drake, Appl. Environ. Microbiol. 63:1878-1882, 1997). In contrast, commercially obtained Lumbricus terrestris did not emit N(2)O; however, such worms emitted N(2)O when they were fed (i.e., preincubated in) garden soils. A. caliginosa, L. rubellus, and O. lacteum substantially increased the rates of N(2)O emission of garden soil columns and microcosms. Extrapolation of the data to in situ conditions indicated that N(2)O emission by earthworms accounted for approximately 33% of the N(2)O emitted by garden soils. In vivo emission of N(2)O by earthworms obtained from both garden and forest soils was greatly stimulated when worms were moistened with sterile solutions of nitrate or nitrite; in contrast, ammonium did not stimulate in vivo emission of N(2)O. In the presence of nitrate, acetylene increased the N(2)O emission rates of earthworms; in contrast, in the presence of nitrite, acetylene had little or no effect on emission of N(2)O. In vivo emission of N(2)O decreased by 80% when earthworms were preincubated in soil supplemented with streptomycin and tetracycline. On a fresh weight basis, the rates of N(2)O emission of dissected earthworm gut sections were substantially higher than the rates of N(2)O emission of dissected worms lacking gut sections, indicating that N(2)O production occurred in the gut rather than on the worm surface. In contrast to living earthworms and gut sections that produced N(2)O under oxic conditions (i.e., in the presence of air), fresh casts (feces) from N(2)O-emitting earthworms produced N(2)O only under anoxic conditions. Collectively, these results indicate that gut

  11. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil

    NARCIS (Netherlands)

    Soares, Johnny R.; Cassman, N.; Kielak, A.M.; Pijl, A.S.; do Carmo, J.B.; Lourenço, Késia S.; Laanbroek, H.J.; Cantarella, H.; Kuramae, E.E.

    2016-01-01

    Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O

  12. Iron oxides in acid mine drainage environments and their association with bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, F G; Tazaki, K; Fyfe, W S

    1989-01-20

    A variety of iron oxides were identified by X-ray diffraction in sediments receiving acid drainage from mine tailing and coal refuse impoundments. Small amounts of goethite and hematite were found in the sediment samples. However, the major iron oxide species was ferrihydrite which gave diffuse diffraction bands at angles corresponding to d2.5, 2.2 and 1.5 Angstrom. Main core line binding energies in Fe (2p) and O (1s) X-ray photoelectron spectra were consistent with the hydrous nature and predominance of ferrihydrite. Electron microscopy and energy-dispersive X-ray spectroscopy also showed that individual bacterial cells promoted the development of iron oxide mineralization. The bacterial associated iron oxides were similar to those in the bulk sediment samples, and exhibited structures conforming to the presence of chemisorbed sulfate or silicate anions. 23 refs., 3 figs.

  13. Nitrous oxide metabolism in nitrate-reducing bacteria: Physiology and regulatory mechanisms

    OpenAIRE

    Torres, Maria; Simon, Jorg; Rowley, Gary; Bedmar, Eulogio; Richardson, David; Gates, Andrew; Delgado, Maria

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nit- ric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the appli- cation of synthetic nitrogen-containing fertilizers. Thus, mitigation stra...

  14. Sub micrometric fibrillar structures of codoped poly aniline obtained by co-oxidation using the NaCl O/ammonium peroxydisulfate system: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Osorio F, J. E.; Gomez Y, C.; Hernandez P, M. A.; Corea T, M. L., E-mail: josorio@ipn.mx [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, U. P. Adolfo Lopez Mateos, Av. Instituto Politecnico Nacional s/n, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico)

    2013-07-01

    A mixture of ammonium peroxydisulfate and sodium hypochlorite (NaCl O) (co-oxi dating system) were used to obtain poly aniline (PANi) doped with HCl and camphorsulfonic acid (CsA) (co-doping). The effect of HCl/CsA ratio added during polymerization structure, morphology and electrical conductivity of the conducting polymer was investigated. When NaCl O is used, the polymerization rate is substantially increased and the morphology changes from micrometric granular to nano metric fibrillar. CsA was used as complementary dopant but also to improve the solubility of PANi in common solvents. However, results suggest that quinone-like heterocycles containing carbonyl radicals as well as phenazine-type aromatic rings might be impeding an efficient doping in detriment of the conductivity. For the characterization X-Ray diffraction analysis, UV visible spectroscopy and scanning electron microscopy were used. (Author)

  15. Sub micrometric fibrillar structures of codoped poly aniline obtained by co-oxidation using the NaCl O/ammonium peroxydisulfate system: synthesis and characterization

    International Nuclear Information System (INIS)

    Osorio F, J. E.; Gomez Y, C.; Hernandez P, M. A.; Corea T, M. L.

    2013-01-01

    A mixture of ammonium peroxydisulfate and sodium hypochlorite (NaCl O) (co-oxi dating system) were used to obtain poly aniline (PANi) doped with HCl and camphorsulfonic acid (CsA) (co-doping). The effect of HCl/CsA ratio added during polymerization structure, morphology and electrical conductivity of the conducting polymer was investigated. When NaCl O is used, the polymerization rate is substantially increased and the morphology changes from micrometric granular to nano metric fibrillar. CsA was used as complementary dopant but also to improve the solubility of PANi in common solvents. However, results suggest that quinone-like heterocycles containing carbonyl radicals as well as phenazine-type aromatic rings might be impeding an efficient doping in detriment of the conductivity. For the characterization X-Ray diffraction analysis, UV visible spectroscopy and scanning electron microscopy were used. (Author)

  16. Nanostructured molybdenum oxide-based antibacterial paint: effective growth inhibition of various pathogenic bacteria

    International Nuclear Information System (INIS)

    Krishnamoorthy, Karthikeyan; Premanathan, Mariappan; Veerapandian, Murugan; Jae Kim, Sang

    2014-01-01

    The prevention of bacterial infections in the health care environment is paramount to providing better treatment. Covering a susceptible environment with an antimicrobial coating is a successful way to avoid bacterial growth. Research on the preparation of durable antimicrobial coatings is promising for both fundamental surface care and clinical care applications. Herein, we report a facile, efficient, and scalable preparation of MoO 3 paint using a cost-effective ball-milling approach. The MoO 3 nanoplates (synthesized by thermal decomposition of ammonium heptamolybdate) are used as a pigment and antibacterial activity moiety in alkyd resin binders and other suitable eco-friendly additives in the preparation of paint. Surface morphology, chemical states, bonding nature, and intermolecular interaction between the MoO 3 and the alkyd resin were studied using Raman and x-ray photoelectron spectroscopic analysis. The antibacterial properties of a prepared MoO 3 nanoplate against various bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae) was determined using the microdilution method. Bacterial strains exposed to an MoO 3 paint coated surface exhibit a significant loss of viability in a time-dependent manner. Fundamental modes of antibacterial activities ascribed from a biocompatible and durable MoO 3 nanostructure incorporated into an alkyd resin complex are discussed. The obtained experimental findings suggest the potential utility of prepared MoO 3 -based paint coating for the prevention of health care associated infections. (paper)

  17. Evaluation of autotrophic growth of ammonia-oxidizers associated with granular activated carbon used for drinking water purification by DNA-stable isotope probing.

    Science.gov (United States)

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki

    2013-12-01

    Nitrification is an important biological function of granular activated carbon (GAC) used in advanced drinking water purification processes. Newly discovered ammonia-oxidizing archaea (AOA) have challenged the traditional understanding of ammonia oxidation, which considered ammonia-oxidizing bacteria (AOB) as the sole ammonia-oxidizers. Previous studies demonstrated the predominance of AOA on GAC, but the contributions of AOA and AOB to ammonia oxidation remain unclear. In the present study, DNA-stable isotope probing (DNA-SIP) was used to investigate the autotrophic growth of AOA and AOB associated with GAC at two different ammonium concentrations (0.14 mg N/L and 1.4 mg N/L). GAC samples collected from three full-scale drinking water purification plants in Tokyo, Japan, had different abundance of AOA and AOB. These samples were fed continuously with ammonium and (13)C-bicarbonate for 14 days. The DNA-SIP analysis demonstrated that only AOA assimilated (13)C-bicarbonate at low ammonium concentration, whereas AOA and AOB exhibited autotrophic growth at high ammonium concentration. This indicates that a lower ammonium concentration is preferable for AOA growth. Since AOA could not grow without ammonium, their autotrophic growth was coupled with ammonia oxidation. Overall, our results point towards an important role of AOA in nitrification in GAC filters treating low concentration of ammonium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Identification of Novel Methane-, Ethane-, and Propane-Oxidizing Bacteria at Marine Hydrocarbon Seeps by Stable Isotope Probing ▿ †

    Science.gov (United States)

    Redmond, Molly C.; Valentine, David L.; Sessions, Alex L.

    2010-01-01

    Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with 13C-labeled methane, ethane, or propane, we confirmed the incorporation of 13C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in 13C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, 13C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, 13C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the 13C-labeled DNA may encode an ethane monooxygenase. Third, 13C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes. PMID:20675448

  19. Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing.

    Science.gov (United States)

    Redmond, Molly C; Valentine, David L; Sessions, Alex L

    2010-10-01

    Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with (13)C-labeled methane, ethane, or propane, we confirmed the incorporation of (13)C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in (13)C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, (13)C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, (13)C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the (13)C-labeled DNA may encode an ethane monooxygenase. Third, (13)C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes.

  20. Constraining the role of anoxygenic phototrophic Fe(II)-oxidizing bacteria in deposition of BIFs

    Science.gov (United States)

    Kappler, A.; Posth, N. R.; Hegler, F.; Wartha, E.; Huelin, S.

    2007-12-01

    Banded Iron Formations (BIFs) are Precambrian sedimentary deposits of alternating iron oxide and silica mineral layers. Their presence in the rock record ca.3.8-2.2 Ga makes them particularly intriguing formations for the debate over when oxygen became dominant on Earth. The mechanism(s) of BIF deposition is still unclear; suggestions including both abiotic and biotic processes. We are interested in constraining one of these proposed mechanisms; the direct biological oxidation of Fe(II) via anoxygenic Fe(II)-oxidizing autophototrophs. In order to find the limitations of photoferrotrophic BIF deposition, we take a holistic approach, investigating the oxidation of Fe(II) by modern Fe(II)-oxidizing phototrophs, the precipitation of Fe(III) (hydr)oxides, and the fate of the cell-mineral aggregates in the water column and at the basin floor. Specifically, physiology experiments with Fe(II)-oxidizing phototrophs under various conditions of light intensity, pH, Fe(II) concentration and temperature allow us to determine the environmental limits of such organisms. We carry out precipitation experiments to characterize the sedimentation rates, aggregate size and composition in order to resolve the effect of reactions in the water column. Finally, we simulate the diagenetic fate of these aggregates on the basin floor by placing them in gold capsules under T and P conditions relevant for the Transvaal Supergroup BIFs of South Africa. Recently, we have developed a tank simulating the Archean ocean in which the strains grow in continuous culture and collect the aggregates formed under various geochemical conditions. We aim to model the extent of and limitations to photoferrotrophs in BIF deposition. This information will help constrain whether biotic processes were dominant in the Archean ocean and will offer insight to the evolution of the early biogeosphere.

  1. Real-time investigation of antibiotics-induced oxidative stress and superoxide release in bacteria using an electrochemical biosensor.

    Science.gov (United States)

    Liu, Xiaobo; Marrakchi, Mouna; Jahne, Michael; Rogers, Shane; Andreescu, Silvana

    2016-02-01

    The involvement of oxidative stress in the mechanism of antibiotics-meditated cell death is unclear and subject to debate. The kinetic profile and a quantitative relationship between the release of reactive oxygen species (ROS), bacteria and antibiotic type remain elusive. Here we report direct measurements and analytical quantification of the release of superoxide radicals (O2(·-)), a major contributor to ROS, in antibiotics-treated bacterial cultures using a cytochrome c electrochemical biosensor. The specificity of electrochemical measurements was established by the addition of superoxide dismutase (SOD) which decreased the O2(·-) signal. Measurements using a general ROS-specific fluorescence dye and colony forming units (CFU) assays were performed side-by-side to determine the total ROS and establish the relationship between ROS and the degree of lethality. Exposure of Escherichia coli and Listeria monocytogenes cultures to antibiotics increased the release of O2(·-) radicals in a dose-dependent manner, suggesting that the transmembrane generation of ROS may occur as part of the antibiotic action. The study provides a quantitative methodology and fundamental knowledge to further explore the role of oxidative stress in antibiotics-meditated bacterial death and to assess physiological changes associated with the complex metabolic events related to oxidative stress and bacterial resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Comparison of the Effects of Phenylhydrazine Hydrochloride and Dicyandiamide on Ammonia-Oxidizing Bacteria and Archaea in Andosols

    Directory of Open Access Journals (Sweden)

    Wenjie Yang

    2017-11-01

    Full Text Available Dicyandiamide, a routinely used commercial nitrification inhibitor (NI, inhibits ammonia oxidation catalyzed by ammonia monooxygenase (AMO. Phenylhydrazine hydrochloride has shown considerable potential for the development of next-generation NIs targeting hydroxylamine dehydrogenase (HAO. The effects of the AMO inhibitor and the HAO inhibitor on ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA present in agricultural soils have not been compared thus far. In the present study, the effects of the two inhibitors on soil nitrification and the abundance of AOA and AOB as well as their community structure were investigated in a soil microcosm using quantitative polymerase chain reaction and pyrosequencing. The net nitrification rates and the growth of AOA and AOB in this soil microcosm were inhibited by both NIs. Both NIs had limited effect on the community structure of AOB and no effect on that of AOA in this soil microcosm. The effects of phenylhydrazine hydrochloride were similar to those of dicyandiamide. These results indicated that organohydrazine-based NIs have potential for the development of next-generation NIs targeting HAO in the future.

  3. Synergistic Application of Black Tea Extracts and Lactic Acid Bacteria in Protecting Human Colonocytes against Oxidative Damage.

    Science.gov (United States)

    Zhao, Danyue; Shah, Nagendra P

    2016-03-23

    In view of the potential of lactic acid bacteria (LAB) to enhance the antioxidant activity of food products, this work explored the effectiveness of LAB fermented black tea samples in alleviating H2O2-induced oxidative stress in human colonocytes. The antioxidant capacity of tea samples was evaluated in terms of cyto-protectiveness, mitochondria membrane potential (Δψm)-stabilizing activity, ROS-inhibitory effect, and antioxidant enzyme-modulating activity. The effect on oxidative DNA damage and repair was studied in CCD 841 by comet assay. Results showed that the protective effect of tea pretreatment was more pronounced in normal cells (CCD 841) than in carcinomas (Caco-2), and fermented samples were invariably more effective. Higher cell viability and Δψm were maintained and ROS production was markedly inhibited with tea pretreatment. The fermented tea samples also remarkably stimulated DNA repair, resulting in fewer strand breaks and oxidative lesions. Our study implied that LAB fermentation may be an efficient way to enhance the antioxidative effectiveness of black tea flavonoid-enriched foods.

  4. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals

    Science.gov (United States)

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.

  5. Detection by denaturing gradient gel electrophoresis of ammonia-oxidizing bacteria in microcosms of crude oil-contaminated mangrove sediments.

    Science.gov (United States)

    dos Santos, A C F; Marques, E L S; Gross, E; Souza, S S; Dias, J C T; Brendel, M; Rezende, R P

    2012-01-27

    Currently, the effect of crude oil on ammonia-oxidizing bacterium communities from mangrove sediments is little understood. We studied the diversity of ammonia-oxidizing bacteria in mangrove microcosm experiments using mangrove sediments contaminated with 0.1, 0.5, 1, 2, and 5% crude oil as well as non-contaminated control and landfarm soil from near an oil refinery in Camamu Bay in Bahia, Brazil. The evolution of CO(2) production in all crude oil-contaminated microcosms showed potential for mineralization. Cluster analysis of denaturing gradient gel electrophoresis-derived samples generated with primers for gene amoA, which encodes the functional enzyme ammonia monooxygenase, showed differences in the sample contaminated with 5% compared to the other samples. Principal component analysis showed divergence of the non-contaminated samples from the 5% crude oil-contaminated sediment. A Venn diagram generated from the banding pattern of PCR-denaturing gradient gel electrophoresis was used to look for operational taxonomic units (OTUs) in common. Eight OTUs were found in non-contaminated sediments and in samples contaminated with 0.5, 1, or 2% crude oil. A Jaccard similarity index of 50% was found for samples contaminated with 0.1, 0.5, 1, and 2% crude oil. This is the first study that focuses on the impact of crude oil on the ammonia-oxidizing bacterium community in mangrove sediments from Camamu Bay.

  6. Remarkable recovery and colonization behaviour of methane oxidizing bacteria in soil after disturbance is controlled by methane source only.

    Science.gov (United States)

    Pan, Yao; Abell, Guy C J; Bodelier, Paul L E; Meima-Franke, Marion; Sessitsch, Angela; Bodrossy, Levente

    2014-08-01

    Little is understood about the relationship between microbial assemblage history, the composition and function of specific functional guilds and the ecosystem functions they provide. To learn more about this relationship we used methane oxidizing bacteria (MOB) as model organisms and performed soil microcosm experiments comprised of identical soil substrates, hosting distinct overall microbial diversities(i.e., full, reduced and zero total microbial and MOB diversities). After inoculation with undisturbed soil, the recovery of MOB activity, MOB diversity and total bacterial diversity were followed over 3 months by methane oxidation potential measurements and analyses targeting pmoA and 16S rRNA genes. Measurement of methane oxidation potential demonstrated different recovery rates across the different treatments. Despite different starting microbial diversities, the recovery and succession of the MOB communities followed a similar pattern across the different treatment microcosms. In this study we found that edaphic parameters were the dominant factor shaping microbial communities over time and that the starting microbial community played only a minor role in shaping MOB microbial community.

  7. Determination of plutonium in nitric acid solutions - Method by oxidation by cerium(IV), reduction by iron(II) ammonium sulfate and amperometric back-titration with potassium dichromate

    International Nuclear Information System (INIS)

    1987-01-01

    This International Standard specifies a precise and accurate analytical method for determining plutonium in nitric acid solutions. Plutonium is oxidized to plutonium(VI) in a 1 mol/l nitric acid solution with cerium(IV). Addition of sulfamic acid prevents nitrite-induced side reactions. The excess of cerium(IV) is reduced by adding a sodium arsenite solution, catalysed by osmium tetroxide. A slight excess of arsenite is oxidized by adding a 0.2 mol/l potassium permanganate solution. The excess of permanganate is reduced by adding a 0.1 mol/l oxalic acid solution. Iron(III) is used to catalyse the reduction. A small excess of oxalic acid does not interfere in the subsequent plutonium determination. These reduction and oxidation stages can be followed amperometrically and the plutonium is left in the hexavalent state. The sulfuric acid followed by a measured amount of standardized iron(II) ammonium sulfate solution in excess of that required to reduce the plutonium(VI) to plutonium(IV) is added. The excess iron(II) and any plutonium(III) formed to produce iron(III) and plutonium(IV) is amperometrically back-titrated using a standard potassium dichromate solution. The method is almost specifically for plutonium. It is suitable for the direct determination of plutonium in materials ranging from pure product solutions, to fast reactor fuel solutions with a uranium/plutonium ratio of up to 10:1, either before or after irradiation

  8. Ammonium ions determination with polypyrrole modified electrode

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2007-03-01

    Full Text Available The present work relates the preparation of polypyrrole films (PPy deposited on surfaces of glass carbon, nickel and ITO (tin oxide doped with indium on PET plastic, in order to study the ammonium detection. The popypyrrole films were polymerized with dodecylbenzenesulfonate (DBSA on the electrodes, at + 0,70 V vs. Ag/AgCl, based on a solution containing the pyrrole monomer and the amphiphilic salt. Films deposited on glass carbon presented better performance. Cyclic voltammetries, between – 1,50 to + 0,5 V vs. Ag/AgCl, were repeated adding different concentrations of NH4Cl, in order to observe the behavior of the film as a possible detector of ions NH4+. The peak current for oxidation varies with the concentration of ammonium. A linear region can be observed in the band of 0 to 80 mM, with a sensibility (Sppy approximately similar to 4,2 mA mM-1 cm-2, showing the efficacy of the electrodes as sensors of ammonium ions. The amount of deposited polymer, controlled by the time of growth, does not influence on the sensor sensibility. The modified electrode was used to determine ammonium in grounded waters.

  9. Cobalt immobilization by manganese oxidizing bacteria from the Indian ridge system

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, R.; Sujith, P.P.; Fernandes, S.O.; Verma, P.; Khedekar, V.D.; LokaBharathi, P.A.

    Co immobilization by two manganese oxidizing isolates from Carlsberg Ridge waters (CR35 and CR48) was compared with that of Mn at same molar concentrations. At a lower concentration of 10 mu M, CR35 and CR48 immobilized 22 and 23 fM Co cell-1...

  10. Genes for Uranium Bioremediation in the Anaerobic Sulfate-Reducing Bacteria: Desulfovibrio mutants with altered sensitivity to oxidative stress

    International Nuclear Information System (INIS)

    Payne, Rayford B.; Ringbauer, Joseph A. Jr.; Wall, Judy D.

    2006-01-01

    Sulfate-reducing bacteria of the genus Desulfovibrio are ubiquitous in anaerobic environments such as groundwater, sediments, and the gastrointestinal tract of animals. Because of the ability of Desulfovibrio to reduce radionuclides and metals through both enzymatic and chemical means, they have been proposed as a means to bioremediate heavy metal contaminated sites. Although classically thought of as strict anaerobes, Desulfovibrio species are surprisingly aerotolerant. Our objective is to understand the response of Desulfovibrio to oxidative stress so that we may more effectively utilize them in bioremediation of heavy metals in mixed aerobic-anaerobic environments. The enzymes superoxide dismutase, superoxide reductase, catalase, and rubrerythrin have been shown by others to be involved in the detoxification of reactive oxygen species in Desulfovibrio. Some members of the genus Desulfovibrio can even reduce molecular oxygen to water via a membrane bound electron transport chain with the concomitant production of ATP, although their ability to grow with oxygen as the sole electron acceptor is still questioned.

  11. Comparison among amoA Primers Suited for Quantification and Diversity Analyses of Ammonia-Oxidizing Bacteria in Soil

    Science.gov (United States)

    Shimomura, Yumi; Morimoto, Sho; Hoshino, Yuko Takada; Uchida, Yoshitaka; Akiyama, Hiroko; Hayatsu, Masahito

    2012-01-01

    Ammonia monooxygenase subunit A gene (amoA) is frequently used as a functional gene marker for diversity analysis of ammonia-oxidizing bacteria (AOB). To select a suitable amoA primer for real-time PCR and PCR-denaturing gradient gel electrophoresis (DGGE), three reverse primers (degenerate primer amoA-2R; non-degenerate primers amoA-2R-GG and amoA-2IR) were examined. No significant differences were observed among the three primers in terms of quantitative values of amoA from environmental samples using real-time PCR. We found that PCR-DGGE analysis with the amoA-2IR primer gave the best results in this studied soil. These results indicate that amoA-2IR is a suitable primer for community analysis of AOB in the environment. PMID:22075625

  12. Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics.

    Science.gov (United States)

    Mosbæk, Freya; Kjeldal, Henrik; Mulat, Daniel G; Albertsen, Mads; Ward, Alastair J; Feilberg, Anders; Nielsen, Jeppe L

    2016-10-01

    Inhibition of anaerobic digestion through accumulation of volatile fatty acids occasionally occurs as the result of unbalanced growth between acidogenic bacteria and methanogens. A fast recovery is a prerequisite for establishing an economical production of biogas. However, very little is known about the microorganisms facilitating this recovery. In this study, we investigated the organisms involved by a novel approach of mapping protein-stable isotope probing (protein-SIP) onto a binned metagenome. Under simulation of acetate accumulation conditions, formations of (13)C-labeled CO2 and CH4 were detected immediately following incubation with [U-(13)C]acetate, indicating high turnover rate of acetate. The identified (13)C-labeled peptides were mapped onto a binned metagenome for improved identification of the organisms involved. The results revealed that Methanosarcina and Methanoculleus were actively involved in acetate turnover, as were five subspecies of Clostridia. The acetate-consuming organisms affiliating with Clostridia all contained the FTFHS gene for formyltetrahydrofolate synthetase, a key enzyme for reductive acetogenesis, indicating that these organisms are possible syntrophic acetate-oxidizing (SAO) bacteria that can facilitate acetate consumption via SAO, coupled with hydrogenotrophic methanogenesis (SAO-HM). This study represents the first study applying protein-SIP for analysis of complex biogas samples, a promising method for identifying key microorganisms utilizing specific pathways.

  13. Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics

    Science.gov (United States)

    Mosbæk, Freya; Kjeldal, Henrik; Mulat, Daniel G; Albertsen, Mads; Ward, Alastair J; Feilberg, Anders; Nielsen, Jeppe L

    2016-01-01

    Inhibition of anaerobic digestion through accumulation of volatile fatty acids occasionally occurs as the result of unbalanced growth between acidogenic bacteria and methanogens. A fast recovery is a prerequisite for establishing an economical production of biogas. However, very little is known about the microorganisms facilitating this recovery. In this study, we investigated the organisms involved by a novel approach of mapping protein-stable isotope probing (protein-SIP) onto a binned metagenome. Under simulation of acetate accumulation conditions, formations of 13C-labeled CO2 and CH4 were detected immediately following incubation with [U-13C]acetate, indicating high turnover rate of acetate. The identified 13C-labeled peptides were mapped onto a binned metagenome for improved identification of the organisms involved. The results revealed that Methanosarcina and Methanoculleus were actively involved in acetate turnover, as were five subspecies of Clostridia. The acetate-consuming organisms affiliating with Clostridia all contained the FTFHS gene for formyltetrahydrofolate synthetase, a key enzyme for reductive acetogenesis, indicating that these organisms are possible syntrophic acetate-oxidizing (SAO) bacteria that can facilitate acetate consumption via SAO, coupled with hydrogenotrophic methanogenesis (SAO-HM). This study represents the first study applying protein-SIP for analysis of complex biogas samples, a promising method for identifying key microorganisms utilizing specific pathways. PMID:27128991

  14. Characterization of arsenite-oxidizing bacteria isolated from arsenic-contaminated groundwater of West Bengal.

    Science.gov (United States)

    Paul, Dhiraj; Poddar, Soumya; Sar, Pinaki

    2014-01-01

    Nine arsenic (As)-resistant bacterial strains isolated from As-rich groundwater samples of West Bengal were characterized to elucidate their potential in geomicrobial transformation and bioremediation aspects. The 16S rRNA gene-based phylogenetic analysis revealed that the strains were affiliated with genera Actinobacteria, Microbacterium, Pseudomonas and Rhizobium. The strains exhibited high resistance to As [Minimum inhibitory concentration (MIC) ≥ 10 mM As(3+) and MIC ≥ 450 mM As(5+)] and other heavy metals, e.g., Cu(2+), Cr(2+), Ni(2+), etc. (MIC ≥ 2 mM) as well as As transformation (As(3+) oxidation and As(5+) reduction) capabilities. Their ability to utilize diverse carbon source(s) including hydrocarbons and different alternative electron acceptor(s) (As(5+), SO4(2-), S2O3(2-), etc.) during anaerobic growth was noted. Growth at wide range of pH, temperature and salinity, production of siderophore and biofilm were observed. Together with these, growth pattern and transformation kinetics indicated a high As(3+) oxidation activity of the isolates Rhizobium sp. CAS934i, Microbacterium sp. CAS905i and Pseudomonas sp. CAS912i. A positive relation between high As(3+) resistance and As(3+) oxidation and the supportive role of As(3+) in bacterial growth was noted. The results highlighted As(3+) oxidation process and metabolic repertory of strains indigenous to contaminated groundwater and indicates their potential in As(3+) detoxification. Thus, such metabolically well equipped bacterial strains with highest As(3+) oxidation activities may be used for bioremediation of As contaminated water and effluents in the near future.

  15. Identification of the intermediates of in vivo oxidation of 1 ,4-dioxane by monooxygenase-containing bacteria.

    Science.gov (United States)

    Mahendra, Shaily; Petzold, Christopher J; Baidoo, Edward E; Keasling, Jay D; Alvarez-Cohen, Lisa

    2007-11-01

    1,4-dioxane is a probable human carcinogen and an emerging water contaminant. Monooxygenase-expressing bacteria have been shown to degrade dioxane via growth-supporting as well as cometabolic mechanisms. In this study, the intermediates of dioxane degradation by monooxygenase-expressing bacteria were determined by triple quadrupole-mass spectrometry and Fourier transform ion cyclotron resonance-mass spectrometry. The major intermediates were identified as 2-hydroxyethoxyacetic acid (HEAA), ethylene glycol, glycolate, and oxalate. Studies with uniformly labeled 14C dioxane showed that over 50% of the dioxane was mineralized to CO2 by CB1190, while 5% became biomass-associated after 48 h. Volatile organic acids and non-volatiles, respectively, accounted for 20 and 11% of the radiolabeled carbon. Although strains cometabolizing dioxane exhibited limited transformation capacities, nearly half of the initial dioxane was recovered as CO2. On the basis of these analytical results, we propose a pathway for dioxane oxidation by monooxygenase-expressing cells in which dioxane is first converted to 2-hydroxy-1,4-dioxane, which is spontaneously oxidized to HEAA. During a second monooxygenation step, HEAA is further hydroxylated, resulting in a mixture of dihydroxyethoxyacetic acids with a hydroxyl group at the ortho or para position. After cleavage of the second ether bond, small organic molecules such as ethylene glycol, glycolate, glyoxalate, and oxalate are progressively formed, which are then mineralized to CO2 via common cellular metabolic pathways. Bioremediation of dioxane via this pathway is not expected to cause an accumulation of toxic compounds in the environment.

  16. Waterproofing Materials for Ammonium Nitrate

    OpenAIRE

    R.S. Damse

    2004-01-01

    This study explores the possibility of overcoming the problem of hygroscopicity of ammonium nitrate by coating the particles with selected waterproofing materials. Gravimetric analysis ofthe samples of ammonium nitrate coated with eight different waterproofing materials, vis-a-vis, uncoated ammonium nitrate, were conducted at different relative humidity and exposuretime. The results indicate that mineral jelly is the promising waterproofing material for ammonium nitrate among the materials te...

  17. Rocket Solid Propellant Alternative Based on Ammonium Dinitramide

    Directory of Open Access Journals (Sweden)

    Grigore CICAN

    2017-03-01

    Full Text Available Due to the continuous run for a green environment the current article proposes a new type of solid propellant based on the fairly new synthesized oxidizer, ammonium dinitramide (ADN. Apart of having a higher specific impulse than the worldwide renowned oxidizer, ammonium perchlorate, ADN has the advantage, of leaving behind only nitrogen, oxygen and water after decomposing at high temperatures and therefore totally avoiding the formation of hydrogen chloride fumes. Based on the oxidizer to fuel ratios of the current formulations of the major rocket solid booster (e.g. Space Shuttle’s SRB, Ariane 5’s SRB which comprises mass variations of ammonium perchlorate oxidizer (70-75%, atomized aluminum powder (10-18% and polybutadiene binder (12-20% a new solid propellant was formulated. As previously stated, the new propellant formula and its variations use ADN as oxidizer and erythritol tetranitrate as fuel, keeping the same polybutadiene as binder.

  18. Modelling TCE degradation by a mixed culture of methane-oxidizing bacteria

    DEFF Research Database (Denmark)

    Broholm, Kim; Christensen, Thomas Højlund; Jensen, Bjørn K.

    1992-01-01

    A model describing the growth of bacteria and the degradation of methane and trichloroethylene (TCE) based on the concept of competitive inhibition is proposed. The model has been applied to laboratory batch experiments representing different initial TCE concentrations (50–4300 μg/l) and initial...... methane concentrations (0.53–3.2 mg/l). The proposed model simulated successfully the data obtained for initial methane concentration (less than 1.8 mg/l), causing constant experimental growth conditions during the experiments. This indicates that the interactions between methane and TCE degradation can...... be explained as competitive inhibition. The model simulations of the results from the experiments with the highest initial methane concentration of 3.2 mg/l failed, supposedly because the growth conditions changed during the experiments. The proposed model is a useful engineering tool for design of treatment...

  19. Isolation and characterization of ferrous- and sulfur-oxidizing bacteria from Tengchong solfataric region, China.

    Science.gov (United States)

    Jiang, Chengying; Liu, Ying; Liu, Yanyang; Guo, Xu; Liu, Shuang-Jiang

    2009-01-01

    Microbial oxidation and reduction of iron and sulfur are important parts of biogeochemical cycles in acidic environments such as geothermal solfataric regions. Species of Acidithiobacillus and Leptospirillum are the common ferrous-iron and sulfur oxidizers from such environments. This study focused on the Tengchong sofataric region, located in Yunnan Province, Southwest China. Based on cultivation, 9 strains that grow on ferrous-iron and sulfuric compounds were obtained. Analysis of 16S rRNA genes of the 9 strains indicated that they were affiliated to Acidithiobacillus, Alicyclobacillus, Sulfobacillus, Leptospirillum and Acidiphilium. Physiological and phylogenetic studies indicated that two strains (TC-34 and TC-71) might represent two novel members of Alicyclobacillus. Strain TC-34 and TC-71 showed 94.8%-97.1% 16S rRNA gene identities to other species of Alicyclobacillus. Different from the previously described Alicyclobacillus species, strains TC-34 and TC-71 were mesophilic and their cellular fatty acids do not contain omega-cyclic fatty acids. Strain TC-71 was obligately dependent on ferrous-iron for growth. It was concluded that the ferrous-iron oxidizers were diversified and Alicyclobacillus species were proposed to take part in biochemical geocycling of iron in the Tengchong solfataric region.

  20. Hopanoid-producing bacteria in the Red Sea include the major marine nitrite-oxidizers

    KAUST Repository

    Kharbush, Jenan J

    2018-04-10

    Hopanoids, including the extended side chain-containing bacteriohopanepolyols (BHPs), are bacterial lipids found abundantly in the geological record and across Earth\\'s surface environments. However, the physiological roles of this biomarker remain uncertain, limiting interpretation of their presence in current and past environments. Recent work investigating the diversity and distribution of hopanoid producers in the marine environment implicated low-oxygen regions as important loci of hopanoid production, and data from marine oxygen minimum zones (OMZs) suggested that the dominant hopanoid producers in these environments are nitrite-utilizing organisms, revealing a potential connection between hopanoid production and the marine nitrogen cycle. Here we use metagenomic data from the Red Sea to investigate the ecology of hopanoid producers in an environmental setting that is biogeochemically distinct from those investigated previously. The distributions of hopanoid production and nitrite oxidation genes in the Red Sea are closely correlated, and the majority of hopanoid producers are taxonomically affiliated with the major marine nitrite oxidizers, Nitrospinae and Nitrospirae. These results suggest that the relationship between hopanoid production and nitrite oxidation is conserved across varying biogeochemical conditions in dark ocean microbial ecosystems.

  1. Hopanoid-producing bacteria in the Red Sea include the major marine nitrite-oxidizers

    KAUST Repository

    Kharbush, Jenan J; Thompson, Luke R; Haroon, Mohamed; Knight, Rob; Aluwihare, Lihini I

    2018-01-01

    Hopanoids, including the extended side chain-containing bacteriohopanepolyols (BHPs), are bacterial lipids found abundantly in the geological record and across Earth's surface environments. However, the physiological roles of this biomarker remain uncertain, limiting interpretation of their presence in current and past environments. Recent work investigating the diversity and distribution of hopanoid producers in the marine environment implicated low-oxygen regions as important loci of hopanoid production, and data from marine oxygen minimum zones (OMZs) suggested that the dominant hopanoid producers in these environments are nitrite-utilizing organisms, revealing a potential connection between hopanoid production and the marine nitrogen cycle. Here we use metagenomic data from the Red Sea to investigate the ecology of hopanoid producers in an environmental setting that is biogeochemically distinct from those investigated previously. The distributions of hopanoid production and nitrite oxidation genes in the Red Sea are closely correlated, and the majority of hopanoid producers are taxonomically affiliated with the major marine nitrite oxidizers, Nitrospinae and Nitrospirae. These results suggest that the relationship between hopanoid production and nitrite oxidation is conserved across varying biogeochemical conditions in dark ocean microbial ecosystems.

  2. Tracking and quantification of nitrifying bacteria in biofilm and mixed liquor of a partial nitrification MBBR pilot plant using fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Abzazou, Tarik; Araujo, Rosa M.; Auset, María; Salvadó, Humbert

    2016-01-01

    A moving bead biofilm reactor (MBBR) pilot plant was implemented as a partial nitrification process for pre-treatment of ammonium-rich liquors (676 ± 195 mg L"−"1), and studied for 479 days under variations in hydraulic retention time. The main purpose of this work, was the study of dynamics abundance of total bacteria and single-cells nitrifying bacteria belonging to ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in biofilms and mixed liquor of the plant. The microbial monitoring was successfully achieved using fluorescence in situ hybridization combined with flocs disaggregation protocol as a useful microbial monitoring tool. A partial nitrification process with a N-NH_4"+ removal rate of about 38.6 ± 14.8% was successfully achieved at 211 days after start-up, with a clear dominance of AOB, which accounted for 11.3 ± 17.0% of total bacterial cells compared with only 2.1 ± 4.0% of NOB. The effluent obtained was subsequently supplied to an Anammox reactor for complete ammonium treatment. - Highlights: • Partial nitrification process in a MBBR fed with ammonium-rich liquor was achieved. • The operational key parameters were the HRT and temperature. • DAPI and FISH were useful to monitoring microbial composition of MBBR pilot plant. • The AOB were the dominant nitrifying bacteria, presenting 11.3% of total bacteria. • A significant correlation (R = 0.68) between AOB and ammonia removal was found.

  3. Detecting Organic Compounds Released from Iron Oxidizing Bacteria using Sample Analysis at Mars (SAM) Like Instrument Protocols

    Science.gov (United States)

    Glavin, D. P.; Popa, R.; Martin, M. G.; Freissinet, C.; Fisk, M. R.; Dworkin, J. P.; Mahaffy, P. R.

    2012-01-01

    Mars is a planet of great interest for Astrobiology since its past environmental conditions are thought to have been favourable for the emergence life. At present, the Red Planet is extremely cold and dry and the surface is exposed to intense UV and ionizing radiation, conditions generally considered to be incompatible with life as we know it on Earth. It was proposed that the shallow subsurface of Mars, where temperatures can be above freezing and liquid water can exist on rock surfaces, could harbor chemolithoautotrophic bacteria such as the iron oxidizing microorganism Pseudomonas sp. HerB. The Mars Science Laboratory (MSL) mission will provide the next opportunity to carry out in situ measurements for organic compounds of possible biological origin on Mars. One instrument onboard MSL, called the Sample Analysis at Mars (SAM) instrument suite, will carry out a broad and sensitive search for organic compounds in surface samples using either high temperature pyrolysis or chemical extraction followed by gas chromatography mass spectrometry. We present gas chromatograph mass spectrometer (GC/MS) data on crushed olivine rock powders that have been inoculated with Pseudomonas sp. HerB at different concentrations ranging from approx 10(exp 2) to 10(exp 7) cells per gram. The inoculated olivine samples were heated under helium carrier gas flow at 500 C and the pyrolysis products concentrated using a SAM-like hydrocarbon trap set at -20 C followed by trap heating and analysis by GC/Ms. In addition, the samples were also extracted using a low temperature "one-pot" chemical extraction technique using N-methyl, N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) as the silylating agent prior to GC/MS analysis. We identified several aldehydes, thiols, and alkene nitriles after pyrolysis GC/MS analysis of the bacteria that were not found in the olivine control samples that had not been inoculated with bacteria. The distribution of pyrolysis products extracted from the

  4. Influência da quantidade de amônio na síntese de nanopartículas de óxido de ferro por microemulsão The influence of ammonium quantity on the synthesis of iron oxide nanoparticles in microemulsion

    Directory of Open Access Journals (Sweden)

    Maria Tereza Cortez Fernandes

    2010-01-01

    Full Text Available Iron oxide nanoparticles were synthesized in microemulsion systems composed by Triton X-100/hexyl alcohol/cyclohexane/aqueous solution. The nanoparticles were synthesized in microemulsions containing different amounts of ammonium, in order to evaluate the influence of this parameter on the size of the nanoparticles and on the phase transformation after heat treatment. Powder materials were obtained after centrifugation, washing and drying, and they were analyzed as synthesized and after heating at 350, 500 and 1000 °C. It was observed that the higher amount of ammonium induced smaller particles and minor phase transformation, possibly due to a preferential nucleation process.

  5. Nitrospina-like bacteria are the main drivers of nitrite oxidation in the seasonal upwelling area of the Eastern South Pacific (Central Chile ∼36°S).

    Science.gov (United States)

    Levipan, Héctor A; Molina, Verónica; Fernandez, Camila

    2014-12-01

    Aerobic nitrite oxidation in marine environments plays a key role in the nitrification process. Marine bacteria involved in this nitrate-producing process have however been seldom studied compared with the ammonia-oxidizing community. Here, we report for the first time the community structure of aerobic nitrite-oxidizing bacteria (NOB) in the seasonal upwelling and oxygen-deficient area off Central Chile. Analysis of 16S rRNA by tag pyrosequencing was combined with specific quantitative polymerase chain reaction (qPCR) and reverse transcription qPCR in summer and wintertime. Nitrospina-like bacteria were the only known NOB detected by means of pyrosequencing between 30 and 80 m depth, accounting for up to 5% of total bacteria. This guild was represented by 11 and 7 operational taxonomic units (97% cut-off) in winter and summertime respectively. Nitrospina-like bacteria were phylogenetically related to sequences retrieved from coastal upwelling, oxygen minimum zones and deep-sea environments. This group was also detected by qPCR with abundances that increased with depth throughout the water column. Importantly, Nitrospina from surface layers showed low abundances but high 16S rRNA : rDNA ratios and mainly in summertime. Overall, our results highlight the seasonal variability between the structure and physiological state of this community and suggest a significant role of Nitrospina in the nitrogen cycle of seasonal upwelling areas.

  6. Review on Thermal Decomposition of Ammonium Nitrate

    Science.gov (United States)

    Chaturvedi, Shalini; Dave, Pragnesh N.

    2013-01-01

    In this review data from the literature on thermal decomposition of ammonium nitrate (AN) and the effect of additives to their thermal decomposition are summarized. The effect of additives like oxides, cations, inorganic acids, organic compounds, phase-stablized CuO, etc., is discussed. The effect of an additive mainly occurs at the exothermic peak of pure AN in a temperature range of 200°C to 140°C.

  7. Distinctive Oxidative Stress Responses to Hydrogen Peroxide in Sulfate Reducing Bacteria Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Aifen; He, Zhili; Redding, A.M.; Mukhopadhyay, Aindrila; Hemme, Christopher L.; Joachimiak, Marcin P.; Bender, Kelly S.; Keasling, Jay D.; Stahl, David A.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Wall, Judy D.; Zhou, Jizhong

    2009-01-01

    Response of Desulfovibrio vulgaris Hildenborough to hydrogen peroxide (H2O2, 1 mM) was investigated with transcriptomic, proteomic and genetic approaches. Microarray data demonstrated that gene expression was extensively affected by H2O2 with the response peaking at 120 min after H2O2 treatment. Genes affected include those involved with energy production, sulfate reduction, ribosomal structure and translation, H2O2 scavenging, posttranslational modification and DNA repair as evidenced by gene coexpression networks generated via a random matrix-theory based approach. Data from this study support the hypothesis that both PerR and Fur play important roles in H2O2-induced oxidative stress response. First, both PerR and Fur regulon genes were significantly up-regulated. Second, predicted PerR regulon genes ahpC and rbr2 were derepressedin Delta PerR and Delta Fur mutants and induction of neither gene was observed in both Delta PerR and Delta Fur when challenged with peroxide, suggesting possible overlap of these regulons. Third, both Delta PerR and Delta Fur appeared to be more tolerant of H2O2 as measured by optical density. Forth, proteomics data suggested de-repression of Fur during the oxidative stress response. In terms of the intracellular enzymatic H2O2 scavenging, gene expression data suggested that Rdl and Rbr2 may play major roles in the detoxification of H2O2. In addition, induction of thioredoxin reductase and thioredoxin appeared to be independent of PerR and Fur. Considering all data together, D. vulgaris employed a distinctive stress resistance mechanism to defend against increased cellular H2O2, and the temporal gene expression changes were consistent with the slowdown of cell growth at the onset of oxidative stress.

  8. Sulfate-nitrate-ammonium aerosols over China: response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2013-03-01

    Full Text Available We use a chemical transport model to examine the change of sulfate-nitrate-ammonium (SNA aerosols over China due to anthropogenic emission changes of their precursors (SO2, NOx and NH3 from 2000 to 2015. From 2000 to 2006, annual mean SNA concentrations increased by about 60% over China as a result of the 60% and 80% increases in SO2 and NOx emissions. During this period, sulfate is the dominant component of SNA over South China (SC and Sichuan Basin (SCB, while nitrate and sulfate contribute equally over North China (NC. Based on emission reduction targets in the 12th (2011–2015 Five-Year Plan (FYP, China's total SO2 and NOx emissions are projected to change by −16% and +16% from 2006 to 2015, respectively. The amount of NH3 emissions in 2015 is uncertain, given the lack of sufficient information on the past and present levels of NH3 emissions in China. With no change in NH3 emissions, SNA mass concentrations in 2015 will decrease over SCB and SC compared to their 2006 levels, but increase over NC where the magnitude of nitrate increase exceeds that of sulfate reduction. This suggests that the SO2 emission reduction target set by the 12th FYP, although effective in reducing SNA over SC and SCB, will not be successful over NC, for which NOx emission control needs to be strengthened. If NH3 emissions are allowed to keep their recent growth rate and increase by +16% from 2006 to 2015, the benefit of SO2 reduction will be completely offset over all of China due to the significant increase of nitrate, demonstrating the critical role of NH3 in regulating nitrate. The effective strategy to control SNA and hence PM2.5 pollution over China should thus be based on improving understanding of current NH3 emissions and putting more emphasis on controlling NH3 emissions in the future.

  9. Use of aliphatic n-alkynes to discriminate soil nitrification activities of ammonia-oxidizing thaumarchaea and bacteria.

    Science.gov (United States)

    Taylor, Anne E; Vajrala, Neeraja; Giguere, Andrew T; Gitelman, Alix I; Arp, Daniel J; Myrold, David D; Sayavedra-Soto, Luis; Bottomley, Peter J

    2013-11-01

    Ammonia (NH3)-oxidizing bacteria (AOB) and thaumarchaea (AOA) co-occupy most soils, yet no short-term growth-independent method exists to determine their relative contributions to nitrification in situ. Microbial monooxygenases differ in their vulnerability to inactivation by aliphatic n-alkynes, and we found that NH3 oxidation by the marine thaumarchaeon Nitrosopumilus maritimus was unaffected during a 24-h exposure to ≤ 20 μM concentrations of 1-alkynes C8 and C9. In contrast, NH3 oxidation by two AOB (Nitrosomonas europaea and Nitrosospira multiformis) was quickly and irreversibly inactivated by 1 μM C8 (octyne). Evidence that nitrification carried out by soilborne AOA was also insensitive to octyne was obtained. In incubations (21 or 28 days) of two different whole soils, both acetylene and octyne effectively prevented NH4(+)-stimulated increases in AOB population densities, but octyne did not prevent increases in AOA population densities that were prevented by acetylene. Furthermore, octyne-resistant, NH4(+)-stimulated net nitrification rates of 2 and 7 μg N/g soil/day persisted throughout the incubation of the two soils. Other evidence that octyne-resistant nitrification was due to AOA included (i) a positive correlation of octyne-resistant nitrification in soil slurries of cropped and noncropped soils with allylthiourea-resistant activity (100 μM) and (ii) the finding that the fraction of octyne-resistant nitrification in soil slurries correlated with the fraction of nitrification that recovered from irreversible acetylene inactivation in the presence of bacterial protein synthesis inhibitors and with the octyne-resistant fraction of NH4(+)-saturated net nitrification measured in whole soils. Octyne can be useful in short-term assays to discriminate AOA and AOB contributions to soil nitrification.

  10. Concentration-dependent behaviors of bone marrow derived mesenchymal stem cells and infectious bacteria toward magnesium oxide nanoparticles.

    Science.gov (United States)

    Wetteland, Cheyann Lee; Nguyen, Nhu-Y Thi; Liu, Huinan

    2016-04-15

    This article reports the quantitative relationship between the concentration of magnesium oxide (MgO) nanoparticles and its distinct biological activities towards mammalian cells and infectious bacteria for the first time. The effects of MgO nanoparticles on the viability of bone marrow derived mesenchymal stem cells (BMSCs) and infectious bacteria (both gram-negative Escherichia coli and gram-positive Staphylococcus epidermidis) showed a concentration-dependent behavior in vitro. The critical concentrations of MgO nanoparticles identified in this study provided valuable guidelines for biomaterial design toward potential clinical translation. BMSCs density increased significantly when cultured in 200μg/mL of MgO in comparison to the Cells Only control without MgO. The density of BMSCs decreased significantly after culture in the media with 500μg/mL or more of MgO. Concentrations at or above 1000μg/mL of MgO resulted in complete BMSCs death. Quantification of colony forming units (CFU) revealed that the minimum bactericidal concentration (MBC) of MgO for E. coli and S. epidermidis was 1200μg/mL. The addition of MgO nanoparticles into the cultures increased the pH and Mg(2+) ion concentration in the respective culture media, which might have played a role in the observed cell responses but not the main factors. E. coli and S. epidermidis still proliferated significantly at alkaline pH up to 10 or with supplemental Mg(2+) dosages up to 50mM, indicating bactericidal properties of MgO are beyond the effects of increased media pH and Mg(2+) ion concentrations. MgO nanoparticles at a concentration of 200μg/mL provided dual benefits of promoting BMSC proliferation while reducing bacterial adhesion, which should be further studied for potential medical implant applications. The use of free MgO nanoparticles yielded detrimental effects to BMSCs in concentrations above 300μg/mL. We recommend further study into MgO nanoparticle as a coating material or as a part of a

  11. A twisted tale - how biocorrosion communities yield new insight on the distribution of marine iron-oxidizing bacteria

    Science.gov (United States)

    McBeth, J. M.; Emerson, D.

    2011-12-01

    Microbiologically influenced corrosion (MIC) of mild steel is a complex process involving biogeochemical interactions between bacteria, steel surfaces, and biogenic and abiotically produced minerals. The role of neutrophilic iron-oxidizing bacteria (FeOB) in this process is poorly understood, and surprisingly, little is known about the microbial ecology of corroding steel in marine environments. Based on previous work (McBeth et al 2011), we hypothesized that coastal sediments act as reservoirs for marine FeOB of the candidatus class 'Zetaproteobacteria', and that these bacteria will colonize and become numerically abundant on steel surfaces. To test this, mild steel coupons were incubated in a salt marsh and sampled over 40 days in summer 2010. DNA extracted from the steel surfaces was analyzed for overall bacterial diversity by pyrosequencing of the V4 variable region of the 16S rRNA gene, and relevant communities were quantified using qPCR. The qPCR analyses were done using 16S primers specific to prokaryotes (Takai & Horikoshi 2000) and Zetaproteobacteria (Kato et al 2009), and a dsrA gene specific primer (Ben-Dov et al 2007) to assess the population of sulfate-reducing bacteria (SRB). Pyrosequencing data analyses showed Zetaproteobacteria were present on steel samples throughout the incubations and were also present in adjacent sediments; however, the diversity of Zetaproteobacteria was lower on the steel in comparison with sediments, indicating specific populations were enriched on the steel coupons. Iron oxyhydroxide stalk biosignatures were observed on the steel and in enrichment cultures, evidence that the Zetaproteobacteria identified using molecular techniques were likely FeOB. Relatives of the H2-oxidizing genus Hydrogenophaga and members of the family Rhodobacterales were also identified as important members of the biocorrosion community and were present both on steel and in sediments. The diversity of these organisms on steel surfaces increased with

  12. Fermentative Bacteria Influence the Competition between Denitrifiers and DNRA Bacteria

    Directory of Open Access Journals (Sweden)

    Eveline M. van den Berg

    2017-09-01

    Full Text Available Denitrification and dissimilatory reduction to ammonium (DNRA are competing nitrate-reduction processes that entail important biogeochemical consequences for nitrogen retention/removal in natural and man-made ecosystems. The nature of the available carbon source and electron donor have been suggested to play an important role on the outcome of this microbial competition. In this study, the influence of lactate as fermentable carbon source on the competition for nitrate was investigated for varying ratios of lactate and nitrate in the influent (Lac/N ratio. The study was conducted in an open chemostat culture, enriched from activated sludge, under strict anoxia. The mechanistic explanation of the conversions observed was based on integration of results from specific batch tests with biomass from the chemostat, molecular analysis of the biomass enriched, and a computational model. At high Lac/N ratio (2.97 mol/mol both fermentative and respiratory nitrate reduction to ammonium occurred, coupled to partial oxidation of lactate to acetate, and to acetate oxidation respectively. Remaining lactate was fermented to propionate and acetate. At a decreased Lac/N ratio (1.15 mol/mol, the molar percentage of nitrate reduced to ammonium decreased to 58%, even though lactate was supplied in adequate amounts for full ammonification and nitrate remained the growth limiting compound. Data evaluation at this Lac/N ratio suggested conversions were comparable to the higher Lac/N ratio, except for lactate oxidation to acetate that was coupled to denitrification instead of ammonification. Respiratory DNRA on acetate was likely catalyzed by two Geobacter species related to G. luticola and G. lovleyi. Two Clostridiales members were likely responsible for lactate fermentation and partial lactate fermentation to acetate coupled to fermentative DNRA. An organism related to Propionivibrio militaris was identified as the organism likely responsible for denitrification. The

  13. [Analysis of phylogenetic criteria for estimation of the rank of taxa in methane-oxidizing bacteria].

    Science.gov (United States)

    Romanovskaia, V A; Rokitko, P V

    2011-01-01

    To determine a possibility of application of phylogenetic criteria for estimating the taxa rank, the intra- and interspecies, as well as intergeneric relatedness of methanotrophs on the basis of 16S rRNA gene sequences was estimated. We used sequences of 16S rRNA genes of the studied isolates of obligate methanotrophs which have been deposited in UCM (Ukrainian Collection of Microorganisms), and of type strains of other obligate methanotrophs species (from GenBank database). It is shown, that the levels of interspecies and intergeneric relatedness in different families of methanotrophs are not identical, and therefore they can be used for differentiation of taxa only within one family. The carried out analysis has shown, that it is necessary to reconsider taxonomic position: (1) of two phenotypically similar species of Methylomonas (M. aurantiaca and M. fodinarum), similarity of 16S rRNA genes which is 99.4%, similarity of their total DNA--up to 80% that rather testifies to strain differences, than to species differences; (2) of species Methylomicrobium agile and M album which are phylogenetically more related to genus Methylobacter (97% of affinity), than Methylomicrobium (94% of affinity); (3) of genera of the family Beijerinckiaceae (Methylocella and Methylocapsa), and also genera of the family Methylocystaceae (Methylosinus and Methylocystis), whereas high level of relatedness (97% and more) of these bacteria with other methanotrophic genera (within one family) practically corresponds to a range of relatedness of species (within some genera) in the family Methylococcaceae. When determining phylogenetic criteria which can characterize the ranks of taxa, it was revealed, that the levels of interspecies relatedness of methanotrophic genera of the families Methylocystaceae and Beijerinckiaceae (97.8-99.1% and 97.8%, accordingly) considerably exceed the level of genera formation in the family Methylococcaceae (94.0-98.2%) and, moreover, approach the value of

  14. Bioprospecting arsenite oxidizing bacteria in the soil of the Comarca Lagunera

    Directory of Open Access Journals (Sweden)

    Edelweiss A. Rangel-Montoya

    2015-01-01

    Full Text Available Resumen El arsénico es uno de los metaloides más tóxicos presente en el ambiente y la exposición prolongada a este metal causa efectos crónicos en la salud. Por ello, la búsqueda de alternativas amigables con el medio ambiente, para el tratamiento de agua y suelos contaminados con arsénico es importante. En este trabajo se aislaron cepas bacterianas de suelos con presencia de arsénico en la Comarca Lagunera, para analizar aquellas con capacidad oxidante de arsenito. Las cepas 04-SP1qa y 14-SP1qh de metabolismo quimiolitoautotrófico y quimioheterotrófico, respectivamente, tuvieron mayor actividad de la enzima arsenito oxidasa. Las condiciones óptimas de crecimiento y la actividad enzimática de dichas cepas se investigaron. La cepa 04-SP1qa presentó actividad enzimática específica de 0.162 μmol·min- 1 ·mg-1, constante de Michaelis-Menten (Km de 3.37 μM y velocidad máxima (Vmax de 5.20 μM·min-1·mg-1 en condiciones óptimas de pH 8.0 y 40 °C. La cepa 14-SP1qh presentó actividad enzimática específica de 0.16 μmol·min-1·mg-1, Km de 3.70 μM y Vmax de 14.39 μM·min-1·mg-1 a pH 7.0 y 40 °C. Los resultados demostraron la presencia de bacterias oxidantes de arsenito con actividad enzimática en suelos de la Comarca Lagunera, identificando potencial para desarrollar nuevas tecnologías de biorremediación de aguas y suelos contaminados con arsénico en la región.

  15. Purification of methanol dehydrogenase from mouth methylotrophic bacteria of tropical region

    Directory of Open Access Journals (Sweden)

    Waturangi, D.

    2011-01-01

    Full Text Available Aims: Purification of methanol dehydrogenase (MDH from methylotrophic bacteria was conducted to obtain pure enzyme for further research and industrial applications due to the enzyme’s unique activity that catalyzes oxidation of methanol as an important carbon source in methylotrophic bacteria.Methodology and Results: The enzyme was screened from methylotrophic bacteria isolated from human mouth. Purification of this enzyme was conducted using ammonium sulphate precipitation followed by cation exchange chromatography. Two types of media were used to produce the enzymes: luria broth and standard mineral salts media (MSM. MSM produced MDH with higher specific activity than LB. Specific activity was also increased along with the purification steps. Application of ammonium sulphate increased the purity of enzyme and was more effective for the enzyme produced in LB. Using sepharose increased the enzyme activity 10 -57 folds.Conclusion, significant and impact of this study: With this, ammonium sulphate precipitation coupled with single cation exchange chromatographic system has been proved to provide sufficient purified of methanol dehydrogenase from methylotrophic bacteria origin of human mouth with high specific activity for further application.

  16. [Comparative characterization of cultured methane-oxidizing bacteria by serological and molecular methods].

    Science.gov (United States)

    Slobodova, N V; Kolganova, T V; Bulygina, E S; Kuznetsov, B B; Turova, T P; Kravchenko, I K

    2006-01-01

    Three stable methane-oxidizing enrichment cultures, SB26, SB31, and SB31A were analyzed by transmission electron microscopy and by serological and molecular techniques. Electron microscopy revealed the presence of both type I and type II methanotrophs in SB31 and SB31A enrichments; only type II methanotrophs were found in SB26 enrichment. Methylosinus trichosporium was detected in all three enrichments by the application of species-specific antibodies. Additionally, Methylocystis echinoides was found in SB26 culture; Methylococcus capsulatus, in SB31 and SB31A; and Methylomonas methanica, in SB31. The analysis with pmoA and nifH gene sequences as phylogenetic markers revealed the presence of Methylosinus/Methylocystis group in all communities. Moreover, the analysis of pmoA sequences revealed the presence of Methylomonas in SB31. Methylocella was detected in SB31 and SB31A enrichments only by nifH analysis. It was concluded that the simultaneous application of different approaches reveals more reliable information on the diversity of methanotrophs.

  17. Activity and diversity of methane-oxidizing bacteria along a Norwegian sub-Arctic glacier forefield.

    Science.gov (United States)

    Mateos-Rivera, Alejandro; Øvreås, Lise; Wilson, Bryan; Yde, Jacob C; Finster, Kai W

    2018-05-01

    Methane (CH4) is one of the most abundant greenhouse gases in the atmosphere and identification of its sources and sinks is crucial for the reliability of climate model outputs. Although CH4 production and consumption rates have been reported from a broad spectrum of environments, data obtained from glacier forefields are restricted to a few locations. We report the activities of methanotrophic communities and their diversity along a chronosequence in front of a sub-Arctic glacier using high-throughput sequencing and gas flux measurements. CH4 oxidation rates were measured in the field throughout the growing season during three sampling times at eight different sampling points in combination with laboratory incubation experiments. The overall results showed that the methanotrophic community had similar trends of increased CH4 consumption and increased abundance as a function of soil development and time of year. Sequencing results revealed that the methanotrophic community was dominated by a few OTUs and that a short-term increase in CH4 concentration, as performed in the field measurements, altered slightly the relative abundance of the OTUs.

  18. Dissolved methane oxidation and competition for oxygen in down-flow hanging sponge reactor for post-treatment of anaerobic wastewater treatment

    OpenAIRE

    Hatamoto, Masashi; Miyauchi, Tomo; Kindaichi, Tomonori; Ozaki, Noriatsu; Ohashi, Akiyoshi

    2011-01-01

    Post-treatment of anaerobic wastewater was undertaken to biologically oxidize dissolved methane, with the aim of preventing methane emission. The performance of dissolved methane oxidation and competition for oxygen among methane, ammonium, organic matter, and sulfide oxidizing bacteria were investigated using a lab-scale closed-type down-flow hanging sponge (OHS) reactor. Under the oxygen abundant condition of a hydraulic retention time of 2 h and volumetric air supply rate of 12.95 m(3)-air...

  19. Ammonium on Ceres

    Science.gov (United States)

    Ammannito, E.; De Sanctis, M. C.; Carrorro, F. G.; Ciarniello, M.; Combe, J. P.; De Angelis, S.; Ehlmann, B. L.; Frigeri, A.; Longobardo, A.; Mugnuolo, R.; Marchi, S.; Palomba, E.; Raymond, C. A.; Salatti, M.; Tosi, F.; Zambon, F.; Russell, C. T.

    2017-12-01

    Since January 2015, the surface of Ceres has been studied by the Dawn spacecraft through the measurements from the three instruments on board (1). The VIR imaging spectrometer, sensitive to the spectral range 0.25 -5.0 μm, provided information on the surficial composition of Ceres at resolutions ranging from few kilometers to about one hundred meters (2). Analysis of VIR reflectance data revealed that the average spectrum of Ceres is compatible with a mixture of low-albedo minerals, Mg- phyllosilicates, ammoniated clays, and Mg- carbonates, (3) confirming previous studies based on ground based spectra (4, 5). Mineralogical maps of the surface at about 1 km/px show that the components identified in the average spectrum are present all across the surface with variations in their relative abundance and chemical composition (6, 7). While the ammoniated clays have been already studied (6), the presence nature and distribution of additional ammoniated species has never been investigated in detail, although the spectral analysis of the bright faculae within Occator crater already revealed the potential presence of ammonium salts (8). Since the position and shape of the ammonium absorption in the VIS-NIR region are function of the hosting mineral specie (8), we did an inventory and characterization of the ammonium-rich regions, in order to analyze their spectral properties. In addition to the presence of ammonium, also the identification of the hosting species has implication for the evolution of Ceres. Our study, therefore, is a step forward in understanding of evolutionary pathway of Ceres. References: (1) Russell, C. T. et al., Science, 2016. (2) De Sanctis M.C. et al., Space Science Reviews, 2011. (3) De Sanctis M.C. et al., Nature, 2015. (4) King T. et al. Science, 1992. (5) Rivkin A.S. et al. Icarus, 2006. (6) Ammannito E. et al., Science, 2016. (7) Carrozzo F.G. et al., Science Advances, in revision. (8) De Sanctis et al., Nature, 2016. (9) Berg et al., Icarus

  20. Oral bacteria--the missing link to ambiguous findings of exhaled nitrogen oxides in cystic fibrosis.

    Science.gov (United States)

    Zetterquist, Wilhelm; Marteus, Helena; Kalm-Stephens, Pia; Näs, Elisabeth; Nordvall, Lennart; Johannesson, Marie; Alving, Kjell

    2009-02-01

    Nitrite in exhaled breath condensate (EBC) has been shown to be elevated in cystic fibrosis (CF), while exhaled nitric oxide (FENO) is paradoxically low. This has been argued to reflect increased metabolism of NO while its diffusion is obstructed by mucus. However, we wanted to study the possible influence of salivary nitrite and bacterial nitrate reduction on these parameters in CF patients by the intervention of an anti-bacterial mouthwash. EBC and saliva were collected from 15 CF patients (10-43 years) and 15 controls (9-44 years) before and 5 min after a 30s chlorhexidine mouthwash, in parallel with measurements of FENO. Nitrite and nitrate concentrations were measured fluorometrically. EBC nitrite, but not nitrate, was significantly higher in the CF patients (median 3.6 vs 1.3 microM in controls, p<0.05) and decreased after mouthwash in both groups (3.6-1.4 microM, p<0.01; 1.3-0.5 microM, p<0.01). Salivary nitrite correlated significantly to EBC nitrite (r=0.60, p<0.001) and decreased correspondingly after chlorhexidine, whereas salivary nitrate increased. FENO was lower in CF and the difference between patients and controls was accentuated after mouthwash (5.4 vs 8.4 ppb in controls, p<0.05). EBC nitrite mainly originates in the pharyngo-oral tract and its increase in CF is possibly explained by a regional change in bacterial activity. The limited lower airway contribution supports the view of a genuinely impaired formation and metabolism of NO in CF, rather than poor diffusion of the molecule.

  1. Ammonium Transformation in 14 Lakes along a Trophic Gradient

    Directory of Open Access Journals (Sweden)

    Barbara Leoni

    2018-03-01

    Full Text Available Ammonia is a widespread pollutant in aquatic ecosystems originating directly and indirectly from human activities, which can strongly affect the structure and functioning of the aquatic foodweb. The biological oxidation of NH4+ to nitrite, and then nitrate is a key part of the complex nitrogen cycle and a fundamental process in aquatic environments, having a profound influence on ecosystem stability and functionality. Environmental studies have shown that our current knowledge of physical and chemical factors that control this process and the abundance and function of involved microorganisms are not entirely understood. In this paper, the efficiency and the transformation velocity of ammonium into oxidised compounds in 14 south-alpine lakes in northern Italy, with a similar origin, but different trophic levels, are compared with lab-scale experimentations (20 °C, dark, oxygen saturation that are performed in artificial microcosms (4 L. The water samples were collected in different months to highlight the possible effect of seasonality on the development of the ammonium oxidation process. In four-liter microcosms, concentrations were increased by 1 mg/L NH4+ and the process of ammonium oxidation was constantly monitored. The time elapsed for the decrease of 25% and 95% of the initial ion ammonium concentration and the rate for that ammonium oxidation were evaluated. Principal Component Analysis and General Linear Model, performed on 56 observations and several chemical and physical parameters, highlighted the important roles of total phosphorus and nitrogen concentrations on the commencement of the oxidation process. Meanwhile, the natural concentration of ammonium influenced the rate of nitrification (µg NH4+/L day. Seasonality did not seem to significantly affect the ammonium transformation. The results highlight the different vulnerabilities of lakes with different trophic statuses.

  2. Distribution and characteristic of nitrite-dependent anaerobic methane oxidation bacteria by comparative analysis of wastewater treatment plants and agriculture fields in northern China

    Directory of Open Access Journals (Sweden)

    Zhen Hu

    2016-12-01

    Full Text Available Nitrite-dependent anaerobic methane oxidation (n-damo is a recently discovered biological process which has been arousing global attention because of its potential in minimizing greenhouse gases emissions. In this study, molecular biological techniques and potential n-damo activity batch experiments were conducted to investigate the presence and diversity of M. oxyfera bacteria in paddy field, corn field, and wastewater treatment plant (WWTP sites in northern China, as well as lab-scale n-damo enrichment culture. N-damo enrichment culture showed the highest abundance of M. oxyfera bacteria, and positive correlation was observed between potential n-damo rate and abundance of M. oxyfera bacteria. Both paddy field and corn field sites were believed to be better inoculum than WWTP for the enrichment of M. oxyfera bacteria due to their higher abundance and the diversity of M. oxyfera bacteria. Comparative analysis revealed that long biomass retention time, low NH ${}_{4}^{+}$ 4 + and high NO ${}_{2}^{-}$ 2 − content were suitable for the growth of M. oxyfera bacteria.

  3. Bioleaching of ilmenite and basalt in the presence of iron-oxidizing and iron-scavenging bacteria

    Science.gov (United States)

    Navarrete, Jesica U.; Cappelle, Ian J.; Schnittker, Kimberlin; Borrok, David M.

    2013-04-01

    Bioleaching has been suggested as an alternative to traditional mining techniques in extraterrestrial environments because it does not require extensive infrastructure and bulky hardware. In situ bioleaching of silicate minerals, such as those found on the moon or Mars, has been proposed as a feasible alternative to traditional extraction techniques that require either extreme heat and/or substantial chemical treatment. In this study, we investigated the biotic and abiotic leaching of basaltic rocks (analogues to those found on the moon and Mars) and the mineral ilmenite (FeTiO3) in aqueous environments under acidic (pH ˜ 2.5) and circumneutral pH conditions. The biological leaching experiments were conducted using Acidithiobacillus ferrooxidans, an iron (Fe)-oxidizing bacteria, and Pseudomonas mendocina, an Fe-scavenging bacteria. We found that both strains were able to grow using the Fe(II) derived from the tested basaltic rocks and ilmenite. Although silica leaching rates were the same or slightly less in the bacterial systems with A. ferrooxidans than in the abiotic control systems, the extent of Fe, Al and Ti released (and re-precipitated in new solid phases) was actually greater in the biotic systems. This is likely because the Fe(II) leached from the basalt was immediately oxidized by A. ferrooxidans, and precipitated into Fe(III) phases which causes a change in the equilibrium of the system, i.e. Le Chatelier's principle. Iron(II) in the abiotic experiment was allowed to build up in solution which led to a decrease in its overall release rate. For example, the percentage of Fe, Al and Ti leached (dissolved + reactive mineral precipitates) from the Mars simulant in the A. ferrooxidans experimental system was 34, 41 and 13% of the total Fe, Al and Ti in the basalt, respectively, while the abiotic experimental system released totals of only 11, 25 and 2%. There was, however, no measurable difference in the amounts of Fe and Ti released from ilmenite in the

  4. Lactic Acid Bacteria Protects Caenorhabditis elegans from Toxicity of Graphene Oxide by Maintaining Normal Intestinal Permeability under different Genetic Backgrounds

    Science.gov (United States)

    Zhao, Yunli; Yu, Xiaoming; Jia, Ruhan; Yang, Ruilong; Rui, Qi; Wang, Dayong

    2015-11-01

    Lactic acid bacteria (LAB) is safe and useful for food and feed fermentation. We employed Caenorhabditis elegans to investigate the possible beneficial effect of LAB (Lactobacillus bulgaricus) pretreatment against toxicity of graphene oxide (GO) and the underlying mechanisms. LAB prevented GO toxicity on the functions of both primary and secondary targeted organs in wild-type nematodes. LAB blocked translocation of GO into secondary targeted organs through intestinal barrier by maintaining normal intestinal permeability in wild-type nematodes. Moreover, LAB prevented GO damage on the functions of both primary and secondary targeted organs in exposed nematodes with mutations of susceptible genes (sod-2, sod-3, gas-1, and aak-2) to GO toxicity by sustaining normal intestinal permeability. LAB also sustained the normal defecation behavior in both wild-type nematodes and nematodes with mutations of susceptible genes. Therefore, the beneficial role of LAB against GO toxicity under different genetic backgrounds may be due to the combinational effects on intestinal permeability and defecation behavior. Moreover, the beneficial effects of LAB against GO toxicity was dependent on the function of ACS-22, homologous to mammalian FATP4 to mammalian FATP4. Our study provides highlight on establishment of pharmacological strategy to protect intestinal barrier from toxicity of GO.

  5. Repeatedly evolved host-specific ectosymbioses between sulfur-oxidizing bacteria and amphipods living in a cave ecosystem.

    Directory of Open Access Journals (Sweden)

    Jan Bauermeister

    Full Text Available Ectosymbioses between invertebrates and sulfur-oxidizing bacteria are widespread in sulfidic marine environments and have evolved independently in several invertebrate phyla. The first example from a freshwater habitat, involving Niphargus ictus amphipods and filamentous Thiothrix ectosymbionts, was recently reported from the sulfide-rich Frasassi caves in Italy. Subsequently, two new Niphargus species, N. frasassianus and N. montanarius, were discovered within Frasassi and found to co-occur with N. ictus. Using a variety of microscopic and molecular techniques, we found that all three Frasassi-dwelling Niphargus species harbor Thiothrix ectosymbionts, which belong to three distinct phylogenetic clades (named T1, T2, and T3. T1 and T3 Thiothrix dominate the N. frasassianus ectosymbiont community, whereas T2 and T3 are prevalent on N. ictus and N. montanarius. Relative distribution patterns of the three ectosymbionts are host species-specific and consistent over different sampling locations and collection years. Free-living counterparts of T1-T3 are rare or absent in Frasassi cave microbial mats, suggesting that ectosymbiont transmission among Niphargus occurs primarily through inter- or intraspecific inoculations. Phylogenetic analyses indicate that the Niphargus-Thiothrix association has evolved independently at least two times. While ectosymbioses with T1 and T2 may have been established within Frasassi, T3 ectosymbionts seem to have been introduced to the cave system by Niphargus.

  6. Identification of novel potential acetate-oxidizing bacteria in an acetate-fed methanogenic chemostat based on DNA stable isotope probing.

    Science.gov (United States)

    Wang, Hui-Zhong; Gou, Min; Yi, Yue; Xia, Zi-Yuan; Tang, Yue-Qin

    2018-05-11

    Acetate is a significant intermediate of anaerobic fermentation. There are two pathways for converting acetate to CH 4 and CO 2 : acetoclastic methanogenesis by acetoclastic methanogens, and syntrophic acetate oxidation by acetate-oxidizing bacteria (AOB) and hydrogenotrophic methanogens. Detailed investigations of syntrophic acetate-oxidizing bacteria (SAOB) should contribute to the elucidation of the microbial mechanisms of methanogenesis. In this study, we investigated the major phylogenetic groups of acetate-utilizing bacteria (AUB) in a mesophilic methanogenic chemostat fed with acetate as the sole carbon source by using DNA stable isotope probing (SIP) technology. The results indicated that acetoclastic methanogenesis and acetate oxidization/hydrogenotrophic methanogenesis coexisted in the mesophilic chemostat fed with acetate, operated at a dilution rate of 0.1 d -1 . OTU Ace13(9-17) (KU869530), Ace13(9-4) (KU667241), and Ace13(9-23) (KU667236), assigned to the phyla Firmicutes and Bacteroidetes, were probably potential SAOB in the chemostat, which needs further investigation. Species in the phyla Proteobacteria, Deferribacteres, Acidobacteria, Spirochaetes and Actinobacteria were probably capable of utilizing acetate for their growth. Methanoculleus was likely to be the preferred hydrogenotrophic methanogen for syntrophy with AOB in the chemostat.

  7. Intestinal bacteria in bioaerosols and factors affecting their survival in two oxidation ditch process municipal wastewater treatment plants located in different regions.

    Science.gov (United States)

    Wang, Yanjie; Li, Lin; Han, Yunping; Liu, Junxin; Yang, Kaixiong

    2018-06-15

    Samples from two oxidation ditch process municipal wastewater treatment plants (MWTPs) (HJK and GXQ) in two regions of China were analysed for bacteria, particles, total organic carbon, and water-soluble ions in bioaerosols. Diversity and potential pathogen populations were evaluated by high-throughput sequencing. Bioaerosol sources, factors affecting intestinal bacterial survival, and the relationship between bioaerosols and water were analysed by Source tracker and partial least squares-discriminant, principal component, and canonical correspondence analyses. Culturable bacteria concentrations were 110-846 and 27-579 CFU/m 3 at HJK and GXQ, respectively. Intestinal bacteria constituted 6-33% of bacteria. Biochemical reaction tank, sludge dewatering house (SDH), and fine screen samples showed the greatest contribution to bioaerosol contamination. Enterobacter aerogenes was the main intestinal bacteria (> 99.5%) in HJK and detected at each sampling site. Enterobacter aerogenes (98.67% in SDH), Aeromonas sp. (76.3% in biochemical reaction tank), and Acinetobacter baumannii (99.89% in fine screens) were the main intestinal bacteria in GXQ. Total suspended particulate masses in SDH were 229.46 and 141.6 μg/m 3 in HJK and GXQ, respectively. Percentages of insoluble compounds in total suspended particulates decreased as height increased. The main soluble ions in bioaerosols were Ca 2+ , Na + , Cl - , and SO 4 2- , which ranged from 3.8 to 27.55 μg/m 3 in the MWTPs. Water was a main source of intestinal bacteria in bioaerosols from the MWTPs. Bioaerosols in HJK but not in GXQ were closely related. Relative humidity and some ions positively influenced intestinal bacteria in bioaerosols, while wind speed and solar illumination had a negative influence. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Continuously Monocropped Jerusalem Artichoke Changed Soil Bacterial Community Composition and Ammonia-Oxidizing and Denitrifying Bacteria Abundances.

    Science.gov (United States)

    Zhou, Xingang; Wang, Zhilin; Jia, Huiting; Li, Li; Wu, Fengzhi

    2018-01-01

    Soil microbial communities have profound effects on the growth, nutrition and health of plants in agroecosystems. Understanding soil microbial dynamics in cropping systems can assist in determining how agricultural practices influence soil processes mediated by microorganisms. In this study, soil bacterial communities were monitored in a continuously monocropped Jerusalem artichoke (JA) system, in which JA was successively monocropped for 3 years in a wheat field. Soil bacterial community compositions were estimated by amplicon sequencing of the 16S rRNA gene. Abundances of ammonia-oxidizing and denitrifying bacteria were estimated by quantitative PCR analysis of the amoA , nirS , and nirK genes. Results showed that 1-2 years of monocropping of JA did not significantly impact the microbial alpha diversity, and the third cropping of JA decreased the microbial alpha diversity ( P < 0.05). Principal coordinates analysis and permutational multivariate analysis of variance analyses revealed that continuous monocropping of JA changed soil bacterial community structure and function profile ( P < 0.001). At the phylum level, the wheat field was characterized with higher relative abundances of Latescibacteria , Planctomycetes , and Cyanobacteria , the first cropping of JA with Actinobacteria , the second cropping of JA with Acidobacteria , Armatimonadetes , Gemmatimonadetes , and Proteobacteria . At the genus level, the first cropping of JA was enriched with bacterial species with pathogen-antagonistic and/or plant growth promoting potentials, while members of genera that included potential denitrifiers increased in the second and third cropping of JA. The first cropping of JA had higher relative abundances of KO terms related to lignocellulose degradation and phosphorus cycling, the second cropping of JA had higher relative abundances of KO terms nitrous-oxide reductase and nitric-oxide reductase, and the third cropping of JA had higher relative abundances of KO terms

  9. Continuously Monocropped Jerusalem Artichoke Changed Soil Bacterial Community Composition and Ammonia-Oxidizing and Denitrifying Bacteria Abundances

    Directory of Open Access Journals (Sweden)

    Xingang Zhou

    2018-04-01

    Full Text Available Soil microbial communities have profound effects on the growth, nutrition and health of plants in agroecosystems. Understanding soil microbial dynamics in cropping systems can assist in determining how agricultural practices influence soil processes mediated by microorganisms. In this study, soil bacterial communities were monitored in a continuously monocropped Jerusalem artichoke (JA system, in which JA was successively monocropped for 3 years in a wheat field. Soil bacterial community compositions were estimated by amplicon sequencing of the 16S rRNA gene. Abundances of ammonia-oxidizing and denitrifying bacteria were estimated by quantitative PCR analysis of the amoA, nirS, and nirK genes. Results showed that 1–2 years of monocropping of JA did not significantly impact the microbial alpha diversity, and the third cropping of JA decreased the microbial alpha diversity (P < 0.05. Principal coordinates analysis and permutational multivariate analysis of variance analyses revealed that continuous monocropping of JA changed soil bacterial community structure and function profile (P < 0.001. At the phylum level, the wheat field was characterized with higher relative abundances of Latescibacteria, Planctomycetes, and Cyanobacteria, the first cropping of JA with Actinobacteria, the second cropping of JA with Acidobacteria, Armatimonadetes, Gemmatimonadetes, and Proteobacteria. At the genus level, the first cropping of JA was enriched with bacterial species with pathogen-antagonistic and/or plant growth promoting potentials, while members of genera that included potential denitrifiers increased in the second and third cropping of JA. The first cropping of JA had higher relative abundances of KO terms related to lignocellulose degradation and phosphorus cycling, the second cropping of JA had higher relative abundances of KO terms nitrous-oxide reductase and nitric-oxide reductase, and the third cropping of JA had higher relative abundances of KO

  10. Crystallisation of mixtures of ammonium nitrate, ammonium sulphate and soot

    NARCIS (Netherlands)

    Dougle, P.G.; Veefkind, J.P.; Brink, H.M. ten

    1998-01-01

    Crystallisation of laboratory aerosols of ammonium nitrate and of internal mixtures of this salt with ammonium sulphate were investigated using humidity controlled nephelometry. The aerosol was produced via nebulizing of solutions and then dried to 25% RH, which is a realistic minimum value for

  11. Safety Testing of Ammonium Nitrate Based Mixtures

    Science.gov (United States)

    Phillips, Jason; Lappo, Karmen; Phelan, James; Peterson, Nathan; Gilbert, Don

    2013-06-01

    Ammonium nitrate (AN)/ammonium nitrate based explosives have a lengthy documented history of use by adversaries in acts of terror. While historical research has been conducted on AN-based explosive mixtures, it has primarily focused on detonation performance while varying the oxygen balance between the oxidizer and fuel components. Similarly, historical safety data on these materials is often lacking in pertinent details such as specific fuel type, particle size parameters, oxidizer form, etc. A variety of AN-based fuel-oxidizer mixtures were tested for small-scale sensitivity in preparation for large-scale testing. Current efforts focus on maintaining a zero oxygen-balance (a stoichiometric ratio for active chemical participants) while varying factors such as charge geometry, oxidizer form, particle size, and inert diluent ratios. Small-scale safety testing was conducted on various mixtures and fuels. It was found that ESD sensitivity is significantly affected by particle size, while this is less so for impact and friction. Thermal testing is in progress to evaluate hazards that may be experienced during large-scale testing.

  12. Spectrographic determination of impurities in ammonium hydrogen fluoride samples

    International Nuclear Information System (INIS)

    Roca, M.; Capdevila, C.; Alduan, F.A.

    1976-01-01

    The quantitative spectrographic trace determination of Al, B, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Si in ammonium hydrogen fluoride samples is considered. 10 A dc arc excitation and graphite electrodes with crate either 4.5 mm or 8 mm deep are employed. A comparison of various matrices such as graphite, gallium oxide, germanium oxide, magnesium oxide and zinc oxide, in the ratios 1:1 and 1:3, as well as a mixture 50% graphite - 50% zinc oxide in the ratio 1:1 is included. Zinc oxide in the ratio 1:1 and 4x8 mm craters show the best over-all results. (author)

  13. Development of hydrogen oxidizing bacteria using hydrogen from radiolysis or metal corrosion; Developpement de populations microbiennes oxydant l'hydrogene produit par radiolyse ou par corrosion des metaux

    Energy Technology Data Exchange (ETDEWEB)

    Libert, M F; Sellier, R; Marty, V; Camaro, S [CEA Cadarache, Dept. d' Entreposage et de Stockage des Dechets (DCC/DESD/SEP), 13 - Saint-Paul-lez-Durance (France)

    2000-07-01

    The effect of many parameters need to be studied to characterize the long term behavior of nuclear waste in a deep repository. These parameters concern the chemical effects, radiolytic effects, mechanical properties, water composition, and microbiological activity. To evaluate microbial activity in such an environment, work was focused on an inventory of key nutrients (C, H, 0, N, P, S) and energy sources required for bacterial growth. The production of hydrogen in the nuclear waste environment leads to the growth of hydrogen oxidizing bacteria, which modify the gas production balance. A deep repository containing bituminized waste drums implies several sources of hydrogen: - water radiolysis; -corrosion of metal containers; - radiolysis of the embedding matrix (bitumen). Two deep geological disposal conditions leading to H{sub 2} production in a bituminized nuclear waste environment were simulated in the present study: - H{sub 2} production by iron corrosion under anaerobic conditions was simulated by adding 10% of H{sub 2} in the atmosphere; - H{sub 2} production by radiolysis of bitumen matrix was approached by subjecting this material to external gamma irradiation with a dose rate near real conditions (6 Gy/h). The presence of dissolved H{sub 2} in water allows the growth of hydrogen oxidizing bacteria leading to: - CO{sub 2} and N{sub 2} production; - H{sub 2} consumption; - lower NO{sub 3}{sup -} concentration caused by reduction to nitrogen. In the first case, hydrogen consumption is limited by the NO{sub 3}{sup -} release rate from the bitumen matrix. In the second case, however, under gamma radiation at a low dose rate, hydrogen production is weak, and the hydrogen is completely consumed by microorganisms. Knowledge about these hydrogen oxidizing bacteria is just beginning to emerge. Heterotrophic denitrifying bacteria adapt well to hydrogen metabolism (autotrophic metabolism) by oxidizing H{sub 2} instead of hydrocarbons. (authors)

  14. Ammonium diphosphitoindate(III

    Directory of Open Access Journals (Sweden)

    Farida Hamchaoui

    2013-04-01

    Full Text Available The crystal structure of the title compound, NH4[In(HPO32], is built up from InIII cations (site symmetry 3m. adopting an octahedral environment and two different phosphite anions (each with site symmetry 3m. exhibiting a triangular–pyramidal geometry. Each InO6 octahedron shares its six apices with hydrogen phosphite groups. Reciprocally, each HPO3 group shares all its O atoms with three different metal cations, leading to [In(HPO32]− layers which propagate in the ab plane. The ammonium cation likewise has site symmetry 3m.. In the structure, the cations are located between the [In(HPO32]− layers of the host framework. The sheets are held together by hydrogen bonds formed between the NH4+ cations and the O atoms of the framework.

  15. EFFECT OF SOLE AND ASSOCIATIVE ACTIONS OF ELEMENTAL SULFUR AND INOCULATION SULFUR OXIDIZING BACTERIA ON GROWTH AND NUTRIENTS CONTENTS OF PEPPER PLANTS AND THE USED SOILS

    Directory of Open Access Journals (Sweden)

    S. A. Ibrahim

    2011-12-01

    Full Text Available A pot experiment was conducted to study the effect of elemental sulfur (E.S rate (2.5 g/kg soil and sulfur oxidizing bacteria on pepper plant and some chemical properties of two representative soil samples varying in their texture and CaCO3 content. Pepper was grown in Shobrakheet clay loam and Nobaria sandy loam soils for 50 days. Each soil was treated with elemental sulfur (2.5 g kg-1 soil and inoculated with two sulfur oxidizing bacteria (S.O.B. No.8 and S.O.B. ATCC 8158. Elemental sulfur with or without sulfur oxidizing bacteria increased shoot dry weights of pepper plants as compared with control. The highest effect was observed with E.S + ATCC 8158 treatment which resulted in increasing the pepper shoot dry weights from 1.36 to 2.08 g pot-1 with the clay loam soil and from 0.77 to 1.37 g pot-1 with the sandy loam soil. The same treatment resulted in the highest plant content of S, N, P, K and micronutrients.

  16. Ammonium generation during SRAT cycle

    International Nuclear Information System (INIS)

    Hsu, C.W.

    1992-01-01

    During the IDMS noble-metal demonstration runs ammonium nitrate deposition was found in the vessel vent system of the feed preparation area. In the bench-scale experiments of studying the hydrogen generation during the sludge treatment cycle, ammonium ion production was also monitored. It was found that: During a simulation of the DWPF Cold Chemical Runs SRAT cycle no detectable amount of ammonium ions was generated when treating a non-noble-metal containing sludge simulant according to the nitric acid flowsheet. Ammonium ions were generated during the SRAT-SME cycle when treating the noble-metal containing sludge with either formic acid or nitric acid/late-washing PHA. This is due to the reaction between formic acid and nitrate catalyzed by the noble metals in the sludge simulant. Ammonium ion production closely followed the hydrogen evolution from the catalytic decomposition of formic acid. This report summarizes the results of the production of ammonia during the SRAT cycle

  17. Metal oxide/hydroxide-coated dual-media filter for simultaneous removal of bacteria and heavy metals from natural waters.

    Science.gov (United States)

    Ahammed, M Mansoor; Meera, V

    2010-09-15

    The present study was conducted to compare the performance of a dual-media filter consisting of manganese oxide-coated (MOCS) and iron hydroxide-coated sand (IOCS) with that of IOCS filter and uncoated sand filter in treating water contaminated by microorganisms, heavy metals and turbidity with a view to its use in simple household water purification devices in developing countries. Long-duration column tests were conducted using two natural waters namely, roof-harvested rainwater and canal water. Performance of the filters showed that dual-media filter was more efficient in removing bacteria and heavy metals compared to IOCS filter, while uncoated sand filter showed very poor performance. The average effluent levels for dual-media filter when tested with rainwater were: turbidity 1.0+/-0.1 NTU; total coliforms 3+/-2 MPN/100 mL; heterotrophic plate count 170+/-20 CFU/mL; zinc 0.06+/-0.01 mg/L, while that for IOCS filter were: turbidity 1.0+/-0.1 NTU; total coliforms 4+/-2 MPN/100 mL; heterotrophic plate count 181+/-37 CFU/mL; zinc 0.20+/-0.07 mg/L. Similar results were obtained for canal water also. Up to 900 bed volumes (BV) could be treated without affecting the efficiency in the case of rainwater, while the filter operation had to be terminated after 500 BV due to excessive headloss in the case of canal water. The study thus showed the potential of the dual-media for use in low-cost household water filters for purification of natural waters. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Molecular diversity of the ammonia-oxidizing bacteria community in disused tin-mining ponds located within Kampar, Perak, Malaysia.

    Science.gov (United States)

    Sow, S L S; Khoo, G; Chong, L K; Smith, T J; Harrison, P L; Ong, H K A

    2014-02-01

    Disused tin-mining ponds make up a significant amount of water bodies in Malaysia particularly at the Kinta Valley in the state of Perak where tin-mining activities were the most extensive, and these abundantly available water sources are widely used in the field of aquaculture and agriculture. However, the natural ecology and physicochemical conditions of these ponds, many of which have been altered due to secondary post-mining activities, remains to be explored. As ammonia-oxidizing bacteria (AOB) are directly related to the nutrient cycles of aquatic environments and are useful bioindicators of environmental variations, the focus of this study was to identify AOBs associated with disused tin-mining ponds that have a history of different secondary activities in comparison to ponds which were left untouched and remained as part of the landscape. The 16S rDNA gene was used to detect AOBs in the sediment and water sampled from the three types of disused mining ponds, namely ponds without secondary activity, ponds that were used for lotus cultivation and post-aquaculture ponds. When the varying pond types were compared with the sequence and phylogenetic analysis of the AOB clone libraries, both Nitrosomonas and Nitrosospira-like AOB were detected though Nitrosospira spp. was seen to be the most ubiquitous AOB as it was present in all ponds types. However, AOBs were not detected in the sediments of idle ponds. Based on rarefaction analysis and diversity indices, the disused mining pond with lotus culture indicated the highest richness of AOBs. Canonical correspondence analysis indicated that among the physicochemical properties of the pond sites, TAN and nitrite were shown to be the main factors that influenced the community structure of AOBs in these disused tin-mining ponds.

  19. Rapid and sensitive Nitrosomonas europaea biosensor assay for quantification of bioavailable ammonium sensu strictu in soil.

    Science.gov (United States)

    Nguyen, Minh Dong; Risgaard-Petersen, Nils; Sørensen, Jan; Brandt, Kristian K

    2011-02-01

    Knowledge on bioavailable ammonium sensu strictu (i.e., immediately available for cellular uptake) in soil is required to understand nutrient uptake processes in microorganisms and thus of vital importance for plant production. We here present a novel ammonium biosensor approach based on the lithoautotrophic ammonia-oxidizing bacterium Nitrosomonas europaea transformed with a luxAB sensor plasmid. Bioluminescence-based ammonium detection was achieved within 10 min with a quantification limit in liquid samples of ∼20 μM and a linear response range up to 400 μM. Biosensor and conventional chemical quantification of ammonium in soil solutions agreed well across a range of sample and assay conditions. The biosensor was subsequently applied for a solid phase-contact assay allowing for direct interaction of biosensor cells with soil particle-associated (i.e., exchangeable plus fixed) ammonium. The assay successfully quantified bioavailable ammonium even in unfertilized soil and demonstrated markedly higher ratios of bioavailable ammonium to water- or 2 M KCl-exchangeable ammonium in anoxic soil than in corresponding oxic soil. Particle-associated ammonium contributed by at least 74% and 93% of the total bioavailable pool in oxic and anoxic soil, respectively. The N. europaea biosensor should have broad relevance for environmental monitoring of bioavailable ammonium and processes depending on ammonium bioavailability.

  20. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria.

    OpenAIRE

    Voordouw, G; Armstrong, S M; Reimer, M F; Fouts, B; Telang, A J; Shen, Y; Gevertz, D

    1996-01-01

    Oil field bacteria were characterized by cloning and sequencing of PCR-amplified 16S rRNA genes. A variety of gram-negative, sulfate-reducing bacteria was detected (16 members of the family Desulfovibrionaceae and 8 members of the family Desulfobacteriaceae). In contrast, a much more limited number of anaerobic, fermentative, or acetogenic bacteria was found (one Clostridium sp., one Eubacterium sp., and one Synergistes sp.). Potential sulfide oxidizers and/or microaerophiles (Thiomicrospira,...

  1. Evaluating death and activity decay of Anammox bacteria during anaerobic and aerobic starvation.

    Science.gov (United States)

    Wang, Qilin; Song, Kang; Hao, Xiaodi; Wei, Jing; Pijuan, Maite; van Loosdrecht, Mark C M; Zhao, Huijun

    2018-06-01

    The decreased activity (i.e. decay) of anaerobic ammonium oxidation (Anammox) bacteria during starvation can be attributed to death (i.e. decrease in the amount of viable bacteria) and activity decay (i.e. decrease in the specific activity of viable bacteria). Although they are crucial for the operation of the Anammox process, they have never been comprehensively investigated. This study for the first time experimentally assessed death and activity decay of the Anammox bacteria during 84 days' starvation stress based on ammonium removal rate, Live/Dead staining and fluorescence in-situ hybridization. The anaerobic and aerobic decay rates of Anammox bacteria were determined as 0.015 ± 0.001 d -1 and 0.028 ± 0.001 d -1 , respectively, indicating Anammox bacteria would lose their activity more quickly in the aerobic starvation than in the anaerobic starvation. The anaerobic and aerobic death rates of Anammox bacteria were measured at 0.011 ± 0.001 d -1 and 0.025 ± 0.001 d -1 , respectively, while their anaerobic and aerobic activity decay rates were determined at 0.004 ± 0.001 d -1 and 0.003 ± 0.001 d -1 , respectively. Further analysis revealed that death accounted for 73 ± 4% and 89 ± 5% of the decreased activity of Anammox bacteria during anaerobic and aerobic starvations, and activity decay was only responsible for 27 ± 4% and 11 ± 5% of the decreased Anammox activity, respectively, over the same starvation periods. These deeply shed light on the response of Anammox bacteria to the starvation stress, which would facilitate operation and optimization of the Anammox process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Stable isotope probing and dynamic loading experiments provide insight into the ecophysiology of novel ammonia oxidizers in rapid gravity sand filters

    DEFF Research Database (Denmark)

    Fowler, Jane; Palomo, Alejandro; Gülay, Arda

    to elucidate the differences in ecophysiology between the ammonia oxidizing clades that enable them to co-exist in this unique environment. Experiments were conducted using sand columns designed and operated to mimic the conditions in the full-scale parent RSF. RNA and DNA stable isotope probing based on 13C......-bicarbonate incorporation during continuous feeding with either ammonium or nitrite as sole energy source implicated Nitrospira spp. and certain ‘heterotrophic’ bacteria in addition to Nitrosomonas spp. in autotrophy during ammonium oxidation in RSFs. Further experimentation aimed to elucidate the ecophysiology of each...

  3. Enrichment using an up-flow column reactor and community structure of marine anammox bacteria from coastal sediment.

    Science.gov (United States)

    Kindaichi, Tomonori; Awata, Takanori; Suzuki, Yuji; Tanabe, Katsuichiro; Hatamoto, Masashi; Ozaki, Noriatsu; Ohashi, Akiyoshi

    2011-01-01

    We established an enrichment culture of marine anaerobic ammonium oxidation (anammox) bacteria using an up-flow column reactor fed with artificial sea water supplemented with nitrogen and minerals and inoculated with coastal surface sediment collected from Hiroshima Bay. After 2 months of reactor operation, simultaneous removal of NH(4)(+) and NO(2)(-) was observed, suggesting that an anammox reaction was proceeding. A total nitrogen removal rate of 2.17 g-N L(-1) day(-1) was attained on day 594 while the nitrogen loading rate was 3.33 g-N L(-1) day(-1). Phylogenetic analysis revealed that at least two dominant "Candidatus Scalindua" species were present in this reactor. Moreover, many uncultured bacteria and archaea, including candidate division or ammonia-oxidizing archaea, were present. Fluorescence in situ hybridization (FISH) revealed that anammox bacteria accounted for 85.5 ± 4.5% of the total bacteria at day 393. We also designed two oligonucleotide probes specific to each dominant "Candidatus Scalindua" species. A simultaneous FISH analysis using both probes showed that two different "Candidatus Scalindua" species were clearly recognizable and coexisted during reactor operation, although there was some variation in their abundance. The marine anammox bacteria enriched in this study have potential applications to the treatment of industrial wastewater containing high levels of ammonium and salt.

  4. Partial nitrification of non-ammonium-rich wastewater within biofilm filters under ambient temperature.

    Science.gov (United States)

    Wang, Hongyu; He, Jiajie; Yang, Kai

    2010-01-01

    This study evaluated the partial nitrification performances of two biofilm filters over a synthetic non-ammonium-rich wastewater at a 20°C room temperature under both limited DO (∼2.0 mg/L) and unlimited DO (∼4.0 mg/L) conditions. The two filters were each of 80 cm long and used different biofilm carriers: activated carbon and ceramic granule. Results showed that partial nitrification was accomplished for both filters under the limited DO condition. However, the effluent NO(2)-N was higher in the ceramic granule filter than in the activated carbon filter, and was less susceptible to the influent COD/N changes. Further investigation into the water phase COD and NH(4)-N depth profiles and bacteria population within the two filters showed that by putting upper filter layer (upstream) to confront relatively higher influent COD/N ratios, the filtration process naturally put lower filter layers (downstream) relatively more favorable for nitrifying bacteria (ammonia oxidizing bacteria in this study) to prosper, making the filter depth left for nitrification a crucial factor for the effectiveness of nitrification with a filter. The potentially different porous flow velocities of the two filters might be the reason to cause their different partial nitrification performances, with a lower porous flow velocity (the ceramic granule filter) favoring partial nitrification more. In summation, DO, filter depth, and filtration speed should be played together to successfully operate a biofilm filter for partial nitrification.

  5. Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: A mechanistic approach

    International Nuclear Information System (INIS)

    Jafarirad, Saeed; Mehrabi, Meysam; Divband, Baharak; Kosari-Nasab, Morteza

    2016-01-01

    The use of plant extract in the biosynthesis of nanoparticles (NPs) can be an eco-friendly approach and have been suggested as a possible alternative to classic methods namely physical and chemical procedures. In this study, the biosynthesis of zinc oxide (ZnO) NPs by both “conventional heating” (CH) and “microwave irradiation” (MI) methods has been reported. Stable and spherical ZnONPs were produced using zinc nitrate and flesh extract of Rosa canina fruit (rosehip) which was used as a precursor. The flesh extract acts as a reducing and capping agent for generation of ZnONPs. The structural, morphological and colloidal properties of the as-synthesized NPs have been confirmed by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), Fourier transform Infrared (FT-IR) and Dynamic Light Scattering (DLS). In comparison with the CH method, the MI method has some advantages such as significantly short reaction time (within 8 min) owing to the high heating rate and thus the accelerated reaction rate. Both methods led to the synthesis of nearly identical NPs with respect to shape and size according to the results of DLS, XRD and SEM techniques. The possible mechanism for synthesis pathway has been proposed based on FT IR results, XRD patterns, potentiometric data and antioxidant activity. In addition, the antibacterial activity of as-prepared ZnONPs was investigated against several bacteria such as Listeria monocytogenes, Escherichia coli, Salmonella typhimurium. Moreover, the efficacy of ZnONPs to treat cancer cell lines were measured by means of cell viability test via MTT assay in which concentrations of 0.05 and 0.1 mg/mL of ZnONPs induced a very low toxicity. Thus, the present investigation reveals that ZnONPs have the potential for various medical and industrial applications. - Highlights: • We report a green producing route from biomaterials to potentially biomedical applications. • We comprise two methods in respect

  6. Distributions and activities of ammonia oxidizing bacteria and polyphosphate accumulating organisms in a pumped-flow biofilm reactor.

    Science.gov (United States)

    Wu, Guangxue; Nielsen, Michael; Sorensen, Ketil; Zhan, Xinmin; Rodgers, Michael

    2009-10-01

    The spatial distributions and activities of ammonia oxidizing bacteria (AOB) and polyphosphate accumulating organisms (PAOs) were investigated for a novel laboratory-scale sequencing batch pumped-flow biofilm reactor (PFBR) system that was operated for carbon, nitrogen and phosphorus removal. The PFBR comprised of two 16.5l tanks (Reactors 1 and 2), each with a biofilm module of 2m(2) surface area. To facilitate the growth of AOB and PAOs in the reactor biofilms, the influent wastewater was held in Reactor 1 under stagnant un-aerated conditions for 6 h after feeding, and was then pumped over and back between Reactors 1 and 2 for 12 h, creating aerobic conditions in the two reactors during this period; as a consequence, the biofilm in Reactor 2 was in an aerobic environment for almost all the 18.2 h operating cycle. A combination of micro-sensor measurements, molecular techniques, batch experiments and reactor studies were carried out to analyse the performance of the PFBR system. After 100 days operation at a filtered chemical oxygen demand (COD(f)) loading rate of 3.46 g/m(2) per day, the removal efficiencies were 95% COD(f), 87% TN(f) and 74% TP(f). While the PFBR microbial community structure and function were found to be highly diversified with substantial AOB and PAO populations, about 70% of the phosphorus release potential and almost 100% of the nitrification potential were located in Reactors 1 and 2, respectively. Co-enrichment of AOB and PAOs was realized in the Reactor 2 biofilm, where molecular analyses revealed unexpected microbial distributions at micro-scale, with population peaks of AOB in a 100-250 microm deep sub-surface zone and of PAOs in the 0-150 microm surface zone. The micro-distribution of AOB coincided with the position of the nitrification peak identified during micro-sensor analyses. The study demonstrates that enrichment of PAOs can be realized in a constant or near constant aerobic biofilm environment. Furthermore, the findings suggest

  7. Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: A mechanistic approach

    Energy Technology Data Exchange (ETDEWEB)

    Jafarirad, Saeed; Mehrabi, Meysam [Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz (Iran, Islamic Republic of); Divband, Baharak [Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Inorganic Chemistry Department, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Kosari-Nasab, Morteza [Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of)

    2016-02-01

    The use of plant extract in the biosynthesis of nanoparticles (NPs) can be an eco-friendly approach and have been suggested as a possible alternative to classic methods namely physical and chemical procedures. In this study, the biosynthesis of zinc oxide (ZnO) NPs by both “conventional heating” (CH) and “microwave irradiation” (MI) methods has been reported. Stable and spherical ZnONPs were produced using zinc nitrate and flesh extract of Rosa canina fruit (rosehip) which was used as a precursor. The flesh extract acts as a reducing and capping agent for generation of ZnONPs. The structural, morphological and colloidal properties of the as-synthesized NPs have been confirmed by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), Fourier transform Infrared (FT-IR) and Dynamic Light Scattering (DLS). In comparison with the CH method, the MI method has some advantages such as significantly short reaction time (within 8 min) owing to the high heating rate and thus the accelerated reaction rate. Both methods led to the synthesis of nearly identical NPs with respect to shape and size according to the results of DLS, XRD and SEM techniques. The possible mechanism for synthesis pathway has been proposed based on FT IR results, XRD patterns, potentiometric data and antioxidant activity. In addition, the antibacterial activity of as-prepared ZnONPs was investigated against several bacteria such as Listeria monocytogenes, Escherichia coli, Salmonella typhimurium. Moreover, the efficacy of ZnONPs to treat cancer cell lines were measured by means of cell viability test via MTT assay in which concentrations of 0.05 and 0.1 mg/mL of ZnONPs induced a very low toxicity. Thus, the present investigation reveals that ZnONPs have the potential for various medical and industrial applications. - Highlights: • We report a green producing route from biomaterials to potentially biomedical applications. • We comprise two methods in respect

  8. Growth and metabolism of Anammox Bacteria

    NARCIS (Netherlands)

    Van der Star, W.R.L.

    2008-01-01

    The anoxic ammonium oxidation (anammox) process is the conversion of nitrite and ammonium under anoxic conditions- to form dinitrogen gas. The process is performed by deep-branching Planctomycetes. The startup of the first full-scale anammox reactor in the world is described in Chapter 2. The

  9. Ammonium dinitramide (ADN)-Prilling, coating, and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, Thomas; Pontius, Heike; Aniol, Jasmin; Birke, Christoph; Leisinger, Karlfred; Reinhard, Werner [Fraunhofer-Institut Chemische Technologie ICT, Pfinztal (Germany)

    2009-06-15

    Ammonium dinitramide (ADN) is the promising oxidizer, which is expected to be applied, e.g., in solid rocket propellants. The manufacturing of spherical ADN particles (the so-called ADN-Prills) with useful morphology and reproducible quality is realized by means of the emulsion crystallization process. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  10. Anaerobic bacteria

    Science.gov (United States)

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Brook I. Diseases caused by non-spore-forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  11. Quaternary Ammonium Polyethyleneimine: Antibacterial Activity Ira

    International Nuclear Information System (INIS)

    Farber, Y.; Domb, A.G.; Golenser, J.; Beyth, N.; Weiss, E.I.

    2010-01-01

    Quaternary ammonium polyethyleneimine- (QA-PEI-) based nanoparticles were synthesized using two synthetic methods, reductive amination and N-alkylation. According to the first method, QA-PEI nanoparticles were synthesized by cross-linking with glutaraldehyde followed by reductive amination with octanal and further N-methylation with methyl iodide. The second method is based on crosslinking with dialkyl halide followed by N-alkylation with octyl halide and further N-methylation with methyl iodide. QA-PEI nanoparticles completely inhibited bacterial growth (>106 bacteria), including both Gram-positive, that is, Staphylococcus aureus at 80 μ/mL, and Gram-negative, that is, Escherichia coli at 320 μ/mL. Activity analysis revealed that the degree of alkylation and N-methylation of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl alkylated QA-PEI alkylated at 1 : 1 mole ratio (primary amine of PEI monomer units/alkylating agent). Also, cytotoxicity studies on MAT-LyLu and MBT cell lines were performed with QA-PEI nanoparticles. These findings confirm previous reports that poly cations bearing quaternary ammonium moieties inhibit bacterial growth in vitro and have a potential use as additives in medical devices which need antibacterial properties.

  12. Spatial and temporal distribution of nitrite-dependent anaerobic methane-oxidizing bacteria in an intertidal zone of the East China Sea.

    Science.gov (United States)

    Wang, Jiaqi; Shen, Lidong; He, Zhanfei; Hu, Jiajie; Cai, Zhaoyang; Zheng, Ping; Hu, Baolan

    2017-11-01

    Nitrite-dependent anaerobic methane oxidation (N-DAMO), which couples anaerobic methane oxidation and nitrite reduction, is a recently discovered bioprocess coupling microbial nitrogen and carbon cycles. The discovery of this microbial process challenges the traditional knowledge of global methane sinks and nitrogen losses. In this study, the abundance and activity of N-DAMO bacteria were investigated and their contributions to methane sink and nitrogen loss were estimated in different seasons and different partitions of an intertidal zone of the East China Sea. The results showed that N-DAMO bacteria were extensively and continuously present in the intertidal zone, with the number of cells ranging from 5.5 × 10 4 to 2.8 × 10 5 copy g -1 soil and the potential activity ranging from 0.52 to 5.7 nmol CO 2  g -1 soil day -1 , contributing 5.0-36.6% of nitrite- and sulfate-dependent anaerobic methane oxidation in the intertidal zone. The N-DAMO activity and its contribution to the methane consumption were highest in the spring and in the low intertidal zone. These findings showed that the N-DAMO process is an important methane and nitrogen sink in the intertidal zone and varies with the seasons and the partitions of the intertidal zone.

  13. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    Directory of Open Access Journals (Sweden)

    B. Orcutt

    2008-11-01

    Full Text Available Anaerobic oxidation of methane (AOM is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal were examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species can cause the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007, none of the potential intermediates considered here is able to support metabolic activity matching the measured rates.

  14. 21 CFR 184.1138 - Ammonium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ammonium chloride. 184.1138 Section 184.1138 Food... Specific Substances Affirmed as GRAS § 184.1138 Ammonium chloride. (a) Ammonium chloride (NH4Cl, CAS Reg. No. 12125-02-9) is produced by the reaction of sodium chloride and an ammonium salt in solution. The...

  15. Molecular and stable isotopic evidence for the occurrence of nitrite-dependent anaerobic methane-oxidizing bacteria in the mangrove sediment of Zhangjiang Estuary, China.

    Science.gov (United States)

    Zhang, Manping; Luo, Yi; Lin, Li'an; Lin, Xiaolan; Hetharua, Buce; Zhao, Weijun; Zhou, Mengkai; Zhan, Qing; Xu, Hong; Zheng, Tianling; Tian, Yun

    2018-03-01

    Nitrite-dependent anaerobic methane oxidation (n-damo), which is mediated by "Candidatus Methylomirabilis oxyfera-like" bacteria, is unique in linking the carbon and nitrogen cycles. However, the niche and activity of n-damo bacteria in the mangrove ecosystem have not been confirmed. Here, we report the occurrence of the n-damo process in the mangrove wetland of the Zhangjiang Estuary, China. The widespread occurrence of n-damo bacteria in mangrove wetland was confirmed using real-time quantitative polymerase chain reaction (qPCR) assay, which showed that the abundance of Methylomirabilis oxyfera-like bacterial 16S rRNA and pmoA genes ranged from 2.43 × 10 6 to 2.09 × 10 7 and 2.07 × 10 6 to 3.38 × 10 7 copies per gram of dry soil in the examined sediment cores. The highest amount of targeting genes was all detected in the upper layer (0-20 cm). Phylogenetic analyses of n-damo bacterial 16S rRNA and pmoA genes illustrated the depth-specific distribution and high diversity of n-damo bacteria in the mangrove wetland. Stable isotope experiments further confirmed the occurrence of n-damo in the examined mangrove sediments, and the potential n-damo rates ranged from 25.93 to 704.08 nmol CO 2 per gram of dry soil per day at different depths of the sediment cores, with the n-damo being more active in the upper layer of the mangrove sediments. These results illustrate the existence of active M. oxyfera-like bacteria and indicate that the n-damo process is a previously overlooked microbial methane sink in the mangrove wetlands.

  16. Developing a Genetically Encoded, Cross-Species Biosensor for Detecting Ammonium and Regulating Biosynthesis of Cyanophycin.

    Science.gov (United States)

    Xiao, Yi; Jiang, Wen; Zhang, Fuzhong

    2017-10-20

    Responding to nitrogen status is essential for all living organisms. Bacteria have evolved various complex and exquisite regulatory systems to control nitrogen metabolism. However, natural nitrogen regulatory systems, owing to their complexity, often function only in their original hosts and do not respond properly when transferred to another species. By harnessing the Lactococcus GlnRA system, we developed a genetically encoded, cross-species ammonium biosensor that displays a dynamic range up to 9-fold upon detection of ammonium ion. We demonstrated applications of this ammonium biosensor in three different species (Escherichia coli, Pseudomonas putida, and Synechocystis sp.) to detect different nitrogen sources. This ammonium sensor was further used to regulate the biosynthesis of a nitrogen-rich polymer, cyanophycin, based on ammonium concentration. Given the importance of nitrogen responses, the developed biosensor should be broadly applicable to synthetic biology and bioengineering.

  17. Antioxidant efficacy of crude methanol extract of ashitaba green tea against radiation induced oxidative stress in E.coli K12 bacteria

    International Nuclear Information System (INIS)

    Darshan Raj, C.G.; Sindhu Priya, E.S.; Sarojini, B.K.

    2013-01-01

    This study was undertaken to evaluate the antioxidant activity of methanol crude extract of ashitaba green tea (G). The DPPH scavenging assay was evaluated for green tea extract to determine its radical scavenging capacity. The bacteria was pretreated with ashitaba green tea extract, quercetin (Q) and (-) epigallocatechin -3-gallate (E) at below MIC level. Oxidative stress was induced at 0.4 Gy using gamma radiation. The antioxidant efficacy of ashitaba green tea was evaluated through enzyme antioxidant studies like SOD (Superoxidedismutase) and CAT (Catalase). The oxidative stress marker Thiobarbituric acid-reactive substance (TBARS) was also evaluated. Further the protective efficacy of the(G) was confirmed by colony forming units (CFU) study. Among the tested compounds the crude extract of ashitaba (G) exhibited excellent antioxidant activity in comparison with quercetin and (-) epigallocatechin -3-gallate. (abstract)

  18. Influence of oxygen partial pressure and salinity on the community composition of ammonia-oxidizing bacteria in the Schelde estuary

    NARCIS (Netherlands)

    Bollmann, A.; Laanbroek, H.J.

    2002-01-01

    The influence of environmental factors on the community structure of ammoniaoxidizing bacteria (AOB) was investigated in the Schelde estuary. Simultaneously with the increase of oxygen and salinity, a shift of the dominant AOB was observed. Molecular analysis based on 16S rRNA genes showed that

  19. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants.

    Science.gov (United States)

    Armada, E; Probanza, A; Roldán, A; Azcón, R

    2016-03-15

    This study evaluates the responses of Lavandula dentata under drought conditions to the inoculation with single autochthonous arbuscular mycorrhizal (AM) fungus (five fungal strains) or with their mixture and the effects of these inocula with a native Bacillus thuringiensis (endophytic bacteria). These microorganisms were drought tolerant and in general, increased plant growth and nutrition. Particularly, the AM fungal mixture and B. thuringiensis maximized plant biomass and compensated drought stress as values of antioxidant activities [superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase APX)] shown. The AMF-bacteria interactions highly reduced the plant oxidative damage of lipids [malondialdehyde (MDA)] and increased the mycorrhizal development (mainly arbuscular formation representative of symbiotic functionality). These microbial interactions explain the highest potential of dually inoculated plants to tolerate drought stress. B. thuringiensis "in vitro" under osmotic stress does not reduce its PGPB (plant growth promoting bacteria) abilities as indole acetic acid (IAA) and ACC deaminase production and phosphate solubilization indicating its capacity to improve plant growth under stress conditions. Each one of the autochthonous fungal strains maintained their particular interaction with B. thuringiensis reflecting the diversity, intrinsic abilities and inherent compatibility of these microorganisms. In general, autochthonous AM fungal species and particularly their mixture with B. thuringiensis demonstrated their potential for protecting plants against drought and helping plants to thrive in semiarid ecosystems. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Handling of Ammonium Nitrate Mother-Liquid Radiochemical Production - 13089

    International Nuclear Information System (INIS)

    Zherebtsov, Alexander; Dvoeglazov, Konstantine; Volk, Vladimir; Zagumenov, Vladimir; Zverev, Dmitriy; Tinin, Vasiliy; Kozyrev, Anatoly; Shamin, Dladimir; Tvilenev, Konstantin

    2013-01-01

    The aim of the work is to develop a basic technology of decomposition of ammonium nitrate stock solutions produced in radiochemical enterprises engaged in the reprocessing of irradiated nuclear fuel and fabrication of fresh fuel. It was necessary to work out how to conduct a one-step thermal decomposition of ammonium nitrate, select and test the catalysts for this process and to prepare proposals for recycling condensation. Necessary accessories were added to a laboratory equipment installation decomposition of ammonium nitrate. It is tested several types of reducing agents and two types of catalyst to neutralize the nitrogen oxides. It is conducted testing of modes of the process to produce condensation, suitable for use in the conversion of a new technological scheme of production. It is studied the structure of the catalysts before and after their use in a laboratory setting. It is tested the selected catalyst in the optimal range for 48 hours of continuous operation. (authors)

  1. Abundance and diversity of ammonia-oxidizing archaea and bacteria in the rhizosphere soil of three plants in the Ebinur Lake wetland.

    Science.gov (United States)

    He, Yuan; Hu, Wenge; Ma, Decao; Lan, Hongzhu; Yang, Yang; Gao, Yan

    2017-07-01

    Ammonia oxidation is carried out by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). The Ebinur Lake wetland is the best example of a temperate arid zone wetland ecosystem in China. Soil samples were collected from rhizosphere and non-rhizosphere soil containing Halocnemum strobilaceum (samples H and H'), Phragmites australis (samples R and R'), and Karelinia caspia (samples K and K') to study the relationship between environmental factors and the community structure of AOB and AOA. Phylogenetic analysis showed that the AOA sequences belonged to the Nitrosopumilus and Nitrososphaera clusters. AOB were grouped into Nitrosospira sp. and Nitrosomonas sp. Quantitative polymerase chain reaction results showed that the AOA abundance ranged from 2.09 × 10 4 to 2.94 × 10 5 gene copies/g soil. The highest number of AOA was detected in sample K, followed by samples R and H. AOB abundance varied between 2.91 × 10 5 and 1.05 × 10 6 gene copies/g soil, which was higher than that of AOA. Redundancy analysis indicated that electrical conductivity, pH, and NH 4 + -N might influence the community structure of AOA and AOB. AOB might play a more crucial role than AOA in ammonia oxidation based on AOB's higher diversity and abundance in the Ebinur Lake wetland in Xinjiang.

  2. Iron-Oxidizing Bacteria Found at Slow-Spreading Ridge: a Case Study of Capelinhos Hydrothermal Vent (Lucky Strike, MAR 37°N)

    Science.gov (United States)

    Henri, P. A.; Rommevaux, C.; Lesongeur, F.; Emerson, D.; Leleu, T.; Chavagnac, V.

    2015-12-01

    Iron-oxidizing bacteria becomes increasingly described in different geological settings from volcanically active seamounts, coastal waters, to diffuse hydrothermal vents near seafloor spreading centers [Emerson et al., 2010]. They have been mostly identified and described in Pacific Ocean, and have been only recently found in hydrothermal systems associated to slow spreading center of the Mid-Atlantic Ridge (MAR) [Scott et al., 2015]. During the MoMARSAT'13 cruise at Lucky Strike hydrothermal field (MAR), a new hydrothermal site was discovered at about 1.5 km eastward from the lava lake and from the main hydrothermal vents. This active venting site, named Capelinhos, is therefore the most distant from the volcano, features many chimneys, both focused and diffuses. The hydrothermal end-member fluids from Capelinhos are different from those of the other sites of Lucky Strike, showing the highest content of iron (Fe/Mn≈3.96) and the lowest chlorinity (270 mmol/l) [Leleu et al., 2015]. Most of the chimneys exhibit rust-color surfaces and bacterial mats near diffuse flows. During the MoMARSAT'15 cruise, an active chimney, a small inactive one, and rust-color bacterial mat near diffuse flow were sampled at Capelinhos. Observations by SEM of the hydrothermal samples revealed the presence of iron oxides in an assemblage of tubular "sheaths", assembled "stalks", helical "stalks" and amorphous aggregates. These features are similar to those described from the Loihi iron-mats deposits and argue for the occurrence of iron-oxidizing bacteria. Cultures under micro-aerobic and neutral pH conditions allowed us to isolate strains from the small inactive chimney. Pyrosequencing of the 16S rRNA gene of the isolates and environmental samples will soon be performed, which should confirm the presence of iron-oxidizing bacteria and reveal the organization of bacterial communities in this original and newly discovered hydrothermal site of the slow spreading Mid-Atlantic Ridge. Emerson

  3. Role of a unique population of lithotrophic, Fe-oxidizing bacteria in forming microbial Fe-mats at the Loihi Seamount.

    Science.gov (United States)

    Emerson, D.; Rentz, J. A.; Moyer, C. L.

    2005-12-01

    The Loihi Seamount, located 30 km SE of the island of Hawai'i, is among the most active volcanos on Earth. The summit, at a depth of 1100m, includes a 250m deep caldera (Pele's Pit) formed by an eruption in 1996. The summit, and especially Pele's Pit, are the site of extensive low to intermediate temperature (10° to 65°C) hydrothermal venting, emanating both from diffuse fissures and orifices that have substantial flow rates. The vent fluid is characterized by a low sulfide content, high CO2 concentrations and Fe(II) amounts in the 10s to 100s of μM. Associated with all vents are extensive deposits of iron oxyhydroxides that typically have 107 to 108 bacterial cells/cc associated with them. The morphology of the Fe-oxides are indicative of biological origins. We have isolated microaerophilic, obligately lithotrophic Fe-oxidizing bacteria from Loihi and describe here `Mariprofundus ferroxydans' a unique bacterium that forms a filamentous iron oxide mineral. `M. ferroxydans' is the first cultured representative of a novel division of the Proteobacteria, known previously only from clones from different hydrothermal vent sites. Molecular evidence from Loihi mats based on clone libraries and terminal restriction length polymorphism (T-RFLP) analysis of 16S rRNA genes indicate that this lineage of Fe-oxidizing organisms are common inhabitants at Loihi. We speculate that this organism and its relatives form the basis of an active microbial mat community that owe their existence to the inherent gradients of Fe(II) and O2 that exist at the Loihi vents. In a geological context this is interesting because the Loihi summit and caldera are in an O2-minima zone; O2 concentrations in the bulk seawater are around 0.5 mg/l. In effect, Loihi could serve as a proxy for the late Archaean and early Proterozoic periods when the Earth's atmosphere went from reducing to oxidizing, and it is speculated that abundant Fe(II) in the Earth's oceans served as a major sink for O2 production

  4. Complex community of nitrite-dependent anaerobic methane oxidation bacteria in coastal sediments of the Mai Po wetland by PCR amplification of both 16S rRNA and pmoA genes.

    Science.gov (United States)

    Chen, Jing; Zhou, Zhichao; Gu, Ji-Dong

    2015-02-01

    In the present work, both 16S rRNA and pmoA gene-based PCR primers were employed successfully to study the diversity and distribution of n-damo bacteria in the surface and lower layer sediments at the coastal Mai Po wetland. The occurrence of n-damo bacteria in both the surface and subsurface sediments with high diversity was confirmed in this study. Unlike the two other known n-damo communities from coastal areas, the pmoA gene-amplified sequences in the present work clustered not only with some freshwater subclusters but also within three newly erected marine subclusters mostly, indicating the unique niche specificity of n-damo bacteria in this wetland. Results suggested vegetation affected the distribution and community structures of n-damo bacteria in the sediments and n-damo could coexist with sulfate-reducing methanotrophs in the coastal ecosystem. Community structures of the Mai Po n-damo bacteria based on 16S rRNA gene were different from those of either the freshwater or the marine. In contrast, structures of the Mai Po n-damo communities based on pmoA gene grouped with the marine ones and were clearly distinguished from the freshwater ones. The abundance of n-damo bacteria at this wetland was quantified using 16S rRNA gene PCR primers to be 2.65-6.71 × 10(5) copies/g dry sediment. Ammonium and nitrite strongly affected the community structures and distribution of n-damo bacteria in the coastal Mai Po wetland sediments.

  5. Effects of combination of magnesium and zinc oxide nanoparticles and heat on Escherichia coli and Staphylococcus aureus bacteria in milk

    Directory of Open Access Journals (Sweden)

    M. Kimiaee Sadr

    2016-01-01

    Full Text Available Objective: The objective of this study was to investigate the antibacterial activities of combination of MgO and ZnO nanoparticles in the presence of heat against Escherichia coli and Staphylococcus aureus. Materials and Methods:Bacteria were grown on either agar or broth media followed by the addition of ZnO and MgO nanoparticles. Then the combined effect of ZnO and MgO nanoparticles was investigated.  Furthermore, the media containing nanoparticles were treated with mild heat and their synergistic antibacterial activity was investigated against E. coli and S. aureus in milk. Results: The data showed that the nanoparticles used in this study had no effect on the bacteria in the agar medium. However, the results showed that ZnO and MgO nanoparticles resulted in a significant decrease in the number of E. coli (P

  6. The Influence of Interfering Substances on the Antimicrobial Activity of Selected Quaternary Ammonium Compounds

    Directory of Open Access Journals (Sweden)

    Paula A. Araújo

    2013-01-01

    Full Text Available Standard cleaning processes may not remove all the soiling typically found in food industry, such as carbohydrates, fats, or proteins. Contaminants have a high impact in disinfection as their presence may reduce the activity of disinfectants. The influence of alginic acid, bovine serum albumin, yeast extract, and humic acids was assessed on the antimicrobial activities of benzalkonium chloride and cetyltrimethyl ammonium bromide against Bacillus cereus vegetative cells and Pseudomonas fluorescens. The bacteria (single and consortium were exposed to surfactants (single and combined in the absence and presence of potential disinfection interfering substances. The antimicrobial effects of the surfactants were assessed based on the bacterial respiratory activity measured by oxygen uptake rate due to glucose oxidation. The tested surfactants were efficient against both bacteria (single and consortium with minimum bactericidal concentrations ranging from 3 to 35 mg·L−1. The strongest effect was caused by humic acids that severely quenched antimicrobial action, increasing the minimum bactericidal concentration of the surfactants on P. fluorescens and the consortium. The inclusion of the other interfering substances resulted in mild interferences in the antibacterial activity. This study clearly demonstrates that humic acids should be considered as an antimicrobial interfering substance in the development of disinfection strategies.

  7. Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics

    OpenAIRE

    Mosbæk, Freya; Kjeldal, Henrik; Mulat, Daniel G; Albertsen, Mads; Ward, Alastair J; Feilberg, Anders; Nielsen, Jeppe L

    2016-01-01

    Inhibition of anaerobic digestion through accumulation of volatile fatty acids occasionally occurs as the result of unbalanced growth between acidogenic bacteria and methanogens. A fast recovery is a prerequisite for establishing an economical production of biogas. However, very little is known about the microorganisms facilitating this recovery. In this study, we investigated the organisms involved by a novel approach of mapping protein-stable isotope probing (protein-SIP) onto a binned meta...

  8. Tracking and quantification of nitrifying bacteria in biofilm and mixed liquor of a partial nitrification MBBR pilot plant using fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Abzazou, Tarik, E-mail: tabzazou@ub.edu [Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona (Spain); Araujo, Rosa M., E-mail: raraujo@ub.edu [Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona (Spain); Auset, María, E-mail: maria.auset.vallejo@acciona.com [ACCIONA AGUA, S.A., Av de les Garrigues 22, El Prat de Llobregat, 08820 Barcelona (Spain); Salvadó, Humbert, E-mail: hsalvado@ub.edu [Department of Animal Biology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona (Spain)

    2016-01-15

    A moving bead biofilm reactor (MBBR) pilot plant was implemented as a partial nitrification process for pre-treatment of ammonium-rich liquors (676 ± 195 mg L{sup −1}), and studied for 479 days under variations in hydraulic retention time. The main purpose of this work, was the study of dynamics abundance of total bacteria and single-cells nitrifying bacteria belonging to ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in biofilms and mixed liquor of the plant. The microbial monitoring was successfully achieved using fluorescence in situ hybridization combined with flocs disaggregation protocol as a useful microbial monitoring tool. A partial nitrification process with a N-NH{sub 4}{sup +} removal rate of about 38.6 ± 14.8% was successfully achieved at 211 days after start-up, with a clear dominance of AOB, which accounted for 11.3 ± 17.0% of total bacterial cells compared with only 2.1 ± 4.0% of NOB. The effluent obtained was subsequently supplied to an Anammox reactor for complete ammonium treatment. - Highlights: • Partial nitrification process in a MBBR fed with ammonium-rich liquor was achieved. • The operational key parameters were the HRT and temperature. • DAPI and FISH were useful to monitoring microbial composition of MBBR pilot plant. • The AOB were the dominant nitrifying bacteria, presenting 11.3% of total bacteria. • A significant correlation (R = 0.68) between AOB and ammonia removal was found.

  9. Relations of ammonium minerals at several hydrothermal systems in the western U.S.

    Science.gov (United States)

    Krohn, M.D.; Kendall, C.; Evans, J.R.; Fries, T.L.

    1993-01-01

    Ammonium bound to silicate and sulfate minerals has recently been located at several major hydrothermal systems in the western U.S. utilizing newly-discovered near-infrared spectral properties. Knowledge of the origin and mineralogic relations of ammonium minerals at known hydrothermal systems is critical for the proper interpretation of remote sensing data and for testing of possible links to mineralization. Submicroscopic analysis of ammonium minerals from two mercury- and gold-bearing hot-springs deposits at Ivanhoe, Nevada and McLaughlin, California shows that the ammonium feldspar, buddingtonite, occurs as fine-grained euhedral crystals coating larger sulfide and quartz crystals. Ammonium feldspar seems to precipitate relatively late in the crystallization sequence and shows evidence for replacement of NH4+ by K+ or other monovalent cations. Some buddingtonite is observed in close association with mercury, but not with gold. Ammonioalunite is found in a variety of isolated crystal forms at both deposits. Nitrogen isotopic values for ammonium-bearing minerals show a 14??? range in composition, precluding assignment of a specific provenance to the nitrogen. The correlations of nitrogen isotopic values with depth and ammonium content suggest some loss of nitrogen in the oxidizing supergene environment, possibly as a metastable mineral. The high ammonium content in these hydrothermal systems, the close association to mercury, and the small crystal size of the ammonium-bearing minerals all suggest that ammonium may be transported in a late-stage vapor phase or as an organic volatile. Such a process could lead to the formation of a non-carbonaceous organic aureole above a buried geothermal source. The discovery of a 10-km outcrop of ammonium minerals confirms that significant substitution of ammonium in minerals is possible over an extensive area and that remote sensing is a feasible means to detect such aureoles. ?? 1993.

  10. Solubility of ammonium metavanadate in ammonium carbonate and sodium bicarbonate solutions at 25 deg C

    International Nuclear Information System (INIS)

    Fedorov, P.I.; Andreev, V.K.; Slotvinskij-Sidak, N.P.

    1978-01-01

    Solubility at 25 deg C has been studied in the system ammonium metavanadate - sodium bicarbonate - water which is a stable section of the corresponding quaternary mutual system. In the eutonic point the content of ammonium metavanadate is 4.95% and of sodium bicarbonate 12.1%. The crystallization branch of ammonium metavanadate has been studied in the system ammonium metavanadate - ammonium carbonate - water at 25 deg C. Metavanadate solubility attains minimum (0.14%) at ammonium carbonate concentration 2.6%. Three sections have been studied of the quaternary system ammonium - metavanadate - ammonium carbonate - sodium bicarbonate-water at 25 deg C in the crystallization region of ammonium metavanadate at a ratio of sodium bicarbonate to ammonium carbonate 3:1, 1:1, and 1:3. A region of minimum solubility of ammonium metavanadate has been detected (0.1%)

  11. Low nitrous oxide production through nitrifier-denitrification in intermittent-feed high-rate nitritation reactors

    DEFF Research Database (Denmark)

    Su, Qingxian; Ma, Chun; Domingo-Felez, Carlos

    2017-01-01

    Nitrous oxide (N2O) production from autotrophic nitrogen conversion processes, especially nitritation systems, can be significant, requires understanding and calls for mitigation. In this study, the rates and pathways of N2O production were quantified in two lab-scale sequencing batch reactors...... to maintain high nitritation efficiency and high nitritation rates at 20-26 °C over a period of ∼300 days. Even at the high nitritation efficiencies, net N2O production was low (∼2% of the oxidized ammonium). Net N2O production rates transiently increased with a rise in pH after each feeding, suggesting...... operated with intermittent feeding and demonstrating long-term and high-rate nitritation. The resulting reactor biomass was highly enriched in ammonia-oxidizing bacteria, and converted ∼93 ± 14% of the oxidized ammonium to nitrite. The low DO set-point combined with intermittent feeding was sufficient...

  12. Optimization of nutritional requirements and ammonium feeding ...

    African Journals Online (AJOL)

    tounukarin

    2011-09-07

    Sep 7, 2011 ... Statistical experiment design and data analysis were used to ... Ammonium control strategies in fed-batch fermentation showed that when ammonium concentration ... environments, combined with the real-time process para-.

  13. Ammonia-oxidizing bacteria and archaea in wastewater treatment plant sludge and nearby coastal sediment in an industrial area in China.

    Science.gov (United States)

    Zhang, Yan; Chen, Lujun; Sun, Renhua; Dai, Tianjiao; Tian, Jinping; Wen, Donghui

    2015-05-01

    Under the increasing pressure of human activities, Hangzhou Bay has become one of the most seriously polluted waters along China's coast. Considering the excessive inorganic nitrogen detected in the bay, in this study, the impact of an effluent from a coastal industrial park on ammonia-oxidizing microorganisms (AOMs) of the receiving area was interpreted for the first time by molecular technologies. Revealed by real-time PCR, the ratio of archaeal amoA/bacterial amoA ranged from 5.68 × 10(-6) to 4.79 × 10(-5) in the activated sludge from two wastewater treatment plants (WWTPs) and 0.54-3.44 in the sediments from the effluent receiving coastal area. Analyzed by clone and pyrosequencing libraries, genus Nitrosomonas was the predominant ammonia-oxidizing bacteria (AOB), but no ammonia-oxidizing archaea (AOA) was abundant enough for sequencing in the activated sludge from the WWTPs; genus Nitrosomonas and Nitrosopumilus were the dominant AOB and AOA, respectively, in the coastal sediments. The different abundance of AOA but similar structure of AOB between the WWTPs and nearby coastal area probably indicated an anthropogenic impact on the microbial ecology in Hangzhou Bay.

  14. Bactericidal Specificity and Resistance Profile of Poly(Quaternary Ammonium) Polymers and Protein-Poly(Quaternary Ammonium) Conjugates.

    Science.gov (United States)

    Ji, Weihang; Koepsel, Richard R; Murata, Hironobu; Zadan, Sawyer; Campbell, Alan S; Russell, Alan J

    2017-08-14

    Antibacterial polymers are potentially powerful biocides that can destroy bacteria on contact. Debate in the literature has surrounded the mechanism of action of polymeric biocides and the propensity for bacteria to develop resistance to them. There has been particular interest in whether surfaces with covalently coupled polymeric biocides have the same mechanism of action and resistance profile as similar soluble polymeric biocides. We designed and synthesized a series of poly(quaternary ammonium) polymers, with tailorable molecular structures and architectures, to engineer their antibacterial specificity and their ability to delay the development of bacterial resistance. These linear poly(quaternary ammonium) homopolymers and block copolymers, generated using atom transfer radical polymerization, had structure-dependent antibacterial specificity toward Gram positive and negative bacterial species. When single block copolymers contained two polymer segments of differing antibacterial specificity, the polymer combined the specificities of its two components. Nanoparticulate human serum albumin-poly(quaternary ammonium) conjugates of these same polymers, synthesized via "grafting from" atom transfer radical polymerization, were strongly biocidal and also exhibited a marked decrease in the rate of bacterial resistance development relative to linear polymers. These protein-biocide conjugates mimicked the behavior of surface-presented polycationic biocides rather than their nonproteinaceous counterparts.

  15. Microbial resource management for the mitigation of nitrous oxide emissions from the Partial Nitritation- Anammox process

    DEFF Research Database (Denmark)

    Blum, Jan-Michael

    Urban wastewater treatment plants are designed to remove pathogens and pollutants from wastewater in order to provide sanitation and to protect receiving water bodies from eutrophication. Reactive nitrogen, mainly in the form of ammonium, is one of the components in wastewater that is converted...... to dinitrogen gas during treatment. The Partial Nitritation-Anammox process (PNA) uses the capacity of autotrophic aerobic and anaerobic ammonia oxidizing bacteria (AOB and AnAOB) to perform this task. The process is mainly applied to treat ammonium-rich wastewater streams with low concentrations of organic...... with the specific ammonia removal rate, while during non-aerated phases net N2O production rates were positively correlated with the nitrite concentration (NO2-). Operation of PNA at reduced specific ammonia removal rates is, therefore, a feasible strategy to mitigate N2O emissions. However, when high ammonium...

  16. Producing ammonium chloride from coal or shale

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, O L

    1921-02-25

    Process of producing ammonium chloride consists of mixing the substance to be treated with a chloride of an alkali or alkaline earth metal, free silica, water and free hydrochloric acid, heating the mixture until ammonium chloride distills off and collecting the ammonium chloride.

  17. Preparation of nanodispersed titania using stabilized ammonium nitrate melts

    KAUST Repository

    Raciulete, Monica

    2010-10-01

    An expedite one-step approach using simple precursors has been proposed to obtain metallic oxide compounds and exemplified by preparation of highly dispersed TiO2. The technique consists in heating to 400500 °C of molten ammonium nitrate stabilized with an organic nitrogen-containing compound (urea, melamine, ammonium oxalate) and containing dissolved metal salt precursor (TiOCl2). The crystallites of the resulting TiO2 demonstrated variable size and shape as a function of stabilizer used. Their activity in photocatalytic oxidation of formic acid also depends on the nature of the stabilizer. The catalysts as-prepared showed high photocatalytic performance, superior to that of the Degussa P25 reference. Nitrogen containing stabilizers play a double role of increasing the process safety and modifying the properties of the solid products. © 2010 Elsevier Inc. All rights reserved.

  18. In-depth characterization of the fluorescent signal of HyPer, a probe for hydrogen peroxide, in bacteria exposed to external oxidative stress.

    Science.gov (United States)

    Lim, Joseph B; Barker, Kimberly A; Huang, Beijing K; Sikes, Hadley D

    2014-11-01

    Genetically encoded, fluorescent biosensors have been developed to probe the activities of various signaling molecules inside cells ranging from changes in intracellular ion concentrations to dynamics of lipid second messengers. HyPer is a member of this class of biosensors and is the first to dynamically respond to hydrogen peroxide (H2O2), a reactive oxygen species that functions as a signaling molecule. However, detailed characterization of HyPer's signal is not currently available within the context of bacteria exposed to external oxidative stress, which occurs in the immunological response of higher organisms against invasive pathogenic bacteria. Here, we performed this characterization, specifically in Escherichia coli exposed to external H2O2. We found that the temporal behavior of the signal does not correspond exactly to peroxide concentration in the system as a function of time and expression of the sensor decreases the peroxide scavenging activity of the cell. We also determined the effects of cell number, both before and after normalization of externally added H2O2 to the number of cells. Finally, we report quantitative characteristics of HyPer's signal in this context, including the dynamic range of the signal, the signal-to-noise ratio, and the half saturation constant. These parameters show statistically meaningful differences in signal between two commonly used strains of E. coli, demonstrating how signal can vary with strain. Taken together, our results establish a systematic, quantitative framework for researchers seeking to better understand the role of H2O2 in the immunological response against bacteria, and for understanding potential differences in the details of HyPer's quantitative performance across studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Bioenergetic studies of coal sulfur oxidation by extremely thermophilic bacteria. Final report, September 15, 1992--August 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R.M.; Han, C.J.

    1997-12-31

    Thermoacidophilic microorganisms have been considered for inorganic sulfur removal from coal because of expected improvements in rates of both biotic and abiotic sulfur oxidation reactions with increasing temperature. In this study, the bioenergetic response of the extremely thermoacidophilic archaeon, Metallosphaera sedula, to environmental changes have been examined in relation to its capacity to catalyze pyrite oxidation in coal. Given an appropriate bioenergetic challenge, the metabolic response was to utilize additional amounts of energy sources (i.e., pyrite) to survive. Of particular interest were the consequences of exposing the organism to various forms of stress (chemical, nutritional, thermal, pH) in the presence of coal pyrite. Several approaches to take advantage of stress response to accelerate pyrite oxidation by this organism were examined, including attempts to promote acquired thermal tolerance to extend its functional range, exposure to chemical uncouplers and decouplers, and manipulation of heterotrophic and chemolithotrophic tendencies to optimize biomass concentration and biocatalytic activity. Promising strategies were investigated in a continuous culture system. This study identified environmental conditions that promote better coupling of biotic and abiotic oxidation reactions to improve biosulfurization rates of thermoacidophilic microorganisms.

  20. Chemical Modification and Detoxification of the Pseudomonas aeruginosa Toxin 2-Heptyl-4-hydroxyquinoline N-Oxide by Environmental and Pathogenic Bacteria.

    Science.gov (United States)

    Thierbach, Sven; Birmes, Franziska S; Letzel, Matthias C; Hennecke, Ulrich; Fetzner, Susanne

    2017-09-15

    2-Heptyl-4-hydroxyquinoline N-oxide (HQNO), a major secondary metabolite and virulence factor produced by the opportunistic pathogen Pseudomonas aeruginosa, acts as a potent inhibitor of respiratory electron transfer and thereby affects host cells as well as microorganisms. In this study, we demonstrate the previously unknown capability of environmental and pathogenic bacteria to transform and detoxify this compound. Strains of Arthrobacter and Rhodococcus spp. as well as Staphylococcus aureus introduced a hydroxyl group at C-3 of HQNO, whereas Mycobacterium abscessus, M. fortuitum, and M. smegmatis performed an O-methylation, forming 2-heptyl-1-methoxy-4-oxoquinoline as the initial metabolite. Bacillus spp. produced the glycosylated derivative 2-heptyl-1-(β-d-glucopyranosydyl)-4-oxoquinoline. Assaying the effects of these metabolites on cellular respiration and on quinol oxidase activity of membrane fractions revealed that their EC 50 values were up to 2 orders of magnitude higher than that of HQNO. Furthermore, cellular levels of reactive oxygen species were significantly lower in the presence of the metabolites than under the influence of HQNO. Therefore, the capacity to transform HQNO should lead to a competitive advantage against P. aeruginosa. Our findings contribute new insight into the metabolic diversity of bacteria and add another layer of complexity to the metabolic interactions which likely contribute to shaping polymicrobial communities comprising P. aeruginosa.

  1. Ammonium assmilation in spruce ectomycorrhizas

    International Nuclear Information System (INIS)

    Chalot, M.; Brun, A.; Botton, B.; Stewart, G.

    1990-01-01

    Assimilation of labelled NH 4 + into amino acids has been followed in ectomycorrhizal roots of spruce. Over an 18 h period of NH 4 + feeding, Gln, Glu and Ala became the most abundant amino acids. Gln was also the most highly labelled amino acid during the experiment, followed by Glu and Ala. This result indicates that Gln synthesis is an important ammonium utilization reaction in spruce mycorrhizas. Addition of MSX to NH 4 + fed mycorrhizas caused an inhibition of Gln accumulation with a corresponding increase in Glu, Ala and Asn levels. The supply of MSX induced a sharp diminution of 15 N enrichment in both amino and amido groups of glutamine. In contrast, the 15 N incorporation into Glu and derivatives (Ala and Asp) remained very high. This study demonstrates that the fungal glutamate dehydrogenase is quite operative in spruce ectomycorrhizas since it is able to sustain ammonium assimilation when glutamine synthetase is inhibited

  2. Headspace Analysis of Ammonium Nitrate

    Science.gov (United States)

    2017-01-25

    explosive ammonium nitrate produces ammonia and nitric acid in the gaseous headspace above bulk solids, but the concentrations of the products have been...and NO2-, a product of nitrate fragmentation (Figure 7). Brief spikes in the background and dips in oxalic acid signal were observed at the time of...either filtered air or experimental nitric acid vapor sources so that analyte signal could be measured directly opposite background. With oxalic

  3. Ammonium uptake by phytoplankton regulates nitrification in the sunlit ocean.

    Science.gov (United States)

    Smith, Jason M; Chavez, Francisco P; Francis, Christopher A

    2014-01-01

    Nitrification, the microbial oxidation of ammonium to nitrate, is a central part of the nitrogen cycle. In the ocean's surface layer, the process alters the distribution of inorganic nitrogen species available to phytoplankton and produces nitrous oxide. A widely held idea among oceanographers is that nitrification is inhibited by light in the ocean. However, recent evidence that the primary organisms involved in nitrification, the ammonia-oxidizing archaea (AOA), are present and active throughout the surface ocean has challenged this idea. Here we show, through field experiments coupling molecular genetic and biogeochemical approaches, that competition for ammonium with phytoplankton is the strongest regulator of nitrification in the photic zone. During multiday experiments at high irradiance a single ecotype of AOA remained active in the presence of rapidly growing phytoplankton. Over the course of this three day experiment, variability in the intensity of competition with phytoplankton caused nitrification rates to decline from those typical of the lower photic zone (60 nmol L-1 d-1) to those in well-lit layers (ammonium than they are by light itself. This finding advances our ability to model the impact of nitrification on estimates of new primary production, and emphasizes the need to more strongly consider the effects of organismal interactions on nutrient standing stocks and biogeochemical cycling in the surface of the ocean.

  4. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources.

    Science.gov (United States)

    Ishii, Takumi; Kawaichi, Satoshi; Nakagawa, Hirotaka; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2015-01-01

    At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II)-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe(2+) ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex) and a cytochrome bc1 complex (bc1 complex) in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD(+) through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II)-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats.

  5. Antibacterial Activity of Orthodontic Cement Containing Quaternary Ammonium Polyethylenimine Nanoparticles Adjacent to Orthodontic Brackets

    OpenAIRE

    Eldad Sharon; Revital Sharabi; Adi Eden; Asher Zabrovsky; Gilad Ben-Gal; Esi Sharon; Yoav Pietrokovski; Yael Houri-Haddad; Nurit Beyth

    2018-01-01

    Enamel demineralization is a common problem found in patients using orthodontic devices, such as orthodontic braces. It was found that Streptoccocus mutans growth increases adjacent to orthodontic devices, which may result in caries development. Incorporated antibacterial quaternary ammonium polyethylenimine (QPEI) nanoparticles were previously shown to be highly efficacious against various bacteria. Combining antibacterial materials in orthodontic cement may be advantageous to prevent bacter...

  6. New quaternary ammonium salts based decontaminants

    Directory of Open Access Journals (Sweden)

    Diana M. Popescu

    2014-06-01

    Full Text Available Decontamination after terrorist attacks or industrial accidents with biological and/or chemical agents („bio-chem“ must be fast and efficient, in order to reduce the number of victims and to eliminate the consequent damages. The decontamination of living biological agents (bacteria, viruses or nonliving ones (toxins, regulators and toxic chemicals could be accomplished by reactions of hydrolysis in various experimental conditions, in particular in alkaline medium, reactions with amines or ammonia, alcohols, phenols etc. and by their transformation into less toxic degradation products. “Bio-chem” intentional or unintentional contamination is a real risk, towards which an effective management must be available to prevent and control it. Decontamination is an essential measure to protect the personnel and the environment. Synthesis and testing of new „bio-chem“ decontaminants, based on quaternary ammonium salts, complete the arsenal of protection against chemical and biological agents. The most effective selected substances could be produced and used for decontamination in accordance with legal procedures

  7. Treating ammonium-rich wastewater with sludge from water treatment plant to produce ammonium alum

    Directory of Open Access Journals (Sweden)

    Wen-Po Cheng

    2016-03-01

    Full Text Available This study applies a process to treat ammonium-rich wastewater using alum-generated sludge form water purification plant, and gain economic benefit by producing ammonium alum (Al(NH4(SO42·12H2O. The factors affecting production of ammonium alum include molar ratio of ammonium to aluminum concentration, sulfuric acid concentration, mixing speed, mixing time, standing time, and temperature. According to the equation for the ammonium removal reaction, the theoretical quantity of ammonium alum was calculated based on initial and final concentrations of ammonium. Then, the weight of ammonium alum crystal was divided by the theoretical weight to derive the recovery ratio. The optimum sludge and sulfuric acid dosage to treat about 17 g L−1 ammonium wastewater are 300 g L−1 and 100 mL L−1, respectively. The optimal dosage for wastewater is molar ratio of ammonium to aluminum of about 1 due to the aluminum dissolving in acidified wastewater. The ammonium removal efficiency is roughly 70% and the maximum recovery ratio for ammonium alum is 93% when the wastewater is mixed for 10 min at the mixing velocity gradient of 100 s−1. Ammonium alum production or ammonium removal can be enhanced by controlling the reaction at low temperatures.

  8. Shifts in Abundance and Diversity of Soil Ammonia-Oxidizing Bacteria and Archaea Associated with Land Restoration in a Semi-Arid Ecosystem.

    Directory of Open Access Journals (Sweden)

    Zhu Chen

    Full Text Available The Grain to Green Project (GGP is an unprecedented land restoration action in China. The project converted large areas (ca 10 million ha of steep-sloped/degraded farmland and barren land into forest and grassland resulting in ecological benefits such as a reduction in severe soil erosion. It may also affect soil microorganisms involved in ammonia oxidization, which is a key step in the global nitrogen cycle. The methods for restoration that are typically adopted in semi-arid regions include abandoning farmland and growing drought tolerant grass (Lolium perenne L. or shrubs (Caragana korshinskii Kom.. In the present study, the effects of these methods on the abundance and diversity of ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA were evaluated via quantitative real-time PCR, terminal restriction fragment length polymorphism and clone library analysis of amoA genes. Comparisons were made between soil samples from three restored lands and the adjacent farmland in Inner Mongolia. Both the abundance and community composition of AOB were significantly different between the restored lands and the adjacent control. Significantly lower nitrification activity was observed for the restored land. Clone library analysis revealed that all AOB amoA gene sequences were affiliated with Nitrosospira. Abundance of the populations that were associated with Nitrosospira sp. Nv6 which had possibly adapted to high concentrations of inorganic nitrogen, decreased on the restored land. Only a slight difference in the AOB communities was observed between the restored land with and without the shrub (Caragana korshinskii Kom.. A minor effect of land restoration on AOA was observed. In summary, land restoration negatively affected the abundance of AOB and soil nitrification activities, suggesting the potential role of GGP in the leaching of nitrates, and in the emission of N2O in related terrestrial ecosystems.

  9. Concomitant ingestion of lactic acid bacteria and black tea synergistically enhances flavonoid bioavailability and attenuates d-galactose-induced oxidative stress in mice via modulating glutathione antioxidant system.

    Science.gov (United States)

    Zhao, Danyue; Shah, Nagendra P

    2016-12-01

    Black tea (BT) has been positively linked to improved redox status, while its efficacy is limited due to the low bioavailability of BT flavonoids. In addition to the direct antioxidant activity, flavonoids regulate redox balance via inducing endogenous antioxidants, particularly glutathione (GSH) and GSH-dependent antioxidant enzymes. This work first examined the effect of lactic acid bacteria (LAB) and BT alone or in combination on flavonoid bioavailability and metabolism; next, the effect of LAB-fermented BT diet in attenuating oxidative stress in mice and the underlying mechanisms were studied. Phenolic profiles of plasma, urine and feces from healthy mice consuming plain yogurt, BT milk (BTM) or BT yogurt (BTY) were acquired using LC-MS/MS. Plasma antioxidant capacity, lipid peroxidation level, content of nonprotein thiols and expression of GSH-related antioxidant enzymes and Nrf2 were examined in d-galactose-treated mice. Total flavonoid content in plasma following a single dose of BTY attained 0.657 μmol/l, increased by 50% compared with the BTM group. Increased excretion of phenolic metabolite and hippuric acid in urine and feces indicated enhanced metabolism of flavonoids in BTY-fed mice. In the second study, 8-week concomitant LAB-BT treatment of oxidatively stressed mice effectively restored plasma antioxidant capacity and GSH levels, and mitigated lipid peroxidation, which were associated with significant induction of GSH-dependent antioxidant enzymes and nuclear accumulation of Nrf2. Our results demonstrated the effect of LAB fermentation in enhancing BT flavonoid bioavailability in vivo. The synergistic antioxidant efficacy of LAB-BT diet implied its therapeutic potential in enhancing antioxidant defenses and protecting organisms from oxidative damage. Copyright © 2016. Published by Elsevier Inc.

  10. Mimicking microbial interactions under nitrate-reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio.

    Science.gov (United States)

    Arshad, Arslan; Dalcin Martins, Paula; Frank, Jeroen; Jetten, Mike S M; Op den Camp, Huub J M; Welte, Cornelia U

    2017-12-01

    Microorganisms are main drivers of the sulfur, nitrogen and carbon biogeochemical cycles. These elemental cycles are interconnected by the activity of different guilds in sediments or wastewater treatment systems. Here, we investigated a nitrate-reducing microbial community in a laboratory-scale bioreactor model that closely mimicked estuary or brackish sediment conditions. The bioreactor simultaneously consumed sulfide, methane and ammonium at the expense of nitrate. Ammonium oxidation occurred solely by the activity of anammox bacteria identified as Candidatus Scalindua brodae and Ca. Kuenenia stuttgartiensis. Fifty-three percent of methane oxidation was catalyzed by archaea affiliated to Ca. Methanoperedens and 47% by Ca. Methylomirabilis bacteria. Sulfide oxidation was mainly shared between two proteobacterial groups. Interestingly, competition for nitrate did not lead to exclusion of one particular group. Metagenomic analysis showed that the most abundant taxonomic group was distantly related to Thermodesulfovibrio sp. (87-89% 16S rRNA gene identity, 52-54% average amino acid identity), representing a new family within the Nitrospirae phylum. A high quality draft genome of the new species was recovered, and analysis showed high metabolic versatility. Related microbial groups are found in diverse environments with sulfur, nitrogen and methane cycling, indicating that these novel Nitrospirae bacteria might contribute to biogeochemical cycling in natural habitats. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Nitrite-Oxidizing Bacteria Community Composition and Diversity Are Influenced by Fertilizer Regimes, but Are Independent of the Soil Aggregate in Acidic Subtropical Red Soil.

    Science.gov (United States)

    Han, Shun; Li, Xiang; Luo, Xuesong; Wen, Shilin; Chen, Wenli; Huang, Qiaoyun

    2018-01-01

    and Mantel test indicated that soil nitrogen, carbon, phosphorus, and available potassium content were important environmental attributes that control the Nitrobacter - and Nitrospira -like NOB community structure across different fertilization treatments under aggregate levels in the red soil. In general, nitrite-oxidizing bacteria community composition and alpha-diversity are depending on fertilizer regimes, but independent of the soil aggregate.

  12. Burning characteristics of ammonium nitrate-based composite propellants supplemented with ammonium dichromate

    Energy Technology Data Exchange (ETDEWEB)

    Kohga, Makoto; Nishino, Saeko [Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa 239-8686 (Japan)

    2009-08-15

    Ammonium nitrate (AN)-based composite propellants have attracted much attention, primarily because of the clean burning nature of AN as an oxidizer. However, such propellants have some disadvantages such as poor ignition and low burning rate. Ammonium dichromate (ADC) is used as a burning catalyst for AN-based propellants; however, the effect of ADC on the burning characteristics has yet to be sufficiently delineated. The burning characteristics of AN/ADC propellants prepared with various contents of AN and ADC have been investigated in this study. The theoretical performance of an AN-based propellant is improved by the addition of ADC. The increase in the burning rate is enhanced and the pressure deflagration limit (PDL) becomes lower with increasing amount of ADC added. The increasing ratio of the burning rate with respect to the amount of ADC is independent of the AN content and the combustion pressure. The optimal amount of ADC for improving the burning characteristics has been determined. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  13. Ammonium-tungstate-promoted growth of boron nitride nanotubes

    Science.gov (United States)

    E, Songfeng; Li, Chaowei; Li, Taotao; Geng, Renjie; Li, Qiulong; Lu, Weibang; Yao, Yagang

    2018-05-01

    Ammonium tungstate ((NH4)10W12O41 · xH2O) is a kind of oxygen-containing ammonium salt. The following study proves that it can be successfully used as a metal oxide alternative to produce boron oxide (B2O2) by oxidizing boron (B) in a traditional boron oxide chemical vapor deposition (BOCVD) process. This special oxidant promotes the simplistic fabrication of boron nitride nanotubes (BNNTs) in a conventional horizontal tube furnace, an outcome which may have resulted from its strong oxidizability. The experimental results demonstrate that the mole ratio of B and (NH4)10W12O41 · xH2O is a key parameter in determining the formation, quality and quantity of BNNTs when stainless steel is employed as a catalyst. We also found that Mg(NO3)2 and MgO nanoparticles (NPs) can be used as catalysts to grow BNNTs with the same precursor. The BNNTs obtained from the Mg(NO3)2 catalyst were straighter than those obtained from the MgO NP catalyst. This could have been due to the different physical forms of the catalysts that were used.

  14. Contrasting effects of ammonium and nitrate additions on the biomass of soil microbial communities and enzyme activities in subtropical China

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2017-10-01

    Full Text Available The nitrate to ammonium ratios in nitrogen (N compounds in wet atmospheric deposits have increased over the recent past, which is a cause for some concern as the individual effects of nitrate and ammonium deposition on the biomass of different soil microbial communities and enzyme activities are still poorly defined. We established a field experiment and applied ammonium (NH4Cl and nitrate (NaNO3 at monthly intervals over a period of 4 years. We collected soil samples from the ammonium and nitrate treatments and control plots in three different seasons, namely spring, summer, and fall, to evaluate the how the biomass of different soil microbial communities and enzyme activities responded to the ammonium (NH4Cl and nitrate (NaNO3 applications. Our results showed that the total contents of phospholipid fatty acids (PLFAs decreased by 24 and 11 % in the ammonium and nitrate treatments, respectively. The inhibitory effects of ammonium on Gram-positive bacteria (G+ and bacteria, fungi, actinomycetes, and arbuscular mycorrhizal fungi (AMF PLFA contents ranged from 14 to 40 % across the three seasons. We also observed that the absolute activities of C, N, and P hydrolyses and oxidases were inhibited by ammonium and nitrate, but that nitrate had stronger inhibitory effects on the activities of acid phosphatase (AP than ammonium. The activities of N-acquisition specific enzymes (enzyme activities normalized by total PLFA contents were about 21 and 43 % lower in the ammonium and nitrate treatments than in the control, respectively. However, the activities of P-acquisition specific enzymes were about 19 % higher in the ammonium treatment than in the control. Using redundancy analysis (RDA, we found that the measured C, N, and P hydrolysis and polyphenol oxidase (PPO activities were positively correlated with the soil pH and ammonium contents, but were negatively correlated with the nitrate contents. The PLFA biomarker contents were positively

  15. Contrasting effects of ammonium and nitrate additions on the biomass of soil microbial communities and enzyme activities in subtropical China

    Science.gov (United States)

    Zhang, Chuang; Zhang, Xin-Yu; Zou, Hong-Tao; Kou, Liang; Yang, Yang; Wen, Xue-Fa; Li, Sheng-Gong; Wang, Hui-Min; Sun, Xiao-Min

    2017-10-01

    The nitrate to ammonium ratios in nitrogen (N) compounds in wet atmospheric deposits have increased over the recent past, which is a cause for some concern as the individual effects of nitrate and ammonium deposition on the biomass of different soil microbial communities and enzyme activities are still poorly defined. We established a field experiment and applied ammonium (NH4Cl) and nitrate (NaNO3) at monthly intervals over a period of 4 years. We collected soil samples from the ammonium and nitrate treatments and control plots in three different seasons, namely spring, summer, and fall, to evaluate the how the biomass of different soil microbial communities and enzyme activities responded to the ammonium (NH4Cl) and nitrate (NaNO3) applications. Our results showed that the total contents of phospholipid fatty acids (PLFAs) decreased by 24 and 11 % in the ammonium and nitrate treatments, respectively. The inhibitory effects of ammonium on Gram-positive bacteria (G+) and bacteria, fungi, actinomycetes, and arbuscular mycorrhizal fungi (AMF) PLFA contents ranged from 14 to 40 % across the three seasons. We also observed that the absolute activities of C, N, and P hydrolyses and oxidases were inhibited by ammonium and nitrate, but that nitrate had stronger inhibitory effects on the activities of acid phosphatase (AP) than ammonium. The activities of N-acquisition specific enzymes (enzyme activities normalized by total PLFA contents) were about 21 and 43 % lower in the ammonium and nitrate treatments than in the control, respectively. However, the activities of P-acquisition specific enzymes were about 19 % higher in the ammonium treatment than in the control. Using redundancy analysis (RDA), we found that the measured C, N, and P hydrolysis and polyphenol oxidase (PPO) activities were positively correlated with the soil pH and ammonium contents, but were negatively correlated with the nitrate contents. The PLFA biomarker contents were positively correlated with soil

  16. Review of Options for Ammonia/Ammonium Management

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-06

    This report is a review of literature supporting practical ammonia/ammonium destruction processes. Melter research supporting Hanford Low Activity Waste (LAW) glass production has shown that significant amounts of ammonia will be in the melter offgas condensate. Further work with secondary waste forms indicates the potential need to remove the ammonia, perhaps by an oxidative process. This review finds likely practical chemical methods to oxidize ammonia in aqueous solution at moderate temperatures and atmospheric pressure, using easily obtained reagents. Leading candidates include nitrite oxidation to produce nitrogen gas, various peroxide oxidative processes, and air stripping. This work reviews many other processes and provides reasoning to not consider those processes further for this application.

  17. Mechanistic study of the visible-light-driven photocatalytic inactivation of bacteria by graphene oxide–zinc oxide composite

    International Nuclear Information System (INIS)

    Wu, Dan; An, Taicheng; Li, Guiying; Wang, Wei; Cai, Yuncheng; Yip, Ho Yin; Zhao, Huijun; Wong, Po Keung

    2015-01-01

    Graphical abstract: - Highlights: • The GO–ZnO composites exhibited efficient VLD bacterial inactivation performance. • Strong interfacial interaction existed between GO and ZnO. • GO served as a photosensitizer in the inactivation process. • Excellent antibacterial activity by GO–ZnO composite was shown under sunlight. • An inactivation mechanism based on the GO photosensitizer induction was proposed. - Abstract: The visible-light-driven (VLD) photocatalytic activity of graphene oxide–zinc oxide (GO–ZnO) composite prepared by a simple hydrothermal method was evaluated toward the inactivation of Escherichia coli K-12. The results showed that GO–ZnO composite had excellent VLD photocatalytic bacterial inactivation activity, comparing with those of ZnO and GO, which was attributed to the strong interaction between ZnO and GO in the composite. Accordingly, an interaction induced VLD photocatalytic inactivation mechanism of the strong interaction of GO with ZnO within the GO–ZnO composite was proposed. GO served as a photosensitizer and facilitated the charge separation and transfer, thus boosted the massive production of reactive oxygen species such as ·OH bulk , which was identified as the major reactive species from conduction band of ZnO, and resulted in a remarkable enhancement of bacterial inactivation efficiency. Moreover, GO–ZnO composite showed obviously superior photocatalytic bacterial inactivation within 10 min under natural solar light irradiation, indicating that GO–ZnO composite has great potential in wastewater treatment and environmental protection.

  18. Glufosinate ammonium selection of transformed Arabidopsis.

    Science.gov (United States)

    Weigel, Detlef; Glazebrook, Jane

    2006-12-01

    INTRODUCTIONOne of the most commonly used markers for the selection of transgenic Arabidopsis is resistance to glufosinate ammonium, an herbicide that is sold under a variety of trade names including Basta and Finale. Resistance to glufosinate ammonium is conferred by the bacterial bialophos resistance gene (BAR) encoding the enzyme phosphinotricin acetyl transferase (PAT). This protocol describes the use of glufosinate ammonium to select transformed Arabidopsis plants. The major advantage of glufosinate ammonium selection is that it can be performed on plants growing in soil and does not require the use of sterile techniques.

  19. 76 FR 46907 - Ammonium Nitrate Security Program

    Science.gov (United States)

    2011-08-03

    ... Maritime Transportation Security Act NAICS North American Industrial Classification System NPRM Notice of.... Commenters noted, for example, that equipment used for transporting bulk ammonium nitrate, such as hoppers...

  20. Catalytic oxidation using nitrous oxide

    Directory of Open Access Journals (Sweden)

    Juan Carlos Beltran-Prieto

    2017-01-01

    Full Text Available Nitrous oxide is a very inert gas used generally as oxidant as it offers some advantage compared with other oxidants such as O2 but a considerably higher temperature (> 526 °C is often required. For particular cases such as the oxidation of sugar alcohols, especially for the oxidation of primary alcohols to aldehydes, N2O has the advantage over O2 of a higher reaction selectivity. In the present paper we present the modelling of oxidation reaction of sugar alcohols using an oxidizing agent in low concentrations, which is important to suppress subsequent oxidation reactions due to the very low residual concentrations of the oxidizing agent. For orientation experiments we chose nitrous oxide generated by thermal decomposition of ammonium nitrate. Kinetic modeling of the reaction was performed after determination of the differential equations that describe the system under study.

  1. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process.

    Science.gov (United States)

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki; Takahashi, Kazuhiko

    2016-01-01

    Ammonia is a precursor to trichloramine, which causes an undesirable chlorinous odor. Granular activated carbon (GAC) filtration is used to biologically oxidize ammonia during drinking water purification; however, little information is available regarding the abundance and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) associated with GAC. In addition, their sources and fates in water purification process remain unknown. In this study, six GAC samples were collected from five full-scale drinking water purification plants in Tokyo during summer and winter, and the abundance and community structure of AOA and AOB associated with GAC were studied in these two seasons. In summer, archaeal and bacterial amoA genes on GACs were present at 3.7 × 10(5)-3.9 × 10(8) gene copies/g-dry and 4.5 × 10(6)-4.2 × 10(8) gene copies/g-dry, respectively. In winter, archaeal amoA genes remained at the same level, while bacterial amoA genes decreased significantly for all GACs. No differences were observed in the community diversity of AOA and AOB from summer to winter. Phylogenetic analysis revealed high AOA diversity in group I.1a and group I.1b in raw water. Terminal-restriction fragment length polymorphism analysis of processed water samples revealed that AOA diversity decreased dramatically to only two OTUs in group I.1a after ozonation, which were identical to those detected on GAC. It suggests that ozonation plays an important role in determining AOA diversity on GAC. Further study